

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Scalable Semi-Supervised Grammar

Induction using Cross-Linguistically

Parameterized Syntactic Prototypes

Prachya Boonkwan

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2014

i

Abstract
This thesis is about the task of unsupervised parser induction: automatically learning

grammars and parsing models from raw text. We endeavor to induce such parsers by

observing sequences of terminal symbols. We focus on overcoming the problem of

frequent collocation that is a major source of error in grammar induction. For exam-

ple, since a verb and a determiner tend to co-occur in a verb phrase, the probability

of attaching the determiner to the verb is sometimes higher than that of attaching the

core noun to the verb, resulting in erroneous attachment *((Verb Det) Noun) instead of

(Verb (Det Noun)). Although frequent collocation is the heart of grammar induction, it

is precariously capable of distorting the grammar distribution. Natural language gram-

mars follow a Zipfian (power law) distribution, where the frequency of any grammar

rule is inversely proportional to its rank in the frequency table. We believe that cover-

ing the most frequent grammar rules in grammar induction will have a strong impact

on accuracy.

We propose an efficient approach to grammar induction guided by cross-linguistic lan-

guage parameters. Our language parameters consist of 33 parameters of frequent basic

word orders, which are easy to be elicited from grammar compendiums or short in-

terviews with naïve language informants. These parameters are designed to capture

frequent word orders in the Zipfian distribution of natural language grammars, while

the rest of the grammar including exceptions can be automatically induced from unla-

beled data. The language parameters shrink the search space of the grammar induction

problem by exploiting both word order information and predefined attachment direc-

tions.

The contribution of this thesis is three-fold. (1) We show that the language parame-

ters are adequately generalizable cross-linguistically, as our grammar induction exper-

iments will be carried out on 14 languages on top of a simple unsupervised grammar

induction system. (2) Our specification of language parameters improves the accuracy

of unsupervised parsing even when the parser is exposed to much less frequent lin-

guistic phenomena in longer sentences when the accuracy decreases within 10%. (3)

We investigate the prevalent factors of errors in grammar induction which will provide

room for accuracy improvement.

ii

The proposed language parameters efficiently cope with the most frequent grammar

rules in natural languages. With only 10 man-hours for preparing syntactic proto-

types, it improves the accuracy of directed dependency recovery over the state-of-

the-art Gillenwater et al.’s (2010) completely unsupervised parser in: (1) Chinese by

30.32% (2) Swedish by 28.96% (3) Portuguese by 37.64% (4) Dutch by 15.17% (5)

German by 14.21% (6) Spanish by 13.53% (7) Japanese by 13.13% (8) English by

12.41% (9) Czech by 9.16% (10) Slovene by 7.24% (11) Turkish by 6.72% and (12)

Bulgarian by 5.96%. It is noted that although the directed dependency accuracies of

some languages are below 60%, their TEDEVAL scores are still satisfactory (approx-

imately 80%). This suggests us that our parsed trees are, in fact, closely related to the

gold-standard trees despite the discrepancy of annotation schemes.

We perform an error analysis of over- and under-generation analysis. We found three

prevalent problems that cause errors in the experiments: (1) PP attachment (2) discrep-

ancies of dependency annotation schemes and (3) rich morphology.

The methods presented in this thesis were originally presented in Boonkwan and Steed-

man (2011). The thesis presents a great deal more detail in the design of cross-

linguistic language parameters, the algorithm of lexicon inventory construction, ex-

periment results, and error analysis.

iii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Prachya Boonkwan)

iv

Acknowledgements
I am tremendously indebted to many people whose guidance, help, and support make

the preparation and completion of this study possible. A million thanks of mine are

due here.

First and foremost, to Mark Steedman (University of Edinburgh), who is an ex-

ceptional, devoting, and knowledgeable advisor to all of his students, and the inventor

of Combinatory Categorial Grammar (CCG). During the four years of my studentship,

he showed me how to thrive in the academic world. He shaped me how to think like

a computational linguist, critically contemplate research questions, meticulously de-

sign and conduct experiments, and write academically decent articles. His book, The

Syntactic Process (Steedman, 2000), has always been motivating my ambition in an

attempt to understand the behaviors of natural language grammars beyond the expres-

sive power of context-free grammars. He became my ultimate academic role model at

least a half of whose success I wish to attain one day.

Second, to Philipp Koehn (University of Edinburgh), who is an excellent teacher,

a wonderful friend, and a renowned godfather of statistical phrase-based translation, to

Bonnie Webber (University of Edinburgh), who is a caring and comforting teacher and

whose contribution in discourse structure and question answering research is tremon-

dous, to Sharon Goldwater (University of Edinburgh; her signature is AuH2O), whose

easy-to-understand lectures, tutorials, and papers help me get a grip on mastering

the Markov Chain Monte Carlo methods during the first two years of my study, to

Stephen Clark (University of Cambridge), Michael Collins (Columbia University),

Luke Zettlemoyer (University of Washington), Adam Lopez (Johns Hopkins Univer-

sity), Noah Smith (Carnegie Mellon University), and Chris Dyer (Carnegie Mellon

University), who gave me a lot of suggestions in unsupervised grammar induction

and research directions for my thesis during our invaluable discussion while they were

spending their wonderful time in Edinburgh, to Tejaswani Deoskar (University of Ed-

inbugh) for giving me insightful advice in linguistics when Mark was away, and finally

to Tom Kwiatkowski (University of Edinburgh), a nice super-friendly genius and also

my office mate who spent a lot of his time coaching me to deal with machine learning

and its underlying mathematics, and discussed our common problems relevant to our

work during his study in Edinburgh.

Third, to all my course mates including, but not limited to: Tom Kwiatkowski,
Aciel Eshky, Mark Granroth-Wilding (Little Mark), Christos Christodoulopoulos

v

(ΤΟΣ), Greg Coppola, Mike Lewis, Michael Auli, Srinivasan Janarthanam, David
Matthews, Desmond Elliott, Saša Petrovic, Stella Frank, Benjamin Allison, John
Pate, Philipp Petrenz, Joel Lang, Niyue Tan, Benjamin Rosman, and so on. These

people have made my time in School of Informatics, University of Edinburgh one of

the most wonderful time of my life. 4PM biscuits then Pear Tree, anyone?

Fourth, a million thanks to all my dear close friends, particularly: Chidchanok
Thepsoonthorn (Cheeze), Wasin Sakulkoo (Gough), Sittikorn Assavanives (Pepe),

Wanaruk Chaimayo (Bong), Thipnatee Sansawatt (Punim), Łukasz Kopeć, Darryl
Alexander Geegan, Michael MacKenzie, Chatwalai Phairojwithayaporn (Toon),

Chonchanok Theethakaew (Mod), Tanatip Uan-On (Pook), and Miroslava Hul-
vanova (Mirka), for making my extra-academic life amazing, colorful, and exhila-

rating, and giving me a lot of help, mental support, and comforts whenever I was in

trouble and needed a shoulder. Who said life-long friendship is hard to sustain?

Fifth, I am grateful for National Science and Technology Development Agency
(Thailand) for offering me a full-time PhD scholarship in 2008. This opportunity has

tremendously widened my academic perspectives towards natural language processing

technology and scientific research which have strong academic and social impacts for

my beloved motherland Thailand. I truly appreciate all help, mental support, and doc-

ument work from my bosses: Thepchai Supnithi, Director of Language and Semantic

Technology Lab, and Chai Wutiwiwatchai, Director of Speech Technology Lab, as

well as all my colleagues in both labs.

Finally and most importantly, I am truly indebted to my parents, Parinya Boonkwan
and Laddawan Boonkwan, as well as my sister Prachda Boonkwan, for their uncon-

ditional love, devotion, and mental support. I love you guys with all my heart.

My time in Edinburgh was full of happiness and challenges. I have so many fond

memories with this charming Scottish city. From time to time, it is the place where I

shed tears for several reasons: excitement, joys, and a bit of sadness. Edinburgh will

always be my second home for the rest of my life.

vi

To my parents who never give up supporting their son,

and my sister who has always been my life-long companion.

Contents

I Preliminary 1

1 Introduction 2
1.1 Goals and Approach . 2

1.2 Thesis Outline . 5

2 Background 8
2.1 Principles and Parameters Theory 8

2.2 Task of Grammar Induction . 10

2.2.1 Active Learning Approach 11

2.2.2 Unsupervised Approach . 12

2.2.2.1 Context-Distributional Clustering 12

2.2.2.2 Phrase-Structural Clustering 14

2.2.2.3 Markov Chain Monte Carlo Methods 17

2.2.3 Prototype-Driven Approach 18

2.2.3.1 Phrase Structure Prototypes 20

2.2.3.2 Dependency Grammar Prototype 21

2.2.3.3 Universal Linguistic Knowledge 21

2.2.3.4 CCG Induction . 22

2.2.3.5 Discussion . 24

2.3 Computational Preliminaries . 25

2.3.1 Statistical Modeling . 25

2.3.1.1 Maximum Likelihood Estimation (MLE) 26

2.3.1.2 Expectation Maximization Algorithm (EM) 27

2.3.1.3 Maximum A Posteriori Estimation (MAP) 28

2.3.1.4 Variational Bayesian Approximation (VB) 29

2.3.2 Methods for Grammar Induction 30

2.3.2.1 Grammar Induction as Statistical Inference 30

vii

CONTENTS viii

2.3.2.2 Variational Bayesian Inside-Outside Algorithm . . . 32

2.4 Evaluation Metrics . 33

2.4.1 Bracket Recovery (BP, BR, and BF1) 34

2.4.2 Crossing Bracket Rate (CBR) 34

2.4.3 Undirected Dependency Recovery (UDP, UDR, and UDF1) . 35

2.4.4 Directed Dependency Recovery (DDP, DDR, and DDF1) . . . 36

2.4.5 Tree Edit Distance Evaluation Metric (TEDEVAL) 37

2.5 Datasets . 39

2.5.1 Dependency Banks . 39

2.5.2 Data Format . 40

2.5.3 Tagset Conversion for Dependency Banks 40

2.6 Summary . 43

II Methodology 45

3 Language Parameterization 46
3.1 Language Parameters . 46

3.1.1 Overview . 46

3.1.2 Design of Questionnaire . 49

3.2 Language Parameter Elicitation . 57

3.2.1 Interview Dialog . 57

3.2.2 Quantification of Human Labor 58

3.3 Encoding of Syntactic Prototypes . 61

3.3.1 Categorial Dependency Grammar 61

3.3.2 Construction of Lexicon Inventory 67

3.4 Summary . 86

4 Grammar Induction 88
4.1 System Overview . 88

4.1.1 Structure Enumeration . 88

4.1.2 Parameter Estimation and Decoding 93

4.2 Generative Parsing Models . 93

4.2.1 Model 0: Probabilistic Context-Free Grammar (PCFG) 94

4.2.2 Model 1: Role-Emission Model 96

4.2.3 Model 2: Mother-Daughter Model 97

CONTENTS ix

4.2.4 Model 3: Role-Emission + Lexicon-Emission Model 99

4.2.5 Model 4: Mother-Daughter + Headword-Emission Model . . 100

4.2.6 Model 5: Mixture of All . 101

4.2.7 Summary . 102

III Experiments and Discussion 104

5 Multilingual Experiments 105
5.1 Methods . 105

5.1.1 Gold Standard and Test Corpus 105

5.1.2 Training and Evaluation . 105

5.1.3 Language Parameters . 106

5.1.4 Parameter Initialization . 106

5.1.5 Controlled Variables . 107

5.1.6 Baseline Systems . 107

5.2 Results . 108

5.2.1 Experiment 1 . 108

5.2.2 Experiment 2 . 110

5.2.3 Experiment 3 . 111

5.2.4 Experiment 4 . 111

5.3 Summary . 115

6 Error Analysis 118
6.1 Arabic . 118

6.2 Bulgarian . 121

6.3 Chinese . 126

6.4 Czech . 127

6.5 Danish . 132

6.6 Dutch . 134

6.7 English . 139

6.8 German . 142

6.9 Japanese . 144

6.10 Portuguese . 147

6.11 Slovene . 150

6.12 Spanish . 153

CONTENTS x

6.13 Swedish . 156

6.14 Turkish . 161

6.15 Summary . 164

7 General Discussion 167
7.1 Introduction . 167

7.2 Modifier Attachment . 168

7.3 Effects of Dependency Annotation Schemes 168

7.4 Effects of Morphology . 172

7.5 Effects of Model Expressiveness . 173

7.6 Summary . 173

IV Conclusion 175

8 Conclusion 176
8.1 Concluding Remarks . 176

8.2 Performance . 177

8.3 Error Analysis . 178

8.4 Future Work . 178

8.4.1 Language Parameter Elicitation by Machine Translation . . . 179

8.4.2 Syntactic Ambiguity . 179

8.4.3 Speed-up of Language Parameter Elicitation 181

8.4.4 Data Sparsity and Nonprojective Dependency 182

8.4.5 Evaluation . 183

8.5 Online Resources . 183

V Appendices 185

A Syntactic Prototype Questionnaire 186

B Dialog for Language Parameter Elicitation 196

Bibliography 199

List of Figures

2.1 Distribution of English grammar of Penn Treebank 30 19

2.2 Haghighi and Klein’s (2006) English phrase type prototype list 20

2.3 Druck et al’s (2009) English dependency grammar prototype called

oracle constraints . 21

2.4 Naseem et al’s (2010) syntactic prototype 23

2.5 Bisk and Hockenmaier’s (2012) category induction scheme 24

2.6 Word order of English. Headwords are underlined and bolded and the

word order matters. 25

2.7 Crossing brackets . 35

2.8 An example of conversion to a multi-function tree 37

2.9 Generalization of multi-function trees 38

3.1 Questions for sentence structure . 50

3.2 Questions for simple modifiers . 51

3.3 Questions for complex verbs . 53

3.4 Questions for complex modifiers . 54

3.5 Questions for complex modifiers (cont’d). 55

3.6 Question for gerunds . 56

3.7 Questions for subordinate conjunctions 56

3.8 Questions for transformational affixes 57

3.9 Questions for relocation and dropping 58

3.10 Dialog for indirect parameter elicitation via translation 59

3.11 Dialog for indirect parameter elicitation via translation (cont’d) 60

3.12 The syntactic derivation of ‘John eats sandwiches’ based on categorial

grammar . 65

xi

LIST OF FIGURES xii

3.13 Syntactic derivation of ‘John eats delicious sandwiches’ based on cat-

egorial dependency grammar. The syntactic head of each constituent

is denoted by a colon. Each arrow is drawn from the head word to the

dependent word. 66

4.1 System overview . 89

4.2 The chart of the sentence ‘DT JJ JJ NN’ obtained from the CKY Al-

gorithm and eliminated excessive edges. The dashed arrows are the

edges that are eliminated when finished. 92

4.3 Dependency-driven syntactic analysis of the sentence ‘DT NN VBD

JJ NNS’ . 95

4.4 Role-emission generative model of a syntactic derivation of the sen-

tence ‘NNS VBD’ . 98

5.1 Accuracy of dependency recovery on corpora of various sentence lengths113

5.2 Accuracies of dependency recovery on corpora of length 10 via differ-

ent amounts of syntactic constraints. We varied the amounts of given

language parameters as follows: first 3 rules (groups 1-2), first 16 rules

(groups 1-5), first 27 rules (groups 1-7), and all rules. 116

6.1 Parsing accuracies of Arabic . 120

6.2 Parsing accuracies of Bulgarian . 124

6.3 Parsing accuracies of Chinese . 128

6.4 Parsing accuracies of Czech . 131

6.5 Parsing accuracies of Danish . 135

6.6 Parsing accuracies of Dutch . 138

6.7 Parsing accuracies of English . 141

6.8 Parsing accuracies of German . 145

6.9 Parsing accuracies of Japanese . 148

6.10 Parsing accuracies of Portuguese . 151

6.11 Parsing accuracies of Slovene . 154

6.12 Parsing accuracies of Spanish . 157

6.13 Parsing accuracies of Swedish . 160

6.14 Parsing accuracies of Turkish . 163

7.1 Discrepant annotation schemes of coordinate structures, where C is a

conjunction, X1 and X2 are conjunctions, and the heads are underlined. 169

LIST OF FIGURES xiii

7.2 Discrepant annotation schemes of NP structures, where N is a noun,

A1 and A2 are nominal modifiers, D is a determiner, and the heads are

underlined. 169

7.3 Discrepant annotation schemes of VP structures, where V is a verb, X

is an auxiliary, A1 and A2 are adverbs, and the heads are underlined. . 170

7.4 Ambiguous dependency analyses of a Czech NP “větši počet stupňů

šedi” without morphological information 172

8.1 Tree Markovization . 180

List of Tables

2.1 Ten fields of CoNLL-X Shared Task 2006’s data format 40

2.2 Statistics of the corpora . 44

3.1 An overview of the language parameters. The numbers on the right are

the number of parameters of each group. 48

3.2 Mapping table between our cross-linguistic tagset and the corpus-specific

tagset . 62

3.3 Mapping table for English Penn Treebank. Unused rows are not shown. 63

3.4 Headedness flags for lexicon inventory construction. If a flag is set

true, such category becomes the head; e.g. if hadj is set true, the adjec-

tive becomes the head instead of the core noun. 68

5.1 Directed dependency accuracy (F1) of grammar induction against cor-

pora 10. We compare our results with three baselines: #1: Naseem et

al. (2010) #2: Gillenwater et al. (2010) #3: Boonkwan and Steedman

(2011). 109

5.2 Average directed dependency accuracies (F1) of each model against

corpora 10, ordered by their averages. 110

5.3 Directed dependency accuracy (F1) of grammar induction against cor-

pora of length 10 where the models are trained on lengths 10 and 15.

We compare our results with three baselines: #1: Bisk and Hocken-

maier (2012) #2: maximum accuracies quoted from PASCAL Chal-

lenge (Gelling et al., 2012) #3: Blunsom and Cohn (2010). 112

5.4 Accuracies of dependency recovery on corpora of various sentence

lengths . 114

5.5 Accuracies of dependency recovery on corpora of length 10 via differ-

ent amounts of syntactic constraints 115

xiv

LIST OF TABLES xv

6.1 Top-10 errors in Arabic . 122

6.2 Top-10 errors in Bulgarian . 125

6.3 Top-10 errors in Chinese . 129

6.4 Top-10 errors in Czech . 133

6.5 Top-10 errors in Danish . 136

6.6 Top-10 errors in Dutch . 140

6.7 Top-10 errors in English . 143

6.8 Top-10 errors in German . 146

6.9 Top-10 errors in Japanese . 149

6.10 Top-10 errors in Portuguese . 152

6.11 Top-10 errors in Slovene . 155

6.12 Top-10 errors in Spanish . 158

6.13 Top-10 errors in Swedish . 162

6.14 Top-10 errors in Turkish . 165

6.15 Types of frequent errors (over- and under-generation) 166

7.1 Dependency annotation schemes of the corpora 171

List of Algorithms

3.1 vi(Q1): generate the intransitive verbs. 69

3.2 vt(Q1): generate the transitive verbs. 70

3.3 vd(Q1): generate the ditransitive verbs. 70

3.4 vicomp(Q3.3): generate the intransitive complex verbs. 71

3.5 vtcomp(Q3.4): generate the transitive complex verbs. 71

3.6 v(Q1, Q3.3, Q3.4): generate all the verbs. 71

3.7 adj(Q2.1): generate the adjectives. 72

3.8 nmod(Q4.4): generate the nominal modifiers. 72

3.9 npgerund(Q5): generate the gerundial noun phrases. 73

3.10 nmodgerund(Q5): generate the gerundial noun modifiers. 74

3.11 vmodgerund(Q5): generate the gerundial noun modifiers. 74

3.12 gerund(Q5): generate all gerunds. 74

3.13 adv(Q2.2): generate the verb modifiers. 75

3.14 vmod(Q4.4): generate the verb modifiers. 75

3.15 gmod(Q4.4): generate the gerund modifiers. 76

3.16 smod(Q4.4): generate the sentential modifiers. 76

3.17 neg(Q2.4): generate the negators. 77

3.18 modal(Q3.2): generate the modals. 78

3.19 prep(Q4.1): generate all prepositions. 78

3.20 post(Q4.1): generate all postpositions. 79

3.21 adpos(Q4.1): generate all adpositions. 79

3.22 relpro(Q4.3): generate all relative pronouns. 79

3.23 copula(Q3.1): generate all corpulae. 80

3.24 part(Q4.5): generate all particles. 80

3.25 subconj(Q6): generate all subordinate conjunctions. 81

3.26 poss(Q4.2): generate all possessive markers. 82

3.27 inf(Q7.1): generate all infinitive markers. 83

xvi

LIST OF ALGORITHMS xvii

3.28 npnom(Q7.2): generate all NP nominalizer. 83

3.29 vpnom(Q7.2): generate all verb nominalizers. 84

3.30 adjcl(Q4.6): generate all adjectival classifiers. 85

3.31 advcl(Q4.6): generate all adverbial classifiers. 85

3.32 nmodcl(Q4.6): generate all classifiers for nominal modifiers. 85

3.33 vmodcl(Q4.6): generate all classifiers for verb modifiers. 86

3.34 cl(Q4.6): generate all classifiers. 86

3.35 unary(Q1): generate necessary unary derivation rules. 87

4.1 parse(wN1 , G): parse a sentence wN1 with a CDG G. 90

4.2 find_govn_trees(C, I, U): Find all governed subtrees where C is a

packed chart, I is an item ID, and U is the accumulator of item IDs. . 91

4.3 elim_nongovn(C): Eliminate all nongoverned subtrees in the packed

chart, where C is a packed chart. 91

4.4 parse_wildcard(wN1 , C, i, j): Apply wildcard derivations on maxi-

mally non-governed edges in the range [i, j] of the packed chart Q,

given input sentence wN1 . 92

8.1 mhtrain(D, P,Q): Metropolis-Hastings algorithm, where B is the

number of burn-in iterations . 181

Part I

Preliminary

1

Chapter 1

Introduction

1.1 Goals and Approach

Syntactic parsing plays an important role in natural language processing. A syntactic

parser analyzes an input sentence according to a set of grammar rules into a syntactic

structure that carries grammatical information hidden under the surface form. This in-

formation has been shown beneficial in various NLP tasks, such as machine translation,

information extraction, and document summarization.

There are generally two approaches for constructing a syntactic parser: rule-based

approach and statistical approach. In the rule-based approach, the set of grammar rules

must be handcrafted by experienced linguistic experts and they are required to cover as

much of linguistic phenomena in the language as possible. However, handcrafting the

rules from scratch is laborious and rule conflicts may occur due to syntactic ambiguity.

In the statistical approach, the parser is automatically learned from a large amount

of data manually annotated with syntactic structures. Statistical parsing has shown

reasonable accuracy for a few languages such as English. The best-performing parsers

acquire grammars and statistical parsing models from sentences explicitly annotated

with syntactic structures (Black et al., 1992).

For the training process, available supervised parsers demand large amounts of

hand-labeled data, such as Penn Treebank (Marcus et al., 1993) or CCGbank (Hock-

enmaier and Steedman, 2007). Producing such rich linguistic resources is labor- and

time-intensive, requiring well trained linguists to define and annotate syntactic cate-

gories and resolve inconsistent annotations. This procedure becomes impractical for

a less-privileged language whose linguists are scarce. Consequently, there are few

treebanks available for training supervised parsers.

2

Chapter 1. Introduction 3

Grammar induction was introduced to remedy this issue by automatic learning of

linguistic structures from raw text. It has gained general interest for several decades,

offering a possibility of building practical syntactic parsers by reducing the labor

of constructing a treebank from scratch. Pioneering work in this area includes the

Constituent-Context Model (CCM) (Klein and Manning, 2001b; Klein and Manning,

2002), the Dependency Model with Valence (DMV), and the mixture CCM+DMV

(Klein and Manning, 2004; Klein, 2005). Several structure search techniques have

been added to DMV, modeled in terms of PCFGs, in an attempt to overcome the issues

of local optima and data sparsity (Smith, 2006; Cohen et al., 2008; Headden III et al.,

2009). Dependency structure can also be indirectly induced from grammar formalisms

other than PCFG such as Tree Substitution Grammar (Cohn et al., 2010).

Problem statement: These unsupervised techniques are prone to dependency at-

tachment errors. Boonkwan and Steedman (2011) point out that frequent collocation

can sometimes cause unexpected mistakes in parsing. For example, a verb (VBZ) and

a determiner (DT) tend to co-occur in a verb phrase, resulting in bracketing ((VBZ DT)

NN) instead of (VBZ (DT NN)). The distribution over the resulting grammar rules does

not reflect the true distribution of natural language grammars. Natural language gram-

mars follow a Zipfian (power law) distribution, where the frequency of any grammar

rule is inversely proportional to its rank in the frequency table.

In this thesis, we attempt to solve this issue by integrating Chomsky’s (1965)

renowned Principles and Parameters Theory (P&P) and the empirical approach for in-

duction of hierarchical linguistic structures. The P&P approach suggests that children

have their innate Universal Grammar that puts strong constraints on possible gram-

mars the children can learn from the noisy linguistic inputs. It is however daunting to

prescribe such Universal Grammar that copes with both (1) a small amount of frequent

grammar rules and (2) a large amount of much less frequent ones called exceptions.

On the other hand, the empirical approach suggests that children have general-purpose

learning mechanism that allows them to draw complex inferences of linguistic struc-

tures from noisy linguistic inputs (Elman et al., 1996; Goldwater, 2007). While fre-

quent grammar rules can be prescribed in Universal Grammar, the exceptions that are

not prescribed can be empirically captured if they occur frequently in the linguistic

examples, allowing us to attain better accuracy.

We propose an effective approach to prototype-driven grammar induction using

cross-linguistic language parameters. Our language parameters consist of a set of 33

parameters of frequent basic word orders, which are easy to be elicited from non-

Chapter 1. Introduction 4

linguist informants. These parameters are designed to capture frequent grammar rules

in the Zipfian distribution of natural languages, while the rest of the grammar can be

automatically induced from unlabeled data. An initial grammar generated from such

information is represented in terms of a lexicalized categorial grammar. We believe

that covering the most frequent grammar rules via the syntactic prototype will have a

strong impact on accuracy. Our language parameters shrink the search space of the

grammar induction problem by exploiting both word order and predefined attachment

directions.

We also devise an interview dialog to facilitate the process of language parameter

elicitation. Although our language parameters seem to need slightly more labor to

elicit than Naseem et al.’s (2010) head-dependent pairs do, it becomes easier for us

to acquire the language parameters with this dialog. The dialog can be used in two

ways: (1) conducting personal interviews with naïve language informants with it, and

(2) indirectly observing how machine translation performs a translation task based

on the dialog. Intending to shape the interview process and result interpretation, it

is designed based on our 33 word-order parameters, where both correspond to each

other, question against question. In each question, a linguistic unit (either an example

sentence or phrase) is given alongside its pattern to observe. An informant and/or

machine translation is asked to translate such linguistic unit into his own language and

provide word alignment between the source and target languages.

The contribution of this thesis is three-fold. (1) We show that the language parame-

ters are adequately generalizable cross-linguistically, as our grammar induction exper-

iments will be carried out on 14 languages on top of a simple unsupervised grammar

induction system. (2) Our specification of language parameters improves the accuracy

of unsupervised parsing even when the parser is exposed to much less frequent linguis-

tic phenomena in longer sentences when the accuracy decreases within 10%. (3) We

investigate the predominant sources of errors in grammar induction which will provide

room for accuracy improvement.

The use of language parameters in this thesis poses a new set of research questions

about structure induction of natural language grammars, including:

• Research Question 1: How can we design the set of language parameters so

that they can capture frequent word orders?

• Research Question 2: How much human labor do we have to spend in order to

elicit the language parameters for a previously unseen language, compared with

Chapter 1. Introduction 5

the less-supervised techniques?

• Research Question 3: How much improvement in accuracy over unsupervised

grammar induction systems can we achieve by incorporating language parame-

ters?

• Research Question 4: What word orders can the language parameters capture

and how much does the accuracy improve according to them?

• Research Question 5: How well can the language parameters cope with less

frequent word orders and long-tail dependencies?

• Research Question 6: What are the main sources of error in the prototype-

driven parser?

We therefore arrange the content of the thesis as follows.

1.2 Thesis Outline

Chapter 2 This chapter discusses Chomsky’s (1965) Principles and Parameters The-

ory, describes the task of grammar induction, and reviews its state-of-the-art

techniques. Three approaches are explained: active learning approach, unsuper-

vised approach, and prototype-driven approach. We develop the idea of com-

putational preliminaries and mathematics that underlie this research. First we

explain statistical techniques for grammar induction by means of the idea of

statistical modeling. We then describe some successful models for grammar in-

duction based on these statistical techniques, and explain evaluation metrics for

accuracy assessment of grammar induction. Finally we describe the characteris-

tics of the datasets used for evaluation and how we prepare them for evaluation.

Chapter 3 This chapter explains the main contribution of this thesis: our language pa-

rameterization, which are used throughout the thesis to improve the accuracy of

unsupervised grammar induction. Based on Principles and Parameters Theory

and the empirical approach, we first start by developing the motivation of this

research, particularly in the benefits of incorporating syntactic prototypes (prior

syntactic knowledge of the language of interest) into unsupervised models. Then

we review the attempt to encode such prior knowledge. We explain our alter-

native language parameterization method which is linguistically motivated and

Chapter 1. Introduction 6

easy to elicit by direct consultation with grammar compendiums, by interview

with naïve informants, and by indirect observation from machine translation.

Since our language parameters are designed to capture frequent word orders,

each language parameter is sorted with respect to their frequency in natural lan-

guage grammars. We explain the dialog we use to elicit such prior knowledge

by interview with naïve informants. According to their frequencies, the hypo-

thetical trend of the accuracy is: the accuracy rises rapidly and starts to saturate

as we increase the number of language parameters in the syntactic prototype. Fi-

nally, we explain how we encode the acquired prior knowledge into the syntactic

prototype. This chapter answers Research Questions 1 and 2.

Chapter 4 This chapter explains our method of grammar induction using prior syntac-

tic knowledge parameterized by word orders. We explain the system overview

and the algorithms we use in each step. We then describe our parsing models

which are used and assessed in the experiments.

Chapter 5 This chapter presents our experiment settings and the comparison of ex-

periment results with the state-of-the-art techniques. To make our experiments

replicable, we explain how to initialize the model parameters and describe our

controlled variables. The results are presented in three aspects: (1) multilingual

experiments in which we compare our results with the related work and with

PASCAL Challenge, (2) long-tail dependencies, and (3) scalability of language

parameters. This chapter answers Research Question 3.

Chapter 6 This chapter presents the performance evaluation of our method when ap-

plied to each language in four ways. First we compare the directed dependency

accuracies and TEDEVAL scores of each model when evaluated on the corpora

of length 10. Then we analyze the best model that yields the most directed de-

pendency accuracy in terms of performance improvement when incorporating

our language parameters. We further analyze the model’s capability of coping

with long-tail dependencies in longer sentence lengths. Finally, we discuss the

errors produced by the parser in each language in terms of over- and under-

generation. This chapter answers Research Questions 4 and 5.

Chapter 7 This chapter discusses three predominant problems that cause errors in

the experiments: (1) PP attachment, (2) discrepancy of dependency annotation

scheme, and (3) rich morphology. When we incorporate our language parame-

Chapter 1. Introduction 7

ters, the accuracy of the unsupervised parser starts to approach that of the super-

vised parser. As a result, PP attachment becomes more obvious, which is similar

to supervised parsing. Dependency annotation schemes used in the corpora are

analyzed by thorough observation and categorized for ease of analysis. We also

explain the criteria of languages whose directed dependency accuracy exceeds

70% tend to comply with. We also discuss how much our approximation of

inflection system can improve the accuracy of grammar induction in morpholog-

ically rich languages. Finally we discuss the effects of model’s expressiveness

with respect to the accuracy. This chapter answers Research Question 6.

Chapter 8 This chapter summarizes the entire thesis together with its achievement

and contributions. We review our goals and our method proposed in the thesis

— the use of cross-linguistically parameterized syntactic prototypes in grammar

induction. We summarize the experimental results from Chapter 5 and the error

analysis from Chapter 6. We then recap the predominant problems that underlie

the errors from Chapter 7. We finally present future work and conclude the

thesis.

Chapter 2

Background

Outline

This chapter discusses Principles and Parameters Theory, describes the task of gram-

mar induction, and reviews its state-of-the-art techniques. Three approaches are ex-

plained: supervised approach, unsupervised approach, and prototype-driven approach.

We then explain mathematical background of statistical modeling and statistical tech-

niques for grammar induction. We describe some successful models for grammar in-

duction based on these statistical techniques. Finally, we describe the characteristics

of the datasets used for evaluation and how we prepare them for evaluation.

2.1 Principles and Parameters Theory

The Principles and Parameters Theory (P&P) (Chomsky, 1965) is a nativist theory of

language acquisition of children. To explain how children learn their first languages,

Chomsky proposes the argument from the poverty of the stimulus as follows:

It seems clear that many children acquire first or second languages quite
successfully even though no special care is taken to teach them and no spe-
cial attention is given to their progress. It also seems apparent that much of
the actual speech observed consists of fragments and deviant expressions
of a variety of sorts. Thus it seems that a child must have the ability to
“invent” a generative grammar that defines well-formedness and assigns
interpretations to sentences even though the primary linguistic data that he
uses as a basis for this act of theory construction may, from the point of
view of the theory he constructs, be deficient in various respects.

It suggests that children have their innate Universal Grammar that puts strong con-

straints on possible grammars the children can learn from the noisy linguistic inputs.

8

Chapter 2. Background 9

The Universal Grammar consists of principles (or rules) that determine the set of all

possible grammars the children can learn, and parameters (or values) that the children

have to learn from the linguistic inputs. In other words, it is believed that all human lan-

guages are generated from the common Universal Grammar while their cross-linguistic

parameters differentiate them from each other.

Chomsky (1965) further distinguishes two aspects of any human language user: (1)

linguistic performance, the set of all utterances the user produces in all occasions, and

(2) linguistic competence, the set of all strings the user intuitively knows are grammat-

ical in his/her language. These sets are partially disjoint; i.e. there are some ungram-

matical utterances which the user produces in actuality. Following his suggestion, most

linguistic theories focus on the linguistic competence in which grammatical sentences

are represented by a kind of hierarchical syntactic representation. In terms of linguistic

competence, each grammar falls into either of these two categories (Chomsky, 1964):

(1) observationally adequate competence in which the entire set of observed grammat-

ical sentences can be generated by the grammar, and (2) descriptively adequate com-

petence in which the grammar generates the set of observed grammatical sentences and

also considers other relations on those sentences with respect to the native speakers’

linguistic intuition.

P&P Theory is considered controversial in computational language acquisition.

Some linguists and psychologists such as (Yang, 2008; Clark and Lappin, 2010; Clark

and Lappin, 2011) propose that the language acquisition task should be both linguistic

and empirical; i.e. at initial, children partially acquire their first or second languages

from primary linguistic data (PLD) with some sort of linguistic insights. Once they

have acquired enough linguistic insights, they then move on to more noisy linguistic

data to improve their linguistic performance and competence.

A significant issue of P&P Theory is that: it is daunting to manually prescribe

Universal Grammar that is able to cope with (1) a small amount of frequent grammar

rules and (2) a large amount of much less frequent ones called exceptions. Alterna-

tive empirical methods are therefore proposed to capture natural language grammars

with statistical inference. The empirical approach suggests that children have general-

purpose learning mechanism that allows them to draw complex inferences of linguistic

structures from noisy linguistic inputs (Elman et al., 1996; Goldwater, 2007). This

approach underlies the task of grammar induction which will be discussed in the next

section.

Chapter 2. Background 10

2.2 Task of Grammar Induction

Grammar induction is a task of automatic learning of linguistic structures from raw

text. Precisely speaking, we want to induce hierarchical syntactic structures, such

as brackets, trees, and dependency structures, by observing the terminal symbols of

such structures. For example, we attempt to recover tree structures from sequences of

terminal symbols (i.e. words) or preterminal symbols (i.e. part of speech tags or POS

tags). Let us observe the following set of example sentences.

1. the boy brought a rose to the girl

2. the girl blushed and thanked him

3. the boy was so happy

We can notice that the phrases ‘the boy’ and ‘the girl’ occur frequently and should

therefore be grouped as units. At this point, we have statistically induced two phrases

from the observation set. However in practice, conducting this task by observing ex-

ample sequences of terminal symbols alone is daunting especially in morphologically

rich languages in which words change their forms to express different grammatical

functions. The overwhelming amount of word forms deteriorate the capability of auto-

matic learning of syntactic structures because of the data sparsity issue, i.e. the lack of

adequate data that represents the true probability distribution of our event of interest.

Nowadays it is a common practice to induce syntactic structures from the preter-

minal symbols instead to avoid such issue. For example, if we annotate the above

example sentences with the Penn Treebank’s tagset1, we obtain:

1. the/DT boy/NN brought/VBD a/DT rose/NN to/TO the/DT girl/NN

2. the/DT girl/NN blushed/VBD and/CC thanked/VBD him/PRP

3. the/DT boy/NN was/VBD so/RB happy/JJ

Considering only the preterminal symbols (POS tags) is much more convenient in

grammar induction. We can now see that the unit [DT NN] occurs frequently through-

out the example set.

1DT is article, NN is noun, VBD is past-form verb, TO is a specialized tag to the word ‘to’, CC is
conjunction, and RB is adverb.

Chapter 2. Background 11

In this section, we review state-of-the-art techniques for grammar induction. From

broad perspective, there are three approaches for automatic learning of syntactic struc-

tures. As to be described in Section 2.2.1, early attempts to imitate human’s language

acquisition are based on active learning, which involves time-consuming and labori-

ous human supervision in syntax learning. Section 2.2.2 describes another approach,

called unsupervised approach, which completely eradicates human supervision from

grammar induction to ultimately speed up the learning process. Finally, Section 2.2.3

explains the hybrid of both aforementioned approaches to boost the accuracy and min-

imize human labor and supervision.

2.2.1 Active Learning Approach

The grammar induction task was first attempted in 1990s following the active learning

paradigm; i.e. it requires human supervision in the grammar construction process.

There are several interactive categorial grammar learning systems including EMILE

(Adriaans, 1992; Adriaans, 1999), CLL (Categorial Lexicon Learner) (Watkinson and

Manadhar, 2001), and GraSp (Grammar for Speech) (Henrichsen, 2002). All of them

attempt to learn a categorial grammar by means of active learning.

The first system, EMILE (Adriaans, 1992; Adriaans, 1999), is an interactive cate-

gorial grammar learner based on teacher-child paradigm. Given an unannotated corpus,

the system extracts subexpressions in each sentence and constructs phrase structures

from them based on categorial grammar’s operators (i.e. forward and backward appli-

cations), resulting in a lot of syntactic categories produced. These syntactic categories

are then inspected and selected by users. EMILE is a slow learner — it requires a

large amount of evidence to construct a practical grammar (5 million sentences for

50,000-word grammar in Adriaan’s calculation).

CLL (Watkinson and Manadhar, 2001) is in turn an improved syntactic category

guesser. Given a set of initial lexicons and an input sentence with unknown words, it

makes use of an n-best probabilistic CKY parser to find the most likely set of derivation

trees. It then selects the best parse that maximizes the compression rate of the lexicons;

i.e. it minimizes the number of syntactic categories per lexicon. The drawback of this

method is that the entire corpus has to be reparsed every time to determine the effects

of newly added lexicons, ensuring the optimal compression of the resultant grammar.

The best accuracy of grammar induction achieved by this approach is 51.89% on Penn

Treebank II Corpus given 384 initial lexicons.

Chapter 2. Background 12

Finally, GraSp (Henrichsen, 2002) is a more interactive structure inference system

that allows users to manipulate the induced syntactic categories. First, atomic cat-

egories are assigned to each lexicon. Then it applies to each sentence the category

manipulation such as adding and removing argument slashes. The induction process

is controlled by the disorder score calculated from the number of uninterpretable cate-

gories in the Gentzen-Lambek categorial grammar derivation. The induction algorithm

iteratively performs until the disorder score converges. To the best of our knowledge,

no qualitative evaluations on GraSp have been published yet.

These systems undergo the same issue: laborious and time-consuming human su-

pervision. In EMILE the user needs to select correct syntactic categories out of a large

amount of those produced by the system. Though CLL proposes a more convenient

system for grammar construction, it still requires a set of initial lexicons. The interac-

tive GraSp system requires human supervision while building a grammar.

2.2.2 Unsupervised Approach

To eradicate the issue of time-consuming human supervision in language structure

inference, research gradually shifted to the unsupervised approach that relies on ma-

chine learning techniques. The problem of grammar induction is modeled as a search

problem with statistical estimation. There are three mainstream approaches so far in

learning syntax from unannotated corpora: context-distributional clustering, phrase-

structural clustering, and Markov Chain Monte Carlo methods (MCMC).

2.2.2.1 Context-Distributional Clustering

One can intuitively model the notion of constituent, a unit of meaning, as a probability

distribution of its linear contexts, such as frequently-occurring phrases that are sur-

rounded by a variety of words. The basic idea of this approach is enumerate all possible

syntactic structures in the search space (e.g. pairs of text sequences and phrase sym-

bols, words-tags pairs) and cluster them by distinguishing more frequent constituents

from the others.

Grammar induction using minimum length description (MDL) (Stolcke and Omo-

hundro, 1994; Chen, 1995) clusters sets of sequences that can be derived into single

nonterminals (phrase symbols). That is, grammar induction is perceived as a compres-

sion problem where frequent sequences of text can be replaced by nonterminal sym-

bols, minimizing the length of resultant sentences and the number of nonterminals.

Chapter 2. Background 13

An optimization algorithm, such as the EM Algorithm is then applied to optimize the

compression rate resulting in an optimal grammar. MDL can also be used to opti-

mize the number of syntactic categories per lexicon deduced from the corpus (Osborne

and Briscoe, 1997). However, these techniques suffer from the issues of large-scale

processing and the tendency to chunk common functional units that are obviously not

syntactic constituents; e.g. preposition + determiner such as ‘in the’ in the phrase *((in

the) locomotive).

Schütze (1995) reported a successful method of POS tagging using context distri-

bution. Words are clustered to a syntactic category based on its surrounding words, or

context vectors, and singular value decomposition (SVD) was made to reduce dimen-

sionality of context vectors avoiding sparseness issues. He also noticed that punctua-

tion marks are a source of errors as they are not informative enough for POS prediction.

Klein and Manning (2001a) proposed two clustering algorithms that hierarchically

construct phrase structure rules from clustered sequences of POS tags. The GREEDY-

MERGE Algorithm merges the most likely pair consecutive words/phrases at a time

based on their divergence score calculated from the cooccurence frequency of their

context vectors. The other algorithm, CONSTITUENCY-PARSER, maximizes the prob-

ability distribution of a text sequence and its context vectors by the EM Algorithm.

Both positive and negative examples are taken into account to prevent biased judge-

ment with only frequent collocation.

This work was later extended to the Constituent-Context Model (CCM) (Klein and

Manning, 2001b; Klein and Manning, 2002). In this approach, the probability of a

sequence of POS tags being a constituent is a joint probability of such sequence co-

occuring in the dataset and its linear context. The probability of each constituent is

proportional to the correction score which is an odds ratio of the probability of gener-

ating a constituent as opposed to as a distituent.

Clark (2001) introduced a combination of MDL and context-distributional cluster-

ing to avoid the issues of ambiguity and data sparseness. Alignment-based learning

(ABL) (van Zaanen, 2002) also searches for the best-fit structure where constituents

are disambiguated by the probability of the overlapped word and its type. The accuracy

of this system is recorded at 62% when tested on the OVIS Corpus.

Categorial grammar can also be learned in an unsupervised fashion (Osborne and

Briscoe, 1997; Villavicencio, 2002). The system has access to all constituent struc-

tures of each input sentence. On each node of those constituent structures, its syntactic

category and the headedness of its daughter nodes are induced from the parsing model.

Chapter 2. Background 14

The headedness determines the direction of the argument slash. For example, if the

syntactic category for the node is X , the left daughter is headed, and the syntactic cat-

egory of the right daughter is Y , then the left daughter is assigned syntactic category

X/Y . The parameters of the model are iteratively estimated with a variation of EM Al-

gorithms. In Osborne and Briscoe’s (1997) system, they induce a categorial grammar

from a set of input sentences, each of which being a POS tag sequence to minimize

the data sparsity issue. They experimented two parsing models based on maximum

likelihood estimation (MLE) and minimum description length (MDL), and they found

that MDL marginally outperforms MLE. Villacencio’s (2002) system is motivated by

Osborne and Briscoe’s method. She induced a categorial grammar from a set of in-

put sentences paired with corresponding logical forms. Incorporating logical forms

in grammar induction helps the system propose more meaningful syntactic categories,

such as logical forms help distinguish an argument from an adverbial.

2.2.2.2 Phrase-Structural Clustering

In the last approach, the notion of constituent is modeled based on the probability

distribution of its context. On the other hand, in this approach, it is modeled as a prob-

ability distribution of structural derivation. The parameters of the distribution are then

estimated by the Inside/Outside Algorithm (Baker, 1979), a kind of EM Algorithm.

The Inside/Outside Algorithm was first introduced by (Baker, 1979) for estimating

phonological rules handcrafted in context-free grammars. In this algorithm, the sys-

tem has access to i.e. all possible tree structures for each sentence which are usually

packed for space compactness (Boyer and Moore, 1972; Moore, 1973; Tomita, 1987).

That is, the algorithm tries to group a word/nonterminal symbol subsequence into a

nonterminal symbol, forming a syntactic derivation rule. Once the probability of each

CFG rule is assigned at random, the algorithm iteratively modifies these rule probabil-

ities (or parameters) with phrase-level inside and outside scores until the expectation

of the model converges. The algorithm maximizes the expectation of the probability

distribution over the given corpus.

In the late 1980s, the estimation of language models for English CFG (Jelinek,

1985) and English spelling rules (Dodd, 1988) were conducted. Lari and Young (1990)

reported the parameter estimation of artificial grammars and the fragility of the algo-

rithm in dealing with local optima. As an optimization problem, finding the global

optimum is affected by the starting points, making the algorithm stuck in a local opti-

mum. Carroll and Charniak (1992) attempted to learn syntax automatically from ran-

Chapter 2. Background 15

dom starting points from an unannotated corpus but they suggested that the outcome

was of discouragingly poor quality. Schabes et al. (1993) reported semi-supervised

phrase bracketing on partially bracketed short sentences (of length up to 15 words)

drawn from the Wall Street Journal Corpus.

More recent advances in this approach are Constituent-Context Model (CCM) (Klein

and Manning, 2001b; Klein and Manning, 2002) and Dependency Model with Va-

lence (DMV) (Klein and Manning, 2004; Klein, 2005), which is the first method that

achieves the accuracy higher than that of the right-branching baseline (Headden III et

al., 2009). The CCM is a generative phrase bracketing model that combines the robust-

ness of distributional clustering with the parameter search. From their experiments on

the Wall Street Journal Corpus, CCM yields quite promising results: 71.1% F1 accu-

racy on POS-tagged input and 63.2% F1 accuracy on unannotated input. The DMV is

a generative head-outward projective dependency model (Collins, 1999) and was intro-

duced for recovering syntactic dependencies modeled as a set of CFG production rules

(Klein and Manning, 2004; Klein, 2005). DMV alone does not perform well on the

WSJ10 corpus (55.7% F1 accuracy) because the order of dependent generation is arbi-

trary, resulting in structural ambiguity of dependency trees. However, the combination

of DMV and CCM, abbreviated as DMV+CCM, performs best on the Wall Street Jour-

nal Corpus: 77.6% F1 accuracy of recovering constituency and 64.5% F1 accuracy of

recovering dependency in WSJ10. The improvement in accuracy caused by the search

space of dependent generation is constrained by the recovered constituency.

Structure estimation techniques, smoothing techniques, and various training strate-

gies were introduced to deal with local optima and data sparsity in DMV. Smith (2006)

used various interpolation smoothing techniques to improve the accuracy. As for the

use of valency, Cohen et al. (2008) utilized an extended valency grammar which is a

modification of DMV’s grammar with valency information attached to each head. The

accuracy of the DMV alone is significantly improved to 66.8% accuracy evaluated

on the WSJ10 corpus. Spitkovsky et al. (2010) proposed a training strategy where the

model which is fully trained on shorter sentences and trained on longer sentences tends

to outperform the model fully trained on the entire dataset. Gillenwater et al. (2010)

proposed the use of posterior regularization in the EM Algorithm in which the posterior

distribution of parent-child POS tags are penalized by another joint probability distri-

bution, accelerating the convergence of the model. Spitkovsky and Alshawi (2011a)

proposed a method to overcome local optima in the EM Algorithm-based grammar in-

duction by switching between two objective functions when reaching a local optimum

Chapter 2. Background 16

until the model converges. Moreover Spitkovsky and Alshawi (2011b) also suggested

a strategy to use punctuation to help with grammar induction. They imposed hard con-

straints of constituent forming in the search space enumeration with respect to the use

of punctuation marks in English, and they regained some accuracy.

Seginer (2007) introduced an incremental dependency recovery algorithm along-

side DMV and CCM. For each sentence, an input word is analyzed for possible de-

pendency links to each word in its prefix. Each link is assigned with a non-negative

weight calculated from its depth in the existing bracketing. It adds the link with the

maximum weight to the dependency structure and recalculates the weights for the re-

mainder links. The process repeats until all link weights become zero, then it reads a

new word. The whole process iterates until all sentences are read.

Dependency link reranking has also been of interest where the quality of grammar

induction is concerned. Reichart and Rappoport’s (2009) POS-based unsupervised

parse assessment (PUPA) score is used for reranking proposed constituents. The PUPA

score for a constituent is computed from the frequency of its yield and the nearest

surrounding POS tags (or contexts). This score performs well on constituency parsing.

In dependency parsing, Dell’Orletta et al. (2011) devised a dependency parse score

called ULISSE computed from linguistic features such as parse tree depths, depths of

complement chains, and arity of verbs.

Some claim that gold-standard POS tags are unnecessary for grammar induction.

In his two-staged framework, Søgaard (2011) alternatively clustered all words in an

unannotated corpus into distributional clusters and ranked dependent links with the

PAGERANK Algorithm (Page and Brin, 1998). Spitkovsky et al. (2011) made use of

Clark’s (2000) word distribution clustering algorithm before applying the DMV. They

suggested that the assumption of polysemous word clustering yields slightly better

results than the monosemy assumption.

However, there are still several limitations in this approach. First, the system has

to have access to all possible syntactic structures in each iteration in order to estimate

the probability distribution of the CFG rules. This step is time-consuming and space-

inefficient in grammar induction whose search space is usually very large. Second, the

approach is limited by the complexity of the models; i.e. the models used in the EM

Algorithm have to be able to find its optima. Third and last, the EM Algorithm only

guarantees local optima — the resulting model may not be the globally best model for

a given data set. These limitations prohibit us from making use of complex models in

grammar induction.

Chapter 2. Background 17

2.2.2.3 Markov Chain Monte Carlo Methods

To overcome the issues of search space enumeration, model’s complexity, and local

optima, research also started to focus on the Markov Chain Monte Carlo methods

(MCMC). We do not have to enumerate the search space in these models. Instead we

place a probability distribution over the search space. We then select from the distribu-

tion, or sample, a parameter value at a time with respect to such distribution and then

update the probability distribution with it. We iterate this process until the distribution

converges. There are three approaches of MCMC-based structure induction: CFG,

Tree-Substitution Grammar (TSG), and Adaptor Grammar.

In the first approach, Johnson et al. (2007b) proposed Gibbs and Metropolis-Hastings

sampling algorithms, differing from each other by their methods of random walk. In

Gibbs sampling (Geman and Geman, 1984), we sample a parameter value from an

easy-to-find conditional probability of each variable. Metropolis-Hastings sampling

(Metropolis et al., 1953; Hastings, 1970), on the other hand, allows us to sample from

any probability distributions without finding such conditional probability. This can be

done by controlling the walk with a proposal distribution. To efficiently represent the

complexity of a natural language grammar, Liang et al. (2007) modeled the probabilis-

tic CFGs as hierarchical Dirichlet Processes. In this framework, the parameters of each

node, such as rule types, terminal symbols, and productions, are sampled from their

distributions whose parameters are previously sampled from another set of controlling

distributions.

We can also see grammar induction as Tree-Substitution Grammar recovery (Cohn

et al., 2009; Cohn et al., 2010). Despite being theoretically equivalent to CFG in terms

of expressive power, we perceive a syntactic tree in TSG being composed of elemen-

tary trees, where each of which can be of more than one node height, representing

replacable phrase and idiomatic structures. Each elementary tree is sampled from a

training tree with any sampling algorithms.

Adaptor Grammar (Goldwater, 2007; Johnson et al., 2007a) is the other approach

of MCMC-based structure induction. Adaptor Grammar is a modification of prob-

abilistic CFG. A distribution over each nonterminal, called adaptor distribution, is

also added to make it possible to make an independent assumption for the choice of

generating a syntactic tree. Adaptor Grammars can be trained by either MCMC or

variational Bayesian methods (Cohen et al., 2010). Adaptor Grammars are often used

for modeling word segmentation and morphological analysis (Johnson, 2008; Johnson

Chapter 2. Background 18

and Goldwater, 2009; Johnson and Demuth, 2010).

MCMC grammar induction may also utilize other clues to improve the accuracy.

Snyder et al. (2009) proposed the use of word alignment from bilingual corpora to

help eliminating the unexpected frequent collocation. Their assumption was based on

the fact that some ambiguous syntactic structures in one language correspond to less

ambiguous ones in other languages. To avoid excessively random walks, Naseem et

al. (2010) uses a small amount of (universal) linguistic knowledge as soft contrains to

control their MCMC-based dependency generation algorithm following the DMV.

2.2.3 Prototype-Driven Approach

Despite many techniques proposed for grammar induction, the performance of com-

pletely unsupervised systems is still inadequate for practical use in natural language

parsing, because these models can still be misled by frequent collocation.

Frequent collocation makes the unsupervised models too ambiguous to represent

the probability distribution of linguistic phenomena. A common example of it is the

collocation of a determiner (DT) and an adjective (JJ) in a noun phrase. This collo-

cation misleads the models to form an incorrect noun phrase structure by grouping

a frequent couple of an article and an adjective and then grouping them with a noun

(NN), resulting in an incorrect structure such as *((DT JJ) NN). This adversely af-

fects the accuracy of the unsupervised grammar induction. Therefore, the distribution

over the resulting grammar does not truly reflect the probability distribution of natural

language grammars.

Natural language grammars follow a Zipfian (power law) distribution, where the

frequency of any grammar rule is inversely proportional to its rank in the frequency

table. For example, plotting the frequency of each grammar rule used in the Penn

Treebank 30 (sentences of length up to 30 words) obtains the distribution in Figure 2.1.

To avoid this problem, the use of a syntactic prototype was proposed. The notion

of syntactic prototype is a small amount of fundamental linguistic knowledge in any

forms that can be used to guide unsupervised grammar induction, such as basic word

orders and phrase structure rules. It considerably improves the accuracy of structure

recovery by eliminating phrase construction from ungrammatical frequent collocation,

thus greatly constraining the search space. A syntactic prototype can be either univer-

sal (i.e. it is built once and then used for all languages) or ad hoc (i.e. it can be rapidly

built for one language).

Chapter 2. Background 19

Figure 2.1: Distribution of English grammar of Penn Treebank 30

In the recent literature, syntactic prototypes are used as either soft or hard con-

straints for various machine learning techniques. Haghighi and Klein (2006) proposed

the use of bracketing rules extracted from WSJ10 in CCM. They initialized bracket-

ing parameters in CCM by biasing them with the postulated bracketing rules so that

they could improve the accuracy. Druck et al. (2009) proposed the use of dependency

formation heuristics encoded as feature functions for non-projective dependency tree

CRFs. The best accuracy of theirs is around 71% when they incorporated all 60 linguis-

tic constraints to the system. They also discovered that the accuracy starts to saturate

when incorporating more linguistic constraints. Snyder et al. (2009) proposed a semi-

supervised grammar induction from bilingual text with the help of a supervised parser

on one side and statistical word alignment. Naseem et al. (2010) proposed the use of

universal linguistic knowledge represented as a set of allowable head-dependent pairs.

Boonkwan and Steedman (2011) suggested that parameterized ad hoc syntactic proto-

types, when used as hard constraints for grammar induction, can considerably improve

the accuracy of dependency recovery in some languages such as Chinese and Japanese.

Bisk and Hockenmaier (2012a; 2012b) induced an inventory of language-specific types

from unlabeled training data by the use of more general linguistic knowledge, such as

that sentences are headed by verbs, which take arguments headed by nouns. All of

these techniques show significant improvement in accuracy of grammar induction on

corpora of short sentences.

Chapter 2. Background 20

Phrase Prototypes Phrase Prototypes

NP DT NN VP VBN IN NN

JJ NNS VBD DT NN

NNP NNP MD VB CD

S PRP VBD DT NN QP CD CD

DT NN VBD IN DT NN RB CD

PP IN NN DT CD CD

TO CD CD ADJP RB JJ

IN PRP JJ

ADVP RB RB JJ CC JJ

RB CD

RB CC RB

Figure 2.2: Haghighi and Klein’s (2006) English phrase type prototype list

There are four syntactic prototypes related to the design of our language param-

eters: phrase structure prototypes (Haghighi and Klein, 2006), dependency grammar

prototype (Druck et al., 2009), universal linguistic knowledge (Naseem et al., 2010),

and category induction scheme (Bisk and Hockenmaier, 2012a; Bisk and Hockenmaier,

2012b).

2.2.3.1 Phrase Structure Prototypes

Haghighi and Klein (2006) employed the phrase structure prototype to boost the accu-

racy of bracket recovery based on CCM (Klein and Manning, 2004) and PCFG.

As shown in Figure 2.2, a phrase structure prototype consists of a list of phrase la-

bels and their possible daughters. Since the experiment was on English, this prototype

is manually handcrafted from a list of POS tag sequences of the seven most frequent

phrase categories in the Penn Treebank. Each entry can be seen as a set of flattened

phrases where each of their preterminal tags are concatenated.

This kind of syntactic prototype is used as soft constraints for unsupervised learn-

ing. Since the syntactic prototype merely resembles a phrase structure grammar, it is

used as a local factor for each bracket. A bracket is preferred, or biased, if its yield is

in the syntactic prototype.

Chapter 2. Background 21

Constraint Expectation Constraint Expectation

MD→ VB 1.00 NNS← VBD 0.75

POS← NN 0.75 PRP← VBD 0.75

JJ← NNS 0.75 VBD→ TO 1.00

NNP← POS 0.75 VBD→ VBN 0.75

ROOT→MD 0.75 NNS← VBP 0.75

ROOT→ VBD 1.00 PRP← VBP 0.75

ROOT→ VBP 0.75 VBP→ VBN 0.75

ROOT→ VBZ 0.75 PRP← VBZ 0.75

TO→ VB 1.00 NN← VBZ 0.75

VBN→ IN 0.75 VBZ→ VBN 0.75

Figure 2.3: Druck et al’s (2009) English dependency grammar prototype called

oracle constraints

2.2.3.2 Dependency Grammar Prototype

Druck et al. (2009) employed the dependency grammar prototype (Druck et al., 2009)

to improve the accuracy of unsupervised non-projective dependency parsing based on

Conditional Random Field (CRF).

This kind of syntactic prototype consists of oracle constraints as in Figure 2.3. The

oracle constraints contain a list of head and dependent tags and attachment directions,

represented in the form H → D and D ← H , where H is a head tag and D is a

dependent tag. Each entry of the oracle constraints is assigned an expected value. The

oracle constraints are provided by automatically selecting each dependency attachment

from the gold corpus based on statistics of edge probability.

The oracle constraints are used as soft constraints for the CRF-based parsing model;

i.e. it is a feature function for each dependency attachment. Again, a dependent attach-

ment is preferred if it is prescribed in the oracle constraints.

2.2.3.3 Universal Linguistic Knowledge

Naseem et al. (2010) proposed universal linguistic knowledge which generalizes the

dependency grammar prototype by separating the prototype from corpus-specific tagsets.

As shown in Figure 2.4, their syntactic prototype consists of two kinds of knowl-

edge: the universal linguistic knowledge and the language-specific dependency rules.

The universal linguistic knowledge encodes cross-linguistic dependency rules repre-

Chapter 2. Background 22

sented in the same format as the oracle constraints’s one. Each rule defines only the

attachment relation between coarse tags but not the ordering information. The other

part of the syntactic prototype is the language-specific dependency rules as shown in

Figure 2.4(b).

Being considerably dependent on a language of interest and tentatively on a specific

corpus, these rules deal with various depths of syntax ranging from determining the

headword of the sentence to identifying noun phrase boundaries. Furthermore, the

method assumes that the corpus have to be annotated with their coarse tagset, so a

mapping table between the coarse tagset and the corpus-specific tagset must also be

provided in corpus preparation.

This kind of syntactic prototype is used as hard constraints for a hierarchical Dirich-

let process parsing model, minimizing the search space and greatly improving the ac-

curacy.

2.2.3.4 CCG Induction

Finally, Bisk and Hockenmaier (2012b) proposed the use of derivation rules in Com-

binatory Categorial Grammar (CCG) in grammar induction. As illustrated in Fig-

ure 2.5, there are two kinds of knowledge: the initial tags for basic categories and the

CCG derivation rules. The first part is a mapping table between basic POS tags and

atomic categories. The other part is a schema of CCG derivations where two syntactic

categories are combined to form another syntactic category.

For each sentence, the initial tags are first assigned to basic categories: namely,

noun, verb, pronoun, numeral, determiner, and conjunction. Then they extend their

lexical inventory by deducing the combinator categories (i.e. complex categories) from

the already known arguments, which forms plausible syntactic structures.

The most likely syntactic structure is selected by the predicate-argument parsing

model closely related to (Hockenmaier, 2003a; Hockenmaier, 2003b). For comparison,

dependency structures are induced from the syntactic derivations by the model in which

heads and dependents are identified statistically. We consider this kind of syntactic

prototype as hard constraints for unsupervised learning because it explicitly eliminates

implausible syntactic categories from the search space.

Chapter 2. Background 23

Root→ Auxiliary Noun→ Adjective

Root→ Verb Noun→ Article

Verb→ Noun Noun→ Noun

Verb→ Pronoun Noun→ Numeral

Verb→ Adverb Preposition→ Noun

Verb→ Verb Adjective→ Adverb

Auxiliary→ Verb
(a) Universal linguistic knowledge

1. Identify non-recursive NPs:

(a) All nouns, pronouns, and possessive marker are part of an NP.

(b) All adjectives, conjunctions, and determiners immediately preceding an NP are

part of the NP.

2. The first verb or modal in the sentence is the headword.

3. All words in an NP are headed by the last word in the NP.

4. The last word in an NP is headed by the word immediately before the NP if it is a

preposition, otherwise it is headed by the headword of the sentence if the NP is before

the headword, else it is headed by the word preceding the NP.

5. For the first word set its head to be the headword of the sentence. For each other word

set its headword to be the previous word.
(b) English-specific dependency rules

Figure 2.4: Naseem et al’s (2010) syntactic prototype

Chapter 2. Background 24

CONJ → conj

DET, NOUN, NUM, PRONOUN → N

VERB → S

(a) Initial tags for basic categories

Functional application X/Y Y ⇒ X (B0
>)

Y X\Y ⇒ X (B0
<)

Functional composition X/Y Y/Z ⇒ X/Z (B1
>)

Y \Z X\Y ⇒ X\Z (B1
<)

Crossed composition X/Y Y \Z ⇒ X\Z (B1
X>)

Y/Z X\Y ⇒ X/Z (B1
X<)

(b) CCG derivation rules

Figure 2.5: Bisk and Hockenmaier’s (2012) category induction scheme

2.2.3.5 Discussion

In this thesis we focus on dependency structure recovery; therefore, we focus on the use

of syntactic prototype in grammar induction in two aspects: improving the accuracy

of grammar induction and facilitating the task of language encoding. In Haghighi and

Klein’s (2006) and Druck et al.’s (2009) syntactic prototypes, linguistic knowledge is

automatically extracted from the corpora and are used as soft constraints. Naseem et

al. (2010), on the other hand, handcrafted their universal linguistic knowledge and

their detailed language-specific dependency rules.

Particularly, Naseem et al.’s (2010) English-specific dependency rules are painstak-

ingly built based on insightful observation on Penn Treebank in order to implicitly

capture the word order of English. They are however unsystematic and laborious to

achieve when this method is applied on low-resource languages.

One way to facilitate the construction of syntactic prototypes is to explicitly incor-

porate word orders and dependency attachment to the syntactic prototype. For exam-

ple, the word order of English can be easily encoded as in Figure 2.6. The word order

information is systematically simpler and requires far less effort to observe than the

linguistic behaviors in an entire corpus.

Word orders are more convenient to elicit according to the availability of syntax

compendiums such as The World Atlas of Language Structures (Haspelmath et al.,

2005), grammar textbooks, and various treebank annotation manuals. Alternatively,

especially in less studied languages, they can be achieved either by direct interview

Chapter 2. Background 25

subject verb indirect-object object preposition noun-phrase

subject modal relative-pronoun verb-phrase

modal verb-phrase adverb verb-phrase
adjective noun verb-phrase adverb

determiner noun adverb adjective
noun nominal-modifier adverb adverb

Figure 2.6: Word order of English. Headwords are underlined and bolded and

the word order matters.

with linguistics-literated informants, indirectly by translation interview with naïve in-

formants, or, less preferably, by automatic machine translation. The design of our

language parameters and how it enhances the accuracy of grammar induction will be

elaborated in Chapter 3.

2.3 Computational Preliminaries

2.3.1 Statistical Modeling

In learning problems, we wish to accurately predict a stochastic event from our hypoth-

esis based on previous observations. The model used in prediction is called a statistical

model.

We can assess how well a particular event is represented by our model. Let us

denote a set of observations, or a dataset, D = {x1, x2, x3, . . . , xn}, where each xi is

an observation, and Θ as a hypothesis. The more the probability of the hypothesis Θ

given the dataset D, the better the model. That is, we want to find the best hypothesis

Θ∗, such that

Θ∗ = arg max
Θ

P (Θ|D) (2.1)

The probability P (Θ|D) is called the posterior probability (or a posteriori probability).

We rewrite Eq (2.1) as

Θ∗ = arg max
Θ

P (Θ|x1, x2, x3, . . . , xn) (2.2)

Generally the probability in Eq (2.2) is hard to factorize. We therefore apply Bayes’

Chapter 2. Background 26

rule to obtain:

Θ∗ = arg max
Θ

P (D|Θ)P (Θ)

P (D)

= arg max
Θ

P (D|Θ)P (Θ)∑
Θ′ P (D|Θ′)P (Θ′)

= arg max
Θ

P (D|Θ)P (Θ) (2.3)

in which P (D|Θ) = P (x1, x2, x3, . . . , xn|Θ) can easily be factorized to
∏n

i=1 P (xi|Θ),

if we assume that each observation xi is independent and identically distributed. We

call P (D|Θ) a likelihood, which evaluates how well the hypothesis Θ describes the

dataset D. The probability P (Θ) is the prior probability of the hypothesis Θ. P (D),

called marginal likelihood, is the probability of the dataset.

We have come to terms with the question of how to estimate these parameters so

that the model can well represent the dataset. One way to achieve such goal is ana-

lytical parameter estimation. In this approach, we estimate the model parameters by

treating the maximization of posterior probability as an optimization problem. That

is, we directly find a set of parameters that make the posterior probability an opti-

mal point. Popular methods in this approach include maximum likelihood estimation

(MLE), expectation maximization algorithm (EM), maximum a posteriori estimation

(MAP), and variational Bayesian EM (VBEM).

2.3.1.1 Maximum Likelihood Estimation (MLE)

In this method we assume that the prior probability of each Θ is uniform. We then esti-

mate the parameters Θ with respect to a dataset D, whose each observation is assumed

to be independent and identically distributed. Recalling the posterior probability, we

find Θ∗ such that it maximizes the probability of the parameters given the dataset D.

Θ∗ = arg max
Θ

P (D|Θ)P (Θ) (2.4)

In MLE, we assume that P (Θ) is uniform. We have

Θ∗ = arg max
Θ

P (D|Θ) (2.5)

Since D = {x1, x2, x3, . . .} where each xi is an observation, we rewrite:

Θ∗ = arg max
Θ

|D|∏
i=1

P (xi|Θ) (2.6)

To find Θ∗, we can treat Eq (2.6) as an optimization problem and find its analytical

solution.

Chapter 2. Background 27

2.3.1.2 Expectation Maximization Algorithm (EM)

It is not always possible to find the analytical solution to MLE. In this case, Expectation

Maximization Algorithm (Dempster et al., 1977) can be employed to perform MLE

when not all variables are observed although the global optimum is not guaranteed.

Given a dataset D and a set of observed parameters Θ, let us assume Z be the latent

variables. We want to estimate the likelihood probability P (D|Θ), where

P (D|Θ) =
∑
Z

P (D,Z|Θ) (2.7)

The EM algorithm seeks for the MLE of this equation by iterating the following steps.

1. Expectation Step (E-Step): Calculate the expectation (i.e. weighted average)

of the log likelihood function; i.e.

Q(Θ(t+1)|Θ(t)) = EP (Z|D,Θ(t))

[
logP (D,Z|Θ(t))

]
(2.8)

where Z|D,Θ(t) are the latent variables Z given the dataset D and the current

parameters Θ(t).

2. Maximization Step (M-Step): Find the known parameters that maximize the

expectation.

Θ(t+1) = arg max
Θ

Q(Θ|Θ(t)) (2.9)

This step is an optimization problem.

These steps are iterated until the likelihood probability in Eq (2.7) converges. In prac-

tice, the termination condition is usually set to the difference of the likelihood prob-

abilities being less than a predefined convergence threshold ε > 0 which is a small

constant. The expectation maximization algorithm repeatedly iterates over these equa-

tions and estimates all parameters according to them until the likelihood probability

converges.

Expectation Maximization has two disadvantages. First, it is guaranteed to con-

verge to a local optimum of the likelihood probability, not always the global optimum.

This is because the likelihood probability may have more than one optimum. Second,

as stated in Goldwater’s (2007) thesis, EM is suitable for a learning problem whose

number of parameters is known. If the number of parameters is unknown, the algo-

rithm prefers a more complex model (i.e. more number of latent variables) to better

fit the data. This in turn leads to the model to over-fit the dataset. To overcome the

Chapter 2. Background 28

data over-fitting issue, we should instead consider that each hypothesis should have a

different prior probability. It is therefore necessary to take into account the a posteriori

probability.

2.3.1.3 Maximum A Posteriori Estimation (MAP)

In this method, we assume that each hypothesis has a different prior probability. This

method is suitable for a statistical model where we have some prior knowledge about

the dataset. Unlike MLE, we seek to find Θ∗ such that it maximizes the a posteriori

probability; i.e.

Θ∗ = arg max
Θ

P (Θ|D)

= arg max
Θ

P (D|Θ)P (Θ) (2.10)

The prior probability P (Θ) is chosen based on our prior knowledge about D.

Another way to put a bias on the hypothesis is to favor its simplicity by using

the minimum description length principle (MDL) (Rissanen, 1978; Rissanen, 1989) in

which each hypothesis is biased by its information-theoretic code length. The MDL

principle is suitable for learning problems in which the number of parameters can

change over time, such as word segmentation where different segmentation leads to

different number of words. We assume that simpler hypotheses can encode the dataset

more efficiently and are thus more preferable. This makes learning similar to a data

compression problem. That is,

Θ∗ = arg max
Θ

P (D|Θ)P (Θ)

= arg min
Θ

[length(encodingΘ(D)) + length(Θ)]

= arg min
Θ

[− logP (D|Θ) + length(Θ)] (2.11)

There are several measures for the length of the hypothesis, most of which information-

theoretically motivated, such as entropy, relative entropy, Kullback-Leibler divergence,

and Fisher’s information. Alternatively, Rissanen (1978) proposed the use of Kolgo-

morov’s complexity that he further approximates with

length(Θ) = k log
√
n (2.12)

where n is the size of the dataset D and k is the number of parameters in Θ.

Chapter 2. Background 29

2.3.1.4 Variational Bayesian Approximation (VB)

In variational Bayesian methods (Attias, 2000; Ghahramani and Beal, 2000; Beal,

2003), we approximate a posterior probability as well as its observed and latent vari-

ables with factorizable and analytically solvable distributions called variational distri-

butions. The posterior probability can be achieved by computing:

P (Θ,Z|D) =
P (D,Z|Θ)P (Θ)

P (D)

=
P (D,Z|Θ)P (Θ)∑

Θ

∑
Z P (D,Z|Θ)P (Θ)

(2.13)

For a complex model, the posterior probability cannot be computed analytically be-

cause the integral over the model parameters Θ and the latent variables Z is intractable.

We then approximate P (Θ,Z|D) with mean field approximation:

P (Θ,Z|D) ≈ Q(Θ,Z)

= Q(Θ)Q(Z) (2.14)

where Q(Θ) and Q(Z) are variational distributions. By Jensen’s inequality we obtain

the lower bound of logP (D) as follows:

logP (D) ≥
∑

Θ

[
KL(Q(Θ)||P (Θ)) +

∑
Z

KL(Q(Z)||P (D,Z|Θ))

]
= F(Q(Θ), Q(Z)) (2.15)

where KL(Q||P) is Kullback-Leibler divergence of the distribution Q from P . Quan-

tity F(Q(Θ), Q(Z)) denotes the lower bound of logP (D).

From Eq (2.15), an approximation of logP (D) can be achieved by maximizing

F(Q(Θ), Q(Z)), which is again an optimization problem. Attias (2000) introduced an

iterative algorithm to maximize the free energy which is summarized as follows.

1. VB Expectation Step (VBE Step): We compute the variational distribution of

the latent variables Q(Z) by solving

∂F(Q(Θ), Q(Z))

∂Q(Z)
= 0 (2.16)

We then obtain that

Q(Z) ∝ expEQ(Θ) [logP (D,Z|Θ)] (2.17)

Chapter 2. Background 30

2. VB Maximization Step (VBM Step): We compute the variational distribution

of the observed parameters Q(Θ) by solving

∂F(Q(Θ)Q(Z))

∂Q(Θ)
= 0 (2.18)

We then obtain that

Q(Θ) ∝ P (Θ) expEQ(Z) [logP (D,Z|Θ)] (2.19)

The algorithm proceeds in the same fashion as the canonical EM algorithm. First the

variational distribution of the latent variables Q(Z) is computed. Then the variational

distribution of the observed parameters is computed, thus adjusting the model parame-

ters. The algorithm iterates these two steps until convergence. The difference between

EM and VBEM is that VBEM places priors over the numerator and denominator by

adding them with the hyperparameters and then scales them with function exp(ψ(·))
that is less sensitive to noise than arithmetic division.2

2.3.2 Methods for Grammar Induction

2.3.2.1 Grammar Induction as Statistical Inference

Grammar induction can be seen as a stochastic event where a syntactic structure is sta-

tistically predicted from an input symbolic sequence based on previous observations.

The grammar induction problem can be formally defined as follows. Let us first define

a probabilistic context-free grammar (PCFG)

G = (VN , VT , R, S,Θ) (2.20)

where

• VN is a set of nonterminal symbols (i.e. node labels),

• VT is a set of terminal symbols (i.e. words),

• R ⊆ VN × (VN × VN ∪ VT) is a set of grammar rules, each of which being

either A → BC (the branching form) or A → w (the terminal form), where

A,B,C ∈ VN and w ∈ VT ,

• S ∈ VN is the start symbol (i.e. the root node’s symbol), and

2ψ(·) is the digamma function, where ψ(x) = d
dx log Γ(x), and Γ(x) is the gamma function which

is a generalization of x! on real numbers.

Chapter 2. Background 31

• Θ = {πA→BC |A → BC ∈ R} ∪ {πA→w|A → w ∈ R} is a set of parameters

(i.e. probabilities of each rule), having an equality constraint for each A ∈ VN∑
X

πA→X = 1 (2.21)

where A→ X ∈ R is either in the branching or terminal forms.

For simplicity, the grammar rules in R are in Chomsky Normal Form to which all

context-free grammars can be converted. Each A→ BC is said to be in the branching

form and each A→ w in the terminal form.

There are two steps in grammar induction: training and decoding. In the training

step, we want to learn the parameters Θ automatically from the given dataset D =

{s1, s2, s3, . . .}, where each si ∈ V +
T is a sentence which is a non-empty string of VT .

Formally speaking, we seek to find the optimal parameters Θ∗ such that

Θ∗ = arg max
Θ

P (Θ|D) (2.22)

Since each π ∈ Θ is a rule probability, we have to enumerate all possible syntactic

structures of each sentence, similar to treating latent variables; i.e.

Θ∗ = arg max
Θ

P (Θ|D)

= arg max
Θ

P (D|Θ)P (Θ) (2.23)

We then enumerate all syntactic structures for each si ∈ D, yielding

Θ∗ = arg max
Θ

P (D|Θ)P (Θ)

= arg max
Θ

|D|∏
i=1

P (si|Θ)P (Θ)

= arg max
Θ

|D|∏
i=1

Ni∑
j=1

P (si, tij|Θ)P (Θ) (2.24)

where each latent variable tij is one of the possible syntactic structures of the sentence

si. Assuming that each grammar rule in tij is independent and identically distributed,

we elaborate Eq (2.24) with

Θ∗ = arg max
Θ

|D|∏
i=1

Ni∑
j=1

P (Θ)
∏
r∈Rij

P (si, r|Θ)c
r
ij (2.25)

where crij is the count of the rule r ∈ Rij in the syntactic structure tij .

Chapter 2. Background 32

At first glance, it seems easy to apply the EM algorithm to the grammar induction

problem. For example, we assume that the prior probability for each model is uniform

and the following condition for each expected count qA→Xij holds:∑
i

∑
j

∑
X

qA→Xij = 1 for each A ∈ VN (2.26)

The EM algorithm for MLE for Eq (2.25) is as follows.

1. E Step: We compute each qA→Xij by

q̂A→Xij =
qA→Xij (πA→X)c

A→X
ij∑

i

∑
j

∑
A→X′ qA→X

′
ij (πA→X′)c

A→X′
ij

(2.27)

2. M Step: We estimate each πA→X ∈ Θ by

π̂A→X =

∑
i

∑
j c

A→X
ij qA→Xij πA→X∑

i

∑
j

∑
A→X′ cA→X

′
ij qA→X

′
ij πA→X′

(2.28)

However, computation of these equations is time-consuming and space-inefficient, be-

cause arbitrary tree enumeration requires aO(2n) search space that causes combinatory

explosion. To overcome this hindrance, it is necessary to apply a dynamic program-

ming algorithm similar to the standard Forward-Backward Algorithm (Baum et al.,

1970) and Inside/Outside Algorithm (Baker, 1979; Lari and Young, 1990).

2.3.2.2 Variational Bayesian Inside-Outside Algorithm

Instead of the standard Inside-Outside algorithm, we exploit the variational Bayesian

expectation maximization algorithm (VBEM) (Kurihara and Sato, 2006) to approx-

imate the parameters of the parsing models, because it is shown to outperform the

original algorithm.

Kurihara and Sato (2006) show that VBEM for PCFG is less data-overfitting than

the Inside-Outside Algorithm. They theoretically claimed that this is due to the fact that

VBEM uses the free energy as a criterion of model selection. They state that VBEM

outperforms other model selection criteria, such as MDL and Bayesian Information

Criterion (BIC), because these models do not fit with non-identifiable probabilistic

models, such as HMM, maximum entropy, and PCFG, according to their singular

Fisher information matrices. We are also aware of other structure search techniques

such as deterministic annealing, skewed deterministic annealing, and structural an-

nealing (Smith, 2006). One can improve the VBEM with these techniques for his own

preference.

Chapter 2. Background 33

In practice, this algorithm estimates the parameters with a corpus and a set of prior

hyperparameters. We assume that P (Θ) is a Dirichlet distribution as aforementioned

and we denote uprior = {uprior
r |r ∈ R} as the prior hyperparameters of each grammar

rule r. The VBEM algorithm for PCFG can be summarized as follows.

1. Initialization: We initialize the posterior hyperparameters with the prior hyper-

parameters.

u(0) = uprior (2.29)

where u(0) is the initial posterior hyperparameters of each grammar rule. At the

same time, the parameters of the model π(0)(r) is initialized in some way, such

as randomization, uniform distribution, and biased preferences.

2. VBE Step: We precompute the inside and outside probabilities and then com-

pute each latent variable by

qi(A→ X1 . . . XK) =
∑

nA
i ⇒dX1 ...dXK

f(nAi)
K∏
k=1

e(dXk) (2.30)

where e(·) and f(·) are the inside and outside scores of a node, respectively.

These scores can be computed by the standard Inside/Outside Algorithm.

3. VBM Step: We estimate the rule parameters by

π̂A→X =
expψ

[
uprior
A→X +

∑|D|
i=1 Eqi(A→X)πA→X

]
expψ

[∑
A→X′

[
uprior
A→X′ +

∑|D|
i=1 Eqi(A→X′)πA→X′

]] (2.31)

where ψ(·) is the digamma function.

Steps 2 and 3 are iteratively applied until the posterior probability converges.

2.4 Evaluation Metrics

In the experiments, we show the capability of the system in recovering bracketings

and dependency structures. We measured five aspects of accuracy: bracket recovery,

crossing bracket rate, undirected dependency recovery, directed dependency recovery,

and head recovery.

Chapter 2. Background 34

2.4.1 Bracket Recovery (BP, BR, and BF1)

Bracket recovery (Klein, 2005) is the measurement of phrase spans that can be recov-

ered. We pay attention on this metric as it can show us the ability of the system in

recovering brackets from scratch. Let us denote span(τ) the set of phrase spans of a

tree τ , where:

span(τ) = {(i, j, wi,j)|each phrase in τ spans from i to j} (2.32)

and wi,j is a substring of the yields of τ from position i to position j. For example, let

τ be the tree in Figure 4.3. We have that:

span(τ) = {(1, 1,DT), (2, 2,NN), (3, 3,VBD), (4, 4, JJ), (2.33)

(5, 5,NNS), (1, 2,DT NN), (4, 5, JJ NNS),

(3, 5,VBD JJ NNS), (1, 5,DT NN VBD JJ NNS)}

We measured this accuracy with three metrics: precision, recall, and F1 score. For

a gold standard tree g and a test tree t, we calculate the three metrics with the following

formulae.

bracketing precision (BP) =
|span(g) ∩ span(t)|

|span(t)|
(2.34)

bracketing recall (BR) =
|span(g) ∩ span(t)|

|span(g)|
(2.35)

bracketing F1 (BF1) =
2

BP−1 + BR−1 (2.36)

Please note that these metrics are comparable to labeled bracketing accuracy (Klein,

2005).

2.4.2 Crossing Bracket Rate (CBR)

Crossing bracket rate (Klein, 2005) is the ratio of spans that cross any other spans in

the gold standard tree. This metric is used as a supplement of the bracket recovery for

showing that the recovered bracketings do not cross over any gold standard phrases. As

illustrated in Figure 2.7, we say that a test span (i, j, wi,j) crosses over a gold standard

span (i′, j′, w′i′,j′) if either

1. i′ < i, j′ < j, and i < j′, or

2. i < i′, j < j′, and i′ < j.

Chapter 2. Background 35

test
i j

gold
i' j'

(a) Case 1

i j

i' j'
test

gold

(b) Case 2

Figure 2.7: Crossing brackets

For a test tree t and a gold standard tree g, we can calculate the crossing bracket rate

by the following formula.

CBR =
|{s ∈ span(t)|s crosses over at least one s′ ∈ span(g)}|

|span(t)|
(2.37)

2.4.3 Undirected Dependency Recovery (UDP, UDR, and UDF1)

Undirected dependency recovery (Klein, 2005) is the measurement of dependency rela-

tions we can recover with the model, taking dependency direction out of consideration.

We use this metric to roughly claim the ability of the system in recovering the majority

of dependency relations from scratch. Let us denote undep(δ) the set of undirected

dependency relations of a dependency structure δ, where:

undep(δ) = {{(wi, i), (wj, j)}|wi has a dependency to wj in δ} (2.38)

and wi and wj are words at the positions i and j, respectively. It is noticeable that each

element of the set is defined as a set of paired words, because the positions of words are

not considered in this case. For example, let δ be the dependency structure in Figure

3.13(b). We obtain that:

undep(δ) = {{(John, 1), (eats, 2)}, {(eats, 2), (sandwiches, 4)}, (2.39)

{(delicious, 3), (sandwiches, 4)}}

In our gold standard, we instead consider the dependency relations between parts of

speech.

We measured this accuracy with three metrics: precision (UDP), recall (UDR), and

F1 score (UDF1). For a gold standard dependency structure g and a test dependency

structure t, we calculate the three metrics with the following formulae.

Chapter 2. Background 36

UDP =
|undep(g) ∩ undep(t)|

|undep(t)|
(2.40)

UDR =
|undep(g) ∩ undep(t)|

|undep(g)|
(2.41)

UDF1 =
2

UDP−1 + UDR−1 (2.42)

2.4.4 Directed Dependency Recovery (DDP, DDR, and DDF1)

Directed dependency recovery (Klein, 2005) is similar to undirected dependency re-

covery, except that it also considers the dependency direction. We focus on this met-

ric as it shows the capability of the system in recovering dependency relations from

scratch. Let us denote dep(δ) the set of directed dependency relations of a dependency

structure δ, where:

dep(δ) = {((wi, i), (wj, j))|wi has a dependency to wj in δ} (2.43)

We say that wi is a head that has a dependent wj . We also say that wj is a leftward

dependent if j < i, and a rightward dependent if i < j. We can notice that each

element is now defined as an ordered pair of a head and its dependent because the order

of elements does matter in this case. For example, let δ be the dependency structure in

Figure 3.13(b). We obtain that:

dep(δ) = {((eats, 2), (John, 1)), ((eats, 2), (sandwiches, 4)), (2.44)

((sandwiches, 4), (delicious, 3))}

In our gold standard, we instead consider the dependency relations between PTB’s

parts of speech.

We measured this accuracy with three metrics: precision (DDP), recall (DDR), and

F1 score (DDF1). For a gold standard dependency structure g and a test dependency

structure t, we calculate the three metrics with the following formulae.

DDP =
|dep(g) ∩ dep(t)|
|dep(t)|

(2.45)

DDR =
|dep(g) ∩ dep(t)|
|dep(g)|

(2.46)

DDF1 =
2

DDP−1 + DDR−1 (2.47)

Chapter 2. Background 37

-ROOT-

root

��
Mary likes

subj

��

obj

��
delicious sandwiches

attr

��

(a) A dependency tree

{root}

{subj}

Mary

{hd}

likes

{obj}

{attr}

delicious

{hd}

sandwiches
(b) The corresponding multi-function tree

Figure 2.8: An example of conversion to a multi-function tree

2.4.5 Tree Edit Distance Evaluation Metric (TEDEVAL)

The aforementioned metrics are based on the assumption that all training and testing

data must be annotated in the same scheme. It is, however, not the case in our exper-

iments, where each dependency bank was annotated in a different annotation scheme.

These discrepancies of dependency attachment conceal the true accuracies when mea-

suring the recovery accuracy with the metrics.

One way to measure the accuracy of dependency recovery across different anno-

tation theories is use the tree edit distance evaluation metric (TEDEVAL) (Tsarfaty et

al., 2011; Tsarfaty et al., 2012a; Tsarfaty et al., 2012b). TEDEVAL has the following

procedure.

Each input pair of parsed and gold trees are converted into multi-function trees

which effectively handle annotation discrepancies. Each multi-function tree represents

dependency labels by node labels. For each node in a multi-function tree, its label

is denoted by a set of dependencies for the node, which can also be an empty set if

the multi-function tree is converted from an input tree not annotated with dependency

relations. For example, if an input tree is represented in the CoNLL2006’s dependency

form as illustrated in Figure 2.8(a), each dependency label is converted to a node label

in the resulted function tree depicted in Figure 2.8(b).

Chapter 2. Background 38

∅

∅

Mary

∅

∅

likes

∅

∅

delicious

∅

sandwiches
(a) A multi-function tree from PTB

{root}

{subj}

Mary

{hd}

likes

{obj}

{attr}

delicious

{hd}

sandwiches
(b) A multi-function tree from a CoNLL2006 depen-

dency bank

{root}

{subj}

Mary

∅

{hd}

likes

{obj}

{attr}

delicious

{hd}

sandwiches
(c) The generalized multi-function tree

Figure 2.9: Generalization of multi-function trees

Each function tree pair are then generalized to find the most general tree that con-

tains both of the input function trees. On each node of the generalized tree, there exists

at least one node on both input trees that have the same spans as the node. For ex-

ample, we can generalize the input trees in Figures 2.9(a) and 2.9(b) into the general

multi-function tree in Figure 2.9(c).

The input trees are then compared with the generalized tree and edit distance is

computed. There are two operations that are counted as edit: node addition and node

deletion. An edit script ES(t1, t2) is an edit path for amending the tree t1 to be the

other one t2. We seek to find the shortest edit script between t1 and t2; that is,

ES∗(t1, t2) = min
ES(t1,t2)

∑
e∈ES(t1,t2)

cost(e) (2.48)

For example, as illustrated in Figure 2.9, ES∗(PTB tree, generalized tree) is 0 (no

edits), while ES∗(CoNLL tree, generalized tree) is 1 (inserting a node for the verb

Chapter 2. Background 39

phrase). The edit distance is measured by the function δ(tparse, tgold, tgen), where

δ(tparse, tgold, tgen) = cost(ES∗(tparse, tgen)) (2.49)

−cost(ES∗(tparse, tgen) ∩ ES∗(tgold, tgen))

The accuracy is reported in terms of the average of the edit distances across the entire

dataset, the value ranging from 0 (worst) to 1 (best).

score(Dparse,Dgold,Dgen) = 1−
∑|Dparse|

i=1 δ(t
(i)
parse, t

(i)
gold, t

(i)
gen)∑|Dparse|

i=1 |t(i)parse|+ |t(i)gen|
(2.50)

where |t| is the total number of nodes in the tree t.

2.5 Datasets

2.5.1 Dependency Banks

We compare our method with other state-of-the-art techniques, most of which are

assessed using the Wall Street Journal part of Penn Treebank (Marcus et al., 1993).

We use WSJ10, WSJ15, and WSJ20, the standard collection of trees whose sentence

lengths do not exceed 10, 15, and 20 words, respectively, after eliminating punctuation

marks and empty elements. We automatically convert PTB into dependency structures

with the LTH Conversion Tool (Johansson and Nugues, 2007; Surdeanu et al., 2008).3

The program is trained and tested using POS tag sequences from WSJ10, 15 and 20 as

the terminal symbols (rather than strings of words) to minimize data sparsity.

For multilingual experiments, we use available dependency corpora from the CoNLL-

X Shared Task 2006 (Buchholz and Marsi, 2006) including Danish [DA] (Kromann et

al., 2003), Dutch [DU] (van der Beek et al., 2002), Portuguese [PO] (Afonso et al.,

2002), and Swedish [SV] (Nilsson et al., 2005), all of which are Indo-European. To in-

vestigate grammar induction in other language families, we also evaluate our method

against Arabic [AR] (Smrž et al., 2002), Bulgarian [BU] (Simov et al., 2001), Chi-

nese [CH] (Keh-Liann and Hsieh, 2004), Czech [CZ] (Bohomovà et al., 2001), Ger-

man [DE] (Brants et al., 2002), Japanese [JA] (Kawata and Bartels, 2000), Slovene

[SL] (Džeroski et al., 2006), Spanish [ES] (Civit and Martí, 2004), and Turkish [TU]

(Oflazer et al., 2003). We follow the same data preparation procedure as for WSJ,

where punctuation marks are taken out and only POS tag sequences are used instead

of word strings.
3 Configuration: -splitSlash=false -qmod=true -deepenQP=true

-whAsHead=true.

Chapter 2. Background 40

Table 2.1: Ten fields of CoNLL-X Shared Task 2006’s data format

Number Field Description

1 ID Token counter, starting at 1 for each sentence

2 FORM Word form or punctuation symbol

3 LEMMA Lemma or stem

4 CPOSTAG Coarse-grain POS tag

5 POSTAG Fine-grain POS tag

6 FEATS Unordered set of syntactic/morphological features,

separated by a vertical bar ‘|’

7 HEAD ID of the head of the current token

8 DEPREL Dependency relation to HEAD

9 PHEAD ID of the projective head of the current token

10 PDEPREL Dependency relation to PHEAD

2.5.2 Data Format

All datasets used in this thesis adhere to the CoNLL-X Shared Task 2006’s rules. Each

data file contains sentences separated by a blank line. Each sentence consists of one or

more words represented as a tab-separated row of the ten fields described in Table 2.1,

each of which strictly containing no space or blank characters. In the case where there

is no information in a field, a placeholder ‘_’ is put into the field to avoid mistaken

field separation. The data files must be encoded in UTF-8 (Unicode).

2.5.3 Tagset Conversion for Dependency Banks

Since verb transitivity distinction in the tagset can improve the accuracy of parsing, it is

useful to distinguish them in our corpora when possible. As to be described in Chap-

ter 3, we reduce the ambiguity of the tagset by fusing CoNLL-X’s CPOSTAG and

POSTAG fields to become fine-grained tags and reclustering them. For all inflected

languages (Arabic, Bulgarian, Czech, Slovene, and Turkish in this thesis), we recluster

the tags with respect to the morphological attributes and assign new tags for the re-

sulting groups. The procedure of assigning new tags to the corpora is summarized as

follows.

Arabic Since noun declension plays an important role in Arabic, we have to distin-

guish the grammatical cases. We retag each noun of tags N and Z with respect to

Chapter 2. Background 41

its grammatical case. If it is in case 1 (nominative), the tag becomes Nnom. If the

case is 2 (genitive/accusative), the tag becomes Nga. If the case is 4 (genitive),

the tag becomes Ngen. The same criteria apply to all pronouns of type S; result-

ing in the new tags Snom, Sga, and Sgen. The three tags of punctuation marks G,

X, and − are also eliminated.

Bulgarian In Bulgarian, nouns are distinguished by their genders but this is rather

harmful in parsing due to the problem of data sparsity. We neutralize the genders

of noun (tag N), adjective (tag A), and hybrid (tag H); for example, we convert

tags Nm, Nf, and Nn to a simpler tag N. We combine the adverbs Dm, Dt, Dl,

Dq, and Dd as the tag D. We combine both types of numerals: cardinal Mc and

ordinal Mo, as the tag M. Verbs of tags Vxi, Vyp, and Vii are regrouped as the

tag COP (copula). The remaining verbs are clustered by their transitivity into tags

intransitive Vi and transitive Vt.

Chinese The Chinese dependency bank makes use of a large fine-grained tagset. Due

to the problem of data sparsity, we regroup them with the following criteria. All

conjunctions of tags starting with C are combined into a simpler tag C. All ad-

verbs of tags starting with Da are converted to QUANT. All adverbs of tags starting

with Db are retagged as MODAL. All adverbs of tag Dc is renamed to NEG. All ad-

verbs of tag Dk is retagged as SMOD. The remaining adverbs of tags starting with

Dd, Df, Dg, Dh, Di, and Dj are simply retagged as ADV. The possessive marker of

tag DE-Di is shortened to DE. All nouns of tags beginning with Na, Nb, Nc, and

Nv are tagged as NN. All nouns of tags starting with Nd are retagged as TIME. All

nouns of tags starting with Ne are retagged as determiner DET. All nouns of tags

starting with Nf are retagged as classifier CL. All nouns beginning with Nh are

retagged as pronoun PRO. All nouns of tag Ng is recategorized as a postposition

POST. All prepositions of tags beginning with P are retagged as PREP. All types

of particles annotated with tags starting with T are reduced to a simpler T. All

verbs starting with VA, VB, VG, and VH are retagged as intransitive VI. All verbs

starting with VC, VI, and VJ are tagged as transitive VT. All verbs of tags begin-

ning with VD are retagged as ditransitive VD. All verbs of tags beginning with VF

are reduced to VF. All verbs of tags starting with VE, VK, and VL are retagged

as complex verb VCOMP. Uncategorized verbs of tags V_11, V_12, and V_2 are

retagged as verb V.

Czech The Czech dependency bank makes use of a large tagset augmented with fine-

Chapter 2. Background 42

grained morphological attributes. We eliminate the morphological attributes ex-

cept the grammatical cases of nouns whereby we regroup nouns and adjectives

according to them. Any noun (tag N) or adjective (tag A) tags are simply attached

with a grammatical case. For example, if the case is 1 (nominative), the noun

tag becomes N1. A wildcard grammatical case X is also attached to the tag if

present, such as an adjective with a wildcard case is retagged as AX. Tags of

unknown words X-x and X-@ are reduced to X.

Danish We keep the original tagset as is but we eliminate all punctuations of tag X.

Dutch We attach the morphological attribute of the conjunctions and prepositions to

the original tags. For example, a conjunction (tag Conj) with a morphologi-

cal attribute onder (subordinate) is retagged as Conj-onder. Each verb of tag

V is also retagged according to the morphological attribute if it determines the

transitivity or complexity (either intransitive intrans, transitive trans, or aux-

iliary/copulative hulpofkopp), e.g. a verb with intrans is retagged as intran-

sitive V-intrans.

English The following punctuation mark tags are eliminated: ,, ., :, ′′, “, −LRB−,

−RRB−, $, #, and −NONE−.

German We rename the named entity tag from NNE to NE. The following punctuation

mark tags are eliminated: $(, $,, and $..

Japanese We keep the tagset as is but we eliminate the only punctuation tag --.

Portuguese We distinguish the syntactic categories of the independent pronoun (tag

pron-indp) by its morphological attribute. We retag such pronoun with <quant>

as adv-pron-indp, <rel> as pron-rel, and <dem> as pron-dem.

Slovene Generally, we abbreviate each tag name for easier reference. We also elabo-

rate the pronouns with respect to their grammatical cases expressed in the mor-

phological attribute. For example, if the case is genitive, the pronoun is retagged

as ProGen. If the case is locative, the pronoun is retagged as ProLoc. Moreover,

we retag every kind of verbs that are in the participial form (participle) with

the gerund tag Ger.

Spanish We lowercase and reduce two tags: the abbreviations which start with Y and

the numerals that begin with Z. We also eliminate all punctuation marks tagged

with F.

Chapter 2. Background 43

Swedish We eliminate all punctuation marks annotated with the tags starting with I.

Turkish We retag all adjectives Adj that exhibit any adpositional relation (With, Without,

FitFor, InBetween, JustLike, and Rel) as postposition Postp. We also retag

all adverbs adv that exhibit any subordinating relation (AsIf, AfterDoingSo,

ByDoingSo, SinceDoingSo, Since, When, While, and WithoutHavingDoneSo)

as subordinate conjunction AdvSubconj. We rename the adverbs which exhibit

the relation Ly with the tag Advz. Finally all personal pronouns Pron− PersP

that show the genitive case (Gen) are retagged with PronPersGen.

By the above procedure, we obtain the corpora for the later experiments. The statistics

for our corpora is listed in Table 2.2. It is worth remarking that this conversion may

result in slight change in the accuracy when applied to the existing techniques.

2.6 Summary

We have explained the task of grammar induction which is the target of this thesis. We

have reviewed the state of the art for grammar induction, and argued in favor of a new

approach which (1) is prototype-driven and linguistically motivated, and (2) correctly

captures frequent linguistic phenomena without the distortion of frequent collocation.

We have explained how we prepare our datasets, i.e. dependency banks, for accuracy

assessment of our technique.

We have developed the idea of computational preliminaries and mathematics that

underly this research. We have introduced the theoretical concept of statistical mod-

eling and explained the statistical techniques for grammar induction by means of this

concept. We also described some of the successful models for grammar induction such

as CCM, DMV, and DMV+CCM. We have also explained the evaluation metrics for

accuracy assessment of grammar induction. In the next part, we describe our method-

ology in this research.

Chapter 2. Background 44

Ta
bl

e
2.

2:
S

ta
tis

tic
s

of
th

e
co

rp
or

a

L
an

gu
ag

e
L

en
gt

h
10

L
en

gt
h

15
L

en
gt

h
20

Ta
gs

Se
nt

s
W

or
ds

Se
nt

s
W

or
ds

Se
nt

s
W

or
ds

A
ra

bi
c

24
1

1,
63

5
35

4
3,

45
7

47
8

6,
29

0
22

B
ul

ga
ri

an
6,

09
7

41
,1

46
9,

21
6

82
,4

16
11

,2
98

12
0,

55
5

33

C
hi

ne
se

52
,4

24
29

5,
82

1
56

,9
85

35
6,

95
2

57
,6

47
36

9,
57

3
30

C
ze

ch
27

,3
75

15
7,

94
6

43
,0

39
36

1,
83

0
55

,8
55

59
0,

91
8

73

D
an

is
h

1,
99

5
12

,2
56

3,
13

6
26

,9
77

4,
06

0
43

,5
43

19

D
ut

ch
6,

84
4

44
,1

62
9,

52
7

78
,7

40
11

,3
39

11
1,

12
1

27

E
ng

lis
h

7,
42

2
52

,2
48

15
,9

22
16

3,
71

5
25

,5
23

33
6,

55
6

36

G
er

m
an

13
,4

73
78

,5
06

22
,0

39
18

9,
71

2
29

,2
87

31
9,

21
9

50

Ja
pa

ne
se

12
,8

84
45

,3
02

14
,9

38
71

,6
03

16
,1

32
92

,8
18

76

Po
rt

ug
ue

se
2,

61
1

15
,6

52
4,

15
7

35
,7

60
5,

61
4

61
,8

85
23

Sl
ov

en
e

80
7

5,
24

6
1,

22
0

10
,6

40
1,

47
7

15
,1

81
32

Sp
an

is
h

71
2

4,
48

7
1,

20
9

10
,9

78
1,

70
9

20
,0

02
31

Sw
ed

is
h

3,
88

9
26

,0
26

6,
80

8
63

,9
25

8,
95

1
10

2,
13

4
29

Tu
rk

is
h

3,
83

3
20

,5
55

4,
56

8
29

,8
91

5,
01

7
37

,9
14

33

Part II

Methodology

45

Chapter 3

Language Parameterization

Outline

This chapter explains the main contribution of this thesis: our language parameteri-

zation, which is used throughout the thesis to improve the accuracy of unsupervised

grammar induction. In the spirit of Principles and Parameters approach and the empir-

ical approach, we first start by developing the motivation of this research particularly

in the benefits of incorporating syntactic prototypes (prior syntactic knowledge of the

language of interest) into unsupervised models. We then explain our alternative lan-

guage parameterization method which is linguistically motivated and easy to elicit by

direct consultation with grammar compendiums or by interview with naïve informants

in Section 3.1. Since our language parameters are designed to capture frequent word

orders, each language parameter is sorted with respect to their frequency in natural lan-

guage grammars. Section 3.2 explains the dialog we use to elicit such prior knowledge

by interview with naïve informants. Finally, Section 3.3 explains how we encode the

acquired prior knowledge into the syntactic prototype.

3.1 Language Parameters

3.1.1 Overview

To embrace the use of word orders as the language parameters in the syntactic proto-

type, we have to focus on three important factors of design. First, we have to maximize

the cross-linguistic coverage of the syntactic prototype by cherry-picking the most fre-

quent word order schemes with great impact. Second, we have to maximize the feasi-

46

Chapter 3. Language Parameterization 47

bility of eliciting these language parameters from various sources ranging from syntax

textbooks to informants of different levels of linguistic literacy. Third and last, we have

to convert the acquired language parameters into a compact syntactic prototype which

is used for grammar induction. By these reasons, we devise a linguistic questionnaire

which allows linguistic experts to code language parameters on their own, as well as

facilitates a short interview with naïve informants.

Our linguistic questionnaire is divided into two parts: language parameters and a

mapping table from the tagset to cross-linguistically frequent category classes. The

first part regards a very rough overview of word orders in the language; e.g. the or-

der of subject and predicate, etc. Frequent word orders, as our useful assistance, are

well studied in The World Atlas of Language Structures (Haspelmath et al., 2005).

We compiled the book’s chapters 81–138 and 143–144 — each of which describing

frequent word orders, phrase structures, and clause structures — and classified these

parameters into eight categories in Table 3.1. The first part of the linguistic prototype

is the linguistic typology of the language. Generalized for cross-linguistic coverage, it

composes of four types of information:

1. Word order: the majority of the information is of this type, such as the orders

of subject and predicate, verb and its arguments, noun and nominal modifiers,

etc.

2. Omissibility: such as allowance of subject or object drop.

3. Insertion: such as allowance of adverb insertion between verb and its argu-

ments.

4. Transformation: such as allowance of transforming a gerundial phrase into a

noun phrase or an adverb.

This information is encoded as the questionnaire in Appendix A. Without a glance on

the corpus, linguists can presume this knowledge based on their intuition.

Hypothetical trend of the accuracy: As per our intention to capture frequent

word orders, we sort the eight categories in Table 3.1 with respect to their frequency

of occurrence. That is to say, Group 1 are assumed to be found more frequently in

natural language grammars while Group 8 are assumed to be less frequent word orders.

We hypothesize that the more language parameters we incorporate into the syntactic

prototype, the more accuracy we obtain. Because of their frequencies, the hypothetical

Chapter 3. Language Parameterization 48

Table 3.1: An overview of the language parameters. The numbers on the right

are the number of parameters of each group.

Groups Parameters No.

1 Basic word order: subject + verb + object +

indirect object / free word order

1

2 Subject- and object-control verbs 2

3 Adjectives, adverbs, and auxiliary verbs 4

4 Cardinal numbers and noun classifiers 2

5 Adpositions, nominal modifiers, adverbials,

possessive markers

7

6 Gerunds, infinitive markers, nominalizers, and

sentential modifiers

6

7 Particles and the existence of copula 5

8 Usage of gerunds, negative markers, the use of

dative shift, and the omission of subject and

object

6

trend of the accuracy is: the accuracy rises rapidly and starts to saturate as we increase

the number of language parameters in the syntactic prototype.

These language parameter values are used to automatically generate an initial gram-

mar, called a syntactic prototype. Such grammar defines dependency rules and word

order for certain cross-linguistically frequent category classes; namely, intransitive,

transitive, and ditransitive verbs, subject- and object-control verbs, adjective, adverb,

preposition, relative pronoun, gerund, copula, subordinate conjunction, noun classifier,

infinitive marker, and cardinal number. The two parts are associated by rough linguis-

tic classification of the tagset. To be more precise, the categories generated from the

typology knowledge are grouped into several classes. Then each class is then mapped

to the corresponding POS tagset specific to each corpus.

Our approach is an integration of Chomsky’s (1965) renowned Principles and Pa-

rameters theory (P&P) and the empirical approach for induction of hierarchical lin-

guistic structures. We prescribe a pseudo-Universal Grammar that copes with a small

amount of frequent grammar rules with the linguistic questionnaire. The empirical

approach then validates the elicited language parameters and empirically infers latent

exceptions that are not elicited by the questionnaire from the data.

Chapter 3. Language Parameterization 49

According to the notion of Principles and Parameters, our syntactic prototype can

also be seen as a pseudo-Universal Grammar. Our language parameters are equivalent

to the P&P’s parameters that control the generation of a syntactic prototype. Our en-

coding algorithm for syntactic prototypes is equivalent to the P&P’s principles where

the algorithm determines how to generate a lexicalized grammar from the elicited lan-

guage parameters. Each resulting syntactic prototype is equivalent to the syntactic

competence for the language of interest.

3.1.2 Design of Questionnaire

We divide the questionnaire up to eight questions which cover a vast array of word

orders, phrase structures, and clause structures. Each question is designed based on the

statistics of frequent syntactic structures in The World Atlas of Language Structures.

Since the questionnaire is based on word order information, the languages that have

fixed word orders are easy to encode. Nevertheless, some other languages are not as

easy to be parameterized in this fashion because their word orders are more flexible.

Syntactically speaking, languages are classified into rigid order languages and flex-

ible order languages. Any rigid-order language has a fixed word order because all other

word orders are ungrammatical, relatively infrequent, or for peculiar pragmatic uses

(Dryer, 2011j). On the other hand, each flexible-order language syntactically allows

most or all possible word orders, although some of them are dominant. We focus on

capturing fixed or dominant word orders for a language.

The structure of our questionnaire is organized as follows. Question 1 studies the

order of subject, verb, direct object, and indirect object. Question 2 investigates the

use of simple modifiers such as adjectives and adverbs. Question 3 studies the use

of complex verbs, e.g. subject- and object-control verbs. Question 4 describes the

word orders of complex modifiers such as prepositions and relative clauses. Question

5 studies the use of gerunds in the language. Question 6 learns the use of subordinate

clauses. Question 7 explores two transformational affixes; i.e. the infinitive marker

and the nominalizing prefixes. Finally, Question 8 studies the existence of dative shift

and the dropping.

Question 1: Sentence

As illustrated in Figure 3.1, Question 1 studies the word order of subject, verb, and ob-

ject in the language regardless of the use of case markers (Dryer, 2011j; Dryer, 2011i;

Chapter 3. Language Parameterization 50

Q1: What are canonical word-ordering patterns of the subject (S), the verb (V), the direct

object (O), and the indirect object (I) in your language?

� Tick here if you consider that your language rather has fixed word orders.

� Tick here if there exists a notion of ditransitive verb in your language. Also tick the

dominant word orders in the following table. (For example, English’s word order is SVIO.)

� SVOI � VSOI � SOVI � OVSI � VOSI � OSVI

� SVIO � VSIO � SOIV � OVIS � VOIS � OSIV

� SIVO � VISO � SIOV � OIVS � VIOS � OISV

� ISVO � IVSO � ISOV � IOVS � IVOS � IOSV

� Otherwise, tick here if there doesn’t exist a notion of ditransitive verb in your language.

Also tick the dominant word orders in the following table.

� SOV � SVO � VSO

� OSV � OVS � VOS

� Otherwise, tick here if you consider that your language strictly has free word order. That

means all the word orders in the above table are allowed.

Figure 3.1: Questions for sentence structure

Dryer, 2011g). Languages are first parameterized by the existence of indirect object

(Haspelmath, 2011a) and the rigidity of the word order. If we assume the existence of

indirect object, we can enumerate all possible word orders in the first part of Question

1. Otherwise, the enumeration of subject, verb, and object are listed in the second part.

Flexible word order languages with no dominant word orders can also be identified in

the last check box.

Question 2: Simple Modifiers

As shown in Figure 3.2, Question 2 is divided into four parts. The first part is de-

signed based the studies of the word orders of adjective, demonstrative, and core noun

(Dryer, 2011a; Dryer, 2011e; Dryer, 2011d; Dryer, 2011m) which elaborate the word

order of an adjective and a core noun. The second part is designed for studying the

word order of adverb and verb phrase. The third part studies the word order of adverb

and adjective. Finally, the fourth part, based on the studies of negation (Haspelmath,

2011a; Miestamo, 2011b; Miestamo, 2011a), enumerates all possible patterns of nega-

tion when used with verb, adjective, and adverbs.

Chapter 3. Language Parameterization 51

Q2.1: What is the word order of the adjectives when they combine with a noun?

� Tick here if you consider that your language allows the adjectives to combine with nouns.

Also tick the allowable word orders in the following table. (For example, English allows Adj+N.)

� Adj+N � N+Adj

� Otherwise, tick here if you consider that your language does not allow the adjectives to

combine with the nouns.

Q2.2: What is the word order of the adverbs when they combine with a verb phrase?

� Tick here if you consider that your language allows the adverbs to combine with verb

phrases. Also tick the allowable word orders in the following table. (For example, English

allows both Adv+VP and VP+Adv.)

� Adv+VP � VP+Adv

� Otherwise, tick here if you consider that your language does not allow the adverbs to com-

bine with the verb phrases.

Question 2.3: What is the word order of the adverbs when they combine with an adjec-

tive?

� Tick here if you consider that your language allows the adverbs to combine with adjec-

tives. Also tick the allowable word orders in the following table. (For example, English allows

Adv+Adj.)

� Adv+Adj � Adj+Adv

� Otherwise, tick here if you consider that your language does not allow the adverbs to com-

bine with the adjectives.

Question 2.4: What is the word order of the negators (Neg) when they combine with a

verb (V), an adjective (Adj), and an adverb (Adv)?

� Tick here if there exists a notion of negators in your language. Also tick the allowable word

orders in the following table. (For example, English allows Neg+V, Neg+Adj, and Neg+Adv.)

� Neg+V � V+Neg

� Neg+Adj � Adj+Neg

� Neg+Adv � Adv+Neg

� Otherwise, tick here if there does not exist the notion of negators in your language.

Figure 3.2: Questions for simple modifiers

Chapter 3. Language Parameterization 52

Question 3: Complex Verbs

Question 3, as illustrated in Figure 3.3, studies the existence of complex verbs, modal

verbs, and copulae. In this thesis, a verb is said to be complex if it functionally takes

another verb or verb phrase as an argument. Complex verbs include subject-control

and object-control verbs, because they take a complementing verb phrase. This defini-

tion combines the notion of periphrastic causative verbs (Song, 2011b; Song, 2011a)

and the ‘want’ construction (Haspelmath, 2011b). However, this treatment of nonpe-

riphrastic causative verbs is rather arguable. If the corpus of interest is annotated in

the morphological level where the verb stem is separated from the causative marker,

the causative marker is considered a complex verb. Otherwise, the causativized verb is

canonically treated as one unit of verb.

Question 4: Complex Modifiers

As shown in Figure 3.4 and Figure 3.5, Question 4 entails the usage of complex mod-

ifiers; namely, adposition, possessivizer, relative pronoun, sentential modifier, senten-

tial particle, and noun classifier. Question 4.1 is based on the studies of adposition

in (Dryer, 2011b; Dryer, 2011n). Question 4.2 is a modification of the word order of

genetive and noun phrase in (Dryer, 2011f). Question 4.3 elaborates the use of relative

pronoun as explored in (Dryer, 2011h; Dryer, 2011o). Question 4.4 and Question 4.5,

based on the study of (Dryer, 2011l; Dryer, 2011k), identify the use of sentential modi-

fier (i.e. an adverbial word or phrase which modifies a sentence) and sentential particle

(i.e. single word modifying a sentence). In Question 4.4 we also extend the notion of

modifiers to adjectival, adverbial and gerund modifiers. Finally Question 4.6, designed

based on (Gil, 2011), studies the usage of noun classifier and numeral in the language.

Question 5: Gerunds

Question 5 is devoted for the usage of gerundials. Based on English, this question

characterizes gerundial units by three functions: a noun phrase, a noun modifier, and

a predicative adverbial. These functions are explained in Figure 3.6. This parameter

becomes prominent in languages in which the copula is used as a progressive auxiliary

such as English ‘to be’. From our 14 languages of interest, only English and Bulgarian

explicitly make extensive use of the copula and gerund throughout the corpora.

Chapter 3. Language Parameterization 53

Q3.1: Does there exist a notion of copulae in your language?

� Tick here if it does.

� Otherwise, tick here if it does not.

Q3.2: What is the word order of the modal verbs when they combine with a verb phrase?

� Tick here if you consider that there is the notion of modal verbs in your language. Also tick

the allowable word orders in the following table. For example, English allows Modal+VP.

� Modal+VP � VP+Modal

� Otherwise, tick here if the modal verbs don’t exist in your language.

Q3.3: What are canonical word orders of the subject (S), the intransitive complex verb

(V), and the complementing verb phrase (C)?

� Tick here if there exists the notion of intransitive complex verbs in your language. Also tick

the allowable word orders in the following table, for example, English allows SVC. You can also

treat the serial verb construction as this complex verb. For example, Thai allows SVC.

� SVC � VSC

� SCV � VCS

� CSV � CVS

� Otherwise, tick here if there doesn’t exist the notion of intransitive complex verbs in your

language.

Q3.4: What are canonical word orders of the subject (S), the transitive complex verb (V),

the object (O), and the complementing verb phrase (C)?

� Tick here if there exists the notion of transitive complex verbs in your language. Also tick the

allowable word orders in the following table. For example, English allows SVOC. You can also

treat the serial verb construction as this complex verb. For example, Thai allows SVOC.

� SVOC � VSOC � SOVC � OVSC � VOSC � OSVC

� SVCO � VSCO � SOCV � OVCS � VOCS � OSCV

� SCVO � VCSO � SCOV � OCVS � VCOS � OCSV

� CSVO � CVSO � CSOV � COVS � CVOS � COSV

� Otherwise, tick here if there doesn’t exist the notion of transitive complex verbs in your

language.

Figure 3.3: Questions for complex verbs

Chapter 3. Language Parameterization 54

Question 4.1: What is the word order of the prepositions/postpositions in your lan-

guage?

� Tick here if there exists the notion of prepositions/postpositions in your language. Tick the

allowable word orders in the following table. (For example, English allows Prep+NP.)

� Prep+NP (preposition) � NP+Post (postposition)

� Otherwise, tick here if there doesn’t exist the notion of prepositions/postpositions in your

language.

Question 4.2: What is the word order of the owner (Owner), the possessivizer (Poss),

and the ownee (Ownee) in your language?

� Tick here if there exists the notion of prepositions/postpositions in your language. Also

tick the allowable word orders in the following table. (For example, English allows the pattern

Owner+Poss+Ownee.)

� Owner+Ownee+Poss � Ownee+Owner+Poss � Owner+Poss+Ownee

� Ownee+Poss+Owner � Poss+Owner+Ownee � Poss+Ownee+Owner

� Otherwise, tick here if there doesn’t exist the notion of possessivizers in your language.

Question 4.3: What is the word order of the relative pronoun (Relpro) and the comple-

menting verb phrase (VP), and that of the relative clause (Relcls) and the core noun

phrase (NP) in your language?

� Tick here if there exists the notion of relative pronouns in your language. Tick the allowable

word orders in the following table.

� Relpro+VP � VP+Relpro

� Otherwise, tick here if there doesn’t exist the notion of relative pronouns in your language.

Figure 3.4: Questions for complex modifiers

Chapter 3. Language Parameterization 55

Question 4.4: What is the word order of the modifiers (*Mod) in your language?

� Tick here if there exists the notion of adjectival modifiers in your language. Tick the allowable

word orders in the following table.

� NP+NMod � NMod+NP

� Tick here if there exists the notion of adverbial modifiers in your language. Tick the allowable

word orders in the following table.

� VP+VMod � VMod+VP

� Tick here if there exists the notion of gerund modifiers in your language. Tick the allowable

word orders in the following table.

� Gerund+GMod � GMod+Gerund

� Tick here if there exists the notion of sentential modifiers in your language. Tick the allowable

word orders in the following table.

� Sent+SMod � SMod+Sent

� Otherwise, tick here if there doesn’t exist the notion of sentential modifiers in your language.

Question 4.5: What is the word order of the sentence (Sent) and the sentential particle

(Part) in your language?

� Tick here if there exists the notion of sentential particles in your language. Tick the allowable

word orders in the following table. (For example, English allows Part+Sent.)

� Sent+Part � Part+Sent

� Otherwise, tick here if there doesn’t exist the notion of sentential particles in your language.

Question 4.6: Do you use noun classifiers in your language?

� Tick here if you use noun classifiers to count things in your language. Tick the allowable

word orders in the following table. (CL = noun classifiers)

� Num+CL � CL+Num

And what is it used as in your language?

� Adjective � Adverb � Noun modifier � VP modifier

� Otherwise, tick here if you don’t use noun classifiers in your language.

Figure 3.5: Questions for complex modifiers (cont’d).

Chapter 3. Language Parameterization 56

Q5: Can a gerund, a transformation of a verb phrase, perform the following functions?

� A noun phrase.

� A noun modifier. Also tick the allowable word orders in the following table. (For example,

English allows NP+Gerund.)

� NP+Gerund � Gerund+NP

� A predicative adverbial. Also tick the allowable word orders in the following table. (For

example, English allows VP+Gerund.)

� VP+Gerund � Gerund+VP

� Otherwise, tick here if there doesn’t exist the notion of gerunds in your language.

Figure 3.6: Question for gerunds

Q6: What is the word order for the main clause (Main), the subordinate conjunction

(Conj), and the subordinate clause (Subcls) in your language?

� Tick here if there exists the notion of subordinate conjunctions in your language. Also tick the

allowable word orders in the following table. (For example, English allows Main+Conj+Subcls

and Conj+Subcls+Main.)

� Main+Subcls+Conj � Subcls+Main+Conj

� Main+Conj+Subcls � Subcls+Conj+Main

� Conj+Main+Subcls � Conj+Subcls+Main

� Otherwise, tick here if there doesn’t exist the notion of subordinate conjunctions in your

language.

Figure 3.7: Questions for subordinate conjunctions

Question 6: Subordinate Conjunctions

Question 6 entails the usage of subordinate conjunctions as studied in (Dryer, 2011c;

Cristofaro, 2011d; Cristofaro, 2011b; Cristofaro, 2011c). Examples of subordinate

conjunction include ‘if’, ‘because’, ‘while’, and ‘when’. All possible combinations

are listed in Figure 3.7.

Question 7: Transformational Affixes

As shown in Figure 3.8, Question 7 studies two kinds of transformational affixes: i.e.

infinitive marker and nominalization affix. Question 7.1 entails the usage of purpose

clause (Cristofaro, 2011a) expressed as an infinitival. Question 7.2 characterizes two

Chapter 3. Language Parameterization 57

Question 7.1: What is the word order for the infinitive marker (Inf) and the verb phrase

(VP) in your language?

� Tick here if there exists the notion of infinitive markers in your language. Also tick the

allowable word orders in the following table. (For example, English allows Inf+VP.)

� Inf+VP � VP+Inf

� Otherwise, tick here if there doesn’t exist the notion of infinitive markers in your language.

Question 7.2: What is the word order for the nominalizing affixes?

� Tick here if the nominalizing affixes (Nom) can combine with noun phrases (NP). Also tick

the allowable word orders in the following table. (For example, Thai allows Nom+NP.)

� Nom+NP � NP+Nom

� Tick here if the nominalizing affixes (Nom) can combine with verb phrases (VP). Also tick

the allowable word orders in the following table. (For example, Thai allows Nom+VP.)

� Nom+VP � VP+Nom

� Otherwise, tick here if there doesn’t exist the notion of nomializing affixes in your language.

Figure 3.8: Questions for transformational affixes

kinds of nominalizing affixes: NP nominalizer and VP nominalizer.

Question 8: Relocation and Dropping

As shown in Figure 3.9, Question 8 explains two linguistic phenomena: dative shift

and dropping. Question 8.1 regards the definition of dative shift in (Steedman, 2000;

Baldridge and Kruijff, 2003) where the beneficial of a ditransitive verb is shifted when

the direct object is long. In Question 8.2, we extend the analysis of zero pronouns in

(Siewierska, 2011) to the direct and indirect objects.

3.2 Language Parameter Elicitation

3.2.1 Interview Dialog

In the design of our linguistic questionnaire, we take into account the ease of parameter

elicitation whereby language parameters are obtained by direct consultation with gram-

mar books and linguistic experts as well as personal interviews with naïve informants

and indirect observation from machine translation. It would however be laborious and

Chapter 3. Language Parameterization 58

Question 8.1: Is dative shift allowed in your language?

� Yes.

� No.

� I don’t know.

Question 8.2: Can you drop out the following parts of the sentence if the context is clear

enough?

� Subject.

� Object.

� Indirect object.

� None of these.

Figure 3.9: Questions for relocation and dropping

time-consuming to formalize the results of the interview with the naïve informants ac-

cording to the questionnaire. Indirect observation from machine translation would be

rather confusing and unsystematic, as translation pairs may be selected from differ-

ent sources across languages. To control the source of translation, we devise a dialog

for parameter elicitation from naïve informants and machine translation as shown in

Figure 3.10 and Figure 3.11.

The dialog for parameter elicitation is designed based on the linguistic question-

naire where both correspond to each other, question against question. In each question,

a linguistic unit (either an example sentence or phrase) is given alongside its pattern

to observe. An informant (or, less preferably, a machine translation system) is asked

to translate such linguistic unit into his own language and provide word alignment

between the source and target languages.

3.2.2 Quantification of Human Labor

In our experiments, we first consult the grammar compendiums such as the World

Atlas of Language Structures for default language parameters for our 14 languages

of interest. Then we confirm such elicited parameters by either short interviews with

naïve informants or machine translation.

Machine translation is our supplementary source of language parameters in the case

where native speakers for a language are scarce. Most modern machine translation

systems are phrase-based, therefore equivalent to a probabilistic finite-state transducer.

Although our grammars we endeavor to induce are as expressive as context-free gram-

mars, we are still able to elicit a correct set of hidden language parameters by using

Chapter 3. Language Parameterization 59

[Question 1] Translate the sentence Mary gives John a flower (pattern: [S Mary] [V gives]

[I John] [O a flower]). Does he have to rephrase it as Mary gives a flower to John (or

something equivalent) instead?

[Question 2.1] Translate the phrase small kittens (pattern: [Adj small] [N kittens]).

[Question 2.2] Translate the sentence Mary sits quietly (pattern: [V sits] [Adv quietly]).

[Question 2.3] Translate the phrase strongly bitter tea (pattern: [Adv strongly] [Adj bitter]).

[Question 2.4] Translate the following phrases/sentences: (1) The car does not work (pattern:

[Neg not] [V work]); (2) a not complex exercise (pattern: [Neg not] [Adj complex]); (3)

not strongly bitter tea (pattern: [Neg not] [Adv strongly]).

[Question 3.1] Translate the sentences: (1) John is a student; (2) John is tall; (3) John is in

the classroom. Is there anything equivalent to the verb to be?

[Question 3.2] Translate the sentence Mary can swim (pattern: [Modal can] [V swim]).

[Question 3.3] Translate the sentence Mary wants to swim (pattern: [V want] [C swim]).

[Question 3.4] Translate the sentence John asks Mary to hold the door for him (pattern: [V

ask] [O Mary] [C hold the door]).

[Question 4.1] Translate the following phrases/sentences: (1) a gift in the box (pattern: [Prep

in] [NP the box]); (2) Mary walks into the classroom (pattern: [Prep into] [NP the room]).

[Question 4.2] Translate the phrase John’s car (pattern: [Owner John] [Poss ’s] [Ownee car]).

Also ask the informant if he can directly say that or he has to rephrase it as a car of

John’s (or something equivalent) instead.

[Question 4.3] Translate the sentence John lifts the box that contains many books (pattern:

[NP box] [Relpro that] [VP contains many books]).

Figure 3.10: Dialog for indirect parameter elicitation via translation

Chapter 3. Language Parameterization 60

[Question 4.4] Translate the sentences: (1) John is the man on the bench (pattern: [NP man]

[NMod on the bench]); (2) John walks on the shore (pattern: [VP walk] [VMod on the

shore]); (3) John is the man running on the shore (pattern: [Gerund running] [GMod on the

shore]); (4) On Monday, John will hand in his homework (pattern: [SMod On Monday]

[S John will hand in his homework]).

[Question 4.5] Ask the informant if there are any adverb-like words which seem to modify

the verb, as in over in Mary starts the process over (pattern: [VP start the process] [Part

over]).

[Question 4.6] Translate the phrase three cars. Does he have to rephrase it as three bodies of

car (pattern: [Num three] [CL bodies] [NP car])?

[Question 5] Translate the following phrases/sentences: (1) Running is good ([Gerund running]

as a noun phrase); (2) a running man ([Gerund running] as an adjectival); (3) John is

running ([Gerund running] as a non-finite verb). Check if any of these is grammatical in

the language.

[Question 6] Translate the following sentences: (1) If you press this button, the door will open

(pattern: [Conj if] [Subcls you press this button] [Main the door will open]); (2) The door

will open if you press this button (pattern: [Main the door will open] [Conj if] [Subcls you

press this button]).

[Question 7.1] Translate the sentence Mary carefully reads her draft to identify the inconsis-

tency (pattern: [Inf to] [VP identify the inconsistency]).

[Question 7.2] Ask the informant if: (1) there are any bound morphemes that transform a verb

into a noun phrase such as travel > traveler (pattern: [VP travel] [Nom -er]); (2) there are

any bound morphemes that augment the meaning of a noun, such as the Thai bound

morpheme nák in tennis ‘tennis’ > nák tennis ‘tennis player’ (pattern: [Nom nák] [NP

tennis]). Note that each bound morpheme does not have any meaning on its own.

[Question 8.1] Translate the sentence John introduces to Mary his long-time friends from high

school (pattern: [Dative to Mary] [O his long-time friends from high school]). Also ask

the informant if he has to relocate the dative part to a particular position if the direct

object is elongated.

[Question 8.2] Translate the sentence Mary gives John a flower (pattern: pattern: [S Mary] [V

gives] [I John] [O a flower]) and consider the grammaticality of the following omissions:

(1) (She) gives John a flower; (2) Mary gives (him) a flower; (3) Mary gives John (it).

Figure 3.11: Dialog for indirect parameter elicitation via translation (cont’d)

Chapter 3. Language Parameterization 61

example sentences simple enough to correctly cover them.

Short interviews of this kind were held with Arabic, Chinese, English, Japanese,

and German native speakers. Due to scarcity of native speakers at the time of ex-

periments, syntactic prototypes for the remaining languages were obtained from sen-

tences generated from English by automatic machine translation. Machine translation,

of course, provides only the 1-best translation and word alignment according to its

model, and is likely to be less accurate than human informants. Google Translate was

used to provide translation and word alignment for Bulgarian, Czech, Danish, Dutch,

Portuguese, Slovene, Spanish, Swedish, and Turkish.

Once the word alignment is acquired in either way, we can indicate default word

orders by analyzing the word orders of the target language. This process normally

takes up to two to four hours per previously unseen language.

Once we obtain the language parameters, we then study the POS annotation guide-

lines for each language and mapped each tag to one or more language-specific category

classes by Table 3.2. For example, a mapping table from English Penn Treebank POS

tagset to our cross-linguistic tagset is shown in Table 3.3. We also analyze the guide-

lines to determine if the head of the coordinate structures is the first conjunct or the

conjunction itself with respect to the annotation scheme. To thoroughly scrutinize the

usage of each POS tag and assign them to appropriate classes it typically takes around

four to six hours. It therefore takes six to ten hours to build a syntactic prototype for

each language.

3.3 Encoding of Syntactic Prototypes

Once we can characterize an input language with our language parameters, it is now

useful to elaborate how we convert them into a computable syntactic prototype. This

section begins with our backbone grammar formalism, Categorial Dependency Gram-

mar, which is a kind of lexicalized grammar. Then we explain how to algorithmically

transform each parameter into syntactic categories for the lexical inventory.

3.3.1 Categorial Dependency Grammar

For encoding our syntactic prototypes, we extend Categorial Grammar (CG) (Ajdukiewicz,

1935; Bar-Hillel, 1953) with headedness resulting in Categorial Dependency Grammar

(CDG), where its syntactic derivations define constituency and dependency in parallel.

Chapter 3. Language Parameterization 62

Table 3.2: Mapping table between our cross-linguistic tagset and the corpus-

specific tagset

Generalized Tagset Corpus-specific Tags

Noun (n)

Adjective (adj)

Nominal modifier (nmod)

Verb (v)

Intransitive verb (vi)

Transitive verb (vt)

Ditransitive verb (vd)

Complex verb (vcomp)

Complex intransitive verb (vicomp)

Complex transitive verb (vtcomp)

Modal verb (modal)

Copula (copula)

Gerund (gerund)

Adverb (adv)

Particle (part)

Adverbial modifier (vmod)

Sentential modifier (smod)

Gerund’s modifier (gmod)

Preposition/postposition (adposition)

Relative pronoun (relpro)

Conjunction (conj)

Subordinate conjunction (subconj)

Classifier (cl)

substituting adjective (adjcl)

substituting adverb (advcl)

substituting nominal modifier (nmodcl)

substituting adverbial modifier (vmodcl)

Possessive marker (poss)

Infinitive marker (inf)

NP nominalizer (npnom)

VP nominalizer (vpnom)

Negator (neg)

Verb phrase (vp)

Adpositional phrase (pp)

Chapter 3. Language Parameterization 63

Table 3.3: Mapping table for English Penn Treebank. Unused rows are not

shown.

Generalized Tagset Corpus-specific Tags

Noun (n) CD, DT, EX, FW, JJ, JJR, JJS, NN,

NNPS, NNS, PRP, PRP$, WP

Adjective (adj) CD, DT, FW, JJ, JJR, JJS, LS, NN,

NNPS, NNS, PDT, PRP$, VBG,

VBN, WDT, WP$

Nominal modifier (nmod) POS

Verb (v) VB, VBD, VBP, VBZ, VBG, VBN

Modal verb (modal) MD

Copula (copula) VB, VBD, VBP, VBZ, VBG, VBN

Gerund (gerund) VBG, VBN

Adverb (adv) LS, RB, RBR, RBS

Particle (part) RP, TO

Sentential modifier (smod) CC, LS, RB, RBR, RBS, UH

Preposition/postposition

(adposition)

FW, IN, TO

Relative pronoun (relpro) WDT

Conjunction (conj) CC, SYM

Subordinate conjunction (subconj) IN, WRB

Possessive marker (poss) POS

Infinitive marker (inf) TO

Verb phrase (vp) MD

Chapter 3. Language Parameterization 64

CDG is based on the notion of headedness in the slashes similar to predicate-argument

dependencies in CCG (Hockenmaier, 2003a; Clark and Curran, 2007) and PF-CCG

(Koller and Kuhlmann, 2009). CDG and PF-CCG differ from each other in that CDG’s

attachment directions can be customized while PF-CCG’s ones are predetermined by

the syntactic categories. Headedness of CDG and CCG are both customizable, but

CDG’s headedness is more limited than that of CCG. This is because CDG does not

allow CCG’s head-passing mechanism which is required for unbounded dependencies.

To make this point clear, let us go over some basic concepts of CG and we will in-

troduce the dependency-enhanced version afterwards. In the original CG, a constituent

(i.e. a phrase) is considered as the combination of a function and its zero or more argu-

ments. For example, a transitive verb ‘eat’ performs as a function, and a noun phrase

‘sandwiches’ as its argument. These words are combined to form a verb phrase.

Each constituent is assigned one or more syntactic categories, which are repre-

sented as either an atomic category or a complex category. For example, we can assign

‘John’ as an atomic category np, which of course represents a noun phrase. A complex

category can be denoted by X/Y and X\Y , where X and Y are any syntactic cate-

gories. A phrase of category X/Y can combine with another phrase of category Y on

the right side to become a larger phrase of category X . On the other hand, a phrase

of category X\Y can combine with another phrase of category Y on the left side to

become a larger phrase of category X . The construction of linguistic constituents can

also be defined by the notion of functions and arguments as shown below.

X/Y Y ⇒ X (3.1)

Y X\Y ⇒ X

Thus the intransitive verb ‘sleep’ can be assigned the category s\np, meaning that it

requires a noun phrase np on the left side to form a sentence s.

For example, a simplified English grammar is given below.

John, sandwiches ` np (3.2)

eats ` (s\np)/np

The notation ` denotes a lexical entry where we assign word forms listed on the left

side to have the syntactic categories specified on the right side. The syntactic derivation

of the sentence ‘John eats sandwiches’ is illustrated Fig 3.12.

Categorial grammar can be extended to construct the dependency structure in par-

allel to the constituency structure. One approach is to incorporate the headedness into

Chapter 3. Language Parameterization 65

John eats sandwiches
np s\np/np np

s\np

s

Figure 3.12: The syntactic derivation of ‘John eats sandwiches’ based on cat-

egorial grammar

the slashes. The notation < is annotated if the dependency is to be linked from the

head of the right-side constituent to that of the left-side constituent, while the notation

> is annotated for the opposite attachment. These attachment directions are similar to

that of head-outward dependency structure (Collins, 1999) except that our directions

point toward the head instead of the dependent. For example, an adjective (say ‘big’)

can be assigned with the category np/>np so that when it combines with a noun phrase

(say ‘books’), the head of the resulting constituent is the noun phrase. Likewise, a

transitive verb (such as ‘eats’) can be assigned the category s\>np/<np so that when it

combines with its object, the head of the verb phrase is still the verb. We henceforward

call this extension as categorial dependency grammar (CDG). The derivation rules for

CDG are formulated in Eq (3.3).

X/<Y : d1 Y : d2 ⇒ X : h(d1) (3.3)

X/>Y : d1 Y : d2 ⇒ X : h(d2)

Y : d1 X\<Y : d2 ⇒ X : h(d1)

Y : d1 X\>Y : d2 ⇒ X : h(d2)

where d1 and d2 are dependency structures, and h(d) means that the head of the newly

constructed constituent is d. For instance, the first rule specifies that the head of the

result constituent X is on the left side (i.e. d1) and the dependent is on the right side

(i.e. d2). Let us consider the combination of a transitive verb s\>np/<np (such as

‘eats’) and a noun phrase np (such as ‘sandwiches’). We obtain that the head of the

verb phrase is the verb and the dependent is the noun phrase.

Compared with CDG, PF-CCG’s dependency direction always points towards the

function; i.e. slash categories of PF-CCG can always be rewritten asX/<Y andX\>Y
in CDG. According to this, an adjective would have category np/<np, resulting in the

combination of the adjective and a noun phrase having the head as the adjective. This

is contrary to linguistic intuition where the core noun is considered the head of a noun

Chapter 3. Language Parameterization 66

John eats sandwiches
np s\>np/<np np

delicious
np/>np

np

s\>np

s

John eats sandwiches
np

: John
s\>np/<np

: eats
np

: sandwiches

delicious
np/>np

: delicious

np
: sandwiches

s\>np
: eats

s
: eats

(a) Dependency-driven derivation

John eats sandwiches
np s\>np/<np np

delicious
np/>np

np

s\>np

s

(b) Equivalent dependency structure (each arrow is

drawn from a head to its dependent)

Figure 3.13: Syntactic derivation of ‘John eats delicious sandwiches’ based

on categorial dependency grammar. The syntactic head of each constituent is

denoted by a colon. Each arrow is drawn from the head word to the dependent

word.

phrase.

Although the headedness is incorporated to the syntactic categories, we have not

introduced any additional application rules to the original categorial grammar. CDG

has the same expressive power as categorial grammar and CFG does not generate un-

bounded or nonprojective dependency. Therefore, we neither expand the search space

of grammar induction nor compromise the expressive power with the data sparsity

problem.

Let us extend the grammar in Eq (3.2) into a CDG version as follows.

John, sandwiches ` np (3.4)

delicious ` np/>np

eats ` (s\>np)/<np

The syntactic derivation of the sentence ‘John eats delicious sandwiches’ is illustrated

in Figure 3.13. Figure 3.13(a) shows dependency-driven derivation, in which the heads

of constituents are propagated. Figure 3.13(b) reflects the formation of the dependency

structure corresponding to the dependency-driven derivation. The dependency direc-

tion in this figure starts from the head and points towards the dependent.

In the experiments, conjunctions, such as ‘and’ and ‘or,’ are assigned with the

schematic category X\<X/<X , where X is any category. It means that we settle

the head of the coordinate structure on the left conjunct. This annotation scheme is

Chapter 3. Language Parameterization 67

also used in CCGbank (Hockenmaier, 2003a) and C&C Parser (Clark and Curran,

2007). For example, the head of the coordinate structure ‘sandwiches and bananas’ is

‘sandwiches.’1

A syntactic prototype generated from the language parameters may not be capable

of handling less frequent linguistic phenomena, resulting in unparsable sentences. We

additionally define the wildcard category ? which combines any syntactic categories

and produces the wildcard itself as follows.

? : d1 X : d2 ⇒ {? : h(d1)← h(d2), (3.5)

? : h(d1)→ h(d2)}

X : d1 ? : d2 ⇒ {? : h(d1)← h(d2),

? : h(d1)→ h(d2)}

The wildcard is assigned to unknown words and large constituents to complete the

parses of an unparsable sentence. This special category is used in the case where a

sentence is unparsable by the lexicon. All unknown words and largest, non-governed

constituents are assigned with the wildcard category ‘?’ and the sentence is reparsed.

An algorithm for CDG parsing and assigning wildcards will be elaborated in Chapter 4.

3.3.2 Construction of Lexicon Inventory

This section presents our method for constructing a syntactic prototype from the lan-

guage parameters acquired by the linguistic questionnaire. Based on CDG, a syntactic

prototype is in fact an inventory of lexical entries in which each terminal symbol (POS

tag in this case) is assigned with one or more syntactic categories. As aforementioned

in Section 3.2, we facilitate its maintenance by introducing the cross-linguistic cat-

egories that interlink the terminal symbols (POS tagset) and the syntactic categories

automatically generated from the parameters.

The organization of the lexicon inventory closely follows this scheme. Syntactic

categories for each cross-linguistic category are generated from a specific algorithm

which takes one or more language parameters. First, basic categories and control flags

of those algorithms are explained. The algorithms for generating syntactic categories

are then illustrated and described. Finally, we incorporate all of them to build the

lexicon inventory.
1For ease of development, we implement the conjunction as a separate category & instead of a

schema. However, it retains the same semantics as its schematic version.

Chapter 3. Language Parameterization 68

Table 3.4: Headedness flags for lexicon inventory construction. If a flag is set

true, such category becomes the head; e.g. if hadj is set true, the adjective

becomes the head instead of the core noun.

Flag Default Flag Default Flag Default

hadj F hadv F hsub−phr T
hnmod F hneg F hposs−nmod F
hverb T hmodal T hposs−phr F

hcopula F hadpos T hinf T
hvmod F hrelpro T hnpnom T
hgmod F hpart F hvpnom T
hsmod F hsub−smod F hcl F

Basic Categories, Control Flags, and Word Order Parameters

As building blocks, there are four basic categories in our lexicon inventory: s for sen-

tence, np for noun phrase, conj for conjunction, and num for numeral. It can be seen

that the categories s and np alone can form a verb system such as intransitive, transi-

tive, and ditransitive verbs by varying the number of np arguments. One can also form

adjectives and adverbs based on the constructed verbs and a number of np’s. More

complex categories such as prepositions, relative pronouns, and subordinate conjunc-

tions can then be hierarchically constructed from the previously constructed categories.

There are also 21 headedness flags as shown in Table 3.4 which is used to assign

attachment direction of each category by the function attdir(·). For example, if hadj

is set true, the adjective becomes the head instead of the core noun; otherwise the

adjective becomes the dependent of the core noun. These flags are configurable to

approximate the annotation scheme of the corpus of interest, where their default values

are an approximation of the head percolation heuristics (Collins, 1999).

Once language parameters are elicited, there will be one or more word order pa-

rameters in each question. We will henceforward represent the set of word order pa-

rameters as Qn, where n is an identifier of the question. For instance, Q2.5 is the set of

all word orders in Question 2.5.

Verb Systems

There are five kinds of verbs generated in the inventory: intransitive, transitive, ditran-

sitive, intransitive complex, and transitive complex verbs.

Chapter 3. Language Parameterization 69

Question 1 controls the generation of intransitive, transitive, and ditransitive verbs.

Intransitive verbs are generated by the function vi(Q1) described in Algorithm 3.1.

First we find d, the attachment direction of the intransitive verb, from hverb. If hverb

is true, the verb becomes the head of the sentence; otherwise it does not. It however

does not make any sense to change the value of hverb as it is linguistically agreed that

the verb is the head of the sentence. If the sentence word order is verb-medial (such

as SVIO) or verb-final (SIOV), the subject must be on the left side; thus the category

s\dnp is generated. Otherwise, the word order is verb-initial, such as VSIO; in this

case, the category s/dnp is generated.

Algorithm 3.1 vi(Q1): generate the intransitive verbs.

1: let d← attdir(hverb) . attachment direction of the intransitive verbs

2: for each word order parameter q ∈ Q1 do
3: if q is verb-medial or -final then
4: yield s\dnp
5: else if q is verb-initial then
6: yield s/dnp

7: end if
8: end for

In Algorithm 3.2, transitive verbs are generated by the function vt(Q1). Transi-

tive verbs are built upon intransitive verbs, the results of vi(Q1). If the word order

is verb-final (such as SIOV), the syntactic category s\dnp\dnp is generated from the

intransitive verb s\dnp. Otherwise, the word order is either verb-initial (e.g. VSIO)

or verb-medial (e.g. SVIO) and the syntactic categories s/dnp/dnp and s\dnp/dnp are

generated, respectively.

Ditransitive verbs are generated by the function vd(Q1) explained in Algorithm 3.3.

Similarly, ditransitive verbs are built upon the results of vt(Q1). However, generating

a ditransitive verb from a transitive verb differs from the previous verb algorithms in

that we cannot directly attach an np argument to the transitive verb. We instead have

to insert it to the transitive verb category. For example, if the word order is SVOI, we

first generate a transitive verb category s\dnpS/dnpO, where each np is tagged with its

syntactic role (S for subject and O for object). We have to insert an np argument into

the category, resulting in s\dnpS/dnpI/dnpO.

Complex verbs are built upon the intransitive and transitive verbs. Controlled by

Question 3.3, intransitive complex verbs are generated by the function vicomp(Q3.3).

Chapter 3. Language Parameterization 70

Algorithm 3.2 vt(Q1): generate the transitive verbs.

1: let d← attdir(hverb) . attachment direction of the transitive verbs

2: for each word order parameter q ∈ Q1 do
3: for each intransitive verb x ∈ vi(Q1) do
4: if q is verb-final then
5: yield x\dnp
6: else if q is verb-initial or -medial then
7: yield x/dnp
8: end if
9: end for

10: end for

Algorithm 3.3 vd(Q1): generate the ditransitive verbs.

1: let d← attdir(hverb) . attachment direction of the ditransitive verbs

2: for each word order parameter q ∈ Q1 do
3: if q allows ditransitivity of the verbs then
4: for each transitive verb x ∈ vt(Q1) do
5: Insert the indirect object np into x w.r.t. q

6: yield x
7: end for
8: end if
9: end for

Chapter 3. Language Parameterization 71

Algorithm 3.4 produces intransitive complex verbs by inserting a complementing in-

transitive verb to another intransitive verb. The transitive complex verbs are generated

by the function vtcomp(Q3.4) controlled by Question 3.4. Likewise, Algorithm 3.5

produces transitive complex verbs by inserting a complementing intransitive verb to

another intransitive verb.

Algorithm 3.4 vicomp(Q3.3): generate the intransitive complex verbs.

1: let d← attdir(hverb)

2: for each word order parameter q ∈ Q3.3 do
3: for each intransitive verb x ∈ vi(Q1) do
4: for each intransitive verb y ∈ vi(Q1) do
5: Insert the complementing verb phrase y into x w.r.t. q

6: yield x
7: end for
8: end for
9: end for

Algorithm 3.5 vtcomp(Q3.4): generate the transitive complex verbs.

1: let d← attdir(hverb)

2: for each word order parameter q ∈ Q3.4 do
3: for each transitive verb x ∈ vt(Q1) do
4: for each intransitive verb y ∈ vi(Q1) do
5: Insert the complementing verb phrase y into x w.r.t. q.

6: yield x
7: end for
8: end for
9: end for

All these verbs are combined in the function v(Q1, Q3.3, Q3.4) in Algorithm 3.6.

This function returns all syntactic categories: intransitive verbs produced by vi(Q1),

transitive verbs by vt(Q1), ditransitive verbs vd(Q1), intransitive complex verbs by

vicomp(Q3.3), and transitive complex verbs by vtcomp(Q3.4).

Algorithm 3.6 v(Q1, Q3.3, Q3.4): generate all the verbs.

1: return vi(Q1) ∪ vt(Q1) ∪ vd(Q1) ∪ vicomp(Q3.3) ∪ vtcomp(Q3.4)

Chapter 3. Language Parameterization 72

Noun Modifiers

There are two types of noun modifiers: i.e. adjective and nominal modifier. The main

use of the adjective is in the lexical level; i.e. this cross-linguistic category is mainly

used by lexicons. On the other hand, the nominal modifier is mainly for internal use in

generating the adjectivals such as preposition phrase and relative clause.

The adjectives are generated by the function adj(Q2.1) as illustrated in Algo-

rithm 3.7 according to the parameters in Question 2.1. Syntactic categories are straight-

forwardly generated from the adjective-noun word order. The nominal modifiers are

generated by the function nmod(Q4.4) described in Algorithm 3.8 following the param-

eters in Question 4.4. Likewise, syntactic categories are straightforwardly generated

from the noun-nominal modifer word order.

Algorithm 3.7 adj(Q2.1): generate the adjectives.

1: let d← attdir(hadj) . attachment direction of the adjectives

2: for each word order parameter q ∈ Q2.1 do
3: if q = Noun + Adj then
4: yield np\dnp
5: else if q = Adj + Noun then
6: yield np/dnp

7: end if
8: end for

Algorithm 3.8 nmod(Q4.4): generate the nominal modifiers.

1: let d← attdir(hnmod) . attachment direction of the nominal modifiers

2: for each word order parameter q ∈ Q4.4 do
3: if q = NP + NMod then
4: yield np\dnp
5: else if q = NMod + NP then
6: yield np/dnp

7: end if
8: end for

Chapter 3. Language Parameterization 73

Gerunds

There are three types of gerund to be generated; namely, gerundial noun phrase, gerun-

dial noun modifier, and gerundial verb modifier.

The gerundial unit is a gerund that performs as a particular syntactic category; for

instance, gerundial noun phrase performs as a noun phrase. Syntactic categories of

the gerund noun phrase are generated from the function npgerund(Q5) described in

Algorithm 3.9 by replacing the innermost intransitive verb inside each verb with np.

The same method applies to the generation of gerundial noun modifier and gerundial

verb modifier by replacing the innermost intransitive verb with a nominal modifier and

a verb modifier, respectively, as described in nmodgerund(Q5) in Algorithm 3.10 and

vmodgerund(Q5) in Algorithm 3.11.

All gerunds are combined in the function gerund(Q5) in Algorithm 3.12. This

function returns all syntactic categories generated from npgerund(Q5), nmodgerund(Q5),

and vmodgerund(Q5).

Algorithm 3.9 npgerund(Q5): generate the gerundial noun phrases.
1: for each word order parameter q ∈ Q5 do
2: for each verb x ∈ v(Q1, Q3.3, Q3.4) do
3: if q allows a gerund to be a noun phrase then
4: Replace the innermost intransitive verb of x with np.

5: yield x
6: end if
7: end for
8: end for

Adverbials

There are six types of adverbials: adverb, verb modifier, gerund modifier, sentence

modifier, negator, and modal. The adverb differs from the modifiers in that the adverb

is used in the lexical level while the modifiers are used for internal use in generating

several adverbial units such as preposition phrase.

Illustrated in Algorithm 3.13, syntactic categories for the adverb are straightfor-

wardly generated in adv(Q2.2) that is controlled by the parameters from Question 2.2.

Each adverb category is basically a complex category that takes an intransitive verb to

generate another one. Generation of verb modifier, gerund modifier, and sentence mod-

Chapter 3. Language Parameterization 74

Algorithm 3.10 nmodgerund(Q5): generate the gerundial noun modifiers.
1: for each word order parameter q ∈ Q5 do
2: for each verb x ∈ v(Q1, Q3.3, Q3.4) do
3: if q allows a gerund to be a nominal modifier then
4: for each nominal modifier y ∈ nmod(Q4.4) do
5: Replace the innermost intransitive verb of x with y.

6: yield x
7: end for
8: end if
9: end for

10: end for

Algorithm 3.11 vmodgerund(Q5): generate the gerundial noun modifiers.
1: for each word order parameter q ∈ Q5 do
2: for each verb x ∈ v(Q1, Q3.3, Q3.4) do
3: if q allows a gerund to be a nominal modifier then
4: for each verb modifier y ∈ vmod(Q4.4) do
5: Replace the innermost intransitive verb of x with y.

6: yield x
7: end for
8: end if
9: end for

10: end for

Algorithm 3.12 gerund(Q5): generate all gerunds.

1: return npgerund(Q5) ∪ nmodgerund(Q5) ∪ vmodgerund(Q5)

Chapter 3. Language Parameterization 75

ifier follows the same procedure but it is instead controlled by the parameters in Ques-

tion 4.4, as shown in vmod(Q4.4) in Algorithm 3.14, gmod(Q4.4) in Algorithm 3.15,

and smod(Q4.4) in Algorithm 3.16, respectively. The attachment directions of these

categories are determined by the control flags hadv, hvmod, hgmod, and hsmod, respec-

tively.

Algorithm 3.13 adv(Q2.2): generate the verb modifiers.

1: let d← attdir(hadv) . attachment direction of the adverb

2: for each word order parameter q ∈ Q2.2 do
3: for each intransitive verb x ∈ vi(Q1) do
4: if q = VP + Adv then
5: yield x\dx
6: else if q = Adv + VP then
7: yield x/dx
8: end if
9: end for

10: end for

Algorithm 3.14 vmod(Q4.4): generate the verb modifiers.

1: let d← attdir(hvmod) . attachment direction of the verb modifier

2: for each word order parameter q ∈ Q4.4 do
3: for each intransitive verb x ∈ vi(Q1) do
4: if q = VP + VMod then
5: yield x\dx
6: else if q = VMod + VP then
7: yield x/dx
8: end if
9: end for

10: end for

Syntactic categories for the negator are generated by the function neg(Q2.4) in

Algorithm 3.17. Controlled by the parameters in Question 2.4, we generate the cat-

egories in a fashion similar to adv(Q2.2) but in this case we treat each negator as an

adverb which modifies a verb, an adjective, an adverb, a noun modifier, and a verb

modifier. Syntactic categories for the modals are generated with respect to the param-

eters in Question 3.2 by the function modal(Q3.2) in Algorithm 3.18. The attachment

Chapter 3. Language Parameterization 76

Algorithm 3.15 gmod(Q4.4): generate the gerund modifiers.

1: let d← attdir(hgmod) . attachment direction of the gerund modifier

2: for each word order parameter q ∈ Q4.4 do
3: for each gerund x ∈ gerund(Q5) do
4: if q = Gerund + GMod then
5: yield x\dx
6: else if q = GMod + Gerund then
7: yield x/dx
8: end if
9: end for

10: end for

Algorithm 3.16 smod(Q4.4): generate the sentential modifiers.

1: let d← attdir(hsmod) . attachment direction of the sentential modifier

2: for each word order parameter q ∈ Q4.4 do
3: if q = S + SMod then
4: yield s\ds
5: else if q = SMod + S then
6: yield s/ds

7: end if
8: end for

Chapter 3. Language Parameterization 77

directions of these categories are determined by the control flags hneg and hmodal, re-

spectively.

Algorithm 3.17 neg(Q2.4): generate the negators.

1: let d← attdir(hneg) . attachment direction of the negators

2: for each word order parameter q ∈ Q2.4 do
3: if q = Neg + V then
4: yield x/dx for all verbs x ∈ v(Q1, Q3.3, Q3.4)

5: else if q = V + Neg then
6: yield x\dx for all verbs x ∈ v(Q1, Q3.3, Q3.4)

7: else if q = Neg + Adj then
8: yield x/dx for all adjectives x ∈ adj(Q2.1)

9: else if q = Adj + Neg then
10: yield x\dx for all adjectives x ∈ adj(Q2.1)

11: else if q = Neg + Adv then
12: yield x/dx for all adverbs x ∈ adv(Q2.2)

13: else if q = Adv + Neg then
14: yield x\dx for all adverbs x ∈ adv(Q2.2)

15: else if q = Neg + NMod then
16: yield x/dx for all nominal modifiers x ∈ nmod(Q4.4)

17: else if q = NMod + Neg then
18: yield x\dx for all nominal modifiers x ∈ nmod(Q4.4)

19: else if q = Neg + VMod then
20: yield x/dx for all verb modifiers x ∈ vmod(Q4.4)

21: else if q = VMod + Neg then
22: yield x\dx for all verb modifiers x ∈ vmod(Q4.4)

23: end if
24: end for

It should be noted that these adverbial syntactic categories are designed for CDG

which is as expressively powerful as CFG. Function composition, as seen in CCG, is

therefore not taken into account at this stage.

Adpositions

We generate two kinds of adposition: preposition and postposition. Algorithm 3.19 and

Algorithm 3.20 display the procedures of generating syntactic categories for preposi-

Chapter 3. Language Parameterization 78

Algorithm 3.18 modal(Q3.2): generate the modals.

1: let d← attdir(hmodal) . attachment direction of the modals

2: for each word order parameter q ∈ Q3.2 do
3: for each intransitive verb x ∈ vi(Q1) do
4: if q = VP + Modal then
5: yield x\dx
6: else if q = Modal + VP then
7: yield x/dx
8: end if
9: end for

10: end for

tions in the function prep(Q4.1) and postpositions in the function post(Q4.1) with

respect to Question 4.4. These categories are generated by taking either a noun mod-

ifier generated from nmod(Q4.4), a verb modifier from vmod(Q4.4), a gerund modifier

from gmod(Q4.4), or a sentence modifier from smod(Q4.4) and combining it with an

np argument. The collection of all syntactic categories of the prepositions and the

postpositions are produced by the function adpos(Q4.1) in Algorithm 3.21.

Algorithm 3.19 prep(Q4.1): generate all prepositions.

1: let d← attdir(hadpos) . attachment direction of the preposition

2: let P ← nmod(Q4.4) ∪ vmod(Q4.4) ∪ gmod(Q4.4) ∪ smod(Q4.4)

3: for each word order parameter q ∈ Q4.1 do
4: for each preposition phrase p ∈ P do
5: if q = Prep + NP then
6: yield p/dnp
7: end if
8: end for
9: end for

Relative Pronouns

Syntactic categories for the relative pronouns are generated by the function relpro(Q4.3)

in Algorithm 3.22 with respect to Question 4.3. Piecewisely, relative pronouns are built

upon the noun modifiers generated from nmod(Q4.4) as the inner part and the argument

Chapter 3. Language Parameterization 79

Algorithm 3.20 post(Q4.1): generate all postpositions.

1: let d← attdir(hadpos) . attachment direction of the postposition

2: let P ← nmod(Q4.4) ∪ vmod(Q4.4) ∪ gmod(Q4.4) ∪ smod(Q4.4)

3: for each word order parameter q ∈ Q4.1 do
4: for each postposition phrase p ∈ P do
5: if q = NP + Post then
6: yield p\dnp
7: end if
8: end for
9: end for

Algorithm 3.21 adpos(Q4.1): generate all adpositions.

1: return prep(Q4.1) ∪ post(Q4.1)

generated from vi(Q1). The attachment direction is determined by the control flag

hrelpro.

Algorithm 3.22 relpro(Q4.3): generate all relative pronouns.

1: let d← attdir(hrelpro) . attachment direction of the relative pronouns

2: for each word order parameter q ∈ Q4.3 do
3: for each nominal modifier x ∈ nmod(Q4.4) do
4: for each intransitive verb y ∈ vi(Q1) do
5: if q = Relpro + VP then
6: yield x/dy
7: else if q = VP + Relpro then
8: yield x\dy
9: end if

10: end for
11: end for
12: end for

Copulae

Syntactic categories for the copulae are generated from the function copula(Q3.1) dis-

played in Algorithm 3.23. Each copula is a verb which takes a subject of the category

np and a complement which can either be an adjective generated from adj(Q2.1) or a

Chapter 3. Language Parameterization 80

noun modifier generated from nmod(Q4.4). The procedure is controlled by the param-

eters in Question 3.1 and the attachment direction is determined by hcopula.

Algorithm 3.23 copula(Q3.1): generate all corpulae.

1: let d← attdir(hcopula) . attachment direction of the copulae

2: for each word order parameter q ∈ Q3.1 do
3: if q allows the existence of copula then
4: for each intransitive verb x ∈ vi(Q1) do
5: for each y ∈ adj(Q2.1) ∪ nmod(Q4.4) do
6: yield x/dy
7: end for
8: end for
9: end if

10: end for

Particles

Syntactic categories of the sentence particles are generated by the function part(Q4.5)

in Algorithm 3.24. Each particle is treated as an adverb which modifies any verb gen-

erated from v(Q1, Q3.3, Q3.4). The attachment direction of the particles is determined

by the control flag hpart.

Algorithm 3.24 part(Q4.5): generate all particles.

1: let d← attdir(hpart) . attachment direction of the particles

2: for each word order parameter q ∈ Q3.2 do
3: for each verb x ∈ v(Q1, Q3.3, Q3.4) do
4: if q = VP + Part then
5: yield x\dx
6: else if q = Part + VP then
7: yield x/dx
8: end if
9: end for

10: end for

Chapter 3. Language Parameterization 81

Subordinate Conjunctions

Syntactic categories of the subordinate conjunctions are generated by the function

subconj(Q6) in Algorithm 3.25 according to the parameters in Question 6. Each

subordinate conjunction joins the main clause and a subordinate clause which can be

either a sentence of the category s, an adjective generated from adj(Q2.1), or a noun

modifier generated from nmod(Q4.4). There are two control flags to control the attach-

ment directions: hsub−phr and hsub−smod. hsub−phr determines the attachment direction

of the subordinate conjunction when combined with the complement. hsub−smod, on

the other hand, determines the attachment direction of the subordinate clause when

combined with the main clause.

Algorithm 3.25 subconj(Q6): generate all subordinate conjunctions.

1: let d← attdir(hsub−phr) . attachment direction of the subordinator

2: let d′ ← attdir(hsub−smod) . attachment direction of the clause

3: for each x ∈ {s} ∪ adj(Q2.1) ∪ nmod(Q4.4) do
4: for each word order parameter q ∈ Q6 do
5: if q = Main + Conj + Subcls then
6: yield s\d′s/dx
7: else if q = Subcls + Conj + Main then
8: yield s/d′s\dx
9: else if q = Main + Subcls + Conj then

10: yield s\d′s\dx
11: else if q = Subcls + Main + Conj then
12: yield s\dx\d′s
13: else if q = Conj + Main + Subcls then
14: yield s/dx/d′s

15: else if q = Conj + Subcls + Main then
16: yield s/d′s/dx

17: end if
18: end for
19: end for

Chapter 3. Language Parameterization 82

Possessive Markers

Syntactic categories of the possessive markers are generated from the function poss(Q4.2)

in Algorithm 3.26. Each possessive marker associates two noun phrases of the cate-

gory np: one as the owner and the other one as the ownee. The categories are generated

according to the parameters in Question 4.2. There are two control flags to control the

attachment directions: hposs−phr and hposs−nmod. The flag hposs−phr determines the at-

tachment direction of the possesive marker when combined with the owner, while the

flag hposs−nmod determines the attachment direction of the genitive when combined

with the ownee.

Algorithm 3.26 poss(Q4.2): generate all possessive markers.

1: let d← attdir(hposs−phr) . attachment direction of the marker

2: let d′ ← attdir(hposs−nmod) . attachment direction of the genitive

3: for each word order parameter q ∈ Q4.2 do
4: if q = Ownee + Poss + Owner then
5: yield np\d′np/dx
6: else if q = Owner + Poss + Ownee then
7: yield np/d′np\dx
8: else if q = Ownee + Owner + Poss then
9: yield np\d′s\dx

10: else if q = Owner + Ownee + Poss then
11: yield np\dx\d′np
12: else if q = Poss + Ownee + Owner then
13: yield np/dx/d′np

14: else if q = Poss + Owner + Ownee then
15: yield np/d′np/dx

16: end if
17: end for

Infinitive Markers

Syntactic categories of the infinitive markers are generated by the function inf(Q7.1)

in Algorithm 3.27. In our syntactic prototype, any infinitive phrase is treated as a

noun phrase of the category np. Each infinitive marker therefore takes an infinitive

verb generated from vi(Q1) and converts it to an np. The flag hinf determines the

Chapter 3. Language Parameterization 83

attachment direction of the infinitive marker when combined with an intransitive verb.

Algorithm 3.27 inf(Q7.1): generate all infinitive markers.

1: let d← attdir(hinf) . attachment direction of the infinitive markers

2: for each word order parameter q ∈ Q7.1 do
3: for each intransitive verb x ∈ vi(Q1) do
4: if q = VP + Inf then
5: yield np\dx
6: else if q = Inf + VP then
7: yield np/dx

8: end if
9: end for

10: end for

Nominalizers

There are two kinds of nominalizers: NP nominalizer and VP nominalizer. An NP

nominalizer is a bound morpheme that combines with a noun phrase to become another

noun phrase. On the other hand, a VP nominalizer combines with a verb phrase to

become a noun phrase.

As seen in Algorithm 3.28, syntactic categories of NP nominalizers are generated

by the function npnom(Q7.2) according to the parameters in Question 7.2. The at-

tachment direction is determined of the NP nominalizers by the control flag hnpnom.

Meanwhile, syntactic categories of VP nominalizers are generated by the function

vpnom(Q7.2) according to the same set of parameters. The control flag hvpnom de-

termines the attachment direction of the VP nominalizers.

Algorithm 3.28 npnom(Q7.2): generate all NP nominalizer.

1: let d← attdir(hnpnom) . attachment direction of the NP nominalizer

2: for each word order parameter q ∈ Q7.2 do
3: if q = NP + Nom then
4: yield np\dnp
5: else if q = Nom + NP then
6: yield np/dnp

7: end if
8: end for

Chapter 3. Language Parameterization 84

Algorithm 3.29 vpnom(Q7.2): generate all verb nominalizers.

1: let d← attdir(hvpnom) . attachment direction of the verb nominalizer

2: for each word order parameter q ∈ Q7.2 do
3: for each intransitive verb x ∈ vi(Q1) do
4: if q = VP + Nom then
5: yield np\dx
6: else if q = Nom + VP then
7: yield np/dx

8: end if
9: end for

10: end for

Classifiers

Classifiers are categorized into four types: adjectival classifier, adverbial classifier,

noun-modifying classifier, and verb-modifying classifier. The adjectival classifier is

distinguished from its counterpart, noun-modifying classifier, in that when combined

with a numeral, the numeral phrase becomes an adjective unit rather than a nominal

modifier. The adverbial classifier is also distinguished from the verb-modifying clas-

sifier because when it combines with a numeral, the resulting numeral phrase becomes

an adverb unit rather than a verb modifier.

The generation of the classifier is controlled by the parameters in Question 4.6. The

functions adjcl(Q4.6) in Algorithm 3.30, advcl(Q4.6) in Algorithm 3.31, nmodcl(Q4.6)

in Algorithm 3.32, and vmodcl(Q4.6) in Algorithm 3.33 generates syntactic categories

for the adjective classifier, the adverb classifier, the noun-modifying classifier, and the

verb-modifying classifier, respectively. The control flag hcl determines the attachment

direction of the classifier when combined with a numeral.

The collection of all possible categories for the classifiers are generated by the

function cl(Q4.6) in Algorithm 3.34.

Unary Derivation Rules

Unary derivation rules are an additional part of the syntactic prototype. The use of

these unary rules is permitted only when the language is identified as free word-order

in Question 1. As seen in the function unary(Q1) in Algorithm 3.35, a noun phrase

is converted into an argument of the verb by transforming into a modifier of s. A

Chapter 3. Language Parameterization 85

Algorithm 3.30 adjcl(Q4.6): generate all adjectival classifiers.

1: let d← attdir(hcl) . attachment direction of the classifiers

2: for each word order parameter q ∈ Q4.6 do
3: for each adjective x ∈ adj(Q2.1) do
4: if q = Num + Cl then
5: yield x\dnum
6: else if q = Cl + Num then
7: yield x/dnum
8: end if
9: end for

10: end for

Algorithm 3.31 advcl(Q4.6): generate all adverbial classifiers.

1: let d← attdir(hcl) . attachment direction of the classifiers

2: for each word order parameter q ∈ Q4.6 do
3: for each adverb x ∈ adv(Q2.1) do
4: if q = Num + Cl then
5: yield x\dnum
6: else if q = Cl + Num then
7: yield x/dnum
8: end if
9: end for

10: end for

Algorithm 3.32 nmodcl(Q4.6): generate all classifiers for nominal modifiers.

1: let d← attdir(hcl) . attachment direction of the classifiers

2: for each word order parameter q ∈ Q4.6 do
3: for each nominal modifier x ∈ nmod(Q4.4) do
4: if q = Num + Cl then
5: yield x\dnum
6: else if q = Cl + Num then
7: yield x/dnum
8: end if
9: end for

10: end for

Chapter 3. Language Parameterization 86

Algorithm 3.33 vmodcl(Q4.6): generate all classifiers for verb modifiers.

1: let d← attdir(hcl) . attachment direction of the classifiers

2: for each word order parameter q ∈ Q4.6 do
3: for each verb modifier x ∈ vmod(Q4.4) do
4: if q = Num + Cl then
5: yield x\dnum
6: else if q = Cl + Num then
7: yield x/dnum
8: end if
9: end for

10: end for

Algorithm 3.34 cl(Q4.6): generate all classifiers.

1: return adjcl(Q4.6) ∪ advcl(Q4.6) ∪ nmodcl(Q4.6) ∪ vmodcl(Q4.6)

noun phrase is also converted into an adjective to approximate the noun declension

system whereby nouns are declined to express their cases, thus able to modify each

other systematically.

3.4 Summary

We have explained the main contribution of this thesis: our language parameterization,

which are designed for improving the accuracy of unsupervised grammar induction.

We have developed the motivation of this research and the benefits of incorporating

syntactic prototypes into the unsupervised parsing models. We have reviewed the pre-

vious work prior to this research and explained our language parameterization method.

Our method is linguistically motivated and easy to elicit by direct consultation with

grammar compendiums or by interview with naïve informants.

To answer Research Question 1: Our language parameters are designed to cap-

ture frequent word orders. Each language parameter is sorted with respect to their

frequency in natural language. We hypothesize that the more language parameters we

incorporate into the syntactic prototype, the more accuracy we obtain. Because of their

frequencies, the hypothetical trend of the accuracy is: the accuracy rises rapidly and

starts to saturate as we increase the number of language parameters in the syntactic

prototype.

Chapter 3. Language Parameterization 87

Algorithm 3.35 unary(Q1): generate necessary unary derivation rules.

1: let d← attdir(hvmod) . attachment direction of the verb modifier

2: let d′ ← attdir(hadj) . attachment direction of the adjective

3: for each Q1 allows free word order do
4: . All verbs must only be assigned as s.

5: . A noun phrase becomes an argument of the verb.

6: Allow the transformation of np into s\ds and s/ds.

7: . A noun phrase can modify each other like an adjective.

8: for each q ∈ Q2.1 do
9: if q = Noun + Adj then

10: Allow the transformation of np into np\d′np
11: else if q = Adj + Noun then
12: Allow the transformation of np into np/d′np

13: end if
14: end for
15: end for

We have described the dialog we can use to elicit such prior knowledge by in-

terview with naïve informants when the grammar compendiums for our languages of

interest are not available. We have also explained how we encode the acquired prior

knowledge into the syntactic prototype.

To answer Research Question 2: Human labor for language parameter elicitation

is quantifiable. The process of eliciting the language parameters either via direct con-

sultation with grammar compendium or via interview with naïve informants normally

takes up to two hours per previously unseen language. Once we obtain the language

parameters, we study the POS annotation guidelines for each language and map each

tag to one or more language-specific category classes. To thoroughly scrutinize the

usage of each POS tag and assign them to appropriate classes it typically takes around

four to six hours. It therefore takes six to ten hours to build a syntactic prototype for

each language.

In the next chapter, we will give an overview of our prototype-driven parser system.

Chapter 4

Grammar Induction

Outline

This chapter explains our method of grammar induction using the prior syntactic knowl-

edge parameterized by word orders. In Section 4.1, we explain the system overview

and the algorithms we use in each step. In Section 4.2, we describe our parsing models

which are used and assessed in the upcoming experiments.

4.1 System Overview

This section details our method of syntactic structure recovery by exploiting the lin-

guistic prototype. As illustrated in Figure 4.1, the system consists of three steps: struc-

ture enumeration, parameter estimation, and structure selection. In the first step, we

enumerate all possible syntactic structures (i.e. constituents and dependencies) for

each sentence in a POS-annotated corpus with CKY Algorithm. We constrain the size

of the search space by using the mapping table between POS tags and syntactic cate-

gories. We then estimate the model parameters—the probabilities of substructures—

with EM Algorithm. The more frequently seen a substructure is, the more probability it

is iteratively assigned. Finally, we select the most probable structures from the corpus

with the result language model. Let us explain each step as follows.

4.1.1 Structure Enumeration

The first step is to enumerate all possible parses for each sentence; i.e. we used the

mapping between POS tags and syntactic categories to define the lexicon and built a

88

Chapter 4. Grammar Induction 89! Algorithm overview

POS-tagged
corpus

all possible
structures

enumerate

!0!

initial param.
values

E
expectation
calculation

M
param.

adjustment

!f"

final param.
values

rule
count

treebank

Viterbi

structure
selection

16 Semisupervised grammar induction with linguistic prior knowledge 11/12/09 Figure 4.1: System overview

parse chart for each sentence. To elucidate this point, let us imagine that we parse each

sentence with a very permissive grammar that allows any pairs of words and phrases

to combine. We therefore obtain all possible constituent structures. However, the

search space of the parser could astronomically expand when we generate dependency

structures in parallel with the constituent structures. In order to shrink down the search

space, we make use of the mapping between POS tags and syntactic categories. We

then eliminate from the chart all edges that are not used in any trees.

Eliminating unnecessary edges from the training data—the packed charts, is crucial

for any unsupervised learning techniques because they are sensitive and easy to be

distorted by noises from irrelevant training data. The more we eradicate irrelevant

training data, the more accurate our model is. With cheap linguistic prototype, we can

achieve higher accuracy of syntactic structure recovery.

For efficiency reasons, we employ CKY Parsing Algorithm (Cocke and Schwartz,

1970; Kasami, 1965; Younger, 1967) as summarized in Algorithm 4.1. If the chart

is complete; i.e. yielding the start symbol S, we recursively eliminate non-governed

subtrees in the chart in a top-down fashion with Algorithms 4.2 and 4.3. Otherwise,

we apply wildcard derivations into the chart to complete it via the algorithm described

in Algorithm 4.4. We pack the chart to achieve both speed and space compactness.

We also apply the right-branching preference to eliminate spurious ambiguity caused

by conjunctions. For example, suppose that POS tags DT, JJ, and NN are assigned the

categories np/>np and np. The chart of the sentence ‘DT JJ JJ NN’ produced by the

CKY algorithm is shown in Figure 4.2.

Chapter 4. Grammar Induction 90

Algorithm 4.1 parse(wN1 , G): parse a sentence wN1 with a CDG G.
1: let C ← an empty packed chart

2: . Lexicon initialization

3: for i← 1 to N do
4: for each lexicon entry wi ` A in G do
5: add_item(C, i, i, A, wi)

6: end for
7: end for
8: . Structure enumeration

9: for edge length l← 2 to N do
10: for i← 1 to N − l + 1 do
11: let j ← i+ l

12: . Split index k

13: for k ← i to j − 1 do
14: for each left daughter IL ∈ C[i, k] do
15: let AL ← type(IL)

16: for each right daughter IR ∈ C[k + 1, j] do
17: let AR ← type(IR)

18: if combination ALAR ⇒ A is allowed in G then
19: add_item(C, i, j, A, (IL, IR))

20: end if
21: end for
22: end for
23: end for
24: . Perform unary derivations on edge [i, j].

25: for each item I ∈ C[i, j] do
26: let A← type(I)

27: if unary derivation A⇒ A′ is allowed in G then
28: for each (IL, IR) ∈ prod(I) do
29: add_item(C, i, j, A′, (IL, IR))

30: end for
31: end if
32: end for
33: end for
34: end for
35: return C

Chapter 4. Grammar Induction 91

Algorithm 4.2 find_govn_trees(C, I, U): Find all governed subtrees where C is a

packed chart, I is an item ID, and U is the accumulator of item IDs.

1: let U ′ ← U

2: if I /∈ U then
3: update U ′ ← U ′ ∪ {I}
4: if i 6= j then
5: for each (IL, IR) ∈ prod(I) do
6: update U ′ ← U ′ ∪ find_govn_trees(C, IL, U

′)

7: update U ′ ← U ′ ∪ find_govn_trees(C, IR, U
′′)

8: end for
9: end if

10: end if
11: return U ′

Algorithm 4.3 elim_nongovn(C): Eliminate all nongoverned subtrees in the packed

chart, where C is a packed chart.

1: let U ← ∅
2: for each item I ∈ C[1, N] do
3: update U ← U ∪ find_govn_trees(C, 1, N, I, U)

4: end for
5: for l← 2 to N do
6: for i← 1 to N − l + 1 do
7: let j ← i+ l − 1

8: for each item I ∈ C[i, j] do
9: if I /∈ U then

10: del_item(C, i, j, I)

11: end if
12: end for
13: end for
14: end for

Chapter 4. Grammar Induction 92

Algorithm 4.4 parse_wildcard(wN1 , C, i, j): Apply wildcard derivations on maxi-

mally non-governed edges in the range [i, j] of the packed chart Q, given input sen-

tence wN1 .

1: if i = j and C[i, j] = ∅ then
2: add_item(C, i, i, ?, wi)

3: else if C[i, j] = ∅ then
4: for k ← i to j − 1 do
5: if C[i′, k] = ∅ and C[k + 1, j′] = ∅ for all i′ < i and j < j′ then
6: parse_wildcard(wN1 , C, i, k)

7: parse_wildcard(wN1 , C, k + 1, j)

8: for each item IL ∈ C[i, k] do
9: for each item IR ∈ C[k + 1, j] do

10: add_item(C, i, j, ?, (IL, IR))

11: end for
12: end for
13: end if
14: end for
15: end if

np : DT np : JJ np : JJ np : NN

np/>np : DT np/>np : JJ np/>np : JJ np/>np : NN

np : JJ np : JJ np : NN

np : JJ np : NN

np : NN

Figure 4.2: The chart of the sentence ‘DT JJ JJ NN’ obtained from the CKY

Algorithm and eliminated excessive edges. The dashed arrows are the edges

that are eliminated when finished.

Chapter 4. Grammar Induction 93

4.1.2 Parameter Estimation and Decoding

We use the variational Bayesian Inside-Outside Algorithm (Kurihara and Sato, 2006)

to approximate the parameters of the parsing models. As aforementioned in Sec-

tion 2.3.2, VBEM (Attias, 2000; Ghahramani and Beal, 2000; Beal, 2003) seeks to

maximize the a posteriori distribution of the dataset.

The algorithm iterates the two processes: expectation calculation and parameter

maximization. The first step calculates the expectation (the average of probabilities) of

each substructure out of the corpus. The second step adjusts the parameters of the sub-

structures by the calculated expectations. The two processes are iteratated repeatedly

until the entire parameters become stable, determined by the expectations converging.

An EM algorithm, called Inside-Outside Algorithm (Baker, 1979; Lari and Young,

1990), is utilized for approximating the parameters of PCFG.

Once we estimate the model parameters, we use Viterbi Algorithm (Viterbi, 1967;

Forney, 1973) to find the most likely parse of a sentence. Formally, we have to find the

most likely tree t∗ for a given input sentence s, such that

t∗ = arg max
t∈T (s)

P (t|G) (4.1)

where T (s) is the set of all possible trees for s.

4.2 Generative Parsing Models

A parsing model assigns a probability to a syntactic analysis of a string in a language.

In practice, we cannot directly measure the probability of a tree by counting tree fre-

quency due to data sparsity. We therefore need to factorize the tree probability into the

product of non-overlapping substructure probabilities. The probability of a syntactic

tree t with respect to a grammar G is defined as follows:

P (t|G) = π(r|G)Φ(t|G)
∏

ti∈dtrs(t)

P (ti|G) (4.2)

where t is a syntactic tree, r is the grammar rule used in the topmost derivation from

the root node to its immediate daughters, Φ(t|G) is a feature function for the root node,

and each ti ∈ dtrs(t) is an immediate subtree of the root node of t. The probability

of a grammar rule r, denoted by π(r|G), is called a parameter of the parsing model π.

Chapter 4. Grammar Induction 94

We employ the Variational Bayesian EM Algorithm to estimate the parameters of the

parsing models from all the parsed sentences.

In the experiments in the next chapters, we use six generative parsing models,

which are categorized and sorted by parametric expressiveness of their feature func-

tions. Model 0 is the simplest model in which only a probabilistic context-free gram-

mar is used. Model 1 and Model 2 are generative models extended from Model 0

with feature functions defined on dependency generation. Model 3 and Model 4 are

extended from Model 1 and Model 2, respectively, with feature functions defined on

lexical emission probability. Finally, Model 5, the most complex one, is a mixture of

all feature functions.

Hypothetical trend: These models are ordered with respect to their expressive-

ness; i.e. Model 0 has the least number of parameters while Model 5 has the most

number of parameters. With respect to the parameters we will gradually introduce to

the models, we anticipate that the more parametrically complex the model is, the more

accuracy we can attain from it. By incorporating the knowledge of frequent word or-

der, we expect that if this prior knowledge adequately captures most frequent word

order, a more complex model should perform better. However, once we increase the

model’s complexity, the accuracy may also be traded off due to the data sparsity issue.

4.2.1 Model 0: Probabilistic Context-Free Grammar (PCFG)

Model 0, the simplest parsing model in our repository, is essentially a probabilistic

context-free grammar (Charniak, 1997; Johnson, 1998). The probability of a tree is

the product of the probabilities of each context-free rule used to construct the tree; i.e.

it treats each rule as an elementary structure. According to Eq (4.2), we define the

feature function of Model 0 as follows.

Φ0(t|G) = 1 (4.3)

Substituting Eq (4.3) to Eq (4.2), the probability of a tree t in Model 0 with respect to

a PCFG G is therefore

P (t|G) = π(r|G)
∏

ti∈dtrs(t)

P (ti|G)

=

π(C : w → w) lexicon

π(C : w → α)
∏

ti∈dtrs(t) P (ti|G) branching
(4.4)

Chapter 4. Grammar Induction 95

DT NN VBD JJ NNS

np/>np : DT np : NN s\>np/<np : VBD np/>np : JJ np : NNS

np : NN np : NNS

s\>np : VBD

s : VBD

Figure 4.3: Dependency-driven syntactic analysis of the sentence ‘DT NN VBD

JJ NNS’

where C is a syntactic category, w is a terminal symbol (head word), and α is a se-

quence of syntactic categories.

When applying the idea of PCFG into CDG, we found one peculiar feature: the

probabilities of all preterminal rules A→ w can be omitted. This regards the fact that

every preterminal category C with the head w always generates the word w, resulting

in P (C : w → w) = 1 for all C : w. We obtain the probability of a tree t with respect

to a CDG G:

P (t|G) =

1 lexicon

π(C : w → α)
∏

ti∈dtrs(t) P (ti|G) branching
(4.5)

The probability of the tree in Figure 4.3 can be computed by the product of the pa-

rameters of each rule as follows. (The product below is written in top-down depth-first

order.)

PCDG(t|s,G) = π(s : VBD→ np : NN, s\>np : VBD) (4.6)

×π(np : NN→ np/>np : DT, np : NN)

×π(s\>np : VBD→ s\>np/<np : VBD, np : NNS)

×π(np : NNS→ np/>np : JJ, np : NNS)

Chapter 4. Grammar Induction 96

4.2.2 Model 1: Role-Emission Model

This model is an extension of Model 0 into which we incorporate the role-emission

probabilities of all categories as a feature function. Besides the rule probabilities,

we also take into account the probabilities of each child category performing as a

head or a dependent. This model was motivated by Collins’ (1999) head-outward

dependency model (Collins, 1999) and Hockenmaier’s (2003) CCG generative model

(Hockenmaier, 2003b; Hockenmaier, 2003a).

In this model, the syntactic derivation is seen as a generative process. Given a

parent category, we decide whether to generate an expansion or a leaf node. If we

decide to generate an expansion, then we decide to generate the head and the daughter

categories of such parent. The head and the dependent generated are then seen as new

parents and we recursively generate the rest of the tree from them. Otherwise, if we

decide to generate a leaf node, we just generate a lexical item. Suppose that G is a

CDG and each q ∈ Q is a packed chart in the dataset Q, the parameters are classified

into three types:

1. πexp(α|C : w,G) : probability of the category C : w generating a production α,

which is equivalent to π(C : w → α|G),

2. πhead(C : w|G): probability of C : w emitting the head role,

πhead(C : w|G) =

∑
q∈Q

∑
I∈items(q) R

h
I (C : w)∑

q∈Q
∑

I∈items(q)

∑
r∈{h,d}R

r
I(C : w)

(4.7)

3. πdep(C : w|G): probability of C : w emitting the dependent role,

πdep(C : w|G) =

∑
q∈Q

∑
I∈items(q) R

d
I (C : w)∑

q∈Q
∑

I∈items(q)

∑
r∈{h,d}R

r
I(C : w)

(4.8)

The quantity Rr
I(C : w) is the expected count of probabilities of rules in parse item I

whose production has category C : w emitting the role r ∈ {h, d}; i.e.

Rr
I(C : w) =

∑
α∈prod(I)

π(C ′ : w′ → α|G)ρrα(C : w) (4.9)

where type(I) = C ′ : w′ and

ρh
α(C : w) =

1 if α has C : w as the head

0 otherwise
(4.10)

ρd
α(C : w) =

1 if α has C : w as the dependent

0 otherwise
(4.11)

Chapter 4. Grammar Induction 97

The parameters for all preterminal rules are 1 because the category C : w always

generates the lexical item w.1 It should be noted that the parameter πdep(D|C, dir)
differs from Hockenmaier’s (2003a) daughter parameter in that we do not take the

head category into account.

From the above generative process, we can define the feature function for Model 1

as follows.

Φ1(t|G) =

πhead(H : w|G)πdep(D : w′|G) branching

1 lexicon
(4.12)

Substituting Eq (4.12) to Eq (4.2), we can recursively define the probability of a tree t

having the category C : w as follows.

P (t|G) =

πexp(H : w,D : w′|C : w,G) head-left

×πhead(H : w|G)× πdep(D : w′|G)

×P (H : w|G)× P (D : w′|G)

πexp(D : w′, H : w|C : w,G) head-right

×πdep(D : w′|G)× πhead(H : w|G)

×P (D : w′|G)× P (H : w|G)

1 lexical item

(4.13)

To clarify the idea of tree conversion, let t be the tree in Figure 4.4. The probability

of t is given by:

P (t|G) = πexp(s : VBD→ np : NNS, s\>np : VBD|G) (4.14)

×πdep(np : NNS|G)

×πhead(s\>np : VBD|G)

4.2.3 Model 2: Mother-Daughter Model

Model 2 is an extension of Model 1 in which each daughter node is instead generated

from its headword. The syntactic derivation is seen as a generative process. Given

a parent category, we decide whether to generate an expansion or a leaf node. If we

decide to generate an expansion, then we decide to generate the mother category of

1We can derive this from the fact that πlex(w|C : w,G) = P (w,C,w,G)
P (C,w,G) = P (C,w,G)

P (C,w,G) = 1.

Chapter 4. Grammar Induction 98

s : VBD

np : NNS s \> np : VBD

NNS VBD

dtr mtr

Figure 4.4: Role-emission generative model of a syntactic derivation of the

sentence ‘NNS VBD’

such parent and its word. Then we generate the daughter category and its word given

the mother word. The head and daughter nodes generated are then seen as new parents

and we recursively generate the rest of the tree from them. Otherwise, if we decide to

generate a leaf node, we just generate a lexical item. Suppose that G is a CDG and

each q ∈ Q is a packed chart in the dataset Q, the parameters are classified into three

types:

1. πexp(α|C : w,G) : probability of the category C : w to generate a production α,

which is equivalent to π(C : w → α|G),

2. πmtr(C : w|G): probability of C : w emitting the mother role,

πmtr(C : w|G) =

∑
q∈Q

∑
I∈items(q) R

h
I (C : w)∑

q∈Q
∑

I∈items(q)

∑
r∈{h,d}R

r
I(C : w)

(4.15)

3. πdtr(C : w′|w,G): probability of C : w′ emitting the daughter role given the

headword w,

πdtr(C : w′|w,G) =

∑
q∈Q

∑
I∈items(q) QI(C : w′;w)∑

q∈Q
∑

I∈items(q)

∑
w′′ QI(C : w′;w′′)

(4.16)

The quantity QI(C : w′;w) is the expected count of probabilities of rules in parse item

I whose production has category C : w′ as the daughter generated from the headword

w. If type(I) = X : w, where X is any syntactic category,

QI(C : w′;w) =
∑

α∈prod(I)

π(X : w → α|G)Rd
I (C : w) (4.17)

Otherwise, QI(C : w′;w) = 0. It is worth noting that the feature πdtr is close to

Hockenmaier’s (2003a) daughter parameter.

Chapter 4. Grammar Induction 99

From the above generative process, we can define the feature function for Model 2

as follows.

Φ2(t|G) =

πmtr(C : w|G)πdtr(C : w′|w,G) branching

1 lexicon
(4.18)

Substituting Eq (4.18) to Eq (4.2), we can recursively define the probability of a tree t

having the category C : w as follows.

P (t|G) =

πexp(H : w,D : w′|C : w,G) head-left

×πmtr(H : w|G)× πdtr(D : w′|w,G)

×P (H : w|G)× P (D : w′|G)

πexp(D : w′, H : w|C : w,G) head-right

×πdtr(D : w′|w,G)× πmtr(H : w|G)

×P (D : w′|G)× P (H : w|G)

1 lexical item

(4.19)

For example, we can compute the probability of the tree in Figure 4.4 as follows.

P (t|G) = πexp(s : VBD→ np : NNS, s\>np : VBD|G) (4.20)

×πdtr(np : NNS|VBD, G)

×πmtr(s\>np : VBD|G)

4.2.4 Model 3: Role-Emission + Lexicon-Emission Model

We extend Model 1 with the probabilities of lexicon emission—i.e. the probability of

each preterminal syntactic category C generating a word w. This probability is a ratio

of the total number of the category C generating the head w and the total number of

all head words w′ the category C can generate in the entire tree set. Let us define the

lexicon-emission probability:

πlex(w|C,G) =

∑
q∈Q

∑
I∈items(q) #lex

I (C : w)∑
q∈Q

∑
I∈items(q)

∑
wk

#lex
I (C : wk)

(4.21)

where each q ∈ Q is a packed chart, each I is a parsing item in q, and #lex
I (C : w) is

defined as:

#lex
I (C : w) =

π(C : w → w) if type(I) = C : w and I is a lexicon item

0 otherwise

Chapter 4. Grammar Induction 100

We include πlex(w|C,G) as an additional parameter of Model 1 by defining the

feature function as follows.

Φ3(t|G) =

πhead(H : w|G)πdep(D : w′|G) branching

πlex(w|C,G) lexicon
(4.22)

Substituting Eq (4.22) to Eq (4.2), the probability of a tree becomes a product of

(1) the probabilities of each rule constituting the tree (2) each category emitting the

head/dependent role and (3) the probabilities of each preterminal category emitting its

lexical item. We therefore have that:

P (t|G) =

πexp(H : w,D : w′|C : w,G) head-left

×πhead(H : w|G)× πdep(D : w′|G)

×P (H : w|G)× P (D : w′|G)

πexp(D : w′, H : w|C : w,G) head-right

×πdep(D : w′|G)× πhead(H : w|G)

×P (D : w′|G)× P (H : w|G)

πlex(w|C,G) lexical item

(4.23)

4.2.5 Model 4: Mother-Daughter + Headword-Emission Model

We furthermore extend Model 2 with the probabilities of headword emission—i.e. the

probability of a syntactic category C generating the headword of the constituent w.

This probability is a ratio of the total number of the category C generating the head w

and the total number of all head words w′ the category C can generate in the entire tree

set. Let us define the headword-emission probability:

πheadword(w|C,G) =

∑
q∈Q

∑
I∈items(q) #hw

I (C : w)∑
q∈Q

∑
I∈items(q)

∑
wk

#hw
I (C : wk)

(4.24)

where each q ∈ Q is a packed chart, each I is a parsing item in q, and #hw
I (C : w) is

defined as:

#hw
I (C : w) =

∑

α∈prod(I) π(C : w → α) if type(I) = C : w

0 otherwise

where each α is a production in item I .

Chapter 4. Grammar Induction 101

We include πheadword(w|C,G) as an additional parameter of Model 2 by defining

the feature function as follows.

Φ4(t|G) =

πmtr(H : w|G)πdtr(D : w′|G) branching

×πheadword(w|C,G)

πheadword(w|C,G) lexicon

(4.25)

Substituting Eq (4.25) to Eq (4.2), the probability of a tree becomes a product of

(1) the probabilities of each rule constituting the tree (2) each category emitting the

head/dependent role and (3) the probabilities of each constituent’s category emitting

its head word. We therefore have that:

P (t|G) =

πheadword(w|C,G) head-left

×πexp(H : w,D : w′|C : w,G)

×πmtr(H : w|G)× πdtr(D : w′|G)

×P (H : w|G)× P (D : w′|G)

πheadword(w|C,G) head-right

×πexp(D : w′, H : w|C : w,G)

×πdtr(D : w′|G)× πmtr(H : w|G)

×P (D : w′|G)× P (H : w|G)

πheadword(w|C,G) lexical item

(4.26)

4.2.6 Model 5: Mixture of All

Model 5 is the mixture of Models 0-4; i.e. we extend the probabilisitic context-free

grammar with all features aforementioned. There are seven parameters to be trained in

this model:

1. πexp(α|C : w,G): the probability of a tree is the product of the probabilities of

all rules constituting the tree,

2. πhead(C : w|G): the probability of each category emitting its head role,

3. πdep(C : w|G): the probability of each category emitting its dependent role,

4. πmtr(C : w|G): the probability of each category emitting its mother role,

Chapter 4. Grammar Induction 102

5. πdtr(C : w′|w,G): the probability of each daughter is generated from its head,

6. πlex(w|C,G): the probability of each preterminal category emitting its word, and

7. πheadword(w|C,G): the probability of each constituent’s category emitting its

headword.

The feature function of Model 5 is as follows.

Φ5(t|G) = =

πhead(H : w|G)πdep(D : w′|G) branching

×πmtr(C : w|G)πdtr(C : w′|w,G)

×πheadword(w|C,G)

πlex(w|C,G)πheadword(w|C,G) lexicon

(4.27)

The probability of a tree t with respect to a PCFG G is based on Models 0-4 as recur-

sively defined below.

P (t|G) =

πexp(H : w,D : w′|C : w,G) head-left

×πhead(H : w|G)× πdep(D : w′|G)

×πmtr(H : w|G)× πdtr(D : w′|w,G)

×πheadword(w|C,G)

×P (H : w|G)× P (D : w′|G)

πexp(D : w′, H : w|C : w,G) head-right

×πdep(D : w′|w,G)× πhead(H : w|G)

×πdtr(D : w′|w,G)× πmtr(H : w|G)

×πheadword(w|C,G)

×P (D : w′|G)× P (H : w|G)

πlex(w|C,G)× πheadword(w|C,G) lexical item

(4.28)

4.2.7 Summary

To summarize this section, let us review the parsing models we have introduced. Sorted

by the parametric expressiveness, the following are the six models used in the experi-

ments in which all of them are evaluated across the board.

1. Model 0 (probabilistic context-free grammar): the probability of a tree is the

product of the probabilities of all rules constituting the tree.

Chapter 4. Grammar Induction 103

2. Model 1 (role-emission model): the probability of a tree is the product of (1) the

probabilities of all branchings and (2) the probabilities of each category emitting

its head/daughter role.

3. Model 2 (mother-daughter model): the probability of a tree is the product of

(1) the probabilities of all branchings and (2) the probabilities of each head is

generated and (3) the probabilities of each daughter is generated from its head.

4. Model 3 (role-emission + lexicon-emission model): the probability of a tree is

the product of (1) the probabilities of all rules constituting the tree and (2) the

probabilities of each preterminal category emitting its word.

5. Model 4 (mother-daughter + headword-emission model): the probability of a

tree is the product of (1) the probabilities of all branchings, (2) the probabilities

of each category emitting its head/daughter role, and (3) the probabilities of each

constituent’s category emitting its head word.

6. Model 5 (mixture of all): the probability of a tree is the product of (1) the prob-

ability of a tree is the product of the probabilities of all rules constituting the

tree (2) the probabilities of each category emitting its head/daughter role (3) the

probabilities of each head is generated (4) the probabilities of each daughter is

generated from its head (5) the probabilities of each preterminal category emit-

ting its word and (6) the probabilities of each constituent’s category emitting its

head word.

These models are ordered with respect to their expressiveness; i.e. Model 0 has the

least number of parameters while Model 5 has the most number of parameters. With

respect to the parameters we gradually introduced to the models, we anticipate that

the more parametrically complex the model is, the more accuracy we can attain from

it. By incorporating the knowledge of frequent word order, we predict that if this

prior knowledge adequately capture most frequent word order, a more complex model

should perform better.

Part III

Experiments and Discussion

104

Chapter 5

Multilingual Experiments

Outline

This chapter presents our experiment settings and the comparison of experiment results

with the state-of-the-art techniques. To make our experiments replicable, we explain

how to initialize the model parameterss and describe our controlled variables. The re-

sults are presented in three aspects: (1) multilingual experiments in which we compare

our results with the related work and with PASCAL Challenge (2) long-tail dependen-

cies (3) scalability of language parameters.

5.1 Methods

5.1.1 Gold Standard and Test Corpus

We use the CoNLL-2006 dependency banks as the gold standard and testing data we

have already prepared following the procedure described in Section 2.5.3. We evaluate

our method on sentence lengths 10, 15, and 20 of all 14 languages.

5.1.2 Training and Evaluation

Our experimental procedure is similar to standard completely unsupervised parser in-

duction. We are attempting to recover syntactic structures from sequences of POS tags

instead of surface words to avoid the data sparsity issue. We do not separate the testing

dataset from the training one. We consider this practice sound and safe from potential

data-overfitting issues because the syntactic prototypes are derived directly from the

interview and the treebank manuals, and are blind to the gold-standard dependency

105

Chapter 5. Multilingual Experiments 106

structures. Guided by these syntactic prototypes, we approximate the parsing model

with Variational Bayesian EM, treating POS tag sequences as observed and the syntac-

tic structures produced by the CKY algorithm as unobserved. We then reproduce the

treebanks from each POS tag sequence with the models and evaluate the accuracy of

directed dependency recovery.

In evaluation, we assess the accuracy of the parser by head-to-head comparison

of the dependency relations of our parsed trees with the gold-standard dependency

relations described in the HEAD field in the CoNLL-X Shared Task 2006’s format.

We do not take into account any labeled dependency relations described in DEPREL

and PDEPREL.

5.1.3 Language Parameters

We make use of the language parameters for each language elicited from consultation

with our grammar compendiums. We closely follow the method described in Sec-

tion 3.2.

5.1.4 Parameter Initialization

We set the initial values of the rule parameters at random. We set the initial parameter

for a rule of the form A→ X by sampling from the uniform distribution:

π(0)(A→ X) ∼ Uniform(
αA→X
100

, αA→X) (5.1)

where each q ∈ Q is a packed chart in the datasetQ, the quantity αA→X is the pseudo-

probability of the rule defined by:

αA→X =

∑
q∈Q

∑
I∈items(q) #I(A→ X)∑

q∈Q
∑

I∈items(q)

∑
X′ #I(A→ X ′)

(5.2)

and #I(A→ X) is defined as:

#I(A→ X) =

1 if type(I) = A and X ∈ prod(I)

0 otherwise
(5.3)

Once we obtain all initial parameters π(0) we normalize them before estimating them

with the EM Algorithm.

Chapter 5. Multilingual Experiments 107

5.1.5 Controlled Variables

There are three controlled variables in our experiments: prior hyperparameters, the

expressiveness of parsing models, and the number of EM iterations used in parameter

adjustment.

Prior hyperparameters: We assign the hyperparameters for wildcard rules and sen-

tence formation rules with 10.0, and 10000.0, respectively, while the normal

CDG derivation rules are assigned with 1.0. We believe that the parameter es-

timation for wildcard rules and sentence formation should be less sensitive to

noise.

Parsing models: We investigate the effects of the expressiveness of each parsing model

in prototype-driven grammar induction. Recalling from Section 4.2, we experi-

ment on six parsing models: Model 0 to Model 5. Each of these is assessed for

its expressiveness — capability of capturing frequent word orders. We anticipate

that the more expressive a parsing model is, the more accuracy we can achieve

in grammar induction given that the language parameters can adequately capture

most frequent word orders.

Number of EM iterations: We fix the number of iterations for the EM algorithm to

at most five iterations for each experiment. We set the convergence threshold for

the EM Algorithm to 10−6.

Number of language parameters: We investigate the effects of our language param-

eters in prototype-driven grammar induction. We vary the number of language

parameters used in the syntactic prototype in four levels: the first 3 parameters,

the first 16 parameters, the first 27 parameters, and all parameters. Hypotheti-

cally, the accuracy rapidly rises and starts to saturate as we increase the number

of language parameters, because the first parameters are designed to capture

most frequent word orders.

5.1.6 Baseline Systems

We compare our results with three prototype-driven parsers (Naseem et al., 2010;

Boonkwan and Steedman, 2011; Bisk and Hockenmaier, 2012b) and two unsuper-

vised parsers (Gillenwater et al., 2010; Cohn et al., 2010). Among those, our former

Chapter 5. Multilingual Experiments 108

system (Boonkwan and Steedman, 2011) plays an important role to this thesis as it is

a proof-of-concept study towards the use of our syntactic prototype.

The most significant difference between Boonkwan and Steedman (2011) and this

thesis is the use of category penalty score in decoding, which is based on the assump-

tion that simpler categories tend to be used more frequently than the more complex

ones. From the experiments, the penalty score is likely to overwhelm the estimated

model parameters. Additional offline experiments conducted after we published this

paper show that we can expunge the use of category penalty score by simply adjusting

the prior hyperparameters to those described in Section 5.1.5. Therefore, the category

penalty score is no longer used in this thesis.

5.2 Results

5.2.1 Experiment 1

This section presents experimental results for grammar induction over all languages

attempted. We compare our results with three prototype-driven parsers (Naseem et

al., 2010; Boonkwan and Steedman, 2011; Bisk and Hockenmaier, 2012b) and two

unsupervised parsers (Gillenwater et al., 2010; Cohn et al., 2010). The accuracy com-

parison is shown in Table 5.1. We report only the best results yielded from our models

which are also annotated to the numbers (e.g. 77.14 (M0) is the number from Model

0). Two of them (Cohn et al., 2010; Bisk and Hockenmaier, 2012b) only report their

performance in EN10, so theirs will be mentioned in the content instead.

Our method significantly outperforms the state-of-the-art techniques on 13 out of

14 languages (BU10, CH10, CZ10, DA10, DU10, EN10, DE10, JA10, PO10, ES10,

SL10, SV10, and TU10). The language parameters acquired by short interview (as in

CH10 and JA10) perform as well as those induced from translations and word align-

ment produced by Google Translate (as in DA10, DU10, PO10, ES10, and SV10) do.

There is however no prior work on AR10 so it is presented without any compared

baselines.

It is worth comparing the performance of each technique on EN10. Our system out-

performs the state-of-the-art techniques including Boonkwan and Steedman’s (2011)

prototype-driven grammar induction method. Our method also outperforms Bisk and

Hockenmaier’s (2012b) semi-supervised CCG parser (F1 = 71.5%) and Cohn et al.’s

(2010)’s unsupervised TSG parser (F1 = 65.9%).

Chapter 5. Multilingual Experiments 109

Table 5.1: Directed dependency accuracy (F1) of grammar induction against

corpora 10. We compare our results with three baselines: #1: Naseem et al.

(2010) #2: Gillenwater et al. (2010) #3: Boonkwan and Steedman (2011).

Languages Our Best Averages S.D.
Baselines

#1 #2 #3

PO10 77.14 (M0) 72.73 2.89 71.5 49.5 -

EN10 76.81 (M5) 72.79 3.49 71.9 64.4 75.47

JA10 72.53 (M2) 67.17 4.75 - 59.4 68.55

ES10 71.43 (M0) 68.49 2.20 64.8 57.9 -

SV10 70.36 (M0) 62.70 2.42 63.3 41.4 -

CH10 66.09 (M0) 61.47 2.76 - 35.77 62.25

BU10 65.76 (M2) 59.13 6.03 - 59.8 -

AR10 64.60 (M0) 55.28 4.90 - - -

CZ10 63.76 (M1) 63.18 0.51 - 54.6 54.54

DA10 63.64 (M5) 60.05 2.00 51.9 - -

TU10 63.62 (M2) 58.96 3.24 - 56.9 -

DE10 59.91 (M0) 54.51 2.89 - 45.7 56.71

SL10 58.44 (M1) 52.34 7.03 50.6 51.2 -

DU10 53.97 (M0) 50.12 3.67 - 38.8 -

Chapter 5. Multilingual Experiments 110

Table 5.2: Average directed dependency accuracies (F1) of each model against

corpora 10, ordered by their averages.

Models Average F1 S.D.

M0 64.52 6.70

M2 63.11 8.29

M1 62.16 8.23

M5 60.60 7.81

M3 59.18 6.68

M4 58.54 8.11

We also report the across-language average accuracies of each model on corpora 10

as shown in Table 5.2. The trade-off between the accuracy and the model expressivity

is obvious. In general, Model 0 seems to outperform the other models although it is

the least expressive. We hypothesize that the other models bring about the issue of

data sparsity, thus deteriorating the accuracies. Models 1 and 2 outperform Models 3

and 4 although the former models are less expressive due to the same reason. Model 5,

however, outperforms Models 3 and 4, possibly because its expressivity starts to help

capture frequent dependency types.

5.2.2 Experiment 2

Recently, Gelling and Cohn (2012) organized a competition on linguistic structure

induction in which various unsupervised parsers are compared against each other on

lengths 10 and 15. Slightly different from ours, the set of languages for the competition

include Arabic, Basque, Czech, Danish, English (PTB), English (CHILDES Corpus),

Portuguese, Slovene, and Swedish; therefore, we compare only the languages available

in our repository.

Since the experiment protocol for the competition is confidential, concealing the

amount of training data, we present the evaluation on lengths 10 and 15 of the models

trained on length 15, as shown in Table 5.3. We do not combine these results with

Table 5.1 due to incompatibility of the training and evaluation schemes. To the best of

our knowledge, they declared the sentence lengths they used for training (10 and 15)

and the sentence length for evaluation (10), but we do not know if they separated the

training and test sets or combined them, leaving us no choice but to separate the results

Chapter 5. Multilingual Experiments 111

into two tables.

In the competition, our system outperforms the participating systems on Czech,

Danish, Dutch, English, and Portuguese when evaluating the models trained on length

10. Our results on Arabic and Slovene are slightly inferior to those of PASCAL Chal-

lenge’s participants while the result of Portuguese is significantly lower by 6%. Our

system underperforms in Arabic, Slovene, and Swedish, most of which done by Tu

(2012), when assessed on lengths 10, whereas our system outperforms the others on

Swedish on length 15. It is noticeable that his Swedish accuracy significantly drops by

10% while ours does by only 1%. It implies that his Swedish model overfits frequent

dependency types as the accuracy is deteriorated by long-tail dependencies.

5.2.3 Experiment 3

We investigate the scalability of our syntactic prototypes on long-tail dependencies.

Figure 5.1 (full detail in Table 5.4) shows F1 scores of directed dependency accuracy

on various sentence lengths (up to 10, 15, and 20 words) on each language when our

best parsing models are used. The accuracy trends of most languages conform to each

other where the accuracy decreases and seem to saturate as the input sentences get

longer. It is worth noticing that the accuracy in Bulgarian, Chinese, Danish, Dutch,

Spanish, Portuguese, and Turkish vary within 10% F1 range in corpora 20. It suggests

to us that it is easier to capture most frequently used rules with the syntactic prototypes.

Using for calculating the similarity between dependency structures annotated in

different schemes, the TEDEVAL scores of our system show that the F1 scores drop

because of the discrepancy of annotation schemes. Regardless of the dependency

schemes, all scores seem much less sensitive to the long-tail dependencies because

these scores drop within less than 10% in corpora 20 for all languages.

5.2.4 Experiment 4

We study the effects of syntactic prototypes in grammar induction by varying the num-

ber of syntactic constraints, when our best parsing models are used. The constraints

are arranged in order of frequency in Table 3.1 and fed into the system. In Figure 5.2

(full detail in Table 5.5), the overall trend is that accuracy on all languages increases

as we add more syntactic constraints to the syntactic prototypes. However, in Ara-

bic, Czech, Dutch, Spanish, Japanese, and Slovene, the accuracy marginally decreases

when we used all constraints, signifying inherent conflicts of the syntactic prototypes.

Chapter 5. Multilingual Experiments 112

Table 5.3: Directed dependency accuracy (F1) of grammar induction against

corpora of length 10 where the models are trained on lengths 10 and 15. We

compare our results with three baselines: #1: Bisk and Hockenmaier (2012)

#2: maximum accuracies quoted from PASCAL Challenge (Gelling et al., 2012)

#3: Blunsom and Cohn (2010).

Model Evaluated Baselines Model Evaluated Baselines

trained on on length 10 #1 #2 #3 trained on on length 10 #1 #2 #3

AR10 64.60 (M0) 41.6 66.67 60.8 DE10 59.91 (M0) - - -

BU10 65.76 (M2) - - - JA10 72.53 (M2) - - -

CH10 66.09 (M0) - - - PO10 77.14 (M0) 70.8 76.28 52.4

CZ10 63.76 (M1) 45.0 61.34 47.9 ES10 71.43 (M0) - - -

DA10 63.64 (M5) 46.4 61.38 44.7 SL10 58.44 (M1) 49.6 67.63 62.6

DU10 53.97 (M0) 49.7 51.72 51.8 SV10 70.36 (M0) 63.7 76.54 63.2

EN10 76.81 (M5) 68.2 74.67 68.6 TU10 63.62 (M2) - - -

Model Evaluated Baselines Model Evaluated Baselines

trained on on length 10 #1 #2 #3 trained on on length 10 #1 #2 #3

AR15 66.07 (M0) 43.7 68.16 58.4 DE15 63.11 (M0) - - -

BU15 67.53 (M1) - - - JA15 72.71 (M2) - - -

CH15 66.44 (M0) - - - PO15 76.33 (M0) 67.2 69.47 50.2

CZ15 63.65 (M1) 38.9 56.49 43.1 ES15 71.01 (M0) - - -

DA15 63.42 (M5) 43.8 57.11 39.4 SL15 59.56 (M1) 49.6 63.34 57.9

DU15 56.28 (M3) 43.6 52.26 52.0 SV15 69.09 (M0) 57.0 66.79 56.6

EN15 75.26 (M5) 59.6 67.43 63.3 TU15 62.63 (M2) - - -

Chapter 5. Multilingual Experiments 113

 0

 20

 40

 60

 80

 100

AR BU CH CZ DA DE DU EN ES JA PO SL SV TU

D
ire

ct
ed

 a
cc

ur
ac

y

Parsing F1 Accuracies by Sentence Length

Sentence Lengths
10
15
20

(a) F1 accuracies

 0

 20

 40

 60

 80

 100

AR BU CH CZ DA DE DU EN ES JA PO SL SV TU

T
E

D
E

V
A

L

TEDEVAL Accuracies by Sentence Length

Sentence Lengths
10
15
20

(b) TEDEVAL accuracies

Figure 5.1: Accuracy of dependency recovery on corpora of various sentence

lengths

Chapter 5. Multilingual Experiments 114

Table 5.4: Accuracies of dependency recovery on corpora of various sentence

lengths

Language
F1 TEDEVAL

10 15 20 10 15 20

AR 64.60 58.97 52.83 86.41 82.72 79.92

BU 65.76 61.51 56.27 79.82 77.78 76.59

CH 66.09 63.44 56.63 87.75 86.51 84.31

CZ 63.76 58.27 51.92 86.80 83.65 80.74

DA 63.64 58.16 54.82 86.23 82.21 79.93

DU 53.97 47.67 46.77 83.73 80.03 79.16

EN 76.81 69.00 64.86 90.55 86.05 83.43

DE 59.91 54.83 44.44 79.71 77.59 77.99

JA 72.53 65.71 62.30 84.09 80.03 78.29

PO 77.14 73.10 71.08 90.29 86.97 85.01

SL 58.44 52.09 48.80 86.46 83.17 81.62

ES 71.43 65.06 62.67 86.97 83.13 80.37

SV 66.24 58.93 56.09 86.81 83.38 81.84

TU 63.32 57.94 54.12 83.92 80.97 78.72

Chapter 5. Multilingual Experiments 115

Table 5.5: Accuracies of dependency recovery on corpora of length 10 via

different amounts of syntactic constraints

Languages
F1 TEDEVAL

First 3 First 16 First 27 All First 3 First 16 First 27 All

AR10 53.26 64.83 65.14 64.60 83.04 86.50 86.73 86.41

BU10 58.78 60.55 60.69 65.76 78.92 79.96 79.70 79.82

CH10 50.65 66.13 66.24 66.09 85.67 87.61 87.79 87.75

CZ10 62.11 64.43 64.15 63.76 86.46 86.96 86.94 86.80

DA10 36.89 56.82 62.18 63.64 75.39 83.59 85.82 86.23

DU10 48.13 56.25 55.89 53.97 82.03 84.25 84.17 83.73

EN10 60.36 74.99 76.08 76.81 88.66 90.05 90.29 90.55

DE10 58.43 59.20 59.69 59.91 79.90 80.11 80.23 79.71

JA10 70.40 73.04 73.17 72.53 83.80 83.92 84.05 84.09

PO10 68.02 77.55 77.21 77.14 87.39 90.13 90.33 90.29

SL10 59.01 58.24 58.42 58.44 86.01 85.94 86.38 86.46

ES10 63.85 71.12 71.92 71.43 85.50 86.90 87.03 86.97

SV10 58.09 66.13 66.37 66.24 84.83 86.06 86.31 86.81

TU10 49.07 60.69 62.93 63.32 80.67 83.69 83.91 83.92

Moreover, the accuracy of Slovene only slightly improves when we applied all rules

in the syntactic prototype. This suggests us that there are perhaps peculiar linguistic

structure in Slovene that we have to take into account in the future.

In contrast, we observe that the TEDEVAL accuracies tend to follow the hypothesis

that: the more language parameters put to the syntactic prototype, the more accuracy

we can achieve. From the TEDEVAL graph, it is worth noticing that the first three rules

seem to cope with most frequent dependency types. The later-introduced language

parameters are shown to improve the coverage in a smaller degree because the accuracy

tends to saturate after the first 16 parameters.

5.3 Summary

We have presented our experiment settings and compared our experiment results with

the state-of-the-art techniques. We have explained how to initialize the model param-

eters and described our controlled variables. Compared with the related work, our

Chapter 5. Multilingual Experiments 116

 0

 20

 40

 60

 80

 100

AR10 BU10 CH10 CZ10 DA10 DE10 DU10 EN10 ES10 JA10 PO10 SL10 SV10 TU10

D
ire

ct
ed

 a
cc

ur
ac

y

Parsing F1 Accuracies by Number of Parameters

Language Parameters
First 3

First 16
First 27
All rules

(a) F1 accuracies

 0

 20

 40

 60

 80

 100

AR10 BU10 CH10 CZ10 DA10 DE10 DU10 EN10 ES10 JA10 PO10 SL10 SV10 TU10

T
E

D
E

V
A

L
sc

or
e

TEDEVAL Accuracies by Number of Parameters

Language Parameters
First 3

First 16
First 27
All rules

(b) TEDEVAL accuracies

Figure 5.2: Accuracies of dependency recovery on corpora of length 10 via

different amounts of syntactic constraints. We varied the amounts of given

language parameters as follows: first 3 rules (groups 1-2), first 16 rules (groups

1-5), first 27 rules (groups 1-7), and all rules.

Chapter 5. Multilingual Experiments 117

method outperforms those state-of-the-art techniques.

To answer Research Question 3: With only 10 man-hours for preparing syntactic

prototypes, our method improves the accuracy of directed dependency recovery over

the state-of-the-art Gillenwater et al.’s (2010) completely unsupervised parser in: (1)

Chinese by 30.32% (2) Swedish by 28.96% (3) Portuguese by 37.64% (4) Dutch by

15.17% (5) German by 14.21% (6) Spanish by 13.53% (7) Japanese by 13.13% (8)

English by 12.41% (9) Czech by 9.16% (10) Slovene by 7.24% (11) Turkish by 6.72%

and (12) Bulgarian by 5.96%.

We have noted that although the directed dependency accuracies of some languages

are below 60%, their TEDEVAL scores are still satisfactory (approximately 80%). This

suggests to us that our parsed trees are, in fact, closely related to the gold-standard trees

and that our dependency recovery scores are unduly depressed by the vagaries of the

PASCAL annotation schemes across the subcorpora.

From the across-language average accuracies of each model, we found that the

trade-off between the accuracies and the model expressivity due to the data sparsity

issue is obvious. We found that Model 0 seems to outperform the others although it is

the least expressive.

We have compared our results with PASCAL Challenge on linguistic structure

induction. In five out of eight languages (Czech, Danish, Dutch, English, and Por-

tuguese), our method outperforms the others, while in the other languages (Arabic,

Slovene, and Swedish) our results are not significantly inferior.

We have also evaluated our method on different sentence lengths — 10, 15, and 20,

to evaluate the scalability to long-tail dependencies of our language parameters. We

found that, although the accuracy decreases as the sentence length increases to 15 and

20, the directed dependency accuracy decreases within the range of 10% in Bulgarian,

Chinese, Danish, Dutch, Spanish, Portuguese, and Turkish.

Finally, we have studied the effects of language parameters towards the accuracy

improvement. We found in almost all languages that the more language parameters we

use in the syntactic prototype, the more accuracy we can achieve.

The next chapter will further attempt to analyze the performance improvement and

the errors produced by our method.

Chapter 6

Error Analysis

Outline

In this chapter, we present the performance evaluation of our method when applied

to each language in four ways. First, we compare the directed dependency accuracies

of each model when evaluated on the corpora of length 10 and compare them to their

corresponding TEDEVAL scores. Then we analyze the best model that yields the most

directed dependency accuracy in terms of performance improvement according to our

language parameters. We further analyze the model’s capability of coping with long-

tail dependencies in longer sentence lengths. Finally, we discuss the errors produced

by the parser in each language in terms of over- and under-generation.

6.1 Arabic

We conduct across-the-board experiments to compare the performance of our mod-

els on Arabic whose word order is relatively rigid. From Figure 6.1(a), the simplest

Model 0, a probabilistic context-free grammar, yields the best directed dependency ac-

curacy on AR10 and it outperforms the others although there are only three word order

parameters used in the syntactic prototype. The F1 accuracy saturates quickly as we

start to introduce more parameters into the syntactic prototype, and the F1 accuracy

slightly drops when we use all parameters. This trend also occurs in Model 0’s TEDE-

VAL score in Figure 6.1(b). It should be noted that its TEDEVAL score is remarkably

higher than its F1 — indicating that our parsed trees and the Arabic gold standard ones

are, in fact, closely related.

Model 0, the least expressive model, wins the competition while the rest seem to

118

Chapter 6. Error Analysis 119

cluster below it. The order of performance is as follows: Models 0 > Models 1, 2 >

Models 3, 4 > Model 5. It suggests that complex models do not always increase the

coverage of long-tail dependencies. In this case, simpler models seem to outperform

the more complex ones. The order of performance also shows that the lexical and

headword emission probabilities (shared by Models 3, 4, and 5) are sources of error in

Arabic.

The majority of our models follow the trend in which the accuracy improves when

we introduce more language parameters. However, there are some distortion in the

accuracy trends of Model 3 and Model 5 whose F1 accuracies are lowest. Model 3

behaves differently from the others where its accuracy falls and later rises, as shown

in Figure 6.1(b), when more language parameters are used. Model 5’s behavior is akin

to the other ones when considered only the F1, but its TEDEVAL score rises and then

drops when full language parameters are used.

We also study the performance improvement in Model 0 when more language pa-

rameters are introduced to the syntactic prototype. It can be seen in Figure 6.1(c) that

most frequent dependency types are fully captured by the first three parameters, such

as Q < N and Z > Q. When we gradually introduce more parameters, partially cap-

tured dependency types such as P < Nga, Nga < Nga, P < N, and N < N become fully

captured. Incorporating first 27 rules only slightly improves the accuracy because it

partially captures several more dependency types and slightly deteriorates the existing

captures such as C < Z. Two dependency types Nnom > Q and Nnom > Nnom are

never captured due to the discrepancy of annotation schemes.

In Figure 6.1(d) (the graph is in the log scale) we observe Model 0’s capability

of learning long-tail dependencies. The already captured dependency types are still

captured in longer lengths but most of them are rather partially captured than fully

captured due to a much larger search space. Some dependency types that do not exist

in AR10 become partially captured in longer lengths 15 and 20, while the others are

not captured at all.

We finally investigate the over- and under-generation of Model 0 in Arabic. We

list the top-10 over- and under-generation of dependency types in Arabic of all lengths

in Table 6.1. There are, in general, three categories of problems: NP dependency

annotation, PP attachment, and coordinate structure annotation. On length 10, NP

structure annotation errors are predominant e.g. Nnom < Q v.s. Nnom > Q and Nnom

< Nnom v.s. Nnom > Nnom. The ambiguity of PP attachment starts to take place,

while the coordinate structure annotation issue rarely occurs. This is due to the fact

Chapter 6. Error Analysis 120

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

A
R

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es
of

A
R

10

 7
9

 8
0

 8
1

 8
2

 8
3

 8
4

 8
5

 8
6

 8
7 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 A

R
1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es
of

A
R

10

Q <
 N

P <
 N

gaZ >
 Q

Nga
 <

 N
ga

P <
 N

N <
 N

Nno
m

 >
 Q

Nga
 <

 AVI <
 PNno
m

 <
 P

Nno
m

 <
 N

ga

Nno
m

 >
 V

I
Nga

 <
 PNno

m
 <

 A
N <

 A
VI <

 NN <
 P

VI <
 N

ge
n

N <
 N

gaZ >
 Z

C >
 V

PN <
 S

gaP <
 Z

VP <
 PN <

 Z
Z >

 V
IVP <
 NNge
n

<
A

Nga
 <

 ZC <
 N

Nno
m

 >
 N

no
m

Nge
n

<
P

Nga
 <

 NZ >
 C

Nga
 >

 CC <
 Z

C >
 V

IA <
 N

gaZ >
 N

VP <
 Z

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 A

R
1

0
 (

M
o

d
e

l
0

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

on
A

R
10

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e
s

 o
n

 A
R

 (
M

o
d

e
l

0
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
A

R
20

A
R

15
A

R
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

1:
P

ar
si

ng
ac

cu
ra

ci
es

of
A

ra
bi

c

Chapter 6. Error Analysis 121

that the Arabic corpus is relatively small in terms of number of sentences compared to

the others and Arabic sentences tend to be long. On length 15, NP structure annotation

errors are still predominant, while PP attachment and errors from coordinate structure

annotation become more frequent e.g. N < P, VP < P, C < VP, and C > VI. On length 20,

errors from coordinate structure annotation and PP attachment become predominant,

suggesting that they are the cause of the accuracy deterioration on longer sentence

lengths.

6.2 Bulgarian

We study the performance of our system in parsing Bulgarian whose word order is

quite flexible. In Figure 6.2(a), we found that Model 2 outperforms the others in terms

of F1 when the full set of language parameters are put into the syntactic prototype. The

accuracy of Model 2 slowly grows as we incorporate more language parameters and

rises when we use all parameters. This trend contradicts its TEDEVAL performance

tendency where it performs the second worst while the accuracy saturates after the first

16 language parameters are used. This signifies striking discrepancy between our parse

trees and the gold standard ones.

Model 2 wins the competition while the rest seem to cluster below it. The order of

performance is as follows: Models 1, 2 > Model 0 > Model 3 > Model 4 > Model 5. It

suggests that complex models do not always increase the coverage of long-tail depen-

dencies. In this case, simpler models seem to outperform the more complex ones. The

order of performance also shows that generative dependency models perform well on

Bulgarian while lexical and headword emission probabilities (in Model 5) deteriorate

the accuracy.

In terms of F1, the majority of the models (Models 0, 3, 4, 5) follow the trend

in which the accuracy rapidly increases as we incorporate the first three language pa-

rameters, then starts to saturate at the first 27 parameters, and finally drops when all

parameters are used. Contrarily, their TEDEVAL scores slowly decay until the first 27

parameters and suddenly rise when all parameters are used. Model 0’s TEDEVAL per-

formance slightly drops instead of rising when all parameters are used. Model 1 and

Model 2, both being generative dependency models, behave similarly considering their

F1 scores, but they remarkably differ from each other in terms of TEDEVAL. Model

1’s TEDEVAL score rises until the first 16 parameters are used then increasingly dete-

riorates.

Chapter 6. Error Analysis 122

Table 6.1: Top-10 errors in Arabic

(a) Over-generation

Type on AR10 Freq Type on AR15 Freq Type on AR20 Freq

Nnom < Q 35 Nnom < Q 37 C < VP 64

Nnom < A 20 N < P 31 N < P 52

Nnom < P 13 P > N 24 P > N 43

Nnom < Nnom 7 Nnom < A 22 Nnom > Q 39

VI < P 6 VP < N 19 SD < N 32

Nga < P 6 SD < N 19 Nnom < P 30

Nnom < Nga 5 C < VP 19 N < C 28

Nnom < Z 4 C > VI 19 N < A 28

Ngen < P 4 N < C 17 C > VI 28

N < C 4 C > VI 17 C < VI 28

(b) Under-generation

Type on AR10 Freq Type on AR15 Freq Type on AR20 Freq

Nnom > Q 35 Nnom > Q 35 VP < P 61

N < A 11 Nga < P 25 C > VP 43

Nga < Nga 10 Nga < A 25 VI < P 36

Nga < A 10 VP < P 23 Nnom > Q 35

VI < P 8 VI < P 20 P < C 33

Nga < P 8 Nga < Nga 16 VP < C 30

N < Nga 8 P < C 15 Nga < P 29

Z > Z 7 N < N 14 Nga < A 27

Nnom > Nnom 7 N < A 14 N > C 27

N < P 6 N < Nga 12 FN > VI 25

Chapter 6. Error Analysis 123

It is obvious that the less frequent language parameters (e.g. copula, gerunds, and

prodrops) account for the rapid accuracy improvement when all language parameters

are used. Since Model 1 and Model 2 are both generative dependency models, we

hypothesize that the role-emission probabilities can cope with Bulgarian’s quite flex-

ible word order, and the search space of Bulgarian can be greatly restrained by those

parameters. However, our annotation scheme for the gerundial structures differs from

that of the gold standard, resulting in slightly reduced TEDEVAL scores.

We study the performance improvement in Model 2 when more language parame-

ters are introduced to the syntactic prototype. Figure 6.2(c) shows that most frequent

dependency types, such as R < N, A > N, Vt < N, and Tx < Vt, are partially captured

and they are further, yet only marginally, captured as more language parameters are

introduced. Finally frequent dependency types are dramatically captured by the help

of the search space restrained by the less frequent language parameters. Only a few

dependency types are less captured when the full set of language parameters are used,

such as N < R and Tx < Pp.

In Figure 6.2(d), Model 2 is capable of learning long-tail dependencies. Given the

full set of language parameters, the already captured dependency types in BU10 is still

captured in the longer sentence lengths and a few dependency types are not captured

until longer lengths 15 and 20. Some dependency types are always neglected in all

sentence lengths as a result of the discrepancy of annotation schemes.

We finally investigate the over- and under-generation of Model 2 in Bulgarian.

We list the top-10 over- and under-generation of dependency types in Bulgarian of all

lengths in Table 6.2. There are, in general, four categories of problems: NP depen-

dency annotation, PP attachment, PP dependency annotation, and dependency anno-

tation of the copula. On length 10, PP attachment, the predominant problem, starts

to take place as seen in Vt < R and N < R. NP and PP dependency annotation also

cause errors such as A < N v.s. A > N and R > N v.s. R < N. There is also ambiguity

in determining the copulative structure. On length 15, PP attachment is predominant,

while NP and PP annotation errors become more frequent and the copulative structure

is less used. On length 20, NP structure annotation errors and PP attachment become

predominant, suggesting that they are the cause of the accuracy deterioration on longer

sentence lengths.

Chapter 6. Error Analysis 124

 5
0

 5
2

 5
4

 5
6

 5
8

 6
0

 6
2

 6
4

 6
6

 6
8

 7
0 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

B
U

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 7
8.

5

 7
9

 7
9.

5

 8
0

 8
0.

5

 8
1

 8
1.

5

 8
2 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 B

U
1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es

R <
 N

A >
 N

N <
 R

Vt <
 NPp
>

VtN <
 N

N >
 V

tTx <
 V

tVt <
 RN >
 C

OP
NUM

 >
 NCOP <
 NCOP <
 V

t
Tx <

 P
pCOP <
 RVi <

 RVt <
 T

xTx <
 ND >
 V

tN >
 V

iTx <
 RVt <
 P

pVi <
 T

xR >
 V

tN <
 P

sTx <
 V

iPd
>

NCOP <
 AR <

 P
pPp

>
ViTn

>
VtPp

>
COP

N <
 C

pN >
 T

xVt <
 V

tCs <
 V

tVt <
 DN <
 H

Vi <
 NVt <
 C

s

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 B

U
1

0
 (

M
o

d
e

l
2

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e
s

 o
n

 B
U

 (
M

o
d

e
l

2
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
B

U
20

B
U

15
B

U
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

2:
P

ar
si

ng
ac

cu
ra

ci
es

of
B

ul
ga

ria
n

Chapter 6. Error Analysis 125

Table 6.2: Top-10 errors in Bulgarian

(a) Over-generation

Type on BU10 Freq Type on BU15 Freq Type on BU20 Freq

Vt < R 598 Vt < R 1499 A < N 3108

Vt < N 563 Vt < N 1405 Vt < R 2195

A < N 367 A < N 1019 Vt < N 2079

Pp > Vt 314 Cp > N 857 Cp > N 1309

Cp > N 284 Pp > Vt 567 NUM < N 1122

N < R 276 Vt > Tx 517 R < A 1103

Vt > Tx 270 NUM < N 501 Vt < Vt 814

COP < A 224 N < R 494 Vt > Tx 788

Vi > Tx 199 Vt < Vt 479 Pp > Vt 747

R > N 186 COP < A 425 Vi < R 710

(b) Under-generation

Type on BU10 Freq Type on BU15 Freq Type on BU20 Freq

R < N 482 N < N 1521 N < N 2651

N < R 442 N < R 1084 A > N 1746

N < N 442 Tx < N 906 R < N 1577

A > N 389 Tx < R 797 N < R 1523

Tx < N 375 R < N 755 Tx < N 1463

Tx < Pp 343 N < Cp 655 Tx < R 1345

Tx < R 297 A > N 639 N < Cp 1155

COP < R 293 Tx < Pp 571 COP < R 906

Vt < R 262 COP < R 515 Tx < Pp 890

Vt < Tx 260 Vt < R 420 Vt < R 820

Chapter 6. Error Analysis 126

6.3 Chinese

Across-the-board experiments are conducted to show the performance of our system

on Chinese, whose word order is rigid. From Figure 6.3(a), Model 0 significantly

outperforms the other models after the first 16 language parameters are used. The F1

accuracy rises and seems to saturate when more language parameters are provided.

This also occurs in Model 0’s TEDEVAL score but it increases in a much narrower

range. The TEDEVAL is also remarkably high although there are only three first pa-

rameters in the syntactic prototype and it still rises when more parameters are given.

This suggests us that our parsed trees and the gold standard trees are closely related.

Model 0 wins the competition while the rest seem to cluster below it. The order of

performance is as follows: Model 0 > Model 5 > Models 2, 3, 4 > Model 1. It suggests

that complex models do not always increase the coverage of long-tail dependencies.

In this case, simpler models seem to outperform the more complex ones. The order of

performance also shows that the lexical emission probability (in Model 1) is a source

of error.

The majority of the models follow this trend where the F1 accuracy quickly in-

creases and starts to saturate or slightly drop when the first 16 rules are used, and

TEDEVAL scores also closely follow this trend. In Figure 6.3(b), the accuracies of

Model 3 and Model 4 drop when the entire set of language parameters are used, as

shown by their TEDEVAL accuracies. Model 4 seems to be more sensitive to noise

than Model 3 as the decrease of the first’s accuracy is larger than that of the latter. In

constrast, Model 5 continues to rise when all the language parameters are used. Since

Model 4 uses the headword emission probability while Model 3 uses the lexicon emis-

sion probability, we therefore infer that data sparsity in such probabilities may account

for the decrease of accuracy in these models.

As shown in Figure 6.3(c), the performance of Model 0 is improved by the language

parameters. Given the first three parameters, most of frequent dependency types are

partially captured such as NN > NN, DE > NN, and NN > DE, resulting in low F1

accuracy. When we introduce more rules to the syntactic prototype, these dependency

types become much more captured. Less frequent dependency types, on the other hand,

tend to be captured because of the use of the first three parameters. Incorporating the

full set of language parameters does not significantly improve the accuracy as the first

27 parameters have already captured frequent dependency types.

The log-scaled distribution in Figure 6.3(d) shows that a few new long-tail depen-

Chapter 6. Error Analysis 127

dency types are captured by Model 0 while the previously captured ones are further

captured. Despite the volume of the Chinese corpus, most sentences are relative short

at length, resulting in less number of long-tail dependencies to be captured. Our model

nevertheless does capture less frequent dependency types in longer lengths 15 and 20

but they are quite rare.

We finally investigate the over- and under-generation of Model 0 in Chinese. We

list the top-10 over- and under-generation of dependency types in Chinese of all lengths

in Table 6.3. There are, in general, four categories of problems: sentence-like NP am-

biguity (SNP), PP attachment, PP dependency annotation, and dependency annotation

of the auxiliary. On length 10, sentence-like NP ambiguity is the predominant problem,

such as VI < NN v.s. VI > NN. This is because the particle DE can be used as either

an adverb or a relative pronoun, resulting in two analyses of VI DE NN: [NP [RELC VI

DE] NN] and [VP [VP VI DE] NN]. Errors from PP dependency annotation also occurs,

i.e. PREP > NN v.s. PREP < NN. The auxiliary in Chinese are mis-identified as the

head as NN > MODAL. We expect PP attachment to take place as well, but because

the preposition is assigned not to be the head of the PP, the problem becomes struc-

turally hidden. On length 15, sentence-like NP ambiguity is still predominant, while

PP attachment, and errors from PP dependency annotation and the auxiliary annota-

tion become more frequent. On length 20, errors from annotating sentence-like NPs

and auxiliary become predominant, suggesting that they are the cause of the accuracy

deterioration on longer sentence lengths.

6.4 Czech

We assess across the table our models on parsing Czech, a morphologically rich lan-

guage with a flexible word order and non-projective dependency. As shown in Fig-

ure 6.4(a), Model 1 yields the best F1 accuracy on CZ10 and it outperforms the others

even though only the first three language parameters are used in the syntactic proto-

type. The accuracy rises to its maximum when we incorporate the first 16 parameters,

and slowly decreases when more parameters are incorporated. Model 1’s TEDEVAL

closely follows this trend, but it decreases in a smaller range. Our Czech parsed trees

are very close to the gold standards regardless of the discrepancy of annotation schemes

as the TEDEVAL scores are quite satisfactory.

Model 1 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Models 0, 1 > Models 3, 5 > Models 2, 4. It suggests

Chapter 6. Error Analysis 128

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

C
H

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 8
3.

5

 8
4

 8
4.

5

 8
5

 8
5.

5

 8
6

 8
6.

5

 8
7

 8
7.

5

 8
8 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 C

H
1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es

NN >
 N

NVT <
 N

NDE >
 N

NNN >
 V

TPREP <
 N

N

NN >
 V

IM
ODAL

>
VT

DM
 >

 N
N

ADV >
 V

I
VI >

 D
EADV >
 V

T
V <

 N
NDET >
 N

N
NN >

 D
EPREP >
 V

T
VI >

 N
NM

ODAL
>

VI

NN >
 V

COM
P

VCOM
P <

 N
N

VT <
 D

EC >
 V

TVT >
 D

EM
ODAL

>
VCOM

P

NN >
 CC <

 N
NPREP >

 V
I

VCOM
P <

 V
T

ADV >
 V

COM
P

PRO >
 V

T
VCOM

P <
 V

I

NN >
 VPRO >
 V

COM
P

C >
 V

IVT <
 V

TNN >
 P

OST

VI <
 TVI <
 V

IPREP <
 P

OST

M
ODAL

>
V

QUANT >
 V

T

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 C

H
1

0
 (

M
o

d
e

l
0

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e
s

 o
n

 C
H

 (
M

o
d

e
l

0
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
C

H
20

C
H

15
C

H
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

3:
P

ar
si

ng
ac

cu
ra

ci
es

of
C

hi
ne

se

Chapter 6. Error Analysis 129

Table 6.3: Top-10 errors in Chinese

(a) Over-generation

Type on CH10 Freq Type on CH15 Freq Type on CH20 Freq

VI < NN 5168 VI < NN 6453 VI < NN 8722

VI < DE 2990 VI < DE 3919 VI < DE 4619

PREP > NN 2219 PREP > NN 3124 VT < DE 3429

VT < DE 1974 VT < DE 2641 NN > MODAL 3310

VI < VT 1707 NN > DE 2177 VT < NN 2567

NN > MODAL 1696 VI < VT 2138 VI < VT 2418

VI < VI 1674 NN > MODAL 2128 VI < VI 2291

VT < VI 1660 VT < VI 2039 NN > DE 2270

NN > DE 1629 VI < VI 2028 VT < VI 2173

VT < NN 1394 VT < NN 1794 NN > VI 2058

(b) Under-generation

Type on CH10 Freq Type on CH15 Freq Type on CH20 Freq

DE > NN 6709 DE > NN 8436 NN > NN 11817

VI > NN 3436 VI > NN 4364 DE > NN 11099

PREP < NN 2983 PREP < NN 3908 DM > NN 4618

VI > DE 2831 VI > DE 3688 VI > NN 4568

DM > NN 2718 DM > NN 3435 VI > DE 3870

NN > VT 2467 NN > VT 3314 PREP < NN 3438

NN > VI 2405 PREP > VT 3308 DET > NN 3391

PREP > VT 2322 NN > VI 2785 NN > VT 2941

NN > NN 1831 VT > DE 2615 PREP > VT 2897

VT > DE 1821 NN > NN 2169 VT > DE 2528

Chapter 6. Error Analysis 130

that complex models do not always increase the coverage of long-tail dependencies.

In this case, simpler models seem to outperform the more complex ones. The order of

performance also shows that the mother-daughter probability (shared by Models 2 and

4) is a source of error.

The majority of our models follow this trend as shown in Figure 6.4(b) but the

accuracy starts to decay much later than Model 1. We observe that Model 0 and Model

1 perform well both in terms of F1 and TEDEVAL. More complex models — i.e.

Model 2, Model 3, Model 4, and Model 5 — tend to start out with a lower accuracy

when only the first three language parameters are used in the syntactic prototype. The

accuracy significantly increases as we feed the first 16 parameters and starts to saturate

when even more parameters are used. These complex models, as well as Model 2, yield

slightly decaying accuracy when the full set of language parameters are incorporated to

the syntactic prototype. We hypothesize that Czech’s flexible word order accounts for

the deterioration of the accuracy in these complex models. Models 3, 4, and 5 make use

of the lexicon emission probability πlex and the headword emission probability πhead

while Model 2 utilizes the daughter role emission probability πdtr, all of which based

on the probability of words and syntactic categories. The flexible word order may have

introduced a lot of syntactic categories in the lexicon inventory, exacerbating the data

sparsity issue.

Model 1 in Figure 6.4(c) shows that most of frequent dependency types are partially

or fully captured by the first three language parameters such as N1 > V-B, R < N6, V-

B < N1, and N1 < R. When increasing the number of parameters used, Model 1 still

carries on capturing more dependency types. There are two interesting dependency

types: J-^ < V-B and N4 < R as they are not captured. First, J-^ < V-B is captured

partially by the first three rules, but it is later less captured as we gradually increase the

number of the parameters used. N4 < R is never captured even though more language

papers are used.

In longer lengths, previously captured dependency types are further captured in

longer lengths 15 and 20 as depicted in Figure 6.4(d). Model 1 can also capture some

new dependency types while the rest are not captured at all.

We finally investigate the over- and under-generation of Model 1 in Czech. We list

the top-10 over- and under-generation of dependency types in Czech of all lengths in

Table 6.4. There are, in general, three categories of problems: NP dependency anno-

tation, PP attachment, and coordinate structure dependency annotation. On length 10,

errors from coordinate structure annotation are prevent, such as V-B < V-B v.s. J-^ <

Chapter 6. Error Analysis 131

 5
2

 5
4

 5
6

 5
8

 6
0

 6
2

 6
4

 6
6 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

C
Z

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 8
3.

5

 8
4

 8
4.

5

 8
5

 8
5.

5

 8
6

 8
6.

5

 8
7

 8
7.

5

 8
8 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 C

Z
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es

A1
>

N1N1
>

V-BR <
 N

6A2
>

N2N1
>

N1N1
<

N2A4
>

N4V-B
 <

 N
1

R <
 N

4R <
 N

2V-B
 <

 RN1
>

V-pN1
<

RV-B
 <

 N
4

D-b
 >

 V
-B

R >
 V

-BV-p
 <

 N
1

N4
<

N2V-B
 <

 V
-f

V-p
 <

 RN2
<

N2P-7
 >

 V
-B

A6
>

N6R <
 N

7V-p
 <

 N
4

R >
 V

-pD-b
 >

 V
-p

A7
>

N7N1
>

J-
^V-B

 <
 A

1
J-

^ <
 V

-BV-B
 <

 D
-b

P-7
 >

 V
-p

V-f
<

N4N7
<

N2J-
, <

 V
-BN4

<
RJ-

^ <
 N

1N6
<

N2R <
 N

3

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 C

Z
1

0
 (

M
o

d
e

l
1

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y
 T

y
p

e
s

 o
n

 C
Z

 (
M

o
d

e
l

1
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
C

Z
20

C
Z

15
C

Z
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

4:
P

ar
si

ng
ac

cu
ra

ci
es

of
C

ze
ch

Chapter 6. Error Analysis 132

V-B and V-c < V-p v.s. V-c > V-p. The NP dependency annotation is erroneous such as

N1 > N1 and N1 > NX. Of course, PP attachment has been expected and it is observed

as V-B < R, N1 < R, and N4 < R. On length 15, errors from the coordinate struc-

ture annotation are still predominant, while errors from NP structure annotation and

PP attachment are found. On length 20, PP attachment and errors from NP structure

annotation become predominant, suggesting that they are the cause of the accuracy

deterioration on longer sentence lengths.

6.5 Danish

Experiments for performance assessment are conducted to compare our models in Dan-

ish, a language with a rigid word order. In Figure 6.5(a), Model 5, the most complex

model of ours, yields the best directed dependency accuracy. The F1 accuracy quickly

rises and starts to saturate as we introduce more language parameters to the syntactic

prototype. Model 5’s TEDEVAL score also follows this trend but it is not the best

model among the others. Although its F1 accuracy is below 65%, its TEDEVAL score

is still satisfactory, indicating that our parsed trees are in fact closely related to the gold

standard ones.

Model 5 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Model 5 > Model 4 > Model 1 > Model 0, 2 > Model

3. This seems to follow our hypothetical trend where more complex models capture

long-tail dependency types more accurately. The order of performance also shows that

the lexical-emission probability (in Model 3) is a source of error.

When compared with Figure 6.5(b), the majority of our models follow the trend

where the F1 and TEDEVAL accuracies quickly rise and start to saturate as more

language parameters are incorporated into the syntactic prototype. At the full set of

language parameters, the range of the TEDEVAL scores is within only 2% while that

of the F1 scores is more than 5%.

Figure 6.5(c) shows the performance improvement of Model 5. It can be seen that

the first three rules are not as capable of capturing frequent dependency types in DA10

as we expected. SP < NC, VA < SP, VA < AN, NC > VA, and PI < NC are examples

of frequent dependency types that are only partially captured. These dependency types

however are better captured when we incorporate more language parameters into the

syntactic prototype. The capture of a few frequent dependency types e.g. AN > NC and

NP > NP, however, deteriorates as we increase the number of parameters. We notice

Chapter 6. Error Analysis 133

Table 6.4: Top-10 errors in Czech

(a) Over-generation

Type on CZ10 Freq Type on CZ15 Freq Type on CZ20 Freq

V-B < V-B 945 V-B < V-B 2992 R > V-B 4857

N1 > N1 923 R > V-B 2413 V-B < V-B 4239

N1 < NX 890 V-B < R 2161 V-c < V-p 3376

V-B < R 809 V-c < V-p 1893 R < R 3371

R > V-B 755 N1 > N1 1868 J-^ > V-B 2888

J-^ > V-B 733 N1 > V-B 1651 R > V-p 2801

V-c < V-p 642 V-p < R 1569 N1 > V-B 2357

N1 < R 560 J-^ > V-B 1488 V-B < V-p 2240

N1 < C-= 544 V-p < V-p 1419 V-B < V-f 2107

V-p < R 527 V-B < V-f 1312 D-b > V-B 2089

(b) Under-generation

Type on CZ10 Freq Type on CZ15 Freq Type on CZ20 Freq

R < N2 1177 R < N2 3688 V-B < R 4929

N1 < R 875 N1 < R 2308 N1 > N1 4783

J-^ < V-B 842 J-^ < V-B 1998 R < N2 4581

N4 < R 681 N4 < R 1931 N4 < R 4023

N1 > J-^ 674 J-, < V-B 1873 V-B < N1 3713

N1 > NX 659 V-c > V-p 1820 V-c > V-p 3683

V-c > V-p 621 V-B < R 1776 V-p < R 3214

J-, < V-B 620 N1 > J-^ 1759 N2 < R 3160

N1 < N1 608 N2 < R 1598 J-, < V-B 2947

V-B < R 582 V-B < N1 1591 J-^ < V-B 2759

Chapter 6. Error Analysis 134

that these dependency types do not correspond to the annotation scheme of Danish

noun phrases in which attachment directions are assigned in the opposite direction

(such as AN < NC and NP < NP).

As shown in the log-Zipfian distribution in Figure 6.5(d), Model 5 is able to steadily

capture long-tail dependency types from lengths 15 and 20. New less-frequent depen-

dency types are captured in DA15 most of the time. Some dependency types (AN

> NC and NP > NP) are always neglected in all sentence lengths as a result of the

discrepancy of the annotation schemes.

We finally investigate the over- and under-generation of Model 5 in Danish. We

list the top-10 over- and under-generation of dependency types in Danish of all lengths

in Table 6.5. There are, in general, three categories of problems: NP dependency

annotation, PP attachment, and coordinate structure annotation. On length 10, errors

from the NP dependency annotation are the predominant problem, such as AN < NC

v.s. AN > NC and NP < NP v.s. NP > NP. PP attachment is also observed as VA < SP

and NC < SP, while errors from coordinate structure annotation can be seen e.g. CC

> VA v.s. CC < VA, and VA < VA which has no counterpart due to the discrepancy

of such head assignment. On length 15, errors from NP dependency annotation are

still predominant, while PP attachment and errors from coordinate structure annotation

are still found. On length 20, the same proportion of the problems is still preserved,

suggesting that they are the cause of the accuracy deterioration on longer sentence

lengths.

6.6 Dutch

Despite its fixed word order, Dutch is a challenging language for the task of grammar

induction due to its renowned widespread use of non-projective dependency. We study

the performance of our models in parsing Dutch. From Figure 6.6(a), Model 0 yields

the best F1 accuracy after using the first 16 parameters. Model 0, as well as the other

models follow the same trend in which the F1 accuracy rises to its maximum when the

first 16 parameters are used and then decays. Model 4 continues to rise when the first

27 rules are used and also starts to decay.

Model 0 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Models 0, 5 > Model 4 > Model 3 > Model 2 > Model

1. When taking a look at TEDEVAL, we found that Model 5’s score is higher than

that of Model 0. This seems to follow our hypothetical trend where more complex

Chapter 6. Error Analysis 135

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

D
A

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 7
4

 7
6

 7
8

 8
0

 8
2

 8
4

 8
6

 8
8 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 D

A
1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es

VA <
 R

GSP <
 N

CPP >
 V

AVA <
 S

PVA <
 V

AVA <
 N

CVA <
 P

PVA <
 A

NNC >
 V

API <
 N

CNC <
 S

PVA <
 P

ICC <
 V

ARG >
 V

A
AN >

 N
CNC <

 N
CNP >

 V
AAC <

 N
CPD <

 N
CPD <

 A
NNP >

 N
PSP <

 N
PPO <

 N
C

VA <
 N

PCS <
 V

AU <
 V

AU >
 V

ARG <
 S

P
PI <

 A
NNC <

 C
CCC <

 N
CVA <

 C
CPI >

 V
ASP >

 V
ASP <

 P
PVA >

 V
AAN <

 N
CPD >

 V
AVA <

 USP <
 P

D

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 D

A
1

0
 (

M
o

d
e

l
5

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e
s

 o
n

 D
A

 (
M

o
d

e
l

5
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
D

A
20

D
A

15
D

A
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

5:
P

ar
si

ng
ac

cu
ra

ci
es

of
D

an
is

h

Chapter 6. Error Analysis 136

Table 6.5: Top-10 errors in Danish

(a) Over-generation

Type on DA10 Freq Type on DA15 Freq Type on DA20 Freq

AN < NC 383 AN < NC 917 AN < NC 1568

VA < SP 215 VA < VA 457 VA < VA 744

VA < VA 154 VA < SP 353 VA < SP 568

CC > VA 116 RG < SP 281 U < VA 465

NP < NP 112 U < VA 246 RG < SP 461

PP > RG 93 NP < NP 242 U < VA 416

RG < AN 92 VA < RG 220 RG < SP 356

U < VA 88 PP > RG 195 NP < NP 316

AN < AN 81 CC > VA 187 VA < RG 290

VA < RG 73 RG < AN 180 AN < AN 290

(b) Under-generation

Type on DA10 Freq Type on DA15 Freq Type on DA20 Freq

AN > NC 187 NC < SP 560 NC < SP 1047

NC < SP 183 CS < VA 385 CS < VA 770

VA < NC 141 AN > NC 373 AN > NC 633

CC < VA 139 CC < VA 303 U > VA 547

NP > NP 136 U > VA 296 NP > NP 526

CS < VA 132 NP > NP 292 CC < VA 504

PD < NC 106 VA < NC 282 PD < NC 498

VA < PP 100 VA < AN 279 PI < NC 453

RG < SP 97 PD < NC 274 VA < NC 413

U > VA 94 PI < NC 243 VA < NC 388

Chapter 6. Error Analysis 137

models capture long-tail dependency types more accurately. The order of performance

also shows that the generative dependency probability (shared by Models 1 and 2) is a

source of error.

When taken Figure 6.6(b) into account we found that the majority of our models

also follow this trend and its range of change is similar to that of F1 accuracies. How-

ever, Model 3 and Model 4’s TEDEVAL accuracies manifest another trend where they

rise at the first three parameters, drop at the first 16 parameters, and rise again when

the full set of parameters are used. The full set of language parameters allow Model

3 and Model 4 to construct parsed trees that are once again close to the gold standard

ones.

We also investigate the performance improvement of Model 0 in Figure 6.6(c). The

first three rules rather capture less frequent dependency types such as Art > N, N > V-

trans, V-trans < N, and V-hulpofkopp < N, while more frequent ones are marginally

captured such as Prep-voor < N, Adj > N, and N < Prep-voor. When incorporating more

language parameters, these dependency types become partially or even fully captured.

We also notice that a few dependency types are always neglected no matter how many

language parameters we use. The dependency type N < N is intriguing in that it is

more captured by the first three parameters than by the full set because it is against the

general annotation scheme of Dutch.

Figure 6.6(d) shows that the previously captured dependency types are still cap-

tured by Model 0. Interestingly, most of later-found less frequent dependency types

are rather captured in length 20 than in length 15. The neglected dependency types are

always neglected in longer lengths 15 and 20.

We finally investigate the over- and under-generation of Model 5 in Dutch. We

list the top-10 over- and under-generation of dependency types in Dutch of all lengths

in Table 6.6. There are, in general, four categories of problems: PP dependency an-

notation, NP dependency annotation, ambiguous multiword unit (MWU), and PP at-

tachment. On length 10, errors from PP dependency annotation are the predominant

problem as seen in the preposition combined with the article (Prep-voor > Art) and

as in Pron-vrag > V-hulpofkopp v.s. Pron-vrag < V-hulpofkopp. Errors from NP de-

pendency annotation also take place as in N > N v.s. N < N. MWU can perform as

many parts of speech causing syntactic ambiguity. On length 15, the same set of the

problems are still found throughout the errors. On length 20, PP attachment suddenly

dominates the errors and the other problems slightly fade out. We hypothesize that the

data sparsity issue is remedied by more data in longer lengths. This suggests that these

Chapter 6. Error Analysis 138

 4
4

 4
6

 4
8

 5
0

 5
2

 5
4

 5
6

 5
8 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

D
U

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 8
1

 8
1.

5

 8
2

 8
2.

5

 8
3

 8
3.

5

 8
4

 8
4.

5

 8
5

 8
5.

5 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 D

U
1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es

Art
>

NPre
p-

vo
or

 <
 N

Adj
>

NN <
 P

re
p-

vo
or

N >
 V

-tr
an

s

V-tr
an

s <
 N

V-h
ulp

of
ko

pp
 <

 N

Adv
 >

 V
-tr

an
s

Pro
n-

pe
r >

 V
-tr

an
s

Adv
 >

 V
-in

tra
ns

Num
 >

 NV-in
tra

ns
 <

 A
dv

N >
 V

-h
ulp

of
ko

pp

Pro
n-

vr
ag

 >
 N

V-h
ulp

of
ko

pp
 <

 V
-tr

an
s

V-in
tra

ns
 <

 P
re

p-
vo

or

V-h
ulp

 <
 V

-tr
an

s

V-in
tra

ns
 <

 N

Pro
n-

vr
ag

 <
 V

-h
ulp

of
ko

pp

V-tr
an

s <
 A

dv

V-tr
an

s <
 P

re
p-

vo
or

N >
 V

-in
tra

ns

Pro
n-

pe
r >

 V
-in

tra
ns

Pro
n-

pe
r >

 V
-h

ulp

N <
 N

V-h
ulp

of
ko

pp
 <

 A
dj

Pro
n-

aa
nw

 >
 N

Pre
p-

vo
or

 >
 V

-tr
an

s

V-h
ulp

of
ko

pp
 <

 A
dv

Pro
n-

be
z >

 N

Pro
n-

pe
r >

 V
-h

ulp
of

ko
pp

Adv
 >

 A
dv

V-tr
an

s <
 P

ro
n-

pe
r

N >
 C

on
j-n

ev
en

Adv
 <

 V
-in

tra
ns

Pre
p-

vo
or

 >
 V

-in
tra

ns

V-h
ulp

 <
 V

-in
tra

ns

Pro
n-

on
be

p
>

N

N >
 V

-h
ulp

Con
j-n

ev
en

 <
 N

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 D

U
1

0
 (

M
o

d
e

l
0

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e
s

 o
n

 D
U

 (
M

o
d

e
l

0
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
D

U
20

D
U

15
D

U
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

6:
P

ar
si

ng
ac

cu
ra

ci
es

of
D

ut
ch

Chapter 6. Error Analysis 139

problems are the cause of the accuracy deterioration on longer sentence lengths.

6.7 English

We revisit the study of grammar induction performance of English, having a fixed word

order, by conducting across-the-board experiments. As illustrated in Figure 6.7(a),

Model 5 always outperforms the others even when only the first three language pa-

rameters are given. All of our models follow the trend in which the accuracy rapidly

increases when the first 16 parameters are introduced, then it starts to saturate as more

language parameters are used. When TEDEVAL accuracies in Figure 6.7(b) are taken

into consideration, almost all models also follow this trend excluding Model 4 as its

TEDEVAL accuracy drops marginally when the full set of language parameters are

used.

Model 5 wins the competition while the rest seem to cluster below it. The order of

performance is as follows: Model 5 > Models 0, 1, 2 > Models 3, 4. This seems to fol-

low our hypothetical trend where more complex models capture long-tail dependency

types more accurately. The order of performance shows that the lexical and headword

generation probability (shared by Models 3 and 4) are sources of error.

We also investigate the performance improvement of English parsing. As shown

in Figure 6.7(c), Model 5 with the first three language parameters can capture some

frequent dependency types such as DT > NN, JJ > NN, and NN > VBZ. Meanwhile,

some dependency types are not captured at all — e.g. NNP > NNP, NN > NN, and

NN < IN. When adding more parameters to the syntactic prototype, these dependency

types become fully or partially captured. It is however noticeable that the attachment

direction for two NNP’s was mistakenly assigned by the first three rules but it later

becomes correctly assigned when more parameters are used.

From Figure 6.7(d), long-tail dependencies can also be captured in longer lengths

15 and 20. New less frequent dependency types are captured in longer lengths while

the previously captured dependency types are futher captured.

We finally investigate the over- and under-generation of Model 5 in English. We list

the top-10 over- and under-generation of dependency types in English of all lengths in

Table 6.7. There are, in general, three categories of problems: PP attachment, NP de-

pendency annotation, and dependency annotation of cardinal numbers (CD). On length

10, PP attachment is predominant as seen in VBZ < IN, NN < IN, VBN < IN, and NNS

< IN. There are also discrepancies in annotating NP structures such as NNP > NNP v.s.

Chapter 6. Error Analysis 140

Table 6.6: Top-10 errors in Dutch

(a) Over-generation

Type on DU10 Freq Type on DU15 Freq Type on DU20 Freq

Prep-voor > Art 794 Prep-voor > Art 2835 N > Prep-voor 1997

N > N 643 N > N 2230 V-hulpofkopp < Prep-voor 913

Pron-vrag > V-hulpofkopp 521 Art > MWU 732 Prep-voor > V-hulpofkopp 840

V-hulpofkopp < MWU 455 N > MWU 682 N > N 821

Art > MWU 400 N > V-hulpofkopp 596 V-trans > V-trans 817

N > V-hulpofkopp 356 N > V-trans 581 V-trans < N 765

Adv > V-intrans 339 Pron-vrag > V-hulpofkopp 570 Adv > V-hulpofkopp 746

N > MWU 309 V-intrans < N 568 N > V-intrans 727

N > V-trans 306 V-trans < N 542 V-hulpofkopp < Adv 655

N > V-intrans 291 V-hulpofkopp < MWU 533 N > V-trans 655

(b) Under-generation

Type on DU10 Freq Type on DU15 Freq Type on DU20 Freq

Prep-voor < N 1241 Prep-voor < N 3457 N < Prep-voor 3620

Pron-vrag < V-hulpofkopp 444 N < Prep-voor 1408 Prep-voor < N 3138

N > V-trans 380 Prep-voor > V-trans 890 Adj > N 1227

N < Prep-voor 350 V-trans < Prep-voor 740 Prep-voor > V-trans 1123

V-intrans < Prep-voor 348 V-intrans < Prep-voor 676 N < N 1004

N < N 343 Adv > V-trans 664 N > V-trans 987

V-trans < Prep-voor 327 N < N 658 Adv > V-trans 966

Art > N 304 N > V-trans 618 Pron-vrag > N 750

Prep-voor > V-trans 303 Art > N 563 Art > N 725

Pron-per > V-trans 301 Prep-voor > V-intrans 512 Adv > Adv 711

Chapter 6. Error Analysis 141

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

E
N

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 8
4

 8
5

 8
6

 8
7

 8
8

 8
9

 9
0

 9
1 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 E

N
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es

DT >
 N

NNNP >
 N

NP

JJ
 >

 N
NIN

 <
 N

NJJ
 >

 N
NS

NN >
 V

BZ
NN >

 N
NNN >

 V
BD

IN
 <

 N
NS

DT >
 N

NS
CD >

 C
DNNS >
 V

BP

NN <
 INM

D <
 V

B
VBZ <

 N
N

NN >
 N

NS
VBD <

 N
N

NNS >
 V

BD

VBD <
 INTO <

 V
BIN

 <
 N

NP
PRP >

 V
BZ

NNP >
 V

BZ

VBD <
 T

O
PRP >

 V
BD

NNP >
 V

BD

CD >
 N

NPRP >
 V

BP
IN

 <
 C

DVBN <
 INNNP <
 N

NP

NNP >
 N

N
VB <

 N
NCD >

 N
NS

VBZ <
 R

B
VBD <

 R
B

TO <
 C

DNNS <
 INVBZ <
 V

BN
VBD <

 V
BN

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 E

N
1

0
 (

M
o

d
e

l
5

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 E

N
 (

M
o

d
e
l

5
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
E

N
20

E
N

15
E

N
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

7:
P

ar
si

ng
ac

cu
ra

ci
es

of
E

ng
lis

h

Chapter 6. Error Analysis 142

NNP < NNP. Cardinal numbers when modifying a noun phrase are mistagged as in

NNP > CD v.s. NNP < CD. On length 15, some PP in a series of PPs starts to perform

as an NP which is then modified by the succeeding PP, as in IN < IN. PP attachment

and the other problems are also found on length 15. On length 20, the problem of PP

turning to an NP is found more frequently deteriorating the parsing accuracy.

6.8 German

Performance of grammar induction for German, a rigid word-order language with

mild use of non-projective dependency, is demonstrated by several experiments. Fig-

ure 6.8(a) shows that Model 0 yields the best F1 directed dependency accuracy at

approximately 60%. It follows the hypothetical trend in which the performance in-

creases as we introduce more language parameters into the syntactic prototype. On the

contrary Model 0’s TEDEVAL score is the lowest among the others but the difference

from the best one is only a marginal 1% range.

Model 0 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Models 0 > Models 2, 5 > Model 1 > Models 3, 4. It

suggests that complex models do not always increase the coverage of long-tail depen-

dencies. In this case, simpler models seem to outperform the more complex ones. The

order of performance also shows that the generative dependency probability (shared

by Models 3 and 4) is a source of error.

With respect to the performance of our models on German, we classify the tendency

into three groups: (1) Model 0 that follows the hypothetical trend (2) Model 1, Model

2, and Model 5 whose accuracy rises and suddenly plunges when the full set of the

language parameters are used (3) Model 3 and Model 4 whose accuracy rises, plunges,

and rises again. On the other hand, their TEDEVAL scores marginally differ from each

other as illustrated in Figure 6.8(b).

The accuracy improvement of Model 0 is studied in Figure 6.8(c). Most frequent

dependency types are partially captured such as ART > NN, APPR < NN, and VVFIN

< NN. When increasing the number of language parameters used in the syntactic pro-

totype, some frequent dependency types become more captured such as NE < NE and

NN > VAFIN, while only a few are less captured such as VMFIN < VVINF.

In Figure 6.8(d), long-tail dependency types are captured in lengths 15 and 20.

Previously captured dependency types are further captured and a few new dependency

types are captured from longer lengths. The neglected dependency types are always

Chapter 6. Error Analysis 143

Table 6.7: Top-10 errors in English

(a) Over-generation

Type on EN10 Freq Type on EN15 Freq Type on EN20 Freq

VBZ < IN 455 IN < IN 1602 IN < IN 4386

VBD < IN 349 VBZ < IN 990 VBZ < IN 1854

VBP < IN 237 RB > VB 753 NNP > NN 1828

MD < IN 202 VBD < IN 693 VBD < IN 1646

NNP < NN 153 NNP > NN 662 VBN < IN 1557

NNP > CD 147 VBN < IN 586 NN > NN 1330

NNP > NNP 143 NN > NN 583 NN > NNP 1253

NN > NN 142 NN > NNP 575 RB > VB 1141

RB > DT 137 NNP > CD 473 VBG < IN 1072

VBD < RB 106 VBP < IN 430 CD > NN 1037

(b) Under-generation

Type on EN10 Freq Type on EN15 Freq Type on EN20 Freq

NN < IN 418 NN < IN 2211 NN < IN 5578

NNP < NNP 415 NNP > NNP 1042 NNS < IN 2368

VBN < IN 306 NNP < NNP 983 VB < IN 2360

NNP > NNP 261 DT > NN 881 NNP < NNP 2091

DT > NN 173 NNS < IN 869 NNP > NNP 1790

VB < IN 168 IN < NN 849 IN < NN 1720

RB > JJ 158 VB < IN 681 DT > NN 1672

NNP < CD 148 JJ > NN 681 JJ > NN 1466

NNS < IN 143 VBD < RB 578 IN < NNS 1242

IN < NN 121 IN < NNS 578 VBD < IN 1211

Chapter 6. Error Analysis 144

not captured due to the discrepancy of annotation schemes.

We finally investigate the over- and under-generation of Model 3 in German. We

list the top-10 over- and under-generation of dependency types in German of all lengths

in Table 6.8. There are, in general, three categories of problems: NP dependency

annotation, PP attachment, and PP dependency annotation. On length 10, errors from

NP dependency annotation are predominant as seen in ADJA < NN v.s. ADJA > NN

and NE < NN v.s. NE > NN. Errors from PP dependency annotation take place in

APPR > NN v.s. APPR < NN and NN > APPR v.s. NN < APPR, structurally hiding

the underlying PP attachment problem. On lengths 15 and 20, these errors are found

throughout the problem space, but PP attachment becomes slightly more obvious than

the others. This suggests to us that the annotation scheme for NP should be corrected

to improve the directed dependency accuracy.

6.9 Japanese

As a free word-order language with a complex verb inflection system and the use of

case markers, Japanese is challenging for the grammar induction task. Figure 6.9(a)

compares the F1 accuracies of our models trained and evaluated on JA10. Among

those, Model 2 yields the best directed dependency accuracy which at first rises and

marginally decays as the number of language parameters increases. Its TEDEVAL

accuracy behaves in the similar manner although it is not the best.

Model 2 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Model 2 > Model 1 > Model 0 > Models 3, 4 > Model

5. It suggests that complex models do not always increase the coverage of long-tail

dependencies. In this case, simpler models seem to outperform the more complex

ones. The order of performance also shows that the lexicon and headword generation

probabilities (shared by Models 3, 4, and 5) are sources of error.

When taking into account both Figures 6.9(a) and 6.9(b), Model 0, Model 1, and

Model 2 approach the hypothetical trend where their F1 and TEDEVAL rise and start to

saturate as more language parameters are used. In contrast, F1 accuracies of Model 3,

Model 4, and Model 5 plunge after the introduction of the first 16 parameters. Model 4

and Model 5’s TEDEVAL scores also decrease but Model 3’s TEDEVAL alternatively

follows the hypothetical trend.

In Figure 6.9(c), our language parameters, along with Model 2, can partially or even

fully capture dependency types in JA10 even though only the first three parameters are

Chapter 6. Error Analysis 145

 5
0

 5
1

 5
2

 5
3

 5
4

 5
5

 5
6

 5
7

 5
8

 5
9

 6
0 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

D
E

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 7
9.

6

 7
9.

8

 8
0

 8
0.

2

 8
0.

4

 8
0.

6

 8
0.

8

 8
1

 8
1.

2

 8
1.

4

 8
1.

6 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 D

E
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es

ART >
 N

N
APPR <

 N
N

ADJA
 >

 N
N

VVFIN
 <

 N
N

NN >
 V

VFIN

NE <
 N

EAPPR <
 N

E

NN <
 A

PPR

APPR <
 A

RT

VVFIN
 <

 A
PPR

NN <
 N

NVAFIN
 <

 N
N

APPRART <
 N

N

NN >
 V

AFIN

VAFIN
 <

 V
VPP

NN <
 N

ENE >
 N

NAPPR <
 A

DJA

VVFIN
 <

 P
TKVZ

NE >
 V

VFIN

APPR >
 V

VPP

VVFIN
 <

 A
DV

VM
FIN

 <
 V

VIN
F

PIA
T >

 N
N

CARD >
 N

N

NN >
 V

VIN
F

VAFIN
 <

 A
DJD

NN >
 V

VPP

VVFIN
 <

 P
PER

ADV >
 N

N
NN <

 K
ON

PPER >
 V

VFIN

VVFIN
 <

 A
DJD

ADV >
 V

VPP

APPR >
 V

VFIN

PPOSAT >
 N

N

NN >
 V

M
FIN

ADV >
 V

VFIN

APPR <
 C

ARD

VVFIN
 <

 N
E

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 D

E
1

0
 (

M
o

d
e

l
3

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 D

E
 (

M
o

d
e
l

3
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
D

E
20

D
E

15
D

E
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

8:
P

ar
si

ng
ac

cu
ra

ci
es

of
G

er
m

an

Chapter 6. Error Analysis 146

Table 6.8: Top-10 errors in German

(a) Over-generation

Type on DE10 Freq Type on DE15 Freq Type on DE20 Freq

ADJA < NN 2047 NN > APPR 2390 NN > APPR 3636

ART > ADJA 1185 CARD < NN 1877 CARD < NN 3291

NE < NN 817 NN > VVPP 1857 NN < ART 3262

VVFIN < ADJA 653 NE < NN 1708 PIAT < NN 2837

NE < ADJA 634 ART > ADJA 1694 ART < APPR 2817

NE < NE 582 ART < APPR 1602 PPER < NN 2723

VVFIN < NN 559 PIAT < NN 1457 PRF < NN 2608

APPR > NN 554 NN < ART 1422 NN > VVPP 2483

VAFIN < ADV 541 NN < APPR 1264 ART > ADJA 2447

NN > APPR 506 NE < ADJA 1176 NN < APPR 2399

(b) Under-generation

Type on DE10 Freq Type on DE15 Freq Type on DE20 Freq

ADJA > NN 3409 APPR < NN 7481 APPR < NN 15535

APPR < NN 2529 ADJA < NN 4901 ADJA > NN 7355

ART > NN 1833 ART > NN 4355 ART > NN 7295

NE > NN 1047 NN < NN 2615 NN < NN 4474

NN < NN 924 APPR < ART 2207 APPR > VVPP 4120

NN < NE 875 APPR > VVPP 2088 APPR < ADJA 4106

VVFIN < APPR 868 APPR < ADJA 2026 VVFIN < APPR 3839

NN < APPR 778 VVFIN < APPR 1970 NN < APPR 2777

NN > VVFIN 757 NN < APPR 1811 APPR < APPR 2588

PIAT > NN 621 NN < NE 1541 NE < NE 2587

Chapter 6. Error Analysis 147

prescribed. However, some dependency types are not captured at all as we increase

the number of language parameters used, such as PVfin > PSSb, Vte > VAUXfin, PQ

> Vfin, and ADJiku > VSfin. Small improvement can however be observed as the

capture of CDtime > CDtime increases when more parameters are given.

Long-tail dependencies are also coped with by Model 2 as shown in Figure 6.9(d).

Though the majority of captured dependency types are from the length 10, we also

capture additional less frequent dependency types from lengths 15 and 20. The depen-

dency types neglected in length 10 are still found not captured in longer lengths.

We finally investigate the over- and under-generation of Model 2 in Japanese. We

list the top-10 over- and under-generation of dependency types in Japanese of all

lengths in Table 6.9. There are, in general, three categories of problems: VP de-

pendency annotation, PP attachment, and coordinate structure dependency annotation.

On length 10, errors from VP structure annotation are predominant as seen in PVfin

< PSSb v.s. PVfin > PSSb, Vte < VAUXfin v.s. Vte > VAUXfin, and Vfin < PSSa

v.s. Vfin > PSSa. We found errors from PP attachment as in P > PVfin, NF < Pnom,

and NN < Pnom. Errors from coordinate structure annotation are also found as CNJ >

N-VN and CNJ > PSfin. On lengths 15 and 20, these errors are found throughout the

problem space, but errors from VP dependency annotation predominant compared to

the others. This suggests to us that the annotation scheme for VP should be corrected

to improve the directed dependency accuracy.

6.10 Portuguese

We conduct across-the-board experiments for evaluating our system on Portuguese, a

rigid word-order language with a verb inflection system. Figures 6.10(a) and 6.10(b)

shows that Model 0 outperforms the other models in terms of directed dependency

accuracy and TEDEVAL score. In both metrics, Model 0 follows the hypothetical trend

in which the accuracy rapidly increases and starts to saturate or decay as the number of

language parameters grows. We find that all models seem to follow this hypothetical

trend. In particular, Model 1’s TEDEVAL decays and saturates after incorporating the

first 27 parameters.

Model 0 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Model 0 > Model 2 > Model 1 > Model 5 > Model 3 >

Model 4. It suggests that complex models do not always increase the coverage of long-

tail dependencies. In this case, simpler models seem to outperform the more complex

Chapter 6. Error Analysis 148

 6
2

 6
4

 6
6

 6
8

 7
0

 7
2

 7
4 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

J
A

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 8
2.

5

 8
3

 8
3.

5

 8
4

 8
4.

5

 8
5 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a
c

ie
s

 f
o

r
 J

A
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
E

VA
L

ac
cu

ra
ci

es

PVfin
 <

 P
SE

ADVde
m

 >
 P

Vfin

N-V
N >

 V
Sfin

Pge
n

>
NF

ADJif
in

>
PVfin

NF >
 P

Vfin
P >

 V
finPVfin
 >

 P
SSb

NN >
 PNN >
 P

ge
n

Nde
m

 >
 P

ADJ_
n

>
PVfin

Vte
 >

 V
AUXfin

Vfin
 <

 P
SE

PQ >
 V

finNF >
 PVfin

 >
 N

F
NAM

Epe
r >

 N
AM

Epe
r

NAM
Epe

r >
 P

Vfin

Pge
n

>
NN

ADJik
u

>
VSfin

ADVwh
>

PVfin

P >
 N

-V
N

CDtim
e

>
CDtim

e

P >
 A

DJif
in

NN <
 P

fo
c

ADJik
u

>
Vfin

P >
 V

teNF <
 P

fo
c

Pno
m

 >
 A

DJif
in

NN >
 P

Vfin
NAM

Epe
r >

 P
Nsf

CD >
 U

NIT
NN >

 V
finCNJ >

 V
Sfin

ADV >
 V

fin
CDda

te
 >

 P
ge

n

CDda
te

 >
 P

CNJ >
 V

fin
CNJ >

 P
Vfin

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 J

A
1

0
 (

M
o

d
e

l
2

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e
p

e
n

d
e

n
c

y
 T

y
p

e
s
 o

n
 J

A
 (

M
o

d
e

l
2

)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
JA

20
JA

15
JA

10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

9:
P

ar
si

ng
ac

cu
ra

ci
es

of
Ja

pa
ne

se

Chapter 6. Error Analysis 149

Table 6.9: Top-10 errors in Japanese

(a) Over-generation

Type on JA10 Freq Type on JA15 Freq Type on JA20 Freq

PVfin < PSSb 506 PVfin < PSSb 1031 PVfin < PSSb 1506

Vte < VAUXfin 431 Vte < VAUXfin 793 Vte < VAUXfin 1071

P > PVfin 330 P > PVfin 440 NN < Pnom 604

ADJiku > N-VN 318 CNJ > N-VN 400 Vfin < PSSa 594

CNJ > N-VN 294 Vfin < PSSa 396 NF < Pnom 538

Vfin < PSSa 182 NN < Pnom 385 P > PVfin 523

NF < Pnom 174 NF < Pnom 363 P > Vfin 481

NN < Pnom 153 ADJiku > N-VN 330 CNJ > N-VN 441

CNJ > PVfin 151 Pgen > NF 321 NN > Vfin 422

VSte < VAUXfin 141 NN > Vfin 281 PVfin < PSSa 378

(b) Under-generation

Type on JA10 Freq Type on JA15 Freq Type on JA20 Freq

PVfin > PSSb 524 PVfin > PSSb 1110 PVfin > PSSb 1649

Vte > VAUXfin 430 PQ > Vfin 795 PQ > Vfin 1205

PQ > Vfin 357 Vte > VAUXfin 792 Vte > VAUXfin 1079

ADJiku > VSfin 316 NN > Pnom 387 NN > Pnom 606

Pnom > ADJifin 232 Vfin > PSSa 376 Vfin > PSSa 548

P > ADJifin 200 Pnom > ADJifin 368 NF > Pnom 540

CNJ > VSfin 199 NF > Pnom 366 PVfin > PSSa 522

Vfin > PSSa 176 PVfin > PSSa 352 Pnom > Vfin 519

NF > Pnom 175 ADJiku > VSfin 327 Pnom > ADJifin 482

PVfin > PSSa 160 Pnom > Vfin 325 P > N-VN 387

Chapter 6. Error Analysis 150

ones. The order of performance also shows that the lexicon and headword generation

probabilities (shared by Models 3 and 4) are sources of error.

We investigate the performance improvement of Model 0 by plotting the Zipfian

distribution of dependency types as illustrated in Figure 6.10(c). It can be seen that the

first three parameters are able to partially or fully capture frequent dependency types

such as art > n, prp < n, n < prp, and v-fin < n. The capture is further improved by

putting more language parameters such as n < prp, v-fin < v-inf, and v-fin < v-fin. The

dependency types v-inf < prp and v-fin > v-fin are particularly not captured in the full

set of parameters despite being previously captured by the first 16 parameters.

Figure 6.10(d) shows that long-tail dependency types can be coped with by our

language parameters. Additional dependency types are captured from lengths 15 and

20, while the neglected dependency types are still not captured in the longer lengths.

We finally investigate the over- and under-generation of Model 0 in Portuguese.

We list the top-10 over- and under-generation of dependency types in Portuguese of

all lengths in Table 6.10. There are, in general, three categories of problems: PP

attachment, NP dependency annotation, and VP dependency annotation. On length 10,

PP attachment is predominant such as v-fin < prp, n < prp, and v-inf < prp. We found

that NP dependency annotation is also an issue such as num < n v.s. num > n, adj < n

v.s. adj > n, n < n, and n < adj. On lengths 15 and 20, these errors are found throughout

the observation. Errors from NP dependency annotation also account for the finding of

pron-det < n v.s. pron-det > n in lengths 15 and 20. This suggests that the annotation

scheme for VP should be corrected to improve the directed dependency accuracy.

6.11 Slovene

Akin to Czech, Slovene is an inflectional language with a rather free word order and is

thus challenging for the grammar induction task. We evaluate our models on Slovene

and plot their accuracies in Figures 6.11(a) and 6.11(b). Model 1 is shown to out-

perform the others in terms of directed dependency accuracy. The trend of Model 1 is

different from the hypothetical one in that it marginally decays while Model 1’s TEDE-

VAL score marginally improves, as we introduce more language parameters into the

syntactic prototype.

Model 1 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Model 1 > Model 2 > Model 3 > Model 5 > Model

4. It suggests that complex models do not always increase the coverage of long-tail

Chapter 6. Error Analysis 151

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

P
O

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)

F1
ac

cu
ra

ci
es

 8
3

 8
4

 8
5

 8
6

 8
7

 8
8

 8
9

 9
0

 9
1 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c
u

r
a

c
ie

s
 f

o
r
 P

O
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
ac

cu
ra

ci
es

ar
t >

 npr
p

<
nn

<
pr

pv-
fin

 <
 nn

>
v-

finv-
fin

 <
 p

rp
pr

p
<

pr
op

n
<

ad
jad

v >
 v-

fin
ar

t >
 p

ro
p

pr
op

 >
 v-

fin
pr

on
-d

et
 >

 n

v-
fin

 <
 v-

inf

v-
fin

 <
 v-

fin
nu

m
 >

 nv-
fin

 <
 a

dv
v-

fin
 <

 v-
pc

p

v-
fin

 <
 a

dj
pr

on
-p

er
s >

 v-
fin

n
<

nad
j >

 nv-
pc

p
<

pr
p

v-
inf

 <
 npr

p
>

v-
fin

v-
fin

 <
 p

ro
p

co
nj-

s >
 v-

fin

pr
op

 <
 p

ro
p

n
<

v-
pc

p
n

<
pr

oppr
p

<
v-

inf
v-

inf
 <

 p
rp

co
nj-

c >
 v-

fin

v-
fin

 <
 p

ro
n-

pe
rs

pr
on

-re
l >

 v-
fin

pr
op

 <
 p

rp
n

<
v-

finn
<

co
nj-

c
ad

v >
 a

dj
n

<
nu

mv-
fin

 >
 v-

fin

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 P

O
1

0
 (

M
o

d
e

l
0

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e
n

d
e

n
c

y
 T

y
p

e
s

 o
n

 P
O

 (
M

o
d

e
l
0

)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
P

O
20

P
O

15
P

O
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

10
:

P
ar

si
ng

ac
cu

ra
ci

es
of

Po
rt

ug
ue

se

Chapter 6. Error Analysis 152

Table 6.10: Top-10 errors in Portuguese

(a) Over-generation

Type on PO10 Freq Type on PO15 Freq Type on PO20 Freq

v-fin < prp 245 v-fin < prp 690 v-fin < prp 920

num < n 142 pron-det < n 397 pron-det < n 729

v-fin < adj 141 num < n 360 num < n 689

pron-det < n 102 v-fin < adj 263 adj < prp 493

v-fin < num 95 v-fin < n 212 adj < n 370

v-fin < n 94 v-fin < num 211 prp > v-fin 349

adj < n 94 adj < n 208 v-fin < num 344

v-fin < pron-det 93 v-fin < v-fin 183 n < prp 341

adv > v-fin 86 adv > v-fin 179 v-fin < n 338

n < prp 77 adv > v-fin 177 conj-c < n 329

(b) Under-generation

Type on PO10 Freq Type on PO15 Freq Type on PO20 Freq

n < prp 234 n < prp 511 n < prp 661

v-fin < n 197 v-fin < n 379 pron-det > n 628

num > n 131 pron-det > n 362 v-fin < n 591

pron-det > n 109 num > n 326 num > n 570

adj > n 92 n < n 262 n < n 553

n < n 85 v-inf < prp 231 v-inf < prp 467

n < adj 81 v-fin < prp 206 v-fin < prp 420

v-inf < prp 79 v-pcp < prp 199 v-pcp < prp 396

n < v-pcp 72 adj > n 180 v-inf < n 342

v-fin > v-fin 66 v-inf < n 172 n > v-fin 333

Chapter 6. Error Analysis 153

dependencies. In this case, simpler models seem to outperform the more complex

ones. The order of performance also shows that the lexicon and headword generation

probabilities (shared by Models 3, 4, and 5) are sources of error.

There are three groups of accuracy trend: (1) Model 0, Model 1, Model 2, and

Model 5’s F1 and TEDEVAL saturate or slightly decay. (2) Model 3’s F1 accuracy

gradually increases and saturates and its TEDEVAL rises, drops, and saturates. (3)

Model 4’s F1 accuracy is quite stable but its TEDEVAL scores rises and saturates.

This suggests us that simpler Model 0, Model 1, and Model 2 are less sensitive to data

sparsity in SL10.

Performance improvement of Model 1 is shown in Figure 6.11(c). The first three

language parameters partially capture frequent dependency types such as Cop > Ger,

Ger < N, Adv > Ger, and AdjQ > N. As we introduce more language parameters into

the syntactic prototype, more dependency types are captured while a few dependency

types become less captured such as N < NGen and Ger < ConjS.

From Figure 6.11(d), we found that long-tail dependencies are still captured on

longer lengths 15 and 20. Previously captured dependency types are still captured

while additional dependency types are captured. Some neglected dependency types

are always not captured. We hypothesize that the discrepancy of annotation schemes

accounts for this issue.

We finally investigate the over- and under-generation of Model 1 in Slovene. We

list the top-10 over- and under-generation of dependency types in Slovene of all lengths

in Table 6.11. There are, in general, three categories of problems: gerundial depen-

dency annotation, NP dependency annotation, and PP attachment. On length 10, errors

from gerundial dependency annotation are predominant such as N > Cop and Ger >

Cop v.s. N > Ger and Cop > Ger. Errors from NP dependency annotation are also

found e.g. N > NGen v.s. N < NGen, while PP attachment becomes minor in Slovene.

On lengths 15 and 20, these errors are found throughout the observation. This suggests

that the gerundial structure annotation should be corrected to improve the directed de-

pendency accuracy.

6.12 Spanish

We evaluate the performance of our models in parsing Spanish, a language with verb

inflection and a rigid word order. In Figures 6.12(a) and 6.12(b), Model 0 yields the

best directed dependency accuracy and TEDEVAL scores. All models follow the hy-

Chapter 6. Error Analysis 154

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

S
L

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)
F
1

ac
cu

ra
ci

es

 8
2

 8
2.

5

 8
3

 8
3.

5

 8
4

 8
4.

5

 8
5

 8
5.

5

 8
6

 8
6.

5

 8
7 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 S

L
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
ac

cu
ra

ci
es

Cop
 >

 G
er

Ger
 <

 NAdv
 >

 G
er

N >
 G

erAdjQ
 >

 NGer
 <

 P
re

p
Pre

p
<

NGer
 <

 C
op

Pre
p

<
NLo

c

Pro
P >

 G
er

Par
t >

 G
er

Pro
Ref

 >
 G

er

Pre
p

>
Ger

N <
 N

Gen
NP >

 G
er

Pre
p

<
NGen

Ger
 <

 A
dv

Con
jC

 <
 G

er

Con
jS

 <
 G

er

Ger
 <

 A
djQ

Ger
 <

 VAdv
 >

 VV <
 P

re
p

Par
t >

 VGer
 >

 C
on

jC

N <
 P

re
p

V <
 N

Pro
P >

 VGer
 <

 N
P

Ger
 >

 G
er

Cop
 <

 NGer
 <

 C
on

jS

Adj
>

NPro
D >

 NPar
t >

 NPro
D >

 G
er

N >
 C

opPro
Gen

 >
 N

Gen

Adv
 >

 A
djQ

AdjQ
 >

 N
Gen

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 S

L
1

0
 (

M
o

d
e

l
1

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 S

L
 (

M
o

d
e

l
1

)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
S

L2
0

S
L1

5
S

L1
0

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

11
:

P
ar

si
ng

ac
cu

ra
ci

es
of

S
lo

ve
ne

Chapter 6. Error Analysis 155

Table 6.11: Top-10 errors in Slovene

(a) Over-generation

Type on SL10 Freq Type on SL15 Freq Type on SL20 Freq

N > Cop 139 N > Cop 218 Ger > Cop 302

Ger > Cop 69 N > NGen 162 N > Cop 298

ProRef > Cop 67 Ger > V 160 N > NGen 250

N > NGen 56 Ger > Cop 148 Ger > V 231

Ger > V 56 ProRef > Cop 136 ConjS > Cop 224

ProP > Cop 51 Ger > Ger 113 ProRef > Cop 211

ConjS > Cop 48 ProP > Cop 96 Ger < Prep 191

NP > Cop 47 Ger < Prep 95 Ger < ConjC 177

Part > Cop 45 ConjS > Cop 92 ProP > Cop 135

NP > Cop 45 NP > Cop 89 Ger < NGen 124

(b) Under-generation

Type on SL10 Freq Type on SL15 Freq Type on SL20 Freq

N > Ger 161 N > Ger 251 N > Ger 338

N < NGen 63 ConjS < Ger 171 ConjS < Ger 312

NP > Ger 58 N < NGen 149 N < NGen 228

Part > Ger 52 Ger > ConjC 123 ProRef > Ger 226

ProRef > Ger 51 ProRef > Ger 120 Ger > ConjC 213

ProP > Ger 46 ProP > Ger 101 ProP > Ger 143

ConjS < Ger 43 Ger < V 91 N < Prep 140

Ger < V 42 NP > Ger 90 Ger < V 138

Ger > ConjC 39 Part > Ger 86 Part > Ger 132

ProD > Ger 29 ConjC < Ger 83 Prep > Ger 128

Chapter 6. Error Analysis 156

pothetical trend in which the accuracy rapidly rises and starts to saturate or slightly

decay as we incorporate more language parameters in the syntactic prototype.

Model 0 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Models 0 > Model 2 > Model 1 > Models 3, 4 > Model

5. It suggests that complex models do not always increase the coverage of long-tail

dependencies. In this case, simpler models seem to outperform the more complex

ones. The order of performance also shows that the lexicon and headword generation

probabilities (shared by Models 3, 4, and 5) are sources of error.

The performance improvement from our language parameters are obvious in Fig-

ure 6.12(c). Frequent dependency types are partially or even fully captured by only the

first three language parameters, i.e. sp < nc, da > nc, vm < nc, and vm < sp. As more

parameters are used, frequent dependency types are more captured such as sp < nc, nc

< sp, and nc < aq. Nevertheless a few dependency types such as vm > vm, va > vm, rg

< aq, and sp < sp are never captured by the full set of language parameters.

Our language parameters are capable of capturing long-tail dependencies. In Fig-

ure 6.12(d), long-tail dependency types can be found in longer lengths 15 and 20.

Previously captured dependency types are still captured while additional dependency

types are captured. Some neglected dependency types are always not captured.

We finally investigate the over- and under-generation of Model 0 in Spanish. We

list the top-10 over- and under-generation of dependency types in Spanish of all lengths

in Table 6.12. There are, in general, three categories of problems: serial verb depen-

dency annotation, PP attachment, and adverb/auxiliary dependency annotation. On

length 10, errors from serial verb annotation are more frequent than the others, i.e. vm

< vm v.s. vm > vm. PP attachment can also be observed such as vm < sp and nc < sp,

while errors from adverb/auxiliary dependency annotation are obvious: va < vm v.s. va

> vm, and rg > aq v.s. rg < aq. On lengths 15 and 20, the serial verb annotation errors

are still predominant although the other errors are found throughout the observation.

This suggests that the serial verb annotation errors should be corrected to improve the

directed dependency accuracy.

6.13 Swedish

We conduct across-the-board experiments to evaluate the performance of our technique

on Swedish, a rather rigid word-order language. From Figures 6.13(a) and 6.13(b),

Model 2 yields the best F1 and TEDEVAL accuracies when the full set of language

Chapter 6. Error Analysis 157

 5
4

 5
6

 5
8

 6
0

 6
2

 6
4

 6
6

 6
8

 7
0

 7
2 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

E
S

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)

F1
ac

cu
ra

ci
es

 8
2.

5

 8
3

 8
3.

5

 8
4

 8
4.

5

 8
5

 8
5.

5

 8
6

 8
6.

5

 8
7

 8
7.

5 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 E

S
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
ac

cu
ra

ci
es

sp
 <

 n
cda

 >
 n

cvm
 <

 n
cvm

 <
 spdi

>
ncnc

 <
 spnc

 <
 a

qpp
 >

 vmrg
 >

 vmnc
 >

 vmvm
 >

 vmsp
 >

 vmvm
 <

 rgvm
 <

 vmsp
 <

 n
pdp

 >
 n

cvs
 <

 n
crn

 >
 vmp0

 >
 vmnc

 <
 n

ccs
 >

 vmvs
 <

 a
qnp

 >
 vmnc

 >
 vsvm

 <
 a

qcc
 >

 vmdd
 >

 n
caq

 <
 n

cva
 >

 vmaq
 <

 a
qvm

 <
 ccrg

 <
 a

qpr
 >

 vmda
 >

 n
psp

 <
 vmaq

 <
 spnc

 <
 ccsp

 <
 a

qvm
 <

 n
psp

 <
 sp

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 E

S
1

0
 (

M
o

d
e

l
0

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e
p

e
n

d
e

n
c

y
 T

y
p

e
s
 o

n
 E

S
 (

M
o

d
e

l
0

)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
E

S
20

E
S

15
E

S
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

12
:

P
ar

si
ng

ac
cu

ra
ci

es
of

S
pa

ni
sh

Chapter 6. Error Analysis 158

Table 6.12: Top-10 errors in Spanish

(a) Over-generation

Type on ES10 Freq Type on ES15 Freq Type on ES20 Freq

vm < vm 62 vm < vm 161 vm < vm 239

vm < sp 57 vm < sp 134 vm < sp 212

va < vm 39 sp < vm 120 va < vm 200

cc > nc 35 va < vm 103 sp < vm 193

vs < aq 29 vm < cs 77 cc > vm 142

sp < vm 28 cc > nc 75 va < sp 140

vm < nc 23 nc > vm 72 vm < cs 133

rg > aq 19 va < sp 70 cc > nc 123

nc > vm 19 vs < aq 67 vs < aq 111

vm < cs 18 rg > aq 52 nc > vm 102

(b) Under-generation

Type on ES10 Freq Type on ES15 Freq Type on ES20 Freq

vm > vm 79 vm > vm 202 nc < sp 388

nc < sp 53 nc < sp 168 vm > vm 300

va > vm 33 sp > vm 91 sp > vm 169

rg < aq 27 va > vm 82 va > vm 160

aq < aq 24 rg < aq 77 vm < sp 135

sp > vm 21 vm < sp 66 rg < aq 134

nc < cc 20 vm > sp 65 sp < sp 131

sp < sp 17 cs > vm 64 cs > vm 128

nc > vm 17 nc < cc 62 vm > sp 124

vm > sp 16 sp < sp 59 vm < cc 117

Chapter 6. Error Analysis 159

parameters are used. The majority of our models follow the hypothetical trend where

the accuracy rapidly rises and starts to saturate when more languege parameters are

introduced to the syntactic prototype. Model 4, in contrast, manifests an other trend in

which the accuracy slightly drops after using the first 27 parameters. Although their F1

scores are moderate, these TEDEVAL scores are quite impressive, suggesting us that

our parsed trees are closely related to the gold standard ones.

Model 2 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Models 0, 2 > Models 1, 3, 5 > Model 4. It suggests

that complex models do not always increase the coverage of long-tail dependencies.

In this case, simpler models seem to outperform the more complex ones. The order of

performance also shows that the headword generation probability (shared by Models 4

and 5) is a source of error.

In Figure 6.13(c), Model 2 is shown to improve the parsing performance. Frequent

dependency types, such as PR < NN, VV < PR, PO > NN, and VV < NN, are partially

or fully captured by our language parameters. When we incorporate more language

parameters into the syntactic prototype, rapid improvement becomes obvious as more

of these dependency types are captured, while only a few language parameters become

less captured such as PR > NN, NN > VV and NN < PR. It is noticeable that the

dependency type NN < NN, which is not captured when the first three parameters are

used, later becomes captured as we increase the number of parameters.

In Figure 6.13(d), long-tail dependencies are shown to be captured by our language

parameters. Previously captured dependency types are to be found further in lengths

15 and 20, while most of new dependency types are captured in length 15. There

are, of course, some dependency types that are always not captured by our language

parameters, due to the discrepancy of annotation schemes.

We finally investigate the over- and under-generation of Model 2 in Swedish. We

list the top-10 over- and under-generation of dependency types in Swedish of all lengths

in Table 6.13. There are, in general, three categories of problems: PP dependency an-

notation, PP attachment, and NP dependency annotation. On length 10, errors from

PP dependency annotation are predominant among the others. Instead of assigning the

preposition as the head of PP, the system sometimes mistakenly identifies the comple-

ment as the head, such as PR > NN v.s. PR < NN, and VV < PR, causing the emergence

of the error VV < NN instead of VV < PR, making the PP attachment errors structurally

latent in the experiment results. Errors from NP dependency annotation are also found

in the observation as seen in NN > NN v.s. NN < NN. On lengths 15 and 20, errors

Chapter 6. Error Analysis 160

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

S
V

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)

F1
ac

cu
ra

ci
es

 8
2

 8
2.

5

 8
3

 8
3.

5

 8
4

 8
4.

5

 8
5

 8
5.

5

 8
6

 8
6.

5

 8
7

 8
7.

5 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 S

V
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
ac

cu
ra

ci
es

PR <
 N

NVV <
 P

RPO >
 N

N
VV <

 N
NAJ >

 N
NVV <

 A
BPO >

 V
VNN >

 V
VNN <

 P
REN >

 N
NVV <

 P
ONN <

 N
NAV <

 N
NAV <

 A
JVV <

 V
VNN >

 A
VAB >

 V
VRO >

 N
N

NN >
 N

NPO >
 A

VAV <
 A

BPR <
 V

NIM
 >

 V
VAB >

 A
JAJ >

 V
NPO >

 V
NAV <

 P
RQV <

 V
VPR >

 V
VVV <

 V
NVN <

 P
RHV <

 N
NPR <

 P
OHV <

 V
VSV <

 V
VVV <

 A
JNN >

 H
VAV <

 P
OEN >

 V
NNN <

 V
V

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 S

V
1

0
 (

M
o

d
e

l
2

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e
p

e
n

d
e

n
c

y
 T

y
p

e
s
 o

n
 S

V
 (

M
o

d
e

l
2

)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
S

V
20

S
V

15
S

V
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

13
:

P
ar

si
ng

ac
cu

ra
ci

es
of

S
w

ed
is

h

Chapter 6. Error Analysis 161

from serial verb annotation are still predominant although the other errors are found

throughout the observation. This suggests that the PP dependency annotation errors

should be corrected to improve the directed dependency accuracy.

6.14 Turkish

Turkish is considered challenging for the task of grammar induction due to its rich

morphology, free word order, and non-projective dependency. Across-the-board ex-

periments are pursued for better understanding of the language. Figures 6.14(a) and

6.14(b) show that Model 2 outperforms the other models when evaluated its directed

dependency accuracy and TEDEVAL.

Model 2 wins the competition while the rest seem to cluster below it. The order

of performance is as follows: Models 2 > Model 0 > Model 1 > Model 3 > Models

4, 5. It suggests that complex models do not always increase the coverage of long-

tail dependencies. In this case, simpler models seem to outperform the more complex

ones. The order of performance also shows that the headword generation probability

(shared by Models 4 and 5) is a source of error.

The majority of the models follow the hypothetical trend in which the accuracy

rapidly rises and starts to saturate as we introduce more language paramters to the syn-

tactic prototype. Model 4’s F1 and TEDEVAL, however, slightly drop when using the

first 27 language parameters then rise again when the full set of language parameters

are used.

In Figure 6.14(c), performance improvement in Model 2 is obvious. Frequent de-

pendency types are partially or fully captured, such as Noun > Verb, Verb > Verb,

Noun > Noun, and Adj > N by the first three parameters. When we incorporate more

language parameters, the capture of these dependency types is improved. Only the

dependency type Noun < Conj deteriorates as we increase the number of language pa-

rameters. There are some dependency types that are not captured by our parameters

such as Verb > Noun-NInf, Noun-NInf > V, and Noun < Adj.

Long-tail dependency can also be captured as shown in Figure 6.14(d). Previously

captured dependency types are to be found further in length 15. There are quite a

number of dependency types that are always not captured by our language parameters,

due to the discrepancy of annotation schemes.

We finally investigate the over- and under-generation of Model 2 in Turkish. We

list the top-10 over- and under-generation of dependency types in Turkish of all lengths

Chapter 6. Error Analysis 162

Table 6.13: Top-10 errors in Swedish

(a) Over-generation

Type on SV10 Freq Type on SV15 Freq Type on SV20 Freq

VV < NN 452 VV < NN 1159 VV < NN 1613

PR > NN 336 VV < PO 837 VV < PO 1333

VV < PO 335 PR > NN 832 NN > NN 1204

NN > NN 242 NN > NN 753 VV < UK 1097

PR > PO 190 VV < UK 719 PR > NN 1023

VV < PR 165 PR > PO 612 PR > PO 976

VV < UK 162 VV < PR 468 NN > PO 903

TP < NN 146 NN > PO 443 VV < PR 814

VV < EN 130 TP < NN 391 PO > PO 729

VV < AB 111 PO > PO 386 TP < NN 638

(b) Under-generation

Type on SV10 Freq Type on SV15 Freq Type on SV20 Freq

PR < NN 895 PR < NN 2261 PR < NN 3245

NN < PR 460 NN < PR 1284 NN < PR 1646

PO > NN 256 NN < NN 807 NN < NN 1183

NN < NN 246 PO > NN 664 PO > NN 1032

EN > NN 224 EN > NN 559 EN > NN 845

VN < PR 137 PR < VN 407 PO > VV 735

AB > AJ 133 NN < VV 391 VN < PR 661

AV < PR 132 VN < PR 384 NN < VV 630

PR < VN 123 VV < PR 377 PR < VN 623

NN > VV 117 PO > VV 349 UK > VV 608

Chapter 6. Error Analysis 163

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

F1 accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

P
a

rs
in

g
 F

1
 A

c
c

u
ra

c
ie

s
 f

o
r

T
U

1
0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(a
)

F1
ac

cu
ra

ci
es

 8
0

 8
0.

5

 8
1

 8
1.

5

 8
2

 8
2.

5

 8
3

 8
3.

5

 8
4 F
irs

t 3
F

irs
t 1

6
F

irs
t 2

7
A

ll
ru

le
s

TEDEVAL accuracy

La
ng

ua
ge

 p
ar

am
et

er
s

T
E

D
E

V
A

L
 A

c
c

u
r
a

c
ie

s
 f

o
r
 T

U
1

0

D
ep

en
de

nc
y

M
od

el
s

M
od

el
 0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

(b
)

T
E

D
ac

cu
ra

ci
es

Nou
n

>
Ver

b

Ver
b

>
Ver

b

Nou
n

>
Nou

n

Adj
>

Nou
n

Det
 >

 N
ou

n
Adv

 >
 V

er
b

Nou
n

>
Pos

tp

Pro
n-

Per
sP

 >
 V

er
b

Ver
b

>
Nou

n-
NIn

f

Adj
>

Ver
b

Ver
b

<
Nou

n

Pos
tp

 >
 V

er
b

Nou
n-

Pro
p

>
Ver

b

Ver
b

>
Adv

Sub
co

nj

Nou
n-

NIn
f >

 V
er

b

Pos
tp

 >
 N

ou
n

Adv
Sub

co
nj

>
Ver

b

Con
j >

 V
er

b

Nou
n-

Pro
p

>
Nou

n

Nou
n

>
Adj

Num
-C

ar
d

>
Nou

n

Nou
n-

Zer
o

>
Ver

b

Nou
n

<
Con

j

Ver
b

>
Nou

n-
NPas

tP
ar

t

Pro
n-

Que
sP

 >
 V

er
b

Ver
b

>
Adj-

APre
sP

ar
t

Adv
 >

 A
dj

Adj
>

Nou
n-

Zer
o

Ver
b

<
Que

s

Con
j >

 N
ou

n

Ver
b

<
Adv

Pos
tp

 >
 N

ou
n-

Zer
o

Ver
b

<
Pro

n-
Per

sP

Ver
b

>
Adj-

APas
tP

ar
t

Ver
b

<
Con

j

Nou
n-

NPas
tP

ar
t >

 V
er

b

Ver
b

>
Adj

Nou
n

>
Con

j

Adj-
APas

tP
ar

t >
 N

ou
n

Pro
n-

Dem
on

sP
 >

 V
er

b

Frequency

T
op

-4
0

fr
eq

ue
nt

 d
ep

en
de

nc
y

ty
pe

s

D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 T

U
1

0
 (

M
o

d
e

l
2

)

La
ng

ua
ge

 P
ar

am
et

er
s

A
ll

ru
le

s
F

irs
t 2

7
ru

le
s

F
irs

t 1
6

ru
le

s
F

irs
t 3

 r
ul

es
U

pp
er

 B
ou

nd

(c
)

Im
pr

ov
em

en
to

fd
ep

en
de

nc
y

ty
pe

co
ve

ra
ge

log(Frequency)

F
re

qu
en

t d
ep

en
de

nc
y

ty
pe

s

L
o

g
-S

c
a

le
d

 D
is

tr
ib

u
ti

o
n

 o
f

D
e

p
e

n
d

e
n

c
y

 T
y

p
e

s
 o

n
 T

U
 (

M
o

d
e
l

2
)

S
en

te
nc

e
Le

ng
th

s
U

pp
er

 B
ou

nd
T

U
20

T
U

15
T

U
10

(d
)

C
ov

er
ag

e
of

de
pe

nd
en

cy
ty

pe
s

w
.r.

t.
se

nt
en

ce
le

ng
th

s

Fi
gu

re
6.

14
:

P
ar

si
ng

ac
cu

ra
ci

es
of

Tu
rk

is
h

Chapter 6. Error Analysis 164

in Table 6.14. There are, in general, three categories of problems: PP attachment, co-

ordinate structure dependency annotation, and gerundial attachment. On length 10,

gerundial attachment is the prominent error, such as Verb < Noun-NInf v.s. Verb >

Noun-NInf. This error is caused by our permissive free word order, resulting in the

SVO order allowed to occur in a SOV language like Turkish. PP attachment is also

observable such as Postp > Verb and Postp > Noun. The discrepancy of coordinate

structure dependency annotation is found such as Conj < Noun and Noun > Noun v.s.

Noun < Conj and Noun > Noun. On lengths 15 and 20, the serial verb annotation

errors are still predominant although the other errors are found throughout the obser-

vation. This suggests to us that these errors should be corrected to improve the directed

dependency accuracy.

6.15 Summary

To answer Research Questions 4 and 5: We have conducted across-the-board experi-

ments to demonstrate the performance of our technique and parsing models and dis-

covered parsing errors by means of over- and under-generation analysis. Summarized

in Table 6.15, the errors found are classified into four broad categories: (1) preposi-

tional phrase attachment (2) sentence-like noun phrase (SNP) (3) multiple-word unit

(MWU) (4) annotation discrepancy which occurs in several places such as NP, VP, and

PP. Among those, PP attachment is the most frequent error that takes place in every

language and in any sentence lengths.

From the experimental results, we found that more complex models do not always

necessarily outperform the less complex ones. Most languages suffer from the lexicon

and headword generation probabilities. Among these Chinese solely suffers from the

lexicon generation probability while Turkish solely suffers from the headword genera-

tion probability. Model 5 only outperforms in only two languages: Danish and English.

On the other hand, languages with non-projective dependency structures; i.e. Czech,

Dutch, and German, all suffer from the generative dependency probability.

We will discuss these problems in detail in the next chapter. We regroup the an-

notation discrepancy problems into simpler and broader subgroups: NP, VP, and coor-

dinate structure, where the number category is combined with the NP and the copula,

the auxiliary, and the gerund categories are combined with the VP.

Chapter 6. Error Analysis 165

Table 6.14: Top-10 errors in Turkish

(a) Over-generation

Type on TU10 Freq Type on TU15 Freq Type on TU20 Freq

Noun > Noun 544 Noun > Noun 716 Noun > Noun 964

Verb > Verb 394 Verb > Verb 577 Verb < Noun-NInf 800

Verb < Noun-NInf 335 Verb < Noun-NInf 563 Conj > Verb 719

Conj > Verb 326 Conj > Verb 560 Verb > Verb 698

Postp > Verb 238 Postp > Verb 409 Postp > Verb 540

Conj > Noun 149 Conj > Noun 260 Conj > Noun 325

Noun > Verb 145 Noun-Prop > Noun 187 Verb < Noun-NPastPart 282

Noun-Prop > Noun 136 Verb < Noun-NPastPart 180 Noun-Prop > Noun 260

Verb < Noun-NPastPart 106 Noun > Verb 179 Noun > Noun-Prop 231

Verb < Adj 103 Noun > Noun-Prop 160 Verb > Conj 205

(b) Under-generation

Type on TU10 Freq Type on TU15 Freq Type on TU20 Freq

Verb > Noun-NInf 371 Verb > Noun-NInf 635 Verb > Noun-NInf 903

Noun > Verb 320 Noun > Verb 546 Noun > Verb 723

Noun-NInf > Verb 227 Noun-NInf > Verb 366 Noun-NInf > Verb 497

Postp > Noun 171 Postp > Noun 295 Postp > Noun 401

Noun-Prop > Verb 157 Adv > Verb 240 Verb > Noun-NPastPart 337

Adv > Verb 140 Noun-Prop > Verb 230 Noun-Prop > Verb 312

Noun < Conj 133 Verb > Noun-NPastPart 223 Adv > Verb 298

Noun > Adj 131 Noun > Adj 197 Noun > Adj 243

Verb > Noun-NPastPart 127 Noun < Conj 190 AdvSubconj > Verb 238

AdvSubconj > Verb 98 AdvSubconj > Verb 178 Noun < Conj 230

Chapter 6. Error Analysis 166

Ta
bl

e
6.

15
:

Ty
pe

s
of

fre
qu

en
te

rr
or

s
(o

ve
r-

an
d

un
de

r-
ge

ne
ra

tio
n)

L
an

gu
ag

e
PP

A
tt

ac
hm

en
t

SN
P

M
W

U
A

nn
ot

at
io

n
D

is
cr

ep
an

cy

N
P

V
P

PP
C

oo
r

C
op

ul
a

A
ux

N
um

G
er

un
d

A
ra

bi
c

X
X

X

B
ul

ga
ri

an
X

X
X

X

C
hi

ne
se

X
X

X
X

C
ze

ch
X

X
X

D
an

is
h

X
X

X

D
ut

ch
X

X
X

X

E
ng

lis
h

X
X

X

G
er

m
an

X
X

X

Ja
pa

ne
se

X
X

X

Po
rt

ug
ue

se
X

X

Sl
ov

en
e

X
X

X

Sp
an

is
h

X
X

X

Sw
ed

is
h

X
X

X

Tu
rk

is
h

X
X

X

Chapter 7

General Discussion

Outline

In this chapter we discuss three predominant problems that cause errors in the exper-

iments: (1) PP attachment (2) discrepancy of dependency annotation scheme (3) rich

morphology. When we incorporate our language parameters, the accuracy of the unsu-

pervised parser starts to approach that of the supervised parser, resulting in PP attach-

ment becoming more obvious. Dependency annotation schemes used in the corpora

are thoroughly observed and categorized for ease of understanding. We also explain

the criteria of languages whose directed dependency accuracy exceeds 70% tend to

comply with. We also discuss how much our approximation of inflection system can

improve the accuracy of grammar induction in morphologically rich languages. Finally

we discuss the effects of model’s expressiveness with respect to the accuracy.

7.1 Introduction

In the last chapter, we showed the accuracy improvement of grammar induction by our

language parameters. On corpora of short sentences (up to 10 words), our method sig-

nificantly outperforms the state-of-the-art techniques on 13 out of 14 languages, while

the performance on 1 out of 14 languages is non-significantly different from the state

of the art. When applied to corpora of longer sentences (up to 15 and 20 words, respec-

tively) the accuracy gradually decreases within 10% range in all languages, showing

that our language parameters scale to learning from long sentences. The language pa-

rameters also show a significant effect of frequency, such that the more frequent word

order put into the syntactic prototype, the more accuracy we can attain.

167

Chapter 7. General Discussion 168

However, erroneous dependency types are still generated despite the guidance of

syntactic prototypes. For example, in Figure 6.7(d) we plot the Zipfian distribution of

English to illustrate the coverage of linguistic constructions produced by the syntactic

prototypes. It is noticeable that the more closely the distribution of dependency types in

the model approaches that in the gold standard, the more accuracy the system achieves.

The drops of coverage in English’s Zipfian distribution show that there is still room

for improvement in our syntactic prototypes. We analyze over- and under-generation

of dependency types and effects of corpus annotation schemes and morphology as

follows.

7.2 Modifier Attachment

In Chapter 6, we studied the top-ten erroneous dependency types in each language and

we categorized them into over- and under-generation. For example, we list the top-

ten erroneous dependency types generated in EN10, EN15, and EN20 in Table 6.7.

We notice that frequent errors are caused by ambiguities of PP attachment (e.g. NN

< IN and VB < IN). Meanwhile, other minor problems from modifier attachment are

also found, such as NP bracketing (e.g. NNP > NNP and NN > NN), VP bracketing

(e.g. RB > VB), and syntactically uninformative tags (i.e. tags that do not indicate the

attachment direction, such as NNP < NNP vs. NNP > NNP). All of these problems are

common in supervised parsing.

7.3 Effects of Dependency Annotation Schemes

We examine the causes of errors in our experiments by comparing the output trees

with the gold standard ones. There are several discrepancies between the dependency

annotation schemes used in some of the treebanks and those prescribed in our syntactic

prototypes. Three types of annotation discrepancies were particularly frequent in the

corpora: coordinate structures, NP structures, and VP structures.

As illustrated in Figure 7.1, there are six annotation schemes for coordinate struc-

ture. Type C1 assigns the first conjunct (X1) as the head and the dependency go to

the conjunction (C) and then to the second conjunct (X2). Type C2 simply assigns the

conjunction as the head of the coordinate structure. Type C3 assigns the first conjunct

as the head which then generates the conjunction and the second conjunct. Type C4

assigns the first conjunct as the head and the dependency goes to the second conjunct

Chapter 7. General Discussion 169

X1

��
C

��
X2

(a) Type C1

X1 C
�� ��

X2

(b) Type C2

X1

'' %%
C X2

(c) Type C3

X1

%%
C X2

xx

(d) Type C4

X1 C
��

X2

��

(e) Type C5

X1 C X2

xxyy

(f) Type C6

Figure 7.1: Discrepant annotation schemes of coordinate structures, where C

is a conjunction, X1 and X2 are conjunctions, and the heads are underlined.

D A1 N
vvzz ((

A2

(a) Type N1

D
��
A1

��
N

��
A2

(b) Type N2

D A1

xx '' $$
N A2

(c) Type N3

Figure 7.2: Discrepant annotation schemes of NP structures, where N is a

noun, A1 and A2 are nominal modifiers, D is a determiner, and the heads are

underlined.

and then to the conjunction. Type C5 assigns the second conjunct as the head and the

dependency goes to the conjunction and then to the first conjunct. Finally type C6

assigns the second conjunct as the head which then generates the conjunction and the

first conjunct.

There are three annotation schemes for NP structure as portrayed in Figure 7.2.

Type N1 assigns the syntactic core noun as the head of the NP. Type N2 assigns the

first word of the NP as the head. Finally type N3 assigns the first non-determiner word

of the NP as the head.

There are yet two more structure annotation schemes for the VP as shown in Fig-

ure 7.3. Type V1 assigns the core verb as the head of the VP regardless of the existence

of an auxiliary, while type V2 assigns the auxiliary as the head of the VP if it is present.

Chapter 7. General Discussion 170

X
$$

A1 V
vv ((

A2

(a) Type V1

X A1 V
vv ((zz

A2

(b) Type V2

Figure 7.3: Discrepant annotation schemes of VP structures, where V is a

verb, X is an auxiliary, A1 and A2 are adverbs, and the heads are underlined.

By thorough observation, each corpus is annotated with a different scheme as sum-

marized in Table 7.1. With respect to coordinate structure, the majority of the corpora

are annotated with coodinate structure type C2 (Figure 7.1(b)) that assigns the con-

junction as the head of the coordinate structure. The majority of the corpora use the

NP structure type 1 (Figure 7.2(a)) that assigns the true core noun as the head of the

NP. The majority of the corpora use the VP structure type 1 (Figure 7.3(a)) that assigns

the auxiliary as the head of the VP if it is present.

Not surprisingly, the accuracy of grammar induction depends on the dependency

annotation schemes. First, there are some annotation schemes that our syntactic pro-

totypes cannot produce (i.e. coordinate structure types 3-6 and NP structure types 2

and 3) because their existence is beyond our initial expectation. Correspondingly, the

closer the corpus’s annotation scheme is to the parsing model, the more accuracy we

can achieve. It should be noted that five languages whose directed dependency accu-

racy exceeds 70% — Portuguese (C1, N1, V1), English (C1, N1, V1), Japanese (C6,

N1, V1), Spanish (C3, N3, V2), and Swedish (C4, N1, V1) — tend to comply with the

following creteria:

1. Its annotation schemes for coordinate structure tend to assign the true main con-

junct as the head. In Portuguese, English, and Swedish, the first conjunct is the

main conjunct, so type C1 is used. In Japanese, the second conjunct is the true

head, so type C6 is used. Finally, in Spanish, the type C3 (a slight modification

of type C1) still assigns the first conjunct as the head.

2. Its annotation schemes for noun phrase tend to assign the true core noun as the

head. In every language except Spanish, type N1 is used. Although Spanish uses

type N3, it still correctly assigns the head of the NP because most adjectives

follow the core noun in the language.

Chapter 7. General Discussion 171

Table 7.1: Dependency annotation schemes of the corpora

Languages
Coordinate NP VP
Structures Structures Structures

AR C2 N2 V2

BU C2 N1 V2

CH C2 N1 V2

CZ C4 N1 V2

DA C1 N3 V1

DU C2 N1 V1

EN C1 N1 V1

DE C3 N1 V1

JA C6 N1 V1

PO C1 N1 V1

SL C2 N1 V1

ES C3 N3 V2

SV C4 N1 V1

TU C5 N1 V2

Chapter 7. General Discussion 172

A N
�� !!

N

N

větši počet stupňů šedi
(a) Correct analysis

A N N N
vvwwxx

větši počet stupňů šedi
(b) Candidate analysis from the annotation

scheme type 1 for NP structures

Figure 7.4: Ambiguous dependency analyses of a Czech NP “větši počet

stupňů šedi” without morphological information

3. Its annotation schemes for verb phrase tend to assign the auxiliary as the head

if it is present. In every language except Spanish, type V1 is used. In Spanish

where type V2 is used, our system produces noticeable errors in this category.

7.4 Effects of Morphology

Morphology plays a crucial role in parsing morphologically rich languages. In Ara-

bic, Bulgarian, Czech, and Slovene, long sequences of nouns-adjective mixture can

regularly be found in the text causing combinatory explosion in parsing when non-

projective dependencies are taken into account. For instance, dependency analyses of

the Czech NP “většiA početN stupňůN šediN” (greater number of grayscale) are de-

picted in Figure 7.4. It is hard to generate the correct analysis in Figure 7.4(a) from

any annotation schemes for NP structures.

To solve this problem, we minimally approximate the noun inflection system of

these languages by roughly distinguish the noun tags with their grammatical cases. As

aforementioned in Section 2.5.3, we distinguish Arabic nouns into Nnom, Nga, and

Ngen, and Arabic pronouns into Snom, Sga, and Sgen. Since the Bulgarian tagset do

not distinguish the grammatical cases, we neutralize the genders of nouns, adjectives,

and hybrid tags. Czech nouns are distinguished by attaching the grammatical cases to

the noun tag, i.e. N1 to N7, and NX for any cases. Finally, in Slovene, only nouns with

Chapter 7. General Discussion 173

genetive and locative cases are distinguished — NLoc and NGen.

Our tag distinction practice has been proven to improve the direct dependency ac-

curacy. As seen in Table 5.1, our Czech accuracy ourperforms Boonkwan and Steed-

man’s (2011) system by 9% because in this previous work, the Czech nouns are at-

tached by all morphological attributes, allowing the data sparsity issue to take place.

However, it has been shown in the error analysis that NP structures are still mistakenly

produced in a certain degree. In future work, it is neccessary to include morphological

information into the tagsets in order to improve the accuracy of grammar induction.

7.5 Effects of Model Expressiveness

From the experimental results, we found that more complex models do not always

necessarily outperform the less complex ones. Most languages suffer from the lexicon

and headword generation probabilities. Among these, Chinese solely suffers from the

lexicon generation probability while Turkish solely suffers from the headword gener-

ation probability. The rationale behind the accuracy deterioration of the lexicon and

headword generation probabilies is that they make the models more sensitive to data

sparsity, especially when incorporated into Models 1 and 2.

Furthermore, languages with non-projective dependency structures; i.e. Czech,

Dutch, and German, all suffer from the generative dependency probability. This is

because we have to approximate their non-projectivity in the grammars, resulting in

more unparsable sentences than the others and ultimately the reduction of accuracy.

7.6 Summary

To answer Research Question 6: We discussed the three problems that cause errors

in the experiments: (1) modifier attachment (2) discrepancy of dependency annotation

scheme (3) rich morphology. When we incorporate our language parameters, the accu-

racy of the unsupervised parser starts to approach that of the supervised parser, result-

ing in modifier attachment becoming predominant. Dependency annotation schemes

used in the corpora are classified as follows: six groups for coordinate structure,

three groups for NP, and two groups for VP. We found that the languages whose di-

rected dependency accuracy exceeds 70% follow the following criteria: their annota-

tion schemes (1) assign the main conjunct as the head of the coordinate structure (2)

assign the true core noun as the head of the NP and (3) assign the auxiliary as the

Chapter 7. General Discussion 174

head of the VP if it is present. We also found that our approximation of inflection

system in Arabic, Bulgarian, Czech, and Slovene seems to improve the accuracy of

grammar induction in morphologically rich languages. Finally, we found that data

sparsity still affects the accuracy of grammar induction with our parsing models and

non-projectivity approximation in our grammar is also a source of error.

Part IV

Conclusion

175

Chapter 8

Conclusion

8.1 Concluding Remarks

We have presented an approach to prototype-driven grammar induction using language

parameterization. A set of 33 parameters of basic word orders, which are easy to

acquire from non-linguist informants, capture frequent grammar rules in the Zipfian

distribution of natural languages, while the rest of the grammar can be automatically

induced from unlabeled data. An initial grammar generated from such information is

represented in terms of a lexicalized categorial grammar.

We have assessed the scalability of syntactic prototype in grammar induction on as

many languages and as longest sentences as possible. Although our language parame-

ters need slightly more labor to elicit than Naseem et al.’s (2010) head-dependent pairs

do, the language parameters can be elicited by direct consultation with grammar com-

pendiums and by interview with naïve language informants. Our language parameters

shrink the search space of the grammar induction problem by exploiting both word

order and predefined attachment directions.

The contribution of this thesis is three-fold. (1) We have shown that the language

parameters are adequately generalizable cross-linguistically, as our grammar induction

experiments were carried out on 14 languages by an unsupervised grammar induction

system. (2) Our specification of language parameters improves the accuracy of un-

supervised parsing even when the parser is exposed to much less frequent linguistic

phenomena in longer sentences while the accuracy of directed dependency recovery

decreases within 10% compared to that of the short sentences. (3) We have identified

some predominant error-types in grammar induction which provide room for accuracy

improvement in future work.

176

Chapter 8. Conclusion 177

8.2 Performance

The proposed language parameters are capable of capturing most frequent grammar

rules in natural languages. Our method outperforms or is comparable to the state-of-

the-art techniques.

With only 10 man-hours for preparing syntactic prototypes, it improves the ac-

curacy of directed dependency recovery over the state-of-the-art Gillenwater et al.’s

(2010) completely unsupervised parser in: (1) Chinese by 30.32% (2) Swedish by

28.96% (3) Portuguese by 37.64% (4) Dutch by 15.17% (5) German by 14.21% (6)

Spanish by 13.53% (7) Japanese by 13.13% (8) English by 12.41% (9) Czech by 9.16%

(10) Slovene by 7.24% (11) Turkish by 6.72% and (12) Bulgarian by 5.96%.

We have noted that although the directed dependency accuracies of some languages

are below 60%, their TEDEVAL scores are still satisfactory (approximately 80%). This

suggests us that our parsed trees are, in fact, closely related to the gold-standard trees

and that our dependency recovery scores are unduly depressed by the vagaries of the

PASCAL annotation schemes across the subcorpora.

From the across-language average accuracies of each model, we found that the

trade-off between the accuracies and the model expressivity due to the data sparsity

issue is obvious. We found that Model 0 seems to outperform the others although it is

the least expressive.

We have compared our results with PASCAL Challenge on linguistic structure

induction. In five out of eight languages (Czech, Danish, Dutch, English, and Por-

tuguese), our method significantly outperforms the others, while in the other languages

(Arabic, Slovene, and Swedish) our results are not significantly inferior.

We have also evaluated our method on different sentence lengths — 10, 15, and 20

— to evaluate the scalability to long-tail dependencies of our language parameters. We

found that, although the accuracy decreases as the sentence length increases to 15 and

20, the directed dependency accuracy decreases within the range of 10% in Bulgarian,

Chinese, Danish, Dutch, Spanish, Portuguese, and Turkish.

Finally, we have studied the effects of language parameters towards the accuracy

improvement. We found for almost all languages that the greater number of language

parameters used in the syntactic prototype, the better the accuracy.

Chapter 8. Conclusion 178

8.3 Error Analysis

Error analysis showed, not surprisingly, that syntactic ambiguity issues that are com-

mon in supervised parsing such as PP attachment also take place in grammar induction.

However, the accuracy of grammar induction is more strongly limited by a number of

discrepancies in the dependency annotation schemes used in the various gold standards

used for evaluation. In particular, some annotation patterns are not generated by our

language parameters because their existence is beyond our expectation.

We have conducted across-the-board experiments to demonstrate the performance

of our technique and parsing models and discovered parsing errors by means of over-

and under-generation analysis. The errors found are classified into four broad cate-

gories: (1) modifier attachment (2) quasi-sentential noun phrase (QSNP) (3) multiple-

word unit (MWU) (4) annotation discrepancy which occurs in NP, VP, and coordinate

structure.

We have discussed the three sources of error in the parser: (1) modifier attachment

(2) discrepancies of dependency annotation schemes and (3) rich morphology. When

we incorporate our language parameters, the accuracy of the unsupervised parser starts

to approach that of the supervised parser, resulting in PP attachment becoming predom-

inant. Dependency annotation schemes used in the corpora are classified as follows:

six groups for coordinate structure, three groups for NP, and two groups for VP. We

found that the languages whose directed dependency accuracy exceeds 70% follow the

following criteria: their annotation schemes (1) assign the main conjunct as the head

of the coordinate structure (2) assign the true core noun as the head of the NP and

(3) assign the auxiliary as the head of the VP if it is present. We also found that our

approximation of inflection system in Arabic, Bulgarian, Czech, and Slovene seems

to improve the accuracy of grammar induction in morphologically rich languages. Fi-

nally, we found that data sparsity still affects the accuracy of grammar induction with

our parsing models and non-projectivity approximation in our grammar is also a source

of error.

8.4 Future Work

Our future work in prototype-driven grammar induction will be as follows. First we

will examine the effectiveness of language parameter elicitation by comparing between

the parameters elicited from humans and those elicited from machine translation. Sec-

Chapter 8. Conclusion 179

ond, as our accuracy approaches that of supervised parsers, we need to improve at-

tachment accuracy. Third, we need to speed up the process of language parameter

elicitation. Fourth, we have to improve the parsing models to cope with data sparsity

better and to expand our linguistic prototype’s coverage and expressiveness to nonpro-

jective dependencies. Finally, the use of the directed dependency accuracy starts to be

questionable because the discrepancies of dependency annotation become significant.

8.4.1 Language Parameter Elicitation by Machine Transla-

tion

One interesting question regarding this thesis is the accuracy of the language param-

eters we elicited from machine translation compared with those attained from human

interview. It is interesting to conduct grammar induction for less-privileged languages

whose parallel corpora are voluminous and the word orders of the other language, e.g.

English, has been analyzed.

At the first step, we plan to redo the experiments on the languages we already had

interview results (i.e. Arabic, Chinese, Japanese, and German) using Google Translate

to elicit the language parameters. We will compare both sets of language parameters

and analyze their linguistic differences. We will also compare errors produced from

both syntactic prototypes to analyze the effects to the system.

Next, we plan to incorporate our language parameters to existing bilingual parsing

algorithms such as (Snyder et al., 2009) and induce word orders from the resulting

parallel treebanks.

8.4.2 Syntactic Ambiguity

Syntactic ambiguity was shown to be predominant among the produced errors, in-

cluding (1) PP attachment that occurs in every language and (2) quasi-sentential noun

phrase that is frequent in Chinese. We plan to reduce this issue by incorporating more

information to each node of the tree, such as Tree Markovization (Klein and Manning,

2003).

In this technique, a limited number of vertically and horizontally ancestor tags are

added to the current node’s tag, helping distinguish different kinds of phrase attach-

ment with context. m,n-Markovization means that each node is annotated withm hori-

zontal ancestors and n vertical ancestors. For example, two analyses of the sentence “I

Chapter 8. Conclusion 180

S

NP

I

VP

VP

V

saw

NP

a man

PP

Prep

with

NP

the telescope

S

NP

I

VP

V

saw

NP

NP

a man

PP

Prep

with

NP

the telescope

(a) Normal parses

S

NP

I

VPS
NP

VPVP,S
NP

VVP,VP
NP

saw

NPVP,VP
V

a man

PPVP,S
NP

PrepPP,VPNP

with

NPPP,VP
Prep

the telescope

S

NP

I

VPS
NP

VVP,S
NP

saw

NPNP,VP
V

NPNP,VP
V

a man

PPNP,VP
NP

PrepPP,NP
NP

with

NPPP,NP
Prep

the telescope

(b) Corresponding 1,2-Markovized trees

Figure 8.1: Tree Markovization

saw a man with the telescope” are 1,2-Markovized as illustrated in Fig-

ure 8.1. The preposition ‘with’ becomes differentiated into PrepPP,VPNP → with and

PrepPP,NPNP → with, which ultimately help disambiguate PP attachment.

Tree Markovization however requires some modification when applied to gram-

mar induction whose search space is very large. Straightforward context annotation to

the tags makes structure sharing impossible as all tags are differentiated. One way to

overcome this hindrance is to replace the Inside-Outside Algorithm with Bayesian in-

ference based on Markov-Chain Monte Carlo methods such as (Johnson et al., 2007b).

In their MCMC method, each tree is sampled from the posterior distribution of trees,

whereby for each node, we sample a sequence of daughters from the distribution of

their inside scores.

We can approximate Bayesian inference of Markovized PCFGs by employing the

Metropolis-Hastings Algorithm. We set the proposal distribution Q(·|s,Θ′) to be the

Chapter 8. Conclusion 181

posterior distribution of un-Markovized trees, and the true distribution P (·|s,Θ) to be

the posterior distribution of Markovized trees.

As explained in Algorithm 8.1, for each iteration, we sample a tree from the pro-

posal distribution Q closely following Johnson et al.’s (2007b) joint distribution for

PCFGs and Markovize the tree. If the Markovized tree is accepted, i.e. a ≥ 1, we

replace the old trees in the tree sequences with the new trees. The algorithm iterates

until the distribution of Markovized trees converges.

On the other hand, it is worth noticing that we need not Markovize every node of

the tree as we can focus on specific types of syntactic ambiguity, e.g. PP attachment or

quasi-sentential noun phrase. In this case, partial Markovization is feasible as we can

annotate context to specific tags, such as prepositions, relative pronouns, and verbs,

allowing structure sharing in the charts.

Algorithm 8.1 mhtrain(D, P,Q): Metropolis-Hastings algorithm, where B is the

number of burn-in iterations
1: let counter i← 0

2: Initialize the un-Markovized tree sequence t′

3: Initialize the Markovized tree sequence t with respect to t′

4: repeat
5: let input sentence s← D[i mod N + 1]

6: Sample an un-Markovized tree t′ ∼ Q(·|s,Θ′)
7: let a Markovized tree t← markovize(t′, s)

8: let a← P (t)
P (t[i])

Q(t′[i];t′)
Q(t′;t′[i])

. acceptance ratio

9: if a ≥ 1 or i < B then
10: update t′[i]← t′

11: update t[i]← t

12: end if
13: update i← i+ 1

14: until P (D) converges

15: return t′

8.4.3 Speed-up of Language Parameter Elicitation

Although our language parameters have been shown to capture frequent word orders,

there are two remaining issues which have to be solve in the future. The first one is the

preparation process for language parameter elicitation is relatively time-consuming.

Chapter 8. Conclusion 182

The other one is we have to seek for additional language parameters which can improve

the accuracy in morphologically rich languages.

In the first issue, the preparation process takes up to ten hours — two to four hours

for parameter elicitation and four to six more hours for mapping the corpus-specific

tagset to the cross-linguistic tagset. As the most time-consuming process, the process

of mapping the corpus-specific POS tagset to the cross-linguistic tagset can be abridged

by roughly preparing the mapping table according to the treebank annotation manuals.

Initially, the lexicon inventory needs not be complete; i.e. the POS tagset do not have

to be completely mapped to the cross-linguistic tagset. We plan to extend the lexicon

inventory by existing algorithms, such as (Thomforde and Steedman, 2011; Bisk and

Hockenmaier, 2012a; Bisk and Hockenmaier, 2012b), but we further constrain the

search space with the elicited language parameters. Furthermore, when bitexts are

available, bilingual parser induction such as (Snyder et al., 2009) can also be useful in

automatic elicitation of language parameters.

In the second issue, we plan to incorporate morphological information to the lan-

guage parameters. At this stage, we take into account only grammatical cases. In

Arabic, Bulgarian, Czech, and Slovene, these grammatical cases can be generally clas-

sified into four groups: (1) nominal cases (2) adjectival cases (3) adverbial cases (4)

prepositional object cases. If we can map corpus-specific cases into these generalized

cases, we can specialize syntactic categories for nouns and adjectives with different

cases.

8.4.4 Data Sparsity and Nonprojective Dependency

There are two problems in our parsing models: (1) data sparsity in the lexicon and

headword emission probabilities and (2) ineffective non-projectivity approximation.

For the first problem, we suggest use posterior regularization techniques such as

(Gillenwater et al., 2010; Ganchev et al., 2010) to regularize the probability distribu-

tions of the lexicon and headword emission. In this method, we can put constraints

on the posteriors (in this case, the lexicon and headword emission probabilities) to

learn them efficiently. We believe that such posterior constraint can be automatically

generated from the language parameters already elicited.

To resolve the problems in our non-projectivity approximation, we plan to ex-

tend the expressive power of CDG to that of Combinatory Categorial Grammar in

order to cope with nonprojective dependency. Statistical CCG parsing (Hockenmaier,

Chapter 8. Conclusion 183

2003b; Hockenmaier, 2003a) shows that nonprojective dependency, such as coordinate

structures, dative shifts, and Wh-movement in English, and serial verb construction in

Dutch, can be effectively handled. By all means, CCG parsing is more complex than

CDG parsing because it enlarges the search space by introducing extra derivation rules.

Our language parameters can be employed to control the extension of lexicon inven-

tory.

8.4.5 Evaluation

From the error analysis, we discovered that there are discrepancies of dependency an-

notation schemes, because there is a big gap between the directed dependency accuracy

and TEDEVAL scores. We questioned whether the directed dependency accuracy is

appropriate for accuracy assessment. In completely unsupervised grammar induction,

we attempt to simulate the annotation scheme of a particular corpus, justifying the use

of directed dependency accuracy as an evaluation metric. However, this differs from

our approach: we attempt to capture frequent word orders with the syntactic prototype

following our annotation scheme and extend them with less frequent word orders in

the corpus. It is unfair to evaluate prototype-driven grammar induction in the same

fashion as completely unsupervised grammar induction.

We suggest two additional evaluation practices for prototype-driven grammar in-

duction. First, tree similarity scores such as TEDEVAL and NED should be reported

alongside the directed dependency accuracy, reflecting how similar the parsed depen-

dency structures are to the gold standard ones regardless of annotation schemes. Sec-

ond, task-based evaluation should also be conducted to demonstrate the usefulness of

the produced dependency structures in a particular task, for instance, machine transla-

tion and information extraction.

8.5 Online Resources

We established a project named FUNGI (Fast Unsupervised Grammar Inducer) which

is hosted on SourceForge.net. The source code, the language parameters for all 14

languages in the experiments, and the corpus preparation script can be downloaded

from the following URL:

http://fungi.sourceforge.net/

Chapter 8. Conclusion 184

The code was written in OCaml (http://www.ocaml.org), and compilation

with version 4.00 or above is highly recommended. It also requires the library Functory

(http://functory.lri.fr) for multicore processing.

Part V

Appendices

185

Appendix A

Syntactic Prototype Questionnaire

Preliminaries

Question I
Which language are you speculating its linguistic typology?

Answer:

(Example: English)

Question II
How much do you know about that language?

� I am a native speaker of it.

� I am a (computational) linguist, a typologist, or a syntactician.

� Other reasons.

Please specify here:

Canonical Word Orders

Question 1: Sentence
What are canonical word-ordering patterns of the subject (S), the verb (V), the direct

object (O), and the indirect object (I) in your language?

186

Appendix A. Syntactic Prototype Questionnaire 187

� Tick here if you consider that your language rather has fixed word orders.

� Tick here if there exists a notion of ditransitive verb in your language.

Also tick the dominant word orders in the following table. (For example, English’s

word order is SVIO.)

� SVOI � VSOI � SOVI � OVSI � VOSI � OSVI

� SVIO � VSIO � SOIV � OVIS � VOIS � OSIV

� SIVO � VISO � SIOV � OIVS � VIOS � OISV

� ISVO � IVSO � ISOV � IOVS � IVOS � IOSV

� Otherwise, tick here if there doesn’t exist a notion of ditransitive verb in

your language. Also tick the dominant word orders in the following table.

� SOV � SVO � VSO

� OSV � OVS � VOS

� Otherwise, tick here if you consider that your language strictly has free word order.

That means all the word orders in the above table are allowed.

Question 2: Simple Modifiers

Question 2.1: Adjectives and Nouns

What is the word order of the adjectives when they combine with a noun?

� Tick here if you consider that your language allows the adjectives to combine with

nouns. Also tick the allowable word orders in the following table. (For example,

English allows Adj+N.)

� Adj+N � N+Adj

� Otherwise, tick here if you consider that your language does not allow the adjectives

to combine with the nouns.

Question 2.2: Adverbs and Verb Phrases

What is the word order of the adverbs when they combine with a verb phrase?

� Tick here if you consider that your language allows the adverbs to combine with

verb phrases. Also tick the allowable word orders in the following table. (For example,

English allows both Adv+VP and VP+Adv.)

� Adv+VP � VP+Adv

Appendix A. Syntactic Prototype Questionnaire 188

� Otherwise, tick here if you consider that your language does not allow the adverbs

to combine with the verb phrases.

Question 2.3: Adverbs and Adjectives

What is the word order of the adverbs when they combine with an adjective?

� Tick here if you consider that your language allows the adverbs to combine with

adjectives. Also tick the allowable word orders in the following table. (For example,

English allows Adv+Adj.)

� Adv+Adj � Adj+Adv

� Otherwise, tick here if you consider that your language does not allow the adverbs

to combine with the adjectives.

Question 2.4: Negators

What is the word order of the negators (Neg) when they combine with a verb (V), an

adjective (Adj), and an adverb (Adv)?

� Tick here if there exists a notion of negators in your language. Also tick the al-

lowable word orders in the following table. (For example, English allows Neg+V,

Neg+Adj, and Neg+Adv.)

� Neg+V � V+Neg

� Neg+Adj � Adj+Neg

� Neg+Adv � Adv+Neg

� Otherwise, tick here if there does not exist the notion of negators in your language.

Question 3: Complex Verbs

Question 3.1: Copulae

Does there exist a notion of copulae in your language?

� Tick here if it does.

� Otherwise, tick here if it does not.

Appendix A. Syntactic Prototype Questionnaire 189

Question 3.2: Modal Verbs

What is the word order of the modal verbs when they combine with a verb phrase?

� Tick here if you consider that there is the notion of modal verbs in your language.

Also tick the allowable word orders in the following table. (For example, English

allows Modal+VP.)

� Modal+VP � VP+Modal

� Otherwise, tick here if the modal verbs don’t exist in your language.

Question 3.3: Intransitive Complex Verbs

What are canonical word orders of the subject (S), the intransitive complex verb (V),

and the complementing verb phrase (C)?

� Tick here if there exists the notion of intransitive complex verbs in your language.

Also tick the allowable word orders in the following table. (For example, English

allows SVC.)1

� SVC � VSC

� SCV � VCS

� CSV � CVS

� Otherwise, tick here if there doesn’t exist the notion of intransitive complex verbs

in your language.

Question 3.4: Transitive Complex Verbs

What are canonical word orders of the subject (S), the transitive complex verb (V), the

object (O), and the complementing verb phrase (C)?

� Tick here if there exists the notion of transitive complex verbs in your language.

Also tick the allowable word orders in the following table. (For example, English

allows SVOC.)2

� SVOC � VSOC � SOVC � OVSC � VOSC � OSVC

� SVCO � VSCO � SOCV � OVCS � VOCS � OSCV

� SCVO � VCSO � SCOV � OCVS � VCOS � OCSV

� CSVO � CVSO � CSOV � COVS � CVOS � COSV

1You can also treat the serial verb construction as this complex verb. For example, Thai allows SVC.
2You can also treat the serial verb construction as this complex verb. For example, Thai allows

SVOC.

Appendix A. Syntactic Prototype Questionnaire 190

� Otherwise, tick here if there doesn’t exist the notion of transitive complex verbs in

your language.

Question 4: Complex Modifiers

Question 4.1: Prepositions/Postpositions

What is the word order of the prepositions/postpositions in your language?

� Tick here if there exists the notion of prepositions/postpositions in your language.

Tick the allowable word orders in the following table. (For example, English allows

Prep+NP.)

� Prep+NP � NP+Post

(preposition) (postposition)

� Otherwise, tick here if there doesn’t exist the notion of prepositions/postpositions in

your language.

Question 4.2: Possessivizers

What is the word order of the owner (Owner), the possessivizer (Poss), and the ownee

(Ownee) in your language?

� Tick here if there exists the notion of prepositions/postpositions in your language.

Also tick the allowable word orders in the following table. (For example, English

allows the pattern Owner+Poss+Ownee.)

� Owner+Ownee+Poss � Ownee+Owner+Poss

� Owner+Poss+Ownee � Ownee+Poss+Owner

� Poss+Owner+Ownee � Poss+Ownee+Owner

� Otherwise, tick here if there doesn’t exist the notion of possessivizers in your lan-

guage.

Question 4.3: Relative Pronouns

What is the word order of the relative pronoun (Relpro) and the complementing verb

phrase (VP), and that of the relative clause (Relcls) and the core noun phrase (NP) in

your language?

� Tick here if there exists the notion of relative pronouns in your language. Tick the al-

lowable word orders in the following table. (For example, English allows Relpro+VP.)

Appendix A. Syntactic Prototype Questionnaire 191

� Relpro+VP � VP+Relpro

� Otherwise, tick here if there doesn’t exist the notion of relative pronouns in your

language.

Question 4.4: Modifiers

What is the word order of the modifiers (*Mod) in your language?

� Tick here if there exists the notion of adjectival modifiers in your language. Tick the

allowable word orders in the following table.

� NP+NMod � NMod+NP

� Tick here if there exists the notion of adverbial modifiers in your language. Tick the

allowable word orders in the following table.

� VP+VMod � VMod+VP

� Tick here if there exists the notion of gerund modifiers in your language. Tick the

allowable word orders in the following table.

� Gerund+GMod � GMod+Gerund

� Tick here if there exists the notion of sentential modifiers in your language. Tick the

allowable word orders in the following table.

� Sent+SMod � SMod+Sent

� Otherwise, tick here if there doesn’t exist the notion of these modifiers in your

language.

Question 4.5: Sentential Particles

What is the word order of the sentence (Sent) and the sentential particle (Part) in your

language?

� Tick here if there exists the notion of sentential particles in your language. Tick the

allowable word orders in the following table. (For example, English allows Part+Sent.)

� Sent+Part � Part+Sent

� Otherwise, tick here if there doesn’t exist the notion of sentential particles in your

language.

Appendix A. Syntactic Prototype Questionnaire 192

Question 4.6: Noun Classifiers

Do you use noun classifiers in your language?

� Tick here if you use noun classifiers to count things in your language. Tick the

allowable word orders in the following table. (CL = noun classifiers)

� Num+CL � CL+Num

And what is it used as in your language?

� Adjective � Adverb � Noun modifier � VP modifier

� Otherwise, tick here if you don’t use noun classifiers in your language.

Question 5: Gerunds
Can a gerund, a transformation of a verb phrase, perform the following functions?

� A noun phrase.

� A noun modifier. Also tick the allowable word orders in the following table. (For

example, English allows NP+Gerund.)

� NP+Gerund � Gerund+NP

� A predicative adverbial. Also tick the allowable word orders in the following table.

(For example, English allows VP+Gerund.)

� VP+Gerund � Gerund+VP

� Otherwise, tick here if there doesn’t exist the notion of gerunds in your language.

Question 6: Subordinate Conjunctions

What is the word order for the main clause (Main), the subordinate conjunction (Conj),

and the subordinate clause (Subcls) in your language?

� Tick here if there exists the notion of subordinate conjunctions in your language.

Also tick the allowable word orders in the following table. (For example, English

allows Main+Conj+Subcls and Conj+Subcls+Main.)

� Main+Subcls+Conj � Subcls+Main+Conj

� Main+Conj+Subcls � Subcls+Conj+Main

� Conj+Main+Subcls � Conj+Subcls+Main

� Otherwise, tick here if there doesn’t exist the notion of subordinate conjunctions in

your language.

Appendix A. Syntactic Prototype Questionnaire 193

Question 7: Transformational Affixes

Question 7.1: Infinitive Markers

What is the word order for the infinitive marker (Inf) and the verb phrase (VP) in your

language?

� Tick here if there exists the notion of infinitive markers in your language. Also

tick the allowable word orders in the following table. (For example, English allows

Inf+VP.)

� Inf+VP � VP+Inf

� Otherwise, tick here if there doesn’t exist the notion of infinitive markers in your

language.

Question 7.2: Nominalizing Affixes

What is the word order for the nominalizing affixes?

� Tick here if the nominalizing affixes (Nom) can combine with noun phrases (NP).

Also tick the allowable word orders in the following table. (For example, Thai allows

Nom+NP.)

� Nom+NP � NP+Nom

� Tick here if the nominalizing affixes (Nom) can combine with verb phrases (VP).

Also tick the allowable word orders in the following table. (For example, Thai allows

Nom+VP.)

� Nom+VP � VP+Nom

� Otherwise, tick here if there doesn’t exist the notion of nomializing affixes in your

language.

Question 8: Relocation and Dropping

Question 8.1: Dative Shift

Is dative shift allowed in your language?

� Yes.

� No.

� I don’t know.

Appendix A. Syntactic Prototype Questionnaire 194

Question 8.2: Dropping

Can you drop out the following parts of the sentence if the context is clear enough?

� Subject.

� Object.

� Indirect object.

� None of these.

Corpus-Specific Information

Which corpus are you inducing its grammar? (Example: PTB)

Please match the POS of the corpus to the generalized tagset provided in the following

table.

Appendix A. Syntactic Prototype Questionnaire 195

Generalized Tagset Corpus-specific Tags

Noun (n)

Adjective (adj)

Nominal modifier (nmod)

Verb (v)

Intransitive verb (vi)

Transitive verb (vt)

Ditransitive verb (vd)

Complex verb (vcomp)

Complex intransitive verb (vicomp)

Complex transitive verb (vtcomp)

Modal verb (modal)

Copula (copula)

Gerund (gerund)

Adverb (adv)

Particle (part)

Adverbial modifier (vmod)

Sentential modifier (smod)

Gerund’s modifier (gmod)

Preposition/postposition (adposition)

Relative pronoun (relpro)

Conjunction (conj)

Subordinate conjunction (subconj)

Classifier (cl)

substituting adjective (adjcl)

substituting adverb (advcl)

substituting nominal modifier (nmodcl)

substituting adverbial modifier (vmodcl)

Possessive marker (poss)

Infinitive marker (inf)

NP nominalizer (npnom)

VP nominalizer (vpnom)

Negator (neg)

Verb phrase (vp)

Adpositional phrase (pp)

Appendix B

Dialog for Language Parameter

Elicitation

Question 1: Sentence Structure

[Question 1] Translate the sentence Mary gives John a flower (pattern: [S Mary] [V

gives] [I John] [O a flower]). Does he have to rephrase it as Mary gives a flower

to John (or something equivalent) instead?

Question 2: Simple Modifiers

[Question 2.1] Translate the phrase small kittens (pattern: [Adj small] [N kittens]).

[Question 2.2] Translate the sentence Mary sits quietly (pattern: [V sits] [Adv quietly]).

[Question 2.3] Translate the phrase strongly bitter tea (pattern: [Adv strongly] [Adj bit-

ter]).

[Question 2.4] Translate the following phrases/sentences: (1) The car does not work

(pattern: [Neg not] [V work]); (2) a not complex exercise (pattern: [Neg not] [Adj

complex]); (3) not strongly bitter tea (pattern: [Neg not] [Adv strongly]).

Question 3: Complex Verbs

[Question 3.1] Translate the sentences: (1) John is a student; (2) John is tall; (3) John

is in the classroom. Is there anything equivalent to the verb to be?

[Question 3.2] Translate the sentence Mary can swim (pattern: [Modal can] [V swim]).

196

Appendix B. Dialog for Language Parameter Elicitation 197

[Question 3.3] Translate the sentence Mary wants to swim (pattern: [V want] [C swim]).

[Question 3.4] Translate the sentence John asks Mary to hold the door for him (pat-

tern: [V ask] [O Mary] [C hold the door]).

Question 4: Complex Modifiers

[Question 4.1] Translate the following phrases/sentences: (1) a gift in the box (pat-

tern: [Prep in] [NP the box]); (2) Mary walks into the classroom (pattern: [Prep

into] [NP the room]).

[Question 4.2] Translate the phrase John’s car (pattern: [Owner John] [Poss ’s] [Ownee

car]). Also ask the informant if he can directly say that or he has to rephrase it

as a car of John’s (or something equivalent) instead.

[Question 4.3] Translate the sentence John lifts the box that contains many books (pat-

tern: [NP box] [Relpro that] [VP contains many books]).

[Question 4.4] Translate the sentences: (1) John is the man on the bench (pattern: [NP

man] [NMod on the bench]); (2) John walks on the shore (pattern: [VP walk] [VMod

on the shore]); (3) John is the man running on the shore (pattern: [Gerund running]

[GMod on the shore]); (4) On Monday, John will hand in his homework (pattern:

[SMod On Monday] [S John will hand in his homework]).

[Question 4.5] Ask the informant if there are any adverb-like words which seem to

modify the verb, as in over in Mary starts the process over (pattern: [VP start the

process] [Part over]).

[Question 4.5] Ask the informant if there are any adverb-like words which seem to

modify the verb, as in over in Mary starts the process over (pattern: [VP start the

process] [Part over]).

[Question 4.6] Translate the phrase three cars. Does he have to rephrase it as three

bodies of car (pattern: [Num three] [CL bodies] [NP car])?

Question 5: Gerunds

[Question 5] Translate the following phrases/sentences: (1) Running is good ([Gerund

running] as a noun phrase); (2) a running man ([Gerund running] as an adjectival);

Appendix B. Dialog for Language Parameter Elicitation 198

(3) John is running ([Gerund running] as a non-finite verb). Check if any of these

is grammatical in the language.

Question 6: Subordinate Conjunctions

[Question 6] Translate the following sentences: (1) If you press this button, the door

will open (pattern: [Conj if] [Subcls you press this button] [Main the door will open]);

(2) The door will open if you press this button (pattern: [Main the door will open]

[Conj if] [Subcls you press this button]).

Question 7: Transformational Affixes

[Question 7.1] Translate the sentence Mary carefully reads her draft to identify the

inconsistency (pattern: [Inf to] [VP identify the inconsistency]).

[Question 7.2] Ask the informant if: (1) there are any bound morphemes that trans-

form a verb into a noun phrase such as travel > traveler (pattern: [VP travel] [Nom

-er]); (2) there are any bound morphemes that augment the meaning of a noun,

such as the Thai bound morpheme nák in tennis ‘tennis’ > nák tennis ‘tennis

player’ (pattern: [Nom nák] [NP tennis]). Note that each bound morpheme does

not have any meaning on its own.

Question 8: Relocation and Dropping

[Question 8.1] Translate the sentence John introduces to Mary his long-time friends

from high school (pattern: [Dative to Mary] [O his long-time friends from high

school]). Also ask the informant if he has to relocate the dative part to a particular

position if the direct object is elongated.

[Question 8.2] Translate the sentence Mary gives John a flower (pattern: pattern: [S

Mary] [V gives] [I John] [O a flower]) and consider the grammaticality of the fol-

lowing omissions: (1) (She) gives John a flower; (2) Mary gives (him) a flower;

(3) Mary gives John (it).

Bibliography

[Adriaans, 1992] P. W. Adriaans. 1992. Language Learning from a Categorial Per-

spective. Ph.D. thesis, Universiteit van Amsterdam.

[Adriaans, 1999] P. W. Adriaans. 1999. Learning shallow context-free languages un-

der simple distributions. Technical Report ILLC Report PP-1999-13, Institute for

Logic, Language, and Computation, Amsterdam, the Netherland.

[Afonso et al., 2002] S. Afonso, E. Bick, R. Haber, and D. Santos. 2002. Floresta

Sinta(c)tica: a treebank for Portuguese. In Proceedings of LREC.

[Ajdukiewicz, 1935] Kazimierz Ajdukiewicz. 1935. Die Syntaktische Konnexität.

Polish Logic, pages 207–231.

[Attias, 2000] Hagai Attias. 2000. A variational Bayesian framework for graphical

models. In Advances in Neural Information Processing Systems (NIPS 2000).

[Baker, 1979] J. K. Baker. 1979. Trainable grammars for speech recognition. In D. H.

Klatt and J. J. Wolf, editors, Speech Communication Papers for the 97th Meeting of

the Acoustical Society of America, pages 547–550.

[Baldridge and Kruijff, 2003] Jason Baldridge and Geert-Jan M. Kruijff. 2003. Mul-

timodal combinatory categorial grammar. In Proceedings of the 10th Conference of

the European Chapter of the ACL 2003, pages 211–218, Budapest, Hungary.

[Bar-Hillel, 1953] Yehoshua Bar-Hillel. 1953. A Quasi-Arithmetical Notation for

Syntactic Description. Language, 29:47–58.

[Baum et al., 1970] L. Baum, T. Petrie, G. Soules, and N. Weiss. 1970. A maxi-

mization technique occurring in the statistical analysis of probabilistic functions of

markov chains. The Annals of Mathematical Statistics, 41(1):164–171, February.

199

Bibliography 200

[Beal, 2003] Matthew J. Beal. 2003. Variational Algorithms for Approximate

Bayesian Inference. Ph.D. thesis, Gatsby Computational Neuroscience Unit, Uni-

versity of London.

[Bisk and Hockenmaier, 2012a] Yonatan Bisk and Julia Hockenmaier. 2012a. Induc-

tion of linguistic structure with combinatory categorial grammars. In Proceedings

of the NAACL-HLT Workshop on the Induction of Linguistic Structure, pages 90–95.

ACL.

[Bisk and Hockenmaier, 2012b] Yonatan Bisk and Julia Hockenmaier. 2012b. Simple

robust grammar induction with combinatory categorial grammar. In Proceedings of

the 26th National Conference on Artificial Intelligence (AAAI), pages 1643–1648.

AAAI.

[Black et al., 1992] Erza Black, John Lafferty, and Salim Roukos. 1992. Develop-

ment and evaluation of a broad-coverage probabilistic grammar of English-language

computer manuals. In Proceedings of 30th Annual Meeting on Association for Com-

putational Linguistics.

[Bohomovà et al., 2001] A. Bohomovà, J. Hajic, E. Hajicova, and B. Hladka. 2001.

The Prague dependency treebank: Three-level annotation scenario. In Anne Abeillé,

editor, Treebanks: Building and Using Syntactically Annotated Corpora.

[Boonkwan and Steedman, 2011] Prachya Boonkwan and Mark Steedman. 2011.

Grammar induction from text using small syntactic prototypes. In Proceedings of

the 5th IJCNLP, pages 438–446.

[Boyer and Moore, 1972] R. S. Boyer and J. S. Moore. 1972. The sharing of structure

in theorem-proving programs. In J. Bresnan, editor, Machine Intelligence, volume 7,

pages 101–116. Edinburgh University Press.

[Brants et al., 2002] S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. 2002.

The TIGER treebank. In Proceedings Workshop on Treebanks and Linguistic The-

ories.

[Buchholz and Marsi, 2006] Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X

shared task on multilingual dependency parsing. In Proceedings of CoNLL-2006,

pages 149–164.

Bibliography 201

[Carroll and Charniak, 1992] Glenn Carroll and Eugene Charniak. 1992. Two exper-

iments on learning probabilistic dependency grammars from corpora. In C. Weir,

S. Abney, R. Grishman, and R. Weischedel, editors, Working Notes of the Workshop

Statistically-Based NLP Techniques, pages 1–13. AAAI Press, Menlo Park, CA.

[Charniak, 1997] Eugene Charniak. 1997. Statistical parsing with a context-free

grammar and word statistics. In Proceedings of the 14th National Conference on

Artificial Intelligence, Menlo Park, CA. AAAI Press/MIT Press.

[Chen, 1995] S. F. Chen. 1995. Bayesian grammar induction for language modeling.

In Proceedings of the 33rd Meeting of the Association for Computational Linguis-

tics, pages 228–235.

[Chomsky, 1964] Noam Chomsky. 1964. Current issues in linguistic theory. Janua

Linguarum, (38).

[Chomsky, 1965] Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press.

[Civit and Martí, 2004] M. Civit and M. A. Martí. 2004. Bulding Cast3lb: A Spanish

treebank. In Research on Language & Computation.

[Clark and Curran, 2007] Stephen Clark and James R. Curran. 2007. Wide-coverage

efficient statistical parsing with CCG and log-linear models. Computational Lin-

guistics, 33(4):493–552, December.

[Clark and Lappin, 2010] Alexander Clark and Shalom Lappin. 2010. Unsupervised

learning and grammar induction. In Alexander Clark, Chris Fox, and Shalom Lap-

pin, editors, Computational Linguistics and Natural Language Processing Hand-

book. Wiley-Blackwell, Oxford.

[Clark and Lappin, 2011] Alexander Clark and Shalom Lappin. 2011. Computational

learning theory and language acquisition. In Ruth Kempson, Nicholas Asher, and

Tim Fernando, editors, Handbook of Philosophy of Linguistics. Elsevier/MIT Press.

[Clark, 2000] Alexander Clark. 2000. Inducing syntactic categories by context distri-

bution clustering. In Proceedings of CoNLL-2000 and LLL-2000, pages 91–94.

[Clark, 2001] Alexander Clark. 2001. Unsupervised induction of stochastic context-

free grammars using distributional clustering. In Proceedings of the 5th Conference

on Natural Language Learning.

Bibliography 202

[Cocke and Schwartz, 1970] John Cocke and Jacob T. Schwartz. 1970. Programming

languages and their compilers: Preliminary notes. Technical report, Courant Insti-

tute of Mathematical Sciences, New York University.

[Cohen et al., 2008] Shay B. Cohen, Kevin Gimpel, and Noah A. Smith. 2008. Logis-

tic normal priors for unsupervised probabilistic grammar induction. In Advances in

Neural Information Processing Systems 21.

[Cohen et al., 2010] Shay B. Cohen, David M. Blei, and Noah A. Smith. 2010. Vari-

ational inference for adaptor grammars. In Proceedings of Human Language Tech-

nologies: 2010 Annual Conference of NAACL, pages 564–572.

[Cohn et al., 2009] Trevor Cohn, Sharon Goldwater, and Phil Blunsom. 2009. In-

ducing compact but accurate tree-substitution grammars. In Proceedings of Human

Language Technologies: 2009 Annual Conference of NAACL, pages 548–556.

[Cohn et al., 2010] Trevor Cohn, Phil Blunsom, and Sharon Goldwater. 2010. In-

ducing tree-substitution grammars. The Journal of Machine Learning Research,

9999:3053–3096.

[Collins, 1999] Micheal Collins. 1999. Head-Driven Statistical Models for Natural

Language Parsing. Ph.D. thesis, University of Pennsylvania.

[Cristofaro, 2011a] Sonia Cristofaro. 2011a. Purpose clauses. In Matthew S. Dryer

and Martin Haspelmath, editors, The World Atlas of Language Structures Online.

Max Planck Digital Library, Munich.

[Cristofaro, 2011b] Sonia Cristofaro. 2011b. Reason clauses. In Matthew S. Dryer

and Martin Haspelmath, editors, The World Atlas of Language Structures Online.

Max Planck Digital Library, Munich.

[Cristofaro, 2011c] Sonia Cristofaro. 2011c. Utterance complement clauses. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Cristofaro, 2011d] Sonia Cristofaro. 2011d. ’when’ clauses. In Matthew S. Dryer

and Martin Haspelmath, editors, The World Atlas of Language Structures Online.

Max Planck Digital Library, Munich.

Bibliography 203

[Dell’Orletta et al., 2011] Felice Dell’Orletta, Giulia Venturi, and Simonetta Monte-

magni. 2011. ULISSE: an unsupervised algorithm for detecting reliable dependency

parses. In Proceedings of the 15th Conference on CoNLL 2011, pages 115–124.

[Dempster et al., 1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maxi-

mum likelihood from incomplete data via the em algorithm. Journal of the Royal

Statistical Society, 39(1):1–38.

[Dodd, 1988] L. Dodd. 1988. Grammatical inference for automatic speech recog-

nition: an application of the inside/outside algorithm and the spelling of English

words. In Proceedings of the 7th FASE Symposium, pages 1061–1068, Edinburgh.

[Druck et al., 2009] Gregory Druck, Gideon Mann, and Andrew McCallum. 2009.

Semi-supervised learning of dependency parsers using generalized expectation cri-

teria. In Proceedings of 47th Annual Meeting of the Association of Computational

Linguistics and the 4th IJCNLP of the AFNLP, pages 360–368, Suntec, Singapore,

August.

[Dryer, 2011a] Matthew S. Dryer. 2011a. Order of adjective and noun. In Matthew S.

Dryer and Martin Haspelmath, editors, The World Atlas of Language Structures

Online. Max Planck Digital Library, Munich.

[Dryer, 2011b] Matthew S. Dryer. 2011b. Order of adposition and noun phrase. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Dryer, 2011c] Matthew S. Dryer. 2011c. Order of adverbial subordinator and clause.

In Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Dryer, 2011d] Matthew S. Dryer. 2011d. Order of degree word and adjective. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Dryer, 2011e] Matthew S. Dryer. 2011e. Order of demonstrative and noun. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

Bibliography 204

[Dryer, 2011f] Matthew S. Dryer. 2011f. Order of genitive and noun. In Matthew S.

Dryer and Martin Haspelmath, editors, The World Atlas of Language Structures

Online. Max Planck Digital Library, Munich.

[Dryer, 2011g] Matthew S. Dryer. 2011g. Order of object and verb. In Matthew S.

Dryer and Martin Haspelmath, editors, The World Atlas of Language Structures

Online. Max Planck Digital Library, Munich.

[Dryer, 2011h] Matthew S. Dryer. 2011h. Order of relative clause and noun. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Dryer, 2011i] Matthew S. Dryer. 2011i. Order of subject and verb. In Matthew S.

Dryer and Martin Haspelmath, editors, The World Atlas of Language Structures

Online. Max Planck Digital Library, Munich.

[Dryer, 2011j] Matthew S. Dryer. 2011j. Order of subject, object and verb. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Dryer, 2011k] Matthew S. Dryer. 2011k. Polar questions. In Matthew S. Dryer and

Martin Haspelmath, editors, The World Atlas of Language Structures Online. Max

Planck Digital Library, Munich.

[Dryer, 2011l] Matthew S. Dryer. 2011l. Position of polar question particles. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Dryer, 2011m] Matthew S. Dryer. 2011m. Relationship between the order of object

and verb and the order of adjective and noun. In Matthew S. Dryer and Martin

Haspelmath, editors, The World Atlas of Language Structures Online. Max Planck

Digital Library, Munich.

[Dryer, 2011n] Matthew S. Dryer. 2011n. Relationship between the order of object

and verb and the order of adposition and noun phrase. In Matthew S. Dryer and

Martin Haspelmath, editors, The World Atlas of Language Structures Online. Max

Planck Digital Library, Munich.

[Dryer, 2011o] Matthew S. Dryer. 2011o. Relationship between the order of object

and verb and the order of relative clause and noun. In Matthew S. Dryer and Martin

Bibliography 205

Haspelmath, editors, The World Atlas of Language Structures Online. Max Planck

Digital Library, Munich.

[Džeroski et al., 2006] S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas, Z. Žabokrtsky,

and A. Žele. 2006. Towards a Slovene dependency treebank. In Proceedings of

LREC.

[Elman et al., 1996] J. Elman, E. Bates, M. H. Johnson, A. Karmiloff-Smith, D. Parisi,

and K. Plunkett. 1996. Rethinking Innateness: A Connectionist Perspective on

Development. MIT Press/Bradford Books, Cambridge, Massachusetts.

[Forney, 1973] George David Forney. 1973. The Viterbi algorithm. In Proceedings

of the IEEE, volume 61, pages 268–278.

[Ganchev et al., 2010] Kuzman Ganchev, João Graça, Jennifer Gillenwater, and Ben

Taskar. 2010. Posterior regularization for structured latent variable models. Journal

of Machine Learning Research, 11:2001–2049.

[Gelling and Cohn, 2012] Douwe Gelling and Trevor Cohn. 2012. The PASCAL

Challenge on grammar induction. In NAACL-HLT Workshop on the Induction of

Linguistic Structure, pages 64–80.

[Geman and Geman, 1984] Stuart Geman and Donald Geman. 1984. Stochastic re-

laxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 6:721–741.

[Ghahramani and Beal, 2000] Zoubin Ghahramani and Matthew J. Beal. 2000. Vari-

ational inference for Bayesian mixtures of factor analyses. In Advances in Neural

Information Processing Systems (NIPS 2000).

[Gil, 2011] David Gil. 2011. Numeral classifiers. In Matthew S. Dryer and Martin

Haspelmath, editors, The World Atlas of Language Structures Online. Max Planck

Digital Library, Munich.

[Gillenwater et al., 2010] Jennifer Gillenwater, Kuzman Ganchev, João Graça, Fer-

nando Pereira, and Ben Taskar. 2010. Sparsity in dependency grammar induction.

In Proceedings of ACL-2010 Short Papers, pages 194–199.

[Goldwater, 2007] Sharon Goldwater. 2007. Nonparametric Bayesian Models of Lex-

ical Acquisition. Ph.D. thesis, Department of Cognitive and Linguistic Sciences,

Brown University, Providence, Rhode Island, May.

Bibliography 206

[Haghighi and Klein, 2006] Aria Haghighi and Dan Klein. 2006. Prototype-driven

grammar induction. In Proceedings of 44th Annual Meeting of the Association for

Computational Linguistics, pages 881–888.

[Haspelmath et al., 2005] Martin Haspelmath, Matthew S. Dryer, David Gil, and

Bernard Comrie. 2005. The World Atlas of Language Structures. Oxford Uni-

versity Press, http://wals.info/, July.

[Haspelmath, 2011a] Martin Haspelmath. 2011a. Ditransitive constructions: The verb

’give’. In Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of

Language Structures Online. Max Planck Digital Library, Munich.

[Haspelmath, 2011b] Martin Haspelmath. 2011b. ’want’ complement subjects. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Hastings, 1970] W. K. Hastings. 1970. Monte carlo sampling methods using markov

chains and their applications. Biometrika, 57:97–109.

[Headden III et al., 2009] William P. Headden III, Mark Johnson, and David Mc-

Closky. 2009. Improving unsupervised dependency parsing with richer contexts

and smoothing. In Proceedings of the Conference of the North American Chapter

of the Association for Computational Linguistics, Boulder, Colorado, June.

[Henrichsen, 2002] P. J. Henrichsen. 2002. Grasp: Grammar learning from unlabeled

speech corpora. In Proceedings of CoNLL-2002, pages 22–28, Taipei, Taiwan.

[Hockenmaier and Steedman, 2007] Julia Hockenmaier and Mark Steedman. 2007.

CCGbank: A corpus of CCG derivations and dependency structures extracted from

the Penn Treebank. Computational Linguistics, 33(3):355–396.

[Hockenmaier, 2003a] Julia Hockenmaier. 2003a. Data and Models for Statistical

Parsing with Combinatory Categorial Grammar. Ph.D. thesis, University of Edin-

burgh.

[Hockenmaier, 2003b] Julia Hockenmaier. 2003b. Parsing with generative models

of predicate-argument structure. In Proceedings of the 41st Annual Meeting of the

Association for Computational Linguistics, pages 359–366, Sapporo, Japan.

Bibliography 207

[Jelinek, 1985] F. Jelinek. 1985. Markov source modeling of text generation. In

Impact of Processing Techniques on Communication, pages 569–598.

[Johansson and Nugues, 2007] Richard Johansson and Pierre Nugues. 2007. Ex-

tended constituent-to-dependency conversion for english. In Proceedings of

NODALIDA 2007.

[Johnson and Demuth, 2010] Mark Johnson and Katherine Demuth. 2010. Unsuper-

vised phonemic chinese word segmentation using adaptor grammars. In Proceed-

ings of the 23rd International Conference on Computational Linguistics (COLING

2010), pages 528–536.

[Johnson and Goldwater, 2009] Mark Johnson and Sharon Goldwater. 2009. Improv-

ing nonparametric bayesian inference: Experiments on unsupervised word segmen-

tation with adaptor grammars. In Proceedings of Human Language Technologies:

2009 Annual Conference of NAACL, pages 317–325.

[Johnson et al., 2007a] Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater.

2007a. Adaptor grammars: A framework for specifying compositional nonpara-

metric bayesian models. Advances in Neural Information Processing Systems, 19.

[Johnson et al., 2007b] Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater.

2007b. Bayesian inference for pcfgs via markov chain monte carlo. In Proceedings

of NAACL 2007.

[Johnson, 1998] Mark Johnson. 1998. PCFG models of linguistic tree representations.

Computational Linguistics, 24(4):613–632, December.

[Johnson, 2008] Mark Johnson. 2008. Using adaptor grammars to identify synergies

in the unsupervised acquisition of linguistic structure. In Proceedings of ACL-2008:

HLT, pages 398–406.

[Kasami, 1965] Tadao Kasami. 1965. An efficient recognition and syntax-analysis

algorithm for context-free languages. Technical report, Air Force Cambridge Re-

search Lab, Bedford, MA.

[Kawata and Bartels, 2000] Y. Kawata and J. Bartels. 2000. Stylebook for the

Japanese treebank in VERBMOBIL. Technical report, Eberhard-Karls-Universität

Tübingen.

Bibliography 208

[Keh-Liann and Hsieh, 2004] Chen Keh-Liann and Yu-Ming Hsieh. 2004. Chinese

treebanks and grammar extraction. In Proceedings of IJCNLP-2004, pages 560–

565.

[Klein and Manning, 2001a] Dan Klein and Christopher D. Manning. 2001a. Dis-

tributional phrase structure induction. In Proceedings of the 5th Conference on

Natural Language Learning, pages 113–120.

[Klein and Manning, 2001b] Dan Klein and Christopher D. Manning. 2001b. Natural

language grammar induction using a constituent-context model. In T. G. Dietterich,

S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing

Systems (NIPS 2001), volume 1, pages 35–42. MIT Press.

[Klein and Manning, 2002] Dan Klein and Christopher D. Manning. 2002. A genera-

tive constituent-context model for improved grammar induction. In Proceedings of

the 40th Associations for Computational Linguistics, pages 128–135.

[Klein and Manning, 2003] Dan Klein and Christopher D. Manning. 2003. Accurate

unlexicalized parsing. In Proceedings of the 41st Annual Meeting of the Association

for Computational Linguistics, pages 423–430.

[Klein and Manning, 2004] Dan Klein and Christopher D. Manning. 2004. Corpus-

based induction of syntactic structure: Models of dependency and constituency.

In Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics.

[Klein, 2005] Dan Klein. 2005. The Unsupervised Learning of Natural Language

Structure. Ph.D. thesis, Stanford University, March.

[Koller and Kuhlmann, 2009] Alexander Koller and Marco Kuhlmann. 2009. Depen-

dency trees and the strong generative capacity of ccg. In Proceedings of the 12th

Conference of the European Chapter of the Association for Computational Linguis-

tics, pages 460–468, April.

[Kromann et al., 2003] M. T. Kromann, L. Mikkelsen, and S. K. Lynge. 2003. Danish

dependency treebank. In Proceedings of TLT.

[Kurihara and Sato, 2006] Kenichi Kurihara and Taisuke Sato. 2006. Variational

Bayesian grammar induction for natural language. In International Colloquium

on Grammatical Inference, pages 84–96.

Bibliography 209

[Lari and Young, 1990] K. Lari and S. J. Young. 1990. The estimation of stochastic

context-free grammars using the inside-outside algorithm. Computer Speech and

Language, 4:35–56.

[Liang et al., 2007] Percy Liang, Slav Petrov, Michael I. Jordan, and Dan Klein. 2007.

The infinite pcfg using hierarchical dirichlet processes. In Proceedings of the 2007

Joint Conference on EMNLP and CoNLL, pages 688–697.

[Marcus et al., 1993] Mitchell P. Marcus, Beatrice Santorini, and Mary A.

Marcinkiewicz. 1993. Building a large annotated corpus of English: The Penn

Treebank. Computational Linguistics, 19:313–330.

[Metropolis et al., 1953] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N.

Rosenbluth, Augusta H. Teller, and Edward Teller. 1953. Equation of state calcula-

tions by fast computing machines. Journal of Chemical Physics, 21(6):1087–1092.

[Miestamo, 2011a] Matti Miestamo. 2011a. Subtypes of asymmetric standard nega-

tion. In Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of

Language Structures Online. Max Planck Digital Library, Munich.

[Miestamo, 2011b] Matti Miestamo. 2011b. Symmetric and asymmetric standard

negation. In Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of

Language Structures Online. Max Planck Digital Library, Munich.

[Moore, 1973] J. S. Moore. 1973. Computational Logic: Structure Sharing and Proof

of Program Properties. Ph.D. thesis, Department of Computational Logic, Univer-

sity of Edinburgh.

[Naseem et al., 2010] Tahira Naseem, Harr Chen, Regina Barzilay, and Mark John-

son. 2010. Using universal linguistic knowledge to guide grammar induction. In

Proceedings of EMNLP-2010.

[Nilsson et al., 2005] J. Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets TIGER:

Reconstructing a Swedish treebank from antiquity. In NODALIDA Special Session

on Treebanks.

[Oflazer et al., 2003] K. Oflazer, B. Say, D. Z. Hakkani-Tür, and G. Tür. 2003. Build-

ing a Turkish treebank. In Treebanks: Building and Using Syntactically Annotated

Corpora.

Bibliography 210

[Osborne and Briscoe, 1997] Miles Osborne and Ted Briscoe. 1997. Learning

stochastic categorial grammars. In Proceedings of CoNLL-1997, pages 80–87.

[Page and Brin, 1998] Larry Page and Sergey Brin. 1998. The anatomy of a large-

scale hypertextual web search engine. International Web Conference.

[Reichart and Rappoport, 2009] Roi Reichart and Ari Rappoport. 2009. Automatic

selection of high quality parses created by a fully unsupervised parser. In Proceed-

ings of 13th Conference on CoNLL, pages 156–164.

[Rissanen, 1978] Jorma Rissanen. 1978. Modeling by the shortest data description.

Automatica, 14:465–471.

[Rissanen, 1989] Jorma Rissanen. 1989. Stochastic Complexity and Statistical In-

quiry. World Scientific Co., Singapore.

[Schabes et al., 1993] Yves Schabes, Michal Roth, and Randy Osborne. 1993. Parsing

the Wall Street Journal with the inside-outside algorithm. In Proceedings of the 6th

Conference on European Chapter of the Association for Computational Linguistics,

pages 341–347.

[Schütze, 1995] Hinrich Schütze. 1995. Distributional part-of-speech tagging. In

Morgan Kaufmann, editor, Proceedings of the 7th Meeting of the European Chapter

of the Association for Computational Linguistics, pages 141–148, San Francisco,

CA.

[Seginer, 2007] Yoav Seginer. 2007. Fast unsupervised incremental parsing. In Pro-

ceedings of 45th Annual Meeting of ACL, pages 384–391.

[Siewierska, 2011] Anna Siewierska. 2011. Third person zero of verbal person mark-

ing. In Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of

Language Structures Online. Max Planck Digital Library, Munich.

[Simov et al., 2001] K. Simov, P. Osenova, M. Slavcheva, S. Kolkovska, E. Bala-

banova, D. Doikoff, K. Ivanova, A. Simov, E. Simov, and M. Kouylekov. 2001.

Building a linguistically interpreted corpus of Bulgarian: The Bultreebank. In Pro-

ceedings of LREC.

[Smith, 2006] Noah A. Smith. 2006. Novel Estimation Methods for Unsupervised

Discovery of Latent Structure in Natural Language Text. Ph.D. thesis, Department

of Computer Science, John Hopkins University.

Bibliography 211

[Smrž et al., 2002] Otakar Smrž, Jan Šnaldauf, and Petr Zemánek. 2002. Prague

dependency treebank for Arabic: Multi-level annotation of Arabic corpus. In Pro-

ceedings of International Symposium on Processing of Arabic, pages 147–155.

[Snyder et al., 2009] Benjamin Snyder, Tahira Naseem, and Regina Barzilay. 2009.

Unsupervised multilingual grammar induction. In Proceedings of the Joint Confer-

ence of the 47th ACL and the 4th IJCNLP.

[Søgaard, 2011] Anders Søgaard. 2011. From ranked words to dependency trees:

Two-staged unsupervised nonprojective dependency parsing. In Proceedings of the

TextGraphs-6 Workshop, pages 60–68.

[Song, 2011a] Jae Jung Song. 2011a. Nonperiphrastic causative constructions. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Song, 2011b] Jae Jung Song. 2011b. Periphrastic causative constructions. In

Matthew S. Dryer and Martin Haspelmath, editors, The World Atlas of Language

Structures Online. Max Planck Digital Library, Munich.

[Spitkovsky and Alshawi, 2011a] Valentin I. Spitkovsky and Hiyan Alshawi. 2011a.

Lateen EM: Unsupervised training with multiple objectives applied to dependency

grammar induction. In Proceedings of EMNLP-2011, pages 1269–1280.

[Spitkovsky and Alshawi, 2011b] Valentin I. Spitkovsky and Hiyan Alshawi. 2011b.

Punctuation: Making a point in unsupervised dependency parsing. In Proceedings

of the 15th Conference on CoNLL 2011, pages 19–28.

[Spitkovsky et al., 2010] Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky.

2010. From baby steps to leapfrog: How “less is more” in unsupervised dependency

parsing. In Proceedings of NAACL-HLT 2010.

[Spitkovsky et al., 2011] Valentin I. Spitkovsky, Hiyan Alshawi, Angel X. Chang, and

Daniel Jurafsky. 2011. Unsupervised dependency parsing without gold part-of-

speech tags. In Proceedings of the 2011 Conference on EMNLP, pages 1281–1290.

[Steedman, 2000] Mark Steedman. 2000. The Syntactic Process. The MIT Press,

Cambridge, Massachusetts.

Bibliography 212

[Stolcke and Omohundro, 1994] A. Stolcke and S. M. Omohundro. 1994. Inducing

probabilistic grammars by Bayesian model merging. In Proceedings of the 2nd

International Colloquium on Grammatical Inference. Springer-Verlag.

[Surdeanu et al., 2008] Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluís

Màrquez, and Joakim Nivre. 2008. The CoNLL-2008 shared task on joint pars-

ing of syntactic and semantic dependencies. In Proceedings of the 12th Conference

on Computational Natural Language Learning (CoNLL).

[Thomforde and Steedman, 2011] Emily Thomforde and Mark Steedman. 2011.

Semi-supervised CCG lexicon extension. In Proceedings of the Conference on Em-

pirical Methods in Natural Language Processing, pages 1246–1256. ACL.

[Tomita, 1987] M. Tomita. 1987. An efficient augmented-context-free parsing algo-

rithm. Computational Linguistics, 13(1–2):31–46, January–June.

[Tsarfaty et al., 2011] Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. 2011.

Evaluating dependency parsing: Robust and heuristics-free cross-annotation evalu-

ation. In Proceedings of 8th EMNLP, Edinburgh, UK, 27–29 July 2011.

[Tsarfaty et al., 2012a] Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. 2012a.

Cross-framework evaluation for statistical parsing. In Proceedings of EACL, France.

[Tsarfaty et al., 2012b] Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. 2012b.

Joint evaluation of morphological segmentation and syntactic parsing. In Proceed-

ings of ACL 2012, Korea.

[Tu, 2012] Kewei Tu. 2012. Combining the sparsity and unambiguity biases for gram-

mar induction. In Proceedings of the NAACL-HLT Workshop on the Induction of

Linguistic Structure.

[van der Beek et al., 2002] L. van der Beek, G. Bouma, R. Malouf, and G. van Noord.

2002. The Alpino dependency treebank. In Language and Computers.

[van Zaanen, 2002] M. van Zaanen. 2002. Bootstrapping Structure into Language:

Alignment-Based Learning. Ph.D. thesis, School of Computing, University of

Leeds.

[Villavicencio, 2002] Aline Villavicencio. 2002. The Acquisition of a Unification-

based Generalized Categorial Grammar. Ph.D. thesis, University of Cambridge,

April.

Bibliography 213

[Viterbi, 1967] Andrew J. Viterbi. 1967. Error bounds for convolutional codes and

an asymptotically optimum decoding algorithm. IEEE Transaction: Information

Theory, 13(2):260–269.

[Watkinson and Manadhar, 2001] Stephen Watkinson and Suresh Manadhar. 2001. A

psychologically plausible and computationally effective approach to learning syn-

tax. In The Workshop on Computational Natural Language Learning, ACL/EACL

2001.

[Yang, 2008] Charles Yang. 2008. The great number crunch. Journal of Linguistics,

44(1):205–228.

[Younger, 1967] Daniel H. Younger. 1967. Recognition and parsing of context-free

languages in time n3. Information and Control, 10(2):189–208.

	I Preliminary
	1 Introduction
	1.1 Goals and Approach
	1.2 Thesis Outline

	2 Background
	2.1 Principles and Parameters Theory
	2.2 Task of Grammar Induction
	2.2.1 Active Learning Approach
	2.2.2 Unsupervised Approach
	2.2.2.1 Context-Distributional Clustering
	2.2.2.2 Phrase-Structural Clustering
	2.2.2.3 Markov Chain Monte Carlo Methods

	2.2.3 Prototype-Driven Approach
	2.2.3.1 Phrase Structure Prototypes
	2.2.3.2 Dependency Grammar Prototype
	2.2.3.3 Universal Linguistic Knowledge
	2.2.3.4 CCG Induction
	2.2.3.5 Discussion

	2.3 Computational Preliminaries
	2.3.1 Statistical Modeling
	2.3.1.1 Maximum Likelihood Estimation (MLE)
	2.3.1.2 Expectation Maximization Algorithm (EM)
	2.3.1.3 Maximum A Posteriori Estimation (MAP)
	2.3.1.4 Variational Bayesian Approximation (VB)

	2.3.2 Methods for Grammar Induction
	2.3.2.1 Grammar Induction as Statistical Inference
	2.3.2.2 Variational Bayesian Inside-Outside Algorithm

	2.4 Evaluation Metrics
	2.4.1 Bracket Recovery (BP, BR, and BF1)
	2.4.2 Crossing Bracket Rate (CBR)
	2.4.3 Undirected Dependency Recovery (UDP, UDR, and UDF1)
	2.4.4 Directed Dependency Recovery (DDP, DDR, and DDF1)
	2.4.5 Tree Edit Distance Evaluation Metric (TEDEVAL)

	2.5 Datasets
	2.5.1 Dependency Banks
	2.5.2 Data Format
	2.5.3 Tagset Conversion for Dependency Banks

	2.6 Summary

	II Methodology
	3 Language Parameterization
	3.1 Language Parameters
	3.1.1 Overview
	3.1.2 Design of Questionnaire

	3.2 Language Parameter Elicitation
	3.2.1 Interview Dialog
	3.2.2 Quantification of Human Labor

	3.3 Encoding of Syntactic Prototypes
	3.3.1 Categorial Dependency Grammar
	3.3.2 Construction of Lexicon Inventory

	3.4 Summary

	4 Grammar Induction
	4.1 System Overview
	4.1.1 Structure Enumeration
	4.1.2 Parameter Estimation and Decoding

	4.2 Generative Parsing Models
	4.2.1 Model 0: Probabilistic Context-Free Grammar (PCFG)
	4.2.2 Model 1: Role-Emission Model
	4.2.3 Model 2: Mother-Daughter Model
	4.2.4 Model 3: Role-Emission + Lexicon-Emission Model
	4.2.5 Model 4: Mother-Daughter + Headword-Emission Model
	4.2.6 Model 5: Mixture of All
	4.2.7 Summary

	III Experiments and Discussion
	5 Multilingual Experiments
	5.1 Methods
	5.1.1 Gold Standard and Test Corpus
	5.1.2 Training and Evaluation
	5.1.3 Language Parameters
	5.1.4 Parameter Initialization
	5.1.5 Controlled Variables
	5.1.6 Baseline Systems

	5.2 Results
	5.2.1 Experiment 1
	5.2.2 Experiment 2
	5.2.3 Experiment 3
	5.2.4 Experiment 4

	5.3 Summary

	6 Error Analysis
	6.1 Arabic
	6.2 Bulgarian
	6.3 Chinese
	6.4 Czech
	6.5 Danish
	6.6 Dutch
	6.7 English
	6.8 German
	6.9 Japanese
	6.10 Portuguese
	6.11 Slovene
	6.12 Spanish
	6.13 Swedish
	6.14 Turkish
	6.15 Summary

	7 General Discussion
	7.1 Introduction
	7.2 Modifier Attachment
	7.3 Effects of Dependency Annotation Schemes
	7.4 Effects of Morphology
	7.5 Effects of Model Expressiveness
	7.6 Summary

	IV Conclusion
	8 Conclusion
	8.1 Concluding Remarks
	8.2 Performance
	8.3 Error Analysis
	8.4 Future Work
	8.4.1 Language Parameter Elicitation by Machine Translation
	8.4.2 Syntactic Ambiguity
	8.4.3 Speed-up of Language Parameter Elicitation
	8.4.4 Data Sparsity and Nonprojective Dependency
	8.4.5 Evaluation

	8.5 Online Resources

	V Appendices
	A Syntactic Prototype Questionnaire
	B Dialog for Language Parameter Elicitation
	Bibliography

