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Abstract

Three studies in the machine assisted proof of recursion
implementation are described. The verification system used is
Edinburgh LCF (Logic for Computable Functions). Proofs are
generated, in LCF, in a goal-oriented fashion by the application of
strategies reflecting informal proof plans. LCF is introduced in
Chapter 1.

We present three case studies in which proof strategies are
developed and (except in the third) tested 1in LCF. Chapter 2
contains an account of the machine generated proofs of three program
transformations (from recursive to iterative function schemata).
Two of the examples are taken from Manna and Waldinger. In each
case, the recursion is implemented by the introduction of a new data
type, e.g., a stack or counter. Some progress is made towards the
development of a general strategy for producing the equivalence
proofs of recursive and iterative function schemata by machine.

Chapter 3 is concerned with the machine generated proof of the
correctness of a compiling algorithm. The formulation, borrowed
from Russell, includes a simple imperative language with a while and
conditional construct, and a low level language of labelled
statements, including jumps. We have, in LCF, formalised his
denotational descriptions of the two languages and performed a proof
of the preservation of the semantics under compilation.

In Chapter 4, we express and informally prove the correctness
of a compiling algorithm for a language containing declarations and
calls of recursive procedures. We present a 1low level language
whose semantics model a standard activation stack implementation.
Certain theoretical difficulties (connected with recursively defined
relations) are discussed, and a proposed proof in LCF is outlined.

The emphasis in this work is less on proving original theorems,
or even automatically finding proofs of known theorems, than on (i)
exhibiting and analysing the underlying structure of proofs, and of
machine proof attempts, and (ii) investigating the nature of the
interaction (between a user and a computer system) required to
generate proofs mechanically; that is, the transition from informal
proof plans to behaviours which cause formal proofs to be performed.
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Introduction

This work represents several explorations in a methodology and
technology for the generation of formal proofs of program
correctness. Underlying the work is the belief that it is important
to supply complete and correct formal proofs of program correctness,
as informal proofs may suffer errors in both logical structure and
technical detail. Also implicit is the belief that because the
proofs of even simple programs are long and complex, any hope for
producing the proofs rests in the design of computer systems which
share the task of proof generation with human theorem provers.

The components of our model of user-system cooperation are (i)
the effort required on behalf of the user, at least in stating the
goals, and possibly, in specifying proof methods, strategies and
insights; (ii) the facility for interaction between user and system,
enabling the user to communicate goals and possibly strategies to
the system, and the system to report the results of its proof
attempts to the user, and (iii)  the capacity of the system for
recognising valid proofs, and possibly, for generating proofs
autoﬁatically.

Proof systems of various sorts fit this framework, as it is
rather general; for example, automatic theorem proving systems, in
which (i) the user states the problem to be solved, (ii) the logic
in which the problems are stated provides the basis for user~system
interaction, and (iii) built-in heuristics endow the system with its
capacity for automatic proof. Examples of automatic theorem provers
for programs are the Boyer-Moore system for proving theorems about

LISP functions [3], and Pratt’s system for proving algorithms
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written in dynamic logic [40]. The model also includes proof
checking systems, in which (i) the user is required to perform the
proof, to some degree of refinement, (ii) the specification of a
proof step 1is the basis for user-system interaction, and (iii) the
system is able to do proofs automatically to the extent required to
perform (and hence check) the specified steps. Proof checkers for
programs include Stanford LCF (Logic for Computable Functions)
[26,27,50), the Pisa Proof Checker (PPC) [2}, and the FOL (First
.Order Logic) system [9,49]. The framework includes, in addition,
standard verification systems based on Floyd’s method of inductive
assertions [10], and Hoare’s proof rules [l6]. The Stanford Pascal
Verifier [21], and the PL/CV system [7] are two modern examples. In
such systems, the user’s contribution is, typically, a program in a
(fixed) language, annotated at points in the text with assertions
which are intended to hold whenever control reaches those points,
during evaluation of the program. In the two instances mentioned,
the fixed languages are PASCAL and PL/l subsets, respectively. The
Stanford Pascal Verifier relies on a theorem prover, and the PL/CV
system on a proof checker, for the proofs that the assertions do 1in
fact hold. Interaction with the system, in the former case,
includes a facility for enabling the user to suggest useful facts to
the theorem prover; in the latter case, interaction is as in
standard proof checking systems.

It is useful to consider two further dimensions along which
machine proof systems can be classified, besides the nature of the
interaction required to produce proofs. The first is generality.

It can be observed that some systems are designed for reasoning in a
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particular area, about a particular programming language, or within
a certain logical framework, while others are intended to cope with
quite general sorts of reasoning. Standard verification systems,
for éxample, are typically built around one particular programming
language (and the proof rules for that language) and are tailored
for reasoning about programs in that language, within the
Floyd-Hoare framework. The FOL system, in contrast, aims at
providing an environment in which purely mathematical and °common
sense’ arguments can be conducted, as well as arguments about
programs of various sorts.

The second dimension is security. Some systems do not ensure
that only valid deductions can be performed. This applies to many
standard verification systems, in which the absence of an explicit
logic means that there is no a priori notion of a valid deduction;
hence the security of inferences is left to the wuser and 1is not
checked by the system. 1In contrast, systems which rely on explicit
logics and which insist on fully checked proofs, relative to those
logics, do guarantee security (that is, as long as the logics are
consistent). Stanford LCF and the FOL system fall ingo the second
category.

The technology on which we have relied in this work is the
Edinburgh LCF system [13,14,15,29,30]. In regard to user-system
interaction, LCF is distinguished from conventional automatic
theorem proving and proof checking systems by the fact that its

interaction facility is a programming language. In this language,

goals to be proved and-theorems already proved are represented as

objects of distinct data types, and strategies for performing proofs
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are represented as procedures. A standard set of strategies for
performing certain routine proofs steps is provided; beyond that,
the extent to which proofs can be performed automatically in LCF is
deterﬁined by strategies designed and implemented by the user.

In the context of LCF, and of our model of user-system
interaction, some more subtle distinctions can be made. We have
mentioned automatic theorem proving systems, in which the emphasis
is on the syst?m's ability to find proofs, as well as systems in
which the emphasis is on the system’s ability to check proofs. One
can also distinguish proof performing and proof generating systems.
A proof which is performed is not necessarily produced as a complete
object in the end, but may exist only as a historical sequence of
steps which have been evaluated. When we speak of generating
proofs, we refer to behaviours on behalf of the user which cause
proofs to be performed or produced. In LCF, the wuser generates
proofs, and proofs are performed in the system. The ‘extreme’
styles of proof finding and proof checking can be accomodated in
LCF, but are not necessarily imposed, or even preferred.

As regards the other two dimensions of generality and security,
LCF is fairly, but not completely general, and it is completely
secure. It is based on a typed lambda calculus logic in which all
types correspond to some complete partial ordering (cpo) and is
therefore oriented toward reasoning about areas which fall within
the framework of Scott-Strachey denotational semantics. Classes of
LCF studies have concerned single programming languages (a study of
PASCAL and its implementation, in Stanford LCF {l1], relations

between different semantics for the same language (direct and
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continuation semantics) [31], relations between several languages
(see Chapters 3 and 4, following, and [6]), recursive functions in
general (see Chapter 2, following), and various data types (a study
of lists, for example [11]).

It is fundamental to the LCF ‘philosophy’ that the production
of correct, complete formal proofs is vital; in LCF it is ensured
that non-valid proofs cannot be produced, even as the result of
applying user-defined strategies to goals.

The aims of the work presented herein have been to study, in
the context of LCF and of several program correctness proofs, the
*quality’ of the interaction required between user and system to
perform proofs; to propose methods of organising and structuring
large proof efforts; to investigate ways in which informal proof
plans can be mirrored by procedures in a programming language; to
research the extent to which a user can be isolated from the actual
sequence of primitive inference steps which constitute a proof; to
test the naturalness and effectiveness of thel goal-oriented and
strategy-driven style of proof generation; and to isolate patterns
of inference for various classes of problems. We feel that these
issues are of general interest and applicability, even though the
work is intimately tied to the LCF system.

Two remarks pertain to the connection of this work with LCF.
Firstly, it is important to be clear about what is original to the
author. That includes neither any part of the LCF system, nor the
underlying concept of proof generation by the application of tactics
which reflect informal inference plans. (It does include the

various proofs planned and/or performed in LCF.) Nonetheless, we



have devoted the first chapter to an account of LCF and the
methodology of proof generation therein. Although we do not attempt
a complete exposition, Chapter 1 -enables the subsequent three
chapters to be read without continual reference to other documengs.
None of the material in Chapter 1, at any rate, (excepting the
simple example, and some notation) is original to the author in any
way.

Secondly, although we report several proof efforts wusing LCF,
we have endeavoured, in this presentation, to concentrate on those
aspects of the efforts which address the research aims mentioned,
rather than the ‘proof engineering' aspects. In this spirit, we
have not, in general, included the code of programs, transcripts of
interactions with LCF, or statistics about the actual proof
performances. (Some material of this sort may be found in the
Appendix.)

In Chapters 2, 3 and 4 we give accounts of two actual (and one
hypothetical) proof efforts using LCF. The common thread of the
broblems is the implementation of recursively defined functioms. In
Chapter 2, we consider the equivalence proof for three pair of
recursive and iterative function schemata, and outline a general
strategy for proving such equivalences in LCF. In Chapter 3, we
verify, in LCF, a compiler for a high level language which includes
a while construct. The formulation of the problem is borrowed from
Russell [42}. The approach is to supply denotational semantics for
the two languages involved, to represent the compiler as a function
acéing on the abstract syntax of the high level language, and to
prove the preservation of the semantics under compilation. In
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Chapter 4, we employ a similar approach in stating and informally
proving the correctness of a compiler for a block-structured
language allowing recursive procedure declaration and invocation.
We —cope with certain theoretical problems in the proof (to do with
recursively defined relations), and outline a proposed machine
proof, based on the results of Chapters 2 and 3.

In each chapter, we describe the formalisation of the problem;
we present the informal proof (which is usually roundabout, as one
is comparing differently structured computations when implementing
recursion -- the first section of the Conclusions contains a
discussion of the proof methods used); and we give an account of the
(actual or proposed) machine proof effort. We conclude with an
analysis of the three experiments, and an assessment of our

methodology of proof generation.



Background

Since the correctness of programs is clearly relative to their
intended meanings, this work rests upon the field of programming
language semantics. We have relied, here, on the mathematical and

descriptive aspects of denotational semantics, semantics in which

programs and the objects from which they are constructed correspond
to abstract entities. In an indirect sense, we have used
dentotational semantics by using LCF, since, as we have indicated,
LCF is designed primarily for reasoning in the setting of
denotational semantics. More directly, in Chapters 3 and 4, we use
denotational definitions of the source and target languages under
consideration. We do not attempt a survey of or introduction to
denotational semantics here, but merely acknowledge our debt.
Useful references are [12,25,43,44,45,46].

More specifically, we also acknowledge work done on the
verification of implementations in a denotational setting by Milne,
and Milne and Strachey [24,25], and presented in much simplified
form by Stoy [45]. While not claiming mastery of Milne”s work, it
is clear that the present work deals with some of the same issues,
in particular (i) the factoring of the compilation of recursive
procedure declaration into stages, includings a clcsure semantics
(store semantics® in Milne) and a stack semantics, and (ii) the
problem of the recursively defined relations that arise naturally in
the statements of equivalence of semantics at different levels of

abstraction.



Reynolds, too, has studied the problem of recursively defined

relations (‘directed complete relations') [4l]. A sequence of

semantics at decreasing levels of abstraction was also proposed by

Burstall and Landin [5], in the context of a simple expression

compiler and of algebraic proofs.

Other (algebraic) methodologies for formulating and proving
compiler correctness have been developed by Morris [34,35] and by
the ADJ group [47]. We do not -elaborate on these, as they are

somewhat outside of the scope of this work.
The work on proving program transformations, in Chapter 2, is
based on examples given by Manna and Waldinger [22], although it is

perhaps fair to say that the examples are common property. While

a
great deal of research has concentrated on the problem of
discovering and automating program transformations (e. g . by

Burstall and Darlington [4], and Darlington and Waldinger [8]) we

know of little on formal correctness proofs. The most closely

related work is by Huet and Lang [17], in which formal proofs are

given for several pair of function schemata similar to the ones we

have studied. Although Huet and Lang are rather more concerned with

the problems of pattern matching involved in applying program

transformations, they do stress the importance of supplying formal
proofs, and even suggest LCF as a vehicle for producing the proofs.

The work described in Chapter 3 is based on (and inspired by) a

formulation of the problem of compiler correctness by Russell [42].

He proposes a source and target language, gives denotational
definitions of both, and specifies a compiling algorithm between

them. We have attempted, in formalising the problem and performing
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the proof in LCF, to retain as much as possible of his statement of
the problem. The informal proof he gives 1is actually incorrect;
evidence, we think, for the need for machine—-checked correctness
proofs. Nonetheless, we have found his formulation to be useful in
isolating the problem of verifying the implementation of the while
construct, as well as in avoiding the problem of the generation of
new label names (something which complicated many earlier
formulations).

The early formulations and proofs of compiler correctness (for
schematic compilers in an abstract setting) predate the development
of denotational semantics by several years, yet anticipate the role
of semantics in the statements of correctness. The paradigm for
much subsequent work in compiler correctness was a compiler for
arithmetic expressions proposed by McCarthy and Painter in 1967
[23]. The problem consisted in compiling a language of constants
and variables, and binary operations on them, into a language of
“store', ‘load’ and ‘operate’ instructions intended to be executed
on an abstract, single-address machine with an accumulator. The
important features of the formulation included (i) provision of
(what 1s essentially) a denotational semantics for the expression
language, based on an abstract state, (ii) an operational semantics
for the machine language, based on the state of the machine,
specifying how the execution of each instruction affects the state,
(iii) reliance on a compiling algorithm rather than a compiler in a
particular language, (iv) the use of abstract syntax and the
consequent separation of the problem of proving parsers correct from

the problem of proving code-generators, (v) the form of the
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statement of correctness: if a high and low level state are
suitably related, then the outcomes of evaluating a high level
program, and of running its compiled image, 1in the respective
states, are alsc suitably related, and (vi) the proof of the
correctness of the compiler by induction on the structure of
expressions in the language. The work was intended for eventual
machine validation, and in fact, the problem has been used more than
once as an exercise in machine proof. One such proof was performed
by Milner and Weyhrauch [28], in Stanford LCF, as part of a larger
compiler proof (which is discussed below).

Subsequent work on rigorous and machine proofs of compilers has
diverged into two trains of research, dealing in turn with compilers
for LISP-like and for Algol-like languages. This development 1is
based on the relative natures‘ of applicative and imperative
languages. Compiler proofs, either machine-~produced, partially
machine-produced, or just amenable to machine proocf, have been given
for LISP subsets by (among others) London [19,20] and Newey {36],
and for imperative languages of various sorts by (among others)
Kaplan [18}, Milner and Weyhrauch [28]}, and by Milne, and Russell,
as mentioned earlier.

The LISP formulations are characterised, in general, by being
more realistic; that is, they take real LISP as source and real LAP
code as target. This 1is possible, in part, because of the
comparitive simplicity of LISP and its implementations. 1In the
imperative tradition, the languages used have tended to be contrived

for the purpose of studying certain features.
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The LISP compilers mentioned were taken to be actual programs
written in LISP. In the imperative language studies mentioned,
McCarthy’s use of compiling algorithms and abstract syntax of the
source language as starting points has been followed. Using a
program rather than an algorithm adds another layer of pr;of to the
problem, namely, a proof of the correctness of the compiler relative
to the algorithm it denotes. (Newey gives an account of a proposed
proof of this sort [36].)

Because, in some sense, the natural semantics for LISP is an
interpretive (operational) semantics (based on the LISP ‘evql‘
function), the semantics used in stating the correctness of a LISP
compiler is closer in structure to the semantics for LAP code than a
denotational semantics for an imperative language would be to an
operational semantics for the appropriate machine language. This
would appear to make the correctness proofs easier, in the
applicative case, and to circumvent problems, discussed by Milne and
by Stoy, and encountered in Chapter 4, below, which arise in proving
the equivalence of operational and denotational definitions. In
addition, LISP’s convention of dynamic rather than static binding of

variables makes it unnecessary, in an implementation, to preserve

declaration time environments of functions.

All of these factors help to explain why the compilation of
LISP (or in general, applicative languages) is a rather different
problem than the one in which we are interested at present, and we
therefore do not go into detail about London’s proof, or about

Newey’s proof (which was partially checked in Stanford LCF). The

importance of Newey’s work, from the current standpoint, lies in his
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conclusions about the feasibility of performing large proofs
mechanically, and his recommendations and suggestions about what
would have had to be added to Stanford LCF to make the proof effort,
in its entirety, feasible.

In relation to Edinburgh LCF, its predecesor, Stanford LCF, was
based on a similar but more primitive logic, and did not include a
programming language in which to express procedures for manipulating
objects in the logic. It had only a few standard facilities for
goal-oriented proof generation, and was essentially a proof checker.
The Edinburgh LCF system was much influenced by Newey’s conclusions
about the need for a “high level command 1language® in which to
conduct proofs, for improved abilities to do automatic proof, and
for a more organised way of extending the basic logic with new
constants and axioms.

Early work on the verification of compilers for imperative
languages was done by Kaplan; he treated (informally) a language
containing an assigmment statement and a conditional construct,
which was compiled into a language of “locad® and ‘“store®
instructions for an abstract machine. Both languages were given an
operational semantics, a compiling algorithm was presented, and a
(very long) proof given. The proof was by recursion induction (a
precursor of computational induction). The proof was, like McCarthy
and Painter’s, intended for eventual machine validation.

The work on compiler correctness proofs most relevant to the
current work, and on which it is based, was done by Milner and
Weyhrauch in the setting (again) of Stanford LCF. There, a high

level language containing assignments, conditionals, while
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statements and sequencing of statements, (forming a language very
close to the one later treated by Russell and used here, in Chapter
3) was considered. A low level stack-manipulating language for an
abstract machine was specified, and a denotational and operational
semantics (respectively) were given for the high and low level
languages. Ef fort was concentrated on organising the problem for
mechanical checking. Concepts from universal algebra were applied,
to this end,’and a structure of eleven subgoals was formed. Typical
subgoals were to establish that the semantic functions and compiling
function were homomorphisms. Proofs of seven of the subgoals were
successfully checked in Stanford LCF.

The current work  has built upon and continued the
Milner-Weyhrauch project, both by (i) treating a very similar
formulation of the compiler correctness problem, and (ii) making use
of a proof generation system which was developed as a result of that
research, and Newey's. As regards (i), we have used nearly the same
high 1level language (in Chapter 3), but simplified the problem,
following Russell’s proposals, by dealing neither with expression
compilation, nor with the generation of new label names in the
target code. We too have given attention to the effort required te
organise and structure the proof, but have chosen to use features of
Edinburgh LCF, and other techniques, rather than to appeal to
algebraic principles. As regards (ii), we have had the advantage of
previous experience in the form of a much more sophisticated proof
system, a proof generation rather than a proof checking system, in
which strategies for performing proofs can be writtemn and applied.

Both Newey, and Milner and Weyhrauch concluded from their

1h



experiments that the generation of formal compiler proofs was a
feasible wundertaking, but only in the context of the more advanved
LCF system which was subsequently designed and implemented by
Gordon, Milner, Morris, Newey and Wadsworth. We feel privileged to
have had the advantage of all of the previous work on compiler
proofs, particularly that done in Stanford LCF, and access to a
system which makes proof efforts as desrcibed feasible -- and

pleasant.
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Chapter 1: Introduction to Proof in LCF

Edinburgh LCF, Logic for Computable Functions, is a system
designed to assist in the interactive generation of formal, machine
proofs, particularly in the areas of programming language semantics
and recursive function theory. It is based on work by Scott and
Strachey, [43,44,46]}, and on its forerunner, Stanford LCF,
[26,27,501]. The current system was implemented in 1974-1979 by
Gordon, Milner, Morris, Newey and Wadsworth [13,15].

LCF consists of two levels. The first is a logic called
PPLAMBDA (for polymorphic predicate lambda calculus) in which
properties of recursive functions and semantics can be conveniently
stated. PPLAMBDA can be extended by the introduction of new logical
types, constants and axioms, to form theories, in the usual logical
sense. The terms of PPLAMBDA are as in the~typed lambda calculus,
and the formulae as in the predicate calculus.

PPLAMBDA is interfaced to a second level, a programming
language, ML (for meta language), which is designed for referring to
and manipulating objects in the logic. ML is used for programming
procedures which generate proofs in PPLAMBDA. It is a general
purpose, higher order language with a strict type discipline, a
user-defined abstract type facility, and an exception handling
mechanism.

In this chapter, we briefly introduce ML and PPLAMBDA, and
illustrate, with an example, the concept of tactical proof. Fuller
descriptions of ML, PPLAMBDA and tactical proof may be found in the

LCF manual [15], and in [6,11,14,29,30,31,32,33].
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The Meta Language ML

ML 1is a general \purpose programming language whose type
discipline provides the basis of its interface to the logic
PPLAMBDA.

An ML expression, e, can take the following (main) forms:

e ::= ce constant expressions, including the

integers 0,l,..., and the truth values
true and false

id variables
el e2 application of (function) el to (argu-
ment) e2
if e then el conditional, where e evaluates_ to true
else e2 or false
el=e2 test for equality of expressions el and

e2, returning a boolean value
d in e a local declaration d (see below)

Avl...vn.e lambda abstraction on the ‘variable
structures® vl,...,vn (see below)

[el;...;en] list containing el,...,en

fail causes current evaluation to fail

Variable structures, v, may be:

v i:= () | id | vli.v2 | vl,v2 | {vl;...;vnl

for the empty variable structure, a simple variable, a constructed
list of variables, a pair of variables, and a list containing the
variables vl,...,vn.

As we have mentioned, ML has a type discipline which requires
that all ML expressions (and variable structures) have an ML type.

The implemenatation of ML includes a (compile~time) type-checker
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which infers the types of objects, if a consistent type can be found
for them. In addition, the types of expressions and variable
structures may be constrained (to a type ty, say) by the following

notation:

e ::= e:ty

V 1= vity

ML types are useful for debugging ML procedures, and they are
essential in ensuring that ML procedures do not compute non-
theorems. (This is discussed in the section after the next.)

ML types are given by:
ty ::=cty | vey | tyl x ty2 | tyl-——ty2 | (tyl,...,tyn) id

Constant types, cty, include type constants such as int, for
integer, and bool, for boolean value. (The ML constants 0, 1l,...
have type int, and true and false have type bool.) There ’are also
several additional constant types specific to PPLAMBDA, which are
discussed in the section after the next.

Types may also be type variables, vty, which we indicate with
asterisks (e.g., *, **  etc.).

Compound ML types are built from other types using standard
operators such as *x and—. tyl x ty2 denotes the type given by the
Cartesian product of tyl and ty2; tyl— ty2 is the type of functions
from objects of type tyl to objects of type ty2.

Finally, types can be built from standard or user-defined
abstract type operators. An example of a standard (unary) type
operator is list; the type ty list (for some type ty) is the type of

18



a list of objects of type ty.

Types which are constructed from type variables are called
polymorphic types; an object with polymorphic type is said to have
each substitution instance of the polymorphic type as 1its type.
(See [15,32] for further discussion of polymorphism.)

ML declarations, d, include the forms:
d ::=let b | letrec b

for non-recursive and recursive declarations, respectively, where

bindings, b, can be:
b ::= v=e | id vl ... vo=e | bl and b2 ... and bn

(where, in the third case, each bi must be of the first or second
form). Bindings of the second form are equivalent to id =
Avl...vn.e, so that they are really of the first form. Bindings of
the third form effect several bindings at once.

In evaluating an expression containing a non-recursive
declaration d, (lsE d in e, for example), e is evaluated in an
environment in which d has been evaluated first. (Environment,
here, means an association of identifiers with expression values.)
The expression (letrec d in e) gives the recursive interpretation to
variables in d. (Only functions may be defined recursively by the
letrec construct.) A declaration d is evaluated by first evaluating
its binding, b, to produce a new enviromment. A binding v=e is
evaluated by evaluating the expression e, then attempting a pattern
match between the value of e and the variable structure v (lists

match lists of equal length if corresponding elements match,
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identifiers match all expression values, and so on) and finally,
extending the environment according to the list of
identifier-expression value pairs determined by the match (if the

match succeeds). A typical expression, in the following chapters,

is
Alx:inty:int]. x,y

This denotes a function expecting a 1list of ¢two integers, and
returning an ordered pair of the two elements of the list; that is,
the expression denotes a function of type int list— (int x int).

Many features of ML have been omitted or simplified in the
exposition above. In particular, there are two additional forms of
declaration in ML. The first is an abstract type or type operator
definition, introducing a set of types or type operators whose
representations are local to the declarations. These, like ordinary
ML declarations, may be recursive or non~recursive. We do not
provide details here, but refer the reader to [l5], -especially
2.4.5.

One can also abbreviate types; defined types are identifiers

standing for other types. We add to the possibilities for

declaration
d ::= lettype db
where defined type bindings db are
db ::= 1idl=tyl and ... and idn=tyn

For example, one might write
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lettype intpair = int x int

to save writing int X int.

In general, in this presentation, we try to avoid giving
explicit ML expressions; instead, we attempt to convey the intention
of the ML functions by description or diagram. Where we do list ML

expressions, they will generally have the form
let d in e

Finally, a variety of standard functions are supplied in ML,
some for general list processing, and others for handling PPLAMBDA
objects. Typical functions of the first sort are hd:* list — *,

tl:* list — * list, and null:* list — tr, to take the head and

tail of a list (of arbitrary type), and to test whether a list is

empty.

The Logic PPLAMBDA

PPLAMBDA is a typed logic in which formulae are built up in the
usual ways from terms. Just as all expressions in the programming
language ML have ML types, so all terms in PPLAMBDA have PPLAMBDA
types. Each PPLAMBDA type 1is taken to denote a domain (complete

partial order, or cpo) with a minimum (least defined) element,

PPLAMBDA types, type, are given by:

type ::= ¢ | id | typel + type2 | typel x type2
| typel— type2 | type u
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for type constants (including the ¢type ¢tr for PPLAMBDA truth
values), type variables (which, like ML type variables, are written
with asterisks), and types which are constructed by the binary type
operators +, x , and —, or the unary type o perator u. +, X, and
— correspond to the sum, product and function space operators on
domains. u corresponds to the ‘lifting’ operator on domains, which
adds to a domain a new minimum element. It should be noted that +
means coalesced sum; the corresponding domain operator can be

depicted as:

VAVARZg

that is, the sum for which the minimum elements of Dl and D2 are

identified. The domain operator corresponding to u can be depicted

S

The separated sum, ++, say, can clearly be be expressed in terms of

as:

+ by use of the 1lifting operator: DIl ++ D2 = D1 u + D2 u.

The terms t of PPLAMBDA are given by:

t ::=c | id | tl e2 | Av.t | t=2tl|t2 | tl,t2 | t:type

for constant terms, variables, application of tl to t2 (a term which

can only be constructed if tl has functional type * —**, gsay,
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relative to which t2 has type *), lambda abstraction to a bound
variable v, conditionals (where t must have type tr, and the types
of the alternatives tl and t2 are the same), ordered pairs, and the
constraining of the type of a term. The notion of type polymorphism
in PPLAMBDA is similar to that in ML.

Constant terms, ¢, include the following terms, given with

their constant or polymorphic types (* and ** are type variables):

c ::=TT truth value true tr
FF truth value false tr
1 minimum (undefined) element *

FIX the least fixed point operator (k—> %) 3 %

FST function to select the first el- (* x %%) — %
ement of a pair

SND function to select the second (* X *%k)— k%
element of a pair

INL k— (% 4 k%)
functions to inject elements of

appropriate type into sum domains
INR kk— (% + %%)

OUTL (* + %%)— %
functions to project elements of
appropriate type out of sum do-

mains
OUTR (* + %%)— k%

ISL to test whether an element is (* + *%) 5 tr
in the 1left summand of a sum do-
main

up *— (* u)
to lift and lower domains
DOWN (* uy— *

DEF to determine whether an element X—tr

is defined (returns TT if so and
1. otherwise)
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These constants are axiomatised in LCF by rules of inference; rules
of inference are discussed in the next section.

PPLAMBDA formulae, f, are given by:

£ ::=TRUTH | t=t" | t=t” | £& £ | £ IMP £7 | Yvi...vn.f

That is, the tautology formula TRUTH, equivalences or inequivalences
of terms (in the sense of the ordering [ . over the domain
corresponding to the type of t and t7), and conjunctions,
implications, and universal quantifications as in the predicate
calculus.

In addition, PPLAMBDA can be extended by the introduction of
new types and type operators, new constants having these types, and
new axioms (as discussed in the next section) to form LCF theories.
The LCF theory facility enables the user to incrementally develop
and preserve theories, and to construct hierarchies of theories in
which each theory inherits from an ancestor all of the types,
constants, axioms and proved facts of that ancestor. In this
manner, the objects and theorems needed in the formulation of
problems in LCF can be neatly organised and made accessible, rather
than being introduced in an ad hoc or behind-the-scenes way. We

illustrate the use of LCF theories in the following chapters.

The Interface of ML to PPLAMBDA with an Example

The interface is achieved by three additional constant ML types
(as well as a parser for concrete PPLAMBDA syntax). The types are

term, form and type, to represent PPLAMBDA terms, formulae and
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types. These could, in theory, be introduced as abstract types, but
they are provided as basic types for convenience and efficiency.
Other PPLAMBDA objects are defined in terms of these; for example,
theorems, in sequent style, are represented by the type
form list X form, that is, a 1list of hypotheses paired with a
conclusion. The type thm, for theorem, admits various rules of
inference as operations. Only the rules of inference associated
with the ¢type thm can produce results of the ¢type thm; the
type-checker for ML expressions ensures this. Thus, modulo the
soundness of the rules of inference, only valid theorems can be
returned by ML functions.

Among the functions provided in ML for handling objects in

PPLAMBDA are the following abstract syntax functions:

mkequiv:(term X term) — form for constructing equivalences

destequiv:form— (term x term) for taking equivalences apart
into pairs of terms

rhs:form— term for selecting the right hand
side of an equivalence or an
inequivalence

lhs:form-— term for selecting the 1left hand
side of an equivalence or an
inequivalence

destcomb:form— (term x term) for taking applications apart

apart into pairs of terms

isbottom:term — bool for testing for 1 (of any type)

All of these functions fail when inapplicable.
We illustrate some of the ideas presented thus far, and some of
the 1intended uses of LCF, with an example. Following are three

PPLAMBDA rules of inference: TRANS, APTHM and MINAP. We write them
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below in the natural deduction format of PPLAMBDA inference. The
concept of a rule of inference, it should be noted, does not
correspond to a particular ML type, since different rules have
different types. A rule of inference always takes some number
(possibly =zero) of theorems, curried or paired, as arguments, and

produces a theorem as result. The types of these three are:

TRANS:(thm x thm) — thm
APTHM:term— thm — thm

MINAP:term—y thm

(In fact, the type of APTHM is actually thm — term —— thm, but
for convenience, we have reversed the order of the arguments in this
exposition; we prefer to place non-theorem parameters first.)

Here and throughout, we use the following notation for a
theorem with a list of hypotheses A and a conclusion w: A F- w.
(Occasionally, though, we do not list the hypotheses.) We denote
rules of inference by drawing a line, and writing the theorem
returned by the rule below, and the theorem arguments of the rule
above. The names of the rules are shown above each diagram, applied
to the non-theorem arguments, if there are any, as in the second and
third rules below. Some rules have no theorem arguments, e.g.,
MINAP. Such rules are sometimes referred to as axiom schemes. (u

denotes union.)

TRANS

Al tgu A2 - ugv

Al U A2} eC v
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APTHM t

A F— ucs v

Al utsve

MINAP t

H le=1

These are the rules for the transitivity of = , the monotonicity of
application, and the minimality of L, respectively.

Suppose that we wish to prove that 1 x y=.1, for all x and .
To do this, we could evaluate

TRANS (APTHM y (MINAP x),
MINAP y)

The structure of this proof can be displayed as a tree, in which

nodes are theorems and arcs represent the application of rules of

inference, as indicated:

MINAP x MINAP y
| l
Flx=1 Fly=1
APTHMyl.
-1 x ysTJ_y

TRANSAAAI y o )
Flxy=1

A proof done in this fashion is called a forward proof.
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Tactical Proof

In contrast, let us consider the following heuristic for

proving any formula of the form £ x =4

When trying to prove that t x = +, try proving as a subgoal
that t = 1,

There are three observations to be made about this heuristic,
besides the fact that it solves our goal, L x =1 (since L= 1
follows by reflexivity). Firstly, the heuristic will not always
*work'; consider a formula (Ax.x)L= -4, for which the heuristic
suggests an a priori unachievable subgoal. Secondly, if the subgoal
can be proved, then the original goal, t x = 4, can also be proved,

by application of the function
‘Ath:thm. TRANS(APTHM x th, MINAP x)

to the theorem corresponding to (achieving) the subgoal:

e = o

The application produces a theorem F—t X = A, Thirdly, applying
the heuristic n-1 times to a formula of the form L x1 x2 ... xn= .1
yields a subgoal L xl= 2, which is in turn proved by evaluating
MINAP xl1. Thus we can use the same heuristic (repeatedly) for
solving more complex goals.

A tactic is a defined type in ML for representing strategies
such as the one above. Tactics are functions which generate

subgoals, given goals, and which provide mappings from achievements
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of subgoals to achievements of goals. We write, in ML,
lettype tactic = goal— (goal list x proof)

where we have already defined
lettype proof = thm list— thm

(the type goal is defined below). We occasionally use tactic to
mean tactic scheme, that is, a function from some parameters to a
tactic, when this does not cause confusion.

There are many possible ways of defining the type goal in ML,
(for example, some are discussed in [15,33}), and 1in certain
respects, the standard definition in LCF is arbitrary. However,
because later discussion depends on the particular choice, we
explain the actual definition at this point. A goal consists of the
formula to be proved, coupled with a list of current assumptions
(induction hypotheses, case assumptions, lemmas and the like), and a
third component which is extremely useful: a simplification set. A
simplification set is (conceptually) a list of theorems intended to
be used as left-to-right rewrite rules whenever possible in the
course of a proof. In LCF, simpset (for simplification set) is
another constant ML type. Simpsets are formed from lists of
theorems; we occasionally identify simpsets with lists of theorems,
in this presentation, where this does not cause confusion. A
standard simpset of simple rewrites, called BASICSS, is provided in
ML. It includes the rewrites justified by  MINAP, by
beta-conversion, by the reflexivity of equivalence, and other

routine simplifications. Tools are also provided for the user to
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form simpsets. We employ the notation

th + ss

for the simpset resulting from adding a simplification rule
corresponding to the theorem th to the simpset ss. (The elements of
a simpset are called simplification rules, or simprules.)

In general, the theorems suitable for being included in
simplification sets are of the form }—t = t’., Implications of the
form F-w IMP £ = t° are also acceptable, and are used as rewrites
only when the antecedent, w, can be proved first by simplification.
(Modus Ponens justifies the subsequent use of the simprule.) Rules
formed from implications are called conditional simprules. 1In
addition, theorems of the form FAVxl...xn.w are acceptable, when w
is acceptable. Theorems of this form are specialised to arbitrary
x1’,...,xn" before being applied as rewrites. (For more detail on
simplification in LCF, see [15], especially AS8.)

A goal is therefore defined in ML by
lettype goal = form x simpset x form list

that is, it is composed of the formula to be proved, a relevant
simplification set, and the current assumptions.
We write simple goals, with formula w, simpset ss, and

assumption 1list A as (w, ss, A), and, in this presentation, more

complex ones as .
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in order to separate the components.

We say that a theorem, A F— w, achieves a goal, (w', ss, A") if
w is w* (up to alpha-conversion) and if all of the hypotheses, A, of
the theorem belong either to the assumption 1list A", or are
hypotheses of one of the theorems to which an element of the
simpset, ss, corresponds.

A set of standard tactics is provided in LCF. Additional
tactics are written in ML by the user. We introduce here another
informal notation, for tactics, displaying the intended goal above a
double 1line, and the subgoals returned, possibly with an indication
of the proof function, below. Most of the time, the details of the
proof function can be subordinated, as they are suggested by the
specification of the subgoals.

For example, consider the standard inference rule GEN of type

term — thm —— thm:

GEN x

A F— W
A — Yx.w

where x is not free in A. We can then express a tactic

GENTAC

r_——'q
VX.W

ss
A

wix’ /x]
ss
A

(A[thl. GEN x” th )
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where x’ is not free in A, and w[x"/x] means w with all free
occurrences of x replaced by x°. GENTAC accepts a goal whose
formula is quantified and returns a subgoal whose formula 1is
specialised to an arbitrary variable x°. The proof part uses GEN.
A theorem achieving the subgoal, when generalised to x°, clearly
achieves the goal, since the formula ¥x’.w[x’/x] and Vx.w, are the
same up to renaming of variables. Thus GENTAC inverts the inference

rule GEN. It implements the following heuristic for proving

quantified formulae:

To prove that w holds for all x, try proving for arbitrary x°,
that w with x replaced by x° holds.

Two other useful standard tactics are CASESTAC and INDUCTAC. The

inference rules which they invert are, naturally, CASES and INDUCT:

CASES: term — (thm x thm * thm) — thm

INDUCT: (term x term) list — form ——3 (thm %X thm) —> thm

where

CASES (t:tr)

IT) . Al F— W
FF). A2 — w
). A3 b w

(t
(t
(t

nom

]

Al U A2 U A3 |- w

(where an assumption list A ‘matches’ w.Al if A contains w, up to
alpha-conversion, and A’s remaining elements match Al). CASES takes

three theorems, representing a theorem with the respective
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assumbtions that some term t is true, false and wundefined, and
proves the theorem without case assumptions.
We let [funi,fi] denote the 1list [funl,fl;...;funn,fn], and

w[xi/fi] denote w([xl/fll...[xn/fn].

INDUCT (funi,fi]

AL | wlL /£il w.A2 | wl(funi £i)/£il

Al v A2 I—- w[(FIX funi) /£fi]

where the fi are not free in A2, This expresses the rule of

computation induction originally formulated by Park [39]:
(wl+ /fil & Vi, w D w[(funi fi)/fi]l ) D wl(FIX funi)/fi]

INDUCT is the standard rule of induction in LCF; any other desired
induction rules must be derived from it. New induction rules are
mentioned in Chapters 3 and 4, and discussed in the Conclusions and
Appendix.

CASESTAC and INDUCTAC are tactic schemes having types

CASESTAC:term — tactic

INDUCTAC:thm list — tactic
and are depicted as:

CASESTAC (t:tr)

(w, ss, A)

w (w fw

(t = TT) + ssl (t = FF) + ss2 (t=4L) + ss3

L(t = TT) .A (t = FF) .A (t=1).A -

(Althl;th2;th3]. CASES t (thl,th2,th3))
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where the simpsets ssl, ss2 and ss3 are all ss, with the respective

]

assumptions '-—t = TT, l-—t FF, and |— t= . added as simprules.

Another standard tactic, CONDCASESTAC, searches through the
formula w to find the first term of boolean type which is the
boolean~-valued part of a conditional, and performs case analysis on
that term. CONDCASESTAC fails if it finds no appropriate term.

INDUCTAC is depicted as follows, where [F—ti = FIX ui] denotes

the theorem list Q—»tl*s FIX ul;...;}~to= FIX un]:

INDUCTAC [ti = FIX uil

(w, ss, A)

wli /eil wl(ui xi) /ti]
SS Ss

A (wlxi/ti]) .A

(A[basis;step] . INDUCT (ui,ti) w (basis,step))

where the xi are not free in w or A. INDUCTAC, given a 1list of
theorems defining the ¢ti as least fixed points of the functionals
ui, returns two subgoals: a basis, with A substituted for the ti,
and a step, with (ui xi) — X1 rather than ti because the
inductive step holds for all xi -- with the hypotheses added to
the 1list of assumptions. The proof part expects two theorems,
achieving the basis and step, respéctively, calls INDUCT to prove
w[(FIX wui)/til, and substitutes according to the definitions of
the ti.
If a tactic T when applied to a goal g produces an empty 1list
of subgoals, we say that T solves g. This is not to say that g has
been achieved, however, since the proof function might be incorrect.

If T on g gives subgoals gl,...,gn and proof p, and if it is the
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case that for any theorems thl,...,thn which achieve goals gl,...,gn
respectively, p applied to the theorem list [thl;...j;thn]l achieves

g, then we say that T is wvalid. If, in addition, the goals

gl,...,gn are achievable, we say that T is strongly valid. 1Ideally,
one would always use strongly valid tactics, but this is not always
possible; the tactic suggested by the heuristic on p. 28, for
example, is not strongly valid, but the tactic is nonetheless
useful.

In any case, it is important to note that, valid or otherwise,
application of a proof function to a theorem list cannot return a
non-theorem. At worst, the application fails, or an wunexpected

theorem results.

To reflect the heurstic, on p. 28, we write a tactic (which we

call MINCOMBTAC) depicted as

MINCOMBTAC

(t x = L, ss, A)

(t=1, ss, A) (Althl. TRANS(APTHM x th, MINAP x))

A procedure to implement this tactic is easily written in ML. To

give the flavour of the process of implementing tactics in ML, we

show the procedure below:

let (MINCOMBTAC:tactic) (w, ss, A) =
let r = rhs w
in if isbottom r
then let (t,x) = destcomb(lhs w)
in (mkequlv(t r), ss, A), (Alth]. TRANS(APTHM X th,
MINAP x))

else faijl

The procedure examines and takes apart w, and if the right hand side
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of the formula is L, it gives meta-names to w's parts and
constructs the appropriate subgoal list and proof. If not, the
tactic fails. (For a further discussion of the failure trapping
mechanism in ML, see [15], especially 2.1.)

As we observed earlier, the fact that 1 = L follows from
reflexivity, which is expressed as an inference rule (axiom scheme)

in LCF by the rule REFL:term — thm

REFL t

The tactic we require to complete the proof that L xl...xn= 1

could be called BOTREFLTAC:

BOTREFLTAC

(L= ., ss, A)

A

[1, (Al ]. REFL L)

The tactic, in trying to prove that L. = 1., returns an empty list
of subgoals (that is, it recognises that the goal can be achieved
immediately) and a proof which expects an empty list of theorems and
returns the appropriate theorem as result. To implement BOTREFLTAC
in ML we would write
let (BOTREFLTAC:tactic) (w, ss, A) =
let (cl,t2) = destequiv w
in if isbottom tl
then if isbottom t2
then ([ ], CA[ 1.REFL tl))

else fail
else fail
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Finally, we indicate how basic and user defined tactics can be
combined to form more sophisticated tactics. A control structure
for the language of tactics is provided by tacticals. By analogy
with functionals, tacticals are functions which take tactics as
arguments and/or return tactics as results. The main tacticals

provided in LCF are THEN, THENL, ORELSE and REPEAT, with types

THEN: (tactic x tactic) — tactic
THENL: (tactic x tactic list) —3 tactic
ORELSE:(tactic x tactic) — tactic

REPEAT:tactic —% tactic

As for inference rules, we use tactical to mean tactical scheme, as
different tacticals have different ML types. For readability, the
first three tacticals listed above are infixed.

As the names suggest, Tl THEN T2 is a tactic which, given a
goal, applies Tl to the goal to obtain subgoals, applies T2 to the
subgoals to obtain further subgoals, and returns those, along with
the correctly composed proof functionm, T THENL [Tl;...;Tn] applies
each tactic in the list (respectively) to each subgoal in the 1list -
of subgoals produced by applying T to a goal. TI1 ORELSE T2 applies
Tl to a goal, and if that fails, applies T2. REPEAT T applies T to
a goal and to successive subgoals until a failure occurs (if it ever
does). (Obviously, the ML failure trapping mechanism is basic ¢to
the use of tacticals.)

We distinguish tactics implemented as ML, procedures which do
not call other tactics from tactics built by the use of tacticals,

by calling the two sorts derived and composite tactics,
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respectively, throughout this presentation.
To return to the goal with formula part L Xl...xn = L, we
are now in a position to solve the goal with a composite tactic. We

simply apply the tactic
(REPEAT MINCOMBTAC) THEN BOTREFLTAC

to the goal with the correct formula, an empty simpset, and an empty
list of assumptions. This solves the goal, since each application
of MINCOMBTAC to the subgoal with formula L xl...xi = &+ ‘removes’
Xxi to give the subgoal Lxl...x(i-1)= L, until the subgoal with
formula 1+ = L is pr;duced; MINCOMBTAC then fails, and the goal is
solved by BOTREFLTAC. The proof returned by the application of the
whole (composite) tactic to the goal, when applied to the empty list
of theorems, returns the theorem}—uLxl...xn = L which is what we
set out to prove.

This example, however, is somewhat contrived, because it
operates at a simpler level than that at which one normally works in
LCF. Reasoning at this level is generally handled by a standard
(rather special) tactic called SIMPTAC. Given a goal with formula
part w and simpset ss, SIMPTAC returns a goal with a formula part
which is the result of applying the rewrite rules in ss as many
times as possible to w. It also returns a proof which justifies the
simplifications made. SIMPTAC returns the empty list of subgoals if
some subgoal arising in the course of simplification is a
(recognised) tautology. 1In that case, the proof function returned,
when applied to the empty 1list of theorems, returns a theorem

achieving the original goal. For example, goals with formulae of
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the form L x =.1 or t = t are solved immediately by
simplification, provided that the standard set of basic
simplifications (BASICSS) is included in the simpset of the goals.

SIMPTAC, used with the basic simprules, relieves the user of a
great deal of the tedium of generating proofs; it accomplishes much
routine work automatically. By using other theorems as
simplification rules, still more proof can be relegated to
simplification. This is illustrated at numerous points in the
following three chapters.

At any rate, we can now see that the goal with the formula part
L xl...xn = L could actually have been solved by a single
application of SIMPTAC, assuming that the Sasic set of
simplifications were included in the original goal.

It is important to observe that although the eventual outcome
of applying the compound tactic above (or SIMPTAC) to the
appropriate goal is simply a theorem, and the sequence of inference
rules invoked and intermediate theorems proved is nowhere stored, a
complete proof has still been evaluated. That is, each step of the
proocf has been performed, and the application of the tactic to the
goal has generated the proof. Modifications could be made to the
type goal in LCF to ensure that the sequence of proof steps were
preserved, if that were desired. The type-checking facility of ML
guarantees that only rules of inference can return objects of type

thm, however, so it is not necessary to store sequences of primitive

proof steps.
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The style of proof illustrated in this section (in contrast to
the forward proof described on p. 27) is called tactical or goal
oriented proof. One of the principles of LCF is that the generation
of subgoals from goals by the application of tactics reflecting
strategies is a natural and convenient style of proof, a style which
corresponds to the way in which proofs are planned and abstracted by
humans. Tactical proof allows varying degrees of automation;
tactics which are inverses of basic inference rules generate
subgo;ls at a basic level, requiring the user to be aware of the
detailed course of the proof, while sophisticated tactics may
accomplish large proof steps, or whole proofs, sparing the user
contact with the details. The end product of a tactical proof is
what might be called a ‘proof story® or a ‘high level proof‘, rather
than a proof in the conventional sense of a sequence of theorems,
each following from earlier ones by applications of primitive
inference rules. High level proofs are both more intelligible and
more revealing (of the structure of the proof effort) than long
sequences of this kind; the tactics required to perform a proof
provide a better basis for making generalisations and proving other,
similar theorems.

The problems considered herein are all experiments in the use
of tactical proof. We consider some proofs related to recursion
removal and to compilation of simple languages, and study the
tactics which generate them, with an eye for useful, general
tactics. We then try to assess the difficulty of performing more

realistic verifications by this methodology.
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Chapter 2: Proofs of Recursion Removal Schemata

The first group of proofs which we discuss are proofs of the
equivalence of several recursive function schemata to iterative
schogmata. Three case studies in LCF are examined. 1In each case, we
present the transformation and give the informal proof in sufficient

detail to motivate the tactics which generate the machine
proofs. We discuss the formalisations of the problems in PPLAMBDA,
and the implementation of the proof strategies in ML. OQur aim is to
isolate wuseful and general tactics for these and related proofs,
rather than to discover program transformations or to prove their
correctness automatically; we concentrate on the more narrow goal of
generating proofs once the theorems to be proved have been found and
the methods of proof settled. We conclude by outlining a
hypothetical general tactic, based on the examples, for proving
equivalences of recursive and iterative schemata, illustrating the
way in which general strategies can be developed, expressed and
applied in LCF.

The machine proofs exercise LCF in its capacity for expressing
general properties of recursive functions. We use PPLAMBDA
(extended with new logical types) and its implicit semantics to
define the functions, rather than give an explicit syntax and
semantics for a language of recursive definitions. (When we
consider compilation, imn Chapters 3 and 4, we do define new
languages and give their semantics.) At present, we verify only
particular transformations which a compiler would treat in a uniform

way. The methods of proof, however, appear to be quite general.
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The first two problems are drawn from Manna and Waldinger [22].
The first 1is very simple, and is considered in some detail chiefly
as a way of further introducing the formalisation of problems and
the generation of proofs in LCF. We have devised the third problem
to show that similar tactics can be used to solve a different goal.

Further details of the actual machine proofs are found in the

Appendix.

The Accumulator Problem

We consider a recursive function F, defined as follows:
Fx = Px=fx | h(x,F(g x))

where h is taken to be an associative, binary operation with 1left
identity e, strict in its second argument. One can transform F to

. . 1 . . .
an iterative function Fl by introducing an accumulator z as an

argument 2 :
Fl xz = P x= h(z,f x) | Fl(g %) (h(z,x))
and proving that for all x,
Fl xe = F x
We prove this by showing something more general, namely

Theorem 2.1
¥Yx z. F1 x z = h(z,F x)

We formulate the problem by defining F and F1 as the least fixed



points of functionals FUNF and FUNFl respectively, where

FUONF = AF’ x. Px=f x | h(x,F (g x))

FUNF1 = AF1l° x z. P x=> h(z,f x) | F1°(g x) (h(z,x))

0

Then F = FIX FUNF and F1 = FIX FUNFl.

The proof of Theorem 2.1 is by parallel computational induction

on F and Fl. We assume that for all F1° and F’,
Vx z. F1* x z = h(z,F’ x)
and show

Vx z. Px = h(z,f x) | F1°(g x) (h(z,x)) =
h(z, Px=f x | h(x,F' (g x)))

proving the step for arbitrary x and z, and arguing by cases on

whether P holds of x. (The basis of the induction,
1L x z=h(z,L x)

is easy to show.) If P x does hold, or if P x 1is undefinied, the

argument is easy. If it does not, we must show that
F1°(g x) (h(z,x)) = h(z,h(x,F (g x)))

This is accomplished by applying associativity, and then wusing the
induction assumption with z instantiated to h(z,x) and x to (g x).
The proof is typical of many proofs about recursively defined
functions. The functions are defined as the least fixed points of
functionals, so we wuse computation induction. The defining

functionals are conditionals, evaluating some boolean-valued term
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and branching to recursive calls. The general form of such proofs

is summarised by the following informal strategy:

Do induction on the recursively defined functions, then prove
for arbitrary values of the variables. The basis is easy.
Divide into cases according to whether the condition is true or

false. Simplify, and use the induction hypothesis where
appropriate.

Our aim here is to represent the Accumulator problem in PPLAMBDA and
to reflect the plan for the proof in a tactic which generates the
formal proof.

We first make sense of the function definitions by assigning

types to the variables; * is a type variable.

Fik— %
Fli*— % %
P:*— tr
he(*— %) —> %
gik— *
fih— %

e:*

We then invoke the PPLAMBDA inference rule (axiom scheme) ASSUME, of

type form-— thm,

ASSUME w

W w

to introduce the assumptions governing h and e 3.
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Lﬁa b c¢. h(a,h(b,c)) = h(h(a,b),c)
l——a. h(a, L) =

L-a. h(e, a)

U]

a

(each of which has one hypothesis, namely, the formula assumed), and

the definitions of F and Fl, to which we give the meta-names LhF and

HF= FIX(AF’ x. Px = £ x | h(x,F' (g x)))

thF1
FFl= FIX(AF1’ x z. P x= h(z,f x) | F1'(g % (h(z,%)))

Our aim is to prove the following theorem in LCF, corresponding to

Theorem 2.1

tha
Yx z. F1 x z = h(z,F x)

(A for Accumulator) using the five assumptions as rewrite rules. We
therefore form a simpset (called SSA), adding to BASICSS the five
assumptions, and join SSA with the formula to be proved, and an

empty list of assumptions, to form a goal (goalA):

Vx z. Fl x z = h{(z,F x)
SSA

We mirror the informal proof plan (up to the use of the induction

hypothesis) as a composite tactic:

INDUCTAC [thFl;thF] THEN SIMPTAC THEN REPEAT GENTAC
THEN CONDCASESTAC THEN SIMPTAC
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In the interests of succinctness, we adopt a convention of writing
composite tactics in columns, concealing occurrences of the tactical

THEN, using T+ to denote T THEN SIMPTAC, and T* to denote REPEAT T.

The tactic so far is therefore

(INDUCTAC [thFl;thF])+
GENTAC*
CONDCASESTAC+

This informal notation could be made rigorous by introducing two new

tacticals:

SEQ:tactic list— tactic

THENS :tactic— tactic

defined in ML by writing

let SEQ tacl = if null tacl
then IDTAC
else (hd tacl) THEN (SEQ(tl TACL))

(where IDTAC is a standard tactic such that for all g:goal, IDTAC g

= ([gl ,hd)) and

let THENS T = T THEN SIMPTAC

so that the tactic thus far would then be written

SEQ [THENS (INDUCTAC [thFl;thF]);
REPEAT GENTAC;
THENS CONDCASESTAC]

but we will continue to use the more informal notation.
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The tactic generates a tree of successive subgoals:

goalA
INDUCTAC [thFl;thF)
f —
VYx z.1lx z = h(z,J.x)l (Vx z.(AF1° x z. P x = }
SSA h(z,F’ x) |
] F1' (g x) (h(z,x)))Fl x z
=h(z,( F* x. Px=f x |
h(x,F" (g x)))F x
SSA
LVx z. F1’ x z = h(z,F’ x)
. I
SIMPTAC SIMPTAC
— |
V¥x z. P x = h(z,F’ x) | T
F1° (g x) (h(z,x))
=h(z,(P x=f x |
h(x,F’ (g x)))
SSA
¥x z. F1° x z = h(z,F’ x)
{
REPEA% GENTAC
[P x = h(z,F" x) |
F1°(g x) (h(z,x))=
h(z, (P x= £ x |
h(x,F’ (g x)))
SSA
¥x z. F1’ x z = h(z,F’ x)
CONDC%SESTAC
. ~ p Y — )
P x= h(z,F’ x)| 1 }
F1°(g x) (h(z,x)) =

h(z, Pxf x | h(x,F (g %))
(P x= TT) + SSA||(P x = FF) + SSA

(P x= L) + SSA

AR

(P x TT) (P x = FF) (P x= 1)
Y% z. F1°’ x z= ||¥x z. F1° x z =h(z,F’ x) ¥x z. F1I' x z=
| h(z,F* x) || h(z,F* x)
l ) T
SIMPTAC SIMPTAC SIMPTAC

|
F1° (g %) (h(z,x)) = W
h(z,h(x,F’(g X)))
(P x= FF) + SSA
(P x= FF)
Vx z. F1° x z = h(z,F’ X)

where the three subgoals produced by CONDCASESTAC all have the same
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formula part.

Application of the composite tactic developed thus far to goalA
yields -exactly one subgoal (the basis subgoal is solved by SIMPTAC
using the simplifications in BASICSS for the minimality of (). The
other two cases of P x are solved by SIMPTAC, using simplifications
for conditionals, and the strictness of h. The remaining subgoal
consists of the formula shown, a simpset supplemented by the
assumption that P x = FF, and a list of assumptions including the
induction hypothesis and that case assumption.

The tactic sought to complete the proof must use the induction
assumption; it must first recognise that the formula to be proved is
an instance of (matches the unquantified version of, up to renaming
of variables) one of the formulae in the assumption list. We define
a tactic called USEASSUMPTAC which accepts a goal, searches through
the assumption list for a match as specified above, and, if a match
can be found, returns an empty list of subgoals. The proof function
assumes the quantified formula and specialises it according to the
match. USEASSUMPTAC is programmed in ML in terms of standard
procedures to match terms and to test the equivalence of formulae up

to alpha-conversion. It is denoted by the diagram below.

USEASSUMPTAC

(w, 88, [.o3¥xl.oexn.w3...])

{1, (Al 1. SPECL [xl;...;xn] (ASSUME (¥xl...xn.w)))

where w = w[xi’/xi] and the derived rule of inference

SPECL:term list - thm —> thm specialises a quantified theorem:
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SPECL [tl;...;tn]
A F— Yxl...xn.w
Al wlti/xi)

(See [15]}, A5, for a description of the standard rule SPEC, from
which SPECL is derived.)
The theorem produced by applying the proof returned by

USEASSUMPTAC to an empty list of theorems is
Vxl...xn.w |— W

which obviously achieves the goal.
USEASSUMPTAC completes the tactical proof. The whole tactic

which solves goalA, TACA, say, is therefore

TACA

(INDUCTAC [thFl;thF])+

GENTAC* '

CONDCASESTAC+

USEASSUMPTAC
When TACA is applied to goalA we obtain an empty list of subgoals
and a proof which when applied to that list applies, in turn, the
proof parts of USEASSUMPTAC, SIMPTAC, CONDCASESTAC, and so on, and

finally, of INDUCTAC (thFl;thF], to produce thA, corresponding to

Theorem 2.1:
f—-Vx z. F1 x z = h(z,F x)

with five hypotheses, corresponding to the five original

assumptions.
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The proof tree on p. 47 is completed by adjoining to the

remaining subgoal the following tree:

USEASSUMPTAC

By adding thA to the simpset of the goal

Wx. Flx e=F x
BASICSS + SSA

. i

and applying SIMPTAC, we achieve as a corollary the theorem we
actually set out to prove ( ¥x. F1 x e = F x).

Although not especially interesting in itself, this example
illustrates the way in which an informal strategy (which is, in
fact, quite general) is mirrored in a tactic and implemented as an
ML procedure. The example also suggests the way in which formal
proofs (once the main insight is had) can be generated in LCF with a
minimum of guidance on behalf of the user.

We go on to consider two more schema problems and proofs, both

of which require rather more sophisticated tactics.

The List Stack Problem

The Problem
K

We begin, this time, with a recursive function F which has
parallel recursive calls:

Fx=Pzx=fx | h(F(gl x),F(g2 x))
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where h is a binary, associative function with left identity e,and
is strict in both arguments. We introduce a ‘stack’ (list) s, and
an accumulator z, to write an iterative function Fl:

Fl x z s = NULL s = z |

P x= F1(HD s) (h(z,f x))(TL s) |
Fl(gt x) z(CONS (g2 x)s)

where NULL, HD, TL and CONS are the usual list operators, (and NIL
L,5
is the empty list). ’
As before, we define F and Fl to be the least fixed points of

functionals FUNF and FUNFl respectively:

FUNF = AF  x. Px=f x | h(F' (gl x),F (g2 x))
FUNFl1 = AFl” x z s. NULL s = z |
Px F1°(4D s) (h(z,f x))(TL s) |
F1°(gl x)z(CONS(g2 x)s)

We prove :
Theorem 2.2

Vx. FL x e [NIL] = F x
Again, we are required to prove something more general. To motivate
the theorem we prove, consider the computation of Fl x z s, for some
x, z and s, where s = [sl;...;sn]l. We would like to compute (F x)
and to combine the result, via h, with the accumulated result z, and

then combine that with (F sl), and so on. That is,

Fl x z [sl;...3sn] = h(...h(h(z,F x),F sl1) ...,F sn)

The expression on the right hand side is generated by a function Exp

(for Expand) with functional arguments F and g:
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Exp Fh x zs=NULL s=>z | Exp F h (HD s) (h(z,F x))(TL s)

As Exp is recursive, we define it as the 1least fixed point of a

functional FUNExp (whose definition is obvious),

We prove that Fl x z s Exp F h x z s, for all x, z and s, and

Theorem 2.2 follows easily.

To prove that Fl x z s Exp Fh x zs, we introduce another

function which 1s similar to Exp but does not have functional

‘

arguments:
Gx zs =NULL s= z | G(HD s) (h(z, F x))(TL s)
We let G = FIX FUNG, where
FUNG = AG’ x zs. NULL s= z | G"(HD s)(h(z,F x))(TL s)

and we prove

Theorem 2

e

.3
G =Exp Fh

Theorem 2.5

G CFIl

We first summarise the proofs T

Plan for Proof of Theorem 2.3
By parallel induction on G and Exp, and case analysis on
whether s is empty.
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Plan for Proof of Theorem 2.4
By induction on F1l, case analysis on whether s 1is empty, and
unfolding the definitions of Exp and F.

Plan for Proof of Theorem 2.5
By showing that FUNG F1 = Fl. The proof is by unfolding the
definition of F1l, then induction on F. The basis case requires
Lemma 2.6, below. Both the basis and step are by case analysis
on whether s is empty, and the step 1is by further cases
analysis on whether P holds of x, and by successive uses of the
induction hypothesis.

Lemma 2.6

¥x. F1 x 1. s = _L

Plan for Proof of Lemma 2.6

By induction on Fl, case analysis on whether s 1is empty, and
further cases on whether P holds of x.

The rule to which we appeal in the plan for proving Theorem 2.5 is

proved by induction (which we do later). We examine the proof of
Theorem 2.5 in some detail in order to wunderstand the tactics
required to generate the proofs mechanically. The proof is
representative of the others.

Proof of Theorem 2.7
It is sufficient to show that FUNG F1 £ Fl1 (see below), i.e.

W¥x zs. (NULL s= z | F1(HD s) (h(z,F x))(TL 8)) & Flx z s
Induction is done on F.

Basis
(NULL s = z | F1(HD 8) (h(z,+x))(TL 8) & Fl x z s

Step

Assmgg ;
¥x z s. NULL s = z | F1(HD s)(h(z,F’ x))(TL 8) & Fl x z s
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Show
NULL s = z | FL(HD s) (h(z,(P x = f x |
h(F (gl x),F (g2 x)))))(TL s) &

Fl x z s

We unfold the occurrence of Fl on the right hand sides (i.e.

the second occurrence) according to the definition; for both
the basis and step, the right hand side is

NULL s =5z | P x = F1(HD s) (h(z,f x))(TL s) |
Fl(gl x)z(CONS(g2 x)s)

We then do case analysis on whether s is

2,6, the basis is easy. If s 1is empty, the step is also

immediate. (Here and elsewhere, the undefined case is obvious,
and we omit it.)

empty. Using Lemma

Case NULL s = FF

—_— et

We do further case analysis on P x, If P holds of x, the

step
is obvious.

Case P x = FF

We must show

F1(HD s) (h(z,h(F (gl x),F (g2 x))))(TL s) &
Fl(gl x)z(CONS(g2 x)s)

By hypothesis, with (gl x) for x, z for z,

and (CONS(g2 x)s)
for s, we know that

NULL(CONS(g2 x)s) = z | F1(HD(CONS(g2 x)s))
(h(z,F (gl x)))

(TL(CONS(g2 x)s)) &
Fl(gl x)z(CONS(g2 x)s)

that is,

Fl(g2 x)(h(z,F (gl x))) © Fl(gl x) z(CONS(g2 x)s)

Also, by hypothesis, with (g2 x) for x, h(z,F’(gl x))

for =z,
and s for s, we know

NULL s = h(z,F’ (gl x)) | FL(HD s)

(h(h(z,F (gl x)),F (g2 x))) (TL s) =
F1(g2 x)(h(z,F (gl x)))s

which, since s is assumed to be non-empty, implies that

F1(HD s) (h(h(z,F’ (gl x)),F' (g2 x)))(TL s) &=
F1(g2 x)(h(z,F (gl x))) s

and the desired result follows by the associativity of h, and
by transitivity. To complete the proof, we verify the rule
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that we used:
G =FIXFUNG & FUNG F1E£ Fl =2 G £ Fl

We assume the antecedent, and do induction on G. The basis 1is
easy. We assume G C Fl. Applying FUNG to both sides, we have

FUNG G° & FUNG F1
and using transitivity with the assumption:
FUNG G° & F1

Thus FIX FUNG £ Fl, that is, G & Fl. Q.E.D.

The Formalisation

To perform the proof of Theorem 2.2 in LCF, we work in a theory
of lists (of arbitrary type) in which a unary type operator (* list)
is available, and various new constants, with the wusual meanings,

have been introduced:

HD: * list— *

TL: * list—» * list
CONS:* —* list-— * list
NIL: * list

NULL:* list— tr

LIST:*—* list

For purposes of presentation it does not matter how 1lists are
axiomatised, as long as the facts below are axioms or proved
theorems. (For more details on possible 1list theories, see the

Appendix, or [15], especially Al.) We take CONS to be non-strict.
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- ¥x s. NULL(CONS x s) = FF

|- NULL NIL = TT

]
»

- Vx s. HD(CONS x s)
- V¥x s. TL(CONS x s) = s
- V¥x. LIST x = CONS x NIL
M Vs. HD(LIST s) = s

l——Vs. TL(LIST s) = NIL

We introduce four assumptions defining the functions F, Fl, Exp and

F= FIX(XF" x. Px=f x | h(F' (gl x),F' (g2 x)))

and similarly for thFl, thExp and thG, and four assumptions about h

and e :

Vx. h(e,x) = x
F¥x. n(x,1)= L
F—Vx. h(L ,x)= L

- ¥%a b c. n(h(a,b),c) = h(a,h(b,c))

All of these theorems are put into a simpset (along with the basic
simplification rules), which we call SSL (for simpset for List
Stack) .

Our main goal is to prove the theorem corresponding to Theorem
2.2, , which we call thLO. We use the new constants LIST and NIL to

construct the list containing exactly one element.
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thLQ
¥x. Fl x e (LIST NIL)

0

F x
To prove thLO, we specify a goal, goalLQ:

goalLQ

¥x. F1 x e (LIST NIL) = F x |
thL4 + thL5 + SSL

where thL4 is the theorem which achieves goall4:

goalL4

Fl & ExpFh
Lemmal.2 4+ SSL

.

and thL5 is the theorem (needed for proving our main goal from thL4)

which achieves goallL5:

goalL>

Exp Fh x e (LIST NIL) = F x|
SSL

and Lemmal2 is the theorem (corresponding to Lemma 2.6) which

et

achieves goallemL2:

goallemL2
¥Yx, Fl x L s = L
SSL

thL5 is easy to prove; we concentrate, in the following on proving

goallL4. To achieve goalL4, we must prove thLl, thL2 and thL3, which

are, respectively, the theorems which achieve goallLl, goalL2 and

goalL3 (corresponding to Theorem 2.3, Theorem 2.4 and Theorem 2.5):
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goalLl
G
_SSL

Exp F h

goall2
FISG
SSL

goalL3
GEFl
LemmaL?2 + SSL

The List Stack Proof in LCF

With the goals thus set out, we are now able to discuss the
generation of the proof in LCF. As mentioned earlier, the main aim
of this work is not to do automatic theorem proving; we are not
interested in writing tactics, say, to generalise the main goal

(goalLQ) to goalL5, or to inspect goallL3 and decide that it 1is

sufficient and convenient to prove a goal with the formula
FUNG F1 £ Fl, instead. Our ajim is to design tactics which mirror
the informal proof once these insights have been found. We begin,
though, by applying to goalL4 a tactic which ‘discovers® goalll,
goallL2 and goalL3, and combines them for us. The tactic is
motivated by observing the relation between G and Exp. The
equivalence of G to Exp F h is an instance of the ‘By-law', so

called because of its combinatory form:

BY=BYS
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where Y = FIX, B = Ax y z. x(y(z)), and S = Axyz. xz (y 2).

For our purposes, the By-law can be stated as:

AFl...Fn. FIX( ®Fl...Fn) =
FIX(XE F1°...Fn". §F1°...Fn” (E F1"...Fn"))

8
Intuitively , the fixed point can be taken inside our outside of

the abstraction. 1In the present case We take (i to be
AF’  h" G x zs. NULL s=z | G’ (HD s)(h’ (z,F° x))(TL s)

and n to be 2, Fl to be F, and F2 to be h. Then the By-law tells us

that

FIX(AG’ x z s. NULL s= z | G"(HD s) (h(z,F x))(TL s)) =

(FIX(AExp” F* h’ x z s. NULL s = z |
Exp” F° h” (HD s) (h” (z,F” x))(TL s))) F h

that is, by definition, G= Exp F h.

We write an ML procedure called BYLAW 9 to express the By-law

as a rule of inference scheme:

BYLAW {Fl;...3Fn]

-6 = FIX(J F1...Fn)

|—6 = FIX(XE’ FL’...Fn’ .QF1’...Fa’ (E F1°...Fn")) Fl...Fn

BYLAW takes a list of the functional arguments to be made explicit
in the function definition, coins a new variable E° of appropriate
type, and returns the new function definition. The proof is by

induction on x and y in the formula

x = y Fl,,.Fn
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with the functionals ¢ Fl...Fn and
AE Fl’...Fn’. Fl°..Fn" (E F1°...Fn°) for x and y, respectivelég)

We arrange for BYLAW to do the induction for us. (Details of
the procedure are given in the Appendix.)

The tactic wanted for goallL4 (one which inverts BYLAW) is

denoted by
BYTAC (—E = FIX(AE’ F1°...Fn” QF1°...Fn’(E F1°...Fn")))
[F = E Fl...Fn
SS
A B
S F fF E G
ss” ss’
A A

BYTAC invents the function G without functional arguments, and
produces the two subgoals shown, where ss’ is ss with the definition

of G added, that is, with
¢ = rix@ ri...Fn)

added. The proof part of BYTAC expects two theorems achieving the

two subgoals, combines them to prove that G = F, then proves that

i

G E Fl...Fn by using BYLAW and the definition of E. It concludes
that F = E Fl...Fn, the theorem desired.

We note that a more basic BYTAC would return one subgoal,

namely
G = F
ss’
A

and would be composed, to have the effect of the BYTAC described,
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via THEN with a simple tactic called SYNTHTAC, inverting the

standard inference rule SYNTH.

SYNTHTAC
F= G
ss
A
FC G G C F
ss ss
A A

where

SYNTH

Al bt c u A2 - u ¢ ¢t
ALUA2 -t = u

In our proof, BYTAC does some of the top-level work for us by
*ipventing® the function G, inventing and achieving goalLl
internally, and inventing as subgoals goalL2 and goalL3.

We examine the proof of goallL3. We concentrate, in doing this,
on finding wuseful and gengral tactics for generating the proof,
which reflect the reasoning done in the informal proof. Our
methodology 1is to design tactics and to employ standard tactics for
the main proof steps, and to combine them using tacticals
(primarily, the sequencing tactical THEN) to form composite tactics
which solve the goals in a single application.

As indicated, we appeal to the following rule, which we shall

call MINFIX, to prove goalL3 11 :
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MINFIX

|I-FUNG F1 & Fl j—G = FIX FUNG

—G £ Fl1

The ML procedure which implements this rule performs induction, as

in the informal proof of the rule. The tactic which inverts the

rule, MINFIXTAC, is given by:

[l

MINFIXTAC (-G = FIX FUNG)
G & Fl

S8

A )

[FUNG F1 = Fl
SS !
(A

It generates a proof function which calls MINFIX.

We begin the tactical proof of goall3 by applying MINFIXTAC to

obtain a subgoal whose formula is (after simplification)

Ax zs, (NULL s =z | FL(HD s)(h(z,F x))(TL s8)) & Fl

We then require a tactic which applies both sides of an
inequivalence (or equivalence) to an arbitrary variable of the
correct type, and generalises to that wvariable. As it uses

extensionality (for which the standard PPLAMBDA inference rule is

EXT), we call the tactic EXTTAC:
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EXTTAC

Clearly, F must have a functional type, * — %%  gsay, relative to

which x has the type *, The proof part of EXTTAC uses EXT:

EXT

A F—- ¥x.ux E vx

A F_ uc v

We may also wish to do similar reasoning about a formula whose goal
is quantified already, so we include as a special case of EXTTAC the

following:

EXTTAC

¥Vx. Fx £ Gx
ss
A

Vk y. Fxy S Gxy)
ss
LA

EXTTAC fails on goals whose formulae are not of one of the two forms

indicated.
Applying EXTTAC repeatedly to the current subgoal, we obtain a

subgoal whose formula is:

¥x z s. NULL s =z | F1(HD s) (h(z,F x))(TL 8) € Fl xz s



We then apply INDUCTAC (thF] THEN SIMPTAC THEN (REPEAT GENTAC).

This yields a basis subgoal and a step subgoal, where the latter is

((NULL s = z | F1(HD s)(h(z,(P x= £ x | ]

h(F" (gl x),F (g2 x))))(TL s))
CFl x2zs

SSL
Yx zs. (NUOLL s= z | F1(HD s) (h(z,F’ x))(TL s))
E% Fl x z s

with the induction hypothesis added to the set of assumptions.

Next, for both subgoals, we wish to unfold the occurrence of Fl
on the right hand side of the formula according to its definition.
We write a tactic in ML to accomplish this reasoning, called

UNFOLDTAC:

UNFOLDTAC (}F = FIX FUNF)

w(F/tl
ss

A

(w[ (FUNF F) /t]
SS
A

The proof part uses the standard inference rule FIX:

FIX

A |— t =FIX FON

A |- t= FUNt

It is also useful to write UNFOLDOCCSTAC:int list —> thm -— thm, which
takes a 1list of occurrence numbers as a parameter and substitutes

only for the corresponding occurrences.
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After applying UNFOLDTAC thFl and simplifying, the basis and

step subgoals are, respectively:

((NULL s > z | L )< (NULL s >z | P x =
F1(HD s) (h(z,f x))(TL s) |
Fl(gl x)z(CONS(g2 x)s))

SSL

NULL s=>z | F1(HD s)(h(z,(P x=> f x |
(h(F’ (gl %), F'(g2 x)))))(TL 8)
NULL s=>2z | P x = F1(HD s)(h(z,f x))(TL s) |
F1(Gl x) z(CONS (g2 x)s)

SSL
¥x z s(NULL s = z | FI1(HD s)(h(z,F* x))(TL s) & Fl x z s |

We now wish to do case analysis on whether s is empty, so we apply
the standard tactic CONDCASESTAC (which finds the first boolean-
valued term, i.e. NULL s). The three subgoals derived from the

basis are solved directly by simplification; their formulae are

z £ z
L £ L
1 © P x=yFL(HD s)(h(z,f x))(TL s) |
Fl(gl x)z(CONS (g2 x)s)
The true and undefined cases, for the step, are also solved by

simplification. The remaining subgoal is

[F1(HD s)(h(z, P x £ x | h(F’(gl x),F' (g2 x)))) (TL s) =
P x =F1(HD s)(h(z,f x))(TL s) | Fl(gl x)z(CONS(g2 x)s)
(NULL s = FF) + SSL

NULL s = FF
¥x z s. (NULL s =z | F1(HD s)(h(z,F’ x))(TL s)) = Fl x z s

We apply CONDCASESTAC again (to do cases analysis on whether P x 1is
true) and simplify; the true and undefined cases are immediately

solved, and the simplification based on the associativity of h is
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used to produce the one remaining subgoal:

[F1(HD s) (h(h(z,F" (gl x),F’(g2 x))))(IL s) o

Fl(gl x)z(CONS(g2 x)s)

(NULL s = FF) + (P x = FF) + SSL

NULL s = FF

P x = FF

¥x z s. (NULL s = z | F1(HD s) (h(z,F’ x))(TL s)) £ Fl x z s

We would like, at this point, to use the induction hypothesis,
by matching the right hand side of its conclusion to the right hand
side of the formula of the current subgoal, letting s Dbe
(CONS(g2 x)s), =z be 2z, and x be (gl x). That is, the assumption
implies that

NULL(CONS(g2 x)s) =» z | F1(HD(CONS(g2 x) s))

(h(z,F (gl %))

(TL(CONS(g2 x)s)) &
Fl(gl x)z(CONS(g2 x)s)

which, after simplifications based on the facts of list theory, is
Fl(g2 x)(h(z,F"(gl x)) s = Fl(gl x)z(CONS(g2 x))s
If we could now prove a subgoal with the formula

FL(HD s) (h(h(z,F (gl x), F' (g2 x))))(TL s) &

Fl(g2 x) (h(z F'(gl x)))s
we would be finished, by transitivity. This, however, 1is another
instance of matching the right hand side of the conclusion of the
induction hypothesis to the right hand side of the formula to be
proved, letting s be s, x be (g2 x) and z be (h(x,F" (gl x))), and

simplifying.
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To complete the generation of the proof of goalL3 we write a
tactic, to be applied twice in succession, in this case, which uses
an assumption exactly as we have just done informally. It is more
complicated than USEASSUMPTAC, since the formula of the goal is not
necessarily an instance of one of the assumptions. Here, we
generate an intermediate subgoal to be combined later with the
assumption, using transitivity. USEASSUMPRHSTAC (for matching to

the right hand side of an assumption) captures the reasoning above:

USEASSUMPRHSTAC

tl” € t3°
SS

LVxl...xn. t2C t3

(t1°c e2”
SS

VYxl...xn. t2 & t3
L oo y

where t2° is t2 with the substitutions for xl,...,xn determined by
matching t3 to t3° (that is, instantiating for the variables in t3).
If no formula in the list of assumptions matches, the tactic fails.
The proof function uses the standard rule TRANS.

We occasionally match assumptions to the left hand side of

formulae, so we write the dual tactic USEASSUMPLHSTAC:
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USEASSUMPLHSTAC

-
tl’ € t3°
SS

¥xl...Xn. tl £ t2

lLe*"*

t2° € t3°
Ss

Yxl...xn. tl & t2
L.co P,

where t2° is t2 modulo the substitutions for xl,...,xn determined by

matching tl to tl”. This pair of tactics does not address the

general 1issue of reasoning about inequivalences, but it does

faithfully reflect the reasoning used in this proof, a very common
chain of reasoning in proofs of inequivalences by induction.

We observe that if exactly one application of USEASSUMPRHSTAC
or USEASSUMPLHSTAC solves a goal, then (i) either tactic will

suffice, and (ii) either tactic returns the trivially easy subgoal

with formula t2° £ t2°; that is, the assumption a priori achieves

the goal. 1In the latter case, USEASSUMPTAC is an adequate and more

direct way of solving the goal (more direct because it does not

involve a subsequent call of SIMPTAC).

The composite tactic, TACL3, which solves goallL3 is now

complete:

TACL3

(MINFIXTAC thG)+
EXTTAC+

(INDUCTAC [thF])+
GENTAC* _
(UNFOLDOCCSTAC 2 thFl)+
(CONDCASESTAC+) *
(USEASSUMPRHSTAC+) *
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TACL3 applied to goalL3 yields an empty list of subgoals and a proof
which when applied to the empty 1list of theorems returns thL3.
Although in explaining TACL3 we have applied the component tactics
one by one, the composite tactic TACL3 solves the goal in a single
application, and the proof function produces the theorem in one
application. The work of doing the proof is in formalising the
problem and jin designing and implementing the derived tactics. One
would hope that the tactics developed for this proof are useful in
other, simjilar proofs. This is shown to be so in the next section,
and in later chapters. We examine another recursion removal
problem, and go on to generaliseﬁthe tactics developed so far.

We do not describe the development of the compound tactics
which solve goallL2 and goallemL2, but simply state them below. The

correspondence to the informal proofs is obvious.

TACL2, to solve goall2

EXTTAC+

(INDUCTAC [thF1])+

GENTAC*

(UNFOLDTAC thG)+

(CONDCASESTACH) *

(UNFOLDTAC thF)+ g
USEASSUMPLHSTAC+

((UNFOLDOCCSTAC 1 thG)+)*

TAClemL2, to solve goallemL2
(INDUCTAC [thFl])+
GENTAC*
(CONDCASESTAC+) *
USEASSUMPTAC

With Lemmal2 added to the simpset of goallL4, the following tactic

solves goallL4 (we extend our informal notation to allow branching
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into columns to abbreviate a use of the tactical THENL):

BYTAC+

TACL2 TACL3

so that TACL2 and TACL3 are applied, respectively, to the ¢two
subgoals (goallL2 and goalL3) produced by the application of BYTAC to

goall4, goall5 is solved by

((UNFOLDTAC thExp)+)*

and the main goal, goallLQ, is solved by SIMPTAC.

TO
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The Counter Problem

The Problem
The third schema problem, in which recursion is implemented by
use of an integer counter, shares many of the same patterns of

inference with the List Stack proof, and therefore, its machine

proof is achieved by similar tactics. We recount the problem and

solution more briefly than before.

The function F has a nested recursive call:

Fx=Px=f x| F(h(F(g x)))

where h and P are assumed strict. The recursion is implemented by

using a counter n:

Flxn=Px=>(n=0=>f x| F1(h(f x))(n~-1)) | Fl(g x)(n+l)

12,13
We show

Theorem 2.7

———

F1lx0=Fx

Again, F and Fl are defined as the least fixed points of functionals
FUNF and FUNFl in the obvious way. The more general relation one

has to prove is

Flxn = F((hoPF)%x)

that is, Fl on x with counter n is equal to the result of applying

(h o F) to x, n times. We define a function Expo to do the

exponentiation suggested by the above notation:

Expo Fh x n= (n=0)=> F x | Expo F h (h(F x))(n-1)
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where Expo is formally defined as the least fixed point of a
functional FUNExpo, again in the obvious way. The relation to be
proved is

Theorem 2.8
Vx n. F1 xn = Expo Fhxn

Expo is analogous to Exp in the List Stack Problem. As before, we

introduce a new function (H) to ‘freeze' the functional arguments:
Hxn= (n=0)= F x | H(h(F x))(n~1)
where H is defined as FIX FUNH. Also as before, we prove

Theorem 2.10
Fle H

Theorem 2.11
Hc Fl

A

By application of the By-law, we prove

Theorem 2.9
X

H =

po F h

and Theorem 2.8 follows.
We summarise the proofs first.

Plan for Proof of Theorem 2.10
By induction on Fl. For both the basis and the step, we do
case analysis on P x, and further cases, in the step, on n=0.
Lemma 2.13 (below) is needed.

Plan for Proof of Theorem 2.1l
By proving that FUNH F1 = Fl. Then by either

Method (i)
By induction on F, then cases on n=0, followed by cases on
P x. Lemma 2.12 and Lemma 2.13 (below) are required.
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Method (if)
By cases on n=0, appealing to Lemma 2.14 (below) in which
most of the work is done.

Lemma 2.12
¥Yn.Fl L n = L

Lemma 2.13
Vx.Fl x L = _|

Lemma 2.1l4
Vxn,. Fx & Fl x0 & F1(h(F x))n £ Fl x (ntl)

Plan for Proof of Lemma 2.12
By unfolding the definition of Fl, and using the strictness of
P‘

Plan for Proof of Lemma 2.13
By induction on Fl and cases on P x.

Plan for Proof of Lemma 2.l4
By induction on both occurrences of F, and cases on P x. The
true case is by further cases on n=Q. The false case is by two
uses of the induction hypothesis (one use of each conjunct) for
the first part, and two uses (both of the second conjunct) for
the second part. Lemma 2.12 and Lemma 2.13 are needed.

The proof for Lemma 2.14, Theorem 2.10 and Theorem 2.11 Method (i)

are very similar to the proofs for Lemma 2.6, Theorem 2.4 and

Theorem 2.5 from the List Stack problem. We concentrate, therefore,

on the proof of Theorem 2.l11, Method (ii), and the accompanying

Lemma 2.14.

Proof of Lemma 2.14
We prove both formulae together, by induction on F,
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Basis
Easy, given the strictness of h, and Lemma 2.12.
Step

Assugg
¥x. F x =z Fl xo & F1(h(F’ x)) n < Fl x (n+l)

Show
(Px=fx | F(h(F'(gx)))) & FLxO0 &
FI(h(P x = £ x | F'(h(F'(g x)))))n <= Fl x (n+l)

We consider cases on whether P x is true.

Case P x = TT

The first p;;t is easy, by unfolding Fl.

Second Part
We must show

FI(h(f x))n = Fl x (n+l)
RHS = FL(h(f x))(n+l) by unfolding Fl.
Case P x = FF

First Part
We must show

F'(h(F'(g x))) & Flx0

RHS = Fl(g x) (0+1) by unfolding Fl
LHS = F1(h(F’(g x)))0 by hypothesis, first part

in

Fl(g x) (0+1) by hypothesis, second part

Second Part
We must show

FL(h(F' (h(F (g X)))))n C F] x (n+l)

= F1(g %) (n+l+l)
by unfolding Fl

C F1(h(F" (g x))) (n+l)
by hypothesis, second part

£ F1(h(F" (h(F’(g x)))))n

by hypothesis, second part
Q.E.D.
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Once this lemma has been proved, the proof of Theorem 2.10 is

not difficult.

Proof g£ Theorem 2.10
It is sufficient to show

({(n=0)= F x | FL(h(F x))(n~1)) & Fl xn

We consider cases on whether n=0, and use the ¢two .parts of
Lemma 2.13 in the two cases, respectively.

The Formalisation

We work in a theory of integers. The theory has a new type

(nat, for natural number) and new constants, including

ZERO:nat
SUCC:nat — nat
PRED:nat — nat

ISZERO:nat— Ltr

We assume that the following axioms and/or theorems are available:

- succ L = L

I 1ISzERO L

]

1

- Yn.ISZERO n = TT IMP ISZERO(SUCC n) = FF
b~ ¥n.ISZEROn = FF IMP ISZERO (SUCC n) =TFF -
- VYn.ISZERO n =TT IMP PRED(SUCC n) = n

I~ Vn.ISZERO n = FF IMP PRED(SUCC n) = n

M~ Yn.ISZERO n=L1 IMP n = L

I~ ISZERO ZERO = TT
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In addition, we introduce assumptions for the strictness of P

and h:

M

—h L

—P L

]

L
and to define the functions F, Fl, H and Expo:

LF= FIX(AF x. Px>fx| F(h(F (g 0)))

thFl
f‘ F1 = FIX(AFl  xn. Px= (ISZEROn = f x |

F1°(h(f x))(PRED n)) |
F1’ (g x) (SUCC n))

and similarly for thExpo and thH. We add all of the facts, except

ISZERO n= L IMP n= L

which would cause an infinite cycle of simplifications, to BASICSS,
to form a simpset called SSC (for simpset for Counter). (Any rule
of the form w IMP t1 = t2 will “loop' as a simplification rule if tl
loccurs in w, because of the way simplification works in LCF. The
reason is that the simplifier can replace occurrences of tl by t2 in
a formula being simplified if it can first prove w by
simplification. But since w contains tl, the simplifier will try to
replace that tl by t2 by first showing w, and so on ad infinitum.)
At any rate, we can now define the goals for this problem.

\
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The main goal is to prove thCQ, corresponding to Theorem2.7:

£hCO
I Vx. F1 x ZERO = F x

where thCQ achieves the main goal, goalCQ:

goalCQ
V¥x. F1 x ZERO = F x
thC4 + SsC
]

This requires proving a theorem, thC4, achieving the goal goalC4:

goalCé
Fl = Expo F h
§sC

As before, application of BYTAC to goalC4 generates the subgoals

goalC2 and goalC3:

goalC2 .
Flc H

LemmaC2 + SSC

J

goalC3
HEFIL !
LemmaCl + LemmaC2 + SSC
[{Lemma

The theorems which achieve these two goals, thC2 and thC3

respectively, correspond to Theorem 2.10 and Theorem 2.11. The two

subgoals need the lemmas indicated in their simpsets. LemmaCl,

LemmaC2 and LemmaC3, corresponding, respectively, to Theorem 2.12,

Theorem 2.13 and Theorem 2.l4, achieve the goals goallemCl,

goallemC2 and goallem(C3:
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goallemCl

Yn. F1 L o = L
SSC
o __J ~
goallemC2
¥x. F1 x L = 1]
SSC
goallemC3
Vxn. Fx & Fl x ZERO &
F1(h(F x))n & Fl x (SUCC n)
LemmaCl + LemmaC2 + SSC

With minor modifications (changes of parameter, etc.), the
tactics TAClemL2, TACL2 and TACL3, from the List Stack proof, solve

goals goallemC2, goalC2 and goalC3, respectively (the latter by

Method (i) and without LemmaC3 as an assumption). We examine the

proofs of goallemC3 and goalC3, by Method (ii) only, in LCF.

The Counter Proof in LCF

We commence the tactical proof of LemmaC3 by applying

(INDUCTAC [thF])+
GENTAC*
(UNFOLDOCCSTAC [1;3] thFl)+

to mirror the informal proof. (Since in both subsequent cases we
unfold the right hand side’s occurrence of Fl, we unfold it here at
the outset.) We then apply CONDCASESTAC to do case analysis on P x.
In the true case, the first part of the conjunctive subgoal is

solved directly by simplification, and we are left with the subgoal
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[F1(h(f x))n = FLl(h(f x))(PRED(SUCC n))

(P x = TT) + LemmaC]l + LemmaC2 + SSC

P x =TT

yx n. F* x = Fl1 x ZERO & Fl(h(F’ x))n < Fl x (SUCC n)

This is straightforward if (ISZERO n) is defined, for we have rules
to simplify (PRED(SUCC n)) to n to be applied conditionally on
whether (ISZERO n) is true or false. If (LSZERO n) is undefined, we
know that n is undefined, and therefore, by LemmaC2, the whole left
hand side of the formula is undefined. The rest can be managed by
simplification.

CONDCASESTAC does not suffice, as the term (ISZERO n) does not
actually occur in the formula to be proved. CASESTAC (ISZERO n)

does not quite do either, because we cannot use the theorem
Vn.ISZERO n=1 IMP n = L

as a simplification rule, yet we do have to make this simplification
in the case that ISZERO n = 1., Our solution is to write a tactic
called NATCASESTAC, similar to CASESTAC (ISZERO n), except that it
finds 'a term n of type nat, does case analysis on (ISZERO n), and,
for the subgoal corresponding to the assumption that ISZEROn = -,
makes a direct substitution of 1- for n. This avoids having to use
the ‘dangerous’ theorem as a simprule. The proof part of the tactic
justifies this substitution by the theorem in question. Used in
place of CONDCASESTAC+, NATCASESTAC+ has the same effect if (ISZERO
n) 1is the boolean-valued term found by CONDCASESTAC and n is the
term found by NATCASESTAC. (CASESTAC (ISZERO n))+ has the same
effect as NATCASESTAC+ if the term (ISZERO n) actually occurs in the
1k

formula, and n is the term found by NATCASESTAC.
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Obviously, NATCASESTAC is meaningful only in the theory of

numbers, or a descendent of such a theory, as it refers to the type

nat and the constant ISZERO. It is depicted by

NATCASESTAC

(w, ss, A)

Y

[wl.L /n]

(ISZERO n= 1) + ss
(ISZERO n=..)

A

—

W
(ISZERO n = TT) + ss
(ISZERO n TT)

A _

mow

K

(ISZERO n
(ISZERO n
LA

FF) + ss
FF)

[

After applying NATCASESTAC to the goal and simplifying, we are

left with the subgoal for the false case of P x, which has the

formula

F’(h(F’(g x))) £ Fl(g x)(SucC 0) &
F1(h(F (h(F'(g x)))))n & Fl(g x) (SUCC(SUCC n))

We employ a tactic to divide conjunctive sugoals into two subgoals:

CONJTAC

wl & w2

SS

wl w2

Ss ss

A A,

CONJTAC inverts the basic inference rule CONJ:
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CONJ

Al F— wl A2 f~ w2

Al u A2 F— wl & w2

Next, for each of the subgoals returned by the application of
CONJTAC, we use the induction hypothesis, each conjunct. We write a

tactic which enables this by noting any assumptions in the

assumption list of a goal which are of the form

Vxl...xn. wl & w2

and adding to the assumptions list two further assumptions:

Vxl...xn. wl

Yxl...xn., w2

We call this tactic CONJASSUMPTAC. Clearly, a theorem, th,

achieving . the subgoal with the supplemented assumption list also

achieves the original goal, as the extra hypotheses of th (if it has
them) have only to be specialised, conjoined, and generalisedlagain.
The proof function of CONJASSUMPTAC does this, 15

To complete the proof, we apply USEASSUMPRHSTAC repeatedly.
The separate conjuncts of the induction hypothesis will thus be used
as in the informal proof, and goallemC3 is solved.

The composite tactic, TAClemC3, which solves goallemC3 in one

stroke is:
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TAClemC3

(INDUCTAC [thF])+

o

GENTAC*
CONDCASESTAC+
(UNFOLDOCCSTAC [1;3] thFL)+
r — 3
NATCASESTAC+ CONJTAC
CONJASSUMPTAC
(USEASSUMPRHSTACH+) *

Once LemmaC3 has been proved and placed in the assumption 1list
of goalC3, the proof of goalC3 is quite short. We process the
assumption list so that both conjuncts of the conclusion of LemmaC3
(generalised) appear, by applying CONJASSUMPTAC. We then apply

CONDCASESTAC (or NATCASESTAC, which is equivalent in this instance)

and simplify. To solve goalC3, we have
TACC3
CONJASSUMPTAC

CONDCASESTAC+

Finally, the original goalCO, with thC4 in its simpset, is solved by

unfolding Fl and simplifying, i.e. by

(UNFOLDTAC thFl1)+
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Conclusions: Towards a General Schema Tactic

We speculate briefly, in this section, on some generalisations
based on the Accumulator, List Stack, and Counter proofs. We aim at
writing a uniform, general tactic to include as instances most of
the composite tactics discussed in this chapter. Although we have
not implemented the general tactic in ML, we sketch its design.

It would be possible, for example, to write a tactic called
INDUCTCHOOSETAC to take as a parameter a list of function
definitions, and choose, according to the list and to the formula of
a goal, the variables on which to induct. For proving an
equivalence of the form F =G, where the list includes
F.FEE FIX FUNF and F—G = FIX FUNG, F and G should be chosen. For an
inequivalence F & G, F should be chosen. After doing induction,
INDUCTCHOOSETAC would do simplification.

It would be equally simple to write a tactic to wuse an
assumption in the appropriate manner (USEASSUMPCHOOSETAC, say). As
long as the component tactics were written to fail where

inapplicable,
(USEASSUMPTAC ORELSE USEASSUMPLHSTAC ORELSE USEASSUMPRHSTAC)+

is a good definition for USEASSUMPCHOOSETAC. This could be refined
by including the heuristic that when neither USEASSUMLHSTAC nor
USEASSUMPRHSTAC fails, but neither, after simplification, solves the
goal, the preferred one is the one which does not produce a subgoal
whose formula includes the current induction variable on both of its
sides. For example, in the proof of thL2 (which we have not shown

in this presentation), at the point at which it is appropriate to
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use the induction hypothesis, the subgoal is

F1’(gl x)z(CONS(g2 x)s) E
G(HD s) (h(z,h(F(gl x),F(g2 x))))(TL s)

Vx zs. F1" xzs € Gx zs

s 00
—.

(Fl is the induction variable.) Application of USEASSUMPRHSTAC

produces a subgoal:

{F1°(gl x)z(CONS(g2 x)s) C )

{F1°(HD s) (h(z,(F(gl x),F(g2 x))))(TL s)

which does not advance the proof (whereas use of USEASSUMPLHSTAC
does) .

We can generalise and define an UNFOLDCHOOSETAC, which, like
INDUCTCHOOSETAC, would take a 1list of function definitions as a
parameter and select appropriate functions (and occurrences of the
functions) to unfold. After unfolding, again, it would simplify.
This tactic requires rather more thought than the others, as the
criteria for déciding whether and where to unfold are quite
heuristic. One does not, for example, wish to wunfold a £function
variable some of whose arguments are not present, such as F in the
expression Exp F h x z s. However, even for the 1instances of
unfolding in the proofs discussed in this chapter, we have found no
very simple set of heuristies which is adequate. Some of the
choice, though, can be avoided by carefully including theorems to be

used as simplifications. If we prove, for example,
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F—Exp Fhxz (CONS x* s°) = Exp Fh x* (h(z,F x)) s’

and use the theorem as a rewrite rule (in the proof of Theorem 2.4)

then only those occurrences of Exp which have (CONS ...) as their
fifth argument will be unfolded. Occurrences of this sort unfold to

become conditionals of the form
(NULL(CONS ...)) = ... | ...

for which we have further simplification rules. Similarly, if we
prove
FNULL s = FF IMP .
Exp Fh x zs = Exp Fh (HD s)(h(z,F x))(TL s)
we can use the theorem as a conditional simplification; the
simplification will only be made in case NULL s is false, as is
appropriate.

Again, in the proof of Theorem 2.5, we could prove, and include

as simprules

FNULL s =TT IMP Fl x zs = z

FNULL s = FF IMP F1 x z s = P x =>F1(HD s) (h(z,f x))(TL s) |
Fl(gl x)z(CONS(g2 x)s)

FNULL s=1 IMPFlxzs = 1

so that Fl, in the expression Fl x z s, is unfolded according to its
definition once case analysis has been done on the term (NULL s),
since the three new simprules then apply to the three cases.

However, in the expression
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F1(HD s) (h(z, (P x= £ x | h(F (gl x),F (82 x)))))(TL s)

(which also occurs in the proof) Fl is not unfolded -- as long as
case analysis is not done on (NULL(HD s)), which it is not. Again,
this is the desired effect.

In this fashion, we could arrange for many (in the proofs in
this chapter, all) of the choices about unfolding to be made in the
course of simplification. This methodology proves to be of great
use 1in Chapter 3. 1In any case, we assume for the moment that some
adequate UNFOLDCHOOSETAC can be designed (or combination of SIMPTAC
and carefully chosen simprules). We can then state a general

tactic, SCHEMATAC, of which TACA, TACL2, TAClemC3 and TACL3 are

instances:

SCHEMATAC ,
(EXTTAC*)+
INDUCTCHOOSETAC list
GENTAC*
(CHOOSECASESTAC* ORELSE UNFOLDCHOOSETAC* ORELSE
USEASSUMPCHOOSETAC*) *

where list 1is the 1list of all relevant function definitions,

typically, for some boolean-valued term B, of the form
-F = FIX(AF’ xl...xn. B> tl | t2)

After induction and stripping of variables, the general tactic tries
case analysis and unfolding of function variables until the
induction hypothesis is applicable. To generalise further, one
could add other tactics (e.g. CONJTAC) to the last line to cope

with other ‘shapes’ of formulae or other proof situations. (By
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adding CONJTAC, TAClemC3 would become an instance of SCHEMATAC.)

This hypothetical tactic naturally reflects our reasoning in the

informal proofs. In addition, it would appear to be useful in many

other proofs about recursively defined functions.

In conclusion, we have illustrated, in three case studies, the

generation of formal machine proofs by the design of tactics which

(i) represent informal proof plans, and (ii) abstract formal proofs

to provide high level proof outlines. We have speculated about a

general tactic for the proofs considered, and possibly for other

proofs about recursively defined functions.

We go on to consider more difficult problems for which many of

the tactics derived in this chépter prove of use.
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Notes for Chapter 2

l. Fl is, of course, recursively defined, but all recursive calls
of it are ‘outermost’. ‘Iterative-recursive' would perhaps be more
appropriate.

2, As an instance of this schema, we take x to have integer type, g
to be (An.n-l1), f to be (An.l), P to be a test-if-zero predicate
ISZERO, and h to be multiplication (TIMES) with identity 1. Then F
is the familiar factorial function, and Fl is

Fl x z = ISZERO x = z | Fl(n-1) (TIMES(z,n))

and it is true that F1 x 1 = F n. However, we leave the non-logical
constants uninterpreted here.

3. One could, alternatively, introduce an LCF theory in which P, h,
e, etc., were new constants and the assumptions discussed were
axioms. As this is not a very interesting theory we leave the
variables free, and content ourselves with assumptions. The choice
is immaterial to the proof.

4., Intuitively, Fl implements F by using depth-first search and a
stack. Viewing the computation of F as a binary tree, z denotes the
value of the left subtree computed so far. In the second call of
Fl, the ‘stacking®™ of the value (g2 x) corresponds to the second
recursive call of F, and the call of Fl with the argument (gl x)
corresponds to the first recursive call of F. 1In the first call of
Fl, on x, 2z and s, the first deferred element on the ‘stack' is
taken off, and (f x) is combined with the result accumulated so far,
i.e. =z

5. To give an instance of this schema, let 1 range over LISP-style
(i.e. non-flat) 1lists, gl be Car, g2 be Cdr, h be Append, P be a
function AtomOrNil, to test for atomic or empty 1lists, IsNull a
function to test for empty lists, and f be the function (Al.IsNull 1
=> Nil | List 1). (List is the usual list function.) Then F is a
flattening function for lists:

F 1l = AtomOrNil 1=> (IsNull 1=>Nil | List 1) |
Append(F(Car 1),F(Cdr 1))

and Fl, with accumulator z and stack s, is an iterative version:
Fl 1l zs = IsNull 1=z
AtomOrNil 1=> F1(HD s) (Append(z,(IsNull 1=
Nil | List 1)))(TL s) |
Fl(Car 1)z(CONS(Cdr 1)s)
and it is the case that F1 1 Nil [NIL] = F x.

6. Any one-element list would do; [NIL] is just convenient.
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¥x y. Flx e [y] =F x
would perhaps have been a better theorem to prove.

7. G is not, in fact, necessary. We could instead take a fixed
point with the functional arguments outside:

Exp Fh =Ax zs. NULL s =z | Exp F h (HD s) (h(z,F x))(TL s)

= FIX(AExpFh x z s. NULL s @ z |
ExpFh(HD s) (h(z,F x))(TL s))

where the function ExpFh is of appropriate type. If we let ExpFh =
FIX FUNExpFh, we can then show that FUNExpFh Fl1 & FIl by induction
on F. Introducing G to abbreviate ExpFh simply makes the proof look
neater, See later discussion of the By-law, p. 58-61,

8. To motivate this, we éall the left hand side and the right hand
side, respectively, of the formula on p. 59 < and R . Then

XFl...Fa = FIX(JFl...Fn)

= & F1...Fa (ZFl...Fn)
On the other side,

RFl...Fa = FIX(X\E F1°...Fo’ QF1l°...Fn"(E F1’...Fn’))Fl...Fn
which we call FIX o Fl...Fn. Then

FIXAFl...Fn (%FIX2) Fl...Fn

(XE F1°...Fa".§ F1°...Fa" (E FLl°...Fn")) (FIX&) Fl...Fn

® Fl...Fn ((FIX o) Fl...Fn)

® Fl...Fn (RFl...Fn)

so that < and R can be seen to satisfy the same equations.

9. The procedure which implements this rule proves the By-law at
each invocation, but we could instead have proved the theorem as a
fact in some LCF theory, just once, and saved it for later use. It
is convenient to have it avalable in procedural form, however, to
circumvent having to instantiate it when wusing it, and to avoid
having to supply a theorem as a parameter to BYTAC. We also choose
a procedural representation in several other places. Rules such as
INDUCT, of course, must be represented as rules and cannot be proved
as theorems. This point is discussed in the Conclusions.

10. That is,
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Basis
1l =1 Fl...Fn

Assume
x* =y Fl...Fn

Sh

ow
(dFl...Fn) x* =
(XE F1’...Fn".§Fl’...Fn" (E F1°...Fn”))y” Fl...Fn

That is, (® Fl...Fn)x” = QFL...Fn (y° Fl...Fn); but the right hand
side is § Fl...Fn x’ by hypothesis,

11. The same comment as (9.) applies to MINFIX.

12. Intuitively, F can be evaluated by working on the inner call of
F whenever P is false, and keeping count of the (F o h)’s waiting to
be applied. F1l simulates F by testing whether P holds, and if it
does, testing whether n=0, that is, whether there are any (F o h) s
pending. If so, Fl is called again, to simulate the outer call of
F, on (h(f x)) (where (h(f x)) corresponds to h and the inner call
of F), and the counter is decremented; if n is 0, (f x) is returned.
If P does not hold, Fl is called on (g x) (to simulate the inner
call of F) and the counter is incremented (corresponding to the
outer call of F).

13. There are not very many natural examples of this schema. A
related example, in that it has nested recursive calls, is
Ackermann’s function, A:

A(x,y) = ISZERO x = y+1 | ISZERO y => A(x~1,1) |
A(x-1,A(x,y-1))

The example is from Manna and Waldinger [22].

14, A related tactic could be written to use the ‘dangerous®
simplification rule DEF x=1 IMP x = I where DEF is the definedness
predicate which is L on .1 and TT otherwise. In the same manner,
it would make the substitution of 1L for x immediately, in the
undefined case.

15. It is possible to describe a whole class of tactics which
process goals simply by changing the assumption lists. Another
useful tactic might scan the assumption list of a goal for a formula
of the form

Vxl...xn. wl IMP w2

and another formula, wl’, matching wl with certain instantiations,
and add to the assumption list of the goal the formula w2’, where
w2’ is w2 with the instantiations used in matching wl’ to wl. This
class of tactics forms a sort of simplification facility at the

formula level.
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Chapter 3: The Russell Compiler

In the next two chapters, we study the 1informal and machine
generated proofs of correctness of compilers for two simple high
level languages. The wultimate aim is to verify a standard
implementation of a realistic programming language. As a step
toward this goal, we have partially factored the process of
compilation into stages, so that each stage concerns itself with the
implementation of one (or of several related) high level
construct(s) . The factorisation is intended to (i) make the proofs
easier and more modifiable, (ii) focus attention on difficulties
raised by particular featues, and (iii) be conceptually coherent, as
far as possible.

The transformation described in this chapter maps a high level
language whose features include while loops and conditionals to a
low level language whose (labelled) statements include go-to’s and
conditional jumps. The formulation is based closely on one given by
Russell [42]. 1In this chapter, we describe the problem, present an
informal proof, and give an account of the successful generation of
the proof in LCF. The presentation of the machine proof is somewhat
idealised, but we mention the idealisations where relevant.

The second transformation concerns the implementation of
procedure declarations and calls in a b;ock—structured high level
language. In Chapter 4 we describe the problem and the informal
proof, speculating on the generation of the proof in LCF.

In both cases, our approach has been to supply denotational
semantics of the languages in question, to represent the compiler as
a function from high level to low level programs, and to prove the
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preservation of the semantics under compilation. The following

diagram illustrates these relations:

high level
, programs

ompilen————&low level

programs
high level low level
semantics semantics

low level
meanings

N
high level
meanings j{——equivalence

In both cases, we have defined high and low level languages which

isolate the major difficulties raised by the compilation of the
relevant constructs, and have given semantics which are convenient
and natural for the proofs. For studying while 1loops and
conditionals, we use Russell’s pair of languages. The high level
language contains essentially only the two coanstructs of interest.
We follow Russell in giving a standard direct and a

continuation
semantics, repectively, for the two languages. For coping with
procedure declaration and call, we define a high 1level language
containing just declarations and calls, and in which all
declarations are of (parameterless) procedures; we give a low Llevel
language whose operational semantics reflect an activation stack
implementation.

The current studies differ from the schema studies described in
Chapter 2 in being ‘longitudinal®; here we relate two different
languages, rather than studying properties of one language. We
explicitly define the semantics of both. The machine proofs rely

more heavily than before on LCF’s theory-building facility for their

formulation and organisation. The ‘proof engineering® aspects of
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the generation of the proofs, particularly in the current chapter,
occupy rather more of our attention than in Chapter 2, as the proofs
are long and complex, and require careful planning and management.
We conclude, nonetheless, that the proofs in Chapter 3, and the
proofs outlined in Chapter 4, call for many of the tactics derived
in Chapter 2, and that the composite tactics used in Chapters 3 and

4 have much the same shape as the tactics we have already seen.

The Problem

The 'high level language given by Russell is shown below. We
let p, pl and p2 range over a domain HPROGRAM of high level
programs, I over a domain ID of identifiers, and exp over a domain

EXP of expressions.

p ::= assign(Il,exp) |
if exp then pl else p2 |
while exp pl |

pl;p2

A program can be an assigmment (this case is present just to provide
an atomic case), a conditional, a while loop, or a sequence of two

programs.

For the low level language, I and exp are as above, q ranges
over a domain LPROGRAM of 1low 1level programs, t over a domain

STATEMENT of statements, and L over a five-element domain of labels,

called LABEL.
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<Li:ti,...,Ln:tn, L>

£
]

t ::= assign(I,exp) |
ifnot(exp,L4) |
goto L |

q
L1 | L2 | L3 | L& | LS5

[u
[]

Low level programs are sequences of labelled statements followed by
a terminating 1label; statements can be if-not jumps, jumps to
labels, assignments as at the high level, or whole programs again.
(Thus there is block structuring of a sort in the low level
language; we do not allow jumps out of blocks. By this technique,
we can limit ourselves to the use of a finite number of labels and
so separate the problem of compiling while and conditional
statements from the problem of generating unique new label names.)

The compiling algorithm, C:HPROGRAM — LPROGRAM, 1is defined
for the various high level constructs by clauses. We use Quine
corners to map concrete to abstract syntax.

C'hssign(I,expf = L1l: assign(I,exp)
L2:

C'if exp then pl else p21 = L1l: ifnot(exp,L4)
L2: c(pl)

L3: goto L5

L4: C(p2)

L5:

C'while exp pl” = L1l: ifnot(exp,L4)
L2: C(pl)
L3: goto Ll
L4:

Cpl;p2” = L1: C(pl)
L2: C(p2)
L3:
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The five labels, therefore, have fixed functions, in the compiled
images of the four high level constructs 1.

The high level semantic function maps high level programs to
store transformations, where stores hold the current values of
identifiers. We let s range over a domain STORE = ID — VALUE,
where VALUE is an (unspecified) domain of values (OTHERVALUES) plus
the truth values -~ VALUE = OTHERVALUES + tr. We need a function,
eval, to evaluate expressions 1in stores to produce truth-valued

elements of VALUE; we introduce eval:(EXP x STORE) — tr.

The high level semantic function, hsem, has type

hsem :HPROGRAM — STORE — STORE

We use the usual notation for extending functions; f[x/yl jmeans

Ay'. y¥=y=>x | £ y'. We define hsem by clauses:

hsem [[assign(I,exp)]] s s[eval(exp,s) /1]

eval(exp,s)=> hsem H:Pll s |
hsem ﬂ_’pZ}] s

hsem le._f exp then pl else p2] s

hsem [[while exp plﬂ s = eval(exp,s)=y
(hsem ]while exp pl] )

(hsem [[pl_'ﬂ s) |

hsem [pl;p2] s = (hsen [[p2] )(hsem [pgﬂ s)

’
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We define hsem as the least fixed point of a functional HSEM, in the
obvious way.

For the 1low level semantics, we define a domain of
continuations and of label environments (mapping 1labels to

continuations). (For more on continuations, see [46] and [45].)

c € CONTINUATION = STORE —— STORE

e € LABELENV = LABEL — CONTINUATION

We define a low level semantic function, lsem, mapping 1low level
programs to label environments in which labels denote

continuations.
lsem: LPROGRAM-— LABELENV

Each label is associated, in the label environment returned by lsem,
with the continuation representing the meaning of the program from
that label to the end of the program. The terminating 1label is
associated with the identity continuation. We need another semantic
function, lsemst, to compute the meaning of individual statements in

a label environment with a continuation:

lsemst : STATEMENT —> LABELENV ——> CONTINUATION — CONTINUATION

lsemst is defined by the clauses:

lsemst [assign(;,expm ec = As. c(s[eval(exp,s)/I])
lsemst [igggg(exp,Lﬂ ec = As. eval(exp,s) >cs | eLs
lsemst [goto Lﬂ ec = el

lsemst ﬂq] ec = As, c(lsem ﬂq] L1l s)
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This is straightforward in all but the last case. If a statement is
a program, the 1label enviromment for the whole (outer) program is
disregarded, and the continuation provided is applied to the meaning
(found by applying 1lsem) of the program which constitutes the
statement. This isolates the inner labels as desired. We let q
abbreviate a 1low level program as shown below; then lsem assigns
meanings to whole low level programs by constructing label

environments as follows, where q = <Ll:tl, L2:t2,...,Ln:tn, L(n+l)>.

lsem [q]=
1 [1semst [t1] (1sem [q])(1lsem [q] L2) / L1]
[1semst {t2] (1sem [q])(1lsem [q] L3) / L2]

[1semst [tn] (1ser;1 fal)(1sem faJ L(n+1)) / Ln]
[(As.s) / L(n+1)]

The idea is that to each label Li in the program q is bound the
meaning (continuation) of the corresponding statement, taken in the
label environment of the whole program and with the continuation
attached to the next label, beginning with the completely undefined
label environment. Since lsem and lsemst are mutually recursive, we
use the device, justified by Bekic’s theorem 2 of passing along a
functional argument to lsemst. (We feel that this is neater than
taking a simultaneous fixed point, though that is perhaps the more
obvious solution.) Thus, to be correct, lsemst has the type
lsemst: STATEMENT — [ABELENV — CONTINUATION —%
(LPROGRAM —> LABELENV)—— CONTINUATION
and the functional argument, lsem”, say, is the one that is applied

to the subprogram in the case of a statement which is a program:
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lsemst ﬂq] e ¢ lsem” = As. c(lsem’ Hq] L1l s)

lsem passes itself as a functional argument in each of its calls of
lsemst, We define 1lsem as the least fixed point of a functional
LSEM, whose definition is obvious.

The statement which expresses the correctness of the compiler
is:
Theorem 3.1
———-ifa.jfgém [p] = lsem ﬁb(p)ﬂ L1
That is, the meaning of any high level program p is equivalent to
the meaning of the compiled version of p (the meaning is a label
environment) applied to L1 (Ll is necessarily the first label of any
compiled program). Intuitively, (lsem [C(piﬂ L1) is the meaning of
the first statement of the compiled program, in the label

environment for the whole program, with the continuation for the

rest of the program.

The Informal Proof

The proof of Theorem 3.1 which Russell gives, in fact, is

incorrect. He attempts to do computation induction on hsem and C,
proving the theorem as an equivalence, and unfolding the induction
variable for C in the process. The easiest proof we have found is
of a pair of inequivalences, by computation induction on the ¢two
semantic functions, in turn. The proof can also be done, although
it is slightly more complicated, by induction on the structure of

high level programs. Although structural induction is more natural,
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the proof by it requires an inner computation induction in the while
case. In the proof we have generated in LCF and described here, we
adhere to Russell’s original proof plan as far as possible, and use
computation induction. This point is discussed further in Note 3
and in the Conclusions.

The pair of theorems we prove are:

Theorem 3.la
¥p. hsem {p] © 1lsem [C(p)] L1

Theorem 3.1b
¥p. lsem [C(p)] L1 C hsem {p]

The proof of Theorem 3.la is by computation induction on hsem. That

of Theorem 3.lb 1is somewhat more complicated; we wish to do

induction on lsem, but we also wish to unfold lsem several times in
the course of evaluating the 1left hand side of the formula (to
reflect the fact that low level programs have several § tatements
for each high 1level construct). For example, consider the label
environment corresponding to the compiled image of rggilg_exp plﬂ,
that is, to the low level program

Ll: ifnot(exp,L4)

L2: C(pl)

L3: goto Ll
L4:

which we call q. The label enviromment constructed by lsem is:

1 [lsemst fifnot(exp,L4)] (lsem [qJ )(lsem {qJ L2) 1lsem / L1]
[lsemst [C(pl)] (lsem {q] ) (lsem [q] L3) lsem / L2]
[1semst [gotoJLl (1sem [q] )(lsem [q] L4) lsem / L3I
[(As.s) / L&)

To evaluate the application of this whole label environment ¢to Ll

99



(in the expression lsem [q] L1) we have to evaluate lsem [qﬂ L2,
for which we need lsem [qﬂ L3; for that we take 1lsemst ﬂgggg L1]

(1sem [q J )(lsem [q] L&) lsem, which 1is lsem {q] Ll again. The
point is that we have to be able to unfold lsem three times. As a
solution, we have formulated a rule of iterated computation
induction which unfolds the induction variable a given number of
times. This rule is generally useful for proofs by simultaneous
induction on functions with different rates of recursion, a
situation which naturally arises in compiler proofs. (For other
uses of iterated induction, see Note 3, and Chapter 4, p. 167.) To

unfold n times, the rule is

(vl /£l & wifunl/fl & ... & wifun ZSL/f] &
V£ . (wif'/fl & wifun £ /f] & ... & wifun™ “£°/£])
wlfun £ /1) D

w(FIX fun/f]

This rule is valid because it is just an ordinary induction on

f'in the formula
w& wifun £/f} & ... & w{fun 2%/ £)

The basis is the basis shown, and the step follows easily from the

step shown. The first conjunct is selected from the conclusion,

after induction.

To prove Theorem 3.lb using this rule, we let n = 4, and prove

four bases and a step with four hypotheses:
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BASISL

L leol L1 ¢ nsem 1p3

BASIS2

LSEM 1L [[C(p)] LI C hsem (pJ
BASIS3 2

Lset 1 fe(m] L1 C hsem [p]
BASIS4 3

LSEM L {[C(p)] L1 C hsem [p]
141

lsem’ [C(p)]} Ll € hsem [p]
182

LSEM lsen’ fc(p)] L1 C hsem [p]
183 2

LSEM 1sen” [C(p)] L1 C hsem [p]
184 3

LSEM 1lsem’ EC(PW LI £ hsem [p]
STEP " -~

LSEM 1lsem” [C(p)] L1 C hsem [pJ

The proofs of Theorem 3.la, the STEP of Theorem 3.lb and the latter

three basis cases of Theorem 3.1b (the first basis case is easy)

follow similar lines. We therefore present just the proof of the
STEP.

We first compute, once for all, the label enviromments for the
various high level constructs. These computations are given in four

lemmas:
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Lemma 3.2
-

pT assign(l ,exp? >

LSEM “1sem’” [C(p)] =
1{lsemst ({assign( ,exp)J
(LSEM " tsem” [c(p)])
(LSEM "“1sem” [C(p)] L2)
(LSEM " 1sem’)
[(As.s)

Lemma 3.3
p = "if exp then pl else p2’' o
LSEM “ lsem’ [ C(p) ] ;
Ll{lsemst [ifnot(exp,L&)
(LSEM_ 1sem’” [C(p)])
(LSEM_1lsem” [C(p)] L2)
(LSEM™ 1sen’)
[lsemst [[C(p)_lgl_
(LSEMn_llsem’ c(pd)
(LSEM_ _‘lsem’[C(p)] L3)
(LSEM ll:?.em’)
[lsemst [g_o_t_c_:nI: b
(LSEM _‘lsem’[C(p)])
(LSEM® hsen’ [c(p)] L&)
(LSEM™ '1sen’)
[1semst [C(p2)T,
(LSEM —11sem’(C(p)])
(LSEM) “T1sem’ [C(p)] L5)
(LSEM" ~1sem’)

[(As.s)

Lemma 3.4 -
p= fwhile exp pl 2
LSEM "1sem’ [c(p)T =
Lllsemst [ifaot(gxp,L4)]
(LSEM _lsem’ [c(mD
(LSEM”"-1sem’ [C(p)]  L2)
(LSEM™ “lsem”)
[1lsemst [[C(pl)]_]l
(LSEM" " ~1sem’ [C(p)])
(LSEM? T1sen’ [C(P)] L3)
(LSEM" ~lsem”)
[lsemst [goto L.ij]
(LSEM "~ 1sen’ [C(p)D)
(Lsﬁ_llsem' lc(p] L&)
(LS lsen”)
[(As.s)
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Lemma 3.5
p= plipZ 2
LSEM™ 1sem” [c(p)] =
L{lsemst {C(pl)J
(LSEMP N sem’ (C(P)D)
(LSEMP—11sem” [C(P)] L2)
(LSEMP~1 gem”) / L1]
{lsemst ~[C(p2']
(LSEMn'llsem fcp))
(LSEMP 11 sem” [C(p)] L3)
(LSEM™ *1sen”) / L2]
{(xs.s) / L3]

Proof of the STEP of Theorem 3.1b
We assume IHL, IH2, IH3 and IHA4.

Show

LSEM" Lsen’ [c(p] LL £ hsem [p]

We consider the cases for the four high level constructs.

Case p = ‘assign(Il,exp)
RHS = Xs.s[eval(exp,s) /L]

LHS = lsemst Ea331§n(1 expfﬂ

(LSEM" lsem’ [c(p)d)
(LSEMS 1sem” {C(p)T L2) .
(LSEM3 lsem”)

by Lemma 3,2

= As. (LSEM3 lsem’ fc(p)] L2) (s[eval(exp,s)/I])
by unfolding lsemst according to its definition

= As. (As,s) (s{eval(exp,s)/IL])
by applying Lemma 3.2 again

= As. s{eval(exp,s)/I]

The proofs for the other cases are similar; we give only the
while case in detail.

Case p = 1if exp then pl else p2
RHS unfolds to

As. eval(exp,s) = hsem [pl] s | hsem [p2] s

After the sequence of unfoldings using Lemma 3.3 and the
definition of lsemst, we arrive at

As. eval(exp, s) = LSEM 2 1sem’ fc(p1)? L1 s |
LSEM Z1sem” [C(p2)] LI s
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for the LHS, and we then use IH3.

Case p = 'while exp pl
RHS = eval(exp,s) = hsem [p] (hsem [pl] s) | s
by unfolding hsem according to its definition.

LHS = lsemst [ ifnot(exp,L4)]
(LSEM “1sen’ LC(p)])
(LSEM 31sem’ [C(p)] L2)
(LSEM 31sem’)
by Lemma 3.4

As. eval(exp,s) = LSEM Jlsem’ [C(p)] L2 s |
LSEM 31sem’ [C(p)] L4 s
by unfolding lsemst according to its definition

As. eval(exp,s) = lsemst [C(pl)J
(LSEM © 1sem’ [C(p)])
(LSEM Z1sen” [C(p)] L3)
(LSEM “1sem’) s |

s
by applying Lemma 3.4 twice

= QAs. eval(exp,s) = (LSEM ° 1sem’ Cc(p)T L3)
(LSEM “1sem’ {[C(p)} L1 s) |
s
by unfolding lsemst

= As. eval(exp,s) = (lsemst [goto L1J
(LSEM 1sem’ [c(p)T)
(LSEM lsem” fc(p)] L&)
5 (LSEM l1sen”))
(LSEM “1sem” [C(pl)] L1 s) |
s
by applying Lemma 3.4
= As. eval(exp,s) = (LSEM ésem' [c(p)T LD
(LSEM “lsem’ [C(p1)T L1 s) |
s
by unfolding lsemst again.

At this point, finally, we can use IH2 and IH3 to complete the
proof.

Case p = "pl;p?’
RHS = as. (hsem [p2] )(hsem [pl] s)

LHS eventually unfolds, using Lemma 3.5 and the definition of
lsemst, to

Xs. (LSEM®lsem” {C(p2)] L1) (LSEM 3lsen” {C(pL)J L1 s)

for which we can use IH3 and IH4. Q.E.D. -
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It is clear that the bulk of the proof consists in repeated
invocations of the lemmas, and unfoldings of lsemst, in which
continuations are used in the specified ways. This applies equally

to the proofs of Theorem 3.la, and BASIS2, BASIS3, and BASIS4 of

Theorem 3.1b. Thus, a strategy for generating the proofs is:

Do induction or iterated induction, and prove for arbitrary p.
Divide into cases for the four high level constructs. In each
case, unfold the appropriate occurrences of LSEM or 1lsem by
using the 1lemmas; then unwind 1lsemst. Do these unfoldings
repeatedly until the left hand side equals the right haq? side,
or until one of the induction hypotheses is applicable.
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The Proof in LCF

Theory Structure for the Proof

To organise the new objects and facts required in formalising
this problem in LCF, we work within a network of LCF theories. We
build a theory of the semantics of both languages, each in turn
based on a theory of syntax, since semantic functions operate on
syntactic entities. We factor out a theory of the shared syntax and
a (daughter) theory of the shared semantics, as the high and low
level languages share such types as assignment statements, and the
high and 1low 1level semantics share objects such as stores. The
compiler theory requires both syntax theories as parents, since the
compiler theory maps high level to low level programs. The theory
in which the correctness of the compiler is stated and proved
depends on both semantics theories, as well as the compiler theory,
since correctness 1is the preservation of the semantics under
compilation. We factor out the trivial theory of labels as a
separate theory (a parent of the low level syntax theory) and give a
general polymorphic theory of function extension as a parent of the
shared semantics theory, so that we can deal with extensions to
stores and éo label environments in a uniform way. A polymorphic
theory of equality is a parent of both function extension and label
theory. 4 The structure of theories for this proof effort is

shown below. T1—T2 means that theory Tl is a parent of theory T2.
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function

extension
high level | share low level]
syntax semant1 syntax
) !
high level compiler ilow level
semantics semantics

compller
correctness
We outline the main theories below. For brevity, not all new types,

constants and axioms are shown, and not all definitions are fully
expanded (we resort to ellipsis).

The theory of labels is quite simple. We introduce a new Ltype,
LABEL, and five new constants having that type: L1, L2, L3, L4 and

L5. We have as axioms or theorems (depending on what can be deduced

from the equality axioms):

FEQ L1Ll = TT

Il

FEQ L1 L2 FF

and the like, where EQ is an equality function inherited from

equality theory.

The theory of function extension is also simple. We introduce

a polymorphic constant for extension:

extend: (% — %%) *% y % y (% —y *%)

and axiomatise it by:
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AXEXTEND
extend f val var y = (EQ y var=> val | y)

In the theory of high level syntax, the main new Ctype is

HPROGRAM for high level programs. This is a recursive type, so we

axiomatise it by introducing a pair of new constants which form an

isomorphism between the ‘abstract type® HPROGRAM and its

representation. The domains ASSIGN, IF, WHILE and COMPOUND, for the

four types of programs, are lifted by use of the type operator u,

and the coalesced sum is taken, to give

p)

us the separated sum we

desire.

ABSHPROGRAM: (ASSIGN u + IF u + WHILE u + COMPOUND u) — HPROGRAM

REPHRPOGRAM : HPROGRAM — (ASSIGN u + IF u + WHILE u + COMPOUND u)

These functions are governed by the

axioms
|- ABSHPROGRAM(REPHPROGRAM p) = p
}- REPHPROGRAM(ABSHPROGRAM &) = ol -

We define the types for the latter three constructs (assigmment will

have been introduced in the shared syntax theory: ASSIGN =

ID x EXP).

IF = EXP * HPROGRAM * HPROGRAM

WHILE = EXP * HPROGRAM

COMPOUND = HPROGRAM = HPROGRAM :

We are then able to add constant of the various types, and axioms

about them, to supply all of the constructors, destructors and

selectors required in the formalisation. For example, we add
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constants with the following names and types:

isassign:HPROGRAM —> LT
mkassign:ASSIGN — HPROGRAM
destassign:HPROGRAM — ASSIGN
assignidof:ASSIGN —» 1ID

assignexpof:ASSIGN — EXP

and the corresponding new axioms:

|- isassign = DOWN o ISL o REPHPROGRAM
|- mkassign = ABSHPROGRAM o INL o UP

|- destassign = DOWN o OUTL o REPHPROGRAM

|-assignidof = FST

}-— assignexpof = SND

There are, naturally, many more constants and axioms of this sort,

for example 1isif, destif, mkif, iswhile, destwhile, mkwhile,

iscompound, destcompound and mkcompound, with the obvious types and

definitions.

In the theory of low level syntax, we have similar work to do,

We add a new type, LPROGRAM, for low level programs. Corresponding

to the syntax equations (p. 94) in which there are two ‘loops®

(programs consist of sequences of labelled statements followed by a
label, and statements, in turn, may be programs) we need four new

constants, defining two isomorphisms:

REPLPROGRAM: LPROGRAM —— (STATEMENTSEQ * LABEL)

ABSLPROGRAM: (STATEMENTSEQ * LABEL) — LPROGRAM

109



REPSTATEMENTSEQ: STATEMENTSEQ —> (LABELLEDSTAT u +
(LABELLEDSTAT » STATEMENTSEQ) u)

ABSSTATEMENTSEQ: (LABELLEDSTAT u +
(LABELLEDSTAT *x STATEMENTSEQ) u) —> STATEMENTSEQ

axiomatised by

m

|- ABSLPROGRAM(REPLPROGRAM q) = gq

{~ REPLPROGRAM(ABSLPROGRAM &) = o

[l
1]

F—ABSSTATEMENTSEQ(REPSTATEMENTSEQ s) =

1]
&

F—REPSTATEMENTSEQ(ABSSTATEMENTSEQ o)
We add the other types:

LABELLEDSTAT = LABEL * STATEMENT
STATEMENT = ASSIGN u + IFNOT u + GOTO u + LPROGRAM u
IFNOT = EXP * LABEL

GOTO = LABEL

and routine constructors, destructors and selectors, such as

mkLassign:ASSIGN — STATEMENT
isLassign:STATEMENT — tr
destLassign:STATEMENT — ASSIGN
assignLidof:STATEMENT — ID

assignLexpof:STATEMENT —> EXP

where, to avoid confusion, ‘L" indicates that these are low level

syntax constants.
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Two further constants are

ONTO: LABELLEDSTAT — STATEMENTSEQ —> STATEMENTSEQ

to add a labelled statement onto a sequence of labelled statements,

and

issinglestatement: LPROGRAM — tr

to determine whether a program consists of exactly one labelled

statement. The associated axioms are:

1]

- mkLassign = INL o UP

#—isLassign = ISL

|- destLassign = DOWN o OUTL

Yt. assignLidof t = FST(destLassign t)

f‘Vt. assignlLexpof t = SND(destLassign t)

F‘Vl ss. ONTO 1 ss = ABSSTATEMENTSEQ(INR(UP(1l,ss)))

F‘issinglestatement = ISL o REPSTATEMENTSEQ o FST o REPLPROGRAM
We can then add, for example,

firstlabelof:LPROGRAM —) LABEL
to retrieve the first label of a program, where

}— firstlabelof q = issinglestatement q =
FST(DOWN(OUTL (REPSTATEMENTSEQ(FST

(REPLPROGRAM q))))) |
FST (FST (DOWN(OUTR (REPSTATEMENTSEQ

(FST(REPLPROGRAM q))))))

to fetch the first label of a program, whether it has one or several

statements. Again, to construct a program from a single labelled
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statement and a terminating label, we specify a constant

destlprogram:LABELLEDSTAT — LABEL —> LPROGRAM

and an axiom

|-¥1s 1. destlprogram 1s 1 =
ABSLPROGRAM(ABSSTATEMENTSEQ(INL (UPls)),L)

A large number of the routine constants (and associated axioms) have
to be added, e.g. firststatementof, secondlabelof, restof (for
mapping programs to their ‘tails‘), and lastlabelof, with the
meanings suggested by the names.

In the high level semantics theory we add a constant, hsem, for

the semantic function, and HSEM for its defining functional:

hsem:HPROGRAM—> STORE — STORE

HSEM : (HPROGRAM — STORE — STORE) —»
(HPROGRAM — STORE — STORE)

and axioms

AXhsem

|- hsem = FIX HSEM

1}

AXHSEM -
-HSEM = Ahsem” p s. isassign p =»
extend s
(eval(assignexpof p,s))
(assignidof p) | '

and so on, using the various constants from the high level syntax

theory to give the remaining three clauses.
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In the same fashion, we create a theory of the low level

semantics and add a new type LABELENV
LABELENV = LABEL — CONTINUATION

where
CONTINUATION = STORE — STORE

and we add constants for the semantic functions and defining

functionals:

lsem:LPROGRAM —— LABELENV

LSEM:(LPROGRAM — ILABELENV) —— (LPROGRAM —— LABELENV)

lsemst : STATEMENT —> LABELENV —— CONTINUATION —>
(LPROGRAM~—— LABELENV) —> CONTINUATION

and another constant

creat eLABELENV: LPROGRAM —> LABELENV —> (LPROGRAM -—> LABELENV)
— LABELENV

with the associated axioms

AXlsem
k—lsem = FIX LSEM

AXLSEM
P.LSEM = Alsem’ q. createlABELENV q (lsem’ q) lsem’

AXlsemst
f—lsemst t e c lsem” = islassign t =
As.c(extend s
(assignLidof t)
(assignLexpof t)) |

The function createlABELENV is just an intermediate function for
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constructing label environments according to the definition of lsem.

Informally,

createlABELENV <Ll:tl, ..., Lo:tn, L(n+l)> e lsem’
1{lsemst {t1] e (e L2) lsem” / L1}

[lsemst [t2] e (e L3) lsem’ / L2]

[(As.s) / L(o+1)]

so that formally, we we have

AXCLE
F_createLABELENV q e lsem” = 1issinglestatement p =
extend(extend L

(lsemst(firststatementof q)
e

(e(secondlabelof q))
lsem’)

(firstlabelof q))
(rs.s)

(lastlabelof q) |
" createlABELENV (restof q)
(extend -

(1semst (firststatementof q)
e
(e(secondlabelof q))
lsem”)

(firstlabelof q))
lsem’

Finally, the compiler theory; we introduce a new constant, C,

for the compiling function:

C:HPROGRAM —> LPROGRAM

and define it by the axiom

AXC

l-C p = isassign p=» ABSLPROGRAM(ABSSTATEMENTSEQ(LI,
mkLassign(destassign p)),L2) |
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and so on for the other clauses (stringing them together using
ONTO) .

The correctness theory requires no new types or axioms, but we
save in it many new theorems. It inherits from its ancestors all of
the new types, constants and axioms defined thus far.

This covers the main points of the structure of theories in

which the correctness of the Russell compiler is stated and proved.

Lemma Structure for the Proof

The first stage, in generating the proof in LCF, consists 1in
proving some simple lemmas, and then some more difficult ones. The
reasons for proving the lemmas at the outset instead of allowing
simplification to take its course during the main proof are twofold.
Firstly, the lemmas would have to be reproved many times during the
main proof, so efficiency is achieved by proving them once and
storing them as facts in the appropriate theories. Also, some of
the lemmas have fairly large simplification sets; we can reduce the
number of simprules in the simpset of the main goal by dispensing
with the simplifications required only for the lemmas.

Secondly, it will become clear that the challenge in managing a
proof of this complexity is to leave as much as possible to
simplification. After the wuser constructs successive layers of
carefully chosen lemmas, the main proofs can be performed with a
minimum of user guidance. The alternative is to guide the proof by
a sequence of tactics which unfold and substitute in exactly the
correct ways. This is both more tedious and less illuminating than
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constructing layers of lemmas.
The first group of (syntactic) lemmas are very routine. We

prove, for example, in the theory of low level syntax, that
FVa. isLassign(mkLassign a) = TT

For all of the (similar) lemmas in this set, a simpset composed of
BASICSS and simprules formed from all of the basic low level syntax
axioms is used, and all are proved by an application of SIMPTAC. We
save the new theorems in the low level syntax theory. We then form
a simpset from all of the new theorems, and, for reference, call it
SSLLSINT (for simpset for low level syntax).

In the compiler theory, we prove another set of syntactic
theorems, relating the high and 1low level languages. These are
useful since the compiling function builds low level programs from
fragments of high level programs. We prove, for example

F.Vp. assignlidof(mkLassign(destassign p)) =

assignidof(destassign p)
The various lemmas in this group share a simpset including all of
the basic syntax axioms, high and low level. SIMPTAC solves all of
the goals. We call the simpset formed from the resulting theorems
SSCOMP (for compiler theory simpset) .
It is also useful to prove the following lemmas, the first two

in the high and the second two in the low level semantics theories.

thhsem
"~ |- hsem p=1]%As. isassign p=» extend s
(eval(assignexpof p,s))

(assignidof p) |
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EhHSEM
}~HSEM hsem’ p = isassign p = ... cee

thlsem
[-lsem q = createLABELENV q (lsem q) lsem

Eh LSEM
|-LSEM lsem” q

]

createlLABELENV q (lsem”’ q) lsem’

The first and third are easily proved using UNFOLDTAC on AXhsem and
AXlsem, respectively (see Chapter 2, p. 64). The second and fourth

are proved by simplification, with AXHSEM and AXLSEM in the simpsets

of the goals.
From thLSEM and thlsem it is easy to prove the following eight

lemmas, where the bracket indicates a choice, which must be the same

in both instances:

L2 L2

lsem (C(p)) JL3 = createLABELENV(C(p))(lsem (C(p)))lsem L3

L4 L&

L5 L5

L2 L2

LSEM lsem’ (C(p ))|L3 = createlABELENV(C(p)) (lsem” (C(p)))lsem” |L3
L4 L&

L5 L5

Used as simplifications, these lemmas allow us to select the
contexts in which LSEM and lsem are unfolded. 1In partichlar, they
allow us to avoid unfolding similar expressions involving LI, as
these are to be viewed as instances of the various induction
hypotheses. (This point is discussed again presently.) We form a

simpset from the eight lemmas, called SSLSEMlsem.
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Next, we prove, in the compiler correctness theory, four lemmas
corresponding to the lemmas which constructed label environments in

the informal proof (Lemma 3.2, Lemma 3.3, Lemma 3.4, and Lemma 3.5).

We wuse the intermediate function createLABELENV, here. We prove,

for example,

Wp. isassign p = TT IMP
createLABELENV (C(p)) e lsem’ =

extend(extend 1
(lsemst(mkLassign(assignidof p,
assignexpof p))

e
(e L2)
lsem”)
LD
(A s.s)
L2

the goal for which is

createLABELENV (C(p))e lsem’ = ...
SSLLSYNT + BASICSS + (isassign p = TT)
isassign p = TT B

where the right hand side of the formula is as above. There are
three similar lemmas (and goals) for the other cases. The goals are

all proved by using the standard tactic SUBSTAC:thm list—y tactic

SUBSTAC [-ti = uil]

witi/xi]
ss

A

—_——

wlui/xi}
ss
A

———/

in order to unfold the definitions of C and createLABELENV. The

tactic which solves the four goals is
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(SUBSTAC [AXC])+
((SUBSTAC [AXCLE])+)*

We can include neither AXC nor AXCLE in the simpsets of the goals,

as both C and createlLABELENV are recursively defined and would

therefore loop, as simplification rules. Instead, we make explicit

substitutions. The resulting theorems may safely be used as

simprules in the main proof. If we do not prove the four lemmas in
advance, we would have to make the explicit substitutions during the

main proof, whereas by using the lemmas, the substitutions are done

automatically. 1In addition, the lemmas accomplish once a segment of

proof which would otherwise have to be performed many times in

the
course of the main proof.
We call the lemmas CLEa, CLEi, CLEw and CLEc, and the simpset
containing the four of them, SSCLE.
In the same spirit, ten more’ lemmas, also in the compiler

correctness theory, can be proved from the above four, from goals of

the form

-
createLABELENV ((C)p)) e lsem” L2 = (As.s) )

AXEXTEND + (isassign p = TT) + SSLABEL + SSCLE + BASICSS
tisassign p=TT

where SSLABEL is a simpset containing the basic axioms and theorems

about labels. There are nine more similar lemmas about the

environments for the other constructs, applied to the other labels

(but again, not Ll). These are all proved by simplification. We

call the simpset formed from the ten resulting theorems SSCLEL

(simpset for creating label environments applied to labels).
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Several lemmas aid in the proof of the basis cases of Theorem

3.1b; for example, one achieving the goal

[ve. lsemst £t 11l = lsem’

AXLSEMST + BASICSS

.

which we solve by applying

GENTAC
(CONDCASESTAC+) *
(EXTTAC*)+

to prove

thlsemstl

I-Ylsem” t. lsemst t.lL

We also prove four lemmas,

lsem”

= 1

constructing label environments given

L :LABELENV as a parameter, from goals of the form

createlABELENV (C(p)) 1. 1lsem’

= extend(extend L ()s.sLALQLLLl‘

thlsemst.l + SSCLE + BASICSS

isassign p = TIT

and similarly for the other cases.

placed in a simpset called SSCLE .

The four resulting theorems are

To prove them, we could write a

tactic to find a term p of type HPROGRAM in the formula part of a

goal and produce the subgoals shown below:
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HCASESTAC

(w, ss, A)

fw

ss + (p = 1)
(p=4)

A

Yot —

rw ']

ss + (isassign p = TT)
(isassign p = TT)
A

- /

fw )
ss + (isif p = TT)
(isif p = TT)

A )

W

ss + (iswhile p = TT)
(iswhile p= TT)

A y

(W R
ss + (iscompound p = TT)
(iscompound p = TT)

A _J

That is, HCASESTAC, for high level cases tactic, produces the four
cases corresponding to the four types of high level programs, as
well as the case for undefined programs, 6 The proof function of
HCASESTAC would use a cases rule, HCASES, say, derived from the
standard CASES. (For an example of this sort of derivation, see
{15], Al.) We would need the following axiom, in the derivation:
—Vp. p = isassign p => mkassign(destassign p) |
isif p = mkif(destif p) |

iswhile p => mkwhile(destwhile p) |
iscompound p=> mkcompound(destcompound p) | |
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At any rate, we prove the four lemmas using HCASESTAC. The

four lemmas in SSCLE must be used as simplifications. We form a
simpset of the four theorems thus proved, called SSCLEL.

We also prove a layer of lemmas from four goals of the form

lcreat eLABELENV (C(p)) L lsem’ L1 = L+
SSCLEL + AXEXTEND + SSLABEL + BASICSS
isassign p = IT

and so on, by applying SIMPTAC. This produces four theorems which
we place in a simpset called SSCLELLI.
We finally prove four lemmas about lsemst, analogous to CLEa,

etc., from goals of the form

~

lsemst t e ¢ lsem” = As. c(extend s
(eval(assignLexpof t,s))
(assignLidof r))

AXlsemst + BASICSS
(isassign t = TT

by applying SIMPTAC. We put the four resulting theorems in a
simpset called SSlsemst. As for the analogous theorems constructing
label environments, these four, used as simprules, save unfolding
the definition of lsemst many times (and each time simplifying the
result).

The logical dependencies amongst the simpsets (representing

groups of lemmas) are shown in the tree below:
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basic high 1evel ba31c low level |basic low level|basic high level
semantics axiom semantlcs axioms || syntax axioms syntax axioms

=/

[SSLSEMlsem[ simpset W%ETJ
L

thlsemst

|
{iasie compiler]lSSCOMP

axioms

SSCLE.L] [simpset with
AXEXTEND

(SSCLEL]}

SSCLELLL

where the theorems and simpsets named are as follows (to summarise):

SSlsemst is used to unfold lsemst in the various cases;

SSLLSYNT contains simple facts about low level syntax, and
SSCOMP, about the relation of high to low level syntax;

SSLSEMlsem contains the eight theorems which unfold LSEM and
lsem in the appropriate contexts;

thlsemstl is a theorem, used in the basis cases, for unfolding
lsemst with undefined label environments and continuations;

AXEXTEND is the axiom defining function extension, used for
label environments and stores;

SSIABEL contains the basic facts about the equality and in-
equality of the five labels;

SSCLE contains the four basic theorems used for wunfolding
createLABELENV from which we construct the rest, such as

SSCLEL, which contains the theorems applying the various label
environments to the various labels;

SSCLEL, for the basis case label enviromments;

SSCLELLl, for the basis case label environments applied to Ll.

123



The Machine Proof

The beginning and end of the tactical proof of Theorem 3.1 are

examined first. At the beginning, we are proving

V' p. hsem [p] = lsem [C(p)] L1

so we apply SYNTHTAC (Chapter 2, P. 61) to a goal with that formula

to obtain two subgoals; the subgoals are achieved by Theorem 3.la

and Theorem 3.1lb, respectively. We leave aside the question of

simplification sets, for the moment, and begin generating the proofs
by applying tactics to do the inductions and specifications to

arbitrary variables. For proving Theorem 3.la, the tactic begins:

(INDUCTAC ([AXhsem] )+
GENTAC

SIMPTAC (denoted by the +) solves the basis case produced by

INDUCTAC.

For managing the proof of Theorem 3.lb, we require a tactic

(ITINDUCTAC) which inverts the rule of iterated induction mentioned
on p. 100. The rule, ITINDUCT, and the tactic, must be implemented
in ML, ITINDUCT in terms of INDUCT, and ITINDUCT calling INDUCT,
first constructing a new basis and step (as discussed), and then
selecting the first conjunct of the theorem proved by INDUCT. This
is a simple example of the derivation of a rule of induction in LCF.

ITINDUCTAC has ML type thm-——> int-—» tactic, where the
integer represents the number of iterations desired, and the theorem
is the least fixed point definition of the function on which

induction is being done. Applied to a goal, the tactic returns n
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subgoals: n basis subgoals, and a step subgoal which has n
induction hypotheses in its assumption list. The proof part of the
tactic calls ITINDUCT; ITINDUCT expects n theorems (achieving the

subgoals). The new rule and tactic can be depicted as:

ITINDUCT (fun,f)

Fwit /)
|- wlfun L /f]

- wlfan?1 L/
(w; wlfun £/f}; ... ;w[funn-lf/f]] — w( fun™£/ £}

F wlFIX fun/f]

ITINDUCTAC (f = FIX fun) n

(w, ss, A)

wl L /f}
ss
A )

w(fun 1 /f} ~
SS
n_A -

wlfun® L1 1/f} |
SsS
A )

(wlfun £°/f}
SsS

w{f" /f]
w[fun £°/f]

y 1
wifun  £°/f}

A

S
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(More details on the derivations of the rule and tactic are given in

the Appendix.)

We begin the proof of Theorem 3.1lb, therefore, by applying

(ITINDUCTAC AXlsem 4)+
GENTAC

SIMPTAC solves the first of the three basis cases for us.
In both proofs, we would then 1like to compute the label

environment that is constructed for the whole compiled program and

apply it to Ll; that is, to evaluate, respectively,

lsem [C(p)] L1

LSEMY 1sem’ [cC(p)] L1

by using the facts AXlsem and AXLSEM, respectively. However, we

cannot add these facts to the simpsets of the goals for Theorem 3.la

or Theorem 3.lb, because we wish to regard all subsequent occurences

of formulae of the forms

LSEM® 1sem’ [C(p)] Ll £ nhsem [p]
lsem [C(p)] L1C hsem [p]

hsem {p] C lsem [C(p)ﬂ L1

as instances of the various induction hypotheses, not to be further
simplified. In the while case (of either proof), in fact, we
eventually arrive at a subgoal whose formula part matches the one of
above formulae exactly, so there is no way to distinguish the
formula part of the current subgoal (i.e. the subgoal we have after

induction, simplification and specification) from formulae which
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occur in subsequent subgoals. We wish to simplify the former, but
not the latter.

The solution we adopt is to write a tactic, called TEMPSIMPTAC
(for temporary simplification tactic), of type thm — tactic, whose
effect on a theorem and a goal is to add the theorem to the simpset
of the goal, simplify, and return a subgoal having the resulting
formula but with the original simpset. TEMPSIMPTAC thus temporarily
uses a theorem as a simprule. In this case, use of TEMPSIMPTAC
precludes unwanted simplifications of (LSEM ...), (lsem ...) and
(hsem ...) which arise later in the course of the proofs, while
allowing the simplifications at the outset.

The generation of the proofs of Theorem 3.la and Theorem 3.1b

begin, respectively, with the applications of

(INDUCTAC [AXhsem] )+
GENTAC
TEMPSIMPTAC thlsem

HCASESTAC+

(ITINDUCTAC AXlsem 4)+

GENTAC

TEMPSIMPTAC AXLSEM

TEMPSIMPTAC thhsem

HCASESTAC+
so that in each proof, after simplification, we have four remaining
subgoals.

After all of the wunfolding that precedes the use of the

induction hypotheses, some further reasoning is required to complete

the proofs. 1In the informal proof of Theorem 3.1lb, for example, the

formulae of the subgoals in the three cases (the assigmment case is
solved by this point) are:
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As. eval(exp,s) > LSEM glsem' Cc(pd L1 s |
LSEM “lsem” [C(p)] Ll s <
As. eval(exp,s) => hsem [pl) s | hsem [p2] s

As. eval(exp,s) = (LSEM %sem' IIC(p)] L)
(LSEM “lsem’” {C(pl)] L1 s) | s &
As. eval(exp,s) = (hsem [p7])(hsem [pl] s) | s

As. LSEM2 lsem’ [C(p2)] L1 (LSEM3 1sem’ [c(pl)] s) ¢

As. hsem [p27 (hsem (pl] s)

A general tactic which expects subgoals having formulae of
these forms (and the similar ones which occur in the proof of
Theorem 3.1 a and the three basis cases) is built from the following

two derived tactics:

LAMGENTAC

Ax. £l £ Ax. t2]
SS
A

Sl J

£l € £2
8S
A

COMBTAC

ftl ul & £2 u2
SS
A ]

tl & t2 ul & u2

SS SSs

A ) A

The proofs use basic PPLAMBDA inference rules about abstraction and

monotonicity.
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The general tactic (which we call ENDTAC) which performs the

last segment of the proofs is

REPEAT (USEASSUMPCHOOSETAC ORELSE ((COMBTAC ORELSE LAMGENTAC

ORELSE CONDCASESTAC) THEN

SIMPTAC))
(USEASSUMPCHOOSETAC is described in Chapter 2, p. 83.) ENDTAC tries
to apply one of the induction hypotheses, and failing that, tries
the tactics COMBTAC, LAMGENTAC and CONDCASESTAC in succession =~-
then simplifies, and repeats if necessary. If subgoals with
formulae of other ‘shape’ were expected, we could add tactics to
deal with those shapes (but they are not).

The proofs are completed by adding a middle segment: just a
simplification guided by the carefully planned structure of lemmas
we have described. The simpset of the goals for both of our
theorems is comprised of SSLSEMlsem, SSlemst, SSCLEL and SSCOMP.
The proofs of the basis cases require the simpset SSCLELLl, so we
also include this in the simpset of the main goals.

The basis cases are proved similarly, by first using AXLSEM and
thhsem as simplification rules temporarily, then simplifying, and
then using ENDTAC:

TEMPSIMPTAC AXLSEM

TEMPSIMPTAC thhsem

ENDTAC

As a refinement of the proofs, we observe that it is desirable
to unfold occurrences of lsemst before simplifying expressions of
the form (LSEM ...) or (lsem ...), to avoid unnecessary expansion.

For example, in the course of proving the while case of Theorem
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3.1b, a subgoal arises whose formula’s left hand side is

As. eval(exp,s) =

(lsemst [ goto L1J
(LSEM 1sem” [c(p])
(LSEM lsem’ ([C(p)] L&)
(LSEM 1sem’))

(LSEM 21sem” [C(p)] L1 s) | s
The continuation (LSEM 1sem’ [ C(p)] L4) need not actually be
evaluated because the semantic function lsemst ignors it. However,
ordering of simplification rules is not an option in LCF, and the
extra unfolding, if it occurs, does not upset the proof.

Had the lemma structure not been constructed in advance and
used to form the simpset for the two main goals, the tactical proof
would have had to be guided by successive substitutions. AXC and
AXCLE are not suit;ble theorems to be used as simplification rules,
as we have mentioned, as they would obviously loop. Nor are thhsem
or thlsem, for the same reason. All of these facts, however, are
hypotheses of theorems which are suitable as simprules. Guiding the
proof by substitutions requires the user to be aware of the detailed
course of the proof, and makes for clumsy, non-transparent tactics.
It requires careful indication of the instances (of LSEM, for
example) to be unfolded, and careful specification of any quantified
theorems to be used as substitutions. In addition, a proof
performed in this fashion entails evaluating the same expressions
repeatedly.

To summarise, the tactics which solve the two wmain theorems,

collectively called COMPILERTAC, are (respectively):
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(INDUCTAC [AXhsem] )+
GENTAC

TEMPSIMPTAC thlsem
HCASESTAC+

ENDTAC

(LTINDUCTAC AXlsem 4)+
GENTAC

TEMPSIMPTAC AXLSEM
TEMPSIMP?%C thhsem

— 1
ENDTAC ENSTAC ENSTAC HCASESTAC+
ENDTAC
Conclusions

In this chapter, we have demonstrated the importance of

formalising and machine-checking proofs. The logical error in

Russell’s proof was subtle enough only to be discovered under the

constraints of machine-formulation.

More generally, we have shown how a large formal proof has been
organised and performed in LCF. Much of the effort was invested in

delineating the required theories and in developing a hierarchy of

lemmas, each layer forming simpsets for the goals representing the

next layer. The resulting lemmas were used as simprules in the main

proof, so that as far as possible, the proof is guided by

simplification. Beyond this, the control structure for the proof is

provided by the use of composite tactics (built using tacticals)

which reflect the structure of the informal proof. The tactics

themselves are not startling, but the accomplishment of a formal,

machine proof of this complexity and magnitude, by the application

of high level procedures, is encouraging.
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T Ry e

The expression of the problem depends on the theory facility of
LCF, which allow new types, new objects of those types, and new
axioms about those objects, to be introduced in theories, and
theories to be joined in hierarchies. The success of the proof
effort rests on the availability of a high level programming
language, ML (and its interface, via its abstract type system) to
PPLAMBDA, in which strategies for generating proofs can be
implemented. It also rests on the power of the simplifier in LCF,
which, as we have shown, enables rountine inferences to be done
automatically, as a mwmatter of course, and can also be used for
automating more advanced proof steps.

The interest of tactical proof lies in (i) the way in which
complete, formal proofs can be performed at a high level, (ii) the
way in which tactics naturally reflect informal proof plans, (iii)
the way in which a tactic that solves a goal abstracts the formal
proof in an intelligible form, and (iv) the way in which tactics
reflect patterns of inference common to other proofs, and therefore
may be helpful in proving other theorems. In particular, one would
hope that other compiler proofs would yield to similar tactics. 1In

Chapter 4, we investigate the extent to which this is so.
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Notes for Chapter 3

1. An obvious extension to this problem would be the specification
of a lower level language without blocks of this sort. A compiler
from the current low level language to the new one would ‘flatten'
blocks by generating wunique, new label names, and repairing the
labels in all go-to statements.

2. That is, as a solution to the mutually recursive equations
lsem = F(lsem,lsemst)

lsemst = G(lsem,lsemst)

where F = A(lsem”,lsemst’) q. -L [lsemst ces (lsem” [q )
(1sem’ [qJ L2)/L1]...[(As.s)/(...)} and G = lsem” tecs. t =
rassign(I,exp)' =* ... | ... | t = "¢ =>c(lsem” [q] L1 s) we

propose the pair

(15em,15emst) = F(l5em,lSemst) ,G(15em,1Semst))

= FIX(AP. F P,G P)

where the general theorem being used is:

For x:*, yik*, F’:(% X *%) —> &  G’:(% X *%) — %k, Pk X &k,

FIX(AP. F° P,G’” P) = (FIX(Ax. F'(x,9)),9

where § = FIX(Ay. G (FIX(Ax. F'(x,7)),y)

= G’ (FIX(Ax. F (x,9)),

In this case, as lsemst contains no recursive calls to itself, G has
a first argument of the type of lsem rather than the type of the
pair (lsem,lsemst), so the solution lsemst is G(lsem), which is

Atecs. ... | t= "¢ c(l5em [qF L1 s)
3. We remark briefly, here, on the slightly more complicated
alternative proof by structural induction. It requires
reformulating the semantics hsem by using the By-law (Chapter 2, p.

58~59) so that we take a local fixed point in the while case:

hsem [while exp pl] = FIX(Ah s. eval(exp, s)=%
‘ h(hsem [pl] s) | s)

= FIXx ¥
We assume that for pl and p2, lsem [C(plfﬂ L1l = hsem Epl] , and
lsem [C(p2)] Ll = hsem {p2] . The basis and assignment cases
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are obvious. We then consider the remaining three cases. 1If p
= "while exp pl”, we must show

As. eval(exp,s) => lsem [C(p)ﬂ Ll (lsem [C(pl)] L1 s) | s
= FIX ¥

The RHS = Ds. eval(exp,s) = (FIX ™ )(hsem [pll s) | s. The
induction hypothesis applies and it remains to show

lsem fc(p)] L1 = FIx ¥

We achieve this by proving

(1) FIX % C lsem [c(p)] L1
(11) lsem [C(p)] L1 & FIX #

For (i), we show that (lsem [C(p)] L1) is a fixed point of % ,
that is,

¥ (1lsem [c(p] L) = 1sem [c(py] L1

RHS = As. eval(exp, s)=
(1sem {c(p] L1)(1sem fc(p)) L1 s) | s

LHS =As. eval(exp, s) =
(1sem {C(p)] L1) (hsem [plls) | s

and the result follows by hypothesis. This establishes that
for always-terminating programs, the compiler is correct. For
(ii) we do an inner iterated (3-ary) computation induction on
lsem, proving the following conjunction (recalling that lsem =
FIX LSEM):

1sem fc(p)] Ll £ FIXH & 1lsem S FIX LSEM
(For other instances and discussion of this method of proof,

see Chapter 4, Proof of Lemma 4.5 (ii), Lemma 4.10 (i), and
Chapter 4, Notes 3 and 5.) We assume that

lsem’ {C(p)] L1 & FIXH# & 1lsem” & FIX LSEM

and

LSEM lsem” [C(p)] L1 = FIX % & LSEM lsem” T FIX LSEM
and

2 ]
LSEM ©1sem’ [C(p)] L1 C FIX% & LSEM lsem’ & FIX LSEM

and we show that (after unfolding LSEM and lsemst):
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(1)

As. eval(exp, s) =¥ o
(LSEM 1sem’ [C(p)] L1)(LSEM “lsem” [c(pl LLs) | s
c FIX %

The RHS =
H FIXH = As.eval(exp,s) = (FIX ¥ )(hsem [pl] 8) | s

The result follows by use of the outer hypothesis, and both
conjuncts of various inner hypotheses. The other cases are
straightforward. Q.E.D.

To compare the two methods of proof:

In the computation induction proof, we prove, at the top level,
a pair of inequivalences; in the structural induction proof, we
prove an equivalence. In the former, one direction requires
iterated induction.

(ii) The computation induction proof requires a semantics with a

global fixed point; the structural induction proof, one with a
local fixed point for while statements.

(iii)In the computation induction proof, the induction hypothesis is

This

sufficient for proving the while case. In the structural
induction proof, an inner computation induction is required, in
two directions. One direction requires iterated induction, as
in the computation induction proof at the top 1level, in
conjunction with another formula.

comparison is discussed further in the Conclusions.

To perform the proof by structural induction, we would

implement the following rule and tactic in ML:

HINDUCT
i L /pl
b~ wlassign(I,exp) /pl

(wipl/pl; wlp2/pt 1 | w[(if exp then pl else p2/pl

[wipl/pl ] |~ wlwhile exp pl/p]

[wipl/pl; wip2/pl 1 F wipl;p2/p}

Fyp. w

135



HINDUCTAC

(w, ss, A)

Cor s 71 )

wli L /pl
)
A

(wlassign(I,exp)/pl]
Ss
A

(w{if exp then pl else p2/pl
ss

wipl/pl

wip2/pl

A )

-

w(while exp pl/pl | wipl;p2/pl
SSs SSs

wipl/pl wlipl/pl w(p2/pl]
A A B

4. A polymorphic theory of equality is inconsistent in general. It
is sufficient to restrict the theory to flat domains, that is
domains in which for all x and y

xcecy D (x=y v x = 1)

These are, in any case, the only domains on which we require
equality. All axioms of the theory are conditionalised on the
flatness of the domain in question. We therefore add to the theory
of labels (for example) an axiom representing flatness:

FYLi Lj. EQLi Ly = FF & LI £ Lj IMP Li = L

or
L G & me

FYLi Lj. 14 = (DEF Li > Lj | L)

and use the axiom to discharge the antecedents of any of the
conditionalised equality axioms we wish to use. Similarly, the
theory of function extension requires the theory of equality, so all
extension axioms (e.g. AXEXTEND) must be conditionalised on the
flatness of the domain in which they are to be instantiated, that
is, to the type of x in

extend f val x
Therefore, we add to the shared semantics theory an axiom expressing

the flatness of the domain ID, and wuse it to discharge the
antecedents of 'the equality axioms we wish to use.
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5. That is, the shape of the domain of HPROGRAM is

We could neaten the presentation by assuming the definition of an
n-ary sum operator, and so conceal the lifting operations, but this
introduces the problem of generating names and axioms for the
injection, projection and selector functions, e.g., INl, 1IN2,
etc.? =~ and it requires these functions to be defined differently
than at present. Thus, to avoid confusion, we leave things as they
are. At any rate, the UP’s and DOWN's are seen only in the first

layer of lemmas proved.

6. This is, in fact, one of the points at which our presentation is
idealised. The standard type operator for sum, at the time this
proof was produced in LCF (but not any longer) was binary separated
sum, and there was no facility then for defining new type operators.
Therefore, the domain of high level programs had the shape

COMPOUND

The approrpiate cases tactic used a cases rule which did nested case
analysis:
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HCASESTAC

(w, 85, A)

W ) fw A
(isassign p = TT) + ss (isassign p = L) + ss
(isassign p = TT) (isassign p = L)

A e -
fw W ]
(isassign p = FF) + (isassign p = FF) +

(isif p = TT) + ss (isif p= 4+ ) + ss
(isassign p = FF) (isassign p = FF)

(isif p = TIT) (isif p= 1)

A iy LA )
(w ] (W )
(isassign p = FF) + (isassign p = FF) +

(isif p = FF) + (isif p = FF) +

(iswhile p = TT) + (iswhile p = 1) +

ss ss

(isassign p = FF) (isassign p = FF)

(isif p = FF) (isif p = FF)

(iswhile p = TT) (iswhile p= _L)

A ]l )
W )

(isassign p = FF) +

(isif p = FF) +

(iswhile p = FF) + ss

(isassign p = FF)

(isif p = FF)

(iswhile p = FF)

A J

The four subgoals that form a column on the left are the main ones;
simplification solves the other three ‘spurious’ cases.

7. In fact, we must add the proviso that the ‘highest powered®
induction hypothesis is used, so that, for example, for the formula
arising during the while proof of Theorem 3.lb, the step,

LSEM lsem’ [C(p)] L1 £ hsem [p]
IH2, that is,

Yp. LSEM lsen’ [C(p)] L1 & hsem [p]
is used in preference to IHl, that is,

Yp. lsem” [C(p)] L1 ¢ hsem [p]J

138



Chapter 4: Implementation of Procedure Declaration

In this chapter, we consider the correctness of the
implementation of another pair of constructs: procedure declaration
and invocation. We define a block structured high level language in
which recursive and non~recursive procedures may be declared and
called, and a low level language whose semantics reflects a standard
stack implementation. Both languages are as streamlined as possible
to our purposes. An algorithm to compile high level into low level
programs 1is presented and informally proved. To facilitate the
proof, the compilation is factored into three stages. We
concentrate on the theoretical difficulties in expressing the
relations between the various levels, and on the three informal
proofs,

The emphasis in this work has been to supply semantics and
proofs amenable to expression in LCF. Although the proofs have not
been performed in the system, they have reached their present
structure only because machine proof was envisaged; formalisation in
LCF requires a level of rigour which reveals the need for extreme
care. We believe that the generation in LCF of the proofs presented
in this chapter would be a feasible undertaking; our optimism 1is
based on the results of the machine generated proof described in

Chapter 3, and on the machine proof outlined in this chapter.
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The Problem

The High Level Language

In the source language, we allow blocks in which local
variables may be declared, and procedures invoked. We model static
binding of variables. For simplicity, we consider blocks with
exactly one declaration apiece, and procedures without parameters.
We allow identifiers to denote only procedures. All of this makes
for a rather odd language, but enables us to focus on the issue at
hand: the correctness of the implementation of recursive
procedures. We believe that enrichments of the language, such as
inclusion of a parameter-passing mechanism, or multiple declarations
in blocks, would require more detailed, but not essentially
different proofs.

We let I range over a domain ID of identifiers, pl and p2 over
a domain HPROGRAM of high level programs (distinct from HPROGRAM in
Chapter 3), and the variable a, over a domain A of (unspecified)

atomic programs. High level programs are given by:

p ::= let I = pl in p2 |
letrec I = pl in p2 |

call I |

pl;p2 |

a

The first two constructs specify blocks with non~recursive and
recursive procedure declarations, respectively; the third is

procedure invocation, and the fourth is sequencing.
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A standard (direct) denotational semantics is given for this
language. It requires a domain, HENV, of environments, in which
identifiers are mapped to the meanings of programs (since all
identifiers denote procedures). The meanings of programs are
transformations on stores; the structure of the domain STORE is not
important for our purposes. We let © range over STORE. Thus we

have

PE€HENV = ID—> STORE —> STORE

We define semantic functions 4 for atomic programs, and =, for

whole programs:

A A —> STORE —> STORE

#5 :HPROGRAM — HENV —> STORE —» STORE

The clauses for & are:

#lo2l (ot &[pt] p /1D

SIp2] F1xOe 18 1] ¢ 771N
pI

Ac S[p2] (I [pipo)

o [a]

sfae 1= 51 10 02
Sl1etrec 1 = p1 1n p2]p
o [eall 1]p

S[ptedp

“[alp

]

[l

We assume that Ya. ;4[a 4+ = L1, The only difficult clause is the
one for procedure declaration. In the case in which I 1is
recursively declared to denote pl throughout p2, we take the meaning
of the body p2 in an environment, say ﬁ, which is like p except on

I; I is bound to the meaning of pl in ? :
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pL o [pl] P /11
FIXO\p". pl & [p1] p"/11)

-
L]

The Low Level Language

We consider a low level language whose corresponding machine
allows an implementation (albeit rather abstract) of the source

language. The idea is to maintain an activation stack while running

low level programs, each of whose entries represents a block entry
or precedure invocation. In each stack entry, certain information
must be preserved, namely, the dynamic link (which we take to be the
previous stack element), for return upon exit; the static like (a
pointer to the activation record representing the textually
enclosing block in the program), for finding the meanings of
non-local variables; and the meanings for the 1local variables
declared in the current block. The basic instructions in the low
level 1language include instructions for making new entries on the
activation stack, for deleting entries, and for restoring the
declaration time environment when procedures are invoked, by using
the static link (to reflect static binding).

We let I range over ID (as before), q and qi over a domain
LPROGRAM of low level programs (distinct from LPROGRAM in Chapter

3), and the variable a over A (as before). Low level programs are

then given by:
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q ::= PRENTRY(I,q) |
RECENTRY(I,q) |
EXIT |
CALL(I) |
ql;q2 |

a

PRENTRY(I,q) creates a stack entry for a non-recursive block in
which the identifier I is declared to denote the procedure q.
RECENTRY(I,q) creates a stack entry for a block in which I
recursively denotes q. EXIT is for all exits from blocks and
procedures. CALL(I) creates a stack entry appropriate for entry to
the procedure denoted by I. The fifth clause is for sequencing, and
the sixth, for atomic statements.

The intended semantics for this language is an operational
semantics based on an abstract machine, one of whose components is a
stack. (The semantics is still denotational, though, in the sense
that the meanings of the various constructs are functions of the
meanings of their components.) Each entry in the stack is a whole
environment. The stack is indexed by integers. An environment, at
this level, maps identifiers to pairs consisting of a 1low level
program (the procedure body which the identifier denotes) and an
integer (a pointer back into the stack). Environments form a domain

LENV:
LENV = ID —> (LPROGRAM * INT)

The integer component of the meaning of an identifier plays the role
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of static link; it points to another level in the activation stack,
at which another environment is to be found which maps identifiers
to program-integer pairs, and so on upwards. We let d§ range over a

domain LAS (for low level activation stacks):
d € LAS = INT — LENV

The context, or configuration, in which a low 1level program is
‘executed® has three components: an integer pointer into the
activations stack (representing the current dynamic level), the
activation stack itself, and a store (which we take to be the same

as in the high level semantics). We define a domain CONFIG of

configurations:
CONFIG = INT X LAS x STORE

The low level semantic function maps programs and configurations to
new configurations; that is, running programs can affect the stack,

the pointer and the store. We call the semantic function #wn.
Aucn: LPROGRAM —> CONFIG —> CONFIG

The clauses for #wn are given below. We use the notation
3 [n+x}

to mean d extended at n to the value x. This is to avoid confusion
with the usual extension notation, which 1s reserved for

environments.
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Fun [ PRENTRY(L, )] (@,6,0) = (mtl,
o)
Ruon [RECENTRY(I,9)] (@,ds0) = (mtl,
J[{mtl)— (¢ m) [(q,m+l)/I]],
o)
7um[CALL (1)] (@,d,9) = R, [aT (@,
S(r1)— & o',
&)
where (q°,m°) = dm I
M[EXIT‘] (msésd) = (m_]-,d”(’)
Renlal;a2] (@die) = Run[ad] Runfal] (@,8,5,))

e a] (md,0) = 4u,d, #fa]es

In the atomic case, we wish the whole triple to be undefined if

;4[}]0' is undefined, so we introduce a notation for triples strict

in the third argument:

tx,y,z»

is L if z is 1, and (x,y,2) otherwise. The reasons for this are
technical, and are discussed later.

For procedure entry (where I is declared to denote q), e
makes a new entry to the stack at level (m+l), consisting of the
previous environment extended at I so that I now denotes the program
q paired with the (declaration) level m. “®w» also increments the
pointer so that it points to the new stack entry.

For entry to recursive procedures where I recursively denotes
q, the environment for the new stack entry (again at level (mtl))
maps I to q paired with the level (mt+l), so that occurrences of I
within q denote q, but with the declaration time environment at
level (m+l).
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For calls, Rwn determines the denotation of I in the curreat
environment (that is, the procedure it denotes, and its declaration
time level, q° and m’, respectively), makes a new stack entry
consisting of the declaration time environment, increments the
pointer to point to the new entry, and applies itself to q°, with
the new stack and pointer. Exits are just decrement s of the
pointer.

At first view this model may not appear to be very concrete;
although procedures are now represented concretely, activation
stacks are functions (infinite vectors) mapping integers to whole
environments (also functions), rather than to new layers on old
environments., Nonetheless, we believe that this is a good level at
which to aim because it captures the essence of the implementation.
In particular, a fixed point in the semantics for recursive
procedures has been replaced by a “knot' in the activation stack.
(This is the transition which presents the theoretical difficulties
to which we referred.) A model in which displays, in the usual sense
(e.g. as defined in [48]) were kept would be a natural next step in
the transition from an abstract semantics to an implementation. For
concretisations of this sort, the low level language described here,
and its semantics, would serve as a wuseful intermediate stage

between the abstract and the more concrete semantics.l
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The Compiler

The compiling algorithm, C, (distinct from C in Chapter 3),
maps high level to low level programs. As in Chapter 3, we take the
abstract syntax of the two languages as our starting point, and do

not consider problems of parsing. C has type
C:HPROGRAM ——> LPROGRAM

and is defined by the following clauses:

C "let I = pl in p2’ = PRENTRY(I,C(pl))
C(p2)
EXIT

C MNetrec I = pl in p2° = RECENTRY(I,C(pl))
C(p2)
EXIT

C Tcall I” =  CALL(I)
EXIT

c pl;p2” = C(pD)
C(p2)

c "a” = a

(For appearances, we have concealed the sequencing operator in low
level programs.) The compiler produces entry and exit instructions
for blocks, with the compiled bodies in between, and it produces low
level calls with exits, for high level calls. Sequenced programs
are compiled into sequences of compiled programs, and atomic

programs are uncompiled.
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The Equivalence Proofs

Several complications arise in proving the equivalence of all
high 1level programs to their compiled images. Some of these are
related to stating the equivalences; others to the transition from a
semantics with an explicit fixed point for recursive procedures to
one with a knot.

In stating the equivalences, we wish, for several reasons, ¢to
avoid the use of recursively defined relations, although they seen
natural at first glance. One reason is that the formal theory of
recursive relations, unlike that of recursive functions, is not
fully understood. More pa;ticularly, recursive relations cannot be
expressed in PPLAMBDA, and would therefore place the proof outside
the scope of LCF.

Typically, statements of the equivalence of semantics at

different levels have the form

If the contexts of the semantic functions are suitably related
(i.e. simulate each other) then the results of applying the
semantic functions to corresponding programs are also suitable
related.

By context we mean simply the parameters to the semantic function;
the environment and store, or the stack and pointer, or whatever the
functions require. It is in stating these ‘suitable' relations that
the problems arise; the obvious relations are often recursive.

We have found, in stating the relations, that only certain

properties are required to hold of the contexts. As long as these

properties imply the recursive properties, the recursive properties
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need not be taken as definitions. That is, we explicitly construct
solutions to the simulation relations that we need, and thus do not
have to appeal to any existence theorems about recursive relations.
Whether this can always be done is a question we do not address.

We have found that the difficulties raised by trying to relate
“incompatible’ kinds of semantics, in the examples considered here,
can be largely sorted out by factoring the proof into three stages,
introducing two intermediate levels. In the first, a closure
semantics is given for the high level language. In the second, a
more abstract version of the activation stack implementation (for
the high level language) is considered. The fixed~point-to~knot
problem arises in the transition from the former to the latter. The
key to solving the problem is the introduction of abstracting
functions which map activation stacks (or other concrete sorts of
contexts) to more abstract structures which can be compared with the

environments containing fixed points.

Standard to Closure Semantics Proof g_xﬁ to Pl )

The first stage in the transition from & to *wn is to define
a closure semantics, ;Z; for the high level language, and to prove
it equivalent to & . The enviromments, in ﬁg; map identifiers to
closures, which are pairs consisting of programs and (declaration
time) environmments. Closures are representations of the meanings of

procedures in &, that is, representations of store

transformations.
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We let v range over HCENV, a reflexive domain of closure

environments:

v € HCENV = 1D —— (HPROGRAM x HCENV)
The semantics function & has type

o :HPROGRAM—> HCENV — STORE —> STORE

Its clauses are

& [let T = pl in p2] v

;g[letrec I =plin p2] v

& [P (vi(pL,v) /1])
& [P2) (FIXQAv” v [ (pl,v") /11))

[}

z—’j-[fﬁl.]_- I] v = Jﬂ:p] v’ where (p",v’) = v I
Jpl;sp2] v = Ao AP v (Ip1] v
3l - w4l

In stating the equivalence of & and &, we must first state the

simulation relation between the repective contexts, that is, between

0 € HENV ID —> STORE —> STORE

and

v € HCENV ID — (HPROGRAM X HCENV)

The obvious relation is

VI. pI = H[FST(v I)] (SND(v I))
which is to say

¥I.p1 = Ffcall ] v
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We abbreviate this relation by writing p~ V. Our goal is to prove
Theorem 4.1
T pVv.P~v > S [plp= S[p]v
The proof is facilitated by a lemma.
Lemma 4.2

VFVI prv 2 ¥t pLpld (p] vi/Il ~ vI(pT,v') /1]

Proof of Lemma 4.2
We show

pr~v >VY v’ p’ J.p[z ('l vv/113 =
A [call 37 (vi(p”,v’) /1)
We assume that p ~ v.

Case J # L
We must show that

e J B [call 3] v

This follows from the assumption.

[

Case g_ =1
We must show that

SeTv

& [eall 1] (vI(p”,v")/1])
J[pl ]V’

by definition of .§.  Q.E.D.

The proof of Theorem 4.1 is by structural induction on high level

programs.

Proof of Theorem 4.1
Bases
If p - p =Ll or "a”, the proofs are easy, assuming that p~v.

Case p = g
,éﬁcall I]p

by the definition of & and the assumption.

1 u-l_‘

P I = gffcall 1] v,
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Step

We assume the theorem with pl and p2 for p, and we assume p~v.

-y

Case p = Let I = pl in p2

We must show

& [let T =pl in p2Jp = Ffler I =pl in p2] v
that is,
S [p2] (p [ & [pldp /11) = o [p2] (vI(pl,v)/I])

In order to use the induction hypothesis, we must show
pl o fplle /11 ~ vl(pl,v)/I]

This follows by a use of the induction hypothesis with the
assumption that p ~ v, and by Lemma 4.2.

Case p = Metrec I =pl in &f
We must show

& [p2] (FIX(Ap’.p1 & [p1] P7/11)) =
4 [p2] (FIXOW v (pl,v")/1]))

We call the two functional R and U respectively, and prove
& [p2] (FIXR) = &S[p2] (FIX U)

This requires an inner computation induction in order to prove
FIX ‘R ~FIX U, and so complete the proof, by hypothesis.

Assume
A ~ ¥, for arbitrary ? and ¥.

Show
U v ~ AP, that is,

ol & [pl]fp /11 ~ vI(pl,¥)/1]

By the outer hypothesis, with pl for p, and the inner
hypothesis, we have N

Slel]lp = ST

Hence, by Lemma 4.2, the result follows.

Case p = pl;p2
Selp2] =2 Sp2]p (4 [pllpo) =

A\ o JEPZ] v (J[plﬂ ve) = £ (p1;p2] v --Q.E.D. 2
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Closure to Abstract Stack Semantics Proof g_zf to D)

The more concrete semantics & is a good point from which to
consider and prove equivalences to implementation-oriented models.
As a step toward proving the equivalence of & to Rwn, we next
consider a stack semantics called -, more abstract than 7w,
which implements the high level language. This factors out (and

defers wuntil the next stage) the problem of compiling into the low

level language.

& uses an activation stack similar to the one for YRwn., but
it is wused more abstractly. Rather than changing the stack by
running a program, £ simply interprets programs to determine the
store transformations they denote. We introduce enviromments which
map identifiers to pairs consisting of high 1level programs and
pointers into the stack. Activations stacks again map integers into
environments. We introduce a domain DENV of environments, and let d

range over a domain HAS of high level activation stacks:

DENV = ID — (HPROGRAM X INT)

d € HAS = INT — DENV
The semantic function £ has type

P :HPROGRAM—> HAS — INT —>STORE — STORE

and is given by the following clauses:
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2 [[;95 I =plinp2]dn 9[[32]] (dl (at1) —s

(d m) [(pl,n)/I]]) (n+2)

]

°taﬂ:let:rec I =plin pz:ﬂ dn

D[call 1] d n

o [p2] (dl(atl)—
(d n) [(pl,n+l1)/I]]) (n+1)

[}

.@I[p'] dn’

where (p°,n°) =dn I
o[p15p2] dn Ao, 2] dn ( @ pild no)
@ﬂ:a}] dn A [[a.]

We observe that in .©, we do not ‘over-write' the stack, but use it

]

only for reference, and also that procedure invocation does not
cause a new stack entry; we simply revert to the declaration time
level in the activation stack. The semantics of procedure values
are now fully ‘defunctionalised'; procedures are represented by
texts and integers, rather than by functions.

The formulation of the equivalence of & and D requires that
the simulation relation between contexts be defined. We relatle a

closure environment to an abstract stack with its pointer; that is

v € HCENV = ID —> (HPROGRAM X HCENV)
to

d € HAS = INT —> DENV, and n
where

DENV = ID —> (HPROGRAM X INT)

The relation #®# between v:HCENV and a péir (d:DENV, n:INT) that we

seek should have the property that

t

v = (d,n) iff V¥I. FSI(v I) = FST(d n I) &

SND(v I) = (d,SND(d n 1))
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but of course this is not a well formed definition. We therefore
construct a relation satisfying the above property.

To this end, we introduce a function H which abstracts pairs
consisting of an activation stack and pointer, to a closure
environment, so0 that the pairs can be compared to closure

environments:

H: (HAS x INT) —> HCENV
We define H recursively:

H(d,n)I = FST(d n I), H(d,SND(d n I))
that is,

H = FIX FUNH

where
FUNH = AH’ (d,n) I. FST(d n I), H"(d, SND(d n I))

H (intuitively) traces up the static chain to construct whole
environments. We now define v # (d,n) to abbreviate the formula v =
H(d,n). It can easily be shown that = satisfies the desired
property (above).

For the proof of the equivalence of S to D, we need a
well-foundedness property of activation stacks paired with pointers,
to express the condition that (up to a certain point), the

declaration level of a procedure is never greater than the level
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from which the procedure is called. We express this property of a

stack d and an integer n by the formula
¥In’.n'S<n D SW(dn” I)<n

which we abbreviate as hgood d n. To shorten the statements of
theorems, we include this property in the definition of the relation

=~ .
.

v = (d,n) iff v = H(d,n) & hgood d n

The property hgood is used in proving that the closure enviroanments
abstracted from two stacks, at some point n, where the two stacks
agree up to n, are the same; a fact which is used in the proof of

the main theorem relating < and £. We let dl § d2 abbreviate

the formula
V n°.n"Sn D dln” = d2 n’

Lemma 4.3

—————

VYdl d2 n. dl $d2 &  Thgood dln > H(dl,n) = H(d2,n)

Proof of Lemma 4.3
By induction on H. We assume the theorem for H’ and we assume

that dl =;Id2 and hgood d n. We show -

VI. FST(dl n I), H'(dl,SND(dl n I)) =
FST(d2 n I), H (d2,SND(d2 n I))
Since by assumption dl n=d2 n, and SND(dl n I)X n, by

hgood-ness, the rest follows by assumption, with SND(dl n I)
for n. Q.E.D.

For the main theorem relating < and &H, a separate lemma is
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required for the letrec case, for which we use a more general lemma,
analogous to Lemma 4.2.
Lemma 4.4

¥mnvdopl. m h g si & v = (d,n) -

vi(pl,H(d,m)) /1] =~ (d,n+l)

where d = d[ (n+1)+ (d n) [(pl,m)/I]]
This lemma is useful in both the letrec and let cases.

Proof of Lemma 4.4 .
Assume m = n+l and v * (d,n). That hgood d (o+l) holds is
obvious. For the rest we must show

Y1°. vi(pl,H(d,m))/I] I° = H(d,n+1)I’

Case I'# L . R
LHS = v and RHS = FST(d n 1°), H(d,SND(d n I°))

Since in this case d n I =d n I’, it follows by Lemma 4.3
that

H(d,sND(d n I°)) = H(d,SND(d n I°))

Therefore, by the definition of H, RHS = H(d,n), and the result
follows by the assumption.

Case I =L .
Both sides reduce to (pl,H(d,m)). Q.E.D.

The lemma for the letrec case is:

Yvdonopl.ve (dn) D ¢ =~ (d,n+l)

where ¥ = FIX U

where U = Av’. v[(pl,v’)/I]

and d = d[(a+l) = (d n) [(pl,n+l)/I]]
Proof of Lemma 4.5

We assume that v~ (d,n) and prove the c¢onsequent in two
directions, showing
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(1) ¢ < H(d,n+1)
(ii) H(d,n+l) = ¢
That hgood d (n+l) is obvious.

Proof of (1)

It is easy to show that H(d,n+1) is a fixed point of v, and
thus that v £ H(d,n+#1). We show that U(H(d,n+1)) = H(d,n+1):

LHS = v[(p1,H(d,n+1))/I]
By Lemma 4.4 with m = n+1, we have

vl (p1,H(&,n+1))/1] = H(d,n+1)

RHS. Q.E.D.

Proof of (ii)
We prove instead

’”~

H c FIX FUNH & H(d,n+l) © %

recalling that H = FIX FUNH 3. "The proof is by induction on
both occurrences of H.

Assume R R
H° < FIX FUNH & H°(d,n+l) & v

Show R .
FUNH H* = FIX FUNH & FUNH H'(d,n+l) & v
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The first conjunct is easy. The second unfolds to

”~

YI°. FST(d(n+1)I°), H’(d,SND(d(n+1)I°)) T % I°

=1
1,H7(d,n+1)

1
LHS = p
RHS = pl, ¥

so the result follows by hypothesis.

Case 1" # L
LHS = FST(d n 1), H"(d,SND(d o I°))
RHS = v I’

= H (d,n)I"
by assumption, second part

N

H(d,n)I"
by assumption, first part

= FST(d n I°), H(d,SND(d n I°))
by definition of H

= FST(d n I°), H(d,SND(d n I°))
by Lemma 4.3

But by hypothesis, H S H, and this completes the proof. Q.E.D.
The main theorem relating <& and & is:

Theorem 4.6

Ypvdn.v~(dyn) © Llplv = DIpldn

Proof of Theorem 4.6 —
The proof is by computation induction on & and 2.

Assume
pvdo.v~(dn 2D F[plv = &[pldn

for arbitrary <4’ and D°, and assume that v = (d,n) for some
v, d and n. The L case is straightforward. For the step, the
various cases are considered. The atomic case is easy.

Case p = let I = pl in pZ
Show
T tp2vi(pl,v)/11 = D7fp2] (dl(a+1)—
(d o) [(pl,n) /I]]) (nt+l)
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where we abbreviate the stack on the right hand side as d. By
Lemma 4.4 with m = n, we have

vi(pl,H(d,n)) /1] = (d,n+l)

By assumption, v = H(d,n), so by Lemma 4.3, v = H(d,n). Thus,
vi(pl,v)/I] =~ (d,n+l)

and the induction hypothesis applies.

Case p = 'call I
Show

;8— Q [p']vl = 4@ , [P"] d nn

where (p",v’) =v I and (p",n") =dn 1

By assumption, v I = (FST(d n I), H(d,SND(d n I)))

so we show that

& o] H(d,sND(d n D)) = D°[p7] d (SND(d n I))
As it is obvious that hgood d (SND(d n I)), ¢this 1is true by
hypothesis.

Case p = Tetrec I =plin RZ

Show . .

3 (p21% = 27 [p2] d (a1

where v and d are as in Lemma 4.5. That lemma enables use of
the induction hypothesis.

Case p = "pl;p2

Show _

Aoe L [p2Jv (S [pl)vo) =
Ace D [p2) dn (O {pl] dno)

This follows directly, by two uses of the hypothesis. Q.E.D.

Abstract Stack to Concrete Stack Semantics Proof (& to Run)

The transition from & to R« is completed by proving DO
equivalent to #wn. The key, again, is in relating the contexts: a

high level activation stack and pointer, and a low
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level activation stack and pointer:

d € HAS and n, where HAS = INT — DENV

and DENV = ID — (HPROGRAM x INT)

and
§ € 1AS and m, where LAS = INT —> LENV
and LENV = ID —> (LPROGRAM X INT)
At first glance, the following relation may appear to be
adequate:

(d,n) = (JS,m) iff n=m &
Yn° I. n° S n D C(FST(d n” I)) = FSTE n” I) &

SND(d n” I) = SND(§ n” I)

That is, at corresponding levels the two stacks have corresponding
programs and pointers. However, the two semantics O and Run
affect the stacks differently; in particular the call semantics are
different. Therefore, this relation is not general enough.

Instead we employ two abstracting functions, J and L, similar
in nature to H, but abstracting to a new sort of environment, a low
level closure environment, in which identifiers are mapped to pairs
consisting of low level programs and low level closure environments

(reflexively):

LCENV = ID —> (LPROGRAM * LCENV)

We define
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J:(HAS x INT) —> LCENV

L:(LAS x INT) — LCENV

as J = FIX FUNJ and L = FIX FUNL, where

FUNJ

NI (d,n) I. C(FST(d n I)), J"(d,SND(d n I))
FUNL

AL’ (§,m) I. FST(d m I), L@ ,SND( m I))

The property desired of the relations, this time, is

(d,n) = (S,m) iff VI, C(FST(d n I)) = FST( m I) &

(d,SND(d n I)) = (5,SND(S m I))

The property is satisfied by the relation & , where (d,n)® (§,m)

abbreviates the formula
J(d,n) = L(& ’m)

As in relating 2 to D, we need a well-formedness property of low

level stacks. We define lgood § m to mean
YIiom.n Sm O SND(8 m” I)S o

As before, we include the well-formedness property in the relation,

so that

(d,m) ® (§,m) iff J(d,n) = L@,m) &
hgood d n & 1good d m

A first approximation to the theorem relating £ and Rumn is:

Vpdndamoe., (dyn) ® (,m) D

THIRD (Run [C(P)] (m,d,0)) = D (pld n o
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which asserts that the store transformation induced by running a
compiled program 1is the same as that produced by interpreting the
original program. Looking ahead, however, if p = "pl;p2 ', we must
apply Ywn to C(p2) in the configuration resulting from applying
“Run to C(pl). To apply the induction hypothesis, with p2 for p, we
must know that the stack and pointer resulting from applying #wn to
C(pl) in the configuration (m,d,o) -- call them & and
m° -- must be such that (d,n) & (4°,m"), and lgood §" m’. It is

sufficient and convenient to show that ¢ 5 8 and m” = m:

Vpdnd mo. (dy,n) ® (§,m) 2
Runfc(py] (@,8,0) = (m,8, H[pJ d n o)

where §” = 8

However, if it is the case that ‘ﬂwn[[c(p)] (m,8,0) does not terminate,
then Run C(p)] (m,8,0) = (1,4,1), while (m, 8, H[p] d no) is not
necessarily undefined. In order to account for this possibility, we

employ the notation introduced on p. 145:

Theorem 4.7
Ypdn §mo. (d,n) * ($,m) -

Rnlc(py] (m,8,09 = m,§, 2[p] d no

where §’ =38

The proof i1s by computation induction on “Run. and 2. (See
Conclusions for further discussion of this fact.) Again, we prove a

separate lemma for the letrec case, and for
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convenience, for the let and call cases as well. The remainder of
the proof of Theorem 4.7 is detailed but straigntforward.

We need lemmas about J and L, analogous to Lemma 4.3.

Lemma Z_;__E_S_

¥dl d2 n. hgood din & dl ?1 d2 O J(@dl,n) = J(d2,n)
Lemma 4__2

¥ 8l 82 m. lgood §1m & $1 : 2 2 L@l,m) = L(S$2,m)

The proofs are similar to that of Lemma 4.3.

P )

The lemma for the letrec case is:

Lemma 4.10 A~ A
¥VpldndmI. (dyn)x ($,m) D (d,ntl) = (3,m+]l)
where d = d{(n+l)—>(d n) [(pl,n+1) /1]

and ¢

S(m+1)— (8 m) [(C(pl),m+1)/1]]

Proof of Lemma 4.10
We assume that (d,n) ®% (§,m) and prove

(1) J(d,n+l) £ L(§,m+1)
(i1) L(§,m+1) = J(d,n+l)
The proofs of hgood ) (n+l) and lgood § (m+l) are obvious.

Proof of (i)
We prove instead

J EFIX FUNJ & J(d,0+1) € L(&,m+1)

by computation induction on both occurrences of J, recalling
that J = FIX FUNJ.

Assume ~ .
J'c J & J'(d,n+l) £ L($,m+l)

Show
FUNJ J' & J & Vr1°. C(FST(a(rﬂ-l)I’), J’(ﬁ,SND(ﬁ(:H—l)I'))

 rsT(S(m 1)1, L&, (m1)I%))
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The first conjunct is easy,

Case 1° =1

LHS = C(pl),J’(d,n+1)

RHS = C(pl),L(8,m+1)

and the induction hypothesis applies.

LHS C C(FST(d(n+1)I%)), J(&,SND(d(m+1)I%))

C(FST(d n I’
‘= C(FST(d n I’

= J(d,n)I’
RHS = FST(dm I7),

= FST(dm L"),

L(§,m)I’

1)
),

J(d,SND(d n I7))
J(d,SND(d n I°)) by Lemma 4.8
by definition of J
L(§, sa(8m 1))
L(d,SND(§ m I’)) by Lemma 4.9

by definition of L

And we are finished, by the assumption that (d,n) ¥ (S,m). The
We prove instead

proof of (ii) is similar,

L CFIL FONL & L(§,m+1)

Q.E.D.

The lemma for the let case is:

Lemma 4.11

c J(d,n+l)

¥pldnd mI. (d,n)*® (§,m) > (a,n+1) = (§,n+1)

where a

and §

Proof of Lemma 4.11
Assume (d,n) & (S,m).
lgood § (m+l) are obvious

Show

The

d{ (n+1) — (d n) [(pl,n) /1]]

$[(m1) s (§ m) [(C(pl),m)/I]]

proofs of hgood d (mnt+l) and

Vi’. J(d,n+1)1° = LES,m+)I’

Case 1" # I

By Lemma 4.8 and Lemma 4.9 and hgood d n and lgood § m, this

reduces to showing
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Vi‘., J(d,n)I° = L(§,m)L”
which follows from the assumption.

Case I” =1
Likewise, it is sufficient to show

c(pl),J(d,n) = C(pl),LE ,m)

and again, the result follows from the assumption. Q.E.D.

The lemma for the call case is:

Lemma 4.12

VI. (d,n) # ($,m) = (d,n") = (§,m+1)
where n° = SND(d n I)
and § = S[(ml)—§ m’]

where m° = SND(§ m I)

Proof of Lemma 4.12

Assume (d,n) = (§,m). The proofs of hgood d n’ and
lgood & (m+l) are obvious. It 1is easy to show, using the
assumptions and Lemma 4.8 and Lemma 4.9, that for all I’
J(d,n’)I’= L@,m")I’

= FST(Sm” I°), L(8,SND(8 m" 1°)) by definition of L

= FST(S m” I°), L(S,SND(S m” I’)) by Lemma 4.9 and
lgood § m’

= FSTE (mr1)I°), L(3,SND(S(m+1)I%))
since g(nﬂ-l) = & m by definition of §

= L(§,m+1) by definition of L

Q.E.D.

The main theorem requires two more lemmas, about the strictness of

00 and ‘&/m.

Lemma 4.13

¥ q.Runfq] L = L
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Lemma 4.14
¥p.90pf dnl = L

Proofs of Lemma 4.13 and Lemma 4.14
Simple, by induction on ®Rwn and &£, respectively.

For convenience, we define a function & :CONFIG — CONFIG, such

~

that
& (masac') = (m"]-’cg »O)
We also define functionals FUNR and FUND such that

WKun = FIX FUNR

DL = FIX FUND

in the obvious ways. We then prove the main theorem, Theorem 4.7,

by computation induction on Run and B.

As in the proof of the Russell compiler, Chapter 3, we prove
the theorem in two directions, using iterated induction when doing
induction on the low level semantic function, to account for the
fact that each high 1level program 1is compiled into a low level
program with (possibly) more than one instruction. In this case, we

need 2-ary iterated induction on 7%«m ., We prove
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(1) VYpdnd mo, (dyn) 2 (S,m) D
Bmle(p)] (w,8,0) C #m,8, ©[p] d ne>
where §° = 3§

(i) YVpdndmo. (dyn) 2 (S,m) D
tm, &, 2[p] d nob = Run [C(p] (m,$,0)

where &’ §

m
(i) is by 2-ary iterated induction on “Run, and

(ii) is by ordinary induction &.

We prove (i) here, as the proof of (ii) is similar and easier. The
four facts below, which follow from the definition of FUNR, are

helpful. We let r be an arbitrary variable with the type of Run,

Lemmas 4.15

FONR® r [a] (m,§,8) = fm,§,4fa]er  where §" 3 S
FUNR™ r [C(pl)
ﬂ?(pZJ (m,$,0) = FUNRD™L ¢ [p(ijn

(FR* I Je(p1)] (m,8,0))

-1

(w,5,0) = FUR" ¢ [Exir]

n
FUNR r [CALL(I)
EXIT

FoNR Y e featn(n] (m,8,0))

& rur™ T r [cALL (D] (m,§,5))

1]

C(pZ) (msg’c') =

FUNR nr PRENTRY(I,C(pPl))
EXIT

pose™ Y (exir]
-2
Fur” ¢ [c(p2)]
(FNR" £ [PRENTRY(I,C(p1))]

(n,8,0)))
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FUNR "

RECENTRY(I,C(pl))
C(p2)
EXIT

=E&(FUNR ™% [C(p2)]

n—
(FUNR

(m,$,0) =

FUNRD™
( FUNRR™

3

2
r [PRENTRY(I,C(pl))]

(m,8,0)))

(ExiT]

r [c(p2)]

(FUNRPR=2r [RECENTRY(I,C(pl))J

= & (FUNRP %,

(m,$,0)))
[c(p2)]

(FUNRD~2r [RECENTRY(I,C(pl))]

(m,8,5)))

These lemmas unfold FUNR for us, for the various shapes of compiled

programs.

proving

For the proof of the main theorem, iterated

be the formula (i) above.

BASIS1

wll ] R}

BASIS2

w[FUNR L /Run]

w( r/Run}

Ww[FUNR r/Rwunl)

two basis cases, and a step with two hypotheses.

induction entails

We let w

STEP
w[FUNR

The proof of BASIS1 is obvious.

2:/%'1
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for r, and 1 for n. We show that the antecedent of w implies

FUONR L [Cc(p)] (m,$d,9) £ £m,8", &(pJ d no»

where §” 7 &

In the atomic case, both sides are the same. Otherwise, Lemma 4.13
can be used to show that the left hand side is L. .
Proof of Theorem 4.7 (i) STEP

We consider the various cases for p. We assume IH1 and IH2,
and the antecedent of w, namely, (d,n) = (§,m) and show

FUNR °r [C(p)]] (nd,0) & ¢m,§,D[p)ldncs

where &° $

m

-

Case p = "a
Obvious, by the definition of 2.

Case

ﬁé‘lp'm:?naﬁ)?l%zpz)‘ﬂ (FUNR r [c(p1)Y] (m,$,0))

while DIp) d no =2=9[p2] d n (H [pl] d no), so that
RHS = fm,§, & [p2]d n (D [pl] d no )

Applying IH2, we get

FUNR ¢ [c(pl)] (m,8,0) C m,§, &(pl] d no?

where §° = &.

Thus LHS = FUNR r [C(p2)] ¢m,§", Op1] d neb

Case Ppll d no=L
Then by Lemma 4.13, LHS =1, and by Lemma 4.14, RHS =_L.

Case D Ip1ll d no# L

To use the 1induction hypothesis again, we must show that
lgood 8° m and that J(d,n) = L(8‘,m), both of which are easy,
by assumption, and Lemma 4.9. By IH2, again, we have

FUNR r [C(p2)] (m,8, @ [pl] d no) &
tm, ", [p2] d n (D [pI] d no)p where &";,;1 &

and since " 5 § 5 S, this is enough.
Lemma 4.10, Lemma 4.1l and Lemma 4.12 are used in the remaining

170



three cases.

Case p = ‘call 1

ety

LHS = & (FUNR r [caLL(D) (m,$,o))
= &(r ) @1,8,0)

where (q",n°) = 3 m I
and § = S[(m1)— § m’]
wnile @fcall 1J]dn = ©[p°] d n° where (p°,n°) =dn I,
so RHS = {m,4 , D[p’] d n'c$
By the fact that J(d,n) = L(d',m), we know that q" = C(p"). We
can then use Lemma 4.12, which allows us to apply the induction
hypothesis (IHl, this time), to get
r lep)] (w1,8,0) & kw1, @[] d 0o
Wh " -

ere § ol
case D[p’J dn’ o =L
Then LHS = RHS = L (see Note L)

Case Ofp’] d n" o = L
LHS © (m,8", ©[p'J d n’ o), by the definition of &, and

RHS = (m,&” g[p':u d nl O'). Since 8“ = §= 80 = 8’
we are finished. m+l m m

Case p = ’Lt:—.t_LiE.Li_r.l. 2
LHS = & (FUNR r C(pZ)IE—(FUNR r [PRENTRY(I,C(p1))] (m,$,0)))

= & (FONR r LC(p2)] (m+1,8,0))
with g as in Lemma 4.11, while
RHS = m,§, &[p2] d (n+l) %
where d is as in Lemma 4.11, and §° s J.

Using Lemma 4.l1, we can apply the induction hypothesis, IH2,
to obtain - -

FONR r [c(p2d (m+1,8,0) C  &m+l,$", © [p2Jd (n+l) o »

where §" &

S.
Case D [p2] d (e+tl) o = +
LHS = RHS = L
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Case D[p2] d (n+l)o # L

LES £ (m, 3", .@I[pzmﬁi(ml)zr), so by definition of & and

and the fact that 8" = 3 =&, we are finished.
m+tl m

Case p = Metrec I =plin gi'

The proof is much the same as the let proof, using Lemma 4&.10.
" We omit it.

The proof of (ii) is similar to the proof of (i), using
ordinary rather than iterated induction. This completes the
equivalence proof of & and #wn. Q.E.D.

Summary

This completes the sequence of proofs relating Xﬂ, a standard

denotational semantics for a block structured high level language,

to Run, a stack implementation of an assembly-like language, into
which the high 1level language is compiled. The stages into which

the compilation and proof have been divided include é;, a closure

semantics, and %, an abstract stack semantics, both for the high

level language. The types of the semantic functions are:

25 :HPROGRAM — HENV —> STORE —> STORE
where P €HENV = ID —> STORE —> STORE
é;:ﬂPROGLMd——% HCENV —> STORE-—> STORE
where v € HCENV = ID —;9 (HPROGRAM x HCENV)
& :HPROGRAM —> HAS —> INT —— STORE —> STORE
where d € HAS = INT —> DENV

where DENV = ID —> (HPROGRAM X INT)

#un: LPROGRAM —> CONFIG —> CONFIG

where CONFIG = INT x LAS X STORE
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where § € LAS = INT —3 [LENV

where LENV = ID —— (LPROGRAM x INT)

The relations between the levels are:

From &4 to & : -
p~ v iff ¥YI.pI= Blcall 1] v

From & to ©
v # (d,n) iff v = H(d,n) & hgood d n

where H = FIX(AH’ (d,n) I.FST(d n I), H"(d,SND(d n I)))

From £ to Run:
(d,n) # (&,m) iff J(d,n) = L@ ,m) &

hgood d n & 1lgood § m

where J = FIX(AJ’ (d,n) I.C(FST(d n I)), J°(d,SND(d n I)))
and L = FIX(AL® (§,m) I. FST(§ m I), L"(8,SND(S m I)))
and hgood d n  iff ¥YIn’. n"$n D SND(dn” I) £ n

and 1good § m iff VIm'. o S m D sND(@@ m’ I)S o

The three theorems are:

Theorem 4.1 -
Yppv.p~v D Slplp = S[plv

By structural induction on p, with an inner (parallel)
computation induction in the letrec case.

Theorem 4.6
vp

<

n.ve(dyn) © S[Iplv = DBfp]dn

By parallel computation induction on & and ®. A separate
lemma (Lemma 4.5) is required for the letrec case:
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Lemma 4.5

e ———

¥Vplvdn. v= (d,n) > v o= (3,n+l)

where ¥ and (d,n+l) are, respectively, the contexts in which
the recursive declarations have been made. The proof of the
lemma is in two directions, 71 by computation induction on H.

Theorem 4.7

vpd nd mo. (d,n) # (S,m) >
R [C(P)‘ﬂ (m)S,S) = km, & s D [P] d no>

where §° $

m

By computation induction on Rum and ©, in tw directions.
In inducting on YRun, we use 2-ary iterated induction. A

separate induction is required for the letrec case (Lemma
4,10).

Lemma 4.10

¥pl dn $m. (d,n) ®# (§,m) D (d,n+l) = (§,m+1)

where (3,n+1) and (§ ,0+1) are the respective contexts in which
recursive procedures and the compiled images of recursive
procedures have been declared. The proof is in two directions
by computation induction on J and L respectively.

The major complications in the proof occur at the following

points in the transition:

yf

representing
recursive

procedures as
texts

fixed point

modelling
recursive
elation

recursive
elations,

2 um

f
- ' f

%

Representing procedure values as texts is straightforward in this

case.

The heart of the proof, in a sense, is in the transition from
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}3' to &, as this stage involves the essential change from a
fixed point semantics for recursive procedures to a ‘knotted' one.
We manage to avoid the use of recursively defined relations in the
two instances indicated by constructing well-defined non-recursive
ones which satisfy the desired recursive properties. ‘Incompatible’
pairs of semantics, in the process, are related by the use of
‘abstracting® functions (H,J and L). Compilation appears to offer
no special difficulties in this proof, aside from technical ones
(the need for iterated induction, and the use of strict tripling in

the statement of equivalence).

Speculations on Performing the Proof in LCF

As we indicated at the outset, the emphasis in the work
described in cthis chapter has been to develop theories which could
be formalised and proofs which could be generated in LCF. Although
we have not in fact done the proofs mechanically, the successful
machine proof effort described in Chapter 3, the informal proofs
sketched in this chapter, and the remarks below lead us to believe

that a machine proof would be a feasible undertaking.

Theory Structure for the Proofs

The proof effort would proceed in much the same way as the
previous one; we would construct a network of LCF theories in which
to work, including a theory of the syntax common to the high and low

level languages (e.g. atomic statements), and theories of the high

175



and low level syntax; theories of the shared semantics, and of the
semantics .o, £, O, and Ren; a compiler theory; and a theory
of equivalence. We would also require a theory of natural numbers
(as in Chapter 2, but with the additional constant £ , and relevant
axioms). A polymorphic theory of function extension (as in Chapter
3) would be useful for reasoning about extensions to high and low
level activation stacks, and to environments of various sorts.

The network of theories for the proof might be:

theory of
shared syntax

theory g% high theory of heory of low theory of
(level syntax ] Lhared semantlcg] level syntax numbers
-and-
theory of function
ext?fsion =

compilerf | __ ~

theory |
letheoryl & theory %mtheoryl
P A
equivalence
- theory

The theories of function extension and of numbers are quite
independent from the compiler problem; the others are specific to
it.

The theory of high level syntax would inherit the new types 1ID
(for identifiers) and A (for atoms) from the theory of shared
syntax, and would include the new recursive type HPROGRAM, defined
by two new constants:

ABSHPROGRAM: (ATOM u + CALL u + LET u + LETREC u + SEQUENCE u)
—> HPROGRAM
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REPHPROGRAM: HPROGRAM —
(ATOM u + CALL u 4+ LET u + LETREC u + SEQUENCE u)

The other types are defined as

CALL = ID
LET = ID * HPROGRAM * HPROGRAM
LETREC = ID x HPROGRAM * HPROGRAM

SEQUENCE = HPROGRAM * HPROGRAM

and axioms would be added about the representation and abstraction

functions:

Ve REPHPROGRAM(ABSHPROGRAM d)

i
R

F‘Vp. ABSHPROHRAM(REPHPROGRAM p)

1
o

Other new constants would include:

mkcall:CALL —> HPROGRAM
destcall:HPROGRAM — CALL
iscall:HPROGRAM —= tr

callidof:CALL —> 1ID

with axioms

- mkcall = ABSHPROGRAM o INR o INL o UP
|- destcall = DOWN o OUTL o OUTR o REPHPROGRAM
- 1iscall = 1ISL o OUTR o REPHPROGRAM

Yc. callid ¢ = ¢

The theory of &, for example, would have as parents the theories

of high level syntax, shared semantics and function extension,
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inheriting from the second the type STORE and from the third, the
constant extend. High level closure environments would be

introduced as a new recursive type, defined by two new constants:

ABSHCENV: (ID —> (HPROGRAM X HCENV)) —> HCENV

REPHCENV: HCENV —— (ID —> (HPROGRAM x HCENV))
which are axiomatised by:

4, REPHCENV(ABSHCENV )

(i}
&

M. ABSHCENV(REPHCENV v) = v

We would introduce a constant for the semantic function:

& :HPROGRAM —> HCENV —> STORE —> STORE

and an axiom defining it, of the form

4 = rixxd pv. .. = ... |
vee D ool |
iscall p » J° (FST{(REPHCENV v)
(callidof(destcall p))))
(SND((REPHCENV v)
(callidof(destcall p)))) |
P
A

(where we have shown only the call case). From this we can easily
prove facts of the following form, which we would then store in the
theory:
- 3 (akcall 1) v = & (FST((REPHCENV v)I))
(SND((REPHCENV v)I))

and similarly for the other cases. Having both formulations allows

us to use computational or structural induction as necessary.
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Tactics for the Proofs

By examining the patterns of inference which occur in the
informal proofs, it is possible to suggest tactics to assist in
generating the proof mechanically. Aside from tactics discussed in
the previous chapters, the following reflect the main patterns of
reasoning in the three proofs discussed in this chapter (and the
various lemmas). The proofs, of course, would be performed in the
equivalence theory, so that all types, constants, axioms and
theorems from the other theories were available.

Firstly, we require a tactic, IMPTAC, for proving goals whose
formulae are implications by assuming the antecendent and returning

the consequent as a subgoal:

IMPTAC

(W]. IMP w2, ss, A)

(w2, ss, wl.A)

The proof part would use the PPLAMBDA inference rule DISCH (see
[15], A5) to discharge the extra hypothesis of the theorem achieving
the subgoal. This tactic would be of use, for example, in proving

Lemma 4.2, the step of Theorem 4.1, BASIS2 and the STEP of Theorem

4.7, and several other theorems in this chapter. Some calls of
IMPTAC would have ¢to be followed by applications of CONJASSUMPTAC

(Chapter 2, p. 8l), as the antecedents are conjunctions; for

example, Lemma 4.4:

ve(d,m) & wm<nrl D vi(pl,H(d,m))/I] = (d,n+l)

179



A tactic for induction, simpler than the standard INDUCTAC, is

useful; for example, to prove the letrec case of Theorem 4.1, we

must show that

Slp2] (FIX(A 9" . pl & [pl] p"/11)) =
S [p2] (FIX(A V. vI(pl,v*)/1]))

and so would like

SIMPLEINDUCTAC

w[(FIX funi) /fi]
ss
A

wlL /fi]
ss
A J

[wl (funi £1°)/£i}]
SS

(wlfi* /£i])
A

o

which, unlike the standard tactic, would not take recursive function
definitions as parameters, or finish by substituting according to
those definitions.

In several instances, for example Theorem 4.6, Wwe must prove
implications by induction, so that in the course of the proofs, the
induction hypotheses can be instantiated to arbitrary variables for
which the antecedents hold. 1In these cases, IMPTAC is not adequate.
Instead, we must do induction (of the appropriate sort) on a formula
which is an implication. When we wish to apply the induction

hypothesis, we write and call the following tactic:
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USEIMPASSUMPTAC

wl’
ss

Yxl...xn. w IMP wl

—J

(W

S8

LVxl...xn. w IMP wl

1

where wl, with some instantiations, matches wl’, and w* is w with

these instantiations. The proof part is similar to that of

USEASSUMPTAC (Chapter 2, p. 48), except that here, the inference

rule expressing Modus Ponens (called MP, see [15], A5) is used to

obtain the theorem achieving the goal. Where necessary we would

also use
USEIMPASSUMPLHSTAC
(t1’ € &3’ )
ss

¥xl...xn., w IMP tl1 € t2

t2’ € t3’
ss
as above

’

W
ss
(as above)

where EZ' is t2 with the instantiations for xl,...,xn determined by

matching tl to tl”, and w is w with the same instantiations made.

That is, USEIMPASSUMPLHSTAC is like USEASSUMPLHSTAC (Chapter 2, p.

68) except that the assumption to be used is conditionalised on some
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formula. That formula, appropriately instantiated, is returned as
part of a subgoal. The intermediate subgoal whose formula is
t2° = t3° is also returned as a subgoal. In the proof, the formula
(the implication Vxl...xn. w IMP tl £ t2) is assumed, and then
specialised to the match; then the PPLAMBDA inference rule MP is
applied to the result and the theorem achieving the second subgoal.
Transitivity is applied to the result of that and the theorem

achieving the first subgoal.

One would also want the dual tactic, USEIMPASSUMPRHSTAC, whose
definition is analogous.

Abther important pattern of inference in the proofs occurs, for
example, in the proofs of Lemma 4.5 and Lemma 4.10. 1In both
situations we would first apply SYNTHTAC (Chapter 2, p. 6l) to
obtain two subgoals, and then apply (for Lemma 4.5, to the second
subgoal thereby obtained, and for Lemma 4.10, to both subgoals) a
tactic based on the following derived rule of inference:

FIXPTRULE
CEY¥E

wiL/ft [wi £ FIX FUN ] b w[(FoN £ )/fl

F_ w[ (FIX FUN)/f}]

(This corresponds to the informal induction rule discussed 1in Note

3.) The tactic which inverts it is:
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FIXPTTAC (}-f = FIX FUN)

(w, ss, A)

wliL /f]
ss
A

—e

(W[ (FUN £°)/f} ]
ss

£ © FIX FUN
wlE /£]

A

The rule FIXPTRULE conceals an ordinary induction on £ in the

formula
fC FIXFUN & w(f/€]

The proof of the basis case is obvious. The first conjunct of the

step depends on the fact that

FIX FUN = FUN (FIX FUN)

L

which is expressed by the PPLAMBDA rule FIXPT (see [15], AS5). The
second conjunct of the step is returned as a subgoal by FIXPTTAC.
The proof part of the tactic calls FIKPTRULE.5

A related rule and tactic (as suggested by the alternative

proof of Theorem 4.1 (see Note 2.) are FIXFUNRULE and FIXFUNTAC:

F IXFUNRULE
Ce7€7] , )
wl/f] [w £ = FON £ 1 |} w[(FUN f)/f}

b w[ (FIX FUN)/f}
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FIXFUNTAC (F—f = FIX FUN)

(w, ss, A)

wl L /f}
ss

A

(W[ (FUN £°)/fl
S8

f° = FUN £
w( " /£)

LA

In the rule, INDUCT is called on f, in the formula

fCFUNE£ & wieve]

The proof part of the tactic calls the rule.

Another tactic related to FIXPTTAC, useful for proving Lemma

4.5 (1), is:

—— ——

LFPTAC (}-£f = FIX FUN)

I

(f &g, ss, A)

!

(g =FUN g, ss, A)

LFPTAC, for least fixed point tactic, proves f £ g by showing that g

is a fixed point of FUN, and is therefore greater than the least

fixed point of FUN, which is f. The proof part of LFPTAC does

induction on x in the formula x = g, proving the basis case

internally, and proving the step by assuming that x = g, applying

FUN to both sides to get FUN x & FUN g, and using induction to

conclude that FIX FUNc g, that is, £ & g. This tactic 1is often

useful.
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The tactics MINFIXTAC (Chapter 2, p. 68), UNFOLDTAC (Chapter

2, p. 64), FIXPTTAC, FIXFUNTAC and LFPTAC belong to a class of

tactics which use properties of the least fixed point operator to

divide goals into subgoals. They reflect various ways of reasoning
about recursively defined functions.

' Another useful tactic for these proofs is IDCASESTAC, similar

to NATCASESTAC (Chapter 2, p. 80), for performing case analysis on

the equality of two identifiers (which it finds) in a formula:

IDCASESTAC

(wlI/el)[3/e2))
sSs
A B

(wlI/t1][J/e2)

EQI J =TT) + ss
EQI J= TIT

A J

(wlI/el][J/e2)
(EQI J =FF) + ss
EQ I J= FF

A J

(w[I/t1])[J/c2)
(EQI J= L) + ss
EQIL J= 1L

A

This is used in numerous places in the proofs.6
A tactic (HINDUCTAC) and a tactic (HCASESTAC), to do induction
and case analysis, respectively, on the structure of high level

programs, analogous to those suggested in Chapter 3, could be

written in ML. They are depicted as:
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HINDUCTAC

(W’ ss, A)

wlL /pl (wllet T = pl in p2/p}
58S ss o
A wipl/pl
wip2/pl
\A_
wla/pl wlletrec I = pl in p2/p} |
sS ss =
A ] wipl/pl
wlp2/pl
A J
wlcall I/p} ) (wipl;p2/pl
sS ss
A B wlpl/pl
wip2/pl
A _

The cases tactic required is

HCASESTAC

(w, ss, A)
(w2 /pl wilet I = pl in p2/pl

SS SS
LA J A J
(wia/pl (wlletrec I = pl in p2/pl |
SS SS

A J A

(wlcall I/p] | (wipl;p2/pl

SS sSs

A ] A

which is similar to the induction tactic, but does not add induction

hypotheses to the

subgoals. These

tactics are derived from the

(obvious) derived rules HINDUCT and HCASES, respectively.
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We would expect the composite tactics required for the theorems
and lemmas in this chapter to be similar to those used in Chapter 3.
For example, a tactic which reflects the informal proof of Theorem
4.11 would begin with SYNTHTAC (like the tactic for proving Theorem
3.1 b) to produce subgoals for the two directions. For the easy

direction, we would then apply

(INDUCTAC [thRw-])+
GENTAC*

IMPTAC

IMPCONJTAC
HCASESTAC+
USEIMPASSUMPLHSTAC+
CONDCASESTAC+
USEIMPASSUMPLHSTAC+

where th®un is the theorem defining 7w as the least fixed point
of FUNR. Aside from the addition of IMPTAC and IMPCONJTAC (since we
are dealing with an implicative formula) and the associated use of
USEIMPASSUMPLHSTAC rather than USEASSUMPLHSTAC, the tactic has much
the same shape as the previous COMPILERTAC. Of course, this is not
altogether surprising, as many proofs are done by induction,
specification, case analysis and use of induction hypothesis, but it

is reassuring.

Armed with this set of tactics, as well as those already
derived in other chapters, it would appear that the proofs in this
chapter could be performed in LCF without great difficulty. A minor
problem 1is that one cannot use predicate constants or variables
within PPLAMBDA (as one can use function constants or variables), so
that the predicates and relations such as ~ , =~ and % (and, in

turn, hgood and lgood) would have to appear as the formulae they
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abbreviate. This produces rather cumbersome goals and theorems.
Nonetheless, we conjecture that the proofs in this chapter could be
generated in LCF with a certain investment of effort in the
programming of tactics and the formulation of theories, as sketched
here. Our optimism 3js based on the successful generation of the
proof of the Russell compiler, and on the speculations in this
section. We intend to undertake the proof effort and present the

results in subsequent reports.
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Notes for Chapter 4

1. In [25], Milne extensively treats a sequence of increasingly
concrete semantics for a language called Sal, and a low level
language, Sam, into which Sal programs are compiled. Our Rewrw
corresponds, in level of abstractness, roughly to his stack
semantics. Further on in the sequence are ‘consecution' and pointer
semantics. Eventually, all functional (infinite) objects are
replaced by integers or other concrete objects. In regard to
modelling displays, Milne proposes (ibid., p. 729) a model in which
displays represent static chains. In [24] he discusses the
representation of identifiers in a low level language, as integer
offsets, and integers as numerals. He also gives a treatment of
procedure invocations as jumps [24].

More concrete models of implementations have also been
discussed by Aiello, Aiello and Weyhrauch [l], 1n the context of a
model, in Stanford LCF, of the implementation of a subset of PASCAL.
In this work, they formalise and reason about the notion of frames
(activation records) in which control and access links (dynamic and
static 1links) and binding information for local variables, is
represented. Finally, Newey [38] has worked on the problem of
modelling an assembly language and register machine in an LCF-like
setting.

2. Alternatively, the proof of _jé to = can be done by
computation induction on & and <. The proof is complicated by
the occurence of one of the induction variables (.4 ) in the
antecedent of the formula to be proved: '

YI.pI & Jfcall IJv D AEP]FE S bl v

As a result, we prove the theorem as a pair of inequivalences, where
= FIX FUNS :

(Hvi.p1 c Slcatr 1Jv > Splp & v
(v I, Sleall 1Iv € p 1 &
SLE g D F [p]v ¢ JLplp

(1) is by computation induction on . (ii) is by appeal to the
following rule of induction:

wll /f] & ((w & f Efun £f) 2 wl(fun £)/f]) D

w[ (FIX fun) /f]
To show that the rule is valid, we do induction on all three
occurrences of £ in the formula

w & f G-fuL f
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f & fun f implies that fun f S fun fun f, and the rest is
straightforward. To do the proof using the new induction rule:

Assume

VI. Jlall Ilv c p 1 > J'[p]v E JIr]e

Assu@_g
g' C FUNZ ,J ‘

Assume _
vI. FUNJ S°fcall I]v & p I

that is,
¥I. & [FST(v D] (s8p(v ) € p I

show
FONS & [pIv e S[p]p

for the various cases of p.
For example, if p = Met 1 = pl in pi , Wwe must show
S b2]v & S [p2]5

where P and ¥ are FIX ® and FIX U, as in the structural
induction proof. This, in turn, requires that .

vi‘, 4° feall 1']% £ B I
By the assumptiom, it is sufficient to show that
FUNS &4°Jcall 1] v £ § 1°

that is, a .
&S [FST(¥ 1)) (SND(V I°)) & p I’

Where I # I’, the third assumption is used. Where I = I’, we
must show that

S ilve LIp1lp

which requires, in order to use the induction hypothesis, that
Vi, Sfall 1) v = p T

The second and third assumptions imply this.

For p = Tcall I', we must show that

FONE  J[call I] v € .Sfecall 1]p

that is, ‘
3 [FsT(v 1] (s8p(v I E p I
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and this follows by the third assumption. The letrec case is
done by an inner induction. The other cases are
straightforward.
Intuitively, the extra clause is needed to relate 4 to & , in
which there is a ‘hidden' occurrence of .. This explains the
presence of J in the relation between high level environments and
closure environments. The extra clause,

4 = FNT &

allows us to use the induction hypothesis during the proof. For
related discussion, see Notes 3. and 5. below, and the
Conclusions.

3. Instead of proving (ii) by induction on H in a formula which is
a conjunction, we can appeal to a rule of induction similar to that
mentioned in Note 2.:

wll /f] & ((w & fS FIX fun) > w[(fun £)/f}) D
w[ (FIX fun) /f]

See also p. 182.

4. This requires that L -1 = 4.,

5. The use of the derived rule of induction and the corresponding
tactic is a more elegant way of accomplishing the proofs than the
technique (employed in the informal proofs of Lemma 4.5 and Lemma
4.10) of proving a conjunction, the first conjunct of which is a
formula of the form

f S FIX FUN

by induction. The use of the derived rule, FIXPTRULE, saves us
having to explicitly prove that conjunct each time this method of
proof is used. In addition, it makes a more concise composite
tactic; were we to prove a conjunction, we would first have to write
a tactic (FIXPTTACl) to produce a subgoal whose formula was a
conjunction, from the original goal:

FIXPTTACl (}-f = FIX FUN)

(w, ss, A)

fc FIXFUN & w
Ss
A

We would then follow the application of FIXPTTACl by the application
of:
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(INDUCTAC [FHf = FIX FUN])+
CONJASSUMPTAC
CONJTAC

This separates the conjunctive assumption put into the assumption
list into two assumptions, and separates the subgoal into the main
subgoal, and the other, whose formula is

FUN £ £ FIX FUN

for arbitrary f°. We would then write a tactic, FIXPTTAC2, say, to
inspect the assumption list, discover the assumption

f’ € FIX FUN
and add to the list the assumption

FUN £° C FIX FUN

Its proof part would use the rule FIXPT. Finally, we would call
USFEASSUMPLHSTAC+ to use the newly added assumption, and we would be
left with the main subgoal. Although the effect is the same, a
single call of FIXPTTAC is clearly a more palatable solution.

6. Just as NATCASESTAC is intended to be used in a theory in
which the type nat exists, IDCASESTAC is meant to be used where the
type ID exists., It is also to be used in theories of which equality
is a parent, as the constant EQ is mentioned.
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Conclusions

Note on Computational and Structural Induction

We have deferred, until all of the proofs have been presented,

a discussion of the relation between computational and structural

induction; we have used both, at various junctures in the proofs.

As we have remarked, structural induction can be viewed as

concealing a computation induction on a ‘copying’ function. Where a

computation does not follow the well-founded structure of its

argument, but rather, ‘re-enters' the argument (e.g. when
g g

traversing knotted structures), computation induction is what is

needed. Where the structure of a computation does match the

structure of the argument, computation induction on the function

involved, and structural induction on the argument produce much the

same proofs, and the latter seems more natural. Structural

induction is neater when the formula to be proved is an implication

whose antecedent contains an occurrence of what would otherwise be

an induction variable; for example, the statement of equivalence of

4 and 25:

Vi.p 1 = ZAlean1v 2 J0Jp = ShIv

For further discussion of this point, see Chapter 4, Note 2.

Structural induction also seems more natural when we are

considering the relation between two functions which unfold at

different rates; for example, lsem and hsem, in Chapter 3. In that

instance one can avoid using iterated computation induction, and

proving a palr of inequivalences at the top level, by inducting on

the structure of high 1level programs rather than on the semantic
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functions. However, in this case, the structural induction proof
requires an inner computation induction (for the while construct)
which itself mirrors the computation induction proof. (For further
discussion, see Chapter 3, Note 3.) We would also expect this to
apply to the ® to Rwn proof in Chapter 4; however, the semantics
of the call case makes formulation of the appropriate rule of
structural induction difficult. The natural rule (to which we

appealed, for example, in the proof of Theorem 4.1) is:

et

wli /pl &
wla/pl &
¥Y1. wlcall I/p] &
vpl p2. (wlpl/pl & wl[p2/pl @
¥I. wilet I = pl in p2/p} &

wlletrec I = 3
letrec I =p) in p2/p] &
wipl;p2/pl ) =
Yp. w
That is, the undefined, atomic and call cases are the basis cases,
and the let, letrec and sequencing cases are the steps. However, in
the ) to © and the H to Run proofs, the call semantics

require that the call construct be treated as an inductive step

rather than as a basis case. That is,

In & : )3[[93]_.} v = /gﬂjp']} v’ where (p”,v’)

In O : D lcall IJd n" = f)[[p'ﬂ d” n where (p°,n")

n
<
—

|
[a N
=]
r~

In both cases, in proofs by computation induction, we may
instantiate the induction hypothesis to p° in order to reason about
Z [p’]] v’ or /@[p'] dn’. In proofs by structural induction,
assumptions about subprograms pl and p2 are of no assistance in

reasoning about of ([p':[]v' or ﬁ[p'ﬂ d n’. In the £ to &
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proof, on the other hand, in which
In & : dfcall I]p =r¢1

there is no recursive call of the semantic function, and structural
rather than computation induction can be employed.
To derive the above rule of structural induction for programs

of type HPROGRAM, we define a function (pcopy, say) of type

HPROGRAM — HPROGRAM to be the least fixed point of a functional

(pcopyfun) where

pcopyfun = A pcopy p.
p = ra"=; ra‘l l
p= Tcall I’ » call I' |
p= flet I =pl in p2' =
, "let I = pcopy pl in pcopy p2’ |
p = 'letrec I = pl in p2’ =

Tletrec I = pcopy pl in pcopy pZ' |
p= "pl;p2’ = -
‘pcopy plipcopy p2' | L

pcopy returns the well-founded part of high level programs. We make

the assumption that
¥p. pcopy p = p

This axiom aserts that every program is the limit of its

approximants, i.e.

p = |Jpcopyfun®™ 1 »p

We then do computation induction on the function pcopy in the new

formula w, where w = wlpcopy p/pl. That is, we prove from the

basis and step of the structural induction rule

195



w' (L /pcopyl

and

w’ [pcopy” /pcopyl = w’ [pcopyfun pcopy’ /pcopyl

and conclude, by normal computation induction, that

w” [FIX pcopyfun/pcopyl

that is,

w” [pcopy/pcopyl

which is

w(pcopy p/pl

But since we assumed that pcopy p = p, this proves the conclusion of
the rule of structural induction.
Another example of a derived induction rule, ITINDUCT, is

described in Chapter 3, and in the Appendix.

General Conclusions

In the preceding chapters, we have given accounts of two actual
(and one hypothetical) ,case studies 1in the generation of formal
proofs by the design and application of tactics. These tactics were
composed (by the use of tacticals) from standard tactics and from a

body of tactics which we derived.
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The derived tactics can be divided into several (mot entirely

disjoint) classes. The simplest are ones which invert standard or

derived rules of inference, or whose proof functions evaluate short

forward inferences. The first class of tactics includes the

following, where we distinguish the tactics we have actually

implemented in ML from those merely specified in this presentation,

by enclosing the latter in parentheses. The tactics are listed with

the location in the text of their main appearance.

BOTREFLTAC Ch. 1 p. 36
MINCOMBTAC Ch. 1 p. 35
CONJTAC Ch. 2 p. 80
EXTTAC Ch. 2 p. 63
LAMGENTAC Ch. 3 p. 128
COMBTAC Ch. 3 p. 128
IMPTAC Ch. 4 p. 179 -
SYNTHTAC Ch. 2 p. 61
BYTAC Ch. 2 p. 60
(FIXPTTAC) Ch. 4 p. 183

The members of the second class of tactics all use properties of the

least fixed point operator in producing subgoals from goals. One

can view the tactics in this class as part of a theory of FIX, The

proof parts of these tactics rely on standard and derived rules

about FIX, including INDUCT. The class includes:

MINF IXTAC Ch. 2 p. 62

UNFOLDTAC Ch. 2 p. 64
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UNFOLDOCCSTAC Ch. 2 p. 64

(UNFOLDCHOOSETAC) Ch. 2 p. 84

(FIXPTTAC) Ch. 4 p. 183
(FIXFUNTAC) Ch. 4 p. 184
(LFPTAC) Ch. 4 p. 184

The tactics in the next class have the common property that they use
current assumptions (formulae in the assumption lists of goals) in
order to advance proofs. 1In some cases, the use of assumptions is
achieved by recognising tautologies (e. g. USEASSUMPTAC). 1In
others, it is achieved by inspecting and supplementing the list of
assumptioas, and justifying the additions with appropriate proofs
(e.g. CONJASSUMPTAC and FIXPTTAC). Still other tactics in the
class use assumptions by proposing intermediate subgoals whose
achievements are to be combined (in ways specified by the tactics)
with certain of the assumptions in the assumption lists (e.g.
USEASSUMPLHSTAC) . For all of the tactics in this class, the proof

parts evaluate fairly short forward proofs. They include:

USEASSUMPTAC Ch. 2 p. 48
USEASSUMPRHSTAC Ch. 2 p. 67
USEASSUMPLHSTAC Ch. 2 p. 68

(USEASSUMPCHOOSETAC) Ch. 2 p. 83
CONJASSUMPTAC Ch. 2 p. 81
(USEIMPASSUMPTAC) Ch. 4 p. 181
(USEIMPASSUMPRHSTAC) Ch. 4 p. 181
(USEIMPASSUMPLHSTAC) Ch. 4 p. 182
(FIXPTTAC) Ch. 4 p. 183
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Further research suggests itself in this area., USEASSUMPLHSTAC and
the rest begin to cope with the problem of reasoning about
inequivalences, something which is often necessary, since
equivalences are frequently proved by different methods in the two
directions. Much more work remains be done on using inequivalences
in proofs.

A related class of tactics can be envisioned which control
simplification in proofs. We have used one tactic of this sort,
namely TEMPSIMPTAC, in Chapter 3, p. 127, which uses a theorem as a
simprule for one round of simplification, but does not deposit the
theorem in the simpsets of ensuing subgoals. One is likely to need
other tactics of this genre in more complex proof efforts.

Finally, one can define a class of tactics which invert rules

that are derived from the basic PPLAMBDA rules INDUCT and CASES:

NATCASESTAC Ch. 2 p. 80
(IDCASESTAC) Ch. 4 p. 185
(HCASESTAC) Ch. 3 p.l2l

(HCASESTAC) Ch. 4 p. 186
(HINDUCTAC) Ch. 3 p. 136
(HINDUCTAC) Ch. 4 p. 186
ITINDUCTAC Ch. 3 p. 125

(INDUCTCHOOSETAC) Ch. 2 p. 83

(SIMPLEINDUCTAC) Ch. 4 p. 180

The proof parts of the derived induction tactics (i.e. the rules
upon which the tactics are based) construct new bases and steps from

achievements of the subgoals (and other proved facts), and call
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INDUCT. The derivations of structural induction from INDUCT, for
various recursively defined structures, follow the same pattern as
sketched for HINDUCT (in the previous section), and one can envision
an ML procedure to automatically derive the rules from the
gspecifications of the domains involved. The same remarks apply to
the “structural cases' rules, HCASES, etc., which can be regarded as
induction rules without induction‘hypotheses.

From the various standard and derived tactics, we have composed
several larger tactics, including some to solve parts of the schema
problems, and some to perform parts of the correctness proof of the
Russell compiler. For example, the following composite tactics
perform the proofs of Theorem 2.5 (Chapter 2, p. 52), and the step

of difficult half of the compiler proof, Theorem 3.1b (Chapter 3, p.

99), respectively:

TACL3 Ch. 2 p. 68

(MINFIXTAC £hG)+
EXTTAC+

(INDUCTAC [thF])+
GENTAC*

(UNFOLDOCCSTAC 2 thFl)+
(CONDCASESTAC+) *
(USEASSUMPRHSTAC+) *

COMPILERTAC Ch. 3 p. 131

(ITINDUCTAC AXlsem 4)+

GENTAC

TEMPSIMPTAC AXLSEM

TEMPSIMPTAC thhsem

HCASESTAC+

(USEASSUMPRHSTAC ORELSE (COMBTAC ORELSE LAMGENTAC ORELSE
CONDCASESTAC) +) *

It is perhaps surprising that the small set of standard tacticals
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(in conjunction with the ML failure~trapping mechanism) is adequate
as a control structure for these complex proof efforts; in fact,
THEN and REPEAT account for most of the uses of tacticals we have
made. One might have been expected to need a richer language of
tacticals, or more subtle ones. It is less surprising, though, in
light of our methodology and objectives. Firstly, the structure of
the proofs performed was determined by examination of the informal
proofs prior to the formalisation of the problems. (One could
perhaps call this activity checking of informal proofs, as well as
generation of formal proofs by tactics.) As the composite tactics
reflect the patterns of inference of the informal proofs, we have
tended to anticipate the sequence (or tree) of subgoals, and so not
rely, except 1in after-the-fact generalisations (such as SCHEMATAC,
Ch. 2, p. 86) on the tactical ORELSE, or on more complex derived
tacticals which would examine alternatives, or backtrack.

Secondly, as we have not addressed issues in automatic theorem
proving (such as automatic generalisation of goals, strengthening of
induction hypotheses, or discovery of lemmas), but have instead
provided the difficult insights before embarking on the machine
generated proofs, we have avoided having to write tactics which
would naturally require more sophisticated control structures (i.e.
more sophisticated tacticals). Possibly, it 1is simply naive to
expect that tactics can be designed to solve goals for which the
informal proofs are not, at least in outline, understood in advance.
Quite aside from the inefficiency of searching for proofs, it may be
that there are just too many fine points to be considered in the
proof process for this to work. Nonetheless, further case studies
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and analyses of tactics are 1likely to reveal new tactics and
tacticals which require less planning in advance on behalf of the
user.

It would also be desirable to research an intermediate level of

tactics, tactics wmidway in complexity between the derived tactics
discussed in the preceding chapters and the composite tactics which
solve our goals in one application. We would like to investigate
further a level of conceptually coherent tactics which do parts of
the proofs; ENDTAC (Chapter 3, p. 129) is a possible example of the
level sought.

In addition to designing composite tactics for solving various
classes of problems, we have begun to develop a methodology for
tactical proof. In both case studies, we commenced the proof
efforts by building theories, or networks of theories. In the
schema proofs, we required theories of the new data types (lists and
integers), and so extended PPLAMBDA by introducing and axiomatising
the new types and constants. In the Russell compiler proof, we
needed a rather more elaborate structure of theories to represent
the syntax and semantics of the languages involved, and to express
the compiling algorithm. PPLAMBDA was supplemented by a large set
of new types, constants and axioms, organised in a hierarchy of
theories.

In the (networks of) theories, we then developed structures of
lemmas, In the schema proofs, for example, we generalised the
original goals, and proposed several subgoals; some of the theorems
achieving the subgoals were used as simplification rules in proving
the original goals. In the compiler proof, we found it convenient
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and efficient to prove several layers of lemmas before embarking on
the main goals. Each layer formed simplification rules for the next
layer. Often, the lemmas were proved just by simplification.

We observed, after examining the tactics which generated the
schema pro&fs, that the proofs could have been made more automatic
(and the tactics more concise) by leaving more of the proofs to
simplification; that is, by carefully selecting lemmas to be used as
simplification rules, so that the proofs could, to a greater extent,
be driven by simplification. This methodology was explored further
in the compiler proof effort in Chapter 3. The proof which we
actually performed in LCF relied for its control structure on a
sequence of user-specified substitutions and unfoldings, but as the
analysis in Chapter 3 revealed, it could have been generated more
easily as a simplification-guided proof. This requires a certain
amount of forethought in order to isolate the correct lemmas; it
also requires care that simplification is not carried too far. One
wishes, for example, to avoid simplifying a goal whose formula is an
instance of an  induction hypothesis. The advantage of
simplification~-guided proof efforts is that they demand much less
user intervention and attention to detail during the performance of
the proofs. In addition, the tactics which generate the proofs seem
more easily generalised, reflect the structure of the proof more
transparently, and are moge efficient.

One would hope to develop a theory as well as a methodology of
tactical proof. Although the refinement of a theory would require
more expevience with tactical proof than has been gathered to date,

we have at least raised some issues which a theory should treat.
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Several of these are discussed below.

One issue is the choice between procedural and declarative
representations of facts. As indicated in the discussion of BYTAC
(Chapter 2, p. 60), for example, we have frequently found it more
convenient to represent facts as ML procedures (mapping theorems to
theorems) than as theorems (implications) stored in LCF theories.
The procedural representation lends itself more naturally to the
tactical style of proof; the proof parts of tactics call the
corresponding ML procedures, which then prove the theorems desired.
This allows all of the matching and instantiation involved in the
use of theorems to be done implicitly within the ML procedures. For
instance, the tactic MINFIXTAC (Chapter 2, p. 62) returns a proof

part which expects a theorem of the form
FruG F c F

and combines that theorem with a (given) theorem of the form
¢ = rix FoNe

in a proof by induction, to return a theorem of the form
e = F

We have chosen to write an ML procedure, MINFIX, which maps any
theorem of the expected form to the theorem desired in just this

way. We could instead have proved and stored a theorem

FYG %, F :%, FUNG :% —> *,
G’ c FIX FUNG & FUNG' F'S F° IMP G' & F’
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When specifying the proof part of the tactic MINFIXTAC we would have
to fetch the theorem from the theory in which it were stored (this
information having been a parameter to MINFIXTAC), then compute the
types of the terms F, G and FUNG in the two theorems to be combined,
then call the PPLAMBDA rule INSTTYPE (see [15]) to prove a theorem
instantiated to the correct types, then instantiate the result to
the correct variables, F, G and FUNG, then conjoin the theorems and
call MP (Modus Ponens), all in order to use the theorem. The ML
procedure MINFIX simply extracts parts of the two theorems, gives
them meta-names, and constructs a new basis and step on which to
call induction. We use MINFIX, of course, at cost of reproving the
theorem by induction at each invocation; the point, however, is the
naturalness of the procedural form for tactical proof. Of course,
since the process of translating from a theorem into the
corresponding rule is obviously a uniform one, we could standardise
it in ML. 1If a package to translate in this manner were available,
the procedural-declarative distinction would be less meaningful than
it is at-present.

Another issue (already mentioned) is the extent to which (and
the ways in which) increasing portions of proof can be left to
simplification, as we have begun to do 1in Chapters 2 and 3, by
proving theorems (to be used as simprules) which specify the
contexts in which, or conditions under which, terms should be
simplified.

Finally, as part of a theory of tactical proof, one would wish
to build a larger repetoire of derived tactics, and to identify

further dimensions along which to classify them. Since classes of
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tactics reflect patterns of inference, this could initiate an

explicit and empirical study of patterns of inference,

Many such issues remain to be explored. What we have concluded

from this work can be briefly summarised as follows:

(1)

(ii)

We have demonstrated, in the case studies described, that
goal-oriented tactical proof is a natural way of generating
large, formal proofs. A general purpose programming language,
ML, forms an effective interface between wuser and system,
allowing large portions of proof to be performed automatically
by the application of procedures (representing general
strategies) to data (representing goals).

In general, LCF has shown itself to be a flexible and powerful
vehicle for generating formal proofs. The simplification
facility, in particular, contributes ¢to this. The basic
simplifications themselves make LCF more than a proof checking
system, as they cover a great deal of simple reasoning. Beyond
that, we have illustrated how much of the remaining work of
proof can be relegated to simplification by careful choice of
lemmas to be used as simplification rules.

(iii)The tactics which perform proofs reveal the structure of the

(iv)

(v)

proofs in an intelligible and high 1level way, and lend
themselves to further generalisation. SCHEMATAC, for example,
(Chapter 2, p. 86), would appear ¢to be useful in a large
number of proofs about recursively defined function schemata.
Likewise, we would expect a tactic similar to COMPILERTAC
(Chapter 3, p. 131) to perform correctness proofs for more
sophisticated compilers (e.g. compilers for richer high level
languages or more concrete low level languages).

The ability to incrementally and hierarchically construct
theories is wvital to the proof efforts described. The
organised introduction of new types, constants and axioms, the
modular development of theories, and the ability to store and
access proved facts, all help to make a wide variety of
theorems expressible in LCF.

It seems feasible to perform fairly large proofs by the methods
we have described; the effort required on the part of the user
is concentrated more on formalising the problems and factoring
out useful lemmas than on deriving or applying the tactics.
The proof of the Russell compiler, in particular, illustrates
this. Of course, the compilers in question are only toy
compilers; as for the feasibility of proving ‘real®
implementations by these techniques, research remains to be
done.
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Extensions to LCF which have presented themselves in the course
of this work relate primarily to standard "packages® which could be
added to the system. In particular, it would be helpful to have
standard packages to derive structural induction and cases rules
(and tactics) for suitable structures; to derive injection,
selection and projection functions, and the associated axioms, for
arbitrary n-ary separated sums, so that all the UP’s and DOWN’s
(evident in Chapters 3 and 4) could be suppressed; and to derive
procedural representations (inference rule schemata) from
declarative ones (stored theorems).

An addition that would enlarge the expressive power of PPLAMBDA-
would be the ability to name relations. For example, one often

introduces a relation R by writing
akRb iff w

for some formula w. This 1is, of course, not unproblematicalj;
questions to do with whether relations admit induction are not fully
understood

We would hope that the work described here inspires further
research in the direction of formal correctness proofs fqr

implementations of more realistic programming languages.

Future Work
We would like to extend the work described in Chapter 2 by
studying more examples of recursive function schemata. We would

like to further specify, and to implement, the general tactic,
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SCHEMATAC, sketched in the Conclusions of Chapter 2.

Regarding Chapter 3, we would like to extend the compiler and
proofs to 1lower levels, by stages. As we noted, for example, the
Russell compiler produces programs which feature a sort of
block=-structuring used to limit the set of labels needed to a finite
set. This circumvents the problem of generating unique, new label
names The formulation could be carried a step further by designing
and proving a ‘gensym’ mechanism. We would also like to formulate
and prove a compiler which produced machine~like code (perhaps as
suggested by Newey, [38] ).

Regarding Chapter 4, we plan to perform the proofs described in
LCF. We would also like to consider, as for Chapter 3, lower level
languages. In particular, we would like to formulate an activation
stack semantics in which incremental layers were kept, rather than
whole environments, as well as a semantics in which displays, in the
usual sense, modelled activation stacks. We would also like to
study the proof techniques for other high 1level constructs, e.g.,
parameter passing mechanisms, co-routines, data structures of
various sorts, and exception handling mechanisms, all in a-
schematic, feature-by-feature way, as we have done so far. It would
remain to be investigated whether the methods of dedaling with
recursively defined relations used in Chapter 4 were useful in other
settings. Eventually, we would like to gather the separate high
level features into a single language and ‘compose' the proofs, so
that a chain of proofs would link very high 1level languages with
machine-like languages. Some questions relevant to a chain of

-

proofs of this sort wouldsbe (i) the order of the compilation of
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various features, (ii) the appropriate semantics at each level (for
example, in the Russell compiler proof, the low level language has a
quite natural continuation Semantics, but it is not clear that this
would be a graceful semantics for proofs of equivalence to still
lower levels), and (iii) the relations between the tactics used to
generate the proofs between the various levels.

Finally, as we have suggested earlier, we would like to
research more sophisticated tacticals for composing tactics, and, in
conjunction, techniques for more automatic proof finding and framing
of lemmas, as well as the existence of a body of coherent

intermediate-level tactics expressing common ‘chunks® of reasoning.
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Appendix: Some Technical Details

In this appendix we supply some details about the actual
per formances of the proofs described in Chapter 2. An account of
this sort is complicated by two factors. Firstly, both the schema
proofs, in Chapter 2, and the Russell compiler proof, in Chapter 3,
were performed in an older version of LCF (as documented in [13]
rather than in [15]) but we have nonetheless described the proofs as
they would be performed in the current LCF. Although at the level
of tactics the changes are not profound, they make the theories
involved, and some of the tactics (in particular, the derived
induction and cases tactics) look rather different. Secondly, in
the case of the compiler proof, the scope of the actual proof effort
makes it difficult to produce a demonstration of the whole process.
That is, the proof was performed over a period of several weeks, by
a combination of forward and tactical proof. Some of the lemmas are
quite (CPU) time-consuming and it does not seem worthwhile to
reprove them simply for the sake of demonstration. Our aim in this
appendix is just to give an impression of the nature of the
interaction which produced the proofs (and to give some evidence
that they were in fact performed!). We hope to achieve this by
describing the actual List Stack proof.

LCF is an interactive system in which one can directly
introduce definitions and construct theories. The usual mode of
interaction, however, is via files prepared by the user before
entering LCF and subsequently read in; this saves effort. Files
typically contain definitions of ML functions, definitions of
particular goals and tactics, and LCF commands for constructing
theories. Theories, once constructed, are stored by LCF on
*display’ files, some of which are shown presently.

To enable computer printing of PPLAMBDA, the following
conventions are observed:

= is written for =
\ A
414 L
<< c
! Y
# x
1 I
=> #
- .

Character strings (tokens) representing PPLAMBDA constants are
enclosed in quotes ‘thusly'; those representing type constants or
the names of theories “‘thusly'‘. All PPLAMBDA objects (terms,
types and formulae) are written in quotes like "this", and types are
preceded by a colon, e.g. ":type'". ML expressions are terminated
by a double semi-colon, e.g. expr;;, and reserved words in ML are
not underlined as they are in the text. Comments appear enclosed in
percentage signs %like thisZ.
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Details of the List Stack Proof in LCF

The definitions needed for the formulation of the problem are
shown in the fragments of a file below. The proof was performed in
a theory of lists which we constructed. The theory 1is displayed
below in a file prepared by LCF.

In the version of LCF at the time, there was no facility for
defining polymorphic PPLAMBDA type operators (such as * list).
Lists, instead, had to be lists of elements of a particular types (a
type '":d", here). New types were introduced by domain equations in
which only one type operator could appear in an equation:

NEWTYPES [ “TDLIST = . + nrnxn?‘ H .
“‘pemtm = D 2 DLIST S ] §3

where . denotes a domain consisting of exactly one element (L).
Some new constants were introduced and given a representation in
terms of standard PPLAMBDA constants. It must be recalled that the
standard sum in LCF at the time was separated sum, so that the

definitions of INL, etc. here are not the same as the current
definitions, and UP and DOWN, as needed now, were not required.

NEWNCDONSTANT ¢ “HDY s "ipLIsST->D" ) §3
NEWCONSTANT ¢ “TLY » ":DLIST-D>DLIST" 2 i3
NEWCONSTANT ¢ “CONS: 5 “p=D(DLIST-DDLIST)" ) 3}

NEWCONSTANT ¢ “NILY » “oLIsT" D 3§73

.-
o

4
St
-s

NEWNCONSTAMT ( “Dummy™ » "¢

NENCONSTANT ¢ “LISTY » “tp=DpL2IsST" ) 353

NEWRXIOMS (D53

RXHD "HD == \pL:DLIST.FST(OUTR ptL :pemim) ip
RXTL “TL == \pLiDLIST.SNDC(OUTR DL :oemim) ipLisT”
AXNIL  “NIL == INL O :pLIsT™

AXCONS  “CONS == \p:p. \DL!PLIST.INR(Ds DL) 3DLIST"

AXNILZ2 “E@ NIL NMNIL == TT"
AXLIST  “LIST == “pn:p.INRC(Ds MNIL)> ipLiST"

NNCNS1 “®p:ip. f¢:pLiIsST. EQ s NIL == FF IMP EQ(CONS » sO)NIL

== FF"

NNCNS2 “!pip. !s:ipLIsST. EQ s NIL == TT IMP EQ(CONS p» sSONIL == FF*
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The ‘usual® list axioms were then proved, mostly by simplification,
and stored in the theory of lists. They are displayed below on an
LCF~prepared file. The names of axioms and theorems on files of
this sort are shown to the left of the formulae,

STRHD "HD UU == UYU:p"

STRTL "TL JY == UUspLisT"

HDCONS “"I!nlipLIsST. !pip. HD(CONS » pL) == p"
TLCOMNS “!pLibduzsT. !pid. TLC(CONS » pL) == p "
HDHIL "HD NIL == UU:p"

TLNIL “TL NIL == UUlpLrsT"

MHDLIST “!pip. HDCLIST p)> == p"

TJLLIST “!p3p. TL(LIS+ p) == NIL"

LISCNS “!pip. LIST p == CONS » MNIL"

/CNSMIL “!pip. EQCCONS p NILOMNIL == FF*©

A parent of the list theory was a theory of equality in which a
constant EQ was introduced. (EQ s NIL) is used here where (NULL s)
is used in the text. Also, (LIST dummy) is used here where (LIST
NIL) 1is wused in the text. (For a list theory in which the “real®
list axioms are introduced directly, see [15], Appendix 1.)

For the List Stack Proof, some PPLAMBDA constants are first
assigned types. By convention (see [15], 3.2.3) these types are
assigned to future occurrences of the constants unless otherwise
indicated.

“F:p->p" %3
“Fl1!p=->D-"DLIST=D>D" 3}
'y

o
" Ll
9

-

Assumptions were introduced to define the four functions and to
represent the associativity assumption and the others. The first four
correspond to Chapter 2's thF, thFl, thExp and thG, respectively.
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LET Tl = RSSUME "F == FIX ("\F’' ,"x, P x =2 Fp x |
# (F” (31 x> F’ (82 X233
RSSUME “F1 == FIX <(~F1“. “x. “Z. “§. EQ@ s NIL => z !

LET THS =
P x =3 F17 (HD 82 (s <zy ©# x23 (TL s> !
Fls (@1 x» = (CONS (&2 xJ 3)272" %5
LET TH3 = RASSUME "Exp == FIX (\Exp’ .>%F. “M. “X. ~Z. \S.
ER s NIL => 2z | Exp” F i (HD 8> (M<CZy F %)) (TL $3>"3;
LET T4 = RSSUME "G == FIX ("G, “x. “Z. ~“s. EQd s NIL => z !

37 (HD 35> (m¢2Ze F x2) (TL $)>" 55

LET LEPTID = HSSIUME " !wip, WM{E? x) == x"“5§3

LET STmIicTes = RSSUME "!xip. m(xs LU == LU"S

LEY STRICTLM® = ASSUME “!x:p. WM(UJy x> == UU";
X3 ]

LET Assack = HASSUME " !mip.!»: n.!c Do MM Do) == MM (H{BICIII" 3}

Next, some of the axioms and theorems from list theory were fetched
and bound to ML identifiers. (Map is the usual mapping function.)
Further details on the commands AXIOM, FACT, etc., are to be found
in [15], 3.2.1.

LET CHDCUHS?TLCUHS:HDLI;T TLLISTSCNENILILISCNS] = mam (FRACT =)
 “HDCONSS 3 TLCONS "5 YMDLIST 3 *TLLIST M $ CNSNIL 3 "LISCNS™ 133
LET cnnrn31,nncnsa,axonr-n~an ] = mam (HYIDH Y=
[ "NNCNS1 3 NNMCN32™ $~AXLIST > s “RXNIL2® 1§

Simpsets were then constructed.

itlisc:(* —> %%k —> k%) —3 * ]igp—> *% __5 k%
is a standard ML function such that

itlist £ [11; slnl x = £ 11 (£ 12 (eeo(f 1ln x)...))
The standard functlon ssadd is described on p. 215,

LET §sE3 = ITLIST sSsapD [HHFHQX;HHLH°2-HDCDHS,TLFDH¢:nssncuvsvnxc7Ln,
sTmIcTRm] BRIICESS S

LET 55 = ssmDpDp sTmicTum BRSIC3SS

LET 556 = 1T7TLIST ssaDpD [ LISCNSSICHNSMIL iLErvrspiHDLISTITLLISTS
RXLISTSAXNIL2] ERSIC3Sss

The union of ss23, ss5 and ss6 is called SSL in the text. Finally,
the relevant goals and tactics were  constructed. The
correspondences to the names in Chapter 2 are:

Appendix Chapter2
goall goalLl
goal2” goalL2
goal3 goallL3
goals goalL4
goal5 goallemL2
goalé goalL5
goal7 goalLQ
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UNWINDTAC UNFOLDTAC
UNWINDOCCSTAC UNFOLDOCCSTAC
BYRULE BYLAW

BYTAC2 BYTAC

WEAKF IXTAC MINFIXTAC

WEAKF IXRULE MINFIX
APPLYTAC2 EXTTAC
ANYCASESTAC CONDCASESTAC
USEIHTAC USEASSUMPTAC
USEIHLESSTAC USEASSUMPLHSTAC
USEIHMORETAC USEASSUMPRHSTAC
TAC2b TACL2

TAClemma TAClemL2

TAC3 TACL3

"G == Exp F = "yBASICSS( lirgmm LisTii

LET&igﬂLI = b =
LEY som.2’ = “F1i X< 6" » $3523» [ limorens Li1sT}$

LET nBoAL3 “B << F1 "y 3823y ( 1ircmm L1sTs s

LET sO0mL%S “"F1 == ExPp F m "3 BRSICSSs[ J:rFamm L1sTS}

LEY 50aLS “tx,i8.Fl x UU s == UU"y 585, [ Jiromm LISTI?

LET sam.b “Exp F # x € (LIST dDummy) == F x"» s$6y [ 1:FOmm LISTSS

)

LET GOaL? “Fl x € CLIST pummy) == F x",BASICSSs»{ Jimamm LISTS?

LET TRAC1 = REPERT APPLYTRCZ2 THEM IMDUCTRC C[Tm43Tm3] THEMN SIMPTRC
THEN REPERT GENTAC THMEN ANYCASESTRC THEN SIMPTRC
THEN UZEIHTAC THEN TIMPTAC:;

LET TRC2® = REPERT RPPLYTAC2 THEM INDUCTRC [Tw2] THEN SIMPTRAC
THEN REPERT GEMTRC THEM LUNWINDTRC THé THEM
SIMPTAC THEN ANYCRSESTRC THEN SIMPTRAC THEM
ANYCASESTRC THEN SIMPTRC THEN UNWINDTARC Temi
THEN SIMPTRC THEN USEIMLESSTAC THEN SIMPTRC
THEN UMWIMDOCCSTAC [ 1] ved THEN SIMPTRC THEM
UNWINDOCCSTRC [11 T4 THEN SIMPTRCS S

LET TRC3 = WERKFIXTAC vwe4 THEN SIMPTARC THEN REPERT RPPLYTRC2
THEN SIMPTRC THEN INDUCTARC (T~1] THENMN
LUNWINDOCCSTAC [21 w2 THEN SIMPTAC THEN REPERT EEHTRC THEM

ANYCRASESTAC THEN SIMPTRC THEM ANYCASESTRT THEN
SIMPTRAC THEN USEIHMORETRC THEM SIMPTAC THEM
USEIHMORETAC THEMN SIMPTARCSS

LET TRCLmrwm = INDUCTRC [TH21 THEN SIMPTAC THEN REPEART GEMTRC THEM
SIMPTRC THEN ANYCRSESTRC THEN SIMPTRC THENM
RANYCASESTRC THEMN SIMPTRAC THEN USEIHTAC THEN SIMPTRCS S
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LET TRCE = UNWIMNDTAC Tw3 THEN SIMPTRC THEN UMJINDTARC TH3 THEM SIMPTRCSS

TACl solves goall, TAC2b solves goal2’, TAC3 solves goald with the
eventual result of applying TAClemma to goal5 in its simpset. To
achieve goal4 we use BYTAC2 to produce goal2 and goal3. To achieve
goal7, we add the theorems achieving goal4 and goalé to the simpset,
and call SIMPTAC.

The following (fragments of a) transcript of an actual session
with LCF demonstrate the performance of the proofs in the system.
Note that theorems are displayed with .’s before thef— » Lo
represent the individual hypotheses (assumptions), so that a theorem

....... |~ "Fl == Exp F h"
for example, has seven hypotheses. The standard ML function

hyp:thm —— form list
returns the list of hypotheses of a theorem.

The character == at the beginning of a line marks a user input.
System responses are Iimmediately after the terminating ;; and are

followed by a blank line. The ML variable it holds the result of
the last ML expression to be evaluated. The ML function

ssadd:th —— simpset — simpset

adds a theorem to a simpset.

LET sLl»el = TRC1 somLlss
.l =01 ¢ (sam. LIST)
el = -~ : pmoor

sLET peEst = eIl 158
RES] = ..l 0 == Exp F " ¢ THm

PN

#TRC2® so0AL2 35 -
[Je= ¢ C(cOML LIST) & pmoos)

#isNp 1T )58
ceeesJ="F1 << B" T THM

BHrP ITHS

["F1 == FIX(NFL1/ \X."Z.-S.EQ 5 HIL:)Z:(P \?.\/Fl’(Hn 8X(m(Zy F x))CTL s
YiF1° (81 x)2(CONS(8R2 x>$)))>"} "6 3= FIX(NE'.Axvz.0s.EQ s NIL=>z16" (W
D 5)CmiZs F x3)CTL $50"3 "F == FIX(VF7 %P x=dr xin(F (81 x)» F/ (82 -

XID)"3 “Im. 1@, Y. M(mMims B)s C) == #(Mmr (B COD"] 2 (mOmm LIST)
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BLET GLIsPS = TRACLEMMA camLSs$
LS =[] & (som_ wLL1sT)
PSS = - 1 pwoor

HLET PESS = pS[ ]34
[PesS = ..1="Ix. ts. F1 x UU s == UU" & Trm)

LET AsBssC = 303755
"B << F1" 3 momm
- ? SIMPSET

L] ¢ cromm LIsT)

~
»
c

SLET B = SSADD mM&sSS 33’

3 = - ! SIMPSEY

SLET 50AL3 = ARCH S

cam,3 = "6 << F1"»=y[ ] : somL

2TAC3 GomL3i s
L 1= ¢t ((GOML LIST) = pmoor)

SLET SL3P3 = ITHS
L3 =[] : (comL LIST)
p3 = - : pmOOF
2LET s3I = 2L 1335
EES3 = ....--]-"TQ( :1.. H TH'ﬂ

SLET meEsS = TRCS comLss;
RESE = [ Jo- ! ((GOMm. LIST) & pmoor)

an
”»

LET GLOymE = PESH
L6 =[] @ (sOmL LIST)
PS5 = - : pmpor

sLET pess = pal 133
|nsse = (,]="ExP F W x ECLIST pummy) == F x" ¢ Thm |
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SLET ABYC = SOALT I

A= "Fl x eCLIST pummy) == F %" 2 rOmm
P =T = I SIMPSET

c=0] 3 (Fomm LIST)

SLET B = sSsapp mEs4 BRSICSESSS
P = = 3 SIMPSET

SLET B = SSADD RESS B3}
P = = ¢ SIMPSET

SLET SOALY = ABrCi; .
s0AL7? = "F1 x ECLIST bdummy) == F x"y=s[ ] : com.

o
-y

LET GLrs»7 = SIMPTRAC somL73)
gL? =[] ¢t (oAl L1IsT)
7 = -  PmRODF

SLET RES? = P?t];iFg
RES( = asseusesad— x ECLIST pummy? == F X" 2 Twm

Observe that the eventual result has eight hypotheses, representing
the eight initial assumptions.

The use of BYTAC2 is demonstrated below. BYTAC2 generates a
list of two subgoals (using the ML function gentok, see [15], A3a,
to generate a new name, G7859, here) and a proof.

#BYTRC2 TH3 samLdi
["G78%9 << F1"r»=»[ 15 "FI << G7839"s=»[ 11~ : ((cOm. LIST) S pmooe)

SLET (3135321 = 17335

sl = "B7859 << F1"»~s[] ¢ com.

g2 = "F1 << B7839"»=s[ 1 2 sOML

» = - : peoor

The proof p depends on a function BYRULE. Suppose we have proved
FG7859 = F1
FFL = G7859 .

We can then test the proof part of BYTACZ. A theorem list, thl,
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contains thesSe two theorems.

T = [ 1="67859 << F1"i 1-"F1 << 57859"] ¢t (Twm LIST)

Lp THL I
e J="F1 == Exmp F WN" I THM

SLET PES = ITH3
BES = ..]-"F1 == Exp F K" ¢ THm

SHTYP MES S
["Exp == FIX(NExm’ SF M AXANZAS.EQ 5 NIL=>Z Exp” F W(HD S){(m(2zy» F x

YICTL s))"3 "6798%9 == FIN(\G7859."x. \Z.~S.EQd s NIL=>2!678I9(HD s)(m(Z
» F x))CTL $>)“) & (romm LIST)

SsomLd i s
“Fl == Exp F " s~3{ ] ¢ comL

The theorem proved thusly has as hypotheses the definition of Exp
and a theorem defining G7859, added by BYRULE, which is called in
evaluating (p thl).

For completeness, the ML code for BYRULE and BYTAC2 1is shown
below. Not all of the functions and features of ML used have been

explained; the curious reader will have to consult [l5], (or better
(13], as the functions were defined for use in the older LCF,
although the differences, in this case, should not be many) . Some
necessary auxilliary functions follow the two mains ones.

LETY BYLRW FLIST Th = '
LET PMI1 = sSnD (DESTCOMD C(mms (CONCL THID)D

It~ LEY H°» PHIOrFS = pEsTmas PHII
AND F LIST = map (\E. Muvam (GENTOR ()» TYPEOF E)) FLIST
INn LET E = peam (GENTON (D CITLIST (NTYl.NTY2.mePumTYrE (TYlo»T

v2)»)
Cmmp TYPEOF FLIST)
(rvyrEas H7 D)) p
AND PAIRLIST = COMBINE (FLISTy FLIST)

In LET PHRIZ = mumpsL (E . FLIST)
(SUBSTINTERM < C(mmcOmpt. (E. FILISTIIN'D .

paimIsT) PHIorFs)

AND F = MrUAR (GENMTOR () TYPEDr H'D
AND G = mMUAR (SENTOMN () Trrenr ED
IN LET W' = MNERUIW (s MeCDOMIL (6 . FLIST))
IN LET »asIs = EMFBRIIS FLisT (rvyrsor E)
Aa~D sTEP = BMESTEP PRIcrFs PHI1 PHIZ #w 6 W H’ FLIST
IN LET TR = INDUCT [(PHIl»riPHIZC»s] W' (DasISssTEP)

IN TRANMS C(Tmy TH I Ei



LET BYTRCZ2 THITACTIC (MiSssmm. ) =
LET F = LS W
AND E . FLIST = DESTCDOMBIL (MeS )
AND H = mvam (GENTON (D TYPEDFE (MMS MW))
IN LET WS = MINERUIV (Hy F)
AND W3 = mxIMERUIV (Fy H)
manD (E7 . F/LIST)> 20DY = DESTARPSL] (NIL
CEND (DESTCOMB (mmMs (CDONMCL TM) DD D)D
(LENGTH FLIST) + 1D
IN LET BUDY’ = SUBSTINTEM™ (COMPINE (FLISTr FLIST))
(SUBSTINTERM [(Mr mcomd (EZ |, FLIST) )
»apy)
IN LET TYP = MeFUNTYPE (TrYrpeEDFr (Memls (He+e3ODY D) sTYPgOor M)
IN LET T’ = ASSUME (mxERUIV (Hs MxCOMD (MMTONST
CCFIXMsrye ) speans (HemaDY 202D
IN LET SSPLUSTHR = SSADD T SS
IN [HEy SSPLUSTHM 3 FrLS M3y SSPLUSTR s FaL ]y
(NTL . LET [T iTm3] = Tl
I~n LET Twl = SUBS (SYM vl (BYLRAW FLIST T™W’)
In TRANS (SYNTH (TH3sTee) sTHMl)D i}

. LETREC mMexCOMBL L =
- NULL L => FmIL |
MULL (TL L) =D FmIL |
MULL CTL (TL L)) =) mecom® (=D Ly mD (TL L)) !
MecOmBL ((mucam® C(MD L)y (D (TL LD . T (T W)Y ?
FAILMITH “meCOmMB 55

Z0rls ...irm]

F1 ..o FN k4

LETREC DESTCOMBL T =
LET FIRST?» LASY = DESTCOM® T
IN ISCOMD FIMST =) (DESTCOMBDL. FImsST) & [LmsT] |
[rimsTiiAasT] 7 rAILKITH ‘desvycomm 33

X El ... PN

Lrls ...0mm])

N

" LET BMKBASIS FLIST Ty =
SYm CMINRPL FL::T TY) 34

LET BMKSTEP PHIorFs PHIY PHIZ rFs o MK FL{ST =
SUBS [SYM (BETRCOMY (mecoms (PHIL» mY)d3
SYM (BETRCOMYL ([PHI2ia] @ FLisT)?1

(SUBSOCCS [{2]» RSSUME W’ 1]
(REFC (SU)ST!NTI!H‘CF! H”1 PHIorFg))> )83
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LETREC RPTHML Tw L =

NULL L =2 ThH
RPTHML (RAPTHM Te (D LD (TL LY 7 FAILNITH “RPTHML )

——— T — —— — -

=-F><1 enes XM ==GX1 cewa XM 'C

LETREC BETRCDONVYL L = -
NULL L =2 FaIL |
MULL (TL L2 => FAaIL |
MULL (T (TL LD)Y => BETRCONY (mwcom® (WD L WD (TUL LDDD
LET FImsTsTEP = BETRCONY (muwcome (WD L WD (TL LID)
IN TRANS (RPTHML rimsTsTEP (TL (TL LDy
BETACONYL ((mms (comncL (rrimsTsTEP)>)>) . (TL (TL L)) >> 7?7

EmiLmITH “BETRCONVL S

vt o oMY . Y]

1= ("X laeeoe™>¥M.T) Y1 oo YN == vlvr x1] %

LETREC MINRPL FLIST Ty =

NULL FLIST =) ralL : -
NULL CTL FLIST) => MINAP (mxcom® (meconsT (UL »TYyd s md FLIST)) |
LET FIRSTSTEP = MINAP (mwcome (mecoOnsT (CUUM»TY) s WD FLIST))
IN TRANS (RPTHML simsysTEP (TL FLIST))

MINARPL (TL FLIST) (SmDp (DESTFUNTYPE TY))) 7

FAILMITH “MINRPL 5

Zlrti.cabrnl 7Y

o

= (UUTYY Pl ... P 2= U

LETREC MHABSL L T =
NULL L =2 T

MABS (MDD Ly MxaBRSL (TL L) T) 7 FAILNITH “MXKAYSL

\n.

%X Ixldeeeixm]

N

NX] oo aNXN.T

LETREC DESTABRSL (L T) =
xsans T => LEKYT VAR PEST = DESTARS T
IN DESTABSL (L @ [vnn]» REST) |
Ly T) 7 FAILMITH "DESTARSL 3}

A Ixtieaerxmdsy (NYRl..onYN.T)

txl;---:‘N;Yl;-..'YNJ' T

~N

LETREC DESTADRSL] (L3T) N = LENGTH L = M =2 (LeT) |
ISABS T =2 LET VARIMEST = DESTARS T
IN DESTARPSL] (L @ [vAmI) smEST) N |
(LsT) 7 PAILKITH ‘DESTADSL1 I’}

% AS DESTADSL) BDUT STOPS WM LIST IS OF LENGTH N %
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Implementing Iterated Induction

In view of the complications mentioned, we do not give details
of the Russell compiler proof here. We do, however, show the code
for the rule of iterated induction used in the proof of Theorem
3.1b, [ITINDUCT, and for the corresponding tactic, ITINDUCTAC.
Auxilliary functions follow the two main ones. Again, not all
functions or features of ML will have been explained, and the reader
is again referred to [15] or [13]. In the rule, a new formula,
basis and step are constructed, and ordinary induction is done.

LET ITINDUCT FrLIST W (DASISLISTISTEP) =
LET N = LENGTM BASISLIST
AND FLIST = mMAP SND FrL1IST
IN LET SUBSTLIST = CDMPINE ((MAP MxCOME FRELIST) orLIsST)
IN LEY HYPSTEP = MKITLIST W (N — 1) SUBSTLIST
IN LET W’ = MKCONJL HYPSTEP
IN LET »ASsIs”’ = CONJL »msisLIST
AND sTEP” = SELZ2 (MP (DISCHL myesTEs
(CONITH HYPSTEP STEP))
CASSIUME W)

INn SELL CINDUCT FrLIST W’ (BASIZ’ »STEP D) 7

earLmWITe “ITINDUCT S

LET ITINDUCTARC THL N2 TACTIC C(WeSSsFmL) =
LET FLIST mar (N\NTH. (SND (DESTCOME (mMHS (CONCL TM2)D2) ThHL
AND FLIST mae ("tH. (LHS (CONCL TH!)Y) THL
IN LET FLIST = mMAP (“F. VYARIANT (FIFORMLFPEES (MWM.FML) ) ) FLIST

IN LET FFRLIST = cOMRPINE (FLISTsF LIST)
AND WVAR = SUBRSTINFOMN (COMBIME (F LISTSFLIST)) W
IN LET SUPSTLIST = COMBINE ((map mrCOm® FFRLIST) sm LIST)

IN LET ASSUMP »STEPEDM = DESTLISTIACK NIL
(MKITLIST wiAmB N SUBSTLIST )

IN LETY UULIST = M (\F, LET TY = TYsEOKrF F
IN (MrCONST (‘UL sTY ) )FLIST

IM LET FUULIST = coOmMPINE (FLISTSULlLIST)?
IN LET UUSUBSTLIST = COMBINE ((mmp mxcaoOm® FUULIST) ¢
JezrsT?
AND W) = sussTINnFgR™ (COMPINE (UULIST»FLIST) )W
IN LET PASISFORMLIST = MWITLIST wlU (N—1) UUsumsTLisT
IN LET BASISGOALLIST = MAP [ \M.W?!SSIFML) BASISFOMMLIST
AND STERGOAL = STEPFOMM+ES)I(ASEUMP & FmL )
IN (PmsIScoALLIST 9 [(sTEPGOM.])>

[y

(NTHML . LET BASISLISTISTEP = \
DESTLISTEREACK NIL THML b
IN SUBS (mar SYPM THLD ‘3

CITINDUCT Fr/LIST wimm (BASISLISTISTEP )

raILmWITM “ITINDUCTRC 33
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LETREC MKCONJL WLIST =
NULL WLIST =) FAIL |
NULL CTL WLIST) =2 MD WLIST |
MMKCOMNI (MDD WL IST P MECONJIL (ThL WLIST)) 7 FEOILMNITWM “MxCONIL 33

% (Wl f.eain]

L2

Hl & eea kN . e

LETREC CONJTH HLIST TH =
NULL WLIST => FAIL |

NULL (TL wWLIST) => CONJ C(ASSUME (HD WLISTI>TH) |

CONJ C(RSSUME (MDD WLISTIs CONITHM (TL WLIST) TH? ?

FAILWMITH "CONJTH S

Y% Lwlseeestum] " :; "

N

CmlFeeodtiles B 1= ml & coa & WN & W

LETREC MHITLIST W N SUPSTLIST =
N=0=>Tw] i
LET Wi = SUBRSTINFORM SUBSTLIST W
IN W.CHKITLIST Wi (M = 1) SUBSTLISTY 7 FAILWITH ‘WKITLIST 35

% W N Lrunz FIerx )

-~

[ws wirFrun: F1771218 oo. WEFUNT ¢+ N FI/F2]]

.ETREC DISCHL wmi1ST TH =
NULL WLIST =) TH i
NULL (TL Wi.IST) => DISCH (HD WLISTY) TH |

DISCH (MDD wWiLIsT) (DISCHL (TL mMLIST) TH) 7 raiuwiTe “DISCHL 5/

%Z LrlsS.ieoetNd WHICH IS WLIST B i= W (WHICH IS TH)

R - [Hl;.n.;Hng- HI & es ® & N IHP L] 2

LETREC DESTLISTIACK LI L =
NULL L =) FarL |

MuLL (TL L) => (Lls MD LY !

DESTLISTIACK (L1 & [mD L) CTL L) 7 FAILWNITH ‘DESTLISTEACK )}

“ [mls.e.emN] L

-
——TAls..omn—=1]s mam k4

To2e2



LETmec CONJL Tel =
NULL THL =7 FAIL |

NULL CTL THL) => HD THL |

CONJ (D THLs CCONMJL CTL THLDDY 7 MARILKWITHM “cOMNJL 53

% [THLeeosTHN]

THI & ceceh THN .

The following fragments of an LCF session demonstrate the use of the
tactic and rule. We take, as an example, the definition of the
function F from the Counter problem (Chapter 2), which is called thl
during this session, We apply ITINDUCTAC ¢to do 3-ary iterated
induction on F. We thus obtain a list of four subgoals; three basis
cases, and an inductive step with three hypotheses; and a proof.
The theorem, thl, and the goal are shown, then the tactic is
ap?ligd. to a goal as shown helow. (Expo is called Nexpo here -- but
this 1s not the way to solve the goal, just an example of the use of

the tactic. .
SLET THL = [TMl s

yrL = [ o1="F 3= FIR(\F’ .\xX,.,P x=0% xIF (u(F’' (@ x))?)?] 2 (T LISTY

BLET N = 3353
N =3 O OINT

B ISSIFML S
“F1 == HExru F " y—,EJ = - al, W

- ——— —_

——

.nITIHDULTHL PV N (u, SOFHL)O;.

["F1 == NExma U W"»=s0 3% "F1 == NExma((\F . \x,P _x=2% xiF’(niF (e x223
)JUU)H »—sl 33 Fl == HExPu((\F’.‘x P x=>r Y.F’(H(F’(G_x')\)((\F’ \Y.P
“x=3F % IF (HMCF (s XIDIIULIIM" s=30 I3 "F1 == NExeo((\F’.\x.P x=>r xi1F” (

H\F (6 XIIID((NF7 SNx P x=>r »iF (M(F’{g XIIIICINEY L P x=0E xIF 7 (H(F
T3 x2IIFIIINT =L TFL == NExmo F’ w"3 “F1 == NExmg((“F7.\x.P x=>F E”
'F’n»(F (8 xDIF Iu"5 “F1 == NExPCC(NF' Nx.P x=>F x!F’(H(F’ (s x23)7T

\ﬁ\F’ > JPx=>F xiF (m(F (e x)‘J)E_lIH"J]---E ({GOML LIST) = Proor)

This produced & goal list and a proof. The proof was named p.

Suppose we have proved the following theorems, which achieve the three sub-
goals:

= NExmg UU =" T

THA = ]-"F1

ras = 1-"F1 == NExPOCNF7 NP x=0r xIF7(H(F (8 xD220UUdR" = Thm
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THe = 1-"F1 == NExPOC (NF7 o NP x=2dr XIF (riF (& xIIIICNF Ax P x=dp
L IF CCF (8 X23ISUUIINT T THM

THD = ... 1="F1 == NExPp((NF A\ P x=>r X iF ((F7 (& xIIIICNF’ \x.P x=
S X IF (MCF (e XIIIICINF7 N\xX P xzZdF X IF (RCF (e xX2)25F 0504”3 Thm

Finally, we apply the proof p to a list containing these theorems, to achieve
our goal:

) lsPCTHﬂiTHD;THciTHD]§§
«1-"F1 == NExra F m" : 7
SHYe ITSS ‘
[“F am FIX(NF/ .\x P x=DF x!F’(u(F’(a x2232"7 s Cromm LIST)

A

-

(The three hypotheses of thd are shown in the formula list below.)

("F1 == NExmrg F’ m"57 "F1 == MExPg((\F’ .,"x.P x=)>p XiF/((F (& x>
JF M3 "F1 == MExPO((\F’ \x.P x=>¢ x!F’(niF’(Cs ¥IIIVCNF A% P x=0p
XIF/(HCF (@& X2220F 750" ¢t (raomm L1sT)
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