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Abstract

The (trivalent) lanthanides exhibit a common sequence of phases upon the application

of pressure: hcp → dhcp → fcc → “distorted-fcc”. The “distorted-fcc”’ phase (d-fcc),

observed in the light lanthanides is known to be related by geometric distortions to the

fcc unit cell, yet the d-fcc phase has been reported to comprise of one or two structures,

with no prevailing consensus as to the solution(s). This thesis contains a detailed study

of the d-fcc phase of the light lanthanides Pr and Nd.

High-pressure angle-dispersive powder-diffraction techniques were employed to sys-

tematically study the phases adopted by Pr (up to 25GPa) and Nd (up to 44GPa).

Particular attention was paid to solving the d-fcc of each of these elements, the structure

of which is very unclear in published work. In Pr, the d-fcc between 7 and 20GPa is

shown to comprise of two phases, the solutions of which are shown to be hR24 (R3̄m)

and oC16 (Ibam) for the regions 7-14GPa and 14-20GPa, respectively. The pressure-

dependence of each of these structures over their stability range is presented. Revisions

to previously-published volume vs. pressure data are made, with a different value for

the volume collapse at the 4f electron delocalisation transition reported.

Similarly, the d-fcc phase of Nd, stable over the pressure range 16-40GPa, is studied

in detail. Nd differs from Pr by undergoing a further transition, to a hP3 (P63)

structure, on pressurisation above 40GPa, before transforming to a α-Uranium phase.

The distorted-fcc phase is shown, like that of Pr, to comprise of two phases, hR24 (R3̄m)

and oC16 (Ibam) for the pressure regions 16-26GPa and 26-40GPa, respectively. Data

on Nd are presented up to the maximum pressure achieved, 44GPa.

Data from a preliminary study of La are also presented, along with a brief report on

attempts to prepare a single crystal of Pr within a diamond anvil cell, by laser annealing

of a powder of Pr.
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positions: z1=0.2698(3), x2=0.5053(3), y2=-x2, z2=0.2444(4). Data was
collected on Station ID09A of ESRF using a wavelength of λ=0.414412Å. 82
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Fit parameters are as follows a=8.8955Å, b=6.3809Å; c=6.2011Å.
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4.5 Subset of the peaks from a diffraction pattern of Pr, used for indexing
the d-fcc phase. Data was collected on Station 9.5 of Daresbusy SRS
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in Figure 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Table showing the structural parameters of the fcc phase of Nd, as
refined from a pattern collected at 12.3GPa on Station 9.5 of Daresbury
SRS, using a wavelength of λ=0.44397Å. Reitveld refinement is shown
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Chapter 1

Introduction

1.1 Extreme Conditions

Pressure, as a thermodynamic variable, has the largest observable range within nature.

The pressure scale within the universe ranges from 1x10−15 Pa, the pressure within

the vacuum of space (the non-equilibrium pressure of H2 gas in intergalactic space), to

1x1016 Pa, the pressure within a neutron star. This pressure range is shown in Figure

1.1. Pressure, defined as

Pressure =
Force

Area
(1.1)

, is applied to systems being studied using relatively simple apparatus. In the case of

small sample volumes (volumes of the order 50µm3) used for x-ray diffraction studies,

diamond anvil cells are employed (as is the case in this work). Larger volumes require

larger apparatus, such as those used for neutron diffraction studies, where the samples

need to be orders of magnitude larger (typically of the order mm3) than those used for

x-ray diffraction studies .

X-ray diffraction allows an insight into the novel atomic structures adopted by materials

when subjected to the extreme conditions of pressure (and temperature) found in

nature. Applying pressure changes the density, crystal structure and electronic

configuration of materials, and the effect of the latter can be pronounced enough to

transform materials which, at ambient conditions are insulators, into semiconductors

or metals at pressure [McWhan 72]. Similarly, the compression of elements can lead

“simple” elements, such as the alkali-earth metals, to behave as 3d transition metals,

which can cause these “simple” conductive metals to superconduct at low temperatures

[McWhan 72]. High pressure experiments work towards the modelling of astromonical

processes in the outer planets (Uranus and Neptune) [Cavazzoni 99]; the formation

and behaviour of minerals within the Earth’s surface [Davis 64]; the behaviour of
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Chapter 1. Introduction

Figure 1.1: Diagram illustrating the scale of the variation in pressure observable within
nature. Here, atmospheric pressure is used as a relatable lower reference pressure, it is
not the lowest pressure attainable. Reproduced with permission [Ingo Loa 07].
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1.2. Lanthanides

mechanised or industrial components (such as drill bits for deep sea drilling, concrete

for wells, fault propagation in fuselage); the novel biological systems (extremeophiles)

[Anurag Sharma 02]; and military research [Davidson 07].

1.2 Lanthanides

In traversing the lanthanide group of elements, the 4f electronic shell is filled with

increasing atomic number, Z. The 4f shell is a partially-filled shell buried within the

atom, shielded from outside influences (and partially shielded from the electrostatic

influence of the nucleus) by the 5s and 5p electronic shells [Cotton 91]. A similar

valence shell electronic structure of 3 valence (5d) electrons throughout the lanthanide

group (with the exception of the divalent lanthanides Europium and Ytterbium) yields

the expectation of similar chemical and physical properties. Indeed, it can be expected

that this similarity in properties of the lanthanides will be repeated at high pressure, at

least until the effects of pressure increase the energy of the unfilled 4f orbital to above

that of the valence 5p electrons (thus making the 4f shell the valence).

It is worth noting that the distinction between the lanthanide and actinide series, while

a similarity persists in the electronic structure between the two series with localised f

orbitals gaining electrons as Z increases. Actinides have differing 5f orbital occupancy

and a filled 4f orbital. Quantum mechanics dictates that the 4f and 5f orbitals have

differing spatial extent (required by the different energy of the electrons constrained

within each) and be mutually orthogonal. Thus, the 5f orbital, with electrons of

higher energy, must have a larger spatial extent, extending beyond the “screening”

influence of the core, making the behaviour of the (lower Z) actinides like those of 6d

transition metals with itinerant 5f electrons [Johansson B. 81]. Increased screening at

high Z yields behaviour more akin to lanthanides, as the 5f orbital becomes confined

to occupy space bound by the d orbital, effectively preventing the participation of the

5f electrons in bonding. Lanthanides are also distinctively different from the transition

metal series, which is also characterised by filling of a d orbital. For the transition

metals, however, the spatial extent of the d orbital is larger, and, as such, is deformed

by a greater extent under the influence of neighbouring atoms [Johansson 75].

The chemical similarity of the lanthanides, as stated earlier, is indeed known to extend

to high pressure [Johansson 75]. Such is the similarity that the term “regular lanthanide

series” (or variations thereof) is used in the literature to describe the series of crystal

structures adopted at high pressure by the regular (trivalent) lanthanides. Johansson’s

[Johansson 75] common phase diagram (Figure 1.2) exemplifies this similarity, showing
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Chapter 1. Introduction

Figure 1.2: Common phase diagram of the regular lanthanide series, reproduced from
Johansson [Johansson 75] sources contained in references therein.

that given the similar electronic arrangement of the valence shell, and the addition of

electrons to the 4f orbital changes the size of the atom. At ambient pressure the low-Z

lanthanides (La, Pr, Nd) adopt high-pressure (high-Z lanthanide) crystal structures.

Thus, members of the lanthanide series can act as analogues for one another, thus,

enabling the experimentalist to use high-pressure (HP) low-Z lanthanides as an analogue

to very high pressure (perhaps outside of the ranges accessible with techniques currently

available) high-Z lanthanides.

Having established a similarity in the pressure-induced structure of the lanthanides, a

closer look at the phase transition sequence shows a succession of second order phase

transitions through close-packed structures, hcp → dhcp → fcc → d-fcc, before reaching

an open-packed α-Uranium type structure.

Until the d-fcc phase, the pressure-induced phase transitions are all second order, as

transitions are observed to be gradual (occurring, with the co-existence of pre- and post-

transition phases over a few GPa) and there are no volume discontinuities in volume vs.

pressure plots. However, the d-fcc to α-Uranium transition marks a first order close-
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packed to open-packed transition, with an associated discontinuity in atomic volume

of about 10 % [Mao 81]. The mechanism underlying the volume collapse relates to the

pressure-induced delocalisation of the 4f electrons (the rising of the energy of the 4f

orbital as pressure decreases the overall volume of each atom leads to the 4f ’s energy

surpassing that of the 5d, thus changing the valence orbital).

1.3 Motivation

Much of the work on the lanthanides under extremes of pressure and temperature

conducted after 1980 takes advantage of the high-brilliance synchrotron x-ray radiation

sources available globally.

Before 1993 much of this work used energy dispersive x-ray diffraction techniques (EDX)

(refer to Section 2.2.2, in Chapter 2 for more information on the techniques employed).

However, EDX is a method which is seldom used at present, foregone in favour of the

higher-resolution angle-dispersive x-ray diffraction methods (ADX) using 2-dimensional

image plates (IP) [McMahon 94, Shimomura 92] or CCDs. These detectors are capable

of yielding the accurate intensities required for determination of atomic positions within

the unit cell using Rietveld refinement.

This higher resolution offered by ADX at current (3rd / 4th) generation synchrotron

sources enabled a plethora of complex [mim ], counter-intuitive [Loa 07] and novel

[Lundegaard 06] structures to be discovered in elemental systems at high pressure.

The close-packed transition sequence of the lanthanides described in the previous

section is accepted in the literature. However, ambiguity persists in the reports of

the structure of one of the phases in this sequence. The “d-fcc phase” in Pr has

been reported as comprising one, or two (similar) phases, and 8 different spacegroups

have been presented as the solution to this phase. These problems raise the following

questions. In the Pr d-fcc pressure range of 7-20GPa is there a transition between two

similar structures? What is (are) the structure(s) of the d-fcc phase? What is the

degree of volume collapse at the d-fcc to α-Uranium phase transition?

Further to the study of the d-fcc phase of Pr, the d-fcc phase of Nd will be investigated,

as the structures reported for this phase in the literature are similar to those reported
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for Pr, some suggestions for the structure made by analogy. This led the author to

question, by analogy, the nature of the structure of the d-fcc phase of Nd; will it too

exhibit evidence of a phase transition within what is referred to in the literature as a

single phase? And, what is the structure of the Nd d-fcc phase?

The author will address each of these questions within this thesis. As the literature

suggests that the different models for the d-fcc structures are differentiated by weak

peaks, the use of synchrotron radiation will be required, to be able to observe the subtle

differences between the reported structures. Angle-dispersive powder x-ray diffraction,

using monochromatic synchrotron radiation will be used to collect the data required

for this thesis. The author intends to attempt to encourage crystalisation of powder

samples into single crystals to further aid in the disambiguation of the d-fcc phase.
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1.4 Thesis Outline

Below, an outline of this thesis is presented, with a brief summary for each chapter, of

this thesis.

Experimental techniques This chapter describes the angle-dispersive x-ray diffrac-

tion techniques used in the experimental chapters of the thesis. The principles of

x-ray diffraction, crystallography and high-pressure techniques will be introduced to

the reader. Pressure generation, calibration and experimental setup will be covered,

including a comparison of the stations used for the majority of this work at Daresbury

SRS.

Literature review A review of the publications in the literature, comprising two

sections, one on the high pressure behaviour of the lanthanide metals in general, and the

other on Pr, specifically is presented in this chapter. In familiarising the reader with the

large body of published work, the structures suggested for the d-fcc phase, and problems

associated with previous studies, are discussed. Reports of sample contamination in

the literature will be briefly presented.

Studies of Praseodymium Data are presented on the high-pressure phase transitions

of Pr, collected using angle-dispersive x-ray diffraction on Stations 9.1 and 9.5 HPT of

Daresbury SRS and ID09A of the ESRF. The data encompasses the pressure range of

0-24GPa, with the focus of study being the d-fcc phase between 7 and 20GPa. Detailed

analysis of this 7-20GPa pressure range is presented, with the author providing a revised

solution to the structure within this pressure range, which differs to those present in

the literature.

Studies of Neodymium and Lanthanum Details of studies made at high pressure

on Nd in the 0-44GPa pressure range, using angle-dispersive x-ray diffraction techniques

are presented in this chapter. Like the preceding chapter, the d-fcc of Nd is the focus,

existing between 16-40GPa on pressure increase. Refinements made on the data and

structural solutions for this pressure range are shown, and the pressure dependence of

the unit cell and atomic positions are discussed. Initial studies performed on the light

lanthanide La are also presented.

Conclusions The conclusions from the previous chapters are concisely summarised,

and the author makes suggestions for further studies.
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Chapter 2

Experimental Techniques

2.1 Introduction

In this chapter the author will introduce the experimental techniques used within

chapters 4 and 5. This chapter will begin with a brief review of the theoretical

background to x-ray diffraction, a technique used to ascertain the atomic structures

of materials. The considerations and methods employed to reach the high-pressure

phases of the samples under investigation will then be discussed, along with the data

collection, processing and analysis methods/tools used. This chapter will give the

reader the background information required to understand the author’s techniques and

methodology.

2.2 Diffraction

Atoms in crystals are arranged in a regular periodic manner, forming a regular lattice

(in an ideal single crystal). This lattice, through symmetry, can be considered as a

series of planes, a distance d apart (assumed infinite in length, to negate end effects).

Electromagnetic (EM) radiation incident on a crystal will illuminate a series of parallel

planes, and be scattered elastically (or inelastically) from the electrons within the

atoms. Elastic scattering, that is the scattering of radiation which leaves the wavelength

of the radiation unchanged (no energy is lost or gained), occurs when the tightly-bound

electrons oscillate in response to the magnetic field of the incident EM wave, radiating

the same wavelength as was incident upon them. For inelastic scattering, however the

energy of the scattered beam is altered by the diffraction process. In some cases, part

of the energy of incident EM radiation is used in electronic transitions within the atom

(Stokes scattering), or creation of a phonon, so the energy emitted by the electrons

after transition will have a longer wavelength (lower energy) than the initial incident

radiation [Cullity 78]. Conversely, energy can be imparted to the diffracted beam by

the sample, on the anihillation of a phonon (anti-Stokes scattering).
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A’

A

B C

Figure 2.1: Adjacent planes of atoms will give constructive interference only when
Braggs’ Law is satisfied.

Parallel planes will scatter the incident radiation in the same direction, albeit with

some path difference introduced between the radiation scattered from adjacent planes,

which, seen in Figure 2.2, is defined geometrically as 2d sin(θ) (restated in Equation

2.2). Radiation scattered elastically from atoms (equally, planes of atoms) within a

crystal will be coherent with radiation scattered elastically from all other atoms within

the crystal. This enables radiation scattered from different locations within a crystal to

interfere, constructively, or destructively, upon reaching a detector. The path difference

between scattered waves, which forms the basis of Bragg’s Law, defines when it will be

possible for constructive interference to occur between radiation scattered from adjacent

planes.

Bragg’s Law (Equation 2.2) provides the basis for all diffraction based studies, by

stating, the condition necessary for a series of planes or atoms to diffract a photon

beam that is incident upon it at some arbitrary angle.

nλ = 2d sin θ

(2.1)
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2.2. Diffraction

Parallel rays scattered from points on parallel planes will constructively interfere when

Bragg’s Law is satisfied; that is, when the path difference for an incident beam at an

angle θ to some planes, with wavelength λ, for planes with interplanar spacing of d is

equal to a multiple of λ (or a phase difference of 2nπ). Another formulation of Bragg’s

Law is presented later in Equations 2.5, which use vectors to state the conditions

required for constructive interference from radiation scattered from a series of planes.

Bragg’s law can be proven geometrically. For example, in 2D Figure 2.2 shows how

Bragg’s law is formulated, where the path difference between radiation scattered from

points A and A′, BA′ + A′C, can be determined geometrically as 2dsin θ, this leads

to the condition for constructive interference, 2dsin θ = nλ, as the scattered radiation

from the different points must arrive at the detector with a difference in phase of 2nπ or

difference in path length of nλ (where n is an integer) [Woolfson 97]. This 2D form of

Bragg’s Law is readily extensible to 3D, by replacing d (the separation between planes

in 2D) with dhkl, the separation between planes of indicies (hkl). Thus, from Bragg’s

Law, the position of Bragg peaks in a diffraction pattern tells the observer of the size

and shape of the unit cell that is diffracting. Bragg’s Law, however, does not describe

the intensity of the diffracted beam, which is dependent on the positioning of atoms

within the layers comprising a unit cell.

The intensity of a diffracted beam is dependent on the position of atoms within the

unit cell and their atomic number (i.e. number of electrons scattering coherently)

[Cullity 78]. The term f, the atomic scattering factor, describes how the intensity of

radiation from a single atom varies with λ and θ. In the most basic form, f can be seen

as the ratio of scattered photons from an atom to a single electron, as indicated below:

f =
amplitude of wave scattered by atom

amplitude of wave scattered by a single electron
(2.2)

The structure factor, f has an angular dependence, simply put, f starts at a maxima for

θ=0 and decreases as θ increases. This can be stated as occurring due to the photons

being scattered from individual electrons within the atom becoming more out of phase

as θ increases [Cullity 78].

11



Chapter 2. Experimental Techniques

Figure 2.2: Diagram illustrating planes of different h k l in a cubic cell in real space.
Illustrated is possible permutations of index 1, higher indicies lie parallel to the index
1 plane. The directions h, k and l are labelled for (001) only.

Fhkl =
∑N

1 fne2πi(hun+kvn+lwn)

(2.3)

Planes of atoms (and hence directions within a crystal lattice) are labeled with the

Miller indicies (h k l), where h, k, l represent the base orthogonal directions in a

cartesian coordinate system. The plane (001 ) is defined as the plane 1 reciprocal unit

along the l axis that is perpendicular to c (exemplified in Figure 2.2 ).
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A crystal lattice, as it is periodic can be described in reciprocal space, by a reciprocal

lattice, which has dimensions of inverse length. In reciprocal space a spatial frequency,

such as the distance between planes within a real-space (direct) lattice (described by the

indicies (hkl)), will be points (labeled with corresponding (hkl)) within the reciprocal

lattice. The direct and reciprocal lattice can be related by the following equations

a∗ = 2π
b × c

a.b × c
(2.4)

where a∗, b∗ and c∗ are the reciprocal lattive basis vectors.

The reciprocal lattice is imaged in 2D diffraction patterns collected from a crystal 1.

Transformations made on the crystal in real-space, such as rotations, also rotate the

reciprocal lattice.

Points within a reciprocal lattice define the end points of a scattering vector (difference

between the incident ki and scattered kf wavevectors), q, from a series of planes of

label (hkl), where q = ha∗ + kb∗ + lc∗ = ki - kf . A scattering event is shown in

Figure 2.3 (i) in real space and (ii) for reciprocal space. In Figure 2.3 the general case

for a scattering event is shown, where the wavevectors ki and kf are not necessarily

equal. The size of a wavevector in reciprocal space is defined by the wavelength of the

radiation it represents, thus, for elastic scattering where there is no change in energy

upon scattering, ki = kf = k = 1
λ
. In real space, the diffraction conditions in vector

notation are given by the Laue equations 2.5, which state that constructive interference

from will occur when the dot product of the scattering vector Q (which has a defined

length and orientation) with each of the three lattice basis vectors (a, b and c) is equal

to an integer number (h, k, l) which define the indicie of the reflection. The Laue

equations can be restated as Bragg’s Law.

a.Q = h

1A direct transformation of the reciprocal lattice imaged in a 2D diffraction pattern, to a real space
lattice is not possible directly (through a Fourier transform). This is because the intensity of diffracted
x-rays is recorded in a diffraction pattern. Intensity is defined as —F—2, where F is defined in Equation
2.3, as such, information on the relative phase of diffracted x-rays from reflections of diffrent (hkl) are
lost, preventing the electron density, and thus atomic position being determined within the real-space
unit cell.
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Figure 2.3: Diagram illustrating a vector map showing a scattering event in (i) real
space and (ii) reciprocal space. The wavevectors ki, kf and Q represent the incident
beam, diffracted (final) beam and scattering vector respectivly. The vectors qi and qf

represent the projection of ki, kf onto Q in (ii).

b.Q = k

c.Q = l

Equation 2.1: Vector representation of the diffraction requirements in terms of mutually

orthogonal basis vectors (a, b and c), scattering vector (Q) and crystallographic indicies

(h, k and l) (2.5)

The dashed circular arc shown in Figure 2.3 (ii) represents a section of the Ewald

sphere, a geometrical construction in reciprocal space, of radius 1
λ
, centered on the

crystal in real space. The diffraction condition is met when the end points of scattering

vectors intersect the surface of the Ewald sphere (i.e. a reciprocal lattice point lies on

the surface of the sphere). This is equivalent to the real space diffraction condition

given by Bragg’s Law.

2.2.1 Single-Crystal Diffraction

Single-crystal x-ray diffraction techniques yield direct information on the position of

atoms within the unit cell and the crystal structure independently (through the intensity

and position of Bragg), allowing the experimenter to gain a powerful insight into the

behaviour of materials under the application of high pressure. Single-crystal diffraction

techniques are, however, reliant upon the sample loaded within the pressure cell being,

and then remaining, a single crystal upon increase of pressure to desired level, which

itself poses two problems. Pressure increase can cause samples to undergo first-order
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phase transitions, which, if accompanied by a large change in volume (a pressure

induced volume reduction of ≈10% is reported for a first order phase transition in

Pr [Mao 81]), will cause the single crystal to shatter into many crystallites (a powder).

The other problem is that samples may not be availiable as a single crystal for ambient

pressure loading, prohibiting the increase of pressure to some level below a first order

transition; or a method for encouraging the growth of a single crystal at a desired

pressure may not be known, or achievable for the sample being studied. A common

method to grow a single crystal from a powdered sample is to encourage growth from

the melt, heating to the melting point at the desired pressure and allowing to cool. This

method relies on the P-T phase diagram of the sample being known at elevated pressure

(or time to explore the P-T phase diagram), along with equipment to heat the sample to

the necessary level. Neither of those is always possible, leading experimentalists to use

powder-diffraction techniques, which, can be viewed as having a number of advantages

over single crystals from a perpective of ease of handling and use. For example, not

strictly requiring (though is beneficial from the standpoint of data accuracy) a truly

hydrostatic pressure medium for the entirity of the P-T region to be explored, and

not having to worry about the sample undergoing first order phase transitions. This

is especially usefull for studying the structure of a sample around a first-order phase

transition.

2.2.2 Powder Diffraction

A powder can be considered as an (infinitely) large number of small single crystals

(crystallites) each randomly orientated with respect to one another [Warren 90]. A

beam incident upon a powder will observe multiple diffracted peaks from all observable

hkl, as there will be some large, finite, number of crystallites orientated such that the

diffraction condition will be met. Diffracted photons will be observed in discrete spots

at calculable positions in three dimensional (3D) space, the position of these spots

governed by the orientation of the crystallographic planes that meet the diffraction

condition. Typically a two dimensional detector is used to observe the diffracted

x-rays, the 3D pattern of diffracted x-rays will be projected onto the 2D detector

necessitating geometric corrections to be made to the observed 2D pattern. The discrete

spots that appear on a two dimensional (2D) diffraction image will appear as rings

(Debye-Scherrer rings) of fixed d -spacing from the central beam, as if a single crystal

was to be rotated in many different directions about the central beam. Diffraction

rings from a powdered sample can appear textured where the presence of some large

crystallites causes concentration of intensity in some positions on the ring, or when

preferred orientation (where the alignment of crystallites along a particular direction is
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statistically preferred relative to the other possible directions). Powder diffraction can

thus give accurate values for the unit cell parameters, with the width of the powder rings

being defined by the spread of wavelength about the value of the monochromated beam,

strain distribution within the crystallites exposed by the incident beam (or degree of

homogeneity of the pressure media) and the instrument parameter (error inherent in

the measurement apparatus used) [Warren 90].

A typical angle dispersive x-ray (ADX) powder-diffraction pattern for an face centered

cubic (fcc) Si sample is shown in Figure 2.4. The dark rings present in the figure are

the Debye-Scherrer rings, the first three (moving outwards from the central white spot

to edge) are (111) and (220). The white spot at the center of the image and filled

black circle surrounding it are the beamstop (a lead disk which prevents the direct

x-ray beam illuminating the detector, as this could cause damage) and air-scattering

respectively.

2.2.3 Synchrotron Radiation

Charged particles experiencing an acceleration will emit radiation. Synchrotrons utilise

this by magnetically confining an electron to a plane, in which it is confined to move

in a circular trajectory by a force directed radially inwards. Radiation is emitted,

conically, in the plane of motion in the direction of the instantaneous velocity of the

electron (tangentially, in plane). When such a particle is moving in the relativistic

limit (v tending towards c), this radiation is referred to as synchrotron radiation, SR,

and is characterised by a high frequency, small opening angle and clear polarization

[Hofmann 04]. At ultra-relativistic velocities (where pc > mc2, that is the momentum

term in the total energy, E = m2c4+p2c2, of the electrons in the storage ring is dominant

over the mass energy. Or when v ≈ 0.99c) the high frequency of the radiation places

it within the x-ray region of the EM spectrum.

Realising synchrotron radiation in practice requires a multi faceted polygon comprising

a number of straight sections of confinement magnets and bending magnets which alter

the direction of the electron travel, providing the radial force required to change the

direction of motion. It is at each point in which the motion is changed that radiation

is emitted, allowing for beam-lines (such as Station 9.5, of Daresbury SRS or ID09A at
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Figure 2.4: A 2D diffraction image of Si at ambient pressure collected on ID09A at
ESRF, using a wavelength of λ = 0.44397Å. Image is screen captured from Fit2D
[Hammersley 98]. Collected intensity is shown in inverse grey-scale, with darker regions
being of higher intensity. The white circle at the centre of the image is the absence of
collected intensity corresponding to the location of a lead beamstop.
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Figure 2.5: (a) A graph showing the characteristic spectrum of a synchrotron radiation
source (b) A plot showing how the maximum attainable brilliance (defined as number of
photons / s / mm2 / mrad / 0.1% of bandwidth) vs. time of global synchrotron sources,
increasing brilliance is shown with the building of new synchrotrons. (b) reproduced
from XFEL comparison site [XFEL 09].
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the ESRF†) to utilise this intense radiation.

Insertion device is the collective term which refers to wigglers and undulators. These

are arrays of magnets which perturb the motion of the electrons to tailor the emitted

radiation to specific needs. These are located in the straight sections of the synchrotron

ring, and operate so as not to affect the overall orbit of the electrons around the

synchrotron storage ring. Each magnetic element within an insertion device changes

the path of the electron beam, an array of oppositely aligned magnetic fields such

as that found in an insertion device determines the wavelength of the radiation

emitted. Adjusting the field strength of the magnets within the insertion device and

the separation of the magnets within the insertion device alters the intensity of the

emitted radiation and allows ”tuning” to constructive interference at harmonics of the

x-ray beam.

Laboratory based x-ray sources are electrically driven cathode devices, relying on the

emission of x-rays from electrons striking a metal target (known as bremsstrahlung,

German for breaking-radiation) as they travel through an electric potential of the order

10 - 100 kV. The metal chosen for the target (in conjunction with the potential) dictates

the wavelength of the emitted x-rays, with Cu or Mo commonly being used as target

materials giving x-ray wavelengths of λ=1.54056Å and λ=0.70930Å (for the Kα1 x-

ray emission). The flux of these sources is limited by practicalities in design and use.

Laboratory sources require a constant supply of coolant water during operation, owing

to the large heat load on the target from inefficiencies in conversion of electron kinetic

energy to usable radiation.

Compared to laboratory-based sources, synchrotron radiation facilities provide a

number of distinct advantages to high-pressure science, where the nature of the

experiments dictate a number of constraints upon the data collected and apparatus

used. Synchrotron radiation facilities allow access to smaller wavelength, without the

loss of flux expected from tuning the laboratory source away from an emission line, or

even allowing access to wavelengths that are not accessible using a conventional source.

This enables reflections which would otherwise be obfuscated by the limited opening

angle of the DACs to be observed. When solving a structure using either single-crystal

or powder-diffraction techniques, the largest possible access to reflections in reciprocal

†Station 9.5 HPT of Daresbury SRS (referred to as Station 9.5) was a dedicated powder diffraction
beamline designed for use at high pressures and temperatures, located in Daresbury, UK. ID09A, of
the ESRF (European Synchrotron Radiation Facility), is a dedicated high pressure/high temperature
station located in Grenoble, France
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space is of the upmost importance. High-pressure experiments, use sample sizes of the

order 50x50µm(discussed in Section 2.4.1.1). To overcome the small scattering volume

of the sample a large incident photon flux is required for the diffraction experiments to

observe subtle details in the resulting diffraction patterns. Necessitated by the small

sample size is a beam size of the same order of magnitude as the sample chamber

size. Conventional, laboratory-based sources (rotating anode) illuminate the sample

with a beam of approximate size 0.8 x 0.8mm, synchrotron sources routinely use beam

sizes of 30x30µm(ID09A and Station 9.5) down to 10x10µm(ID27), achieved through

focusing and beam definition at the pinhole. Conventional sources lack the photon

flux required to perform adequate data collections in a reasonable time and sufficient

focussing of the x-ray beam to ensure that, for sample volumes typically used for high

pressure studies, only the sample is illuminated by the x-rays (as opposed to sample and

materials surrounding it). The intensity of incident photons on synchrotron beamlines

is approximately 10 orders of magnitude higher than that achievable with a laboratory

source (≈ 1017 c.f. ≈ 107 photons/s [Oliveira 09]).

Briefly summarizing, a beamline consists of an optics hutch (located next to the

synchrotron storage ring) and an experimental hutch (situated downstream from the

optics hutch). The whitebeam (polychromatic x-ray beam) is emitted from the storage

ring (at a vertex) and enters the optics hutch (in vacuu), where it is monochromated,

focussed and defined (in vacuu) by the optical components, before being passed,

in vacuu, to the experimental hutch. Upon entering the experimental hutch, the

monochromated x-ray beam has its shape further defined, by beam-slits and a pinhole,

before reaching the sample and being diffracted to a detector. The optical components

of a beamline are shown in Figure 2.6, which shows in (i) a schematic diagram of an

optics hutch and (ii) the optics hutch in relation to the rest of a beamline.

2.2.3.1 Angle Dispersive X-ray Diffraction

Angle-dispersive x-ray diffraction (ADX) utilises the angular dependence of Bragg’s

Law when an beam of monochromatic radiation is incident on a crystalline sample.

Diffraction will thus occur only when Bragg’s law, as stated in Equation 2.2, is satisfied.
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Figure 2.6: Two schematic diagrams showing (i) the layout and components of a typical
optics hutch (in this case for Beamline I04 of Diamond Light Source, in Didcot, UK) and
(ii) how an optics hutch is positioned relative to the other hutches (experimental hutch
and control hutch) in a typical beamline (in this case from the ESRF, Grenoble, France).
Images taken from (i) Diamond Light Source [Source 10] and (ii) ESRF [ESRF 10].
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2.2.3.2 Energy Dispersive X-ray Diffraction

An alternative method (for structural analysis) to angle-dispersive x-ray diffraction is

energy-dispersive x-ray diffraction (EDX). EDX utilises a “white beam”, an x-ray beam

which has not been monochromated and as such contains a large energy bandwidth.

As the diffraction condition in Equation 2.2 can be rewritten in terms of energy by

substituting for wavelength (Equation 2.6).

E = hv = hc
λ

= hc
2d sin θ

(2.6)

a fixed experimental setup (i.e. fixed angle of x-ray beam incidence upon a sample,

θ and fixed location of detector, 2θ) with a detector capable of energy (wavelength)

discrimination can record the d -spacings of all planes able to diffract within the energy

range of the detector and incident beam [Cullity 78]. Each set of planes within the fixed

sample illuminated by the incident beam will diffract different energies (wavelengths)

from the incident beam. The historical significance of this technique is that it allowed

for rapid data collection (of the order of a couple of minutes at a time where angle

dispersive techniques would have required many hours) and neglected the need for

(costly) monochromation of the x-ray beam (which had the positive side effect of

increasing the number of incident photons).

EDX typically has a lower ”intrinsic resolution” than ADX (because of the discreet

ranges in energy able to be sampled by the detector), being unable to resolve fine

details such as closely spaced diffraction lines in energy space. By comparison, ADX,

which uses a monochromated beam, and so does not require energy discrimination

within the detector, has its resolution limited by the pixel size (size of the detector

array and maximum 2θ by detector’s size/distance ratio) and point spread function.
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2.3 Accurate data

This section will present the prerequisites to ensure the highest-possible quality of

powder-diffraction data within the experimental constraints is presented.

A high signal-to-noise ratio is necessary in the diffraction profiles to be analysed.

Background noise, being random in nature, has the potential to obfuscate weak peaks if

the noise is of a level equivalent to that of the sample reflections. Noise of a systematic

nature, arising from spurious scattering, can be minimised through shielding of the x-

ray source at points where the beam travels through air (this minimises spurious scatter

from materials in the vicinity of the beam). Oscillation of the sample about an axis of

rotation in the x-ray beam (which would average each discrete crystallite reflection over

a number of pixels) maximises the number of crystallites exposed to the x-ray beam

(in theory sampling more crystallites increases the likelihood of sampling over more

crystallite orientations in reciprocal space, increasing the quality of “powder averaging”

around the diffraction rings). Radial integration of the 2D diffraction images also acts

to minimise the effect of a non-uniform distribution of crystallite orientations through

all possible orientations, thus reducing the effects of a number of large crystallites upon

1D slices taken through the 2D image.

Sharp, well-resolved peaks are of upmost importance in a diffraction pattern, as they

help eliminate the potential for ambiguity to arise when a sample has many, closely-

spaced Bragg reflections in a diffraction profile. Sharp, well-resolved peaks can be

realised through the minimisation of strain and pressure gradients within the sample

chamber. Strain / pressure inhomogeneities in the sample act to broaden the width

of diffracted peaks. Detrimental effects, such as broadening to a degree whereby two

closely-spaced peaks overlap, forming a poorly-resolved doublet, could occur in the

presence of strain. Incorrect analysis of data could ensue. In single-crystal diffraction

patterns an unstrained sample should have sharp diffraction spots. On the 2D powder-

diffraction pattern, smooth, sharp, well defined circular rings should be observed. More

will be discussed on strain minimisation in Section 2.4.2.

Impurities on the sample surface also need to be minimised. A common problem

with reactive metallic samples (such as the lanthanide metals) is the oxidation process,

which results in thin films of metal-oxide on the surface of the sample. If improperly
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considered, the data collected from such samples will be a superposition of the metal

and metal-oxide diffraction patterns. Cleaning of the surface can be performed by

scraping away lackluster regions in a protected, oxygen free, environment (such as a

glovebox). Impurities within the sample must also be considered. Steps should be taken

to source samples of the highest feasible purity from commercial sources (such as Alfa-

Aesar) or research facilities (some of the samples sourced for this work were provided by

Ulrich Schwarz of the MPI, Dresden), as facilities to refine reactive, metallic substances

are not available within the research group in Edinburgh. Steps should also be taken

to limit the exposure of samples to other potential sources of contamination at the

sample preparation stage as this will have the same effect on the diffraction pattern as

impurities. Contamination can also arise from improper cleaning of tools, workspace

and cell (equipment used to house the sample during an experiment). Discrimination

of contaminant peaks from sample peaks can be extremely difficult and can result in

erroneous data being published.

Finally, steps can be taken at the data collection stage of the experiment to ensure

accuracy of data. Oscillation of the sample about an axis in the x-ray beam ensures

maximisation of the number of diffracting crystallites within a powder, oscillation about

a small angle in the x-ray beam (a value of ±3◦was used during this body of work)

maximises the powder averaging statistics on integration of the 2D powder-diffraction

image. Care should be taken during the alignment of the sample within the x-ray

beam to ensure that only the sample is illuminated by the x-rays and thus the sample

is the only contribution to the diffraction pattern. Appropriate choice of x-ray beamsize

(ultimately defined by the size of the pinhole/soller slits before the sample), so as to be

of comparable size to the sample, but less than the sample chamber, will help to ensure

that only the sample is illuminated by the x-ray beam, not surrounding equipment.

The appearance of gasket lines (powder diffraction rings from the gasket) at extremely

high pressures can become unavoidable, as curtailing the beamsize reduces intensity, a

tradeoff between beamsize, data collection time and beam intensity needs to be made

at some point.

Random orientation of crystallites is required, as powder diffraction relies upon the

sample consisting of small, randomly orientated crystallites. Dramatic variance of the

size of crystallites within a ”powder” sample leads to profound preferred orientation

effects and pronounced texture within the powder diffraction rings on a 2D diffraction

image, this can lead to poor powder averaging at the data processing stage, by yielding
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intensities in the integrated 1D diffraction pattern which differ markedly from that

which is expected based on the positions of atoms within the unit cell. Preferred

orientation must therefore be taken into account when modeling the structure at the

refinement stage to be able to determine the positions of atoms within the unit cell

effectively.

A low background, which smoothly varies over the angular range that is studied in

an experiment, is required to maximise the quality of the diffraction image. This

allows for diffraction peaks from the sample studied to be easily differentiated from the

background, enabling the Bragg peaks to be fitted using a Rietveld refinement package

such as Jana2000 [Petricek 00].

2.4 Pressure Cells and High-Pressure Techniques

2.4.1 Basic Principles

To realise the extreme pressure conditions eluded to in the Chapter 1.1 the sample

needs to be contained within a device (pressure cell) capable of exerting large forces

uniformly over a small area. In this section the Diamond Anvil Cell (DAC) will be

reviewed.

2.4.1.1 Diamond Anvil Cells

Pressure cells required for use on x-ray beamlines, or x-ray diffractometers, require

that there be a viewing window that is x-ray transparent, above the requirements that

the cell windows can withstand the mechanical stresses involved in pressurisation of

a sample and be of suitable size (both size of the cell and the volume of the sample

chamber) for the required experiment. These requirements can met by using diamond

anvils. Diamond acts as a transparent window for optical and hard x-ray regions of the

EM spectrum and through its high hardness it is capable of being used for exerting the

forces required.

Opposed anvil cells have been used throughout this work, of DXR, MB and Bohler-

Almax design. Each utilises the same principle, having two sections (one of which
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Figure 2.7: Diagram showing a schematic of the MB type DAC, with an enlarged
section showing the sample chamber.

is shown in Figure 2.9), each with a diamond anvil, of culet size approximately 300

microns, secured to a seat, held in place within the larger cell body by a backing disc

of beryllium (or tungsten-carbide for the Bohler-Almax design). Pressure is applied

mechanically in each of these designs by the tightening of threaded screws which pull

together the two sections of the cell body, forcing the diamond anvils to compress the

sample within the sample chamber. For the case of standard anvil designs which use

beryllium backing discs, support is provided conically to the back of the diamond anvils

(see Figure 2.8 (a)). Bohler-Almax seats (2.8 (b)) support the diamond anvils base at

an angle, which allows for a much greater effective ”opening angle” (the opening angle

is defined as the half angle about an axis perpendicular to rear of the diamond through

which diffracted x-rays can pass without impinging on the diamond supports), due to

their tapered design, of supporting the diamond anvils on beveled rear, compared to

conventional Be seats which support on a flat rear (conventional Be seats typically give

diffraction from the Be when the DAC is rotated to angles greater than ± 10◦in the

x-ray beam, Bohler-Almax allow for the DAC to be rotated by 20◦without substantial

contamination, above this angle however “shadowing” from the DAC body will obscure

part of the diffracted image).

The two sections of the cell fit together to create a sample chamber (Figure 2.7 shows

sample chamber), containing the sample within some inert media, sandwiched between
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Figure 2.8: Diagram showing the two means of supporting diamond anvils (a) using
standard Be backing discs and (b) using Bholer-Almax tungsten carbide seats

the two anvils. By tightening the screws shown in Figure 2.9, the diamonds are forced

closer together, a pressure is so generated on the sample chamber as

P =
F

A

. Thus, using a small area (A = 6.89x10−8m2 when 16 sided, 300µmculets are used),

and a modest mechanical force applied by hand-tightening of the screws on the DAC,

a large force is generated at the diamond culets (F ≈ 2000N). This large force confers

a large pressure (P = 30GPa) to the sample.

As shown in Figure 2.7, the gasket provides the outer walls of the sample chamber. It

therefore must be able to undergo plastic deformation under the application of pressure

and be non reactive with respect to the materials contained within the chamber. An

inability to deform plastically (a brittle gasket) would lead to the gasket shattering

on compression. Typical materials used for gaskets include tungsten, spring-steel and

rhenium. Once the cell is closed, the gasket deforms around the diamond facets creating

an air tight seal, preventing sample oxidation (of particular importance when dealing

with reactive metals such as Lanthanides) and supporting the diamond culets.

The choice of cell, and size of diamonds used, governs the maximum attainable pressure.

Smaller diamond culets allow for higher achievable pressures, but limit the size of the

sample chamber, and hence the size of sample studied. This lowers the amount of

scattered intensity from the sample, necessitating the use of synchrotron radiation

sources for high-pressure studies and/or increasing the exposure time of the sample

to the x-ray radiation. To reach the maximum attainable pressures with a DAC the

distortion of the diamond culets in response to the high pressures being exerted on
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Figure 2.9: Schematic diagram of a DAC showing an exploded view of a Merril-Basset
DAC, how the two halves fit together and location of sample chamber is shown in 2.7.
Separate sections and components are labeled. Image from [Website 10].

the sample must be taken into account, as the culets warp to become concave at their

maximum pressure. Finite-element analysis of the distortion of the culet at a particular

pressure (the desired pressure to be reached) can be used to model the culet shape

required to produce a “flat” culet at a particular pressure, culets with bevelled tips

(with a bevel degree of 8◦) and culet tip size of 40µmcan be used to reach pressures

in excess of 1.5 MBar (150 GPa) [Gregoryanz 03]. Bevelled tipped diamonds were not

used during the work within this thesis.

2.4.2 Pressure Media

Opposed-anvil type cell designs apply a force to the sample chamber uniaxially, along a

direction perpendicular to the diamond culets. The sample, in this configuration, if free,

would extend outwards (parallel to the diamond culets) under compression. Samples

are contained in a sample chamber, filled with an inert media. This inert media acts to

transmit pressure uniformly, or hydrostatically (uniform application of pressure from

all directions) to the sample. Under compression, a filled sample chamber will have its

walls and height contract uniformly (provided it is circular, of constant thickness, and

properly centered on the diamond culet). Uniform contraction compresses the sample
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P. Media Hydrostatic Limit (GPa) Ref.

4:1 Methanol - Ethanol 10.5(5) [Klotz 09], [Angel 07]

Mineral Oil 0.9 [Angel 07]

Argon ≈ 10 / 1.9 [Klotz 09] / [Angel 07]

Helium 40 [Klotz 09]

Table 2.1: Summary of a hydrostaticity of pressure transmitting media commonly used
during high-pressure x-ray diffraction experiments. The results of Angel et al. and
Klotz et al. differ substantially for the Argon pressure transmitting medium, with
Angel quoting a hydrostatic limit 5x smaller than Klotz. The difference is attributable
to the method used for determining the loss of hydrostaticity. Angel et al. used
diffraction line-broadening (at a high-resolution synchrotron source) to determine the
approach to the hydrostatic limit, and state that the 10GPa value often quoted was
discovered using ruby luminescence broadening.

chamber in the plane of the gasket as well as in the plane of the applied force.

The choice of pressure medium is dependant on:

· the sample under investigation,

· pressures expected to be obtained in the experiment,

· and temperature expected to be reached.

A pressure medium needs to be inert with respect to the sample under investigation.

Reactivity with the sample would lead to undesirable contaminants becoming present

in the sample chamber, which could lead to misinterpretation of the data collected.

An example of this would be Si reacting with H2 pressure transmitting medium. The

pressure medium must also be inert with respect to the gasket and diamonds. Failure

to take this into consideration will result in the sample chamber failing at high pressure.

The desired conditions (of P and T) to be explored for the experiment is a deciding

factor in choosing pressure medium. In reality pressure media are hydrostatic over

a limited range of pressure, all will become non-hydrostatic (due to solidification) at

some point. The point at which this occurs is dependant upon the pressure transmitting

medium used. Table 2.1 details the hydrostatic pressure limit of a number of common

pressure transmitting media. Above these pressures hydrostaticity will be lost, it should

then be assumed the pressure applied will be largely uniaxial, leading to pronounced

effects on Bragg peak width (a strain based effect) and preferred orientation.

Hydrostaticity can be returned to a sample through the relief of internal stresses within
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the sample chamber by mild heating of the cell, causing recrystallisation of the pressure

medium.

2.4.3 Pressure Calibration

The pressure within a sample is measured through the change in a physical property of

a calibrated manometer standard [Mao 86, Datchi 97, Hanfland 02, Dewaele 04] which

can be measured through optical fluorescence or x-ray diffraction. The ruby fluorescence

method [Mao 86] is a convenient for both “on-line” (on the beam line) “off-line” pressure

measurement. Small (≈ 5 µm), single crystal ruby chips or spheres (typically 2 at

spatially distinct locations within the sample chamber) are loaded into the sample

chamber along with pressure medium and sample. The pressure calibrant (e.g. ruby

spheres) must be positioned away from the chamber walls to prevent the walls impinging

on the calibrant during pressurisation and “pinching” (trapping the calibrant between

the gasket and diamond, which will cause excessive broadening of the ruby fluorescence

signal). The ruby manometers should also be placed away from the center of the sample

chamber, to minimise diffraction from the ruby during exposure of the sample chamber

to x-rays. Ruby peaks are, however, easily identifiable and can be removed from 2D

diffraction images during data processing. Multiple manometers are loaded to overcome

potential loss of a manometer upon adding pressure medium to the cell and can be used

to measure the inhomogeneity in pressure within the sample chamber. Use is made of

the characteristic fluorescence of ruby when stimulated by laser light of wavelength

λ=532 nm (green laser light). Two R fluorescence peaks are excited, having ambient

pressure wavelengths of R1= 694.23 and R2= 692.86 nm. The variation of the R1 line

with pressure has been studied comprehensively by numerous authors and summarised

by Syassen [Syassen 08a], and follows the form shown in Equation 2.7.

Equation 2.7 shows a non-linear increase in the wavelength shift, ∆λ, with respect to

pressure. This can be assumed as being accurate to ≈ 50GPa (and useful to 100GPa,

above which the intensity of the R1 emission line becomes difficult to measure), as the

ruby pressure scale equations are calibrated to data of measured lattice parameters of

gold and platinum [Syassen 08a] from x-ray diffraction.

P = 380.8[(
∆λ

694.2
+ 1)5 − 1] (2.7)

A schematic of the pressure measurement apparatus used at Daresbury SRS (for data

collected on both Station 9.1 and 9.5) is presented in Figure 2.10. A He-Cd laser
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Figure 2.10: Labelled schematic diagram of pressure measuring system available within
the Edinburgh High Pressure group, at Daresbury SRS. A green (λ = Å) laser is used
to excite the ruby fluorescence. The laser light passes through half silvered mirrors
(grey reactangles) which, if in place direct the light coming from the sample (reflected
and fluorescence) to either the video monitor or spectrometer. The video monitor is
used during alignment of the laser radiation on the ruby pressure calibrant within the
sample chamber. The spectrometer is connected to a PC, to allow collection, analysis
and archival of spectra.
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Figure 2.11: Schematic diagram showing how the orientation of crystallites within a
perfect powder (a), and (b) a powder with pronounced preferred orientation, could
look.

is focussed through an optical fiber onto the sample using a 10X optical lens. A

Dilor spectrometer, connected to a PC, records the spectra of light leaving the cell.

Background noise and the R-fluorescence peaks can be removed, and fitted, respectively

in the software package LabSpec.

2.4.4 Preferred Orientation

Earlier, it was noted that for optimum results from powder diffraction, the powdered

sample should have crystallites that are small and randomly orientated. In high-

pressure experiments, where the the pressure medium is not capable of providing a

truly hydrostatic sample environment, the crystallites, due to their shape (if fibrous or

plate-like shaped crystallites are present) or an applied uniaxial pressure gradient to the

sample chamber, can exhibit a tendancy to orientate preferentially along a particular

axis within the sample chamber. This is effect is known as preferred orientation.

A tendancy of a powdered sample, which at low pressures has smooth diffraction

rings (and so randomly orientated crystallites), when pressured to exhibit preferred

orientation after undergoing a high-pressure phase transition within a DAC is not

uncommon [mim ]. A diagram schematically illustrating this effect is shown in Figure

2.11.

Orientation of crystallites along a particular axis causes deviation from the assumed
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Figure 2.12: Example of the effect of preferred orientation on a powder pattern collected
on Station 9.5 HPT of Daresbury SRS from a “powder” sample of Pr at 20.3 GPa.
Contrast has been adjusted to highlight the effect preferred orientation has upon the
intensity distribution around a powder ring. Arrows indicate the positions of highest
intensity on the ring.
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random distribution of crystallites expected in a “perfect” powder pattern, and so, the

smooth powder rings (from a powder sample with random orientation of crystallites) to

diffraction rings which show texture around the circumferential intensity distribution

of a Debye-Scherrer ring (evident as regions of high and low intensity around the

circumference of a Debye-Scherrer ring). An example of this effect on a diffraction

pattern is shown in Figure 2.12.

If the direction in which the unique cell axis is aligned with (approximately coincident

with) z (assuming the crystallites are disc or fibrous), there will be a probability of

finding crystallites aligned at some angle α away from z. This probability decreases as

the angle α increases. The direction z is choosen in this example as a the preferred

orientation axis (POA), the direction within the sample chamber along which the

crystallites align, to be coincident with the direction of applied uniaxial pressure

within the DAC. Another direction can be defined as the crystallites are apporximately

orientated with some external axis, the preferred orientation direction (POD), the

(crystallographic) direction about which the crystallites orientate with respect to each

other. These two axis are shown in Figure 2.13, which is taken from ??, which shows the

relation between the POA, POD, incident beam and diffracted beam. The scattering

vector, hj , is shown at some small angle to the POD. hj is, for crystallites meeting the

reflection condition, the fixed value about which the POD sweeps out a cone around in

3D. The base of, or locus of this cone defines the boundary of the intensity distribution

from the scattered intensity, which, by virtue of the probability density with respect to

α will be non-uniform, containing regions of high and low probability. A Debye-Scherrer

ring will be constructed from the POD cone sweeping out a path on the Ewald sphere,

leading to the ring having regions of high and low intensity characteristic of preferred

orientation [mim ].

Rietveld refinement software packages are capable of correcting for the effect of preferred

orientation effects in integrated 1D diffraction patterns using functions such as the

March-Dollase model (Equation 2.8) which describe the probability distribution for

observing a preferred orientation direction (POD) of the crystallites at an angle of α

with respect to the preferred orientation angle (POA) [mim ].

Fα = (G2cos2α + G−1sin2α)
1

2

(2.8)
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Figure 2.13: Simplified diagram to show the preferred orientation direction (POD),
preferred orientation axis (POA) and how each relates to the scattering vector (hj),
diffracted spot (P), incident beam (IB) and diffracted beam (DB). Diagram reproduced
from [mim ]
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Corrections for preferred orientation made using the March-Dollase equation shown in

Equation 2.8 do not properly account for experimental geometry used in high pressure

experiments, as simplifications are made to limit computational time within the

refinement process (P.O corrections being one of a number of variable corrections made

at refinement), typically assuming Bragg-Brentano and Debye-Scherrer diffraction

geometries. While not directly applicable to high pressure experiments in these

geometries, the correction made for P.O. seems to work [mim ]. These corrections

are made, (when enabled in software) during the Rietveld refinement, in Jana2000

[Petricek 00] where the preferred orientation axis must be given to the program for it

to be modeled in the refinement.

2.5 Experimental Setup and Data Analysis

2.5.1 Detectors

2.5.1.1 MD Image Plate

Data collected at the start of this work was collected using a Molecular Dynamics 400A

PhosphorImager IP (Image Plate) reader at Station 9.1 of Daresbury SRS. This reader

is based on a rastering He-Ne laser which was capable of scanning the A4 sized image

plates in ≈ 11minutes. This IP reader provided a resolution of 2800x2000 pixels, with

an approximate pixel size of 88x88 µm.

The image plates for this instrument were rectangular, of size 20 x 25cm, giving an area

of 500 cm2. Image plates and detectors in this system are distinct devices, with the

reader (due to its size and weight) housed away from the x-ray source. Image plates

housed in ’light tight’ or light proof container need to be moved from experimental area

to the IP reader, then later to an erasing lamp to be prepared for reuse.
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2.5.1.2 Mar345

A Mar345 Image Plate Detector System became available in on Station 9.5 HPT of

Daresbury SRS in 2006. The Mar345 is an integrated image plate, scanner and eraser,

mounted in the experimental area and remotely operable over a LAN. No action other

than computer driven commands (scan/erase) are required. A circular image plate of

diameter 345mm is employed in this system, with 150 or 100 µmpixel size, yielding a

maximum resolution of 3450 x 3450 pixels scanned and read out in less than 2 minutes.

The area of the IP in this system is ≈ 935 cm2. The physical size of the detector system

(50 x 40 x 30cm) with all necessary IP components into a single unit enables mounting

within the experimental area.

2.5.1.3 Comparison of Beamlines 9.1/9.5 and Detectors

A transition from using the Molecular Dynamics IP system to the Mar345 was made

during the data collection for this work. The Mar345 gave a number of advantages over

the Molecular Dynamics system, most notably the integration of all components into

a single system capable of scanning data in approximately 1
10

th
the time of the MD

system.

In real terms, the Mar345 reduced the time for a data collection procedure from 90

to 20 minutes (full alignment, exposure and scanning of the IP data). The Mar345

does have a larger pixel size than the MD system, but, the larger area of the IP in the

Mar345 system allows for greater resolution in the diffraction profile by enabling the IP

system to be placed further away from the sample. Increasing sample-to-IP distance

can allow for the separation of closely spaced features on the diffraction profile to be

increased. Conversely, at a fixed sample to IP distance, a larger IP allows for collection

of diffraction data to higher angles.

2.5.2 Station 9.1 at Daresbury SRS

Station 9.1 is a flexible beamline intended for use in either high-pressure IP configura-

tion or a conventional x-ray diffraction from a 2-circle diffractometer configuration. For

the experiments performed for this work, the high-pressure IP configuration was used.
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Situated approximately 15m from the 5T, Line 9 wiggler at Daresbury SRS, Station

9.1 uses a channel cut silicon monochromator (double-bounce, utilising the (111) Si

reflection) to provide wavelengths from 0.4 - 1.7Å. A wavelength of 0.4654Å(Cd edge)

was used on this station to minimise the x-ray beam harmonics (λ/3) from the Si

monochromator. Beamsize is defined on this station by tungsten carbide slits, reducing

beam to 0.5mm x 0.5mm, before a platinum pinhole further reduces the beamsize to

75µm(and further attenuating the λ/3 beam harmonics at this wavelength).

2.5.2.1 Alignment of Station 9.1

The alignment process used for the IP setup on Station 9.1 was developed by previous

members of the Edinburgh High-Pressure group [Bovornratanaraks 01], based on the

extension of the alignment procedure developed by Shimomura et al. [Shimomura 92]

for use at the Photon Factory, Tsukuba, Japan.

The station is prepared with components placed upon the support beam (with the

exception of the telescope being positioned in place of the beamstop). Upon the sample

stage the pressure cell is placed, and telescope focused upon the sample (assumed

perpendicular to the x-ray beam for simplicity), with the cross-hairs from the telescope

view-piece centered on the sample to be studied. The telescope’s position is noted from

a digital display (connected to the micrometers used to position the telescope, which

reads), and the sample is replaced by a piece of x-ray sensitive paper, mounted on

an additional, small traveling stage placed at a position corresponding to the sample

location within the DAC (taking the high refractive index of diamond into account).

When exposed to the x-ray beam (for ≈ 2 minutes) the paper blackens, allowing for

the telescope to be aligned on the blackened spot in two mutually orthogonal directions

perpendicular to the x-ray beam (without the focal point of the telescope being altered).

With the telescope crosshairs aligned to the beam position, the DAC is placed on the

sample stage, and moved so as to be in focus and centered on the crosshairs.

Due to the removable nature of the IP detector on Station 9.1, the DAC placed upon

the beamline must be aligned so that the diamond back is perpendicular to the x-

ray beam (for consistency between successive measurements). This is achieved using

optical methods, employing a low power (< 1mW) laser diode, already aligned to the

x-ray beam. Back-reflection of the laser onto the laser diode is utilised to ensure the

x-ray beam and diamond face are perpendicular. This is extremely important as it

also ensures that the telescope and the diamond back are perpendicular, otherwise the

high refractive index of the diamond (3.42) will complicate optical alignment of the
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sample. If back reflection does not reflect onto the laser diode the diamond facet is not

perpendicular, and must be “shimmed” using spacers until the appropriate deviation

away from vertical is found. This laser based optical alignment is also used to align the

telescope to be parallel to the x-ray beam (in which case a mirror replaces the objective

lens in the telescope). The laser is aligned to be parallel the x-ray beam using pieces of

x-ray sensitive paper placed near the pinhole and the other near the laser. The x-ray

beam path is marked at these two end points, thus, if the laser can travel through holes

made at the darkend spots on both papers then it is aligned along the x-ray beam.

This alignment process takes approximately 15 minutes to complete as each exposure of

the x-ray sensitive paper/IP requires going through the safety procedure and sealing of

the experimental area of the beamline, exposure, opening the beamline then exposing

the x-ray sensitive paper to white light to increase contrast of the darkened spot.

The accuracy of this alignment procedure is highly dependant on the accuracy of the

telescope and degree of care taken during the alignment procedure, yet is sufficient to

allow a 75µmdiameter beam to pass through a 100µmdiameter sample chamber without

hitting the gasket.

2.5.3 Station 9.5

Station 9.5 is approximately 30m from the 5T, Line 9 wiggler (which is also used

by Station 9.1). A Laue focusing monochromator comprising a horizontally bent Si

single crystal, focuses and monochromates the white beam [Lienert 98]. Radiation

is focused in the vertical direction down to ≈85µmfrom 450µm. After focusing the

monochromated x-ray beam travels through an evacuated beam tube (4m long) to a

platinum pinhole of 70µmaperture. This pinhole acts to define the beamsize (just before

the beam impinges on the sample) and to attenuate the λ/3 harmonics of the x-ray

beam (as the wavelength of λ/3 for typically used λ of 0.4646Å is approaching the value

of the K absorption edge of Pt). The radiation that passes through the pinhole will

still contain some λ/3 contamination. A collimator and soller slits reduce the scatter

and define the size of the unfocused horizontal component of the beam [Lennie 07]. A

schematic diagram of the experimental hutch part of the beamline is shown in Figure

2.14, the design is essentially the same as for Station 9.1 (although Station 9.1 lacked

computer driven rotation and translation stages).
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Figure 2.14: Labelled schematic diagram of Station 9.5, Daresbury SRS. Position of the
optics relative to the setup is noted. Telescope used for alignment and online pressure
measurement is shown in dotted line, indicating the position of this device is out of
the path of the incident x-ray beam when not in use. The rectangle labelled “pinhole”
contains at the detector-side a pinhole for defining the x-ray beam, and on beam-pipe
side collumator and slits for providing initial definition of beam.

2.5.3.1 Alignment of Station 9.5

Samples are mounted on the sample stage within a “tombstone”’. Initial alignment is

performed using a telescope, previously focused on an object laying in the beam and

coincident with center of rotation of the sample stage. The sample is brought into focus

and aligned by adjusting the sample stage. Once aligned optically, a more accurate

alignment procedure is made using the x-ray beam and motorised sample stage. The

sample is stepped in ≈ 0.01mm steps for 2mm along two directions perpendicular to

the beam, with the beam intensity recorded at each step with a photodiode placed

infront of the beamstop. The stepped scans rely on differing x-ray absorption of the

sample chamber’s components. The gasket material (of similar thickness to the sample

when the DAC is pressurised) will absorb more x-rays than the pressure transmitting

media (and sometimes the sample) resulting in a larger attenuation compared to the

contents of sample chamber. Thus the resulting scan will appear as a gaussian like

profile, corresponding to the convolution of the x-ray beam cross-section (gaussian)

with the sample chamber (assumed to be a “top hat” owing to low absorption of x-rays

by the pressure transmitting medium), with a dip corresponding to the location of the

sample. The intensity on either side of the gaussian will be relatively low (orders of

magnitude lower) owing to much greater absorption of the incident x-ray beam by the

gasket compared to absorption from the sample chamber. Motor positions are set to

the sample location, as read off from a plot of beam intensity vs. motor position. The

sample is now centered in the two directions perpendicular to the beam.
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The sample stage is motorised not only in 3 perpendicular directions for translation of

the DAC, but rotationally, allowing for rotation and oscillation of the sample about an

axis perpendicular to the monochromated beam. Centering of the sample on the axis

of rotation of the sample stage must also be performed, to ensure that upon rotation

about an axis perpendicular to the incident x-ray beam (to maximise powder averaging

statistics), the sample remains upon the rotation axis. Alignment of the sample is

performed by rotation of the sample by 3◦ in the positive direction, scanning (as above)

in the horizontal direction, noting the sample location. This is repeated for 3◦ in the

negative direction, again the sample position is noted. The offset of the sample from

the axis of rotation is determined using equation 2.9. Rotation of the sample in the

x-ray beam was not possible on Station 9.1.

∆y = 1
2

∆x
tan α

(2.9)

This rotation axis alignment procedure should be repeated at higher angles, ±5◦ (or at

least the angle used for the cell oscillation) for greater accuracy in the alignment.

The DAC alignment procedure on Station 9.5 is inherently more accurate than that

used on Station 9.1. The latter is heavily dependant on the accuracy of the optical

alignment. On Station 9.5, the optics are used only as an initial guide (and could

be viewed as redundant beyond an initial alignment, if cells of similar size are used)

with the majority of the alignment being carried out using the x-ray beam, and with

more precise control over changes made to the sample/cell position (as stepping motors

are capable of smaller adjustments to the position of the DAC). The step size of the

stepping motors used by the sample stage ( ≈ 0.005mm) is the limiting factor here.
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Gasket holes of 75µmcan be routinely aligned without contamination from the gasket in

the diffraction image. Alignment to this degree of precision is attainable in ≈5 minutes,

comparing favourably to the ≈15 minutes for alignment on Station 9.1.

2.5.4 Comparison of Stations 9.1 and 9.5

2.5.5 Data Processing

This section introduces the software packages EDIPUS [Belmonte 98] and Fit2D

[Hammersley 98] which are used for processing the Image Plate scans. EDIPUS, written

by Drs S.A. Belmonte and R. Piltz, previously members of the Edinburgh HP Group.

It takes the .gel format generated by the Molecular Dynamics IP Reader from datasets

collected on Station 9.1 as input. Fit2D is capable of reading the .mar345 file format

output from the Mar345 detector used on Station 9.5 (and ID09A of the ESRF). Both

of these software packages display 2D diffraction patterns, apply geometric corrections

and azimuthally integrate 2D diffraction patterns. A brief review of the corrections

made follows, as both programs perform the same corrections this generalised review

applies to both packages unless one is explicitly stated.

Powder-diffraction data is analysed through considering 1D powder diffraction profiles,

of the form scattering angle (2θ) vs. diffracted intensity. Azimuthal integration (the

averaging of diffracted intensity in direction of increasing angle around Debye-Scherrer

rings) of the IP data yields profiles of radial distance (pixels) vs. integrated intensity.

Conversion from pixel number to 2θ requires that the IP to sample distance is known

accurately. For accurate integration the beam center (where the “straight through”

x-ray beam strikes the detector, forming the center of the diffraction image) must be

known precisely.

The IP used in an experiment will not be truly perpendicular to x-ray beam. The

degree of obliquity of the IP manifests itself as the tendency of an (expected) circular

Debye-Scherrer ring towards an ellipse. Using a calibrant of finely-powdered Si at

ambient pressure, known to produce sharp, smooth Debye-Scherrer rings, the tilt can

be refined at the start of the experiment. In EDIPUS, the diffraction image is split

into 60 equally segments of equal angular size [Belmonte 98]. Comparison of the radial

position of the ring segments about the beam center is made, then the tilt adjusted

until each segment lines to form a circle. This method is dependant on the beam center

having been specified through user selection on a GUI or refined along with the tilt (as

the center of a diffraction ellipsoid).
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Fit2D requires the user to select a number of points within the first diffraction ring

of the Si calibrant, from which the ring is traced by the software, and least-squares

refined to ensure an accurate representation of the true shape. The tilt is determined

from deviation of the ring away from circular. The beam center is automatically refined

from the centroid of the diffraction ring. Requiring the user select the (111) powder

ring from the Si diffraction image, Fit2D can determine the radial distance of the ring

from the refined beam center. The locations of the subsequent FCC diffraction rings

are predicted (within bounds) and least-squares refined to give their radial separation.

Knowing the radial separation and wavelength of incident radiation, the sample to plate

distance can be precisely determined from nλ = 2dsinθ .

The sample to plate distance in EDIPUS is refined similarly, locations of the diffraction

rings and beam center must be passed to an external program which returns the sample

to plate distance to EDIPUS.

2.5.6 Data Analysis - Indexing and Refinement

This section describes the process of determining the structure of an unknown phase

of a substance; how one indexes a powder pattern to find the unit cell; how the space

group is determined and how the atomic positions are found and refined.

2.5.6.1 Indexing

Indexing in crystallography is the process of assigning (hkl) values to reflections

observed in a diffraction pattern, and thereby find the cell (and space group) of the

sample being studied. In powder diffraction studies, the information available from 2D

diffraction images is limited to the d -spacing of the Bragg peak and its intensity. The

loss of full, 3D coordinates of the Bragg peaks in 3D space means, for any given d -

spacing, the intensity can comprise the summation of a number of distinct overlapping

reflections, each with different (3D) hkl indicies (such as (340) and (500) in a cubic

material) . Powder diffraction indexing programs take account of this during their

operation, but, for optimal results peaks at high 2θ angles are preferable [mim ].

The indexing software used, DicVol [Louer 04], requires accurate angular positions of

diffraction peaks, in 2θ to be able to find a unit cell. DicVol uses the dichotomy

method, whereby trial cells have their dimensions and internal angles varied within

user specified bounds in an attempt to exhaustively search parameter space for cells

which have diffraction peaks at the locations supplied to the program as input. From
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an integrated, 1D diffraction profile peak locations are determined accurately using

the program DatLAB [Syassen 08b], a graphing program capable of fitting a range of

functions to a supplied dataset (in this case a powder diffraction pattern). Specifying

the approximate location of the centroid and width of a diffraction peak, a pseudo-Voigt

curve is fitted to the diffraction peak. From the fitted curve position, the intensity and

full width half maximum (FWHM) are recorded, along with an estimation of the error

in each, supplied as a χ2 value.

Having prepared an input file for DicVol, which contains the 2θ locations of the Bragg

peaks to be indexed (along with corresponding uncertainty in position of each peak),

the upper and lower bounds on volume to be searched through for solutions and the

type of solutions to search for (cell type: cubic, hexagonal, orthorhombic, tetragonal,

monoclinic and triclinic). The output file generated by DicVol then contains, for each

of the cell types, a number of possible solutions. These possible solutions state the unit

cell parameters, some figures of merit (for internal comparison on the relative merit

of each solution) and for each 2θ peak location supplied a hkl index, corresponding

calculated 2θ (calculated based of the cell parameters) and difference between observed

and calculated positions.

Cell types provided by DicVol are judged based upon a number of criteria. If all

of the peaks supplied to the program can be indexed (this assumes that all of the

peaks supplied to the indexing software are coming from the sample, rather than

contaminants), how close the predicted peak locations are to the measured peak

locations in 2θ (within ≈ 0.01deg is appropriate), and if it is a high-symmetry solution

(high symmetry solutions are favorable at high pressure over the rarely-occurring

triclinic solution type [mim ]).

2.5.6.2 Refinement

Once the data has been corrected for tilt and beam center location, integrated

azimuthally and the 1D diffraction pattern saved in a compatible format, the measured

data can be used within a refinement package to determine the structure of the sample.

Rietveld refinement [Rietveld 69] is a means of least-squares refinement, used on

integrated 1D powder diffraction patterns, to progressively refine a structural model
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from a set of starting values against the supplied diffraction pattern, by means of

minimising the difference between the calculated intensity for the model (ycalc) and

observed intensity (yobs) of a diffraction pattern. Equation 2.10 is used within the

Rietveld refinement process, with χ2 as the parameter that is minimised during the

refinement process; wi is the weighting placed on each point, i, in the 1D integrated

diffraction pattern; yobsi is the intensity in the measured diffraction pattern at point i;

ycalci is the intensity in the calculated diffraction pattern (from the model being refined

during the Reitveld refinemnet process) at point i.

χ2 =
∑

i

wi(yobsi − ycalci)
2 (2.10)

Refinable parameters within the model include, but are not limited to, the unit cell

parameters, peak shape, variation of peak shape with 2θ, background intensity and

preferred orientation. Additional phases (or contaminants) within samples need to be

accounted for when performing Rietveld refinements, so as to avoid the refinement

software attempting to fit the additional phases during the refinement. This can

be achieved by either masking regions of the diffraction pattern (i.e. instructing the

software to ignore specific 2θ ranges where non-sample reflections occur) or through the

addition of extra phases in the refinement (essentially instructing the software that there

are 2 samples present, each with different refinable parameters). The latter method

for dealing with additional phases requires more detailed knowledge of the additional

phase than the former method, as well as being more computationally demanding.

The Rietveld refinement program Jana2000 [Petricek 00] was used throughout this work

for structural refinement. Jana2000 allows the user to perform both Le Bail (fits to 1D

diffraction data in which only the unit cell parameters, peak shape and background are

modelled and fitted) and Rietveld refinements. Le Bail refinements ignore the effect

of atomic position on the intensity of Bragg peaks. Thus, as each peak is treated

as having a variable maxima, and this allows for trial cells to be tested against the

integrated diffraction pattern in cases where the position of atoms within the unit cell

are not known. In judging the quality of a Le Bail fit close attention must be made to

the difference plot (output by default in Jana2000), as a poor Le Bail fit is indicative

of a bad choice of unit cell and/or spacegroup. Initial structure models were tested

using this Le Bail refinement method, the unit cell parameters gained from Le Bail

refinements were used as a starting values for Rietveld Refinements, this minimises the

number of initial refined parameters during the Rietveld refinement, helping prevent
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the refinement becoming stuck in a local minima or spend too long making small,

incremental changes to a large number of parameters as parameter space is searched for

a minima. Using Jana2000 corrections can be applied to the model prior to refinement,

allowing (for example) preferred orientation to be considered.

2.6 Concluding Remarks

This chapter presented the background information required for the reader to under-

stand the principles behind the experimental setup required for high pressure x-ray

diffraction from samples within DACs. The majority of the datasets collected and

analysed during the work presented in this thesis was carried out at Daresbury SRS,

with early work being carried out on Station 9.1, before Station 9.5 became available

for use with high pressure DAC diffraction. Comparisons made within this chapter

(2.5.1.3, 2.5.4) show the benefits gained from switching from Station 9.1 to Station

9.5 of Daresbury SRS. Some work was performed at beamline ID09A of the ESRF, a

more powerful synchrotron. Access to the ESRF was more limited, reflected in the

proportion of data collected from it being an order of magnitude lower than than the

amount collected from Daresbury SRS. As such, and due to the principle of operation

of beamlines at the two synchrotron facilities (Station 9.5 of SRS being an analogue to

ID09A at ESRF) being the same, the alignment procedure for Daresbury SRS, Station

9.5 has been presented.
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Literature Reviews

3.1 Introduction

This chapter presents two reviews of work published to date in the literature. The first

is concerned with the physics and high-pressure behaviour of the lanthanide series of

elements, highlighting the importance of praseodymium as a key member of that series.

The second review is focused on praseodymium, critically evaluating the last 25 years

of high-pressure studies conducted on this element. The chapter concludes with the

identification of the main discrepancies found, the resolution of which forms the major

part of this thesis.

3.2 Review of Lanthanides

As a function of increasing 4f occupancy the ambient-pressure and temperature

structures of the trivalent lanthanide elements are observed to follow a sequence

of close packed crystal structures, fcc → dhcp → Sm-type → hcp∗. Early studies

of the lanthanides, in the decade following the introduction of the high pressure

(diamond anvil) cell by Weir et al. [Weir ], were limited to electrical resistivity

measurements [Stager 64] and unit cell measurements [Perez-Albuerne 66]. These

early studies provided accurate transition pressures (later confirmed by McWhan et

al. [McWhan 72], Mao et al. [Mao 81], Holzapfel et al. [Holzapfel 95] for example)

for each of the lanthanides, to approximately 50GPa for 11 of the lanthanides, without

detailing the structural transition sequence. Indeed, the work of [Perez-Albuerne 66]

(an early x-ray diffraction study) was stated as being limited by the Mo x-ray tube

∗The author uses the abbreviations fcc for face-centered-cubic structure, dhcp for double-hexagonal
close-packed structure, Sm-type for the α-Sm type structure, hcp for hexagonal close-packed and d-fcc

for distorted-fcc structures
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used for the experiments, which gave few usable diffraction peaks, the “100, 101, and

at lower pressures the 110”. The small number of usable diffraction peaks in Perez et

al.’s study [Perez-Albuerne 66], as commented by the authors, was sufficient to observe

a splitting of the (101) reflection of the hcp phase, and suggest a transition to be hcp

→ dhcp, but not sufficient to “be definite about it”.

An attempt was made at explaining the underlying cause for the regular lanthanide

phase transition sequence in the late 1960s by Gschneider and Valletta [Gschneider 68].

At the time of publication by Gschneider, the regular lanthanide phase transition

sequence was known up to and including the fcc phase which had been observed in

La, Pr and Nd. Prior to Gschneider, the relation between phases adopted at high

pressure and ambient within the lanthanides was made through observation of the c/a

ratio of the unit cells with pressure, Jayaraman and Sherwood [Jayaraman 64] likening

c/a ratio for Sm-type and dhcp structures at HP and ambient. However, this approach

was later refuted, with McWhan and Stevens [McWhan 67] stating that the c/a ratio

changes slightly with the application of pressure and can not be correlated with

transition pressures between phases. Gschneider [Gschneider 68] presented an alternate

theory, in which the participation of the 4f electrons in the metallic bonding dictates

the structure adopted. Qualitative measurements of the 4f electron participation in

bonding could be gained from the ratio of metallic radius to the 4f electron radius of

the lanthanide element (or alloy), here, the metallic radius was an indirectly measurable

quantity gained from atomic volume data. The radius of the 4f wavefunctions used

was based on those obtained from calculations performed on 8 of the lanthanides,

with the remaining members of the series having their wavefunctions spatial extent

interpolated/extrapolated from neighbouring elements. Gschneider assumed that the

spatial extent of the 4f electrons is pressure independent and that the metallic radius

decreases with pressure. These two assumptions corroborate a suggestion made in

the paper (and shown to be true later by [Wittig 80]) that pressure increases the 4f

contribution to bonding within the lanthanides, from a constant negligible amount

in heavy lanthanides (Gd-Lu) to a larger fraction (although still small at <10%) for

light lanthanides (La-Sm), which Gschneider uses to explain the adoption of the fcc

structure under pressure “These calculations show that any 4f contribution to the

bonding favours fcc over the hcp structure”[Gschneider 68]. Pressure induced changes

in the occupancy of orbitals as the driving force behind the phase transitions observed

in the lanthanides would later be addressed by McMahan et al. [McMahan 84].

An empirical attempt at relating the properties and structure adopted by the
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lanthanides under pressure was made by Johannson and Rosengren [Johansson 75].

Noting work carried out prior to this study (such as that by McWhan [McWhan 72]

and Gschneider [Gschneider 68]) Johansson and Rosengren assumed that the Sm-type

structure was a common member of lanthanide’s phase transition sequence, a view the

authors suggest was not broadly accepted at this point, due to only a few, tentative

reports in the literature of the observation of hcp → Sm-type transition in high-Z

lanthanides on the application of pressure).

Furthering the idea proposed by Gschneider and Valletta [Gschneider 68] that the

atomic volume of the lanthanides is not directly correlated to the structures adopted

in the lanthanide transition sequence, Johansson and Rosengren sought to explain the

sequence of close-packed structural transitions in terms of a parameter F, where, F is

defined as the variation of the Wigner-Seitz radius rws, with ionic radius rionic, i.e.

F =
rws

rionic

(3.1)

where the Wigner-Seitz radius is the radius of a sphere which encompasses the entire

atom [Wigner 34] (is inversely proportional to the cube root of the electron density, i.e.

rws = (
3

4πn
)

1

3 (3.2)

where n is the number of valence electrons of the atom, divided by atomic volume) and

ionic radius is the radius of the electrons bound to the atomic core only. Figure 1 of

Johansson’s paper (reproduced in Figure 3.1) shows how rws, rionic and F vary linearly

(to first order) for the trivalent lanthanides at ambient pressure and temperature.

It was then postulated that, as applying pressure decreases rws without decreasing

rionic (which causes F to increase) pressure allows the simulation of heavy lanthanide

behaviour in pressurised light lanthanides.

To construct a generalised phase diagram of the trivalent lanthanides, phase diagrams of

each of these elements were coallated and overlayed by Johansson and Rosengren from

the literature [Jayaraman 64, McWhan 65, McWhan 67, Bucher 69]. Heavy lathanides,

starting with thulium (Tm) being used as the origin, transition pressures between

phases were used as reference points to align overlayed phase diagrams of erbium

and holomium (when properly scaled) atop of thulium. Successive phase diagrams

49



Chapter 3. Literature Reviews

Figure 3.1: Figure reproduced from Johansson and Rosengren [Johansson 75]. The top
graph (refered to as (a) in [Johansson 75]) shows experimentally derived Wigner Seitz
ratio and ionic radius variation across the lanthanide series. The lower graph, (b) shows
how the ratio F (defined in figure and previously in Equation 3.1, with rws defined in
Equation 3.2) varies across the series.
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Figure 3.2: Figure reproduced from Johansson and Rosengren [Johansson 75].
Figure shows the constructed general phase diagram for the regular (trivalent)
lanthanides constructed by Johansson and Rosengren from references contained within
[Johansson 75]

were scaled and positioned to keep continuous phase boundaries between transitions,

resulting in the diagram shown in Figure 2 of their paper [Johansson 75] (reproduced in

Figure 3.2). Lu was added to the diagram in Figure 3.2 after the addition of the light

lanthanides, its inclusion (despite not being a member of the lanthanide series) was

based on the prediction of a transition to Sm-type from hcp at 17GPa. This prediction

was made by Johansson and Rosenburg in the theoretical modelling section of their

1975 paper [Johansson 75]. Promethium and cerium are not present in this general

phase diagram. Promethium is absent from Figure 3.2, owing to its radioactivity:

at the time of publication few acticles described the HP behaviour of Pm. Cerium’s

absence is due to the delocalisation of 4f electrons occuring at low T and ambient

pressure [Johansson 75], as such, the authors state it is not possible to place the room-

temperature phase diagram on Figure 3.2. Discontinuities in the generalised phase

diagram exist around the HP-HT phase boundary between the regular lanthanide

transition sequence and the bcc phase for Nd, Pr and La, the author gives no reason

for this discontinuity, which could have arised from incorrect scaling or limitations

(accuracy, precision) in the data used to construct and collate the figure.
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Similarities thus became evident in the behaviour of individual lanthanides under

the influence of pressure and temperature. Such comparisons [Johansson 75] later

culminated in Holzapfel’s [Holzapfel 95] 1995 paper, which presented a series of equation

of state (EoS) diagrams for the trivalent lanthanides ([Holzapfel 95] will be addressed

later in this chapter). The phase-transition sequence shown in Figure 3.2 became

known as the regular lanthanide phase transition sequence. When Johansson and

Rosengren’s paper was published, this sequence was verified up until the fcc phase

(it is now speculated that the phase transition sequence includes additional post-fcc

phase/phases). Compression beyond the final member of this sequence, the fcc phase

yields phases not found at ambient conditions within the lanthanide series. The first of

which, the distorted-fcc (d-fcc) phase, is so called because of a close resemblance (in its

measured x-ray diffraction pattern) with the precursor fcc phase, albeit with distortions

to the unit cell atomic positions which yield superlattice reflections in addition to a

regular fcc pattern [Mao 81].

Indirect evidence of the mechanism behind the volume collapse transition in Pr came

from electrical resistivity measurements was made by Wittig [Wittig 80] (shortly

followed by the acceptance of more direct, x-ray diffraction measurements by Mao et

al. [Mao 81]). Wittig’s experiments detailed the temperature dependence of resistivity

of Pr at fixed pressures (9-23GPa in 9 uneven steps). A large drop (30%) in the

measured resistivity of Pr was observed at the transition from the d-fcc phase (referred

to by Wittig as the low-P phase) to the α-Uranium phase (referred to as the high-P

phase), and an anomalously large temperature dependence on resistivity in the low-

P phase, both of which are characteristic of the γ → α phase transition in cerium.

This led the author to draw parallels between the d-fcc → α-U transition in Pr and the

γ → α transition in Ce, as, at this time, it was known that the γ → α Ce transition was

caused by delocalisation of the 4f1 to an itinerant 4f band. Later resistivity experiments

performed by Velisavljevic et al. [Velisavljevic 04b] confirm the large sharp decrease in

electrical resistivity measured by Wittig, but show a larger measured drop in resisitivity

(59%).

On compression above 20GPa (beyond the d-fcc phase) a large decrease in volume,

reported to be of the ≈19% of unit cell volume for Pr, was observed by Mao et al.

[Mao 81]. Until 1981, the mechanism behind the large volume decrease had not been

not verified through diffraction methods. A similar large volume decrease had been

previously observed in Ce [Stager 64] (α → γCe) and it was postulated that the driving

mechanism, already accepted by consensus in the literature to be the result of pressure-
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induced electronic transfer, is analagous to the α → γ transition in Ce [Wittig 80,

Mao 81]. The work of Wittig [Wittig 80] provided indirect evidence for 4f electron

delocalisation, suggesting x-ray diffraction experiments would provide more conclusive

evidence, which came with the study (he) performed with Mao et al. [Mao 81] a year

later. Thus it became accepted that the 4f electrons, previously not participating in

bonding within the crystal structure, become itinerrant and participate in the metallic

bonding, greatly reducing the volume of the atom, and so the unit cell. The volume

collapse associated with the phase transition from d-fcc to post-d-fcc phase (α-Uranium

structure, space-group Cmcm or oC4 in Pearson notation) is responsible for the coining

of the term “collapsed” phases, which is used to refer to phases that exist after the 4f

delocalisation unit-cell volume collapse.

Steps began to be made to identify the structure adopted in the d-fcc phase within

the light lanthanides, with work focusing on Pr (a more detailed synopsis is given in

3.3) and other light lanthanides. Mao et al. [Mao 81] suggested, based on diffraction

photographs (x-ray film techniques), an orthorhombic unit cell for the collapsed phase,

suggesting a maximum space group symmetry of P2/m 2/m 2/m. The authors noted

limitations of their technique, notably an inability to gather fractional coordinates of

the atoms within the unit cells.

Grosshans et al. [Grosshans 82], building upon the earlier work performed on Pr

[Wittig 80, Mao 81] performed high-pressure diffraction experiments on Pr, La and

Y, in order to establish a basis for explaining the distortion seen to occur to the fcc

structure. The distortion, Grosshans et al. reasoned, could be described by a soft

phonon mode, q, shown in Equation 3.3.

q=2π
a0

( 1
2 , 1

2 , 1
2),

(3.3)

Using q, the additional diffraction lines that appear on distortion of the fcc structure

can be indexed with ∆k = G =Gfcc ± q. Here, q corresponds to the L zone-boundary

point in the Brillouin zone (along the <111> in cubic setting, or c axis in hexagonal
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setting) [Grosshans 82]. The phonon softening is thus responsible for the distortion

along the hexagonal-c axis (in the fcc cell), which doubles the length of this axis upon

transition to the d-fcc phase.

McMahan and Young [McMahan 84], considered the structures of the rare-earth

transition sequence as a series of stacked hexagonal layers, which were labeled A, B

and C depending on the positions of the atoms within the layers relative to the other

layers. Extending this idea further, reducing ABC repeat pattern to be denoted “c”,

for cubic and the ABA repeat to be “h” shorthand for hexagonal, simplifies the rare-

earth transition sequence (third column in Figure 3.3, making it apparent, according to

McMahan and Young, that missing from the sequence (reproduced in Figure 3.3) is an

intermediary step, cchcch, or triple-hcp (thcp). Theoretical calculations performed on

the band stability of the d-band (valence band) for trivalent systems (approximating the

rare-earth metals) [McMahan 84] indicate a region of stability for this thcp structure

within the rare-earth transition sequence. The calculations place the stability region

between the dhcp and fcc phases, confirming their logical reasoning. However, within

the same journal (paper published immediately after McMahan and Young’s), Smith

and Akella [Smith 84] state they are able to, provide a fit to the Pr(III) (nomenclature

for d-fcc in their paper) pattern of Mao et al. [Mao 81] using the thcp structure which

is as good as the other models suggested prior to this time [Mao 81]. It was noted by

the authors [Smith 84] that the thcp solution is unable to account for all of the observed

peaks within the data.

Three lanthanide elements, Ce, Eu and Yb, the latter two of which have a half-

filled and filled 4-f shell are considered “irregular” lanthanide metals, also referred

to as divalent lanthanide metals owing to the dominance of the (II) oxidation state

in their compounds. These “irregular”’ lanthanide elements do not have share the

phase transition sequence under application of pressure common to the other, trivalent

lanthanide elements [Grosshans 92], and so do not appear in the diagram presented in

Figure 3.2. Instead, beyond the fcc phase, complex and as yet unidentified phases occur.

As this study of lanthanides focusses on the low-Z lanthanides, which are trivalent, the

behaviour of divalent lanthanides will not be considered in this review.

Duthie and Pettifor [Duthie 77] built upon the idea of a correlation between the ionic

radius and crystal structure adopted by the lanthanide series presented by Johansson

and Rosengren [Johansson 75], postulating that the previous authors’ failure to model

the corellation (using pseudopotentials) arose because the ionic radius was itself an

indirect measurement of the mechanism driving the transitions, the changing d -band
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Figure 3.3: Diagram showing the relationship between the closed packed structures
adopted by the regular lanthanides on pressure increase. Hexagonal layers, labelled A,
B and C can be used to describe each of the fcc (a), hcp (b), dhcp (c) and (d) Sm-type
structures. Diagram reproduced from [tay ].
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occupancy of the lanthanides upon pressurisation. The d -band occupancy is shown to

change from about 1.5 to 2.5 during the regular lanthanide structure sequence, which

itself affects the energy contribution of the d -band to the total energy of the crystal

lattice. An increase in the d -band occupancy increases the total energy of the crystal

lattice.

The mechanism driving the phase transitions at pressure in lanthanides accounts for

the similarities observed in the phase diagrams. It was known in the early 1980s

(following the work of Johansson and Rosengren [Johansson 75], and Duthie and

Pettifor [Duthie 77]) that, like in the alkaline and alkaline-earth metals, the mechanism

driving the phase transitions within the lanthanides is electron transfer from s → d

states, resulting from the relative lowering in the energy of the d states with pressure.

As the energy of the d states increases under pressure, at a slower rate than the s

and the p electronic states, the s and p states eventually surpass the energy of the

d states, which causes electron transfer from the s to the d electronic states. This

was proved by observation of the phase transitions occurring in yttrium, Y, under

pressure by Vohra et al. [Vohra 81]. Yttrium, a 4d transition metal, displays the

transition sequence hcp → Sm-type → dhcp, with dhcp tending towards fcc (shown by

c/a ratio tending towards 1.633). As a consequence of this observation in Y, the regular

lanthanide transition sequence can be shown by inference to be driven by the increasing

number of d -electrons in the lanthanides (changing d -band occupancy), on increasing

Z, or simulated by increasing pressure on single member. The regular lanthanide phase

transition sequence is thus independent of 4f electron behaviour [Vohra 81]. Vohra et al.

postulate that structural anomalies within Eu, Ce, Yb and Pr are related to the fermi

surface of these elements having f -electron character. However, the elements stated as

having structural anomalies consist of Pr and the divalent lanthanides, the former is

later shown to have a post-fcc phase, the transition to which is driven by delocalisation

of the 4f electrons, the authors here must have mistakenly attributed the (at this point)

unresolved d-fcc phase as a structural anomaly caused by “f electron character in the

Fermi surface”.

The study of Grosshans and Holzapfel [Grosshans 92] presents EoS diagrams for all

of the lanthanides up to ≈ 40GPa, some of which collate data from other studies

with the authors’ data. Using energy-dispersive techniques, the authors state a typical

precision of 1x10−3Å in the lattice parameters used to determine the EOS using Birch-

Murnaghan type equation, although the dominant error source in the EOS curves
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came from uncertainties in the measured pressure for some, particularly in the upper

region of the pressure range. Inaccuracies in the measured pressure, in this study, like

others originates from strain induced broadening of the calibrant’s characteristic signal

(pressure inhomogeneity within the sample chamber). Evident in the plots (Figures 1-

15 in Grosshans et al. [Grosshans 92]) is a consistency in the behaviour of the trivalent

lanthanides under pressure, in progressing through the regular transition sequence to

a post-fcc phase, which the authors present as being (in line with other studies made,

up to the early 90s [Mao 81]) as a trigonal structure.

The late 1990s (1995-1999) represented a resurgence in the study of lanthanides,

prompted by the adoption of angular dispersive x-ray diffraction techniques developed

in the early 1990s [Shimomura 92, McMahon 94]. Angle dispersive techniques allowed

the collection of accurate intensity values for reflections and reliable angular position,

the former required for determining the position of atoms within a unit cell, the latter

for unit cell/space-group. Used in conjunction with synchrotron radiation sources, high

pressure x-ray diffraction studies were performed on members of the lanthanide series.

3.3 Review of Praseodymium

The importance of praseodymium (Pr) within the Lanthanide series has been alluded

to in Section 3.2; the fcc → d-fcc → collapsed-phase sequence of the regular lathanide

transition sequence occurs within low-Z lanthanides at lower pressures compared to the

high-Z lanthanides. Within Pr these transitions occur at pressures of approximately

7 and 14GPa. Thus, a large body of work on Pr, focusing on the fcc → d-fcc →
collapsed-phase transition sequence, has been contributed to the literature, which form

the basis for subsequent experiments performed on higher-Z lanthanides, and some

members of the actinide series. This is important as the understanding of the high

pressure behaviour of Pr is vital to interpret the data from, and understand, the higher-

Z lanthanides behaviour under pressure.

Some of the earliest high-pressure studies of Pr were performed by Stager and

Drickhammer [Stager 64] and comprised of electrical resistivity measurements of Pr

as a function of pressure at 3 discreet isotherms (296K, 197K and 77K). Whilst no

diffraction data were provided to accompany these experiments (due to the technical

limitation of the time), changes in electrical resistivity at approximately 4GPa, 7GPa
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Figure 3.4: Electrical resistance measurement as a function of pressure for (3 isotherms
of) Pr reproduced from Figure 2 of Stager and Drickhammer [Stager 64]
.

and 14GPa are evident from their data for the 296K isotherm in Figure 3.4. The

points at which the resistivity changes were noted by the authors to be indicative

(indirectly) of phase transitions occurring within the compressed metal. At this

time the phase transition sequence of Pr was not known, but, was shown from later

experiments [Johansson 75, Dmitriev 00], that these indirect measurements of the

transition pressures within Pr are accurate. It is interesting to note this early discovery

of a subtle change in resistivity at 14GPa, one which is more pronounced (albeit at

slightly higher pressure) at 197K. This feature at 14GPa will be commented upon at a

later point, as the story of Pr unfolds.

Mao et al. [Mao 81], using an angle-dispersive (x-ray sensitive) film based technique,

were the first to use angle-dispersive measurements to investigate the d-fcc → collapsed

phase transition (indeed, Mao et al.’s study was the first to provide a structural solution
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to the d-fcc phase). The focus of this study concerns parallels between the γ to α

transition in Ce and that of the d-fcc to collapsed transition in Pr, the former by the

point in time was accepted to be caused by the delocalisation of 4f electrons from the

constituent atoms under pressurisation (indeed, it is referred to as “collapsed” phase

due to the large volume difference between it and the d-fcc phase).

Mao et al.’s data shows 19 observed diffraction lines for a powdered sample of Pr

collected at 14.4GPa. As expected, a close relationship to an fcc unit cell is evident,

with 8 of the diffraction lines capable of being indexed with an fcc unit cell (stated

afcc=4.5Å). Indexing 18 of these 19 observed diffraction lines was performed using an

orthorhombic unit cell, distorted from the precursor phase fcc unit cell and comprising

16 atoms in the unit cell (this solution will be referred to as oP16, following Pearson

notation [Villars 91]). The comparison of reported observed and calculated peak

positions (d-spacings) tabulated in Table 1 of Mao et al. [Mao 81] show a favourable

agreement for this solution, although, Iobs (expressed as a %, relative to most intense

peak) shows no peaks below 10% relative intensity were observed. As Mao notes, for

each observed phase in the study (d-fcc and collapsed-phase) there remains a peak which

is not capable of being indexed by the proposed models for each phase. For the d-fcc

phase at 14.4GPa this peak is stated as having an intensity, I = 30%, and d-spacing of

d = 2.87Å, for the collapsed phase the unidentified peak is at d = 2.717Å with an I of

<10%. Mao et al. identified the phase following the d-fcc phase as a d-hcp (distorted

hcp) phase, with a volume difference of ( ∆V
Vtrans

) of 19% at the d-fcc to collapsed phase

transition.

Mao et al.’s (in [Mao 81]) data was re-indexed by Smith and Akella [Smith 84], who

identified the collapsed phase to be isostructural with the orthorhombic α-Uranium

structure (Cmcm or oC4 in Pearson notation). A diagram of the α-Uranium is

presented in Figure 3.5. This re-indexing of the collapsed phase revised the volume

collapse at the transition between d-fcc and collapsed-phase to ≈ 9.5% [Smith 84].

Further to the re-indexing of the collapsed phase, Smith and Akella provided a revised

solution to the d-fcc phase, tentatively suggesting the d-fcc phase has a triple hexagonal

close packed (thcp) structure [Smith 84]. This thcp structure was considered an

energetically favourable structure in a theoretical study published in 1984 by McMahan

and Young [McMahan 84], who proposed the thcp structure as a solution to the d-fcc

phase as it follows the transition sequence through open packed structures related by

stacking of hexagonal planes.

Hamaya et al. [Hamaya 96] performed the first angle-dispersive study (a technique
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b

c

a

Figure 3.5: Diagram of the α-Uranium structure, oC4 (space group Cmcm) which
is adopted by Pr after the delocalisation of 4f electrons on compression above 20GPa
[Smith 84]. Atoms are located in the 4c Wyckoff positions (which correspond to atomic
positions within the unit cell of (0, y, 1

4) and (0, -y, 3
4) with y = 0.1), here the unit

cell parameters of a = 2.7330, b = 5.4665 and c = 4.8769Åfor Pr in α-Uranium phase
at 27GPa are taken (along with the atomic position, y) from [Baer 03]. Figure drawn
using the crystal visualisation program Vesta [Momma 08].
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developed in Japan in the early 1990s [Shimomura 92]) of Pr at a synchrotron radiation

source. The use of synchrotron radiation, coupled with a monochromatic beam, angle-

dispersive technique and an image-plate detector afforded Hamaya et al. resolution

superior to that of previous studies [Johansson 75, Mao 81, Grosshans 82]. Numerous

additional, low-intensity reflections were observed by Hamaya et al. in the d-fcc phase,

which could not be accounted for by the oP16 solution proposed by Mao et al. Hamaya

indexed and was able to account for each observed reflection using a rhombohedral

structure, with 24 atoms in the unit cell (in hexagonal setting, giving this structure

the Pearson notation hR24 ) and spacegroup R3̄m, and in doing so showed the first

Rietveld refinement of the d-fcc phase. This hR24 structure (in the hexagonal setting)

can be related to the precursor fcc phase through the relationships ~a = −~afcc + ~bfcc

and ~c = 2(~afcc +~bfcc + ~cfcc), where ~a and ~c are the a and c of the hR24 unit cell.

Following Hamaya et al.’s study, Porsch and Holzapfel [Porsch 94a] reconsidered the

fcc → d-fcc transition, based upon the symmetry relationship between the fcc and d-fcc

phases if the transition is first-order, and if it is second-order. Porsch and Holzapfel

state that if the transition is second-order, a single orthorhombic structure exists which

accounts for the x-ray diffraction patterns in [Hamaya 96], a Cmmm, with 8 atoms in

the unit cell (oC8 or oS8 in Pearson notation†). This oS8 structure can be related to

the fcc by the relations ~a = 2~afcc,~b = ~bfcc+~cfcc and ~c = −1
2
~bfcc+

1
2~cfcc. If the transition

is second-order, Porsch and Holzapfel report 3 possible structures; the orthorhombic

Cmma, the triclinic P1̄ and the rhombohedral spacegroup R3̄m (the hR24 structure of

Hamaya et al. [Hamaya 96]).

The hR24 structure from Hamaya et al., was later questioned by Syassen et al.

[Syassen 00], who, after conducting a high-resolution diffraction study, reported an

alternate, monoclinic solution to the d-fcc phase. This monoclinic solution, with 4

atoms in the unit cell and spacegroup C2/m (mC4 in Pearson notation), provided a

good fit to the high resolution data shown in their report (a Rietveld refined pattern at

15GPa is shown) [Syassen 00], and is stated as having a good quality of fit in Rietveld

refinements above 13GPa (Hamaya et al. show a refinement performed at 13.8GPa).

The proposed mC4 solution is directly relatable to the fcc precursor phase through

subgroup relations (vector relationship is: ~a = 1
2~afcc + 1

2
~bfcc −~cfcc, ~b = −1

2~afcc + 1
2
~bfcc

and ~c = 1
2~afcc + 1

2
~bfcc + ~cfcc ), and had already been observed as a high pressure

structure of Ce. However, upon close observation of the Rietveld refinement shown in

†the convention of using oC for a centered orthorhombic structure was, in 1985 changed, such that
oS is now used [de Wolff 85]. This is to prevent confusion between the “C” referring to centered cell
and the unique axis in cell choice for orthorhombic and monoclinic systems.
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Syassen et al.’s report, a number of weak peaks are evident which are not accounted

for by a mC4 structure, and not attributed to contaminants.

The studies of Hamaya et al. and Syassen et al., who propose a hR24 and a mC4

structure, respectively, as the unique solution to the d-fcc phase, were followed by a

paper by Chesnut and Vohra [Chesnut 00b]. Chesnut and Vorha, interestingly, reported

observation of both the hR24 and mC4 structures in the d-fcc pressure range of Pr

(which they report as 7-20GPa). This study was the first to suggest a phase transition

occurring in what was previously thought of as a single phase between 7 and 21GPa.

The hR24 from Hamaya et al. was observed as stable from 7-10GPa by Chesnut and

Vorha [Chesnut 00b], the mC4 from 10-20GPa, and upon further pressurisation the

α-U phase was observed. No volume discrepancy was observed by Chesnut and Vorah

at the hR24 to mC4 transition. At the d-fcc (mC4 ) to α-U transition a volume change,

( ∆V
Vtrans

) of 16.7% is observed [Chesnut 00b].

The phase diagram of Pr was studied in 2003 by Baer et al. [Baer 03], who, noted

difficulty in refining patterns with the hR24 structure when collected near the d-fcc to α-

Uranium transition pressure. The authors show the hR24 structure fails to adequately

describe the d-fcc phase (from 7-20GPa), in agreement with Syassen et al. [Syassen 00]

and Chesnut and Vorah [Chesnut 00b]. However, Baer disagrees that the mC4 structure

is a solution to the d-fcc phase of Pr, stating that it leads to an unfeasible volume change

at the d-fcc to α-U phase transition, as mC4 has a larger volume that that of the hR24

solution proposed for these pressures. Baer et al., in probing the high-temperature,

high-pressure regions of the phase diagram, discovered a new phase, between the d-

fcc and α-U phases. This new phase, which exists at high-temperature (above 700K,

between 10 and 20GPa), was labelled Pr-VI. Baer et al. provide no solution to the

structure of Pr-VI, stating simply that the mC4 structure does not fit.

Dmitriev et al. [Dmitriev 00] note the difficulty of other authors to adequately refine

structures towards the upper limit in pressure of the d-fcc [Baer 03] pressure range.

Enlargements of the 1D diffraction patterns around the doublet at ≈ 16◦in 2θ provided

in Figure 5 of Dmitriev et al. [Dmitriev 00] show the authors’ recognition of a potential

new phase existing in the d-fcc pressure range as being the cause for the inability of

previous authors to get adequate refinements in this pressure range.

Dmitriev et al. conducted their experiments on Pr, sourced commercially from

GoodFellow, at stations ID30 and BM1A (Swiss Norwegian Beamline) of the ESRF,
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at wavelengths λ=0.3738Å and λ=0.72Å respectively. While the authors state a

maximum pressure reached of 44GPa, the cell type, culet size and gasket material

are not mentioned. The need for avoidance of sample contamination was overcome by

Dmitriev through DAC loading under an inert, dry argon atmosphere, or under mineral

oil, however, as with the previous studies contamination remains present in diffraction

patterns.

3.4 Contaminants

It is important to note that lanthanide metals are extremely reactive, freshly cleaved

lustrous surfaces quickly tarnish in air, react with water at low temperature and rapidly

oxidise in moist air [Cotton 91]. It is noted that lanthanides typically react with

oxygen at room temperature, whilst at higher temperatures the reaction occurs more

vigorously, tending towards ignition at 150-200◦C [Cotton 91]. In order to limit the

exposure of lanthanides to oxygen and moisture, lanthanides are typically stored under

oil (“mineral oil” or “silicon oil”) within sealed glass jars containing an inert atmosphere

[Akella 86, Grosshans 92] or prepared under oil [Grosshans 82] (in the absence of a

glovebox).

A problem common to studies performed on praseodymium (and indeed other

lanthanides) is the presence of contaminants within collected diffraction patterns.

Authors of previous studies note [Mao 81, Chesnut 00b, Syassen 00] the presence of

one or two contaminant phases in their studies of Pr. There is no solid consensus

on the identity of the contaminants present throughout the studies published, indeed

some authors fail to comment on observed and unaccounted for peaks present in their

data, suggesting an inability to ascertain the identity of the contaminant. Table 3.1

summaries the findings of previous studies on contaminant phases.

Given the differing pressure transmitting media used and potential for different methods

of loading of samples mentioned by the authors in Table 3.1, which has little effect on

the presence of contaminants in the observed data. Samples for this body of work were

loaded with mineral oil pressure medium and without pressure transmitting medium;

in an inert argon atmosphere (glovebox) or under oil.

Baer et al. [Baer 03] describe the formation of a hydride, PrH2+x (x between 0

and 1) within their DAC at pressures above 14GPa and temperatures exceeding

715K [Baer 03]. Baer determined the contaminant, present as fcc diffraction lines in

integrated patterns, to be PrH2+x by back extrapolation of the lattice parameter a0 to
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Author No. Contam’ Lattice
parameter, ax

Comment

Johansson and
Rosengren
[Johansson 75]

Not stated Not stated No mention of
contaminants.

Mao et al. [Mao 81] 2 Not stated 2 peaks stated as
not being indexed.

Grosshans et al.
[Grosshans 82]

1 Not stated Comments on
avoiding oxidation

Hamaya
[Hamaya 96]

2 a13.4=4.9593Å One attributed to
PrO (4 peaks),
other unattributed
(2 peaks).

Chesnut
[Chesnut 00b]

1 Not stated One contaminant
seen, referred to as
“oxide”.

Errandonea
[Errandonea 00]

Not stated Not stated No comment.

Dmitriev et al.
[Dmitriev 03]

1 a0=5.029Å Attributed to PrO

Baer [Baer 03] 1 a0=5.4856Å Seen at high-T,
attributed to
PrH2+x

Cunningham et al.
[Cunningham 05]

2 Not stated PrO2

Table 3.1: Summary of a selection of papers on Pr comments regarding presence of
contaminant within their data.
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Figure 3.6: Diffraction pattern from the d-fcc phase of Pr, collected at 10.4GPa.
Additional peaks arising from contamination are identified with arrows. Inset shows an
enlarged segment of the 2D diffraction image, with contrast adjusted to illustrate the
texture (spottiness) of the contaminant rings, which are identified with arrows. These
peaks do not correspond to gasket peaks.

ambient pressure. Baer et al. observe an increase in intensity of the peaks they attribute

to PrH2+x as temperature is raised, remain at high-pressure and temperature, later

decreasing in intensity when the pressure is lowered at room-temperature [Baer 03].

A reaction with the H content of the mineral oil pressure medium used for some of

their experiments at high-temperature is cited as the origin of the hydride, which is

not observed when Ar is used as a pressure medium [Baer 03].

Dmitriev et al. [Dmitriev 00] comment that the diffraction rings arising due to

contaminants appear “spotty” on 2D diffraction images. Figure 3.6 (inset) shows

how textured the rings appear on a 2D diffraction image collected at 10.4GPa at

Daresbury SRS. Given the pronounced difference in texture of the rings arising due

to contaminant(s) and sample, identification of the contaminant is straight forward

when considering the 2D diffraction image.
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3.5 Conclusions

The review presented in this chapter on the lanthanide series, and the more detailed

review of Pr, clearly highlight the following problems with the body of work that exists

to date in the literature. Significant disagreement remains in the structure of the d-

fcc phase, a phase accessible in Pr at relatively low pressures. Indeed, disagreement

persists over the number of structures required to model the d-fcc phase over the

entirety of the pressure range it is observed to exist within, with one [Mao 81] or two

[Dmitriev 00] structures being proposed. Following the numerous reports of similarities

in the phase transition sequence of the regular lanthanides, it appears odd that the

d-fcc phase has yet to be confirmed within the regular phase transition sequence of

the lanthanides, further, if the d-fcc phase is found to be a member of the transition

sequence, will it be observed to have the same structure(s) as Pr? The identity of

contaminant peaks found within diffraction studies of Pr [Mao 81, Syassen 00] remains

elusive, with none [Errandonea 00], one [Grosshans 82, Dmitriev 00, Chesnut 00b] or

two [Mao 81, Hamaya 96, Cunningham 05] contaminants being observed, which, when

present have cubic diffraction patterns.
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Chapter 4

Studies of Praseodymium

4.1 Introduction

As was shown in Section 3.3, Pr is a key member of the lanthanide series. Being of

low-Z, it has been widely studied and used as a high-pressure analogue of the higher-

Z members of the lanthanide series. It was the first lanthanide shown to exhibit a

large volume collapse upon the transition to the α-U phase, the mechanism of which

was shown to be electronically driven [Gschneider 68]. In this chapter the author aims

to resolve the outstanding issues pertaining to the structure of the d-fcc phase of Pr,

before, in the following chapter, turning attention to Nd, the following member of the

lanthanide series.

To recap, the known structural transition sequence of Pr is dhcp → fcc → d-fcc

→ α-Uranium, with the phase transitions reported to occur at 4, 7 and 20GPa

(Section 3.3). Here, the d-fcc phase has attracted a large amount of interest

both experimentally [Wittig 80, Mao 81, Vohra 81, Grosshans 82] and theoretically

[Johansson 75, Duthie 77], owing to the nature of the transition to the α-U phase that

follows (4f electron delocalisation, as observed in Ce) and numerous [Mao 81, Akella 99,

Holzapfel 95, Syassen 00, Dmitriev 00] conflicting structural solutions proposed for the

d-fcc phase itself. Section 4.4 will cover the phase transitions in Pr up to the d-fcc

phase at 7GPa, whereas the bulk of this chapter, Sections 4.5 - 4.8, will be devoted to

resolving the ambiguity in the Pr d-fcc structure. The transition from d-fcc to α-U will

be covered in Section 4.9, where the author will resolve disagreements in the degree of

volume collapse at this transition.

4.2 Experimental Details

The praseodymium used was sourced either from the Aldrich Chemical Company, as

powdered chunks with a stated purity of 99.9%, or kindly provided by Dr. Ulrich
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Schwarz (MPI, Dresden), as a single crystal, with a stated purity in excess of 99.99%.

In each case the Pr was stored in a protective atmosphere for transportation. From

Aldrich it came packaged in sealed plastic containers within a sealed glass jar containing

an inert atmosphere. Samples from Dresden arrived in sealed tantalum ampoules,

containing an inert argon atmosphere and a piece of metal from a single crystal of

refined Pr. The samples used were cleaved from a clean, exposed, lustrous surface of

one of the larger chunks received from suppliers. Due to praesodymium’s propensity

to oxidise upon exposure to oxygen and water, care was taken to ensure the samples

used were not tarnished (the surface of the tarnished metal appeared dull and matt

on exposure to small concentrations of oxygen, on exposure to larger concentrations it

appears matt yellow/green).

Cleaved chunks of Pr, with exposed, lustrous surfaces were loaded into the sample

chamber of a diamond anvil cell (DAC), within a tungsten gasket. Gaskets were pre-

indented to approximately 30µm, with a spark eroded sample chamber of diameter

75µmor 100µm. Ruby spheres sourced from J. P. Chevrin, of approximate diameter

5µm, were placed on the opposing diamond culet at off-central locations so as to avoid

the diffraction pattern contamination (as the sample will be placed in the centre of

the sample chamber). In the cases where mineral oil pressure transmitting media were

used (the majority of the experiments performed), the remainder of the sample chamber

was filled with dry mineral oil. When no pressure transmitting media was used, the

sample chamber was filled only with Pr and a ruby manometer. The use of no pressure

transmitting media was likely to introduce deviatoric stresses within the sample, caused

by pressure not being applied hydrostatically to the sample.

DACs of DXR6 and Merrill-Basset (MB) design were used, in conjunction with a

diamond culet size of 300 and 200µm, respectively. This combination of culet size, cell

design, pressure transmitting media and gasket preindentation is capable of reaching

the 20GPa pressure required for the investigation of the d-fcc phase.

Care was taken during sample cutting and loading to prevent oxidation of the sample,

and, when available, both operations were performed in a glovebox environment with

an inert dry argon atmosphere. However, in some cases, such as when new reloadings

needed to be made at Daresbury SRS, and where glovebox loading was not possible,

loading was performed under mineral oil. In such cases the sample was cut and prepared

in excess mineral oil in a petri dish. Performing the preparation (cutting) and loading

under oil ensures the praseodymium is always coated in a protective film, preventing

direct contact with the surrounding atmosphere, and thus oxidation of the sample.
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The prepared cells were closed, mechanically pressurised, allowed to equilibrate and

their pressures measured using the ruby fluorescence method, before being aligned

on the beamline, as explained in Section 2.5.3.1. 2D powder diffraction data were

collected on the IP system (Station 9.1) or Mar345 (Station 9.5) as outlined in Section

2.5.1, then integrated using the appropriate software (EDIPUS [Belmonte 98] and Fit2D

[Hammersley 98]).

4.3 Contaminant Phases

4.3.1 Introduction

Noting that the contaminants’ diffraction pattern appears as pairs of peaks, which are

easily identifiable on 2D images, with, in some cases, one of the pair obscured beneath

a sample reflection, leads one to the conclusion that 2 contaminants appear in the

data collected, as noted in Mao et al. [Mao 81], Hamaya et al. [Hamaya 96]. For the

10.4GPa pattern shown in Figure 4.1, the d-spacings of the contaminant peaks can

be used to determine a lattice type by using the indexing program DicVol [Louer 04].

A cubic, fcc, lattice type is proposed as the simplest solution by DicVol, supporting

claims made by Mao et al. [Mao 81] and Dmitriev et al. [Dmitriev 00], who state

viewing a cubic contaminant. The evolution of the peaks identified as contaminants

differs notably from that of the sample, having a markedly lower compressibility and

remaining in the same phase throughout the pressure range studied. The pressure

evolution of the contaminant phases’ cubic lattice parameters are shown in Figure 4.2,

which were collected on both pressure increase and decrease. Shown for comparison

are the lattice parameters measured by Hamaya et al. (and derived from their paper),

those from Chesnut and Vohra [Chesnut 00b] and ambient pressure lattice parameter

for likely contaminants.

Using EOSFIT [Angel 01], a second order Birch-Murnaghan equation of state is fitted

to the first contaminant phase, allowing the back extrapolation of lattice parameter of

this phase to ambient pressure. A resultant ambient pressure lattice parameter of a0

= 5.03Å is determined. As shown in Figure 4.3, the variation of lattice parameter with

pressure for both contaminant phases present in this work, in the range studied. Note

the absence of data in the 0-5GPa region of Figure 4.3, this corresponds to an overlap

of the sample and contaminant peaks in this pressure range. As noted on this figure,

extrapolation to ambient pressure yields values of 5.03 and 4.88Å for the contaminants.

One of the contaminants observed has an a0 that is in excellent agreement to the

accepted value for PrO (5.031 Å) at ambient pressure, and distinct from the ambient
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Figure 4.1: Diffraction pattern from the d-fcc phase of Pr, collected at 10.4GPa on
Station 9.5 of Daresbury SRS, using a wavelength of λ=0.44397Å. Additional peaks
arising from contamination are identified with arrows. Inset shows an enlarged segment
of the 2D diffraction image, with contrast adjusted to illustrate the texture (spottiness)
of the contaminant rings, which are identified with arrows. These peaks do not
correspond to gasket peaks. Reproduced from Figure 3.6.
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4.3. Contaminant Phases

Figure 4.2: Plot of the lattice parameters (Å) with respect to pressure (GPa) for
the contaminant phases. Open symbols represent data collected on pressure decrease,
and solid on pressure increase. Shown for comparison are the ambient pressure
lattice parameters for PrO, PrO2 and PrH2, along with the measured and calculated
contaminant lattice parameters from Hamaya et al. [Hamaya 96] (× and +). The
calculated lattice parameter from the study of Chesnut and Vohra [Chesnut 00b], which
was incorrectly identified as a sample reflection is denoted with a △. Figure modified
from Evans et al. [Evans 09].

pressure lattice parameters of other Pr containing oxides and hydrides (PrO2 has a0 =

5.392Å and PrH2 has a0 = 5.415Å [Baer 03]).

The identity of the second contaminant, which has a back-extrapolated lattice

parameter of a0 ≈ 5.1Å remains unknown, as the determined a0 does not correspond

to the ambient pressure lattice parameter values for PrO2, PrH2 and PrOH.
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Figure 4.3: Plot of cubic lattice parameter (Å) with respect to pressure (GPa) for the
first contaminant phase. Shown for comparison is the dashed line, which represents the
fitted EoS for the contaminant. Error bars are plotted on all points, but only visible
for three, the size of the symbols use to plot the data points obscure the error bars for
the other points.
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4.4 Praseodymium at relatively low pressures (0 - 7GPa)

Although the d-fcc phase is of primary importance in this study, diffraction data

must be collected from the phases prior to the d-fcc phase so that the behaviour of

these phases can be confirmed, and the pressure evolution of the contaminant and the

transition pressures compared to the literature. A waterfall plot of integrated patterns,

representative of the data collected in this range (0-7GPa), is displayed in Figure 4.6,

Figure 4.4 shows a waterfall plot of integrated diffraction patterns from Pr over a

broader pressure range (0-23GPa).

At ambient-pressure the sample is observed to be in the dhcp phase, space group

P63/mmc, as expected. This dhcp phase was Rietveld refined using initial unit cell

parameters present in the literature (unit cell parameters taken from literature at

pressures approximately equal to those of collected data). These refinements are

exemplified by the Rietveld refinement shown in Figure 4.5, the data for which was

collected at 1GPa. At 1GPa Pr has a = 3.607Å, c = 11.624Å. Unit cell parameters are

restated, with atomic volume and c
a

ratio, in Table 4.1. The relatively flat residuals

plot (lower line) in Figure 4.5 indicates the quality of the fit, a Rwp = 4.71% is given

by Jana2000 [Petricek 00].

The atomic displacement parameters, ADPs, (occasionally referred to in the past as

thermal parameters) from each of the Rietveld refinements made are presented in

the associated tables for each refinement (quoted as Uiso, the isotropic ADP). The

mean square displacement of an atom about its equilibrium position (in addition to

static displacive disorder) are accounted for by ADPs, which are modelled in various

approximations using Gaussian functions [Trueblood 96]. The validity of the ADPs

is suggested by the author as being questionable, as evidenced by the negative values

of some ADPs observed in the data collected for this work. Negative ADPs are non

physical, implying the Gaussian funtion which approximates them has negative width.

The ADPs, in these cases can be viewed merly as additional refinable parameters

which compensate for errors in other refinable parameters, such as preferred orientation

(texture in diffraction pattern) or microstructure in the sample.

On pressure increase, the dhcp phase was observed as a pure phase at 1.7GPa, limited

diffraction data were collected before transition to the fcc phase, the dhcp phase is

seen to co-exist with the fcc phase up to 5.1GPa. The transition to the fcc phase is

completed by 5.4GPa, on pressure increase above 5.4GPa, collected diffraction patterns
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Figure 4.4: Integrated diffraction patterns collected from Pr loaded in a MB DAC,
with dry mineral oil pressure medium, plotted as I vs. 2θ. Diffraction patterns are
stacked in increasing pressure, with pressures indicated on the left hand side of each
plot, the phase name is displayed on the right hand side of the figure, with arrow heads
indicating where the transition occurs (on pressure increase). Data were collected using
MB DACs with culets of 300µmon Station 9.5 of Daresbury SRS, using a wavelength
of λ=0.44397Å.
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Parameter Value

a 3.607Å

c 11.624Å

Volume 32.743Å3

c
a

3.223

Table 4.1: Table showing the Rietveld refined unit cell parameters for the dhcp phase
of Pr, data corresponds to the refinement shown in Figure 4.5 at a pressure of 1GPa,
collected using a wavelength of λ = 0.4654Å on Station 9.1 of Daresbury SRS.

Figure 4.5: Example refinement of Pr in the dhcp phase, collected at 1GPa on Station
9.1 of Daresbury SRS using λ = 0.4654Å, mineral oil pressure transmitting media. A
MB DAC with 300µmculets was used to collect the data.
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Parameter Value

a 4.8220(1)Å

Volume 28.02933(11) Å3

c
a

1 (2.449 in hexagonal setting)

Uiso1 0.0443

Uiso2 0.0252

Table 4.2: Table showing the Rietveld refined unit cell parameters for the fcc phase
of Pr, data corresponds to the refinement shown in Figure 4.7 at a pressure of 7GPa,
collected using a wavelength of λ = 0.44397Åon Station 9.5 of Daresbury SRS. Atomic
positions refined, but round to regular fcc values.

contain only peaks originating from the fcc (and contaminant) phase. The transition

from dhcp to fcc can be said to occur between 1.7 and 5.1GPa, in agreement with

the reported transition pressures of 4GPa [Tonkov 05] and 3.9GPa [Gschneider 68].

Observed however, is a larger degree of co-existance between the dhcp and fcc phases

than is noted in the literature.

A plot of diffraction patterns for the pressure range 1.7 to 7GPa is shown in Figure 4.6.

Data for this plot comes from angle dispersive x-ray diffraction experiments made at

successive pressure points within this range over a number of experiments at Stations

9.5 and Station 9.1 of Daresbury SRS, on pressure increase.

The fcc phase is observed to co-exist with the pre-cursor dhcp phase up to 5.1GPa, and

seen to be a pure phase from 5.4GPa (with contaminant peaks). Upon further pressure

increase the fcc phase is observed, with evidence of the following phase, the d-fcc

phase, from 7.0GPa (with asymmetry observed in the (111) and (200) reflections) which

appears completed by 7.4(2)GPa (additional peaks observable in integrated diffraction

patterns). The transition from the fcc phase to d-fcc phase will be considered in greater

detail in the following section, Section 4.5.
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Figure 4.6: Plot of diffraction patterns for Pr between 1.7 and 7.0GPa. The transition
pressure from dhcp to fcc is shown to occur between 1.7 and 5.4 GPa, with the shown
intermediary pressure (5.2GPa) showing a mixed phase. The phase of each integrated
diffraction pattern is noted on the left of the figure.
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Figure 4.7: Example Rietveld refinement of Pr in the fcc phase. The sample pressure is
7.1(2)GPa, diffraction pattern was collected on Station 9.5 of Daresbury SRS using λ =
0.44397Å at room temperature. A MB-type cell with culets of size 300µm, ruby sphere
manometer and mineral oil pressure medium were used. Peaks labeled with asterisks
correspond to contaminant peaks.
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4.5 d-fcc of Praseodymium from 7-14GPa

At 7.4(2)GPa the first indications of a transition to the d-fcc phase are observed in

the splitting of the (111) and (200) fcc reflections. Slight asymmetry can be observed

in these peaks from 7.0GPa, and at 7.4(2)GPa appearing as a resolvable shoulder, as

shown in Figure 4.8. In additional to the splitting of fcc reflections, peaks appear at

the transition pressure at 15.45, 19.21, 13.98 and 20.65◦in 2θ, leaving no doubt that

the symmetry of the precursor fcc phase has been lowered, indicating a change in phase

of the sample. As the pressure increases above 7.4(2)GPa, the angular separation of

the shoulders from the fcc increases to a maximum of 0.12◦, and the intensity of the

additional reflections increases.

The observed transition pressure of 7.4(2)GPa (average of compression and decom-

pression cycles, due to large hysteresis in observed transition pressures) from fcc →
d-fcc is in excellent agreement with the value of 7.0GPa reported in the literature

[Mao 81, Dmitriev 00, Holzapfel 95]

Plotting the Pr diffraction data on a succession of waterfall plots, it seems plausible

that, as suggested by a number of authors [Mao 81, Dmitriev 00], a transition occurs

within the d-fcc region at approximately 14GPa. It is at 14GPa that a number of

subtle changes occur to the diffraction pattern (see Figure 4.17), suggesting a transition

between two closely-related structures. For this reason, the structure of Pr from 7-

14GPa will be considered first. The structure from 14-20GPa, along with a more

detailed explanation of the evidence for the transition, will be presented in Sections 4.7

and 4.8.

In order to ascertain a structure for the lower region (7-14GPa) of the d-fcc phase,

attempts were made to fit the collected data using all structures proposed in the

literature, these structures are the hP6 (space group P3121 ), hR24 (space group R3̄m)

and mC4 (space group C2/m). These structures are shown, in relation to the precursor

fcc phase (as the transition from fcc to d-fcc is a transition between two structures

related by a static distortion) in Figure 4.9. Starting with the hP6 (thcp, or triple-hcp)

structure, proposed as a model for the d-fcc phase of Pr through association with Ce

by Smith and Akella [Akella 86], and closely related to the hP3 proposed by Grosshans

et al. [Grosshans 82].

The hR24 structure (hexagonal unit cell equivalent of the R3̄m structure) proposed
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Figure 4.8: Comparison of the (111) reflection from (i) fcc pattern, collected at 6GPa
and (ii) d-fcc pattern collected at 7.4GPa. Shown in (ii) is the reflection that splits
from the (111) fcc upon pressurisation into the d-fcc phase, the maximal splitting is
shown here, which is approximately 0.1◦. Both patterns were collected from the same
sample on pressure increase, at Station 9.5HPT of Daresbury SRS with a wavelength
of λ=0.44397Å.

by Hamaya et al. [Hamaya 93] and others [Chesnut 00b, Baer 03, Dmitriev 03], is

stated as having unit cell parameters of 6.466 and 16.085Å at 7GPa. Re-examining

collected data at an equivalent pressure, using these values as a starting model for

Rietveld refinements yields Figure 4.10. Atomic positions provided by Hamaya et al.

[Hamaya 96], who stated atoms occupy the 6c and 18h positions. The group-subgroup

relation of the hR24 solution to the fcc precursor phase enabled the construction of a

transformation matrix relating the two phases. Using the transformation matrix
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it was determined that the atoms in the hR24 unit cell lay in the 6c and 18h sites. Use of

the Bilbao Crystallographic Server’s WYKSPLIT application [Kroumova 98] confirms

this calculation and Hamaya et al.’s stated atomic positions, by showing atoms from

the 4a atomic sites in fcc go to the 6c and 18h sites upon transformation to the hR24

unit cell. At 7.4GPa this yields atomic positions of (0, 0, 1
4) and (1

2 , -1
2 , 1

4) respectivly

for the 6c and 18h sites.
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Figure 4.9: Comparison of the hP6, hR24 and mC4 structures which have been
suggested as solutions for the d-fcc phase with the precursor fcc phase. Shown in
(i) is the hP6 structure, in (ii) the hR24 structure and in (iii) the mC4 structure.
The fcc unit cells are shown with smaller, black circles joined by solid black lines, the
respective proposed d-fcc solutions have atoms in their unit cell shown with larger, grey
circles, joined by dashed lines. The crystallographic axes (a, b and c) for the fcc and
d-fcc are noted on each diagram.
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Figure 4.10: Rietveld refinement of Pr in d-fcc phase at 10GPa using the
hR24 structure. From Rietveld refinement, the unit cell parameters are given
as: a=6.6284(1), c=16.3991(6)Å, Vol./atom=25.9990(11)Å3. Atomic positions:
z1=0.2698(3), x2=0.5053(3), y2=-x2, z2=0.2444(4). Data was collected on Station
ID09A of ESRF using a wavelength of λ=0.414412Å.

Using the above atomic positions, and accounting for the position of contamination

peaks (labelled with asterix), the quality of the fit, indicated by the difference plot

beneath the profile (Figure 4.10), is excellent, with all peaks accounted for and only

minor discrepancies in the intensities of peaks. For this refinement (Figure 4.10),

Jana2000 [Petricek 00] quotes the refinement to have Rwp=6.41% and χ2=0.21.

It can be seen how the hP6 structure, while being able to account for all of the peaks

observed, has a high degree of peak overlap, and zero intensity reflections, which account

for the main features of the diffraction pattern, but suggest a higher symmetry solution

is possible. Given the study of Grosshans et al. did not have access to the resolution or

intensity currently afforded to science at synchrotron radiation sources, it is surprising

that Grosshans model is a substructure of the lower pressure d-fcc structural solution,

hR24.
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Figure 4.11: Refinement of Pr in d-fcc phase at 10GPa using the hP6 structure. From
the refinement the unit cell parameters are given as: a=6.6295(8)Å and c=16.4045(5)
Å. Data collected on ID09A of ESRF, Grenoble using a wavelength of λ=0.414412Å.
Contaminant peaks are observed and labelled in the figure with asterisks.
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Figure 4.12: Figure showing a refinement of C2/m to a sample of Pr collected at 15GPa
on ID09a of the ESRF, Grenoble. Upper tick marks correspond to the refined peak
positions from Ta (pressure calibrant), the lower tick marks to refined peak positions
from Pr. Figure is reproduced from Syassen et al. [Syassen 00].

The validity of the C2/m structure proposed by Syassen et al. [Syassen 00] as a solution

for the d-fcc phase of Pr was also investigated. Syassen et al. observe the transition from

fcc to d-fcc to occur at 7.5GPa (in agreement with this work), and suggest the C2/m

structure, based on observation of a triplet becoming resolved at 13GPa in the (111)

equivalent fcc reflection and from relation to Ce (which exhibits a C2/m structure).

Presented in Syassen et al. [Syassen 00] is a Figure showing a diffraction pattern of

Pr collected at 15GPa (reproduced in Figure 4.12), stated to have a R(F2) = 11.4 %.

It is, however, evident from this figure that a peak at 20◦is unaccounted for by the

C2/m structure. A refinement using the C2/m structure, to a pattern of Pr collected

at 10GPa is shown in Figure 4.13, evident from the refined diffraction pattern is a high

degree of peak overlap, most of which have zero intensity, suggesting a higher symmetry

solution can be found for the d-fcc structure of Pr below 14GPa.

The hR24 structure can thus be considered as the structure that best describes the
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Figure 4.13: Refinement of Pr at 10GPa using the C2/m structure. Unit cells
parameters are given as: a = 5.7510(2), b = 3.2924(2) and c = 5.6817(3)Å. Data
was collected on Station 9.5 of Daresbusy SRS using a wavelength of λ=0.44397Å
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Parameter Value

a 6.6284(1)Å

c 16.3991(6)Å

Volume 25.9990(11) Å3

c
a

2.4741

z1 0.2698(3)

x2 0.5053(3)

z2 0.2444(4)

Uiso1 0.0186

Uiso2 0.0195

Table 4.3: Table showing the Rietveld refined unit cell parameters for the hR24 phase
of Pr, data corresponds to the refinement shown in Figure 4.10 at a pressure of 10GPa,
collected using a wavelength of λ = 0.414412Å on Station ID09A of ESRF.

d-fcc phase for the pressure range 7-14GPa. The structural parameters refined from

Figure 4.10 for the hR24 phase are summarised in Table 4.3.
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4.6 Pressure dependence of hR24 7-14GPa

Having established that the hR24 structure best describes the lower range of the d-fcc

phase in Pr, 7-14GPa, the pressure dependence of this structure will be presented in

this subsection.

Rietveld refinements were performed on each integrated diffraction pattern collected

within the 7-14GPa pressure range to ensure the quality of fit does not significantly

degrade with increasing pressure (as measured using the internal fitting parameters,

Rwp and Chi2 in Jana2000). A plot of atomic volume vs. pressure is presented in

Figure 4.14, which shows a smooth, non-linear decrease in atomic volume, indicating a

decrease in the compressibility of the hR24 phase with increasing pressure.

The c/a ratio (axial ratio) for the hR24 structure is plotted for increasing pressure in

Figure 4.15. The datapoint at 7GPa is shaded in a different colour, corresponds to the

c/a ratio of the fcc unit cell at 7GPa transformed into the hR24 unit cell using the

relations from earlier (Equation 4.5). For the fcc phase, the c/a ratio is constant at√
6. Upon transformation to the hR24 unit cell, as can be seen in Figure 4.15, there is

a sharp increase in c/a away from the ideal
√

6 fcc value at the fcc → d-fcc transition,

this ratio levels off as the pressure approaches 14GPa, approaching a value of 2.485 at

13.5GPa.

In the precursor fcc phase, atoms are located on the 4a site, with atomic positions fixed

at (0, 0, 0) from Rietveld refinement of the collected fcc patterns. Transformation of

these atomic coordinates to the hR24 setting (using the transformation matrix from

Equation 4.5) yields atomic positions of (0, 0, 1
4) and (1

2 , -1
2 , 1

4). The 6c and 18h sites

have positional freedom in (0, 0, z) and (x, -x, z) respectively. Thus deviation of the

atomic position within the hR24 relative to thefcc positional values, which provides a

measure of the distortion of the fcc lattice, can be determined. These deviations are

plotted in Figure 4.16, and correspond to the displacement parameters presented by

Hamaya et al. in [Hamaya 93] who uses the notation ǫ, δ1 and δ2 to represent the static

displacements (ǫ = x -1
2), z1 (δ1 = z1 -1

4) and z2 (δ2 = z2 -1
4). It can be seen from

Figure 4.16 that the distortions away from the fcc phase are approximately 3x larger

for the displacement parameter δ1 than for δ2 and ǫ (the latter two share approximately

equal values). This is, as stated by Hamaya et al., because of “interrelations between

the amplitudes of atomic displacements given by a linear combination of three, zone-

boundary TA phonon modes”. These phonons can be expressed with the following
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Figure 4.14: Plot showing variation of atomic volume vs. pressure for the stability
range of the hR24 d-fcc structure of Pr. Errors bars corresponding to errors in
volume and pressure (estimated) are omitted, as they are obscured by the symbols
used to plot the data. Filled symobols represent data collected on pressure increase,
open symbols represent data collecetd on pressure decrease. Different symbol shapes
represent data collected during different experiments at Station 9.5 HPT of Daresbury
SRS. A wavelength of λ=0.44397Åwas used for collection of this data.

88



4.6. Pressure dependence of hR24 7-14GPa

Figure 4.15: Axial ratio, c/a, plotted as a function of pressure for the hR24 structure
between 7 and 14GPa in Pr. Datapoints for this graph originate from multiple datasets,
collected at different times on different beamlines. Error bars are plotted on this figure,
but are obscured by the size of the data points. The straight line represents the c/a ratio
for the fcc unit cell transformed into the hexagonal setting. Open symbols represent
data collected on pressure decrease, filled symbols represent data collected on pressure
increase with the diffrent filled symbols corresponding to data collected during different
experiments.
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wavevectors, in the fcc structure:

q1=
2π
a0

( 1
2 , 1

2 , -1
2), q2=

2π
a0

( -1
2 , 1

2 , 1
2), q3=

2π
a0

( 1
2 , -1

2 , 1
2)

(4.1)

Each of these curves (Figure 4.16), as in Hamaya et al. [Hamaya 93], can be modelled

using a least squares refined power law, A(P − Pc)
β with A and β being refinable

parameters and Pc fixed at the transition pressure of 7.4 GPa.
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4.6. Pressure dependence of hR24 7-14GPa

Figure 4.16: Plot of relative displacements of atomic positions in hR24 away from fcc
positions as a function of pressure. Labels ǫ, δ1 and δ2 are used, as from Hamaya et al.
[Hamaya 93]. Error bars are too small to be seen.
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Figure 4.17: Waterfall plot showing the switching in relative intensities of (i) the 8-
10◦doublet, and (ii) the doublet around 17-18◦, between which an additional peak
appears. Data for (i) and (ii) were collected on pressure increase at Station 9.5 of
Daresbusy SRS, using a wavelength of λ=0.44397Å

4.7 Transition at 14GPa

A subtle but noticeable change occurs in the integrated 1D diffraction profiles of d-fcc

Pr at 14GPa, as noted by Dmitriev et al. [Dmitriev 00]. A doublet, containing the (0 0

6) and (2 0 2) highest-intensity peaks, located at 2θ ≈ 9◦on diffraction profiles from the

d-fcc phase, exhibits the most pronounced evidence of a transition. Below 14GPa, the

intensity of the first reflection of this main doublet is greater than that of the second

peak of that doublet. After 14 GPa the relative intensities of these two peaks switches,

so that the second peak ( (2 0 2) in R3̄m) has the greater intensity, as shown in Figure

4.17 (i). Evidence for a transition is also found at higher 2θ for a transition, shown in

(ii) of Figure 4.17, whereby a new peak appears between the Bragg peaks located at

17.6◦and 17.95◦on the 13.9GPa diffraction profile. A higher-than-background intensity

between these two peaks (17.6◦and 17.95◦) is indicative of the presence of a broad

peak. Indeed, attempting to model this region using the peak fitting routines in Datlab

requires an additional peak, at 17.5◦, to account for the intensity observed. Baer et

al. [Baer 03] have commented on a drop in the quality of fits around 14GPa, using

this as evidence for a transition to a related, but new, structure. Further evidence is

found at higher angles, with the intensities of peaks at ≈9◦and ≈19◦being observed to

undergo the same switching of relative intensity, which is to be expected, as this is the

d/2 analogue.
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4.7. Transition at 14GPa

Initial attempts were made to fit data collected in the 14-20 GPa pressure range for

Pr using the structures stated to be solutions for this pressure range in the literature.

It was expected that, after comments made in the literature by Baer et al. [Baer 03],

Syassen et al. [Syassen 00] and Dmitriev et al. [Dmitriev 00], that some difficulty would

be encountered fitting patterns above 17GPa. This statement alone warrants detailed

examination of the d-fcc phase above 14GPa.

As pressure is increased towards 14GPa (above 13.5GPa) the quality of the R3̄m

refinements, as measured by comparison of Jana2000’s R factors (Rwp) and χ2 worsens.

Tending from (examples taken from Rietveld refinements made on data collected at

Station 9.5HPT of Daresbury SRS) values of Rwp=0.16 at 8GPa to Rwp=0.6 at 13GPa.

This loss of fit quality approaching the transition suggests the transition to be gradual,

indeed, evidence for this can be seen by the rising in intensity of the (2 0 2) reflection

over a 2GPa range. Given the R3̄m phase has (0 0 6) with highest intensity, and the

subsequent phase has the (2 0 2) as the highest intensity of the doublet (using R3̄m

indexing), the process of the switching between these can be viewed as evidence of the

coexistence of the two phases. To accurately fit the data at pressures within this 2GPa

range will require modelling of the system as a mixture of both phases.

Rietveld refinements using the mC16 structure given by Dmitriev et al. [Dmitriev 00]

gave a good fit to the data collected above 14GPa. At 19GPa refined values for the

lattice parameters are a=10.951(1)Å, b=6.2012(3)Å, c=6.3817(4)Å and β=125.71(2)◦.

This refinement is shown in Figure 4.18. However, unlike the unit cell reported by

Dmitriev et al., which at 19GPa has lattice parameters of a=10.984(2)Å, b=6.3810(2)Å,

c=6.275(3)Å, and β=126.12(1)◦, the b and c lattice parameter values are reversed.

Using the structure suggested by Dmitriev et al. [Dmitriev 00] exactly as described,

with the b and c lattice parameters in reverse order to those obtained through

refinement of the Station 9.5 HPT data, resulted in poor Rietveld refinements. No

scientific reason for the Dmitriev et al.’s lattice parameter difference can be found, a

typographical error is suggested as a likely cause. The obtained R factors, when the

lattice parameters used in the order Dmitriev et al. state, are much greater than those

found from direct refinement of the Station 9.5 HPT data, further, more substantial

misfits arise in the difference plot. This is shown in Figure 4.19.

Even though switching the b and c lattice parameters in Dmitreiv et al.’s model

improves the quality of the Rietveld refinements, with closer agreement between the
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Chapter 4. Studies of Praseodymium

Figure 4.18: Rietveld refinement made to Pr diffraction pattern collected at 19GPa on
Station 9.5HPT of Daresbury SRS using the mC16 structure reported as the solution to
the d-fcc phase by Dmitriev et al. Dots are experimental points, upper line is calculated
diffraction pattern, lower line is the difference plot between calculated and observed
data and tick marks are the locations of peaks in the model structure. [Dmitriev 00].
A wavelength of λ=0.44397Åwas used for the collection of this data.

94



4.7. Transition at 14GPa

Figure 4.19: Rietveld refinement made to Pr diffraction pattern collected at 19GPa on
Station 9.5HPT of Daresbury SRS using the mC16 structure reported as the solution
to the d-fcc phase by Dmitriev et al. [Dmitriev 00] with the b and c lattice parameters
switched relative to those refined in Figure 4.18. A wavelength of λ=0.44397Åwas used
for the collection of this data.
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2θ Index

13.5740 -6 0 1

13.6363 -6 0 3

13.6391 5 1 0

13.6919 3 3 0

13.7208 4 0 1

13.7228 -3 3 2

13.7504 -4 2 3

13.7810 -1 3 2

13.8375 -2 2 3

13.8982 0 0 3

Table 4.4: Table showing the degree of overlap encountered in the structure proposed
by Dmitriev [Dmitriev 00] for a peak at 13◦in 2θ. Locations of the peak in 2θ and index
assigned by Jana2000 during refinement. Values from a Rietveld refinement made to
data collected at 13GPa at Station 9.5 HPT of Daresbury SRS using a wavlength of
λ=0.44397Å.

observed and calculated peak positions (shown in the difference plot in Figure 4.18)

there remains a striking number of overlapping peaks predicted by this model. A closer

inspection of Figure 4.18, tabulated in Table 4.4, reveals the 13◦Bragg peak (used

as an example, as the degree of peak overlap for this reflection is representative of a

number of other peaks in the diffraction pattern) to be the superposition of numerous

peaks. This extraordinary degree of peak overlap for what appears to be a single

peak in integrated 1D diffraction profiles, with many of the constituent peaks having

zero or low (approximately background) intensity (evident using the “Info” function

in Jana2000’s “Profile Viewer” and from viewing the .m91 file created by Jana2000

during the refinement), which is representative of a majority of the peaks in the refined

pattern in Figure 4.18 suggests that a structural solution with higher symmetry than

monoclinic can be found. Further, a problem exists with the structure reported by

Dmitriev et al. [Dmitriev 00], the volume reported in this paper for the d-fcc phase is

Vreported=21.969 Å3, whereas, when using the unit cell parameters stated in the paper

for this pressure one arrives at a volume of Vderived=22.204 Å3.

4.8 Structure of Praseodymium from 14-20GPa

Using the indexing software DicVol [Louer 04], a new structure was sought to account

for all the observed peaks and intensity distributions with a higher symmetry than the

monoclinic C2/m structure proposed by Dmitriev et al.
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4.8. Structure of Praseodymium from 14-20GPa

2θ δ2θ

9.1082 0.001

9.2851 0.001

10.6192 0.001

14.8315 0.001

15.0490 0.001

15.2590 0.001

Table 4.5: Subset of the peaks from a diffraction pattern of Pr, used for indexing the
d-fcc phase. Data was collected on Station 9.5 of Daresbusy SRS using a wavelength
of λ=0.44397Å

For the indexing, a sharp (small FWHM, unaffected by strain broadening), well

defined (minimal peak overlap, with well resolved peaks), clean (minimal amount of

contamination) and single-phase pattern is required. Sharp, well-resolved peaks were

obtained in a sample through a process of raising the sample pressure such that the

single (post 14GPa) phase is observed, annealing the sample (within the DAC) in a

furnace with temperature set at 200◦C for 4 hours, and then adjusting the pressure

to the required value. Annealing of the Pr sample at high temperature sharpens

the diffraction pattern (i.e. reduces the FWHM of integrated peaks), by promoting

recrystalisation of the sample and pressure transmitting media, thus relieving strain on

the sample. This allows additional structural detail to be seen, as peaks become better

resolved. An image taken during at ID09A of the ESRF, Grenoble, using a sample

which was annealed prior to the experiment, fulfilled these criterion. Peak positions

for each of the singlets and well resolved doublets belonging to Pr in the integrated 1D

diffraction pattern were modelled and 2θ values extracted using the pseudo-Voigt peak

fitting routine in Datlab.

Attempts to index using all of the extracted peaks in DicVol yielded no usable solutions,

even when attempting to index over small ranges in volume (searching in 0-100Å3, 100−
200Å3, 200−300Å3 ranges, etc.) whilst systematically searching through structure types

(monoclinic, orthorhombic, triclinic) sequentially.

A subset of the total number of peaks, which are shown in Table 4.5, and comprising

of the 6 most intense, well-resolved peaks in the 0-15◦2θ region of the aforementioned

data collected at ID09A of the ESRF, were supplied as the input to DicVol [Louer 04].

This subset of peaks might be expected to find a sub-cell of the structure solution for

this phase, requiring the application of some multiplicative factors to each unit cell
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Parameter Value

a 4.4486Å

b 3.18967Å

c 3.10067Å

Volume 43.96Å3

a
average(b,c) 1.41323

Table 4.6: Table showing the orthorhombic trial cell found by DicVol when indexing
the peaks from Table 4.5.

dimension to account for all of the peaks present in this phase. The same systematic

procedure mentioned above was adopted to search for solutions, although, a number of

solutions presented by this method had to be discounted for being too general (triclinic)

or not of sufficiently high symmetry (tetragonal). Monoclinic solutions were discarded

at this stage as a higher symmetry structure than that proposed by Dmitreiv was

being searched for (as the large degree of peak overlap found when using the solution

proposed by Dmitriev et al. suggests a higher-symmetry spacegroup). In the 0-100Å3

volume interval, with upper limits of 25Å on unit cell parameters, a single orthorhombic

subcell was found with unit cell parameters listed in Table 4.6. This subcell represents

the simplest, highest-symmetry solution which fits the subset of peaks provided to

DicVol with an average difference between 2θ calculated and observed of -1.3x10−3 ◦.

The orthorhombic subcell found by DicVol (Table 4.6) can be related to the fcc phase

when the two shorter axis, b and c, are averaged. Note the larger unit cell parameter

for this orthorhombic subcell is the a axis, in contrast to the R3̄m phase where the

c axis is longer. Dividing the a unit cell parameter in the orthorhombic cell by the

average of a and b yields a value of
√

2 (to 1 part in 1000), the face diagonal length in

a cubic system. A diagram showing the relationship of this structure to the fcc phase

is shown in Figure 4.20.
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In attempting to determine the spacegroup for the orthorhombic cell proposed by

DicVol, an analysis of the symmetry relations and systematic absences within this
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4.8. Structure of Praseodymium from 14-20GPa

Figure 4.20: Diagram showing the relationship between the fcc and Ibam structures.
In this 3D view a single Ibam unit cell is drawn (comprises of all atoms, with basis
vectors, a, b and c shown). Atoms within the Ibam unit cell are shown as grey circles,
atoms within the fcc unit cell are shown by red circles, with the fcc unit cell shown by
dashed black lines, the Ibam unit cell is not drawn.
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Chapter 4. Studies of Praseodymium

pattern must be made. Choosing the lowest symmetry orthorhombic spacegroup with

I centering, the Immm spacegroup as a starting model, a refinement was made in

Jana2000. Using the cell as proposed by DicVol in refinements it was evident that only

the strongest peaks were modelled, with few other peaks in the observed data accounted

for. By close inspection of the files created by Jana2000 during the refinement process,

a list of the indicies and associated fitted intensities assigned to each observed and

predicted reflection can be made.

Looking for patterns in the absent/zero intensity reflections and comparing these with

the reflection conditions from Table 3.1.4.1 of International Tables A [Hahn (Editor) 02],

allows the spacegroup of this d-fcc phase to be determined. It is evident from the

reflection conditions h+k+l=2n; k,l=2n; h,l=2n; h+k=2n and h00, 0k0, 00l=2n that

the spacegroup is either Iba2 or Ibam. As both of these spacegroups is capable of

describing the observed data equally well in LeBial fits, and further are indistinguishable

by x-ray diffraction, as they are both belonging to the same Laue class. To

decide between the two structures the number of refinable structural parameters was

considered. Ibam has 6 refinable parameters (a, b, c, x1, y1, and y2). Iba2 has 8

refinable parameters (a, b, c, x1, y1, z1, z2 and z3) owing to reduced multiplicity at

the atomic positions within the structure. As Ibam requires fewer parameters to model

a diffraction pattern, it can be viewed as the simplest and highest symmetry solution.

Ibam is thus the logical choice for spacegroup of the 14-19GPa d-fcc phase. A refined

fit (Rietveld) using the Ibam structure to data collected at 19GPa on ID09 of the ESRF

is presented in Figure 4.21.

The positions of atoms in the Ibam structure were determined using the web-

based WYCKSPLIT [Kroumova 98] program on the Bilbao Crystallographic Server

[Aroyo 06]. Providing the fcc structure as a basis, the atoms in the Ibam structure are

given at the 8j (atoms located at (x, y, 0), (-x, -y, 0), (-x + 1
2 , y+1

2 , 0), (x+1
2 , -y+1

2 , 0)

within the Ibam unit cell) and 8g (atoms located at (0, y, 1
4), (0, -y, 1

4), (0, -y, 3
4), (0,

y, 3
4) within the Ibam unit cell ) positions. Knowing the atomic positions at transition

to the structure, Rietveld refinements can be made of the 19GPa ID09A dataset. This

is shown in Figure 4.21. The structural information is summarised in Table 4.7.

Analysis of the symmetry relationships between the R3̄m structure and the Ibam

structure shows no direct subgroup-supergroup relationship. The R3̄m and Ibam

structures can be related through an intermediary structure, the C2/m structure that

was originally proposed as a solution to the 14-20GPa region of the d-fcc stability-range.
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4.8. Structure of Praseodymium from 14-20GPa

Figure 4.21: Rietveld refinement of Pr using the Ibam, the 1D integrated pattern made
from file 260 of the HS3109 run, collected at Station ID09A of the ESRF, Grenoble.
Where λ=0.41146Å, pressure= 19GPa. Fit parameters are as follows a=8.8955Å,
b=6.3809Å; c=6.2011Å. x1=0.2673(5);y1=0.0405(6);y2=0.2310(6).

Parameter Value

a 8.8955(6)Å

b 6.3809(3)Å

c 6.2011(4)Å

Volume 21.99Å3

c
a

0.6971

x1 0.2673(5)

y1 0.0405(6)

y2 0.2310(6)

Uiso1 0.0179

Uiso2 0.0025

Table 4.7: Structural information gained from a Rietveld refinement of Pr diffraction
data collected at 19.0GPa using the Ibam structure. Data collected at Station ID09A
of the ESRF, Grenoble with a wavelength of λ=0.41146Å.
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Chapter 4. Studies of Praseodymium

Figure 4.22: Plot of variation of the Ibam c/a ratio with respect to pressure. Error
bars are plotted, but are obscured by the plotted symbols.

Refinements were made of all patterns collected from Pr in the 14-19 GPa pressure

range, this encompassed data collected from Station 9.5 of Daresbury SRS and ID09A of

ESRF. When using the Ibam structure the difficulty in fitting and refining integrated Pr

powder diffraction data from pressures greater than 16GPa, as mentioned by previous

authors [Baer 03, Holzapfel 95], was not observed. The Ibam structure provided low

Rwp (≈4%) and χ2 values and no significantly large misfits (on the refinement difference

plots) in Jana2000. Figure 4.21 is representative of the quality of refinements made

using the Ibam structure, the small misfits here are likely due to prefered orientation

effects, all observed resolvable peaks are accounted for.

Plots of the variation of unit cell parameters ( a
average(b,c)) and volume with pressure are

shown in Figures 4.22 and 4.23 respectively.

In relating the Ibam structure to the precursor phase, hR24, there is no direct group-

sub/super group relation shown by International Tables (or Bilbao Crystallographic
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4.8. Structure of Praseodymium from 14-20GPa

Figure 4.23: Plot of of the Ibam atomic volume with respect to pressure. Error bars
are plotted, but are obscured by the plotted symbols.
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Server). A direct relationship to the fcc structure can be formed, of which the hR24

is a minor distortion. Following this reasoning, distortions to the hR24 could yield

the Ibam structure using fcc relations as an intermediary step. It is interesting to

note that the previous reported structure solution for the d-fcc phases, C2/m, is also

capable of acting as an intermediary phase between the hR24 and Ibam structures.

Transformation matrices quantifying the relationship between the Ibam and fcc cells

are presented near the start of this section, and pictorially in Figure 4.20.

A small, but notable misfit occurs with the Ibam structure (which is also unexplained

by the other previously suggested structures in the literature [Mao 81, Dmitriev 00,

Baer 03, Syassen 00]) at ≈ 18◦. Here, it is observed that the (440) reflection is resolved

to a doublet in patterns collected on ID09a (ESRF), which used a sample that was

annealed prior to the experiment. There is a separation of ≈0.05◦between peaks

(measured from fitting each peak in Datlab). Figure 4.24 depicts this splitting. The

(440) reflection is predicted by the Ibam structure to be a singlet, thus the observed

splitting is not accounted for. No other splittings were observed in the data. Further,

this splitting was only observed in the highest resolution datasets (collected on ID09a

at the ESRF) that had been previously annealed. While the author notes this suggests

a slight distortion to the Ibam structure, there is not enough data to ascertain, with

certainty, if the structure of Pr is indeed distorted from the orthorhombic Ibam solution

proposed here. Ibam represents the best found solution to the observed data.
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4.8. Structure of Praseodymium from 14-20GPa

Figure 4.24: Diagram how the Ibam structure fails to account for the splitting of a
peak (440) located at 18.27◦. Here, dots represent the observed data, the upper line
represents the refined model, the lower line is the difference plot between the observed
and refined data. Lower tick marks are the peak positions as predicted by the Ibam
model, the upper tick marks were added to highlight the positions of the observed peak
centroids. The small peak splitting, 0.05◦was only observed in the x-ray diffraction
data collected at beamline ID09a of the ESRF, which offered both higher resolution
and higher flux compared to Station 9.5 of Daresbury SRS. λ = 0.414412Å, P = 19GPa.
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4.9 Structure of the α-Uranium phase

A transition from the high-pressure (Ibam) d-fcc phase to the α-U phase is observed to

occur in Pr at 20.5(5)GPa, determined through averaging the pressure at which the α-U

phase is first observed (19GPa, in a mixed phase with d-fcc) to occur and at which it is

completed (21GPa). On pressure increase beyond 19GPa the d-fcc phase is observed to

contain weak peaks originating from the Cmcm α-U structure reported in the literature

[Mao 81, Dmitriev 00, Baer 03]. These α-U peaks can be seen to increase in intensity

with increasing pressure, with peaks originating from the d-fcc phase decreasing in

intensity as the pressure is raised further above 19GPa, up to 21GPa, where the α-U

diffraction pattern dominates as the applied pressure increases. At 21GPa, the α-U

diffraction pattern is the sole phase present in the sample. Integrated 2D diffraction

patterns collected from Station ID09A of the ESRF are shown in Figure 4.25. The

patterns in this figure highlight the differences between the clean, single-phase patterns

from within the d-fcc and α-U phase, in stark contrast to the subtle changes to the

diffraction profiles which accompanied the transition from R3̄m to Ibam within the

d-fcc phase at 14GPa.

As noted by Dmitriev et al. [Dmitriev 00] and Chesnut et al. [Chesnut 00b] the

onset of this transition is apparent on 2D diffraction patterns from the appearance

and tendancy of additional Debye-Scherrer rings to appear and become highly textured

(spotty) on the 2D diffraction image. The appearance of textured rings is in contrast

to the smooth Debye-Scherrer rings observed within the d-fcc phase, and indicates

evidence of recrystallisation of the sample upon the entering the α-U phase. This

appearance of spotty diffraction rings is observed in all patterns collected within the

α-U pressure range reported by Baer et al. [Baer 03], an example of a 2D diffraction

image, collected at Station 9.5 of Daresbury SRS, is presented in Figure 4.26, which

shows an enlarged section of the Debye-Scherrer ring from the α-U and d-fcc phases.

Patterns in the α-U phase were collected, as for the d-fcc phase, in a multitude

of separate experiments, which encompassed using Station 9.1, Station 9.5 HPT of

Daresbury SRS and ID09A of the ESRF, with samples loaded in mineral oil or dry.

Little ambiguity persists in the literature to date pertaining to the structure of the α-U

phase, only a study by Mao et al. [Mao 81] misreported the structure for this phase

(which lead to a large volume change being noted at the d-fcc to α-U transition).

Successive investigations on the α-U stability range in Pr have revised the upper

pressure limit of the phase, which was noted by Chesnut et al. [Chesnut 00b] as

being stable up to 103GPa. Velisavljevic and Vohra [Velisavljevic 04a] performed
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4.9. Structure of the α-Uranium phase

Figure 4.25: Waterfall plot showing the transition from the Ibam d-fcc phase to the
α-U phase in Pr. Pressures of each data set are noted on the right side of the diffraction
pattern. The pattern at 19.6GPa is predominantly Ibam, 20.3 and 20.5GPa are mixed-
phase patterns, 20.6GPa is a predominantly α-U pattern.
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Figure 4.26: Part of a 2D diffraction image of Pr at 21GPa taken at beamline ID09a
of the ESRF. This figure highlights the pronounced texture visible in the diffraction
rings, which is observed in all samples upon transition to the α-Uranium phase.
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4.9. Structure of the α-Uranium phase

x-ray diffraction studies at room-temperature up to 311GPa, but did not observe a

transition from α-U to another phase. Indeed, using the MB DACs with a highest

attainable pressure of 40GPa, and for the DXR6 cells the highest attainable pressure of

50GPa (using the diamonds available) falls well below the upper stability pressure

for this phase. For these reasons the α-U phase was not systematically studied

through its pressure stability range. Instead, studies were made up to a maximum

of 25GPa, based on Vohra’s [Vohra 81] claim of the d-fcc stability extending to

25GPa. This statement can be disproved, as shown in Figure 4.25, which clearly shows

the α-U phase’s stability above 20.5(5)GPa, in agreement with work published later

[Mao 81, Grosshans 92, Chesnut 00b, Dmitriev 03, Baer 03].

Using the spacegroup for α-U reported in the literature by numerous authors as the

post d-fcc phase in lanthanides [Chesnut 00b, Dmitriev 03, Baer 03], Cmcm, Rietveld

refinements were made to the data collected above 20.5GPa for Pr. Values for the

unit cell dimensions given by Baer et al. [Baer 03] at 27GPa (and a temperature of

718K) using energy dispersive techniques (a = 2.7330, b = 5.4665 and c = 4.8769Å)

provide excellent starting values for refinements when (the 4) atoms are located in the

4c atomic positions within the unit cell ( (0, y, 1
4) and (0, -y, 3

4) with y = 0.1 (as stated

by Chesnut [Chesnut 00b]). Excellent quality fits can be produced to the data collected

above 20.5GPa, as demonstrated by Figure 4.27. Close inspection of this figure reveals

no significant misfits to the observed data. Refined lattice parameters for the Rietveld

refinement (on a pattern collected at 21GPa) shown in Figure 4.27 are given in Table

4.8. Discrepancies between the values quoted by Baer et al. and those refined here

originate from the difference in pressure and temperature (27GPa, 718K vs. 21GPa,

300K). Using the reindexed values from Grosshans et al. [Grosshans 83] to Mao et

al.’s data [Mao 81], which states lattice parameters of a = 2.761, b = 5.618 and c =

4.877Å (V = 18.91Å3) at 21GPa yields a different value to the volume collapse than

that reported.

The volume/atom at this pressure of 21GPa (where the α-U pattern has no remaining

d-fcc peaks) is markedly lower than that of the highest pure d-fcc phase refined

pattern, ≈8% lower, in agreement with the reported volume collapse of ≈14% stated

in [McMahan 98] as arising from the delocalisation of the 4f electrons. This large

volume collapse signifies a 1st order transition. This measured volume difference upon

transition to the α-U structure is somewhat lower than the value originally reported

by Mao et al. [Mao 81], but in close agreement with Grosshan’s [Grosshans 83], which

states the volume change to be 9.3%.
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Figure 4.27: Rietveld refinement made to a sample of Pr, at 21GPa, in the α-Uranium
phase. Data collected on Station 9.5 of Daresbury SRS using a wavelength of λ =
0.44397Å. Refined lattice parameters are given in Table 4.8 Rwp=4.79%

Parameter Value

a 2.7743(1)Å

b 5.6165(2)Å

c 4.8924(3)Å

Volume 76.2326(4)Å3

Volume/atom 19.0582(4)Å3

a
c

0.56710(4)

y 0.1

Uiso 0.0197

Table 4.8: Table showing the structural parameters of the α-U phase of Pr, as refined
from patterns collected at 21GPa
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4.9. Structure of the α-Uranium phase

4.9.1 Single Crystal Growth Attempts

Attempts were made to resolve the ambiguity encountered in determining the structure

of the d-fcc phase by growing a single crystal in both the high and low pressure ranges

previously referred to as the d-fcc phase (7-14 GPa and 14-20GPa). The method of

annealing at low-moderate temperatures (compared to the melting point of Pr at the

relevant pressures), 200-300◦C, whilst resulting in integrated patterns with smaller

FWHM, showed no evidence which suggested the recrystallisation of Pr from a powder

into a single crystal crystal. This method of annealing the DAC in an oven suffered a

major limitation, in that limitations are imposed on the temperatures that can be used.

These limitations are imposed by the design of the DAC and safety concerns related

to components used in the DACs. Heating a substantial amount above 300◦risked

loosening of the support structure around the diamond anvils and/or introducing an

excessive amount of strain upon the Be backing discs used in the MB DACs employed

for the majority of this study.

Laser heating was used to overcome safety concerns, and the heating limitations when

using the DACs in conjunction with regular (resistive heating) collars (which enclose

the DAC within a metal ring which is resistivly heated upon application of an electric

current) or furnace heating. Laser heating thus allows access to temperatures in the

region of the melting curve for Pr at high pressures (at 19GPa the melting point is

≈1100◦C and d-fcc → fcc is at ≈200◦C [Tonkov 05]). Efforts were made to grow a

single crystal of Pr from the melt by laser annealing, using a 150W CO2 laser, capable

of heating to temperatures in excess of 6000◦C. Laser heating required a different

sample preparation (loading) method, to ensure thermal insulation of the diamonds

from the laser heated sample (to prevent damage to the diamond culets). A schematic

diagram of the loading is shown in Figure 4.28, with thermal isolation achieved by

using a thin layer of dry, ultra-pure NaCl atop the diamond culet and atop the sample,

effectively sandwiching a freshly cleaved chip of Pr between layers of NaCl. The NaCl

acted as a thermal barrier and a pressure transmitting media, albeit an extremely stiff

media, likely to introduce a large degree of strain within the sample. A 200µmthick

tungsten gasket, preindented to 40µm, with a laser-cut sample hole of 100µmdiameter

was used to form the sample chamber. NaCl was pressed into a disc within the empty

sample chamber (prior to loading of the sample and ruby manometer), this disc was

approximately halved in height, the sample and ruby sphere were placed atop one half

within the sample chamber and NaCl positioned on top of this layer. A schematic of

this loading is shown in Figure 4.28, the DAC was then closed within the glovebox and

initially pressurised.
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Figure 4.28: Schematic diagram of the sample chamber used for laser annealing trials. A
thin NaCl barrier is highlighted. Location of Pr sample, ruby sphere pressure calibrant
and tungsten gasket are labeled.

An initial attempt at loading a sample in this manner was made in a MB type DAC,

a number of failed loading attempts in this DAC were made before a Boehler-Almax

DAC became availible for use. The Boehler-Almax design represented the most sensible

choice for DAC to house a single crystal, having larger opening angle than a MB cell,

granting access to a broader region of reciprocal space, and without contamination of

the 2D diffraction image from Be (from the backing discs of “standard” MB DACs) at

high rotation angles.

The Centre for Science at Extreme Conditions (CSEC, an inter-disciplinary centre at

the University of Edinburgh) IR laser source produces light of λ of 1064nm, within

the near-IR spectrum, readily absorbed by metallic elements, but not by the other

components within the sample chamber, as shown in Figure 4.28 as for Boehler et al.

[Boehler 01]. A focused laser spot size of 10µmimpinges on the sample of approximate

size 70 x 20µm, and requires the sample to be rastered across to effectively heat the

sample. Normally, the temperature of the heated sample during the laser annealing is

measured indirectly, by fitting a black body radiation spectrum to the incandescent light

collected from the sample during the annealing process. However, the fitting of black

body radiation spectra was not available at the time the annealing was carried out. As

such, the temperature was estimated based on the power output settings of the laser.

Large thermal gradients within the chamber were avoided by ensuring the temperature

did not greatly exceed the intended value, nor the temperature of the sample remain

elevated for prolonged periods of time. The intention of these considerations is to allow

heat to dissipate from the system between heatings, without the highly (thermally)

conductive diamonds being endangered. The DAC was pressurised to 19GPa, a
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4.9. Structure of the α-Uranium phase

pressure close to the d-fcc → α-U phase boundary, at which heating is shown earlier

to increase the quality of patterns and create pronounced texture in diffraction rings

([Dmitriev 00]). Heating occurred in ≈ 5 second intervals, separated by ≈ 2 minute

pauses. Initially the laser was used on 3% power, ramped up with successive exposures

to 10% power (≈ 750◦C). The DAC was rotated and the opposite side of the sample

exposed. Coupling of the laser to the metallic sample at 10% power is suspected to be

weak.

Data collected from the laser-annealed Pr sample on Station 9.5 of Daresbury SRS

showed tentative suggestions of recrystallisation, with powder diffraction rings tending

to “clump” (becomes polycrystalline) exhibiting regions where the diffracted intensity

is markedly at background and regions where it is markedly higher, but did not

become a single crystal. Figure 4.29 shows a section of the 2D diffraction pattern

from this sample. An increased number of contaminant peaks were evident from the

1D diffraction profile which arose from the NaCl present as a pressure medium and

thermal barrier. It is promising that the sample became more textured after laser

annealing, suggesting that further heating at a higher temperature (into the melt)

and cooling would encourage the growth of a single crystal. It is not known what

effect the immediate cessation of heating (if any) has upon the crystallisation process

here. If perhaps gradual cooling from HT would encourage the formation of a single

crystal. Further investigation, unfortunately not permissible within the timescale of

this research, would be required to ascertain the conditions required to grow a single

crystal of Pr within a DAC.
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Figure 4.29: Section of 2D diffraction image from the laser annealed Pr sample
in Boehler-Almax style DAC. Diffraction pattern collected on Station 9.5 HPT at
Daresbury SRS, with a wavelength of λ = 0.44397Å, P = 19GPa. Spots originating
from contaminants are labelled with (⋆), from ruby manometer with (+), remaining
diffraction rings originate from the laser annealed Pr sample.
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4.10 Discussion and conclusions

Contaminants observed during the course of this study can be considered equivalent

to those observed in previous studies [Mao 81, Dmitriev 00, Chesnut 00b]. Observed

are two cubic (fcc) contaminants, one of ambient pressure lattice parameter a =

5.03Å attributable to the praseodymium monoxide, PrO. From comparison with a

materials data sheet provided with the commercially sample of Pr, the highest impurity

concentration is stated as being oxygen. The proclivity of Pr to oxidise in air is observed

in the formation of a tarnished green coating, observed to form over extended periods of

time in a low oxygen concentration environment (glovebox). The other contaminant’s

identity, also fcc, of ambient pressure unit cell size a = 4.88Å remains elusive. It is

observed in the literature by only a small number of authors (shown in Table 3.1), who

neither commented on or speculated as to its origin. An EOS for the contaminants has

been prepared, shown in Figure 4.3, although it should be noted the lack of data in

the region 0 to 5GPa arises from overlap of sample reflections with contaminant peaks

(the ambient pressure point is back extrapolated using the fitted EoS). Where possible

lattice parameters were extracted using a single fcc peak (of known hkl).

At 7GPa Pr has been shown to transform from an fcc unit cell to the hR24 structure

(Section 4.5). Determining the d-fcc phase between 7 and 14GPa required close

examination of the misfits that occurred during the refinements made in Jana2000

for each structure reported in the literature. The hR24 structure yielded the simplest,

best fitting solution able to account for all of the peaks observed in integrated diffraction

profiles collected. Atoms are located in the 18h and 6c sites, with 24 atoms comprising

a unit cell. A direct group-subgroup relationship exists between the precursor fcc

phase and the hR24, as expected for a continuous 2nd order transition. Indeed minor

displacements of the atoms away from their fcc positions, caused by a stretching along

the body diagonal (geometric relation of fcc to hR24, 4x bigger unit cell, stretched

along body diagonal) which gives rise to the “distortion” reflections from which the

phase is named.

A transition is observed at 14GPa which accounts for the difficulty Baer et al. [Baer 03]

had in fitting what was once considered a single phase spanning 7-20GPa. A smooth,

sluggish 2nd order transition, is observed to occur over a pressure range of 4GPa

from a hR24 structure to what the author has shown in Section 4.7 to be a body-

centered orthorhombic cell (oC16, Ibam) discounting previous suggestions (which failed

to adequately account for all of the observed peaks in the integrated diffraction profiles,

without having a large degree of peak overlap). This solution has limitations, being
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unable to account for the observed splitting of the peak indexed as (440), suggesting a

further slight distortion to the structure. With the data collected, it was not possible

to find a better fitting solution.

Above 20GPa the author was able to confirm the observations of the majority of

previous studies, a 1st order transition to an closed-packed α-U structure. The

discrepancy over the transition pressure from the d-fcc to α-U phase (Chesnut et al.

[Chesnut 00b]), which differs from the consensus within the literature, having reported

a transition pressure from d-fcc to α-U of 25GPa has been resolved. The stability and

structure of the α-U phase has not been questioned in the literature, as such detailed

studies were not made of this phase.

A plot of the variation of atomic volume with pressure for the pressure range studied

in Pr is shown in Figure 4.30. Evident is the lack of volume discontinuity for the

transitions in the regular lanthanide phase transition sequence (dhcp→fcc→d-fcc). A

volume disconinuity of ≈ 11% is observed upon transition from the Ibam (d-fcc) phase

to the α-U phase.

A fitted 3rd order Birch-Murnaghan equation of state (EoS) is shown in Figure 4.31

to measured atomic volume for the pressure range 0-20GPa in Pr. A datapoint from

the α-U phase is shown at 21GPa for comparison (but not fitted, owing to the volume

discontinuity which occurs at the 20GPa d-fcc to α-U transition). Fitted k0, k’,k”

and v0 are noted on the Figure. A discrepancy exists between the plotted (34.56Å3)

and EoS fitted (33.83Å3) value for v0, a percentage difference of 2.11%, a small but

non negligable difference. The zero pressure data-point corresponded to a value not

measured, instead this data was taken from the literature [?]. Refinement of the zero

pressure value was allowed by the author to improve the quality of the EoS fit, and

because this value was not measured by the author. The determined bulk modulus, k0

= 31.818GPa is in close agreement, within 9.5%, of the expected value of k0 = 28.8GPa.

Attempts were made to crystallise a single crystal of Pr from a powder sample (using

the Pr supplied by Ulrich Schwartz of the MPI, Dresden) using laser annealing to heat

the sample to the melting point of Pr near the α-U phase transition. These attempts

were however unsuccessful, with prepared, laser annealed samples remaining a powder,

albeit with what appears to be larger grain size, showing promise for the technique.

Further attempts at laser annealing were not possible. The author suspects (after

discussion with colleagues, Dr. J Proctor and Dr. E. Gregoryanz) that the exposure
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Figure 4.30: Plot of the atomic volume vs. pressure for the pressure range investigated
in Pr. Alternating black and grey points are used to differentiate between data collected
in different phases. The determined phase transition pressures are represented on the
figure with dashed vertical lines, phases are labelled. The d-fcc phase is labelled as
hR24 and Ibam, representing the respective solutions for the structure of the phase.
On the right of the figure the volumes before and after the transition to the α-U phase
are noted, a volume difference of 11% is observed at this transition. Data was collected
on Station 9.5 of Daresbusy SRS using a wavelength of λ=0.44397Å.
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Figure 4.31: Plot of the atomic volume vs. pressure for the pressure range investigated
in Pr with a fitted 3rd order Birch-Murnaghan equation of state (EoS) shown in
black. The EoS, fitted using EOSFIT [Angel 01], has least-squares refined values of
k0=31.81761 GPa, k’=2.29268, k”=-0.16018 and V0=33.81656 Å3. The EoS was fitted
from zero (ambient pressure) to 20GPa, owing to the volume discontinuity which occurs
at 20GPa. Data collecetd from Station 9.5 of Daresbury SRS using a wavelength of
λ=0.44397Å. Errors plotted, but obscured by the size of the datapoints.
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time of the Pr to IR laser may not have been sufficiently long to have completely melted

the 30 x 30µmsample.
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Chapter 5

Studies of Neodymium and Lanthanum

5.1 Introduction

A marked similarity can be observed in the high-pressure structural transition sequence

of the lanthanides. Thus, it is expected that the behaviour which occurs in Nd is similar

to that which was observed in Pr, as described in the previous Chapter.

This Chapter will take the form of a brief recap of the information presented in Chapter

3.2, which presents in greater detail a literature review of the Lanthanide series.

Relevant studies from the literature, performed om Nd and La will be summarised

in Section 5.2. The experimental details for work carried out in preparation for this

Thesis are presented in 5.3. Having solved the structure of the Pr d-fcc phase in the

previous chapter (Chapter 4), similar reasoning will be applied to solving the d-fcc

phase of Nd in Section 5.6 and Section 5.8, as the author ascertains if the Pr and Nd

d-fcc phases share common structures.

5.2 Brief review of Neodymium and Lanthanum

Nd shares the generalised lanthanide phase-transition sequence shown to exist through-

out the lanthanides [Baer 03] as shown in Figure 3.2 [Johansson 75]. The phase diagram

of Nd is reproduced from Tonkov [Tonkov 05] in Figure 5.1. Starting at ambient

pressure and temperature Nd exhibits a dhcp structure (labeled as Phase II in Figure

5.1), reported as stable to ≈6GPa, at which point a transition to fcc (Phase III)

occurs. The fcc phase is stable to 12-18GPa (depending on the source of reference in

the literature) [Akella 99, Chesnut 00a], when the fcc (Phase III) → d-fcc (Phase IV)

transition occurs. Similar to reported structures in the literature for Pr, Nd is stated

to have a hR24 structure [Porsch 94a, Chesnut 00a, Velisavljevic 05] (which is denoted

thcp in the work of [Akella 86]) for the d-fcc phase. Upon further compression to 40GPa,

the d-fcc phase is reported to transform to a hP3 structure (Phase V) [Chesnut 00a]
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Figure 5.1: High-pressure and high-temperature phase diagram of Nd, reproduced from
Tonkov [Tonkov 05].

structure. Following the transition to hP3 at 40GPa, there is a second-order transition

to a C2/m (Phase VI) structure at 75(5)GPa [Akella 99, Velisavljevic 05] before the

4f -delocalisation transition to a closed-packed, α-Uranium structure [Chesnut 00a] at

113(6)GPa (with no volume discontinuity). Velisavljevic et al. state the onset of

α-U transition is observed at 118GPa by x-ray diffraction, but note that electrical

resistivity measurements place the onset of the transition at 100GPa [Velisavljevic 05].

Velisavljevic et al. state the first pressure a single-phase diffraction pattern of the α-U

phase is observed, is at 152GPa. Interestingly, Akella et al. [Akella 99], in their study

(to 153GPa), did not observe a transition to the α-U phase.

This is intriguing, as studies of a high-pressure analogue, Pr, reported the hP3 and

C2/m structures as candidates for the Pr d-fcc phase (see Chapter 4.5). Both structures

have, however, been shown to be incorrect structures for describing the d-fcc phase, by

the author in Section 4. This begs the question as to whether the structural sequence

in Nd and La possesses the same phases discovered in Chapter 4 to exist in Pr.
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5.3 Experimental Details

5.3.1 Loadings

The neodymium used for this study was sourced from a commercial vendor, Alfa-Aesar

(stated purity of 99.9%) and through colleagues (Ulrich Schwarz) at the Max Plank

Institute (MPI), Dresden (stated purity of 99.99%). Nd, like Pr, has a high propensity

to discolour (tarnish) in air, upon its surface an oxide coating rapidly forms, which is

attributable to Nd2O3 [Winter 09, McCullough 50] and neccessitating preparation of

samples in an oxygen-free environment, be it under oil in a laboratory, or in a glovebox

in an inert Ar atmosphere. This is the same procedure adopted for the loading of Pr

(Chapter 4).

Samples were loaded into a MB or DXR6 type pressure cells with either 250µmor

300µmdiamond culets; prepared with a 200µmtungsten gasket, preindented to ap-

proximately 30µmwith a spark eroded sample chamber hole, 75µmin diameter. Two

ruby spheres of approximate size 5µmenable the pressure to be measured using the

ruby fluorescence method [Mao 86]. Mineral oil was used in all cells as a pressure

transmitting medium. Where possible, samples were loaded within a glove box to

prevent the contamination of samples upon exposure to air. Where this was not

possible, for example, when reloadings needed to be made in Daresbury SRS without

access to a glovebox, the loadings were performed under oil (as for Pr, described in

Section 4.2).

Data from the cells loaded with Nd and La were collected by angle-dispersive x-ray

diffraction methods on Station 9.5 of Daresbury SRS, using the In K-edge, giving

λ = 0.44396Å. Pressure cells were mounted on the motorised stage, as described in

Section 2.5.3.1, with the sample-to-detector distance set at approximately 300mm. This

distance was calibrated exactly using a Si reference sample, as noted in Section 2.5.3.1,

the use of which also allows the tilt (of the detector surface away from the vertical) to

be refined in the software package Fit2D [Hammersley 98].

5.4 Contaminants

As noted earlier in Chapter 3, the high reactivity of the lanthanides leads to a propensity

to react upon exposure to moisture or air. Curiously, however, comments within the

literature pertaining to the presence of contaminants within samples are not present
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(for both Nd and La). Citing the work of Akella et al. as an example, the diffraction

pattern shown in Figure 3 of [Akella 99], Nd at 89 GPa (collected as an EDX pattern as

opposed to the ADX methods employed during this thesis), has an unlabelled peak at

approximately 31 keV which the authors attribute to neither sample, gasket, “escape

peak”, pressure medium, or to the pressure calibrant used. The origin of this peak can

be postulated to arise either from an unidentified contaminant, as Akella ascertains the

structure at this pressure is C2/m (yet fails to provide an adequate means of assessing

the quality of the C2/m structure as a model for Nd at this pressure), or that the peak

originates from the sample and (like in the case for Pr) it is indicative of a poorly-chosen

structural model for Nd at this pressure.

In all data collected for this thesis from Nd (from multiple experiments at Station 9.5

of Daresbury SRS), on both compression and decompression, contaminant peaks are

observed. Precautions were taken to minimise the appearance of contaminants through

exposure to air and moisture during the sample preparation and loading stage of each

experiment, as discussed in Section 5.3.1. Observed in the data are contaminant peaks,

as highlighted in Figure 5.2, which occur in pairs, with distinct d-spacings, which are

consistent with two fcc lattices, suggesting, as with Pr, that two cubic contaminants

are present.

As observed in Pr, contaminant peaks are readily identifiable in 2D diffraction patterns

collected with the Mar345 detector. That is, the contaminants have diffraction rings

which are weak in intensity, and appear textured (whereas diffraction rings originating

from the sample have a more uniform intensity distribution around the diffraction ring).

Also, from observing the evolution of the contaminant peaks upon pressure increase, it

can be seen that the contaminant has a lower compressibility that the sample, as also

observed for the contaminants present in Pr (see Section 4.3).

However, overlap between the sample and contaminant peaks obscures the weak

contaminant peaks in many of the diffraction patterns, preventing more than 2 or

3 of them from being observed. As such, the author speculates from comparison to the

Pr contaminants that the contaminant has an fcc structure.

The structure of Nd was not studied below 1.6GPa during the experiments performed

for this thesis. The ambient-pressure values for the lattice parameters of the

contaminant(s) cannot therefore be provided from direct measurement. Extrapolation
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5.4. Contaminants

Figure 5.2: Integrated 1D diffraction profile of Nd collected at 11.6 GPa from a
sample in a DXR6 type DAC on Station 9.5 of Daresbury SRS, using a wavelength of
λ=0.44397Å. Contaminant peaks are highlighted with asterisks in the main diffraction
profile. The inset shows an enlarged region of the diffraction profile, between 8 and
12◦in 2θ, with contaminant peaks indicated by crosses.
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of the lattice parameters to zero pressure has instead been made by the fitting of a

3rd order Birch-Murnaghan equation of state [Birch 47] using EOSFIT [Angel 01] to

measured values of the contaminant’s lattice parameters.
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Parameter Value

a 3.5394(2)Å

c 11.5867(1)Å

Volume 129.5846(3)Å3

Volume/atom 32.3961(3)Å3

a
c

0.3101(1)

Uiso1 0.0237(13)

Uiso1 0.0247(12)

Table 5.1: Table showing the structural parameters of the dhcp phase of Nd, as refined
from a pattern collected at 1.7GPa on Station 9.5 of Daresbury SRS, using a wavelength
of λ=0.44397Å. Reitveld refinement is shown in Figure 5.4.

5.5 Structures of Neodymium below 16GPa

Figure 5.3 shows a waterfall plot of a subset of the data collected from Nd. Patterns

from this figure are chosen to be representative of the phases observed, and were

collected during two experiments on pressure increase. Evident from Figure 5.3 are

three distinct regions, each attributable to a different high-pressure phase of Nd.

The ambient-pressure, room-temperature structure observed in Nd is dhcp, with a =

3.657Å, and c = 11.799Å. Like the other lanthanides, the dhcp phase in Nd has a

P63/mmc spacegroup with 4 atoms on the 2a ( (0, 0, 0) and (0, 0 , 1
2) and 2c ( (1

3 ,
2
3 , 1

4) and (2
3 , 1

3 , 3
4) positions within the unit cell as reported by previous authors

[Tonkov 05, Akella 86]. A Rietveld refinement of a dhcp diffraction pattern collected

at 1.7GPa is presented in Figure 5.4. It can be seen that the dhcp structure yields an

excellent fit (Rwp=11.16%) to the data, the refined lattice parameters are presented in

Table 5.1.

On pressure increase from ambient pressure (at room temperature), Nd is observed

to undergo a second-order phase transition at 3.8(10)GPa from the ambient-pressure

dhcp structure to fcc (shown in Figure 5.3). The transition pressure is determined

as the mid-point of the pressures of the highest-pressure single-phase example of the

precursor phase and the lowest pressure single-phase example of the new phase as

observed on pressure increase. Thus, a number of distinct transition pressures taken in

this way during six separate experiments can be averaged to give a transition pressure

of 3.9(2)GPa. Comparing this determined transition pressure with that reported in the

literature, 3.8GPa [Akella 86] shows a close agreement, with the measured value lying

within errors bounds of the literature value.
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Figure 5.3: Waterfall plot of integrated 1D diffraction profile representative of the
phases observed on compression of Nd from 1.7-42GPa. Pressures of the individual
patterns are listed to the right of each diffraction pattern. Data were collected on
Station 9.5 of Daresbusy SRS using a wavelength of λ=0.44397Å.
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Figure 5.4: Rietveld refinement of a Nd dhcp pattern collected at 1.7GPa on Station
9.5 of Daresbury SRS, using a wavelength of λ=0.44397Å. A mineral oil pressure
transmitting medium was used. Rwp = 11.16%. The unit cell parameters are: a =
3.5394(2)Å and c = 11.5867(1)Å. An asterisk indicates the position of the contaminant
peak within the sample.
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Parameter Value

a 4.7431(1)Å

Volume 106.7194(10)Å3

Volume/atom 26.6798(10)Å3

a
c

1 (or 2.4495 in hexagonal setting)

Uiso1 0.0538(7)

Uiso1 -0.0119(20)

Table 5.2: Table showing the structural parameters of the fcc phase of Nd, as
refined from a pattern collected at 12.3GPa on Station 9.5 of Daresbury SRS, using a
wavelength of λ=0.44397Å. Reitveld refinement is shown in Figure 5.5.

The pressure-evolution of the dhcp structure, while not of primary importance in

this study, was observed through to the transition to fcc. The dhcp phase changes

continuously with pressure increase, with some peaks decreasing in intensity until

3.8GPa, at which point a fcc pattern remains. No measurable volume change is observed

at the transition from the dhcp to the fcc phase.

The fcc phase of Nd has atoms located in the 4a site, and Rietveld refinement of patterns

collected above 4GPa confirm the structure to be fcc. An example of such a Rietveld

refinement is shown in Figure 5.5. Note the excellent quality of the fit, which results in

the low Rwp of 4%. The lattice parameters at 12.3GPa are a=b=c=4.7431(1)Å. This

data is summarised in Table 5.2. As shown in Figure 5.6, the volume of the fcc phase

decreases steadily (approximately linearly) from 27.0589(40) to 24.4574(3)Å3 over its

stability range.
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Figure 5.5: Rietveld refinement of the fcc phase of Nd collected at 12.3GPa on Station
9.5 of Daresbury SRS, using a wavelength of λ=0.44397Å. A mineral oil pressure
medium was used, with ruby spheres as a pressure manometer within the sample
chamber. The unit cell parameters are a = b = c = 4.74309(5)Å, Rwp=4%.
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Figure 5.6: Plot showing the atomic volume plotted against pressure for the fcc phase
of Nd. Data were collected on Station 9.5 of Daresbury SRS, on both pressure increase
and pressure decrease, during different experiments. Errors in the volume at each
pressure are of the order x10−4 Å3 and as such are not visible on the plot. A guide to
the eye (fitted using a linear least squares routine) is also shown.
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Figure 5.7: Diagram illustrating the hysteresis observed in the fcc to d-fcc transition
on pressure increase and decrease. The data shown were collected from a single
sample during an experiment on Station 9.5 of Daresbury SRS, using a wavelength of
λ=0.44397Å. Open squares represent data collected on pressure decrease, filled squares
represent data collected on pressure increase.

5.6 Structure of d-fcc Neodymium

The fcc phase remains stable up to 16.6GPa on pressure increase, as shown in Figure

5.8. Above 16.6GPa a number of additional peaks appear and the fcc (111) and

(200) peaks split. Observation of the transition back to the fcc phase of Nd upon

decompression reveals a large degree of hysteresis in the transition pressure, with

Figure 5.8 highlighting the splitting of the (111) peak from the fcc structure, and

presence of superlattice reflections originating from the d-fcc phase until 11.5GPa on

pressure decrease. The transition from fcc → d-fcc on increasing pressure is measured
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to be 18(1)GPa, in agreement with previous work [Akella 99, Chesnut 00a] who report a

transition pressure to d-fcc at 18 and 17GPa, respectively. The observation of hysteresis

in the transition from fcc → d-fcc is surprising, as Porsch and Holzapfel [Porsch 94b]

state that all transitions in the regular lanthanide sequence, excluding the fcc → d-fcc

transition, are “accompanied by a perceptible hysteresis”. It was noted in Chapter 4

that similar hysteresis in this transition is observed for Pr.

Peaks identifiable as strong intensity singlets, or obviously-resolvable doublets from

the d-fcc profile shown in Figure 5.9 were indexed in DicVol [Louer 04]. Prior to

indexing, the locations of the peaks to be used for indexing were determined by profile

fitting in DatLab [Syassen 08b]. Suggested by DicVol are a number of monoclinic and

hexagonal structures, as for Pr (described earlier). These structures correspond to

those previously reported as solutions for the d-fcc phase of Pr, the C2/m [Syassen 00],

P2/m [Dmitriev 00] and R3̄m [Hamaya 93] structures.

Attempts were made to refine the a pattern collected in shown in Figure 5.9 using

the hR24, C2/m and P2/m models suggested by [Velisavljevic 05, Chesnut 00a] and

[Dmitriev 00] (for Pr) and [Syassen 00] (for Pr) respectivly. Reports in the literature

for Nd, however, consistently state that the hR24 (R3̄m) structure is the solution to

the d-fcc phase for Nd.

Using a LeBial refinement (to gauge the best possible fit to be expected using this

structure, as at this model-testing stage, misfits, peak overlap and unexplained peaks

are of primary interest) of the C2/m structure to a d-fcc pattern of Nd collected at a

pressure of 22.4GPa is shown in Figure 5.10, with refined lattice parameters given in

the figure caption. The refinement, whilst having a low Rwp = 5.69%, fails to account

for a number of low-intensity reflections found in the diffraction pattern, examples of

which are the peaks located at ≈ 13.9◦and 21.5◦as highlighted in Figure 5.10. This

inability to account for low-intensity peaks (in similar relative locations) was observed

in Pr.

Lowering the symmetry of the C2/m structure by removing the C-centering condition

gives the P2/m structure, which was also given as a solution for Pr [Syassen 00]. A

LeBail refinement using this structure to the same 22.4GPa Nd pattern as used for the

C2/m refinement is shown in Figure 5.11. Lattice parameters are noted in the figure

caption. The lower symmetry P2/m structure displays a lower Rwp, Rwp = 4.28%,

and is able to account for all of the observed sample reflections. However, as was the
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5.6. Structure of d-fcc Neodymium

Figure 5.8: Two integrated diffraction patterns from Nd, collected at (i) 12.6GPa and
(ii) 15.4GPa. The pattern in (i) is within the fcc phase, while that of (ii) is in the
d-fcc phase. Note the splitting of the fcc (111) and (200) peaks and additional peaks
appearing in (ii). This splitting is highlighted (by tick marks below the diffraction
patterns) in the inset, which shows an the region around the fcc (111) reflection for
both the 12.6GPa and 15.4GPa diffraction pattern shown in main body of the figure.
The pattern presented in (ii) is shifted by -0.27◦in 2θ, such that the main peaks are
approximately aligned in both patterns. Data for this figure were collected on Station
9.5 of Daresbusy SRS, using a wavelength of λ=0.44397Å
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Figure 5.9: Background-corrected d-fcc Nd pattern collected at 22.4GPa on Station 9.5
of Daresbury SRS, using a wavelength of λ=0.44397Å.
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5.6. Structure of d-fcc Neodymium

Figure 5.10: LeBial refinement of a Nd d-fcc pattern collected at 22.4GPa on Station
9.5 of Daresbury SRS using the C2/m structural solution. Refined lattice parameters
are a = 5.5010(2)Å, b = 3.1328(2)Å, c = 5.4232(3)Å, and β = 109.295(5)◦. Rwp =
5.69% for this LeBial refinement. A wavelength of λ=0.44397Åwas used to collect this
data.
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Figure 5.11: Refinement made to a Nd d-fcc pattern collected at 22.4GPa from Station
9.5 of Daresbury SRS using the P2/m structural solution. Refined lattice parameters
are a = 5.4988(2)Å, b = 3.1373(2)Å, c = 5.4198(2)Å, and β = 109.217(4)◦. Rwp =
4.28% for this LeBial refinement. A wavelength of λ=0.44397Åwas used to collect this
data.
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5.6. Structure of d-fcc Neodymium

Figure 5.12: Refinement made to a Nd d-fcc pattern collected at 22.4GPa from Station
9.5 of Daresbury SRS using the hR24 structural solution. Refined lattice parameters
are a = b = 6.2640(1)Å, c = 15.5776(3)Å. Rwp = 5.14% for this LeBial refinement. A
wavelength of λ=0.44397Åwas used to collect this data.

case for Pr, this lower-symmetry solution predicts a majority of the observed peaks to

be doublets or triplets, and no evidence of this is seen. Furthermore, most of these

multiplets are comprised of zero intensity reflections.

A LeBail refinement using the hR24 structure to the same 22.4GPa diffraction pattern

used for the C2/m and P2/m is shown in Figure 5.12. Refined lattice parameters

are given in the figure caption. It can be seen from this refinement that the hR24

structure is able to account for all of the peaks present from the sample. Unlike the

P2/m structure, this is possible without making a majority of the observed peaks into

multiplets and necessitating many zero-intensity reflections. In describing the d-fcc

phase, the hR24 structure requires fewer refinable parameters (2 in a Lebial fit, 5 in

a Rietveld refinement. The P2/m requires 4 refinable parameters in a Lebial, 8 in a

Rietveld refinement), as such it offers a simpler and higher symmetry solution to the

observed data. Thus, the d-fcc phase of Nd is best described using the hR24 structure

as described in the literature [Velisavljevic 05], [Chesnut 00a].
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Parameter Value

a 6.2639(2)Å

c 15.5773(5)Å

Volume/atom 22.0508(15)Å3

c
a

2.4871

x1 0.4909(2)

z1 0.2575(2)

z2 0.2277(2)

Uiso1 0.0037(8)

Uiso1 0.0087(15)

Table 5.3: Table showing the structural parameters of the fcc phase of Nd, as
refined from a pattern collected at 12.3GPa on Station 9.5 of Daresbury SRS, using a
wavelength of λ=0.44397Å. Reitveld refinement is shown in Figure 5.5.

5.7 Pressure Dependence of hR24 Neodymium

A Rietveld refinement of d-fcc Nd, using the hR24 structure is shown in Figure 5.13,

with structural parameters summarised in Table 5.3. As stated in the previous section,

the hR24 structure represents the best-fitting, simplest structure to the data, while

also remaining consistent with observations made in the literature and accounting for

all of the observed peaks.

The hR24 structure was used as the structure model for Rietveld refinements made

of all of the patterns collected within the d-fcc pressure range. Figure 5.14 shows the

pressure variation of the c/a ratio for Nd over the stability range of the hR24 phase on

pressure increase (≈14GPa to 22.4GPa), and pressure decrease (22.4GPa to 12GPa).

Evident from this plot is a non-linear increase of the c/a ratio from 2.449 (
√

6) from

the fcc phase to a maxima of 2.487 at 22.4GPa; the shape of this graph is comparable

to the behaviour of the c/a ratio of Pr (shown in Figure 4.15).

The atomic volume of Nd in the hR24 phase decreases approximately linearly (to first

order), as shown in Figure 5.15, from a maxima of 26.0812(6)Å3 (at 12.3 GPa) to

22.0508(15)Å3 (at 22.4 GPa). The maximum value here was measured on pressure

decrease from the hR24 phase to the fcc phase, in a pressure cell which had been

cycled in pressure. The volume minima was observed on pressure increase in a

different loading. There is a degree of scatter amongst the recorded data, in Figure

5.15, where different-shaped symbols are used to identify different loadings, each with
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5.7. Pressure Dependence of hR24 Neodymium

Figure 5.13: Rietveld refinement of Nd d-fcc phase using the hR24 structure to an
x-ray diffraction pattern collected at 22.4GPa at Station 9.5 of Daresbury SRS, with a
wavelength of λ=0.44397Å. Refined lattice parameters are a = b = 6.61396(9) Å, c =
16.2340(3)Å. Atomic positions are x1 = -y1 =0.4909(2), z1 = 0.2575(2), x2 = y2 = 0,
z2 = 0.2277(2). Rwp = 7.63% for this refinement.
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Chapter 5. Studies of Neodymium and Lanthanum

Figure 5.14: Variation of the c/a ratio for the hR24 phase of Nd, between 12.3 and
22.4GPa on both pressure decrease (open squares) and pressure increase (all filled
symbols). The c/a ratio of the precursor fcc phase for comparison is

√
6, or 2.449. Data

were collected on Station 9.5 of Daresbusy SRS using a wavelength of λ=0.44397Å.
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5.7. Pressure Dependence of hR24 Neodymium

Figure 5.15: Variation of the atomic volume Nd in the stability range of the hR24 phase
(between 12.3 and 22.4GPa), on both pressure decrease (open squares) and pressure
increase (all filled symbols). Different filled symbols correspond to data collected from
different loadings of Nd. Data was collected on Station 9.5 of Daresbusy SRS using a
wavelength of λ=0.44397Å.
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mineral oil pressure transmitting medium, and 300µmdiamond culets. The open-square

datapoint at 16.5GPa in Figure 5.15 is considered by the author as an outlier, as the

pressure measured before and after the exposure to the x-ray beam for this point

differed considerably (≈5GPa), possibly due to rapid pressurisation with insufficient

time allowed for the pressure inside the sample chamber to equilibrate.

A plot of the variation of the atomic positions x1, z1 and z2 with pressure is shown in

Figure 5.16, which plots data collected on pressure increase (filled square and triangle

symbols) and pressure decrease (open square symbols). For x1, as pressure increases

the atomic position decreases continuously away from the fcc position (0.5) in the hR24

setting, towards a minima of 0.4918 at 23.8GPa (the atomic position in the following

phase). z1 increases steadily away from the fcc position of 0.25, while z2 decreases away

from the fcc atomic position of 0.25. For z1 and z2, the triangular (increasing pressure)

data points show a marked deviation from the other data sets. The data for these

points were collected before annealing the sample, and on rapid pressurisation, and

this could explain their departure from the trend established by the other data points.

Hysteresis is evident on this figure from the separation of the data points collected on

increasing and decreasing pressure.

The structure of the d-fcc phase of Nd has been widely reported in the literature as

hR24, which this author confirms up to ≈ 23GPa. Above this pressure distinct changes

occur in the integrated diffraction patterns, as will be discussed in Section 5.8, along

with a reduction in the observed quality of the hR24 Rietveld refinements.

144



5.7. Pressure Dependence of hR24 Neodymium

Figure 5.16: Variation of the refinable atomic positions Nd in the stability range of the
hR24 phase, between 12.3 and 22.4GPa (a data point at 24GPa is shown for comparison
of the atomic position in the following phase). The refinable atomic position x1, z1 and
z2 are shown in different plots, for clarity. Filled square and triangle data points are
collected on pressure increase, open squares on pressure decrease. Data was collected
on Station 9.5 of Daresbusy SRS using a wavelength of λ=0.44397Å.
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5.7.1 Comparison to Praseodymium

The structure adopted in the low pressure region, 16 to ≈ 22GPa of the d-fcc phase of

Nd has been shown to be the same as for Pr, a hR24 structure (spacegroup R3̄m with

atoms on 6c and 18h sites). The pressure dependence of the lattice parameters and

c/a ratio are shown to follow a similar trend to that shown previously in Pr, increasing

away from the
√

6 value of the fcc precursor phase. The pressure dependence of the

refinable atomic co-ordinates (x1, z1 and z2) are shown in Figure 5.16. The steady

decrease (increase for z1) away from the fcc atomic positions (transformed to the hR24

unit cell) of 0.5, 0.25 and 0.25, confirms reports of the hR24 structure arising from a

distortion of the fcc unit cell along the body diagonal, which increases in magnitude

with pressure.

5.7.2 Comment on quality of collected data

During the course of the experiments performed on Nd, samples were loaded as

described in Section 5.3.1 with either no pressure-transmitting medium or mineral oil as

pressure-transmitting medium. Above ≈ 30GPa, the integrated 1D diffraction patterns

collected from Nd in the DXR pressure cells, when mineral oil was used as a pressure-

transmitting medium, show pronounced broadening in Bragg peak width (FWHM).

This broadening, illustrated in Figure 5.17, can be attributed to uniaxial compression

of the sample, caused by the loss of hydrostaticity of the pressure-transmitting medium.

When no pressure-transmitting medium was used the diffraction patterns exhibited

broadening of the Bragg peaks at much earlier pressures. The presence and intensity

of contaminant reflections was unaffected by the choice to use, or not use pressure-

transmitting media.

Mineral-oil loses hydrostaticity (above ≈ 25GPa, stated in Section 2.4.2) when used as

a pressure transmitting medium. To minimise the effects of strain-induced Bragg peak

broadening at pressures greater than ≈ 25GPa, samples were annealed in a furnace

when their pressure was raised above that pressure. As stated in Section 4.8, when

annealing a sample within a DAC at a temperature below the melting point of the

sample, there is insufficient thermal energy being transferred to the sample to melt the

polycrystalline sample and allow regrowth of the (poly) crystal. Instead, this gentle

heating supplied enough energy to thermally excite the lattice, with the heating and

subsequent slow cooling acting to relax inhomogeneous strain within the samples crystal

lattice.
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5.7. Pressure Dependence of hR24 Neodymium

Figure 5.17: Comparison of a section of two datasets, collected from a DAC containing
Nd and a mineral-oil pressure medium at 17.5GPa (lower diffraction pattern) and 22.4
GPa (upper diffraction pattern). The upper pattern has been offset in 2θ to better
illustrate the effect of pressure on the observed peak widths. Some additional peak
separation is evident in the upper diffraction pattern, which is expected from the
pressure dependence of the lattice parameters. Data was collected on Station 9.5 of
Daresbusy SRS using a wavelength of λ=0.44397Å.
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Annealing of Nd was carried out at 200◦C for 4 hours by placing the DAC in a pre-

heated furnace. Once removed from the furnace, the DAC was allowed to cool to room

temperature before the pressure in the sample chamber was measured and experiments

could continue. Figure 5.18 illustrates the affect that annealing on Bragg peak width

for a Nd sample at 23.9GPa. Taking the (006) and (202) reflections as examples, the

FWHM (full width at half of maximum intensity) decreased by 8 and 12% respectivly

after annealing. This reduction in FWHM of ≈10% in these peaks is indictive of

the decrease throughout the diffraction pattern, and enables the resolving of broad

asymmetric peaks at 2θ > 18◦into distinct peaks, as shown in the inset toFigure 5.18.

Figure 5.19 shows the effect of annealing on the 2D diffraction image.

5.8 New phase of Neodymium?

The hR24 structure adopted by Nd above 16 GPa shows a reduction in the quality of

its refinements, above 20GPa. Between 22.4 and 25.6 GPa the intensity distribution

within the major doublet (006)-(202) switches from I(006) ≫ I(202) to I(006) ≪ I(202), as

shown in Figure 5.20, which compares the 9.0◦- 11.0◦region in 2θ of patterns collected

between 22.4 and 25.6 GPa.

Akella et al. [Akella 86] reported a post d-fcc phase that has a hP3 structure, and

which is stable above 40.5GPa on pressure increase. This phase then undergoes a

first-order transition to a monoclinic C2/m structure at 75(5)GPa, and a first-order

transition to the α-Uranium (open packed) structure at 113(6)GPa [Chesnut 00a]. The

suggestion of hP3 and C2/m phases as precursors to the open packed α-Uranium

structure is interesting, as both of these structures were proposed by numerous authors

([Velisavljevic 05] and [Dmitriev 00]) as different solutions to the d-fcc phase in Pr, and

which have been shown to be incorrect (Chapter 4.7). The authors of [Chesnut 00a]

state each of these three phases to be present in Nd, before the transition to the α-U

phase.

Using the hP3 structure, with lattice parameters derived from Chesnut et al.’s paper

[Chesnut 00a] (who state the hP3 to be the post hR24 d-fcc phase), LeBial refinements

were made to Nd data collected above 25.6GPa. Using these derived values yielded

discrepancies in difference plots of observed and calculated data, with a number of

peaks accounted for, as illustrated in Figure 5.26. This rules out the hP3 phase as a

solution to this data around 25GPa.
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5.8. New phase of Neodymium?

Figure 5.18: Comparison of a sample of Nd within a DXR6 DAC before (i), and after (ii)
annealing in a furnace for 4 hours at 200◦C. Diffraction patterns collected on Station 9.5
of Daresbury SRS. λ = 0.44397Å, P = 23.9 GPa. Insert shows an enlarged section of the
diffraction pattern, which illustrates the increase in resolution gained from annealing.
Patterns are offset in 2θ for clarity.
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Figure 5.19: Comparison of diffraction patterns obtained from a sample of Nd within
a DXR6 DAC (i) before, and (ii) after annealing in a furnace for 4 hours at 200◦C.
Diffraction patterns are the same as those used in Figure 5.18, but focused on a section
of the 2D diffraction pattern, exemplifying how “fuzzy” diffraction rings become sharper
and resolved into distinct rings.

150



5.8. New phase of Neodymium?

Figure 5.20: Comparison of the (i) 9.0 - 11.0◦and (ii) 19.2 - 20.4◦2θ range for patterns
collected from Nd in a DXR6 DAC at 18.9, 22.4, 25.6 and 26.6 GPa at Station 9.5 of
Daresbury SRS during a single experiment. In (i) the (202) and (006) peaks are visible,
in (ii) the (0 0 12) and (404) are seen. The appearance of a peak between the (0 0
12) and (404) peaks on pressure increase is highlighted in (ii) with an arrow. Data
were collected using a DXR6 type DAC, λ = 0.44397Å, and a mineral-oil pressure-
transmitting medium.
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Figure 5.21: Graph of relative intensities of the (006) and (202) reflections for the d-fcc
phase of Nd between 15 and 27GPa. Open squares represent data collected on pressure
decrease, filled squares represent data collected on pressure increase. Dashed lines
represent linear least-squares fits made to the data, in the case of increasing pressure,
back extrapolated to 20GPa to better highlight the intersection point at 22.06GPa. The
data were collected on Station 9.5 of Daresbury SRS, a wavelength of λ=0.44397Åwas
used.

In addition to the switching of the intensity of the (006) and (202) peaks around 10◦in

2θ in the patterns shown in Figure 5.20, there are peaks raising and peaks splitting

(at approximately 19◦in 2θ). These peaks can be considered as the d/2 (where d here

represents the d-spacing of the peak, see Chapter 2.2.2) analogues to the (006) and

(202) reflections. A peak appears between the peaks indexed as (0 0 12) and (404) in

the hR24 structure indicating a transition to a different structure, as, this peak cannot

be indexed using the hR24 spacegroup.

Figure 5.21 shows the variation of relative intensity,
I(006)

I(202)
as a function of pressure

(collected on pressure increase), clearly indicated on this figure is a crossover point at
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5.9. Structure of Neodymium from 25-40GPa

≈22GPa. The exact location of this crossover point has been determined through linear

(non-weighted) least squares regression fitting to each of the data series in Figure 5.21

(shown as a dashed line in Figure 5.21) to be 22.06GPa.

22GPa can be considered as the midpoint of the broad transition from hR24 to a

second phase within the d-fcc pressure range. Gradual switching of the intensities of

these (006) and (202) peaks is indicative of a sluggish, second-order transition and the

coexistence of the two phases over a pressure range of ≈5 GPa.

5.9 Structure of Neodymium from 25-40GPa

Using Pr as an analogue to the behaviour of Nd, during which a transition to the

Ibam structure was preceded by a gradual switching of intensities in the main doublet

((006)/(202)), a splitting of higher-angle reflections, and the rising of peaks (notably

the peak located between the (0 0 12) and (404) hR24 peaks (see earlier), observation

of a similar occurrence in Nd suggests the same process to be occurring. Using DicVol

[Louer 04] to index the main reflections of a pattern above 25.6 GPa, trial cells were

made, and structural solutions tested, as described earlier (Section 4.8). Note that this

process was more challenging in Nd owing to the lower quality of diffraction patterns

above 26GPa (caused by broadening of peaks), due to non-hydrostatic effects within

the sample chamber (loss of quasi-hydrostaticity of the pressure medium used). Ruby

luminescence profiles were noted to broaden above 30GPa for samples of Nd.

Fitting the Ibam structure to the observed data yields Rietveld refinements, a typical

example of which is presented in Figure 5.22. Refined lattice parameters for this

diffraction pattern (collected on Station 9.5 of Daresbury SRS) are a = 8.7511(26),

b = 6.2325(9), c = 6.1036(11)Å. Atoms are located on the 8g ( (0, y, 1
4), (0, -y, 1

4),

(0, -y, 3
4), (0, y, 3

4) with y1 = 0.2338(11)) and 8j positions ((x2, y2, 0), (-x2, -y2, 0),

(-x2+
1
2 , y2+

1
2 , 0), (x2+

1
2 , -y2+

1
2 , 0) with x2 = 0.2299(10) and y2 = -0.4600(8)), and

the atomic volume, at 26.6(2)GPa is 20.806(4)Å3 and c/a ratio is 0.6975(3). This data

is summarised in Table 5.4.

The pressure evolution of the atomic volume of this phase, modelled using the Ibam

structure, is shown in Figure 5.23. The plot in Figure 5.23 is an extension of the plot

shown in Figure 5.15, and data points obtained below 25GPa are modelled using the

hR24 structure, while data points above 25GPa are modelled using the Ibam structure.

It is expected, for a second order transition between the two phases, that there will
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Figure 5.22: Rietveld refinement of a sample of Nd collected at 26.6(2) GPa on Station
9.5 of Daresbury SRS using a wavelength of λ=0.44397Å. Refinement made using
the Ibam structure in Jana2000, refined lattice parameters are a = 8.7511(26), b =
6.2325(9), c = 6.1036(11)Å. Preferred orientation effects are present in the sample and
account for the difference in intensity of observed and predicted diffraction pattern.

Parameter Value

a 8.7511(26)Å

b 6.2325(9)Å

c 6.1036(11)Å

Volume/atom 26.6798(10)Å3

a
c

1

y1 0.2338(11)

x2 0.2299(10)

y2 -0.4600(8)

Uiso1 0.0048(1)

Uiso2 0.0060(2)

Table 5.4: Table showing the structural parameters of the Ibam phase of Nd, as
refined from a pattern collected at 26.6GPa on Station 9.5 of Daresbury SRS, using a
wavelength of λ=0.44397Å. Reitveld refinement is shown in Figure 5.22.
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5.9. Structure of Neodymium from 25-40GPa

Figure 5.23: Plot of the pressure-dependence of the atomic volume for the hR24 and
Ibam solutions to the d-fcc phase of Nd. Points below 25 GPa (which correspond
to the atomic volume of the hR24 solution) are shown for comparison. A dashed
vertical line indicates the boundary of the two phases on pressure increase. The lack of
discontinuity in the plot indicates a 2nd-order transition between the two structures.
Different symbols represent data collected from different loadings of Nd, all on pressure-
increase.

be no discontinuity in a volume vs. pressure plot across the transition pressure. As

shown, there is a smooth decrease in atomic volume with pressure, from 26 GPa until

≈ 38 GPa, at which point the following phase (the hP3 phase) dominates the observed

diffraction patterns.

A plot of the c/a ratio against pressure for the Ibam structure is shown in Figure 5.24.

As pressure increases, the c/a ratio increases approximately linearly from a minima of

0.6975(3) towards a maxima of 0.7021(24), a percentage increase of 1%.

As in Pr, for Nd, the Ibam solution to the d-fcc phase has a notable misfit located at

high angles. Located at approximately 20.01◦, the (440) peak splits upon pressurisation

into the Ibam phase, with the intensity of the “shoulder” increasing, but retaining a
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Figure 5.24: Plot of the pressure-dependance of c/a ratio for the Ibam solution to the d-
fcc phase of Nd. Errors are too small to be seen with the plotted symbol size. Different
symbols represent data collected from different loadings of Nd, all on pressure-increase.
Data was collected on Station 9.5 of Daresbusy SRS using a wavelength of λ=0.44397Å.

constant angular separation of 0.099◦from the (440) reflection. Figure 5.25 shows this

split peak.

5.9.1 Comparison to Praseodymium

In Pr the Ibam structure affords a number of distinct advantages over the other

structures proposed in the literature for the 14-20GPa region of the d-fcc phase. In

Nd, however, the distinction is less well defined, owing to broader diffraction patterns

(including after annealing). The Ibam structure accounts for the switching in intensities
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5.9. Structure of Neodymium from 25-40GPa

Figure 5.25: Figure showing the splitting of the (440) Ibam reflection, into the (440)
and the peak identified with an arrow above it. The data for this integrated diffraction
pattern was collected at 26.6(2)GPa on Station 9.5 of Daresbury SRS with a wavelength
of λ=0.44397Å.. Dots correspond to the observed (integrated) data, the upper line to
the refined Ibam model, the lower line is the difference plot between observed and
modelled data. Tick marks represent the positions of peaks in the refined model.
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of the (006) and (202) peaks, and explains some of the additional peaks observed, yet, as

for Pr, is unable to account for a slight misfit at high angles. It is worth repeating that

the hR24 phase also fails to account for this. Due to the broad FWHM and difficulty

in resolving some of the peaks (as slight asymmetries are, in cases, the only suggestion

of doublets), the hR24 solution is observed in the refinement software Jana2000 to

provide solutions of similar quality.

5.10 hP3 Phase of Neodymium

Up to 40GPa the structural transition sequence of Nd has been shown, in this body of

work, to be dhcp → d-fcc (hR24) → d-fcc (Ibam). Above 40GPa it is reported that

Nd transforms from the d-fcc phase to a hP3 phase [Akella 99] [Chesnut 00a]. Akella

et al. further report that the hP3 phase stable until 75(5) GPa, at which point a

transformation to a C2/m phase is observed, with a labelled diffraction pattern and

peak locations presented as figures in [Akella 99].

Evidence is seen for the occurrence of a transition at pressures approaching 40GPa

in Figure 5.3, a section of which is re-shown in Figure 5.27 with a before-and-after

comparison of integrated 1D diffraction profiles collected on a single sample of Nd

during pressure increase. It can be seen that peaks associated with a new phase appear

at approximately 18.4◦in 2θ, as the peaks located at approximately 17.8◦and 20.0◦,

from the d-fcc (Ibam) phase diminish in intensity, this is shown in greater detail in

Figure 5.28.

Using the profile shown in the upper portion of Figure 5.27, peaks that are distinct

singlets were fitted using pseudo-Voigt functions in Datlab [Syassen 08b] to precisely

determine the location of these peaks in 2θ. These peaks, 8 in total, are listed in Table

5.5, and were indexed using DicVol [Louer 04] in an exhaustive, progressive search

regime in which successive, incremental volume bounds are used as the search space for

each symmetry type. This process is the same as used in Section 4.8 for the indexing

of Pr’s d-fcc phase.

DicVol presented a number of possible solutions that account for the peaks supplied

to it (5.5) for indexing. Monoclinic and tetragonal solutions dominated the solution

results from DicVol, yet, were of low FoM.

Searching within the trigonal solutions, attempts were made to find the spacegroup
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Figure 5.26: LeBail fit of a hP3 model to the post-Ibam phase, using unit cell values
derived from the hP3 structure reported by Akella et al. ([Akella 99]) as the solution to
the structure of Nd before transformation to α-Uranium structure. Data was collected
on Station 9.5 of Daresbusy SRS using a wavelength of λ=0.44397Å.

2θ Intensity

9.7940 286.79

10.4496 881.06

12.2035 193.61

17.0205 61.45

17.4098 227.62

18.5046 115.08

19.6719 233.87

22.5501 163.19

Table 5.5: Table of peak positions extracted from a 40GPa pattern of Nd run on Station
9.5 of Daresbury SRS, using a wavelength of λ=0.44397Å. Peaks location, together with
associated intensity were extracted using DatLab [Syassen 08b], then indexed using
DicVol [Louer 04].
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Figure 5.27: Waterfall-plot of integrated diffraction profiles collected from Nd on
pressure increase from 34.7 to 43.1 GPa during a single experiment at Station 9.5
of Daresbury SRS, using a wavelength of λ=0.44397Å. For clarity, successive patterns
are shifted by 0.5◦in 2θ. The pressure of each dataset is indicated at the right of each
plot.
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Figure 5.28: Enlarged section of the 17-21◦region in 2θ of Figure 5.27 for the patterns
collected at 36.7, 38.9 and 41.3 GPa, thus illustrating the changes occurring during the
transition from an Ibam structure (36.7GPa), a mixed (hP3+Ibam) phase (38.9GPa),
to a hP3 phase (41.3GPa). Data was collected on Station 9.5 of Daresbusy SRS using
a wavelength of λ=0.44397Å.
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of this phase, starting with the most general of trigonal spacegroups, P3 (Spacegroup

number 143 [Hahn (Editor) 02]). Refinement of the diffraction pattern from which the

peaks are extracted, using a Lebial fit (pattern matching only) with lattice parameters

given by DicVol (a = 5.16553Å, c = 21.11400Å in the hexagonal setting) was performed

in Jana2000 [Petricek 00]. Refinements were made to the data in Jana2000, allowing

for background intensity, peak shape and a limited freedom to refine lattice parameters

(a, c), until a stable minima in Rwp (Jana2000’s internal GoF parameter) was reached.

Viewing of the files created by Jana2000, which contains a list of indicies assigned to

fitted peaks, along with the corresponding intensity of the fitted peak. Thus, each

possible reflection within the P3 spacegroup is present.

Careful analysis of the reflection conditions [Hahn (Editor) 02, pp. 44–54] limits the

spacegroup to those with l=3n, that is l must be a multiple of 3, for (00l) reflections.

Further to this constraint on (00l) reflections, peaks are observed only for -h + k +l =

3n, which suggests the spacegroup to be P3 or P̄3. Reflections are however observed

of the type l = 2n, which violates the reflection condition l = 3n (for hh 2̄hl reflections)

imposed by spacegroups of R3 type. Violation of this reflection condition leads the

author to deduce, that the structure of Nd, must, as reported by Akella et al, be P31,

or an enantimorphic spacegroup (such as P3121 ) [Akella 99].

5.10.1 Comparison to Praseodymium

Unlike Pr (where the post d-fcc phase is a “collapsed”, open-packed structure) the post

d-fcc phases in Nd go through two additional close-packed structural transitions (to

hP3, then C2/m) before the 4f electronic collapse to an α-Uranium structure. Drawing

comparisons within the literature to other Lanthanides, the “post d-fcc” phase of Nd

can be seen as similar to that of Sm [Zhao 94], which the authors observe as a hP3

phase, indexed as P3121 or the corresponding enantimorphic spacegroup P3221.

5.11 Preliminary Studies of Lanthanum

Having shown the presence of a new phase in Nd, and, having solved the structure of

Pr between 14 and 20 GPa, it was decided to investigate the d-fcc phase of La. The

d-fcc phase is reported to be stable between 8 and 60 GPa, and is unique in that on

further compression beyond 60 GPa, La transforms back to a fcc phase. The re-entrant

fcc phase is not observed in other lanthanides upon compression at room-temperature.
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Lanthanum is reported to crystalise at ambient-pressure and temperature in the dhcp

phase [Tonkov 05], with lattice parameters of a=3.770Å and c=12.159Å. This phase

was not observed, due to no data being collected below 4GPa. Following the lanthanide

transition sequence La is reported to transform to a fcc structure at ≈ 2GPa. Data

collected is in agreement with these reported transition pressures.

The fcc structure is reported by Seipel et al. [Seipel 97] to transform to the d-

fcc structure at around 8GPa. This transition pressure cannot be confirmed due to

insufficient data, the fcc structure was observed to be present up to 6GPa, and the

d-fcc to be present above 12.3GPa.

Modelling the d-fcc phase of La with hR24 yields excellent fits, as evident from Figure

5.31, which has a Rwp=11.2% in Jana2000.

Observed within the d-fcc patterns collected is the characteristic intensity switching

of the (006) (202) doublet, in La situated at about 9◦in 2θ at a pressure between 21

and 28GPa, this is shown in Figure 5.30. This intensity switching is accompanied

by the associated raising of a peak around 19.5◦. From the conclusions drawn on Pr

and Nd, this is seen to be indicative of a transition from the hR24 to Ibam structure.

Refinements were made to data above 28GPa, an example of such a refinement is

shown in Figure 5.32. Patterns collected above 31GPa showed a noticeable increase

in the FWHM of peaks in the diffraction patterns, as such refinements are of a poor

quality above this pressure. The refinement presented in Figure 5.32 confirms the Ibam

structure to be present in La.

The maximum pressure reached during the experiments on La was 40GPa. This

pressure was not sufficiently high to observe the re-entrant fcc phase transition, which

is reported to occur at 60GPa. This pressure limitation was imposed by the DACs

available for use.
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Figure 5.29: Waterfall plot showing data collected on La at Station 9.5 of Daresbury
SRS using monochromatic x-rays of wavelength λ=0.44397Å. The sample pressure,
measured by ruby fluorescence, is displayed on the right hand side of each diffraction
pattern. Pressures shown are from 5.2 to 38.6GPa in uneven steps.
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Figure 5.30: Waterfall plot showing data collected on La at Station 9.5 HPT of
Daresbury SRS using monochromatic x-rays of λ=0.44397Å. Successive plots are shifted
by 0.1◦in 2θ for clarity. A switching in the relative intensities of the first (006) and
second (202) peaks in the doublet occurs at about 16GPa on pressure increase.
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Figure 5.31: Refinement of La with hR24 structure made to a d-fcc diffraction pattern
collected at 19.8GPa from Station 9.5 of Daresbury SRS. Refined lattice parameters
are a = 6.66112(9)Å, and c = 16.2280(1)Å.
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Figure 5.32: Refinement of La with Ibam structure made to a d-fcc diffraction
pattern collected at 28GPa from Station 9.5 of Daresbury SRS, using a wavelength
of λ=0.44397Å. Refined lattice parameters are a = 9.1734(4)Å, b = 6.4914(3)Å and c
= 6.3557(3)Å. Rwp = 4.65 %.
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5.12 Discussion and Conclusions

The dhcp → fcc transition in Nd as reported [Tonkov 05, Chesnut 00a, Velisavljevic 05]

is observed to occur at a pressure of 3.8GPa, in agreement with earlier reports in the

literature. The fcc phase is confirmed to be stable to a pressure of 18GPa on pressure

increase.

Above 18GPa the transformation to the d-fcc phase is evidenced by the raising of

superlattice reflection and splitting of the (111) and (200) fcc reflections. Up to

25.6(10)GPa this phase is best described using a hR24 structure (spacegroup R3̄m).

This hR24 structure, reported in the literature to be stable between 18-40GPa, the d-

fcc phase, is shown to not be the clear solution above 26GPa, where numerous changes

occur in the observed data. As for Pr, there is a switching in the relative intensities of

the peaks indexed as (006) and (202) in the hR24 solution accompanied by the splitting

of some high-angled peaks into a poorly-resolved doublets (asymmetric peaks) and

raising of a peak between the (0 0 12) and (404) reflections. Re-indexing and analogy

to Pr suggests the Ibam structure to be the solution to this new phase, although, with

the quality of data collected, it is not possible to definitively state if this is truly the

solution. Higher-resolution diffraction data, with a hydrostatic medium better suited

to pressures above 30GPa, would be required to definitively determine the solution.

The behaviour of Nd above the d-fcc phase is a departure from the behaviour of Pr,

in which no hP3 phase is observed. Above the hP3 phase, it is stated in the literature

[Chesnut 00a, Velisavljevic 05] that Nd undergoes a further transition to a monoclinic,

C2/m structure before reaching the α-U phase. This is of note, as the C2/m structure

was a candidate for the 14-20GPa pressure region of the d-fcc phase in Pr. This work

shows the C2/m structure to poorly describe the 14-20GPa region of Pr’s d-fcc phase,

which leads the author to ponder if the C2/m phase in Nd is also the best solution to

structure. Velisavljevic’s work [Velisavljevic 05], carried out using EDX would unlikely

be able to distinguish between the C2/m and Ibam structures. Unfortunately, this

region of Nd’s phase diagram was out of the pressure range attainable using equipment

at the authors disposal. Further experiments, with DACs capable of reaching ≈ 1Mbar

and high resolution ADX synchrotron radiation would be required to investigate the

validity of the C2/m structure.

In Figure 5.33 the atomic volume over the phases studied of Nd is presented, evident

is a lack of discontinuities upon transition between the high pressure phases.
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Figure 5.33: A plot of the variation of atomic volume with pressure for the entirity
of the pressure range studied within Nd. Transition pressures between structures are
indicated by dashed vertical lines, the respective phases are labelled on the diagram.
Data were collecetd on multiple separate experiments on Station 9.5 of Daresbury SRS,
using a wavelength of λ=0.44397Å. Some scatter exists on within the fcc region due to
a mixture of data colelcted on pressure increase and decrease being plotted. Atomic
volume derived from volume calculated using Rietveld refined lattice parameters for
patterns at each pressure point.
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Figure 5.34: Plot of the atomic volume vs. pressure for the pressure range investigated
in Nd (0-40GPa) with a fitted 3rd order Birch-Murnaghan equation of state (EoS) shown
in black. The EoS, fitted using EOSFit[Angel 01], has least-squares refined values of
k0=31.96464 GPa, k’=2.82263, k”=-0.12820 and V0=34.16375 Å3. The EoS was fitted
from zero (ambient pressure) to 40GPa. Data collecetd from Station 9.5 of Daresbury
SRS using a wavelength of λ=0.44397Å. Errors plotted, but obscured by the size of the
datapoints.
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A fitted 3rd order Birch-Murnaghan equation of state (EoS) is shown in Figure 5.34 to

measured atomic volume for the pressure range 0-40GPa in Nd. Fitted k0, k’,k” and v0

are noted on the Figure. Datapoints used for this plot are the same used for the atomic

volume plot in Figure 5.33, the (circular) outlaying data points between 12 and 16GPa

were removed from the least squares refinement (but left on the figure for continuity

with the Figure 5.33). Refinement of the zero-pressure atomic volume value was not

made as data measured close to zero was availiable. The determined bulk modulus, k0

= 31.965GPa is in close agreement, within 0.5%, of the expected value of k0 = 31.8GPa.

A preliminary study of La was performed, insufficient data was collected to observe

the low pressure transitions, from the ambient pressure (dhcp) phase to the fcc phase.

The fcc phase was observed from 4GPa to 6.6GPa, the transition from fcc to d-fcc,

reported to occur at 8GPa was not observed due to a lack of data between 6.6 and

12.3GPa. Data was collected to a maximum of 40.7GPa, which was insufficiently high

to observe the re-entrant transition to fcc, which is stated to occur at about 60GPa at

room temperature [Seipel 97].

The d-fcc phase of La was confirmed to be comprised of 2 structures, with a transition

occurring between 21 and 28GPa. Evidence for this transition, as for Pr and Nd, is the

observation of the intensity switching of the (006) and (202) reflections, with associated

rising of peaks. Like with Pr and Nd, the lower pressure region is described using a

hR24 structure, and higher pressure region with Ibam structure. However, data was

only collected up to 40.7GPa for La, as such, it is unknown if a further transition will

be discovered before the re-entrant fcc phase. Further experiments will be required

to investigate if there is another transition before the d-fcc → fcc phase transition at

60GPa.

171



Chapter 5. Studies of Neodymium and Lanthanum

172



Chapter 6

Conclusions

6.1 Conclusions

As presented in the previous chapters, detailed investigation of the high-pressure

behaviour of the d-fcc phase of Pr and Nd have been made; along with a preliminary

investigation into the behaviour of La in the d-fcc phase. The results of these studies

will be summarised in this chapter, and conclusions drawn.

The high-pressure behaviour of the lanthanides has been studied extensively owing to

the similarity exhibited by trivalent members of the series in their adopted high-pressure

crystal structures [Grosshans 83]. A transition from an close to open-packed structure

driven by delocalisation of 4-f electrons and ambiguity in the structure of one of the

high pressure phases. Upon pressurisation, lanthanides display the same sequence of

phases shown as one traverses through the series (from low to high Z), namely the

sequence: hcp → dhcp → fcc → d-fcc → collapsed.

The questions posed in Section 1.3, which provided the motivation for this study, were

as follows: Is there a transition between two similar structures occuring within the d-fcc

stability range (7-20GPa) in Pr? What is (are) the structure(s) of the d-fcc phase in Pr?

What is the degree of volume collapse at the d-fcc to α-Uranium phase transition in Pr?

These questions relate to the high-pressure structure of the d-fcc phase of Pr, which,

prior to the work performed in this thesis, was a source of persistent disagreement

within the literature, as discussed in Section 3.3.

The d-fcc phase of Pr has been extensivly studied during this thesis, to resolve the

ambiguity which persisted up to this study concerning the identity of the structure.

The d-fcc is stable over the pressure range 7 - 20 GPa in Pr on pressure-increase.

Further pressurisation causes a transition to the α-U open-packed structure, a transition

previously shown to be driven by delocalisation of the 4-f valence electrons, with an
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associated volume collapse, the size of which is ambiguous in the literature [Mao 81,

Chesnut 00b]. Data were collected from Station 9.1 and Station 9.5 HPT of Daresbury

SRS, and ID09A of ESRF.

Within the d-fcc phase of Pr, two distinct phases are observed, in the low-pressure

region (7-14 GPa) the structure of the d-fcc phase is hR24 (R3̄m), with atoms located

in the 18h and 6c sites. The pressure-dependance of this phase was studied, atomic

displacement parameters are seen to increase from the fcc value as the structure

becomes more “distorted” with increasing pressure, eventually approaching steady

values at 18GPa. The c/a ratio of the hR24 phase increases from the fcc (c/a =
√

6) to a

maxima of 2.738. Above 14GPa evidence is seen of a transition to a different unit cell, as

noted by Dmitriev et al. [Dmitriev 00]. However, the structure suggested by Dmitriev

fails to account for a number of observed peaks. Subsequent re-indexing of diffraction

patterns above 14GPa yields a trial orthorhombic cell (supercell) which, upon doubling

in each direction gives a solution which accounts for each observed reflection, analysis

of systematic absences yields the structural solution Ibam, a solution with less refinable

variables than the solution proposed by Dmitriev et al.. The pressure-dependance of

this newly discovered solution over the 14-20GPa stability range was investigated.

The d-fcc phase (Ibam structure) was observed to transform to the α-U phase at 20.5(5)

GPa upon the application of pressure. Upon transformation a loss of volume of 7.6%

was seen, in agreement with [Dmitriev 00] (8%), but differing from the observation

of [Mao 81] (14%). This smaller volume collapse at the transition from d-fcc to α-U

structure implies the 4-f electrons role in the previously suggested structure [Mao 81]

was overestimated.

A plot of the atomic volume against pressure for Pr, over the pressure range studied

is presented in Figure 6.1 (repeated from Figure 4.30), which highlights the observed

transition pressures and volume collapse at the d-fcc → α-U transition. An equation of

state (3rd order BirchMurnaghan) was fitted to this atomic volume data collected on Pr

up to the volume collapse transition between the d-fcc and α-U phases (shown in Figure

4.31). Least squares fitted k0, k’ and k” were presented, the fitted value for k0, the bulk

modulous, of Pr (31.82GPa) differs from the value reported in the literature of 28.8GPa

by 9.5%. The author acknowledges this discrepancy, and suggests the requirement to

refine the zero pressure atomic volume whilst fitting the EoS within EOSFIT [Angel 01]

due to the lack of an ambient pressure datapoint and sparse low pressure data as the

cause for this discrepancy.
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Following the investigation of the d-fcc phase of Pr, and driven by known similarities in

the structures adopted by lanthanides upon the application of pressure [Holzapfel 95,

Baer 03], the neighbouring, higher-Z lanthanide, Nd was studied. An investigation of

the d-fcc phase of Nd was made, with the aim to determine the structure(s) adopted

by Nd within the d-fcc phase stability range.

The high-pressure structure of Nd has been studied to a maximum of 43GPa. Previously

reported transitions from dhcp → fcc → d-fcc (hR24 ), are observed to occur at the

pressures noted in the literature (3.8GPa and 18GPa). The structure of the d-fcc

(hR24 ) phase is confirmed to a pressure of 25.6(10)GPa, using angle-dispersive x-ray

diffraction from powder samples in Merrill-Bassett and DXR6 type DACs. The atomic

volume, c/a ratio and lattice parameter reduction are observed to follow continuous

trends, similar to those observed in Pr. At around 25 GPa, diffraction patterns from

Nd undergo a number of subtle changes; switching in intensity of the (110) and (200)

relative intensities; raising of addition peaks and broadening (splitting) of others at

high angles, indicitive of a phase transition to a closely-related structure. The Ibam

(oC16 ) structure is proposed by this author as a solution to the d-fcc phase above

25GPa until a pressure of 40GPa is reached on pressure increase. No volume change is

observed at the transition between hR24 and oC16 (as seen from Figures 6.2 and 5.34),

indicating a second-order transition driven by small displacements of the atoms within

the hR24 unit cell further away from their fcc-equivalent positions. The transition

to the following hP3 phase begins to occur at around 38GPa and is completed at

around 41GPa. Such a pressure range for this transition is observed in other work

[Velisavljevic 05], the authors of which note the coexistance of phases over a broad

pressure range. Difficulties were encountered in the fitting of Nd data above 30GPa

owing to the broadening of observed peaks, and subsequent inability to assertain if

observed peaks are the superposition of multiple Bragg peaks, a problem likely caused

by non-hydrostaticity within the sample chamber.

A plot of the atomic volume against pressure for Nd, over the pressure range studied

is presented in Figure 6.2 (repeated from Figure 5.33), which highlights the observed

transition pressures up to the hP3 phase transition. This data was used for the fitting of

a 3rd order BirchMurnaghan EoS, shown in Figure 5.34, in which least squares fitted k0,

k’ and k” are presented. The determined value (31.96GPa) for the bulk modulous, k0, is

in close agreement (within 0.5%) to the value reported in the literature of 31.8GPa. This

compares more favourably than the difference between the expected and determined k0

for Pr (9.5%), likely due to clusters of measured data points at low pressure (including

close to ambient pressure).
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Figure 6.1: Plot of the atomic volume vs. pressure for the pressure range investigated in
Pr. Alternating black and grey points are used to differentiate between data collected
in different phases. The determined phase transition pressures are represented on the
figure with dashed vertical lines, phases are labelled. The d-fcc phase is labelled as
hR24 and Ibam, representing the respective solutions for the structure of the phase.
On the right of the figure the volumes before and after the transition to the α-U phase
are noted, a volume difference of 11% is observed at this transition.
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Figure 6.2: Plot of the atomic volume vs. pressure for the pressure range investigated in
Nd. Alternating black and grey points are used to differentiate between data collected
in different phases. The determined phase transition pressures are represented on the
figure with dashed vertical lines, phases are labelled. The d-fcc phase is labelled as
hR24 and Ibam, representing the respective solutions for the structure of the phase.
The maxima of pressure included in this diagram is 40GPa.
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Similarly, a preliminary study of La has provided evidence for the occurence of the Ibam

structure, with a transition between 21 and 28GPa. The lower region of the d-fcc phase

in La, in agreement with previous authors [Seipel 97], is best described using a hR24

(R3̄m structure. As for Nd, for pressures above ≈30GPa, difficulties were encountered

in fitting the data, which was likely caused by non-hydrostatic conditions within the

sample chamber. Further experiments would be required, using an inert gas pressure

transmitting medium, to study the d-fcc phase of La.

The work presented in this thesis was aimed at understanding the d-fcc phase of the

low-Z lanthanides Pr, Nd and La. In each of these low-Z lanthanides the d-fcc phase

is readily accessible using the MB and DXR6 DACs, pressure media, and equipment

availiable. The use of mineral oil pressure transmitting media. Investigation of the

d-fcc phase of higher-Z lanthanides would require the use of a pressure medium capable

of maintaining a hydrostaticity (or quasi-hydrostatic) at pressures in excess of 40GPa.

Gaseous loadings of an inert gas, such as He, would be required to fulfil the requirements

of pressure transmitting medium that would remain quasi-hydrostatic at pressures

greater than 50GPa.

Single-crystal growth attempts were made during the course of this work, at first

through heating the DAC in a furnace and later by heating the sample directly using

an IR laser. Results of these heatings yeilded a decrease in FWHM of Bragg reflections

and a tendancy towards (although not full) re-crystalisation, evident in 2D diffraction

images taken at synchrotron light sources. Partial re-crystallisation is seen by intensity

around debye-scherrer rings clumping at discrete, but many, locations around diffraction

rings. The growth of a single-crystal was not observed when the sample was heated in a

furnace, or using an IR laser. The author suggests a higher sample temperature would

be required, approaching the melting point of the sample, which would necessitate the

use of an IR laser.

Synchrotron radiation was used for all of the experiments perfomed for this study.

For the majority of the experiments, Station 9.5 HPT of Daresbury SRS was used

(λ= 0.44397Å), the remaining data were collected from ID09A of the ESRF (λ=

0.414509Å). Both of these syncrotrons used Mar345 detectors, although, ID09A affords

a higher resolution in measured diffraction patterns (evidenced from a reduction in

FWHM of peaks from the same sample at comparable pressures). Synchrotron radiation

was necessitated by the observed intensity of the weak superlattice reflections which

differentiate between the solutions proposed in the literature [Mao 81, Chesnut 00b,

Dmitriev 00, Syassen 00, Baer 03] and the solution found during the course of this work.
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Further studies on lanthanides would also require the use of synchrotron radiation,

however, as Daresbury SRS has been decommissioned, the UK sucessor, Diamond Light

Source or ID09A of ESRF would need to be used.

Evidence has thus been found for the existance of a new structure within the d-fcc

phase, the oC16, Ibam structure, within 3 members of the Lanthanide series. The

author tentatively suggests this Ibam structure to be a new member of the Lanthanide

transition sequence, but acknowledges that further study, of the higher-Z lanthanides

would be required to definitively state if this is the case. To investigate the d-fcc phase

of the higher-Z lanthanides would require DACs capable of reaching the Mbar pressure

range, a pressure-transmitting medium that would remain (quasi-)hydrostatic in this

pressure range and access to high purity lanthanide metals and a synchrotron radiation

source.
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