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Abstract 

Three studies in the machine assisted proof of recursion 
implementation are described. The verification system used is 
Edinburgh LCF (Logic for Computable Functions). Proofs are 
generated, in LCF, in a goal-oriented fashion by the application of 
strategies reflecting informal proof plans. LCF is introduced in 
Chapter 1. 

We present three case studies in which proof strategies are 
developed and (except in the third) tested in LCF. Chapter 2 
contains an account of the machine generated proofs of three program 
transformations (from recursive to iterative function schemata). 
Two of the examples are taken from Manna and Waldinger. In each 
case, the recursion is implemented by the introduction of a new data 
type, e.g., a stack or counter. Some progress is made towards the 
development of a general strategy for producing the equivalence 
proofs of recursive and iterative function schemata by machine. 

Chapter 3 is concerned with the machine generated proof of the 
correctness of a compiling algorithm. The formulation, borrowed 
from Russell, includes a simple imperative language with a while and 
conditional construct, and a low level language of labelled 
statements, including jumps. We have, in LCF, formalised his 
denotational descriptions of the two languages and performed a proof 
of the preservation of the semantics under compilation. 

In Chapter 4, we express and informally prove the correctness 
of a compiling algorithm for a language containing declarations and 
calls of recursive procedures. We present a low level language 
whose semantics model a standard activation stack implementation. 
Certain theoretical difficulties (connected with recursively defined 
relations) are discussed, and a proposed proof in LCF is outlined. 

The emphasis in this work is less on proving original theorems, 
or even automatically finding proofs of known theorems, than on (i) 
exhibiting and analysing the underlying structure of proofs, and of 
machine proof attempts, and (ii) investigating the nature of the 
interaction (between a user and a computer system) required to 
generate proofs mechanically; that is, the transition from informal 
proof plans to behaviours which cause formal proofs to be performed. 
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Introduction 

This work represents several explorations in a methodology and 

technology for the generation of formal proofs of program 

correctness. Underlying the work is the belief that it is important 

to supply complete and correct formal proofs of program correctness, 

as informal proofs may suffer errors in both logical structure and 

technical detail. Also implicit is the belief that because the 

proofs of even simple programs are long and complex, any hope for 

producing the proofs rests in the design of computer systems which 

share the task of proof generation with human theorem provers. 

The components of our model of user-system cooperation are (i) 

the effort required on behalf of the user, at least in stating the 

goals, and possibly, in specifying proof methods, strategies and 

insights; (ii) the facility for interaction between user and system, 

enabling the user to communicate goals and possibly strategies to 

the system, and the system to report the results of its proof 

attempts to the user, and (iii) the capacity of the system for 

recognising valid proofs, and possibly, for generating proofs 

automatically. 

Proof systems of various sorts fit this framework, as it is 

rather general; for example, automatic theorem proving systems, in 

which (i) the user states the problem to be solved, (ii) the logic 

in which the problems are stated provides the basis for user-system 

interaction, and (iii) built-in heuristics endow the system with its 

capacity for automatic proof. Examples of automatic theorem provers 

for programs are the Boyer-Moore system for proving theorems about 

LISP functions [3], and Pratt's system for proving algorithms 
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written in dynamic logic [40]. The model also includes proof 

checking systems, in which (i) the user is required to perform the 

proof, to some degree of refinement, (ii) the specification of a 

proof step is the basis for user-system interaction, and (iii) the 

system is able to do proofs automatically to the extent required to 

perform (and hence check) the specified steps. Proof checkers for 

programs include Stanford LCF (Logic for Computable Functions) 

[26,27,50], the Pisa Proof Checker (PPC) [2], and the FOL (First 

.Order Logic) system [9,49]. The framework includes, in addition, 

standard verification systems based on Floyd's method of inductive 

assertions [10], and Hoare's proof rules [16]. The Stanford Pascal 

Verifier [21], and the PL/CV system [7] are two modern examples. In 

such systems, the user's contribution is, typically, a program in a 

(fixed) language, annotated at points in the text with assertions 

which are intended to hold whenever control reaches those points, 

during evaluation of the program. In the two instances mentioned, 

the fixed languages are PASCAL and PL/1 subsets, respectively. The 

Stanford Pascal Verifier relies on a theorem prover, and the PL/CV 

system on a proof checker, for the proofs that the assertions do in 

fact hold. Interaction with the system, in the former case, 

includes a facility for enabling the user to suggest useful facts to 

the theorem prover; in the latter case, interaction is as in 

standard proof checking systems. 

It is useful to consider two further dimensions along which 

machine proof systems can be classified, besides the nature of the 

interaction required to produce proofs. The first is generality,. 

It,can be observed that some systems are designed for reasoning in a 
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particular area, about a particular programming language, or within 

a certain logical framework, while others are intended to cope with 

quite general sorts of reasoning. Standard verification systems, 

for example, are typically built around one particular programming 

language (and the proof rules for that language) and are tailored 

for reasoning about programs in that language, within the 

Floyd-Hoare framework. The FOL system, in contrast, aims at 

providing an environment in which purely mathematical and 'common 

sense' arguments can be conducted, as well as arguments about 

programs of various sorts. 

The second dimension is security. Some systems do not ensure 

that only valid deductions can be performed. This applies to many 

standard verification systems, in which the absence of an explicit 

logic means that there is no a priori notion of a valid deduction; 

hence the security of inferences is left to the user and is not 

checked by the system. In contrast, systems which rely on explicit 

logics and which insist on fully checked proofs, relative to those 

logics, do guarantee security (that is, as long as the logics are 

consistent). Stanford LCF and the FOL system fall into the second 

category. 

The technology on which we have relied in this work is the 

Edinburgh LCF system [13,14,15,29,30]. In regard to user-system 

interaction, LCF is distinguished from conventional automatic 

theorem proving and proof checking systems by the fact that its 

interaction facility is a programming language. In this language, 

goals to be proved and-theorems already proved are represented as 

objects of distinct data types, and strategies for performing proofs 
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are represented as procedures. A standard set of strategies for 

performing certain routine proofs steps is provided; beyond that, 

the extent to which proofs can be performed automatically in LCF is 

determined by strategies designed and implemented by the user. 

In the context of LCF, and of our model of user-system 

interaction, some more subtle distinctions can be made. We have 

mentioned automatic theorem proving systems, in which the emphasis 

is on the system's ability to find proofs, as well as systems in 

which the emphasis is on the system's ability to check proofs. One 

can also distinguish proof performing and proof generating systems. 

A proof which is performed is not necessarily produced as a complete 

object in the end, but may exist only as a historical sequence of 

steps which have been evaluated. When we speak of generating 

proofs, we refer to behaviours on behalf of the user which cause 

proofs to be performed or produced. In LCF, the user generates 

proofs, and proofs are performed in the system. The 'extreme' 

styles of proof finding and proof checking can be accomodated in 

LCF, but are not necessarily imposed, or even preferred. 

As regards the other two dimensions of generality and security, 

LCF is fairly, but not completely general, and it is completely 

secure. It is based on a typed lambda calculus logic in which all 

types correspond to some complete partial ordering (cpo) and is 

therefore oriented toward reasoning about areas which fall within 

the framework of Scott-Strachey denotational semantics. Classes of 

LCF studies have concerned single programming languages (a study of 

PASCAL and its implementation, in Stanford LCF (11, relations 

between different semantics for the same language (direct and 
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continuation semantics) [31], relations between several languages 

(see Chapters 3 and 4, following, and [6]), recursive functions in 

general (see Chapter 2, following), and various data types (a study 

of lists, for example [11]). 

It is fundamental to the LCF 'philosophy' that the production 

of correct, complete formal proofs is vital; in LCF it is ensured 

that non-valid proofs cannot be produced, even as the result of 

applying user-defined strategies to goals. 

The aims of the work presented herein have been to study, in 

the context of LCF and of several program correctness proofs, the 

'quality' of the interaction required between user and system to 

perform proofs; to propose methods of organising and structuring 

large proof efforts; to investigate ways in which informal proof 

plans can be mirrored by procedures in a programming language; to 

research the extent to which a user can be isolated from the actual 

sequence of primitive inference steps which constitute a proof; to 

test the naturalness and effectiveness of the goal-oriented and 

strategy-driven style of proof generation; and to isolate patterns 

of inference for various classes of problems. We feel that these 

issues are of general interest and applicability, even though the 

work is intimately tied to the LCF system. 

Two remarks pertain to the connection of this work with LCF. 

Firstly, it is important to be clear about what is original to the 

author. That includes neither any part of the LCF system, nor the 

underlying concept of proof generation by the application of tactics 

which reflect informal inference plans. (It does include the 

various proofs planned and/or performed in LCF.) Nonetheless, we 
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have devoted the first chapter to an account of LCF and the 

methodology of proof generation therein. Although we do not attempt 

a complete exposition, Chapter 1 enables the subsequent three 

chapters to be read without continual reference to other documents. 

None of the material in Chapter 1, at any rate, (excepting the 

simple example, and some notation) is original to the author in any 

way. 

Secondly, although we report several proof efforts using LCF, 

we have endeavoured, in this presentation, to concentrate on those 

aspects of the efforts which address the research aims mentioned, 

rather than the 'proof engineering' aspects. In this spirit, we 

have not, in general, included the code of programs, transcripts of 

interactions with LCF, or statistics about the actual proof 

performances. (Some material of this sort may be found in the 

Appendix.) 

In Chapters 2, 3 and 4 we give accounts of two actual (and one 

hypothetical) proof efforts using LCF. The common thread of the 

problems is the implementation of recursively defined functions. In 

Chapter 2, we consider the equivalence proof for three pair of 

recursive and iterative function schemata, and outline a general 

strategy for proving such equivalences in LCF. In Chapter 3, we 

verify, in LCF, a compiler for a high level language which includes 

a while construct. The formulation of the problem is borrowed from 

Russell [42]. The approach is to supply denotational semantics for 

the two languages involved, to represent the compiler as a function 

acting on the abstract syntax of the high level language, and to 

prove the preservation of the semantics under compilation. In 
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Chapter 4, we employ a similar approach in stating and informally 

proving the correctness of a compiler for a block-structured 

language allowing recursive procedure declaration and invocation. 

We cope with certain theoretical problems in the proof (to do with 

recursively defined relations), and outline a proposed machine 

proof, based on the results of Chapters 2 and 3. 

In each chapter, we describe the formalisation of the problem; 

we present the informal proof (which is usually roundabout, as one 

is comparing differently structured computations when implementing 

recursion -- the first section of the Conclusions contains a 

discussion of the proof methods used); and we give an account of the 

(actual or proposed) machine proof effort. We conclude with an 

analysis of the three experiments, and an assessment of our 

methodology of proof generation. 
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Background 

Since the correctness of programs is clearly relative to their 

intended meanings, this work rests upon the field of programming 

language semantics. We have relied, here, on the mathematical and 

descriptive aspects of denotational semantics, semantics in which 

programs and the objects from which they are constructed correspond 

to abstract entities. In an indirect sense, we have used 

dentotational semantics by using LCF, since, as we have indicated, 

LCF is designed primarily for reasoning in the setting of 

denotational semantics. More directly, in Chapters 3 and 4, we use 

denotational definitions of the source and target languages under 

consideration. We do not attempt a survey of or introduction to 

denotational semantics here, but merely acknowledge our debt. 

Useful references are [12,25,43,44,45,46]. 

More specifically, we also acknowledge work done on the 

verification of implementations in a denotational setting by Milne, 

and Milne and Strachey [24,25], and presented in much simplified 

form by Stoy [45]. While not claiming mastery of Milne's work, it 

is clear that the present work deals with some of the same issues, 

in particular (i) the factoring of the compilation of recursive 

procedure declaration into stages, includings a closure semantics 

('store semantics' in Milne) and a stack semantics, and (ii) the 

problem of the recursively defined relations that arise naturally in 

the statements of equivalence of semantics at different levels of 

abstraction. 
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Reynolds, too, has studied the problem of recursively defined 

relations ('directed complete relations') [41]. A sequence of 

semantics at decreasing levels of abstraction was also proposed by 

Burstall and Landin [5], in the context of a simple expression 

compiler and of algebraic proofs. 

Other (algebraic) methodologies for formulating and proving 

compiler correctness have been developed by Morris [34,35] and by 

the ADJ group [47]. We do not elaborate on these, as they are 

somewhat outside of the scope of this work. 

The work on proving program transformations, in Chapter 2, is 

based on examples given by Manna and Waldinger [22], although it is 

perhaps fair to say that the examples are common property. While a 

great deal of research has concentrated on the problem of 

discovering and automating program transformations (e. g. by 

Burstall and Darlington [4], and Darlington and Waldinger [8]) we 

know of little on formal correctness proofs. The most closely 

related work is by Huet and Lang [17], in which formal proofs are 

given for several pair of function schemata similar to the ones we 

have studied. Although Huet and Lang are rather more concerned with 

the problems of pattern matching involved in applying program 

transformations, they do stress the importance of supplying formal 

proofs, and even suggest LCF as a vehicle for producing the proofs. 

The work described in Chapter 3 is based on (and inspired by) a 

formulation of the problem of compiler correctness by Russell [42]. 

He proposes a source and target language, gives denotational 

definitions of both, and specifies a compiling algorithm between 

them." We have attempted, in formalising the problem and performing 
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the proof in LCF, to retain as much as possible of his statement of 

the problem. The informal proof he gives is actually incorrect; 

evidence, we think, for the need for machine-checked correctness 

proofs. Nonetheless, we have found his formulation to be useful in 

isolating the problem of verifying the implementation of the while 

construct, as well as in avoiding the problem of the generation of 

new label names (something which complicated many earlier 

formulations) . 

The early formulations and proofs of compiler correctness (for 

schematic compilers in an abstract setting) predate the development 

of denotational semantics by several years, yet anticipate the role 

of semantics in the statements of correctness. The paradigm for 

much subsequent work in compiler correctness was a compiler for 

arithmetic expressions proposed by McCarthy and Painter in 1967 

[23]. The problem consisted in compiling a language of constants 

and variables, and binary operations on them, into a language of 

'store', 'load' and 'operate' instructions intended to be executed 

on an abstract, single-address machine with an accumulator. The 

important features of the formulation included (i) provision of 

(what is essentially) a denotational semantics for the expression 

language, based on an abstract state, (ii) an operational semantics 

for the machine language, based on the state of the machine, 

specifying how the execution of each instruction affects the state, 

(iii) reliance on a compiling algorithm rather than a compiler in a 

particular language, (iv) the use of abstract syntax and the 

consequent separation of the problem of proving parsers correct from 

the problem of proving code-generators, (v) the form of the 
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statement of correctness: if a high and low level state are 

suitably related, then the outcomes of evaluating a high level 

program, and of running its compiled image, in the respective 

states, are also suitably related, and (vi) the proof of the 

correctness of the compiler by induction on the structure of 

expressions in the language. The work was intended for eventual 

machine validation, and in fact, the problem has been used more than 

once as an exercise in machine proof. One such proof was performed 

by Milner and Weyhrauch [28], in Stanford LCF, as part of a larger 

compiler proof (which is discussed below). 

Subsequent work on rigorous and machine proofs of compilers has 

diverged into two trains of research, dealing in turn with compilers 

for LISP-like and for Algol-like languages. This development is 

based on the relative natures of applicative and imperative 

languages. Compiler proofs, either machine-produced, partially 

machine-produced, or just amenable to machine proof, have been given 

for LISP subsets by (among others) London [19,20] and Newey [36], 

and for imperative languages of various sorts by (among others) 

Kaplan [18], Milner and Weyhrauch [28], and by Milne, and Russell, 

as mentioned earlier. 

The LISP formulations are characterised, in general, by being 

more realistic; that is, they take real LISP as source and real LAP 

code as target. This is possible, in part, because of the 

comparitive simplicity of LISP and its implementations. In the 

imperative tradition, the languages used have tended to be contrived 

for the purpose of studying certain features. 
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The LISP compilers mentioned were taken to be actual programs 

written in LISP. In the imperative language studies mentioned, 

McCarthy's use of compiling algorithms and abstract syntax of the 

source language as starting points has been followed. Using a 

program rather than an algorithm adds another layer of proof to the 

problem, namely, a proof of the correctness of the compiler relative 

to the algorithm it denotes. (Newey gives an account of a proposed 

proof of this sort [36].) 

Because,, in some sense, the natural semantics for LISP is an 

interpretive (operational) semantics (based on the LISP 'eval' 

function), the semantics used in stating the correctness of a LISP 

compiler is closer in structure to the semantics for LAP code than a 

denotational semantics for an imperative language would be to an 

operational semantics for the appropriate machine language. This 

would appear to make the correctness proofs easier, in the 

applicative case, and to circumvent problems, discussed by Milne and 

by Stoy, and encountered in Chapter 4, below, which arise in proving 

the equivalence of operational and denotational definitions. In 

addition, LISP's convention of dynamic rather than static binding of 

variables makes it unnecessary, in an implementation, to preserve 

declaration time environments of functions. 

All of these factors help to explain why the compilation of 

LISP (or in general, applicative languages) is a rather different 

problem than the one in which we are interested at present, and we 

therefore do not go into detail about London's proof, or about 

Newey's proof (which was partially checked in Stanford LCF). The 

importance of Newey's work, from the current standpoint, lies in his 
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conclusions about the feasibility of performing large proofs 

mechanically, and his recommendations and suggestions about what 

would have had to be added to Stanford LCF to make the proof effort, 

in its entirety, feasible. 

In relation to Edinburgh LCF, its predecesor, Stanford LCF, was 

based on a similar but more primitive logic, and did not include a 

programming language in which to express procedures for manipulating 

objects in the logic. It had only a few standard facilities for 

goal-oriented proof generation, and was essentially a proof checker. 

The Edinburgh LCF system was much influenced by Newey's conclusions 

about the need for a 'high level command language' in which to 

conduct proofs, for improved abilities to do automatic proof, and 

for a more organised way of extending the basic logic with new 

constants and axioms. 

Early work on the verification of compilers for imperative 

languages was done by Kaplan; he treated (informally) a language 

containing an assignment statement and a conditional construct, 

which was compiled into a language of 'load' and 'store' 

instructions for an abstract machine. Both languages were given an 

operational semantics, a compiling algorithm was presented, and a 

(very long) proof given. The proof was by recursion induction (a 

precursor of computational induction). The proof was, like McCarthy 

and Painter's, intended for eventual machine validation. 

The work on compiler correctness proofs most relevant to the 

current work, and on which it is based, was done by Milner and 

Weyhrauch in the setting (again) of Stanford LCF. There, a high 

level language containing assignments, conditionals, while 
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statements and sequencing of statements, (forming a language very 

close to the one later treated by Russell and used here, in Chapter 

3) was considered. A low level stack-manipulating language for an 

abstract machine was specified, and a denotational and operational 

semantics (respectively) were given for the high and low level 

languages. Effort was concentrated on organising the problem for 

mechanical checking. Concepts from universal algebra were applied, 

to this end, and a structure of eleven subgoals was formed. Typical 

subgoals were to establish that the semantic functions and compiling 

function were homomorphisms. Proofs of seven of the sub goals were 

successfully checked in Stanford LCF. 

The current work has built upon and continued the 

Milner-Weyhrauch project, both by (i) treating a very similar 

formulation of the compiler correctness problem, and (ii) making use 

of a proof generation system which was developed as a result of that 

research, and Newey's. As regards (i), we have used nearly the same 

high level language (in Chapter 3), but simplified the problem, 

following Russell's proposals, by dealing neither with expression 

compilation, nor with the generation of new label names in the 

target code. We too have given attention to the effort required to 

organise and structure the proof, but have chosen to use features of 

Edinburgh LCF, and other techniques, rather than to appeal to 

algebraic principles. As regards (ii), we have had the advantage of 

previous experience in the form of a much more sophisticated proof 

system, a proof generation rather than a proof checkin& system, in 

which strategies for performing proofs can be written and applied. 

Both Newey, and Milner and Weyhrauch concluded from their 
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experiments that the generation of formal compiler proofs was a 

feasible undertaking, but only in the context of the more advanved 

LCF system which was subsequently designed and implemented by 

Gordon, Milner, Morris, Newey and Wadsworth. We feel privileged to 

have had the advantage of all of the previous work on compiler 

proofs, particularly that done in Stanford LCF, and access to a 

system which makes proof efforts as desrcibed feasible -- and 

pleasant. 
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Chapter 1: Introduction to Proof in LCF 

Edinburgh LCF, Logic for Computable Functions, is a system 

designed to assist in the interactive generation of formal, machine 

proofs, particularly in the areas of programming language semantics 

and recursive function theory. It is based on work by Scott and 

Strachey, [43,44,46], and on its forerunner, Stanford LCF, 

[26,27,50]. The current system was implemented in 1974-1979 by 

Gordon, Milner, Morris, Newey and Wadsworth (13,15]. 

LCF consists of two levels. The first is a logic called 

PPLAMBDA (for polymorphic predicate lambda calculus) in which 

properties of recursive functions and semantics can be conveniently 

stated. PPLAMBDA can be extended by the introduction of new logical 

types, constants and axioms, to form theories, in the usual logical 

sense. The terms of PPLAMBDA are as in the typed lambda calculus, 

and the formulae as in the predicate calculus. 

PPLAMBDA is interfaced to a second level, a programming 

language, ML (for meta language), which is designed for referring to 

and manipulating objects in the logic. ML is used for programming 

procedures which generate proofs in PPLAMBDA. It is a general 

purpose, higher order language with a strict type discipline, a 

user-defined abstract type facility, and an exception handling 

mechanism. 

In this chapter, we briefly introduce ML and PPLAMBDA, and 

illustrate, with an example, the concept of tactical proof. Fuller 

descriptions of ML, PPLAMBDA and tactical proof may be found in the 

LCF manual [15], and in [6,11,14,29,30,31,32,33]. 
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The Meta Language ML 

ML is a general purpose programming language whose type 

discipline provides the basis of its interface to the logic 

PPLAMBDA. 

An ML expression, e, can take the following (main) forms: 

e ::= ce constant expressions, including the 
integers 0,1,..., and the truth values 
true and false 

id variables 

el e2 application of (function) el to (argu- 
ment) e2 

if e then el conditional, where e evaluates,to true 
else e2 or false 

e1=e2 test for equality of expressions el and 
e2, returning a boolean value 

d in e a local declaration d (see below) 

i7.vl...vn.e lambda abstraction on the 'variable 
structures' vl,...,vn (see below) 

[el;...;en] list containing el,...,en 

fail causes current evaluation to fail 

Variable structures, v, may be: 

v () 1 id I vl.v2 I vl,v2 I [vl;...;vn] 

for the empty variable structure, a simple variable, a constructed 

list of variables, a pair of variables, and a list containing the 

variables vl,...,vn. 
As we have mentioned, ML has a type discipline which requires 

that all ML expressions (and variable structures) have an ML type. 

The implemenatation of ML includes a (compile-time) type-checker 
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which infers the types of objects, if a consistent type can be found 

for them. In addition, the types of expressions and variable 

structures may be constrained (to a type ty, say) by the following 

notation: 

e e:ty 

v v:ty 

ML types are useful for debugging ML procedures, and they are 

essential in ensuring that ML procedures do not compute non- 

theorems. (This is discussed in the section after the next.) 

ML types are given by: 

ty ::= cty I vty I tyl x ty2 I ty1-4ty2 I (tyl,...,tyn) id 

Constant types, cty, include type constants such as int, for 

integer, and bool, for boolean value. (The ML constants 0, 1,... 

have type int, and true and false have type bool.) There are also 

several additional constant types specific to PPLAMBDA, which are 

discussed in the section after the next. 

Types may also be type variables, vty, which we indicate with 

asterisks (e.g., *, **, etc.). 

Compound ML types are built from other types using standard 

operators such as x and--3. tyl x ty2 denotes the type given by the 

Cartesian product of tyl and ty2; tyl-3 ty2 is the type of functions 

from objects of type tyl to objects of type ty2. 

Finally, types can be built from standard or user-defined 

abstract type operators. An example of a standard (unary) type 

operator is list; the type ty list (for some type ty) is the type of 
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a list of objects of type ty. 

Types which are constructed from type variables are called 

polymorphic types; an object with polymorphic type is said to have 

each substitution instance of the polymorphic type as its type. 

(See [15,32] for further discussion of polymorphism.) 

ML declarations, d, include the forms: 

d let b I letrec b 

for non-recursive and recursive declarations, respectively, where 

bindings, b, can be: 

b v=e I id v1 ... vn = e bl and b2 ... and bn 

(where, in the third case, each bi must be of the first or second 

form). Bindings of the second form are equivalent to id = 

?v1...vn.e, so that they are really of the first form. Bindings of 

the third form effect several bindings at once. 

In evaluating an expression containing a non-recursive 

declaration d, (let d in e, for example), e is evaluated in an 

environment in which d has been evaluated first. (Environment, 

here, means an association of identifiers with expression values.) 

The expression (letrec d in e) gives the recursive interpretation to 

variables in d. (Only functions may be defined recursively by the 

letrec construct.) A declaration d is evaluated by first evaluating 

its binding, b, to produce a new environment. A binding v=e is 

evaluated by evaluating the expression e, then attempting a pattern 

match between the value of e and the variable structure v (lists 

match lists of equal length if corresponding elements match, 
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identifiers match all expression values, and so on) and finally, 

extending the environment according to the list of 

identifier-expression value pairs determined by the match (if the 

match succeeds). A typical expression, in the following chapters, 

is 

\[x:int;y:int]. x,y 

This denotes a function expecting a list of two integers, and 

returning an ordered pair of the two elements of the list; that is, 

the expression denotes a function of type int list--4(int x int). 
Many features of ML have been omitted or simplified in the 

exposition above. In particular, there are two additional forms of 

declaration in ML. The first is an abstract type or type operator 

definition, introducing a set of types or type operators whose 

representations are local to the declarations. These, like ordinary 

ML declarations, may be recursive or non-recursive. We do not 

provide details here, but refer the reader to [15], especially 

2.4.5. 

One can also abbreviate types; defined types are identifiers 

standing for other types. We add to the possibilities for 

declaration 

d ::= lettype db 

where defined type bindings db are 

db :.= idl=tyl and ... and idn=tyn 

For example, one might write 
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lettype intpair = int x int 

to save writing int x int. 

In general, in this presentation, we try to avoid giving 

explicit ML expressions; instead, we attempt to convey the intention 

of the ML functions by description or diagram. Where we do list ML 

expressions, they will generally have the form 

let d in e 

Finally, a variety of standard functions are supplied in ML, 

some for general list processing, and others for handling PPLAMBDA 

objects. Typical functions of the first sort are hd:* list --) *, 

tl:* list---'4 * list, and null:* list -- tr, to take the head and 

tail of a list (of arbitrary type), and to test whether a list is 

empty. 

The Logic PPLAMBDA 

PPLAMBDA is a typed logic in which formulae are built up in the 

usual ways from terms. Just as all expressions in the programming 

language ML have ML types, so all terms in PPLAMBDA have PPLAMBDA 

types. Each PPLAMBDA type is taken to denote a domain (complete 

partial order, or cpo) with a minimum (least defined) element. 

PPLAMBDA types, type, are given by: 

type c I id I typel + type2 typel x type2 

typel--3 type2 type u 
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for type constants (including the type tr for PPLAMBDA truth 

values), type variables (which, like ML type variables, are written 

with asterisks), and types which are constructed by the binary type 

operators +, x , and --> , or the unary type o perator u. +,x , and 

correspond to the sum, product and function space operators on 

domains. u corresponds to the 'lifting' operator on domains, which 

adds to a domain a new minimum element. It should be noted that + 

means coalesced sum; the corresponding domain operator can be 

depicted as: 

that is, the sum for which the minimum elements of D1 and D2 are 

identified. The domain operator corresponding to u can be depicted 

as: 

The separated sum, ++, say, can clearly be be expressed in terms of 

+ by use of the lifting operator: D1 ++ D2 = D1 u + D2 u. 

The terms t of PPLAMBDA are given by: 

t ::= c I id I tl t2 I 7v.t I t=--tlIt2 I tl,t2 I t:type 

for constant terms, variables, application of tl to t2 (a term which 

can only be constructed if tl has functional type *-4**, say, 
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relative to which t2 has type *), lambda abstraction to a bound 

variable v, conditionals (where t must have type tr, and the types 

of the alternatives tl and t2 are the same), ordered pairs, and the 

constraining of the type of a term. The notion of type polymorphism 

in PPLAMBDA is similar to that in ML. 

Constant terms, c, include the following terms, given with 

their constant or polymorphic types (* and ** are type variables): 

c :.= TT truth value true 

FF truth value false 

1 minimum (undefined) element 

FIX the least fixed point operator 

FST function to select the first el- 
ement of a pair 

SND function to select the second (* x **)-- ** 
element of a pair 

functions to inject elements of 
appropriate type into sum domains 

tr 

*__., (* + **) 

**-4 (* + **) 

OUTL 
functions to project elements of 
appropriate type out of sum do- 
mains 

(* + **)__,. * 

(* + **)_4 ** 

(* + **)- tr 

* (* u) 

(* u)-4 * 

OUTR 

ISL to test whether an element is 
in the left summand of a sum do- 
main 

UP 

DOWN 

to lift and lower domains 

DEF to determine whether an element *---qtr 
is defined (returns TT if so and 
L otherwise) 
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These constants are axiomatised in LCF by rules of inference; rules 

of inference are discussed in the next section. 

PPLAMBDA formulae, f, are given by: 

f ::= TRUTH I t t' I t t' I f & f' I f IMP f' I V v1...vn. f 

That is, the tautology formula TRUTH, equivalences or inequivalences 

of terms (in the sense of the ordering Q - over the domain 

corresponding to the type of t and t'), and conjunctions, 

implications, and universal quantifications as in the predicate 

calculus. 

In addition, PPLAMBDA can be extended by the introduction of 

new types and type operators, new constants having these types, and 

new axioms (as discussed in the next section) to form LCF theories. 

The LCF theory facility enables the user to incrementally develop 

and preserve theories, and to construct hierarchies of theories in 

which each theory inherits from an ancestor all of the types, 

constants, axioms and proved facts of that ancestor. In this 

manner, the objects and theorems needed in the formulation of 

problems in LCF can be neatly organised and made accessible, rather 

than being introduced in an ad hoc or behind-the-scenes way. We 

illustrate the use of LCF theories in the following chapters. 

The Interface of ML to PPLAMBDA with an FXam_p e 

The interface is achieved by three additional constant ML types 

(as well as a parser for concrete PPLAMBDA syntax). The types are 

term, form and type, to represent PPLAMBDA terms, formulae and 
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types. These could, in theory, be introduced as abstract types, but 

they are provided as basic types for convenience and efficiency. 

Other PPLAMBDA objects are defined in terms of these; for example, 

theorems, in sequent style, are represented by the type 

form list x form, that is, a list of hypotheses paired with a 

conclusion. The type thm, for theorem, admits various rules of 

inference as operations. Only the rules of inference associated 

with the type thm can produce results of the type thm; the 

type-checker for ML expressions ensures this. Thus, modulo the 

soundness of the rules of inference, only valid theorems can be 

returned by ML functions. 

Among the functions provided in ML for handling objects in 

PPLAMBDA are the following abstract syntax functions: 

mkequiv:(term x term) -form for constructing equivalences 

destequiv:form--(term x term) for taking equivalences apart 
into pairs of terms 

rhs:form--4 term for selecting the right hand 
side of an equivalence or an 
inequivalence 

lhs:form-4 term for selecting the left hand 
side of an equivalence or an 
inequivalence 

destcomb:form-4 (term x term) for taking applications apart 
apart into pairs of terms 

isbottom:term - ) bool for testing for ±(of any type) 

All of these functions fail when inapplicable. 

We illustrate some of the ideas presented thus far, and some of 

the intended uses of LCF, with an example. Following are three 

PPLAMBDA rules of inference: TRANS, APTHM and MINAP. We write them 
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below in the natural deduction format of PPLAMBDA inference. The 

concept of a rule of inference, it should be noted, does not 

correspond to a particular ML type, since different rules have 

different types. A rule of inference always takes some number 

(possibly zero) of theorems, curried or paired, as arguments, and 

produces a theorem as result. The types of these three are: 

TRANS:(thm x thm)-4 thm 

APTHM: t erm-4 thin -'i thm 

MINAP: term-3 thm 

(In fact, the type of APTHM is actually thm - term ---s thm, but 

for convenience, we have reversed the order of the arguments in this 

exposition; we prefer to place non-theorem parameters first.) 
Here and throughout, we use the following notation for a 

theorem with a list of hypotheses A and a conclusion w: A W. 

(Occasionally, though, we do not list the hypotheses.) We denote 

rules of inference by drawing a line, and writing the theorem 

returned by the rule below, and the theorem arguments of the rule 

above. The names of the rules are shown above each diagram, applied 

to the non-theorem arguments, if there are any, as in the second and 

third rules below. Some rules have no theorem arguments, e.g., 

MINAP. Such rules are sometimes referred to as axiom schemes. (u 

denotes union.) . 

TRANS 

A1- t 9u A2 - u c v 

Al u A2I-- itC v 
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APTHM t 

A I--- u qz v 

A ,-- u t= v t 

MINAP t 

- J t M J 

These are the rules for the transitivity of c , the monotonicity of 

application, and the minimality of 1, respectively. 

Suppose that we wish to prove that I x y -_L, for all x and y. 

To do this, we could evaluate 

TRANS (APTHM y (MINAP x), 
MINAP y) 

The structure of this proof can be displayed as a tree, in which 

nodes are theorems and arcs represent the application of rules of 

inference, as indicated: 

MINAP x MINAP y 

-1x-1 E-1y 

APTHM y 

-Ix yy 
TRANS ( . , . ) 

--Ix y 

A proof done in this fashion is called a forward proof. 
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Tactical Proof 

In contrast, let us consider the following heuristic for 

proving any formula of the form t x = 1-: 

When trying to prove that t x try proving as a subgoal 
that t = 1-. 

There are three observations to be made about this heuristic, 

besides the fact that it solves our goal, Lx = i (since -I..= L 

follows by reflexivity). Firstly, the heuristic will not always 

'work'; consider a formula (Ax.x)1.- ly for which the heuristic 

suggests an a priori unachievable subgoal. Secondly, if the subgoal 

can be proved, then the original goal, t x = 1-, can also be proved, 

by application of the function 

'Xth:thm. TRANS(APTHM x th, MINAP x) 

to the theorem corresponding to (achieving) the subgoal: 

-t = l 
The application produces a theorem ---t x = -L-. Thirdly, applying 

the heuristic n-1 times to a formula of the form 1_x1 x2 ... xn = 1 

yields a subgoal 1 xl -I--, which is in turn proved by evaluating 

MINAP xl. Thus we can use the same heuristic (repeatedly) for 

solving more complex goals. 

A tactic is a defined type in ML for representing strategies 

such as the one above. Tactics are functions which generate 

subgoals, given goals, and which provide mappings from achievements 
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of subgoals to achievements of goals. We write, in ML, 

lettype tactic = goal-4 (goal list x proof) 

where we have already defined 

lettype proof = thm list-3 thm 

(the type goal is defined below). We occasionally use tactic to 

mean tactic scheme, that is, a function from some parameters to a 

tactic, when this does not cause confusion. 

There are many possible ways of defining the type goal in ML, 

(for example, some are discussed in [15,33]), and in certain 

respects, the standard definition in LCF is arbitrary. However, 

because later discussion depends on the particular choice, we 

explain the actual definition at this point. A goal consists of the 

formula to be proved, coupled with a list of current assumptions 

(induction hypotheses, case assumptions, lemmas and the like), and a 

third component which is extremely useful: a simplification set. A 

simplification set is (conceptually) a list of theorems intended to 

be used as left-to-right rewrite rules whenever possible in the 

course of a proof. In LCF, simpset (for simplification set) is 

another constant ML type. Simpsets are formed from lists of 

theorems; we occasionally identify simpsets with lists of theorems, 

in this presentation, where this does not cause confusion. A 

standard simpset of simple rewrites, called BASICSS, is provided in 

ML. It includes the rewrites justified by MINAP, by 

beta-conversion, by the reflexivity of equivalence, and other 

routine simplifications. Tools are also provided for the user to 
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form simpsets. We employ the notation 

th + ss 

for the simpset resulting from adding a simplification rule 

corresponding to the theorem th to the simpset ss. (The elements of 

a simpset are called simplification rules, or simprules.) 

In general, the theorems suitable for being included in 

simplification sets are of the form f-t = t'. Implications of the 

form -w IMP tae t' are also acceptable, and are used as rewrites 

only when the antecedent, w, can be proved first by simplification. 

(Modus Ponens justifies the subsequent use of the simprule.) Rules 

formed from implications are called conditional simprules. In 

addition, theorems of the form j.- V xl...xn.w are acceptable, when w 

is acceptable. Theorems of this form are specialised to arbitrary 

xl...... xn' before being applied as rewrites. (For more detail on 

simplification in LCF, see [15], especially A8.) 

A goal is therefore defined in ML by 

lettype goal = form x simpset x form list 

that is, it is composed of the formula to be proved, a relevant 

simplification set, and the current assumptions. 

We write simple goals, with formula w, simpset ss, and 

assumption list A as (w, ss, A), and, in this presentation, more 

complex ones as 

w 
ss 
A 
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in order to separate the components. 

We say that a theorem, A I- w, achieves a goal, (w' , ss, A') if 

w is w' (up to alpha-conversion) and if all of the hypotheses, A, of 

the theorem belong either to the assumption list A', or are 

hypotheses of one of the theorems to which an element of the 

simpset, ss, corresponds. 

A set of standard tactics is provided in LCF. Additional 

tactics are written in ML by the user. We introduce here another 

informal notation, for tactics, displaying the intended goal above a 

double line, and the subgoals returned, possibly with an indication 

of the proof function, below. Most of the time, the details of the 

proof function can be subordinated, as they are suggested by the 

specification of the subgoals. 

For example, consider the standard inference rule GEN of type 

term - b thm --- , thm: 

GEN x 

A I- w 

A I-- Vx. W 

where x is not free in A. We can then express a tactic 

GENTAC 

ss 

("a[th]. GEN x' th ) 
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where x' is not free in A, and w[x'/xj means w with all free 

occurrences of x replaced by x'. GENTAC accepts a goal whose 

formula is quantified and returns a subgoal whose formula is 

specialised to an arbitrary variable x'. The proof part uses GEN. 

A theorem achieving the subgoal, when generalised to x', clearly 

achieves the goal, since the formula Vx'.w[x'/x] and Vx.w, are the 

same up to renaming of variables. Thus GENTAC inverts the inference 

rule GEN. It implements the following heuristic for proving 

quantified formulae: 

To prove that w holds for all x, try proving for arbitrary x' 

that w with x replaced by x' holds. 

Two other useful standard tactics are CASESTAC and INDUCTAC. The 

inference rules which they invert are, naturally, CASES and INDUCT: 

CASES: term -3 (thm x thm x thm) ---) thm 

INDUCT: (term x term) list --; form -- (thm x thm) ---+ thm 

where 

CASES (t:tr) 

(t = TT). Al I- w 
(t = FF). A2 - w 
( t = _Q . A3 -- w 

Al u A2 u A3 I-- w 

(where an assumption list A 'matches' w.Al if A contains w, up to 

alpha-conversion, and A's remaining elements match Al). CASES takes 

three theorems, representing a theorem with the respective 
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assumptions that some term t is true, false and undefined, and 

proves the theorem without case assumptions. 

We let [funi,fi] denote the list [funl,fl;...;funn,fn], and 

w[xi/fiJ denote w[xl/fl]... [xn/fn] . 

INDUCT [funi,fiJ 

Al I..__ w[J. /fil w.A2 - w[ (funi fi)/fil 
Al u A2 I- w[ (FIX funi) /fiJ 

where the fi are not free in A2. This expresses the rule of 

computation induction originally formulated by Park [39]: 

(w[-i- /fil & Vfi. w D w[(funi fi) /fiJ ) D w[(FIX funi)/fil 

INDUCT is the standard rule of induction in LCF; any other desired 

induction rules must be derived from it. New induction rules are 

mentioned in Chapters 3 and 4, and discussed in the Conclusions and 

Appendix. 

CASESTAC and INDUCTAC are tactic schemes having types 

CASESTAC:term -', tactic 

INDUCTAC:thm list- tactic 

and are depicted as: 

CASESTAC (t:tr) 

(w, s s , A) 

w 
(t = FF) + ss2 (t i) + ss3 (t= TT) + ssl 

1(t = TT) A (t =FF)A 

(T[thl;th2;th3]. CASES t (thl,th2,th3)) 

(t3 t) A 
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where the simpsets ssl, ss2 and ss3 are all ss, with the respective 

assumptions _-t TT, - t FF, and I- t- L added as simprules. 

Another standard tactic, CONDCASESTAC, searches through the 

formula w to find the first term of boolean type which is the 

boolean-valued part of a conditional, and performs case analysis on 

that term. CONDCASESTAC fails if it finds no appropriate term. 

INDUCTAC is depicted as follows, where [I--ti m FIX ui] denotes 

the theorem list [I- tl = FIX ul; ... ;-tn - FIX un] : 

INDUCTAC (}-ti - FIX uil 

(w, ss, A) 

W( -L /ti]' 
ss 
A 

w[(ui xi)/til 
ss 
L(w[xi/ti] ) A 

(T[basis;step]. INDUCT (ui,ti) w (basis,step) ) 

where the xi are not free in w or A. INDUCTAC, given a list of 

theorems defining the ti as least fixed points of the functionals 

ui, returns two subgoals: a basis, with J. substituted for the ti, 
and a step, with (ui xi) -- xi rather than ti because the 

inductive step holds for all xi -- with the hypotheses added to 

the list of assumptions. The proof part expects two theorems, 

achieving the basis and step, respectively, calls INDUCT to prove 

w[(FIX ui)/ti], and substitutes according to the definitions of 

the ti. 

If a tactic T when applied to a goal g produces an empty list 

of subgoals, we say that T solves g. This is not to say that g has 

been achieved, however, since the proof function might be incorrect. 

If T on g gives subgoals gl,... ,gn and proof p, and if it is the 
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case that for any theorems thl,...,thn which achieve goals gl,...,gn 

respectively, p applied to the theorem list [thl;...;thnj achieves 

g, then we say that T is valid. If, in addition, the goals 

gl,...,gn are achievable, we say that T is strongly valid. Ideally, 

one would always use strongly valid tactics, but this is not always 

possible; the tactic suggested by the heuristic on p. 28, for 

example, is not strongly valid, but the tactic is nonetheless 

useful. 

In any case, it is important to note that, valid or otherwise, 

application of a proof function to a theorem list cannot return a 

non-theorem. At worst, the application fails, or an unexpected 

theorem results. 

To reflect the heurstic, on p. 28, we write a tactic (which we 

call MINCOMBTAC) depicted as 

MINCOMBTAC 

(t x g _L, ss, A) 

(t =_i, ss, A) (T[th]. TRANS(APTHM x th, MINAP x)) 

A procedure to implement this tactic is easily written in ML. To 

give the flavour of the process of implementing tactics in ML, we 

show the procedure below: 

let (MINCOMBTAC:tactic) (w, ss, A) _ 
let r = rhs w 

in if isbottom r 
then let (t,x) = destcomb(lhs w) 

in (mkequiv(t,r), ss, A), (T[thj.TRANS(APTHM x th, 
MINAP x) ) 

else fail 

The procedure examines and takes apart w, and if the right hand side 
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of the formula is L , it gives meta-names to V's parts and 

constructs the appropriate subgoal list and proof. If not, the 

tactic fails. (For a further discussion of the failure trapping 

mechanism in ML, see [15], especially 2.1.) 

As we observed earlier, the fact that i_ _ J- follows from 

reflexivity, which is expressed as an inference rule (axiom scheme) 

in LCF by the rule REFL: term -4 thin 

REFL t 

The tactic we require to complete the proof that J_ xl...xn - L 

could be called BOTREFLTAC: 

BOTREFLTAC 

(L I , ss, A) 

[ ], (T[ I. REFL J_) 

The tactic, in trying to prove that L ° -L, returns an empty list 
of subgoals (that is, it recognises that the goal can be achieved 

immediately) and a proof which expects an empty list of theorems and 

returns the appropriate theorem as result. To implement BOTREFLTAC 

in ML we would write 

let (BOTREFLTAC:tactic) (w, ss, A) _ 
let (tl,t2) = destequiv w 

in if isbottom tl 
then if isbottom t2 

then ([ ], (T[ ].REFL tl)) 
else fail 

else fail 
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Finally, we indicate how basic and user defined tactics can be 

combined to form more sophisticated tactics. A control structure 

for the language of tactics is provided by tacticals. By analogy 

with functionals, tacticals are functions which take tactics as 

arguments and/or return tactics as results. The main tacticals 

provided in LCF are THEN, THENL, ORELSE and REPEAT, with types 

THEN: (tactic x tactic) --) tactic 

THENL: (tactic x tactic list) --) tactic 

ORELSE:(tactic x tactic) -- tactic 

REPEAT:tactic --4 tactic 

As for inference rules, we use tactical to mean tactical scheme, as 

different tacticals have different ML types. For readability, the 

first three tacticals listed above are infixed. 

As the names suggest, Ti THEN T2 is a tactic which, given a 

goal, applies Ti to the goal to obtain subgoals, applies T2 to the 

subgoals to obtain further subgoals, and returns those, along with 

the correctly composed proof function. T THENL [Ti;... applies 

each tactic in the list (respectively) to each subgoal in the list 

of subgoals produced by applying T to a goal. Ti ORELSE T2 applies 

Ti to a goal, and if that fails, applies T2. REPEAT T applies T to 

a goal and to successive subgoals until a failure occurs (if it ever 

does). (Obviously, the ML failure trapping mechanism is basic to 

the use of tacticals.) 

We distinguish tactics implemented as ML procedures which do 

not call other tactics from tactics built by the use of tacticals, 

by calling the two sorts derived and composite tactics, 
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respectively, throughout this presentation. 

To return to the goal with formula part .L x1 ...xn we 

are now in a position to solve the goal with a composite tactic. We 

simply apply the tactic 

(REPEAT MINCOMBTAC) THEN BOTREFLTAC 

to the goal with the correct formula, an empty simpset, and an empty 

list of assumptions. This solves the goal, since each application 

of MINCOMBTAC to the subgoal with formula J_ x1...xi a --- 'removes' 

xi to give the subgoal 1 x1...x(i-1)s L, until the subgoal with 

formula L is produced; MINCOMBTAC then fails, and the goal is 

solved by BOTREFLTAC. The proof returned by the application of the 

whole (composite) tactic to the goal, when applied to the empty list 
of theorems, returns the theorem--1x1...xn -, which is what we 

set out to prove. 

This example, however, is somewhat contrived, because it 
operates at a simpler level than that at which one normally works in 

LCF. Reasoning at this level is generally handled by a standard 

(rather special) tactic called SIMPTAC. Given a goal with formula 

part w and simpset ss, SIMPTAC returns a goal with a formula part 

which is the result of applying the rewrite rules in ss as many 

times as possible to w. It also returns a proof which justifies the 

simplifications made. SIMPTAC returns the empty list of subgoals if 
some subgoal arising in the course of simplification is a 

(recognised) tautology. In that case, the proof function returned, 

when applied to the empty list of theorems, returns a theorem 

achieving the original goal. For example, goals with formulae of 
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the form .L x ° 1 or t = t are solved immediately by 

simplification, provided that the standard set of basic 

simplifications (BASICSS) is included in the simpset of the goals. 

SIMPTAC, used with the basic simprules, relieves the user of a 

great deal of the tedium of generating proofs; it accomplishes much 

routine work automatically. By using other theorems as 

simplification rules, still more proof can be relegated to 

simplification. This is illustrated at numerous points in the 

following three chapters. 

At any rate, we can now see that the goal with the formula part 

L xl...xn could actually have been solved by a single 

application of SIMPTAC, assuming that the basic set of 

simplifications were included in the original goal. 

It is important to observe that although the eventual outcome 

of applying the compound tactic above (or SIMPTAC) to the 

appropriate goal is simply a theorem, and the sequence of inference 

rules invoked and intermediate theorems proved is nowhere stored, a 

complete proof has still been evaluated. That is, each step of the 

proof has been performed, and the application of the tactic to the 

goal has &enerated the proof. Modifications could be made to the 

type goal in LCF to ensure that the sequence of proof steps were 

preserved, if that were desired. The type-checking facility of ML 

guarantees that only rules of inference can return objects of type 

thm, however, so it is not necessary to store sequences of primitive 

proof steps. 
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The style of proof illustrated in this section (in contrast to 

the forward proof described on p. 27) is called tactical or goal 

oriented proof. One of the principles of LCF is that the generation 

of subgoals from goals by the application of tactics reflecting 

strategies is a natural and convenient style of proof, a style which 

corresponds to the way in which proofs are planned and abstracted by 

humans. Tactical proof allows varying degrees of automation; 

tactics which are inverses of basic inference rules generate 

subgoals at a basic level, requiring the user to be aware of the 

detailed course of the proof, while sophisticated tactics may 

accomplish large proof steps, or whole proofs, sparing the user 

contact with the details. The end product of a tactical proof is 

what might be called a 'proof story' or a 'high level proof', rather 

than a proof in the conventional sense of a sequence of theorems, 

each following from earlier ones by applications of primitive 

inference rules. High level proofs are both more intelligible and 

more revealing (of the structure of the proof effort) than long 

sequences of this kind; the tactics required to perform a proof 

provide a better basis for making generalisations and proving other, 

similar theorems. 

The problems considered herein are all experiments in the use 

of tactical proof. We consider some proofs related to recursion 

removal and to compilation of simple languages, and study the 

tactics which generate them, with an eye for useful, general 

tactics. We then try to assess the difficulty of performing more 

realistic verifications by this methodology. 
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Chapter 2: Proofs of Recursion Removal Schemata 

The first group of proofs which we discuss are proofs of the 

equivalence of several recursive function schemata to iterative 

scbq.mata. Three case studies in LCF are examined. In each case, we 

present the transformation and give the informal proof in sufficient 

detail to motivate the tactics which generate the machine 

proofs. We discuss the formalisations of the problems in PPLAMBDA, 

and the implementation of the proof strategies in ML. Our aim is to 

isolate useful and general tactics for these and related proofs, 

rather than to discover program transformations or to prove their 

correctness automatically; we concentrate on the more narrow goal of 

generating proofs once the theorems to be proved have been found and 

the methods of proof settled. We conclude by outlining a 

hypothetical general tactic, based on the examples, for proving 

equivalences of recursive and iterative schemata, illustrating the 

way in which general strategies can be developed, expressed and 

applied in LCF. 

The machine proofs exercise LCF in its capacity for expressing 

general properties of recursive functions. We use PPLAMBDA 

(extended with new logical types) and its implicit semantics to 

define the functions, rather than give an explicit syntax and 

semantics for a language of recursive definitions. (When we 

consider compilation, in Chapters 3 and 4, we do define new 

languages and give their semantics.) At present, we verify only 

particular transformations which a compiler would treat in a uniform 

way. The methods of proof, however, appear to be quite general. 
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The first two problems are drawn from Manna and Waldinger [221. 

The first is very simple, and is considered in some detail chiefly 

as a way of further introducing the formalisation of problems and 

the generation of proofs in LCF. We have devised the third problem 

to show that similar tactics can be used to solve a different goal. 

Further details of the actual machine proofs are found in the 

Appendix. 

The Accumulator Problem 

We consider a recursive function F, defined as follows: 

F x = P x f x I h(x,F(g x)) 

where h is taken to be an associative, binary operation with left 

identity e, strict in its second argument. One can transform F to 

an iterative 1 function F1 by introducing an accumulator z as an 

2 argument 

F1 x z = P x h(z,f x) I F1(g x) (h(z,x)) 

and proving that for all x, 

F1 x e = F x 

We prove this by showing something more general, namely 

Theorem 2.1 
Vx z. F1 x z = h(z,F x) 

We formulate the problem by defining F and F1 as the least fixed 
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points of functionals FUNF and FUNF1 respectively, where 

FUNF = F' x. P x 4 f x I h(x,F'(g x)) 

FUNF1 = ?F1' x z. P x-04 h(z,f x) I F1'(g x)(h(z,x)) 

Then F = FIX FUNF and Fl = FIX FUNF1. 

The proof of Theorem 2.1 is by parallel computational induction 

on F and Fl. We assume that for all Fl' and F', 

V x z. Fl' x z = h(z,F' x) 

and show 

Vx z. P x h(z,f x) I F1'(g x)(h(z,x)) _ 
h(z, P x= f x I h(x,F'(g x))) 

proving the step for arbitrary x and z, and arguing by cases on 

whether P holds of x. (The basis of the induction, 

J- x z = h(z,l x) 

is easy to show.) If P x does hold, or if P x is undefinied, the 

argument is easy. If it does not, we must show that 

F1'(g x)(h(z,x)) = h(z,h(x,F'(g x))) 

This is accomplished by applying associativity, and then using the 

induction assumption with z instantiated to h(z,x) and x to (g x) 

The proof is typical of many proofs about recursively defined 

functions. The functions are defined as the least fixed points of 

functionals, so we use computation induction. The defining 

functionals are conditionals, evaluating some boolean-valued term 

43 



and branching to recursive calls. The general form of such proofs 

is summarised by the following informal strategy: 

Do induction on the recursively defined functions, then prove 
for arbitrary values of the variables. The basis is easy. 
Divide into cases according to whether the condition is true or 
false. Simplify, and use the induction hypothesis where 
appropriate. 

Our aim here is to represent the Accumulator problem in PPLAMBDA and 

to reflect the plan for the proof in a tactic which generates the 

formal proof. 

We first make sense of the function definitions by assigning 

types to the variables; * is a type variable. 

We then invoke the PPLAMBDA inference rule (axiom scheme) ASSUME, of 

type form--a thm, 

ASSUME w 

w H w 

to introduce the assumptions governing h and e 3 . 
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a b c. h(a,h(b,c))- h(h(a,b),c) 

I-- a. h(a,-L) L 

I-- a. h(e, a) a 

(each of which has one hypothesis, namely, the formula assumed), and 

the definitions of F and F1, to which we give the meta-names thF and 

thFl: 

thF 

-F = FIX(XF' x. P x f x I h(x,F' (g x) )) 

thFl 
E-F1 = FIX(' F1' x z. P x ' h(z, f x) I F1' (g x) (h(z,x)) ) 

Our aim is to prove the following theorem in LCF, corresponding to 

Theorem 2.1 

thA 
`dx z. F1 x z = h(z,F x) 

(A for Accumulator) using the five assumptions as rewrite rules. We 

therefore form a simpset (called SSA), adding to BASICSS the five 

assumptions, and join SSA with the formula to be proved, and an 

empty list of assumptions, to form a goal ( ogalA): 

Vx z. F1 x z 

SSA 

h(z,F x) 

We mirror the informal proof plan (up to the use of the induction 

hypothesis) as a composite tactic: 

INDUCTAC [thFl;thFJ THEN SIMPTAC THEN REPEAT GENTAC 
THEN CONDCASESTAC THEN SIMPTAC 
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In the interests of succinctness, we adopt a convention of writing 

composite tactics in columns, concealing occurrences of the tactical 

THEN, using T+ to denote T THEN SIMPTAC, and T* to denote REPEAT T. 

The tactic so far is therefore 

(INDUCTAC [thFl;thF] )+ 
GENTAC* 
CONDCASESTAC+ 

This informal notation could be made rigorous by introducing two new 

tacticals: 

SEQ:tactic list--a tactic 

THENS:tactic--' tactic 

defined in ML by writing 

let SEQ tacl = if null tacl 
then IDTAC 
else (hd tacl) THEN (SEQ(tl TACL)) 

(where IDTAC is a standard tactic such that for all g:goal, IDTAC g 

([ g] , hd)) and 

let THENS T = T THEN SIMPTAC 

so that the tactic thus far would then be written 

SEQ [THENS (INDUCTAC [thFl;thF]); 
REPEAT GENTAC; 
THENS CONDCASESTAC] 

but we will continue to use the more informal notation. 
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The tactic generates a tree of successive subgoals: 

goalA 

INDUCTAC [thFl;thF] 

Vx z. 1 x z = h(z, J_ x) Vx z.(TF1' x z . P x 
SSA h(z,F' x ) I 

F1'(g x) ( h(z,x) ))F1 x z 
h(z,( F' x. P x 4 f x 
h(x,F'(g x)))F x 

SSA 
x z. F1 x z = h(z,F ' 

SIMP TAC S IMPTAC 

yx z. P x -4 h(z,F' x) 
F1' (g x) (h(z,x)) 

=h(z, (P X f x 
h(x,F'(g x))) 

SSA 
dx z. Fl' x z = h(z,F' x) 

REPEAT GENT AC 

P x h (z , F' x) I 

h(z, 
Fl' 

(P x i4 
h(x,F 

(g 
f 
'( 

x) (h( 
x I 

X) ) 

z,x))= 

SSA 
Vx z. Fl' x z - h(z, F' x) 

CON DC ASEST AC 

P x -O h(z,F' x) I 

Fl'(g x) (h(Z,x)) 
h(z, P x -41 f x I h(x,F'(g x))) 

(P x = TT) + SSA (P x FF) + SSA (P x 1.) + SSA 
(P x = TT) (P x FF) (P x 1) 
114C z. F1' x z bx z. Fl' x z '. h(z,F' x) Vx z. F1' x z 

h(z,F' x) 
T 

SIMPTAC SIMPTAC 

r I 

F 1' (g x) (h(z,x)) 
h(z,h(x,F'(g x))) 
(P x z FF) + SSA 
(P x FF) 

Cyx z. F1' x z - h(z,F' x) 

h(z,F' x) 

S IMPTAC 

where the three subgoals produced by CONDCASESTAC all have the same 
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formula part. 

Application of the composite tactic developed thus far to goalA 

yields exactly one subgoal (the basis subgoal is solved by SIMPTAC 

using the simplifications in BASICSS for the minimality of-L). The 

other two cases of P x are solved by SIMPTAC, using simplifications 

for conditionals, and the strictness of h. The remaining subgoal 

consists of the formula shown, a simpset supplemented by the 

assumption that P x = FF, and a list of assumptions including the 

induction hypothesis and that case assumption. 

The tactic sought to complete the proof must use the induction 

assumption; it must first recognise that the formula to be proved is 

an instance of (matches the unquantified version of, up to renaming 

of variables) one of the formulae in the assumption list. We define 

a tactic called USEASSUMPTAC which accepts a goal, searches through 

the assumption list for a match as specified above, and, if a match 

can be found, returns an empty list of subgoals. The proof function 

assumes the quantified formula and specialises it according to the 

match. USEASSUMPTAC is programmed in ML in terms of standard 

procedures to match terms and to test the equivalence of formulae up 

to alpha-conversion. It is denoted by the diagram below. 

USEASSUMPTAC 

(w, ss, [...;Vx1...xn.w';...]) 

[ ], (T[ 1. SPECL [xl;... ;xn] (ASSUME (Vxl...xn.w')) ) 

where w' = w[xi' /xil and the derived rule of inference 

SPECL:term list ---a thm --a thm specialises a quantified theorem: 
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SPECL [tl;...;tn] 

A --- Vxl...xn.w 

A. w[ti/xij 

(See [15], A5, for a description of the standard rule SPEC, from 

which SPECL is derived.) 

The theorem produced by applying the proof returned by 

USEASSUMPTAC to an empty list of theorems is 

p xl ...xn.w - w' 

which obviously achieves the goal. 

USEASSUMPTAC completes the tactical proof. The whole tactic 

which solves goalA, TACA, say, is therefore 

TACA 

(INDUCTAC [thFl;thF])+ 
GENTAC* 
CONDCASESTAC+ 
USEASSUMPTAC 

When TACA is applied to goalA we obtain an empty list of subgoals 

and a proof which when applied to that list applies, in turn, the 

proof parts of USEASSUMPTAC, SIMPTAC, CONDCASESTAC, and so on, and 

finally, of INDUCTAC [thFl;thF], to produce thA, corresponding to 

Theorem 2. 1: 

{-- Vx z. F1 x z m h(z,F x) 

with five hypotheses, corresponding to the five original 

assumptions. 
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The proof tree on p. 47 is completed by adjoining to the 

remaining subgoal the following tree: 

USEASSUMPTAC 

By adding thA to the simpset of the goal 

Vx. F1 x e=F x 
BASICSS + SSA 

and applying SIMPTAC, we achieve as a corollary the theorem we 

actually set out to prove ( Vx. F1 x e = F x). 

Although not especially interesting in itself, this example 

illustrates the way in which an informal strategy (which is, in 

fact, quite general) is mirrored in a tactic and implemented as an 

ML procedure. The example also suggests the way in which formal 

proofs (once the main insight is had) can be generated in LCF with a 

minimum of guidance on behalf of the user. 

We go on to consider two more schema problems and proofs, both 

of which require rather more sophisticated tactics. 

The List Stack Problem 

The Problem 

We begin, this time, with a recursive function F which has 

parallel recursive calls: 

F x = P x--), f x I h(F(gl x),F(g2 x)) 
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where h is a binary, associative function with left identity e,and 

is strict in both arguments. We introduce a 'stack' (list) s, and 

an accumulator z, to write an iterative function Fl: 

F 1 x z s = NULL s z 
P x = F1(HD s) (h(z,f x) ) (TL S) 

F 1(gi x) z (CONS (g2 x) s) 

where-NULL, HD, TL and CONS are the usual list operators, (and NIL 
4,5 

is the empty list) . 

As before, we define F and Fl to be the least fixed points of 

functionals FUNF and FUNF1 respectively: 

FUNF = A F' x. P x f x I h(F'(gl x),F'(g2 x)) 

FUNF1 = ^A F1' x z s. NULL s -4 z I 

P x Fl'(HD s)(h(z,f x))(TL s) 
Fl'(gl x) z(CONS(g2 x) s) 

6 
We prove 

Theorem 2.2 
xx. F1 x e [NIL] _ F x 

Again, we are required to prove something more general. To motivate 

the theorem we prove, consider the computation of Fl x z s, for some 

x, z and s, where s = [sl;...;snj. We would like to compute (F x) 

and to combine the result, via h, with the accumulated result z, and 

then combine that with (F sl), and so on. That is, 

Fl x z (s1;...;snj = h(...h(h(z,F x),F sl) ...,F sn) 

The expression on the right hand side is generated by a function Exp 

(for Expand) with functional arguments F and g: 
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Exp F h x z s= NULL s z I Exp F h (HD s)(h(z,F x))(TL s) 

As Exp is recursive, we define it as the least fixed point of a 

functional FUNExp (whose definition is obvious). 

We prove that F1 x z s = Exp F h x z s, for all x, z and s, and 

Theorem 2.2 follows easily. 

To prove that F1 x z s = Exp F h x z s, we introduce another 

function which is similar to Exp but does not have functional 

arguments: 

G x z s = NULL s z( G(HD s)(h(z, F x))(TL s) 

We let G = FIX FUNG, where 

FUNG = G' x z s. NULL s= z ( G'(HD s)(h(z,F x))(TL s) 

and we prove 

Theorem 2.3 
G = Exp F h 

Theorem 2.4 
F1 c G 

Theorem 2.5 
G 1: F1 

We first summarise the proofs 7 . 

Plan for Proof of Theorem 2.3 
By parallel induction on G and Exp, and case analysis on 
whether s is empty. 
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Plan for Proof of Theorem 2.4 
By induction on Fl, case analysis on whether s is empty, and 
unfolding the definitions of Exp and F. 

Plan for Proof of Theorem 2.5 
By showing that FUNG Fl S Fl. The proof is by unfolding the 
definition of Fl, then induction on F. The basis case requires 
Lemma 2.6, below. Both the basis and step are by case analysis 
on whether s is empty, and the step is by further cases 
analysis on whether P holds of x, and by successive uses of the 
induction hypothesis. 

Lemma 2.6 
Vx. F1 x .L s = 1 

Plan for Proof of Lemma 2.6 
By induction on Fl, case analysis on whether s 

further cases on whether P holds of x. 
is empty, and 

The rule to which we appeal in the plan for proving Theorem 2.5 is 

proved by induction (which we do later). We examine the proof of 

Theorem 2.5 in some detail in order to understand the tactics 

required to generate the proofs mechanically. The proof is 

representative of the others. 

Proof of Theorem 2.5 
It is sufficient to show that FUNG Fl C Fl (see below), i.e. 

Vx z s. (NULL s = z I F1(HD s)(h(z,F x) (TL s)) F1 x z s 

Induction is done on F. 

Basis 
(NULL s z I F1(HD s)(h(z,1-x))(TL s) Fl x z s 

Step 

Assume 
Vx z s. NULL s ---4z I F1(HD s)(h(z,F' x))(TL s) Fl x z s 
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Show 
NULL s- oz I F1(HD s) (h(z,(P x= f x 

h(F'(gl x),F'(g2 x)))))(TL s) C 
F1 x z s 

We unfold the occurrence of F1 on the right hand sides (i.e. 
the second occurrence) according to the definition; for both 
the basis and step, the right hand side is 

NULL s = z I P x -#F1(HD s)(h(z,f x))(TL s) 
Fl(gl x)z(CONS(g2 x)s) 

We then do case analysis on whether s is empty. Using Lemma 
2.66, the basis is easy. If s is empty, the step is also 
immediate. (Here and elsewhere, the undefined case is obvious, 
and we omit it.) 
Case NULL s = FF 
We do further case analysis on P x. If P holds of x, the step 
is obvious. 

Case Px=FF 
We must show 

F1(HD s)(h(z,h(F'(gl x),F'(g2 x))))(TL s) c 
Fl(gl x) z(CONS(g2 x) s) 

By hypothesis, with (gl x) for x, z for z, and (CONS(g2 x) s) 
for s, we know that 

NULL(CONS(g2 x)s) -4 z F1(HD(CONS(g2 x)s)) 
(h(z,F'(gl x))) 
(TL(CONS(g2 x) s)) 

Fl(gl x) z(CONS(g2 x) s) 

that is, 

F1(g2 x) (h(z,F' (gl x) )) C Fl(gl x) z(CONS(g2 x) s) 

Also, by hypothesis, with (g2 x) for x, 
and s for s, we know 

NULL s h(z,F'(gl x)) I F1(HD s) 

h(z,F'(gl x)) for z, 

(h(h(z,F'(gl x)),F'(g2 x))) (TL S) S 
F1(g2 x)(h(z,F'(gl x)))s 

which, since s is assumed to be non-empty, implies that 

F1(HD s)(h(h(z,F'(gl x)),F'(g2 x)))(TL s) . 

F1(g2 x)(h(z,F'(gl x))) s 

and the desired result follows by the associativity of h, and 

by transitivity. To complete the proof, we verify the rule 
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that we used: 

G = FIX FUNG & FUNG Fl c Fl G C Fl 

We assume the antecedent, and do induction on G. The basis is 
easy. We assume G' C Fl. Applying FUNG to both sides, we have 

FUNG G' c FUNG Fl 

and using transitivity with the assumption: 

FUNG G' C Fl 

Thus FIX FUNG C Fl, that is, G c Fl. Q.E.D. 

The Formalisation 

To perform the proof of Theorem 2.2 in LCF, we work in a theory 

of lists (of arbitrary type) in which a unary type operator (* list) 
is available, and various new constants, with the usual meanings, 

have been introduced: 

HD: * list-9 * 

TL: * list-4 * list 
CONS:*--) * list--_ * list 
NIL: * list 
NULL:* list--) tr 
LIST:*--* list 

For purposes of presentation it does not matter how lists are 

axiomatised, as long as the facts below are axioms or proved 

theorems. (For more details on possible list theories, see the 

Appendix, or (15], especially Al.) We take CONS to be non-strict. 
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- Vx S. NULL(CONS x s) - FF 

NULL NIL ° TT 

`-- Vx s. HD(CONS x s) = x 

bx s. TL(CONS x s) = s 

- dx. LIST x = CONS x NIL 

- Vs. HD(LIST s) = s 

Vs. TL(LIST s) = NIL 

We introduce four assumptions defining the functions F, Fl, Exp and 

G: 

thF 
F= FIX(XF' x. P x=; f x I h(F'(gl x),F'(g2 x))) 

and similarly for thFl, thExp and thG, and four assumptions about h 

and e : 

HVx. h(e,x) - x 

F-Vx. h(x, L) - 1 

Vx. h(L x) = 

Va b c. h(h(a,b) c) = h(a,h(b,c) ) 

All of these theorems are put into a simpset (along with the basic 

simplification rules), which we call SSL (for simpset for List 

Stack). 

Our main goal is to prove the theorem corresponding to Theorem 

2.2,, which we call thLO. We use the new constants LIST and NIL to 

construct the list containing exactly one element. 
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thLO 
'x. F1 x e (LIST NIL) = F x 

To prove thLO, we specify a goal, &oa1LO: 

goalLO 
b x. F1 x e (LIST NIL) F x 
thL4 + thL5 + SSL 

where thL4 is the theorem which achieves g2alL4: 

oa1L4 
F1 ExpFh 

LemmaLz 
+ SSL 

and thL5 is the theorem (needed for proving our main goal from thL4) 

which achieves o a1L5: 

oalL5 
Exp F h x e (LIST NIL) 
SSL 

and LemmaL2 is the theorem (corresponding to Lemma 2.6) which 

achieves goallemL2: 

thL5 is easy to prove; we concentrate, in the following on proving 

alL4. To achieve o a1L4, we must prove thL1, thL2 and thL3, which 

are, respectively, the theorems which achieve oa1L1, a1L2 and 

&oalL3 (corresponding to Theorem 2.33, Theorem 2.4 and Theorem 2.5): 
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goalL1 
G = Exp F h 
SSL 

goalL2 
F1QG 
SSL 

goalL3 
G 9 F1 
LemmaL2 + SSL 

The List Stack Proof in LCF 

With the goals thus set out, we are now able to discuss the 

generation of the proof in LCF. As mentioned earlier, the main aim 

of this work is not to do automatic theorem proving; we are not 

interested in writing tactics, say, to generalise the main goal 

( o alLO) to o$ alL5, or to inspect oalL3 and decide that it is 

sufficient and convenient to prove a goal with the formula 

FUNG F1 G F1, instead. Our aim is to design tactics which mirror 

the informal proof once these insights have been found. We begin, 

though, by applying to goalL4 a tactic which 'discovers' o alL1, 

oalL2 and o alL3, and combines them for us. The tactic is 

motivated by observing the relation between G and Exp. The 

equivalence of G to Exp F h is an instance of the 'By-law', so 

called because of its combinatory form: 

B Y= B Y S 
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whereY=FIX, B- ??xyz. x(y(z)), and S=Xxyz. x z (y z). 

For our purposes, the By-law can be stated as: 

X F1...Fn. FIX( F1...Fn) = 
FIX(/ \E F1'...Fn'. 1 F1'...Fn' (E F1'...Fn')) 

Intuitively 8 , the fixed point can be taken inside our outside of 

the abstraction. In the present case we take i to be 

?k F' h' G' x z s. NULL s z I G' (HD s) (h' (z, F' x) ) (TL s) 

and n to be 2, Fl to be F, and F2 to be h. Then the By-law tells us 

that 

FIX(X G' x z s. NULL s = z I G' (HD s) (h(z, F x)) (TL s)) 

(FIX(AExp' F' h' x z s. NULL s 4 z I 

Exp' F' h' (RD s) (h' (z, F' x) ) (TL s) )) F h 

that is, by definition, G = Exp F h. 

We write an ML procedure called BYLAW 9 to express the By-law 

as a rule of inference scheme: 

BYLAW (Fl;...;Fn] 

H G - FIX( F1...Fn) 

I----G FIX(TE' F1'...Fn'.F1'...Fn'(E F1'...Fn')) F1...Fn 

BYLAW takes a list of the functional arguments to be made explicit 

in the function definition, coins a new variable E' of appropriate 

type, and returns the new function definition. The proof is by 

induction on x and y in the formula 

x - y F1...Fn 

4 
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with the functionals Fl...Fn and 

10 
> E Fl'...Fn'. Fl'..Fn' (E Fl'...Fn') for x and y, respectively. 

We arrange for BYLAW to do the induction for us. (Details of 

the procedure are given in the Appendix.) 

The tactic wanted for &oalL4 (one which inverts BYLAW) is 

denoted by 

BYTAC (--E = FIX(\E' F1'...Fn'.F1'...Fn'(E Fl'...Fn'))) 

F = F. Fl...Fn 
ss 

F c G 

s s' 
L 

BYTAC invents the function G without functional arguments, and 

produces the two subgoals shown, where ss' is ss with the definition 

of G added, that is, with 

G FIX( Fl...Fn) 

added. The proof part of BYTAC expects two theorems achieving the 

two subgoals, combines them to prove that G = F, then proves that 

G = E Fl...Fn by using BYLAW and the definition of E. It concludes 

that F = E Fl...Fn, the theorem desired. 

We note that a more basic BYTAC would return one subgoal, 

namely 

G = F 

ss' 
L 

and would be composed, to have the effect of the BYTAC described, 
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via THEN with a simple tactic called SYNTHTAC, inverting the 

standard inference rule SYNTH. 

SYNTHTAC 

F° G 

ss 
L 
F c G 

ss 
A 

where 

SYNTH 

G S F 

ss 
A 

A l -- t c u A2 - u g t 

Al u A2 I--- t u 

In our proof, BYTAC does some of the top-level work for us by 

'inventing' the function G, inventing and achieving alL1 

internally, and inventing as subgoals goalL2 and alL3. 

We examine the proof of oalL3. We concentrate, in doing this, 

on finding useful and general tactics for generating the proof, 

which reflect the reasoning done in the informal proof. Our 

methodology is to design tactics and to employ standard tactics for 

the main proof steps, and to combine them using tacticals 

(primarily, the sequencing tactical THEN) to form composite tactics 

which solve the goals in a single application. - 

As indicated, we appeal to the following rule, which we shall 

call MINFIX, to prove oalL3 11 
s 
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MINF IX 

H-- FUNG Fl c F 1 (=- G FIX FUNG 

The ML procedure which implements this rule performs induction, as 

in the informal proof of the rule. The tactic which inverts the 

rule, MINFIXTAC, is given by: 

MINFIXTAC (H-G = FIX FUNG) 

G F1 
ss 
A J 

FLING F1 Q F1 
ss 

It generates a proof function which calls MINFIX. 

We begin the tactical proof of o alL3 by applying MINFIXTAC to 

obtain a subgoal whose formula is (after simplification) 

Tx z S. (NULL s z Fl(HD s) (h(z,F x)) (TL s)) S Fl 

We then require a tactic which applies both sides of an 

inequivalence (or equivalence) to an arbitrary variable of the 

correct type, and generalises to that variable. As it uses 

extensionality (for which the standard PPLAMBDA inference rule is 

EXT), we call the tactic EXTTAC: 

62 



EXTTAC 

F c 
ss 

LA 

ss 

LA 

Clearly, F must have a functional type, *--4 **, say, relative to 

which x has the type *. The proof part of EXTTAC uses EXT: 

EXT 

A if Vx. ux c v x 

A u c v 

We may also wish to do similar reasoning about a formula whose goal 

is quantified already, so we include as a special case of EXTTAC the 

following: 

EXTTAC 

Vx. F x S Gx 
ss 
A 

Vxy.Fxy S G x y 
ss 
A 

EXTTAC fails on goals whose formulae are not of one of the two forms 

indicated. 

Applying EXTTAC repeatedly to the current subgoal, we obtain a 

subgoal whose formula is: 

'ctx z s. NULL s ---i z I F1(HD s) (h(z,F x)) (TL s) Fl x z s 
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We then apply INDUCTAC [thF] THEN SIMPTAC THEN (REPEAT GENTAC). 

This yields a basis subgoal and a step subgoal, where the latter is 

(NULL s = z I F1(HD s) (h(z,(P x=0 f x I 

h(F'(gl x),F'(g2 x))))(TL s)) 
S Fl x z s 

SSL 
Vx-z s. (NULL s z I Fl(HD s) (h(z,F' x))(TL s)) 
c Flxzs 

with the induction hypothesis added to the set of assumptions. 

Next, for both subgoals, we wish to unfold the occurrence of Fl 

on the right hand side of the formula according to its definition. 

We write a tactic in ML to accomplish this reasoning, called 

UNFOLDTAC: 

UNFOLDTAC (h--F = FIX FUNF) 

w[F/1 
ss 

w[ (FUNF F)/-t-l] 

A. 

The proof part uses the standard inference rule FIX: 

FIX 

A - t = FIX FUN 

A H t - FUN t 

It is also useful to write UNFOLDOCCSTAC:int list -3thm -4 thm, which 

takes a list of occurrence numbers as a parameter and substitutes 

only for the corresponding occurrences. 
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After applying UNFOLDTAC thFl and simplifying, the basis and 

step subgoals are, respectively: 

(NULL s=, z IL)9 (NULL s=*;, z I P x=4 
F1(HD s) (h(z,f x)) (TL s) 
F1(gl x)z(CONS(g2 x)s)) 

NULL s -=,z F1(HD s) (h(z,(P x' f x I 

(h(F'(gl x), F'(g2 x) (TL s) 
NULL s = z P x = F1(HD s)(h(z,f x))(TL s) I 

F 1(G 1 x) z (CONS (g2 x) s) 
S -SL 

x z s(NULL s z I F1(HD s)(h(z,F' x))(TL s) C Fl x z s 

We now wish to do case analysis on whether s is empty, so we apply 

the standard tactic CONDCASESTAC (which finds the first boolean- 

valued term, i.e. NULL s). The three subgoals derived from the 

basis are solved directly by simplification; their formulae are 

z z 

L C P x ' F1(HD s)(h(z,f x))(TL s) 
F 1(gl x) z (CONS (g2 x) s) 

The true and undefined cases, for the step, are also solved by 

simplification. The remaining subgoal is 

F1(HD s)(h(z, P x f x I h(F'(gl x),F'(g2 x))))(TL s) 
P x =F1(HD s)(h(z,f x))(TL s) I F1(gl x)z(CONS(g2 x)s) 

NULL s = FF) + SSL 
NULL s= FF 

i 

Vx z s. (NULL s z I F1(HD s)(h(z,F' x))(TL s)) Fl x z sJ 

We apply CONDCASESTAC again (to do cases analysis on whether P x is 

true) and simplify; the true and undefined cases are immediately 

solved, and the simplification based on the associativity of h is 
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used to produce the one remaining subgoal: 

F1(HD s)(h(h(z,F'(gl x),F'(g2 x))))(TL s) c 
Fl(gl x) z(CONS(g2 x) s) 
(NULL s = FF) + (P x za FF) + SSL 
NULL s = FF 

P x=FF 

I 

b`x z s. (NULL s z I F1(HD s) (h(z,F' x) ) (TL s)) S Fl x z s 

We would like, at this point, to use the induction hypothesis, 

by matching the right hand side of its conclusion to the right hand 

side of the formula of the current subgoal, letting s be 

(CONS(g2 x) s) , z be z, and x be (gl x). That is, the assumption 

implies that 

NULL(CONS(g2 x)s) = z I 

F l (gl x) z (CONS (g2 x) s) 

Fl(HD(CONS(g2 
(h(z,F'(gl 
(TL (CONS (g2 

x) s)) 
x))) 
x) s)) 

which, after simplifications based on the facts of list theory, is 

Fl(g2 x)(h(z,F'(gl x)) s CZ Fl(gl x)z(CONS(g2 x))s 

If we could now prove a subgoal with the formula 

Fl(HD s)(h(h(z,F'(gl x), F'(g2 x))))(TL s) c 
Fl(g2 x) (h(z F'(gl x)))s 

we would be finished, by transitivity. This, however, is another 

instance of matching the right hand side of the conclusion of the 

induction hypothesis to the right hand side of the formula to be 

proved, letting s be s, x be (g2 x) and z be (h(x,F'(gl x))), and 

simplifying. 
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To complete the generation of the proof of go a1L3 we write a 

tactic, to be applied twice in succession, in this case, which uses 

an assumption exactly as we have just done informally. It is more 

complicated than USEASSUMPTAC, since the formula of the goal is not 

necessarily an instance of one of the assumptions. Here, we 

generate an intermediate subgoal to be combined later with the 

assumption, using transitivity. USEASSUMPRHSTAC (for matching to 

the right hand side of an assumption) captures the reasoning above: 

USEASSUMPRHSTAC 

Ftl' C- t3' 
ss 

Vxl...xn. t2 S t3 

t 1' C t2' 
ss 

bxl...xn. t2 S t3 
J 

where t2' is t2 with the substitutions for xl,...,xn determined by 

matching t3 to t3' (that is, instantiating for the variables in t3). 

If no formula in the list of assumptions matches, the tactic fails. 

The proof function uses the standard rule TRANS. 

We occasionally match assumptions to the left hand side of 

formulae, so we write the dual tactic USEASSUMPLHSTAC: 
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USEASSUMPLHSTAC 

I t1' G t3' 
ss 

Vxl...xn. tl C t2 

t2' c t3' 
ss 

`d'xl...xn. tl s. t2 

where t2' is t2 modulo the substitutions for xl,...,xn determined by 

matching tl to t1'. This pair of tactics does not address the 

general issue of reasoning about inequivalences, but it does 

faithfully reflect the reasoning used in this proof, a very common 

chain of reasoning in proofs of inequivalences by induction. 

We observe that if exactly one application of USEASSUMPRHSTAC 

or USEASSUMPLHSTAC solves a goal, then (i) either tactic will 

suffice, and (ii) either tactic returns the trivially easy subgoal 

with formula t2' S t2'; that is, the assumption a priori achieves 

the goal. In the latter case, USEASSUMPTAC is an adequate and more 

direct way of solving the goal (more direct because it does not 

involve a subsequent call of SIMPTAC) . 

The composite tactic, TACL3, which solves alL3 is now 

complete: 

TACL3 

(MINFIXTAC thG)+ 
EXTTAC+ 
(INDUCTAC [thF] )+ 
GENTAC* 
(UNFOLDOCCSTAC 2 thFl)+ 
(CONDCASESTAC+)* 
(USEASSUMPRHSTAC+)* 
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TACL3 applied to goalL3 yields an empty list of subgoals and a proof 

which when applied to the empty list of theorems returns thL3. 

Although in explaining TACL3 we have applied the component tactics 

one by one, the composite tactic TACL3 solves the goal in a single 

application, and the proof function produces the theorem in one 

application. The work of doing the proof is in formalising the 

problem and in designing and implementing the derived tactics. One 

would hope that the tactics developed for this proof are useful in 

other, similar proofs. This is shown to be so in the next section, 

and in later chapters. We examine another recursion removal 

problem, and go on to generalise the tactics developed so far. 

We do not describe the development of the compound tactics 

which solve alL2 and goallemL2, but simply state them below. The 

correspondence to the informal proofs is obvious. 

TACL2, to solve goalL2 

EXTTAC+ 
(INDUCTAC [thFl])+ 
GENTAC* 
(UNFOLDTAC thG)+ 
(CONDCASESTAC+)* 
(UNFOLDTAC thF)+ 
USEASSUMPLHSTAC+ 
((UNFOLDOCCSTAC 1 thG)+)* 

TAC1emL2, to solve goallemL2 

(INDUCTAC [thFl] )+ 
GENTAC* 
(CONDCASESTAC+)* 
USEASSUMPTAC 

With LemmaL2 added to the simpset of 2a1L4, the following tactic 

solves o al L4 (we extend our informal notation to allow branching 

69 



into columns to abbreviate a use of the tactical THENL): 

BYTAC+ 

TACL2 TACL3 

so that TACL2 and TACL3 are applied, respectively, to the two 

subgoals (goa1L2 and goa1L3) produced by the application of BYTAC to 

a1L4. a1L5 is solved by 

((UNFOLDTAC thExp)+)* 

and the main goal, a1LO, is solved by SIMPTAC. 
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The Counter Problem 

The Problem 

The third schema problem, in which recursion is implemented by 

use of an integer counter, shares many of the same patterns of 

inference with the List Stack proof, and therefore, its machine 

proof is achieved by similar tactics. We recount the problem and 

solution more briefly than before. 

The function F has a nested recursive call: 

F x = P x 4 f x I F(h(F(g x))) 

where h and P are assumed strict. The recursion is implemented by 

using a counter n: 

We sho w 

F1 x n = P x 4 (n=0 f x I F1(h(f x))(n-1)) I F1(g x)(n+l) 

12,13 

Theorem 2.77 
F1 x 0 = F x 

Again, F and F1 are defined as the least fixed points of functionals 

FUNF and FUNF1 in the obvious way. The more general relation one 

has to prove is 

F1 x n = F((h o F) n x) 

that is, F1 on x with counter n is equal to the result of applying 

(h o F) to x, n times. We define a function Expo to do the 

exponentiation suggested by the above notation: 

Expo F h x n= (n=0)'4 F x I Expo F h (h(F x))(n-1) 
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where Expo is formally defined as the least fixed point of a 

functional FUNExpo, again in the obvious way. The relation to be 

proved is 

Theorem 2.8 
Vx n. F1 x n = Expo F h x n 

Expo is analogous to Exp in the List Stack Problem. As before, we 

introduce a new function (H) to 'freeze' the functional arguments: 

H x n= (n=0) F x I H(h(F x))(n-1) 

where H is defined as FIX FUNH. Also as before, we prove 

Theorem 2.10 
F1 H 

Theorem 2.11 
H C F1 

By application of the By-law, we prove 

Theorem 2.9 
H = Expo F h 

and Theorem 2.8 follows. 

We summarise the proofs first. 

Plan for Proof of Theorem 2.10 
By induction on Fl. For both the basis and the step, we do 

case analysis on P x, and further cases, in the step, on n=0. 
Lemma 2.13 (below) is needed. 

Plan for Proof of Theorem 2.11 
By proving that FUNH F1 C Fl. Then by either 

Method (i) 

By induction on F, then cases on n=0, followed by cases on 
P x. Lemma 2.12 and Lemma 2.13 (below) are required. 
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Method (ii) 

By cases on n=0, appealing to Lemma 2.14 (below) in which 
most of the work is done. 

Lemma 2.12 
Vn.F1 _!,_ n 

Lemma 2.13 
Vx.F1 x L 

Lemma 2.14 
V x n. F x C Fl x 0 & F1(h(F x)) n C Fl x (n+l) 

Plan for Proof of Lemma 2.12 
By unfolding the definition of Fl, and using the strictness of 
P. 

Plan for Proof of Lemma 2.13 
By induction on Fl and cases on P x. 

Plan for Proof of Lemma 2.14 
By induction on both occurrences of F, and cases on P x. The 
true case is by further cases on n=0. The false case is by two 
uses of the induction hypothesis (one use of each conjunct) for 
the first part, and two uses (both of the second conjunct) for 
the second part. Lemma 2.12 and Lemma 2.13 are needed. 

The proof for Lemma 2.14, Theorem 2.10 and Theorem 2.11 Method (i) 

are very similar to the proofs for Lemma 2.6, Theorem 2.4 and 

Theorem 2.5 from the List Stack problem. We concentrate, therefore, 

on the proof of Theorem 2.11, Method (ii), and the accompanying 

Lemma 2.14. 

Proof of Lemma 2.14 
We prove both formulae together, by induction on F. 
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Basis 
Easy, given the strictness of h, and Lemma 2.12. 

Step 

Assume 
V x. F' x c F1 x 0 & F1(h(F' x)) n c F1 x (n+1) 

Sho w 

(P x f x ( F'(h(F'(g x)))) Q F1 
F1 MP x # f x I F'(h(F'(g x)))))n 

x 0 & 

c F1 x (n+1) 

We consider cases on whether P x is true. 

Case P x_ = TT 
The first part is easy, by unfolding Fl. 

Second Part 
We must show 

F1(h(f x))n c F1 x (n+1) 

RIIS = F1(h(f x))(n+l) by 

Case P x = FF 

First Part 
We must show 

F'(h(F'(g x))) C F1 x 0 

unfolding Fl. 

RIIS = F1(g x) (0+1) by unfolding F1 
LHS C- F1(h(F'(g x)))0 by hypothesis, first part 

C F1(g x)(0+1) by hypothesis, second part 

Second Part 
We must show 

F1(h(F'(h(F'(g x)))))n c 

Q. E.D. 

F1 x (n+1) 

F1(g x) (n+1+1) 
by unfolding F1 

F1(h(F'(g x)))(n+1) 
by hypothesis, second part 

1?1(h(F'(h(F'(g x)))))n 
by hypothesis, second part 
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Once this lemma has been proved, the proof of Theorem 2.10 is 

not difficult. 
Proof of Theorem 2.10 

It is sufficient to show 

((n=0) F x{ F1(h(F x))(n-1)) C Fl x n 

We consider cases on whether n=0, and use the two - parts of 
Lemma 2.13 in the two cases, respectively. 

The Formalisation 

We work in a theory of integers. The theory has a new type 

(nat, for natural number) and new constants, including 

ZERO: nat 

SUCC:nat -} nat 

PRED:nat- nat 

ISZERO:nat--- tr 

We assume that the following axioms and/or theorems are available: 

SUCC L 2 1 

- ISZERO -1- = l 
- Vn.ISZERO n - TT IMP ISZERO(SUCC n)--"- FF 

h- ' n. ISZEROn = FF IMP ISZERO (SUCC n) = FF 

Vn.ISZERO n =-TT IMP PRED(SUCC n) n 

Vn.ISZERO n = FF IMP PRED(SUCC n) = n 

L-- do. ISZ ERO n IMP n 

I- ISZERO ZERO TT 
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In addition, we introduce assumptions for the strictness of P 

and h: 

J- h L 1 

f--p 1 

and to define the functions F, Fl, H and Expo: 

thF 

- F= FIX(XF' x. Pxfx I F' (h(F' (g x))) ) 

thFl 
F1 = FIX(TF1' x n. P x4 (ISZERO n f x 

Fl'(h(f x))(PRED n)) 
F1' (g x) (SUCC n) ) 

and similarly for tho and thH. We add all of the facts, except 

} ISZERO n } -L IMP n = L 

which would cause an infinite cycle of simplifications, to BASICSS, 

to form a simpset called SSC (for simpset for Counter). (Any rule 

of the form w IMP tl = t2 will 'loop' as a simplification rule if tl 

occurs in w, because of the way simplification works in LCF. The 

reason is that the simplifier can replace occurrences of tl by t2 in 

a formula being simplified if it can first prove w by 

simplification. But since w contains tl, the simplifier will try to 

replace that tl by t2 by first showing w, and so on ad infinitum.) 

At any rate, we can now define the goals for this problem. 
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The main goal is to prove thCO, corresponding to Theorem2.7: 

thCO 
-- Vx. Fl x ZERO ° F x 

where thCO achieves the main goal, alCO: 

goalC 0 
Nx. F1 x ZERO = F x 
thC4 + SSC 

This requires proving a theorem, thC4, achieving the goal og a1C4: 

goalC4 
F1 = Ex o F h 
SSC 

As before, application of BYTAC to goalC4 generates the subgoals 

goalC2 and alC3: 

a1 C, 

Fl c H 

LemmaC2 + SSC 

goalC3 Fl F1 
LemmaCl + LemmaC2 + SSC 
Lemma 

The theorems which achieve these two goals, thC2 and thC3 

respectively, correspond to Theorem 2.10 and Theorem 2.11. The two 

subgoals need the lemmas indicated in their simpsets. LemmaCl, 

LemmaC2 and LemmaC3, corresponding, respectively, to Theorem 2.12, 

Theorem 2.13 and Theorem 2.14, achieve the goals goallemCl, 

goallemC2 and goallemC3: 
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goallemCl 

L 

rVn. F1 1. n = 1 
SSC 

goallemC2 
Vx. F1 x,L -. 1 
SSC I 

goallemC3 Tn. F x 91 F1 x ZERO & 

F1(h(F x))n c F1 x (SUCC n) 

LemmaCl + LemmaC2 + SSC 

With minor modifications (changes of parameter, etc.), the 

tactics TAC1emL2, TACL2 and TACL3, from the List Stack proof, solve 

goals goallemC2, ,o alC2 and goalC3, respectively (the latter by 

Method (i) and without LemmaC3 as an assumption). We examine the 

proofs of goallemC3 and oa1C3, by Method (ii) only, in LCF. 

The Counter Proof in LCF 

We commence the tactical proof of LemmaC3 by applying 

(INDUCTAC [thF] )+ 

GENTAC* 
(UNFOLDOCCSTAC [1;3] thFl)+ 

to mirror the informal proof. (Since in both subsequent; cases we 

unfold the right hand side's occurrence of F1, we unfold it here at 

the outset.) We then apply CONDCASESTAC to do case analysis on P x. 

In the true case, the first part of the conjunctive subgoal is 

solved directly by simplification, and we are left with the subgoal 
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F1(h(f x) 
(P 

n C F1(h(f x) (PRED(SUCC n)) 
x = TT) + LemmaC 1 + L mma . + SSC 

P x=TT 
Vx n. F' x C F1 x ZERO & F1(h(F' x))n E F1 x (SUCC n) 

This is straightforward if (ISZERO n) is defined, for we have rules 

to simplify (PRED(SUCC n)) to n to be applied conditionally on 

whether (ISZERO n) is true or false. If (ISZERO n) is undefined, we 

know that n is undefined, and therefore, by LemmaC2, the whole left 
hand side of the formula is undefined. The rest can be managed by 

simplification. 

CONDCASESTAC does not suffice, as the term (ISZERO n) does not 

actually occur in the formula to be proved. CASESTAC (ISZERO n) 

does not quite do either, because we cannot use the theorem 

'dn. ISZERO n =1 IMP n= L 

as a simplification rule, yet we do have to make this simplification 

in the case that ISZERO n - 1. Our solution is to write a tactic 

called NATCASESTAC, similar to CASESTAC (ISZERO n), except that it 
finds a term n of type nat, does case analysis on (ISZERO n), and, 

for the subgoal corresponding to the assumption that ISZERO n = 1, 

makes a direct substitution of J_ for n. This avoids having to use 

the 'dangerous' theorem as a simprule. The proof part of the tactic 

justifies this substitution by the theorem in question. Used in 

place of CONDCASESTAC+, NATCASESTAC+ has the same effect if (ISZERO 

n) is the boolean-valued term found by CONDCASESTAC and n is the 

term found by NATCASESTAC. (CASESTAC (ISZERO n))+ has the same 

effect as NATCASESTAC+ if the term (ISZERO n) actually occurs in the 

formula, and n is the term found by NATCASESTAC. 14 
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Obviously, NATCASESTAC is meaningful only in the theory of 

numbers, or a descendent of such a theory, as it refers to the type 

nat and the constant ISZERO. It is depicted by 

NATCASESTAC 

(w, ss, A) 

w [ .1. / n] 
I SZ ERO n. 1) + s s 

(ISZERO n=1) 
A 

r-w 

(ISZERO n = TT) + ss 
(ISZERO n TT) - 

A J 

w 

(ISZERO n az FF) + ss 
(ISZERO n = FF) 

a 

After applying NATCASESTAC to the goal and simplifying, we are 

left with the subgoal for the false case of P x, which has the 

formula 

F'(h(F'(g x))) c F1(g x)(SUCC 0) & 

F1(h(F'(h(F'(g x)))))n c F1(g x)(SUCC(SUCC n)) 

We employ a tactic to divide conjunctive sugoals into two subgoals: 

CONJTAC 

wl & w2 
ss 

LA 

T 
wl 
ss 
A 

CONJTAC inverts the basic inference rule CONJ: 
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CONJ 

Al - w1 A2 
1 

w2 

X1 u A2 -- w l & w2 

Next, for each of the subgoals returned by the application of 

CONJTAC, we use the induction hypothesis, each conjunct. We write a 

tactic which enables this by noting any assumptions in the 

assumption list of a goal which are of the form 

V xl ...xn. wl & w2 

and adding to the assumptions list two further assumptions: 

Vxl...xn. wl 

bx1...xn. w2 

We call this tactic CONJASSUMPTAC. Clearly, a theorem, th, 

achieving, the subgoal with the supplemented assumption list also 

achieves the original goal, as the extra hypotheses of th (if it has 

them) have only to be specialised, conjoined, and generalised again. 

The proof function of CONJASSUMPTAC does this. 15 

To complete the proof, we apply USEASSUMPRHSTAC repeatedly. 

The separate conjuncts of the induction hypothesis will thus be used 

as in the informal proof, and alleuC3 is solved. 

The composite tactic, TAC1emC3, which solves goallemC3 in one 

stroke is: 
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TAC1emC3 

(INDUCTAC [thF])+ 
GENTAC* 
CONDCASESTAC+ 
(UNFOLDOCCSTAC [1;3] thFl)+ 

NATCASESTAC+ CONJTAC 
CONJASSUMPTAC 
(USEASSUMPRHSTAC+)* 

Once LemmaC3 has been proved and placed in the assumption list 
of alC3, the proof of &oa1C3 is quite short. We process the 

assumption list so that both conjuncts of the conclusion of LemmaC3 

(generalised) appear, by applying CONJASSUMPTAC. We then apply 

CONDCASESTAC (or NATCASESTAC, which is equivalent in this instance) 

and simplify. To solve a1C3, we have 

TACC3 

CONJASSUMPTAC 
CONDCASESTAC+ 

Finally, the original alCO, with thC4 in its simpset, is solved by 

unfolding F1 and simplifying, i.e. by 

(UNFOLDTAC thFl)+ 
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Conclusions: Towards a General Schema Tactic 

We speculate briefly, in this section, on some generalisations 

based on the Accumulator, List Stack, and Counter proofs. We aim at 

writing a uniform, general tactic to include as instances most of 

the composite tactics discussed in this chapter. Although we have 

not implemented the general tactic in ML, we sketch its design. 

It would be possible, for example, to write a tactic called 

INDUCTCHOOSETAC to take as a parameter a list of function 

definitions, and choose, according to the list and to the formula of 

a goal, the variables on which to induct. For proving an 

equivalence of the form F G, where the list includes 

F = FIX FUNF and -G = FIX FUNG, F and G should be chosen. For an 

inequivalence F Q G, F should be chosen. After doing induction, 

INDUCTCHOOSETAC would do simplification. 

It would be equally simple to write a tactic to use an 

assumption in the appropriate manner (USEASSUMPCHOOSETAC, say). As 

long as the component tactics were written to fail where 

inapplicable, 

(USEASSUMPTAC ORELSE USEASSUMPLHSTAC ORELSE USEASSUMPRHSTAC)+ 

is a good definition for USEASSUMPCHOOSETAC. This could be refined 

by including the heuristic that when neither USEASSUMLHSTAC nor 

USEASSUMPRHSTAC fails, but neither, after simplification, solves the 

goal, the preferred one is the one which does not produce a subgoal 

whose formula includes the current induction variable on both of its 
sides. For example, in the proof of thL2 (which we have not shown 

in this presentation), at the point at which it is appropriate to 
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use the induction hypothesis, the subgoal is 

Fl'(gl x)z(CONS(g2 x)s) C 
G(HD s) (h(z,h(F(gl x),F(g2 x)))) (TL s) 

bxz s. Fl' x z s S G x z s 

(Fl is the induction variable.) Application of USEASSUMPRHSTAC 

produces a subgoal: 

F1' (gl x) z(CONS(g2 x) s) c 
Fl'(HD s)(h(z,(F(gl x),F(g2 x) (TL s) 

which does not advance the proof (whereas use of USEASSUMPLHSTAC 

does) . 

We can generalise and define an UNFOLDCHOOSETAC, which, like 

INDUCTCHOOSETAC, would take a list of function definitions as a 

parameter and select appropriate functions (and occurrences of the 

functions) to unfold. After unfolding, again, it would simplify. 

This tactic requires rather more thought than the others, as the 

criteria for deciding whether and where to unfold are quite 

heuristic. One does not, for example, wish to unfold a function 

variable some of whose arguments are not present, such as F in the 

expression Exp F h x z s. However, even for the instances of 

unfolding in the proofs discussed in this chapter, we have found no 

very simple set of heuristics which is adequate. Some of the 

choice, though, can be avoided by carefully including theorems to be 

used as simplifications. If we prove, for example, 
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- Exp F h x z (CONS x' s') = Exp F h x' (h(z, F x) ) s' 

and use the theorem as a rewrite rule (in the proof of Theorem 2.4) 

then only those occurrences of Exp which have (CONS ...) as their 

fifth argument will be unfolded. Occurrences of this sort unfold to 

become conditionals of the form 

(NULL(CONS ...)) = ... I ... 

for which we have further simplification rules. Similarly, if we 

prove 

-NULL s = FF IMP 
Exp F h x z s Exp F h (HD s) (h(z, F x)) (TL s) 

we can use the theorem as a conditional simplification; the 

simplification will only be made in case NULL s is false, as is 

appropriate. 

Again, in the proof of Theorem 2.5, we could prove, and include 

as simprules 

NULL s = TT IMP F i x z s = z 

HULL s FF IMP F1 x z s P x = F1(HD s) (h(z,f x)) (TL s) 
F1(gl x) z(CONS(g2 x) s) 

-NULL s= 1 IMP F l x z s = 1 

so that F1, in the expression F1 x z s, is unfolded according to its 

definition once case analysis has been done on the term (NULL s), 

since the three new simprules then apply to the three cases. 

However, in the expression 
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F1(HD s) (h(z, (P x f x I h(F' (gl x) F' (g2 x))))) (TL s) 

(which also occurs in the proof) Fl is not unfolded -- as long as 

case analysis is not done on (NULL(HD s)), which it is not. Again, 

this is the desired effect. 

In this fashion, we could arrange for many (in the proofs in 

this chapter, all) of the choices about unfolding to be made in the 

course of simplification. This methodology proves to be of great 

use in Chapter 3. In any case, we assume for the moment that some 

adequate UNFOLDCHOOSETAC can be designed (or combination of SIMPTAC 

and carefully chosen simprules). We can then state a general 

tactic, SCHEMATAC, of which TACA, TACL2, TAClemC3 and TACL3 are 

instances: 

SCHEMATAC 

(EXTTAC*)+ 
INDUCTCHOOSETAC list 
GENTAC* 
(CHOOSECASESTAC* ORELSE UNFOLDCHOOSETAC* ORELSE 
USEASSUMPCHOOSETAC*)* 

where list is the list of all relevant function definitions, 

typically, for some boolean-valued term B, of the form 

H F - FIX(-AF' x1...xn. B 4 t l I t2) 

After induction and stripping of variables, the general tactic tries 

case analysis and unfolding of function variables until the 

induction hypothesis is applicable. To generalise further, one 

could add other tactics (e.g. CONJTAC) to the last line to cope 

with other 'shapes' of formulae or other proof situations. (By 
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adding CONJTAC, TAC1emC3 would become an instance of SCHEMATAC.) 

This hypothetical tactic naturally reflects our reasoning in the 

informal proofs. In addition, it would appear to be useful in many 

other proofs about recursively defined functions. 

In conclusion, we have illustrated, in three case studies, the 

generation of formal machine proofs by the design of tactics which 

(i) represent informal proof plans, and (ii) abstract formal proofs 

to provide high level proof outlines. We have speculated about a 

general tactic for the proofs considered, and possibly for other 

proofs about recursively defined functions. 

We go on to consider more difficult problems for which many of 

the tactics derived in this chapter prove of use. 
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Notes for Chapter 2 

1. F1 is, of course, recursively defined, but all recursive calls 
of it are 'outermost'. 'Iterative-recursive' would perhaps be more 
appropriate. 

2. As an instance of this schema, we take x to have integer type, g 
to be (7n.n-1), f to be (T n.l), P to be a test-if-zero predicate 
ISZERO, and h to be multiplication (TIMES) with identity 1. Then F 
is the familiar factorial function, and F1 is 

F1 x z = ISZERO x z I F1(n-1)(TIMES(z,n)) 

and it is true that F1 x 1 = F n. However, we leave the non-logical 
constants uninterpreted here. 

3. One could, alternatively, introduce an LCF theory in which P, h, 
e, etc., were new constants and the assumptions discussed were 
axioms. As this is not a very interesting theory we leave the 
variables free, and content ourselves with assumptions. The choice 
is immaterial to the proof. 

4. Intuitively, F1 implements F by using depth-first search and a 

stack. Viewing the computation of F as a binary tree, z denotes the 
value of the left subtree computed so far. In the second call of 
F1, the 'stacking' of the value (g2 x) corresponds to the second 
recursive call of F, and the call of F1 with the argument (gl x) 

corresponds to the first recursive call of F. In the first call of 
F1, on x, z and s, the first deferred element on the 'stack' is 

taken off, and (f x) is combined with the result accumulated so far, 

i.e. z. 

5. To give an instance of this schema, let 1 range over LISP-style 
(i.e. non-flat) lists, gl be Car, g2 be Cdr, h be Append, P be a 
function AtomOrNil, to test for atomic or empty lists, IsNull a 
function to test for empty lists, and f be the function (?1.IsNull 1 

Nil I List 1). (List is the usual list function.) Then F is a 
flattening function for lists: 

F 1 = AtomOrNil 1 4 (IsNull 1 Nil I List 1) 
Append(F(Car 1),F(Cdr 1)) 

and F1, with accumulator z and stack s, is an iterative version: 

F1 1 z s = IsNull 1 z I 

AtomOrNil 1 F1(HD s)(Append(z,(IsNull 1 

Nil I List 1))) (TL s) 
F1(Car 1)z(CONS(Cdr 1)s) 

and it is the case that F1 1 Nil [NIL] = F x. 

6. AnZ one-element list would do; [NIL] is just convenient. 
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Vx y. Fl x e [y] = F x 

would perhaps have been a better theorem to prove. 

7. G is not, in fact, necessary. We could instead take a fixed 
point with the functional arguments outside: 

Exp F h = Ax z s . NULL s= z I Exp F h (HD s)(h(z,F x))(TL s) 

= F IX(7 ExpFh x z s. NULL s z 
I 

ExpFh(HD s)(h(z,F x))(TL s)) 

where the function ExpFh is of appropriate type. If we let ExpFh = 
FIX FUNExpFh, we can then show that FUNExpFh F1 Q= Fl by induction 
on F. Introducing G to abbreviate ExpFh simply makes the proof look 
neater. See later discussion of the By-law, p. 58-61. 

8. To motivate this, we call the left hand side and the right hand 
side, respectively, of the formula on p. 59 Z and `f.. Then 

z F1...Fn = FIX( c F1...Fn) 

Fl...Fn (,F1...Fn) 

On the other side, 

-kF1...Fn = FIX(-X E F1'...Fn'.cF1'...Fn'(E F1'...Fn'))F1...Fn 

which we call FIX oL Fl...Fn. Then 

FIX06F1...Fn (& FIX a) Fl...Fn 

(kE F1'...Fn'.' Fl'...Fn' (E Fl' ...Fn')) (FIXC4) Fl. ..Fn 

Fl...Fn ((FIX a) Fl...Fn) 

F1...Fn (72 F1...Fn) 

so that and '7Z can be seen to satisfy the same equations. 

9. The procedure which implements this rule proves the By-law at 
each invocation, but we could instead have proved the theorem as a 
fact in some LCF theory, just once, and saved it for later use. It 
is convenient to have it avalable in procedural form, however, to 
circumvent having to instantiate it when using it, and to avoid 
having to supply a theorem as a parameter to BYTAC. We also choose 
a procedural representation in several other places. Rules such as 
INDUCT, of course, must be represented as rules and cannot be proved 
as theorems. This point is discussed in the Conclusions. 

10. That is, 
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Basis 
1 = -L F I. ..Fn 

Assume 
x' = y' F1...Fn 

Sho w ( F1...Fn) x' _ 
(X E F1'...Fn'. F1'...Fn' (E F1'...Fn'))y' F1...Fn 

That is, (( F1...Fn)x' _ F1...Fn (y' Fl...Fn); but the right hand 
side is '2 F1...Fn x' by hypothesis. 

11. The same comment as (9.) applies to MINFIX. 

12. Intuitively, F can be evaluated by working on the inner call of 
F whenever P is false, and keeping count of the (F o h)'s waiting to 
be applied. F1 simulates F by testing whether P holds, and if it 
does, testing whether n=0, that is, whether there are any (F o h)'s 
pending. If so, F1 is called again, to simulate the outer call of 
F, on (h(f x)) (where (h(f x)) corresponds to h and the inner call 
of F), and the counter is decremented; if n is 0, (f x) is returned. 
If P does not hold, F1 is called on (g x) (to simulate the inner 
call of F) and the counter is incremented (corresponding to the 
outer call of F). 

13. There are not very many natural examples of this schema. A 
related example, in that it has nested recursive calls, is 
Ackermann's function, A: 

A(x,y) = ISZERO x * y+1 I ISZERO y A(x-1, 1) 
A(x-1,A(x,y-1)) 

The example is from Manna and Waldinger [221. 

14. A related tactic could be written to use the 'dangerous' 
simplification rule DEF x = 1 IMP x S -L where DEF is the definedness 
predicate which is .L on 1 and TT otherwise. In the same manner, 
it would make the substitution of _L for x immediately, in the 
undefined case. 

15. It is possible to describe a whole class of tactics which 
process goals simply by changing the assumption lists. Another 
useful tactic might scan the assumption list of a goal for a formula 
of the form 

Vx1...xn. wl IMP w2 

and another formula, wl', matching wl with certain instantiations, 
and add to the assumption list of the goal the formula w2', where 
w2' is w2 with the instantiations used in matching wl' to wl. This 
class of tactics forms a sort of simplification facility at the 
formula level. 
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Chester 3: The Russell Compiler 

In the next two chapters, we study the informal and machine 

generated proofs of correctness of compilers for two simple high 

level languages. The ultimate aim is to verify a standard 

implementation of a realistic programming language. As a step 

toward this goal, we have partially factored the process of 

compilation into stages, so that each stage concerns itself with the 

implementation of one (or of several related) high level 

construct(s). The factorisation is intended to (i) make the proofs 

easier and more modifiable, (ii) focus attention on difficulties 

raised by particular featues, and 

far as possible. 

(iii) be conceptually coherent, as 

The transformation described in this chapter maps a high level 

language whose features include while loops and conditionals to a 

low level language whose (labelled) statements include go-to's and 

conditional jumps. The formulation is based closely on one given by 

Russell (421. In this chapter, we describe the problem, present an 

informal proof, and give an account of the successful generation of 

the proof in LCF. The presentation of the machine proof is somewhat 

idealised, but we mention the idealisations where relevant. 

The second transformation concerns the implementation of 

procedure declarations and calls in a block-structured high level 

language. In Chapter 4 we describe the problem and the informal 

proof, speculating on the generation of the proof in LCF. 

In both cases, our approach has been to supply denotational 

semantics of the languages in question, to represent the compiler as 

a function from high level to low level programs, and to prove the 
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preservation of the semantics under compilation. The following 

diagram illustrates these relations: 

high level 
programs 

high level low level 
semantics semantics 

1high level 1low level 
Lmeanings _e quiv al enc meanings 

In both cases, we have defined high and low level languages which 

isolate the major difficulties raised by the compilation of the 

relevant, constructs, and have given semantics which are convenient 

and natural for the proofs. For studying while loops and 

conditionals, we use Russell's pair of languages. The high level 

language contains essentially only the two constructs of interest. 

We follow Russell in giving a standard direct and a continuation 

semantics, repectively, for the two languages. For coping with 

procedure declaration and call, we define a high level language 

containing just declarations and calls, and in which all 

declarations are of (parameterless) procedures; we give a low level 

language whose operational semantics reflect an activation stack 

implementation. 

The current studies differ from the schema studies described in 

Chapter 2 in being 'longitudinal'; here we relate two different 

languages, rather than studying properties of one language. We 

explicitly define the semantics of both. The machine proofs rely 

more heavily than before on LCF's theory-building facility for their 

formulation and organisation. The 'proof engineering' aspects of 

compiler- low level 
programs 
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the generation of the proofs, particularly in the current chapter, 

occupy rather more of our attention than in Chapter 2, as the proofs 

are long and complex, and require careful planning and management. 

We conclude, nonetheless, that the proofs in Chapter 3, and the 

proofs outlined in Chapter 4, call for many of the tactics derived 

in Chapter 2, and that the composite tactics used in Chapters 3 and 

4 have much the same shape as the tactics we have already seen. 

The Problem 

The 'high level language given by Russell is shown below. We 

let p, pl and p2 range over a domain HPROGRAM of high level 

programs, I over a domain ID of identifiers, and exp over a domain 

EXP of expressions. 

p ::= assign(I,exp) I 

if exp then pl else p2 

while exp pl 

pl;p2 

A program can be an assignment (this case is present just to provide 

an atomic case), a conditional, a while loop, or a sequence of two 

programs. 

For the low level language, I and exp are as above, q ranges 

over a domain LPROGRAM of low level programs, t over a domain 

STATEMENT of statements, and L over a five-element domain of labels, 

called LABEL. 
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q <Li:ti,...,Ln:tn, L> 

t ::= assign(I,exp) 

ifnot(exp,L4) 

goto L I 

q 

L ::= L1 I L2 I L3 I L4 I L5 

Low level programs are sequences of labelled statements followed by 

a terminating label; statements can be if-not jumps, jumps to 

labels, assignments as at the high level, or whole programs again. 

(Thus there is block structuring of a sort in the low level 

language; we do not allow jumps out of blocks. By this technique, 

we can limit ourselves to the use of a finite number of labels and 

so separate the problem of compiling while and conditional 

statements from the problem of generating unique new label names.) 

The compiling algorithm, C:HPROGRAM ---a LPROGRAM, is defined 

for the various high level constructs by clauses. We use Quine 

corners to map concrete to abstract syntax. 

C rassign(I,exp) _ L1: assign(I,exp) 
L2: 

C 
r if exp then pl else p2-' _ 

C while exp p1' 

C "p 1; p2-' 

L1: ifnot(exp,L4) 
L2: C(pl) 
L3: goto L5 
L4: C(p2) 
L5: 

L1: ifnot(exp,L4) 
L2: C(pl) 
L3: goto L1 
L4: 

L1: C(pl) 
L2: C(p2) 
L3: 
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The five labels, therefore, have fixed functions, in the compiled 

images of the four high level constructs 1 

The high level semantic function maps high level programs to 

store transformations, where stores hold the current values of 

identifiers. We let s range over a domain STORE = ID -> VALUE, 

where VALUE is an (unspecified) domain of values (OTHERVALUES) plus 

the truth values -- VALUE = OTHERVALUES + tr. We need a function, 

eval, to evaluate expressions in stores to produce truth-valued 

elements of VALUE; we introduce eval:(EXP x STORE) --> tr. 
The high level semantic function, hsem, has type 

hsem:HPROGRAM -4 STORE--- STORE 

We use the usual notation for extending functions; f [x/yi means 

>y' . y'=y = x I f y'. We define hsem by clauses: 

hsem Iassign(I,exp)] s = s[eval(exp,s)/I] 

hsem j{if exp then pl else p2]J s = eval(exp,s)= hsem j[p11 s 
hsem j[p2j s 

hsem while exp pl s = eval(ex s)=!t 
(hsem while exp piJ ) 

(hsem Tp1]' S) I 

s 

hsem [p1;p2D s = (hsem [p2] ) (hsem [p1] s) 
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We define hsem as the least fixed point of a functional HSEM, in the 

obvious way. 

For the low level semantics, we define a domain of 

continuations and of label environments (mapping labels to 

continuations). (For more on continuations, see [46] and [45].) 

c e CONTINUATION = STORE -- ) STORE 

e e LABELENV = LABEL -' CONTINUATION 

We define a low level semantic function, lsem, mapping low level 

programs to label environments in which labels denote 

continuations. 

lsem:LPROGRAM--'LABELENV 

Each label is associated, in the label environment returned by lsem, 

with the continuation representing the meaning of the program from 

that label to the end of the program. The terminating label is 

associated with the identity continuation. We need another semantic 

function, lsemst, to compute the meaning of individual statements in 

a label environment with a continuation: 

lsemst:STATEMENT 4 LABELENV --- CONTINUATION -> CONTINUATION 

lsemst is defined by the clauses: 

lsemst lass ign(I,exp)J e c = Ns. c(s[eval(exp,s) /I] ) 
lsemst J[ifnot(exp,L)]j e c = ?.s. eval(exp,s) = c s I e L s 

lsemst fgoto LJJ e c = e L 

lsemst jq] e c = Ts. c(lsem Jfq]J L1 s) 
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This is straightforward in all but the last case. If a statement is 

a program, the label environment for the whole (outer) program is 

disregarded, and the continuation provided is applied to the meaning 

(found by applying lsem) of the program which constitutes the 

statement. This isolates the inner labels as desired. We let q 

abbreviate a low level program as shown below; then lsem assigns 

meanings to whole low level programs by constructing label 

environments as follows, where q = <Ll:tl, L2:t2,...,La:tn, L(n+l)>. 

lsem Qq= 
.L [lsemst Qt1]I (lsem [qD(lsem [q1 L2) / L1] 

[lsemst [t21J (lsem q,J) (lsem [qJ L3) / L2] 

[lsemst [tnJ (lsem Tq})(lsem fq]J L(n+1)) / Ln] 

[(As.s) / L(n+1)] 

The idea is that to each label Li, in the program q is bound the 

meaning (continuation) of the corresponding statement, taken in the 

label environment of the whole program and with the continuation 

attached to the next label, beginning with the completely undefined 

label environment. Since lsem and lsemst are mutually recursive, we 

use the device, justified by Bekic's theorem 2 of passing along a 

functional argument to lsemst. (We feel that this is neater than 

taking a simultaneous fixed point, though that is perhaps the more 

obvious solution.) Thus, to be correct, lsemst has the type 

lsemst: STATEMENT -- LABELENV --- CONTINUATION--4 
(LPROGRAM -a LABELENV)-- CONTINUATION 

and the functional argument, lsem', say, is the one that is applied 

to the subprogram in the case of a statement which is a program: 
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lsemst Tq] e c lsem' Ts. c(lsem' f{gJ L1 s) 

lsem passes itself as a functional argument in each of its calls of 

lsemst. We define lsem as the least fixed point of a functional 

LSEM, whose definition is obvious. 

The statement which expresses the correctness of the compiler 

is: 

Theorem 3.1 
Vp. hsem 1pJ = lsem [C(p)] L1 

That is, the meaning of any high level program p is equivalent to 

the meaning of the compiled version of p (the meaning is a label 

environment) applied to L1 (L1 is necessarily the first label of any 

compiled program). Intuitively, (lsem [C(p)} L1) is the meaning of 

the first statement of the compiled program, in the label 

environment for the whole program, with the continuation for the 

rest of the program. 

The Informal Proof 

The proof of Theorem 3.1 which Russell gives, in fact, is 

incorrect. He attempts to do computation induction on hsem and C, 

proving the theorem as an equivalence, and unfolding the induction 

variable for C in the process. The easiest proof we have found is 

of a pair of inequivalences, by computation induction on the two 

semantic functions, in turn. The proof can also be done, although 

it is slightly more complicated, by induction on the structure of 

high level programs. Although structural induction is more natural, 
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the proof by it requires an inner computation induction in the while 

case. In the proof we have generated in LCF and described here, we 

adhere to Russell's original proof plan as far as possible, and use 

computation induction. This point is discussed further in Note 3 

and in the Conclusions. 

The pair of theorems we prove are: 

Theorem 3.1a 
dp. hsem [p] C lsem [C(p)j L1 

Theorem 3.1b 
Vp. lsem [C(p)j L1 hsem [p]J 

The proof of Theorem 3.1a is by computation induction on hsem. That 

of Theorem 3.1b is somewhat more complicated; we wish to do 

induction on lsem, but we also wish to unfold lsem several times in 

the course of evaluating the left hand side of the formula (to 

reflect the fact that low level programs have several s- tatements 

for each high level construct) . For example, consider the label 

environment corresponding to the compiled image of `while exp pl,, 

that is, to the low level program 

L1: ifnot(exp,L4) 
L2: C(pl) 
L3: goto L1 
L4: 

which we call q. The label environment constructed by lsem is: 

1 (lsemst [ifnot(exp,L4)] (lsem Qq] ) (lsem [qJ L2) lsem / L1] 
(lsemst C(pl)Jj (lsem [qJ ) (lsem jqJ L3) lsem / L21 
(lsemst fgoto3L1 (lsem Qgjj ) (lsem [qj L4) lsem / L3] 
[(Ts.s) / L4] 

To evaluate the application of this whole label environment to L1 
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(in the expression lsem f q L1) we have to evaluate lsem f q L2, 

for which we need lsem [qj L3; for that we take lsemst [goto L1I 

(lsem [q T ) (lsem jq L4) lsem, which is lsem [qJ L1 again. The 

point is that we have to be able to unfold lsem three times. As a 

solution, we have formulated a rule of iterated computation 

induction which unfolds the induction variable a given number of 

times. This rule is generally useful for proofs by simultaneous 

induction on functions with different rates of recursion, a 

situation which naturally arises in compiler proofs. (For other 

uses of iterated induction, see Note 3, and Chapter 4, p. 167.) To 

unfold n times, the rule is 

(w[1. / fl & w[fun I / fl & ... & w[fun n-11/ fl & 

Vf'. (w[f' /fl & w[fun f' /fl & ... & w[funn-1f' /fl) 
w[ funnf' / fi ) 

w[FIX fun/fl 

This rule is valid because it is just an ordinary induction on 

f in the formula 

w & w[fun f%fl, & ... & w[fun n^]f%fl 

The basis is the basis shown, and the step follows easily from the 

step shown. The first conjunct is selected from the conclusion, 

after induction. 

To prove Theorem 3.1b using this rule, we let n = 4, and prove 

four bases and a step with four hypotheses: 
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BASIS 1 

1 [C(p)] Ll C hsem Q p3 

BASIS2 
LSEM 1 I{C(P)J Ll C hsem Q P] 

BASIS3 2 
LSEM 1 [C(p)] Ll C hsem Qp] 

BASIS 4 3 

LSEM L [C(p)] Ll C hsem [p] 

IH1 

IH2 

IH3 

IH4 

STEP 

Isem' [C(p)J) L1 C hsem [p] 

LSEM Isem' JC(p)1 Ll C hsem [p] 

2 
LSEM lsem' C(p)] Ll C hsem [p] 

LSEM 
3 
lsem' [C(p)] Ll C hsem [p] 

LSEM lsem' [C(p)) Ll C hsem [pJ 

The proofs of Theorem 3.1a, the STEP of Theorem 3.ib and the latter 
three basis cases of Theorem 3.1b (the first basis case is easy) 

follow similar lines. We therefore present just the proof of the 

STEP. 

We first compute, once for all, the label environments for the 

various high level constructs. These computations are given in four 

lemmas: 
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Lemma 3.2 
p = rassign(I,expj 
LSEM lsem' QC(p)1l _ 
1 [ lsemst Eass i n(. , ex p)1J 

(LSEM _1..sem' QC(p)J) 
(LSEM nll.sem' C(P)]J L2) 
(LSEM 

n_1 

3 sem') / L1] 
[ (\s.s) / L2] 

Lemma 3.3 
p = f exp then pl else p2' nj- 

LSEM lsem' Q C(p)l 
1 [lsemst Q ot( pxp,L4)P 

(LSEM 'lsem' QC(p)])) 
(LSEMnllsem' QC(p)J L2) 

1sem' ) 

[ lsemst EC( P)' -4 [C(p)l ) 

(LSEMnsem'QC(p)]] L3) 1 
l1sem' ) 

[lsemst [goto L_ 1 
(LSEMn_ l1sem' QC(p)J ) 

(LSEM -1l-sem IC(p),1 L4) 
(LSEMn -lsem') 

[ lsemst [C(p2 I 1 
(LSEM lsem [C(p)]l ) 

(LSEMn-11 sem' [C (P)TJ L5) 
(LSEMn-llsem') 

/ L1] 

/ L2] 

/ L3] 

/ L4] 
[ (\s.s) / L5] 

Lemma 3.4 
p = while exp pi 
LSEM nlsem' [C(p)7] _ 
1- [lsemst [ifnot(Pxp,L4)] 

(LSEMn lsem' [C(p)] ) 

(LSEMn-llsem' 0C(p)1 L2) 
(LSEMn-llsem') / L1] 

[lsemst L[C(pl)1 
(LSEMn-llsem' QC(p)} ) 

(LSEMn-llsem' QC(p)J( L3) 
(LSEMr-llsem') / L2] 

[ lsemst Q&oto L}' 
(LSEMn lsem' TC(P)1 ) 

(LSEMn-llsem' QC(p)] L4) 
(LSEMn-llsem') / L3] 

[ (-,s . s) / L4] 
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Lemma 3.5 
p = 

"pi-p2' 
D 

LSEM lsem' [C(p)13 _ 
1 [lsemst IC(pl)-j 

(LSEM,,Mn-1lsem' fC(p)J) 
(LSEMn-11 sem' CC (p)1 2) 

(LSEMn-11sem' ) / Li] 
[lsemst [C(p2)J 

(LS EMn-11 sem' tfC ( p)J ) 

(LSE,%In-11 sem' tC (p)J L 3) 
(LSEEMn-11sem') / L2] 

[ (-As .s) / L3] 

Proof of the STEP of Theorem 3.ib 
We assume IH1, IH2, IH3 and IH4. 

Show LS lsem' [C(p)JJ Li hsem 1p1 

We consider the cases for the four high level constructs. 

Case e = aG-q(I, 
= Xs.s[eval(exp,s) /I] 

LHS = lsemst Qassi n(I,exp)T 
(LSEM lsem' QC(p)J) 

(LSEM3 lsem' IC(p)J L2) 
(LSEM3 lsem' ) 

by Lemma 3.2 

= as. (LSEM3 lsem' [C(p)} L2) (s[eval(exp,s) /I] ) 
by unfolding lsemst according to its definition 

as. (Xs.s) (s[eval(exp,s) /I] ) 
by applying Lemma 3.2 again 

ks. s[eval(exp,s) /I] 
The proofs for the other cases are similar; we give only the 
while case in detail. 

Case e = if exp then pl else p2 
RHS unfolds to 

-As. eval(exp,s) hsem Tpig s ( hsem [p2] s 

After the sequence of unfoldings using Lemma 3.3 and the 
definition of lsemst, we arrive at 

)s. eval(exp, s) LSEM 2lsem' QC(pi)71 Li s 
LSEM 21sem' QC(p2)] Li s 
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for the LHS, and we then use IH3. 

Case a = while tKk PI 
RHS = eval(exp,s) 4 hsem QpV (hsem (p1D s) I s 

by unfolding hsem according to its definition. 

LHS = lsemst I ifnot(exp,L4): 
(LSEM-lsem' 1C(p)]) 
(LSEM 31sem' t C(p)II L2) 
(LSEM 31sem') 

by Lemma 3.4 

As. eval(exp,s) LS EM 31sem' IC(p)JJ L2 s 
LSEM 31sem' IZC(p)]1 L4 s 

by unfolding lsemst according to its definition 

-X s. eval(exp,s) lsemst tC(pl)-B 
(LSEM21sem' jC(p)J1) 
(LSEM 21sem' EC(p)3 L3) 
(LSEM 2 l sem') s I 

s 
by applying Lemma 3.4 twice 

As. eval(exp,s) (LSEM 21sem' II,C(p)]I L3) 
(LSEM 21sem' ILC(p)J L1 s) I 

F=] 

s 
by unfolding lsemst 

As. eval(exp,s) (lsemst Q oto L13 
(LSEM lsem' QC(p)71) 
(LSEM lsem' [C(p)11 L4) 
(LSEM lsen')) 

(LSEM 2lsem' 1C(pl)) L1 s) I 

s 
by applying Lemma 3.4 

As. eval(exp,s) = (LSEM .sem' ILC(p)]J L1) 
(LSEM lsem' QC(pl)TF L1 s) I 

s 
by unfolding lsemst again. 

At this point, finally, we can use IH2 and IH3 to complete the 
proof. 

Case 2 = r1;pf 
RHS = ).s. (hsem Qp2] )(hsem [pl] s) 

LHS eventually unfolds, using Lemma 3.5 and the definition of 
lsemst, to 

s. (LSEM 21sem' [C(p2)3 L1) (LSEM 31sem' C(pl)J 

for which we can use IH3 and IH4. Q.E.D. 
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It is clear that the bulk of the proof consists in repeated 

invocations of the lemmas, and unfoldings of lsemst, in which 

continuations are used in the specified ways. This applies equally 

to the proofs of Theorem 3.1a, and BASIS2, BASIS3, and BASIS4 of 

Theorem 3.1b. Thus, a strategy for generating the proofs is: 

Do induction or iterated induction, and prove for arbitrary p. 
Divide into cases for the four high level constructs. In each 
case, unfold the appropriate occurrences of LSEM or lsem by 
using the lemmas; then unwind lsemst. Do these unfoldings 
repeatedly until the left hand side equals the right had side, 
or until one of the induction hypotheses is applicable. 



The Proof in LCF 

Theory Structure for the Proof 

To organise the new objects and facts required in formalising 

this problem in LCF, we work within a network of LCF theories. We 

build a theory of the semantics of both languages, each in turn 

based on a theory of syntax, since semantic functions operate on 

syntactic entities. We factor out a theory of the shared syntax and 

a (daughter) theory of the shared semantics, as the high and low 

level languages share such types as assignment statements, and the 

high and low level semantics share objects such as stores. The 

compiler theory requires both syntax theories as parents, since the 

compiler theory maps high level to low level pro rams. The theory 

in which the correctness of the compiler is stated and proved 

depends on both semantics theories, as well as the compiler theory, 

since correctness is the preservation of the semantics under 

compilation. We factor out the trivial theory of labels as a 

separate theory (a parent of the low level syntax theory) and give a 

general polymorphic theory of function extension as a parent of the 

shared semantics theory, so that we can deal with extensions to 

stores and to label environments in a uniform way. A polymorphic 

theory of equality is a parent of both function extension and label 

theory. 4 The structure of theories for this proof effort is 

shown below. Ti-4 T2 means that theory Ti is a parent of theory T2. 
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high level) f compilerI low level 
semantics l semantics 

We outline the main theories below. For brevity, not all new types, 

constants and axioms are shown, and not all definitions are fully 

expanded (we resort to ellipsis). 

The theory of labels is quite simple. We introduce a new type, 

LABEL, and five new constants having that type: L1, L2, L3, L4 and 

L5. We have as axioms or theorems (depending on what can be deduced 

from the equality axioms) : 

I EQ L1 L1 TT 

f EQ L1 L2 = FF 

and the like, where EQ is an equality function inherited from 

equality theory. 

The theory of function extension is also simple. We introduce 

a polymorphic constant for extension: 

extend: (*-r**) __ ** * (* _ **) 

and axiomatise it by: 
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AXEXT EN D 

extend f val var y = (EQ y var val I y) 

In the theory of high level syntax, the main new type is 

HPROGRAM for high level programs. This is a recursive type, so we 

axiomatise it by introducing a pair of new constants which form an 

isomorphism between the 'abstract type' HPROGRAM and its 

representation. The domains ASSIGN, IF, WHILE and COMPOUND, for the 

four types of programs, are lifted by use of the type operator u, 

and the coalesced sum is taken, to give us the separated sum we 

5 
desire. 

ABSHPROGRAM:(ASSIGN u + IF u + WHILE u + COMPOUND u)-- HPROGRAM 

REPHRPOGRAM:HPROGRAM -'r (ASSIGN u + IF u + WHILE u + COMPOUND U) 

These functions are governed by the axioms 

--ABSHPROGRAM(REPHPROGRAM p) = p 

- REPHPROGRAM(ABSHPROGRAM d) d - 

We define the types for the latter three constructs (assignment will 
have been introduced in the shared syntax theory: ASSIGN = 

ID x EXP) . 

IF = EXP x HPROGRAM X HPROGRAM 

WHILE = EXP x HPROGRAM 

COMPOUND = HPROGRAM X HPROGRAM 

We are then able to add constant of the various types, and axioms 

about them, to supply all of the constructors, destructors and 

selectors required in the formalisation. For example, we add 
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constants with the following names and types: 

isassign:HPROGRAM -- tr 

mkassign:ASSIGN -4 HPROGRAM 

destassign:HPROGRAM ) ASSIGN 

assignidof :ASSIGN ---y ID 

assignexpof:ASSIGN ---4 EXP 

and the corresponding new axioms: 

I- isassign DOWN o ISL o REPHPROGRAM 

mkas s ig n Ea ABSHPROGRAM o INL o UP 

destassign = DOWN o OUTL o REPHPROGRAM 

--assignidof ; FST 

-- assignexpof = SND 

There are, naturally, many more constants and axioms of this sort, 

for example isif, destif, mkif, iswhile, destwhile, mkwhile, 

iscompound, destcompound and mkcompound, with the obvious types and 

definitions. 

In the theory of low level syntax, we have similar work to do. 

We add a new type, LPROGRAM, for low level programs. Corresponding 

to the syntax equations (p. 94) in which there are two 'loops' 

(programs consist of sequences of labelled statements followed by a 

label, and statements, in turn, may be programs) we need four new 

constants, defining two isomorphisms: 

REPLPROGRAM:LPROGRAM -- v (STATEMENTSEQ x LABEL) 

ABSLPROGRAM:(STATEMENTSEQ x LABEL) ---0 LPROGRAM 
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REPSTATEMENTSEQ:STATEMENTSEQ --. (LABELLEDSTAT u + 
(LABELLEDSTAT x STATEMENTSEQ) u) 

ABSSTATEMENTSEQ:(LABELLEDSTAT u + 
(LABELLEDSTAT x STATEMENTSEQ)u)- STATEMENTSEQ 

axiomatised by 

I- ABSLPROGRAM(REPLPROGRAM q) = q 

F- REPLPROGRAM(ABSLPROGRAM d ) d 

F- ABSSTATEMENTSEQ(REPSTATEMENTSEQ s)-_3 s 

REPS TATEMENTSEQ(ABSSTATEMENTSEQ c) = d 

We add the other types: 

LABELLEDSTAT = LABEL x STATEMENT 

STATEMENT = ASSIGN u + IFNOT u + GOTO u + LPROGRAM u 

IFNOT = EXP x LABEL 

GOTO = LABEL 

and routine constructors, destructors and selectors, such as 

mkLassign:ASSIGN -4 STATEMENT 

isLassign:STATEMENT -- tr 
destLassign:STATEMENT -4 ASSIGN 

assignLidof:STATEMENT -4 ID 

assignLexpof:STATEMENT -- EXP 

where, to avoid confusion, 'L' indicates that these are low level 

syntax constants. 
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Two further constants are 

ONTO:LABELLEDSTAT - STATEMENTSEQ STATEMENTSEQ 

to add a labelled statement onto a sequence of labelled statements, 

and 

issinglestatement:LPROGRAM --) tr 

to determine whether a program consists of exactly one labelled 

statement. The associated axioms are: 

- mkLassign INL o UP 

- isLassign = ISL 

- destLassign ; DOWN o OUTL 

F- Vt . assignLidof t = FST(destLassign t) 

"Vt. assignLexpof t ; SND(destLassign t) 

f-V l ss. ONTO 1 ss = ABSSTATEMENTSEQ(INR(UP(1,ss))) 

H issinglestatement = ISL o REPSTATEMENTSEQ o FST o REPLPROGRAM 

We can then add, for example, 

firstlabelof:LPROGRAM ---4 LABEL 

to retrieve the first label of a program, where 

- firstlabelof q = issinglestatenent q 
FST(DOWN(OUTL(REPSTATEMENTSEQ(FST 
(REPLPROGRAM q))))) I 

FST(FST(DOWN(OUTR(REPSTATEMENTSEQ 
(FST(REPLPROGRAM q)))))) 

to fetch the first label of a program, whether it has one or several 

statements. Again, to construct a program from a single labelled 
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statement and a terminating label, we specify a constant 

destlprogram: LABELLEDSTAT ---4 LABEL -4 LPROGRAM 

and an axiom 

} Vls 1. destlprogram is 1 
ABSLPROGRAM(ABSSTATEMENTSEQ(INL(UPls)),L) 

A large number of the routine constants (and associated axioms) have 

to be added, e.g. firststatementof, secondlabelof, restof (for 

mapping programs to their 'tails'), and lastlabelof, with the 

meanings suggested by the names. 

In the high level semantics theory we add a constant, hsem, for 

the semantic function, and HSEM for its defining functional: 

hsem:HPROGRAM-4 STORE --) STORE 

HSEM: (HPROGRAM -a STORE -4 STORE) -p 
(HPROGRAM --4 STORE -4 STORE) 

and axioms 

AXhsem - hsem = FIX HSEM 

AXHSEM 
--HSEM Xhsem' p s. isassign p 

extend s 
(eval(assignexpof p,s)) 
(assignidof p) I 

and so on, using the various constants from the high level syntax 

theory to give the remaining three clauses. 
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In the same fashion, we create a theory of the low level 

semantics and add a new type LABELENV 

LABELENV = LABEL ---4 CONTINUATION 

where 

CONTINUATION = STORE --a STORE 

and we add constants for the semantic functions and defining 

functionals: 

1sem:LPROGRAM --k LABELENV 

LSEM:(LPROGRAM -4 LABELENV) -+ (LPROGRAM --k LABELENV) 

lsemst : STATEMENT --10 LABELENV -- CONTINUATION -- 
(LPROGRAM--a LABELENV) -- 4 CONTINUATION 

and another constant 

createLABELENV: LPROGRAM --a LABELENV --' (LPROGRAM - 4 LABELENV) 
---) LABELENV 

with the associated axioms 

AXlsem - l sem = FIX L S EM 

AXLSEM 
f- LSEM = )lsem' q. createLABELENV q (lsem' q) lsem' 

AXlsemst 
I-- lsemst t e c lsem' = isLassign t 

As.c(extend s 
(assignLidof t) 
(assignLexpof t)) 

The function createLABELENV is just an intermediate function for 
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constructing label environments according to the definition of lsem. 

Informally, 

createLABELENV <Ll:tl, ..., Ln:tn, L(n+l)> e lsem' 

1[lsemst [ti] e (e L2) lsem' / L1] 

[lsemst Qt21 e (e L3) lsem' / L2] 

[ (?s.s) / L(n+l)] 

so that formally, we we have 

AXC LE 

H 
createLABELENV q e lsem' issinglestatement 
extend(extend 1 

(lsemst(firststatementof q) 
e 
(e(secondlab elo f q) ) 

lsem') 
(firstlabelof q)) 

p 

(Ts.s) 
(lastlabelof q) 

createLABELENV (restof q) 

(extend 
(lsemst (firststatementof q) 

e 
(e(secondlabelof q)) 

lsem') 
(firstlabelof q)) 

lsem' 

Finally, the compiler theory; we introduce a new constant, C, 

for the compiling function: 

C: HPROGRAM - LPROGRAM 

and define it by the axiom 

AXC 

-C p G isassign p-4 ABSLPROGRAM(ABSSTATEMENTSEQ(L1, 
mkLassign(destassign p)),L2) I 
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and so on for the other clauses (stringing them together using 

ONTO) . 

The correctness theory requires no new types or axioms, but we 

save in it many new theorems. It inherits from its ancestors all of 

the new types, constants and axioms defined thus far. 

This covers the main points of the structure of theories in 

which the correctness of the Russell compiler is stated and proved. 

Lemma Structure for the Proof 

The first stage, in generating the proof in LCF, consists in 

proving some simple lemmas, and then some more difficult ones. The 

reasons for proving the lemmas at the outset instead of allowing 

simplification to take its course during the main proof are twofold. 

Firstly, the lemmas would have to be reproved many times during the 

main proof, so efficiency is achieved by proving them once and 

storing them as facts in the appropriate theories. Also, some of 

the lemmas have fairly large simplification sets; we can reduce the 

number of simprules in the simpset of the main goal by dispensing 

with the simplifications required only for the lemmas. 

Secondly, it will become clear that the challenge in managing a 

proof of this complexity is to leave as much as possible to 

simplification. After the user constructs successive layers of 

carefully chosen lemmas, the main proofs can be performed with a 

minimum of user guidance. The alternative is to guide the proof by 

a sequence of tactics which unfold and substitute in exactly the 

correct ways. This is both more tedious and less illuminating than 
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constructing layers of lemmas. 

The first group of (syntactic) lemmas are very routine. We 

prove, for example, in the theory of low level syntax, that 

V a. isLassign(mkLassign a) = TT 

For all of the (similar) lemmas in this set, a simpset composed of 

BASICSS and simprules formed from all of the basic low level syntax 

axioms is used, and all are proved by an application of SIMPTAC. We 

save the new theorems in the low level syntax theory. We then form 

a simpset from all of the new theorems, and, for reference, call it 

SSLLSYNT (for simpset for low level syntax). 

In the compiler theory, we prove another set of syntactic 

theorems, relating the high and low level languages. These are 

useful since the compiling function builds low level programs from 

fragments of high level programs. We prove, for example 

Op. p. assignLidof(mkLassign(destassign p) ) 
assignidof(destassign p) 

The various lemmas in this group share a simpset including all of 

the basic syntax axioms, high and low level. SIMPTAC solves all of 

the goals. We call the simpset formed from the resulting theorems 

SSCOMP (for compiler theory simpset). 

It is also useful to prove the following lemmas, the first two 

in the high and the second two in the low level semantics theories. 

thhsem 
- hsem p = -As. isassign p i extend s 

(eval(assignexpof p,s)) 
(assignidof p) I 
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thHSEM 

F_HSEM hsem' p = isassign p 4 ... I ... 

thlsem 
Hlsem q > createIABELENV q (lsem q) lsem 

thLSEM 
I-LSEM lsem' q = createLABELENV q (lsem' q) lsem' 

The first and third are easily proved using UNFOLDTAC on AXhsem and 

AXlsem, respectively (see Chapter 2, p. 64). The second and fourth 

are proved by simplification, with AXHSEM and AXLSEM in the simpsets 

of the goals. 

From thLSEM and thlsem it is easy to prove the following eight 

lemmas, where the bracket indicates a choice, which must be the same 

in both instances: 

L2 L2 

lsem (C(p)) L3 = createLABELENV(C(p))(lsem (C(p)))lsem L3 

L4 L4 
L5 L5 

L2 L2 

LSEM lsem'(C(p )) L3 = createLABELENV(C(p))(lsem'(C(p)))lsem' L3 
L4 L4 
L5 L5 

Used as simplifications, these lemmas allow us to select the 

contexts in which LSEM and lsem are unfolded. In particular, they 

allow us to avoid unfolding similar expressions involving L1, as 

these are to be viewed as instances of the various induction 

hypotheses. (This point is discussed again presently.) We form a 

simpset from the eight lemmas, called SSLSEMlsem. 
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Next, we prove, in the compiler correctness theory, four lemmas 

corresponding to the lemmas which constructed label environments in 

the informal proof (Lemma 312, Lemma 3.3, Lemma 3.4, and Lemma 3.5). 

We use the intermediate function createLABELENV, here. We prove, 

for example, 

p. isassign p TT IMP 

createLABELENV (C(p)) e lsem' 
extend(extend ..L 

(lsemst(mkLassign(assignidof p, 
assignexpof p)) 

e 
(e L2) 
lsem') 

L1) 
(T s.s) 
L2 

the goal for which is 

createLABELENV (C(p))e lsem' = ... 
SSLLSYNT + BASICSS + (isassign p 7- TT) 
[Is-assign p = TT 

where the right hand side of the formula is as above. There are 

three similar lemmas (and goals) for the other cases. The goals are 

all proved by using the standard tactic SUBSTAC:thm lists tactic 

SUBSTAC [f-ti - ui] 

w[ ti/xil 
ss 

w[ui/xib 
ss 
A 

in order to unfold the definitions of C and createLABELENV. The 

tactic which solves the four goals is 
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(SUBSTAC [AXCI)+ 
((SUBSTAC [AXCLEI)+)* 

We can include neither AXC nor AXCLE in the simpsets of the goals, 

as both C and createLABELENV are recursively defined and would 

therefore loop, as simplification rules. Instead, we make explicit 

substitutions. The resulting theorems may safely be used as 

simprules in the main proof. If we do not prove the four lemmas in 

advance, we would have to make the explicit substitutions during the 

main proof, whereas by using the lemmas, the substitutions are done 

automatically. In addition, the lemmas accomplish once a segment of 

proof which would otherwise have to be performed many times in the 

course of the main proof. 

We call the lemmas CLEa, CLEi, CLEW and CLEc, and the simpset 

containing the four of them, SSCLE. 

In the same spirit, ten more' lemmas, also in the compiler 

correctness theory, can be proved from the above four, from goals of 

the form ' 

r 
creat eLABELENV ((C) p)) e lsem' L2 ° (\ s . s) 
AXEXTEND + (isassign p a TT) + SSLABEL + SSCLE + BASICSS 
isassign p - TT 

where SSLABEL is a simpset containing the basic axioms and theorems 

about labels. There are nine more similar lemmas about the 

environments for the other constructs, applied to the other labels 

(but again, not LL). These are all proved by simplification. We 

call the simpset formed from the ten resulting theorems SSCLEL 

(si.mpset for creating label environments applied to labels). 

119 



Several lemmas aid in the proof of the basis cases of Theorem 

3.1b; for example, one achieving the goal 

Vt. lsemst t 1 1 lsem' 

AXLSEMST + BASICSS 

which we solve by applying 

GENTAC 
(CONDCASESTAC+)* 
(EXTTAC*)+ 

to prove 

thlsemsti 
}._ y lsem' t. lsemst t i i l sem' 

We also prove four lemmas, constructing label environments given 

1 :LABELENV as a parameter, from goals of the form 

createLABELENV (C(p)) 1- lsem' = extend(extendI(77s.s) L2Z1L1 
Ithlsemstl. + SSCLE + BASICSS 
isassign p = TT 

and similarly for the other cases. The four resulting theorems are 

placed in a simpset called SSCLE To prove them, we could write a 

tactic to find a term p of type HPROGRAM in the formula part of a 

goal and produce the subgoals shown below: 
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HCASESTAC 

(w, ss, A) 

s s + (p - -1.) 

(p --L) L 
w 

ss + (isassign p = TT) 
(isassign p = TT) 

LA J 

fW 

ss+ (isif p-TT) 
(isif = TT) 
A 

ss + (iswhile p = TT) 
(iswhile p = TT) 
A 

w 1, 

ss + (iscompound p -- TT) 
(iscompound p = TT) 
A 

That is, HCASESTAC, for high level cases tactic, produces the four 

cases corresponding to the four types of high level programs, as 
6 

well as the case for undefined programs. The proof function of 

HCASESTAC would use a cases rule, HCASES, say, derived from the 

standard CASES. (For an example of this sort of derivation, see 

[15], Al.) We would need the following axiom, in the derivation: 

F-Vp . p = isassign p -'a mkassign(destassign p) I 

isif p mkif(destif p) I 

iswhile p mkwhile(destwhile p) I 

iscompound p---> mkcompound(destcompound p) I 1 
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At any rate, we prove the four lemmas using HCASESTAC. The 

four lemmas in SSCLE must be used as simplifications. We form a 

simpset of the four theorems thus proved, called SSCLEl.. 

We also prove a layer of lemmas from four goals of the form 

createLABELENV (C(p)) L lsem' L1 ° - 

SSCLEI + AXEXTEND + SSLABEL + BASICSS 
lisassign p = TT 

and so on, by applying SIMPTAC. This produces four theorems which 

we place in a simpset called SSCLEILI. 

We finally prove four lemmas about lsemst, analogous to CLEa, 

etc., from goals of the form 

lsemst t e c lsem' = Xs. c(extend s 
(eval(assignLexpof t,s)) 
(assignLidof t)) 

AXlsemst + BASICSS 
Lisassign t = TT 

by applying SIMPTAC. We put the four resulting theorems in a 

simpset called SSlsemst. As for the analogous theorems constructing 

label environments, these four, used as simprules, save unfolding 

the definition of lsemst many times (and each time simplifying the 

result). 

The logical dependencies amongst the simpsets (representing 

groups of lemmas) are shown in the tree below: 
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basic high level 
semantics axioms 

basic low level 
semantics axioms 

SSlsemstl 

SSLSEMlsem 

SSCLEILI FS -SC -LED 

SSCOMP 

where the theorems and simpsets named are as follows (to summarise): 

SSlsemst is used to unfold lsemst in the various cases; 

SSLLSYNT contains simple facts about low level syntax, and 
SSCOMP, about the relation of high to low level syntax; 

SSLSEMlsem contains the eight theorems which unfold LSEM and 
lsem in the appropriate contexts; 

thlsemst,L is a theorem, used in the basis cases, for unfolding 
lsemst with undefined label environments and continuations; 

AXEXTEND is the axiom defining function extension, used for 
label environments and stores; 

SSIABEL contains the basic facts about the equality and in- 
equality of the five labels; 

SSCLE contains the four basic theorems used for unfolding 
createLABELENV from which we construct the rest, such as 

SSCLEL, which contains the theorems applying the various label 
environments to the various labels; 

SSCLEI, for the basis case label environments; 

SSCLEILI, for the basis case label environments applied to U. 

basic low level 
syntax axioms 

M 
basic high level 

syntax axioms 

basic compiler 
axioms 

simpset with 
AXEXTEND 

SSLABEL 
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The Machine Proof 

The beginning and end of the tactical proof of Theorem 3.1 are 

examined first. At the beginning, we are proving 

V p. hsem [p] = lsem 1C(p)T L1 

so we apply SYNTHTAC (Chapter 2, P. 61) to a goal with that formula 

to obtain two subgoals; the subgoals are achieved by Theorem 3.1a 

and Theorem 3.1b, respectively. We leave aside the question of 

simplification sets, for the moment, and begin generating the proofs 

by applying tactics to do the inductions and specifications to 

arbitrary variables. For proving Theorem 3.1a, the tactic begins: 

(INDUCTAC (AXhsem] )+ 
GENTAC 

SIMPTAC (denoted by the +) solves the basis case produced by 

INDUCTAC. 

For managing the proof of Theorem 3.1b, we require a tactic 

(ITINDUCTAC) which inverts the rule of iterated induction mentioned 

on p. 100. The rule, ITINDUCT, and the tactic, must be implemented 

in ML, ITINDUCT in terms of INDUCT, and ITINDUCT calling INDUCT, 

first constructing a new basis and step (as discussed), and then 

selecting the first conjunct of the theorem proved by INDUCT. This 

is a simple example of the derivation of a rule of induction in LCF. 

ITINDUCTAC has ML type thm-- int - tactic, where the 

integer represents the number of iterations desired, and the theorem 

is the least fixed point definition of the function on which 

induction is being done. Applied to a goal, the tactic returns n 
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subgoals: n basis subgoals, and a step subgoal which has n 

induction hypotheses in its assumption list. The proof part of the 

tactic calls ITINDUCT; ITINDUCT expects n theorems (achieving the 

subgoals). The new rule and tactic can be depicted as: 

ITINDUCT (fun,f) 

- w[ 1 /f] 
w[fun .i /f] 

`--WC funn-11/fit 

[w; w[fun f/f]l; .. ;w[funn-1f/f] ] I-- w[funn£/f] 

--w[FIX fun/f] 

ITINDUCTAC (H f - FIX fun) n 

(w, ss, A) 

w[ /fI 
ss 

LA 

w[fun-L/f1 
ss 

w[funn-l4-/fl. 
ss 
A 

w[fun f'/f] 
ss 
w[f' /f] 
w[fun f' /f] 

n-1 
w[fun f' /f] 

LA- 
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(More details on the derivations of the rule and tactic are given in 

the Appendix.) 

We begin the proof of Theorem 3.1b, therefore, by applying 

(ITINDUCTAC AXlsem 4)+ 
GENTAC 

SIMPTAC solves the first of the three basis cases for us. 

In both proofs, we would then like to compute the label 

environment that is constructed for the whole compiled program and 

apply it to L1; that is, to evaluate, respectively, 

lsem 1C(p)j L1 

LSEM4 lsem' [C(p)l L1 

by using the facts AXlsem and AXLSEM, respectively. However, we 

cannot add these facts to the simpsets of the goals for Theorem 3.1a 

or Theorem 3.1b, because we wish to regard all subsequent occurences 

of formulae of the forms 

LSEMn-lsem' [C(p)] L1 C hsem 

lsem [ C(p)J Ll C hsem ([pj 

hsem (p] C lsem [C(p)J1 L1 

[p] 

as instances of the various induction hypotheses, not to be further 

simplified. In the while case (of either proof), in fact, we 

eventually arrive at a subgoal whose formula part matches the one of 

above formulae exactly, so there is no way to distinguish the 

formula part of the current subgoal (i.e. the sub goal we have after 

induction, simplification and specification) from formulae which 
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occur in subsequent subgoals. We wish to simplify the former, but 

not the latter. 

The solution we adopt is to write a tactic, called TEMPSIMPTAC 

(for temporary simplification tactic), of type thm --3 tactic, whose 

effect on a theorem and a goal is to add the theorem to the simpset 

of the goal, simplify, and return a subgoal having the resulting 

formula but with the original simpset. TEMPSIMPTAC thus temporarily 

uses a theorem as a simprule. In this case, use of TEMPSIMPTAC 

precludes unwanted simplifications of (LSEM ...), (lsem ...) and 

(hsem ...) which arise later in the course of the proofs, while 

allowing the simplifications at the outset. 

The generation of the proofs of Theorem 3.1a and Theorem 3.1b 

begin, respectively, with the applications of 

(INDUCTAC [AXhsem] )+ 
GENTAC 
TEMPSIMPTAC thlsem 
HCASESTAC+ 

(ITINDUCTAC AXlsem 4)+ 
GENTAC 
TEMPSIMPTAC AXLSEM 
TEMPSIMPTAC thhsem 
HCASESTAC+ 

so that in each proof, after simplification, we have four remaining 

subgoals. 

After all of the unfolding that precedes the use of the 

induction hypotheses, some further reasoning is required to complete 

the proofs. In the informal proof of Theorem 3.1b, for example, the 

formulae of the subgoals in the three cases (the assignment case is 

solved by this point) are: 
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2 ' \s. eval(exp,s) LS 
LS 

EM lsem (C 
EM 2lsem' TC 

(p)Jl L1 s 

(p)J L1 s c 
Ts. eval(exp,s) = hsem QtplT s I h sem (p 2J s 

'As. eval(exp,s) (L SEM lsem' Q C (p)J L1) 
(L 

As. eval(exp,s) (h 
SEM 21sem' [C 
sem [ph ) (hse 

(pl)] 
m (pl]l 

L1 s) I s 
s) I s 

c 

2s. LSEM2 lsem' [C(p2)I L1 (LSEM3 lsem' [ C(p1)j s) 
As. hsem [p2] (hsem rpl] s) 

A general tactic which expects subgoals having formulae of 

these forms (and the similar ones which occur in the proof of 

Theorem 3.1 a and the three basis cases) is built from the following 

two derived tactics: 

LAMGENTAC 

Tx. t1 c 7x. t2 
ss 
L 
tlct2 
ss 
A 

COMBTAC 

tl ul t2 u2 
ss 
A 

tl c t2 
ss 

LA 

ul c u2 
ss 

L 

The proofs use basic PPLAMBDA inference rules about abstraction and 

monotonicity. 
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The general tactic (which we call ENDTAC) which performs the 

last segment of the proofs is 

REPEAT(USEASSUMPCHOOSETAC ORELSE ((COMBTAC ORELSE LAMGENTAC 
ORELSE CONDCASESTAC) THEN 
SIMPTAC)) 

(USEASSUMPCHOOSETAC is described in Chapter 2, p. 83.) ENDTAC tries 

to apply one of the induction hypotheses, and failing that, tries 

the tactics COMBTAC, LAMGENTAC and CONDCASESTAC in succession -- 
then simplifies, and repeats if necessary. If subgoals with 

formulae of other 'shape' were expected, we could add tactics to 

deal with those shapes (but they are not). 

The proofs are completed by adding a middle segment: just a 

simplification guided by the carefully planned structure of lemmas 

we have described. The simpset of the goals for both of our 

theorems is comprised of SSLSEM1sem, SSlemst, SSCLEL and SSCOMP. 

The proofs of the basis cases require the simpset SSCLEIL1, so we 

also include this in the simpset of the main goals. 

The basis cases are proved similarly, by first using AXLSEM and 

thhsem as simplification rules temporarily, then simplifying, and 

then using ENDTAC: 

TEMPSIMPTAC AXLSEM 
TEMPSIMPTAC thhsem 
ENDTAC 

As a refinement of the proofs, we observe that it is desirable 

to unfold occurrences of lsemst before simplifying expressions of 

the form (LSEM ...) or (lsem ...), to avoid unnecessary expansion. 

For example, in the course of proving the while case of Theorem 
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3.1b, a subgoal arises whose formula's left hand side is 

As. eval(exp,s) 4 
( lsemst E goto LIT 

(LSEM lsem' QC(p)j) 
(LSEM isem' j[C(p)J L4) 
(LSEM lsem')) 

(LSEM 2lsem' QC(p) JJ L1 s) I s 

The continuation (LSEM lsem' ( C(p)]1 L4) need not actually be 

evaluated because the semantic function lsemst ignors it. However, 

ordering of simplification rules is not an option in LCF, and the 

extra unfolding, if it occurs, does not upset the proof. 

Had the lemma structure not been constructed in advance and 

used to form the simpset for the two main goals, the tactical proof 

would have had to be guided by successive substitutions. AXC and 

AXCLE are not suitable theorems to be used as simplification rules, 

as we have mentioned, as they would obviously loop. Nor are thhsem 

or thlsem, for the same reason. All of these facts, however, are 

hypotheses of theorems which are suitable as simprules. Guiding the 

proof by substitutions requires the user to be aware of the detailed 

course of the proof, and makes for clumsy, non-transparent tactics. 

It requires careful indication of the instances (of LSEM, for 

example) to be unfolded, and careful specification of any quantified 

theorems to be used as substitutions. In addition, a proof 

performed in this fashion entails evaluating the same expressions 

repeatedly. 

To summarise, the tactics which solve the two main theorems, 

collectively called COMPILERTAC, are (respectively): 
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(INDUCTAC (AXhsem) )+ 

GENTAC 
TEMPSIMPTAC thlsem 
HCASESTAC+ 
ENDTAC 

(ITINDUCTAC AXlsem 4)+ 
GENTAC 
TEMPSIMPTAC AXLSEM 
TEMPSIMPTAC thhsem 

ENDTAC ENDTAC ENDTAC HCASESTAC+ 
ENDTAC 

Conclusions 

In this chapter, we have demonstrated the importance of 

formalising and machine-checking proofs. The logical error in 

Russell's proof was subtle enough only to be discovered under the 

constraints of machine-formulation. 

More generally, we have shown how a large formal proof has been 

organised and performed in LCF. Much of the effort was invested in 

delineating the required theories and in developing a hierarchy of 

lemmas, each layer forming simpsets for the goals representing the 

next layer. The resulting lemmas were used as simprules in the main 

proof, so that as far as possible, the proof is guided by 

simplification. Beyond this, the control structure for the proof is 

provided by the use of composite tactics (built using tacticals) 

which reflect the structure of the informal proof. The tactics 

themselves are not startling, but the accomplishment of a formal, 

machine proof of this complexity and magnitude, by the application 

of high level procedures, is encouraging. 
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The expression of the problem depends on the theory facility of 

LCF, which allow new types, new objects of those types, and new 

axioms about those objects, to be introduced in theories, and 

theories to be joined in hierarchies. The success of the proof 

effort rests on the availability of a high level programming 

language, ML (and its interface, via its abstract type system) to 

PPLAMBDA, in which strategies for generating proofs can be 

implemented. It also rests on the power of the simplifier in LCF, 

which, as we have shown, enables rountine inferences to be done 

automatically, as a matter of course, and can also be used for 

automating more advanced proof steps. 

The interest of tactical proof lies in (i) the way in which 

complete, formal proofs can be performed at a high level, (ii) the 

way in which tactics naturally reflect informal proof plans, (iii) 
the way in which a tactic that solves a goal abstracts the formal 

proof in an intelligible form, and (iv) the way in which tactics 

reflect patterns of inference common to other proofs, and therefore 

may be helpful in proving other theorems. In particular, one would 

hope that other compiler proofs would yield to similar tactics. In 

Chapter 4, we investigate the extent to which this is so. 
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Notes for Chapter 3 

1. An obvious extension to this problem would be the specification 
of a lower level language without blocks of this sort. A compiler 
from the current low level language to the new one would 'flatten' 
blocks by generating unique, new label names, and repairing the 
labels in all go-to statements. 

2. That is, as a solution to the mutually recursive equations 

lsem = F(lsem,lsemst) 

lsemst = G(lsem,lsemst) 

where F = \(lsem',lsemst') q. 1.[lsemst ... (lsem' Qq 71) 

(lsem' (q 1 L2)/L1]...[(Ts.s)and G = lsem' t e c s. t = 

rassign(I,exp)" ... ... t = 'q c(Isem' [q71 L1 s) we 
propose the pair 

(lsem,lsemst) = F(lsem,lsemst),G(lsem,lsem st)) 

= FIX(TP. F P,G P) 

where the general theorem being used is: 

For x:*, y:**, F':(* X **)_ *, G':(* 

FIX(AP. F' P,G' P) = (FIX(2x. F'(x,y) ),y) 

where y = FIX(Ty. G' (FIX(2 x. F' (x, y)) ,y) 

= G' (FIX(2x. F' (x,y)) ,y) 

P:* 

In this case, as lsemst contains no recursive calls to itself, G has 
a first argument of the type of lsem rather than the type of the 
pair (lsem,lsemst) , so the solution lsemst is G(lsem) , which is 

;ttec s. ... I t= rq''4c(Isem [q] L1 s) 

x **) 4 **, 

3. We remark briefly, here, on the slightly more complicated 
alternative proof by structural induction. It requires 
reformulating the semantics hsem by using the By-law (Chapter 2, p. 

58-59) so that we take a local fixed point in the while case: 

hsem [while exp pl] FIX(7\h s. eval(exp, s)=, 
h(hsem [pl] s) I s) 

FIX 

We assume that for pl and p2, lsem [C(pl)1J L1 = hsem Eplj , and 
lsem [C(p2)] L1 = hsem [p231 . The basis and assignment cases 
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are obvious. We then consider the remaining three cases. If p r 
= while exp pln, we must show 

?s. eval(exp,s) =4 lsem fTC(p)l L1 (lsem [C(pl)]] L1 s) I s 

FIX W 

The RHS = 'As. eval(exp,s) (FIX ' ) (hsem [pl1l s) s. The 
induction hypothesis applies and it remains to show 

lsem [C(p)] L1 = FIX 

We achieve this by proving 

(i) FIX c lsem [C(p)]1 L 1 

(ii) lsem [C(p)] L1 FIX 1' 

For (i), we show that (lsem [C(p)] L1) is a fixed point of 
that is, 

`4' (lsem [C(p)] L1) = lsem [C(p)] L1 

RHS = As. eval(exp, s) 
(lsem [C(p)l L1) (lsem C(p)] L1 s) I 

LHS =As. eval(exp, s) Ap 

(lsem [C(p)] L1) (hsem {p1] s) I s 

s 

and the result follows by hypothesis. This establishes that 
for always-terminating programs, the compiler is correct. For 
(ii) we do an inner iterated (3-ary) computation induction on 
lsem, proving the following conjunction (recalling that lsem = 

FIX LSEM) : 

lsem [C(p)) L1 C FIX ` & lsem S FIX LSEM 

(For other instances and discussion of this method of proof, 
see Chapter 4, Proof of Lemma 4.5 (ii), Lemma 4.10 (i), and 

Chapter 4, Notes 3 and 5.) We assume that 

lsem' [C(p)3 L1 . FIX - & lsem' FIX LSEM 

and 

LSEM lsem' [C(p)] L1 S FIX `- & LSEM lsem' C FIX LSEM 

and 

LSEM 21sem' [C(p)] L1 S FIX 'W & LSEM 21sem' c FIX LSEM 

and we show that (after unfolding LSEM and lsemst) : 
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Ts. evai(exp, s) 
(LSEM lsem' ITC(p)J L1) (LSEM 2lsem' 1LC(p)1J L1 s) I s 
FIX °s 

The RHS = 

'4 FIX % = \s.eval(exp,s) (FIX %) (hsem [p13 s) I s 

The result follows by use of the outer hypothesis, and both 
conjuncts of various inner hypotheses. The other cases are 
straightforward. Q.E.D. 

To compare the two methods of proof: 

(i) In the computation induction proof, we prove, at the top level, 
a pair of inequivalences; in the structural induction proof, we 

prove an equivalence. In the former, one direction requires 
iterated induction. 

(ii) The computation induction proof requires a semantics with a 
global fixed point; the structural induction proof, one with a 
local fixed point for while statements. 

(iii)In the computation induction proof, the induction hypothesis is 
sufficient for proving the while case. In the structural 
induction proof, an inner computation induction is required, in 
two directions. One direction requires iterated induction, as 
in the computation induction proof at the top level, in 
conjunction with another formula. 

This comparison is discussed further in the Conclusions. 

To perform the proof by structural induction, we would 
implement the following rule and tactic in ML: 

HINDUCT 

Hw [ 1/pi 

-w[assign(I,exp)/pl 

[w[pl/pl ; w[p2/pi, I H w[if exp then pl else p2/pJ 

[w[pl/pl I F- w(while exp p1/pJ 

[w[pl/pl ; w[p2/pl I F- w[pl;p2/pl, 

klp. w 

135 



HINDUCTAC 

(w, ss, A) 

w[1 /pi 
ss 

w[assign(I,exp) /pl 
ss 
A 

w[if exp then pl else p2/p1 
ss 

w(while exp pl/pIl 

w[P1 P 
LA, 

w[Pl;P2/pl 
ss 
w(pl/pl w[P2/pl 

LA 

4. A polymorphic theory of equality is inconsistent in general. It 
is sufficient to restrict the theory to flat domains, that is 
domains in which for all x and y 

x -- y (x=y v x ate) 

These are, in any case, the only domains on which we require 
equality. All axioms of the theory are conditionalised on the 
flatness of the domain in question. We therefore add to the theory 
of labels (for example) an axiom representing flatness: 

HU Lj . EQ Li Lj = FF & L 1 9 Lj IMP Li - 1 

or 
L C L IM P 

F'Li Lj .' Li = (DEF Li =31 Lj I -'- ) 

and use the axiom to discharge the antecedents of any of the 
conditionalised equality axioms we wish to use. Similarly, the 
theory of function extension requires the theory of equality, so all 
extension axioms (e.g. AXEXTEND) must be conditionalised on the 
flatness of the domain in which they are to be instantiated, that 
is, to the type of x in 

extend f val x 

Therefore, we add to the shared semantics theory an axiom expressing 
the flatness of the domain ID, and use it to discharge the 
antecedents of 'the equality axioms we wish to use. 
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5. That is, the shape of the domain of HPROGRAM is 

We could neaten the presentation by assuming the definition of an 
n-ary sum operator, and so conceal the lifting operations, but this 
introduces the problem of generating names and axioms for the 
injection, projection and selector functions, e.g., IN1, IN2, 
etc.? -- and it requires these functions to be defined differently 
than at present. Thus, to avoid confusion, we leave things as they 
are. At any rate, the UP's and DOWN's are seen one in the first 
layer of lemmas proved. 

6. This is, in fact, one of the points at which our presentation is 
idealised. The standard type operator for sum, at the time this 
proof was produced in LCF (but not any longer) was binary separated 
sum, and there was no facility then for defining new type operators. 
Therefore, the domain of high level programs had the shape 

The approrpiate cases tactic used a cases rule which did nested case 
analysis: 
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HCASESTAC 

(w, ss, A) 

fw 

(isassign p = TT) + ss 
isassign p = TT) 

[A 

w 
(isassign p m L) + ss 
(isassign p s -j-) 

J 

w 

(isassign p FF) + 
(isif p = TT) + ss 
(isassign p - FF) 
(isif p = TT) 
[A 

w 

(isassign p =- FF) + 
(isif p - FF) + 
(iswhile p = TT) + 
ss 
(isassign p = FF) 
(isif p = FF) 
(iswhile p _ TT) 
A 

w 

(isassign p -= FF) + 
(isif p - FF) + 
(iswhile p = FF) + ss 
(isassign p - FF) 
(isif p = FF) 
(iswhile p FF) 
A 

(isassign p-=- FF) 
(isif p = FF) 
(iswhile p = 1) 
A 

J 

11 

J 

The four subgoals that form a column on the left are the main ones; 
simplification solves the other three 'spurious' cases. 

7. In fact, we must add the proviso that the 'highest powered' 
induction hypothesis is used, so that, for example, for the formula 
arising during the while proof of Theorem 3.1b, the step, 

LSEM lsem' (C(p)]l L1 C hsem fp] 

IH2, that is, 

Vp. LSEM lsem' [C(p)J L1 S hsem [pj 

is used in preference to IH1, that is, 

'vp. lsem' [C(p)] L1 c hsem [p] 

LA, 

r -w 
(isassign p = FF) + 
(isif p la -'-) + ss 
(isassign p = FF) 
(isif p L ) 

(A 

(isassign p -ra FF) + 
(isif p FF) + 
(iswhile p L) + 
ss 
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Chapter 4: Implementation of Procedure Declaration 

In this chapter, we consider the correctness of the 

implementation of another pair of constructs: procedure declaration 

and invocation. We define a block structured high level language in 

which recursive and non-recursive procedures may be declared and 

called, and a low level language whose semantics reflects a standard 

stack implementation. Both languages are as streamlined as possible 

to our purposes. An algorithm to compile high level into low level 

programs is presented and informally proved. To facilitate the 

proof, the compilation is factored into three stages. We 

concentrate on the theoretical difficulties in expressing the 

relations between the various levels, and on the three informal 

proofs. 

The emphasis in this work has been to supply semantics and 

proofs amenable to expression in LCF. Although the proofs have not 

been performed in the system, they have reached their present 

structure only because machine proof was envisaged; formalisation in 

LCF requires a level of rigour which reveals the need for extreme 

care. We believe that the generation in LCF of the proofs presented 

in this chapter would be a feasible undertaking; our optimism is 

based on the results of the machine generated proof described in 

Chapter 3, and on the machine proof outlined in this chapter. 
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The Problem 

The High Level Language 

In the source language, we allow blocks in which local 

variables may be declared, and procedures invoked. We model static 

binding of variables. For simplicity, we consider blocks with 

exactly one declaration apiece, and procedures without parameters. 

We allow identifiers to denote only procedures. All of this makes 

for a rather odd language, but enables us to focus on the issue at 

hand: the correctness of the implementation of recursive 

procedures. We believe that enrichments of the language, such as 

inclusion of a parameter-passing mechanism, or multiple declarations 

in blocks, would require more detailed, but not essentially 

different proofs. 

We let I range over a domain ID of identifiers, pl and p2 over 

a domain HPROGRAM of high level programs (distinct from HPROGRAM in 

Chapter 3), and the variable a, over a domain A of (unspecified) 

atomic programs. High level programs are given by: 

p let I = pl in p2 I 

letrec I = pl in p2 I 

call I 

pl;p2 

a 

The first two constructs specify blocks with non-recursive and 

recursive procedure declarations, respectively; the third is 

procedure invocation, and the fourth is sequencing. 
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A standard (direct) denotational semantics is given for this 

language. It requires a domain, HENV, of environments, in which 

identifiers are mapped to the meanings of programs (since all 
identifiers denote procedures). The meanings of programs are 

transformations on stores; the structure of the domain STORE is not 

important for our purposes. We let ar range over STORE. Thus we 

have 

P E HENV = ID --3 STORE -4 STORE 

We define semantic functions .* for atomic programs, and 4 , for 

whole programs: 

A :A -1, STORE ---4 STORE 

1 5 :HPROGRAM - ) HENV - 4 STORE -4 STORE 

The clauses for d are: 

A [let I = pl in p2] f = &4p22 (P [ !J [pl] 
P 

/I] ) 

dl[letrec I = pl in p2]f _ 5[p2] (FIX(2p'./,[,3 [p1] 'P'/I])) 

0 Icall I] P I 

5 [pl;p2] _ ;k a: f [p2] (,e5 [p l] f o ) 

S26 Eal Q = ¢ ja] 

We assume that Va. ,4-[a] 1- 1-. The only difficult clause is the 

one for procedure declaration. In the case in which I is 

recursively declared to denote pl throughout p2, we take the meaning 

of the body p2 in an environment, say P , which is like P except on 

I; I is bound to the meaning of pl in 
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= p( e4[p1]Q/Il 

FIX(TP'.P(,eS [p1] e'/Il) 

The Low Level Lan uage 

We consider a low level language whose corresponding machine 

allows an implementation (albeit rather abstract) of the source 

language. The idea is to maintain an activation stack while running 

low level programs, each of whose entries represents a block entry 

or precedure invocation. In each stack entry, certain information 

must be preserved, namely, the dynamic link (which we take to be the 

previous stack element), for return upon exit; the static like (a 

pointer to the activation record representing the textually 

enclosing block in the program), for finding the meanings of 

non-local variables; and the meanings for the local variables 

declared in the current block. The basic instructions in the low 

level language include instructions for making new entries on the 

activation stack, for deleting entries, and for restoring the 

declaration time environment when procedures are invoked, by using 

the static link (to reflect static binding). 

We let I range over ID (as before) , q and qi over a domain 

LPROGRAM of low level programs (distinct from LPROGRAM in Chapter 

3), and the variable a over A (as before) . Low level programs are 

then given by: 
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q ::= PRENTRY(I,q) 

RECENTRY(I,q) 

EXIT I 

CALL (I) 

ql;q2 

a 

PRENTRY(I,q) creates a stack entry for a non-recursive block in 

which the identifier I is declared to denote the procedure q. 

RECENTRY(I,q) creates a stack entry for a block in which I 

recursively denotes q. EXIT is for all exits from blocks and 

procedures. CALL(I) creates a stack entry appropriate for entry to 

the procedure denoted by I. The fifth clause is for sequencing, and 

the sixth, for atomic statements. 

The intended semantics for this language is an operational 

semantics based on an abstract machine, one of whose components is a 

stack. (The semantics is still denotational, though, in the sense 

that the meanings of the various constructs are functions of the 

meanings of their components.) Each entry in the stack is a whole 

environment. The stack is indexed by integers. An environment, at 

this level, maps identifiers to pairs consisting of a low level 

program (the procedure body which the identifier denotes) and an 

integer (a pointer back into the stack). Environments form a domain 

LENV: 

LENV = ID ---j (LPROGRAM X INT) 

The integer component of the meaning of an identifier plays the role 
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of static link; it points to another level in the activation stack, 

at which another environment is to be found which maps identifiers 

to program-integer pairs, and so on upwards. We let c' range over a 

domain LAS (for low level activation stacks): 

d e LAS = INT - LENV 

The context, or configuration, in which a low level program is 

'executed' has three components: an integer pointer into the 

activations stack (representing the current dynamic level), the 

activation stack itself, and a store (which we take to be the same 

as in the high level semantics). We define a domain CONFIG of 

configurations: 

CONFIG = INT x LAS x STORE 

The low level semantic function maps programs and configurations to 

new configurations; that is, running programs can affect the stack, 

the pointer and the store. We call the semantic function 

A,,n,: LPROGRAM - CONF IG --- 4 C ONF IG 

The clauses for 'A<An- are given below. We use the notation 

d [n-x) 

to mean d extended at n to the value x. This is to avoid confusion 

with the usual extension notation, which is reserved for 

environments. 
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' , [ PRENTRY (I, q)] 

ww,JRECENTRY(I, q)1J 

1 4[CALL (I)] 

(m,6,a) 

(m, d, a) 

(m,cS, a) 

n I[EXIT] (m 

f-2Lgl; q2] (M 01) 

`"4a] (in,-) 

(m+ 1, 
d'[(fn+l)H (d m) [(q,m)/I] 
M) 

(m+l, 
d[(m+l)--a (d m) [(q,m+l)/I]] 
Cr) 

[q'j (m+1, 
[(m+l)HS m'], 

a-) 
where (q',m') _ S m I 

(m-- 1,d, a) 

'lpi..n.[g2l ( Lg1J (m, d, 

4m,d, ,4 [a]a 

In the atomic case, we wish the whole triple to be undefined if 

14 [a] a- is undefined, so we introduce a notation for triples strict 
in the third argument: 

4x,y,z 

is L if z is 1, and (x,y,z) otherwise. The reasons for this are 

technical, and are discussed later. 

For procedure entry (where I is declared to denote q) , 

makes a new entry to the stack at level (m+l), consisting of the 

previous environment extended at I so that I now denotes the program 

q paired with the (declaration) level in. 'R--r,-also increments the 

pointer so that it points to the new stack entry. 

For entry to recursive procedures where I recursively denotes 

q, the environment for the new stack entry (again at level (m+l)) 

maps I to q paired with the level (m+l), so that occurrences of I 

within q denote q, but with the declaration time environment at 

level (m+1). 
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For calls, "1&&t determines the denotation of I in the current 

environment (that is, the procedure it denotes, and its declaration 

time level, q' and m', respectively), makes a new stack entry 

consisting of the declaration time environment, increments the 

pointer to point to the new entry, and applies itself to q', with 

the new stack and pointer. Exits are just decrement s of the 

pointer. 

At first view this model may not appear to be very concrete; 

although procedures are now represented concretely, activation 

stacks are functions (infinite vectors) mapping integers to whole 

environments (also functions), rather than to new layers on old 

environments. Nonetheless, we believe that this is a good level at 

which to aim because it captures the essence of the implementation. 

In particular, a fixed point in the semantics for recursive 

procedures has been replaced by a 'knot' in the activation stack. 

(This is the transition which presents the theoretical difficulties 

to which we referred.) A model in which displays, in the usual sense 

(e.g. as defined in [481) were kept would be a natural next step in 

the transition from an abstract semantics to an implementation. For 

concretisations of this sort, the low level language described here, 

and its semantics, would serve as a useful intermediate stage 

between the abstract and the more concrete semantics .1 
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The Compiler 

The compiling algorithm, C, (distinct from C in Chapter 3), 

maps high level to low level programs. As in Chapter 3, we take the 

abstract syntax of the two languages as our starting point, and do 

not consider problems of parsing. C has type 

C:HPROGRAM -- LPROGRAM 

and is defined by the following clauses: 

C rlet I = pl in p2' PRENTRY(I,C(pl)) 

C(p2) 
EXIT 

C rletrec I = pl in p2' = RECENTRY(I,C(pl)) 
C(p2) 
EXIT 

CALL (I) 
EXIT 

C(pl) 
C(p2) 

a 

(For appearances, we have concealed the sequencing operator in low 

level programs.) The compiler produces entry and exit instructions 

for blocks, with the compiled bodies in between, and it produces low 

level calls with exits, for high level calls. Sequenced programs 

are compiled into sequences of compiled programs, and atomic 

programs are uncompiled. 
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The Equivalence Proofs 

Several complications arise in proving the equivalence of all 
high level programs to their compiled images. Some of these are 

related to stating the equivalences; others to the transition from a 

semantics with an explicit fixed point for recursive procedures to 

one with a knot. 

In stating the equivalences, we wish, for several reasons, to 

avoid the use of recursively defined relations, although they seem 

natural at first glance. One reason is that the formal theory of 

recursive relations, unlike that of recursive functions, is not 

fully understood. More particularly, recursive relations cannot be 

expressed in PPLAMBDA, and would therefore place the proof outside 

the scope of LCF. 

Typically, statements of the equivalence of semantics at 

different levels have the form 

If the contexts of the semantic functions are suitably related 
(i.e. simulate each other) then the results of applying the 
semantic functions to corresponding programs are also suitable 
related. 

By context we mean simply the parameters to the semantic function; 

the environment and store, or the stack and pointer, or whatever the 

functions require. It is in stating these 'suitable' relations that 

the problems arise; the obvious relations are often recursive. 

We have found, in stating the relations, that only certain 

properties are required to hold of the contexts. As long as these 

properties imply the recursive properties, the recursive properties 
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need not be taken as definitions. That is, we explicitly construct 

solutions to the simulation relations that we need, and thus do not 

have to appeal to any existence theorems about recursive relations. 

Whether this can always be done is a question we do not address. 

We have found that the difficulties raised by trying to relate 

'incompatible' kinds of semantics, in the examples considered here, 

can be largely sorted out by factoring the proof into three stages, 

introducing two intermediate levels. In the first, a closure 

semantics is given for the high level language. In the second, a 

more abstract version of the activation stack implementation (for 

the high level language) is considered. The fixed-point-to-knot 

problem arises in the transition from the former to the latter. The 

key to solving the problem is the introduction of abstracting 

functions which map activation stacks (or other concrete sorts of 

contexts) to more abstract structures which can be compared with the 

environments containing fixed points. 

Standard to Closure Semantics Proof to ,d ) 

The first stage in the transition from .e5 to '7P,wn is to define 

a closure semantics, 7, for the high level language, and to prove 

it equivalent to .0. The environments, in 9, map identifiers to 

closures, which are pairs consisting of programs and (declaration 

time) environments. Closures are representations of the meanings of 

procedures in Qj , that is, representations of store 

transformations. 
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We let v range over HCENV, a reflexive domain of closure 

environments: 

v E HCENV = ID --j (HPROGRAM x HCENV) 

The semantics function 2 has type 

J : HPROGRAM- HCENV --)STORE --4 STORE 

Its clauses are 

el let I = pl in p2] v = [p2J (v[ (p1,v) /I] ) 
2 Cletrec I = pl in p2] v = j 1{p2) (FIX(kv' v [ (pl,v') /I]) ) 
j [call II v = [pI v' where (p',v') = v I 

r0[p 1; p 2]j v = 7 o-. A [p 2] V ((p11 v o-) 

[a] v = A' [a] 

In stating the equivalence of ,ei and 5, we must first state the 

simulation relation between the repective contexts, that is, between 

p E HENV = ID -4 STORE - STORE 

and 

v E HCENV = ID - (HPROGRAM X HCENV) 

The obvious relation is 

VI. P I = ,5[FST(v I)] (SND(v I)) 

which is to say 

VI.PI = j[call I]v 
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We abbreviate this relation by writing 
P 
- v. Our goal is to prove 

Theorem 4.1 
V P P v. ..v D 9-4 fPTP = J [PJ1 v 

The proof is facilitated by a lemma. 

Lemma 4.2 
VP v I.P^v dv' p'.P[d1p'11 V' /I] v[(p',v')/I] 

Proof of Lemma 4.2 
We show 

f N v d v' p' J. P['j E p'.1 v' / I] J = 

AT [call JJ (v[(p',v')/I]) 
We assume that P ti v. 

Case J_ # I 
We must show that 

PJ call J]Jv 

This follows from the assumption. 

Case J_ = I_ 

We must show that 

p'] v = 5 [call I]J (v[ (p' ,v') /I] ) 
1p,Iv' 

by definition of 2. Q.E.D. 

The proof of Theorem 4.1 is by structural induction on high level 

programs. 

Proof of Theorem 4.1 
Bases 
If p = L or 'a', the proofs are easy, assuming that PN V. 

Case 2 call 
rf call 11J P = P I = 5 [call I]3 v, 

by the definition of e5 and the assumption. 
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Step 
We assume the theorem with pl and p2 for p, and we assume p- v. 

r Case p = l et I = p 1 ja p'2' 
We must show 

, e [let I = pl in p2] p = 4 [let I = pl in p2J v 

that is, 

,5 [p2T (p [ A jp1JP /I]) = of [P2] (v[ (Pl,v) /I] ) 

In order to use the induction hypothesis, we must show 

P[ 99 1POP /I] '' v[ (pl,v) /I] 

This follows by a use of the induction hypothesis with the 
assumption that p - v, and by Lemma 4.2. 

Case e= rletrreecI _pl4gp2 
We must show 

[p21 (FIX(7P'.p[ 4 [Pl] P'/I] )) _ 
[p2J (FIX('Xv'.v[ (pl,v') /I] )) 

We call the two functional and Y respectively, and prove 

fiS [p2J (FIX )Q,) = 3 fp2] (FIX 1Y) 

This requires an inner computation induction in order to prove 
FIX `P nzFIX Ql, and so complete the proof, by hypothesis. 

Assume 
v , for arbitrary p and V . 

Show 
P, that is, 

P [ (P11 Q /I] ,., vI (P1,v) /I] 
By the outer hypothesis, with pl for p, and the inner 
hypothesis, we have 

A C P13 P = f [p1J1 V 

Hence, by Lemma 4.2, the result follows. 

Case e = p1;2 
1g QP1;P2] = )cr. ItP2] P (, P1] Q6) _ 

d e (P23 v ( S [p11 v r) fp1;p23 v --Q.E.D. 2 
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Closure to Abstract Stack Semantics Proof (A to Z ) 

The more concrete semantics ,ed is a good point from which to 

consider and prove equivalences to implementation-oriented models. 

As a step toward proving the equivalence of d to 1 wn, we next 

consider a stack semantics called £, more abstract than`1, 

which implements the high level language. This factors out (and 

defers until the next stage) the problem of compiling into the low 

level language. 

uses an activation stack similar to the one for -, but 

it is used more abstractly. Rather than changing the stack by 

running a program, o simply interprets programs to determine the 

store transformations they denote. We introduce environments which 

map identifiers to pairs consisting of high level programs and 

pointers into the stack. Activations stacks again map integers into 

environments. We introduce a domain DENV of environments, and let d 

range over a domain HAS of high level activation stacks: 

DENV = ID --- (HPROGRAM X INT) 

d E HAS = INT -- DENV 

The semantic function has type 

JD : HPROGRAM -, HAS -- INT -)STORE --4 STORE 

and is given by the following clauses: 
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2 [let I = pl in p2] d n = 0[p2]J (d[(n+1),--., 
(d n) [(pl,n) /I] l) (v)+1) 

2 Fletrec I = pi in p2_1 d n = [p2j (d[ (n+l)--v 
(d n) [(pl,n+l) /I] ]) (h+1) 

call I]dn d n' 
where (p',n') = d n I 

0[p1;p2] d n 

2 I1 a I d o 

'A 6. Z [p2] d n [p 11 d n6) 
[a] 

We observe that in .9, we do not 'over-write' the stack, but use it 
only for reference, and also that procedure invocation does not 

cause a new stack entry; we simply revert to the declaration time 

level in the activation stack. The semantics of procedure values 

are now fully 'defunctionalised'; procedures are represented by 

texts and integers, rather than by functions. 

The formulation of the equivalence of A and 2 requires that 

the simulation relation between contexts be defined. We relate a 

closure environment to an abstract stack with its pointer; that is 

v E HCENV = ID - (HPROGRAM X HCENV) 

to 

d E HAS = INT -- 4 DENY, and n 

where 

DENV = ID ---), (HPROGRAM X INT) 

The relation "' between v:HCENV and a pair (d:DENV, n:INT) that we 

seek should have the property that 

v x (d,n) iff VI. FST(v I) = FST(d n I) & 

SND(v I) ' (d,SND(d n I)) 
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but of course this is not a well formed definition. We therefore 

construct a relation satisfying the above property. 

To this end, we introduce a function H which abstracts pairs 

consisting of an activation stack and pointer, to a closure 

environment, so that the pairs can be compared to closure 

environments: 

H:(HAS x INT) -- HCENV 

We define H recursively: 

H(d,n)I = FST(d n I), H(d,SND(d n I)) 

that is, 

H = FIX FUNH 

where 

FUNH = -A H' (d,n) I. FST(d n I), H'(d, SND(d n I)) 

H (intuitively) traces up the static chain to construct whole 

environments. We now define v ^ (d,n) to abbreviate the formula v = 

H(d,n). It can easily be shown that satisfies the desired 

property (above). 

For the proof of the equivalence of 4 to ., we need a 

well-foundedness property of activation stacks paired with pointers, 

to express the condition that (up to a certain point), the 

declaration level of a procedure is never greater than the level 
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from which the procedure is called. We express this property of a 

stack d and an integer n by the formula 

VI n' . n'_: n SND(d n' I) : n' 

which we abbreviate as hgood d n. To shorten the statements of 

theorems, we include this property in the definition of the relation 

v z (d,n) iff v = H(d,n) & hgood d n 

The property hgood is used in proving that the closure environments 

abstracted from two stacks, at some point n, where the two stacks 

agree up to n, are the same; a fact which is used in the proof of 

the main theorem relating 4 and Z. We let dl n d2 abbreviate 

the formula 

' n' . n' n D dl n' = d2 n' 

Lemma 4.3 
Vdl d2 n. dl d2 & hgood dIn H(dl,n) = H(d2,n) 

Proof of Lemma 4.3 
By induction on H. We assume the theorem for H' and we assume 

that dl n d2 and hgood d n. We show 

Vi. FST(dl n I), H' (dl, SND(dl n I)) 

FST(d2 n I), H'(d2,SND(d2 n I)) 

Since by assumption dl n = d2 n, and SND(d1 n I).< n, by 
hgood-ness, the rest follows by assumption, with SND(d1 n I) 

for n. Q.E.D. 

For the main theorem relating 4 and .9, a separate lemma is 
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required for the letrec case, for which we use a more general lemma, 

analogous to Lemma 4.2. 

Lemma 4.4 
Y m n v d pl. m n+1 & v- (d,n) 7 

v[(pl,H(d,m))/I] - (d,n+1) 

where d = d[ (n+1) - (d n) [ (p1,m) /I] ] 

This lemma is useful in both the letrec and let cases. 

Proof of Lemma 4.4 
Assume m < n+1 and v x (d,n) . That hgood d (n+l) holds is 
obvious. For the rest we must show 

VI'. v[(pl,H(d,m))/I] I' - H(d,n+1)I' 

Case I'# I 
LHS = v and RHS = FST(a n I'), H(d,SND(d n I')) 
Since in this case d n I' = d n I', it follows by Lemma 4.3 
that 

H(d,SND(d n I')) = H(d,SND(d n I')) 

Therefore, by the definition of H, RHS = H(d,n), and the result 
follows by the assumption. 

Case I' = I 
Both sides reduce to (p1,H(d,m)). Q.E.D. 

The lemma for the letrec case is: 

Lemma 4.5 'vd npl. va (d,n) D Q -(d,n+l) 

where v = FIX 'Zr 

where 2l = 2 v'. v[(pl,v')/I] 
and a = d[(n+l)H (d n) [(pl,n+1)/I]] 

Proof of Lemma 4.5 
We assume that v -(d,n) and prove the consequent in two 
directions, showing 
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(i) 6 c H(d,n+1) 

(ii) H(a,n+1) v 

That hgood a (n+1) is obvious. 

Proof of (i) 
It is easy to show that H(d,n+1) is a fixed point of Zr, and 

thus that v £ H(d,n+1). We show that ZI(H(6,n+1)) = H(d,n+1): 

LHS = v[(p1,H(8,n+1))/I] 

By Lemma 4.4 with m = n+1, we have 

v[(p1,H(d,n+1))/I] = H(d,n+1) 

= RHS. Q.E.D. 

Proof of (ii) 
We prove instead 

H C FIX FUNH & H(d,n+1) S v 

recalling that H = FIX FUNH 3. The proof is by induction on 
both occurrences of H. 

Assume 
H' c FIX FUNH & H'(d,n+l) c v 

Show 
FUNH H' c FIX FUNH & FUNH H'(d,n+l) c v 
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The first conjunct is easy. The second unfolds to 

VI'. FST(d(n+l)I'), H'(d,SND(d(n+1)I')) c v I' 

Case I' = I_ 

LHS = p1,H'(d',n+l) 

RHS = pl, v 

so the result follows by hypothesis. 

Case I' 0 I 
LHS = FST(d n I'), H'(d,SND(d n I')) 
RHS = v I' 

EE3 H'(d,n)I' 
by assumption, second part 

C H(d,n)I' 
by assumption, first part 

FST(d n I'), H(d,SND(d n I')) 
by definition of H 

FST(d n I'), H(d,SND(d n I')) 
by Lemma 4.3 

But by hypothesis, H' C H, and this completes the proof. Q.E.D. 

The main theorem relating 3 and £ is: 

Theorem 4.6 
Vp v d n. v (d,n) ;-4 ttpTJ v [p] d n 

Proof of Theorem 4.6 
The proof is by computation induction on r1 and 2 . 
Assume 

p v d n. v- (d,n) D [p] v= £' [p] d n 

for arbitrary 1J' and . ', and assume that v - (d,n) for some 
v, d and n. The 1- case is straightforward. For the step, the 
various cases are considered. The atomic case is easy. 

Case p rlet I pl in e2' 
Show 

,7 Jp2jv[ (pl,v) /I] _ Z' Jp2I (d[ (n+l)f- 
(d n) [ (pl,n) /I] ] ) (n+1) 
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where we abbreviate the stack on the right hand side as By 
Lemma 4.4 with m = n, we have 

v[(pl,H(d,n))/I] (d,n+l) 

By assumption, v = H(d,n), so by Lemma 4.3, v = H(d,n). Thus, 

v[(pl,v)/I] # (d,n+l) 

and the induction hypothesis applies. 

Case e . call I-' 
Show 
,d ' [p'] v' _ L [p" ]J d n" 

where (p',v') = v I and (p",n") = d n I 

By assumption, v I = (FST(d n I), H(d,SND(d n I))) 

so we show that 

' [p'D (H(d,SND(d n I))) d (SND(d n I)) 

As it is obvious that hgood d (SND(d n I)), this is true by 
hypothesis. 

Case e = 'letrec I_ = p.l in p f 
Show 
,d'"'[p2jv = £'[p2]J a (n+l) 

where v and d are as in Lemma 4.5. That lemma enables use of 
the induction hypothesis. 

Case e = rp1;pf 
Show 
? . d'[p2Jv (d' [p1Tva) 

)Q. . ' [p2) d n ( SEA ' [pl]J d no-) 

This follows directly, by two uses of the hypothesis. Q.E.D. 

Abstract Stack to Concrete Stack Semantics Proof ( to 7Q,,,,.,) 

The transition from eZ to --R- is completed by proving 

equivalent to The key, again, is in relating the contexts: a 

high level activation stack and pointer, and a low 
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level activation stack and pointer: 

d E HAS and n, where HAS = INT -.+ DENV 

and DENV = ID -i (HPROGRAM x INT) 

and 

S E LAS and m, where LAS = INT --a LENV 

and LENV = ID - 4 (LPROGRAM X INT) 

At first glance, the following relation may appear to be 

adequate: 

(d,n) as (d,m) if f n = m & 

'in' I. n' < n C(FST(d n' I)) = FST(S n' I) & 

SND(d n' I) = SND(8 n' I) 

That is, at corresponding levels the two stacks have corresponding 

programs and pointers. However, the two semantics £ and -Rwr, 

affect the stacks differently; in particular the call semantics are 

different. Therefore, this relation is not general enough. 

Instead we employ two abstracting functions, J and L, similar 

in nature to H, but abstracting to a new sort of environment, a low 

level closure environment, in which identifiers are mapped to pairs 

consisting of low level programs and low level closure environments 

(reflexively) : 

LCENV = ID --- (LPROGRAM X LCENV) 

We define 
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J: (HAS x INT) --- LCENV 

L: (LAS X INT) -- LCENV 

as J = FIX FUNJ and L = FIX FUNL, where 

FUNJ = -A J' (d,n) I. C(FST(d n I)), J'(d,SND(d n I)) 

FUNL = -A L' (S m) I. FST(8 m I) , L' (d ,SND(S m I)) 

The property desired of the relations, this time, is 

(d,n) (S,m) iff VI. C(FST(d n I)) = FST(S m I) & 

(d, SND (d n I)) Z (S , SND (S m I) ) 

The property is satisfied by the relation rc , where (d,n) % (S,m) 

abbreviates the formula 

J(d,n) = L(S,m) 

As in relating 2 to £ , we need a well-formedness property of low 

level stacks. We define lgood S m to mean 

V S N D 

As before, we include the well-formedness property in the relation, 

so that 

(d,n) (S,m) iff J(d,n) = L($,m) & 

hgood d n & lgood 8 m 

A first approximation to the theorem relating £ and '(2is: 

V p d n S m c-. (d,n) % (cS,m) 

THIRD (W,,n.IC(p)J] (m,,cr)) = Z ((pJ d n o- 
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which asserts that the store transformation induced by running a 

compiled program is the same as that produced by interpreting the 

original program. Looking ahead, however, if p = pl;p22, we must 

apply ` to C(p2) in the configuration resulting from applying i r,. to C(pl) . To apply the induction hypothesis, with p2 for p, we 

must know that the stack and pointer resulting from applying'2wn. to 

C(pl) in the configuration (m,cS,o-) -- call them and 

m' -- must be such that (d,n) and lgood ' m' . It is 

sufficient and convenient to show that S' In 8 and m' = m: 

Vp d n S m o-. (d,n) % (cS,m) 

'R--L[C(p)] (m, ,a) _ (m, do , Z[pI! d n c-) 

where $' 
m 

However, if it is the case that R"-[C(p)J (m, S,o) does not terminate, 

then gain.[C(p)]](m,8,a) = (1,a_,1), while (m,$', ,&[p3 d no) is not 

necessarily undefined. In order to account for this possibility, we 

employ the notation introduced on p. 145: 

Theorem 4.7 
p d n o m (d, n) (cS m) O 

i 4C (p)] (m. . 6) _ m, (p]l d n c- # 

where $' m $ 

The proof is by computation induction on `1'- and £ . (See 

Conclusions for further discussion of this fact.) Again, we prove a 

separate lemma for the letrec case, and for 
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convenience, for the let and call cases as well. The remainder of 

the proof of Theorem 4.7 is detailed but straigntforward. 

We need lemmas about J and L, analogous to Lemma 4.3. 

Lemma 4.8 
Ydl d2 n. hgood d1n & dl 

n 
d2 D J(dl,n) = J(d2,n) 

Lemma 4.9 
V 81 S2 in. lgood 81 m & cSl 

m 
62 L01,m) = L(82,m) 

The proofs are similar to that of Lemma 4.3. 

The lemma for the letrec case is: 

Lemma 4.10 
' pl d n m I. (d,n) A5 (9,m) D (d,n+l) 

where d = d( (n+1) H (d n)((pl,n+1)/I]] 

and 81(m+1)-4(S m)((C(pl),m+1)/I]] 

Proof of Lemma 4.10 
We assume that (d,n) % (S,m) and prove 

(i) J(d,n+1) c L(S,m+1) 

(ii) L(S,m+l) J(d,n+1) 

The proofs of hgood d (n+l) and lgood 9 (m+l) are obvious. 

Proof of (i) 
We prove instead 

J = FIX FUNJ & J(S,n+1) . L(S,m+1) 

by computation induction on both occurrences of J, recalling 
that J = FIX FUNJ. 

Assume 
J'9 J & J'(d,n+l) C L(,m+1) 

Show 
FUNJ J" Z J & Vi'. C(FST(d(n+1)I'), J'(d,SND(d(n+1)I')) 

C FST(g(m+l)I'), L(9,SND(S(m+l)I')) 
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The first conjunct is easy. 

Case I' = I 
LHS = C(pl),J'(a,n+l) 

RHS = C(p1),L(9,m+1) 

and the induction hypothesis applies. 

Case I' # I_ 

Since J' C J 

LHS C C(FST(d(n+l)I')), J(d,SND(d(n+l)I')) 

= C(FST(d n I')), J(d,SND(d n I')) 

= C(FST(d n I')), J(d,SND(d n I')) by Lemma 4.8 

= J(d,n)I' by definition of J 

RHS = FST ($ m I'), L($, SND($ m I') ) 

= FST(S m I'), L(d,SND(S m I')) by Lemma 4.9 

= L (S ,m) I' by definition of L 

And we are finished, by the assumption that (d,n) a (9,m). The 
proof of (ii) is similar. We prove instead 

L q FIX FUNL & 

Q.E.D. 

L(S,m+1) 9 J(d,n+l) 

The lemma for the let case is: 

Lemma 4.11 
Vpl d n S m I. (d,n) (8,m) (d,n+l) ~ (S,m+l) 

where a= d[(n+l) N (d n)[(pl,n)/I]] 

and = c'[(m+1)1-4 (8 m)[(C(pl),m)/I]] 

Proof of Lemma 4.11 
Assume (d,n) - (.3,m). The proofs of hgood a (n+1) and 
lgood $ (m+l) are obvious. 

Show 
VI'. J(d,n+l)I' = L(S,m+l)I' 

Case I' # I 
By Lemma 4.8 and Lemma 4.9 and hgood d n and lgood S in, this 
reduces to showing 
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'VI'. J(d,n) I' = L(S,m) I' 
which follows from the assumption. 

Case I' = I 
Likewise, it is sufficient to show 

C(pl),J(d,n) = C(pl) L(S m) 

and again, the result follows from the assumption. Q.E.D. 

The lemma for the call case is: 

Lemma 4.12 
VI. (d,n) 10 (a,m) (d,n') lie (9,m+1) 

where n' = SND(d n I) 

and S = S [ (m+1)'-- M-1 

where m' = SND(S m I) 

Proof of Lemma 4.12 
Assume (d,n) % (8,m). The proofs of hgood d n' and 
lgood c (m+1) are obvious. It is easy to show, using the 
assumptions and Lemma 4.8 and Lemma 44.9, that for all I' 

J(d,n')I'= L(S,m')I' 

0 

= FST(cS m' I'), L(S,SND(S M' I')) 

FST(S m' I'), L(S,SND(S m' I')) by Lemma 4.9 and 
lgood S m' 

FST(S(m+l)I'), L(S,SND(S(m+1)I')) 

since S (m+1) m by definition of S 

= L(d,m+l) by definition of L 

by definition of L 

Q.E.D. 

The main theorem requires two more lemmas, about the strictness of 

Lemma 4.13 
V q. .M-QgJ L 
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Lemma 4.14 
Vp.9 pJ d nl 1 

Proofs of Lemma 4.13 and Lemma 4.14 
Simple, by induction on Y ,n- and 0, respectively. 

For convenience, we define a function 6 :CONFIG - CONFIG, such 

that 

e (m,S,a-) = (m-1,d,cs) 

We also define functionals FUNR and FUND such that 

= FIX FUNR 

= FIX FUND 

in the obvious ways. We then prove the main theorem, Theorem 4.7, 

by computation induction on `P and 0. 
As in the proof of the Russell compiler, Chapter 3, we prove 

the theorem in two directions, using iterated induction when doing 

induction on the low level semantic function, to account for the 

fact that each high level program is compiled into a low level 

program with (possibly) more than one instruction. In this case, we 

need 2-ary iterated induction on fin-. We prove 
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(i) Vp d ncS 

m 

(i) is by 2-ary iterated induction on `in, and 

(ii) is by ordinary induction Is. 

We prove (i) here, as the proof of (ii) is similar and easier. The 

four facts below, which follow from the definition of FUNR, are 

helpful. We let r be an arbitrary variable with the type of '-. 
Lemmas 4.15 

FUNRn r 1[a] 

FUNRn r 11C(PI) 
C(p2) 

gym4"4[al a- where A' M S 

(mf S f0-) = FUNRn-1 r [C(p2)1 

(FUNRn T 1C(p1)]J (m,S,(r)) 

n 
FUNR r 

m o-. (d,n) % (S,m) 

P-ILC(p)]I (m,S,a-) C 4m, S' , e [p]I d no-> 

where M 

(ii) Vp d n S m cr. (d,n) % (S m) D 

$m, S' , .9Qpj d n c- G 7 - [C(p)] (m,S,a) 

where 8' = S 

CALL (1) 
EXIT (m,&,Or) =FUNK 

n-1 r [EXIT] 

(FUNR 
n-1 r IECALL(I)] (m,S,a-) ) 

8 (FUNRn-1 r CALL (I)J (m,S,a-) ) 

FUNR 
nr 

PRENTRY(I,C(P1)) 
C(p2) 
EXIT 

(m,8,a-) = 

FUNRn-1r [EXIT] 

(FUNR 
n-2 r [C(p2)'j 

(FUNRn r !PRENTRY(I,C(pl))1J 

(m,S,6))) 
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=E(FUNRn-2r IC(p2)1 

(FUNRn r fPRENTRY(I,C(pl))J 

(m,S,o-)) ) 

FUNRn r RECENTRY(I, C(pl) ) 

C(p2) 
EXIT 

(m,;,'7) _ 

FUNRn-k IEEXIT ]I 

(FUNRn` r [C (p2 )]f 
(FUNRn-2r !RECENTRY(I,C(pl))y 

(m,S,c-))) 

E (FUNRn r ILC(p2)i 

(FUNRn-2r [RECENTRY(I,C(pl))1 

(m,S,6))) 

These lemmas unfold FUNR for us, for the various shapes of compiled 

programs. 

For the proof of the main theorem, iterated induction entails 

proving two basis cases, and a step with two hypotheses. We let w 

be the formula (i) above. 

BASIS I 
w 

BASIS2 
w [ F UNR J- / t1I 

IH1 

IH2 

w[r/-RA- I, 

w[FUNR r/ Q .wI 

STEP 
w [ F UNR 2 r I 'P-- 1, 

The proof of BASISI is obvious. For BASIS2, we use Lemma 4.15, with 
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for r, and 1 for n. We show that the antecedent of w implies 

FUNR J_ [C(p)]) (m,&,o-) C m,S', Z (Ep] d n'-p 

where 8' m 9 

In the atomic case, both sides are the same. Otherwise, Lemma 4.13 

can be used to show that the left hand side is ,L . 

Proof of Theorem 4.7 (i) STEP 
We consider the various cases for p. We assume IH1 and IH2, 
and the antecedent of w, namely, (d,n) % (8,m) and show 

FUNR 2r [C(p)T (m,S,a) C tm, g' , .fps) d n a 

where S' = d' 
m 

Case p = `a' 
Obvious, by the definition of .fl. 

Case p. = r 1 2' 
LHS = FUNR r C(p2)1 (FUNR r QC(pl)l (m,8,c)) 

while Zrp} d n 0 =A--Z[p2] d n (k [p1]) d n a-), so that 

RHS = gym, ' , JJ [p2T d n (Z [p13 d nc- ) 

Applying IH2, we get 

FUNR r [C(pl)J (m,8,o-) C 4m, g' , &> [p1]] d ne- 

where 4' m 3. 

Thus LHS = FUNR r [C(p2)]] 4m, .e [p 11J d na- 

Case ZTjpLJD d n-=- 
Then by Lemma 4.13, LHS = 1, and by Lemma 4. 14, RHS 

Case Z lp 1] d n a-# L 
To use the induction hypothesis again, we must show that 
lgood S' m and that J(d,n) = L(8' m) , both of which are easy, 
by assumption, and Lemma 4.9. By IH2, again, we have 

FUNR r [C(p2)1j (m,S', R [p IT d n6) Z 

[p2]f d n (o) [pl] d n 6) . where $" 
= 

S' 

and since g m S, this is enough. 
Lemma 4.10, Lemma 4.11 and Lemma 4.12 are used in the remaining 
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three cases. 

Case P = Call_ f 
LHS = 8 (FUNR r [CALL(I)J1 (m,S,e') ) 

_ (r fq'.) (m+1,2 a) ) 

where (q' ,n') = S m I 

and 9 = cS [ (m+l )H g M-1 

while ) [call I] d n = ,¢J (p' T d n' where (p',n') = d n I, 

so RHS = 3m, 4' , 0 [p'f] d n' o- 

By the fact that J(d,n) = L(d,m), we know that q' = C(p'). We 

can then use Lemma 4.12, which allows us to apply the induction 
hypothesis (IHI, this time) , to get 

$ r [C(p')] (m+1,S,cr) . 4m+1,8", Z [p'JJ d n'0 

where 
m+1 

Case @['Jdn'a'=-L 
Then LHS = RHS = 1 (see Note 4) 

Case .fl [p' T d n' o = -I 

LHS . (m, 8" , Z Qp' ] d n' a-), 

RHS = (m,,3' , o Ip'j d n' c-) . 

we are finished. 

by the definition of ., and 

Since 8"+1 
g m 

9'm 

r Case p = let I = 11 in 2. 

LHS = a (FUNR r ILC(p2)](FUNR r lPRENTRY(I,C(p1))7 

8 (FUNR r [C(p2)j (1,,o)) 
with S as in Lemma 4.11, while 

RHS = gym, 9' , R [p 21 d (n+1) 

where d is as in Lemma 4.11, and 9' m 

(m, S,c')) ) 

Using Lemma 4.11, we can apply the induction hypothesis, IH2, 
to obtain 

FUNR r QC(p2)1 (m+1,9,o)) m+l,9", Z fp2]1d (n+1) c- 

where Iff . 
Case 0 [PO d (n+l) Cr _ 
LHS = RHS = -L- 
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Case 9 2:1 d (n+1)a- L 
LHS . (m, 9", ZTP21 (n+1)a-), so by definition of hand 
and the fact that 8" = S = &, we are finished. 

m+1 m 

Case 2 = rletrec I = j in p 
The proof is much the same as the let proof, using Lemma 4.10. 

We omit it. 
The proof of (ii) is similar to the proof of (i), using 
ordinary rather than iterated induction. This completes the 
equivalence proof of Z and 7Q+m.. Q.E.D. 

Summary 

This completes the sequence of proofs relating A, a standard 

denotational semantics for a block structured high level language, 

to `R, a stack implementation of an assembly-like language, into 

which the high level language is compiled. The stages into which 

the compilation and proof have been divided include 'j, a closure 

semantics, and .2 , an abstract stack semantics, both for the high 

level language. The types of the semantic functions are: 

,P6 : HPROGRAM --a HENV -- STORE -- STORE 

where p E HENV = ID -- STORE -- STORE 

: HPROGRAM -- HCENV --4 STORE --- STORE 

where v E HCENV = ID -> (HPROGRAM x HCENV) 

: HPROGRAM -- ' HAS --4 INT --4 STORE --) STORE 

where d E HAS = INT -- DENV 

where DENV = ID --- (HPROGRAM x INT) 

-: LPROGRAM 4 CONF IG --- CONF IG 

where CONFIG = INT X LAS K STORE 
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where 9 E LAS = INT ---4 LENV 

where LENV - ID -i(LPROGRAM x INT) 

The relations between the levels are: 

From , to Z : 

p ,., v iff VI.pI = 2j[call I 

From cS to 
. v x (d,n) iff v = H(d,n) & hgood d n 

where H = FIX(7H' (d,n) I.FST(d n I) , H' (d,SND(d n I))) 

From 2 to 'R.ur+- 

(d,n) 1' (8,m) iff J(d,n) = L(8 m) & 

hgood d n & lgood 8 m 

where J = FIX(XJ' (d,n) I.C(FST(d n I)), J'(d,SND(d n I))) 

and L = FIX (7L' (8,m) 1. FST(S m I), L'(8,SND(S m I))) 

and hgood d n if f V i n' . n' n SND (d n' I) n' 

and lgood & m if f Vi m' . m' m SND(9 m' I) m' 

The three theorems are: 

Theorem 4.1 
yp P v, pN v 

-D S TPJJP = d 1P] it 

By structural induction on p, with an inner (parallel) 
computation induction in the letrec case. 

Theorem 4.6 
V p v d n. v - (d , n) D ,j E P I v f pJ d o 

By parallel computation induction on ff and .2 . A separate 
lemma (Lemma 4.5) is required for the letrec case: 
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Lemma 4.5 
V pl v d n. v (d,n) v (d,n+l) 

where v and (d,n+1) are, respectively, the contexts in which 
the recursive declarations have been made. The proof of the 
lemma is in two directions, . by computation induction on H. 

Theorem 4.7 
Vp d n & m a-. d, n) 99 (S,m) 

-?12 rC (P)11 = 9m, $' , je rp] d n a-> 

where 8' S 
M 

By computation induction on -i.' and -e , in two directions. 
In inducting on we use 2-ary iterated induction. A 
separate induction is required for the letrec case (Lemma 
4.10). 

Lemma 4.10 
'vL p1 d n 6 m. (d,n) % (8,m) (d,n+1) (8,m+1) 

where (d,n+l) and (S ,m+1) are the respective contexts in which 
recursive procedures and the compiled images of recursive 
procedures have been declared. The proof is in two directions 
by computation induction on J and L respectively. 

The major complications in the proof occur at the following 

points in the transition: 

representing 
recursive 
procedures as 
texts /. 

(fixed point 
to knot 

modelling 
recursive ations 

Representing procedure values as texts is straightforward in this 

case. The heart of the proof, in a sense, is in the transition from 
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to JD, as this stage involves the essential change from a 

fixed point semantics for recursive procedures to a 'knotted' one. 

We manage to avoid the use of recursively defined relations in the 

two instances indicated by constructing well-defined non-recursive 

ones which satisfy the desired recursive properties. 'Incompatible' 

pairs of semantics, in the process, are related by the use of 

'abstracting' functions (H,J and L). Compilation appears to offer 

no special difficulties in this proof, aside from technical ones 

(the need for iterated induction, and the use of strict tripling in 

the statement of equivalence) . 

Speculations on Performing the Proof in LCF 

As we indicated at the outset, the emphasis in the work 

described in this chapter has been to develop theories which could 

be formalised and proofs which could be generated in LCF. Although 

we have not in fact done the proofs mechanically, the successful 

machine proof effort described in Chapter 3, the informal proofs 

sketched in this chapter, and the remarks below lead us to believe 

that a machine proof would be a feasible undertaking. 

Theory Structure for the Proofs 

The proof effort would proceed in much the same way as the 

previous one; we would construct a network of LCF theories in which 

to work, including a theory of the syntax common to the high and low 

level languages (e.g. atomic statements), and theories of the high 
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and low level syntax; theories of the shared semantics, and of the 

semantics 4 , 'j, 10, and a compiler theory; and a theory 

of equivalence. We would also require a theory of natural numbers 

(as in Chapter 2, but with the additional constant , and relevant 

axioms). A polymorphic theory of function extension (as in Chapter 

3) would be useful for reasoning about extensions to high and low 

level activation stacks, and to environments of various sorts. 

The network of theories for the proof might be: 

theory of high 
level syntax 

theory of function 
extension 

theory of 
shared syntax 

theory of theory of low 
Ishared semantics level syntax 

compiler 

theory 

theory 

I 

X 

K 

&theory 

equivalence 
- theory 

theory of 
numbers 

41, IL 11, 

theory theory 

The theories of function extension and of numbers are quite 

independent from the compiler problem; the others are specific to 

it. 
The theory of high level syntax would inherit the new types ID 

(for identifiers) and A (for atoms) from the theory of shared 

syntax, and would include the new recursive type HPROGRAM, defined 

by two new constants: 

ABSHPROGRAM:(ATOM u + CALL u + LET u + LETREC u + SEQUENCE u) 
---p HPROGRAM 
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REPHPROGRAM: HPROGRAM --,, 
(ATOM u + CALL u + LET u + LETREC u + SEQUENCE u) 

The other types are defined as 

CALL = ID 

LET = ID x HPROGRAM Y HPROGRAM 

LETREC = ID x HPROGRAM x HPROGRAM 

SEQUENCE = HPROGRAM x HPROGRAM 

and axioms would be added about the representation and abstraction 

functions: 

f Vaa. REPHPROGRAM(ABSHPROGRAM cL) oG 

F- Vp. AB S HPR OHRAM(R EPHPRO GRAM p) p 

Other new constants would include: 

mkcall:CALL --4 HPROGRAM 

destcall:HPROGRAM - 4 CALL 

i sc al l : HPROGRAM -`1 t r 

callidof: CALL ---4 ID 

with axioms 

mkcall = ABSHPROGRAM o INR o INL o UP 

- destcall .= DOWN o OUTL o OUTR o REPHPROGRAM 

iscall = ISL o OUTR o REPHPROGRAM 

F Vc. callid c = c 

The theory of S, for example, would have as parents the theories 

of high level syntax, shared semantics and function extension, 
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inheriting from the second the type STORE and from the third, the 

constant extend. High level closure environments would be 

introduced as a new recursive type, defined by two new constants: 

ABSHCENV:(ID - (HPROGRAM x HCENV)) ---) HCENV 

REPHCENV: HCENV ---a (ID --4 (HPROGRAM x HCENV) ) 

which are axiomatised by: 

1 *. REPHCENV(ABSHCENV t) oG 

W. ABSHCENV(REPHCENV v) = v 

We would introduce a constant for the semantic function: 

J : HPROGRAM - HCENV -4 STORE - STORE 

and an axiom defining it, of the form 

, 
a FIX(7 4' p v. ... = ... 

... ... 
iscall p (FST((REPHCENV v) 

(callidof(destcall p)))) 
(SND((REPHCENV v) 

(callidof(destcall p)))) 
... ... 

I 

(where we have shown only the call case) . From this we can easily 

prove facts of the following form, which we would then store In the 

theory: 

,jS (mkcall I) v S (FST((REPHCENV v)I)) 
(SND((REPHCENV v)I)) 

and similarly for the other cases. Having both formulations allows 

us to use computational or structural induction as necessary. 
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Tactics for the Proofs 

By examining the patterns of inference which occur in the 

informal proofs, it is possible to suggest tactics to assist in 

generating the proof mechanically. Aside from tactics discussed in 

the previous chapters, the following reflect the main patterns of 

reasoning in the three proofs discussed in this chapter (and the 

various lemmas). The proofs, of course, would be performed in the 

equivalence theory, so that all types, constants, axioms and 

theorems from the other theories were available. 

Firstly, we require a tactic, IMPTAC, for proving goals whose 

formulae are implications by assuming the antecendent and returning 

the consequent as a subgoal: 

IMPTAC 

(wl IMP w2, ss, A) 

(w2, ss, wl.A) 

The proof part would use the PPLAMBDA inference rule DISCH (see 

[15], A5) to discharge the extra hypothesis of the theorem achieving 

the subgoal. This tactic would be of use, for example, in proving 

Lemma 4.2, the step of Theorem 4.1, BASIS2 and the STEP of Theorem 

4.7, and several other theorems in this chapter. Some calls of 

IMPTAC would have to be followed by applications of CONJASSUMPTAC 

(Chapter 2, p. 81), as the antecedents are conjunctions; for 

example, Lemma 4.4: 

v x (d,n) & m ! n+1 v[(pl,H(d,m))/I] (d,n+l) 
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A tactic for induction, simpler than the standard INDUCTAC, is 

useful; for example, to prove the letrec case of Theorem 4.1, we 

must show that 

x51 p2T (FIX(A f' . r(, [pl]1 p'/I] )) = 

,j (p2] (FIX(X v' . v[ (pl,v') /I] )) 

and so would like 

SIMPLEINDUCTAC 

w[ (FIX funi) /fil 
ss 

A 

w[1 /fib 
ss 
A 

w[(funi fi')/fil 
ss 
(w[fi' /fil ) 

LA 

which, unlike the standard tactic, would not take recursive function 

definitions as parameters, or finish by substituting according to 

those definitions. 

In several instances, for example Theorem 4.6, we must prove 

implications by induction, so that in the course of the proofs, the 

induction hypotheses can be instantiated to arbitrary variables for 

which the antecedents hold. In these cases, IMPTAC is not adequate. 

Instead, we must do induction (of the appropriate sort) on a formula 

which is an implication. When we wish to apply the induction 

hypothesis, we write and call the following tactic: 
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USEIMPASSUMPTAC 

wl' 

ss 

Vxl...xn. w IMP wl 

w 
SS 

Vx1...xn. w IMP wl 

where wl, with some instantiations, matches w1', and w is w with 

these instantiations. The proof part is similar to that of 

USEASSUMPTAC (Chapter 2, p. 48), except that here, the inference 

rule expressing Modus Ponens (called MP, see (15], A5) is used to 

obtain the theorem achieving the goal. Where necessary we would 

also use 

USEIMPASSUMPLHSTAC 

tl' c t3' 
ss 

Yx1...xn. w IMP tl c t2 

t2' C t3' 
Ss 

L(as above) ) 

w 

ss 
(as above) 

where t2' is t2 with the instantiations for xl,...,xn determined by 

matching tl to tl', and w' is w with the same instantiations made. 

That is, USEIMPASSUMPLHSTAC is like USEASSUMPLHSTAC (Chapter 2, p. 

68) except that the assunption to be used is conditionalised on some 
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formula. That formula, appropriately instantiated, is returned as 

part of a subgoal. The intermediate subgoal whose formula is 

t2' c t3' is also returned as a subgoal. In the proof, the formula 

(the implication Vxl...xn. w IMP tl S t2) is assumed, and then 

specialised to the match; then the PPLAMBDA inference rule MP is 

applied to the result and the theorem achieving the second subgoal. 

Transitivity is applied to the result of that and the theorem 

achieving the first subgoal. 

One would also want the dual tactic, USEIMPASSUMPRHSTAC, whose 

definition is analogous. 

Abther important pattern of inference in the proofs occurs, for 

example, in the proofs of Lemma 4.5 and Lemma 4.10. In both 

situations we would first apply SYNTHTAC (Chapter 2, p. 61) to 

obtain two subgoals, and then apply (for Lemma 4.5, to the second 

subgoal thereby obtained, and for Lemma 4.10, to both subgoals) a 

tactic based on the following derived rule of inference: 

FIXPTRULE 
CF11F 3 

`- w[ 1 /fl [w; f's FIX FUN ) I- w[ (-FQW f' ) /fl 
H W[ (FIX FUN) /f1 

(This corresponds to the informal induction rule discussed in Note 

3.) The tactic which inverts it is: 
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FIXPTTAC (h--f = FIX FUN) 

r 

(w, ss, A) 

ss 
A 

w[(FUN f') /fly 
ss 
f' c FIX FUN 
w[f' /fl 

The rule FIXPTRULE conceals an ordinary induction on f' in the 

formula 

f' C. FIX FUN & w CF'/7 

The proof of the basis case is obvious. The first conjunct of the 

step depends on the fact that 

FIX FUN = FUN (FIX FUN) 

which is expressed by the PPLAMBDA rule FIXPT (see [15), A5). The 

second conjunct of the step is returned as a subgoal by FIXPTTAC. 

The proof part of the tactic calls FIXPTRULE.5 

A related rule and tactic (as suggested by the alternative 

proof of Theorem 4.1 (see Note 2.) are FIXFUNRULE and FIXFUNTAC: 

FIXFUNRULE 

j-- w [ 1- / fI 

H WC (FIX FUN) /f1, 

cc '/F Ti 

[w; f c FUN f' I }- w[ (FUN f') /fl, 
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FIXFUNTAC (H f "° FIX FUN) 

(w, ss, A) 

ss 
LA 

w[(FUN f')/f 
ss 
f' S FUN f' 
w[f' /f1 
A 

In the rule, INDUCT is called on f, in the formula 

f9FUNf' & w Cf%f ] 

The proof part of the tactic calls the rule. 

Another tactic related to FIXPTTAC, useful for proving Lemma 

4.5 (1), is: 

LFPTAC Q- f = FIX FUN) 

(f S g, ss, A) 

(g= FUN g, ss, A) 

LFPTAC, for least fixed point tactic, proves f c g by showing that g 

is a fixed point of FUN, and is therefore greater than the least 

fixed point of FUN, which is f. The proof part of LFPTAC does 

induction on x in the formula x c g, proving the basis case 

internally, and proving the step by assuming that x S g, applying 

FUN to both sides to get FUN x S FUN g, and using induction to 

conclude that FIX FUNS g, that is, f C g. This tactic is often 

useful. 
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The tactics MINFIXTAC (Chapter 2, p. 68), UNFOLDTAC (Chapter 

2, p. 64), FIXPTTAC, FIXFUNTAC and LFPTAC belong to a class of 

tactics which use properties of the least fixed point operator to 

divide goals into subgoals. They reflect various ways of reasoning 

about recursively defined functions. 

Another useful tactic for these proofs is IDCASESTAC, similar 

to NATCASESTAC (Chapter 2, p. 80), for performing case analysis on 

the equality of two identifiers (which it finds) in a formula: 

IDCASESTAC 

w[I/t1] [J/t2] 
ss 
A 

11 

w[I/tl] [J/t2] (I J =_ TT) + ss 
EQ I J = TT 

w[I/tl] [J/t2] 
(EQ I J = FF) + ss 
EQ I J FF 

LA 

w[I/tl] [J/t2] 
(EQ I J= -i) + ss 
EQ I J=-1- 

JA 

This is used in numerous places in the proofs.6 

A tactic (HINDUCTAC) and a tactic (HCASESTAC), to do induction 

and case analysis, respectively, on the structure of high level 

programs, analogous to those suggested in Chapter 3, could be 

written in ML. They are depicted as: 
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HINDUCTAC 

(w, ss, A) 

WI-1- /pI 
ss 

w [ a/ p1' 

ss 

w[let I = pi in p2/p1 

w[P1/pl 
w[p2/pl 

w[letrec I = pi in p2/pl 
ss 
w[P1 PI 
w[p2/pl ` 

A 

I/ply [w[call 
ss 
A 

w[Pl;p2/PI 
ss 
w[pl/p1 
w[p2/p1, 
A 

J 

The cases tactic required is 

HCASESTAC 

(w, ss, A) 

w[1- /pI 
ss 

QA 

I w[a/p1 
ss 

1 

w[let I = pi in p2/pl 
ss 

w[letrec I = pi in p2/pl 
ss 
A 

Iw[call I/pl 
ss 
A 

w[pl;p2/pl 
ss 
A 

which is similar to the induction tactic, but does not add induction 

hypotheses to the subgoals. These tactics are derived from the 

(obvious) derived rules HINDUCT and HCASES, respectively. 
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We would expect the composite tactics required for the theorems 

and lemmas in this chapter to be similar to those used in Chapter 3. 

For example, a tactic which reflects the informal proof of Theorem 

4.11 would begin with SYNTHTAC (like the tactic for proving Theorem 

3.1 b) to produce subgoals for the two directions. For the easy 

direction, we would then apply 

(INDUCTAC [the] )+ 
GENTAC* 
IMPTAC 
IMPCONJTAC 
HCASESTAC+ 
USEIMPASSUMPLHSTAC+ 
CONDCASESTAC+ 
USEIMPASSUMPLHSTAC+ 

where thYQ....,, is the theorem defining `Qn- as the least fixed point 

of FUNR. Aside from the addition of IMPTAC and IMPCONJTAC (since we 

are dealing with an implicative formula) and the associated use of 

USEIMPASSUMPLHSTAC rather than USEASSUMPLHSTAC, the tactic has much 

the same shape as the previous COMPILERTAC. Of course, this is not 

altogether surprising, as many proofs are done by induction, 

specification, case analysis and use of induction hypothesis, but it 

is reassuring. 

Armed with this set of tactics, as well as those already 

derived in other chapters, it would appear that the proofs in this 

chapter could be performed in LCF without great difficulty. A minor 

problem is that one cannot use predicate constants or variables 

within PPLAMBDA (as one can use function constants or variables), so 

that the predicates and relations such as ^- , x and % (and, in 

turn, hgood and lgood) would have to appear as the formulae they 
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abbreviate. This produces rather cumbersome goals and theorems. 

Nonetheless, we conjecture that the proofs in this chapter could 

generated in LCF with a certain investment of effort in the 

programming of tactics and the formulation of theories, as sketched 

here. Our optimism is based on the successful generation of the 

proof of the Russell compiler, and on the speculations in this 

section. We intend to undertake the proof effort and present the 

results in subsequent reports. 
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Notes for Chapter 4 

1. In [25], Milne extensively treats a sequence of increasingly 
concrete semantics for a language called Sal, and a low level 
language, Sam, into which Sal programs are compiled. Ours 
corresponds, in level of abstractness, roughly to his stack 
semantics. Further on in the sequence are 'consecution' and pointer 
semantics. Eventually, all functional (infinite) objects are 
replaced by integers or other concrete objects. In regard to 

modelling displays, Milne proposes (ibid., p. 729) a model in which 
displays represent static chains. In [24] he discusses the 
representation of identifiers in a low level language, as integer 
offsets, and integers as numerals. He also gives a treatment of 

procedure invocations as jumps [24]. 

More concrete models of implementations have also been 
discussed by Aiello, Aiello and Weyhrauch [11, in the context of a 
model, in Stanford LCF, of the implementation of a subset of PASCAL. 
In this work, they formalise and reason about the notion of frames 
(activation records) in which control and access links (dynamic and 

static links) and binding information for local variables, is 

represented. Finally, Newey [38] has worked on the problem of 

modelling an assembly language and register machine in an LCF-like 
setting. 

2. Alternatively, the proof of - to can be done by 
computation induction on d and .d. The proof is complicated by 
the occurence of one of the induction variables (4 ) in the 
antecedent of the formula to be proved: 

' I.f I S ,5([call I] v 4 Epjp g dQp] v 

As a result, we _prove the theorem as a pair of inequivalences, where 
FIX F UN25 

( i ) ' I . Q I C 4 1 call IJv 7 x [pJ p C j [pJ v 

(ii) V I. Jcall I I v C P I & 

C FUNi D -c 1 p I v C ,1 f[ PA 
P. 

(i) is by computation induction on S . (ii) is by appeal to the 
following rule of induction: 

w[1 /f) & ((w & f S fun f) w[ (fun f) /fI ) 

w[(FIX fun) /f] 

To show that the rule is valid, we do induction on all three 
occurrences of f in the formula 

i 

w & f Qfun f 
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f G fun f implies that fun f S fun fun f, and the rest is 
straightforward. To do the proof using the new induction rule: 

Assume 
VI. f 'i[c all I] v c p I D [p] v C ltpl 

Assume j'C FUNS'' 
Assume 
VI. FUNJ tcall I] v q- P I 

that is, 
VI. d' IFST(v I)1 (SND(v I)) C P I 

Show 
FUNS J' QpJ v S [p] 

P 

for the various cases of p. 

For example, if p = Tlet I = pl in p2 , we must show 

fp2T v C d j p,21 

where ? and v are FIX ) and FIX `IY, as in the structural 
induction proof. This, in turn, requires that 

VI'. 2' call I'T v C P I' 
By the assumptiom, it is sufficient to show that 

FUNS Qcall I'] V^ C 
P I' 

that is, 
d jFST(v I')7J (SND(v I')) C P I' 

Where 14 I', the third assumption is used. Where I = I', we 
must show that 

[p 11 v S .5 [p1Jp 

which requires, in order to use the induction hypothesis, that 

VI' . ,6 'all I'] v c p I' 

The second and third assumptions imply this. 

For p = call Imo, we must show that 

FUN, 2' Jrcall IJ v 5 call I J f 
that is, 
sZ 'ILFST(v I)] (SND(v I)) C P I 
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and this follows by the third assumption. The letrec case is 
done by an inner induction. The other cases are 
straightforward. 

Intuitively, the extra clause is needed to relate Z to , in 
which there is a 'hidden' occurrence of ,e5. This explains the 
presence of Z in the relation between high level environments and 
closure environments. The extra clause, 

d FUNS' 

allows us to use the induction hypothesis during the proof. For 
related discussion, see Notes 3. and 5. below, and the 
Conclusions. 

3. Instead of proving (ii) by induction on H in a formula which is 
a conjunction, we can appeal to a rule of induction similar to that 
mentioned in Note 2.: 

w[1. /fl & ((w & f . FIX fun) -D w[(fun f)/fj,) D 

w[(FIX fun) /fl 
See also p. 182. 

4. This requires that -L -1 = -1-. 

5. The use of the derived rule of induction and the corresponding 
tactic is a more elegant way of accomplishing the proofs than the 
technique (employed in the informal proofs of Lemma 4.5 and Lemma 
4.10) of proving a conjunction, the first conjunct of which is a 
formula of the form 

f S FIX FUN 

by induction. The use of the derived rule, FIXPTRULE, saves us 
having to explicitly prove that conjunct each time this method of 
proof is used. In addition, it makes a more concise composite 
tactic; were we to prove a conjunction, we would first have to write 
a tactic (FIXPTTAC1) to produce a subgoal whose formula was a 

conjunction, from the original goal: 

FIXPTTAC1 (i-.f = FIX FUN) 

(w, ss, A) 

(f c FIX FUN & w 

ss 

We would then follow the application of FIXPTTAC1 by the application 
of: 
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(INDUCTAC (H- f = FIX FUN])+ 
CONJASSUMPTAC 
CONJTAC 

This separates the conjunctive assumption put into the assumption 
list into two assumptions, and separates the subgoal into the main 
subgoal, and the other, whose formula is 

FUN f' C FIX FUN 

for arbitrary f'. We would then write a tactic, FIXPTTAC2, say, to 
inspect the assumption list, discover the assumption 

f' c FIX FUN 

and add to the list the assumption 

FUN f' C FIX FUN 

Its proof part would use the rule FIXPT. Finally, we would call 
USEASSUMPLHSTAC+ to use the newly added assumption, and we would be 
left with the main subgoal. Although the effect is the same, a 
single call of FIXPTTAC is clearly a more palatable solution. 

6. Just as NATCASESTAC is intended to be used in a theory in 
which the type nat exists, IDCASESTAC is meant to be used where the 
type ID exists. It is also to be used in theories of which equality 
is a parent, as the constant EQ is mentioned. 
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Conclusions 

Note on Computational and Structural Induction 

We have deferred, until all of the proofs have been presented, 

a discussion of the relation between computational and structural 

induction; we have used both, at various junctures in the proofs. 

As we have remarked, structural induction can be viewed as 

concealing a computation induction on a 'copying' function. Where a 

computation does not follow the well-founded structure of its 

argument, but rather, 're-enters' the argument (e.g. when 

traversing knotted structures), computation induction is what is 

needed. Where the structure of a computation does match the 

structure of the argument, computation induction on the function 

involved, and structural induction on the argument produce much the 

same proofs, and the latter seems more natural. Structural 

induction is neater when the formula to be proved is an implication 

whose antecedent contains an occurrence of what would otherwise be 

an induction variable; for example, the statement of equivalence of 

A and Z: 

'd I. P I = [call I] v ,d [p] f = 1p1 v 

For further discussion of this point, see Chapter 4, Note 2. 
Structural induction also seems more natural when we are 

considering the relation between two functions which unfold at 

different rates; for example, lsem and hsem, in Chapter 3. In that 

instance one can avoid using iterated computation induction, and 

proving a pair of inequivalences at the top level, by inducting on 

the structure of high level programs rather than on the semantic 
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functions. However, in this case, the structural induction proof 

requires an inner computation induction (for the while construct) 

which itself mirrors the computation induction proof. (For further 

discussion, see Chapter 3, Note 3.) We would also expect this to 

apply to the £ tom proof in Chapter 4; however, the semantics 

of the call case makes formulation of the appropriate rule of 

structural induction difficult. The natural rule (to which we 

appealed, for example, in the proof of Theorem 4.11) is: 

w[1 /p] & 

w[a/pJ & 

VI. w[call I/p] & 

dp1 p2. (w[pl/p] & w[p2/p] 
VI. w[let I = p1 in p2/pj & 

w[letrec I = pl in p2/p1 & 
w[p1;p2/pl ) 

dp. w 

That is, the undefined, atomic and call cases are the basis cases, 

and the let, letrec and sequencing cases are the steps. However, in 

the 5 to £ and the £ to 'Rw ti proofs, the call semantics 

require that the call construct be treated as an inductive step 

rather than as a basis case. That is, 

In 4 : [call IT v = ,d I p'J1 v' where (p',v') = v I 

In £ : 2[call I] d n' = J[ p'1 d' n where (p' n') = d n I 

In both cases, in proofs by computation induction, we may 

instantiate the induction hypothesis to p' in order to reason about 

.cam p'J v' or £[p']f d n' . In proofs by structural induction, 

assumptions about subprograms p1 and p2 are of no assistance in 

reasoning about 5 [ p' ]J v' or [ p'7 d n' . In the -4 to ,, 
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proof, on the other hand, in which 

In ,4 : ,e41call Of = p I 

there is no recursive call of the semantic function, and structural 

rather than computation induction can be employed. 

To derive the above rule of structural induction for programs 

of type HPROGRAM, we define a function (pcopy, say) of type 

HPROGRAM---' HPROGRAM to be the least fixed point of a functional 

(pcopyfun) where 

pcopyfun = T pcopy p. 
P=ra= ral 

I 

p = rcall I1 = Kcal I' 
p= let I=p1 inp27' 

'let I = pcopy pl in pcopy pf 
p = vletrec I = pl in 72 

rletrec I = pcopy pl in pcopy pf 
p = I*pI;p27 -BP 

rpcopy pl;pcopy p2, I -1-- 

pcopy returns the well-founded part of high level programs. We make 

the assumption that 

Vp. pcopy P = p 

This axiom aserts that every program is the limit of its 

approximants, i.e. 

p U pcopyfun n L P 

We then do computation induction on the function pcopy in the new 

formula V', where w' = w[pcopy p/pl. That is, we prove from the 

basis and step of the structural induction rule 
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w' Ii. /pcopyl 

and 

w' [pcopy' /pcopyl D w' [pcopyfun pcopy' /pcopyl 

and conclude, by normal computation induction, that 

w' [FIX pcopyfun/pcopyl 

that is, 

w' [pcopy/pcopyl 

which is 

w[ pcopy P/pl 

But since we assumed that pcopy p = p, this proves the conclusion of 

the rule of structural induction. 

Another example of a derived induction rule, ITINDUCT, is 

described in Chapter 3, and in the Appendix. 

General Conclusions 

In the preceding chapters, we have given accounts of two actual 

(and one hypothetical) ,case studies in the generation of formal 

proofs by the design and application of tactics. These tactics were 

composed (by the use of tacticals) from standard tactics and from a 

body of tactics which we derived. 
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The derived tactics can be divided into several (not entirely 

disjoint) classes. The simplest are ones which invert standard or 

derived rules of inference, or whose proof functions evaluate short 

forward inferences. The first class of tactics includes the 

following, where we distinguish the tactics we have actually 

implemented in ML from those merely specified in this presentation, 

by enclosing the latter in parentheses. The tactics are listed with 

the location in the text of their main appearance. 

BOTREFLTAC Ch. 1 p. 36 

MINCOMBTAC Ch. 1 p. 35 

CONJTAC Ch. 2 p. 80 

EXTTAC Ch. 2 p. 63 

LAMGENTAC Ch. 3 p. 128 

COMBTAC Ch. 3 p. 128 

IMPTAC Ch. 4 p. 179 

SYNTHTAC Ch. 2 p. 61 

BYTAC Ch. 2 p. 60 

(FIXPTTAC) Ch. 4 p. 183 

The members of the second class of tactics all use properties of the 

least fixed point operator in producing subgoals from goals. One 

can view the tactics in this class as part of a theory of FIX. The 

proof parts of these tactics rely on standard and derived rules 

about FIX, including INDUCT. The class includes: 

MINFIXTAC Ch. 2 p. 62 

UNFOLDTAC Ch. 2 p. 64 
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UNFOLDOCCSTAC Ch. 2 p. 64 

(UNFOLDCHOOSETAC) Ch. 2 p. 84 

(FIXPTTAC) Ch. 4 p. 183 

(FIXFUNTAC) Ch. 4 p. 184 

(LFPTAC) Ch. 4 p. 184 

The tactics in the next class have the common property that they use 

current assumptions (formulae in the assumption lists of goals) in 

order to advance proofs. In some cases, the use of assumptions is 

achieved by recognising tautologies (e. g. USEASSUMPTAC). In 

others, it is achieved by inspecting and supplementing the list of 

assumptions, and justifying the additions with appropriate proofs 

(e.g. CONJASSUMPTAC and FIXPTTAC). Still other tactics in the 

class use assumptions by proposing intermediate subgoals whose 

achievements are to be combined (in ways specified by the tactics) 

with certain of the assumptions in the assumption lists (e.g. 

USEASSUMPLHSTAC). For all of the tactics in this class, the proof 

parts evaluate fairly short forward proofs. They include: 

USEASSUMPTAC Ch. 2 p. 48 

USEASSUMPRHSTAC Ch. 2 p. 67 

USEASSUMPLHSTAC Ch. 2 p. 68 

(USEASSUMPCHOOSETAC) Ch. 2 p. 83 

CONJASSUMPTAC Ch. 2 p. 81 

(USEIMPASSUMPTAC) Ch. 4 p. 181 

(USELIPASSUMPRHSTAC) Ch. 4 p. 181 

(USEIMPASSUMPLHSTAC) Ch. 4 p. 182 

(FIXPTTAC) Ch. 4 p. 183 
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Further research suggests itself in this area. USEASSUMPLHSTAC and 

the rest begin to cope with the problem of reasoning about 

inequivalences, something which is often necessary, since 

equivalences are frequently proved by different methods in the two 

directions. Much more work remains be done on using inequivalences 

in proofs. 

A related class of tactics can be envisioned which control 

simplification in proofs. We have used one tactic of this sort, 

namely TEMPSIMPTAC, in Chapter 3, p. 127, which uses a theorem as a 

simprule for one round of simplification, but does not deposit the 

theorem in the simpsets of ensuing subgoals. One is likely to need 

other tactics of this genre in more complex proof efforts. 

Finally, one can define a class of tactics which invert rules 

that are derived from the basic PPLAMBDA rules INDUCT and CASES: 

NATCASESTAC 

(IDCASESTAC) 

(HCASESTAC) 

(HCASESTAC) 

(HINDUCTAC) 

(HINDUCTAC) 

ITINDUCTAC 

(INDUCTCHOOSETAC) 

(SIMPLEINDUCTAC) 

Ch. 2 p. 80 

Ch. 4 p. 185 

Ch. 3 p.121 

Ch. 4 p. 186 

Ch. 3 p. 136 

Ch . 4 p . 186 

Ch. 3 p. 125 

Ch. 2 p . 83 

Ch. 4 p . 180 

The proof parts of the derived induction tactics (i.e. the rules 

upon which the tactics are based) construct new bases and steps from 

achievements of the subgoals (and other proved facts), and call 
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INDUCT. The derivations of structural induction from INDUCT, for 

various recursively defined structures, follow the same pattern as 

sketched for HINDUCT (in the previous section), and one can envision 

an ML procedure to automatically derive the rules from the 

specifications of the domains involved. The same remarks apply to 

the 'structural cases' rules, HCASES, etc., which can be regarded as 

induction rules without induction, hypotheses. 

From the various standard and derived tactics, we have composed 

several larger tactics, including some to solve parts of the schema 

problems, and some to perform parts of the correctness proof of the 

Russell compiler. For example, the following composite tactics 

perform the proofs of Theorem 2.5 (Chapter 2, p. 52), and the step 

of difficult half of the compiler proof, Theorem 3.1b (Chapter 3, p. 

99), respectively: 

TACL3 Ch. 2 p. 68 

(MINFIXTAC thG)+ 
EXTTAC+ 
(INDUCTAC [thF])+ 
GENTAC* 
(UNFOLDOCCSTAC 2 thFl)+ 
(CONDCASESTAC+)* 
(USEASSUMPRHSTAC+)* 

COMPILERTAC Ch. 3 p. 131 

(ITINDUCTAC AXlsem 4)+ 
GENTAC 
TEMPSIMPTAC AXLSEM 
TEMPSIMPTAC thhsem 
HCASESTAC+ 
(USEASSUMPRHSTAC ORELSE (COMBTAC ORELSE LAMGENTAC ORELSE 

CONDCASESTAC)+)* 

It is perhaps surprising that the small set of standard tacticals 
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(in conjunction with the ML failure-trapping mechanism) is adequate 

as a control structure for these complex proof efforts; in fact, 

THEN and REPEAT account for most of the uses of tacticals we have 

made. One might have been expected to need a richer language of 

tacticals, or more subtle ones. It is less surprising, though, in 

light of our methodology and objectives. Firstly, the structure of 

the proofs performed was determined by examination of the informal 

proofs prior to the formalisation of the problems. (One could 

perhaps call this activity checking of informal proofs, as well as 

generation of formal proofs by tactics.) As the composite tactics 

reflect the patterns of inference of the informal proofs, we have 

tended to anticipate the sequence (or tree) of subgoals, and so not 

rely, except in after-the-fact generalisations (such as SCHEMATAC, 

Ch. 2, p. 86) on the tactical ORELSE, or on more complex derived 

tacticals which would examine alternatives, or backtrack. 

Secondly, as we have not addressed issues in automatic theorem 

proving (such as automatic generalisation of goals, strengthening of 

induction hypotheses, or discovery of lemmas) , but have instead 

provided the difficult insights before embarking on the machine 

generated proofs, we have avoided having to write tactics which 

would naturally require more sophisticated control structures (i.e. 

more sophisticated tacticals). Possibly, it is simply naive to 

expect that tactics can be designed to solve goals for which the 

informal proofs are not, at least in outline, understood in advance. 

Quite aside from the inefficiency of searching for proofs, it may be 

that there are just too many fine points to be considered in the 

proof process for this to work. Nonetheless, further case studies 
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and analyses of tactics are likely to reveal new tactics and 

tacticals which require less planning in advance on behalf of the 

user. 

It would also be desirable to research an intermediate level of 

tactics, tactics midway in complexity between the derived tactics 

discussed in the preceding chapters and the composite tactics which 

solve our goals in one application. We would like to investigate 

further a level of conceptually coherent tactics which do parts of 

the proofs; ENDTAC (Chapter 3, p. 129) is a possible example of the 

level sought. 

In addition to designing composite tactics for solving various 

classes of problems, we have begxn to develop a methodology for 

tactical proof. In both case studies, we commenced the proof 

efforts by building theories, or networks of theories. In the 

schema proofs, we required theories of the new data types (lists and 

integers), and so extended PPLAMBDA by introducing and axiomatising 

the new types and constants. In the Russell compiler proof, we 

needed a rather more elaborate structure of theories to represent 

the syntax and semantics of the languages involved, and to express 

the compiling algorithm. PPLAMBDA was supplemented by a large set 

of new types, constants and axioms, organised in a hierarchy of 

theories. 

In the (networks of) theories, we then developed structures of 

lemmas. In the schema proofs, for example, we generalised the 

original goals, and proposed several subgoals; some of the theorems 

achieving the subgoals were used as simplification rules in proving 

the original goals. In the compiler proof, we found it convenient 
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and efficient to prove several layers of lemmas before embarking on 

the main goals. Each layer formed simplification rules for the next 

layer. Often, the lemmas were proved just by simplification. 

We observed, after examining the tactics which generated the 

schema proofs, that the proofs could have been made more automatic 

(and the tactics more concise) by leaving more of the proofs to 

simplification; that is, by carefully selecting lemmas to be used as 

simplification rules, so that the proofs could, to a greater extent, 

be driven by simplification. This methodology was explored further 

in the compiler proof effort in Chapter 3. The proof which we 

actually performed in LCF relied for its control structure on a 

sequence of user-specified substitutions and unfoldings, but as the 

analysis in Chapter 3 revealed, it could have been generated more 

easily as a simplification-guided proof. This requires a certain 

amount of forethought in order to isolate the correct lemmas; it 
also requires care that simplification is not carried too far. One 

wishes, for example, to avoid simplifying a goal whose formula is an 

instance of an induction hypothesis. The advantage of 

simplification-guided proof efforts is that they demand much less 

user intervention and attention to detail during the performance of 

the proofs. In addition, the tactics which generate the proofs seem 

more easily generalised, reflect the structure of the proof more 

transparently, and are more efficient. 

One would hope to develop a theory as well as a methodology of 

tactical proof. Although the refinement of a theory would require 

more experience with tactical proof than has been gathered to date, 

we have at least raised some issues which a theory should treat. 
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Several of these are discussed below. 

One issue is the choice between procedural and declarative 

representations of facts. As indicated in the discussion of BYTAC 

(Chapter 2, p. 60), for example, we have frequently found it more 

convenient to represent facts as ML procedures (mapping theorems to 

theorems) than as theorems (implications) stored in LCF theories. 

The procedural representation lends itself more naturally to the 

tactical style of proof; the proof parts of tactics call the 

corresponding ML procedures, which then prove the theorems desired. 

This allows all of the matching and instantiation involved in the 

use of theorems to be done implicitly within the ML procedures. For 

instance, the tactic MINFIXTAC (Chapter 2, p. 62) returns a proof 

part which expects a theorem of the form 

I-FUNG F S F 

and combines that theorem with a (given) theorem of the form 

HG FIX FUNG 

in a proof by induction, to return a theorem of the form 

HG S F 

We have chosen to write an ML procedure, MINFIX, which maps any 

theorem of the expected form to the theorem desired in just this 

way. We could instead have proved and stored a theorem 

_ VG':*. F':*. FUNG':* ---> *. 

G' c FIX FUNG' & FUNG' F' c F' IMP G' S F' 
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When specifying the proof part of the tactic MINFIXTAC we would have 

to fetch the theorem from the theory in which it were stored (this 

information having been a parameter to MINFIXTAC), then compute the 

types of the terms F, G and RING in the two theorems to be combined, 

then call the PPLAMBDA rule INSTTYPE (see (151) to prove a theorem 

instantiated to the correct types, then instantiate the result to 

the correct variables, F, G and FUNG, then conjoin the theorems and 

call MP (Modus Ponens), all in order to use the theorem. The ML 

procedure MINFIX simply extracts parts of the two theorems, gives 

them meta-names, and constructs a new basis and step on which to 

call induction. We use MINFIX, of course, at cost of reproving the 

theorem by induction at each invocation; the point, however, is the 

naturalness of the procedural form for tactical proof. Of course, 

since the process of translating from a theorem into the 

corresponding rule is obviously a uniform one, we could standardise 

it in ML. If a package to translate in this manner were available, 

the procedural-declarative distinction would be less meaningful than 

it is at present. 

Another issue (already mentioned) is the extent to which (and 

the ways in which) increasing portions of proof can be left to 

simplification, as we have begun to do in Chapters 2 and 3, by 

proving theorems (to be used as simprules) which specify the 

contexts in which, or conditions under which, terms should be 

simplified. 

Finally, as part of a theory of tactical proof, one would wish 

to build a larger repetoire of derived tactics, and to identify 

further dimensions along which to classify them. Since classes of 
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tactics reflect patterns of inference, this could initiate an 

explicit and empirical study of patterns of inference. 

Many such issues remain to be explored. What we have concluded 

from this work can be briefly summarised as follows: 

(i) We have demonstrated, in the case studies described, that 
goal-oriented tactical proof is a natural way of generating 
large, formal proofs. A general purpose programming language, 
ML, forms an effective interface between user and system, 
allowing large portions of proof to be performed automatically 
by the application of procedures (representing general 
strategies) to data (representing goals). 

(ii) In general, LCF has shown itself to be a flexible and powerful 
vehicle for generating formal proofs. The simplification 
facility, in particular, contributes to this. The basic 
simplifications themselves make LCF more than a proof checking 
system, as they cover a great deal of simple reasoning. Beyond 
that, we have illustrated how much of the remaining work of 
proof can be relegated to simplification by careful choice of 
lemmas to be used as simplification rules. 

(iii)The tactics which perform proofs reveal the structure of the 
proofs in an intelligible and high level way, and lend 
themselves to further generalisation. SCHEMATAC, for example, 
(Chapter 2, p. 86), would appear to be useful in a large 
number of proofs about recursively defined function schemata. 
Likewise, we would expect a tactic similar to COMPILERTAC 
(Chapter 3, p. 131) to perform correctness proofs for more 
sophisticated compilers (e.g. compilers for richer high level 
languages or more concrete low level languages) . 

(iv) The ability to incrementally and hierarchically construct 
theories is vital to the proof efforts described. The 
organised introduction of new types, constants and axioms, the 
modular development of theories, and the ability to store and 
access proved facts, all help to make a wide variety of 
theorems expressible in LCF. 

(v) It seems feasible to perform fairly large proofs by the methods 
we have described; the effort required on the part of the user 
is concentrated more on formalising the problems and factoring 
out useful lemmas than on deriving or applying the tactics. 
The proof of the Russell compiler, in particular, illustrates 
this. Of course, the compilers in question are only toy 
compilers; as for the feasibility of proving 'real' 
implementations by these techniques, research remains to be 
done. 
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Extensions to LCF which have presented themselves in the course 

of this work relate primarily to standard 'packages' which could be 

added to the system. In particular, it would be helpful to have 

standard packages to derive structural induction and cases rules 

(and tactics) for suitable structures; to derive injection, 

selection and projection functions, and the associated axioms, for 

arbitrary n-ary separated sums, so that all the UP's and DOWN's 

(evident in Chapters 3 and 4) could be suppressed; and to derive 

procedural representations (inference rule schemata) from 

declarative ones (stored theorems). 

An addition that would enlarge the expressive power of PPLAMBDA 

would be the ability to name relations. For example, one often 

introduces a relation R by writing 

a Rb iff w 

for some formula w. This is, of course, not unproblematical; 

questions to do with whether relations admit induction are not fully 

understood 

We would hope that the work described here inspires further 

research in the direction of formal correctness proofs for 

implementations of more realistic programming languages. 

Future Work 

We would like to extend the work described in Chapter 2 by 

studying more examples of recursive function schemata. We would 

like to further specify, and to implement, the general tactic, 
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SCHEMATAC, sketched in the Conclusions of Chapter 2. 

Regarding Chapter 3, we would like to extend the compiler and 

proofs to lower levels, by stages. As we noted, for example, the 

Russell compiler produces programs which feature a sort of 

block-structuring used to limit the set of labels needed to a finite 

set. This circumvents the problem of generating unique, new label 

names The formulation could be carried a step further by designing 

and proving a 'gensym' mechanism. We would also like to formulate 

and prove a compiler which produced machine-like code (perhaps as 

suggested by Newey, [381 ). 

Regarding Chapter 4, we plan to perform the proofs described in 

LCF. We would also like to consider, as for Chapter 3, lower level 

languages. In particular, we would like to formulate an activation 

stack semantics in which incremental layers were kept, rather than 

whole environments, as well as a semantics in which displays, in the 

usual sense, modelled activation stacks. We would also like to 

study the proof techniques for other high level constructs, e.g., 

parameter passing mechanisms, co-routines, data structures of 

various sorts, and exception handling mechanisms, all in a 

schematic, feature-by-feature way, as we have done so far. It would 

remain to be investigated whether the methods of dealing with 

recursively defined relations used in Chapter 4 were useful in other 

settings. Eventually, we would like to gather the separate high 

level features into a single language and 'compose' the proofs, so 

that a chain of proofs would link very high level languages with 

machine-like languages. Some questions relevant to a chain of 

proofs of this sort woulddbe (i) the order of the compilation of 
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various features, (ii) the appropriate semantics at each level (for 

example, in the Russell compiler proof, the low level language has a 

quite natural continuation semantics, but it is not clear that this 

would be a graceful semantics for proofs of equivalence to still 
lower levels), and (iii) the relations between the tactics used to 

generate the proofs between the various levels. 

Finally, as we have suggested earlier, we would like to 

research more sophisticated tacticals for composing tactics, and, in 

conjunction, techniques for more automatic proof finding and framing 

of lemmas, as well as the existence of a body of coherent 

intermediate-level tactics expressing common 'chunks' of reasoning. 



Appendix: Some Technical Details 

In this appendix we supply some details about the actual 
performances of the proofs described in Chapter 2. An account of 
this sort is complicated by two factors. Firstly, both the schema 
proofs, in Chapter 2, and the Russell compiler proof, in Chapter 3, 
were performed in an older version of LCF (as documented in [13] 
rather than in [15]) but we have nonetheless described the proofs as 
they would be performed in the current LCF. Although at the level 
of tactics the changes are not profound, they make the theories 
involved, and some of the tactics (in particular, the derived 
induction and cases tactics) look rather different. Secondly, in 
the case of the compiler proof, the scope of the actual proof effort 
makes it difficult to produce a demonstration of the whole process. 
That is, the proof was performed over a period of several weeks, by 
a combination of forward and tactical proof. Some of the lemmas are 
quite (CPU) time-consuming and it does not seem worthwhile to 
reprove them simply for the sake of demonstration. Our aim in this 
appendix is just to give an impression of the nature of the 
interaction which produced the proofs (and to give some evidence 
that they were in fact performed!). We hope to achieve this by 
describing the actual List Stack proof. 

LCF is an interactive system in which one can directly 
introduce definitions and construct theories. The usual mode of 
interaction, however, is via files prepared by the user before 
entering LCF and subsequently read in; this saves effort. Files 
typically contain definitions of ML functions, definitions of 
particular goals and tactics, and LCF commands for constructing 
theories. Theories, once constructed, are stored by LCF on 
'display' files, some of which are shown presently. 

To enable computer printing of PPLAMBDA, the following 
conventions are observed: 

UU 

is written for 

C 
V 
x 

=> 
3- }- 

Character strings (tokens) representing PPLAMBDA constants are 
enclosed in quotes 'thusly'; those representing type constants or 
the names of theories " thusly" . All PPLAMBDA objects (terms, 
types and formulae) are written in quotes like "this", and types are 
preceded by a colon, e.g. ":type". ML expressions are terminated 
by a double semi-colon, e.g. expr;;, and reserved words in ML are 
not underlined as they are in the text. Comments appear enclosed in 
percentage signs %like this%. 
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Details of the List Stack Proof in LCF 

The definitions needed for the formulation of the problem are 
shown in the fragments of a file below. The proof was performed in 
a theory of lists which we constructed. The theory is displayed 
below in a file prepared by LCF. 

In the version of LCF at the time, there was no facility for 
defining polymorphic PPL.AMBDA type operators (such as * list) . 

Lists, instead, had to be lists of elements of a particular types (a 

type ":d", here). New types were introduced by domain equations in 
which only one type operator could appear in an equation: 

NENTYAES C "DLZST + DPAX$ % 

N"DPAI s D DLIST" 3 i s 

where . denotes a domain consisting of exactly one element (1). 
Some new constants were introduced and given a representation in 
terms of standard PPLAMBDA constants. It must be recalled that the 
standard sum in LCF at the time was separated sum, so that the 
definitions of INL, etc. here are not the same as the current 
definitions, and UP and DOWN, as needed now, were not required. 

NEWCDNSTANT ( `HD' t ":])LIST->B" ) ;; 
NENCONSTANT ( `TL' ":DLIST->DLIST" ) ;; 

"LD-CDLXST-DL2sT)" ) sf NEWCONSTANT < "CCN:S% 

NEWCONSTANT < 'NIL' 0 ":DLIST" ) si 

NEWCONSTA$T < 'DUMMY" ":D" ) f ; 

NEWCONSTANT < 'LIST` " :D->DLIST" ) 

r1E' AXIOMS<);; 

AXHD "HD \aL:DLIST.FST(DUTR aL :DpwzR) :D" 

AXTL "TL \aL:DLZST.SMD(CUTR DL :DP*zo) :L-ZS-r" 

AXNIL "NIL =m INL C) :DLIST" 

AXCCNS "CONS =O `D:D.\DL:nLzsT.IHR(a DL) :DLIST" 

AXNIL2 "EQ NIL NIL == TT" 

AXLIST "LIST ma \D:D.INR(D NIL) :DLIST" 

NNCNS1 !S:DLIST. EQ s NIL FF IMP EQ(CDt1S a s)NIL FF' 

14NCNS2 !s:DLIST. EQ s NIL TT IMP EQ(CDt1S D s)MIL = FF" 
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The 'usual' list axioms were then proved, mostly by simplification, 
and stored in the theory of lists. They are displayed below on an 
LCF-prepared file. The names of axioms and theorems on files of 
this sort are shown to the left of the formulae. 

STRHD "HD UU UU:D" 

STRTL "TL UU == UU:DEIST" 

HDCDNS " !DL:DLIST. 13):z. HD(CONS D DL) 

TLCONS "!DL:aLZST. lD:D. TL(CCNS D DL) ss aL" 

HDNIL "HD NIL UU:D" 

TLNIL "TL NIL =s UU:z?LxsT" 

,HDLIST "!D:D. HD!LIST D) D" 

,TLLIST "!D:D. TL<LIST D) NIL" 

.LISCNS "lD:D. LIST D == CCNS D NIL" 

/CMSMIL "!D:D. E9(CCMS D NIL)NIL -- Ff" 

A parent of the list theory was a theory of equality in which a 

constant EQ was introduced. (EQ s NIL) is used here where (NULL s) 

is used in the text. Also, (LIST dummy) is used here where (LIST 
NIL) is used in the text. (For a list theory in which the 'real' 
list axioms are introduced directly, see [15], Appendix 1.) 

For the List Stack Proof, some PPLAMBDA constants are first 
assigned types. By convention (see [15], 3.2.3) these types are 
assigned to future occurrences of the constants unless otherwise 
indicated. 

"F :D->D" :s 
D->D->DLIST->D"s; 

"F:D->D"fi 

P:D->T1!" 
H:D » D -> D" s f 

"S:DLIST"f 
"EKP:CD->D)-><D»D->D)->D->D->DLIST-;D"_ 
"E :D" f f 

Assumptions were introduced to define the four functions and to 
represent the associativity assumption and the others. The first four 
correspond to Chapter 2's thF, thFl, thExp and thG, respectively. 
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LET Tt.1 - ASSUME "F == FIX (\F'.\x. P x =: F x 
H (F' (41 x), F' (52 

LET TH2 - ASSUME "FI FIX ('.F1' . \x. ',..z - 's. EQ S NIL => z 
P x => F1' (HD 3) (H (z, F x)) (TL s) 

F1' ('31 x) z (CONS (.;2 X) 3))";; 
LET TH3 = ASSUME " ExF =a FIX < \Exp' . `F . \\H . \X. '-.z. \S. 

EQ s NIL => z 1 Exr' F H (HD s) (H(zr F x)) (TL s)>"; 
LET TH = ASSUME "G == FIX (\G'. \x. `.z. \s. EQ s NIL => z 

G' (HD s) (H<z, F x)) (TL s))";; 

LET LEFT!D = ASSUME "!x:D. H(Eip :x) == x";; 
LET STR!CTRH = ASSUME "!X:1). H(a(r UU) UU" ; ; 
LET 5TRICTLH = AS"S"UME " !x tD . H(UU s x) UU" ;; 
LET ASSOCH = ASSUME !A:D.!.:D.!CD. HC<H(A!,))c) = NCAf(H(PtC)))';; 

Next, some of the axioms and theorems from list theory were fetched 
and bound to ML identifiers. (Map is the usual mapping function.) 

Further details on the commands AXIOM, FACT, etc., are to be found 
in [15], 3.2.1. 

LET CHDCONS;TLCONS;HDLIST;TLLIST;CNSNIL;LISCr$ ] s MA* (FACT `-`) 
C `HDCONS`;`TLCONS";'HDLIST `;'-TLLI. T`;`CNSNIL`;''LISCNS` ] 

LET CNNCNS1;; 1CNS2;AXLIST;A`-,NIL2] = Ho4F (AX-IOM `-`) 
C `NNCNSI ` ;'-NNCN52 ; "AXLIST` ; `A)eNIL2' ]; ± 

Simpsets were then constructed. 

itlist:(* --a ** -- **) 4 * list --a 

is a standard ML function such that 

itlist f [11;...;In] x = f 11 (f 12 (....(f In x)...)) 
The standard function ssadd is dessced on_ p. 215. 

LET SS33 = TLLIST SSADD CNNCNSI;NNCNS2;HDCONS;TLCM1;ASSOCM;sTwzcTLF/; 
STRI=TRH] BASFICSS;; 

LET 555 = SSADD STR!CTLM BASICSS;; 
LET S56 = !TLIST SSADD CLISCNS;CNSMIL;LEFTID;HDLIST;TLLIST; 

AXLIST;RXNIL23 BASICSS;; 

The union of ss23, ss5 and ss6 is called SSL in the text. Finally, 

the relevant goals and tactics were constructed. The 
correspondences to the names in Chapter 2 are: 

Appendix Chapter2 

goall goalLI 
goal2' a1L2 
goa13 goalL3 
goa14 goa1L4 
goa1S goallemL2 
goa16 goalL5 
goa17 goa1LO 
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UNWINDTAC 
1TNWIND000STAC 
SYRULE 
BYTAC2 
WEAKFIXTAC 
WEAKF IXRULE 
APPLYTAC2 
ANYCASESTAC 
USEIHTAC 
USEIHLESSTAC 
USEIHMORETAC 

TAC 2b 
TAClemma 
TAC3 

UNFOLDTAC 
UNFOLDOCCSTAC 
BYLAW 

BYTAC 
MINFIXTAC 
MINFIX 
EXTTAC 
CONDCASESTAC 
USEASSUMPTAC 
US EASSUMPLHSTAC 
USEASSUMPRHSTAC 

TACL2 
TACLemL2 
TACL3 

LET t C Ll ]:WCRM LIST;; 
Ls- r- "F1 << 6" ss23, t ]:FCner4 LIST. i 
LET 6DAL3 = "U << FI ", ss23, C ]:FCwr+ LrsT;; 
LET /sQAL4 s "Fl =- ExF F M ", BASICS-S1 ]:FORM LIST;; 
LET # CAL55 = " fx. is .F1 x UU S == UU" , Ss3, [ ]:FORM LIST 
LET saAi6 = "Ex F w x E (LIST Dummy> a- F x", ss6, C):FCRM LIST;; 

LET ' c.L7 = "Ft x a (LIST Dummy) _- F x",BASICSS,t ]:FORM LIST; 

LET TACI = REPEAT APPLYTAC2 THEN IMDUCTAC C TN4 ;TM3) THEM SIMPTAC 
THEM REPEAT GEMTAC THEN RMYCNSESTAC THEM SIMPTAC 
THEN IJ EIHTAC THEM =''IMPTAC;; 

LET TAC2S - REPEAT APPLYTAC2 THEM INDUCTAC. [TN2) THEM SIMPTAC 
THEN REPEAT 6EMTAC THE" UNWIMDTPC: rN4 THEM 
SIMPTAC THEN ANYCASESTAC THEM rIMPTAC THEM 
ANYCASESTAC THEM SIMPTAC THEN UNWINDTAC TN1 
THEN SIMPTAC THEN USEIHLESSTF+C THEM SIMPTAC 
THEN UNIW I MPCCCSTAC [I ] r,.4 THEN SIMPTAC THEM 
UNW I NDOCCSTAC [ 1 ] TN4 THEM ' .IMPTAC ; ; 

LET TAC3 - WERKF1XTAC TN4 THEN SIMPTAC THEM REPEAT AQPLYTAC2 
THEN SIMPTAC THEN INDUCTAC CTH1] THEM 
ANNINDOCCSTAC [2] TN2 THEN SIMPTAC THEN REPEAT GENTAC THEM 
ANYCASESTAC THEN SIMPTAC THEM ANYCASESTAC THEM 
SIMPTAC THEN USEIHMORETPC THEM SIMPTAC THEM 
USEIHMCRETAC THEM SIMPTAC;; 

LET TACLEMMA = INDUCTRC (Ts-42] THEN SIMPTAC THEN REPEAT 6EMTPC THEM 
SIMPTAC THEN ANYCA;ESTAC THEN SIMPTAC THEN 
ANYCASESTAC THEN SIMPTAC THEN U:?EIHTAC THEN SIMPTACf; 
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LET TAC'6 = UNWINDTRC TN7 THEM SIMPTRC THEII UNWINDTAC TH3 THEN SIMPTRC;; 

TACI solves goall, TAC2b solves goal2', TAC3 solves goal3 with the 
eventual result of applying TAClemma to goa15 in its simpset. To 
achieve goa14 we use BYTAC2 to produce goal2 and goal3. To achieve 
goal7, we add the theorems achieving goal4 and goal6 to the simpset, 
and call SIMPTAC. 

The following (fragments of a) transcript of an actual session 
with LCF demonstrate the performance of the proofs in the system. 
Note that theorems are displayed with .'s before the-- , to 

represent the individual hypotheses (assumptions), so that a theorem 

....... -- "F1 == Ex p F h" 

for example, has seven hypotheses. The standard ML function 

hyp:thm ---) form list 
returns the list of hypotheses of a theorem. 

The character at the beginning of a line marks a user input. 
System responses are immediately after the terminating ;; and are 
followed by a blank line. The ML variable it holds the result of 
the last ML expression to be evaluated. The ML function 

ssadd:th --- simpset -.. simpset 

adds a theorem to a simpset. 

LET 6L1 ,P1 = TRC1 Ga.L1;; 
5L1 = C ] : (6004E LIST) 
P1 = - : P"aaF 

ULET IES1 = PIC ]; 
IDES = .. - U == ExP F THM 

»TAC2s 6aRL2' ; ; 0 
C ],- : <(yDAL LIST) » PRCCF> 

('5P42) IT)C ]; ; T- 
....3-"Fl THM 

::H'YP IT;; 
C "F1 == FIX<\F1' .\x.`z.\s.EQ s NIL->Z: (P k=>FI'(HD 5)(H<z, F x))(TL S 
).'Fl, (61 x)z(*C[3NS(s2 x:)s)))"; "G == FIX(`6' .tix.\z.'.s.EQ s NIL=>z.'6' (4 
D 5)(M(.z, F x))<TL s))"; "F F1X(\F".''.x.P x=>F x!H<F',(el X) v F'(s2 
xW"; "!'1. !s. !C. H(H<Af s)r c) __' "(AV H<ss c))"] : (FORM LIST) 
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LET GL5,P5 = TR LEMMA GOALS 
GL5 = C ] : (.GOAL LIST) 
PS = - : PROOF 

LET AES5 = P65t I ; , * , 

REs5 = ..- x. !s. FI x UV S == UU : TMM 

:LET A f! fC = 1313r3L3 ; 
A = "6 << Fl : FORP? 

= - : SIMPSET 
C = [ ] : (FORM LIST) 

(LET 3 _ 5SADD Pms5 a;; 
= - : SIMPSET 

LET GOr1L3 = A !ipfC f s 

GOAL3 = "6 << FI" P- PC ] : so'L 

»TAC3 GOAL3li [],- : ((GOAL LIST) Q ppCMW> 

LET GL-3'P3 = IT;; 
GL3 = 11 : GOAL LIST) 
003 = - : PROOF 

LET F+E53 = P31 ] f 
F+ES3 = ...... ]-__c<I : TMM 

:LET RES = TAC6 GCAL6;; 
RES6 s (] s- : ((GOAL LIST) S PROOF) 

E 
LET GLb sP6 = RES6 f f 
rsL6 = C ] : t.5OAL LIST) 
P6 = - : PROOF 

LET FR56 = Pr_+C ]i's 
RESb ..]-"Exp F N x E(LIST DUMMY) _= F X" TMM 
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LET R a E _ = ryOriL 7 
"F1 x E(LIST DUI' Y) _= F x" : FoJ 
- : SIMPSET 

G z C ] : CFORP' LIST) 

::LET s = ssPDD RES4 BRSICSS;; 
2 = - : S2MPSET 

LET S = SSRDD RKS6 S ; ; 
V = - : SIMPSET 

"LET IC L' = RSrC;; 
SOORL7 = "F1 x E(LIST DurreY) _= F x",-,C 3 : eop%. 

C 
LET GL7,P' = SIMPTAC GOAL7;; 
GL7 = C ] : (GOAL LIST) 
P7 = - : PROOF 

LET RES7 = P7C 3; ; 
RES _ ........ - x K (LIST Due.Y) _= F x" : TtIF, 

Observe that the eventual result has eight hypotheses, representing 
the eight initial assumptions. 

The use of BYTAC2 is demonstrated below. BYTAC2 generates a 
list of two subgoals (using the ML function gentok, see [15]. A3a, 
to generate a new name, G7859, here) and a proof. 

xBYTRC2 TH3 GORL4;; 
C "G7859 << Fi"P-PC ]; "F1 << 67859",-PC ]],- : ((GQAL LzsT) a 

LET C'a1;GG2],P = IT;; 
551 = "G78. 9 << F1",-v( ] : GOL 
62 = "F1 <.<. G7859" ,- ,C ] : craft- 
P = - : PROOF 

The proof p depends on a function BYRULE. Suppose we have proved 

FG7859 Q F1 

FF1 c G7859 

We can then test the proof part of BYTAC2. A theorem list, thl, 
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contains these two theorems. 

TKL = ( 1-"6799 << F1"; ]-"F1 << 67859-3 : (TMM LIST) 

=P TML 
..]-"F2 == ExP F N" : TM" 

:LET RES = IT;; 
RES = ..]-"Fl == ExP F N" : TMM 

aM'YP RES ; ; 
C "ExP == FIX(\ExP' .\F.`\N.\x.\Z.\S.EQ s MIL->ZfEx`" F N(HD S)(N(.z, F x 
))(TL s))"; "67859 -- FIX(\67859.\x.\Z.\\.s.EQ S MIL:>z1'67859(HD s)(M,(z 
, F x))(TL s))"] : (FORM LIST) 

-GOAL4;; 
"F1 =- ExP F ,+" ,-,C ] : GaAL 

The theorem proved thusly has as hypotheses the definition of Exp 
and a theorem defining G7859, added by BYRULE, which is called in 
evaluating (p thl) . 

For completeness, the ML code for BYRULE and BYTAC2 is shown 
below. Not all of the functions and features of ML used have been 
explained; the curious reader will have to consult [15], (or better 
(13J, as the functions were defined for use in the older LCF, 
although the differences, in this case, should not be many). Some 
necessary auxilliary functions follow the two mains ones. 

LET BYLAW FLIST TM = 
LET PHII - SND (DESTCCMP (MS (CQNCL TM))> 
IN LET H`9 PHIarFs = DtsTANS PP+I 1 

AND FLIST = MAP (\E. PfKVAR (GENTOK Or TYPEOP E)) FLIST 
IN LET E - MV-1.'^R (OWNTON Or , (ITLIST ('\TY1.\TY2.MKPUNTYPE (TY1 sT 

Y2)) 
(MAP TYPEOP FLIST) 
(TYPEOP H')) ) 

AND PAI/ILIST s COMzZNE (F'LIST, FLIST) 
IN LET PHI2 = MKA3SL (E . F'LIST) 

(SUSSTINTEP ((MM:COM,t. (E. F'LIST)tH') 
PAIRLIST) PHIaPfs) 

AND /r - MKVAM (GENTOK. () ' TYPEOP R'*) 
AND G = M[VAR (SrENTOs 0 , T-YPEOP E) 
IN LET W" = MhrEQU24 (/. MM:COMSL (G FLIST) ) 

IN LET .Asts - PMKBASIS FLIST (TYPEOc E) 
AND STEP = !MKSTEP PHIaFFs PHI2 P14I2 A a w` H' FLIST 
IN LET TN' = INDUCT C PHI 1 ,F ;PHI2 rs 1 w' (s+Srs,sTEP) 

IN TRAMS (TMs TN');; 
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LET BYTAC2 TM:TACTIC (MrSSsFML) 
LET F = L)-+S M 

own E . FLIST = DESTCDM3L (.RMS w) 
AND H = MI[VAA 6ENTDK ( ) s TYrEDi (RNs M.) ) 
IN LET M2 - MMIMKVUIV (H! F) 

AND M3 = MKIMUUIV (F, H) 
AND (E' . F'LIST)f DGDY - DESTANSL1 (.NIL 

.sND (DESTCOM! ($145 (CONCL TM))>)) 
('.LENSTM FLIST) + 1) 

IN LET BODY' - SU3STIMTVRM (CQMPINE (FLIST, F'LIST)) 
(SUDSTINTEIMi CH* M'.CDMSL (E' . F'LZsT) ]1 

BODY) 
ZN LET TYP = MI[FUNTYE (.TYEQF (.MR.AES (H,BCDY' )),TYEGi t4) 

IN LET TM' = ASSUME (. h1KERU I V (Hp PWCOM39 (MMcQNST 
(,'FIX'',TYF)MM.ADs (HsiCDY')))) 

IN LET SSFLUST *' SSADTr TM' SS 
.104 C i. 2 SSFLUSTM' r FML ; w3 o Ss.LUSTM' s Fti/L ] 

(\T14L. LET C TM2 ;TM3 ] = TNL 
IN LET TM1 - SUBS C"SOYM TM] (BYLAW FLIST TM') 

IN TRAPS (SYNTH (TM3,TM2)%Ttfl));; 

LETREC MI(CDMDL L 
NULL L => FAIL 
NULL (TL L) _> FAIL 
NULL (TL (TL L)) _> MK.COMS (MD Lf MD (TL L)> i 

MKCCMDL ((MKCDMR ((MD L) (MD (TL L)))) . TL (TL L)) ? 
FAILMITN MM.CQMiL i f 

CFI; ...;FM] 

F 1 ... FN % 

LETREC DESTCOMPL T = 
LET FIRST LAST = DESTCQMS T 
IN ISCQMS FIRST (DESTCDMSL FIRST) 7 CLAST] 

CFIRST;LAST] ? FAILb*ITM %VKSTCDMjpL`;; 

------------------ 
CFI ; ... ; FN ] '/. 

LET BMKBASIS FLIST TY - 
SYM (MINAPL FLIST TY) ii 
LET BMKSTEP PHIQFFs PMI1 P+I2 pr a w" H' FLIST = 

SUBS C SYM (BETACONY (Mp(CDMr (PI411 . P))); 
SYM (BETACONVL (CPHI2;a] FLIST))] 

(.SUBS000S ((2] ASSUME w`3 
(REFL (SU)STZNTEP CFg, H'] PWlcwFs)));; 
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LETREC APTHML TM L = 
MULL L => TM 
APTHML (APTHM TM (MD L)) (TL L) ? FAILMITM 'APTHML'ii 

F == 6 CXi; ...;XN] ----------------------- - ----- -- 
:- F x1 ... xN =a G xl ... xM % 

LETREC BETAC'CNYL L 
MULL L =.> FAIL i 

NULL (TL L) _> FAIL 
MULL (TL (TL L)) BETACONY (Mh:COMD (MD L MD (TL L))) 

LET FIRSTSTEP BETACCMV (MWCOM+D (MD L MD (TL L))) 
IN TRANS (APTHML FIRSTSTEP (TL (TL L)) 

BETAtCCMYL ((4r1S (CONCL (FIRSTSTfP))) . (TL (TL L)) )) . 

FAILMZTM 'BETACcNvL';; 

C (\.X1 ...\:!N.T) ;Yl ; ... ;YM ] -------------------------------------- 
:- (\X1 ...`,.WN.T) Y1 ... YM == TtYIXXZ ] % 

LETREC MIMAPL FLIST TY = 
MULL FLIST => FAIL 
NULL (.TL FLIST) => MIMAP (MIECOMD' (MM:Cl3P4ST <'UU' TY) t MD FLIST)) 
LET FZRSTSTEP = MIMAP (MMCOMD (MK.CONST (`UU`ry) MD FLIST)) 
IN TRANS (APTHML PZRSTSTEP (TL FLIST) 

MIMAPL (TL FLIST) (SND (DESTFUNTVPE TY))) ? 
FAZLMZTM `MIMAPL`;; 

CF11...IPM] TY 

:- (UU:TY) F1 ... FM =s UU % 

LETREC MP(ADSL L T = 
MULL L =.> T i 

M1rADS (MD L V MP(ADSL (TL L) T) ? FAILWITP4 ,MXA,SL' ; s 

CX1;...;XM] ---------- 
\X l ...\:XN . T '/. 

LETREC DESTADSL (L T) _ 
ISADS T => LET VAA PEST M DESTADS T 

IN DESTADSL (L CVAR] REST) (L T) '? FAILIITM -'DESTADSL-';; 

% CX1;...;XM] (\Y1...\YN.T) ---------------------------------- 
T % 

LETREC DESTADSL1 (LIT) N = LENGTH L = N -" (LOT) 
ISASS T => LET VAAREST = DESTA3S T 

IM DESTADSL1 ((L a C VMW ]) !REST) N 
(LIT) ? FAILWITM 'DESTADSLi';; 

% AS DESTADSL NUT STOPS $MtN LIST IS OF L<MiTM N % 
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Implementing Iterated Induction 

In view of the complications mentioned, we do not give details 
of the Russell compiler proof here. We do, however, show the code 
for the rule of iterated induction used in the proof of Theorem 
3.1b, ITINDUCT, and for the corresponding tactic, ITINDUCTAC. 

Auxilliary functions follow the two main ones. Again, not all 

functions or features of ML will have been explained, and the reader 

is again referred to [15] or [131. In the rule, a new formula, 

basis and step are constructed, and ordinary induction is done. 

LET ITINDUCT FFLIST W (BASISLZST,STEP) = 
LET N = LENGTH SASISLZST 
AND FLIST = MAP SND FFLZST 
IN LET SUPSTLIST = COMBINE ((MAP MKCOML FFLIST)PFLIST) 

IN LET F+YPSTEP = PFITLIST M (N - 1) SUBSTLIST 
IN LET M' MKCONJL HYPSTEP 

IN LET BASIS' = CDNJL BASZSLIST 
AND STEP' $ SEL2 (MP (DIF;CHL HYPSTEP 

(CONJTN HYPSTEP STEP)) 
(ASSUME w')) 

IN ;;ELI (INDUCT FFLIST W' (3ASI3',sTE')) ? 
FAILIITM ITINDUCT`.: 

LET ITINDUCTAC THL N: TACTIC (MPSS,FML) _ 
LET FLIST = MAP (\TH. ;SND (DESTCOMS (HS (CONCL TM))))) THL 
AND FLZST = MAP (\TH. (LHS (CONCL TH))) THL 
IN LET FFLZST = MAP O.F. VARIANT (FPFf]RMLFREES (w.FML))) FLZST 

IN LET FF'LIST = COMBINE (FLZSTPFLIST) 
AND MVAR = SUPSTIHFORM (COMBINE (F'LISTPFLIST)) W 
IN LET SUSSTLIST = COMBINE (('MAP MKCDMB FF'LZST),F'L1ST) 

IN 

IN 

ZN LET 
IN 

AND STEP'OAL = STEPFORMfSSV(ASSUMP 
IN (BASISQCALLZST a ISTEPGOAL))f 
(\THML. LET BASISLIST!STEP = 

LET ASSUMP PSTKPVg30M = DESTLISTBACW NIL 

LET UULIST = 

IN 

(MK.ITLIST WVAP N SUSSTLIST- ) 
MAP (\F. LET TY = TYFEDF F 

IN (.MKCONST ('UU' ,TY)) )FLZST 
LET FUULIST = COMBINE (FLIST,UULIST) 
IN LET UUSUBSTLIST = COMBINE ((MAP MKCIIMB FUULIST), 

UULIST) 
AND WUU = SUBSTINFORM (COMBINE (UULISTPFLIST))w 

BASISFOPHLIST = MKITLIST WUU (N-I) UUSUBSTLIST 
LET PASISGOALLIST = MAP (\W.WSS,FML) DASZSFOPWLXST 

FAILWXTH 

DESTLZSTBACK NIL 
IN SUBS (MAP SYM THL) 

P FML) 

THML 

<:ITINDUCT FF'LIST 
ITINDUCTAC ̀  ; ; 

WVAR (3ASISLrsTPSTEP))) 
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LETREC ht(CDNJL HLIST = 
NULL WLIST => FAIL 
NULL (TL HLIST) => ND HLIST 
MKCMHJ CND HLISTs MKCDNJL (TL HLIST)) ? FAZLwxTw 'MKCDNJL''ss 

Cwt's... ;HN] ------------------- 
w l & ... & W N , %: 

LETREC CDNJTN HLIST TN = 
NULL WLIST => FAIL 
NULL (TL WLIST) => CDNJ (ASSUME (Hr WL I ST) ,TN) 
CDNJ (ASSUME CND WLIST)f CCNJTN (TL HLIST) TN) 
FAILWITM 'CDHJTWlf 

CH1f...fHN3 A i- w ------- - ---------- 
Cwlf...iwN]i A :- ml & ... & HN $c w % 

LETREC MK.ITLIST W N SUNSTLIST = 
N = 0 =.> CHJ 
LET Ww = 5USSTINfCRM SUSSTLIST H 
IN H.(MKITLIST WW (N - 1) SUBSTLIST) ? FAILWITI4 'MI(ZTLIST';; 

X W N (FUN! FI pF2 ] 

CHs wC FUNI FI/FI J's ... HC FUPFI t m FI'rz J J 

LETREC DISCHL wLIST TN = 
NULL HLZST =) TN 1 

NULL CTL WLIST) _> DISCH (liD HLIST) TH 
DISCH CND HLIST) (DISCHL CTL WLIST) TN) ? FRILWITIrt ~DISCHL";; 

CH1:...;wN] WHIC14 IS HLIST A i- H (HHrc*+ is T)+) ------ -------- ------------ 
A - Cw1:...;HN]- wi & ... & wN IMP w % 

LETREC DESTLISTMACK LI L = 
NULL L => FAIL 1 

NULL (TL L) =5 (LIP MD L) 1 

DESTLISTVACK (L1 CND L]) (TL L) ? FAILWITH 'DESTLISTSACK`SL 
CA1;...AN3 L 

l p - 
----AN-1 

- /Ils... . AN ' 
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LFTREC CONJL TML - 
NULL TML => FAIL 
MULL (TL TML) _> I"fD TML 

CCNJ (Ma THL r (CDNJL <' L TML))) ? 

".. CTMI*...;TMN] 

TM1 i ...A TMN 

F14ILw%yp+ `CIINJL'; 1 

The following fragments of an LCF session demonstrate the use of the 
tactic and rule. We take, as an example, the definition of the 
function F from the Counter problem (Chapter 2), which is called thl 
during this session. We apply ITINDUCTAC to do 3-ary iterated 
induction on F. We thus obtain a list of four subgoals; three basis 
cases, and an inductive step with three hypotheses; and a proof. 
The theorem, thl, and the goal are shown, then the tactic is 
applied. to a goal as shown below. (_Fxpo is. called Nexpo here -- but 
this. is not the way to s-olve the goal, just an example of the use of 
the tactic . 

=LET TML = C TM1 ] i s 

TML = C.]-"F -- FIXC\F'.\x.P x=>F x,F'(M(F'(a x)>))"] : (T"M LIST) 

=LET N = 3;; 
N = 3 : INT 

»W 0SS 0Ft,L;; 
"F1 == NExro F M"w-'C] : rawL 

J2TINDUCTMC TML N <w'SS.1FML) 
C "F1 NExpo UU' M" r-'C ] `'F1 == NExfa((\F' .\x.P-x=)R x!F'(N(F':(a x)) 
))UU'M"s-C ]i "Ft NEx,a(("F'.''.x.P x='i x:F'c:M(F'(% x))))(("F'..`x.P 
_X=>F 

:x F' (N(F' ( x.')) )UIJ )M" C 3; "F1 NE:ro((`F' .\x.P x=>F x: F ( 
N F-'(c x>>)((\F'.`x.P x=>F x;F'(M(F'+:r x))))((4F'.`.x.P x=>c xF'CN(F i, x)>))F')))w"-rC"F1. ==-NExPc F' M"; "F1 == NExPa((*-.F'-.\)e..P x.=>s x 

x))))F`)M"s -F1 NExpbc((,.F'. x.P x=>F x:F'(i.(F'(& 'K)>)1 
F' .mix .P x=>F x F' (k4F =C-x) ) 2F,) tiM" ] ] - a ((rPaAH LIST} P-RaaF) 

This produced a goal list and a proof. The proof was named p. 
Suppose we have proved the following theorems, which achieve the three sub- 
goals: 

TMA = 1-"F1 == NExPa UU M" : TMM 

TNs = ]-"Fl NExPc((\F'.`x.P x=>F' xtF'<M(F'(a X>)))UU)M" : TMM 
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TF1r = 7-"F1 == ttExpa<(`F' .\x.P x=>F x:F'(H(F'(s x))))((\F'.\x.P x:>F 
x:F'<04(F'(s x))))UU))M : THK , 

THr = ... 3-"F1 == NExrc(<'F'.'x .P x=>r x : F' <r#(F' (G x))) > ((\F' . \x .P x= 
>F x:F'<H(.F'<s x))))((\F' .'x.P x=>F x:F'(m(F'(s x))>)F')))f" : THM 

Finally, we apply the proof p to a list containing these theorems, to achieve 
our goal: 

:PC THA TN1 TTHC;THD ] s s 

.3--F1 == NExrc F H" : T 

»HYP IT;; 
C "F FIX(\F'.\x.P x=>r x:F'(H<F'(s X))))"3 (FOB LIST) 

(The three hypotheses of the are shown in the formula list below.) 

C "F1 == NExrc F' H"; "F1 == NExpc((\F'.\x.P x=)F x:F'(H(F'(i x))) )F-')H"; "F1 == NExpo((\F'.\x.P x=>F x:F'(H(F'(s x)>))((\F'.\x.P x=>F x:F'<H(F'(s x))))F'))H"7 : (FCI.4. LIST) 
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