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Abstract 
 

Breast cancer is the leading cause of cancer-related death in females worldwide. 

Although 5-year survival of breast cancer patients in early stages is 89-100%, that of 

patients with metastatic tumours is reduced to just 21%, suggesting the requirement 

of effective therapies for metastatic breast cancer (MBC). MBC is primarily treated 

with chemotherapeutics however the efficacy of such treatments is limited due to 

resistance. As an alternative approach, NK cell-based immunotherapy (i.e., adoptive 

transfer of NK cells to patients) has been focused on since it shows significant 

therapeutic effects on haematopoietic tumours. Nevertheless, its efficacy is limited in 

MBC probably due to an immune suppressive tumour microenvironment (TME). 

Tumour-associated macrophages (TAMs) are an abundant cell type within the TME 

of breast cancer and promote the metastatic process such as cancer cell egress from 

the primary tumour in mouse models. In mouse models of breast cancer, a distinct 

population of TAMs in the metastatic site called metastasis-associated macrophages 

(MAMs) can promote tumour cell seeding, survival and growth. Moreover, we have 

recently shown that MAMs and their progenitor cells can suppress cytotoxicity of CD8+ 

T cells in vitro. Interestingly, a recent study suggests that TAMs isolated from the 

‘primary’ mammary tumour in mice can suppress tumour killing ability of NK cells in 

vitro, whereas the effects of MAMs on NK functions in the ‘metastatic’ tumour is largely 

unknown. We hypothesise that MAMs in the metastatic site suppress NK cell function, 

and that the depletion of these MAMs can improve NK cell immunotherapy efficacy 

for MBC.  

To investigate this hypothesis, we first established an in vitro NK cell cytotoxicity 

assay whereby mouse breast cancer cells were co-cultured with splenic NK cells, and 

the resultant tumour cell apoptosis was determined by quantitative fluorescence 
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microscopy. Using this assay, we found that the NK cell-induced tumour cell apoptosis 

was significantly reduced in the presence of MAMs isolated from metastatic tumours 

in the lung of tumour cell injected mice. We also found that bone marrow-derived 

macrophages cultured with M-CSF (M- BMMs) that resemble MAMs also reduced NK 

cell cytotoxicity in a cell-to-cell contact dependent manner. In contrast, BMMs cultured 

with GM-CSF that represent pro-inflammatory macrophages did not suppress NK cell 

cytotoxicity. We further identified by flow cytometry that MAMs and M-BMMs 

expressed high levels of NK cell inhibitory ligands such as H2-Kb and H2-Db, and NK 

cells in the metastatic lung expressed high levels of their receptors. However, 

blockade of H2-Kb or H2-Db did not prevent macrophage mediated NK cell 

suppression in our assay. Alternatively, we found that M-BMMs expressed higher 

levels of membrane bound TGF-b than GM-BMMs and blocking TGF-b rescued the 

macrophage-mediated NK cell suppression, although these data must be confirmed. 

Using a mouse model of breast cancer metastasis, we further demonstrated that 

depletion of MAMs promoted maturation of NK cells in the metastatic lung as well as 

recruitment of NK cells towards the metastatic site. Importantly, the MAM depletion in 

this model significantly increased the efficacy of transferred NK cells in reducing 

metastatic tumour burden whereas NK cell transfer on its own did not suppress 

metastatic tumour growth.  

Collectively, our data suggest that MAMs in metastatic tumours can suppress NK cell 

cytotoxicity towards breast cancer cells by direct contact with NK cells that transmit 

suppressive signals via membrane bound TGF-b as well as by suppressing NK cell 

maturation and recruitment in the metastatic site. Our data also indicate that the 

depletion of MAMs can alter the immune suppressive TME and thereby improve the 

efficacy of NK cell infusion therapy efficacy. Further investigation of the mechanisms 



 iv 

behind MAM-mediated NK suppression would lead to the increased success of NK 

cell-based immunotherapy for MBC. 
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1.1. Metastatic Breast Cancer 

1.1.1. Statistics of Breast Cancer 

Breast cancer is currently the most commonly diagnosed cancer in women in the UK. 

It is reported that around 1 in 8 women will develop breast cancer over the course of 

their lifetime, with over 55,000 new diagnoses each year (Breast Cancer Now: 

breastcancernow.org). It is also estimated that breast cancer will account for a 

colossal 30% of new cancer diagnoses and 15% of cancer-related deaths in women 

in the US in 20191. Due in part to improvements in early detection and treatment 

methods, survival of breast cancer patients has improved significantly over the last 

50 years (e.g., a 40% reduction in mortality rate from 1989 to 2016), and 5-year 

survival of patients with primary breast cancer is now around 99%. However, when 

patients develop distant metastases, their survival ratio markedly drops down to just 

21%1. It is reported that around 30% of patients diagnosed with non-metastatic breast 

cancer will eventually develop metastases, and that around 6% of breast cancer 

patients will present with distant metastases at diagnosis2. The most common organs 

for breast cancer metastasis are the brain, bone and lung, and such distant 

metastasis accounts for over 90% of breast cancer related mortality3. Despite 

advances in treatments for breast cancer patients, the overall survival of those with 

metastatic breast cancer (MBC) has not improved over the last 30 years4. These 

statistics emphasize the urgent clinical need for effective therapies to treat patients 

with metastatic breast cancer (MBC). 

 

1.1.2. Classification of Breast Cancer 

Breast cancer is the general name given to the aberrant cell mass within the breast. 

It is actually a heterogenous disease that develops in distinct areas of the mammary 

tissue such as epithelial cells lining the lobules or terminal ducts of the breast5. Ductal 
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carcinoma in situ (DCIS) is a cancer that starts within and stays within the normal 

ducts or lobules. While the formation of this type of cancer is not life threatening (10-

year survival estimates of over 98%), development of DCIS increases the risk of 

developing a more invasive form of breast cancer by approximately 11 times6. In 

contrast to DCIS, invasive breast cancers penetrate into the surrounding breast tissue 

and have the potential to metastasise to sentinel lymph nodes and/or distant organs. 

It is estimated that 90-95% of breast cancer cases are invasive breast cancers5, and 

around 30% of breast cancer patients eventually develop distant metastases2. 

Given their differences in terms of malignancy, breast cancers are divided into several 

stages by a scoring system called the TNM classification (Table 1.1). ‘T’ indicates the 

size of primary tumour and its invasiveness. ‘N’ indicates whether or how many lymph  

Table 1.1 TNM staging of breast cancer 

Stage Primary tumour (T) Node 
involvement (N) 

Metastasis (M) 

0 Carcinoma in situ None None 
IA 1 tumour <20mm None None 
IB No evidence of primary tumour/ 

1 tumour <20mm 
Local lymph node None 

IIA No evidence of primary tumour/ 
1 tumour <20mm/ 2 tumours 
>20 but <50mm 

Local lymph 
node/ None 

None 

IIB 2 tumours >20 but <50mm/ 3 
tumours >50mm 

Local lymph 
node/ None 

None 

IIIA No evidence of primary tumour/ 
1 tumour <20mm/ 2 tumours 
>20 but <50mm/ 3 tumours 
>50mm 

2x Local lymph 
node 

None 

IIIB 4 tumours of any size with 
extension to the chest wall or 
under the skin 

None/ up to 2 
local lymph nodes  

None 

IIIC Any size 3 local lymph 
nodes 

None 

IV Any size None/ any 
involvement 

Yes, anywhere, 
larger than 0.2mm 
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nodes contain disseminated tumour cells. ‘M’ describes whether distant metastases 

have occurred7. 

In addition to the classifications based on tumour size and localisation 

(TNM staging), breast cancer can be divided into different subtypes based on 

hormone receptor expression determined by immunohistochemistry and/or 

gene expression profiling. Currently, at least 5 subtypes are proposed (Table 

1.2)8.  

Table 1.2. Breast cancer subtype classification (adapted from8)  

 

Breast cancers classified into the Luminal A type express the estrogen receptor (ER) 

with or without the progesterone receptor (PR) and do not express epidermal growth 

factor receptor 2 (HER2)8. This type of breast cancer grows more slowly than other 

types and is generally treated with endocrine therapy. Luminal B breast cancer is 

characterised as ER positive, PR positive (or negative) and HER2 positive. This type 

of breast cancer grows faster than Luminal A and is usually treated with 

chemotherapy and/or endocrine therapy9. Breast cancer classified into the HER2+ 

subtype also expresses HER2 but is negative for ER and PR. Treatment for this type 

of cancer depends on staging but involves chemotherapy and HER2 targeted 

Subtype name  Receptor expression  
 

General characteristics  

Luminal A  ER+, PR+/–, HER2–  Usually chemotherapy/ endocrine 
therapy responsive 

Luminal B  ER+, PR+/–, HER2+  Usually chemotherapy/ endocrine 
therapy responsive. HER2+ 
responsive to anti-HER2 Ab therapy  

HER2+  ER–, PR–, HER2+  
 

Chemotherapy and anti- HER2 Ab 
responsive  

Triple negative 
(Basal)  

ER–, PR–, HER2– Usually chemotherapy responsive  

Triple negative 
(Claudin Low)  

ER–, PR–, HER2– Intermediate response to 
chemotherapy  
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therapy9. Triple negative (TN) breast cancer does not express any of the above-

mentioned receptors, which makes them harder to treat by endocrine therapy or 

HER2 targeted therapy. Furthermore, this type of breast cancer is more aggressive 

and results in a poorer prognosis compared to luminal and HER2+ types. TN breast 

cancer can be further divided into 2 groups; basal and claudin low. Around 50-75% of 

TN breast cancers are classified as the basal subtype. The name ‘basal’ came from 

the original finding that these types of cancer cells express cytokeratins associated 

with basal epithelium. Basal TN breast cancers are highly proliferative and usually 

have a p53 mutation10. As its name suggests, Claudin low TN tumours have a low 

expression of claudin genes that are involved in cell-cell junctions. These tumours 

usually show a high immune cell infiltrate, stem cell properties and evidence of 

epithelial-mesenchymal transition10. Both of these subtypes are usually treated with 

chemotherapy. 

 

1.1.3. Current Therapeutic Modalities for Breast Cancer  

1.1.3.1. Radiotherapy 

Since highly proliferative cells (i.e., tumour cells) are susceptible to X-ray that causes 

DNA damage leading to cell death, the application of radiation to the tumour area can 

eliminate cancer cells relatively selectively11. Radiation is thus often given to breast 

cancer patients after surgical removal of breast tumours to treat any remaining 

diseased tissue and has been shown to significantly improve rates of recurrence and 

mortality compared to surgery alone12. However, cancer cells including breast cancer 

cells can become resistant to irradiation13.  

1.1.3.2. Endocrine Therapy 

Hormones in women, such as estrogen and progesterone are known to promote 

proliferation and dissemination of certain types (i.e., luminal A/B) of breast cancer 
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cells. Endocrine therapy aims to block the pro-tumour signals via ER or PR. 

Tamoxifen is the most common drug used in this therapy and prevents binding of 

estrogen to the ER. Aromatase inhibitors are another class of drugs that prevent the 

conversion of androgens to estrogen, thereby reducing estrogen availability to the 

tumours. Although endocrine therapy using these drugs dramatically improved 

survival of patients with Luminal A breast cancer, tumours in more advanced stages 

acquire resistance to this type of therapy14. 

1.1.3.3. Chemotherapy 

Cytotoxic drugs that cause DNA damage or impaired cytoskelexston 

rearrangement can suppress highly proliferative cells, including cancer cells. 

Currently, treatment with these chemicals (chemotherapy) is the only systemic 

therapy for triple negative and metastatic breast cancers. Chemotherapy is 

also applied to aid other types of therapies such as endocrine therapy for other 

breast cancer subtypes14. Anthracyclines such as doxorubicin, causes DNA 

intercalation, interacts with DNA-topoisomerase II and generates free radicals, 

which causes DNA damage. This leads to the induction of DNA repair or 

causes the cell to go through apoptosis15. This type of drug is usually given to 

patients with triple negative breast cancer or those with lymph node 

metastasis16. Anthracyclines however have been shown to induce 

cardiotoxicity, which limits the dose that can be given. Moreover, clinical signs 

do not become obvious in many cases until well after completion of the 

treatment17. Taxanes are another class of chemotherapeutics that interfere 

with microtubule assembly, a vital process for cell division and cellular 

transport18. Although this type of drug is commonly used as a standard 

regimen, serious side effects including peripheral neuropathies are reported19. 
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Platinum drugs are a third class of chemotherapeutics often used in the 

treatment of breast cancer. These drugs cause the inappropriate cross-linking 

of DNA causing ‘lesions’. These lesions are detected by the cell and are either 

repaired, or apoptosis is induced. Problems associated with these drugs 

include kidney toxicities and peripheral neuropathies. As well as this toxicity it 

has been shown that some tumours are resistant from the out-set, while others 

develop resistance over time20,21. 

1.1.3.4. Targeted Therapies 

As described above, Luminal B and HER2+ types of breast cancer express high levels 

of HER2 that promotes cancer cell proliferation. These types of cancers can be 

treated with monoclonal antibodies against HER2 such as trastuzumab22. Treatment 

with trastuzumab along with a standard chemotherapy regimen were introduced after 

a large-scale clinical study in 200123. Although this therapy improved disease-free and 

overall survival of patients with certain types of breast cancer, metastasis still occurs 

in patients receiving this therapy. For example, 34% of patients develop central 

nervous system metastases of which 50% will die from this progression24. Moreover, 

this type of therapy is not applicable for breast cancers lacking HER2 expression, 

such as TN breast cancers.  

Another example of targeted therapy for breast cancer is treatment with small 

molecule inhibitors against PI3K/AKT/mTOR pathways, such as everolimus that 

targets the mTOR pathway and prevents cell cycle progression25.Since ER 

overexpressing breast cancer cells depend on the PI3K/AKT/mTOR pathways for 

their survival and proliferation, inhibitors against these pathways are used for ER 

expressing breast cancers that have become resistant to endocrine therapy as well 

as metastatic breast cancers that cannot be treated by other therapeutic modalities. 

PARP is an enzyme that repairs DNA breaks in proliferating cells and can be another 
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target for triple negative breast cancers. However, up until now these inhibitors have 

only been efficacious in TNBC patients with specific mutations (BRCA1/2)26. 

 Although several different therapies exist for different breast cancer subtypes, 

chemotherapy is currently the main option to treat patients with metastatic disease. 

However, clinical studies have demonstrated that treatment with chemotherapy 

cannot improve outcome of metastatic breast cancer patients. Since a certain 

population of breast cancer patients develop metastasis at diagnosis and almost 1/3 

of patients will develop MBC over their disease course, it is clear that novel and more 

effective therapeutic strategies are needed to overcome MBC. 

 

1.1.4. Mouse Models of Metastatic Breast Cancer 

Clinical data has illustrated the requirement of novel therapeutic strategies to prevent 

metastasis formation. For this to be possible, mouse models of MBC are essential in 

order to define mechanisms of progression and to test therapies. Currently, there are 

largely two types of models available, i.e., spontaneous metastasis models using 

genetically engineered mice and experimental metastasis models using cancer cell 

injection.  

1.1.4.1. Spontaneous Models of Metastasis 

Two well-known models of spontaneous metastasis are the PyMT model and the Neu 

model. The PyMT model utilizes transgenic mice in which the polyoma middle T 

(PyMT) oncogene is expressed under the control of the mouse mammary tumour 

virus (MMTV) promoter, which leads to the growth of tumours within the mammary 

glands in a way that recapitulates the progression of human breast cancer; 

proliferation of normal epithelial cells (hyperplasia) that progresses to adenoma, then 

early and late carcinoma. In this model, tumour cells lose hormone receptor 

expression during the course of progression and lung metastasis with high 

incidence27,28. The Neu model uses genetically modified mice that express the ErbB2 
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(also known as HER2) gene under the control of MMTV promoter, which resembles 

HER2 gene amplification in the HER2+ type of human breast cancers. The MMTV-

Neu mice also develop mammary carcinomas however the latency period is longer 

and lung metastasis formation is less frequent compared to those in the MMTV-PyMT 

mice27. These models recapitulate characteristics of human breast cancer and thus 

are suitable to investigate therapeutic efficacy of novel treatments. In contrast to the 

human disease, however, these models establish multiple tumours with different 

stages in the same individual as mice have ten mammary glands. Moreover, it is 

difficult to control the frequency and timing of metastasis in these models. It is 

important to note here that many other genetically engineered mouse models of 

breast cancer have been developed by Jos Jonkers and others which have a range 

of different common mutations to human breast cancers and mimic a range of 

different breast cancer subtypes29.   

1.1.4.2. Experimental Models of Metastasis  

Orthotopic injection of tumour cells into the mammary fat pad of mice provides another 

model of breast cancer that mimics spontaneous metastasis from the primary site to 

the distant organ (predominantly the bone and lung). On the other hand, it is difficult 

to distinguish the effects of treatments on the late step of metastasis (metastatic 

tumour expansion) from those of the early metastatic steps (egress of tumour cells 

from the primary tumours) in this model. Alternatively, direct injection of cancer cells 

into the circulation can represent systemic dissemination of cancer cells and enables 

controllable metastasis formation in the distinct organs depending on the injection 

route. For example, intravenous injection of tumour cells allows micro-metastasis 

formation in the lung within a few days that grows into lethal metastatic tumours 

around days 10-14 after injection30,31. Cancer cells injected into the heart or caudal 

arteries develop bone metastasis32, and cells injected into the portal vein establish 

liver metastasis33. Although these models do not recapitulate the changes that cancer 
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cells may face during the journey from the primary site to the secondary site, studies 

have shown that tumours established in the orthotopic injection model and those in 

the intravenous injection model are comparable 34. Not to mention the controllable 

metastasis formation, the experimental metastasis models enable infusion of 

genetically manipulated cancer cells as well as use of human cancer cells. Ideally, 

using a combination of all the different models is preferable. 

 

1.2. Tumour-infiltrating Immune Cells in the Tumour Microenvironment 
(TME) 
1.2.1. Pro-tumour Immune Cells in the TME 

Studies in mouse models of MBC have shown that there are a number of immune 

cells within the TME that can promote metastasis. Regulatory T (Treg) cells are one 

cell type with this ability. For example, it has been shown that Tregs are recruited to 

tumours, which promotes CD8+T cell death and bone metastasis in models utilizing 

the mammary fat pad injection of breast tumour cells35. In the mammary fat pad model 

of breast cancer, Treg can also induce NK cell apoptosis that correlates with an 

increase in lung metastasis36. Tumour-associated neutrophils (TANs) are another pro-

tumour cell type within the TME. TANs in breast cancer promote production of VEGF 

and CCL2 which promote progression of the cancer as well as resistance to 

chemotherapy37. It is also reported that high infiltration of TANs correlates with lower 

overall survival in lung adenocarcinoma and highly correlates with adverse outcomes 

in both breast cancer and lung adenoma38. In addition to Treg cells and TANs, myeloid 

derived suppressor cells (MDSCs) have been reported to be recruited to the primary 

tumour site where they increase the invasiveness of murine models of metastatic 

cancer  and promote spontaneous metastasis from mammary fat pad injection models 

of MBC39. It has also been shown that MDSCs accumulate within the pre-metastatic 

lung and correlate with metastatic tumour burden in breast cancer models utilizing 
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orthotopic injection of breast cancer cells into the mammary fat pad of mice40.Another 

important pro-tumoural cell type abundant within the breast cancer TME is the 

macrophage (see below). 

   

1.2.2. Macrophages in the ‘Primary’ TME 

Macrophages are derived from yolk sac progenitors, the fetal liver or classical 

monocytes. Classical monocytes (characterized as CD11b+Ly6C+ in mice and CD14hi 

CD16– in human) are released from the bone marrow into the blood and then migrate 

into tissues in response to tissue injury, tumourigenesis and inflammation where they 

differentiate into macrophages41. Differentiation from bone marrow monocytes to 

mature macrophages requires the growth factor called macrophage-colony 

stimulating factor (M-CSF also known as CSF1). In addition to differentiation, CSF1 

receptor (CSF1R) signaling also regulates the growth and survival of macrophages41. 

On the other hand, certain populations of tissue-resident macrophages including 

alveolar macrophages are long-lived cells that differentiate from fetal monocytes in 

response to GM-CSF during the first week of life42. 

Macrophages are involved in a wide range of processes within the body. They can 

identify, phagocytose, process and present antigens to T lymphocytes43. They also 

regulate tissue growth and homeostasis by clearing dead or dying cells as well as 

toxic substances from tissues and are important mediators in tissue repair after 

damage44. It is also well known that macrophages are able to change their phenotype 

and functions in response to their microenvironment. For example, macrophage 

stimulation via IFNs or pathogen recognition receptor engagement causes 

differentiation of macrophages into a more pro-inflammatory phenotype (referred to 

as ‘classically activated macrophages’) which help promote an immune response. 

Stimulation with IL-4 or IL-13 however causes differentiation into an ‘alternative 

macrophage’ which has a more anti-inflammatory/pro-repair-like phenotype. This 
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plasticity is well documented in different biological settings, including cancer as well 

as other pathologies45.  

Importantly, macrophages represent a significant part of the immune cells 

infiltrating solid tumours and can account for up to 50% of the tumour mass46. Given 

their pro-inflammatory roles, these tumour-infiltrating macrophages were initially 

thought to suppress tumour development. However, several studies have 

demonstrated that higher macrophage infiltration correlates with poor prognosis in 

various malignant solid tumours including breast cancer47,48. Moreover, depletion of a 

certain macrophage population in tumours by Csf1r gene deletion suppresses tumour 

progression of mammary tumours in mice49 suggesting that tumour-infiltrating 

macrophages promote rather than suppress the establishment of malignant 

mammary tumours. Following this pioneering study, several studies have 

demonstrated that tumour-associated macrophages (TAMs) promote cancer cell 

egress from the primary site in mouse models of breast cancer. For example, TAMs 

within the TME secrete VEGF in response to hypoxic stress which correlates with the 

formation of blood vessels to support tumour growth50. It was also shown that TAMs 

regulated the ‘angiogenic switch’ (formation of a dense blood vessel network) within 

tumours and promoted progression to malignancy in the PyMT breast carcinoma 

model51. Tie-2 expressing monocytes (TEMs) (pre-cursors of macrophages) also 

promote angiogenesis in murine mammary tumours52. In addition to angiogenesis it 

has also been shown that VEGF along with CCL18 increases the invasion of breast 

tumour cells into the surrounding area53. Invasion of tumour cells is significantly 

increased by TAMs via the production of matrix metalloproteases that degrade the 

surrounding tissue and allow the invasion of tumour cells54. Furthermore, the invasion 

of tumours into the surrounding tissue as well as into blood vessels has been shown 

to be dependent on paracrine signalling between TAMs and tumour cells. In these 

studies, it was shown that macrophages produced EGF which binds to the EGF 
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receptor on tumour cells and tumour cells produce CSF1 that binds to the CSF1 

receptor on macrophages. Blocking either CSF1 or EGF was sufficient to prevent both 

macrophage and tumour cell migration and invasion55,56. This co-localisation of TAMs 

and tumour cells and the paracrine signalling that accompanies it is known as the 

tumour environment of metastasis or TMEM56-58. Together, these studies clearly 

indicate that TAMs are important cells in breast cancer progression, especially the 

initial steps of metastasis.  

      In addition to these pro-metastatic functions, recent studies have demonstrated 

that TAMs can suppress anti-tumour immune reactions. For instance, TAMs have 

been shown to suppress cytotoxic T cells in mouse models of breast cancer as they 

reduce T cell proliferation and affect their viability significantly59. Furthermore, several 

studies have indicated that depletion of TAMs can enhance efficacy of 

chemotherapeutics in mouse models of breast cancer60. These results suggest that 

TAMs also play important roles in immune suppression and chemoresistance in 

primary breast cancer.  

 

1.2.3. Macrophages in the ‘Metastatic’ TME   

TAMs have been well studied in primary breast cancer and have been shown to 

promote the progression of breast cancer as well as the formation of the pre-

metastatic niche. However, macrophages are also paramount in the promotion of 

metastatic tumour formation, growth and progression. In mouse models of breast 

cancer metastasis, there are at least two macrophage populations within the 

metastatic lung, i.e., resident macrophages (RMAC) characterised as 

F4/80+CD11blowCD11chigh and metastasis associated macrophages (MAMs) 

characterised as F4/80+CD11bhighCD11clow 61. The major function of alveolar RMACs 

is to survey and protect the lung from respiratory pathogens. They phagocytose 

foreign material and secrete a range of factors to destroy and limit pathogen spread62 
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although their contribution to tumour metastasis seems to be minor61. In contrast, 

MAMs play pivotal roles in breast cancer metastasis as evidenced by a significant 

reduction in metastasis formation by depletion of CD11bhigh macrophages in mouse 

models61.  

It has been reported that MAMs originate from inflammatory monocytes that 

have been recruited to the metastatic niche by tumour-derived chemokine CCL2 63. 

Using experimental models of breast cancer lung metastasis, we recently reported 

that classical monocytes (CD11b+Ly6C+) recruited to the metastatic lung develop into 

a distinct population defined by increased expression of CD11b and Ly6C 

(CD11bhighLy6Chigh) that give rise to CD11bhighLy6Clow population that represent 

MAMs. We have also shown that accumulation of these monocyte-derived MAM 

progenitors (called MAMPCs) associates with metastatic tumour outgrowth, and that 

both MAMs and their progenitor MAMPCs significantly reduce apoptosis of mammary 

tumour cells induced by pre-activated CD8+ T cells. Given their unique characteristics, 

MAMPCs represent monocytic-MDSCs31. This study thus identified that classical 

monocytes recruited to the metastatic site differentiate into MDSCs and mature into 

MAMs.   

 After differentiation, MAMs secrete the chemokine CCL3 which binds in an 

autocrine manner to CCR1. This CCR1 stimulation promotes the retention of MAMs 

within the metastatic lung by enhancing the attachment of MAMs via a4 to VCAM-1 

on tumour cells. This in turn enhances extravasation and consequently metastasis30. 

We also showed in our most recent study that MAMs promote metastatic growth 

through the secretion of hepatocyte growth factor (HGF). HGF from MAMs binds to 

its receptor, Met, which is more highly expressed on highly metastatic E0771 tumour 

cells (HML2) compared to parental cells from which HML2 were derived. This HGF 

derived Met stimulation was shown to increase the invasiveness of E0771 both in vitro 
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and in vivo and caused increased lung metastasis in a mouse model of human breast 

cancer. Together with other mouse models of MBC, Met/HGF signaling suppressed 

NK cell mediated tumour cell apoptosis64.  

 Collectively these studies suggest that targeting MAMs is an attractive 

strategy to prevent metastatic tumour expansion and immune suppression in 

metastatic breast tumours.  

 

1.3. Tumour-infiltrating Immune Cells that can Suppress Metastasis  
1.3.1. Cytotoxic CD8+ T cells 

1.3.1.1. Involvement of CD8+ T Cells in Tumour Metastasis  

CD8+ T cells are cytotoxic lymphocytes capable of killing target cells by triggering 

apoptosis. They express a large and highly diverse repertoire of antigen recognition 

receptors made possible through T cell receptor gene rearrangement. CD8+ T cells 

can only recognise antigens when presented by MHC-I. Once they recognise their 

cognate antigen T cells must also receive costimulatory signals as well as IL-2 

stimulation before they kill target cells via the release of perforin and granzyme 

(discussed further on) leading to target cell apoptosis65.  

It has been reported that solid tumours including breast cancer contain not 

only the above-mentioned immune cells but also cytotoxic lymphocytes such as CD8+ 

T cells that have the capabilities to eliminate immunogenic cancer cells66. A recent 

report has demonstrated that the presence of CD8+ T cells within the tumour 

associates with longer survival of patients with ER negative breast cancer67. 

Furthermore, another study has shown that EMT6 mammary tumour cells introduced 

into the circulation are eradicated in syngeneic mice with EMT6 tumours in the 

mammary fat pad, whereas depletion of CD8+ T cells enhanced the outgrowth of the 

disseminated tumor cells68. In another mouse model of metastatic breast cancer using 

4T1 mammary tumour cells, pulmonary metastasis of tumour cells from the primary 
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tumour is suppressed by IL-1b blocking antibodies or toll-like receptor 7 antagonist, 

whereas such metastasis suppression was not found in mice in which CD8+ T cells 

are depleted69,70. These results suggest that CD8+ T cells can suppress metastasis of 

certain types of breast cancer cells, whereas their anti-tumour function is restricted in 

the tumour microenvironment.  

The infiltration of CD3+ cells including CD8+ T cells has also been used to 

‘immunoscore’ patient samples. This is based on the density of CD3+ tumour 

infiltrating lymphocytes within the centre of the tumour (CT) and the invasive margin 

(IM)71. Several studies have shown the positive correlation between a high CD8+ T 

cell infiltrate with better prognosis in cancers that are less aggressive. Incidentally, 

TAMs can also be used to immunoscore patients and TAM infiltration correlates with 

poorer prognosis72. 

 

1.3.1.2. Development, Activation, and Suppression of CD8+ T Cells  

Progenitors of T cells originate in the bone marrow and move to the thymus. In the 

thymus, T cell progenitors (i.e., thymocytes) that bind to major histocompatibility 

complex class I (MHC-I) proteins (positive selection) but do not bind to self-antigen 

(negative selection) can differentiate into self-tolerant thymocytes expressing CD8 

that further differentiate into mature cytotoxic T cells in the lymphatic tissues. 

However, these mature but naïve CD8+ T cells require further steps to exert killing 

abilities against infected or tumour cells. As a first step, naïve CD8+ T cells in the 

lymph node receive activation signals through their T cell receptor (TCR) that binds 

to a specific antigen on MHC-I expressed by antigen-presenting cells (APCs) such as 

dendritic cells. In a second step, the primed and activated CD8+ T cells that recognize 

specific antigen clonally expand in the lymph node and migrate into the site of infection 

or tumour development. In a final step, the effector CD8+ T cells recognize the 
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antigenic peptides presented on MHC-I expressed on infected or tumour cells, and 

transmit apoptotic signals into the target cells73. 

Although mature T cells are selected not to destroy self-cells, cytotoxicity of 

effector CD8+ T cells is also regulated by several inhibitory receptors on CD8+ T cells 

such as programmed cell death-1 (PD-1) and cytotoxic T lymphocyte-associated 

protein-4 (CTLA-4). Upon binding with their ligands, these receptors transmit 

suppressive signals to CD8+ T cells and inhibit their cytotoxic functions. Thus, these 

receptors are called inhibitory checkpoint receptors. In many cases, cancer cells 

express PD-1 ligands (PD-L1 and PD-L2) and/or CTLA-4 ligands (CD80 and CD86), 

and thereby suppress tumour killing activities of CD8+ T cells. Interestingly, 

macrophages including TAMs have also been shown to express checkpoint ligands74. 

Another mechanism by which solid tumours (including breast cancers) evade the 

immune response is by the expression and/or secretion of immune suppressive 

cytokines such as TGF-β which correlates with increased tumour progression and 

metastasis75. Although TGF-β is important to maintain self-tolerance by regulating the 

proliferation, differentiation and survival of immune cells, this suppressive mechanism 

can be hijacked by cancer cells. For example, TGF-β in the tumour microenvironment 

blocks the production of IL-276, an essential cytokine for CD8+ T cell survival and 

function77. IL-10 is another cytokine expressed in breast cancer78 that can inhibit 

cytotoxic cell proliferation and function as well as enhance tumour cell survival, 

proliferation and metastasis. As described above, distinct types of immune cells (e.g., 

macrophages) also contribute to the suppression of CD8+ T cells in the tumour 

microenvironment. For example, macrophages were shown to produce IL-10 that 

indirectly suppressed CD8+T cells and therefore chemotherapy efficacy by reducing 

IL-12 expression by dendritic cells in the PyMT model79. 
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1.3.2. Natural killer (NK) Cells 

1.3.2.1. Origin and Development of Functional NK cells 

Natural killer (NK) cells are cytotoxic cells defined as CD3-CD56+ cells in humans or 

CD3- NK1.1+/NKp46+ cells in mice80. They are usually found in the blood, spleen and 

lung40 and are most well known for their roles in cancer cell elimination, transplant 

rejection and viral immunity81 and comprise around 5-10% of peripheral blood 

lymphocytes. They develop in the bone marrow from a common lymphoid progenitor 

(CLP) from which B and T cells also derive42. Factors such as IL-7, IL-15, stem cell 

factor and FLT3 ligand are required for NK differentiation from the CLP. Of these, IL-

15 has been shown to be critical as the absence of IL-15 or the IL-15 receptor alpha 

chain leads to a significant reduction in NK numbers82. Although derived from the 

same CLP, NK cells are considered innate for a number of reasons. One reason is 

that they do not require prior sensitisation or antigen presentation via MHC restriction 

to exhibit their full cytotoxic capacity75. This allows them to kill target cells quickly.  

 

1.3.2.2. Effector Functions of NK Cells  

Mature NK cells can eliminate aberrant cells from the body through several 

mechanisms, i.e., secretion of cytolytic granules, expression of ligands for death 

receptors, and release of inflammatory cytokines.   

 Following activation, NK cells produce high levels of perforin and granzymes. 

The activated NK cells also form stable cell-to-cell contacts with target cells (a 

structure called the immune synapse) via the reorganization of the actin 

cytoskeleton83,84. Lytic granules including perforin and granzymes then move to the 

microtubule organizing centre and polarize towards the newly formed immune 
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synapse where they are released85. The released perforin forms small pores within 

the target cell membrane, which enables granzymes to enter the target cells86. The 

transferred granzymes activate apoptotic signals by cleaving pro-apoptotic enzyme 

caspases and thereby kill the target cells87. The pore can be established in as little as 

30 seconds, and initiation of apoptosis is evident within 2 minutes after membrane 

permeabilization88. This whole process is incredibly quick compared to other effector 

mechanisms (see below), apoptosis induction via perforin and granzymes is the first 

and main pathway for NK cells to eliminate their targets including cancer cells89. 

However, it has been reported that subsets of human breast carcinoma express a 

granzyme B inhibitor (PI-9), and that mouse leukemia cells expressing SPI-6 (a 

murine homolog of PI-9) are less susceptible to cytotoxic cell killing90. It is also 

reported that human breast cancer cells under hypoxia become less susceptible to 

NK-mediated lysis via the activation of autophagy in tumour cells that leads to the 

degradation of granzyme B91. It is thus possible that certain types of breast cancer 

cells can evade apoptosis through the lytic granule dependent mechanism. 

It has been shown that the activation of NK cells leads to an increase in 

expression of Fas ligand (FasL)92 that binds to its receptor Fas (also known as CD95) 

on target cells and triggers the caspase-mediated apoptosis cascade93. It is also 

reported that NK cells can increase Fas expression on target cells (e.g., murine T cell 

lymphoma) via secretion of cytokines94. It has been shown that 49% of triple-negative 

breast cancers and 16-20% of ER+ breast cancer express Fas, and Fas expression 

can be an independent prognostic marker for recurrence free survival in human breast 

cancer95. NK cells can also cause apoptosis of target cells via expression of tumour 

necrosis factor-related apoptosis-inducing ligand (TRAIL) that binds to death 

receptors DR4 or DR5. However, human breast cancer cell lines have been shown to 

be resistant to this pathway since the receptors for TRAIL can be endocytosed in 
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these cells96. Human breast cancer cell lines have also been shown to avoid FasL 

mediated killing by shedding FasL as a decoy97.  

In addition to direct contact with target cells, NK cells can kill target cells by 

releasing pro-inflammatory cytokines. NK cells possess the ability to rapidly translate 

interferon (IFN)-γ into protein and release it upon activation75,98. NK cell IFN-γ release 

has been reported to induce target cell cytolysis99. Furthermore, IFN-γ can recruit 

immune cells such as neutrophils and T cells100, increase the cytotoxic capabilities of 

CD8+T cells101, and promote Th1 differentiation of CD4+ T cells102-104. It can also 

educate macrophages to be directly cytotoxic (phagocytic) cells104. Therefore, NK 

cells can eliminate target cells indirectly by inducing anti-tumour immune responses 

via the release of IFN-γ. Activated NK cells also release TNF-α93 that binds to TNF 

receptor 1 (TNFR1)105-107. TNFR1 is widely expressed and induces death via a range 

of signaling pathways that end in either apoptosis or necrosis of the target cell99,107. 

As such, NK cells can eliminate tumour cells through several mechanisms. In 

contrast to CD8+ T cells, however, NK cells do not require antigen presentation or 

clonal expansion in order to exert these cytotoxic activities (the name ‘natural killer’ 

originates from this feature). Instead, activities of NK cells are tightly regulated by 

regulatory receptors and cytokines (see below- ‘missing-self’ hypothesis).  

 

1.3.2.3. Activation of NK Cell Functions via Activating Receptors 

NK cells recognise tumour or infected cells via a range of activating receptors that 

can be grouped into families based on their structural similarity (Table 1.3). The 

natural cytotoxicity receptor (NCR) family consists of 3 members, i.e., NKp46, NKp44 

and NKp30. NKp46 and NKp30 are expressed on resting NK cells108 whereas NKp44 

is upregulated upon activation109. The absence of NKp46 has been linked to the 

impairment of tumour cell clearance in mouse models of melanoma and Lewis lung 
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carcinoma (LLC)110. In mouse models of primary breast cancer, reduced expression 

of NKp46 within the tumour microenvironment correlates with immaturity and reduced 

efficacy of NK cells111. However, ligands for NCRs especially those expressed by 

cancer cells are still unknown, although hemagglutinin has been identified as an NCR 

ligand110,112. 

The NKG2 family has seven members, i.e., NKG2A, B, C, D, E, F and H that 

are expressed both in humans and mice. All members have a high degree of 

sequence homology apart from NKG2D which is the most individual of this family. 

NKG2C, D, E, F and H are activating while A and B are inhibitory (discussed later)113. 

Among these receptors NKG2D has been described as ‘the master activating NK cell 

receptor’ and can over-ride signals from NK inhibitory receptors. Human NKG2D 

ligands such as MIC-A, MIC-B and ULBP1-6 are known to be upregulated in infected 

or cancerous cells, which allow NK cells to recognise these aberrant cells and be 

activated114. It has been shown that a downregulation of NKG2D in tumour infiltrating 

NK cells correlates with breast cancer progression115. Shedding of NKG2D ligands 

has also been reported in human breast cancer cell lines in vitro, which prevents NK 

cell mediated cytolysis114. Murine ligands for NKG2D include histocompatibility 

antigen 60 (H60), retinoic acid induced early transcript (Rae-1) and murine ULBP-like 

transcript 1 (Mult1)116. Rae-1 expression has been shown to activate NK cells and 

promote NK cell mediated tumour rejection in murine models of melanoma and 

lymphoma117.  

In human, there is another group of NK cell regulatory receptors called the 

Killer cell Immunoglobulin-like Receptor (KIR) family. These receptors are functional 

homologs of murine Ly49 family receptors as these receptors bind to MHC-I 

molecules. KIRs have two or three IgG-like domains and short (S) or long (L) 

cytoplasmic tails that determines whether the receptor activates or inhibits NK cell 
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functions. The activating receptors in this family (KIR2DS1-4) have short intracellular 

domains that interact with DAP12 and other intracellular proteins containing 

immunoreceptor tyrosine activation motifs (ITAMs) and thereby transmit the activation 

signal118.  Another human NK cell activating receptor is DNAM-1 that binds to CD155 

(poliovirus receptor) and CD112 (Nectin-2)119. Nectin-2 has been shown to be 

 Table 1.3. NK cell regulatory Receptors  

Family Members Activating/ 
Inhibitory 

Ligands 

NCR  
(Hu and Mu) 

NKp46 
NKp30 
NKp44 

Activating  
Activating 
Activating 

Tumour (?), Hemagglutinin 
Uknown 
Tumour (?), Hemagglutinin 

NKG2  
(Hu and Mu) 

NKG2C 
NKG2D 
 
NKG2A 

Activating 
Activating 
 
Inhibitory 

HLA-E (Hu), Qa1b (Mu) 
ULBPs, MICA&B (Hu), Rae-1, H-60  
(Mu) 
HLA-E (Hu), Qa1b (Mu) 

Ly49  
(Mu only) 

Ly49A 
Ly49C 
LY49H 
Ly49I 

Inhibitory 
Inhibitory 
Activating 
Inhibitory 

H2-D, H2-K 
H2-D 
m157 
H2-B 

KIR (Hu only) KIR2DS1-4 
KIR2DS5 
KIR3DS1 
KIR2DL1-3 
KIR2DL4 
KIR3DL1 
KIR3DL2 
KIR3DL3 
KIR3DL5 

Activating 
Activating 
Inhibitory 
Inhibitory 
Inhibitory 
Inhibitory 
Inhibitory 
Inhibitory 
Inhibitory 

HLA-C 
Unknown 
HLA-B 
HLA-C 
HLA-G 
HLA-A/B 
HLA-A 
Unknown 
Unknown 

Ig family DNAM-1 Activating CD155 and CD112 

overexpressed in human breast cancer tissues and therefore may help determine 

which patients would respond to NK cell therapies120. A recent report has shown that 

treatment of breast cancer cells with Adriamycin increases expression of CD155, 

therefore rendering these cells more responsive to apoptosis121. It is also reported 

that human breast cancer cells with different subtypes commonly express ligands for 

DNAM-1 and NKG2D, which is required for NK cell mediated killing of these cancer 

cells115. 
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In addition to the above-mentioned activating receptors, Fcγ receptors such 

as CD16 (FcγRIIIA) and CD32 (FcγRIIC) on the cell membrane of NK cells can 

transduce activating signals via their ITAMs upon binding the Fc region of IgG. Signal 

activation via Fcγ receptors leads to cytolytic granule secretion, death ligand 

expression, and cytokine secretion by NK cells122. Therefore, NK cells can bind to 

target cells opsonised by antibodies (IgG) and efficiently kill the target cells. This type 

of killing mechanism is called antibody-dependent cellular cytotoxicity (ADCC) and is 

well documented in breast cancer treated with anti-HER2 antibodies and in B cell 

leukaemia treated with antibodies against CD20123.  

1.3.2.4. NK cell Activation via Cytokines 

Cytokines also play important roles in regulating NK cell activity (Table 1.4). IL-2 is 

one of the most important cytokines for activation of NK cells. It has been reported 

that IL-2 deficient mice show impaired NK cell responses to infection although the 

number of NK cells are normal124. IL-2 binds to the IL-2 receptor complex and 

stimulates proliferation54 and release of IFN-γ125 in NK cells and enhances cytotoxicity 

through the upregulation of perforin126. The vast majority of IL-2 comes from activated 

T cells but can also be released by dendritic cells (DCs)127. As mentioned above, IL-

15 is indispensable for development and maintenance of NK cells in vivo. This 

cytokine can also enhance proliferation82 and cytotoxicity of NK cells via the 

upregulation of activating receptors128. The source of IL-15 has been shown to be 

monocytes and macrophages as well as DCs129. IL-12 promotes activation of NK cells 

along with IL-15 and IL-2. Although IL-12 is poorly stimulatory in terms of cytokine 

secretion in NK cells, this cytokine is adequate to stimulate cytotoxicity130. IL-12 is 

produced by macrophages and DCs in vivo131,132. It contrast to the other cytokines, 

IL-18 does not increase cytotoxicity or proliferation of NK cells, but instead this 
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cytokine can promote migration of NK cells towards the area of inflammation131 and 

stimulate survival of NK cells133.  

 

Table 1.4 NK cell regulatory cytokines 

Cytokine Activating/ 
Inhibitory 

Effects on NK 

IL-2 Activation Proliferation, IFN-γ secretion, cytotoxicity 
IL-15 Activation Survival, maintenance, cytotoxicity, proliferation 
IL-12 Activation Cytotoxicity 
IL-18 Activation Migration, survival 
IL-21 Activation 

Inhibition 
Cytotoxicity, reverses exhaustion/ reduces IL-15 
mediated proliferation 

Type I IFN Activation Proliferation, cytotoxicity, cytokine release 
IL-10 Inhibitory Promoting tolerance 
TGF-b Inhibitory Reduction in cytotoxicity and cytokine secretion 

 

The role of IL-21 in NK cell stimulation is complicated. It is secreted by CD4+T cells 

and NKT cells134 and has some contrasting effects on NK cells. Namely, IL-21 can 

enhance the effects of IL-2 and IL-15 on NK cell activation and reverse exhaustion of 

NK cells135, whereas it has also been shown to increase the expression of the NK 

inhibitory receptor NKG2A66 and block IL-15 induced proliferation136. Similarly to IL-

21, there are contrasting roles for type-I interferons on NK cell biology. Type-I IFNs 

have been shown to stimulate proliferation of NK cells, increase NK cell cytotoxicity 

and release of cytokines137 as well as up-regulate the expression of perforin and FasL 

in NK cells138. On the other hand, the type-I IFNs have also been shown to decrease 

the release of IFN-γ from NK cells139. The type I interferons such as IFN-α and IFN-β 

were originally thought to be mostly secreted by plasmacytoid DCs but recent 

evidence suggests that the cell type which acts as a source of these IFNs changes 

depending on the type of infection/inflammation. Macrophages, inflammatory 

monocytes and conventional DCs also produce Type I IFNs140. 
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1.3.2.5. NK Cell Suppression via Inhibitory Receptors 

NK inhibitory receptors bind to MHC-I molecules on cells so that they can be 

recognized as ‘self’. This is the basis of the ‘missing-self’ hypothesis which states that 

NK cells can recognize and kill cells which do not express MHC-I molecules as they 

are seen as ‘non-self’141,142. Upon binding to self-MHC, NK inhibitory receptors trigger 

a signaling event which causes the phosphorylation of intracellular immunoreceptor 

tyrosine-based inhibitors motifs (ITIMs) leading to the recruitment of and activation of 

intracellular phosphatases like SHP1 and SHP2. These phosphatases can 

dephosphorylate a number of proteins that regulate activation of NK cells143. This 

inhibitory signaling can prevent NK cell cytotoxicity as well as adhesion of NK cells to 

target cells99. Inhibitory receptor stimulation eventually leads to the collapse of the 

actin cytoskeleton and the NK cell therefore backs off from the target cell100.  Up until 

now several NK cell inhibitory receptors that bind to specific MHC-I molecules have 

been reported (Table 1.3.1).  

        As mentioned above, the Ly49 family consists of a number of receptors including 

both activating and inhibitory receptors. The major family of mouse NK cell inhibitory 

receptors are Ly49 receptors that are functionally equivalent to theKIR family in 

humans. Ly49A is a murine inhibitory receptor that binds to MHC-I molecules such as 

H2-M3 and H2-Dd/k on the surface of target cells depending on the genetic 

background of mice93,144. For example, C57Bl/6 mice express the ‘b’ haplotype and 

thus cells originating from this strain express H2-Db but not H2-Dd/k. So far, H2-M3 is 

the only ligand reported for Ly49A in C57Bl/6 mice145. It has been reported that a 

Ly49A-binding peptide that blocks receptor binding of H2-Dd/k can enhance 

cytotoxicity of NK cells against H2-Dd expressing cancer cells146. On the other hand, 

a recent report has shown that NK cells in H2-M3 deficient mice produce a lower 

amount of IFN-γ upon activation and are less efficient in suppressing lung metastasis 
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of B16 melanoma cells, suggesting that the binding of host H2-M3 to Ly49A is 

required for development of functional ‘licensed’ NK cells145. LY49C and Ly49I are 

also inhibitory receptors and bind to H2-Db and H2-Kb in C57Bl/6 mice119,147. It has 

been shown that blocking Ly49C/I leads to an increase in NK cell mediated tumour-

cell rejection in a mouse model of lymphoma without causing autoimmunity, indicating 

that these receptors play a major role in tumour-cell tolerance148. Interestingly, a 

recent study has shown that the growth of LLC cells in syngeneic mice is significantly 

promoted by depletion of Ly49C/I expressing NK cells as well as genetic deletion of 

MHC-I, suggesting that Ly49C and/or Ly49I are also required for NK cell licensing149. 

 NKG2A is another inhibitory receptor that binds classical MHC-I molecules 

such as HLA-E in human150 and H2-Qa1 in mice151. It is reported that H2-Qa1 

expression on activated CD4+T cells protect them from NK mediated cytotoxicity152 

and upregulation of H2-Qa1 on B cells prevents NK cell mediated lysis of anti-viral T 

cells in virus infected mice153. These studies suggest that H2-Qa1 controls NK cell 

activation. 

 As previously mentioned, the human KIR family includes several inhibitory 

receptors. The inhibitory KIRs have long cytoplasmic domains (hence they have ‘L’ 

within their name) including ITIMs that transmit the inhibitory signals. These receptors 

specifically bind to either HLA-A, HLA-B, HLA-C, or HLA-G (Table 1.3.1.) whereas 

ligands for KIR3DL3 and KIR3DL5 have not yet been identified118,154. It has been 

shown that patients receiving allogeneic stem cell transplants have improved 

elimination of tumour cells compared to those receiving immunologically matched 

transplants due to what is known as the graft versus donor effect. This is because 

donor derived NK cells are no longer inhibited by patient derived KIR ligands due to 

immunogenetic mismatch155. 
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In addition to the above-mentioned inhibitory receptors binding to MHC-I 

molecules, receptors for immune checkpoint ligands are also expressed by NK cells 

and mediate the inhibition of NK cell functions. For example, NK cells can express 

programmed cell death receptor 1 (PD-1) and cytotoxic T lymphocyte associated 

antigen 4 (CTLA-4) which binds to CD80/86. PD-1 is the receptor for the checkpoint 

molecules PD-L1 and PD-L2 that is expressed on activated cytotoxic lymphocytes in 

order to limit the excessive immune response and avoid collateral damage during 

inflammation156.  It has been shown that PD-1 contains ITIMs within its intracellular 

domain which inhibits proliferation and cytokine production of CD8+ and CD4+ T 

cells157. Therefore, PD-1 signaling is known as a major suppressor for T cell mediated 

immune reactions. However, several studies have suggested that PD-1 also regulates 

NK cell functions. For example, primary multiple myeloma (MM) cells from patients 

express PD-L1, and preventing PD-1/PD-L1 interaction by anti-PD-1 blocking 

antibody increased NK cell cytotoxicity towards cancer cells but not normal cells158. 

In a mouse model of esophageal squamous cell carcinoma (ESCC), treatment with 

an anti-PD-1 blocking antibody suppressed tumour growth in mice and was abrogated 

by depletion of NK cells159. Although the involvement of PD-1 in NK cell function in 

breast cancer is currently unknown, it has been shown that high PD-L1 expression in 

primary breast cancers correlates with higher tumour grade and higher proliferation 

rate of the tumours. Interestingly, PD-L1 expression also associates with high 

infiltration of CD68+ cells160 that represent myeloid cells including macrophages161.  

Another checkpoint receptor CTLA-4 is a homolog of T cell co-stimulating 

receptor CD28 but it binds to CD80 and CD86 with much higher affinity than CD28. 

Binding of the ligands to CTLA-4 does not transmit activation signal like CD28, and 

instead leads to anergy of T cells162. It has been shown that CTLA-4 decreases IFN-

γ production in murine NK cells, suggesting that this receptor also transmits NK cell 

suppressive signals163. Interestingly, high CTLA-4 expression in breast cancer 
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associates with poor-prognosis164. However, effects of CTLA-4 on human NK cells, 

especially their cytotoxicity against cancer cells, have not yet been identified. 

1.3.2.6. NK Cell Suppression via Cytokines 

It is well known that NK cell functions can also be inhibited by several cytokines. One 

of the most prominent cytokines responsible for NK cell suppression is transforming 

growth factor b (TGF-b). It has been demonstrated that expression of the NK 

activating receptor, NKG2D in cultured human NK cells is significantly reduced by 

incubation with plasma from patients with lung or colorectal cancers, and such a 

reduction is inhibited by anti-TGF-β blocking antibodies. Furthermore, incubation with 

recombinant human TGF-β reduces NKG2D expression in NK cells and thereby 

suppress NK cell mediated killing of human T lymphoblast or B cell lymphoma cell 

line165,166. In a mouse model of melanoma, blockade of active TGF-β suppressed 

tumour growth in an NK cell dependent manner167. In human breast cancer, high 

expression of TGF-β positively correlates with enhanced breast cancer progression, 

angiogenesis, and metastasis168. TGF-b has also been implicated to promote 

epithelial to mesenchymal transition (EMT) and tumour metastasis in mouse models 

of breast cancer129, 130. Although the contribution of TGF-β to the NK cell suppression 

in breast cancer is largely unknown, TGF-β reduces NK cell cytotoxicity against 

human breast cancer cells (MCF-7 and MDA-MB-231) in vitro169. It is therefore 

possible that TGF-β plays pivotal roles in NK cell suppression in the tumour 

microenvironment. 

        IL-10 is also known to maintain tolerance of NK cells within the liver to prevent 

inflammation caused by constant stimulation from pathogens from the gut170. In 

human breast cancer, high IL-10 expression is reported as a negative prognostic 

factor, whereas another study shows that IL-10 expression correlates with anti-tumour 

activity involving the augmentation of NK cell destruction of tumour cells171.Therefore 
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the role of IL-10 in NK cell regulation of breast cancer is controversial. Interestingly, 

a recent study has shown that IL-4, IL-12, and IL-18 can significantly suppress NK 

cell cytotoxicity against leukemia cells in the presence of IL-15 in vitro172. However, 

the involvement of these cytokines in the NK cell suppression in breast cancer needs 

to be investigated.  

 

1.4. Immunotherapy 

1.4.1. T cell-based immunotherapies 

Given the cytotoxic nature of CD8+ T cells, there has been a range of therapeutic 

strategies established aimed at boosting their ability to attack tumour cells. Such T 

cell-based immunotherapies include therapeutic vaccination, immune checkpoint 

inhibitors, and the infusion of selected CD8+ T cells. 

      As mentioned above (Chapter 1.3.1), CD8+ T cells need to be activated and 

clonally expand through antigen presentation in order to eliminate target cells. 

Therapeutic vaccination aims to enhance this activation process by injecting tumour 

specific antigen with immune adjuvants. However, identification of targetable antigen 

that is selectively expressed by cancer cells and efficiently presented is still 

challenging, and thus therapeutic efficacy of this strategy is still very limited173.  

        Checkpoint inhibitor therapy proposes to re-activate CD8+ T cells which functions 

are suppressed through binding to immune checkpoint ligands expressed by tumour 

cells and pro-tumour immune cells (discussed in Chapter 1.3.1.2). To overcome this 

suppression, antibodies against these ligands (e.g., PD-L1) or their receptors (e.g., 

PD-1 and CTLA4) have been developed. These checkpoint inhibitors have dramatic 

therapeutic responses in the clinic in cancers such as metastatic melanoma, leading 

to the approval of checkpoint targeting drugs for a number of malignant tumours 174. 

However, efficacy of this therapy is limited to certain types of tumour and therapeutic 

effects on metastatic breast cancer are not sufficient so far175. 
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     Another emerging T cell-based immunotherapy is transfer of CD8+ T cells 

expressing chimeric antigen receptors (CAR) that consist of an intracellular 

signalling domain of the T cell receptor and extracellular single-chain variable 

fragments (scFv) that bind to a specific protein expressed on the surface of tumour 

cells. Since CAR expressing T cells can exert cytotoxicity against tumour cells 

expressing the target surface molecules without MHC-I restricted antigen 

presentation, they can target low antigenic cancer cells that are not detected by the 

intrinsic immune system176. Although this type of therapy was successful for B cell 

lymphoma177, its applicability and efficacy in solid tumours including breast cancer 

has not been reported.  

After the success of checkpoint inhibitors, immunotherapy has been 

considered as a promising therapy for malignant tumours that are refractory to current 

therapeutics. However, the above-mentioned T cell-based immunotherapies are not 

applicable to all types of cancers. As previously mentioned, CD8+ T cells require 

antigen presentation via MHC-I and thus cannot target cancer cells that lack tumour 

antigens or down-regulate MHC-I expression such as metastatic breast cancer178. For 

these types of tumours, alternative strategies must be adopted to eliminate tumour 

cells.  

 

1.4.2. NK cell-based immunotherapies 

Due to the fact that NK cells are cytotoxic, not MHC restricted and can expand and 

exert their cytotoxic functions almost immediately, NK cells are attractive therapeutic 

tools to target cancer cells that express no or low levels of MHC-I or antigenic protein 

and thereby escape from surveillance of T cells179. Since malignant breast cancer 

cells frequently lose MHC-I expression, they are also targetable by NK cells. 
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Therefore, the infusion of ex vivo expanded and activated NK cells has been proposed 

as a novel immunotherapy.  

Initially, NK cell-based immunotherapy aimed at stimulating NK cells within 

cancer patients. Namely, activating cytokines such as IL-2, IL-15, and IL-21 were 

administered to cancer patients in order to activate intrinsic NK cells. However, the 

responses were very limited and patients experienced life-threatening toxicities such 

as vascular leak syndrome180,181. As an alternative strategy to utilize NK cells as a 

therapeutic tool, NK cell infusion was then proposed in 2005. In this study, NK cells 

activated ex vivo were infused into leukemia patients who had already received 

lymphodepleting chemotherapy in order to make room for the NK cells. NK cells 

transferred into the patients expanded and persisted for up to a month, and some 

positive responses were observed. In this trial, patients also received IL-2 after the 

NK cell transfer in order to activate and maintain NK cells. However, another study 

had shown that IL-2 administration leads to an increase of immune suppressive Treg 

cells as these cells express the high affinity receptor for IL-2182. For this reason, other 

cytokines such as IL-15 have been tested to enhance efficacy of infused NK cells. A 

recent study has shown that regimented doses of IL-15 are well tolerated and 

increases NK cell numbers in patients with advanced solid tumours such as renal cell 

carcinoma, non-small cell lung cancer and squamous cell carcinoma. Although no 

objective responses were observed, this study proposed that IL-15 administration was 

safe and supported NK cells in patients which can be combined with other NK-cell 

based immunotherapies183.  

Several different sources of NK cells are used or proposed for NK cell infusion 

therapy, i.e., autologous NK cells, allogenic NK cells (cells from the peripheral blood 

of another person), NK cell lines, and NK cells derived from induced pluripotent stem 

cell (iPSC) or embryonic stem cell (hESC). Although autologous or healthy donor-

derived primary NK cells are most commonly used in the clinic so far, there are some 



 32 

limitations in these types of NK cells. For example, healthy donor derived NK cells are 

not ideal to use for multiple rounds of treatment since NK cells account for a small 

proportion in blood therefore isolation requires multiple rounds of leukaphereses and 

there exists significant variation in NK cells from donor to donor184. In order to 

overcome this disadvantage, NK cell expansion methods have been improved by co-

culturing NK cells with artificial antigen presenting cells that express membrane bound 

IL-21 (in contrast to membrane bound IL-15 which was also studied)185. Nevertheless, 

variation of NK cell status between donors makes it difficult to use donor-derived cells 

as a ‘standard’ product184. Moreover, autologous NK cells are suppressed by self-

MHC-I expressed by the tumour or surrounding stromal cells. An alternative source 

of therapeutic NK cells are NK cell lines such as NK-92 that consistently exert 

cytotoxic capability against tumour cell targets184 and enables a constant supply of 

clinical grade NK cells with minimum batch effects. In addition to this, NK cell lines 

are more susceptible to genetic manipulation compared to blood derived NK cells that 

usually display very poor transfection efficiency184. This feature allows for the 

generation of NK cells expressing chimeric antigen receptors (CARs) that can more 

efficiently kill cancer cells expressing target antigen such as CD19 in B cell 

lymphoma186. Therefore, NK-92 cells represent a valuable therapeutic tool in the field 

of immunotherapy. Another attractive source of NK cells are iPSC or hESC derived 

NK cells. A method to differentiate hESCs or iPSCs into functional NK cells had been 

reported where hESCs or iPSCs are cultured with stem cell factor (SCF), IL-3, IL-15, 

Fms-like tyrosine kinase 3 ligand (flt3L) and IL-7 for around 30 days with a feeder cell 

line187,188. hESC-NK cells have been shown to kill human tumour cells in vitro as well 

as in vivo and were significantly more effective than NK cells derived from umbilical 

cord blood188. These cells can also be genetically manipulated. For example, hESC-

NK cells have been manipulated to express luciferase allowing trafficking and 

biodistribution studies to take place via in vivo bioluminescence imaging187. Similarly, 
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iPSC-NK cells have been shown to be effective in a number of different models of 

human ovarian cancer187. The biggest advantage to using these methods is that they 

represent an ‘off-the-shelf’ therapy, reducing problems associated with patient/ donor 

variability187. Similarly to NK cell lines, these cells are also relatively easy to 

genetically modify compared to peripheral blood NK cells. For example, one group 

modified iPSC-NKs to express a modified version of CD16 to improve ADCC toward 

HER2 expressing ovarian cancer cells189. The use of hESC/iPSC derived NK cells 

bears many advantages. As well as the aforementioned ease of manipulation 

(multiple enhancements are possible), these cells are defined and homogenous. They 

also do not need to be irradiated which means that they are able to expand in vivo 190. 

From these studies, it is clear that NK cell immunotherapy represents a promising and 

exciting cancer targeting strategy. 

Efficacy of clinical trials using NK cell infusion therapy have been evaluated. 

Although most trials are still on-going, infusion of autologous or allogenic NK cells in 

patients with solid tumours such as renal cell carcinoma, glioma191 and breast 

cancer177 
have shown partial clinical responses without obvious side effects192. A 

phase 1 clinical trial using the NK-92 cell line has also been done and showed that 

these cells survive in vivo and are well tolerated without significant toxicities in 

patients with advanced cancer156,168. 

However, efficacy of NK cell infusion therapy in solid tumours including breast 

cancer is limited so far and is not sufficient to cure the patients. Although the 

mechanisms behind this limitation are currently unknown, inefficient delivery of 

infused NK cells into the tumour and the existence of immune suppressive tumour 

microenvironment have been suggested178. For example, Treg cells in the tumour have 

been reported to suppress NK-cell mediated tumour rejection in mouse models of 

melanoma193. It is also reported that MDSCs from the peripheral blood of patients with 
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liver cancer can also suppress NK cell cytotoxicity in vitro in a cell-to-cell contact 

dependent manner 194. Interestingly, TAMs from the primary mammary tumours in 

PyMT mice have also been shown to suppress NK cell activation status via the 

physical interaction with NK cells195. Although these data emphasize the involvement 

of the TME in the NK cell inefficiency, suppressive effects of macrophages on NK cell 

cytotoxicity, especially those within MBC, has not been well understood. In order to 

successfully apply the NK cell infusion therapy to MBC, a better understanding of NK 

cell suppression induced by metastasis-associated macrophages (MAMs) is needed. 

In this project we have investigated macrophage mediated NK cell suppression in 

mouse models of MBC and identified possible mechanisms that can lead to improving 

this therapy. 

 

1.5. Hypothesis 

As described above, metastatic breast cancer is a leading cause of cancer-related 

death in women and there is a desperate need to find new therapies to tackle this 

disease. An emerging therapy is immunotherapy. However, these immunotherapies 

are usually based on T cell activities and in many cases MBC cells cannot be targeted 

by T cells. An alternative immunotherapy for MBC can be NK cell infusion. The 

efficacy of NK cell therapy has been shown to be limited by the TME. The role of the 

suppressive TME at the metastatic site is largely unknown. Based on previous studies 

including our own, we hypothesize here that metastasis-associated macrophages 

play pivotal roles in NK cell suppression in metastatic tumours, and that targeting 

MAMs will improve NK cell cytotoxicity and thereby improve NK cell immunotherapy 

efficacy.  
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2.1. Animals  
All animal experiments were performed under UK Home Office project licenses issued 

under the Animals (Scientific Procedures) Act (1986) and the EU Directive 2010/63 in 

accordance with ARRIVE guidelines. Animals had unrestricted access to food and 

water, were housed in groups of up to 6 per cage and were subject to a 12-hour 

light/dark cycle.  

C57BL/6NCrl mice were purchased from Charles River and were housed in 

our on-site animal facility for a 7 day ‘settling period’ before use.  

rtTA:tetO-Cre:Csf1rF/F (also called Csf1r-cKO) mice were generated by 

crossing B6.Cg-Csf1r
tm1Jwp/J (Csf1r

F/F) mice with ROSA-rtTA and tetO-Cre mice (The 

Jackson Laboratory, Maine, USA). These mice were bred and maintained in-house. 

When treated with doxycycline (2μg/mL, Sigma, D9891) in 5% (v/v) sucrose water, 

the drug combines with transactivator rtTA which can in turn bind tetracycline-

responsive promoter element TetO allowing transcription of Cre recombinase. Cre 

recombinase can cut the loxP sites which are located on either end of exon five of the 

Csf1r gene, leading to null allele of the Csf1r.  

 

2.2. Culture of Cell Lines and Primary Cells 
2.2.1. Tumour Cells 

E0771 mouse mammary adenocarcinoma cells were originally derived from medullary 

cancer in C56BL/6 mice. E0771 were manipulated to express firefly luciferase plus a 

hygromycin resistance gene and highly metastatic derivatives were isolated from 

established metastases within the lung (called E0771-LG2:Fl#4). These cells were 

also manipulated to express a nuclear red fluorescent protein (mKate2)196 and were 

subsequently called E0771-LG2:Fl#4-NLR. In order to isolate a clone of E0771-

LG2:Fl#4 cells that efficiently develop tumours in Csf1rcKO mice E0771-LG2:Fl#4 

cells were injected via tail vein into Csf1rcKO mice. Metastasized cells were isolated 
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from the lung and selected for using hygromycin (Thermofisher Scientific, 10687010) 

for 2 weeks in culture. The established cell lines (E0771-LG2:Fl#4 and E0771-

LG2:Fl4-Csf1rcKO) were stocked in 1ml of 10% (v/v) dimethyl sulfoxide (DMSO) and 

90%(v/v) fetal bovine serum (FBS) in liquid nitrogen until use. These stocks were 

carefully thawed and put into 9 mL of pre-warmed DMEM medium (Gibco, 41966) 

containing 10% FBS (Gibco, 10500) and 1% Penicillin/Streptomycin (Gibco, 

15140122) (complete media) and spun down for 5 mins at 300g to get rid of remaining 

DMSO. Cells were resuspended in complete media and allowed to recover for a few 

days in the incubator at 37°C, 5% CO2 and split every few days at 1:5-1:10 for 

maintenance. To subculture cells they were washed with 1x Phosphate buffered 

Saline (PBS), pH 7.4 and 0.25% w/v Trypsin-EDTA (Gibco, 25200056) was used to 

dissociate cells, followed by a wash in complete DMEM media. Cells were 

resuspended and counted for further procedures. 

 

2.2.2. NK Cell isolation and Culture  

Spleens from C56BL/6 wild type (2-4 months) were isolated and pushed through a 

70μM filter using the rubber end of a plunger from 5mL syringe into PBS and spun 

down at 300g for 5 minutes. Cells were resuspended in 1mL of MACS buffer (0.5% 

BSA, Sigma, A1470, 2mM EDTA, Sigma, E6758) and counted. 1x108 cells in 1mL 

MACS solution were put into a 5ml round-bottom polystyrene tube. 50μL of antibody 

cocktail from the NK isolation kit (Stemcell Technologies, 19855) was added, mixed 

gently and incubated at room temperature (RT) for 10 minutes. 100μL of magnetic 

beads which bind antibodies from cocktail (same kit) was added and incubated for 

another 5 minutes at RT. The volume was made up to 2.5mLs using MACS buffer 

and the tube was inserted into MACS EasySepÔ magnet for 5 minutes. The 

negatively selected cells in the supernatant were poured into a 15mL FalconÒ tube 
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and put on ice. The tube in MACs magnet was removed, remaining cells were 

resuspended in 2.5mLs of MACS buffer and magnetic selection was repeated for a 

further 5 minutes before decanting into the 15mL tube with the previous supernatant. 

The 15mL tube (containing NK cells) was centrifuged at 300g for 5 minutes and 

supernatant discarded before resuspending with appropriate medium for the assay.  

 

2.2.3. Bone Marrow-Derived Macrophages (BMMs) 

Femurs and tibias from C57BL/6 wild type mice were isolated and flushed with cold 

PBS. Isolated bone marrow was centrifuged at 300g for 5 minutes, supernatant 

decanted and resuspended in 10mLs of alpha-MEM (Gibco, 22517) complete medium 

with 10% v/v FBS and 1% v/v Pen/Strep (as previously mentioned). 1000U/mL of 

CSF-1 (Chiron Corporation, 94608) (to make M-BMMs) or 25ng/mL GM-CSF 

(Peprotech, 31503) (to make GM-BMMs) was added to resuspended cells and was 

cultured for 24 hours in a tissue culture-treated 10cm dish (CORNING, 430167). Non-

adherent cells were put into a 50mL FalconÒ tube, 30mLs complete alpha-MEM was 

added with 1000U/mL CSF-1 or 25ng/mL GM-CSF and aliquoted to 4 petri dishes. 

After culture for a further 3 days, media was removed, fresh media added and 

adherent cells were scraped using a disposable scraper (Fisher-brand, 08-100-240).  

Cells were centrifuged at 300g for 5 minutes and resuspended for counting. 3x106 

BMMs/10cm petri dish were plated. These BMMs were cultured with either 1000U/mL 

CSF-1 in complete alpha-MEM for M-BMMs differentiation or 25ng/μL GM-CSF in 

complete alpha-MEM  for GM-BMMs differentiation for a further 3-6 days until they 

became mature macrophages (Guc&Brownlie et al, accepted, Methods in 

Enzymology).  
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2.3. Animal models of metastatic breast cancer  

1x106 E0771-LG2:Fl#4 or E0771-LG2:Fl#4-Csf1rcKO cells in 200μL cold PBS was 

injected into the tail vein of C57BL/6NCrl or Csf1rcKO mice. Mice were anaesthetized 

using isoflurane. The chest area of injected mice was shaved and depilated using a 

standard depilation cream followed by an intraperitoneal injection of luciferin 

(1.5mg/100μL in PBS, Gold Biotechnologies, LUCK). Animals were placed in 

PhotonIMAGER Optima machine (Biospace Lab) and bioluminescence imaging was 

carried out for 10-15 minutes to determine tumour load in the lungs. Mice were imaged 

at days 0, 1, 4, 7 10 and 14 to monitor tumour load and culled on day 10 or 14 for 

tissue (unless tumour load exceeded 1x105 ph/s/cm2/sr in which case animals were 

culled beforehand in compliance with animal protocols).  

In some cases, macrophages were depleted as described in 2.1.3. 

Doxycycline was given to Csf1rcKO mice from Day 4 until the end of experiment to 

ensure that small foci were able to develop initially before macrophage depletion with 

doxycycline water being renewed every 2-3 days. The efficacy of macrophage 

depletion was quantified by flow cytometry (staining procedure, antibodies and gating 

strategy described in Section 2.5).  

 For adoptive transfer of NK cells,  2x105 NK cells in 200μL were put into a 

round bottom 96-well plate (Thermofisher Scientific, 2202-02) with 1000U/mL IL-2 

(Peprotech, 212-12) in MACS NK media (Miltenyi Biotec, 130112968) supplemented 

with 10% v/vFBS and MACS NK supplement as directed in manufacturer’s 

instructions. Cells were cultured at 37°C, 5% v/v CO2 for 48 hours. Cells were 

collected, washed, resuspended in PBS and injected via tail vein into mice 

(1x106/200μL). 
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2.4. Real-time in vitro Fluorescence Imaging  
2.4.1. Plate Preparation and Culture of Cells 

96-well glass bottom, black walled plates (NUNC, 165305) were coated with 30μL of 

Geltrex (Gibco, A1596-01) to allow cells to adhere. The plates were left for one hour 

at 37 degreesC prior to aspirating and adding cells/media in its place. E0771-

LG2:Fl#4-NLR  containing a red nucleus were cultured beforehand in DMEM 

supplemented with 10% FBS and were not allowed to grow to more than 80% 

confluent by splitting every 2-3 days 1/10-1/20 dilution. NK cells were isolated and 

BMMs developed as described in 2.2.2 and 2.2.3, respectively. All cells were 

centrifuged at 300g for 5 mins and resuspended in alpha-MEM supplemented with 

10% v/v FBS, 1% v/v penicillin/streptomycin (complete alpha-MEM). Complete alpha-

MEM containing IL-2 (1000U/mL, Peprotech, 212-12) and fluorogenic caspase-3 

substrate NucView 488 (2.5μg final, Biotum, 10402) was added to all wells. 1000 

tumour cells, 1000 or 3000 BMMs, and 4000 NK cells were added to appropriate 

wells. All sample wells were in the middle 60 wells of the plate and made up to 100uL 

with additional alpha-MEM while empty wells were filled with 100μL PBS/well to 

maintain humidity to prevent evaporation. In some assays, blocking antibodies were 

used at concentrations listed in Table 2.1. 

Table 2.1. Blocking antibodies used in cytotoxicity assays 

Antibody Company Catalogue Number Final Concentration 
ug/mL 

IgG BioLegend 401502 25 
Ly49A BioLegend 116803 

 
25 

Ly49C/I BD 553273 
 

25 

H2-Db BD 553600 
 

25 

H2-Kb BioLegend 116502 
 

25 

TGF- β BioLegend  2 
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2.4.2. Imaging Set-up 

Plates were put into the IncucyteÒ live cell imaging system (Essen Bioscience) and 

Incucyte Zoom software (Essen Bioscience) was launched. Within the software, the 

position of the plate within the imaging system was selected. The software was 

instructed to take 4 non-overlapping images for every 3 hours using phase contrast, 

and fluorescence imaging (green: excitation 440nm, emission524nm. Red: 585nm 

excitation, 635nm  emission). Plates were left to image for up 48-72 hours and data 

was stored automatically.  

 

2.4.3. Image Processing and Analysis 

When the time-course has finished, an image collection was prepared to train the 

software and make a ‘processing definition’ (2.4.4). Representative images, for 

example tumour only, BMMs only, NK only, as well as different combinations and 

timepoints were stored as an ‘image collection’. A processing definition is a set of 

instructions given to the software in order to quantify each image. Using the image 

collection made previously, the software is trained to identify cells that are positive for 

the fluorescent marker versus background by manipulating different parameters set 

out in Table 2.2. 

Analysis jobs are run on the collected data using the processing definition that 

has been set up for a particular set of experiments. Once finished, they contain 

quantified data from the images collected over the length of the experiment. It 

contains a wide range of information including the number of red cells, the number of 

green cells and the number of cells which have a red/green overlapping signal which 

can be exported into an excel sheet for further analysis by the user or configured into 

a graph by the Incucyte Zoom software.   
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Table 2.2. Processing definition for identification of dead tumour cells 

Parameter Explanation Green 
(Apoptotic 

nuclei) 

Red 
(E0771 
nuclei) 

Overlap 
(Red and 
Green) 

Top Hat Method of correcting uneven 
background fluorescence 

On On  

Radius 
(μM) 

A slightly above average 
radius size is selected  

12 12  

Threshold The intensity of fluorescence 
that must be reached in order 
for an object to be ‘real’ and 
distinguish it from debris 

0.5 0.2  

Edge Split A scale at which you select the 
number that allows the 
software to delineate between 
one object, and many objects 
that are joined or close 
together. This looks for a 
reduction in intensity between 
two fluorescent objects and 
‘splits’ them instead of 
counting them as one object 

1 -7  

Area Selection of minimum/ 
maximum area for objects  

Minimum 
100 

Minimum 
100 

Minimum 
120 

 

2.5. Flow Cytometry 
2.5.1. Lung Preparation and Dissociation 

Mice were culled in CO2 chamber. The femoral artery was cut and the chest was 

opened by cutting across the chest, just under the diaphragm and through the 

sternum up to the mouth. A 21G needle and syringe containing cold PBS was placed 

and injected into the right ventricle of the heart in order to flush the lungs of residual 

blood. The lungs were removed and placed in PBS on ice until ready to process.  

Lungs were removed from PBS and blotted dry on tissue paper. The heart 

was removed, and lungs were cut into separate lobes before transferring into a petri 

dish on ice. Scissors were used to cut the lung up as until tissue pieces were less 
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than 1mm size. Using a single edge blade (Thermofisher Scientific, 119043ZS) lungs 

were minced into a consistency that resembles a viscous liquid.  

Minced lungs were transferred to 15mL falcon tubes and 1.5mL/lung (tumour) 

or 1mL/lung (no tumour) of lung dissociation buffer (Miltenyi, 130095927) was added. 

Tubes were transferred to a thermomixer (Eppendorf ,thermomixer c) and kept at 37 

degreesC and 600rpm. Cells were pelleted by centrifugation at 300g for 5 minutes 

and resuspended in 5mLs of 1X RBC lysis buffer (BioLegend, 420301) and left on ice 

for 5 minutes prior to adding 5mLs of flow cytometry buffer 2% v/v BSA PBS (Sigma, 

A1470 in PBS. The cell suspension was passed through a 40μM filter and centrifuged 

for 5 minutes at 300g and pelleted cells were resuspended in flow cytometry buffer 

prior to counting and staining (2.5.2) 

 

2.5.2. Staining Protocol 

Cells were resuspended at a concentration of 1x106/100μL. 1μL of Fc Block (BD 

Pharmigen, 553142) was added per 100μL of cells/ buffer for 5-10 minutes on ice. 

Antibodies were added at appropriate concentrations (2.5.3.1, 2.5.4.2, 2.5.5.1) and 

left to incubate in the dark on ice for 30-60 minutes. 1mL of flow cytometry buffer was 

added to each tube and tubes were centrifuged at 300g for 5 minutes. Cells were 

resuspended in 300μL of flow cytometry buffer with/without 3μM DAPI (BioLegend, 

422801). 

 

2.5.3. MAM/RMAC Sorting 

Lungs from tumour-bearing and non-tumour-bearing C57/Bl6 mice were isolated and 

processed and stained as described in 2.5.1 and 2.5.2 using antibodies listed in Table 

2.3. Using the FACS Aria II (BD Biosciences) MAMS in the tumour bearing lung, and 

RMACs from non-tumour-bearing mice were isolated.  
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Table 2.3 Sorting antibodies 

Antibody Fluorophore Company Order No. 
CD45 PerCPCy5.5 BioLegend 103130 
Ly6C APCCy7 BioLegend 128026 
Ly6G PE BioLegend 127608 
F4/80 AF647 BioRad MCA497A647 
CD11b PECy7 BioLegend 101216 
CD11c BV650 BioLegend 117339 

 

2.5.4. NK/BMM/MAM Flow Cytometry 

In order to analyse MAMs and BMMs cells in suspension were counted and stained 

as described in 2.5.2 using antibodies listed in Table 2.4. In order to analyse NK cells, 

cells in suspension were counted and stained in the same way and using antibodies 

listed in Table 2.5 .Data was quantified using FlowJo software (FlowJo LLC, v10.5.3).  

Table 2.4 Macrophage Characterisation Antibodies 

Antibody Fluorophore Company Order No. 
CD45 Pacific Blue BioLegend 103126 
CD45 PerCPCy5.5 BioLegend 103130 
F4/80 AF647 BioRad MCA497A647 
CD11b BV605 BioLegend 101237 
CD11c BV650 BioLegend 117339 
Ly6C BV711 BioLegend 128037 
Ly6G BV510 BioLegend 127633 
H2-Qa1 FITC Novus Nbp2-26649f   
PDL1 PECy7 BioLegend 124313 
PDL2 PE BioLegend 107205 
CD80 PE-Dazzle BioLegend 400951 
CD86 APCCy7 BioLegend 105029 
H2-Kb FITC BioLegend 116505 
H2-Db PECy7 BioLegend 111515 
H2-M3 AF594 BD Biosciences 551769 
TGF- β PE BioLegend 141403 
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Table 2.5 NK characterization antibodies 

Antibody Fluorophore Company Order No. 
CD45 PE-Dazzle BioLegend 103145 
CD3 Pacific Blue BioLegend 100213 
NK1.1 APCCy7 BioLegend 108724 
F4/80 AF647 BioRad MCA497A647 
CD11b BV605 BioLegend 101237 
Ly6C BV711 BioLegend 128037 
Ly6G BV510 BioLegend 127633 
Ly49A FITC BioLegend 116805 
Ly49C PECy7 BioLegend 108209 
NKG2A PE BioLegend 142803 
CD27 PerCPCy5.5 BioLegend 123213 
CD49b AF700 eBiociences 56-5971-80 
PD1 BV510 BioLegend 135241 
CTLA4 BV605 BioLegend 106323 
NKp46 PE BioLegend 137603 
NKG2D FITC BioLegend 115711 
CD69 PECy7 BioLegend 104511 
CD107a PerCPCy5.5 BioLegend 121625 
DNAM-1 APC BioLegend 128809 

 

2.6. Histological analysis 
Lungs from Day 10 tumour bearing mice (Csf1rcKO, DOX+ and DOX-) were isolated 

and flushed as previously described (2.5.1.1) this time using 10% v/v Neutral buffered 

formalin (NBF) instead of PBS. Lungs were fixed in NBF for around 22 hours, followed 

by submersion in 70% v/v ethanol (EtOH). Slides were stained at CRUK Beatson 

Institutes histology facility by head of histology Colin Nixon for haematoxylin and eosin 

as well as NCR1 (RNAScope) and F4/80 (IHC).  

 

2.6.1. In Situ Hybridisation 

In situ-hybridisation detection for Mm-NCR1 (NK marker) and Mm-UBC 

(control) (Advanced Cell Diagnostics, Hayward, CA) mRNA was performed using 

RNAscope 2.5 LS (Brown) detection kit (Advanced Cell Diagnostics, Hayward, CA) 

on a Leica Bond Rx autostainer according to the manufacturer's instructions. Staining 
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was performed on 4um formalin fixed paraffin sections and placed in a 60 degreesC 

oven for 2 hours prior to staining. 

 

2.6.2. Immunohistochemistry 

IHC staining was performed on 4um formalin fixed paraffin embedded sections which 

had previously been ovened at 60⁰C for 2 hours. 4um sections were stained for F4/80 

(Abcam, UK) on the Leica Bond Rx autostainer. Sections were loaded onto the 

autostainer and underwent dewaxing and epitope retrieval on board using Enzyme 1 

(Leica, UK) for 10 minutes at 37C. The sections were then stained using an Intense 

R kit (Leica UK) with F4/80 antibody used at a dilution of 1/200. After completion of 

staining sections were dehydrated through graded alcohols, taken through xylene and 

then mounted with a glass coverslip using DPX mountant for microscopy (CellPath, 

UK). 

 

2.6.3. Image Processing and Analysis 

Slides were stained at CRUK Beatson Institute’s histology facility for 

haematoxylin and NCR1 using RNAScope as described and for haematoxylin and 

F4/80 using immunofluorescence. Stained slides were loaded into a Zeiss 

Axioscan.Z1 (Carl Zeiss, Oberkochen, Germany) and scanned using a 40x 0.95NA 

Plan-Apochromat objective lens in brightfield mode.  Whole slide .czi images were 

imported into Definiens Tissue Studio 4.4.2 (Definiens AG, Munich, Germany) for 

processing and analysis. Tissue pieces on the slide images were segmented using 

automatic parameters and sub-tissue features (Lung Tissue, White space) were 

segmented using Tissue Studio’s internal machine learning algorithms trained with 

parameters from 12 sub-regions of 2 images from each staining group (NCR-1 and 

F4/80).  After automated detection of lung tissue and white/alveolar space, each 

image was put through manual quality control (QC) where artefacts and tumours were 
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manually drawn around to delineate tumour tissue from normal lung tissue.  After QC, 

NCR-1 and F4-80 samples were split into separate analysis groups for nuclear 

detection and morphology filtration.  Four NCR-1 and four F4/80 were used to train 

respective Tissue Studio internal machine learning algorithms for nuclear detection 

and morphologically filtered QC.  Thresholds of positivity were then set for each stain 

type and data exported. This analysis was carried out by Dr Daniel Soong.  
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cytotoxicity assay 
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3.1. Aims 
1. To isolate NK cells from the spleen of C57Bl/6 mice and determine their purity 

2. To develop an in vitro assay that gives an accurate read-out of tumour cell 

apoptosis 

3. To optimize the conditions for detecting NK cell-induced tumour cell apoptosis 

 

3.2. Results 
In order to determine NK cell cytotoxicity towards breast cancer cell lines we 

established an in vitro cytotoxicity assay. (Figure 3.1 gives a general overview). 

Briefly, spleens isolated from C57Bl/6 mice were dissociated and NK cells were 

enriched through negative selection (Step 1). The isolated NK cells were cultured with 

E0771- LG2:Fl#4 mammary tumour cells expressing red fluorescent protein (E0771-

LG2:Fl#4-NLR) in the presence of IL-2 that is required to maintain active NK cells. In 

this culture, fluorogenic caspase-3 substrate (NucView-488) was also added, which 

emits green fluorescence after cleavage by active caspase-3 and thereby labels 

apoptotic cells (Step 2). The cells were imaged by real-time fluorescence microscopy 

(IncuCyte Zoom) for 24-48 hours. The images were analyzed by IncuCyte software 

to quantify the number of red and green double positive nuclei that represent the 

apoptotic tumour cells within the assay (Step 3). In order to investigate the effects of 

macrophages on NK cell-induced cancer cell apoptosis, we optimized each step of 

the assay. 

 

3.2.1. NK Cell Isolation and Purity Check (Step1) 

To prepare effector cells for the cytotoxicity assay, NK cells were isolated from the 

spleen of C57Bl/6 mice and cultured in vitro (details of which are in Chapter 2). The 

purity of NK cells was determined by flow cytometry (Figure 3.2). Figure 3.2A shows 

the gating strategy to detect NK cells that are characterized as CD45+CD3-NK1.1+. 
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Briefly, leukocytes were separated from cell debris and dead cells 

(FSChighSSClowDAPI–), and single cells detected by FSC-A/FSC-H and SSC-A/SSC-

H gate. These were separated into CD45 positive cells (total leukocytes). NK cells in 

the CD45+ population were detected as CD3–NK1.1+. CD3+NK1.1– and CD3–NK1.1– 

populations were efficiently reduced by magnetic separation (after enrichment) 

compared to total splenocytes (before enrichment). Before NK cell isolation, NK cells 

Figure 3.1

+

Isolate
spleen

Add antibodies and
magnetic beads

(negative selection)

Tumour cells  (red nucleus)

NK cells

Dying tumour cells 
(red & green nucleus)

STEP 1:

STEP 2:

STEP 3:

Live time-lapse imaging
and quantification

C57Bl/6

NK cells

NucView 488 (Caspase-3 substrate) IL-2

Figure 3.1. Outline of NK cell cytotoxicity assay. (STEP 1) The spleen from C57Bl/6 

mice is smashed, and splenocytes are incubated with antibodies for non-NK cells and 

magnetic beads that bind to the antibodies. The non-NK cells are trapped in a magnetic 
field, whereas NK cells are eluted from the cell suspension. (STEP2) The isolated NK cells 

are cultured with tumour cells expressing red fluorescent protein (mKate) in the presence 

of IL-2 and an apoptosis marker, green fluorogenic caspase-3 substrate (NucView 488). 

(STEP 3) Cells are imaged over time by real-time fluorescence microscopy (IncuCyte) and 

apoptotic tumour cells expressing red and green fluorescence are enumerated.  
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represented 3.5±1.1% of the total CD45+ population. In contrast, the NK cell 

population after magnetic bead negative selection accounted for 82±15.8% of the total 

CD45+ population (Figure 3.2B). Therefore, NK cells were successfully enriched from 

the spleen by this method, which can be used for future in vitro assays. 

 

3.2.2.Establishment of an in vitro assay to Detect Tumour Cell Apoptosis(Step2) 

In order to detect tumour cell apoptosis we established an in vitro assay using 

microscopy where apoptotic cells were detected by green fluorescence in their nuclei 

from a fluorogenic caspase-3 substrate (NucView488). To identify the target cancer 

cells, E0771-LG2:Fl#4 cells were manipulated to express red fluorescent protein 

(mKate) in their nuclei (E0771-LG2:Fl#4-NLR). We cultured E0771-LG2:Fl#4-NLR 

cells with or without staurosporine, a commonly used apoptosis inducer and imaged 

via fluorescence microscopy (IncuCyte). Figure 3.3A shows representative images 

of tumour cells cultured for 24 hours on their own (top row) or with staurosporine 

(bottom row) taken from the red and green channels as well as a phase contrast 

Figure 3.2 Efficacy of NK cell enrichment. (A) Representative dot plots showing NK 
cells (DAPI–CD45+CD3–NK1.1+) in the cell suspension before (left) and after (right) NK 

cell negative selection. (B) Percentage of NK cells within the CD45+ population before 

and after NK cell enrichment (n=7-10, mean ± SD, ***p<0.001, Mann-Whitney test).  
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image merged with red and green channels (left to right). Orange arrows show a 
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*Kruskal-Wallis with Dunn’s post test
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Figure 3.3 Establishment of in vitro assay to validate tumour cell apoptosis. (A) 
Representative images of E0771-LG2:Fl#4-NLR cells cultured without (top) or with 5uM 

staurosporine (bottom) for 24 hours. Panels show images in the red channel, green channel, 

and those merged with phase contrast image. Orange arrowheads show apoptotic tumour 

cells, blue arrowheads show cells that are completely dead and no longer going through active 

apoptosis. (B) Images shown in A applied with ‘Masks’ to detect apoptotic tumour cells. First, 

an analysis procedure to detect target cells shown in the red channel (left) was set up (target 
detection mask: blue). Second, an analysis procedure to detect apoptotic nuclei shown in the 

green channel (middle) was set up (apoptosis mask: pink). Last, an analysis procedure to 

detect apoptotic target cells expressing both red and green fluorescence (right) was set up 

(R/G overlap mask: yellow).  

A 

B 
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tumour 

image merged with red and green channels (left to right). Orange arrows show a 

tumour cell undergoing apoptosis, which is positive for the green apoptotic nucleus 

marker (NucView-488) as well as the red tumour nucleus marker (Nuclight-Red).  In 

order to quantify the number of apoptotic target cells, we set up several masks using 

the image analysis software, IncuCyte Zoom (Figure 3.3B). In the red channel image, 

we set up a mask to detect fluorescent nuclei within target cells (blue target detection 

mask) with the average radius of 12μM and area of at least 100μM. In the green 

channel image, we set up a mask to distinguish apoptotic target nuclei (pink apoptosis 

mask). Apoptotic target cells were detected via a Red/Green overlap mask where red 

fluorescent signal and green fluorescent signal were combined (Yellow R/G overlap 

mask). As shown in Figure 3.3, cancer cells treated with staurosporine are round in 

shape with red and green signals in their nuclei, and such apoptotic cells were picked 

up by the masks. On the other hand, dead cells that showed rounded cell shape but 

lost red or green signals (blue arrows) were not included in the Red/Green overlap 

mask. These data indicate that our analysis procedure enables selective detection of 

target cancer cells that are actively going through apoptosis. 

 

3.2.3. Optimisation of NK Cell Cytotoxicity Assay(Step3) 

To test the applicability of the above-mentioned assay system to detect NK cell-

induced tumour cell apoptosis, we cultured E0771-LG2:Fl#4-NLR cells with NK cells 

at different Tumour:NK (Tu:NK) ratios, and imaged the cells after 24 hours of co-

culture. We found that dying NK cells fluoresced green (white arrows) and it was 

necessary to remove this from the analysis. Therefore the apoptosis mask was 

modified to include a size restriction to ensure that only dying tumour cells (orange 

arrows) were included in the analysis (Figure 3.4A). Total (red nuclei) and apoptotic 

(red/green overlapping nuclei) target cell numbers were enumerated and the  
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Figure 3.4 Optimisation of in vitro assay to detect NK cell-induced tumour cell 
apoptosis. (A) Representative images of E0771-LG2:Fl#4-NLR cells cultured with NK 

cells. Panels in top row show images in the red channel, green channel, and those 

merged with phase contrast image. Panels in bottom row show ‘Masks’ applied to 
images in A as described in Fig. 3.3. The analysis procedure to detect apoptotic nuclei 

(middle) was modified to distinguish target tumour cells and NK cells (‘size restricted’ 

apoptosis mask: pink). Orange arrowheads show apoptotic tumour cells, white 

arrowheads show apoptotic NK cells. (B) Apoptotic index of tumour cells at 24 hours 

after co-culture of E0771-LG2:Fl#4-NLR cells without or with NK cells at different 

Tu:NK ratios. The apoptotic index was calculated by dividing the number of Red/Green 

double positive cells/well by the number of total red cells/well and multiplying by 1000. 

(C) A graph showing representative changes in apoptotic index over time. E0771-
LG2:Fl#4-NLR tumour cells were cultured on their own (1:0, white) or with NK cells at 

1:4 of Tu:NK ratio in the presence of IL-2 (yellow), IL-15 (green), or their combination 

(purple). Data show mean±SD from technical triplicates. (D) Mean apoptotic index of 

tumour cells at 24 hours after co-culture in the same condition as that in C. (n=3-4 

biological replicates, mean ± SD, *p<0.05, **p<0.01, Kruskall-Wallis with Dunn’s post-
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apoptotic index calculated where the number of apoptotic target cells were divided by  

the total number of target cells within the well. As shown in Figure 3.4B, we found a 

negligible level of spontaneous apoptosis of target cells in the absence of NK cells 

(Tu:NK=1:0). In contrast, the apoptotic index was significantly increased by co-culture 

with NK cells at the 1:4 and 1:8 Tu:NK ratios, suggesting that there has to be at least 

a 1:4 Tu:NK ratio to evaluate NK cell cytotoxicity within this assay. In this assay we 

added IL-2 in culture to maintain and activate NK cells. As well as IL-2, several studies 

have suggested that IL-15 also maintains and activates NK cells (Chapter 1.4.2). We 

thus co-cultured E0771-LG2:Fl#4-NLR cells with NK cells in the presence of IL-15 

and/or IL-2 and imaged the cells over a 48-hour period. We found that co-culture with 

NK cells increased apoptotic index by 16 hours which plateaued by 24 hours in all 

conditions (Figure 3.4B). However, there was no significant difference in cytotoxicity 

between NK cells cultured with IL-2 and those cultured with IL-15 or the IL-2/IL-15 

combination (Figure 3.4C and D).   

 

3.3. Discussion 
In order to validate the ability of NK cells to kill E0771 metastatic breast cancer cells, 

we optimized a protocol for NK isolation. It has been reported that enrichment of NK 

cells by negative selection enables a high purity enrichment in a shorter time 

compared to other methods to isolate NK cells (e.g., positive selection kits) that show 

higher levels of contamination, especially of F4/80+ cells197. Another advantage to 

using negative selection is that the NK cells are essentially ‘untouched’, i.e., NK cells 

do not have any antibodies attached that may alter the phenotype or function of 

isolated cells. To this end, we tested negative selection to enrich NK cells from total 

splenocytes for our assay. By this method we could isolate NK cells that accounted 

for 82±15.8% of total cells whereas NK cells were just 3.5±1.1% of total splenocytes 

before enrichment. Since contaminating cells were negative for CD3 these cells 



 56 

should not be T cells and might be neutrophils and/or B cells given their abundance 

in the spleen. It has been reported that B cells can directly kill tumour cells via a 

Fas/FasL mechanism198. However, our previous data indicates that activation of Fas 

signaling by NK cells does not induce apoptosis in E0771 cells64, suggesting a minor 

contribution of B cells to cancer cell apoptosis in vitro. Furthermore, most 

granulocytes cannot survive in vitro for more than 24 hours. It is also reported that in 

vitro culture with IL-2 can increase the purity, viability and activation of NK cells197. 

These data suggest that a small level of contamination may not affect the evaluation 

of cancer cell apoptosis induced by enriched NK cells. 

 In order to detect NK cell-mediated tumour cell apoptosis, several methods 

have been established. For example, chromium release from target cells has been 

commonly used to determine NK cell cytotoxicity. However, this method has a low 

level of sensitivity and a high level of variation, and uses radioactive isotopes raising 

disposal concerns196. Flow cytometry has also been commonly used to detect 

apoptotic target cells since this method is advantageous to detect other parameters 

such as target cell death (e.g., propidium iodide) and effector cell activation status 

(e.g., CD69 expression) in addition to the apoptosis in target cells199. However, this 

method requires higher numbers of cells and the detachment of adherent target cells 

that can bias the results. Compared to these standard methods, our in vitro assay 

system is more advantageous. For example, our assay requires a very low cell 

number for adequate apoptosis detection (i.e., 1,000 target tumour cells: 4,000 

effector NK cells/well). Our assay using the IncuCyte also enables to detect real-time 

apoptosis in the adherent cells with high sensitivity, which is essential to determine 

the time point when apoptotic cell number reaches its maximum and that is suitable 

to evaluate the effects of suppressor cells on the NK cell-induced cancer cell 

apoptosis. 
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 Using this novel assay system, we could detect tumour cell apoptosis induced 

by NK cells cultured with IL-2 and/or IL-15 that have been shown to promote NK cell 

activation and proliferation (Chapter 1.4.2). Although it has been reported that IL-15 

can stimulate NK cells at 50-100 times less concentrations of IL-2200, we did not find 

a significant difference between apoptosis induction by NK cells cultured with IL-2, IL-

15 or IL-2 in combination with IL-15. It might be possible that the concentration of IL-

15 was too high in our assay since NK cells are known to be overstimulated and 

exhausted with continuous cytokine treatment201. However, it is unlikely that NK cells 

in our conditions became exhausted, as cytotoxicity of NK cells treated by IL-2 

combined with IL-15 was comparable with that of NK cells stimulated with IL-2 alone. 

We also compared a time point when NK cell cytotoxicity reaches its maximum and 

found that NK cells cultured with IL-2 or IL-15 both increase cancer cell apoptosis by 

12 hours after co-culture and plateau after 24 hours. Although we could not find clear 

differences between IL-2 and IL-15 in tumour killing ability of NK cells, tumor cell 

apoptosis at 24 hours was statistically significant only in the presence of IL-2 

stimulated NK cells, suggesting this condition is more stable. We thus decided to 

culture NK cells with IL-2 and detect cancer cell apoptosis after 24 hours post-co-

culture in the current project.  

In terms of the target to effector (Tu:NK) ratio, we decided to use 1:4 for the 

rest of the experiments as this ratio gave a significant increase in apoptosis which 

was not further enhanced by the addition of more NK cells. Importantly, this ratio is 

lower than that used in previous studies that determine tumour cell apoptosis by 

chromium release assay or flow cytometry (1:5 to 1:100)195,202. Therefore, our in vitro 

assay seems to be more sensitive compared to standard methods although it is also 

possible that our target cells (E0771-LG:Fl#4 mouse mammary tumour cells) are 

more susceptible to NK cells.  
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 It is also important to note that different NK cell preparations yielded large 

variations in terms of tumour cell killing ability. This did not correlate with the age of 

the mice, time taken from isolation of spleen to the enrichment of NK cells, different 

IL-2 stocks/ storage conditions or the addition of double IL-2 concentration (data not 

shown). We are not sure why this is the case and this causes problems in terms of 

data analysis further down the line as even with normalization results were still very 

varied. However, it is even more important to note that despite this variation, the same 

trends were always seen here and further on in the thesis.  
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4.1. Aims 
1. Determine whether MAMs isolated from metastatic breast tumours in the 

lung suppress NK cell cytotoxicity in vitro 

2. Develop and characterize bone marrow derived macrophages as a model of 

MAMs 

3. Investigate the effects of bone marrow-derived macrophages on NK cell 

cytotoxicity 

 

4.2. Results 
4.2.1. MAM Suppression of NK Cell Cytotoxicity in vitro 

Using the in vitro NK cell cytotoxicity assay, we investigated the effects of MAMs from 

metastatic tumours on NK cell cytotoxicity. C57Bl/6 mice were injected via tail vein 

with 1x106 of E0771-LG2:Fl#4 cancer cells (Figure 4.1A), which develop tumours in 

the lung by 14 days as indicated by bioluminescence from luciferase expressing 

cancer cells (Chapter 2.3.1). On day 14 after tumour injection, lungs with metastatic 

tumours were dissociated, and metastasis-associated macrophages (MAMs; 

F480+CD11b+Ly6C–) and alveolar resident macrophages (RMACs; F4/80+CD11b–

Ly6C–CD11c+) were isolated by FACS (Figure 4.1B). The sorted cells were then co-

cultured with E0771-LG2:Fl#4-NLR tumour cells and NK cells at a ratio of 1:3:4 

(Tumour:Macrophage:NK) (Figure 4.2A), and the number of apoptotic tumour cells 

were determined. We found a tendency that MAMs reduced NK cell cytotoxicity 

towards tumour cells at 24 hours (Figure 4.2B), whereas we did not see this tendency 

when RMACs were added to the co-culture. These experiments must be repeated 

and statistics carried out to confirm these results. 
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Figure 4.1 
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4.2.2. Development of Macrophage Models 

In order to investigate the mechanisms by which macrophages suppress NK cell 

cytotoxicity in vitro, we utilized bone marrow-derived macrophage (BMM) models, 

instead of MAMs from the metastatic lungs, given their unlimited availability. It has 

been reported that BMMs cultured with M-CSF bear some resemblance to TAMs203 

and are  more anti-inflammatory/pro-tumour due to a higher production of anti-

inflammatory cytokines such as IL-10 and a lack of production of more pro-

inflammatory cytokines such as TNFa and IL-23 whereas those cultured with GM-

CSF are more pro-inflammatory/anti-tumour with the opposite cytokine production 

profile204. Based on these reports, it was hypothesized that these two distinct 

macrophage populations might possess different effects on NK cell functions, and 

thereby be good models to identify NK-suppressive mechanisms.  

Thus, M-BMMs and GM-BMMs were prepared by a well-established method 

(Figure 4.3A)203,205,206, and were characterised. As shown in Figure 4.3B, the majority 

of cells cultured with the cytokines expressed F4/80 (95±4.2% and 73±7.7% in  

 

Figure 4.1 Isolation of macrophages from the metastatic lung in an animal model of 
breast cancer metastasis. (A) Representative images showing tumour loads in the lung 

at days 0, 1, 4, 7, 10 and 14 after tumour injection. A schematic overview of the metastasis 

model is also shown on top. (B) Representative dot plots showing a gating strategy to 

detect metastasis-associated macrophages (MAM: F4/80+CD11bhighLy6Clow), MAM 

progenitors (MAMPC: F4/80+CD11bhighLy6Chigh), and alveolar resident macrophages 

(RMACs: F4/80+CD11blowLy6ClowCD11chigh) within the tumour bearing lung.  

 
Figure 4.2. Effects of macrophages from the metastatic lung on NK cell cytotoxicity 
in vitro. (A) A scheme showing outline of the assay. E0771-LG2:Fl#4 tumour cells and 

NK cells from the normal spleen were cultured with MAMs or RMACs sorted from the 

metastatic lung along with NucView-488 and IL-2. Tumour cell apoptosis was detected by 

the time-lapse fluorescence microscopy. (B) Apoptotic index of tumour cells cultured with 

NK cells without (yellow) or with MAMs (red) or RMACs (blue) (n=3 from biological 

replicates, mean ± SD).  
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Figure 4.3 
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M-BMMs and GM-BMMs respectively), indicating that the bone marrow cells become 

mature macrophage-like cells during this time period. We also found that M-BMMs 

expressed significantly higher levels of CD11b compared to GM-BMMs, which in turn 

showed significantly higher levels of CD11c than M-BMMs (Figure 4.3C and D). We 

also validated the growth rate of M-BMMs and GM-BMMs over 48 hours and found 

that M-BMMs proliferated faster than GM-BMMs (Figure 4.3E). The confluency of 

GM-BMMs at 24 hours is around half of that of M-BMMs at the same time point 

(Figure 4.3F). These results indicate that this method enables preparation of two 

distinct macrophage subtypes from the bone marrow (potential problems associated 

with the difference in proliferation rate is addressed in the next section). 

 

 

Figure 4.3. Preparation of bone marrow-derived macrophages (BMMs) with 
different phenotypes. (A) A scheme showing a protocol to prepare BMMs. Bone 
marrow cells are flushed from the femur and tibia of C57Bl/6 mice and are collected by 

centrifugation. The bone marrow is resuspended with either M-CSF or GM-CSF and 

cultured for 24 hours in a tissue culture (TC) plate. After 24 hours the floating cells are 

transferred to petri plates and cultured for additional 3 days. On day 4 adherent cells 

were given fresh media including cytokines. On day 7 adherent cells are used as 

mature macrophages called M-BMMs (M-CSF treated BMMs) and GM-BMMs (GM-

CSF treated BMMs). (B) Representative dot plots showing expression of CD45 and 
F4/80 on M-BMMs (top) and GM-BMMs (bottom). Note: both BMMs are characterized 

as CD45+F4/80+. (C) Representative histograms showing expression of CD11b (top) 

and CD11c (bottom) on M-BMMs (red) or GM-BMMs (blue) within the CD45+F4/80+ 

gate (D) Geometric mean fluorescence intensities of CD11b (top) and CD11c (bottom) 

on M-BMMs (red) and GM-BMMs (blue) (n=7 biological replicates, mean ± SD, *p<0.05, 

**p<0.01, Mann-Whitney test). (E) Changes in confluency of M-BMMs (red) and GM-

BMMs (blue) over 24 hours (n=4 biological replicates, mean+SD). Data show fold 

change relative to time 0 (t=0). (F) Growth rate of M-BMMs and GM-BMMs at 48 hours 
after the culture (n=4 biological replicates, mean±SD, *p<0.05 Mann-Whitney). 
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4.2.3. Effects of M-BMMs and GM-BMMs on NK Cytotoxicity Toward Tumour 

cells  

We then investigated whether the two distinct macrophage populations had different 

capabilities to suppress NK cell cytotoxicity. To this end, we co-cultured tumour cells, 

each macrophage population, and NK cells at the ratio of 1: 3: 4 (Tumour: BMM: NK). 

As shown in Figure 4.4A, the apoptotic index was significantly reduced in the 

presence of M-BMMs compared to that without BMMs (0.5±0.2 relative to no-BMM 

control). In contrast, the apoptotic index of cancer cells cultured with GM-BMMs 

remained high and no statistical significance was found compared to control (0.9±0.42 

relative to no-BMM control), suggesting that the suppression of NK cells is specific for 

a distinct macrophage population (i.e., M-BMM). However, it is possible that this  

Figure 4.4. Effects of M-BMMs and GM-BMMs on NK cell cytotoxicity in vitro. 
(A) Apoptotic index of tumour cells cultured with NK cells in the absence (yellow) or 

presence of M-BMMs (red) or GM-BMMs (blue) at a tumour:BMM:NK ratio of 1:3:4. 

Data are shown as fold-change relative to Tu+NK only. (n=5-8 biological replicates, 

mean±SD, ***p<0.001, Kruskall-Wallis with Dunn’s post-test). (B) Apoptotic index of 

tumour cells cultured with NK cells without (yellow) or with different ratio of M-BMMs 

(tumour:BMM:NK = 1:1:4 (pale red) and 1:3:4 (bright red)) Data are shown as fold-

change relative to Tu+NK only. (n=8 biological replicates, mean±SD, **p<0.01, 

***p<0.001, Kruskall-Wallis with Dunn’s post-test). (C) Apoptotic index of tumour cells 
cultured on their own (grey), with M-BMMs (dark red) or with GM-BMMs (dark blue) 

(n=4 biological replicates, mean±SD, ns=not significant, Kruskall-Wallis with Dunn’s 

post-test). 
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difference might be due to a difference in growth rate between M- and GM-BMMs 

(Figure 4.3F). We thus investigated whether a lower number of M-BMMs could also 

suppress NK cell cytotoxicity, and found that M-BMMs were still able to suppress NK 

cell cytotoxicity towards tumour cells even at 1:1:4 of Tumour:M-BMM:NK ratio 

(Figure 4.4B), which was comparable with 1:3:4 ratio. Therefore, it is unlikely that the 

difference in the NK suppressive effect was due to the increase in growth of M-BMMs 

compared to GM-BMMs. These results indicate that M-BMMs but not GM-BMMs 

 suppress NK cell cytotoxicity towards the E0771 breast cancer cell line, however 

experiments involving GM-BMMs must be repeated to confirm this conclusion as their 

effects on NK cells were variable compared to M-BMMs. To confirm that 

macrophages did not cause apoptosis of tumour cells we co-cultured tumour cells 

with M- or GM-BMMs. There was no significant increase in apoptosis compared to 

the tumour only control.  

 

4.3. Discussion  
Studies in patients with Hodgkin’s lymphoma and diffuse large B cell lymphoma 

showed that TAM-like monocytes from patient blood reduced NK cell activation in 

vitro207. In human colorectal cancer, TAMs together with cancer-associated fibroblasts 

can suppress NK cell cytotoxicity towards colorectal adenocarcinoma cells in vitro208. 

It is also reported that macrophages in primary tumours can suppress the maturation, 

activation and cytotoxic capabilities of NK cells in mouse models of primary breast 

cancer209. These studies suggest pivotal roles of macrophages in NK cell suppression 

in the primary tumours. However, the effects of macrophages in metastatic tumours 

have not been identified. Here, we have shown that MAMs from metastatic mammary 

tumours can suppress NK cell-induced tumour cell apoptosis in vitro. To our 

knowledge, this is the first study showing that MAMs in metastatic breast cancer 

impair NK cell cytotoxic function. Interestingly, we have reported that MAMs isolated 
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from pulmonary metastases in the same mouse model can also suppress cytotoxicity 

of CD8+ T cells in vitro31, suggesting that MAMs are immune suppressive cells in the 

metastatic tumour microenvironment. On the other hand, our previous data shows 

that RMACs can also suppress cytotoxicity of T cells to some extent although their 

suppressive effects were lower than MAMs31. Interestingly, a study using 4T1 mouse 

mammary tumour cells has shown that alveolar macrophages can suppress anti-

tumour T cell responses in the lung of tumour-injected mice and thereby promote 

tumour cell accumulation in this organ210. However, in another mouse model of 

pulmonary metastasis using Met-1 mouse mammary tumour cells, depletion of 

RMACs does not affect metastasis formation61. Furthermore, RMACs locate in the 

luminal surface of the alveolar spaces rather than the interstitium211 where metastatic 

lung tumours are established, and the number of RMACs in the metastatic lung is 

lower than that of MAMs in mouse models using E0771-LG2:Fl#4 tumour cells31. This 

may suggest that the contribution of RMACs to the NK cell suppression is minor in 

our model however staining of MAMs and RMACs within tumours will give more 

indication about the exact location of these cells within tumours. In the experimental 

pulmonary metastasis models using E0771-LG2:Fl#4 tumour cells, MAMs are 

recruited to and accumulate in the metastatic site and make contact with metastasized 

cancer cells, which promotes the metastatic tumour growth30,63. It is therefore possible 

that the accumulation of MAMs in the tumour creates an immune suppressive tumour 

microenvironment at the metastatic site and thereby helps the outgrowth of 

metastasized cancer cells.  

It has been reported that BMMs cultured with M-CSF (also known as CSF1) 

are a ‘pro-tumour’ type of macrophage. For example, M-BMMs can enhance tumour 

cell migration through an endothelial monolayer in an in vitro trans-endothelial 

migration assay63. Furthermore, our recent data demonstrated that M-BMMs can 

secrete hepatocyte growth factor (HGF) which contributed to the growth and survival 
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of metastatic mammary tumour cells64. In addition to their phenotype 

(F4/80+CD11bhighCD11clow), these pro-metastatic functions of M-BMMs represent 

MAMs in metastatic tumours. In this chapter, we demonstrated that M-BMMs as well 

as MAMs suppress NK cell cytotoxicity, which suggest that M-BMMs resemble MAMs 

not only in their pro-tumour ability but also in their immune suppressive functions. We 

also investigated whether human iPSC-derived and THP-1 derived macrophages 

could suppress cytotoxicity of the human NK-92 cell line towards human breast 

cancer cell lines. We found here that these macrophages also suppress NK cell 

cytotoxicity, therefore this is not a murine-only phenomenon (data not shown). 

Interestingly, GM-BMMs did not significantly change the NK cell induced 

tumour cell apoptosis. Although GM-CSF has been used for differentiation of bone 

marrow cells into dendritic cells (DCs)212, recent studies demonstrate that bone 

marrow cells cultured with GM-CSF have both macrophage and DC properties203,206. 

A recent transcriptomic study also showed that bone marrow cells cultured with GM-

CSF were more closely related to macrophages than DCs206. Furthermore, several 

reports have demonstrated that a more ‘pro-inflammatory’ type of macrophage can 

be developed using the growth factor GM-CSF (also known as CSF2). These reports 

showed that GM-derived populations expressed more genes involved in inflammatory 

responses and also expressed higher levels of pro-inflammatory cytokines versus 

anti-inflammatory cytokines compared to M-BMMs with similar findings in humans 

too204. This is in line with our findings as these BMMs did not suppress NK celsl within 

our assay. As well as this, M-BMMs have also been described to be similar to TAMs 

compared to GM-BMMs which the authors suggest are more tumouricidal based on 

gene-expression prolifing203.  This is in keeping with our results which show they 

suppress NK cells and are therefore more ‘pro-tumour’ as described. 

Collectively, our data suggest that suppression of NK cell function is a specific 

characteristic of a distinct pro-tumour macrophage population. Our results also 
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indicate that M-BMMs resemble an immune suppressive phenotype of MAMs and can 

be utilized to investigate their NK cell suppression mechanisms. 
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Chapter 5 
 

Mechanisms behind macrophage mediated NK 
cell suppression: Effects on NK cell inhibitory 

ligands expressed by macrophages 
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5.1. Aims 
1. To investigate whether M-BMM mediated NK cell suppression depends on 

cell contact or secreted factors. 

2. To investigate expression of NK cell inhibitory ligands on M-BMM and GM-

BMMs as well as effects of cancer cells on their expression 

3. To determine whether MAMs in the metastatic lung express NK cell 

inhibitory ligands 

4. To investigate the involvement of key NK regulatory ligands/receptors in the 

macrophage-mediated NK cell suppression 

5. To investigate the involvement of membrane bound TGF-β in macrophage-

mediated NK cell suppression 

 

5.2. Results 
5.2.1. Effects of M-BMMs on NK Cell Cytotoxicity under Non-Contact 

Conditions 

To determine whether macrophage-mediated NK cell suppression is caused by 

secreted factors or cell-to-cell contact, we performed the NK cell cytotoxicity assay 

using transwell chambers (Figure 5.1A). Briefly, M-BMMs were cultured within the 

upper chamber of a transwell with a permeable membrane, which separate 

macrophages from E0771-LG2:Fl#4-NLR and NK cells that were co-cultured in the 

bottom chamber (non-contact condition). As a control, M-BMMs were cultured 

together with tumour and NK cells within the bottom chamber (contact condition). 

Consistent with our previous results, the apoptotic index was reduced to around 50% 

in the contact condition compared to the non-BMM (tumour and NK cell only) control. 

In contrast, M-BMMs cultured in the non-contact condition did not reduce the NK cell-

induced tumour cell apoptosis (around 90% compared to the control), which was 

significantly higher than that in the contact condition (Figure 5.1B). These results 
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indicate that macrophages require cell-to-cell contact in order to exert their full 

suppressive effects on NK cells.  

 

5.2.2. Expression of NK inhibitory ligands on BMMs and tumour cells 

It has been reported that NK cell functions are inhibited by several ligands on 

suppressor cells that bind to their cognate receptors on NK cells. For example, 

inhibitory ligands such as H2-Kb and H2-Db bind to Ly49C/I on NK cells and transmit 

inhibitory signals to NK cells. Likewise, H2-Qa1 and H2-M3 negatively regulate NK 

cells upon binding to NKG2A and Ly49A on NK cells respectively (Chapter 1.3). It is 

also reported that binding of PD-L1 and PD-L2 to their receptor PD-1 and binding of 

CD80 and CD86 to CTLA-4 can lead to the reduction of NK cell activity (Chapter 1.3). 

Based on the results from Figure 5.1B, we hypothesised that M-BMMs (NK 

suppressive) expressed a higher level of such inhibitory ligands on their surface 
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compared to GM-BMMs (NK non-suppressive). To investigate this hypothesis, we 

cultured M-BMMs and GM-BMMs in the presence or absence of tumour cells for 48 

hours and determined levels of NK inhibitory ligands on the macrophages as well as 

tumour cells using flow cytometry. BMMs (red gate) were distinguished from cancer 

cells (grey gate) based on their high expression of CD45 and F4/80 (Figure 5.2A). 

We found that expression of H2-Kb, H2-Db and CD86 was significantly higher in M-

BMMs compared to GM-BMMs (Figure 5.2B), suggesting the involvement of these 

molecules in NK cell suppression induced by M-BMMs. Interestingly, levels of H2-

Qa1 and PD-L1 in M-BMMs were increased by the co-culture with tumour cells, 

whereas we did not find significant differences compared to GM-BMMs. Levels of PD-

L2 and CD80 were significantly higher in GM-BMMs rather than M-BMMs in 

monocultures and were not changed by the co-culture with tumour cells. We could 

not investigate the expression of H2-M3 in BMMs since a reliable antibody for this 

molecule is not available. We also investigated whether BMMs enhance the 

expression of inhibitory ligands in tumour cells, as it can be another mechanism 

behind macrophage-mediated NK cell suppression (Figure 5.2C). Interestingly, 

expression of H2-Kb and PD-L1 in E0771 cells was significantly increased by co-

culture with M-BMMs but not GM-BMMs. Levels of CD80 on tumour cells was also 

significantly increased by co-culture with M-BMMs but it was also increased by GM-

BMMs. We did not find significant increases in the expression of H2-Db, H2-Qa1, PD-

L2, or CD86 by co-culture with M-BMMs. Given these data, it is possible that M-BMMs 

increase expression of some NK inhibitory ligands on target cancer cells and thereby 

protect them from NK cells. However, levels of the tested NK cell inhibitory ligands in 

cancer cells were much lower than those in M-BMMs. Therefore, regulation of 

inhibitory ligands on tumour cells might play a minor role in NK cell suppression at 

least in our model. 

 



 74 

 

A

Figure 5.2 * Kruskal Wallis, corrected Dunn’s post test
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5.2.3. Expression of NK inhibitory ligands on MAMs in the metastatic lung 

We further investigated expression of the NK cell inhibitory ligands in MAMs and 

compared their levels to major immune cell populations in the metastatic tumours, 

i.e., RMACs and neutrophils (Figure 5.3). We found that MAMs expressed high levels 

of H2-Kb, H2-Db H2-Qa1, PD-L1, PD-L2, and CD86 at significantly higher levels 

compared to neutrophils. Interestingly, we also found that these molecules were 

highly expressed in RMACs as well even though these cells did not have clear 

suppressive effects on NK cells (Figure 4.2). Since M-BMMs and MAMs commonly 

express high levels of H2-Kb, H2-Db and CD86, binding of these ligands to their 

cognate receptors on NK cells could be a potential mechanism behind NK cell 

suppression by macrophages. 

 

5.2.4. Effects of Blocking Antibodies Against H2-Kb, H-2Db, and Their Receptors 

in M-BMM Mediated NK Cell Suppression 

Given the high levels of H2-Kb and H2-Db in M-BMMs and MAMs, we investigated 

the effects of blocking antibodies against these NK cell inhibitory ligands and their 

receptor (Ly49C) on the M-BMM mediated NK cell suppression in our in vitro assay 

(Figure 5.4A). Because we could not rule out the expression of H2-M3 in M-BMMs, 

we also blocked its receptor Ly49A. Consistent with our previous data, NK cell-

Figure 5.2. Expression of NK cell inhibitory ligands on BMMs and E0771-
LG2:Fl#4 cells. (A) Representative dot plots showing gating strategy to separate 

BMMs from tumour cells. E0771-LG2:Fl#4 tumour cells are characterized as CD45–

F4/80–, and BMMs are characterized as CD45+ F4/80+ (red gate). (B) Geometric 

mean fluorescence intensities of NK cell inhibitory ligands on M-BMMs (red) and GM-

BMMs (blue) cultured with (+) or without (–) tumour cells. (C) Levels of NK cell 

inhibitory ligands on tumour cells cultured on their own (Tu: grey) or co-cultured with 
M-BMMs (dark red) or GM-BMMs (dark blue) (n=3-5 biological replicates, mean±SD, 

*p<0.05, **p<0.01, Kruskall-Wallis with Dunn’s post-test). 
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induced tumour cell apoptosis was reduced by M-BMMs (approximately 50% 

suppression) and it was not altered by isotype control IgG (Figure 5.4B). Interestingly, 

blocking antibodies against Ly49A and H2-Db showed a tendency to rescue NK cell 

cytotoxicity from approximately 50% suppression (IgG control) to approximately 10-

20% suppression, however such differences were not statistically significant (Figure 

5.4C). Antibodies against either Ly49C/I or H2-Kb did not show any significant 

differences compared to IgG control. These results suggest the existence of another 

mechanism behind M-BMM mediated NK cell suppression rather than through the 

actions of H2-Db and H2-Kb. 

Figure 5.3. Expression of NK cell inhibitory ligands on MAMs within the 
tumour bearing lungs. Geometric mean fluorescence intensities of NK cell 

inhibitory ligands on MAMs (red) and neutrophils (purple) from the tumour 

bearing lungs and RMACs (blue) from non-tumour bearing lungs (n=6, 

mean±SD, *p<0.05, **p<0.01, ***p<0.001, Kruskall-Wallis with Dunn’s post-test). 
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5.2.5. Expression of membrane bound TGF-β in M-BMMs and its contribution 

to their NK suppressive function. 

A recent study has shown that macrophages cultured with IL-4 and IL-13 suppress 

NK cell activation in vitro, and that such suppression is reduced in the non-contact 

condition or treatment with anti-TGF-β blocking antibody195. Although TGF-β is a 

secreted factor, it can also be expressed on the cell surface in a membrane-bound 
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Figure 5.4. Involvement of NK cell inhibitory ligands in the M-BMM mediated NK 
cell suppression. (A) Schematic overview of experiment. Tumour cells, NK cells and 

M-BMMs were co-cultured with blocking antibodies against NK inhibitory ligands or 

receptors or control IgG in the presence of NucView 488 and IL-2. Apoptotic tumour 

cells were detected by microscopy, and apoptotic index (normalized to Tu+NK only) 

was determined. (B) Apoptotic index of tumour cells cultured with NK cells and M-

BMM with (white) or without (red) isotype IgG. (n=10 biological replicates, mean±SD, 
no significance, Kruskall-Wallis with Dunn’s post-test). (C) Apoptotic index of tumour 

cells cultured with NK cells and M-BMMs with blocking antibodies against Ly49A, 

Ly49C/I, H2-Kb, H2-Db or isotype IgG control. Biological replicates have different 

coloured dots within bars (n=3-12 biological replicates, mean±SD, no significance, 

Kruskall-Wallis with Dunn’s post-test).   
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form which has been shown to suppress NK cell cytotoxicity via cell-to-cell 

contact213. 

 We thus determined the expression of membrane-bound TGF-β in M-BMMs (NK 

suppressive) and GM-BMMs (non-suppressive) by flow cytometry. As shown in 

Figure5.5A, cell surface expression of TGF-β protein was significantly higher in M-

BMMs compared to GM-BMMs, raising the possibility of its involvement in M-BMM 

mediated NK cell suppression. To address this possibility blocking antibodies against 

TGF-β were added to our in vitro assay. Consistent with previous data, M-BMMs 

reduced the number of apoptotic cancer cells induced by NK cells in the presence of 

control IgG (Figure 5.5B). In contrast, treatment with anti-TGF-β blocking antibodies 

tended to rescue NK cell cytotoxicity in the presence of M-BMMs. Although the 

average difference was not statistically significant, the apoptotic index in the presence 
Figure 5.5
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Figure 5.5 Expression of membrane bound TGF-b on M-BMMs and its 
contribution to the M-BMM mediated NK cell suppression. (A) Geometric mean 

fluorescence intensity of membrane bound TGF-b on M-BMMs and GM-BMMs (n=6, 

mean±SD, *p<0.05, Mann-Whitney). (B) Apoptotic index of tumour cells co-cultured 

with NK cells and M-BMMs in the presence of anti-TGF-b blocking antibodies or 

isotype IgG control. Data are normalized to Tu+NK only. Biological replicates have 

different coloured dots within bars (n=3 biological replicates, mean±SD). 
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of anti-TGF-β blocking antibodies was always higher than IgG control (see coloured 

dots representing independent experiments). These experiments, however, are 

preliminary and need to be repeated to confirm the results or not with sufficient 

replicates.  

 

5.3. Discussion 
NK cell killing can be suppressed in a number of ways. In order to find a mechanism 

behind the suppression induced by macrophages (MAMs), first we narrowed down 

whether suppression was dependant on cell-to-cell contact, or a secreted factor. For 

example, a recent publication showed that thyroid cancer cells secrete prostaglandin 

E2 which suppressed NK cells by decreasing their expression of NKp44 and NKp30 

as well as reducing their expression of TRAIL214. Alternatively, it has also been shown 

that physical contact via membrane-bound TGF-β on myeloid derived suppressor 

cells can also cause suppression of NK cells in in vitro and in vivo models of liver 

cancer. This caused a reduction in cytotoxicity and expression of NKG2D as well as 

IFN-γ production215.  We therefore carried out a transwell assay where M-BMMs could 

physically touch tumour and NK cells, or were isolated from the other cells in culture 

by a permeable membrane. We found that NK cells were only suppressed during the 

contact condition and therefore this appears to be the dominant mechanism (secreted 

factors may be necessary but not sufficient).  

Based on these results, we hypothesized that M-BMMs express high levels of cell 

surface proteins that transmit inhibitory signals into NK cells through the direct 

contact. In human breast cancer, it has been reported that levels of NKG2A (a NK 

inhibitory receptor) is increased during progression of cancer whereas expression of 

NKG2D and DNAM-1 (NK activation receptors) are decreased, which correlates with 

the decrease in cytotoxicity115. Interestingly, TGF-β in the tumour microenvironment 

has been shown to reduce the expression of NKG2D in NK cells in human lung and 
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colon cancers165. Given these findings, it is possible that macrophages expressing 

membrane-bound TGF-β can inhibit the activation of NK cells via skewing expression 

of NK cell regulatory receptors. However, MAMs in our model may not utilize this 

mechanism since the levels of NK cell activating and inhibitory receptors on NK cells 

were not changed following macrophage depletion.  

 We demonstrated that NK-suppressive M-BMMs as well as MAMs express 

high levels of H2-Kb, H2-Db, and CD86. These ligands can suppress NK cell functions 

through their receptors Ly49C, Ly49I, and CTLA-4 (Chapter 1.3). However, NK cells 

cultured in our condition did not express detectable levels of CTLA-4 (data not shown) 

making this latter protein an unlikely candidate. Furthermore, treatment with blocking 

antibodies against H2-Kb, H2-Db, or their receptor Ly49C/I did not significantly rescue 

the macrophage-mediated NK suppression. These results suggest that the 

expression of MHC-I molecules or checkpoint ligands is not the main mechanism of 

macrophage mediated NK cell inhibition.  

It has been reported that TGF-β is an inhibitor of NK cell function in the tumour 

microenvironment (Chapter 1.3). Although TGF-β acts as a soluble immune 

suppressor, as previously mentioned, some studies indicate that membrane-bound 

TGF-β is also functional in regulatory T cells and required for their contact-dependent 

immune suppression. Data reported in this chapter demonstrates that NK suppressive 

M-BMMs express higher levels of membrane-bound TGF-β than NK non-suppressive 

GM-BMMs, and blockade of TGF-β prevented macrophage-mediated suppression of 

NK cell cytotoxicity. Interestingly, a recent study has shown that mouse BMMs 

cultured with M-CSF in combination with IL-4 and IL-13 suppress NK cell activation 

via contact and TGF-β dependent manner195. Collectively, these findings suggest that 

the expression of membrane-bound TGF-β is one of the major mechanisms behind 

the contact-dependent NK cell suppression by a certain population of macrophages 

such as M-BMMs and MAMs. As mentioned above, however, in vitro assays using 
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anti-TGF-β blocking antibodies must be repeated to confirm this conclusion. In a 

mouse model of breast cancer metastasis, MAMs are differentiated from a 

subpopulation of “myeloid-derived suppressor cells” (MDSCs) that accumulates in the 

metastatic lung31. Interestingly, it has been reported that MDSCs from the spleen of 

liver cancer bearing mice suppress cytotoxicity and IFN-γ secretion of NK cells 

through membrane-bound TGF-β in vitro215. In order to improve efficacy of NK cell 

infusion therapy, it will be important to determine expression of membrane-bound 

TGF-β in MAMs and their progenitors in metastatic tumours and investigate whether 

TGF-β inhibitors can restore NK cell activities in vivo.   

On the other hand, our data does not exclude the involvement of other 

mechanisms in the macrophage-mediated NK suppression depending on cell-to-cell 

contact. It has been reported that M-BMMs as well as MAMs make direct contact with 

metastatic mammary tumour cells30,61. Furthermore, a recent study suggests that 

direct contact between breast cancer cells and stromal cells can induce pro-

metastatic cytokines in cancer cells216.  

Given these findings, it might be possible that cell-to-cell contact between cancer cells 

and macrophages induce NK suppressive molecules in tumour cells or prevent 

physical contact of NK cells to target cancer cells. These possibilities are now under 

investigation in our lab.  
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Chapter 6 
 

Mechanisms behind macrophage mediated NK 
cell suppression: Effects of macrophages on NK 
cell regulatory receptor expression, maturation 

and localization in vivo 
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6.1. Aims 
1. To investigate the effects of MAMs on the expression of inhibitory or 

activating receptors on NK cells in vivo 

2. To determine the effects of MAMs on the activation and maturation of NK 

cells in vivo 

3. Determine whether the depletion of macrophages alters the localisation of NK 

cells within metastatic pulmonary tumours 

 

6.2. Results 
6.2.1. Effect of MAM Depletion on NK Cell Regulatory Receptor Expression, 

Activation and Maturation Status. 

As another possible mechanism by which macrophages suppress NK cell cytotoxicity, 

we hypothesized that MAMs might change NK cell phenotypes in vivo, i.e., decrease 

or increase the expression of activation or inhibitory ‘receptors’ on NK cells and/or 

prevent functional differentiation of NK cells. To investigate this hypothesis, we 

utilized mice with a Csf1r conditional allele in which the Csf1r gene is ablated by the 

administration of doxycycline (Dox) that induces the expression of cre-recombinase 

(cKO)217. To perform these experiments E0771-LG2:Fl#4 cells were injected into the 

tail vein of Csf1r-cKO mice, and mice were treated with Dox from day 4 to deplete 

MAMs in the lung. After a further 10 days, we collected the lung with metastatic 

tumours and performed flow cytometry for infiltrating immune cells (Figure 6.1A). 

Consistent with our previous report31, the number of MAMs within the metastatic lungs 

was reduced by 75% on average (Figure 6.1B).  We then analysed expression of NK 

inhibitory receptors by flow cytometry. As shown in Figure 6.1C NK cells in the 

metastatic lung expressed detectable levels of inhibitory receptors such as Ly49A, 

Ly49C/I, NKG2A, and PD-1 whereas CTLA4 was not detectable (data not shown). 

However, there were no significant differences in their expression between NK cells 
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from animals treated with doxycycline (MAM depleted) and vehicle (MAM intact). 
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Fwith doxycycline (MAM depleted) and vehicle (MAM intact). Furthermore, levels of 

activating receptors such as DNAM-1, CD49b, NKG2D, and NKp46 on NK cells were 

not changed by the MAM depletion (Day 14) (Figure 6.1D). We also analysed the 

lung with tumours at an earlier time-point (day 10) but did not find significant 

differences in levels of these receptors (data not shown).  

In order to investigate the effects of MAM depletion on the NK cell activation 

status, we determined the expression of CD69, a commonly used marker of activated 

NK cells218 in mice at day 14 after tumour injection (10 days after Dox treatment). We 

found that levels of CD69 on NK cells were significantly higher in Dox-treated mice 

(Figure 6.1E), suggesting that depletion of MAMs promotes NK cell activation in the 

lung with metastatic tumours. Using this model, we investigated effects of MAM 

depletion on the expression of major activating and inhibitory receptors on NK cells.

  We then investigated whether MAMs had an impact on NK cell maturation 

within tumour bearing lungs. To this end, we determined the levels of CD27 and 

CD49b in NK cells since high expression of these markers are known to represent 

mature NK cells219. Interestingly, we found that expression of CD27 and CD49b were 

significantly higher in NK cells from the metastatic lung of mice in which MAMs were 

depleted (Day 10) (Figure 6.1F). These results suggest that effects on NK cell 

Figure 6.1. Effects of MAM depletion on NK cell regulatory receptor expression, 
activation and maturation. (A) Schematic overview of experiment. E0771-LG2:Fl#4 
tumour cells were intravenously injected into Csf1r-cKO mice in which MAMs are depleted 

by doxycycline (Dox) treatment. From day 4 after tumour injection, water including Dox 

was given to the animals, and on day 10 or day 14 the lung with metastatic tumours were 

dissected for flow cytometry. (B) Number of MAMs in the lung of mice treated with vehicle 

(Veh) or doxycycline (Dox) (C) Expression of NK cell inhibitory receptors and (D) 
activating receptors on NK cells from the lung of vehicle and DOX treated tumour bearing 

mice at day 14.  (E) Expression of CD69 or (F) maturation markers on NK cells from 
vehicle or and DOX treated tumour bearing mice at Day 10. (n=6 biological replicates, 

Mann-Whitney, ns= no significance, **p<0.001). The same NK gating strategy as Figure 

3.2 was used.  
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regulatory receptors may not be the major mechanism of NK cell suppression by 

MAMs, whereas alteration of NK cell differentiation status could be another 

mechanism behind MAM-mediated NK cell suppression in vivo.  

 

6.2.2. Effects of MAM Depletion on the Number of NK Cells Within Tumour Areas 

A recent study using a mouse model of mammary tumour development has reported 

that tumour-associated macrophages can reduce motility and infiltration of CD8+ T 

cells into the primary tumours, and that depletion of macrophages enhances 

therapeutic efficacy of checkpoint inhibitors220. Given these findings in primary 

tumours, another potential mechanism was investigated where MAMs might prevent 

NK cell infiltration into the tumour area and thereby prevent NK cell mediated tumour 

cell elimination in vivo. To this end, we utilized the Csf1r-cKO model as previously 

described. Briefly, we injected 1x106 of E0771-LG2:Fl#4-Csf1rcKO cells into Csf1r-

cKO mice via the tail vein, and the mice were treated with Dox from 4 days after 

tumour injection, a time point when injected cancer cells establish micro-metastasis 

in the lung. 10 days post-tumour injection, tumour-bearing lungs were isolated and 

the expression of NKp46 (a marker for NK cells) and F4/80 (a macrophage marker) 

was analysed by RNAScope. Using image analysis software (Definiens), tissue 

sections were classified into ‘tumour’ area and ‘normal lung’ area based on the 

differences in their nuclear density (Figure 6.2A). In each area macrophages and NK 

cells were detected based on the distinct expression of F4/80 and NKp46 (Figure 

6.2B and C).  

Consistent with our previous data, the number of F4/80+ macrophages in the 

tumour area but not lung parenchyma was reduced in Csf1r-cKO mice treated with 

Dox compared to those in mice treated with vehicle (Figure 6.2D). Importantly, the 

number of NK cells within the tumour area and lung parenchyma was significantly 

higher in the Dox-treated mice compared to untreated animals (Figure 6.2E),
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suggesting that MAMs can prevent the accumulation of NK cells in the metastatic 

lung.  

 

6.3. Discussion 
In this chapter we found that expression of CD27 and CD49b were significantly 

increased in NK cells from tumour bearing lungs where MAMs had been depleted. It 

is known that mouse NK progenitor cells (CD11b–CD27–CD49b–) give rise to 

immature NK cells (CD11b–CD27+CD49b–) that further differentiate into transitional 

(CD11b+CD27+CD49b+) and fully mature (CD11b+CD27–CD49b+) NK cells. Since 

high expression of CD27 and CD49b is a characteristic of the initial stage of mature 

NK cells219, our data suggest that MAMs prevent differentiation of NK cells recruited 

to the metastatic tumours. Although NK cells were initially thought to develop in the 

bone marrow and exit as mature cells, a recent study has suggested that peripheral 

NK-cell populations originate from site-specific immature NK cells more than from BM-

derived mature NK cells221. Although maturation status or origin of NK cells in human 

cancer is unclear yet, a recent study using a mouse model of breast cancer has shown 

Figure 6.2. Macrophage depletion in Csf1rcKO animals allows more NK cells to 
enter the tumour bearing lung. (A) Left: H&E image of tumour bearing lung. Right: 

Overlay of tissue classification into ‘normal’ (blue) and ‘tumour’ (red) areas. (B) 
Representative raw images of F4/80 IHC staining between vehicle (top) and DOX 

(bottom) treated animals. Images on the left show tumour areas. Images on the right 

show adjacent non-tumour areas. (C) Quantification of F4/80 from (B). Nuclear 

detection (light blue) and F4/80 detection (red). (D) Representative raw images of 

NKp46 RNAScope staining between vehicle (top) and DOX (bottom) treated animals. 
Images on the left show tumour areas. Images on the right show adjacent non-tumour 

areas. (E) Quantification of NKp46 from (D). Nuclear detection (light blue) and NKp46 

detection (pink). (F)  Number of F4/80+ cells/mm2 (x10) of lung in ‘normal’ and ‘tumour’ 

areas (n=6 biological replicates, mean+SD, *p<0.05, Mann-Whitney). (G) Number of 

NKp46+ cells/mm2 (x10) of lung in ‘normal’ and ‘tumour’ areas (n=6 biological 

replicates, mean+SD, **p<0.001, Mann-Whitney). 
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that NK cells in the primary tumours express lower levels of CD27 and CD49b 

compared to NK cells in the spleen111, suggesting the recruitment of immature NK cell 

to the tumour microenvironment. Interestingly, a recent report has shown that CD27 

expression is reduced in NK cells that are co-cultured with macrophages from the 

primary mammary tumours in mice195. Furthermore, it has been reported that CD27high 

NK cells demonstrate higher cytotoxic capacity against target cancer cells compared 

to CD27low NK cell222. Taken together, these results suggest that prevention of NK cell 

differentiation within the metastatic site may be another mechanism behind MAM 

mediated NK cell suppression in vivo in addition to the direct suppression via 

membrane-bound TGF-β. To our knowledge, this is the first report suggesting that NK 

cells in the metastatic site are less mature and that might be caused by macrophages. 

It will be important to investigate maturation status of NK cells and its association with 

numbers of distinct populations of macrophages within human metastatic tumours. 

A recent study has reported that the number of tumour-infiltrating NK cells is 

very low in most cases of breast cancer223, suggesting that the tumour 

microenvironment in breast cancer excludes NK cells. In this project, we have 

demonstrated that the number of NK cells infiltrating into the metastatic tumours is 

increased following MAM depletion. In mouse models of breast cancer, macrophages 

in the tumour stroma reduce CD8+ T cell motility via direct contact with them and 

thereby suppress the T cell infiltration into the tumour nodules220. However, MAMs 

and NK cells are not restricted to the border between tumour foci and the lung 

parenchyma in our experimental metastasis model Therefore, it is unlikely that 

depletion of MAMs enhances NK cell infiltration by releasing NK cells from 

macrophage-mediated retention in the lung parenchyma. It is instead possible that 

the absence of MAMs can enhance migration of NK cells throughout the metastatic 

lung since MAM depletion increases the number of NK cells in normal (non-tumour) 

area in addition to the tumour area. Although it is unclear how NK cells reach the 
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metastatic tumours, pre-activated NK cells transferred into the circulation evenly 

distribute in the lung initially and then accumulate in the metastatic tumours in lung 

metastases established by B16 melanoma cells as well as several other different 

types of cancer cells224. It is thus possible that depletion of MAMs might promote the 

recruitment of NK cells into the metastatic lung through blood vessels outside the 

tumour followed by their redistribution into the metastatic foci. It has been reported 

that the recruitment of NK cells into the tumour is regulated by inflammatory 

chemokines which bind CXCR1, CXCR2 and CX3CR1 on NK cells225. Further 

investigation is required to identify whether the accumulation of MAMs negatively 

regulates levels of these chemokines (or other regulators of NK cell recruitment) in 

the metastatic tumour microenvironment.   
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Effects of macrophage depletion on the efficacy of 
infused NK cells in a mouse model of metastatic 

breast cancer 
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7.1.  Aims 
Investigate whether the depletion of macrophages improves the efficacy of NK cell 

infusion therapy 

 

7.2. Results 
In the previous chapters, we have suggested that MAMs can prevent NK cells from 

exerting their full cytotoxicity and that macrophages reduce NK cell infiltration into the 

lung. We therefore hypothesised that depletion of macrophages prior to NK cell 

infusion therapy would significantly improve the efficacy of this type of treatment. To 

this end, we utilized the Csf1r-cKO mice (Figure 7A). In order to prepare cohorts of 

animals with the same age and to restrict genetic alterations to blood cells, we 

transferred bone marrow cells from Csf1r-cKO mice into lethally irradiated recipient 

C57Bl/6 mice (4-5-week-old, female). 6 weeks after bone marrow transplantation 

(BMT), the animals were injected with E0771-LG2:Fl#4 tumour cells via the tail vein. 

After 4 days, cohorts of animals were treated with Dox to deplete MAMs. On Day 7, 

the Csf1r-cKO:BMT mice treated with or without Dox were intravenously injected with 

5x105 of NK cells that were isolated from the spleen of normal C57Bl/6 mice and pre-

cultured with IL-2 for 24 hours. Tumour loads in the lung were determined by 

bioluminescence imaging on day 4 and day 10 after tumour injection. As shown in 

Figure7B, metastatic tumour loads in the lung were not reduced by the single 

treatment with Dox (MAM depletion) or NK cell infusion. Importantly, however, NK cell 

infusion in combination with MAM depletion significantly reduced the metastatic 

tumour loads in the lung.  
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Figure 7. NK cell infusion efficacy can be improved by depletion of 
macrophages. (A) Schematic overview of the treatments. Bone marrow cells from 

Csf1r-cKO mice were transplanted (BMT) into irradiated recipient C57Bl/6 mice. After 
6 weeks, the BMT mice were intravenously injected with E0771-LG2:Fl#4 cells and 

allocated into four cohorts. Cohorts of mice were treated with doxycycline (Dox) from 

day 4 after tumour injection and/or intravenously injected with ex vivo activated NK 

cells on day 7. Metastatic tumour loads in the lung of mice were determined on days 4 

and day 10 by bioluminescence imaging. (B) Metastatic tumour loads on days 4 (left) 

and 10 (right) in the lung of mice from following groups. Group 1: Vehicle, No NK 

infusion (white).  Group 2: DOX, no NK infusion (light grey). Group 3: Vehicle, NK 
infusion (dark grey). Group 4: DOX, NK infusion (Red) (n=5, mean±SD, **p<0.01, 

Kruskall-Wallis, Dunn’s post-test). 
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7.3. Discussion 
It has been shown that a high number of circulating NK cells in metastatic triple-

negative breast cancer patients correlates with low number of circulating tumour cells 

as well as lower risk of lung and visceral metastases226, suggesting that NK cells can 

recognize and eliminate tumour cells that enter the circulation which in turn controls 

the development of lung metastasis. Therefore, NK cells have been considered as 

promising therapeutic tools to eliminate malignant cancer cells. In acute myeloid 

leukaemia, adoptive transfer of NK cells along with IL-2 after lymphodepleting 

chemotherapy resulted in a complete remission in 5 out of 19 patients with a poor 

prognosis227. However, the efficacy of NK cell infusion immunotherapy is limited in 

solid tumours including metastatic breast cancer as previously mentioned. Consistent 

with these clinical data, we found that a single treatment with NK cell infusion is not 

sufficient for suppression of metastatic tumour growth in our mouse model.  

A recent study has shown that NK cells transferred into mice with mammary 

tumours have significantly reduced expression of activation marker (NKp46) when 

they infiltrate into the tumour whereas transferred NK cells that arrived at the spleen 

maintained high expression of NKp46111. These results suggest that mammary 

tumour cells can establish a tumour microenvironment that suppresses NK cell 

function and thereby limit therapeutic efficacy of NK cell infusion.  

There is increasing evidence that leukocytes in the tumour microenvironment 

such as regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs) as and 

tumour-associated macrophages (TAMs) can restrict anti-tumour immune response 

by NK and CD8+ T cells as previously discussed. In a lung metastasis model using 

CT26 mouse colon cancer cells, elimination of Treg cells by denileukin diftitox (Ontak) 

treatment can enhance therapeutic effects of intravenously injected NK cells228. This 

study indicates that it is feasible to augment efficacy of NK cell infusion therapy by 

depletion of immune suppressor cells from the tumour microenvironment. However, 
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in our experimental metastasis model using E0771-LG2:Fl#4 mouse mammary 

tumour cells, Treg cells in the metastatic lung are very few compared to MAMs 

(0.1±0.03 and 8.5±0.5% in CD45+ cells, Kitamura et al. unpublished data). 

Furthermore, we have demonstrated that MAMs suppress cytotoxicity of NK cells in 

this project. Importantly, we have shown here that metastatic tumour growth is 

significantly suppressed by adoptive transfer of NK cells in combination with genetic 

depletion of MAMs via deletion of Csf1r gene under DOX treatment. Therefore, our 

data has shown we believe for the first time, that targeting MAMs could be a promising 

strategy to improve NK cell infusion therapy for metastatic tumours. 

        On the other hand, our data showed that MAM depletion on its own did not 

suppress metastatic tumour expansion even though it enhances activation of NK cells 

in the metastatic lung. Although our previous studies have shown that MAM depletion 

by clodronate or loss of Csf1 or Csf2 gene 61,63,30 can suppress metastasis formation, 

in these models macrophages are not present, or are depleted before tumour cells 

were given. In contrast, we depleted MAMs after Day4 when tumour cells have 

already formed small metastatic foci within the lung31 which may be too late to 

suppress metastatic tumour expansion. It is possible that strategies targeting the 

tumour microenvironment do not directly induce tumour cell death, and thus additional 

treatment such as adoptive transfer of ‘external’ NK cells is required. It is also possible 

that another type of immune suppressor cell compensates for the  NK cell suppressive 

effects of MAMs, and thus re-activation of ‘intrinsic’ NK cells by MAM depletion alone 

is not enough to prevent metastasis formation. As described above, the metastatic 

lung in our model contains a significant amount of MAMPCs that can differentiate into 

MAMs. Furthermore, we have shown that a short (10 days) treatment with DOX can 

eliminate MAMs but not MDSCs31 in the metastatic lung established in Csf1r-cKO 

mice10. Since several studies have shown that MDSCs can suppress NK cell 



 96 

functions, depletion of both MDSC and MAMs might more effectively boost intrinsic 

NK cell functions or augment infused NK cell efficacy.  
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Chapter 8 
 

Conclusions and Future Directions 
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In this project, we have suggested that macrophages in the metastatic tumour 

microenvironment (i.e., MAMs) suppress NK cell cytotoxicity in vitro, and that 

depletion of MAMs by targeting the CSF-1 receptor can improve therapeutic efficacy 

of infused NK cells in a mouse model of breast cancer metastasis. Using an in vitro 

macrophage model mimicking MAMs, we also identified that the NK suppressive 

macrophages require cell-to-cell-contact and membrane-bound TGF-β to suppress 

NK cell cytotoxicity. Furthermore, we have shown that MAMs can restrict the 

infiltration and differentiation of NK cells in the metastatic lung. Although some 

experiments must be repeated to confirm our conclusion, our findings highlighted 

MAMs as one of the key components of the NK cell suppressive tumour 

microenvironment at the metastatic site. In addition to repeating the incomplete or 

preliminary experiments described above, the presence of TGF-β on MAMs within the 

metastatic lung tumours should be confirmed. This should be combined with blocking 

TGF-β in our mouse models of pulmonary metastatic breast cancer along with NK cell 

infusion which should also be investigated to support our updated hypothesis that 

targeting TGF-β in MAMs can improve NK cell infusion efficacy.  

We have performed an experiment to investigate whether MAM depletion 

affects the recruitment of infused NK cells in our mouse model. However, results are 

yet to be analysed. 

Since CSF1 signalling is essential for the differentiation and survival of certain 

populations of macrophages including tumour-associated macrophages229, several 

CSF1 receptor antagonists (e.g., BLZ945, PLX3397 and PLX7486) have been 

developed to deplete disease-promoting macrophages and tested in phase I or phase 

II studies in patients with malignant cancers. These drugs were well tolerated, and 

partial anti-tumour effects were observed in some cases66. Although the clinical 

benefits of CSF1 receptor antagonists in immunotherapy has not yet been reported, 

a mouse study involving pancreatic tumours has shown that treatment with PLX397 
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in combination with immune checkpoint inhibitors (blockade of PD-1 and CTLA-4 by 

antibodies) markedly reduced the size of established tumours230. This study 

emphasizes that macrophage targeting is a promising treatment option to augment 

immunotherapy efficacy. Currently, studies using a mouse model of breast cancer 

metastasis are ongoing in the Kitamura lab in order to identify the effects of CSF1 

receptor antagonists on the efficacy of infused NK cells in suppressing metastatic 

tumour expansion. 

Although macrophage depletion by CSF1 receptor inhibitors is an efficient 

strategy for MAM targeting, it is not specific for MAMs and may also affect other 

macrophage populations that are involved in a wide range of physiological and 

pathological processes (Chapter 1). It is thus possible that prolonged treatments with 

CSF-1 receptor antagonists can cause toxic side effects in patients231. An alternative 

and more specific approach to target MAMs to improve immunotherapy is the 

blockade of MAM-derived suppressive factors. Our data suggest that TGF-β is an 

attractive candidate. There are several ongoing clinical trials using TGF-β inhibitors 

in a range of advanced solid tumours (NCT03834662, NCT03192345, 

NCT03470350). Although outputs of these trials have not been posted yet, a recent 

trial using anti-TGF-β antibody (Fresolimumab) in patients with malignant melanoma 

has shown that this treatment does not cause dose-limiting toxicities232. Further pre-

clinical studies investigating the effects of TGF-β inhibitors on cytotoxicity of infused 

NK cells in vivo may lead to the improvement of current NK cell-based 

immunotherapies. On the other hand, it is possible that other molecules contribute to 

MAM-mediated NK cell suppression in addition to TGF-β.  

        Interestingly, our data have also suggested that MAMs can prevent the 

recruitment of NK cells in the lung with metastatic tumours. Since efficient delivery of 

infused NK cells is another important aspect to improve NK cell infusion therapy, it is 

necessary to investigate the effects of MAMs on the recruitment of infused NK cells. 
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Since NK cell recruitment can be regulated by chemokines, it is possible that MAM 

depletion might change chemokine profiles in the metastatic TME to favour NK cell 

recruitment. Further studies investigating potential mechanisms by which MAMs 

prevent NK cell infiltration would also lead to the improvement of NK cell infusion 

therapy. On the other hand, several groups have been trying to improve NK cell 

homing to the tumours by manipulating them to express chemokine receptors specific 

for chemokines within the TME. A combination of this strategy with MAM depletion 

may further improve NK cell delivery to the tumour. 

        This project has highlighted that macrophages within metastatic tumours prevent 

NK cells from exhibiting their full cytotoxic capabilities and has provided important 

information about the mechanisms that may be responsible for this reduction in 

cytotoxicity, for example, suppression via macrophage-derived membrane bound 

TGF-β. Further studies based on this project would accelerate the establishment of 

effective NK cell-based immunotherapy for metastatic breast cancer as well as other 

types of tumours. 
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