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Abstract

In this thesis, we study the queueing systems with heterogeneous servers and service rate uncer-

tainty under the Halfin-Whitt heavy traffic regime. First, we analyse many server queues with

abandonments when service rates are i.i.d. random variables. We derive a diffusion approxi-

mation using a novel method. The diffusion has a random drift, and hence depending on the

realisations of service rates, the system can be in Quality Driven (QD), Efficiency Driven (ED)

or Quality-Efficiency-Driven (QED) regime. When the system is under QD or QED regime, the

abandonments are negligible in the fluid limit, but when it is under ED regime, the probability

of abandonment will converge to a non-zero value. We then analyse the optimal staffing levels

to balance holding costs with staffing costs combining these three regimes. We also analyse how

the variance of service rates influence abandonment rate.

Next, we focus on the state space collapse (SSC) phenomenon. We prove that under some

assumptions, the system process will collapse to a lower dimensional process without losing

essential information. We first formulate a general method to prove SSC results inside pools

for heavy traffic systems using the hydrodynamic limit idea. Then we work on the SSC in

multi-class queueing networks under the Halfin-Whitt heavy traffic when service rates are i.i.d.

random variables within pools. For such systems, exact analysis provides limited insight on

the general properties. Alternatively, asymptotic analysis by diffusion approximation proves to

be effective. Further, limit theorems, which state the diffusively scaled system process weakly

converges to a diffusion process, are usually the central part in such asymptotic analysis. The

SSC result is key to proving such a limit. We conclude by giving examples on how SSC is

applied to the analysis of systems.
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Lay Summary

Contact centres have been playing a more and more important role in the society. Almost

everyone has to interact with contact centres such as airline companies, banks, and utility

companies. For managers, how to make decisions to balance the cost and service quality of the

contact centre becomes a significant problem. Thus we need to analyse call centre properties

such as the probability of waiting, staffing costs, holding costs (for delayed customers) and rate

of customers abandoning the service without getting service. In reality, servers are unlikely to

be identical in such systems. There are many reasons which will cause heterogeneity among

servers, such as personal skills, health and weather. Hence we focus on systems where service

rates are random variables. We develop approximations of the systems to analyse the basic

properties and how they behave when the system becomes large. We then show that under

some assumptions, the dimensions of the system process will reduce while still keeping the

essential information. So called state space collapse (SSC) results will simplify the analysis of

the system and help us gain key insights using approximations.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Many server queues are widely seen nowadays. For example, in banks, customers come for

service, then staffs process customers’ requests, and after their services are completed, customers

leave banks. This is a classical many server queue system with arrivals, services, and departures.

It can also be observed in other scenarios such as emergency departments of hospitals, call

centres, post offices, and computers. For these systems, servers are usually different from each

other. They may possess different types of skills. Even when they have the same skill, their

ability on this skill may be different. Such heterogeneous systems are not studied sufficiently in

literature yet. We are going to investigate their behaviours and properties in this thesis. More

specifically, call centres is a very important area where this heterogeneity can be applied. We

are going to focus on the applications of heterogeneous systems in call centres.

A call centre is a service operation over the phone. It consists of groups of people, called

agents or servers, who provide service to customers. Call centres are increasingly important in

today’s business world since they have become a preferred and prevalent means for companies

to communicate with their customers. Call centres are data rich environments which triggers

many interesting mathematical problems. For call centre managers, it is important to guide

the system to achieve certain service levels while the costs remain reasonable. There are many

factors that can influence service levels. For example, the routing scheme which leads arriving

customers to specific servers, the deployment of servers, and the scheduling policy which guides

servers to accept customers. Existing research provides fruitful results regarding these problems

for call centres with identical servers. However, in reality, it is usually the case that servers

will be heterogeneous. Individual servers can possess unique skills, and even when a group of

servers have the same skills, their abilities to show the skills are subject to environment. In
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this thesis, we are going to focus on call centres with heterogeneous servers and analyse their

properties. Our proxy for heterogeneity is the servers’ service time distribution.

A call centre can be seen as a queueing system. Customers arrive at the centre according

to a stochastic process, then they are routed to available idle servers based on some routing

policies. If there are no idle servers available upon their arrival, they will wait in the queue,

and they may wait until they get service or abandon the queue before they get service. On

the other hand, a prescribed scheduling policy is used to dispatch a server to serve a customer.

Once a customer is routed to a server, s/he will be served with a specific rate based on the

server, and s/he will leave the system when the service is finished.

The cost-service level trade-off has a central place in quantitative call centre management.

When the cost of capacity is dominated by the waiting cost of customers, the decision maker

concentrates on the waiting cost and sets the staffing levels so that the utilisation ends up

being less than one. This is called the Quality-Driven (QD) regime. The other extreme is when

staffing costs dominate the waiting costs. In such case, utilisation of servers is fixed and is equal

to one. In the long run, such a large scale system will be unstable. Customers will accumulate

and a significant portion of the customers will abandon. This is called the Efficiency-Driven

(ED) regime. In between these two extremes is the Quality-Efficiency-Driven (QED) regime,

under which quality and efficiency are balanced. Under this regime, utilisations will approach

to one from below as the system size increases, and the proportion of customers who wait before

service converges to a constant which is related to the staffing level.

In this thesis, we focus on the QED regime. [Halfin and Whitt, 1981] proposed the approach

to analyse the system performance under the QED regime for homogeneous servers. This work

is a milestone in queueing theory which initiated a lot of research. We are going to modify their

assumptions and apply it to systems where each server is unique and different. In particular,

we assume service rates are i.i.d. random variables, and remain the same once the system starts

operating, i.e. they do not change with time.

Apart from the staffing decisions, how to route customers to different servers will also

influence the system quality. We have the routing policy to ensure customers are routed to

servers in a certain way. For homogeneous systems, routing policy does not play a major role

as no matter to which server a customer is routed, there is no change in the system process. For

heterogeneous systems, each routing policy will yield different performances. We will mainly

focus on two policies : Longest Idle Server First (LISF) policy, which will route a customer to

the server who has been idle for the longest time, and Faster Server First (FSF) policy, which

will always route a customer to the fastest server among those idle servers. As for scheduling

policies, in our study we let it be First-In-First-Out (FIFO), i.e. when customers are queueing,

they will get service by the order of their arrival.

Routing policies will cause not only difference in service levels, but also different fairness

among servers, which is another measure for system quality. We also analyse fairness for
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heterogeneous servers under different routing policies.

For such large scale systems, exact analysis is usually intractable. Instead, we use asymptotic

analysis. We use diffusion processes to approximate original queueing processes. By analysing

properties of limiting diffusions, we can get insights for decision making in reality. Based on

[Atar, 2008]’s result, first we analyse many server queues with random service rates under the

QED regime. Then we use a similar framework as in [Borst et al., 2004] to obtain the optimal

staffing levels while balancing waiting and staffing costs. Later in this thesis, we prove the

diffusion limit result of [Atar, 2008] using a novel method.

Then, we analyse systems with random service rates and abandonments similarly as above.

In addition to the same results for systems without abandonments, we also show that the

influence of service rates variance on abandonment rate are different under different routing

policies. For LISF, the abandonment rate is increasing with variance, while for FSF it may be

decreasing.

Finally, we consider the state space collapse (SSC) phenomenon which implies that under

some assumptions, the system process is asymptotically equivalent to a lower dimensional pro-

cess. We first formulate a general method to prove SSC results for a single pool with random

servers under the Halfin-Whitt regime, by which we can prove results presented in [Atar, 2008]

in a different way. Then, adapting the results in [Dai and Tezcan, 2011], we show how SSC

in multiclass queueing networks can be obtained under the Halfin-Whitt heavy traffic regime

when service rates are i.i.d. random variables within pools.

Our main contributions can be summarised as follows.

• Use a martingale method to prove the diffusion limit for many server queues with random

service rates and abandonments.

• Establish the optimal staffing problem for many server queues with random service rates.

Provide a continuous approximation of this optimisation problem and validate it. Tight-

ness of the steady state is proved in order to show the interchangeable limit.

• Prove SSC results for parallel random server systems. Use a coupling method to prove

the almost Lipschitz condition for departure processes.

The thesis is organised as follows. In the rest of this chapter, we review the literature,

comparing existing results with our new results. In Chapter 2, we first present [Atar, 2008]’s

results, and show the diffusion limit using the method developed by Atar. Then we include

abandonments to Atar’s model, and also show its diffusion limit. In Chapter 3, we formulate

an optimal staffing problem for models in [Atar, 2008]. Later we extend the problem to systems

with abandonments. We also analyse how the variance of service rates influence abandonment

rates. In Chapter 4, we talk about state space collapse results for many server queueing networks

with server heterogeneity, and how it can be applied to system analysis. In Chapter 5, we

conclude the thesis by summarising our contributions and point out future research directions.
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1.2 Literature review

Queueing models are used broadly in many service systems such as call centres, healthcare and

computer science. For systems with arrivals, service and departures, it is convenient to model

them as queueing systems and analyse their performance. For example, for call centres, there

are incoming calls, agents who answer calls and call departures, and such call centres can be

analysed using queueing theory. As for queueing analysis used in other areas, [Mandelbaum

et al., 2012] discuss fair routing between emergency departments and hospital wards under

the QED regime. [Deo and Gurvich, 2011] use a game-theoretic queueing model and find an

equilibrium on the accepted diverted ambulance from emergency departments of other hospitals.

[Tezcan and Zhang, 2014] consider customer service chat systems where customers can receive

real time service from agents using an instant messaging application over the internet. We will

focus on call centres in this thesis using queueing modelling and analyse their performance.

The research on call centres can be viewed under different headings. [Gans et al., 2003] and

[Aksin et al., 2007] review research on call centres, and provide a survey of literature on call

centre operations management. They also identify some promising directions for future research.

The most famous and basic queueing model for call centres is the Erlang-C or Erlang delay

model, which deals with only one type of call and server without abandonments; thus every

customer waits until s/he reaches a server. [Koole, 2007] gives a general idea of how the Erlang-

C formula is used in call centre. More mathematical details on the Erlang-C formula can be

found in [Cooper, 1981]. The Erlang-C formula is an important formula in the early stage

of call centre research. It gives an explicit form of statistical-equilibrium distributions of the

queueing process given the arrival rate, identical service rates, and number of servers. Thus,

the probability of waiting can be calculated, to decide on the number of servers that are needed

to make the system achieve a certain service level.

However, such direct analysis becomes impractical when the system grows large. Hence,

the asymptotic analysis should be used. Diffusion approximations for stochastic processes in

queueing models prove to be quite useful (see [Iglehart, 1965], [Stone, 1961], [Halfin and Whitt,

1981]); The work of [Halfin and Whitt, 1981] is the most relevant to our work. It considers a

sequence of GI/M/s systems in which the traffic intensities converge to one from below, which

brings the Halfin-Whitt heavy traffic regime into the picture. With arrival rate λ, service rate

µ, and the Halfin-Whitt regime, under a certain scaling, the probability of waiting converges

to a constant α which is strictly greater than 0 and less than 1. α can be used to indicate the

service level of the system. The offered load is a measure of traffic in a queue and is defined

to be λ
µ . The staffing level of such a system will be offered load λ

µ plus the square root of the

offered load
√

λ
µ multiplied by a constant β, where the coefficient β depends on the service

level α. The quantity β
√

λ
µ is called the “safety staffing” level against stochastic variability.

Using this approach, staffing and waiting costs are well balanced. The Halfin-Whitt regime has
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been extended in several directions. [Janssen et al., 2011] propose refinements of the celebrated

square-root safety-staffing rule which have the appealing property that they are as simple as

the conventional square-root safety-staffing rule. [Atar, 2008] introduces a new square root

staffing policy for many servers systems with random service rates. [Puhalskii and Reiman,

2000] extend the results to a system with multiple customer classes, priorities, and phase-type

service distributions. [Armony, 2005] establishes diffusion approximations and staffing levels

for inverted-V systems. Our study also focuses on the Halfin-Whitt regime, and extends it to

heterogeneous servers instead of identical ones.

Staffing has always been a central issue for call centre managers. There are many research

papers on staffing problems for different models. See [Mandelbaum and Zeltyn, 2009], [Koçağa

et al., 2015], [Whitt, 2006], [Mandelbaum and Zeltyn, 2009] and [Armony and Mandelbaum,

2011] for different discussions. Based on staffing level, systems can be in a QD, ED or QED

regime. When the system is under a QD or QED regime, the abandonments are negligible in

the limit, but when it is under an ED regime, the probability of abandonment will converge

to a non-zero value. [Borst et al., 2004] determine the asymptotically optimal staffing level for

M/M/N queues under different regimes. [Whitt, 2004] investigates the ED many server heavy

traffic regime for queues with abandonments. Our staffing model is based on the framework of

[Borst et al., 2004].

For heterogeneous systems, how to route arriving customers to servers and how to sched-

ule servers to serve customers are crucial decisions to the system performance. Routing and

scheduling have been studied extensively in the literature. [Tezcan and Zhang, 2014] consider

customer service chat systems where agents can serve multiple customers simultaneously. They

propose routing policies for such system with impatient customers with the objective to min-

imise the probability of abandonment in steady state. [Gurvich et al., 2010] consider the staffing

problem for call centres with multi-class customers and different agent types operating under

QD constraints and arrival rate uncertainty. They propose a two-step solution which contains

two actions: the number of agents of each type, and a dynamic routing policy. [Armony, 2005]

shows that for the inverted-V model, the FSF policy is asymptotically optimal in the QED

regime and no thresholds are needed. There is literature that carries out exact analysis and

asymptotic analysis under conventional heavy traffic, such as [Rykov and Efrosinin, 2004] and

[Kelly and Laws, 1993]. Routing policies also play an important role in staffing optimisation.

Under different policies, the steady state behaviour of the system changes and fairness among

servers is also different. FSF policy is commonly used. [Armony, 2005] establishes diffusion lim-

its for the inverted-V systems under FSF policy and concludes they have a better performance

than their corresponding homogeneous systems. [Atar, 2008] provides diffusion limits for many

server queues with random servers under LISF and FSF policies. [Tezcan, 2008] develops limit

theorems for inverted-V systems under minimum-expected-delay faster-server-first (MED-FSF)

and minimum-expected-delay load-balancing (MED-LB) routing policies. Notice that LISF is
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a blind policy, i.e. it only needs to track the state of the process in order to make routing

decisions, and information about service rates is not needed in this case. We will mainly use

this policy in our model since our service rates are random variables and thus their realisations

are unknown before the systems start to operate.

State space collapse is an important phenomenon when we analyse the system behaviour.

[Harrison and Van Mieghem, 1997] explain the dimension reduction in general terms, using an

orthogonal decomposition. For some examples of SSC one can check [Reiman, 1984]. [Puhalskii

and Reiman, 2000] prove SSC for a particular system which has phase type distributed service

rates. [Bramson, 1998] uses the hydrodynamic scaling to build up the state space collapse

results for multi-class queueing networks under the conventional heavy traffic regime. He shows

that we can use a lower dimensional process, the workload processes of each service station, to

represent the system because the original system process, which is the number of each type of

customers in every station, can be obtained through the workload processes and some lifting

functions. The paper by [Dai and Tezcan, 2011] uses the hydrodynamic scaling proposed by

[Bramson, 1998] in a many server setting. Their contribution is the definition of a SSC function,

which is used in that paper to show the dimension reduction for many server networks under the

Halfin-Whitt heavy traffic regime. Our SSC result is based on their framework. [Tezcan, 2008]

applies this method to a distributed parallel server system and does optimal control analysis.

The key point in our research is heterogeneity and uncertainty in parameters. The uncer-

tainty in arrival rates is investigated in some prior work. For example, [Zan, 2012] analyses the

staffing problems when the arrival rate is uncertain. However, for uncertainty in the service

rates, there is still plenty of space for us to explore. For a general non-technical introduction

to this topic, [Gans et al., 2010] is an excellent reference. The heterogeneity in the servers is

modelled in various ways. A commonly used one is the inverted-V system, which contains a

single customer class and multiple server types. [Armony, 2005] considers the asymptotic frame-

work for such systems. She shows that the FSF policy is asymptotically optimal in the QED

regime. Later in [Armony and Ward, 2010], an optimisation problem for inverted V systems

is formulated. They minimise the steady-state expected customer waiting time subject to a

“fairness” constraint and propose a threshold routing policy which is asymptotically optimal in

the Halfin-Whitt regime. [Mandelbaum et al., 2012] introduce the randomised most-idle (RMI)

routing policy for the inverted-V model and analyse it in the QED regime. [Atar, 2008]’s re-

sults about random servers set the cornerstones for our work. The diffusion limit in [Atar, 2008]

contains a random drift, which comes from the heterogeneity of servers. From the diffusion, we

derive its steady state distribution, then formulate the optimisation staffing problem using the

distribution.
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Chapter 2

Diffusion Limits for Single Server

Pool Systems

2.1 Introduction

In this chapter we focus on many server queueing systems with random service rates under the

Halfin-Whitt heavy traffic regime. Many server queueing models have been studied extensively.

However, there are only a few papers about many server queues when service rates are random

variables instead of identities. Models with identical servers are not sufficient when it comes to

modelling human behaviours. Individual abilities are always influenced by environment thus

they can not be constants. To capture the feature more accurately, we assume our model has

Nr exponential servers with i.i.d. service rates µk, k = 1, . . . , Nr. Nr is also assumed to be a

random variable. When customers arrive into the system they will either queue in a buffer with

infinite room, or be routed to a server according to the LISF routing policy. Customers from

the queue are routed to servers according to the FIFO rule. In this chapter, we first assume

that the customers do not abandon and leave the system only after their service is completed.

We relax this assumption later in the chapter. The routing policy is work conserving, in the

sense that no server will be idle when there is at least one customer in the queue. The service

policy is non-preemptive, i.e. once a customer is assigned to a server, it will continuously

receive service until it is completed, i.e. the services will not be interrupted. This model is

considered in [Atar, 2008]. [Atar, 2008] also analyses the same systems under the FSF routing

policy. We will not focus on FSF policy because our decision is supposed to be made before

the system starts running, and FSF policy requires the knowledge of each server’s rate, which

does not suit our case. This chapter is organised as follows: in Section 2.1, we give the detailed

description of the mathematical model and notations used throughout this chapter; in Section

2.2, we rewrite the proof of the central theorem in [Atar, 2008], although it is already proven

by Atar, we present it here for completeness of our discussion; in Section 2.3, we formulate the

19



optimal staffing problem and prove the validity of its asymptotic version.

2.2 Mathematical modelling and notation

First we introduce the notation used throughout the thesis. All of the random variables and

stochastic processes are defined on a complete probability space (Ω,F ,P). For a positive integer

d, we denote by D(Rd) the space of functions from R+ to Rd that are right continuous and left

limits exist (RCLL), endowed with the usual Skorohod J1 topology. (See [Billingsley, 1999]

for the definition.) We use ⇒ to denote weak convergence. And for X ∈ D(R), we write

||X||t:= sup0≤s≤t|X(s)|.

The model is parameterised by r ∈ R+, where for each r, Nr ∈ N is a random variable,

representing number of servers. Service times for customers served at server k are i.i.d. expo-

nentially distributed with rate µk, k = 1, . . . , Nr. The µks are assumed to be nonnegative and

lie in an interval [p, q]. The distribution of µk is denoted by m, and its expected value is

µ̄ :=

∫
[0,∞)

xdm ∈ (0,∞). (2.2.1)

It is also assumed that Nr satisfies the following two assumptions

P(Nr ≤ 2r) = 1,

Nr

r
⇒ 1, as r →∞.

The arrivals are assumed to be renewal processes with finite second moments for the inter-

arrival times. Let the arrival rate be λr such that limr→∞
λr

r = λ > 0, and a sequence of

strictly positive i.i.d. random variables {Ǔ(l), l ∈ N}, with mean EǓ(1) = 1 and variance

C2
Ǔ

= V ar(Ǔ(1)) ∈ [0,∞). The Halfin-Whitt heavy traffic condition, which makes the system

critically loaded, is assumed to be

lim
r→∞

1√
r

(λr − rλ) = λ̂, (2.2.2)

where λ = µ̄, and λ̂ < 0.

For the rth system, let Ar(t) be the total number of arrivals into the system up to time t,

Xr(t) be the total number of customers in the rth system at t (including customers both being

served and waiting in the queue), Dr
k(t) be the number of jobs completed by server k up to

time t, and T rk (t) be the accumulated busy time of server k by time t. Let Brk(t) = 1 if server k

is busy at time t, and it equals to zero if the server is idle. Accordingly, let Irk(t) = 1− Brk(t),

indicating that server k is idle if Irk(t) equals 1.
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2.3 Atar’s results on many server queues with random

servers

When there are no abandonments, it can be shown the systems satisfy the equation

Xr(t) = Xr(0) +Ar(t)−
Nr∑
k=1

Dr
k(t). (2.3.1)

We let X̂r(t) be a renormalized version of the process Xr(t), which is defined as

X̂r(t) =
1√
r

(Xr(t)−Nr). (2.3.2)

The initial value of X(t) and the random variable Nr are assumed to satisfy

(X̂r(0), N̂r) :=

(
1√
r

(Xr(0)−Nr),
1√
r

(Nr − r))
)
⇒ (ξ(0), ν), (2.3.3)

where (ξ(0), ν) is an R2-valued random variable.

[Atar, 2008]’s main result is the following theorem. It states that under the LISF policy, the

sequence of the scaled processes of total number of customers weakly converges to a diffusion.

What makes the diffusion distinctive from other diffusion limits is that it contains a random

drift which arises from the randomness of service rates.

Theorem 2.3.1 ([Atar, 2008]). Assume
∫
x2dm < ∞. Then, under the LISF policy, the

processes X̂r(t) weakly converge to the solution of the following SDE

ξ(t) = ξ(0) + σw(t) + βt+ γ

∫ t

0

ξ(s)−ds, t ≥ 0, (2.3.4)

where σ2 = λC2
Ǔ

+ µ̄ = µ̄(C2
Ǔ

+ 1), and β = λ̂ − ζ − µ̄ν, ζ is a normal random variable with

parameters (0,
∫

(x − µ̄)2dm), γ =
∫
x2dm∫
xdm

, w(t) is a standard Brownian motion, and the three

random elements (ξ(0), ν), ζ, and w(t) are mutually independent.

[Atar, 2008] proves his result using a method particular to this model. We give an expla-

nation of his proof here. The detailed mathematical proof is included in Appendix A.2 for

completeness. Later we will use another approach inspired by state space collapse phenomenon

to prove this theorem again. For more detailed discussion on the new proof, see Section 4.5.

The process of scaled total number of customers are

X̂r(t) =
1√
r

(Xr(0)−Nr) +
1√
r
Ar(t)− 1√

r

Nr∑
k=1

Dr
k(t)

= X̂r(0) +
1√
r

(Ar(t)− λrt) +
1√
r
λrt− 1√

r

Nr∑
k=1

Dr
k(t)
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= X̂r(0) + Âr(t) +
1√
r
λrt− 1√

r

Nr∑
k=1

Dr
k(t). (2.3.5)

The convergence of arrival process Âr(t) follows from the basic functional central limit theo-

rem for renewal processes. Analysing the convergence of departure process Dr
k(t) is considerably

harder. Each server needs to be considered individually because they have their unique service

rate, and thus it is an Nr dimensional process. However, as the system grows large, the number

of servers tends to infinity; hence analysing each Dr
k(t) becomes intractable.

[Atar, 2008] solves this problem by partitioning the servers into finite I pools. Within

each pool, the supremum of the difference between two service rates is bounded by some small

positive number ε.

To see how this idea is used in the proof, first we need to obtain more insights about the

departure processes. The departure process of each server is treated as a time changing Poisson

process. Let {Sk(t), k ∈ N} be independent standard Poisson processes. Since T rk (t) is the

accumulated busy time for server k by time t, then by random time change, Dr
k(t) satisfies

Dr
k(t) = Sk(µkT

r
k (t)), k = 1, . . . , Nr. (2.3.6)

where

T rk (t) =

∫ t

0

Brk(s)ds. (2.3.7)

Denote Σr = (Ar, Xr, Qr, Ir, {Brk, Dr
k}k=1,...,Nr ) which has a.s. piecewise constant and right-

continuous sample paths. [Atar, 2008] partitions servers into pools as mentioned above. Pools

are indexed by {i, i = 1, 2, . . . , I}. Using such configuration, the system can be regarded ap-

proximately as an inverted-V system, hence departure processes can be considered aggregately

in each pool. Denote the total departure process of pool i as Dr,(i)(t). He further defines the

total service rate of pool i to be the sum of µkT
r
k (t) (the sum is over all of the servers in pool

i). Then Dr,(i)(t) is also a time changing Poisson process and

Dr,(i)(t) = S(i)

 ∑
k∈ pool i

µkT
r
k (t)

 ,

where {S(i)(·)} are independent standard Poisson processes. For simplicity denote the total

service rate in pool i to be

T r,(i)(t) =
∑

k∈ pool i

µkT
r
k (t).

He shows in Proposition 3.1 (see AppendixA.1) that with this pooling method, the total depar-
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ture process of the original system
∑Nr

k=1D
r
k(t) and the total departure process of the approxi-

mate inverted-V system
∑I
i=1D

r,(i)(t) are equal in distribution.

Using this equivalence, system equation (2.3.5) is equal in distribution to

X̂r(t) = X̂r(0) + Âr(t) +
1√
r
λrt− 1√

r

I∑
i=1

Dr,(i)(t).

With further manipulations, it can be expressed as

X̂r(t) = X̂r(0) + Âr(t) +
1√
r
λrt− 1√

r

I∑
i=1

(
S(i)

(
T r,(i)(t)

)
− T r,(i)(t)

)
− 1√

r

I∑
i=1

T r,(i)(t)

= X̂r(0) + Âr(t) +
1√
r

(λrt− rµ̄t)− 1√
r

(
Nr∑
k=1

µkt− rµ̄t
)

− 1√
r

I∑
i=1

(
S(i)

(
T r,(i)(t)

)
− T r,(i)(t)

)
− 1√

r

(
I∑
i=1

T r,(i)(t)−
Nr∑
k=1

µkt

)
.

Convergence of the first four items are easy. Let us pay attention to the latter two. First,

it is proved that 1
rT

r,(i)(t) converges to its fluid limit ρit, where ρi is the product of the

expectation of µk and the weight probability of servers in pool i. 1√
r

(
S(i)

(
T r,(i)(t)

)
− T r,(i)(t)

)
is a martingale, then [Atar, 2008] uses Functional Central Limit Theorem, and applies random

time change to the fluid limit ρit to show that 1√
r

∑I
i=1

(
S(i)

(
T r,(i)(t)

)
− T r,(i)(t)

)
converges

to some Brownian motion.

1√
r

(∑I
i=1 T

r,(i)(t)−∑Nr

k=1 µkt
)

is the most concerning part in the proof. It is actually

equal to

1√
r

Nr∑
k=1

(µkT
r
k (t)− µkt) =

1√
r

Nr∑
k=1

(
µk

∫ t

0

Brk(s)ds− µkt
)

=
1√
r

Nr∑
k=1

(
−µk

∫ t

0

Irk(s)ds

)
,

which is the total amount of unused service capacities due to idleness. Denote this lost capacity

as F r(t).

F r(t) contains Nr different idleness processes. It is later proved that there is a state space

collapse (SSC) in such systems in the sense that, in the limit, the total lost capacities F r(t)

can be represented as the total accumulated idle time multiplied by some coefficient γ related

to the service rate distribution and routing policy. Such a SSC result reduces the dimension of

the original processes, which eventually helps to get a one dimensional diffusion limit.

To show such SSC result, [Atar, 2008] considers the difference between total lost capacities

F r(t) and the product of total accumulated idle time and γ. The difference consists of four

ei(t)s: e1(t), e2(t), e3(t), e4(t). He proves that each ei(t) tends to zero in the limit. These four

ei(t)s are unique to this system, thus cannot be directly extended to other models. In Chapter

4, we explain the SSC phenomenon in detail. Then we use a more generic method to prove this
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SSC result again.

2.4 Extension of Atar’s results to include abandonments

In this section, we assume customers may abandon the system prior to being served. Each

customer has an associated patience time, and abandons the system without obtaining any

service if the waiting time in the queue exceeds the customer’s patience. Once his/her service

starts, s/he cannot abandon the system. Assume each customer’s patience time is exponentially

distributed with rate ν. We will not deal with the abandonment processes directly due to

complications of analysing each customer’s patience individually. Instead, we use a “perturbed”

abandonment processes similar to the one described in Section 2.1 of [Dai and Tezcan, 2011].

In perturbed systems, only the customer at the head of the queue will be able to abandon,

and her/his abandonment rate is the sum of abandonment rates of all of the customers in

the queue. Under the assumption of exponential service and patience time, the equivalence of

systems with original abandonment processes and perturbed abandonment processes is proved

in [Dai and Tezcan, 2011]. Note that [Dai and Tezcan, 2011] use perturbed system technique

to analyse both abandonment processes and service processes, while we only use it for our

abandonment processes since our service rates are no longer deterministic thus the equivalence

to the perturbed systems is invalid.

Let Q(t) be the queue length at time t, and let M(t) denotes the number of customers who

have abandoned queue by time t. The systems are assumed to be under LISF policy again.

Let SQ(t) be a standard Poisson process. We define

Gr(t) =

∫ t

0

Qr(s)ds, t ≥ 0. (2.4.1)

Then for the perturbed abandonment process

Rr(t) = SQ(νGr(t)). (2.4.2)

Using the same notations as in the previous section, we can write the system dynamic equations

Xr(t) = Xr(0) +Ar(t)−
Nr∑
k=1

Dr
k(t)−Rr(t). (2.4.3)

We can show similarly that diffusion limits exist in the presence of abandonments.

Theorem 2.4.1. Assume
∫
x2dm < ∞. Then, under LISF policy, the diffusively scaled pro-

cesses X̂r(t) weakly converge to the solution of the following SDE

ξ(t) = ξ(0) + σw(t) + βt+ γ

∫ t

0

ξ(s)−ds− ν
∫ t

0

ξ(s)+ds, t ≥ 0, (2.4.4)
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where σ, β, ζ, γ and w(t) are as in Theorem 2.3.1.

Proof. The proof is quite similar to Theorem 2.3.1. We will focus on abandonment processes

here since the proofs of other parts are the same.

Following arguments in the previous section we again omit the symbol r, and thus we have

X̂(t) = X̂(0) +
1√
r
A(t)− 1√

r

I∑
i=1

S(i)(T (i)(t))− 1√
r
R(t) (2.4.5)

= X̂(0) +W (t) + brt+ F (t)− R̂(t),

(
let R̂(t) =

1√
r
R(t)

)
(2.4.6)

under the LISF policy,

X̂(t) = X̂(0) +W (t) + brt+ γ

∫ t

0

X̂(s)−ds− R̂(t) + e(t),

(
γ =

∫
x2dm∫
xdm

)
. (2.4.7)

We already showed in the previous section that W (t)⇒ σw, br ⇒ β, and e(t)→ 0 u.o.c. in

probability. For the newly added term R̂(t), note that

R̂(t) =
1√
r
SQ(νG(t)) =

1√
r
SQ

(
ν

∫ t

0

Q(s)ds

)
=

1√
r

(
SQ

(
ν

∫ t

0

Q(s)ds

)
− ν

∫ t

0

Q(s)ds+ ν

∫ t

0

Q(s)ds

)
=

1√
r

(
SQ

(
ν

∫ t

0

(X(s)−N)+ds

)
− ν

∫ t

0

(X(s)−N)+ds+ ν

∫ t

0

(X(s)−N)+ds

)
=

1√
r

(
SQ

(
r
ν

r

∫ t

0

(X(s)−N)+ds

)
− r ν

r

∫ t

0

(X(s)−Nr)+ds

)
+ ν

∫ t

0

X̂(s)+ds.

Denote M̂(t) = 1√
r

(
SQ

(
ν
∫ t

0
(X(s)−N)+ds

)
− ν

∫ t
0
(X(s)−N)+ds

)
. Then by Theorem 7.2

in [Pang et al., 2007], M̂(t) is a square-integrable martingale with respect to the filtrations

Fr ≡ {Fr,t : t ≥ 0} defined by

Fr,t ≡ σ
(
X(0), A(s), S(1)(T (1)(s)), . . . , S(q)(T (q)(s)),

SQ

(
ν

∫ s

0

(X(u)−N)+du

)
: 0 ≤ s ≤ t

)
, t ≥ 0,

(2.4.8)

augmented by including all null sets. Its predictable quadratic variation is

〈M̂〉(t) =
ν

r

∫ t

0

(X(s)−N)
+
ds, t ≥ 0. (2.4.9)

By the same reasoning in Section 7.1 in [Pang et al., 2007], we obtain the deterministic limits

〈M̂〉(t)⇒ 0. (2.4.10)

We explain the proof briefly. For more details, see [Pang et al., 2007]. We have that
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the sequence {X̂r} is stochastically bounded in D(R). Then, by Lemma 5.9 and Section 6.1 in

[Pang et al., 2007], we get the Functional Weak Law of Large Numbers (FWLLN) corresponding

to Lemma 4.3, from which we can prove (2.4.10). Recall the basic Functional Central Limit

Theorem (FCLT): Ŝ(t) = S(rt)−rt√
r
⇒ B, where S is a standard Poisson process, and B is a

standard Brownian motion. Then

R̂(t) = Ŝ
(
〈M̂〉(t)

)
+ ν

∫ t

0

X̂(s)+ds, (2.4.11)

and by the lemma on random change of time in [Billingsley, 1999, p. 150], we have Ŝ
(
〈M̂〉(t)

)
⇒

0, in the uniform topology on the compact set [0, T ] for any T > 0. Thus,

R̂(t)⇒ ν

∫ t

0

ξ(s)+ds, as r →∞. (2.4.12)

By Skorohod Representation Theorem, we can assume without loss of generality that the

random variables X̂(0), b, ξ(0), and β, and the processes W, Ŝ
(
〈M̂〉(t)

)
, and w are realized in

such a way that

(
X̂(0), b,W, Ŝ

(
ν

∫ t

0

1

r
Q(s)ds

))
→ (ξ(0), β, σw, 0) in probability, as r →∞. (2.4.13)

Recall that ||X||t:= sup0≤s≤t|X(s)|. Combining (2.4.7), (2.4.11), and (2.4.4), the inequali-

ties |x−−y−|≤ |x−y|, |x+−y+|≤ |x−y| and Gronwall’s inequality (u(t) ≤ α(t) exp(
∫ t
a
c(s)ds)

if c is non-negative and u satisfies u(t) ≤ α(t) +
∫ t
a
c(s)u(s)ds.) together show that

||X̂(t)− ξ(t)||T

=
∥∥∥X̂r(0)− ξ(0) +W (t)− σw(t) + brt− βt+ e(t)

+γ

∫ t

0

(
X̂(s)− − ξ(s)−

)
ds− ν

∫ t

0

(
X̂(s)+ − ξ(s)+

)
ds

∥∥∥∥
T

≤ ||X̂(0)− ξ(0)||T+||W (t)− σw(t)||T+||brt− βt||T+||e(t)||T

+ γ

∥∥∥∥∫ t

0

X̂(s)− − ξ(s)−ds
∥∥∥∥
T

+ ν

∥∥∥∥∫ t

0

X̂(s)+ − ξ(s)+ds

∥∥∥∥
T

≤ ||X̂(0)− ξ(0)||T+||W (t)− σw(t)||T+||brt− βt||T+||e(t)||T

+M

∫ t

0

∥∥∥X̂(s)− − ξ(s)−
∥∥∥
T
ds+M

∫ t

0

∥∥∥X̂(s)+ − ξ(s)+
∥∥∥
T
ds

≤ ||X̂(0)− ξ(0)||T+||W (t)− σw(t)||T+||brt− βt||T+||e(t)||T

+ 2M

∫ t

0

∥∥∥X̂(s)− ξ(s)
∥∥∥
T
ds,

where M = max{γ, ν}. By (2.4.13) and the uniform convergence of e to zero, we have shown

that X̂(t) converges to X(t) in probability, uniformly on [0, T ]. Since T is arbitrary, this shows

that X̂(t)⇒ X(t).
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2.5 Summary

In this chapter, we show that diffusion limits are an effective way to approximate queuing

processes because of its continuity feature. First we restate the limit theorem for many server

queues with random service rates proved by [Atar, 2008]. The key part of this theorem is its

random drift β, which comes from the Central Limit Theorem applied on random service rates.

Another thing which needs our attention is the coefficient γ of the integral of negative part of

the diffusion limit, i.e.
∫ t

0
ξ(s)−ds. γ

∫ t
0
ξ(s)−ds approximates the capacities that are lost due

to idleness. To some extent, γ reflects fairness of the routing policy. We will talk about this

fairness issue more in the end of next chapter.

Then we extend the result of [Atar, 2008] to systems with abandonments. This is an

important extension as it ensures the stability of the diffusion limits. We use a martingale

central limit theorem to prove weak convergence. In the next chapter, we show how the diffusion

limits are applied to our optimal staffing problems.
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Chapter 3

Staffing and Routing for Single

Server Pool Systems

3.1 Introduction

For call centre managers, how to decide on number of servers to be scheduled servers is one of

the major problems. Overstaffing and understaffing will both cause immense unnecessary costs

in the long term. Using queueing models, we can help managers make wise decisions on staffing

levels. Particularly, the diffusion limits will be used in the analysis. In the last chapter, we

proved diffusion limits for single server pool systems. Diffusion limits give us approximations

of how the system processes behave. If steady states exist for diffusion limits, we can then

have estimates for system steady states in the long run. In this chapter, first we formulate

the optimisation problem for staffing single server pools without abandonments. Then in the

second section, we extend this result to systems with abandonments. In the third section, we

focus on the variance of service rates and show how the variance influences the abandonment

rate, and thus the total costs. Finally in the fourth section, we analyse the coefficient γ in the

diffusion limits and show how it reflects fairness among servers under different routing policies.

3.2 Staffing many server queues with random servers

We use a similar framework as in [Borst et al., 2004] for asymptotic optimisation of many-server

queuing systems with random service rates. Consider the many-server queueing model without

abandonments. In the rth system, arrival rate λr, service rates µk and its expectation µ̄ are as

defined in Chapter 2.

Recall the second moment condition for arrival rate

lim
r→∞

1√
r

(λr − rλ) = λ̂ < 0, (3.2.1)
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where λ = µ̄. It is easy to see that when
∑Nr

k=1 µk ≤ λr, the system is unstable, thus in the

limit, every customer will have to wait before getting service. To this end, we assume there is

a fixed waiting cost Cun for unstable systems.

In this work, we will mainly focus on the scenario where the service rates satisfy
∑Nr

k=1 µk >

λr. For the diffusion limit in Theorem 2.3.1, this condition corresponds to β < 0. i.e. when

the system is stable. From [Cooper, 1981], we know that, given the realisation of
∑Nr

k=1 µk, the

waiting time distribution is given by

P

(
Waitr > t

∣∣∣∣∣
Nr∑
k=1

µk = H

)
= πre−(H−λr)t, (3.2.2)

where πr = P
(

Waitr > 0
∣∣∣∑Nr

k=1 µk = H
)

is the probability of waiting. Notice that H has to

be greater than λr for stability.

Let F (Nr) be the staffing cost per unit time, and Dr(t) be the waiting cost of a customer

when s/he waits for t time units. Without loss of generality we may take Dr(0) = 0. Then the

conditional expected total cost per unit of time is given by

C

(
Nr, λr

∣∣∣∣∣
Nr∑
k=1

µk = H

)
= F (Nr) + λrE

(
Dr(Wait)

∣∣∣∣∣
Nr∑
k=1

µk = H

)

= F (Nr) + λrπrG

(
Nr, λr

∣∣∣∣∣
Nr∑
k=1

µk = H

)
,

where

G

(
Nr, λr

∣∣∣∣∣
Nr∑
k=1

µk = H

)
= E

(
Dr(Wait)

∣∣∣∣∣Wait > 0,

Nr∑
k=1

µk = H

)

= (H − λr)
∫ ∞

0

Dr(t)e−(H−λr)tdt. (3.2.3)

We are interested in determining the expected optimal staffing level

Nr
∗ := arg min

Nr>λr/µ̄

C(Nr, λr), (3.2.4)

where C(Nr, λr) =
∫∞
λr
C
(
Nr, λr

∣∣∣ ∑Nr

k=1 µk = H
)
fr(H)dH 1

P(
∑Nr

k=1 µk>λ
r)

, and fr(·) is the den-

sity function of
∑Nr

k=1 µk.

3.2.1 Framework of the asymptotic optimisation problem

We use a similar framework as in [Borst et al., 2004], where, the cost function contains an

expected waiting cost, which is the product of the arrival rate and the expected waiting time

of a single customer. We use the same concept, but our expected waiting cost contains two

recursive expectations instead of one. The first one is the normal expectation of the waiting cost
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when the sum of the service rate is given, then we take the second expectation over the sum.

As the first step, we translate the discrete optimisation problem (3.2.4) to a continuous one,

and approximate the latter problem by a related continuous version, which is easier to solve.

Finally, we prove that the optimal solution to the approximating continuous problem provides

an asymptotically optimal solution to the original discrete problem. Our main contribution is

in the last step. To show the validity of the continuous approximation, we need to prove that

limits are interchangeable as shown in Figure 3.1. And to show this, we prove tightness of the

sequence of steady state distributions.

We first translate the discrete problem into a continuous one. Let

Nr(x) =
λr

µ̄
+ x

√
λr

µ̄
, (3.2.5)

so that the variable x = (Nr − λr

µ̄ )/
√

λr

µ̄ is the normalized number of servers in excess of the

minimum number λr

µ̄ required for stability. In terms of x, we define

F r(x) := F (Nr(x))− F
(
λr

µ̄

)
,

Gr

x
∣∣∣∣∣∣
Nr(x)∑
k=1

µk = H

 := λrG

Nr(x), λr

∣∣∣∣∣∣
Nr(x)∑
k=1

µk = H

 ,

Cr

x
∣∣∣∣∣∣
Nr(x)∑
k=1

µk = H

 := C

Nr(x), λr

∣∣∣∣∣∣
Nr(x)∑
k=1

µk = H

− F (λr
µ̄

)
,

πr

x
∣∣∣∣∣∣
Nr(x)∑
k=1

µk = H

 := The probability of waiting in the rth system

given the sum of service rates to be H.

Then the total cost per unit of time can be rewritten as

Cr(x) = F r(x)+

∫ ∞
λr

πr

x
∣∣∣∣∣∣
Nr(x)∑
k=1

µk = H

Gr

x
∣∣∣∣∣∣
Nr(x)∑
k=1

µk = H

 fr(H)dH
1

P(
∑Nr(x)
k=1 µk > λr)

.

(3.2.6)

Denote

xr∗ := arg min
x>0

Cr(x). (3.2.7)

Next, we a use simpler version of continuous function to approximate the function Cr(x).

If we can find simpler approximations for both πr and Gr, we will have an approximation

for the new cost function (3.2.6). In the next section, we will show the feasibility of such

approximations.
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3.2.2 Validity of the approximating model

In this section, we provide lemmas with proofs to show that we can use a simpler function to

estimate the continuous cost function (3.2.6).

Approximation of πr

First, we will find an approximating version for πr(x | ∑Nr(x)
k=1 µk = Hr). We achieve this

by calculating the steady state of the diffusion limit in Theorem 2.1 in [Atar, 2008]. As we

discussed before, when β > 0, the diffusion ξ(t) is not stable, so here we focus on the situation

when β < 0, under which the limiting diffusion ξ(t) has following expressions

ξ(t) =

 ξ(0) + σw(t) + βt ξ(t) ≥ 0

ξ(0) + σw(t) + βt− γ
∫ t

0
ξ(s)ds ξ(t) < 0

, (3.2.8)

where

σ2 = µ̄(C2
Ǔ

+ 1), and γ =

∫
x2dm∫
xdm

. (3.2.9)

Then by Section 4 of [Browne and Whitt, 1994], when ξ(t) ≥ 0, it is a reflected Brownian

motion. Thus its steady state density function conditional on ξ(∞) ≥ 0 is exponential, and will

be ge(x) = −2β
σ2 e

2β

σ2 x. Similarly, the process ξ(t) restricted to the negative half-line is an O-U

process , thus its steady state conditional on ξ(∞) < 0 is normally distributed with density

function gr(x) =
√

2γ/σφ(
√

2γ
σ x−

√
2β√
γσ )

Φ(−
√

2β√
γσ )

. Hence, let % be the probability of waiting when β < 0, the

steady state distribution of ξ(t) has density function

f(x) =

 ge(x)%, x ≥ 0

gr(x)(1− %), x < 0
. (3.2.10)

Since the variance of the limiting diffusion is a constant on the real line, by [Browne and Whitt,

1994], the density function of its steady state should be continuous. % may be solved by equating

the right-handed limit of ge(·)% and the left-handed limit of gr(·)(1− %) at 0. This gives us

% = P (y) = P(ξ(∞) ≥ 0 | β = y) =

1−

√
2y√
γσΦ(−

√
2y√
γσ )

φ(
√

2y√
γσ )

−1

. (3.2.11)

Thus we will have an analogue of Proposition 1 in [Halfin and Whitt, 1981] and Lemma 5.1 in

[Borst et al., 2004], which gives us an approximation of πr.

Lemma 3.2.1. For any function xr with lim supr→∞ xr <∞,

lim
r→∞

πr
(
xr
∣∣∣∑Nr(xr)

k=1 µk = H
)

P (yr)
= 1, ∀H > Nr(xr)µ̄− xµ̄√r, (3.2.12)
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X̂r(t) X̂r(∞)

ξ(t) ξ(∞)

r → ∞

t→ ∞

t→ ∞
? r → ∞

Figure 3.1: The interchange-of-limit diagram

where yr = − (H −Nr(xr)µ̄) 1√
r
− xrµ̄.

Lemma 5.1 in [Borst et al., 2004] is a direct application of Proposition 1 in [Halfin and

Whitt, 1981], which says that, under the Halfin-Whitt heavy traffic condition, the probability

of waiting in many server queue (identical servers) converges to a constant between zero and

one. For our systems, service rates are no longer identical, and thus we cannot use this result

directly. We come up with another approach to prove the convergence, which involves an

associated sequence of homogeneous systems.

The idea of the proof lies in Figure 3.1. In order to show the convergence of the probability of

waiting in (3.2.12), we need to show that the sequence of steady states X̂r(∞) weakly converges

to the steady state ξ(∞) of the diffusion limit. To show weak convergence, the usual way is

to first show tightness, then use the relations in Figure 3.1 to show that tightness of X̂r(∞)

actually reflects the convergence on the right hand side.

The challenging part is to show the tightness. It is hard to come up with a direct way to

show tightness if service rates are random and unknown. Instead, we compare our heterogeneous

systems with a sequence of homogeneous systems which have identical service rates being less

than µ̄, then use the properties of homogeneous systems to get tightness results.

More specifically, consider homogeneous systems with Nr servers and identical service rates

µr < µ̄. Assume there is a fixed number Mr < Nr for each r, and denote ∆Mr as the family of

sets containing Mr numbers out of {1, 2, . . . , Nr}. Now our problem can be considered in the

following two cases:

• When infδ∈∆Mr

∑
δ µk < Mrµr, denote this scenario as Ar. (This Ar is independent

from the arrival process Ar(t).) There is a possibility that the heterogeneous systems

serve faster than their corresponding homogeneous ones.

• When infδ∈∆Mr

∑
δ µk ≥ Mrµr, this scenario is marked as Acr. The heterogeneous sys-

tems always serve faster than their corresponding homogeneous ones. Thus under such

situations, Xr(t) ≤st Xr
hom(t). Therefore to show tightness of heterogeneous systems for

this scenario, we only need to show the tightness of their corresponding homogeneous
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systems, i.e.

∀ε > 0,∃Kε > 0, s.t. ∀r,P(Xr
hom(t) ≥ Kε) ≤ ε. (3.2.13)

Combining these two scenarios, let K̄ε = Kε ∨Mr. Then

P(Xr(t) ≥ K̄ε) = P(Xr(t) ≥ K̄ε, Ar) + P(Xr(t) ≥ K̄ε, Acr)

≤ P(Ar) + P(Xr
hom(t) ≥ K̄ε). (3.2.14)

If (3.2.13) is true, then after a reselection of ε, we can easily show P(Xr
hom(t) ≥ K̄ε) < ε/2.

Furthermore, if we can also show P(Ar) → 0 as r → ∞, then P(Xr(t) ≥ K̄ε) → 0 as r →
∞,∀t > 0, the tightness result will follow. Since the tightness result holds for every t, it should

also hold as t→∞, i.e. P(Xr(∞) ≥ K̄ε) < ε.

From the discussion above, it is important to define proper µr and Mr to get our convergence

results. We have three lemmas for that.

Lemma 3.2.2. Let µr = µ̄− 1
rp for any p > 1

2 , then the sequence {Xr
hom(∞)} is tight.

Proof. In order to show {Xr
hom(∞)} is tight, first we need to specify the heavy traffic condition

for the homogeneous systems and the existence of their steady states.

When

µr = µ̄− 1

rp
, p >

1

2
, (3.2.15)

the heavy traffic condition becomes

lim
r→∞

1√
r

(rµr − λr) = lim
r→∞

1√
r

(
r

(
µ̄− 1

rp

)
− λr

)
= lim
r→∞

1√
r

(
rµ̄− λr − r1−p) = lim

r→∞

(
1√
r

(rµ̄− λr)− r 1
2−p
)
,

= lim
r→∞

1√
r

(rµ̄− λr) = λ̂ > 0.

This also means rµ̄ > λr,∀r.
To guarantee the existence of their steady states, we need

rµr = r

(
µ̄− 1

rp

)
> λr,

i.e.

rµ̄− r1−p > λr, (3.2.16)

and p > 1
2 makes the inequality above hold.

Since we already showed the existence of Xr
hom(∞), now we can prove the tightness of it,

i.e. (3.2.13) is true when t→∞. Denote ρr = λr

rµr , then ρr < 1,∀r. Fix r. We want to show

∀ε > 0,∃Kε
r > 0, s.t. P(Xr

hom(∞) ≥ Kε
r) ≤ ε. (3.2.17)
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Choose Kε
r > Nr. By (1.1) and (1.3) in [Halfin and Whitt, 1981], we have

P(Xr
hom(∞) ≥ Kε

r) =

∞∑
k=Kε

r

(Nr)N
r

(ρr)k

Nr!
η = η

(Nr)N
r

Nr!

∞∑
k=Kε

r

(ρr)k,

where η =
(

(Nrρr)N
r

Nr!(1−ρr) +
∑Nr−1
k=0

(Nrρr)k

k!

)−1

. Substitute η into the equation above, and since

0 < ρr < 1, it becomes

P(Xr
hom(∞) ≥ Kε

r) = η
(Nr)N

r

Nr!

(ρr)K
ε
r (1− (ρr)x)

1− ρr
x→∞−−−→ η

(Nr)N
r

Nr!

(ρr)K
ε
r

1− ρr

=
(Nr)N

r

Nr!

(
(Nrρr)N

r

Nr! (1− ρr) +

Nr−1∑
k=0

(Nrρr)k

k!

)−1

(ρr)K
ε
r

1− ρr

=

(
(ρr)N

r

1− ρr +
Nr!

(Nr)Nr

Nr−1∑
k=0

(Nr)k

k!
(ρr)k

)−1

(ρr)K
ε
r

1− ρr

=

(
(ρr)N

r

+ (1− ρr) Nr!

(Nr)Nr

Nr−1∑
k=0

(Nr)k

k!
(ρr)k

)−1

(ρr)K
ε
r .

∀ε > 0, as long as

Kε
r > log

(
ε

(
(ρr)N

r

1− ρr +
Nr!

(Nr)Nr

Nr−1∑
k=0

(Nr)k

k!
(ρr)k

))
,

P(Xr
hom(∞) ≥ Kε

r) < ε holds. Here log has base ρr. Thus (3.2.17) is proved.

For a sequence of homogeneous systems, take Kε = Kε
1 ∨Kε

2 ∨ · · · ∨Kε
n ∨ · · ·, then (3.2.13)

holds when t→∞.

From Lemma 3.2.2, in order to guarantee heavy traffic condition and stability of the homo-

geneous systems, service rate of homogeneous systems is chosen with

p >
1

2
(3.2.18)

in the rest of this chapter.

As for the choice of Mr, we will explain in the following two lemmas that when Mr grows

slower than Nr, the convergence does not hold. Only when Mr grows with the same rate as

Nr, the probability P(Ar) converges to zero.

Lemma 3.2.3. Let µr = µ̄− 1
rp . If Mr grows slower than Nr in the sense that limr→∞

Mr

Nr = 0,

then P(Ar)→∞.

Proof. Fix r. Since δ is one element in ∆Mr , denote Bδ = {∑δ µk < Mrµr}, we have

P(Ar) = P

(⋃
δ

Bδ

)
≤

∑
δ∈∆Mr

P(Bδ) =

(
Nr

Mr

)
P(Bδ). (3.2.19)

35



Using stirling’s approximation, we have a lower bound for the combination factor

(
Nr

Mr

)
=

Nr!

Mr! (Nr −Mr)!
≥

√
2π(Nr)N

r+ 1
2 e−N

r

e(Mr)M
r+ 1

2 e−Mre(Nr −Mr)N
r−Mr+ 1

2 e−(Nr−Mr)

=

√
2π

e2

(Nr)N
r+ 1

2

(Mr)M
r+ 1

2 (Nr −Mr)N
r−Mr+ 1

2

. (3.2.20)

Thus as r →∞,(
Nr

Mr

)
P

(∑
δ

µk
Mr

< µr

)
→
(
Nr

Mr

)
P(Y r < µr)

=
Nr!

Mr! (Nr −Mr)!

1√
2π

∫ −√Mrσrp

−∞
e−

t2

2 dt

≥
√

2π

e2

(Nr)N
r+ 1

2

(Mr)M
r+ 1

2 (Nr −Mr)N
r−Mr+ 1

2

1√
2π

∫ −√Mrσrp

−∞
e−

t2

2 dt

=
1

e2

(Nr)M
r

(Mr)Mr

(Nr)N
r−Mr

(Nr −Mr)Nr−Mr

(
Nr

Mr(Nr −Mr)

) 1
2
∫ −√Mrσrp

−∞
e−

t2

2 dt. (3.2.21)

Notice that the second item (N
r

Mr )M
r → ∞ as r → ∞, the third item can be considered as

follows:

(
Nr

Nr −Mr

)(Nr−Mr)

=

(
1− 1 +

Nr

Nr −Mr

)(Nr−Mr)

=

(
1 +

Mr

Nr −Mr

)(Nr−Mr)

=

(
1 +

1
Nr

Mr − 1

)( N
r

Mr−1)Mr

→ exp(Mr) as r →∞,

and the fourth item equals
√

1
Mr(1−MrNr )

, where
√

1
1−MrNr

converges to 1. As for the integral, the

upper limit is equal to

−
√
Mr

√
Nr

√
Nr

√
r

√
r

rp
= −
√
Mr

√
Nr

√
Nr

√
r

1

rp−
1
2

→ 0

as r →∞, because p > 1
2 . So as r →∞, (3.2.21) is equivalent to

1

e2

(
Nr

Mr

)Mr (
1 +

1
Nr

Mr − 1

)( N
r

Mr−1)Mr√
1

Mr

√
1

1− Mr

Nr

∫ −√Mr√
Nr

√
Nr√
r

1

r
p− 1

2

−∞
e−

t2

2 dt

→ 1

e2

(
Nr

Mr

)Mr

exp(Mr)
1√
Mr

∫ 0

−∞
e−

t2

2 dt

→ 1

e2
· ∞ · ∞ · 1

2
→∞. (3.2.22)

Thus the original
(
Nr

Mr

)
P
(∑

δ
µk
Mr < µr

)
will not converge to zero, and therefore we rule out this

situation.

Now we conclude that there must be Mr = Cr3 for some Cr3 such that P(Ar)→ 0 holds.
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Lemma 3.2.4. Let µr = µ̄ − 1
rp , and Mr = Cr3N

r for some Cr3 ∈ (0, 1). Then P(Ar) → 0 as

r →∞.

Proof. Assume Mr → ∞ as r → ∞. Then 1
Mr

∑
δ µk weakly converges to a normal ran-

dom variable Y r with mean µ̄, variance σ2

Mr as r → ∞,∀δ. Using the left bound for normal

distribution,

1√
2π

x

x2 + 1
e−

x2

2 ≤ P(X > x) ≤ 1√
2π

1

x
e−

x2

2 .

As r →∞, we have

P(Bδ)→ P(Y r < µr) = P

(√
Mr

σ
(Y r − µ̄) <

√
Mr

σ
(µr − µ̄)

)

≤ 1− 1√
2π

√
Mr

σ (µr − µ̄)
Mr

σ2 (µr − µ̄)2 + 1
exp

(
−M

r(µr − µ̄)2

2σ2

)
, (3.2.23)

then applying stirling’s approximation again on the combination factor in (3.2.19) gives

(
Nr

Mr

)
=

Nr!

Mr! (Nr −Mr)!
≤ e(Nr)(Nr+ 1

2 )

2π(Mr)(Mr+ 1
2 )(Nr −Mr)(Nr−Mr+ 1

2 )
. (3.2.24)

Combine (3.2.23) and (3.2.24) and we have, as r →∞,

P(Ar) =

(
Nr

Mr

)
P

(∑
γ

µk
Mr

< µr

)
→
(
Nr

Mr

)
P(Y r < µr)

=

(
Nr

Mr

)
P

(√
Mr

σ
(Y r − µ̄) <

√
Mr

σ
(µr − µ̄)

)

≤ e(Nr)(Nr+ 1
2 )

2π(Mr)(Mr+ 1
2 )(Nr −Mr)(Nr−Mr+ 1

2 )(
1− 1√

2π

√
Mr

σ (µr − µ̄)
Mr

σ2 (µr − µ̄)2 + 1
exp

(
−M

r(µr − µ̄)2

2σ2

))
. (3.2.25)

For notational simplicity let Cr2 = µr−µ̄
σ = − 1

σrp < 0. Since (3.2.25) is an upper bound of

P(Ar), if we can demonstrate (3.2.25) converges to zero as r →∞, then P(Ar)→ 0 as r →∞.

Assume Cr3 +Cr4 = 1 for some 0 < Cr4 < 1 and Mr = Cr3N
r, then the right hand side of (3.2.25)

can be rewritten as

e(Nr)(Nr+ 1
2 )

2π(Cr3N
r)(Cr3N

r+ 1
2 )(Nr − Cr3Nr)(Nr−Cr3Nr+ 1

2 )

− e(Nr)(Nr+ 1
2 )

2π(Cr3N
r)(Cr3N

r+ 1
2 )(Nr − Cr3Nr)(Nr−Cr3Nr+ 1

2 )

1√
2π

√
Cr3N

rCr2
Cr3N

r(Cr2)2 + 1
exp

(
−1

2
Cr3N

r(Cr2)2

)
=

e(Nr)N
r

(Nr)
1
2

2π ((Cr3)C
r
3 )
Nr

((Nr)Nr )
Cr3 (Cr3)

1
2 (Nr)

1
2 ((Cr4)C

r
4 )
Nr

((Nr)Nr )
Cr4 (Nr)

1
2
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− e

2π
√

2π

(Nr)N
r

(Nr)
1
2

((Cr3)C
r
3 )
Nr

((Nr)Nr )
Cr3 (Cr3)

1
2 (Nr)

1
2 ((Cr4)C

r
4 )
Nr

((Nr)Nr )
Cr4 (Nr)

1
2

(Cr3N
r)

1
2Cr2

Cr3N
r(Cr2)2 + 1

exp

(
−1

2
Cr3N

r(Cr2)2

)
=

e

2π

1

((Cr3)C
r
3 (Cr4)C

r
4 )Nr (Cr3C

r
4)

1
2 (Nr)

1
2

− e

2π
√

2π

1

((Cr3)C
r
3 (Cr4)C

r
4 )Nr (Cr3C

r
4)

1
2 (Nr)

1
2

(Cr3N
r)

1
2Cr2

Cr3N
r(Cr2)2 + 1

exp

(
−1

2
Cr3N

r(Cr2)2

)
=

e√
2π

1

((Cr3)C
r
3 (Cr4)C

r
4 )Nr (Cr3C

r
4)

1
2

(
1√
Nr
− 1√

2π

(Cr3)
1
2

(Cr3N
rCr2 + 1

Cr2
) exp( 1

2C
r
3N

r(Cr2)2)

)

=
e√
2π

1

((Cr3)C
r
3 (Cr4)C

r
4 )Nr (Cr3C

r
4)

1
2

1

exp( 1
2C

r
3N

r(Cr2)2)(
exp( 1

2C
r
3N

r(Cr2)2)√
Nr

− 1√
2π

(Cr3)
1
2

Cr3N
rCr2 + 1

Cr2

)

=
e√
2π

1

((Cr3)C
r
3 (Cr4)C

r
4 e

1
2C

r
3 (Cr2 )2

)Nr
1

(Cr3C
r
4)

1
2

(
exp( 1

2C
r
3N

r(Cr2)2)√
Nr

− 1√
2π

(Cr3)
1
2

Cr3N
rCr2 + 1

Cr2

)
.

(3.2.26)

First notice that two items in the parentheses both converge to zero, because of the following:

exp( 1
2C

r
3N

r(Cr2)2)√
Nr

=
exp( 1

2C
r
3

Nr

σ2r2p )√
Nr

. (3.2.27)

Since p > 1
2 , Nr

σ2r2p → 0, (3.2.27) converges to zero as r →∞; similarly,

(Cr3)
1
2

Cr3N
rCr2 + 1

Cr2

=
(Cr3)

1
2

Cr3N
r(− 1

σrp )− σrp . (3.2.28)

Again, since p > 1
2 , Nr

rp > 0, σrp → +∞ as r → ∞, (3.2.28) converges to zero as r → ∞.

Therefore the difference in the parentheses converges to zero as r →∞, as long as we can show

the left factor in (3.2.26) converges to zero as r → ∞, we can claim (3.2.26) converges to zero

as r →∞.

Obviously, if 0 < (Cr3)−C
r
3 (Cr4)−C

r
4 e−

1
2C

r
3 (Cr2 )2

< 1, then the factor in (3.2.26) converges to

zero as r →∞. The first < is trivial, As for the second <,

(Cr3)−C
r
3 (Cr4)−C

r
4 e−

1
2C

r
3 (Cr2 )2

< 1⇔ 1

(e
1
2 (Cr2 )2

)C
r
3

< (Cr3)C
r
3 (Cr4)C

r
4

⇔ 1

e
1
2 (Cr2 )2

< Cr3(Cr4)
Cr4
Cr3 = Cr3(1− Cr3)

1−Cr3
Cr3

⇔ −1

2
(Cr2)2 < lnCr3 +

1− Cr3
Cr3

ln(1− Cr3)

⇔ − (µ̄− µr)2

2σ2
< lnCr3 +

1− Cr3
Cr3

ln(1− Cr3)

⇔ − 1

2σ2r2p
< lnCr3 +

1− Cr3
Cr3

ln(1− Cr3). (3.2.29)
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Figure 3.2: f(Cr3) on interval (0, 1)

The graph of function f(Cr3) = lnCr3 +
1−Cr3
Cr3

ln(1−Cr3), Cr3 ∈ (0, 1) is shown in Figure 3.2. We

can then choose Cr3 as

Cr3 = min
0<x<1

{
x : − 1

2σ2r2p
< lnx+

1− x
x

ln(1− x)

}
. (3.2.30)

If both (3.2.15) and (3.2.30) are satisfied, P(Ar)→ 0 as r →∞ as required.

Now we can prove Lemma 3.2.1.

Proof. Since our system is under the Halfin-Whitt heavy traffic regime, assume the staffing is

determined by

Nr =
λr

µ̄
+ θ

√
λr

µ̄
. (3.2.31)

Then from Theorem 2.1 in [Atar, 2008], the random drift is

β = λ̂− ζ − µ̄ν. (3.2.32)

Here we take µ̂ = 0 since the purpose of the term µ̂k is just to make the random service rate

more general. By substituting (2.3.3) and (3.2.31) into (3.2.32), we have

β = λ̂− ζ − lim
r→∞

µ̄
1√
r

(Nr − r) = λ̂− ζ − lim
r→∞

µ̄
1√
r

(
λr

µ̄
+ θ

√
λr

µ̄
− r
)

= λ̂− ζ − lim
r→∞

µ̄
1√
r

λr + θ
√
λrµ̄− rµ̄
µ̄

= λ̂− ζ − lim
r→∞

(
λr − rµ̄√

r
+ θ
√
µ̄

√
λr

r

)
= λ̂− ζ − λ̂− θµ̄ = −ζ − θµ̄,

by (2.2.2) and the assumption limr→∞
λr

r = λ = µ̄. Denote

β(θ) = −ζ − θµ̄. (3.2.33)

Recall that ζ is a normal random variable with parameters (0,
∫

(x− µ̄)2dm), and (
∑Nr

k=1 µk −
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Nrµ̄) 1√
r
⇒ ζ. For the rth system, let θ = xr be its extra staffing which is required for stability,

and

βr(xr) = −

Nr(xr)∑
k=1

µk −Nr(xr)µ̄

 1√
r
− xrµ̄. (3.2.34)

Keep xr fixed for every r, then βr(xr) ⇒ β(xr) as r → ∞. When
∑Nr(xr)
k=1 µk = H, denote

βr(xr) as βrH(xr).

Notice that

πr

xr
∣∣∣∣∣∣
Nr(xr)∑
k=1

µk = H

 = P
(

Waitr > 0

∣∣∣∣βr(xr) = − (H −Nr(xr)µ)
1√
r
− xrµ̄

)
. (3.2.35)

Choose ωH such that

ζH = ζ(ωH) = (H −Nr(xr)µ̄)
1√
r
, (3.2.36)

then

P (yr) = P (ξ(∞) > 0|β(xr) = yr = −ζH − xrµ̄) . (3.2.37)

Then it remains to show that

lim
r→∞

P
(

Waitr > 0
∣∣∣βr(xr) = − (H −Nr(xr)µ̄) 1√

r
− xrµ̄

)
P (ξ(∞) > 0|β(xr) = −ζH − xrµ̄)

= 1, ∀H > Nr(xr)µ̄− xµ̄√r.
(3.2.38)

If we can show the family of random variables X̂r(∞) is tight, then we can claim X̂r(∞)⇒ ξ(∞)

as r →∞ when βr < 0, thus (3.2.38) is satisfied.

To show the tightness of {X̂r(∞)}, we only need to show the tightness of {Xr(∞)}. (If

{Xr(∞)} is tight, then ∀ε > 0,∃Kε > 0, such that P(Xr(∞) > Kε) < ε,∀r. Then P(X̂r(∞) >

Kε) = P((Xr(∞)− r)/√r > Kε) = P(Xr(∞) >
√
rKε + r) < P(Xr(∞) > Kε) < ε,∀r.)

When µr and Mr are defined as in Lemma 3.2.2 and 3.2.4, {Xr
hom(∞)} are tight, and

P(Ar) → 0 as r → ∞. Thus the right side of (3.2.14) converges to zero. Let t → ∞ on both

sides of (3.2.14). We have that {Xr(∞)} is tight, hence {X̂r(∞)} is tight.

Now by the definition of tightness, for every sequence {X̂ri(∞)} in {X̂r(∞)}, there exists a

subsequence {X̂rij (∞)} weakly converging to a random variable Y . Figure 3.1 shows our goal.

We already know the left, top and bottom arrows are true, now we need to prove the right one.

Assume Y does not have the same distribution as ξ(∞) when β < 0. Take an infinite sequence

{rk} and {tl}, from the left and bottom arrows in Figure 3.1. The cumulative distribution

functions (CDF) of random variables X̂rk(tl) will converge to the CDF of ξ(∞) as k → ∞
and l → ∞. Next take a subsequence of {rk} and {tl}, i.e. {rkh} and {tlg}, then the CDFs of

X̂rkh (tlg ) will converge to the CDF of Y as h → ∞ and g → ∞. If ξ(∞) and Y are different

random variables, then we find two subsequences of random variables’ CDFs that converge to

different limits, which means such a sequence does not converge, which furthermore contradicts
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the fact that it is convergent (see left and bottom arrows in Figure 3.1). Thus Y should equal

ξ(∞) in distribution, so we have proven that X̂r(∞)⇒ ξ(∞) as r →∞. Therefore (3.2.38) is

proved, hence (3.2.12) is true. The proof is completed.

Approximation of Gr

Next, we find an approximation for Gr(·), which will be more straightforward.

Lemma 3.2.5. Denote βH(xr) = −ζH − xrµ ∀r, where ζH is defined in (3.2.36), and let

Ĝ

(
Nr, λr(xr)

∣∣∣∣∣
Nr∑
k=1

µk = H

)
= −βH(xr)

√
r

∫ ∞
0

Dr(s)eβH(xr)
√
rsds, (3.2.39)

then Ĝ
(
Nr, λr(xr)

∣∣∣∑Nr

k=1 µk = H
)

is a valid approximation of (3.2.3), in the sense that

lim
r→∞

Ĝ
(
Nr, λr(xr)

∣∣∣∑Nr

k=1 µk = H
)

G
(
Nr, λr(xr)

∣∣∣∑Nr

k=1 µk = H
) = 1,∀H > Nr(xr)µ̄− xµ̄√r.

Proof. Substituting βr(xr) defined in (3.2.34) to (3.2.3), we have

G

(
Nr, λr(xr)

∣∣∣∣∣
Nr∑
k=1

µk = H

)
= (H − λr)

∫ ∞
0

Dr(s)e−(H−λr)sds

= −βrH(xr)
√
r

∫ ∞
0

Dr(s)eβ
r
H(xr)

√
rsds.

Since βr(xr)⇒ β(xr), the convergence is obtained.

Verification of approximating function

Now apply the change of variables (3.2.34) into the original cost function (3.2.6), it can be

rewritten as

Cr(x) = F r(x) + λr
1

P(βr(x) < 0)
Lr(x), (3.2.40)

where

Lr(x) =

∫ 0

−∞
πr (x|βr(x) = βrH(x))

(
−βrH(x)

√
r

∫ ∞
0

Dr(s)eβ
r
Hs
√
rds

)
fβr(x)(β

r
H(x))dβrH(x),

(3.2.41)

and fβr(x)(·) is the probability density function of βr(x).

Now that we have approximations for both πr and Gr, we will have an effective approxima-

tion for cost function (3.2.40). More specifically, with the new approximating function

Ĉr(x) = F r(x) + λr
1

P(β(x) < 0)
L̂r(x), (3.2.42)
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where

L̂r(x) =

∫ 0

−∞
P (yr|β(x) = βH(x))

(
−βH(x)

√
r

∫ ∞
0

Dr(s)eβHs
√
rds

)
fβ(x)(βH(x))dβH(x).

(3.2.43)

and fβ(x)(·) is the probability density function of β(x), we have the following theorem

Theorem 3.2.1. Ĉr(x) is a valid approximation for Cr(x) in the sense that

lim
r→∞

Cr(x)

Ĉr(x)
= 1, for any fixed x. (3.2.44)

Proof. Since we already have βr(x) ⇒ β(x) as r → ∞ and F r(x) remains the same, we only

need to show

lim
r→∞

Lr(x)

L̂r(x)
= 1. (3.2.45)

To make it more clear, let

Z(βr(x)) = πr (x)

(
−βr(x)

√
r

∫ ∞
0

Dr(s)eβ
rs
√
rds

)
(3.2.46)

and Z(β(x)) = P (y)

(
−β(x)

√
r

∫ ∞
0

Dr(s)eβs
√
rds

)
, (3.2.47)

where y = −
(∑Nr(x)

k=1 µk −Nr(x)µ
)

1√
r
− xµ. Then limr→∞

Lr(x)

L̂r(x)
= 1 is actually

lim
r→∞

E (Z(βr(x))|βr < 0)

E (Z(β(x))|β < 0)
= 1. (3.2.48)

Since βr ⇒ β is proved, we only need to show Z(βr(x)) is uniformly integrable when

βr(x) < 0, and Z(βr(x)) is a continuous function of βr(x). Then by the Continuous Mapping

Theorem and Theorem 3.5 in [Billingsley, 1999], one can conclude (3.2.48) is true.

To show Z(βr(x)) is uniformly integrable, we only need to show

gr(βr(x)) := −βr(x)
√
r

∫ ∞
0

Dr(s)eβ
rs
√
rds

is integrable when βr(x) < 0, since πr(x) are the probability of waiting and thus are bounded

by 1.

It is easy to see the uniform integrability of gr(βr(x)). Dr(s) is assumed to be a function

such that gr(βr(x)) is finite. Since βr < 0, given the realisation of βr(x), −βrs√r → ∞, and

eβ
rs
√
r → 0, as r → ∞. Thus, gr → 0 as r → ∞. Hence ∃M > 0, such that gr < M,∀n.

Therefore using the Dominated Convergence Theorem,

lim
r→∞

E (gr(βr(x))|βr < 0) = E
(

lim
r→∞

(gr(βr(x))|βr < 0)
)

= 0,
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and the uniform integrability is proved. The continuity of gr(βr(x)) is obvious. We show

continuity of πr(βr(x)) when x is fixed, ignoring x in the proof for simplicity.

For every a < 0, we want to show, for every r, limβr→a π
r(βr) = πr(a). From the proof of

Lemma 3.2.1 we know that for every realisation of βr, there always exists a ω such that β has

the same value as βr. We choose β in such manner in the following proof. As βr → a(β → a),

|πr(βr)− πr(a)| = |πr(βr)− P(β) + P(β)− P(a) + P(a)− πr(a)|

≤ |πr(βr)− P(β)|+ |P(β)− P(a)|+ |P(a)− πr(a)|

≤ ε+ ε+ ε ≤ 3ε.

The first and third εs come from convergence of πr(βr) to P(β) when βr is given, the second

ε is because of the continuity of P(·). Now we proved continuity of πr(βr), hence the function

Z(βr(x)) is continuous with respect to βr(x).

To this end we showed (3.2.48) and thus (3.2.42) is a valid approximation of the cost function

(3.2.40).

3.3 Staffing many server queues with random service rates

and abandonments

Following the result we obtained in Section 3.1, we add abandonments to the model and design

a cost function which we will optimise later.

All of the basic settings and notations are the same, except there are abandonments in the

queue. Each customer has an associated patience time which are i.i.d. exponential random

variables with rate ν. A customer abandons the system without getting any service if the

waiting time in the queue exceeds the customer’s patience. Once her/his service starts, s/he

cannot abandon the system.

Adapting notations from Section 4.1, let X̂r(t) be the scaled process of the number of

customers in the rth system. We have the cost function

Cr(x) : = F r(x) + dνEβr
(
EX̂r(∞)

(
X̂r(∞)+

∣∣∣X̂r(∞) ≥ 0
)
P
(
X̂r(∞) ≥ 0

))
= F r(x) + dνEβr

(
EX̂r(∞)

(
X̂r(∞)+, X̂r(∞) ≥ 0

))
(3.3.1)

where d is the cost of every customer abandonment, and fβr (·) is the density function of

βr. Notice that in this total cost function, we ignore the holding cost in the queue because

abandonment and holding costs are both linear functions of expected queue length, and there

is no need to consider expected queue length twice.
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As proved in Section 3.3, X̂r(t)⇒ ξ(t) where ξ(t) satisfies the equation

ξ(t) = ξ(0) + σw(t) + βt+ γ

∫ t

0

ξ(s)−ds− ν
∫ t

0

ξ(s)+ds. (3.3.2)

More specifically, (3.3.2) can be seen as

ξ(t) =

 ξ(0) + σw(t) + βt− ν
∫ t

0
ξ(s)ds, ξ(t) ≥ 0

ξ(0) + σw(t) + βt− γ
∫ t

0
ξ(s)ds, ξ(t) < 0

. (3.3.3)

Then by Section 4 of [Browne and Whitt, 1994], when ξ(t) ≥ 0, it is an Ornstein-Uhlenbeck

process, thus its steady state conditional on ξ(∞) ≥ 0 is normal distributed with density

function f1(x) =

√
2ν
σ φ

(√
2ν
σ (x− βν )

)
Φ
(√

2β√
νσ

) . Similarly, when ξ(t) < 0, it is also an O-U process, thus

its steady state conditional on ξ(∞) < 0 is a normal random variable with density function

f2(t) =

√
2γ
σ φ

(√
2γ
σ (x− βγ )

)
Φ
(
−
√

2β√
γσ

) . Let % = P(ξ(∞) ≥ 0). Then ξ(∞) has density function

f(x) =

 f1(x)%, x ≥ 0

f2(x) (1− %) , x < 0
. (3.3.4)

To find out %, notice that f(·) is continuous because the infinitesimal variance of ξ(t) is constant

on the real line. Thus by equating the limits of f(·) from both left and right we get

% = P(ξ(∞) ≥ 0) =

1 +

√
ν

γ

φ
(
−
√

2β√
νσ

)
φ
(
−
√

2β√
γσ

) Φ
(
−
√

2β√
γσ

)
Φ
(√

2β√
νσ

)
−1

. (3.3.5)

To this end, it is intuitive to use the following function as an approximation for the original

cost function (3.3.1):

Ĉr(x) = F r(x) + dνEβ
(
Eξ(∞)

(
ξ(∞)+

∣∣ξ(∞) ≥ 0
)
P (ξ(∞) ≥ 0)

)
= F r(x) + dνEβ

(
Eξ(∞)

(
ξ(∞)+, ξ(∞) ≥ 0

))
. (3.3.6)

We have a similar theorem as 3.2.1.

Theorem 3.3.1. (3.3.6) is a valid approximation of (3.3.1) in the sense that

lim
r→∞

Cr(x)

Ĉr(x)
= 1, for any fixed x. (3.3.7)

To prove this convergence, we will need uniform integrability of the steady state. To achieve

this, for each heterogeneous system, we compare it with a homogeneous system with the same

number of servers and the service rate being the lower bound of µk, i.e. p.

Lemma 3.3.1. Let Dr,p
hom(t) be the departure process of the rth homogeneous system described
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above where all the service rates take their minimum value p. Denote the departure process in

the rth heterogeneous system as Dr(t). Then Dr,p
hom(t) ≤st Dr(t), where ‘st’ means the inequality

holds stochastically.

Proof. Denote the number of total customers in the rth homogeneous system as Xr,p
hom(t). We

have the system dynamic equations

Xr(t) = Xr(0) +Ar(t)−Dr(t)−Rr(t) (3.3.8)

Xr,p
hom(t) = Xr,p

hom(0) +Ar(t)−Dr,p
hom(t)−Rr(t) (3.3.9)

For simplicity let Xr(0) = Xr,p
hom(0) = 0. The arrival process and abandonment process are

independent of the service rates and departure process, thus we can take them to be the same

for these two processes. Let Sr,q(t) be a generated poisson process with rate Nrq, where q is

the upper bound of µk, and 0 < τ1 < τ2 < · · · be the sequence of its occurrence times, i.e.

Sr,q(t) =
∑∞
i=1 I(τi < t). Let {Ul, l ∈ N} be a sequence of independent uniform(0, 1) random

variables, and I(A) be the indicator function for event A which takes the value 1 if A occurs

and 0 otherwise. Assume all of the processes equal zero at t = 0. By splitting the process

Sr,q(t), we define the following processes

D̆r,p,l
hom =

l∑
i=1

I

(
Ui ≤

(X̆r,p
hom(τi−) ∧Nr)p

Nrq

)
, (3.3.10)

D̆r,l =

l∑
i=1

I

(
Ui ≤

∑Nr

k=1 µkB̆k(τi−)

Nrq

)
, (3.3.11)

Sr,q(t) = l =

∞∑
i=1

I(τi < t), (3.3.12)

D̆r,p
hom(t) = D̆r,p,l

hom, D̆
r(t) = D̆r,l,∀t ∈ [τl, τl+1), (3.3.13)

X̆r,p
hom(t) = X̆r,p

hom(0) +Ar(t)− D̆r,p
hom(t)−Rr(t), (3.3.14)

X̆r(t) = X̆r(0) +Ar(t)− D̆r(t)−Rr(t), (3.3.15)

where B̆k(t) is determined by the process Ar(t), the sequence τ1, τ2, . . . , and the selection

scheme defined as follows: if, for some i ∈ {1, 2, . . . , Sr,q(t)}, I
(
Ui ≤

∑Nr

k=1 µkB̆k(τi−)

Nrq

)
= 1,

then we have that the potential departure occurring at time τi in process Sr,q(t) is accepted as

the real departure for process D̆r(t). Assume there are m busy servers just before this departure

occurs (time τi−). Then after it is accepted as the real departure, one of the m servers will be

freed, which leads to our selection scheme. Let ηi be a uniformly distributed random variable

on (0, 1). If
∑j
a=0 µk∑m
k=1 µk

≤ ηi <
∑j+1
k=0 µk∑m
k=1 µk

, j = 0, 1, . . . ,m− 1, then server j+ 1 will be freed at time

τi. Here we let µ0 = 0.

Under such definition, the process (µ(i)Dr,p
hom(t), X̆r,p

hom(t)) and (D̆r(t), X̆r(t)) are stochasti-

cally equivalent to (Dr,p
hom(t), Xr,p

hom(t)) and (Dr(t), Xr(t)) respectively.
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We prove this by contradiction. Define

l∗ = min{l : D̆r,p,l
hom > D̆r,l}. (3.3.16)

Then we have

I

(
Ul∗ ≤

∑Nr

k=1 µkB̆k(τl∗−)

Nrq

)
= 0 and I

(
Ul∗ ≤

(X̆r,p
hom(τl∗−) ∧Nr)p

Nrq

)
= 1,

i.e. ∑Nr

k=1 µkB̆k(τl∗−)

Nrq
< Ul∗ ≤

(X̆r,p
hom(τl∗−) ∧Nr)p

Nrq
.

Thus
Nr∑
k=1

µkB̆k(τl∗−) < (X̆r,p
hom(τl∗−) ∧Nr)p. (3.3.17)

Notice that D̆r,p,l∗

hom > D̆r,l∗ implies D̆r,p,l∗−1
hom = D̆r,l∗−1. Since arrival processes and aban-

donment processes are identical, we have X̆r,p
hom(τl∗−1) = X̆r(τl∗−1). Also, during the time

[τl∗−1, τl∗), there are no departures, thus, by equations (3.3.8) and (3.3.9),

X̆r,p
hom(τl∗−) = X̆r,p

hom(τl∗−1) +Ar(τl∗−)−Ar(τl∗−1)− (Rr(τl∗−)−Rr(τl∗−1)), and

X̆r(τl∗−) = X̆r(τl∗−1) +Ar(τl∗−)−Ar(τl∗−1)− (Rr(τl∗−)−Rr(τl∗−1)).

This shows us that X̆r,p
hom(τl∗−) = X̆r(τl∗−). Substituting this into (3.3.17) gives us

Nr∑
k=1

µkB̆k(τl∗−) < (X̆r(τl∗−) ∧Nr)p. (3.3.18)

If X̆r(τl∗−) < Nr, then
∑Nr

k=1 B̆k(τl∗−) = X̆r(τl∗−), and (3.3.18) becomes
∑Nr

k=1 µkB̆k(τl∗−) <

X̆r(τl∗−)p, but since µk ≥ p, this doesn’t hold. If X̆r(τl∗−) ≥ Nr, then
∑Nr

k=1 B̆k(τl∗−) = Nr,

and (3.3.18) is
∑Nr

k=1 µkB̆k(τl∗−) < Nrp, which is also not true because of µk ≥ p.
Thereby we have found a contradiction to the assumption (3.3.16). Hence, we conclude that

such an n∗ does not exist and D̆r,p
hom(t) ≤ D̆r(t) for every t ≥ 0. That means Dr,p

hom(t) ≤st
Dr(t).

Now we are ready to prove the theorem.

Proof of Theorem 3.3.1. Since F r does not change in both cost functions, we only need to show

Eβr
(
EX̂r(∞)

(
X̂r(∞)+, X̂r(∞) ≥ 0

))
→ Eβ

(
Eξ(∞)

(
ξ(∞)+, ξ(∞) ≥ 0

))
, as r →∞. (3.3.19)

Consider a sequence of homogeneous systems with abandonment and service rates being the

lower bound of µk, i.e. p. All other settings are the same as in the heterogeneous systems. By
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Lemma 3.3.1 and equations (3.3.8) and (3.3.9), we know that Xr(t) ≤st Xr,p
hom(t), ∀t ≥ 0. Since

Xr(t)⇒ Xr(∞) and Xr,p
hom(t)⇒ Xr,p

hom(∞) as t→∞, it is also true that Xr(∞) ≤st Xr,p
hom(∞).

And by equations (3.3) and (3.4) in [Mandelbaum and Zeltyn, 2004],

P(Xr,p
hom(∞) = j) =

(λr/p)N
r

Nr!
π0

j∏
k=Nr+1

(
λr

Nrp+ (k −Nr)ν

)
, j ≥ Nr + 1,

where

π0 =

Nr∑
j=0

(λr/p)j

j!
+

∞∑
j=Nr+1

j∏
k=Nr+1

(
λr

Nrp+ (k −Nr)ν

)
(λr/p)N

r

Nr!

−1

. (3.3.20)

Thus ∀r,

E ((Xr,p
hom(∞)−Nr), Xr

hom(∞) ≥ Nr)

=

∞∑
j=Nr+1

(
(λr/p)N

r

Nr!
π0

j∏
k=Nr+1

(
λr

Nrp+ (k −Nr)ν

))
(j −Nr)

=
(λr/p)N

r

Nr!
π0

∞∑
j=Nr+1

(j −Nr)

j∏
k=Nr+1

(
λr

Nrp+ (k −Nr)ν

)

=
(λr/p)N

r

Nr!
π0

∞∑
j=Nr+1

(j −Nr)
(λr)j−N

r

(Nrp+ ν)(Nrp+ 2ν) · · · (Nrp+ (j −Nr)ν)
.

Let m1 = min(p, ν). Then the equation above can be enlarged

E ((Xr,p
hom(∞)−Nr), Xr

hom(∞) ≥ Nr)

≤ (λr/p)N
r

Nr!
π0

∞∑
j=Nr+1

(j −Nr)
(λr)j−N

r

mj−Nr
1 (Nr + 1)(Nr + 2) · · · j

=
(λr/p)N

r

Nr!
π0

∞∑
i=1

(
λr

m1

)i
i

(Nr + 1)(Nr + 2) · · · (Nr + i)

=
(λr/p)N

r

Nr!
π0

∞∑
i=1

(
λr

m1

)i
1

i!

i!Nr!

(Nr + i)!
i ≤ (λr/p)N

r

Nr!
π0

∞∑
i=1

(
λr

m1

)i
1

i!
i

=
(λr/p)N

r

Nr!
π0
λr

m1

∞∑
i=1

(
λr

m1

)i−1
1

(i− 1)!

=
(λr/p)N

r

Nr!
π0
λr

m1

∞∑
i=0

(
λr

m1

)i
1

i!
=

(λr/p)N
r

Nr!
π0
λr

m1
e−

λr

m1 . (3.3.21)

From [Mandelbaum and Zeltyn, 2004], we know π0 converges, thus (3.3.21) <∞, which means

the expected queue length of the rth homogeneous system is bounded. Since Xr(∞) ≤st
Xr,p
hom(∞), we have

E((Xr(∞)−Nr), Xr(∞) ≥ Nr) ≤ E((Xr,p
hom(∞)−Nr), Xr,p

hom(∞) ≥ Nr) <∞. (3.3.22)
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Scaling the inequality on both sides, we have

E(
1√
r

(Xr(∞)−Nr), Xr(∞) ≥ Nr) ≤ E(
1√
r

(Xr,p
hom(∞)−Nr), Xr,p

hom(∞) ≥ Nr) <∞, (3.3.23)

i.e.

E(X̂r(∞), X̂r(∞) ≥ 0) ≤ E(X̂r,p
hom(∞), X̂r,p

hom(∞) ≥ 0) <∞. (3.3.24)

Notice that the expected value on the left is a function of the random variable βr, thus it itself

is also a random variable. (3.3.24) implies that in the rth heterogeneous systems, the (scaled)

expected queue length is always bounded no matter what values the service rates take, which

further implies that the (scaled) queue length is uniformly integrable.

Using the same reasoning process for Figure 3.1, but with abandonment in the systems, we

can get X̂r(∞)⇒ ξ(∞). Hence, by Theorem 3.5 in [Billingsley, 1999], (3.3.19) is proved.

To this end, we have proven the validity of the approximation (3.3.6) of the cost function

(3.3.1).

3.4 Impact of service rate variation on abandonment rate

In this section we want to see how the variance of the service rate influence the queue length,

and thus the abandonment cost. We analyse this by considering the expected (scaled) queue

length. The analytical result seems rather intractable, so instead we show their numerical

results and explain how it reflects such influence. We mainly focus on systems under the LISF

policy. To have a better idea of how variance plays its role in a system, we also include the

numerical results for systems under the FSF policy.

According to (3.3.6), the approximating cost function for systems with abandonment is

Ĉr(x) =F r(x) + dνEβ
(
Eξ(∞)

(
ξ(∞)+

∣∣ξ(∞) ≥ 0
)
P (ξ(∞) ≥ 0)

)
=F r(x) + dνEβ

(
Eξ(∞)

(
ξ(∞)+, ξ(∞) ≥ 0

))
=F r(x) + dν

∫
R

∫ ∞
0

xf1(x)%dxdP(β)

=F r(x) + dν

∫ ∞
−∞

∫ ∞
0

x

√
2ν
σ φ

(√
2ν
σ

(
x− β

ν

))
Φ
(√

2β√
νσ

) fβ(β)

1 +

√
ν

γ

φ
(
−
√

2β√
νσ

)
φ
(
−
√

2β√
γσ

) Φ
(
−
√

2β√
γσ

)
Φ
(√

2β√
νσ

)
−1

dxdβ. (3.4.1)

We want to see how the variance of the service rate influences the steady state and, thus by

(3.4.1), the abandonment cost. (3.4.1) contains a complicated integral which may not have a

closed form. To simplify the problem, we consider a special distribution of service rates. Let
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the random service rates be uniformly distributed on (µ̄− ε, µ̄+ ε), ε > 0. Then ξ has a random

drift β, where β = −ζ − θµ̄, and ζ ∼ N(0, ε
2

3 ), and γ = µ̄+ ε2

3µ̄ . Then, (3.4.1) becomes

F r(x) + dν

∫ ∞
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∫ ∞
0
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) √
3
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−1

dxdβ

= F r(x) + dν

∫ ∞
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∫ ∞
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) 1
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√
ν

µ̄+ ε2
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√

2β√
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φ
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−
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√
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3µ̄σ

)
Φ
(√

2β√
νσ

)

−1

dxdβ. (3.4.2)

Since the only part depending on the service rate variance is the double integral in (3.4.2),

which is actually the expected (scaled) queue length, we let

QL(ε) =

∫ ∞
−∞

∫ ∞
0

x

√
2ν
σ φ

(√
2ν
σ

(
x− β

ν

))
Φ
(√

2β√
νσ

) 1

ε
√

2π
3

exp

(
−3(β + θµ̄)2

2ε2

)
1 +

√
ν

µ̄+ ε2

3µ̄

φ
(
−
√

2β√
νσ

)
φ

(
−

√
2β√

µ̄+ ε2

3µ̄σ

) Φ

(
−

√
2β√

µ̄+ ε2

3µ̄σ

)
Φ
(√

2β√
νσ

)

−1

dxdβ. (3.4.3)

After simplification, (3.4.3) is still hard to tackle, thus we employ a numerical integral. In

Figure 3.3, we show the function QL(ε) vs ε. From the graph, QL(ε) is increasing. This implies

that when all the other conditions remain the same, the total cost will grow as the service rate

variance grows.

In contrast, we consider the same function for the FSF policy. The only difference in

the limiting diffusion for FSF is γ = µmin, which is µ̄ − ε in the above-mentioned uniform

distribution. Keeping other parameters unchanged, we plot its graph in Figure 3.4. The result

is surprisingly counter-intuitive. It shows that the expected (scaled) queue length will decrease

as the variance grows. One can explain such a situation as follows: the FSF policy always routes

customers to the fastest available servers, thus in the long run, only the slowest server will have

the chance to be idle. When the service rate variance increase, the minimum service rate will

decrease, thus when the arrival rate remains the same, the ‘lost’ capacities due to idleness will

also decrease. This implies that the total service rates that are indeed utilised will increase,

thus the queue length decreases.
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Figure 3.3: QL(ε) vs ε for the LISF policy, when σ = 4, θ = 2, ν = 2.

Figure 3.4: QL(ε) vs ε for the FSF policy, when σ = 4, θ = 2, ν = 2.
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3.5 Fairness among severs under different routing policies

From [Atar, 2008] and our analysis above, for a heterogeneous system, the longest idle server

first (LISF) policy expresses a form of fairness, because when several servers are free, the one

selected for the next incoming job is the one that has been idle for the longest time. On the

other hand, policy faster server first (FSF) always routes customer to the fastest idle servers.

Such difference in the routing scheme shows that LISF is more fair for servers than FSF, which

provokes a question: can we quantify the fairness level for different routing policies? In this

section we will answer this question, and demonstrate how it can be used in real systems.

3.5.1 Fairness measure

We introduce a new concept called “fairness measure”. We still consider a sequence of many

server queues with i.i.d. servers. For simplicity, we remove the randomness on the number of

servers and assume the Nth system has exactly N servers. Denote Υ as the support of random

variables {µk}. To analyse fairness among servers, it is intuitive to consider their idle times.

As before, denote Ik(t) as the idleness process for server k, i.e. Ik(t) equals 1 if server k is idle

at t, and is equal to 0 if it is busy. For a routing policy π, its fairness measure is defined as

ηπ : Υ→ [0, 1], such that ∀A ⊂ Υ, and ∀ T > 0,

sup
0≤t≤T

1√
N

∣∣∣∣∣
N∑
k=1

1µk(A)Ik(t)− ηπ(A)

N∑
k=1

Ik(t)

∣∣∣∣∣→ 0 in probability, (3.5.1)

as N →∞, where 1µk(·) is the indicator function

1µk(A) =

 1 µk ∈ A
0 µk /∈ A

. (3.5.2)

From the definition, it is easy to see that ηπ is a probability measure on Υ. One can understand

(3.5.1) that the number of idle servers whose service rates are in A converges u.o.c to the product

of the fairness measure of set A and the total number of idle servers.

We need to be aware that although (3.5.1) reflects fairness of a policy to some degree, it

does not hold in every situation. There should be some limitations on the policies such that

(3.5.1) is true, e.g. the policy should not depend on the total number of idle servers. Denote

the set of all the eligible policies as Π. We have the following assumption,

Assumption 3.5.1. For any π ∈ Π, (3.5.1) holds.

3.5.2 Application of fairness measure on LISF and FSF policies

To see how Assumption 3.5.1 is used, we consider the diffusion limits proved in [Atar, 2008]. In

Section 2 of Chapter 2, we showed that after some manipulations on the process X̂(t) (diffusively
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scaled process of total number of customers in the system), it has expression

X̂(t) = X̂(0) +W (t) + bt+ F (t), (3.5.3)

with F (t) = 1√
N

∫ t
0

∑N
k=1 µkIk(s)ds being the only item that is troublesome to deal with and

also the only item that depends on policies.

Now we show the convergence of F (t) under different policies. By Assumption 3.5.1,

F (t) =
1√
N

∫ t

0

N∑
k=1

µkIk(s)ds→ 1√
N

∫ t

0

N∑
k=1

µk1µk(Υ)Ik(s)ds

→ 1√
N

∫ t

0

(∫
Υ

µ1dηπ(µ1)

) N∑
k=1

Ik(s)ds, (3.5.4)

in probability u.o.c as N →∞.

• LISF

For any A ∈ Υ, define ηLISF (A) =
∫
A
µ1dm∫
µ1dm

, then

∫
Υ

µ1dηLISF (µ1) =

∫
Υ

µ1
µ1dm∫
µ1dm

=

∫
µ2

1dm∫
µ1dm

, (3.5.5)

and (3.5.4) becomes

F (t)→
∫
µ2

1dm∫
µ1dm

1√
N

∫ t

0

N∑
k=1

Ik(s)ds, (3.5.6)

in probability u.o.c as N →∞.
∫
µ2

1dm∫
µ1dm

is actually γ in Theorem 2.1 in [Atar, 2008], and

(3.5.6) matches with the result in that paper that F (t)→ γ
∫ t

0
Î(s)ds in probability u.o.c

as N →∞.

• FSF

Similarly, for any A ∈ Υ, define ηFSF (A) = 1µmin(A). Then

∫
Υ

µ1dηFSF (µ1) =

∫
Υ

µ1d1µmin
(µ1) = µmin, (3.5.7)

and (3.5.4) becomes

F (t)→ µmin
1√
N

∫ t

0

N∑
k=1

Ik(s)ds, (3.5.8)

in probability u.o.c. as N → ∞. Such a form also matches with the result of Theorem

2.2 in [Atar, 2008].

With fairness measure, we rephrase results in [Atar, 2008] in a more general way. The

problem of proving diffusion limit of a particular system is reduced to finding the fairness

52



measure of the policy that is used in the system. Thus it is possible to invent a standard

method for proving diffusion limits, which is more insightful than the proof in [Atar, 2008].
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Chapter 4

State Space Collapse for Many

Server Queues and Queueing

Networks with Parameter

Uncertainty

4.1 Introduction

In this chapter, we discuss the state space collapse phenomenon. Throughout this chapter,

we adapt the framework developed by [Dai and Tezcan, 2011]. They consider a queueing

network with multi-class customers and several server pools. In each pool, servers have the

same capacities and capabilities. Customer arrivals are exogenous and independent from service

processes. For such systems, exact analysis provides limited insight into the general properties of

performances. One general way to overcome this is to use diffusion approximations. Similar to

Chapter 3, the central part of the diffusion approximation is some heavy traffic limit theorems

that state that a certain diffusively scaled performance processes converges to a diffusion in

heavy traffic. Since the system processes in such networks are multidimensional, it becomes

difficult to deal with when the system size grows large. Here is where state space collapse (SSC)

plays a role. The SSC result reveals that under some conditions, the dimensions of system

processes can be significantly reduced in the heavy traffic limit, while the essential information

of the systems is still maintained. [Dai and Tezcan, 2011] gain the SSC result by using what

they call an SSC function. They show that under some assumptions on the networks, the SSC

function evaluated at diffusively scaled processes converges to zero as the system grows large.

For administrative and economic reasons, servers can be categorized and allocated such that,

within pools, servers have the same capabilities, i.e. the set of customer classes that one server in
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a pool is able to serve is the same as the set of customer class that any other server in the same

pool can serve. This way of pooling reflects a kind of heterogeneity among servers. [Dai and

Tezcan, 2011] also assume that within each pool, servers not only have the same capabilities,

but also have the same capacities, i.e. when two servers in the same pool serve the same class

of customers, their service rates are the same. However, in reality, it is more common that

some differences are present among servers who are capable of doing the same tasks. Inside

each pool, even though servers have the same capabilities, their skill levels can still be different,

thus it will make more sense if we consider their rates to be different and random rather than

identical.

In our work, service rates within pools are assumed to be i.i.d. random variables, and we

also restrict our service times to being exponentially distributed. We analyse such networks,

and demonstrate that with randomness within pools the SSC result still holds. We will show

that the SSC function in such systems still converges to zero in the limit.

This chapter is organised as follows. In Section 4.2, we introduce our model and define

parallel random server systems. In Section 4.3, we give our main result, the SSC for networks

with random service rates. Then in Section 4.4, we provide essential proofs that are unique to

our results. Proofs that are the same as in [Dai and Tezcan, 2011] are relegated to Appendix

B.4. In Section 4.5, to show how the SSC can be used in queueing system analysis, we use the

SSC method to show the diffusion limits proved in Chapter 3.

4.2 Notation and model descriptions

Our basic settings are similar to those in [Dai and Tezcan, 2011],but slightly different. Besides

the randomness among servers, we do not include abandonments in our systems, and we also

do not differentiate between the arrival streams and customer classes. Every arrival stream

forms one class of customers. More specifically, we consider a system with parallel server pools

and several customer classes. A server pool consists of several servers whose capabilities are

the same, and their capacities are i.i.d. random variables (see more detailed definitions below).

Customers of one class arrive in the system at a certain rate. Each class of customers have

their own queue. Upon their arrival they will be routed to a capable server (idle and possesses

the skill to serve this class of customer) if there is at least one; if all the capable servers are

occupied, they will wait in their queues. Each customer is served by one of the servers. Once

the service of a customer is completed by one of the servers, the customer leaves the system.

And once a customer starts his service, he cannot abandon the service. For convenience, we

refer to these systems as parallel random server systems.
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4.2.1 Notation

We need to define some notation for convenience in presentation. Throughout this chap-

ter, unless stated otherwise, for a vector x = (x1, . . . , xn) ∈ Rn, its norm is defined as

|x|= max{i=1,...,n}|xi|. For an m × n matrix M , its norm is |M |= max{i=1,...,m}|Mi|, where

{Mi, i = 1, . . . ,m} are the row vectors of M .

In Chapter 2, we defined that for any function x(t) ∈ Dd and any T > 0, ||x(t)||T=

sup0≤t≤T |x(t)|. Now consider a sequence xr(t), we say xr → x uniformly on a compact set

(u.o.c) if ||xr(t)− x(t)||T→ 0 as r →∞ for any T > 0.

4.2.2 Dynamics of the queueing networks

We use I to denote the number of server pools, and J to denote the number of customer classes.

For notational convenience, we define I = {1, . . . , I},J = {1, . . . , J}. And denote the number

of servers in pool i by Ni for i ∈ I and set N = (N1, . . . , NI). The total number of servers

in the system is denoted by |N |. Class j customers arrive the system according to a Poisson

process with rate λj . We assume that the set of pools that can handle class j customers is fixed

and denoted by I(j). Similarly, the set of customer classes that pool i can handle is fixed and

denoted by J (i).

Upon arrival, each customer of class j is routed to a server if there is an available server

in one of the pools in I(j). Otherwise, the customer joins the queue of class j, waiting to

be served later. Assume the service time of a class j customer by the kth server in pool i is

exponentially distributed with rate µijk, where j ∈ J (i), k = 1, 2, . . . , Ni. Then the service

rates {µijk, k = 1, 2, . . . , Ni} are i.i.d. random variables. Denote their expectation value as

µ̄ij = Eµijk. We also assume that µijk ∈ [pij , qij ], 0 < pij < qij .

The object of study in this paper is a stochastic process X = (A,Aq, As, C,Q,Z, T,D).

Assume all of the components are right continuous with left limits. We provide definitions of

individual processes below.

• A = (Aj ; j ∈ J ), Aj(t) is the total number of class j arrivals by time t.

• Aq = (Aqj ; j ∈ J ), Aqj(t) denotes the total number of class j customers who are delayed

and have to wait in the queue before their service starts.

• As = (Asij ; i ∈ I, j ∈ J ), Asij(t) is the total number of class j customers who are routed

to a server and start service in pool i immediately after their arrival by time t.

• C = (Cij ; i ∈ I, j ∈ J ), Cij(t) is the total number of class j customers who are delayed

in the queue and whose service started in pool i before time t.

• Q = (Qj ; j ∈ J ), Qj(t) is the total number of class j customers in queue at time t.
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• Z = (Zij ; i ∈ I, j ∈ J ), Zij(t) is the total number of servers in pool i who are busy with

serving class j customers at time t.

• T = (Tij ; i ∈ I, j ∈ J ), Tij(t) denotes the total time spent by servers in pool i in serving

class j customers by time t.

• D = (Dij ; i ∈ I, j ∈ J ), Dij(t) denotes the total number of class j customers whose

service are completed by servers in pool i by time t.

Since there is heterogeneity among servers, we need to deal with each server individually, thus

we also need the following notations:

• Bijk(t), i ∈ I, j ∈ J (i), k = 1, 2, . . . , Ni: busy server indicator function. If the kth server

in pool i is busy with a class j customer at time t, Bijk(t) = 1, otherwise Bijk(t) = 0.

• Tijk(t), i ∈ I, j ∈ J (i), k = 1, 2, . . . , Ni: total time spent by the kth server in pool i in

serving class j customers by time t.

• Dijk(t), i ∈ I, j ∈ J (i), k = 1, 2, . . . , Ni: total number of class j customers whose service

are completed by the kth server in pool i by time t.

Notice Bijk, Zij , Tijk, Tij , Dij , Dijk have such relation:

Zij(t) =

Ni∑
k=1

Bijk(t), Dij(t) =

Ni∑
k=1

Dijk(t), and Tij(t) =

Ni∑
k=1

Tijk(t)

for all i ∈ I, j ∈ J .

The main goal of this chapter is to study the SSC results of the above-mentioned queueing

networks in the diffusion limit manner. Therefore, we analyse a sequence of systems indexed

by r such that the arrival rate grows to infinity as r → ∞. The number of servers also grows

to infinity to meet the growing demand. We append “r” to the processes that are associated

with the rth system, e.g. Qrj(t) is used to denote the number of class j customers in the queue

in the rth system at time t. The arrival rate in the rth system is given by λr = (λrj , j ∈ J ),

and we assume that

λrj →∞, (4.2.1)

as r →∞.

Let {Sijk, i ∈ I, j ∈ J , k = 1, 2, . . . , Ni} be i.i.d. standard Poisson processes, each having

right-continuous sample paths. Combining the settings in [Atar, 2008] and [Dai and Tezcan,

2011], the processes Dijk are assumed to satisfy

Dr
ijk(t) = Sijk(µijkT

r
ijk(t)), i ∈ I, j ∈ J , k = 1, 2, . . . , Ni, (4.2.2)
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where

T rijk(t) =

∫ t

0

Brijk(s)ds, i ∈ I, j ∈ J , k = 1, 2, . . . , Ni. (4.2.3)

The process Xr depends on the control policy used in the system. To emphasize the dependence

on the control policy π used, we use Xπ to denote the process. Clearly, each element of

Ar, Arq, A
r
s, C

r, T r, Dr is a nondecreasing process, and each element of Qr and Zr is nonnegative.

Furthermore, the process Xrπ satisfies the following dynamic equations for all t ≥ 0.

Arj(t) = Arqj(t) +
∑
i∈I(j)

Arsij(t), for all j ∈ J , (4.2.4)

Qrj(t) = Qrj(0) +Arqj(t)−
∑
i∈I(j)

Crij(t), for all j ∈ J , (4.2.5)

Zrij(t) = Zrij(0) +Arsij(t) + Crij(t)−
Nri∑
k=1

Dr
ijk(t), for all i ∈ I, j ∈ J , (4.2.6)

∑
j∈J (i)

Zrij(t) ≤ Nr
i , for all i ∈ I, (4.2.7)

Qrj(t)

 ∑
i∈I(j)

Nr
i −

∑
j′∈J (i)

Zrij′(t)

 = 0, for all j ∈ J , (4.2.8)

∫ t

0

∑
i∈I(j)

Nr
i −

∑
j′∈J (i)

Zrij′(s−)

 dArqj(s) = 0, for all j ∈ J , (4.2.9)

Equations associated with the control policy π. (4.2.10)

Equations (4.2.8) and (4.2.9) are based on the assumed non-idling property of a control policy.

Equation (4.2.8) implies that there can be customers in the queue only when all of the servers

that can serve that class of customers are busy. Equation (4.2.9) implies that an arriving

customer is delayed in the queue only if there is no idle server that can serve that customer

at the time of his arrival. Equation (4.2.10) indicates the scheduling decisions to be made

according to the selected scheduling policies.

Let {Sijk, i ∈ I, j ∈ J } be the Poisson processes defined before, and {vijk(l); l = 1, 2, . . . }
be the corresponding sequence of i.i.d. exponential random variables. Since Sijk is a Poisson

process, vijk(l) has exponential distribution with rate µijk. We define Vijk : N→ R by

Vijk(m) =

m∑
l=1

vijk(l)

µijk
, m ∈ N, (4.2.11)

where, by convention, empty sums are set to be zero. The term Vijk(m) is the total service

requirement of the first m class j customers who are served by the kth server in pool i, and
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Vijk is known as the cumulative service time process. By the duality of Sijk and Vijk, we have

Sijk(µijkt) = max {m : Vijk(m) ≤ t} , t ≥ 0. (4.2.12)

It follows from (4.2.2) that

Vijk(Dr
ijk(t)) ≤ T rijk(t) ≤ Vijk(Dr

ijk(t) + 1). (4.2.13)

Next, we give the details of the arrival processes. Let χ(t) be a delayed renewal process

with rate 1. Let

Ar(t) = χ(λrt) (4.2.14)

Let {u(l) : l = 1, 2, . . . } be the sequence of interarrival times that are associated with the

process χ. Note that they are independent and identically distributed. We define U : N → R

by

U(m) =

r∑
l=1

u(l), m ∈ N, (4.2.15)

and so

χ(t) = max{m : U(m) ≤ t}. (4.2.16)

We require that the interarrival times of the arrival processes satisfy the following condition,

which is similar to condition (3.4) in [Bramson, 1998]:

E
(
u(2)2+ε

)
<∞, for some ε > 0. (4.2.17)

Condition (4.2.17) is automatically satisfied by the service times because they are assumed to

be exponentially distributed. For the rest of the paper, we assume that the primitive processes

of the system satisfy (4.2.17). We also assume that Qr(0), Zr(0), χ and S are independent.

We require that the number of servers in the rth system is selected so that

lim
r→∞

|Nr|
r

= 1, (4.2.18)

lim
r→∞

Nr
i

|Nr| = βi, for all i ∈ I and for some βi ∈ (0, 1), (4.2.19)

lim
r→∞

λrj
|Nr| = λj , for some 0 < λj <∞. (4.2.20)

We shall denote λ = (λj , j ∈ J ).

4.3 Main results

In this section, we state our main result as Theorem 4.3.2, which is an SSC result for parallel

random server systems. We extend the SSC result for systems from identical servers in each
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pool which is proved by [Dai and Tezcan, 2011], to include random service rates in each pool.

The proof framework of our results is similar to the one in [Dai and Tezcan, 2011]. Our main

contribution is when showing almost Lipschitz condition for hydrodynamically scaled departure

processes, the direct way in [Dai and Tezcan, 2011] is no longer valid, so instead we come up

with a new coupling method. For more detailed differences between proofs of [Dai and Tezcan,

2011] and our results, see discussion at the beginning of Section 4.4.

Before stating the theorem, we need some preliminary definitions and assumptions.

We only consider systems under the heavy traffic condition. For a multi-class network with

several server pools, it is not trivial to define the heavy traffic condition. Instead, we use the

static planning problem (SPP) for the networks as a bridge to heavy traffic conditions.

4.3.1 The static planning problem

The SPP is introduced in [Dai and Tezcan, 2011]. We will modify the original problem such that

it suits our models. The objective of an SPP is to minimise server utilisations in the network.

[Dai and Tezcan, 2011] use identical service rates to define utilisations, while we consider their

expected value µ̄ij instead.

Let x = (xij , i ∈ I, j ∈ J (i)), where xij is the long term proportion of pool i servers’

working time in serving class j customers. We define the static planning problem

min ρ

s.t.
∑
i∈I(j)

βiµ̄ijxij = λj , for all j ∈ J ,

∑
j∈J (i)

xij ≤ ρ, for all i ∈ I,

xij ≥ 0 for all i ∈ I, j ∈ J .

(4.3.1)

Denote (ρ∗, x∗) as the optimal solution of the above static planning problem. This means the

average utilisation of the busiest pool will reach its minimum value ρ∗ with the allocation x∗. If

ρ∗ > 1, it can easily be shown that the queue length grows without bound; thus in our analysis

it is always assumed that ρ∗ ≤ 1.

Since we need a heavy traffic condition, we now consider a sequence of the following opti-

misation problem

min ρr

s.t.
∑
i∈I(j)

Nr
i µ̄ijx

r
ij = λrj , for all j ∈ J ,

∑
j∈J (i)

xrij ≤ ρr, for all i ∈ I,

xrij ≥ 0 for all i ∈ I, j ∈ J .

(4.3.2)

Let (ρr, xr,∗) be an optimal solution of (4.3.2). These optimisation problems will be an impor-
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tant part in the assumptions of heavy traffic below.

4.3.2 Assumptions

Before starting the analysis of the state space collapse phenomenon, we need to clarify that

such phenomenon will not happen in all networks. We need some constraints on the systems

to guarantee SSC. We have the following two assumptions for that reason.

Using the definitions in the static planning problem, we have the assumption about heavy

traffic conditions and control policies.

Assumption 4.3.1. For each static optimal solution (ρ∗, x∗) of the SPP (4.3.1), we have

ρ∗ = 1 and
∑
j∈J (i) x

∗
ij = 1. Moreover, for any sequence of optimal solutions {xr,∗} of (4.3.2),

we have

xr,∗ → x∗,

as r →∞ for some optimal solution of (4.3.1).

In this work, we only consider control policies that will not cause the system to explode, i.e.

the queue length does not grow to infinity. Thus we need the following assumption.

Assumption 4.3.2. For a control policy π,

Zrij(t)

|Nr| → z u.o.c. a.s. (4.3.3)

as r →∞ if Zrij(0)/|Nr|→ (0, z) a.s. as r →∞, where z = (zij , i ∈ I, j ∈ J ), and zij = βix
∗
ij

for an optimal solution (ρ∗, x∗) of the static planning problem (4.3.1).

We do not include the constraints on Qr(·) because, unlike in [Dai and Tezcan, 2011], we

do not have abandonments in our system.

4.3.3 Fluid limit and verification of the control policy assumption

Under a control policy, when Assumption 4.3.2 is satisfied, the fluid limits exist and do not

explode, even though they are critically loaded. We assume that

Zr(0)/|Nr|→ z a.s. (4.3.4)

as r →∞, where z is given as in Assumption 4.3.2. Under Assumption 4.3.2, condition (4.3.4)

implies that

Zr(·)/|Nr|→ z u.o.c. a.s.

as r →∞, for t ≥ 0.

To make Assumption 4.3.2 easier to check, we use the fluid limit concept. The fluid scaling
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is defined as

X̄r(t) =
Xr(t)
|Nr| . (4.3.5)

The following definitions and notations are from [Dai and Tezcan, 2011], but we repeat them

here for completeness.

Let A ∈ Ω be such that {Q̄r(0)} is bounded and the following Functional Strong Law of

Large Numbers holds:

Arj(|Nr|·)
|Nr| → aj(·),

∑Nri
k=1 Sijk(|Nr|·)
|Nr| → αij(·), u.o.c (4.3.6)

as r →∞, where αij(t) = µ̄ijt, aj(t) = t. Note that we can take P(A ) = 1.

We call X̄r(t) the fluid scaled process. X̄ is called a fluid limit of {Xr} if there exists an

ω ∈ A and a sequence {rl} with rl →∞ as l→∞, such that X̄rl(·, ω) converges u.o.c. to X̄ as

l→∞, where A is taken from Theorem B.1 in [Dai and Tezcan, 2011]. The following theorem

is analogous to Theorem B.1 in [Dai and Tezcan, 2011], with the main difference being in T̄ and

Ī. These two processes are considered individually rather than aggregately due to the servers’

heterogeneity.

Theorem 4.3.1. Let {Xrπ} be a sequence of π-parallel random server systems processes. As-

sume that (4.2.18) and (4.2.20) hold and {Q̄r(0)} is bounded a.s. as r →∞. Then {X̄rπ} is a.s.

precompact(i.e. every sequence has a convergent subsequence) in the Skorohod space Dd[0,∞)

endowed with the u.o.c. topology. Thus, the fluid limits exist, and each fluid limit, X̄π, of {X̄rπ}
satisfies the following equations for all t ≥ 0:

λjt = Āqj(t) +
∑
i∈I(j)

Āsij(t), for all j ∈ J , (4.3.7)

Q̄j(t) = Q̄j(0) + Āqj(t)−
∑
i∈I(j)

C̄ij(t), for all j ∈ J , (4.3.8)

Z̄ij(t) = Z̄ij(0) + Āsij(t) + C̄ij(t)− µ̄ij T̄ij(t), for all i ∈ I, and j ∈ I(i), (4.3.9)

T̄ij(t) =

∫ t

0

Z̄ij(s)ds, for all i ∈ I, and j ∈ I(i), (4.3.10)

Īi(t) = βit−
∑
j∈J (i)

T̄ij(t), for all i ∈ I, (4.3.11)

Q̄j(t)

βi − ∑
j′∈J (i)

Z̄ij′(t)

 = 0, for all j ∈ J , (4.3.12)

∫ t

0

∑
j∈J (i)

Q̄j(s)dĪi(s) = 0, for all i ∈ I, (4.3.13)

63



∫ t

0

∑
i∈I(j)

βi − ∑
j′∈J (i)

Z̄ij′(s)

 dĀqj(s) = 0, for all j ∈ J , (4.3.14)

Ā, Āq, Ās, T̄ , and C̄ are nondecreasing, (4.3.15)

Q̄(t) ≥ 0, Z̄ij(t) ≥ 0, and
∑
j∈J (i)

Z̄ij(t) ≤ 1 for all i ∈ I, and j ∈ J (i). (4.3.16)

The proof of this theorem is in Appendix B.1.

The vector (q, z) is called a steady state of the fluid limits if for any fluid limit X̄, Q̄(0) = q

and Z̄(0) = z implies Q̄(t) = q and Z̄(t) = z for all t ≥ 0.

We denote the set of all of the steady states of the fluid limits of {Xr} by M . The following

result is analogous to Lemma B.1 in [Dai and Tezcan, 2011], and it is an equivalent condition

to Assumption 4.3.2.

Lemma 4.3.1. Let {Xrπ} be a sequence of π-parallel random server systems processes that satis-

fies conditions of Theorem 4.3.1 and Assumption 4.3.1. A control policy π satisfies Assumption

4.3.2 if (0, z) ∈M , where zij = βix
∗
ij.

The proof is the same as Lemma B.1 in [Dai and Tezcan, 2011] and is trivial so we omit it

here.

In general, diffusion limits are introduced as refinements of the fluid limits. Under condition

(4.3.4) and Assumption 4.3.2, we define the diffusive scaling as follows:

Q̂r(t) =
Qr(t)√
|Nr|

and B̂rijk(t) =
Brijk(t)√
|Nr|

, for t ≥ 0. (4.3.17)

and denote

Ẑrij(t) =

Nri∑
k=1

(
B̂rijk(t)−

x∗ij√
Nr

)
=
Zrij(t)− x∗ijNr

i√
|Nr|

. (4.3.18)

Now we introduce the hydrodynamic model equations, and we borrow the SSC function

from [Dai and Tezcan, 2011]. This function is the key point in our main theorem.

4.3.4 Hydrodynamic model equations

Consider the process X̃π = (Ã, Ãq, Ãs, Q̃, B̃, Z̃, C̃) and the following set of equations:

λjt = Ãqj(t) +
∑
i∈I(j)

Ãsij(t), for all j ∈ J , (4.3.19)

Q̃j(t) = Q̃j(0) + Ãqj(t)−
∑
i∈I(j)

C̃ij(t), for all j ∈ J , (4.3.20)

Ãqj , Ãsij , C̃ij are nondecreasing for all i ∈ I, j ∈ J , (4.3.21)
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Z̃ij(t) = Z̃ij(0) + Ãsij(t) + C̃ij(t)− µ̄ij T̃ij(t), for all i ∈ I, and j ∈ J (i), (4.3.22)

T̃ij(t) =

∫ t

0

zijds = zijt, for all i ∈ I, and j ∈ J (i), (4.3.23)

Q̃j(t) ≥ 0, for all j ∈ J , and
∑
j∈J (i)

Z̃ij(t) ≤ 0, for all i ∈ I, (4.3.24)

Q̃j(t)

 ∑
i∈I(j)

∑
j′∈J (i)

Z̃ij′(t)

 = 0, for all j ∈ J , (4.3.25)

∫ t

0

 ∑
i∈I(j)

∑
j′∈J (i)

Z̃ij′(s)

 dÃqj(s) = 0, for all j ∈ J , (4.3.26)

Additional equations associated with the control policy π, (4.3.27)

where λj is defined as in (4.2.20). Equations (4.3.19)-(4.3.27) are called the hydrodynamic model

equations, and they define the hydrodynamic model of the system under policy π. Any process

X̃π satisfying (4.3.19)-(4.3.27) for all t ≥ 0 is called a hydrodynamic model solution.

Hydrodynamic model solutions are deterministic and absolutely continuous, hence almost

everywhere differentiable. Absolute continuity follows from the following result.

Proposition 4.3.1. Any process X̃π satisfying (4.3.19)-(4.3.27) for all t ≥ 0 is Lipschitz con-

tinuous.

It will be proved in Proposition 4.4.3 that the hydrodynamic model equations are satisfied

by hydrodynamic limits under certain general assumptions; these limits are obtained from the

hydrodynamically scaled sequences.

4.3.5 SSC in the diffusion limits

Similar to Section 4.2 in [Dai and Tezcan, 2011], we define the state space collapse function.

Let g : RJ+dz → R+, where dz =
∑
j∈J |I(j)|, be a nonnegative function that satisfies the

following homogeneity condition:

g(αx) = αcg(x), (4.3.28)

for some c > 0, for all x ∈ RJ+dz , and for all 0 ≤ α ≤ 1. We call g a SSC-function. Nonnegativ-

ity assumption is made for notational convenience, and one can always consider |g| in order to

have a nonnegative function if g can take negative values. We make the following assumption

about the SSC function.

Assumption 4.3.3. The function g : RJ+dz → R+ satisfies (4.3.28) and is continuous on

RJ+dz .

As the machinery to state an SSC result has been set, we are ready to state the conditions

on the hydrodynamic model solutions that imply that an SSC result holds in the diffusion limit.

The following assumption is analogous to [Dai and Tezcan, 2011, Assumption 4.2].
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Assumption 4.3.4. Let g be a function that satisfies Assumption 4.3.3. There exists a function

H(t) with H(t)→ 0 as t→∞ such that

g(Q̃(t), Z̃(t)) ≤ H(t) for all t ≥ 0 (4.3.29)

for each hydrodynamic model solution X̃π satisfying |(Q̃(0), Z̃(0))|≤ 1. Furthermore, for each

hydrodynamic model solution X̃π with g(Q̃(0), Z̃(0)) = 0 and |(Q̃(0), Z̃(0))|≤ 1, g(Q̃(t), Z̃(t)) =

0 for t ≥ 0.

We are ready to state the main result of this chapter.

Theorem 4.3.2. Let {Xrπ} be a sequence of π-parallel random server systems processes. Sup-

pose that Assumption 4.3.1 and Assumption 4.3.2 hold, g satisfies Assumption 4.3.3, the hy-

drodynamic model of the system satisfies Assumption 4.3.4, and

g(Q̂r(0), Ẑr(0))→ 0 in probability (4.3.30)

as r →∞. Then, for each T > 0,

||g(Q̂r(t), Ẑr(t))||T
(||Ẑr(t)||T∨1)c

→ 0 in probability (4.3.31)

as r →∞, where c > 0 is given as in (4.3.28).

Theorem 4.3.2 tells us that, with a well-defined SSC function g for parallel random server

systems under a specific control policy, one can show that function g evaluated at Q̂r and Ẑr

over a compact set converges to zero in some way. This implies Q̂r and Ẑr can be represented

by a lower dimensional process using the relation between Q̂r and Ẑr in function g, which

means the process states collapse from a higher dimension to to lower dimension. This SSC

result can be then applied to analysing diffusion limits of such systems, which is much simpler

now since the dimensions of diffusions are reduced.

4.4 SSC framework

In this section we explain in detail how the SSC result is obtained. Since we use the framework

developed by [Dai and Tezcan, 2011], some of the steps remain the same as in that paper. We

will explain the process with an emphasis in our contributions.

The steps are as follows:

1. Define the hydrodynamic scaling Xr,m(·) for the original system process Xr(·).

2. Show that the SSC function g(·) evaluated at the hydrodynamically scaled process Xr,m(t)

is bounded by some function H(t) plus an arbitrary ε. The function H(t) has the property
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that H(t) → 0 as t → ∞. This step works as a bridge to prove the final SSC result in

step 3.

3. Using the mathematical relation between the hydrodynamically scaled process Xr,m(·)
and diffusively scaled process X̂, together with the boundness result in step 2, we can

show that the SSC function g(·) evaluated at the diffusively scaled process converges to

zero in probability, i.e. (4.3.31) is true.

In Step 1, the hydrodynamic scaling is slightly different from [Dai and Tezcan, 2011]. They

consider servers in each pool aggregately, thus they define the scaling for the process of the

number of busy servers in each pool. We need to treat each server individually since their

service rates are random, therefore, apart from the process scaled above, we also need to define

hydrodynamic scaling for the process Bijk(t) of each server.

Step 3 is the same as in [Dai and Tezcan, 2011].

Our main contributions are in Step 2. To get a better idea of this, we need to look at Step

2 in more detail. Step 2 can be further decomposed into 5 smaller steps:

i) Show that hydrodynamically scaled process Xr,m(·) is almost Lipschitz.

ii) Define the hydrodynamic limit X̃(·) such that it is right continuous with left limits, and

has the Lipschitz condition.

iii) Using i) and ii), one can show that Xr,m(·) converges to X̃(·) u.o.c. as r →∞.

iv) Show that X̃(·) satisfies the hydrodynamic model equations (4.3.19) to (4.3.27).

v) Finally, by Assumptions 4.3.3 and 4.3.4, and using results in iii) and iv), show that the

boundness result of step 2.

The difficult part is in Step i) - more specifically, the almost Lipschitz condition of departure

processes. In [Dai and Tezcan, 2011], to show this they use Proposition 4.3 of [Bramson,

1998], which is an application of Chebyshev’s inequality on renewal processes. They use this

proposition on departure processes of each pool when the service rates are given. However,

in our systems, service rates within pools are random and unknown, thus we can not use this

proposition directly. We formulate a coupling method to achieve this. We assume the random

service rates in each pool for all kind of customers are bounded, then generate a Poisson process

with rate being the product of the number of servers in each pool and the upper bound of the

service rates. Then we couple our real departure processes by splitting this Poisson process.

We only need to show the almost Lipschitz condition for the generated Poisson process, then

the same condition also holds for the coupled real departure processes since the time points

when departures happen in the coupled processes are subsets of the generated Poisson process.

Another main difference in our proof is in Step iv). When we show that the hydrodynamic

limits X̃(·) satisfy the hydrodynamic model equations, we need to use the Law of Large Numbers

because of the randomness among servers.
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The rest of this section is organized as follows: in Section 4.4.1, we define the hydrodynamic

scaling and prove i) of step 2. Then in Section 4.4.2, we use the hydrodynamic scaling to

define the hydrodynamic limits, and show iii) and iv), hence provd step 2. In Section 4.4.3,

we translate the boundness inequality in step 2 to a similar inequality for the diffusion-scaled

processes. We finally show that this latter inequality implies the desired SSC result in the

diffusion limit.

4.4.1 Hydrodynamic scaling and bounds

We begin by defining the hydrodynamic scaling. We divide the interval [0, T ] into T
√
|Nr|

intervals of length 1√
|Nr|

and analyse the processes in each intervals. We index the intervals by

m. For a nonnegative integer m, let

xr,m =

∣∣∣∣∣Zr
(

m√
|Nr|

)
− |Nr|

∣∣∣∣∣
2

∨ |Nr|, (4.4.1)

Note that the square root of the first two terms of xr,m gives the deviations of these processes

from their fluid limits.

We define the hydrodynamic scaling by shifting and scaling the processes of Xr as follows.

For a process Xr associated with the rth process, we denote the hydrodynamic scaled version

by Xr,m. For Ar, Ars, A
r
q, C

r, Dr, T r, the hydrodynamic scaling is defined for t ∈ [0, L], for some

L > 0 by

Xr,m(t) =
1

√
xr,m

(
Xr

(√
xr,mt

|Nr| +
m√
|Nr|

)
−Xr

(
m√
|Nr|

))
. (4.4.2)

The hydrodynamic scaled versions of Qr and Br and Zr are defined as follows:

Qr,m(t) =
1

√
xr,m

(
Qr

(√
xr,mt

|Nr| +
m√
|Nr|

))
, (4.4.3)

Br,mijk (t) =
1

√
xr,m

(
Brijk

(√
xr,mt

|Nr| +
m√
|Nr|

)
− x∗ij

)
, (4.4.4)

Zr,mij (t) =
1

√
xr,m

(
Zrij

(√
xr,mt

|Nr| +
m√
|Nr|

)
−Nr

j x
∗
ij

)
. (4.4.5)

Note that Zr,mij (t) =
∑Nri
k=1B

r,m
ijk (t) and Dr,m

ij (t) =
∑Nri
k=1D

r,m
ijk (t).

Observe that xr,m must be in the order of |Nr| for Qr and Zrij to have meaningful diffusion

limits. Also, if xr,m is in the order of |Nr|, then Qr,m(·) and Zr,mij (·) are very similar to the

diffusion scaling. This reveals the relationship between the hydrodynamic and diffusion scaling

that will be used to translate a SSC result from hydrodynamic limits to diffusion limits.
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For notational convenience, with a slight abuse of notation, we set

V r,mijk (Dr,m
ijk (t), b) =

1
√
xr,m

(
Vijk

(
Dr
ijk

(√
xr,mt

|Nr| +
m√
|Nr|

)
+ b1

)

− Vijk
(
Dr
ijk

(
m√
|Nr|

)
+ b2

))
, (4.4.6)

and for b = (b1, b2) ∈ R2. By (4.2.13),

V r,mijk (Dr,m
ijk (t), (0, 1)) ≤ T r,mijk ≤ V

r,m
ijk (Dr,m

ijk (t), (1, 0)). (4.4.7)

Let Xr,m = (Ar,m, Ar,ms , Ar,mq , Qr,m, Br,m, Zr,m, Cr,m, T r,m, Dr,m). We refer to Xr,m as the

hydrodynamic scaled process. From the definition of xr,m we have that

|Xr,m(0)|≤ 1.

It can easily be checked that Xr,m satisfies the following equations for all t ≥ 0:

Ar,mj (t) =
∑
i∈I(j)

Ar,msij (t) +Ar,mqj (t), for all j ∈ J , (4.4.8)

Qr,mj (t) = Qr,mj (0) +Ar,mqj (t)−
∑
i∈I(j)

Cr,mij (t), for all j ∈ J , (4.4.9)

Zr,mij (t) = Zr,mij (0) +Ar,msij (t) + Cr,mij (t)−Dr,m
ij (t), for all i ∈ I, and j ∈ J (i), (4.4.10)

Dr,m
ij (t) =

Nri∑
k=1

Dr,m
ijk (t), for all i ∈ I, and j ∈ J (i), (4.4.11)

Dr,m
ijk (t) =

Sijk(µijk(
√
xr,mT

r,m
ijk (t) + T rijk(m/

√
|Nr|)))− Sijk(µijk(T rijk(m/

√
|Nr|)))

√
xr,m

,

for all i ∈ I, and j ∈ J (i), and k = 1, 2, . . . , Nr
i , (4.4.12)

T r,mijk (t) =
x∗ij
|Nr| t+

√
xr,m

|Nr|

∫ t

0

Br,mijk (s)ds, for all i ∈ I, and j ∈ J (i), and k = 1, 2, . . . , Nr
i ,

(4.4.13)

Qr,mj (t)

 ∑
i∈I(j)

∑
j′∈J (i)

Zr,mij′ (t)

 = 0, for all j ∈ J , (4.4.14)

∫ t

0

 ∑
i∈I(j)

∑
j′∈J (i)

Zr,mij′ (s−)

 dAr,mqj (s) = 0, for all j ∈ J . (4.4.15)

Now we have a similar result to Proposition 5.1 in [Dai and Tezcan, 2011] for random service

rates systems.
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Proposition 4.4.1. Let {Xrπ} be a sequence of π-parallel random server systems processes.

Assume (4.2.19) and (4.2.20) hold, and π satisfies Assumption 4.3.2. Fix ε > 0, L > 0 and

T > 0. Then, for large enough r, there exists N > 0 such that

P

{
max

m<
√
|Nr|T

∥∥∥∥Ar,m(t)− λr

|Nr| t
∥∥∥∥
L

> ε

}
≤ ε, (4.4.16)

P

{
max

m<
√
|Nr|T

sup
0≤t1,t2≤L

|Dr,m(t2)−Dr,m(t1)|> N |t2 − t1|+ε
}
≤ ε, and (4.4.17)

P

{
max

m<
√
|Nr|T

∥∥∥∥V r,mijk (Dr,m
ijk (t), b)− 1

µijk
Dr,m
ijk (t)

∥∥∥∥
L

> ε

}
≤ ε

for all i ∈ I, j ∈ J (i), and k = 1, 2, . . . , Nr
i , (4.4.18)

where b = (1, 0) or (0, 1).

The proof of (4.4.16) is the same as in [Dai and Tezcan, 2011], so we only need to show

(4.4.17) and (4.4.18).

Proof of (4.4.17). For (4.4.17), [Dai and Tezcan, 2011] proved the analogous equation (77) in

that paper when servers are identical inside each pool, thus they can show it directly using

properties of Poisson processes. However, in our case, there is randomness among servers for

each Dr
ij , which will cause troubles for a direct proof. To resolve this, we make a detour

by comparing the departure processes of such systems to the ones of a homogeneous system.

The departure processes of homogeneous systems can be proved to exhibit the almost Lipschitz

condition in the direct way as shown in [Dai and Tezcan, 2011]. Then we use a coupling method

to construct stochastically equivalent departure processes of the heterogeneous systems. Finally

we compare the equivalent departure processes with the homogeneous departure processes, and

obtain the almost Lipschitz condition for the former processes, and we conclude the original

departure processes also have the almost Lipschitz property.

To this end, let Sr,qij (t) be a Poisson process with rate Niqij for all i ∈ I and j ∈ J (i). First

we show the almost Lipschitz condition for the sequence of processes Sr,qij (t), i ∈ I, j ∈ J (i).

Notice that we only need to investigate the process when m = 0, then multiply the error bounds.

To see this, first define the hydrodynamic scaling for Sr,qij (t):

Sr,q,mij (t) =
1

√
xr,m

(
Sr,qij

(√
xr,mt

|Nr| +
m√
|Nr|

)
− Sr,qij

(
m√
|Nr|

))
(4.4.19)

where

xr,m =

∣∣∣∣∣Zr
(

m√
|Nr|

)
− |Nr|

∣∣∣∣∣
2

∨ |Nr|. (4.4.20)
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Here Qr(·), and Zr(·) are the queue length and number of busy servers respectively. Then,

similar to the proof in C.2.1 in [Dai and Tezcan, 2011], we have

P

{
max

m<
√
|Nr|T

∥∥∥∥∥Sr,q,mij (t)− Nr
i qij
|Nr| t

∥∥∥∥∥
L

>
Nr
i

|Nr|qijεL
}

= P

{
max

m<
√
|Nr|T

∥∥∥∥∥ 1
√
xr,m

(
Sr,qij

(√
xr,mt

|Nr| +
m√
|Nr|

)
− Sr,qij

(
m√
|Nr|

))

− Nr
i qij
|Nr| t

∥∥∥∥∥
L

>
Nr
i

|Nr|qijεL
}

= P

{
max

m<
√
|Nr|T

∥∥∥∥∥ 1
√
xr,m

(
S

(
Nr
i

|Nr|qij
√
xr,mt+

Nr
i√
|Nr|

qijm

)
− S

(
Nr
i√
|Nr|

qijm

))

− Nr
i qij
|Nr| t

∥∥∥∥∥
L

>
Nr
i qij
|Nr| εL

}

= P

{
max

m<
√
|Nr|T

∥∥∥∥∥
(
S

(
t+

Nr
i

|Nr|qij
√
|Nr|m

)
− S

(
Nr
i

|Nr|qij
√
|Nr|m

))
− t
∥∥∥∥∥ Nr

i
|Nr| qij

√
xr,mL

>
Nr
i qij
|Nr| εL

√
xr,m

}
.

Since S(t) is a homogeneous Poisson process, the probability above is equal to

P

{
max

m<
√
|Nr|T

‖(S (t)− S (0))− t‖ Nr
i

|Nr| qij
√
xr,mL

>
Nr
i

|Nr|qijεL
√
xr,m

}

≤
∑

m<
√
|Nr|T

P

{
‖S (t)− t‖ Nr

i
|Nr| qij

√
xr,mL

>
Nr
i

|Nr|qijεL
√
xr,m

}
, (4.4.21)

because xr,m ≥ |Nr| by (4.4.20), and
Nri
Nr → βi ∈ (0, 1), and by Proposition 4.3 of [Bramson,

1998], for given ε, any m and large enough r,

P

{
‖S (t)− t‖ Nr

i
|Nr| qij

√
xr,mL

>
Nr
i

|Nr|qijεL
√
xr,m

}
≤ ε

Nri
|Nr|qij

√
xr,mL

≤ ε

2βiqij
√
|Nr|L

.

(4.4.22)

Thus we only need to consider the process when m = 0, then multiply by the error bound

d
√
|Nr|T e. Using this result

P

{
sup

0≤t1≤t2≤L

∣∣∣∣(Sr,q,0ij (t2)− Nr
i qij
|Nr| t2

)
−
(
Sr,q,0ij (t1)− Nr

i qij
|Nr| t1

)∣∣∣∣ > ε

}
≤ P

{∥∥∥∥Sr,q,0ij (t2)− Nr
i qij
|Nr| t2

∥∥∥∥
L

+

∥∥∥∥Sr,q,0ij (t1)− Nr
i qij
|Nr| t1

∥∥∥∥
L

> ε

}
≤ P

{∥∥∥∥Sr,q,0ij (t2)− Nr
i qij
|Nr| t2

∥∥∥∥
L

>
ε

2

}
+ P

{∥∥∥∥Sr,q,0ij (t1)− Nr
i qij
|Nr| t1

∥∥∥∥
L

>
ε

2

}
= P

{
‖S (t2)− t2‖ Nr

i
|Nr| qij

√
xr,0L

>
Nr
i

|Nr|qijεL
√
xr,0

}
+ P

{
‖S (t1)− t1‖ Nr

i
|Nr| qij

√
xr,0L

>
Nr
i

|Nr|qijεL
√
xr,0

}
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≤ ε
Nri
|Nr|qij

√
xr,0L

≤ ε

2βiqij
√
|Nr|L

.

Therefore, reselecting ε, we get

P

{
sup

0≤t1≤t2≤L

∣∣∣Sr,q,0ij (t2)− Sr,q,0ij (t1)
∣∣∣ > Nr

i

|Nr|qij |t2 − t1|+ε
}
≤ ε√

|Nr|
. (4.4.23)

Notice that
Nri
|Nr| depends on r in the Lipschitz coefficient. To get rid of this one can simply use

the fact that, for large enough r, βi ∈
[
Nri
|Nr| − δ,

Nri
|Nr| + δ

]
for some really small δ > 0, thus

P

{
sup

0≤t1≤t2≤L

∣∣∣Sr,q,0ij (t2)− Sr,q,0ij (t1)
∣∣∣ > βiqij |t2 − t1|+ε

}
≤
{

sup
0≤t1≤t2≤L

∣∣∣Sr,q,0ij (t2)− Sr,q,0ij (t1)
∣∣∣ > ( Nr

i

|Nr| − δ
)
qij |t2 − t1|+ε

}
≤
{

sup
0≤t1≤t2≤L

∣∣∣Sr,q,0ij (t2)− Sr,q,0ij (t1)
∣∣∣ > Nr

i

|Nr|qij |t2 − t1|−δqij |t2 − t1|+ε
}
.

Since |t2 − t1|< L, the term δqij |t2 − t1| can be chosen to be less than ε; therefore, after a

reselection of ε, we have

P

{
sup

0≤t1≤t2≤L

∣∣∣Sr,q,0ij (t2)− Sr,q,0ij (t1)
∣∣∣ > βiqij |t2 − t1|+ε

}
≤ ε√

|Nr|
. (4.4.24)

Inequality (4.4.24) is sufficient for our comparison. Now we consider the departure processes

with random service rates. We want to show (4.4.17). To overcome the difficulty in proving

it directly, we compare Dr
ij with Sr,qij . In order to do this, we find a stochastically equivalent

process D̆r
ij of Dr

ij , which is the main difference between our proof and the one of [Dai and

Tezcan, 2011]. We will do this in the following way.

For pool i, let J(i) be the cardinality of J (i), i.e. total number of customer classes that

servers in pool i are capable to serve. Then let {Sr,qija(t), a = 1, 2, . . . , J(i)} be a sequence

of generated Poisson processes with rate Nr
i qija respectively. And let 0 < τa1 < τa2 < · · ·

be the sequence of occurrence times of the process Sr,qija , i.e. Sr,qija(t) =
∑∞
n=1 I(τan < t). Let

{Un, n ∈ N} be a sequence of independent uniform (0, 1) random variables, and I(A) be the

indicator function for event A which takes value 1 if A occurs and 0 otherwise. Assume all of

the processes are equal to zero at t = 0. By splitting the processes {Sr,qija(t)}, we define the

following processes

D̆r,n
ij1

=

n1∑
l=1

I

(
Ul ≤

∑Nri
k=1 µij1kB̆ij1k(τ1

l −)∑J(i)
a=1N

r
i qija

)
, (4.4.25)

D̆r,n
ija

=

na∑
l=1

I

(∑a−1
c=1 N

r
i qijc∑J(i)

a=1N
r
i qija

≤ Ul ≤
∑a−1
c=1 N

r
i qijc +

∑Nri
k=1 µijakB̆ijak(τal −)∑J(i)

a=1N
r
i qija

)
,

a = 2, 3, . . . , J(i), (4.4.26)
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Sr,qija(t) = na =

∞∑
l=1

I(τal < t), a = 1, 2, . . . , J(i), (4.4.27)

D̆r
ija(t) = D̆r,n

ija
,∀t ∈ [τan , τ

a
n+1), a = 1, 2, . . . , J(i), (4.4.28)

where B̆ijk(t) is determined by the arrival processes Ari (t), the routing policies, the sequence

τa1 , τ
a
2 , . . . , and the selection scheme defined as follows: we use class j1 customer as an ex-

ample, and other types of customer departure processes will be similar. If, for some l ∈
{1, 2, . . . , Sr,qij1 (t)}, I

(
Ul ≤

∑Nri
k=1 µij1kB̆ij1k(τ1

l −)

Nri qij1

)
= 1, then the potential departure occurring at

time τ1
l in process Sr,qij1 (t) is accepted as the real departure for process D̆r

ij1
(t). Assume there

are m busy servers just before this departure occurs (time τ1
l −). Then after it is accepted as

a real departure, one of the m servers will be freed, which leads to our selection scheme. Gen-

erate a uniformly distributed random variable ς on (0, 1). If
∑h
k=0 µij1k∑m
k=1 µij1k

≤ ς <
∑h+1
k=0 µij1k∑m
k=1 µij1k

, h =

0, 1, . . . ,m− 1, then the h+ 1th server will be freed at time τ1
l . Here we let µij10 = 0.

Under such a definition, the process D̆r
ija

(t) is stochastically equivalent to Dr
ija

(t) for all

a = 1, . . . , J(i), thus in order to show

P

{
max

m<
√
|Nr|T

sup
0≤t1,t2≤L

|Dr,m
ija

(t2)−Dr,m
ija

(t1)|> N |t2 − t1|+ε
}
≤ ε,

it is equivalent to show

P

{
max

m<
√
|Nr|T

sup
0≤t1,t2≤L

|D̆r,m
ija

(t2)− D̆r,m
ija

(t1)|> N |t2 − t1|+ε
}
≤ ε. (4.4.29)

From the construction of process D̆r
ija

, it is easy to see that for every m,

∣∣∣D̆r,m
ija

(t2)− D̆r,m
ija

(t1)
∣∣∣

=
1

√
xr,m

∣∣∣∣∣
(
D̆r
ija

(√
xr,mt2

|Nr| +
m√
|Nr|

)
− D̆r

ija

(
m√
|Nr|

))

−
(
D̆r
ija

(√
xr,mt1

|Nr| +
m√
|Nr|

)
− D̆r

ija

(
m√
|Nr|

))∣∣∣∣∣
=

1
√
xr,m

∣∣∣∣∣D̆r
ija

(√
xr,mt2

|Nr| +
m√
|Nr|

)
− D̆r

ija

(√
xr,mt1

|Nr| +
m√
|Nr|

)∣∣∣∣∣
≤ 1
√
xr,m

∣∣∣∣∣Sr,qija
(√

xr,mt2

|Nr| +
m√
|Nr|

)
− Sr,qija

(√
xr,mt1

|Nr| +
m√
|Nr|

)∣∣∣∣∣
=
∣∣Sr,q,mija

(t2)− Sr,q,mija
(t1)

∣∣ . (4.4.30)

The inequality is from the fact that the event points of D̆r
ija

(t) are chosen from the event points

of Sr,qija(t) (equations (4.4.26) and (4.4.27)), thus the departure difference between time t2 and t1

is a subset of the difference of Sr,qija(t) during the same time. Then we also only need to consider
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the process when m = 0. From (4.4.24) and (4.4.30), we have

P

{
sup

0≤t1≤t2≤L

∣∣∣D̆r,0
ija

(t2)− D̆r,0
ija

(t1)
∣∣∣ > βiqija |t2 − t1|+ε

}
≤ ε√

|Nr|
. (4.4.31)

Note that we can conduct the same analysis for each pool, thus we can get rid of the a here.

Let N = maxi∈I,j∈J {βiqij}. Then, for all i ∈ I and j ∈ J ,

P

{
sup

0≤t1≤t2≤L

∣∣∣D̆r,0
ij (t2)− D̆r,0

ij (t1)
∣∣∣ > N |t2 − t1|+ε

}
≤ ε√

|Nr|
. (4.4.32)

Multiplying the error bound d
√
|Nr|T e and enlarging ε appropriately we obtain (4.4.17).

Before proving (4.4.18), we need a lemma taken from [Bramson, 1998, Lemma 5.1].

Lemma 4.4.1. Let vr,T,max
ijk = max{|vijk(l)|:= Vijk(l− 1) ≤ |Nr|T} for all i ∈ I, j ∈ J (i), k =

1, 2, . . . , Nr
i . Then, for given T ,

vr,T,max
ijk /

√
|Nr| → 0 in probability as r →∞, for all i ∈ I, j ∈ J (i), k = 1, 2, . . . , Nr

i .

(4.4.33)

The proof is in Appendix B.2.

Using this proposition, one can show that Xr,m is almost Lipschitz in probability, as de-

scribed in the next proposition. In this section and for the remainder of this paper, N without

a superscript is reused to denote a general constant.

Proposition 4.4.2. Let {Xrπ} be a sequence of π-parallel random server systems processes.

Assume that Assumption 4.3.1 and Assumption 4.3.2 hold. Fix ε > 0, L > 0, and T > 0. Then

for large enough r,

P

{
max

m<
√
|Nr|T

sup
0≤t1≤t2≤L

|Xr,m(t2)− Xr,m(t1)| > N |t2 − t1|+ε
}
≤ ε, (4.4.34)

where N <∞ and only depends on λ.

The proof is similar to that of Proposition 5.3 in [Dai and Tezcan, 2011]. We include it into

Appendix B.3.

For convenience, we assume for the rest of the paper that N ≥ 1 and L ≥ 1. Let

K r
0 =

{
max

m<
√
|Nr|T

sup
0≤t1≤t2≤L

|Xr,m(t1)− Xr,m(t2)|≤ N |t1 − t2|+ε(r)
}
, (4.4.35)

where N,L, and T are fixed as before and ε(r) with ε → 0 as r → ∞ is a sequence of real

numbers. Similarly, we can replace ε in (4.4.16), (4.4.17), and (4.4.18) by ε(r). We denote

74



these new inequalities obtained from (4.4.16), (4.4.17), and (4.4.18) by (4.4.16)′, (4.4.17)′,

and (4.4.18)′. Let K r denote the intersection of K r
0 with the complements of the events in

(4.4.16)′, (4.4.17)′, and (4.4.18)′. As in [Dai and Tezcan, 2011], when ε(r) → 0 sufficiently

slowly as r →∞, one can show that P (K r)→ 1 as r →∞.

We summarize the above discussion in the following corollary for future reference, which is

similar to [Dai and Tezcan, 2011, Corollary 5.1].

Corollary 4.4.1. Let {Xrπ} be a sequence of π-parallel random server system processes. Assume

that Assumption 4.3.1 and Assumption 4.3.2 hold. Fix L > 0, and T > 0 and choose ε(r) as

above. Then for K r defined as above

lim
r→∞

P (K r) = 1. (4.4.36)

4.4.2 Hydrodynamic limits

In this section, we define the hydrodynamic limits. First, we define a set of functions that

contains all of the hydrodynamic limits. The following definitions are similar to those in [Dai

and Tezcan, 2011], and the notation is adapted from that paper.

Fix L > 0. Let Ẽ be the set of right continuous functions with left limits, x : [0, L] → Rd.

Let E′ denote those x ∈ Ẽ that satisfy

|x(0)|≤ 1 (4.4.37)

and

|x(t2)− x(t1)|≤ N |t1 − t2| for all t1, t2 ∈ [0, L], (4.4.38)

where the constant N is chosen as in Proposition 4.4.2. We set

Er = {Xr,m,m <
√
|Nr|T, ω ∈ K r} (4.4.39)

and

E = {Er : r ∈ N} (4.4.40)

where T is fixed, and K r is defined as in the previous section.

We define a hydrodynamic limit x of E to be a point x ∈ Ẽ such that for all ε > 0 and

r0 ∈ N, there exist r ≥ r0 and y ∈ Er, with ‖x(·)− y(·)‖L < ε.

Because

|Xr,m(0)|≤ 1 (4.4.41)

for all m <
√
|Nr|T and r ∈ N, the following result is a corollary in [Dai and Tezcan, 2011], and

is similar to Corollary 5.2 in that paper. It shows that the hydrodynamic limits are “rich” in the
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sense that, for r large enough, every hydrodynamic scaled process is close to a hydrodynamic

limit. One can use the almost Lipschitz property of processes Xr,m to show this-see [Bramson,

1998, Lemma 4.2].

Corollary 4.4.2. Let {Xrπ} be a sequence of π-parallel random server systems processes. As-

sume that Assumption 4.3.1 holds and π satisfies 4.3.2. Let Ẽ, Er, and E be as specified

above. Fix ε > 0, L > 0 and T > 0, and choose r large enough. Then, for ω ∈ K r and any

m <
√
|Nr|T , there exists a hydrodynamic limit X̃(·) ∈ E′, such that

∥∥∥Xr,m(·)− X̃(·)
∥∥∥
L
≤ ε. (4.4.42)

The next result is mainly needed to translate the condition on the hydrodynamic model

solutions to hydrodynamic limits given in Assumption 4.3.4. It also reveals the origin of hydro-

dynamic model equations.

Proposition 4.4.3. Let {Xrπ} be a sequence of π-parallel random server system processes.

Assume that Assumption 4.3.1 holds and π satisfies Assumption 4.3.2. Choose L > 0 and let

X̃π be a hydrodynamic limit of E over [0, L]. X̃π satisfies the hydrodynamic model equations

(4.3.19)-(4.3.27) on [0, L].

To prove 4.4.3, we need a lemma which appears to be the same as Lemma C.1 in [Dai and

Tezcan, 2011], but it is for random rates systems.

Lemma 4.4.2. Let {Xr} be a sequence of π-parallel random server systems processes. Assume

that Assumption 4.3.1 holds and π satisfies Assumption 4.3.2. Fix ε > 0, L > 0, and T > 0.

Then, for large enough r and ω ∈ A ,

max
m<
√
|Nr|T

√
xr,m

|Nr|

∫ L

0

|Zr,mij (s)|ds < ε, ∀ i ∈ I, and j ∈ J (i). (4.4.43)

Proof. The proof of this lemma is the same as in [Dai and Tezcan, 2011], except we do not

consider Qr,m. Recalling that Zr,mij (t) =
∑Nri
k=1B

r,m
ijk (t), the proof becomes obvious.

Now we prove the proposition.

The proof of Proposition 4.4.3. Proof is similar to that in [Dai and Tezcan, 2011, Proposition

5.4]. Assume that Assumption 4.3.1 holds, and π satisfies Assumption 4.3.2. g satisfies As-

sumption 4.3.3. Fix ω ∈ K r and let Xr,m be given as in (4.4.2)-(4.4.4). By (4.4.16)′, we have,

for large enough r, that ∥∥∥∥Ar,m(t)− λr

|Nr| t
∥∥∥∥
L

≤ ε(r). (4.4.44)
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Using (4.4.13) and Lemma 4.4.2 gives∥∥∥∥∥∥
Nri∑
k=1

(
T r,mijk (t)−

x∗ij
|Nr| t

)∥∥∥∥∥∥
L

≤ ε(r). (4.4.45)

Now select any hydrodynamic limit X̃ of E . By Corollary 4.4.2, for given δ > 0, choose (r,m)

so that, ε(r) ≤ δ, ∥∥∥X̃(t)− Xr,m(t, ω)
∥∥∥
L
≤ δ, (4.4.46)

and

∣∣∣∣ λr|Nr| − λ
∣∣∣∣ ≤ δ. (4.4.47)

It follows from (4.4.44) and (4.4.47) that

∥∥∥Ã(t)− λt
∥∥∥
L
≤ (2 + L)δ. (4.4.48)

Until now the proof remains the same as in [Dai and Tezcan, 2011, Proposition 5.4]. The

next inequality is an analogy of inequality (C25) in [Dai and Tezcan, 2011]. However, we can

not derive (C25) directly in our case because we do not have a constant µjk here. Since we

have i.i.d. random service rates {µijk}, i ∈ I, j ∈ J (i), k = 1, 2, . . . , Ni, using the Law of Large

Numbers and properties of Poisson processes, we have

∥∥∥∥∥∥
Nri∑
k=1

(
T r,mijk (t)−

Dr,m
ijk (t)

µijk

)∥∥∥∥∥∥
L

=
1

√
xr,m

∥∥∥∥∥∥
Nri∑
k=1

1

µijk

(
Sijk

(
µijkT

r
ijk

(
m√
|Nr|

))
− Sijk

(
µijkT

r
ijk

(√
xr,mt

|Nr| +
m√
|Nr|

)))

−
Nri∑
k=1

1

µijk

(
µijkT

r
ijk

(
m√
|Nr|

)
− µijkT rijk

(√
xr,mt

|Nr| +
m√
|Nr|

))∥∥∥∥∥∥
L

≤ 1
√
xr,m

∥∥∥∥∥∥
Nri∑
k=1

(
Sijk

(
µijkT

r
ijk

(
m√
|Nr|

))
− Sijk

(
µijkT

r
ijk

(√
xr,mt

|Nr| +
m√
|Nr|

)))

−
Nri∑
k=1

(
µijkT

r
ijk

(
m√
|Nr|

)
− µijkT rijk

(√
xr,mt

|Nr| +
m√
|Nr|

))∥∥∥∥∥∥
L

=
1

√
xr,m

∥∥∥∥∥∥
Nri∑
k=1

(
Sijk

(
µijk

∫ m√
|Nr|

0

Bijk(s)ds

)
− Sijk

(
µijk

∫ √
xr,mt

|Nr| + m√
|Nr|

0

Bijk(s)ds

))

−
Nri∑
k=1

(
µijk

∫ m√
|Nr|

0

Bijk(s)ds− µijk
∫ √

xr,mt

|Nr| + m√
|Nr|

0

Bijk(s)ds

)∥∥∥∥∥∥
L
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d
=

1
√
xr,m

∥∥∥∥∥
Nri∑
k=1

Sijk
µijk ∫

√
xr,mt

|Nr| + m√
|Nr|

m√
|Nr|

Bijk(s)ds


−

Nri∑
k=1

µijk ∫
√
xr,mt

|Nr| + m√
|Nr|

m√
|Nr|

Bijk(s)ds

∥∥∥∥∥
L

≤ 1
√
xr,m

∥∥∥∥∥∥
Nri∑
k=1

(
Sijk

(
µijk

√
xr,mt

|Nr|

))
−

Nri∑
k=1

(
µijk

√
xr,mt

|Nr|

)∥∥∥∥∥∥
L

d
=

1
√
xr,m

∥∥∥∥∥∥S
Nri∑
k=1

µijk

√
xr,mt

|Nr|

−
Nri∑
k=1

µijk

√
xr,mt

|Nr|

∥∥∥∥∥∥
L

≤ 1
√
xr,m

∥∥∥∥∥∥S
Nri∑
k=1

q

√
xr,mt

|Nr|

−
Nri∑
k=1

q

√
xr,mt

|Nr|

∥∥∥∥∥∥
L

=
1

√
xr,m

∥∥S (q√xr,mt)− (q√xr,mt)∥∥L (4.4.49)

where
d
= means equal in distribution and S is a standard Poisson process. The first

d
= is because

every Sijk is a stationary process. The second
d
= comes from the fact that the superposition of

several Poisson processes is also a Poisson process with rate being the sum of the rates of the

original processes. From (4.4.22), for r large enough, (4.4.49) < ε(r), thus∥∥∥∥∥∥
Nri∑
k=1

(
T r,mijk (t)−

Dr,m
ijk (t)

µijk

)∥∥∥∥∥∥
L

< ε(r). (4.4.50)

Therefore, from (4.4.50), (4.4.45), and (4.4.46),∥∥∥∥∥∥
D̃ij(t)−

Nri∑
k=1

µijkt

|Nr|

∥∥∥∥∥∥
L

≤
∥∥∥(D̃ij(t)−Dr,m

ij (t)
)∥∥∥

L
+

∥∥∥∥∥∥
Nri∑
k=1

(
Dr,m
ijk (t)− µijkT r,mijk (t)

)∥∥∥∥∥∥
L

+

∥∥∥∥∥∥
Nri∑
k=1

(
µijkT

r,m
ijk (t)−

µijkx
∗
ij

|Nr| t
)∥∥∥∥∥∥

L

≤ δ(1 + 2qij), (4.4.51)

and from the Law of Large Numbers∥∥∥∥∥∥
Nri∑
k=1

µijkx
∗
ij

|Nr| t− µ̄ijzijt

∥∥∥∥∥∥
L

≤ δ, (4.4.52)

for large enough r. Thus, from (4.4.51) and (4.4.52), and reselecting δ, one has

∥∥∥D̃ij(t)− µ̄ijzijt
∥∥∥
L
≤ δ. (4.4.53)
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By combining (4.4.46), (4.4.48), (4.4.8), and (4.4.9), we get∥∥∥∥∥∥λjt− Ãqj(t)−
∑
i∈I(j)

Ãsij(t)

∥∥∥∥∥∥
L

≤ (2 + L)δ, and (4.4.54)

∥∥∥∥∥∥Q̃j(t)− Q̃j(0)− Ãaj(t) +
∑
i∈I(j)

C̃ij(t)

∥∥∥∥∥∥
L

≤ 4δ. (4.4.55)

By combining (4.4.46) with (4.4.53) and (4.4.10), we get

∥∥∥Z̃ij(t)− Z̃ij(0)− Ãsij(t)− C̃ij(t) + µ̄ijzijt
∥∥∥
L
≤ 5δ. (4.4.56)

Equations (4.4.54)-(4.4.56) show that the hydrodynamic limits satisfy (4.3.19),(4.3.20), and

(4.3.22).

That the hydrodynamic limits satisfy (4.3.25) and (4.3.26) is proved similarly to the fact

that the fluid limits satisfy the fluid analogs of those equations. Hence, we only illustrate the

proof of (4.3.25).

Fix a hydrodynamic limit X̃. By the definition of a hydrodynamic limit, there exists a

sequence (rl,ml, ωl), with ωl ∈ K for all l ≥ 0, such that

Xrl,ml(·, ωl)→ X̃(·) u.o.c. as l→∞. (4.4.57)

Fix t > 0. If for any j ∈ J , Q̃j(t) = 0, (4.3.25) holds trivially. Now we assume that Q̃j(t) > a

for some a > 0. By (4.4.57), there exists an l0 such that

Qrl,mlj (t, ωl) > a/2 for all l > l0.

This implies, by (4.4.14), that
Nri∑
k=1

Brl,mlijk (t, ωl) = 0,

hence,

Qrl,mlj (t, ωl)

Nri∑
k=1

Brl,mlijk (t, ωl) = 0. (4.4.58)

Convergence in (4.4.57) implies that

Qrl,mlj (t, ωl)

Nri∑
k=1

Brl,mlijk (t, ωl)→ Q̃j(t)

Nri∑
k=1

B̃ijk(t)

 as l→∞.

This gives (4.3.25) by (4.4.58).
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Observe that, by (4.3.28) and the definitions of hydrodynamic and diffusion scalings,

|g(Qr,0(0), Zr,0(0))|≤ |g(Q̂r(0), Ẑr(0))|. (4.4.59)

If condition (4.3.30) holds, then (4.4.59) implies that g(Qr,0(0), Zr,0(0)) → 0 in probability as

r →∞. Therefore, we can choose ε(r) with ε(r)→ 0 as r →∞ such that, for L r = K r ∩ G r,

where

G r = {|g(Qr,0(0), Zr,0(0))|≤ ε(r)}, (4.4.60)

we have

lim
r→∞

P (L r) = 1. (4.4.61)

We set

Erg = {Xr,0(·, ω), ω ∈ L r}, (4.4.62)

and

Eg = {Erg , r ∈ N}. (4.4.63)

The following proposition is similar to [Dai and Tezcan, 2011, Proposition 5.5]. It connects

Assumption 4.3.4 with Corollary 4.4.2, and shows an inequality similar to (4.3.29) holds for the

hydrodynamically scaled process Xr,m(·).

Proposition 4.4.4. Let {Xrπ} be a sequence of π-parallel random server systems processes. As-

sume that Assumption 4.3.1 and 4.3.2 hold, g satisfies Assumption 4.3.3, and the hydrodynamic

model of the system satisfies Assumption 4.3.4. Fix ε > 0, L > 0, and T > 0, and assume that

r is large. Then, for ω ∈ K r,

g(Qr,m(t), Zr,m(t)) ≤ H(t) + ε (4.4.64)

for all t ∈ [0, L], and m <
√
|Nr|T , with H(·) as given in Assumption 4.3.4. Furthermore, for

ω ∈ L r

||g(Qr,0(t), Zr,0(t))||L≤ ε. (4.4.65)

If, in addition, condition (4.3.30) holds, then (4.4.61) holds.

The proof is the same as in [Dai and Tezcan, 2011]. We state the proof modified for our

notation in Appendix B.4.

4.4.3 SSC in the diffusion limits

In this section we change the scaling from hydrodynamic to diffusion to prove Theorem 4.3.2.

Once the scaling is changed, a few complications need to be dealt with regarding the change

in the range of the time variable. In this process, all of the steps including lemmas and proofs
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remain the same as in [Dai and Tezcan, 2011]. We include only final results in this section and

leave the proofs in the Appendix.

We begin by changing the scaling. One can check by employing (4.3.17), (4.3.18), and

(4.4.3), (4.4.4) that

Qr,m(t) =

√
|Nr|
xr,m

Q̂r

(√
xr,mt

|Nr| +
m√
|Nr|

)
=

1

yr,m
Q̂r

(
1√
|Nr|

(yr,mt+m)

)
and

Zr,m(t) =

√
|Nr|
xr,m

Ẑr

(√
xr,mt

|Nr| +
m√
|Nr|

)
=

1

yr,m
Ẑr

(
1√
|Nr|

(yr,mt+m)

)
,

(4.4.66)

where

yr,m =

√
xr,m
|Nr| =

∣∣∣∣∣Ẑr
(

m√
|Nr|

)∣∣∣∣∣ ∨ 1. (4.4.67)

By changing the scaling in Proposition 4.4.4 as above, we can rephrase (4.4.64) and (4.4.65).

Also, the domain of the time scales will change and the domain 0 ≤ t ≤ L for the arguments

on the left-hand side of (4.4.66) will correspond to

m√
|Nr|

≤ t ≤ 1√
|Nr|

(yr,mL+m) (4.4.68)

for the arguments on the right.

The next proposition uses the connection between hydrodynamic scaling Xr,m and diffusion

scaling X̂r in (4.4.66) to translate the inequality (4.4.64) into another version for diffusively

scaled processes.

Proposition 4.4.5. Let {Xrπ} be a sequence of π-parallel random server system processes.

Assume that Assumption 4.3.1 and Assumption 4.3.2 hold, g satisfies Assumption 4.3.3, and

the hydrodynamic model of the system satisfies Assumption 4.3.4. Fix ε > 0, L > 0, and T > 0,

and assume that r is large. Then, for ω ∈ K r and for H(·) given as in Assumption 4.3.4,

g(Q̂r(t), Ẑr(t)) ≤ ycr,mH
(

1

yr,m
(
√
|Nr|t−m)

)
+ εycr,m (4.4.69)

for all t ∈ [0, T ] and m satisfying (4.4.68). Also

∥∥∥g(Q̂r(t), Ẑr(t))
∥∥∥
Lyr,0/

√
|Nr|
≤ εycr,0 (4.4.70)

for ω ∈ L r.

At this point, if we can show that (
√
|Nr|t − m)/yr,m is large enough, we can conclude

that the results in Theorem 4.3.2 hold by using the convergence property of H(t), as given in

Assumption 4.3.4. It will be shown that it is enough to have
√
|Nr|t−m and L large.

Since the value of L is a matter of choice, we can take L sufficiently large and redefine K r

with the reselected L. Let H be given as in Assumption 4.3.4. Then H(t)→ 0 as t→∞, thus
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for any fixed ε > 0, there exists s∗(ε) > 1 such that, for all t > s∗(ε), H(t) < ε. We assume for

the rest of the paper that

L ≥ 6Ns∗(ε), (4.4.71)

where N is chosen as in (4.4.35).

To make
√
|Nr|t−m large, for a fixed t ∈ [0, T ], we take the smallest m that satisfies (4.4.68),

which we denote by mr(t). We need the following lemmas to show that
√
|Nr|t−mr(t) is large.

Lemma 4.4.3. Let {Xrπ} be a sequence of π-parallel random server system processes. Assume

that Assumption 4.3.1 and Assumption 4.3.2 hold. For fixed L > 0 and T > 0, and large enough

r

yr,m+1 ≤ 3Nyr,m (4.4.72)

for ω ∈ K r and m <
√
|Nr|T , with the constant N chosen as in (4.4.35).

Let yr(mr(t)) = yr,mr(t).

Lemma 4.4.4. Let {Xrπ} be a sequence of π-parallel random server systems processes. For

fixed L > 0 and T > 0, and large enough r,

√
|Nr|t−mr(t) ≥ Lyr(mr(t))/6N (4.4.73)

for ω ∈ K r and t ∈ (Lyr,0/
√
|Nr|, T ], with the constant N chosen as in (4.4.35).

Finally we can use the results from all of these lemmas and propositions to prove Theorem

4.3.2 now.

Proof of Theorem 4.3.2. Assume that Assumption 4.3.1 and Assumption 4.3.2 hold, g satisfies

Assumption 4.3.3, the hydrodynamic model satisfies Assumption 4.3.4, and condition (4.3.30)

holds.

Fix ϑ > 0. By (4.4.36) and (4.4.61), there exists r0 > 0 such that

P (K r) ≥ P (L r) > 1− ϑ/2 (4.4.74)

for all r > r0. Fix ε > 0 and take L ≥ 6Ns∗(ε). Then, by (4.4.69) and Lemma 4.4.4, for

ω ∈ K r, t ∈ (Lyr,0/
√
|Nr|, T ], and r large enough

g(Q̂r(t), Ẑr(t)) ≤ 2ε(yr(mr(t)))
c. (4.4.75)

We have almost proven the result. Now recall by (4.4.67),

yr(mr(t)) =

∣∣∣∣∣Ẑr
(
mr(t)√
|Nr|

)∣∣∣∣∣ ∨ 1 ≤ ||Ẑr(·)||T∨1. (4.4.76)
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If we include the initial condition (4.3.30), we will have (4.4.70) as discussed above. Thus

combine this and (4.4.76), for t ∈ [0, Lyr,0/
√
|Nr|] and ω ∈ L r,

g(Q̂r(t), Ẑr(t)) ≤ 2ε(yr,0)c ≤ 2ε(||Ẑr(·)||T∨1)c. (4.4.77)

Combining (4.4.75), (4.4.76), and (4.4.77) gives

g(Q̂r(t), Ẑr(t)) ≤ 2ε(yr,0)c ≤ 2ε(||Ẑr(·)||T∨1)c (4.4.78)

for all t ∈ [0, T ] and ω ∈ L r. Finally, by (4.4.74) and (4.4.78), for large enough r,

P

{
||g(Q̂r(·), Ẑr(·))||T

(||Ẑr(·)||T∨1)c
> 2ε

}
< ϑ. (4.4.79)

This clearly implies (4.3.31) because ε > 0 and ϑ > 0 are arbitrary.

4.5 State space collapse in many server queue

Although [Dai and Tezcan, 2011]’s work is developed for multi-calss queueing networks, such

SSC results can also be applied to the many server queue analysis. To gain more insight into how

the SSC is related to many server queues with random servers, in this section, we provide a new

approach using the SSC technique to prove diffusion limit result in [Atar, 2008, Theorem 2.1].

We state the theorem in Chapter 3. Our analysis is under the assumption of the LISF policy.

By proving result of [Atar, 2008] using the state space collapse phenomenon, we provide a more

generic method for showing diffusion limits for many server queues with random servers. Under

other routing policies, one can also prove the diffusion limits using this approach by inventing

their unique SSC functions.

Before the proof, we need some preliminary mathematics. First we have the shifted and

scaled system process (the total number of customers in the system) as

X̂r(t) = X̂r(0) +W r(t) + F r(t) + brt, (4.5.1)

where

br =
λrt− rλ√

r
+

Nr∑
k=1

(
µk − µ̄√

r

)
+ µ̄N̂ , (4.5.2)

and

F r(t) =

I∑
i=1

F r,(i)(t) =

I∑
i=1

∑
k∈Ki µkt− T r,(i)(t)√

r

=

Nr∑
k=1

µkt− T rk (t)√
r

=

∫ t
0

∑Nr

k=1 µkI
r
k(s)ds√

r
=

∫ t

0

Nr∑
k=1

µk Î
r
k(s)ds, (4.5.3)
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and all of the notations are as defined in Section 2 of Chapter 3.

We want to show that the process X̂r(t) converges to a diffusion as the system size grows

large. The convergence of W r(t), and brt will be the same as in [Atar, 2008], and we also

stated this in 3.2 of this thesis. We focus on showing that the item F r(t) weakly converges to

γ
∫ t

0
ξ(s)−ds. To achieve this, we use the SSC result from [Dai and Tezcan, 2011].

In order to show the convergence of F (t), first we consider another sequence of systems -

a sequence of inverted-V systems with I server pools. Each pool contains Nr
i identical servers

with service rates µ(i), i = 1, 2, . . . , I. µ(i) are defined in the proof of Theorem 2.3.1. When

there are several servers idle at a moment, customers are routed to one of them according to the

Longest Idle Server First(LISF) policy, which means that customers are routed to the server

who has been idle for the longest time at the time of routing. Such a sequence of systems can

be seen as a special case of [Atar, 2008]’s model in the sense that the random service rates have

a discrete distribution with support {µ(i), i = 1, 2, . . . , I}, and servers are allocated according

to different scenarios.

Assume the following conditions hold for the number of servers in the inverted-V systems:

lim
r→∞

N

r
= 1, (4.5.4)

lim
r→∞

Ni
N

= βi, for i = 1, 2, . . . , I, (4.5.5)

where
∑I
i=1 βi = 1.

The heavy traffic condition holds throughout the discussion:

lim
r→∞

1√
r

(
λr −

I∑
i=1

µ(i)Nr
i

)
= λ̂, (4.5.6)

and λ̂ should be the same as in (2.2.2).

The idea of our new approach to Atar’s results is to show the SSC result of the special

model, then let the difference between µ(i−1) and µ(i) tends to zero, so that the discrete model

will ‘converge’ to a continuous model, and thus the SSC result of the continuous model will also

be proven.

The SSC result for such inverted-V systems is a simpler case of the results in [Dai and

Tezcan, 2011], thus it is well established. For completeness, we repeat the notations here. Let

Xr = (Qr, Zr) denote the system processes, where Qr(t) is number of customers waiting in

the queue at time t, and Zr(t) = (Zri (t), i = 1, 2, . . . , I), where Zri (t) is the number of busy

servers in pool i at time t. Since there are no abandonments in the queue, we will make a small

modification on the hydrodynamic scaling factor xr,m. Different to the xr,m defined in [Dai and

Tezcan, 2011], let

xr,m =

∣∣∣∣Zr ( m√
Nr

)
−Nr

∣∣∣∣2 ∨ |Nr|, (4.5.7)
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where Nr = (Nr
1 , N

r
2 , . . . , N

r
I ) is an I dimensional vector, and |Nr| is the total number of

servers in the systems. Notice that this xr,m does not contain Qr(t).

We can show that the hydrodynamic limits results in [Dai and Tezcan, 2011] still hold with

the new xr,m defined above. The proof is trivial thus we omit it here. We still use X̃ to represent

the hydrodynamic limit.

Finally the diffusive scaling is defined as

Q̂r(t) =
Qr(t)√
|Nr|

and Ẑri (t) =
Zri (t)−Nr

i√
|Nr|

, for t ≥ 0.

We will need the following lemma in preparation for our SSC proof.

Lemma 4.5.1. Let {Xr} be a sequence of inverted-V system processes as defined in the begin-

ning of this section. Assume (4.5.6) and (4.5.19) hold, and X̃ be any hydrodynamic limit of

such system, then

lim
t→∞

(
Z̃i(t)

Z̃l(t)
− βi
βl

)
= 0 ∀i 6= l, as t→∞. (4.5.8)

Proof. From (4.5.4) and (4.5.19), we know that
Zri (·)
Nr → βi u.o.c. in probability as r → ∞.

Recall that X̄ is called a fluid limit of {Xr} if there exists an ω ∈ A (A is taken from Ap-

pendix B. in [Dai and Tezcan, 2011]) and a sequence {rn} with rn → ∞ as n → ∞ such

that Xrn (·,ω)
Nrn converges u.o.c. to X̄ as n → ∞. Therefore, (β1, β2, . . . , βI) is the fluid limit of(

Zr1 (·)
Nr ,

Zr2 (·)
Nr , . . . ,

ZrI (·)
Nr

)
. Obviously (β1, β2, . . . , βI) is a time invariant state, thus it is also the

steady state of the fluid limit.

Now we try to show (4.5.11). We know that Z̃i(t) is the hydrodynamic limit of Zr,mi (t), i.e.

if we fix ε > 0, L > 0 and T > 0, and choose r large enough, then for ω ∈ K r (K r as defined

in [Dai and Tezcan, 2011, Corollary 5.1]) and any m <
√
NrT ,

||Zr,mi (·)− Z̃l(·)||L≤ ε (4.5.9)

for some hydrodynamic limit Z̃i(·), i = 1, 2, . . . , I. Remember that

Zr,mi (t) =
1

√
xr,m

(
Zri

(√
xr,mt

Nr
+

m√
Nr

)
−Nr

i

)
. (4.5.10)

Thus in order to show Z̃i(t)

Z̃l(t)
→ βi

βl
as t→∞, we can first show

Zr,mi (t)

Zr,ml (t)
=
Zri

(√
xr,mt

Nr + m√
Nr

)
−Nr

i

Zrl

(√
xr,mt

Nr + m√
Nr

)
−Nr

l

→ βi
βl
, as r →∞ and t→∞. (4.5.11)

Since
Nri
Nrl
→ βi

βl
as r →∞ and of course as t→∞, we only need to show
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Zri

(√
xr,mt

Nr + m√
Nr

)
Zrl

(√
xr,mt

Nr + m√
Nr

) → βi
βl
, as r →∞ and t→∞. (4.5.12)

From the discussion about fluid limits in the beginning,

Zri (t)

Zrl (t)
=
Zri (t)/Nr

Zrl (t)/Nr
→ βi

βl
u.o.c. in probability as r →∞. (4.5.13)

This means that the limit of
Zri (·)
Zrl (·) does not change with time t, so, as long as r →∞, we have

Zri

(√
xr,mt

Nr + m√
Nr

)
Zrl

(√
xr,mt

Nr + m√
Nr

) − βi
βl
→ 0,∀ t ≥ 0. (4.5.14)

Then we have shown (4.5.12), hence (4.5.11). Therefore, as r →∞,

Z̃i(t)

Z̃l(t)
=

(
Z̃i(t)

Z̃l(t)
− Zr,mi (t)

Zr,ml (t)

)
+
Zr,mi (t)

Zr,ml (t)
→ 0 +

βi
βl

=
βi
βl
,∀ t ≥ 0,

and the lemma is proved as required.

Now we have the SSC result for inverted-V systems.

Lemma 4.5.2 (SSC for inverted-V). For the sequence of inverted-V systems mentioned above,

there exists a continuous function g : RI+1 → R+, such that it satisfies Assumption 4.1 and 4.2

in [Dai and Tezcan, 2011], and if

g(Q̂r(0), Ẑr(0))→ 0 in probability, as r →∞, (4.5.15)

then, for each T > 0,

||g(Q̂r(t), Ẑr(t))||T→ 0 in probability, (4.5.16)

as r →∞.

Proof. To prove the SSC result in the inverted-V systems, first we need to check that four

assumptions from [Dai and Tezcan, 2011] are satisfied.

By (4.5.6), [Dai and Tezcan, 2011, Assumption 3.1] is satisfied and the static planning

problem in that paper has a unique optimal solution with x∗i = 1 for all i = 1, 2, . . . , I. Since

such systems are special cases of the systems in [Atar, 2008], the condition in Lemma 3.1(ii)

from that paper should also be satisfied by these systems. Thus, for fixed T > 0,

∥∥∥r−1T (i)(t)− ρit
∥∥∥
T
→ 0 in probability as r →∞, (4.5.17)
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which can be rewritten as∥∥∥∥∥
∫ t

0

(
1

r

∑
k∈Ki

µkBk(s)− βiµ(i)

)
ds

∥∥∥∥∥
T

→ 0 in probability as r →∞. (4.5.18)

Recall that there is no randomness among servers in the same pool, i.e. µk = µ(i),∀k ∈ Ki.

Therefore the convergence above can be simplified to∥∥∥∥∫ t

0

(
1

r
Zri (s)− βi

)
ds

∥∥∥∥
T

→ 0 in probability as r →∞. (4.5.19)

Since we do not consider abandonments in this model, the convergence of the (scaled) queue

length does not have to be taken into account, thus equation (4.5.19) implies that the second

part of [Dai and Tezcan, 2011, Assumption 3.2] is satisfied, which is adequate for our analysis.

Now we can define the SSC function g : RI+1 → R:

g(q, z1, z2, . . . , zI) =

I∑
i=1

ziµ
(i) −

I∑
i=1

ziγ(I), (4.5.20)

where γ(I) =
∑I
l=1 βl(µ

(l))
2∑I

l=1 βlµ
(l) .

It is easy to see that g is continuous and g(αq, αz1, αz2, αzI) = αg(q, z1, z2, . . . , zI) for all

(q, z1, z2, . . . , zI) ∈ RI+1 and for all 0 ≤ α ≤ 1. Hence g satisfies Assumption 4.1 in [Dai and

Tezcan, 2011]. Next, we show that g satisfies Assumption 4.2 in [Dai and Tezcan, 2011].

From (4.5.20), we have

g(Q̃(t), Z̃1(t), Z̃2(t), . . . , Z̃I(t)) =

I∑
i=1

Z̃i(t)µ
(i) −

I∑
i=1

Z̃i(t)γ(I)

=

I∑
i=1

Z̃i(t)

(
µ(i) −

∑I
l=1 βl

(
µ(l)
)2∑I

l=1 βlµ
(l)

)
=

1∑I
l=1 βlµ

(l)

I∑
i=1

Z̃i(t)

(
µ(i)

I∑
l=1

βlµ
(l) −

I∑
l=1

βl

(
µ(l)
)2
)

=
1∑I

i=1 βiµ
(i)

I∑
i=1

Z̃i(t)

(
I∑
l=1

(
µ(i)βlµ

(l) − βl
(
µ(l)
)2
))

=
1∑I

l=1 βlµ
(l)

I∑
i=1

1

µ(i)
Z̃i(t)µ

(i)

(
I∑
l=1

(
µ(i)βlµ

(l) − βl
(
µ(l)
)2
))

=
1∑I

l=1 βlµ
(l)

I∑
i=1

I∑
l=1

1

µ(i)

(
Z̃i(t)µ

(i)βlµ
(l)
(
µ(i) − µ(l)

))
=

1∑I
l=1 βlµ

(l)

I∑
i=1

I∑
l>i

1

µ(i)

(
Z̃i(t)µ

(i)βlµ
(l)
(
µ(i) − µ(l)

)
+ Z̃l(t)µ

(l)βiµ
(i)
(
µ(l) − µ(i)

))

=
1∑I

l=1 βlµ
(l)

I∑
i=1

I∑
l>i

1

µ(i)

(
µ(i)µ(l)

(
µ(i) − µ(l)

)(
Z̃i(t)βl − Z̃l(t)βi

))
. (4.5.21)

By Lemma 4.5.1, we know that (4.5.21) → 0 as t → ∞, thus (4.5.20) is a valid SSC function.

So far all of the four assumptions in [Dai and Tezcan, 2011] are satisfied. However, we can
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only derive the multiplicative SSC result of Theorem 4.1 under current conditions. What we

really need is the strong SSC. Thus by Remark 4.2 in that paper, we need to check the so-called

compact containment condition for Ẑr (We do not need to worry about this condition for Q̂r

because the new hydrodynamic scaling factor (4.5.7) in this case does not include Q̂r).

The compact containment condition for {Ẑr(·)} is defined as

lim
K→∞

lim sup
r→∞

P(||Ẑr(t)||T> K) = 0,∀ T > 0. (4.5.22)

If {||Ẑr(t)||T } is tight, then obviously (4.5.22) holds, hence we only need to show tightness of

{||Ẑr(t)||T }. We will prove this by contradiction.

Fix T > 0. If {||Ẑr(t)||T } is not tight, then, ∀r, ∃ε > 0 such that ∀K > 0, we always have

P
(
||Ẑr(t)||T> K

)
= CK ≥ ε > 0, (4.5.23)

i.e.

P

(
max
i

∥∥∥∥∥Zri (t)−Nr
i√

|Nr|

∥∥∥∥∥
T

> K

)
= CK ≥ ε > 0. (4.5.24)

However by (4.5.19), ∀δ > 0,

lim
r→∞

P
(∥∥∥∥1

r
Zri (t)− βi

∥∥∥∥
T

> δ

)
= 0. (4.5.25)

Using this and (4.5.4), and (4.5.5),

lim
r→∞

P
(∥∥∥∥Zri (t)

Nr
i

− 1

∥∥∥∥
T

> δ

)
= 0, (4.5.26)

which contradicts (4.5.24). Therefore {||Ẑr(t)||T } is indeed tight, so the condition (4.5.22) is

satisfied. Thus by Theorem 4.1 and Remark 4.2 from [Dai and Tezcan, 2011], (4.5.16) holds,

i.e. for any T > 0

∥∥∥∥∥
I∑
i=1

Ẑri (t)
(
µ(i) − γ(I)

)∥∥∥∥∥
T

→ 0 in probability as r →∞. (4.5.27)

Now that we have shown SSC for the inverted-V systems, we can prove Atar’s result, i.e.

Theorem 2.3.1.

Proof of Theorem 2.3.1. All we need to show is∥∥∥∥F r(t)− γ ∫ t

0

Îr(s)ds

∥∥∥∥
T

→ 0 as r →∞ for any T > 0. (4.5.28)
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Since

F r(t)− γ
∫ t

0

Îr(s)ds = F r(t)− γ(I)

∫ t

0

Îr(s)ds+ γ(I)

∫ t

0

Îr(s)ds− γ
∫ t

0

Îr(s). (4.5.29)

The first difference from this equation is

F r(t)− γ(I)

∫ t

0

Îr(s)ds =

∫ t

0

Nr∑
k=1

µk Î
r
k(s)ds− γ(I)

∫ t

0

Îr(s)ds

=

∫ t

0

I∑
i=1

∑
k∈Ki

(
µk Îk(s)− γ(I)Îrk(s)

)
ds

=

∫ t

0

I∑
i=1

∑
k∈Ki

(
µk − µ(i) + µ(i) − γ(I)

)
Îrk(s)ds

=

∫ t

0

I∑
i=1

∑
k∈Ki

(
µk − µ(i)

)
Îrk(s)ds+

∫ t

0

I∑
i=1

∑
k∈Ki

(
µ(i) − γ(I)

)
Îrk(s)ds.

(4.5.30)

The first integral in (4.5.30) converges to zero u.o.c as r →∞, which is a result of [Atar, 2008,

Lemma 3.1 (iii)] - actually being e1 in the lemma. The second integral is

∫ t

0

I∑
i=1

∑
k∈Ki

(
µ(i) − γ(I)

)
Îrk(s)ds =

∫ t

0

I∑
i=1

(
µ(i) − γ(I)

)
Îr,(i)(s)ds

=

∫ t

0

I∑
i=1

(
µ(i) − γ(I)

) 1√
r

(Nr
i − Zri (s))ds =

∫ t

0

I∑
i=1

(
µ(i) − γ(I)

)
(−Ẑri (s))ds. (4.5.31)

By Lemma 4.5.2 and equation (4.5.27), (4.5.31) converges to zero u.o.c as r → ∞. Hence

(4.5.30) converges to zero u.o.c as r →∞.

For the latter half of equation (4.5.29), since {µ(i)} are chosen in a way such that 0 <

µ(i) − µ(i−1) ≤ ε,∀i = 1, 2, . . . , I, and ε is arbitrary, we can let ε → 0, and then γ(I) → γ

(remember γ =
∫
x2dm∫
xdm

). Thus the second half of (4.5.29) also converges to zero u.o.c. Therefore,

∥∥∥∥F r(t)− γ ∫ t

0

Îr(s)ds

∥∥∥∥
T

→ 0, as r →∞, (4.5.32)

and since Îr(t) = 1√
r
(Xr(t)−Nr)− = X̂r(t)−, we have

∥∥∥∥F r(t)− γ ∫ t

0

X̂r(s)−ds

∥∥∥∥
T

→ 0, as r →∞. (4.5.33)

Combining with (4.5.1), we have X̂r(t) weakly converge to the solution of SDE

ξ(t) = ξ(0) + σw(t) + βt+ γ

∫ t

0

ξ(s)−ds, t ≥ 0, (4.5.34)
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where all of the coefficients are as in Theorem 2.3.1.
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Chapter 5

Conclusion and Future Work

In this work, we study queueing systems with heterogeneous servers and parameter uncertainty.

In particular, we consider these systems under the Quality-Efficiency Driven regime and heavy

traffic condition. Our work is motivated by call centres where agents’ service speeds may be

influenced by their environment, and thus it is uncertain and unknown prior to the operation of

the system. We assume service rates to be i.i.d. random variables. Their realisations are given

at time zero and are kept fixed during the running of the system. Although it is modelled on

call centres, our results are generic and can be applied to other domains such as healthcare,

computer science, instant messaging service, among others.

We start by deriving diffusion limits for many server queues under the LISF policy with

random service rates and abandonments. [Atar, 2008] shows diffusion limits for such systems

without abandonments. Then we obtain our results by extending his result to systems with

abandonments, and use a martingale method to prove this. Unlike the constant drift of diffusion

limits for identical server systems, our diffusion limits have a normal random drift which results

from the randomness of the service rates. For systems without abandonments, the existence of

such a random drift means that whether the diffusion has steady states depends on the value of

the drift. From the perspective of the system, since the arrival rate is fixed, random service rates

may cause the system to be unstable and the queue length may become unbounded. However,

for systems with abandonments, even if it has random service rates it is always stable because

of the abandonment process.

Then, we formulate an optimisation problem for the staffing for such systems. Staffing has

always been of significance in call centre management since an unwise decision about it will

cost companies immensely. For our systems, it is especially important because we need to take

the randomness of servers into account. For systems without abandonments, we simplify the

problem by assigning a fixed cost to unstable systems, and focus on the cost for stable systems.

For stable systems, we consider both staffing costs and holding costs. The holding cost involves

the expected queue length of steady state, thus we use the diffusion limits derived previously
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to establish a continuous approximation of this cost. In order to show the validity of this

estimation, we prove the tightness of the steady state, by which we can show interchangeability

of the limits. For systems with abandonments, the systems are always stable and we also

simplify the problem by neglecting the holding cost.

Finally, we show the state space collapse results for systems with random service rates. SSC

is an important phenomenon because it reduces dimensions of the processes and significantly

simplifies analysis. In particular, it is the central part in proving diffusion limits. Our work

is based on the model developed by [Dai and Tezcan, 2011]. They show a generic SSC result

for queueing networks with multi-class customers and skilled based parallel server pools. We

generalise their results to systems with random service rates inside each pool. To show the SSC

in such systems, the challenging part is to show the departure processes are almost Lipschitz.

We cannot show it directly as in [Dai and Tezcan, 2011], thus we use a coupling method by

splitting Poisson processes with the maximum rate. We later use the SSC result from [Dai and

Tezcan, 2011] to show the diffusion limit in [Atar, 2008] again. By using this approach, we

identify that such a SSC result can also be applied in systems with random service rates and

thus gain more insight into this phenomenon. And since [Atar, 2008] uses a method particular

to this model, this new approach also indicates that we can use a more general way to prove

the limit theorem .

Queueing systems with random service rates exhibit many interesting properties, and we

provide a few promising future research directions as follows. In our work, only the LISF routing

policy is considered. One can consider other blind policies such as the random routing, where

customers are routed to idle servers randomly, or the longest accumulated idle server first, where

customers are routed to the idle server which has the longest accumulated idle time. Moreover,

we can investigate the optimal routing and scheduling. In Section 3.3, we use a numerical

method to analyse how the abandonment rate is influenced by the variation of service rates.

We only consider the situation where random service rates are uniformly distributed. We can

analyse other distributions as well as the theoretical proof of this result. In Section 3.4, we try

to establish a fairness measure for general policies. We can continue this work and develop a

general method for proving diffusion limits under different policies.
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Appendix A

Proofs in Chapter 2

A.1 Proposition 3.1 of Atar

This proposition shows how Atar partitions servers such that the systems before and after pool-

ing are equivalent in distribution. For simplicity, we will omit superscript r from the notation

of all random variables and stochastic processes throughout this appendix. The deterministic

parameters that depend on r will still keep the r in their notation.

Proposition A.1.1. ([Atar, 2008, Proposition 3.1]) Fix r ∈ N. Let (K1, . . . ,KI) be a partition

of 1, . . . , N that measurable on σ{N, {µk}}.Let{S(1), . . . , S(I)} be independent standard Poisson

processes. For each i = 1, . . . , I and for each nonempty subset Θ of Ki, let {e(i, L, l), l ∈ N}
be a sequence of i.i.d. random variables distributed uniformly on Θ, independent across i and

Θ. Assume also that the four random objects (N, {µk}, X(0), {Bk(0)}), a, {S(i)} and {e(i,Θ, l)}
are mutually independent. Define

D(i)(t) = S(i)(T (i)(t)), i = 1, . . . , I, (A.1.1)

where

T (i)(t) =
∑
k∈Ki

Tk(t), i = 1, . . . , I, (A.1.2)

and consider

Dk(t) =
∑

s∈(0,t]:∆D(i)(s)=1

1{e(i,{p∈Ki:Bp(s−)=1},D(i)(s))=k}, k ∈ Ki, i = 1, . . . , I (A.1.3)

as a substitute for equation (2.3.6). Then the process Σ′, defined analogously to Σ, with (A.1.1)-

(A.1.3) in place of (2.3.6), is equal in law to Σ.
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A.2 Proof of Theorem2.3.1 by Atar

Proof of Theorem 2.3.1. We rephrase the method of [Atar, 2008]’s proof here.

From (2.3.1) and (2.3.2), we have

X̂(t) =
1√
r

(X(0)−N) +
1√
r
A(t)− 1√

r

N∑
k=1

Dk(t)

= X̂(0) +
1√
r

(A(t)− λrt) +
1√
r
λrt− 1√

r

N∑
k=1

Dk(t). (A.2.1)

Denote

Â(t) =
1√
r

(A(t)− λrt). (A.2.2)

Proposition 3.1 in [Atar, 2008] provides a way to consider departure processes Dk(t) aggre-

gately instead of individually. In order to apply [Atar, 2008, Proposition 3.1] to
∑N
k=1Dk(t),

first we need to define some notations.

Let ε be given and let I ∈ N and µ(i) ∈ R+, i = 1, . . . , I satisfying the following conditions:

• µ(1) = 0, µ(I) ≥ 1,

• 0 < µ(i) − µ(i−1) ≤ ε, i = 1, . . . , I,

•
∫

[µ(I),∞)
x2dm ≤ ε,

• for i = 2, . . . , I, µ(i) is a continuity point of x 7→ m([0, x]) ≡ P (µ2
k ≤ x).

Set µ(I+1) =∞, and

Ki = {k ∈ {1, 2, . . . , Nr} : µk ∈ [µ(i), µ(i+1))}, i = 1, 2, . . . , I. (A.2.3)

Let {S(1), . . . , S(q)} be independent standard Poisson processes. Now we are ready to use

Proposition 3.1.
N∑
k=1

Dk(t) =

I∑
i=1

D(i)(t) =

I∑
i=1

S(i)(T (i)(t)), (A.2.4)

where

T (i)(t) =
∑
k∈Ki

µkTk(t). (A.2.5)

Hence, by (A.2.2) and (A.2.4), (A.2.1) can be rewritten as

X̂(t) = X̂(0) + Â(t) +
1√
r
λrt− 1√

r

I∑
i=1

D(i)(t)

= X̂(0) + Â(t) +
1√
r
λrt− 1√

r

I∑
i=1

(
S(i)(T (i)(t))− T (i)(t) + T (i)(t)

)
. (A.2.6)
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Define W (i)(t) = S(i)
(
T (i)

)
− T (i)(t). Then (A.2.6) becomes

X̂(t) = X̂(0) + Â(t) +
λrt√
r
−

I∑
i=1

(
W (i)(t)− T (i)(t)√

r

)

= X̂0 + Â(t) +
λrt√
r
−

I∑
i=1

(
W (i)(t)−

T (i)(t)−∑k∈Ki µkt√
r

)
+

Nr∑
k=1

µk√
r
t. (A.2.7)

Let F (i)(t) = −T
(i)(t)−

∑
k∈Ki

µkt√
r

. Then (A.2.6) is

X̂(t) = X̂(0) + Â(t) +
λrt√
r
−

I∑
i=1

(
W (i)(t) + F (i)(t)

)
+

N∑
k=1

µk√
r
t. (A.2.8)

To see this more clearly, let W (t) = Â(t)−∑I
i=1W

(i)(t) so (A.2.8) is

X̂(t) = X̂(0) +W (t) +
λrt√
r

+

I∑
i=1

F (i)(t) +

N∑
k=1

µk√
r
t

= X̂(0) +W (t) +
λrt√
r

+

I∑
i=1

F (i)(t) +
N∑
k=1

µk√
r
t. (A.2.9)

Recall that λ = µ̄, thus

X̂(t) = X̂(0) +W (t) +
λrt−Nλt− rλt+ rλt√

r
+

I∑
i=1

F (i)(t) +

N∑
k=1

µk − µ̄√
r

t

= X̂(0) +W (t) +
λrt− rλt√

r
+

I∑
i=1

F (i)(t) +

N∑
k=1

(
µk − µ̄√

r
t

)
+ µ̄

N − r√
r
t

= X̂(0) +W (t) +
λrt− rλt√

r
+

I∑
i=1

F (i)(t) +

N∑
k=1

(
µk − µ√

r
t

)
+ µ̄N̂ t.

Finally define br = λrt−rλ√
r

+
∑N
k=1

(
µk−µ̄√

r

)
+ µ̄N̂ . Thus

X̂(t) = X̂(0) +W (t) +

I∑
i=1

F (i)(t) + brt. (A.2.10)

∑I
i=1 F

(i)(t) is a troublesome component which needs our particular attention. For this reason,

we define

F (t) =

I∑
i=1

F (i)(t) =

I∑
i=1

∑
k∈Ki µkt− T (i)(t)√

r

=

N∑
k=1

µkt− Tk(t)√
r

=

∫ t
0

∑N
k=1 µkIk(s)ds√

r
.
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Now define I(i)(t) to be the number of idle servers in pool i. We can write

I(i)(t−) = D(i)(t−)−D(i)(H(t)−) + e
(i)
0 (t),

where H(t) is defined in (2.16) in [Atar, 2008] to be the time at which the longest idle server at

t became idle. So, the difference of Dk(t−)−Dk(H(t)−) can be 1 or 0 based on whether server

k is idle at time t−. Also, e0 accounts for the fact that servers can be idle from 0 to t. This

uses the fact that we are routing customers to the longest idle server first. If we use another

policy, this will be the key point in proving SSC.

The inequality below follows because some of the servers idle at 0 can start serving:

I∑
i=1

êi0(t) =

∑I
i=1 e

i
0(t)√
r

≤ I(0)I{H(t)=0}√
r

= X̂(0)−(t)I{H(t)=0}.

Now, we will do the following manipulation:

Î(i)(t−) =
I(i)(t−)√

r

=
D(i)(t−)−D(i)(H(t)−) + e

(i)
0 (t)√

r

=
S(i)(T (i)(t−))− S(i)(T (i)(H(t)−)) + e

(i)
0 (t)√

r

=
S(i)(T (i)(t−))− T (i)(t−) + T (i)(t−)− S(i)(T (i)(H(t)−))− T (i)(H(t)−) + T (i)(H(t)−)√

r

+ ê
(i)
0 (t)

= W (i)(t−)−W (i)(H(t)−) +
T (i)(t−)− T (i)(H(t)−)√

r
+ ê

(i)
0 (t).

Recall h(t) = t−H(t). Hence

Î(i)(t−) = W (i)(t−)−W (i)(H(t)−) +
T (i)(t−)− T (i)(H(t)−)√

r
+
µ(i)N (i)h(t)√

r
− µ(i)N (i)h(t)√

r
+ ê

(i)
0 (t).

(A.2.11)

To manipulate this even further, we need to realize

T (i)(t−)− T (i)(H(t)−) =
∑
k∈Ki

µk

∫ t

H(t)

B(s)ds,

N (i)h(t) =

∫ t

H(t)

(I(s) +B(s))ds.

Now, substituting these into (A.2.11),

Î(i)(t−) = W (i)(t−)−W (i)(H(t)−) +
∑
k∈Ki

((
µk − µ(i)

)∫ t

H(t)

B̂(s)ds− µ(i)

∫ t

H(t)

Î(s)ds

)
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+
µ(i)N (i)h(t)√

r
+ ê

(i)
0 (t),

and aggregating terms gives us

Î(i)(t−) = E(i)(t) +
µ(i)N (i)h(t)√

r
. (A.2.12)

Now, we note the following relation

h(t) =
√
r

∑I
i=1 Î

(i)(t−)−∑I
i=1E

(i)(t)∑I
i=1 µ

iN (i)
,

then use this to write

Î(i)(t) = E(i)(t) +
µ(i)N (i)∑I
i=1 µ

(i)N (i)

(
I∑
i=1

Î(i)(t−)−
I∑
i=1

E(i)(t)

)
. (A.2.13)

Now, let us try to rewrite F (t):

F (t) =

∫ t

0

N∑
k=1

µk Îk(s)ds

=

∫ t

0

(
N∑
k=1

µk Îk(s)−
I∑
i=1

µ(i)Î(i)(s) +

I∑
i=1

µ(i)Î(i)(s)

)
ds

=

∫ t

0

(
I∑
i=1

∑
k∈Ki

(µk − µ(i))Îk(s) +

I∑
i=1

µ(i)Î(i)(s)

)
ds. (A.2.14)

We define the four eis of [Atar, 2008, Lemma 3.1 (iii)] as follows.

Let e1(t) =
∑I
i=1

∑
k∈Ki(µk − µ(i))

∫ t
0
Îk(s)ds. Then (A.2.14) is equal to

F (t) = e1(t) +

I∑
i=1

µ(i)

∫ t

0

Î(i)(s)ds.

Use (A.2.13), we have

F (t) = e1(t) +

I∑
i=1

µ(i)

∫ t

0

(
E(i)(s) +

µ(i)N (i)∑I
i=1 µ

(i)N (i)

(
I∑
i=1

Î(i)(s−)−
I∑
i=1

E(i)(s)

))
ds.

Define e2(t) =
∑I
i=1 µ

(i)
∫ t

0
E(i)(s)ds. Then

F (t) = e1(t) + e2(t) +

I∑
i=1

∫ t

0

(
(µ(i))2N (i)∑I
i=1 µ

(i)N (i)

(
I∑
i=1

Î(i)(s−)−
I∑
i=1

E(i)(s)

))
ds.
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Further define e3(t) =
∑I
i=1(µ(i))2N(i)∑I
i=1 µ

(i)N(i)

∑I
i=1

∫ t
0
E(i)(s)ds, so

F (t) = e1(t) + e2(t) + e3(t) +

I∑
i=1

∫ t

0

(
(µ(i))2N (i)∑I
i=1 µ

iN (i)

(
I∑
i=1

Î(i)(s−)

))
ds.

Remember that Î =
∑
Î(i) and add and subtract γ

∫ t
0
Î(s)ds to get

F (t) = e1(t) + e2(t) + e3(t) + e4(t) + γ

∫ t

0

Î(s)ds.

Notice that e4(t) =
(∑I

i=1(µ(i))2N(i)∑I
i=1 µ

(i)N(i) − γ
) ∫ t

0
Î(s)ds, where γ = E(µ2

1)/E(µ1).

Summarising all of these gives

X̂(t) = X̂(0) +W (t) + bt+ γ

∫ t

0

X̂(s)−ds+

4∑
i=1

ei(t).

First, we use Gronwall’s inequality:

||X̂ − ξ||t≤ (|X̂(0)− ξ(0)|+|b− β|+||W − σw||t+||e||t) exp(γt). (A.2.15)

Now we need to analyse these terms separately:

1. X̂(0) is simply the usual Central Limit Theorem applied to the initial random variables.

2. W (t) = Â(t)−∑I
i=1W

(i)(t)

(a) Â(t)⇒ B1(t), where B1(t) is a Brownian Motion with 0 drift and diffusion coefficient
√
λCǓ using the Functional Central Limit Theorem for renewal processes.

(b) W (i)(t) = S(i)
(
T (i)(t)

)
−T (i)(t). By [Atar, 2008, Lemma 3.1(ii)], we have r−1T (i) →

ρit, where ρi =
∫ µ(i+1)

µ(i) xdm. Again using the FCLT for renewal processes, S(i)(t)− t
converges to a standard Brownian motion. Then replace T (i)(t) with t. By the

random change of time, we show that W (i)(t) weakly converges to Brownian motion

B2(t) with zero mean and diffusion coefficient
√
ρi.

Summarising (a) and (b), we show that W (t) converges weakly to σw, where w is a

standard Brownian motion and σ2 = λC2
Ǔ

+ µ.

3. For j = 1, 2, 3, 4, ||ej ||θ→ 0 in probability as r →∞. This is shown in [Atar, 2008, Lemma

3.1 (iii)].

By steps 1, 2 and 3, the right hand side of equation (A.2.15) converges to zero uniformly on

a compact set, thus X̂(t)⇒ ξ(t) as required.
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Appendix B

Proofs in Chapter 4

B.1 Proof of fluid limits in Theorem 4.3.1

Proof of Theorem 4.3.1. The proof is similar to that in Theorem B.1 in [Dai and Tezcan, 2011].

Specifically, the proof of the precompactness of Ā, Āq, Ās, Q̄, and C̄ is the same as in Theorem

B.1 in [Dai and Tezcan, 2011], and equations (4.3.7), (4.3.8), (4.3.12), (4.3.13), and (4.3.14) are

also proved in the same paper, so in the rest of the proof we use these results directly and focus

on the precompactness of Z̄, T̄ , Ī and equations (4.3.9), (4.3.10), and (4.3.11) here.

First we prove the precompactness. Assume (4.2.18) and (4.2.20) hold. With a slight abuse

of notation, consider a sequence of numbers that is denoted as {r}. We show that {X̄r(·, ω)}
has a convergent subsequence, for all ω ∈ A . Fix ω in the rest of the proof. One can observe

that ∣∣∣∣T r(t2, ω)

Nr
− T r(t1, ω)

Nr

∣∣∣∣ ≤ |t2 − t1|,
for all 0 ≤ t1 ≤ t2. Hence {T̄ r(·, ω)} is uniformly bounded and uniformly continuous, which

means, by [Billingsley, 1999, Theorem 12.3], that there exists a subsequence {rl} such that

T̄ rl(·, ω) converges u.o.c. to some continuous function T̄ .

We define the fluid scaled total idle process for the ith server pool by

Īri (t) =
Nr
i

|Nr| t−
∑
j∈J (i)

T̄ rij(t). (B.1.1)

Then obviously Īrli (·) is precompact.

For departure processes, we need to treat each server individually. Since

D̄rl
ijk(t) =

1

|Nr|Sijk(µijk|Nr|T̄ rlijk(t)),

99



we have

D̄rl
ij (t) =

Nri∑
k=1

D̄rl
ijk(t) =

1

|Nr|

Nri∑
k=1

Sijk(|Nr|µijkT̄ rlijk(t))
d
=

1

|Nr|S

|Nr|
Nri∑
k=1

µijkT̄
rl
ijk(t)


where S is a standard Poisson process.

d
= means equal in distribution and it is a basic statement

of the superposition of Poisson processes.

To see the convergence of D̄rl
ij (t), fix L > 0, and consider

∣∣∣∣∣∣
Nri∑
k=1

µijkT̄
rl
ijk(t)− µ̄ij T̄ij(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Nri∑
k=1

(
µijkT̄

rl
ijk(t)− µ̄ij T̄ rlijk(t)

)
+

Nri∑
k=1

(
µ̄ij T̄

rl
ijk(t)− µ̄ij T̄ij(t)

1

Nr
i

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

|Nr|

Nri∑
k=1

(µijk − µ̄ij)T rlijk(t) + µ̄ij

Nri∑
k=1

(
T̄ rlijk(t)− T̄ij(t)

1

Nr
i

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ N
r
i

|Nr|
1

Nr
i

Nri∑
k=1

(µijk − µ̄ij) t

∣∣∣∣∣∣+
∣∣µ̄ij (T̄ rlij (t)− T̄ij(t)

)∣∣ . (B.1.2)

By the Law of Large Numbers, the first term in (B.1.2) converges u.o.c. to 0, and the second

term also converges u.o.c. to 0 as proved already. This means
∑Nri
k=1 µijkT̄

rl
ijk(·) converges u.o.c.

to µ̄ij T̄ij(·). Then using [Ata et al., 2005, Lemma 11] and the Functional Strong Law of Large

Numbers we can get

D̄rl
ij (·) converges u.o.c. to D̄ij(·), (B.1.3)

where D̄ij(t) = µ̄ij T̄ (t). By the precompactness of Ārls , C̄
rl and (B.1.3), and the process

equation (4.2.6), Z̄rl(·, ω) is precompact.

Next we show that every fluid limit satisfies (4.3.9)-(4.3.11). (4.3.10)-(4.3.11) are trivial.

For (4.3.10), let X̄ be a fluid limit and for notational convenience assume that

X̄r(·, ω)→ X̄ u.o.c. as r →∞ for some ω ∈ A . (B.1.4)

Then equation (4.3.9) follows from (B.1.3), the convergence of Z̄r(0, ω), Ārs(·, ω), and C̄r(·, ω).
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B.2 Proof of (4.4.18)

Proof of (4.4.18). By setting ε = 1, t2 = L and t1 = 0 in (4.4.32), and since Dr
ij(t) has the

same probability distribution as D̆r
ij(t), we have that

P

{
Dr
ij

(√
xr,0

|Nr| L
)
≥ 2NL

√
xr,0

}
≤ ε√

|Nr|
. (B.2.1)

Then for r large enough,

Dr
ij

(√
xr,0

|Nr| L
)

+ 1 ≤ 3NL
√
xr,0.

Also notice that Dr
ijk(t) ≤ Dr

ij(t) for all t ≥ 0 and all a = 1, 2, . . . , |Nr|, we have that

Dr
ijk

(√
xr,0

|Nr| L
)

+ 1 ≤ 3NL
√
xr,0. (B.2.2)

Let e = 0 or 1. It follows from [Bramson, 1998, Proposition 4.2] that, for large enough n,

P

{∥∥∥∥Vijk(l)− l

µijk

∥∥∥∥
n

≥ εn
}
≤ ε

n
. (B.2.3)

By setting n = 3NL
√
xr,0, we get

P

{∥∥∥∥Vijk(Dr
ijk(t) + e)−

Dr
ijk(t)

µijk

∥∥∥∥
(
√
xr,0/|Nr|)L

≥ 3NL
√
xr,0ε

}
≤ B2

ε√
|Nr|

, (B.2.4)

for B2 ≥ 2/(3NL). By enlarging ε appropriately, we get, for b̃ = (1, 0) or (0, 0),

P

{∥∥∥∥∥V r,0ijk (Dr,0
ijk(t), b̃)−

Dr,0
ijk(t)

µijk

∥∥∥∥∥
L

≥ ε
}
≤ ε√

|Nr|
. (B.2.5)

Multiplying the error bound d
√
|Nr|T e and enlarging ε appropriately, we obtain

P

{
max

m<
√
|Nr|T

∥∥∥∥∥V r,mijk (Dr,m
ijk (t), b̃)−

Dr,0
ijk(t)

µijk

∥∥∥∥∥
L

≥ ε
}
≤ ε. (B.2.6)

For b = (0, 1) and b̃ = (0, 0), by (4.4.6),

P

{
max

m<
√
|Nr|T

∥∥∥V r,mijk (Dr,m
ijk , b̃)− V

r,m
ijk (Dr,m

ijk (t), b)
∥∥∥
L
≥ ε
}

= P

{
max

m<
√
|Nr|T

∣∣∣∣∣Vijk
(
Dr
ijk

(
m√
|Nr|

))
− Vijk

(
Dr
ijk

(
m√
|Nr|

)
+ 1

)∣∣∣∣∣ ≥ √xr,mε
}
.

(B.2.7)

Observe that, by (4.2.13), Vijk(Dr
ijk(m/

√
|Nr|)) ≤ |Nr|T and, by Lemma 4.4.1,

P{vr,T,max
ijk ≥ √xr,mε} ≤ ε (B.2.8)
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for large enough r. Thus, we get (4.4.18) by combining (4.2.13) with (B.2.6)-(B.2.8).

B.3 Proof of Proposition 4.4.2

Proof. We use the bounds established in Proposition 4.4.1. Fix L, T and ε > 0. Let V r be the

intersection of the complements of the events given in (4.4.16)-(4.4.18), so P{V r > 1− ε}. We

show that for r large enough and all ω ∈ V r

max
m<
√
|Nr|T

sup
0≤t1≤t2≤L

|Xr,m(t2)− Xr,m(t1)|≤ Ñ |t2 − t1|+ε (B.3.1)

for some Ñ that depends only on λ. We fix ω ∈ V r for the rest of the proof and so omit it

from the notation. Let t1, t2 ∈ [0, T ] and m ≥ 0. We first show that

|Cr,m(t2)− Cr,m(t1)|≤ N0|t2 − t1|+ε (B.3.2)

for some N0 > 0. Because Cr,mij is nondecreasing, we have, by (4.4.2) and (4.4.10), that

0 ≤ Cr,mij (t2)− Cr,mij (t1) ≤ Dr,m
ij (t2)−Dr,m

ij (t1). (B.3.3)

Then (B.3.2) is immediately satisfied from (4.4.17), and N0 = N . Combining (B.3.3) with

(4.4.10) yields

|Zr,mij (t2)− Zr,mij (t1)|≤ 2
∣∣Dr,m

ij (t2)−Dr,m
ij (t1)

∣∣+ |Ar,msij (t2)−Ar,msij (t1)|. (B.3.4)

By (4.4.16), |Ar,mi (t2)−Ar,mi (t1)|< 2|λ||t2−t1|+ε for r large enough. By setting N1 = 2N0+2|λ|,
and using (4.4.17), we get

|Zr,m(t2)− Zr,m(t1)|≤ N1|t2 − t1|+ε. (B.3.5)

Combining the results above with (4.4.9) gives

|Qr,m(t2)−Qr,m(t1)|≤ N2|t2 − t1|+ε, (B.3.6)

for N2 = N0 + 2|λ|. Note that N1 ≥ N2. Also, for r large enough, by (4.2.3), (4.4.2), and the

fact that T rij(t) =
∑Nri
k=1 T

r
ijk(t),

|T r,mij (t2)− T r,mij (t1)|≤ 2βi|t2 − t1|. (B.3.7)

Note that, by definition of V r, the inequalities above hold for all m <
√
|Nr|T. This shows

that (B.3.1) holds for r large enough with Ñ = N1 ∨ 2.
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Summarise the discussion above, processes

{Xr,m = (Ar,m, Ar,ms , Ar,mq , Qr,m, Zr,m, Cr,m, T r,m, Dr,m)}

are almost Lipschitz.

B.4 Proof of Proposition 4.4.4

Proof. The proof is similar to that of Proposition 5.5 in [Dai and Tezcan, 2011]. Fix L > 0

and let X̃ be a hydrodynamic limit of E . By the definition of hydrodynamic limit, |X̃(0)|≤ 1.

By Proposition 4.4.3, X̃ satisfies the hydrodynamic model equations (4.3.19)-(4.3.27) on [0, L],

thus by (4.3.19), (4.3.20), and (4.3.22), one can easily find a RL such that

||X̃(t)||L≤ RL. (B.4.1)

Fix ε > 0. Since g is continuous, there exists δ > 0 such that

|g(x)− g(y)|< ε (B.4.2)

if |x− y|< δ and x, y ∈ [−2RL, 2RL].

By Corollary 4.4.2, fix T > 0, and also fix 0 < δ < RL. For ω ∈ K r, any m <
√
|Nr|T ,

and choosing r large enough, there exists a hydrodynamic limit X̃ such that

||Xr,m(t)− X̃(t)||L≤ δ. (B.4.3)

Together with (B.4.1), we have

||Xr,m(t)||L≤ ||Xr,m(t)− X̃(t)||L+||X̃(t)||L≤ 2RL. (B.4.4)

Thus by (B.4.1), (B.4.2), (B.4.4), and Assumption 4.3.4, ∀t ∈ [0, L],

g(Qr,m(t), Zr,m(t)) = g(Qr,m(t), Zr,m(t))− g(Q̃(t), Z̃(t)) + g(Q̃(t), Z̃(t))

≤ ε+H(t),

which is (4.4.64).

(4.4.65) is obtained similarly. Let X̃ be a hydrodynamic limit of Eg. Then there exists a

subsequence rk of r such that

||Xrk,0(t)− X̃(t)||L→ 0, (B.4.5)

as k → ∞. By the definition of Eg, and the fact that g(Qrk,0(0), Zrk,0(0)) → 0, combined

with (B.4.5) and the continuity of g, we have g(Q̃(0), Z̃(0)) = 0, thus, by the last statement of
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Assumption 4.3.4,

g(Q̃(t), Z̃(t)) = 0 for any t ≥ 0. (B.4.6)

Similar to (B.4.3), for ω ∈ L r, and r large enough, we can find a hydrodynamic limit X̃ in Eg

such that

||Xr,m(t)− X̃(t)||L≤ δ,

and by (B.4.6) and (B.4.1)

g(Qr,0(0), Zr,0(0)) ≤ ε.
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