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Abstract 

Murine gammaherpesvirus 68 (MHV-68) is used as a model for the study of 

gammaherpesvirus infection and pathogenesis. In the left region of the genome 

MHV-68 encodes four unique genes, eight viral tRNA-like molecules (vtRNAs) and 

nine miRNAs. The vtRNAs have a predicted cloverleaf-like secondary structure like 

cellular tRNAs and are processed into mature tRNAs with the addition of 3’ CCA 

termini, but are not aminoacylated. Their function is unknown; however they have 

been found to be expressed at high levels during both lytic and latent infection and 

are packaged in the virion. The miRNAs are expressed from the vtRNA primary 

transcripts during latent infection. All herpesviruses examined to date have been 

found to express miRNAs. These are thought to aid the viruses in avoiding the host 

immune response and to establish and maintain latency. 

The aim of this project was to investigate the functions of the vtRNAs and miRNAs 

of MHV-68. MHV-76 is a natural deletant mutant lacking the unique genes, vtRNAs 

and miRNAs. This virus was previously used in our lab to construct two insertion 

viruses encoding vtRNAs1-5 and miRNAs1-6. The only difference between  

MHV-76 and the insertion viruses is therefore the vtRNAs and miRNAs. The B-cell 

line NS0 was latently infected with the various viruses and the infected cells 

characterised. In situ hybridisation and antibody staining showed that all viruses 

infect the same proportion of cells. The insertion viruses were confirmed to express 

the vtRNAs during latency by RT-PCR. In addition, using Northern blot analysis the 

insertion viruses were shown to express miRNA1 during lytic infection of fibroblast 

cells; however, not during latent infection of NS0 cells. The lack of miRNA1 

expression during latency was confirmed using qRT-PCR and miRNAs3-6 were 

found to be expressed at a lower level than in MHV-68 infected cells.  

Replication and reactivation kinetics of latently infected NS0 cells showed that 

introduction of vtRNAs and miRNAs into MHV-76 causes a reduction in 

reactivation and production of lytic virus. To determine if the reduction in 

reactivation was caused by the miRNAs, they were introduced into infected cells by 

transfection. Transfection of miRNAs1-6 into MHV-76 infected cells or miRNA1 

into insertion virus infected cells did not lead to an increase or decrease in 
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reactivation. It was confirmed by qRT-PCR that the transfection did result in miRNA 

levels higher than in insertion virus infected cells. Further, down-regulation of 

miRNAs using a siRNA against DICER did not lead to a reduction in reactivation. 

This supports the hypothesis that the vtRNAs rather than the miRNAs are 

responsible for the reduction of reactivation seen in insertion virus latently infected 

cells.  

To determine the effect of the non-coding RNAs on protein expression, NS0 cells 

latently infected with MHV-76 and insertion virus were analysed using cleavable 

ICAT and 1-D PAGE cleavable ICAT. In an ICAT analysis the proteins are labelled 

and the levels of individual proteins in two samples can be compared using mass 

spectrometry. These techniques were optimised and several proteins with differences 

in expression between the viruses were identified. It was, however, difficult to 

determine any specific functions of the non-coding RNAs from the data. 
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1.1. Herpesviruses 

Herpes can be traced back to the ancient Greeks describing the lesions appearing to 

“creep or crawl” along the skin (Roizman and Whitley 2001). The order of 

Herpesvirales is a very large order of viruses containing approximately 135 members 

found to infect most animal species ranging from humans to frogs and oysters 

(Davison et al. 2009). The different members are diverse in terms of genomic 

sequence; however, they are all similar in terms of structure and genome 

organisation. There is large variation in the diseases caused by the viruses, e.g. 

encephalitis, chickenpox and cancer; however, they share several significant 

biological properties. They all encode a variety of enzymes involved in nucleic acid 

metabolism, DNA synthesis and protein processing. The genome replication and 

capsid assembly takes place in the nucleus, while the final processing of the virion 

takes place in the cytoplasm. Upon release of new virus particles the cell is 

destroyed. Another common feature among the members is the ability to remain 

latent in the host with the possibility of reactivation to a lytic infection at a later 

stage. During latency the viral genome is maintained as circularised DNA in an 

episome with very limited gene expression (Pellet and Roizman 2007).  

There are also differences in the biological properties of the viruses: some have very 

narrow host cell ranges and some wider, while replication cycles can be long or very 

short. The cell choice for latency also differs between viruses. Most animal species 

can be infected by at least one herpesvirus; however, few viruses infect more than 

one species (Pellet and Roizman 2007). There are eight herpesviruses associated with 

human disease (Table 1.1).  

1.1.1. Classification 

The herpesviruses were initially ordered under the Herpesviridae family into three 

subfamilies based on biological properties: the Alphaherpesvirinae, the 

Betaherpesvirinae, and the Gammaherpesvirinae. The viruses have further been 

classified using DNA sequence homology, similarities in genome sequence 
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Herpesvirales Genus Virus Disease in humans

Family
Herpesviridae

Subfamily
Alphaherpesvirinae Simplexvirus Herpes simplex virus 1 and 2 Encephalitis, Genital herpes

Varicellovirus Varicella-zoster virus Chickenpox, Herpes zoster
Mardivirus Marek's disease virus

Iltovirus Pacheco's disease virus
Subfamily

Betaherpesvirinae Cytomegalovirus Human cytomegalovirus Mononucleosis
Muromegalovirus Mouse cytomegalovirus

Roseolovirus Human herpesvirus 6 and 7
Roseola infantum, 
Encephalitis

Proboscivirus
Elephant endotheliotropic 
herpesvirus

Subfamily
Gammaherpesvirinae Lymphocryptovirus Epstein-Barr virus Infectious mononucleosis, 

Burkitt's lymphoma
Rhadinovirus Kaposi's sarcoma-associated 

herpesvirus
Kaposi's sarcoma, 
Castleman's disease

Murine herpesvirus 68
Herpesvirus saimiri

Macavirus Malignant catarrhal fever virus
Percavirus Equine herpesvirus 2 and 5

Family
Alloherpesviridae Ictalurivirus Channel catfish virus

Family
Malacoherpesviridae Ostreavirus Oyster herpesvirus

 

Table 1.1 Classification of herpesviruses in the order of Herpesvirales, with examples of 
viruses for each genus. The eight human herpesviruses are in red. Adapted from 
Davison et al. 2009. 
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arrangement, and relatedness of important viral proteins (Pellet and Roizman 2007). 

Recently this led to a revision of the herpesvirus classification by the Herpesvirus 

Study Group of the International Committee on Taxonomy of Viruses (ICTV). A 

new order, the Herpesvirales, was established which includes three virus families 

(Table 1.1): the Herpesviridae (the herpesviruses of mammals, birds and reptiles, 

still under three subfamilies), the Alloherpesviridae (fish and frog viruses), and the 

Malacoherpesviridae (bivalve viruses) (Davison et al. 2009). Subsequent chapters 

will focus on the family Herpesviridae.  

1.1.1.1. Alphaherpesvirinae 

The alphaherpesvirus subfamily includes the genera Simplexvirus (e.g. Herpes 

simplex virus 1 and 2 (HSV-1 and HSV-2)), Varicellovirus (e.g. Varicella-zoster 

virus (VZV)), Mardivirus (e.g. Marek’s disease virus (MDV)) and Iltovirus  

(e.g. Pacheco’s disease virus (PDV)). The alphaherpesviruses have a variable host 

range and relatively short replication cycle with rapid spread in culture, leading to 

efficient destruction of the host cell. These viruses establish latency primarily but not 

exclusively in sensory ganglia (Pellet and Roizman 2007). MDV is different from the 

other alphaherpesviruses in that it establishes latency in T-cells and causes T-cell 

lymphoma (Osterrieder et al. 2006). 

1.1.1.2. Betaherpesvirinae 

The betaherpesvirus subfamily consists of genetically diverse viruses in the genera 

Cytomegalovirus (e.g. Human cytomegalovirus (HCMV)), Muromegalovirus  

(e.g. Mouse cytomegalovirus (MCMV)), Roseolovirus (Human herpesvirus 6 and 7 

(HHV-6 and HHV-7)), and Proboscivirus (Elephant endotheliotropic herpesvirus). 

These viruses exhibit restricted host range and have a long replication cycle and slow 

replication in cell culture. Infection of cells often leads to the characteristic 

cytomegalia, enlargement of the cell. The betaherpesviruses can persist in 

mononuclear cells, salivary glands, kidneys and other tissues (Mocarski et al. 2007).  

1.1.1.3. Gammaherpesvirinae 

The members of the gammaherpesvirus subfamily are characterised by having a 

narrow host range both in terms of the cell type and the host species they infect.  
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In vitro work is limited as the viruses have varied ability to replicate in cultured cells, 

with only some of the viruses being able to undergo lytic replication in epithelial and 

fibroblast cell lines. The gammaherpesviruses have slow replication cycles and 

establish latency in lymphocytes. These viruses are often associated with 

lymphoproliferative disease. This subfamily includes the genera Lymphocryptovirus 

(e.g. Epstein-Barr virus (EBV)), Rhadinovirus (e.g. Kaposi’s sarcoma-associated 

herpesvirus (KSHV), Murine gammaherpesvirus 68 (MHV-68) and Herpesvirus 

saimiri (HVS)), Macavirus (e.g. Malignant catarrhal fever virus) and Percavirus  

(e.g. Equine herpesvirus 2 and 5).  

1.1.2. Herpesvirus structure 

The herpesvirus virions consist of four distinct structures: the core, capsid, tegument 

and envelope (Figure 1.1). The core containing the linear double stranded (ds) DNA 

genome is found within an icosahedral (triangulation number T=16) capsid, 100nm 

in diameter, composed of 162 capsomeres (150 hexons and 12 pentons)  

(Pellet and Roizman 2007). The capsid consists of five conserved proteins: the major 

capsid protein, the triplex monomer and dimer proteins, the small capsomer-

interacting protein and the portal protein (Mettenleiter et al. 2006). The capsid is 

surrounded by the tegument, an amorphous layer consisting of several proteins both 

viral and cellular, that links the capsid and the envelope, the outer layer of the virion 

made up of host-cell derived lipid membranes containing viral proteins and 

glycoproteins of varying numbers. Herpesvirus virions vary in size from 120 to 

260nm; partly because of the variability of the thickness of the tegument  

(Pellet and Roizman 2007).  

The virions contain a varying number of viral and host proteins with between 14 and 

71 viral proteins and up to 71 host proteins identified. Several herpesvirus virions 

have also been reported to include viral and cellular messenger RNAs (mRNAs), 

both through apparent selective (Bechtel et al. 2005; Bresnahan and Shenk 2000; 

Cliffe et al. 2009b; Sciortino et al. 2001) and non-selective uptake (Greijer et al. 

2000; Terhune et al. 2004). In addition to mRNAs, non-coding RNAs have been 

found to be present in herpesvirus virions; the non-coding the polyadenylated nuclear 

(PAN) RNA in KSHV virions (Bechtel et al. 2005) and viral tRNAs (vtRNAs) in  
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Figure 1.1 The structure of the KSHV virion, used as a representation of a typical 
herpesvirus virion. Showing the four distinct structures: the core, capsid, tegument and 
envelope. Taken from PRN Notebook; www.prn.org 
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MHV-68 virions (Cliffe et al. 2009b). The reason for the presence of viral and host 

proteins and RNAs in the virion is not clear. Packaging them in the virion would 

mean that they are available for the virus immediately following infection of the cell, 

facilitating the takeover of the cell. Alternatively, they may have a structural role in 

the virion, perhaps by forming the tegument. 

1.1.3. Herpesvirus genome 

Genomes of the Herpesviridae consist of large, linear, dsDNA ranging from 124 kbp 

(Simian VZV) to 241 kbp (Chimpanzee CMV); however, upon entry into the cell the 

DNA circularises forming an episome. The genomes also have great variation in 

nucleotide composition with the G+C content varying from 31% to 77%. The 

herpesvirus genomes can be divided into six groups based on the presence and 

localisation of internal and terminal repeat regions (A-F, Figure 1.2)  

(Pellet and Roizman 2007). The variation in genome lengths of the viruses is the 

result of varying copy numbers of the terminal and internal repeats. 

The majority of herpesvirus genomes encode between 70 and 200 open reading 

frames (ORFs). A typical ORF is flanked by 5’ and 3’ non-translated sequences of 30 

to 300 bp and 10 to 30 bp respectively, with a polyadenylation signal at the 3’ end. 

The transcription initiation site is 20 to 25 bp downstream of a TATA box, which is 

50 to 200 bp downstream of the promoter and regulatory sequences  

(Pellet and Roizman 2007). The majority of genes are transcribed by RNA 

polymerase II; however, a few genes such as the EBV encoded small RNAs (EBERs) 

of EBV are transcribed by RNA polymerase III. Most genes are not spliced and  

beta- and gammaherpesviruses have more intron-containing genes than 

alphaherpesviruses (McGeoch et al. 2006). 

The number of predicted ORFs is most likely an underestimation since the 

herpesvirus genomes are complex with alternative splicing, translational frame 

shifting, and antisense and overlapping ORFs. It is common for herpesvirus genomes 

to have clusters of genes overlapping at the 3’ end and sharing a polyadenylation site, 

leading to 3’ co-terminal transcripts. The coding regions of these genes usually do 

not overlap by more than a few codons (Pellet and Roizman 2007). The herpesvirus 

genomes also encode a great variety of non-coding RNAs, for example the 
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Figure 1.2 The genome organisations for the different classes of herpesviruses (A-F). 
Group A viruses (e.g. HHV-6) have large sequences of terminal repeats at each end 
(LTR and RTR). Members of group B (e.g. HVS) also have two terminal repeats (TR); 
however, these have a varying copy number of repeats at each end. Group C viruses 
(e.g. EBV) have shorter terminal repeats, but also have internal repeats (IR1-IR4) in 
the unique region of the genome. In group D viruses (e.g. VZV) the terminal repeat is 
repeated in the reverse orientation within the unique region of the genome, dividing the 
genome into the unique long (UL) and unique short (US) region. The short region can 
invert relative to the large sequence, allowing for two different isomers. The terminuses 
of group E viruses (e.g. HSV and HCMV) consist of two parts. On one end there is a 
repeat sequence (a) of varying copy number next to a larger sequence (b). The other 
end has one copy of the a sequence next to a repeat sequence (c). These terminal ab and 
ca sequences are found inverted in the unique region (b'a'nc'), separating the genome 
into the unique long (UL) and unique short (US) regions. In group E viruses both the UL 
and US can be inverted, creating the possibility of four isomers of the virus. Group F 
viruses (e.g. tupaia herpesvirus) do not have any terminal or internal repeats. Adapted 
from Pellet and Roizman 2007. 
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latency-associated transcript (LAT) of HSV, EBERs of EBV, PAN RNA of KSHV 

and vtRNAs of MHV-68. In addition, all herpesviruses examined to date encode 

microRNAs (miRNAs).  

Most herpesvirus proteins have several different functions. They can be divided into 

structural proteins that make up the virion particle and non-structural proteins that 

are necessary for viral replication. There are 43 core genes that are conserved 

between the alpha-, beta- and gammaherpesviruses that make up seven core gene 

blocks containing two to 12 genes (Figure 1.3). Within each gene block the gene 

order and orientation is conserved (Pellet and Roizman 2007). Between the family 

members the order and orientations of the gene blocks vary; however, between 

members of the same subfamily it is usually conserved. Most of the core genes are 

involved in the lytic replication of the virus (McGeoch et al. 2006). Gene 

conservation also exists at the subfamily level; betaherpesviruses encode a block of 

14 genes that are unique to that subfamily. Herpesvirus genomes also contain cellular 

homologues captured from host DNA relatively recently; KSHV expresses at least 12 

cellular homologues (Choi et al. 2001). These proteins have either kept their cellular 

function, allowing the virus to produce it when needed, or have been modified to 

alter their function. Many of the captured genes are involved in regulation of host 

cell defences (McGeoch et al. 2006).  

1.1.4. Herpesvirus life cycle 

The viral life cycle involves two different stages: the lytic stage with viral replication 

and production of virions, and the latent stage where the viral DNA persists in the 

cell as an episome with no production of virions and expression of only a few genes. 

The lytic life cycle can be divided into four different stages: entry of the virus into 

the cell, viral gene expression, replication of viral DNA and assembly and egress of 

virus particles. The viral life cycle of HSV-1 is extensively studied and as such the 

herpesvirus life cycle is described below as it is known for HSV-1. 

1.1.4.1. Entry 

The first step of virus entry into the host cell, the attachment, involves a reversible 

binding of virion glycoproteins to a receptor, in most cases to cell surface  
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Figure 1.3 The arrangement of core gene blocks of the three herpesvirus subfamilies. 
There are 43 core genes in seven gene blocks. The gene order and orientation within the 
gene blocks is conserved; however, between the different subfamilies the orientation 
and order of gene blocks vary. Within the same subfamily the order and orientation of 
gene blocks is usually conserved.  Abbreviations; Terminal repeats, TR; internal 
repeats, IR.  Adapted from Pellet and Roizman 2007. 
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glycosaminoglycans (GAGs). In the case of HSV-1 the virion glycoprotein C (gC) 

and/or gB bind to the heparin sulphate of the cell surface proteoglycans (HSPGs) 

(Herold et al. 1991; Herold et al. 1994; Shieh et al. 1992). This first attachment step 

does not seem to be necessary for infection; however, it leads to an increased 

efficiency (reviewed in Spear and Longnecker 2003).  

Following attachment the virions enter the cell by fusion of the virion envelope with 

a cell membrane, promoting uptake of the virion by fusion or endocytosis. Three 

glycoproteins seem to be essential for herpesvirus entry: gB, gH and gL; although 

additional virus specific receptor-binding glycoproteins may be necessary. HSV-1 

entry initiates with the irreversible binding of gD to one of three classes of receptors: 

nectins-1 or -2, herpesvirus entry mediator (HVEM) or heparin sulphate specifically 

modified by 3-0-sulfotransferases (3-OS-HS) (Geraghty et al. 1998; Montgomery et 

al. 1996; Shukla et al. 1999; Warner et al. 1998). The binding of gD to its receptor 

promotes a conformation change that allows gD binding to gB and gH/gL which is 

sufficient to enable fusion of the membranes (Pertel et al. 2001; Turner et al. 1998).  

Binding to different co-receptors enables the viruses to infect a variety of cell types 

and also allows the viruses to exhibit different cellular tropism during different 

stages of infection. A good example is EBV which only needs gB and gH/gL to 

infect epithelial cells, but requires glycoprotein 42 (gp42) binding to major 

histocompatibility complex (MHC) class II to allow entry into B-cells. Virions 

released by B-cells have very little gp42 which lead them to infect epithelial cells, 

while virions released by epithelial cells have more gp42 and infect B-cells 

(Heldwein and Krummenacher 2008).  

Following fusion with the plasma membrane and de-envelopment of the virion the 

HSV capsid and tegument are released into the cytoplasm. Some of the tegument 

proteins remain in the cytoplasm, such as virion host shut off protein which causes 

degradation of host mRNA. Other proteins, like VP1-2, follow the capsid to the 

nuclear pore; whereas VP16, which is involved in viral gene expression, localises to 

the nucleus on its own. The capsid is transported to the nucleus along microtubules 

where the viral DNA enters via nuclear pores, circularises, and localises to nuclear 

domain 10 (ND-10) sites (Roizman et al. 2007). 
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1.1.4.2. Gene expression 

The host RNA polymerase II transcribes the viral DNA in the nucleus with protein 

synthesis taking place in the cytoplasm. The expression of lytic viral genes takes 

place in a highly regulated cascade fashion, with the genes being classed as 

α/immediately-early, β/early or γ/late genes (Honess and Roizman 1974). The  

α genes are expressed very soon following infection in the absence of de novo viral 

protein synthesis. During HSV-1 infection the tegument protein VP16 acts as a 

transactivator of α genes and promotes active chromatin on the α gene promoters, 

enabling transcription of six α genes (ICP0, 4, 22, 27, 47 and US1.5) (Roizman et al. 

2007). Five of these proteins can promote β gene expression, which requires α gene 

expression but not viral DNA replication (Honess and Roizman 1974). The 

β proteins are involved in replication of viral DNA (e.g. DNA polymerase) and 

nucleotide metabolism (e.g. thymidine kinase), and can be further subgrouped into β1 

and β2 proteins depending on the time of their expression (Roizman et al. 2007). The 

γ proteins are dependent on viral protein expression and are either stimulated by  

(γ1 genes) or dependent on (γ2 genes) DNA replication (Roizman et al. 2007). These 

proteins are mainly structural proteins that make up the virion.  

1.1.4.3. Replication 

Several of the β proteins, the DNA replication proteins, localise with viral DNA near 

ND-10 sites and assemble DNA replication complexes in prereplicative sites 

(Roizman et al. 2007). DNA synthesis initiates on the circular molecule with the 

binding of the origin binding protein and the single stranded DNA (ssDNA) binding 

protein to the origin sequence, followed by the recruitment of the helicase-primase 

proteins and viral polymerase complex. Seven viral proteins are necessary for viral 

DNA synthesis. Even though the replication starts in the theta replicative form it 

soon switches to a rolling circle replication producing long continuous DNA, 

concatemeric molecules (reviewed in Boehmer and Lehman 1997). As replication 

progresses the prereplicative sites become replication compartments that enlarge and 

eventually fill the nucleus (Quinlan et al. 1984). The concatemeric DNA is cleaved 
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in genome length molecules and packaged into empty capsids (Boehmer and Lehman 

1997). 

1.1.4.4. Assembly and egress  

Following their synthesis in the cytoplasm the γ structural proteins localise to the 

nucleus where the capsid assembly takes place. The five conserved capsid proteins 

(section 1.1.2) are assembled around a scaffold which is cleaved and removed as the 

viral DNA is packaged through the portal complex. Proteins required for cleavage 

and encapsidation are also conserved among the herpesviruses  

(Mettenleiter et al. 2009).  

There are three models of how virion envelopment and egress takes place, as 

reviewed in Roizman et al. 2007. In the first model the capsids are enveloped at the 

inner nuclear membrane and transported to the plasma membrane in perinuclear 

vesicles which fuse with the membrane releasing the virions. The second model 

proposes that the capsid envelopes at the inner nuclear membrane, deenvelops 

through fusion with the outer nuclear membrane and reenvelopes at cytoplasmic 

membranes, possibly of the trans-Golgi network or endosomal, by budding into 

vesicles. The third model suggests that the majority of virions exit the nucleus 

through the nuclear pores and are enveloped at cytoplasmic membranes, while a 

minority of virus follow the route of the first model.  

The tegument is obtained through a complex network of protein-protein interactions 

forming an inner capsid-associated and an outer envelope-associated tegument. The 

enveloped virions exit the cell by transportation of the vesicle to the cell surface and 

fusion of the vesicle with the cell membranes, releasing the virions into the 

extracellular space (Mettenleiter et al. 2009).  

1.1.4.5. Latency 

Herpesviruses are able to remain latent in the host with the possibility of reactivation 

at a later stage. During latency the virus genome circularises and associates with 

nucleosomes; hence chromosome organisation is important for the establishment and 

maintenance of latency by determining which genes are active (Knipe and Cliffe 

2008; Tempera and Lieberman 2009). The different herpesviruses differ in their 
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preferred cell type for latency and the mechanisms for latency do not seem to be 

conserved, with no common pattern of gene expression. Some viruses have a very 

limited gene expression during latency; LAT is the only abundant transcript during 

HSV-1 latent infection (Stevens et al. 1987). In contrast EBV encodes several 

proteins during latency with various patterns of gene expression observed.  

1.2. Gammaherpesviruses 

Gammaherpesviruses undergo productive replication in epithelial cells and usually 

establish latency in lymphocytes. The latently infected lymphocytes have the ability 

to reactivate and infect nearby epithelial cells, allowing spread of the viruses to  

non-infected individuals (Pellet and Roizman 2007). The gammaherpesvirus 

subfamily includes the genera Lymphocryptovirus, Rhadinovirus, Macavirus and 

Percavirus (Table 1.1). The two human gammaherpesviruses, EBV and KSHV, 

belong to the Lymphocryptovirus and Rhadinovirus genera respectively. The 

Rhadinoviruses also include the well studied HVS, which causes T-cell lymphomas 

in new world primates, and MHV-68. The genus Macavirus includes the veterinary 

important Ovine herpesvirus 2 and Alcelaphine herpesvirus 1, which are  

non-pathogenic in their hosts, sheep and wildebeest respectively, but cause malignant 

catarrhal fever in other species (Davison et al. 2009).  

1.2.1. Epstein-Barr virus 

EBV was discovered in 1964 by Epstein, Achong and Barr, through electron 

microscopy of cultures from Burkitt’s lymphoma (BL) tissue (Epstein et al. 1964). 

Four years later EBV was identified as the causative agent of infectious 

mononucleosis (IM), a self-limiting lymphoproliferative disease (Henle et al. 1968). 

As the first candidate human tumour virus EBV has since been associated with 

several cancers, such as nasopharyngeal carcinoma (NPC), non-Hodgkin’s 

lymphoma, oral hairy leukoplakia, T-cell lymphomas and Hodgkin’s lymphoma 

(HL) (Cohen 2000; Weiss et al. 1987; Ziegler et al. 1982; zur Hausen et al. 1970). 

EBV is an ubiquitous virus infecting over 90% of the human adult population 

persisting for life, in most cases causing no disease (Rickinson and Kieff 2007). In 

the developing world the majority of infections occur within the first three years of 



Chapter One  Introduction 

 15

life. In the developed world 50% of children have not been infected by the age of 10, 

delaying the primary infection to adolescence (Rickinson and Kieff 2007), which 

leads to a 25% risk of developing IM (Crawford et al. 2006).  

The EBV genome is a 184 kbp long group C genome (Figure 1.2) with four internal 

repeats within the unique part of the genome, and encodes nearly 100 proteins. There 

are two subtypes of EBV, EBV-1 and EBV-2, which share extensive homology but 

differ in the regions encoding the EBV nuclear antigens (EBNAs)  

(Kieff and Rickinson 2007).  

EBV has a very restricted host range and efficient infection in vitro is restricted to 

primary human B lymphocytes. Infection of these cells leads to transformation of the 

cells resulting in lymphoblastoid cell lines. Lytic infection in vitro is usually studied 

by inducing latently infected B-cells to reactivate and allow lytic replication  

(Kieff and Rickinson 2007). 

1.2.1.1. EBV latency 

EBV expresses a restricted subset of genes during latent infection, with different 

patterns for gene expression observed (Table 1.2) (Kerr et al. 1992). These viral 

genes are six viral nuclear antigens (EBNA-1, -2, -3A, -3B, -3C, and –LP), three 

membrane proteins (LMP-1, -2A, -2B), the viral bcl-2 homologue (BHRF1), EBERs, 

several spliced transcripts from the BamA rightward transcripts (BARTs) and 

miRNAs (Kelly et al. 2009; Kieff and Rickinson 2007). These gene products work to 

maintain the latent infection and to immortalise the B-lymphocytes  

(Kieff and Rickinson 2007).  

The virus establishes latency in resting memory B-cells (Babcock et al. 1998; 

Miyashita et al. 1997). How it enters these cells is debated. In the main model EBV 

infects naïve tonsillar B-cells and drive the cells into memory cells by changing the 

gene expression pattern (program) to mimic physiologic antigen driven 

differentiation of the B-cell (Babcock et al. 2000). Thus, the infected naïve tonsillar 

B-cells express the growth program driving the cells to undergo proliferation, while a 

switch to the default program causes the cells to pass through germinal centres and 

mature into memory B-cells, at which point the cells shut down the protein 

expression and enter the latency program (Thorley-Lawson and Gross 2004). This is  
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Latency 
program Genes expressed Disease 

examples 

Growth 

EBNA-1, 2, 3A-C, LP; 
LMP1-, 2A, 2B; 
BHRF1; EBERs; 
BARTs 

Posttransplantation 
lymphoproliferative 

disease 

Default 
EBNA-1; LMP-1,  
LMP-2A; EBERs; 
BARTs 

Hodgkin’s 
lymphoma, 

Nasopharyngeal 
carcinoma  

Latency 
EBNA-1; LMP-2  
(in dividing cells); 
EBERs; BARTs 

Burkitt's lymphoma 

 

Table 1.2 EBV gene expression pattern during latent infection and associated diseases. 
Abbreviations: EBNA, EBV-encoded nuclear antigen; LMP, Latent membrane 
protein; EBERs, EBV-encoded RNAs; BARTs, Bam A rightward transcripts. BHRF1 
encodes the vbcl-2. 
 



Chapter One  Introduction 

 17

supported by the findings that the only type of B-cell expressing the growth program 

in the tonsil is the naïve B-cell, while germinal-centre and tonsillar memory B-cells 

express the default program and peripheral memory cells the latency program 

(Babcock et al. 2000; Joseph et al. 2000). The memory B-cells circulate between the 

peripheral blood and the tonsils in the latency program, expressing EBNA-1 and 

possibly LMP2 during cells division (Young and Rickinson 2004). Since memory  

B-cells rarely die and viral protein production is at a minimal, avoiding detection by 

the immune response, the virus can persist for a long time. Occasionally the memory 

B-cell may receive plasma cell signals activating lytic virus production, allowing 

spread of virus to nearby epithelial cells in mucosal sites and cause shedding of virus 

(Rickinson and Kieff 2007). Other programmes of latency have also been described; 

around 15% of BLs express the Wp-restricted latency program, characterised by 

EBNA-1, -3A, -3B, -3C, -LP, and BHRF1 expression, with the genome lacking 

EBNA2 (Kelly et al. 2009). 

1.2.1.1.1. Latency transcripts 
The EBV-encoded nuclear antigens 
EBNA-1: EBNA-1 is essential for the maintenance and replication of the EBV 

episome in dividing cells, binding to the plasmid origin of replication, oriP  

(Rawlins et al. 1985; Yates et al. 1984). During cell division it tethers the episome to 

the chromosome ensuring even distribution of viral genomes (Kanda et al. 2001). 

EBNA-1 can also act as a transcriptional activator of the EBNAs and LMP-1  

(Young and Rickinson 2004). It avoids CD8+ T-cell recognition by inhibiting its own 

translation, through a glycine-alanine repeat sequence that is thought to delay 

translation initiation, but since it simultaneously blocks degradation the levels of 

EBNA-1 remain stable (Apcher et al. 2009; Yin et al. 2003). 

EBNA-2: EBNA-2 is essential for transformation of B-lymphocytes  

(Cohen et al. 1989). It up-regulates the viral latency genes, as well as several cellular 

proteins, through interactions with the DNA binding protein RBP-Jκ  

(Kieff and Rickinson 2007). 
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EBNA-3: The EBNA-3 family of proteins also regulate protein expression. They 

modulate the EBNA-2-mediated up-regulation of viral and cellular genes by 

competing with EBNA-2 for RBP-Jκ binding (Kieff and Rickinson 2007). 

EBNA-LP: EBNA-LP is transcribed with EBNA-2 at the start of infection and 

interacts with EBNA-2 to up-regulate viral and cellular genes  

(Harada and Kieff 1997). 

The EBV-encoded latent membrane proteins 
LMP-1: LMP-1 is the main EBV transforming protein, functioning as a 

constitutively activated member of the TNF receptor family (Mosialos et al. 1995). It 

activates several signalling pathways, including nuclear factor κB (NFκB), by 

mimicking the functions of the B-cell receptor CD40; thereby driving cell growth 

and differentiation (Uchida et al. 1999), and up-regulating cell-surface adhesion 

molecules, anti-apoptotic proteins and cytokines (Young and Rickinson 2004).  

LMP-2: LMP-2A inhibits EBV reactivation from latency in B-lymphocytes by 

blocking B-cell receptor signal transduction by interacting with the tyrosine kinases 

(Miller et al. 1994). It also provides survival signals by providing surrogate B-cell 

receptor signalling (Caldwell et al. 1998). LMP-2B is reported to negatively regulate 

the function of LMP-2A (Rechsteiner et al. 2008).  

BHRF1 
vbcl-2: The viral bcl-2 homologue was recently shown to be expressed during the 

growth programme of latency and the Wp-restricted latency found in around 15% of 

BLs (Kelly et al. 2009). This protein has anti-apoptotic properties and protects the 

BL cells from cell death (Watanabe et al. 2009). 

EBV-encoded RNAs 
EBERs: These non-polyadenylated small non-coding RNAs are the most abundant 

EBV RNAs in latently infected cells and have been found to interact with several 

proteins. These will be discussed further in section 1.4.1.2.1. 

Bam A rightward transcripts 
BARTs: The BARTs is a set of alternatively spliced transcripts expressed during 

both lytic and latent infection containing several possible ORFs; however, the protein 
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products have not been detected. The introns of BART encode miRNAs, which will 

be discussed in chapter 1.4.3. 

1.2.1.2. EBV infection and associated diseases 

EBV is spread by oral secretions and infects cells of the oropharynx of naïve 

individuals. Whether these cells are B-lymphocytes or epithelial cells is still debated; 

perhaps it is a co-operation where binding of EBV to the B-cell aids entry into 

epithelial cells (Rickinson and Kieff 2007). The virus enters the memory B-cell pool 

as previously described and the EBV infection is brought under control by humoral 

and cell mediated responses, with natural killer (NK) cells and CD4+ and CD8+ 

cytotoxic T-cells playing an important part (Cohen 2000).  

Whereas most EBV infections are asymptomatic some do cause diseases such as IM. 

IM is usually cleared by immunocompetent individuals after a few weeks; however, 

can cause severe problems in immunosuppressed individuals. In addition, EBV is 

associated with three lymphoid tumours of B-cell origin: B-lymphoproliferative 

disease in the immunocompromised hosts, Burkitt’s lymphoma and Hodgkin’s 

lymphoma; as well as other tumours such as nasopharyngeal carcinoma.  

Infectious mononucleosis 
IM usually occurs during primary EBV infection of young adults with 25% 

developing IM (Crawford et al. 2006). The reason for this age difference is not 

known; however, it may be related to the viral dose and the host immune response 

(Rickinson and Kieff 2007). The symptoms include fever, sore throat, swollen and 

enlarged lymph glands, and fatigue. IM is thought to be an immunopathological 

disease where the symptoms arise from an exaggerated CD8+ cytotoxic T-cell 

response that results in an increased cytokine release (Williams and Crawford 2006). 

Posttransplantation lymphoproliferative disease  
EBV can also cause disease in people with acquired T-cell deficiencies, for example 

people on immunosuppressant therapy following transplantations. Between 0.5% and 

30% of transplant recipients develop Posttransplantation lymphoproliferative disease 

(PTLD) as a result of immunosuppressive therapy (Thompson and Kurzrock 2004). 

This is a heterogeneous collection of disorders which results from an uncontrolled 

expansion of B-lymphocytes. The risk factors include the degree of 
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immunosuppressive therapy and primary EBV infection; those that undergo primary 

infection during the immunosuppression have a higher risk of PTLD  

(Crawford 2001). Around 90% of tumours are EBV infected and most cells express 

the growth program. The reason for development of PTLD is not clear; however, it is 

possible that the impaired T-cell response fails to eliminate EBV infected 

proliferating abnormal cells or directly infected memory cells (Thorley-Lawson and 

Gross 2004). 

Burkitt’s lymphoma 
BL first described by Burkitt in 1958 as a tumour in the jaw of children in equatorial 

Africa (Burkitt 1958) is the most common childhood cancer in this area. These 

endemic cases of BL are prevalent in areas of holoendemic malaria in Africa and 

New Guinea, and 96% are associated with EBV. The association of EBV with BL in 

other parts of the world (sporadic BL) is however lower, ranging from 50-70% in 

some parts of the world and around 20% in North America and Europe  

(Crawford 2001). BL is also common in human immunodeficiency virus (HIV) 

infected individuals where EBV is found in 30-40% of BL tumours (Rickinson and 

Kieff 2007).  

All BL tumours carry one of three chromosomal translocations that brings the c-myc 

oncogene under the influence of the immunoglobulin (Ig) heavy- or light-chain 

genes, leading to its dysregulation (Klein 1983). This over-expression of c-myc 

drives the cell to proliferate and inhibits its differentiation, and even though this 

over-expression is not sufficient for BL development it seems to be necessary 

(Bornkamm 2009). The majority of EBV-positive tumours are germinal centre cells 

that contain EBV clonal genomes expressing the latency program, indicating that 

EBV infection occurs prior to translocation (Bornkamm 2009; Thorley-Lawson and 

Gross 2004).  

In endemic BL at least three factors co-operate to cause BL, these include malaria, 

EBV and c-myc translocation (reviewed in Crawford 2001; Thompson and Kurzrock 

2004). EBV is thought to promote survival of the B-cell, perhaps by inhibiting 

apoptosis, and avoids detection by the immune system by only expressing EBNA-1 

(Bornkamm 2009).  
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Hodgkin’s lymphoma  
HL accounts for around 20% of all lymphomas in the western world. In these 

tumours the malignant cells, large mono- or multinuclear Reed-Sternberg cells 

(RBC) and Hodgkin’s cells, make up a minority of cells (1-2%) with a heavy 

inflammatory infiltrate of reactive mononuclear cells making up the rest of the 

tumour (Crawford 2001). Activation of the NFκB-signalling pathway has been 

suggested as a possible cause of HL (Staudt 2000).  

The association of EBV with HL was confirmed when clonal EBV DNA was 

detected in tumour cells (Weiss et al. 1987) and later also in RSCs (Wu et al. 1990). 

These EBV positive cells express the default program of latent gene expression 

(Table 1.2). The EBV association varies depending on the type of tumour, 

geographical location, and age; ranging from 40-50% in developed countries up to 

almost 100% in cases in South America (Crawford 2001).  

RSCs contain hypermutated Ig genes and are believed to be B-cells that have arrested 

at the centrocyte stage during B-cell differentiation in the germinal centre and do not 

express IgG molecules. These abnormal B-cells would normally be prone to 

apoptosis; however, it is possible that EBV provides survival signals keeping the 

cells alive and proliferating (Andersson 2006; Crawford 2001). LMP-1 mimics CD40 

replacing the T-cell signal needed during memory cell selection (Uchida et al. 1999), 

while LMP-2A mimics B-cell receptor signalling from surface Ig, replacing antigen 

binding (Caldwell et al. 1998). LMP-1 also activates NFκB (Hammarskjold and 

Simurda 1992), indicating that both EBV- positive and negative tumours may use the 

same pathway to induce HL. One hypothesis is that EBV associated HL occurs when 

a mutation in a germinal centre B-cell prevents its differentiation. If this cell is 

infected with EBV it will express LMP-1 and LMP-2, promoting survival and 

proliferation; thus enhancing tumour growth.  

Nasopharyngeal carcinoma 
NPC is a tumour of squamous epithelium of the post-nasal space common in 

southern China, south-east Asia, north Africa and among Inuits in Alaska and 

Greenland, but rare in the rest of the world. The tumour is more common in men than 

in women and in southern China it is the most common malignancy in men and 

second commonest in women (Crawford 2001). NPC can be divided into different 
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types depending on the level of differentiation of the tumour cells; 70% are classed 

as undifferentiated and 100% of these tumours are associated with EBV. These 

tumours are made up of undifferentiated carcinoma cells and a lymphocyte infiltrate, 

with clonal EBV genomes present only in the epithelial cells expressing the default 

latency program (Table 1.2) (Brooks et al. 1992; Young and Rickinson 2004). 

Nasopharyngeal epithelial cells do not usually contain EBV, which has led to a 

model where the genetic events of NCP occur early in the pathogenesis and makes 

the epithelial cells either more susceptible to EBV infection or more able to maintain 

the viral genome (Rickinson and Kieff 2007). EBV latent gene expression may then 

provide survival signals and promote tumour growth. The EBERs confer resistance 

to Fas-mediated apoptosis by blocking the double-stranded RNA-regulated protein 

kinase R (PKR) pathway in an human epithelial intestine cell line (Nanbo et al. 

2005) and may enhance growth of NPC cells by inducing expression of insulinlike 

growth factor 1 (IGF-1) (Iwakiri et al. 2005). LMP-2 promotes the growth of 

epithelial cells and enhance epithelial cell migration (Rickinson and Kieff 2007). In 

addition, NPC cells express high levels of BARTs which encode several miRNAs 

that could be involved in the pathogenesis of NPC (Cai et al. 2006).  

1.2.2. Kaposi’s sarcoma-associated herpesvirus 

KS was first described in 1872 by the Hungarian dermatologist Moritz Kaposi when 

he published the case histories of five patients with a rare idiopathic pigmentation of 

the skin (Kaposi 1872). Initially considered a non-aggressive disease of elderly men 

in the Mediterranean, it was given further attention during the emergence of the HIV 

pandemic in the 1980s, when KS became the most common neoplasm in patients 

with acquired immune deficiency syndrome (AIDS) (Beral et al. 1990). The finding 

that KS was more prevalent among patients that had acquired HIV by sexual contact 

than parentally suggested that KS was spread by a sexually transmitted infectious 

agent (Beral et al. 1990). In 1994 Chang et al. identified two short fragments from a 

new herpesvirus (KSHV) in AIDS associated KS tissues using representational 

difference analysis. These sequences were homologous to capsid and tegument genes 

of the gammaherpesviruses EBV and HVS (Chang et al. 1994).  
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1.2.2.1. KSHV genome 

Sequencing of the viral genome further revealed that KSHV was a Rhadinovirus with 

linear dsDNA of 165 to 170 kbp made up of a central unique region of 140.5 kbp 

flanked by a variable number of 801 bp terminal repeat sequences (Renne et al. 

1996; Russo et al. 1996). The unique region encodes at least 86 ORFs, with 66 

conserved herpesvirus genes involved in virus replication and structure grouped 

together in gene blocks interspersed with non-conserved genes (Russo et al. 1996). 

KSHV also encodes several homologues of cellular proteins involved in DNA 

synthesis, cell cycle regulation, and signalling; at least 12 of these were captured 

from the host. These include cell-cycle regulators (e.g. vcyclin), inhibitors of 

apoptosis (e.g. vbcl-2 and vFLIP) and immunomodulatory proteins (e.g. vIRF-1 and 

vIL-6) (Moore and Chang 2001; Russo et al. 1996). Most of the captured genes are 

functionally similar to cellular genes induced by EBV infection, indicating that the 

two viruses use different ways of achieving the same thing. The KSHV genome also 

encodes miRNAs and a lytic polyadenylated non-coding RNA, PAN, that localises to 

the nucleus. 

1.2.2.2. KSHV epidemiology 

Although KSHV is found all over the world the prevalence varies significantly by 

geographical region. In Europe, North America, and Asia the prevalence in the 

general population is low, ranging from 0%-15%, and the virus is mainly spread by 

sexual transmission, particularly among homosexual men. In Mediterranean and 

Eastern European countries, where KS is more common, there is a higher prevalence 

ranging from 4% to 24%, while there is a very high prevalence in African regions 

with rates over 50%. In the latter two cases the virus is thought to spread by both 

sexual contact and parentally thorough saliva with infection often starting in 

childhood (Ganem 2007; Jenson 2003). KSHV has been divided into subtypes based 

on the sequence of the ORF K1. These subtypes A-H show distinct geographical 

distributions suggesting that KSHV is an ancient human infection with the subtypes 

reflecting the migration of human populations out of Africa (Boshoff and Weiss 

2001; Hayward 1999).  
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1.2.2.3. KSHV latency 

KSHV infection in vivo is restricted to humans making it difficult to study viral 

infection in the host. Most of the knowledge of KSHV latent infection comes from 

cultivation of primary effusion lymphoma (PEL) cell lines derived from patients with 

advanced AIDS. These cells are latently infected with the KSHV genome maintained 

as a circular episome, but following cultivation 1% to 5% of cells produce virus. This 

can be enhanced by treatment with chemicals or viral replication and transcription 

activator (rta), and thus allows for production of viral stocks and study of gene 

expression. However, this will not entirely represent gene expression in vivo. KSHV 

can latently infect several cell lines such as human fibroblasts, endothelial, and 

epithelial cells. Fibroblasts and epithelial cells have not been found to be infected in 

vivo, while B-cells, which are the site of latency in vivo, have been very difficult to 

infect in vitro (Ganem 2007).  

During latent infection only a few of the viral genes are expressed. In PEL cells most 

latently expressed transcripts are expressed from a region at the far right end of the 

genome. Latency-associated nuclear antigen-1 (LANA-1), vcyclin and vFLIP are 

transcribed through a program of alternative splicing and internal translational 

initiation. The kaposin locus gives rise to a family of proteins; kaposin A, B, and C, 

as well as miRNAs (Ganem 2007). LANA-2 lies outside of this region and is a B-cell 

specific latency gene not expressed in KS tumours (Rivas et al. 2001).  

It is possible that the latency expression in PEL cells gives a restricted view of 

KSHV latency. EBV has a complex program of latency expression and the B-cell 

limited expression of LANA-2 may be an indication that KSHV latency expression is 

more complex than thought. In addition, a large number of infected B-cells in 

Castleman’s disease express a variety of proteins including proteins that are not 

classed as latent (Katano et al. 2000; Parravicini et al. 2000). It is not clear if this 

represents an expanded pattern of latent gene expression, or if these are cells 

undergoing lytic virus replication (Chang and Moore 2001). 
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1.2.2.3.1. Latency transcripts 
Latency-associated nuclear antigen-1  
LANA-1 is a large, highly immunogenic, protein expressed in all latently infected 

cells where it localises to the nucleus. It is a multifunctional protein with DNA 

replication, anti-apoptotic, cell cycle regulatory and gene regulatory functions, most 

of which are exerted by interactions with other proteins (Kaul et al. 2007). LANA-1 

is essential for the establishment and maintenance of the latent viral episome in the 

nucleus. It activates the semiconservative replication of the episome by binding to 

DNA sequences within the terminal repeats; thus showing functional resemblance to 

EBV EBNA-1 binding to the oriP sequence (Grundhoff and Ganem 2003; Hu et al. 

2002). Further, LANA-1 tethers the viral episome to host chromosomes during cell 

division to allow efficient segregation of the viral DNA to both daughter cells 

(Ballestas et al. 1999; Cotter and Robertson 1999). It is also involved in the 

regulation of several pathways affecting cell growth and survival; however, LANA-1 

itself does not seem to be sufficient for transformation (Watanabe et al. 2003). 

LANA-1 up- and down-regulates a range of host and viral genes, including the 

latency genes, through binding to the DNA in the terminal repeats and interacting 

with components of the transcriptional machinery (Garber et al. 2001; Renne et al. 

2001). It also inhibits lytic replication by decreasing the expression of the lytic 

transactivator rta and antagonising its function (Lan et al. 2004). 

Viral cyclin 
vcyclin is a homologue of the cellular protein cyclin D and acts in a similar fashion 

in regulating the cell cycle. It forms functional complexes with cellular  

cyclin-dependent kinase 6 (cdk6) which leads to phosphorylation of pRB; thus 

stimulating cell cycle progression (Chang et al. 1996). However, the viral cyclin has 

several differences from the cellular cyclin D. It has a wider range of substrates, such 

as histone H1 (Godden-Kent et al. 1997) and origin recognition complex 1  

(Laman et al. 2001), suggesting that vcyclin may regulate several cell-cycle phases 

as well as stimulate the replication of both host and viral genome. In addition, 

vcyclin is able to evade the inhibitors that regulate the activity of cellular cyclin-cdk 

complexes (Swanton et al. 1997). 
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Viral FLIP 
vFLIP is a homologue of the FLICE inhibitory protein (FLIP) and like its homologue 

has antiapoptotic activities; it up-regulates the antiapoptotic transcription factor 

NFκB by interacting with the inhibitory κB kinase complex (Liu et al. 2002). Since 

vFLIP also is a homologue of caspase 8 it may act as a functional homologue in 

activating the NFκB signalling pathway; thus enhancing cellular proliferation 

(Chugh et al. 2005). Activation of the NFκB signalling pathway has several effects, 

including inhibition of apoptosis by up-regulation of several antiapoptotic molecules 

(Guasparri et al. 2004). It also promotes latency by inhibiting the expression of rta 

and lytic replication (Ye et al. 2008; Zhao et al. 2007), is responsible for the spindle 

cell phenotype seen in KSHV infected endothelial cells (Matta et al. 2007) and  

up-regulates cytokines (Sun et al. 2006). vFLIP has also been shown to directly 

inhibit KSHV lytic gene expression by binding to lytic promoters (Matta et al. 2008). 

Kaposins 
The kaposin locus gives rise to at least three proteins by differential initiation of 

translation, as well as several miRNAs. Kaposin A is a transmembrane protein found 

to transform cultured cells and drives tumorigenesis in nude mice (Muralidhar et al. 

1998). Kaposin A-transformed cells show enhanced activation of several 

serine/threonine kinase pathways, some of which are known to regulate cell 

proliferation (Muralidhar et al. 2000). It also binds cytohesin-1 activating the 

ERK1/2 pathway, which is thought to be important for transformation (Kliche et al. 

2001). Kaposin B binds and activates mitogen-activated protein (MAP)  

kinase-associated protein kinase 2 (MK2), a target of the p38 MAP kinase signalling 

pathway and known inhibitor of decay of mRNAs with AU-rich elements (AREs). 

Kaposin B thereby increases the expression of cytokines by blocking the degradation 

of their mRNAs, which are usually unstable because they contain AREs (McCormick 

and Ganem 2005).  

Latency-associated nuclear antigen-2 
LANA-2, also called viral interferon regulatory factor 3 (vIRF-3), is a B-cell specific 

protein (Rivas et al. 2001) required for proliferation and survival of PEL cells  

(Wies et al. 2008). It has several functions including inhibition of apoptosis induced 

by p53 (Rivas et al. 2001) and PKR, an interferon (IFN)-regulated anti-viral product 
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(Esteban et al. 2003). It also inhibits NFκB activation (Seo et al. 2004), IRF-7 

activity (which leads to suppression of alpha interferon (IFN-α) production and  

IFN-mediated immunity) (Joo et al. 2007), as well as virus-mediated transcriptional 

activation of the IFN-A promoter (Lubyova and Pitha 2000). In contrast, LANA-2 

has also been shown to enhance the binding of IRF-3 and IRF-7 to IFN promoters; 

thus upregulating virus-mediated induction of IFN responses (Lubyova et al. 2004). 

LANA-2 has recently been found to disrupt the ND-10 sites in the nucleus and 

interfere with the tumour suppressor PML (Marcos-Villar et al. 2009).  

1.2.2.4. KSHV infection and associated diseases 

Primary KSHV infection is thought to be asymptomatic in most cases; however, 

fever and rash has been described in immunocompetent children  

(Andreoni et al. 2002). In a study of HIV-negative men mild symptoms such as 

fever, diarrhoea, fatigue, rash and enlarged lymph nodes was associated with primary 

KSHV infection; unlike primary EBV infection there were was no increase in  

T-lymphocyte numbers (Wang et al. 2001). Primary KSHV infection is brought 

under control by MHC class I-restricted cytotoxic T-lymphocyte responses (Osman 

et al. 1999; Wang et al. 2001). KSHV encodes two proteins (MIR-1 and MIR-2) that 

have been found to reduce cell surface MHC class I expression by increasing its 

endocytosis; thus enabling the virus to evade the immune response (Coscoy and 

Ganem 2000; Coscoy et al. 2001). Asymptomatic carriers harbour the virus mainly 

in CD19+ B-cells (Ambroziak et al. 1995). Most people remain asymptomatic unless 

they acquire an immunodeficiency and severe KSHV associated disease is a rare 

occurrence.  

1.2.2.4.1. Kaposi’s sarcoma 
KS lesions can occur in several tissues, but is most commonly located in the skin 

where it forms brownish-purple raised nodules. The disease can be divided into four 

epidemiological forms: classic, endemic, post-transplant or iatrogenic, and  

HIV- associated KS. HIV- associated KS is the most common neoplasm in patients 

with AIDS and in the early days KS in AIDS patients was at least 20 000 times more 

common than in the general population (Beral et al. 1990). However, the 

introduction of HAART (highly active anti-retroviral therapy) has resulted in a 
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reduction of KS in AIDS patients in the developed world (Schwartz et al. 2008). 

HIV-associated KS is extremely aggressive.  

KS is not a classical tumour, but is a complex lesion made up of spindle cells, 

infiltrating monocytes, T-lymphocytes, plasma cells and neovascular channels. The 

spindle cells are the main proliferating cells of the lesion and they are thought to be 

endothelial cells, possibly of lymphatic origin (Ganem 2007). KSHV is necessary for 

the development of KS, but is not sufficient for it. Various findings support this; 

including the correlation of seroprevalence and KS risk and that KSHV DNA is 

present in all KS tumours where nearly all spindle cells are latently infected  

(Boshoff and Weiss 2001; Ganem 2007). Lytic replication may have an important 

role in KS development since ganciclovir, a drug that blocks lytic replication, 

reduces the occurrence of new KS tumours in patients with advanced AIDS (Martin 

et al. 1999).  

1.2.2.4.2. Primary effusion lymphoma 
PEL is a rare disease that occurs mainly in HIV-infected individuals with advanced 

AIDS and presents as a proliferation of B-cells in the body cavities lacking 

detectable tumour mass. PEL is a classic malignancy with clonal expansion of  

B-cells and every tumours cell harbours KSHV genomes as circular episomes at very 

high copy numbers (Boshoff and Weiss 2001). The tumour cells are often co-infected 

with EBV; however, PEL is not seen without KSHV infection (Ganem 2007). PEL 

cells express the latent proteins and viral interleukin 6 (vIL-6) (Parravicini et al. 

2000) which might drive tumorigenesis. Both vFLIP and LANA-2 have been found 

to be essential for PEL cell survival in vitro (Guasparri et al. 2004; Wies et al. 2008).  

1.2.2.4.3. Multicentric Castleman’s disease 
Multicentric Castleman’s disease (MCD) is an aggressive, lymphoproliferative, 

systemic illness, resulting in sustained fever, weakness, enlarged lymph nodes and 

spleen (Ganem 2007). MCD occurs more frequently in AIDS patients and in these 

cases are always associated with KSHV, while in HIV-negative cases only 40-50% 

are associated with KSHV (Boshoff and Weiss 2001). MCD is a polyclonal lesion 

with KSHV present in plasmablasts that localise mainly to the mantle zones 

surrounding the germinal centres (Du et al. 2001; Dupin et al. 2000). These 
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plasmablasts are not present in KSHV-negative MCD. It is thought that KSHV 

infects naïve B-cells and drives their differentiation into plasmablasts, bypassing the 

germinal centre reaction (Du et al. 2001). The IL-6 receptor is expressed in the 

majority of KHSV-infected cells and vIL-6 is highly expressed in a proportion of 

cells, indicating that the IL-6 pathway may drive both the differentiation of KSHV 

infected cells and the development of lymphoproliferative lesions. The vIL-6 may 

also induce expression of human IL-6, and in line with this increased levels of human 

IL-6 have been described in patients with MCD and this is thought to be responsible 

for the systemic manifestation of the disease (Du et al. 2001). In contrast to  

HIV-associated KS, HIV-associated MCD does not usually resolve following 

HAART (Boshoff and Weiss 2001).  

1.3. Murine gammaherpesvirus-68 

1.3.1. Discovery and classification 

MHV-68 (also known as murid herpesvirus 4; MuHV-4) was originally isolated in 

1976 from bank voles together with two other viruses, MHV-60 and MHV-72, and 

two viruses isolated from wood mice, MHV-76 and MHV-78 (Blaskovic et al. 1980) 

These viruses are considered strains of MHV-68. The growth characteristics of the 

viruses in cell lines and virion structures as observed by electron microscopy led to 

their classification as herpesviruses (Blaskovic et al. 1980; Ciampor et al. 1981). 

They were further classified as part of the Alphaherpesvirinae based on their 

cytopatic effects, growth characteristics, and wide host range in different cell cultures 

(Svobodova et al. 1982a), as well as structural polypeptide similarities to HSV-1 

(Stancekova et al. 1987). However, in vivo studies with MHV-68 showed a 

pathogenesis inconsistent with alphaherpesviruses; the mice showed no neurological 

disease, but severe pneumonia with widespread haematogenous viral spread with the 

virus replicating predominantly in lung alveolar cells (Blaskovic et al. 1984; Rajcani 

et al. 1985). Short nucleotide sequence analysis of the MHV-68 genome revealed 

that it was actually closely related to the gammaherpesviruses EBV and HVS in 

terms of genome organisation, content, and structure (Efstathiou et al. 1990a; 

Efstathiou et al. 1990b), and that the genome organisation was more similar to that of 
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Rhadinoviruses, e.g. HVS and KSHV. Partial and full sequencing of the MHV-68 

genome further corroborated this (Mackett et al. 1997; Virgin et al. 1997).  

Although MHV-68 was initially isolated from bank voles subsequent 

epidemiological surveys of MHV-68 infection in free-living rodents found that the 

virus is endemic in wood mice, striped field mouse and yellow-necked mouse, and 

not bank voles, suggesting that the wood mouse and related mouse species are likely 

to be the natural hosts (Blasdell et al. 2003; Ehlers et al. 2007). At least three other 

mouse herpesviruses have been reported; MHV-Brest and wood mouse herpesvirus 

(WMHV) are thought to be strains of the same virus species (Chastel et al. 1994; 

Hughes et al. 2009).  

Since MHV-68 can infect mice it provides a small animal model for the study of 

virus-host interactions, virus pathogenesis and latency. MHV-68 can also be studied 

in vitro as it establishes productive and latent infections in several cell lines. In 

addition, the MHV-68 genome has been cloned into a bacterial artificial chromosome 

(BAC) which makes it relatively easy to generate virus mutants (Adler et al. 2000).  

1.3.2. MHV-68 virion 

The virion structure of MHV-68 as determined by electron microscopy and antigen 

analysis was early on found to be similar to other herpesviruses (Ciampor et al. 1981; 

Svobodova et al. 1982b). The sequencing of the genome revealed that MHV-68 does 

indeed encode homologues for several herpesvirus structural proteins  

(Virgin et al. 1997). Analysis of proteins associated with the MHV-68 virion 

identified a number of homologues of capsid, tegument, and envelope proteins, along 

with proteins not previously associated with virions, as well as cellular proteins such 

as annexin I, annexin II and a cytoplasmic β-actin homologue (Bortz et al. 2003). As 

described for other viruses (section 1.1.2) MHV-68 packages mRNAs, in addition to 

the vtRNAs (Cliffe et al. 2009b). The reason for the packaging of the non-coding 

RNAs is not known.  

1.3.3. MHV-68 genome 

The MHV-68 genome comprises a unique region of 118 kbp DNA with two internal 

repeats of 40 respectively 100 bp, flanked by terminal repeat regions made up of 



Chapter One  Introduction 

 31

variable numbers of 1.213 kbp repeat units (Efstathiou et al. 1990a; Virgin et al. 

1997). The genome encodes 73 protein-coding ORFs, most of which are homologues 

of HVS and KSHV genes and many also of EBV genes. The genome consists of 

conserved herpesvirus gene blocks separated by virus specific genes and can be 

aligned with other Rhadinoviruses such as KSHV and HVS (Figure 1.4)  

(Virgin et al. 1997). MHV-68, like the other gammaherpesviruses, encodes a number 

of cellular homologues, such as vcyclin, vGPCR, and vbcl-2 (Nash et al. 2001; 

Virgin et al. 1997). At the left end of the genome MHV-68 encodes four genes 

unique to the virus, eight vtRNAs and nine miRNAs (Bowden et al. 1997; Pfeffer et 

al. 2005; Virgin et al. 1997).  

1.3.4. MHV-68 life cycle 

1.3.4.1. Entry 

The mechanism by which MHV-68 enters the cells appears to be a complex process 

involving several molecules. Like other herpesviruses (1.1.4.1) the virion binds 

heparin sulphates via gH/gL or gp70 (Gillet et al. 2007a; Gillet et al. 2008) and entry 

also involves gB (Gillet and Stevenson 2007) and gp150 (Gillet et al. 2007a). While 

gH is essential for infectivity, gL is not (Gill et al. 2006; Gillet et al. 2007b). gp150 

appears to have an inhibitory role, blocking heparin sulphate-independent cell 

binding until the virion is already bound by gH/gL or gp70 (Gillet et al. 2009). The 

MHV-68 ORF75c tegument protein is involved in moving incoming capsids to the 

nucleus (Gaspar et al. 2008). It also disrupts the ND-10 sites, like LANA-2 of KSHV 

(Gaspar et al. 2008; Ling et al. 2008). 

1.3.4.2. Gene expression 

Following entry and DNA translocation to the nucleus the expression of viral genes, 

like that of all herpesviruses (section 1.1.4.2), takes place in a highly regulated 

cascade fashion (Ebrahimi et al. 2003; Martinez-Guzman et al. 2003). Viral gene 

expression starts as early as three hours post infection in vitro (Ahn et al. 2002) with 

lytic infection in cultured fibroblasts having a similar transcription program to 

infected lungs of mice (Martinez-Guzman et al. 2003). One of the immediate early 

genes, ORF 50, encodes the rta which is a well conserved viral replication and  
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Figure 1.4 Comparing the genome of MHV-68 with that of KSHV and HVS. Open 
boxes represent conserved gene blocks. The orientations of additional ORFs are shown 
as pointed boxes. Abbreviations: CCP, Complement control protein; TK, Thymidine 
kinase; rta, Replication and transcription activator; vGPCR, Viral G-protein coupled 
receptor; STP, Simian transformation-associated protein; DHFR, Dihydrofolate 
reductase; TS, Thymidylate synthase; vFLIP, Viral FLICE-like inhibitory protein; 
LANA, Latency associated nuclear antigen; LAMP2, Latent membrane protein 2. 
Adapted from Nash et al. 2001.  
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transcription activator of gammaherpesviruses. The rta is essential for lytic 

replication, activating not only early genes but affecting all genes during both 

reactivation and de novo infection (Martinez-Guzman et al. 2003; Wu et al. 2001). 

Over-expression of rta was found to induce expression of specific lytic cycle genes, 

but repress the transcription of ORF 73 which is essential for establishment of 

latency (Hair et al. 2007). The mechanisms for MHV-68 rta transcription induction 

and repression are not known; however, the rta of KSHV has been found to activate a 

number of genes either through direct binding to promoter sequences or through 

other proteins. In addition, KSHV rta targets transcriptional suppressors for 

proteasomal degradation via an E3 ubiquitin ligase activity (Gould et al. 2009). 

1.3.4.3. Viral DNA replication 

MHV-68 has homologues of six of the seven herpes proteins required for viral DNA 

synthesis (see section 1.1.4.3)(Virgin et al. 1997). The seventh protein, a protein with 

origin binding function which differs between herpesviruses (UL9 of HSV, Zta of 

EBV and K8 of KSHV), has not been found for MHV-68 (Gong et al. 2009).  

MHV-68, like KSHV, has two origins of lytic replication (oriLyt) located at either 

end of the genome and a packaging signal in the terminal repeats (Adler et al. 2007; 

Deng et al. 2004). The cellular transcription factor NF-Y has recently been found to 

bind to the oriLyt sequences and is important for MHV-68 lytic replication  

(Gong et al. 2009) 

The generation of a MHV-68 BAC plasmid has simplified the construction of mutant 

viruses. This enabled two studies using signature-tagged mutagenesis to identify 

candidate viral genes involved in virus replication. In these studies 16 and 41 

essential genes were identified, respectively; many of which are conserved between 

herpesviruses, including gB, gH, gM and rta (Moorman et al. 2004; Song et al. 

2005). Further studies on individual genes, using the BAC system, have found that 

some of the genes (ORF 18, 24, 30 and 34) required for infectious virus production 

are essential for late gene expression, but dispensable for viral DNA replication 

(Arumugaswami et al. 2006; Wong et al. 2007; Wu et al. 2009). While some, like 

rta, are essential for both gene expression and DNA replication (Pavlova et al. 2003) 
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1.3.4.4. Assembly and egress 

Following capsid assembly the virion is enveloped and released as described in 

section 1.1.4.4. ORF 52 and ORF33 of MHV-68 encode virion-associated tegument 

proteins important for envelopment and egress into the cytoplasm (Bortz et al. 2007; 

Guo et al. 2009). The glycoprotein gp150 is important for virus release into the 

extra-cellular space, but not for cell-to-cell spread which is thought to be the major 

spread of virus during in vivo infection, avoiding the host immune response  

(de Lima et al. 2004). ORF58 and gp48 are both important for cell-to-cell spread, 

with ORF58 transporting gp48 to the cell surface where it induces outgrowths of 

actin-based membrane projections to create intercellular networks for virion spread 

(Gill et al. 2008; May et al. 2005b; May et al. 2005a). 

1.3.5. MHV-68 primary infection  

MHV-68 infection in vivo is studied by intranasal or intraperitoneal infection of 

laboratory mice. Intranasal infection seems most likely to mimic natural infection, 

since the main site of viral replication in wood mice is the lung and by comparison to 

other gammaherpesviruses (Blasdell et al. 2003). Following intranasal infection of 

anaesthetised mice primary MHV-68 replication takes place in the respiratory tract, 

mainly in alveolar epithelial cells but also mononuclear cells and in the nose, with 

replication spreading to distal epithelial sites such as the adrenal gland (Milho et al. 

2009; Sunil-Chandra et al. 1992b). Primary infection induces an inflammatory 

infiltrate in the lung, made up mainly of macrophages, monocytes, CD4+ and CD8+ 

T-cells, leading to bronchiolitis and interstitial pneumonia (Sarawar et al. 2002; 

Sunil-Chandra et al. 1992b). The lytic infection is controlled by day 10 post infection 

and the inflammation is resolved by the second week, with both CD4+ and CD8+  

T-cells contributing to the control of virus replication (Christensen et al. 1999; 

Stevenson et al. 1999). The CD4+ T-cell antiviral response is dependent on IFN-γ but 

not CD8+ T-cells or B-cells (Christensen et al. 1999; Sparks-Thissen et al. 2004; 

Sparks-Thissen et al. 2005).  
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1.3.6. MHV-68 latency  

Following clearance of lytic virus from the lung low levels of persistent virus can 

still be detected in epithelial cells and during long-term latency virus persists in  

B-cells (Flano et al. 2003; Stewart et al. 1998). The lung has been found to be a 

major site of persistence both in laboratory mice and wood mice (Blasdell et al. 

2003; Stewart et al. 1998). From the lung the virus spreads to the mediastinal lymph 

node (MLN) where dendritic cells, macrophages and B-cells are infected (Nash et al. 

2001). The B-cells undergo a CD4+ T-cell dependent proliferation leading to 

lymphadenopathy and an increase in the number of infected B-cells which spread to 

the spleen and other lymphoid organs where the virus establishes latency (Stewart et 

al. 1998; Usherwood et al. 1996b). During latency in the spleen MHV-68 can be 

detected within germinal centre B-cells, macrophages and dendritic cells (Flano et al. 

2000; Sunil-Chandra et al. 1992a; Weck et al. 1999). Like EBV MHV-68 utilises the 

B-cell differentiation pathway to gain entry into the B-cell memory pool, ensuring 

life-long persistence (Kim et al. 2003). Splenomegaly occurs by day 10 with an 

increase in both size and numbers of germinal centres and a 2-3 fold increase in 

spleen cells, such as B-cells, CD4+ and CD8+ T-cells (Sunil-Chandra et al. 1992b; 

Usherwood et al. 1996a). Infected B-cells and CD4+ T-cells are necessary for the 

development of splenomegaly (Ehtisham et al. 1993; Usherwood et al. 1996c; 

Usherwood et al. 1996b). Splenomegaly is however not a requirement for 

establishment of latency in the spleen (Usherwood et al. 1996b). The number of 

latently infected cells peak at around day 10-14 and decline to a low level with long-

term latency maintained in germinal centre and memory B-cells, as well as 

macrophages and dendritic cells (Flano et al. 2003; Sunil-Chandra et al. 1992b; 

Usherwood et al. 1996c; Willer and Speck 2003).  

Following splenomegaly there is a massive expansion of CD8+ T-cells in the 

peripheral blood, dominated by Vβ4+ CD8+ T-cells, causing an IM-like syndrome 

(Tripp et al. 1997). This selective expansion seems to be MHC-independent, but like 

splenomegaly dependent on CD4+ T-cells and B-cells (Brooks et al. 1999; Coppola 

et al. 1999; Flano et al. 1999). The oligoclonal expansion of Vβ4+ CD8+ T-cells is 

driven by a ligand encoded by the M1 gene that is expressed by latently infected 
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germinal centre B-cells (Coppola et al. 1999; Evans et al. 2008; Hardy et al. 2000). 

Even though these T-cells have the ability to exert effector functions they are not 

essential for the control of latent infection; however, they may function as a back-up 

defence (Braaten et al. 2006; Flano et al. 2004).  

CD4+ T-cells are important for the control of latent infection. Despite a functional 

CD8+ T-cell response, long term MHV-68 infection of mice lacking CD4+ T-cells 

leads to reactivation of virus in the respiratory tract and a chronic wasting disease 

(Belz et al. 2003; Cardin et al. 1996; Stevenson et al. 1998). The CD4+ T-cell control 

of latent infection is not only mediated by IFN-γ but also by direct cytotoxicity 

(Sparks-Thissen et al. 2005; Stuller and Flano 2009). The IFN-γ control however 

seems to be cell type specific, suppressing reactivation in macrophages but not  

B-cells (Steed et al. 2007). CD4+ T-cells are also needed to drive B-cell proliferation 

and maturation leading to a polyclonal non-specific antibody response. This is 

followed by a slow-developing virus-specific antibody response which plays a role in 

the control of latent infection (Kim et al. 2002; Sangster et al. 2000; Stevenson and 

Doherty 1998). The CD4+ T-cells remain activated during the latent infection 

(Christensen and Doherty 1999) with cells specific for viral gp150 and ORF11 

peptides making up 10-20% of the virus specific population (Flano et al. 2001).  

Despite being insufficient in controlling latency, CD8+ T-cells regulate the latent 

load by a single epitope within the M2 protein (Husain et al. 1999; Marques et al. 

2008). 

1.3.6.1. Latency in vitro 

In vitro MHV-68 establishes latency in mouse myeloma B-cell lines, such as NS0 

(Sunil-Chandra et al. 1993). During latent infection of NS0 cells approximately 5% 

undergo reactivation to lytic infection (Nash et al. 2001). Several B-cell lines derived 

from mice with MHV-68 associated lymphomas e.g. S11 have been established 

(Usherwood et al. 1996a). Infection of primary B-cells leads to phenotypic changes 

such as increased proliferation, however the cells are not transformed and the 

genome does not circularise (Dutia et al. 1999).  
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1.3.6.2. Latency transcripts 

In common with other herpesviruses the switch from lytic to latent MHV-68 

infection is accompanied by a shutdown of gene expression, with only a subset of 

genes expressed. Genes expressed during the establishment of latency include  

M1-M4, K3, ORF 72 (vcyclin), ORF 73, ORF 74 (vGPCR), M11 (vbcl-2), ORF 65, 

and the vtRNAs and miRNAs (Bowden et al. 1997; Diebel et al. 2010; Marques et 

al. 2003). The gene expression is cell type dependent, with B-cells of different 

differentiation stages, macrophages and dendritic cells expressing different genes, 

indicating the existence of latency programs (Marques et al. 2003). The gene 

expression during long-term latency has not been well defined.  

The latency associated genes of MHV-68, like that of other gammaherpesviruses, 

play a role in establishment of latency, maintenance of the episome and promoting 

reactivation from latency. ORF 73, a positional homologue of KSHV LANA-1 with 

24.2% sequence homology, is important for the establishment of latency (Fowler et 

al. 2003; Moorman et al. 2003b; Virgin et al. 1997). It is thought to have functions 

similar to the LANA-1 (see section 1.2.2.3.1) in tethering the viral episome to the 

host chromosome during cell division and inhibiting the activity of rta. ORF73 and 

rta thereby regulate each others expression, with the balance between ORF73 and rta 

determining between latency and reactivation. Other latency associated proteins also 

play a part in the establishment of latency in the spleen. These include M11 (vbcl-2) 

(de Lima et al. 2005), M2 (Jacoby et al. 2002; Macrae et al. 2003; Simas et al. 

2004), M3 (Bridgeman et al. 2001), M4 (Evans et al. 2006; Geere et al. 2006) and 

K3 (Stevenson et al. 2002). M2, ORF 72 (vcyclin) and ORF 74 (vGPCR)  

(Moorman et al. 2003a) promote reactivation from latency (Herskowitz et al. 2005; 

Jacoby et al. 2002; van Dyk et al. 2000). 

Cellular proteins are also involved in the establishment and maintenance of latency: 

NFκB inhibits viral replication and IFN-α/β regulates the viral gene expression, 

thereby directing the switch between lytic and latent infection and inhibiting 

reactivation from latency (Barton et al. 2005; Brown et al. 2003; Krug et al. 2009).  
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1.3.7. MHV-68 evasion of the host’s immune system 

MHV-68, like other herpesviruses, has evolved strategies to avoid the host immune 

response, especially during latency amplification. The K3 protein (a homologue of 

KSHV MIR-1) down-regulates MHC class I expression by degrading the MHC class 

I heavy chains and TAP, thereby avoiding CD8+ T-cell recognition during latency 

amplification (Boname and Stevenson 2001; Boname et al. 2004; Lybarger et al. 

2003; Stevenson et al. 2002). M3 is a chemokine binding protein that blocks 

chemokine signalling and thus leukocyte recruitment, including CD8+ T-cells, 

enabling the amplification of latent virus in lymphoid tissue (Bridgeman et al. 2001; 

Martin et al. 2006; Parry et al. 2000; van Berkel et al. 2000). ORF36 encodes a 

multifunctional kinase that is conserved among herpesviruses. This protein binds to 

the activated form of IRF-3 and thereby inhibits the virus-induced type-I IFN 

response, promoting persistent infection (Hwang et al. 2009). The episome 

maintenance protein encoded by ORF73 has a cis-acting CD8+ T-cell evasion 

mechanism, like EBNA-1, so that it can avoid recognition by the immune system 

(see section 1.2.1.1.1) (Yin et al. 2003). Disruption of this evasion mechanisms leads 

to a reduction in latency (Bennett et al. 2005).  

1.3.8. MHV-68 pathogenesis 

MHV-68 associated diseases vary in severity from splenomegaly to 

lymphoproliferative disorders. The outcome of infection depends on the type and 

immunological status of the infected mouse; with severe disease usually not 

occurring in immunocompetent mice. Infection of inbred BALB/c mice leads to both 

lymphoid and non-lymphoid lymphomas in 10% of infected mice, with the number 

of virus DNA positive lymphocytes varying from low to very high numbers. The 

incidence of lymphoma was increased following treatment with the 

immunosuppressant drug cyclosporine A (Sunil-Chandra et al. 1994). Infection of 

BALB/c mice with MHV-72 leads to a similar incidence of lymphomas (Mistrikova 

et al. 1996). MHV-68 infection of BALB β2-microglobulin deficient mice is 

associated with a higher occurrence of lymphoproliferative disease than BALB/c 

mice, with two types of lesions observed: B-cell lymphoma and atypical lymphoid 

hyperplasia (ALH). The AHL lesions, resembling EBV-associated PTLD, commonly 
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contained MHV-68 infected cells, while lymphomas contained few infected cells 

(Tarakanova et al. 2005). The MHV-68 positive B-cell line S11 induces tumours 

when introduced into nude mice, with CD4+ T-lymphocytes found to be important 

for tumour regression (Robertson et al. 2001; Usherwood et al. 1996a). 

There are several candidate viral genes for transformation of cells, including ORF72 

(vcyclin), ORF-74 (vGPCR) and M11 (vbcl-2). vcyclin is an oncogene that binds and 

activates cellular cdks, promoting cell cycle progression and inhibiting T-lymphocyte 

differentiation (Upton et al. 2005; van Dyk et al. 1999). vcyclin is important for in 

vivo replication and reactivation from latency; with its role in reactivation at least in 

part cdk-independent (Upton and Speck 2006; van Dyk et al. 2000). The vGPCR is 

expressed during both lytic infection and latency and has the ability to transform 

cells in vitro (Wakeling et al. 2001). The viral bcl-2 homologue is expressed during 

lytic and latent infection and inhibits apoptosis and autophagy; thus promoting cell 

survival and tumour formation (Ku et al. 2008; Roy et al. 2000; Wang et al. 1999). 

vbcl-2 and vcyclin have been shown to be involved in the development of ALH in 

MHV-68 infected BALB β2-microglobulin deficient mice, while vGPCR is not 

(Tarakanova et al. 2008). 

MHV-68 is also involved in other disorders in immunocompromised mice. Infection 

of young or immunocompromised mice lacking IFN-γ response or B-cells is 

associated with arthritis of large elastic arteries, eventually leading to death  

(Weck et al. 1997). Infection of IFN-γ receptor deficient mice is also associated with 

fibrosis and atrophy of lymphoid tissue, liver, and lungs, with at least splenic fibrosis 

being dependent on a Th2 response (Dutia et al. 1997; Ebrahimi et al. 2001; 

Gangadharan et al. 2008; Mora et al. 2005). Pulmonary inflammation was found to 

lead to more severe disease over time, with 80% developing lymphoid hyperplasia or 

pulmonary lymphoma after 12 months (Lee et al. 2009b). 

1.3.9. MHV-76 and other related viruses 

MHV-76 and MHV-72 were discovered at the same time as MHV-68 and are 

considered strains of MHV-68. MHV-76 is identical to MHV-68 except for a 9538 

bp deletion in the left end of the genome, encompassing M1-M4, the eight vtRNAs, 

and nine miRNAs (Macrae et al. 2001). MHV-76 thereby appears to be a deletant 
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virus occurring during either in vivo or in vitro passaging. This was further supported 

by the generation of a spontaneous deletion mutant with a nearly identical deletion 

affecting the same genes through in vitro passaging (Clambey et al. 2002). MHV-76 

replicates with similar kinetics to MHV-68 in vitro. However, following intranasal 

infection of mice MHV-76 shows an attenuated phenotype (Macrae et al. 2001). 

During acute infection in the lungs, MHV-76 induces a greater inflammatory 

response and is cleared more rapidly. In addition, the virus does not induce 

splenomegaly to the same degree and establishes latency in the spleen at a much 

lower level. Following establishment of latency MHV-76 is able to persist in the 

spleen, but not in the lungs. MHV-72 lacks the first 7 kbp of the genome, 

encompassing M1-M3, vtRNAs and miRNAs (Oda et al. 2005).  

MHV-Brest and WMHV are closely related viruses with 99.2% sequence identity 

considered strains of viruses related to MHV-68 (Chastel et al. 1994; Hughes et al. 

2009). WMHV has 85% sequence identity with MHV-68, with the left end region 

highly conserved, particularly M1 and M4 and the vtRNAs, while five of the 

miRNAs are less conserved (Hughes et al. 2009). The left end of MHV-Brest is also 

highly conserved, with least sequence similarities in the M2 gene  

(Chastel et al. 1994). 

1.3.10. Left-hand end of MHV-68 

The left end of the genome contains the genes that are unique to MHV-68; M1-M4, 

the vtRNAs and miRNAs (Figure 1.5A). The functions of these genes are not fully 

understood, but what is known will be discussed below.  

1.3.10.1. M1 

The M1 ORF has 25% sequence homology with M3 (van Berkel et al. 1999) and is 

expressed during lytic infection both in vitro and in vivo and during latent infection 

in the spleen (Ebrahimi et al. 2003; Marques et al. 2003; Martinez-Guzman et al. 

2003; Simas et al. 1999). M1 is a secreted protein responsible for the expansion of 

Vβ4+ CD8+ T-cells during MHV-68 infection (Evans et al. 2008). It suppresses viral 

reactivation through the action of Vβ4+ CD8+ T-cells, apparently by IFN-γ  
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Figure 1.5 (A) The unique genes in the left side of the genome, showing the four unique 
protein coding genes M1-M4 and the vtRNA and miRNA genes. (B) The miRNAs are 
transcribed as part of the vtRNA transcripts (taken from Pfeffer et al. 2005).  
(C) Predicted cloverleaf structure of vtRNA5 (taken from Bowden et al. 1997). 
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production (Clambey et al. 2000; Evans et al. 2008). M1 driven expansion of Vβ4+ 

CD8+ T-cells causes inflammation and multi-organ fibrosis in IFN-γ receptor 

deficient mice (Clambey et al. 2000; Evans et al. 2008). In contrast, M1 was found to 

repress the severity of the lymphoproliferative disease seen in MHV-68 infected 

BALB β2-microglobulin deficient mice (Tarakanova et al. 2008). The M1 driven 

expansion of Vβ4+ CD8+ T-cells also mediates resistance to transplantation tolerance 

during latent infection (Stapler et al. 2008). 

1.3.10.2. M2 

M2 is a membrane-associated protein expressed during lytic infection in the lungs 

and transiently during latent infection in the spleen (Macrae et al. 2003; Marques et 

al. 2003; Usherwood et al. 2000). This protein has been found to be critical for the 

efficient establishment of latency in the spleen and reactivation from latency 

(Herskowitz et al. 2005; Jacoby et al. 2002; Macrae et al. 2003; Simas et al. 2004). 

M2 is not involved in the splenomegaly or expansion of Vβ4+ CD8+ T-cells seen 

during the establishment of latency (Macrae et al. 2003), but is required for 

colonisation of splenic follicles and the differentiation of these cells into memory  

B-cells and plasma cells (Herskowitz et al. 2005; Liang et al. 2009; Simas et al. 

2004). Lack of M2 has been associated with an increase of latently infected germinal 

centre B-cells during long-term latency indicating an inability of these cells to 

differentiate into memory B-cells (Herskowitz et al. 2005; Simas et al. 2004). M2 

promotes B-cell differentiation, proliferation and survival through interactions with 

the guanine nucleotide exchange factor vav, affecting its activity and thereby 

lymphocyte signalling (Madureira et al. 2005; Rodrigues et al. 2006). In primary  

B-cells M2 was found to increase B-cell production of and sensitivity to IL-10 by 

modulating B-cell signalling, thereby driving B-cell proliferation and differentiation 

(Siegel et al. 2008). M2 driven proliferation of B-cells into plasma cells is associated 

with an increase in reactivation (Liang et al. 2009). M2 also protects latently infected 

cells by inhibiting IFN- and apoptosis-mediated innate immunity (Liang et al. 2004; 

Liang et al. 2006). In addition, M2 has a CD8+ T-cell epitope that affects the viral 

latent load during long-term latency (Husain et al. 1999; Marques et al. 2008). 
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1.3.10.3. M3 

M3 encodes a secreted high-affinity broad spectrum chemokine binding protein with 

no sequence similarity to known chemokine receptors (Parry et al. 2000; van Berkel 

et al. 1999). It is expressed abundantly during lytic infection and the establishment of 

latency, but does not seem to be expressed during long-term latency in the spleen 

(Marques et al. 2003; Martinez-Guzman et al. 2003; Simas et al. 1999). M3 is able to 

bind chemokines from all four subfamilies and by blocking their interaction with 

both GPCRs and GAGs inhibits chemokine signalling (Alexander et al. 2002; Parry 

et al. 2000; van Berkel et al. 2000; Webb et al. 2004). In mice M3 was found to be 

critical for the establishment of latency by inhibiting CD8+ T-cell recruitment 

(Bridgeman et al. 2001). This effect on latency was however not seen in a different 

study, instead M3 was found to be involved in the induction of the lethal meningitis 

caused by MHV-68 by regulating the inflammatory responses (van Berkel et al. 

2002). The ability of M3 to block leukocyte recruitment, including CD8+ T-cells, 

through cytokine binding in vivo has been verified in two separate studies using 

transgenic mice (Jensen et al. 2003; Martin et al. 2006). 

1.3.10.4. M4 

M4 encodes a secreted glycoprotein expressed during lytic infection in the lung and 

establishment of latency in the spleen, but not during long-term latency (Evans et al. 

2006; Marques et al. 2003; Townsley et al. 2004). Studies using recombinant viruses 

either by inserting M4 into MHV-76 or disruption of the M4 gene in MHV-68 have 

found that M4 is important for the establishment of latency; however, not for the 

maintenance of long-term latency (Evans et al. 2006; Geere et al. 2006; Townsley et 

al. 2004). Lack of M4 leads to an increased clearance of virus, suggesting that M4 

modulates the immune response (Geere et al. 2006); consistent with this M4 has 

been shown to bind the chemokine CXCL4 and reduce its levels (pers commun  

Y. Ligertwood and B.M. Dutia). M4 did not have an effect on splenomegaly, again 

showing that the increase in latent load is not dependent on lymphocytosis (Geere et 

al. 2006; Townsley et al. 2004).  
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1.3.10.5. vtRNAs and miRNAs 

MHV-68 encodes eight vtRNAs and nine miRNAs which are transcribed by RNA 

polymerase III as dicistronic transcripts, with one or two 20-25 bp pre-miRNA 

hairpins following the tRNA (Figure 1.5B) (Bowden et al. 1997; Pfeffer et al. 2005). 

The vtRNA sequences contain internal RNA polymerase III type-2 promoter 

elements with three overlapping A-box promoter elements and one B-box promoter 

element (Diebel et al. 2010). 

The vtRNAs contain up to 75% sequence homology with some cellular tRNAs and 

are predicted to form cloverleaf-like secondary structures in which the majority of 

invariant and semi-invariant bases typical of tRNAs are conserved (Figure 1.5C; see 

section 1.4.2.1) (Bowden et al. 1997). However, the prediction of amino acid 

specificity is difficult because the vtRNAs have atypical anti-codon arms, differing 

in size and sequence from known cellular tRNAs. In addition, the vtRNAs do not 

have more similarity to tRNAs sharing the same anticodon than other tRNAs. 

vtRNA7 contains an intron, but lacks the purine residue needed for splicing, 

indicating that at least this vtRNA is unlikely to function in translation. The 

determinant bases (nt73), which are known to be important for recognition by 

cellular aminoacyl-tRNA synthases, are not conserved; consistent with this at least 

four of the vtRNAs are not aminoacylated (Bowden et al. 1997). At least two of the 

vtRNAs are however recognised as tRNAs by the cellular machinery and processed 

into mature tRNAs with the post-transcriptional addition of the 3’ CCA sequence. 

The vtRNAs are expressed at high levels during both lytic infection in the lung and 

latent infection in the spleen. They can be detected by in situ hybridisation in spleens 

in the absence of viral DNA, which has lead to the vtRNAs being used to detect 

latently infected cells (Bowden et al. 1997). During lytic infection in vitro the 

vtRNAs are located in both the nucleus and cytoplasm of the cell, at later times 

predominantly in the cytoplasm (Cliffe et al. 2009b). The functions of these vtRNAs 

are not known; however, they are not thought to act as part of the normal translation 

machinery. They are selectively packaged in the virion, indicating their need either 

as structural components of the virion or immediately upon entry into the cell  

(Cliffe et al. 2009b).  



Chapter One  Introduction 

 45

MHV-68 has been predicted to encode at least 14 miRNAs, with nine identified 

through cloning (Pfeffer et al. 2005). These miRNAs can be detected in both lytically 

and latently infected tissues ex vivo with varying levels of expression  

(Diebel et al. 2010). The miRNAs are able to down-regulate expression of genes 

containing their target sequence in vitro, with three miRNAs able to reduce luciferase 

expression by at least 50% (Diebel et al. 2010). miRNA 8 appears to be post-

transcriptionally modified with the addition of uracils (Diebel et al. 2010). How the 

miRNAs are processed from the vtRNA-pre-miRNA transcript into mature miRNAs 

and what targets and thereby functions they might have is currently not known. 

1.4. Non-coding RNAs 

1.4.1. Viral non-coding RNA molecules 

Several viruses express diverse non-coding RNAs that differ in structure, expression 

and function. Some of these are reviewed below. 

1.4.1.1. Alphaherpesvirus non-coding RNA molecules 

1.4.1.1.1. HSV LATs 
The only abundant viral transcripts detected during latent infection with HSV-1 are 

the LATs that were initially detected in latently infected murine (Spivack and Fraser 

1987; Stevens et al. 1987) and then also rabbit (Rock et al. 1987) and human  

(Krause et al. 1988) trigeminal ganglia. The primary LAT transcript is a 8.3-8.5kb 

capped, polyadenylated, non-coding RNA that is spliced into a stable, non-

polyadenylated 2.0 kb intron, which can be further spliced into a 1.5 kb intron in 

some neurons (Farrell et al. 1991; Spivack et al. 1991; Wagner et al. 1988a; Wagner 

et al. 1988b). The 2.0 kb intron is the most abundant LAT species and is located 

mainly in the nucleus during latent infection (Stevens et al. 1987; Wagner et al. 

1988b). The introns are unusually stable because of a lariat structure, while the 

predicted 6.3 kb exon is highly unstable (Kang et al. 2006; Thomas et al. 2002). The 

primary LAT transcript is expressed from a neuron-specific promoter or enhancer 

(Berthomme et al. 2000; Zwaagstra et al. 1990). The region encoding the LATs, 

located in the inverted repeats, is complex with several ORFs and transcripts thought 
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to be encoded. The last 750 bp of the 2.0 kb LAT intron lies anti-sense to the lytic 

transactivator ICP0. Further, the primary LAT transcript lies anti-sense to ICP4 and 

γ134.5 and is co-linear with ORF P, L/STs, αX and βX (reviewed in Roizman et al. 

2007). Several other transcripts have been described that lie within the promoter 

regulatory region or first 1.5 kb of the LAT coding sequence; some reported to 

express proteins (UOL, AL and AL3) and some RNAs (AL2, sRNA1 and sRNA2) 

(Jaber et al. 2009; Naito et al. 2005; Perng et al. 2002; Shen et al. 2009). The LAT 

region has also been shown to encode several miRNAs, six in the unstable large exon 

and two upstream of LAT (Cui et al. 2006; Umbach et al. 2008; Umbach et al. 

2009). 

Because of the complexity of the LAT region determining the functions of the LATs 

has been difficult, with contradictory results obtained with different parts of the LAT 

region deleted or in different animal models. Even though the LATs do not seem to 

be critical for latency several studies have implicated LATs in facilitating efficient 

reactivation, both in mouse and rabbit animal models (Garber et al. 1997; Hill et al. 

1990; Kang et al. 2003; Leib et al. 1989; Perng et al. 1994; Steiner et al. 1989). 

Several of these studies did not find a role for the LATs in establishing latency; 

however, more sensitive PCR techniques have found a defect in the establishment of 

latency during infection with deletion mutants, with the decrease in the number of 

latently infected neurons causing the lack of reactivation (Sawtell and Thompson 

1992; Thompson and Sawtell 1997, 2001). The deficiency in establishing latency 

was caused by an increase in neuronal cell death (Thompson and Sawtell 2001). The 

region implicated in reactivation, and thus possibly establishment of latency, has 

been mapped to a 348 bp region of the 5’of LAT (Bloom et al. 1996).  

The mechanism by which the LATs facilitate the establishment of latency and 

reactivation is not clear. The LATs have been shown to reduce the production of lytic 

gene transcripts during both lytic infection and latent infection of mice (Chen et al. 

1997; Garber et al. 1997) and in cultured murine neuronal cells (Mador et al. 1998); 

however, they seem to have the opposite effect during infection of rabbits  

(Giordani et al. 2008). One of the mechanisms by which the LATs inhibit lytic gene 

expression is by inducing epigenetic changes, with LAT transcription promoting 

heterochromatin on lytic promoters (Cliffe et al. 2009a; Wang et al. 2005b). Mutants 
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lacking LATs have been found to cause more neuronal death, higher mortality in 

mice and increased apoptosis (Ahmed et al. 2002; Branco and Fraser 2005; Perng et 

al. 2000; Thompson and Sawtell 2001; Wang et al. 2005b). It is therefore speculated 

that the LATs protect infected neurons from cell death by inhibiting lytic gene 

transcription and protecting against apoptosis; thus increasing the number of latently 

infected cells and preventing their death prior to reactivation.  

The 2 kb LAT intron may also have a role in translation. During lytic infection the  

2 kb LAT intron locates to the cytoplasm as well as the nucleus, apparently 

transported there as part of the 60S ribosomal subunit. Its interaction with ribosomal 

proteins associated with the 60S ribosomal subunit suggests that it may have a 

structural role of the ribosomal complex and thereby affect the translation machinery 

(Ahmed and Fraser 2001; Atanasiu and Fraser 2007). 

Recently two small RNAs identified within the 5’ end of the 2.0 kb LAT intron were 

found to inhibit apoptosis, reduce infectious virus production, and inhibit expression 

of the transcription factor ICP4 in in vitro studies (Shen et al. 2009).  

Of the eight miRNAs expressed from the LAT region, two have been found to  

down-regulate ICP0 and ICP4 (Umbach et al. 2008).  

1.4.1.2. Gammaherpesvirus non-coding RNA molecules 

1.4.1.2.1. EBV EBERs 
The two EBERs, EBER-1 and EBER-2, are the most abundant transcripts expressed 

during latent EBV infection (Lerner et al. 1981). Like the vtRNAs expressed by 

MHV-68, the EBERs are small, non-polyadenylated, uncapped, non-coding RNAs 

transcribed by RNA polymerase III into RNAs of 167 and 172nt, respectively 

(Arrand and Rymo 1982; Lerner et al. 1981; Rosa et al. 1981). However, the 

presence of RNA polymerase II promoter elements makes it possible that they are 

also transcribed by RNA polymerase II (Howe and Shu 1989). The EBERs have 

highly conserved sequences, but only have 54% sequence homology between each 

other (Arrand et al. 1989). They both form very similar stable secondary structures 

due to extensive base-pairing, forming a number of short stem-loops (Figure 1.6A) 

(Glickman et al. 1988). These predicted secondary structures show similarity to both  
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Figure 1.6 Predicted secondary structures of viral non-coding RNA molecules.  
(A) EBER-2 of EBV (taken from Rosa et al. 1981). (B) HSUR-1 of HVS (taken from Lee 
and Steitz 1990). (C) VAI of adenovirus type 2 (taken from Coventry and Conn 2008). 
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herpesvirus papio small RNAs and adenovirus VAI and VAII molecules (Howe and 

Shu 1988; Rosa et al. 1981). The biological functions of the EBERs seem to depend 

on their secondary structures since disruption of the secondary structure by replacing 

GTP with ITP reduces EBER-1 binding to PKR (Clarke et al. 1991). Both EBERs 

can be detected during all forms of latency, with EBER-1 10 times more abundant 

than EBER-2 due to differences in half-life (Clarke et al. 1992). The EBERs are 

expressed during many EBV-associated diseases; however, are absent in disorders 

such as oral hairy leukoplakia that consists of replicating cells (Gilligan et al. 1990).  

The EBERs seem to localise to both the nucleus and the cytoplasm as they have been 

found to interact with cellular proteins in both locations. They form complexes with 

lupus erythematosis-associated antigen (La) (Lerner et al. 1981), ribosomal protein 

L22, RIG-I and PKR. La is a highly abundant nuclear phosphoprotein that binds the 

3’ end of newly synthesised RNA polymerase III transcripts, protecting them from 

exonuclease digestion (Wolin and Cedervall 2002). The EBERs also bind to the 

latent form of PKR and inhibit its phosphorylation by preventing its dimerisation. 

This inhibits the virus induced phosphorylation and inactivation of the protein 

synthesis factor eIF-2α and interferes with the inhibition of translation (Clarke et al. 

1991; McKenna et al. 2007; Sharp et al. 1993). The EBERs have also been found to 

prevent the inhibition of protein synthesis in an PKR-independent manner  

(Laing et al. 2002). They are also associated with polyribosomes in the cytoplasm, 

binding to L22, an abundant ribosomal protein (Toczyski and Steitz 1991). The 

function of L22 is not clear; however, it has been implicated in the chromosomal 

3;21 translocation seen in some cases of acute and chronic myeloid leukaemias 

(Nucifora et al. 1993). The EBERs have multiple binding sites for L22 and it is 

possible that the EBERs may have an affect on translation by interacting with the 

ribosome (Fok et al. 2006). However, binding of L22 to the EBERs out-competes 

other proteins, e.g. PKR, and thus interferes with the EBERs’ PKR-dependent and 

 -independent regulation of protein synthesis (Elia et al. 2004). EBER binding to  

RIG-I leads to its activation and induction of IL-10, as well as type-I IFNs and 

thereby apoptosis, through phosphorylation of NFκB and IRF-3 (Samanta et al. 

2006; Samanta et al. 2008). To avoid apoptosis the EBERs inhibit IFN-α-mediated 
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as well as Fas-mediated apoptosis by interaction with PKR (Nanbo et al. 2002; 

Nanbo et al. 2005). 

Several studies have shown that the EBERs have growth-promoting properties. The 

EBERs are responsible for the malignant phenotype seen in BL cells and contribute 

to tumorigenicity in SCID mice (Komano et al. 1999) (Ruf et al. 2000). EBER-2 is 

also important for efficient EBV-induced B-lymphocyte growth transformation, 

promoting growth by inducing IL-6 production (Wu et al. 2007). The EBERs also 

induce other cytokines in different cell types, e.g. IL-10, IGF-I, IL-9, which all act as 

autocrine growth factors (Iwakiri et al. 2005; Samanta et al. 2008; Yang et al. 2004). 

A recent study showed that the EBERs released from EBV-infected cells activate 

toll-like receptor 3 (TLR3) signalling, thereby inducing type-I IFNs and 

proinflammatory cytokines which contribute to the immunopathological diseases 

caused by EBV-infection (Iwakiri et al. 2009). 

1.4.1.2.2. HVS U RNAs 
HVS causes T-cell lymphomas in new world primates. The most abundant viral gene 

products in latently infected transformed T-cells are seven small nuclear U RNAs, 

HSURs (Figure 1.6B) (Albrecht and Fleckenstein 1992; Lee et al. 1988; Murthy et 

al. 1986; Wassarman et al. 1989). These HSURs are 75 to 143nt long and are 

encoded by a cluster of genes at the left end of the genome, which is essential for 

oncogenicity and immortalisation, but is not required for replication (Desrosiers et al. 

1986). The HSURs are not required for viral transformation in vitro (Ensser et al. 

1999; Murthy et al. 1989). The HSURs have no sequence similarity to cellular  

U RNAs, but share several other features: they are transcribed by RNA polymerase II 

and have the same typical promoters, enhancers and 3’-end signals, acquire  

5’ trimethylguanosine caps and have the Sm protein binding site sequences  

(Lee et al. 1988). Like cellular U RNAs that form small nuclear ribonucleoproteins 

(snRNPs) involved in RNA maturation such as splicing and polyadenylation, HSURs 

associate with snRNPs, of the class Sm, using the cellular protein survival of motor 

neurons (SMN) (Golembe et al. 2005). The HSURs have a high affinity for SMN 

and can out-compete host U RNAs for snRNP assembly; the significance of this is 

not clear.  
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The 5’-ends of HSURs 1, 2 and 5 have conserved AUUUA sequences of different 

copy numbers. Similar AUUUA motifs, known as AREs, are present in the 3’ 

untranslated region (UTR) of short-lived mRNAs such as protooncogenes, cytokines, 

and lymphokines and target these mRNAs for degradation. Given that the HSURs 

bind proteins known to bind AREs and regulate mRNA stability, such as HuR which 

protects ARE-containing mRNAs, they are thought to compete with these cellular 

proteins and alter the expression of cytokines and protooncogenes (Fan and Steitz 

1998; Myer et al. 1992; Myer et al. 1997). However, HSUR1 and HSUR2 were not 

found to affect the levels of ARE-containing mRNAs in vitro, but they were found to 

up-regulate a small number of genes associated with T-cell activation in transformed 

cells (Cook et al. 2004; Cook et al. 2005). The HSUR1 ARE was also found to 

induce degradation of small nuclear RNAs, including itself, HSUR2 and cellular U1 

(Fan et al. 1997). 

1.4.1.2.3. KSHV PAN RNAs 
The PAN RNA is an early lytic 1.2 kb polyadenylated non-coding RNA of unknown 

function that accumulates to high levels in the nucleus (Sun et al. 1996; Zhong et al. 

1996; Zhong and Ganem 1997). It has features of both U RNAs and mRNAs in that 

it is transcribed by RNA polymerase II, lacks a 5’ trimethylguanosine cap, is not 

associated with polyribosomes and has several parts with sequence homology to  

U1 RNA, 5’ sequence elements typical of regulatory regions of U RNAs and 33% 

uracils content typical of U RNAs (Sun et al. 1996). In addition, it associates with 

Sm forming ribonucleoprotein complexes in the nucleus (Sun et al. 1996; Zhong and 

Ganem 1997). The high level of PAN expression is attributed to two factors. First, 

PAN expression is up-regulated by the transactivators rta and Mta, with rta binding 

to a very strong rta-response element (RRE) located in the promoter (Chang et al. 

2002; Kirshner et al. 2000; Palmeri et al. 2007; Song et al. 2001; Song et al. 2002). 

In addition, PAN contains a cis-acting element PAN-ENE (PAN RNA expression 

and nuclear retention element) that protects polyadenylated intronless transcripts 

from rapid decay by interactions with the poly-A tail and retains these transcripts in 

the nucleus (Conrad and Steitz 2005; Conrad et al. 2006; Conrad et al. 2007).  
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1.4.1.3. Adenovirus non-coding RNAs 

1.4.1.3.1. VAI and VAII 
All adenoviruses examined encode one or two non-coding RNAs known as VAI and 

VAII that vary in sequence and length, 149-174nt, between different viruses (Ma and 

Mathews 1996; Ohe and Weissman 1971; Reich et al. 1966; Soderlund et al. 1976). 

The VA RNAs are transcribed by RNA polymerase III early during the infection. 

VAI is synthesised in increasing amounts during the later stages to become the most 

abundant RNA in the cytoplasm, while VAII is slightly less abundant (Soderlund et 

al. 1976). The VAs form highly structured and stable secondary structures consisting 

of three major domains: terminal stem, central domain and apical stem; with specific 

functions attributed to each domain (Figure 1.6C) (Coventry and Conn 2008; Ma and 

Mathews 1993).  

VAI was found to be critical for efficient translation when a deletion mutant lacking 

VAI showed impaired growth (Thimmappaya et al. 1982). It was further found that 

VAI blocks the antiviral activation of PKR (Kitajewski et al. 1986; O'Malley et al. 

1986) using the same mechanism as the EBERs (see section 1.4.1.2.1)  

(McKenna et al. 2007). In fact it was the similarities of gene organisation, size and 

predicted secondary structure between the VAs and EBERs that lead to the idea that 

the EBERs, like the VAs, may influence translation. The EBERs were subsequently 

shown to substitute for the VAs and rescue translation during infection with deletion 

mutants lacking the VAs (Bhat and Thimmappaya 1983, 1985). The apical stem of 

VAI is important for binding to PKR, while the central domain is critical for 

inhibition of PKR (Clarke et al. 1994; Coventry and Conn 2008; Ghadge et al. 1991; 

Ghadge et al. 1994). The terminal stem is however dispensable for PKR inhibition 

(Wahid et al. 2008). In addition to regulating translation VAI may also regulate RNA 

editing since it binds the RNA-specific adenosine deaminase, ADAR, and inhibits its 

interferon-inducible RNA-editing activity (Lei et al. 1998). VAII has limited ability 

to block PKR but is able to bind other proteins with double stranded-binding motifs, 

such as RNA helicase A and nuclear factor 90 (NF90), both involved in 

transcriptional regulation (Liao et al. 1998; Ma and Mathews 1993; Reichman et al. 
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2002). Like the EBERs both VAI and VAII form ribonucleoprotein complexes with 

La (Rosa et al. 1981). The significance of these interactions is not known.  

The VAs also inhibit RNA interference (RNAi). As discussed in section 1.4.2, RNAi 

is a posttranscriptional gene silencing mechanism where 21-23nt RNAs generated 

from cytoplasmic processing of endogenous distinct hairpin structures (miRNAs), 

either degrade or inhibit translation of mRNA targets. The VAs out-compete binding 

to the Exportin-5 nuclear export factor and Dicer, preventing the export of  

pre-miRNAs from the nucleus and their processing into functional miRNAs that can 

be incorporated into the RNA-induced silencing (RISC) complex (Andersson et al. 

2005; Lu and Cullen 2004). In addition, the terminal stem is cleaved by Dicer 

generating miRNAs named svaRNAs or mivaRNAs (Andersson et al. 2005; Aparicio 

et al. 2006; Sano et al. 2006). 80% of RISC complexes are associated with 

mivaRNAs and VAII mivaRNAs account for 60% of small RNAs in RISC 

complexes, indicating that cellular miRNAs are out-competed (Xu et al. 2007). The 

mivaRNAs are thought to be functional because: they are able to inhibit the 

expression of genes with complementary sequences, were detected on 

polyribosomes, and inhibition of VAI mivaRNAs affects virus production  

(Aparicio et al. 2006; Sano et al. 2006; Xu et al. 2007). Recently 30 cellular genes 

involved in cell growth, transcription, RNA metabolism and DNA repair were found 

to be down-regulated in adenovirus infected or transfected cells expressing 

mivaRNAs. Of these TIA-1, a splicing and translational regulator, is a direct target of 

mivaRNAI-138 and is down-regulated both at mRNA and protein level  

(Aparicio et al. 2009).  

1.4.2. tRNAs 

1.4.2.1. tRNA structure 

The tRNAs are small RNA molecules, usually 74 to 95nt, that play a central role in 

translation by providing the link between mRNA and protein. As one of the first 

nucleic acids to be sequenced the tRNAs were found to form a predicted canonical 

cloverleaf secondary structure (Figure 1.7A) with three arms and loop regions, a 

variable loop and acceptor arm (Holley et al. 1965). The acceptor arm made up of  
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Figure 1.7 Secondary (A) and tertiary (B) structure of a typical tRNA molecule, 
showing the acceptor stem (purple) with the CCA tail (orange) and discriminator 
nucleotide (pink), D arm and loop (red), T arm and loop (green), variable loop (yellow) 
and anticodon arm and loop (blue) with the anticodon (black). Tertiary structure (B) 
reproduced with the kind permission of N.R. Voss.  
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seven base pairs has a 3’ CCA invariant sequence added transcriptionally to which 

the amino acid is attached. The D arm has three or four base pairs, while the T and 

anticodon arms have five base pairs (Dirheimer et al. 1995). The loops vary more in 

length with the anti-codon and T loops comprising seven nucleotides, while the D 

and V loops vary in length. The tRNAs have several invariant (the same nucleotide) 

and semi-invariant (always purine or always pyrimidine) nucleotides, that often are 

important for the tertiary structure of the tRNA (Dirheimer et al. 1995). Using X-ray 

crystallography the tRNAs were found to form a stable L-shaped tertiary structure 

through base pairing of nucleotides in the D and T loops (Figure 1.7B) (Robertus et 

al. 1974; Suddath et al. 1974). The acceptor arm thereby folds onto the T arm 

creating the acceptor stem and the D arm onto the anticodon arm creating the 

anticodon stem (Dirheimer et al. 1995). 

1.4.2.2. tRNA expression 

Unlike mRNAs, tRNAs are transcribed by RNA polymerase III. The eukaryotic 

tRNA genes have internal promoters made up of highly conserved box-A and box-B 

promoter elements which form the binding site for the multisubunit transcription 

factor TFIIIC (Sprauge 1995). TFIIIC recruits TFIIIB to a ~50bp conserved 

sequence pattern upstream of the transcription start site (Giuliodori et al. 2003). 

TFIIIB forms a stable complex with the DNA and recruit RNA polymerase III 

promoting multiple rounds of transcription initiation. Transcription is terminated at a 

short run of T residues and is dependent on upstream promoter elements in the 

TFIIIB binding site (Sprauge 1995). The TATA-box binding protein (TPB) is a 

component of TFIIIB that binds to a TATA-like sequence and is necessary for 

transcription (Dieci et al. 2007). This region has also been implicated in regulation of 

transcription and tissue specific expression of tRNAs (Sprauge 1995). A number of 

viruses up-regulate RNA polymerase III transcription. The adenovirus E1a protein 

increases the amount of TFIIIC; thus increasing the transcription of RNA polymerase 

III genes such as tRNAs and VAs (Berger and Folk 1985; Yoshinaga et al. 1986). 

EBV induces TFIIIC and BDP1, one of the subunits of TFIIIB, stimulating 

transcription of the EBERs as well as other RNA polymerase III transcripts such as 

tRNAs (Felton-Edkins et al. 2006). In addition, transcription of tRNAs is  



Chapter One  Introduction 

 56

up-regulated in cancers by oncoproteins such as c-Myc, while controlled by tumour 

suppressors (White 2008). Up-regulated tRNA expression, in particular the initiation 

tRNA (tRNAi
Met) has been implicated in cellular transformation  

(Marshall et al. 2008) 

Following transcription the tRNAs go through further processing, e.g. removal of 

extra 3’and 5’ sequences, modification of residues, excision of any introns, and the 

addition the CCA sequence, which requires several enzymes. 

1.4.2.3. tRNA functions 

1.4.2.3.1. Translation 
The tRNAs function during translation is well known and will not be described in 

detail here. During translation the tRNAs interact with several proteins and RNAs, 

some are specific for that type of RNA and some interact with all tRNAs; thus 

requiring highly conserved regions. The attachment of the correct amino acid to the 

tRNA requires interaction between the correct aminoacyl-tRNA synthetase and the 

anticodon loop (which specifies the amino acid), acceptor arm with the discriminator 

nucleotide at position 73, as well as individual nucleotides in the D and T arms 

(Meinnel 1995). Through associations with the ribosome and different factors the 

tRNAs recognise the codon sequence in the mRNA through complementary  

base-pairing with the anticodon and line up the amino acids, forming the 

polypeptide. 

1.4.2.3.2. Amino acid starvation 
It is important for the survival of the cell to have sufficient amounts of 

aminoacylated tRNAs available. Uncharged tRNAs as a result of amino acid 

starvation have been found to play important roles in the regulation of protein 

synthesis in both eukaryotic and prokaryotic cells. In bacteria the binding of an 

uncharged tRNA to the ribosome stalls translation and triggers a stringent response 

with production of specific signalling nucleotides, (p)ppGpp, which act as global 

transcription regulators lowering the cell’s metabolism, while over-expressing genes 

involved in amino acid synthesis (Jain et al. 2006). In gram-positive bacteria 

aminoacyl-tRNA synthetase genes and genes involved in amino acid synthesis have 
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riboswitch leader elements (T boxes) to which specific tRNAs bind that allow for 

monitoring of amino acid conditions. Binding of an aminoacylated tRNA to the  

T box leads to the formation of a terminator helix and termination of transcription. 

However, the binding of an uncharged tRNA leads to the stabilisation of an anti-

terminator and transcription can proceed (Green et al. 2010). Uncharged tRNAs have 

also been implicated in regulation of replication of ColE1-like replicons in E.coli, by 

binding to or mediating tRNA-dependent cleaving of RNA I, a negative regulator of 

replication (Wang et al. 2006; Wegrzyn and Wegrzyn 2008).  

In eukaryotic cells the response to amino acid starvation is different. The build up of 

uncharged tRNAs activates the protein kinase GCN2 which phosphorylates and 

inactivates eIF-2, leading to a reduction in global protein synthesis (Wek et al. 1995). 

In yeast phosphorylation of eIF-2 also induces translation of GCN4 mRNA, a 

transcriptional activator of a large number of amino acid biosynthesis genes and 

genes encoding aminoacyl-tRNA synthetases (Hinnebusch 2005). In mammalians the 

translation of the activating transcription factor 4 (ATF4) is induced, leading to 

activation of several genes and pathways, as well as ATF3 and ATF5, ultimately 

leading to regulation of gene expression at different levels, such as chromatin 

structure, mRNA splicing, export and translation (Harding et al. 2000; Jiang et al. 

2004; Kilberg et al. 2005; Zhou et al. 2008). 

1.4.2.4. tRNA genes and chromatin 

tRNA genes have been shown to regulate gene expression by affecting the chromatin 

organisation (McFarlane and Whitehall 2009). tRNA genes can act as chromatin 

barriers that limit the spread of heterochromatin (silencing) into a euchromatin 

(transcriptional active) region in budding and fission yeast (Biswas et al. 2009; 

Donze et al. 1999; Donze and Kamakaka 2001; Scott et al. 2006; Scott et al. 2007; 

Simms et al. 2004). The functions of these tRNAs are dependent on the ability of the 

gene to be transcribed. However, in both fission and budding yeast ectopic B-box 

elements not linked to functional polymerase III genes have been found to act as 

chromatin barriers (reviewed in McFarlane and Whitehall 2009). In mammals short 

interspersed elements (SINES), believed to derive from tRNAs and containing B-box 
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elements, are thought to protect promoters from spread of heterochromatin; this was 

found for an Alu SINE element in transgenic mice (Willoughby et al. 2000).  

tRNA genes have also been shown to block enhancers or silencers from affecting 

promoters of nearby genes in yeast (Bolton and Boeke 2003; Hull et al. 1994). In one 

study this was found to be dependent on the localisation of tRNA genes in or near the 

nucleolus (Wang et al. 2005a). Some of the ectopic B-box elements have also been 

found to have repressive effects on nearby genes (McFarlane and Whitehall 2009). 

1.4.2.5. tRNA functions during viral infections 

In retroviruses the ssRNA genome is converted into dsDNA by the reverse 

transcriptase (RT) for integration into the host genome. This DNA synthesis, as well 

as that of retrotransposons and plant pararetroviruses, is primed by specific tRNAs. 

In retroviruses and plant pararetroviruses the primer binding site is complementary to 

18 respective 8-12 nucleotides in the 3’ end of the primer tRNA, while 

retrotransposons can bind both the 3’ end and internal regions (Marquet et al. 1995). 

However, there are also other interactions between the primer and RNA molecule 

which are not understood. The tRNA used for priming differs, e.g. Rous sarcoma 

virus (RSV) uses tRNATrp, and HIV-1 tRNALys3 (Harada et al. 1975; Wakefield et al. 

1995). The primer tRNA is selectively packaged in the virion (Jiang et al. 1993; 

Sawyer and Dahlberg 1973), and in the case of HIV-1 the cognate aminoacyl-tRNA 

synthetase is as well (Cen et al. 2001). 

Bacteriophages carry tRNA genes that are thought to compensate for the codon 

differences in the phage and host genomes (Bailly-Bechet et al. 2007; Desai et al. 

1986; Weiss et al. 1968).  

1.4.2.6. tRNA-like molecules 

Many tRNA-like molecules with structural or functional resemblance to tRNA 

molecules have been identified that have various functions, such as initiation and 

regulation of replication, intron splicing, regulation of gene expression, and tagging 

of abnormal proteins for proteolysis (Giege et al. 1998). Some of these will be 

discussed here.  
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1.4.2.6.1. Plant virus tRNA-like molecules 
Plant viruses of a number of virus genera have tRNA-like structures (TLSs) at their 

3’ termini. Three aminoacyl identities have been identified: valine, histidine and 

tyrosine; however, not all of the TLSs are dependent on aminoacylation for function 

and the ability of aminoacylation varies between TLSs (reviewed in Dreher 2009; 

Florentz and Giege 1995). The TLS-containing viruses are exemplified by: Turnip 

yellow mosaic virus (TYMV; valin), Tobacco mosaic virus (TMV; histidine) and 

Brome mosaic virus (BMV; tyrosine). The TLS of TYMV is the one that most 

closely resembles cellular tRNAs: it has an anticodon-D stem and a pseudoknot 

structured acceptor-T stem that allows for the typical L-shape (Rietveld et al. 1983). 

In addition to being recognised by cellular aminoacyl-tRNA synthetases, the TLSs 

are adenylated by CCA nucleotidyltransferases and form ternary complexes with 

eEF1A elongation factor. TYMV is also cleaved by Ribonuclease P (RNase P) and is 

further processed by tRNA modifying enzymes (Dreher 2009; Guerrier-Takada et al. 

1988).  

Various functions have been attributed to the TLSs. The promoters for minus strand 

replication by the replicase are located within the TLSs opposite the 3’ C of TYMV, 

BMV, and TMV. However, initiation of replication is not dependent on the TLS 

structure, though it might help to present the promoter elements in the correct 

conformation (Dreher 2009). The TLS of TYMV has high affinity for eEF1A and 

through this interaction it acts as a translational enhancer, a function that is 

dependent on aminoacylation (Dreher et al. 1999; Matsuda and Dreher 2004). 

However, binding of eEF1A to the TLS represses minus strand synthesis, and it is 

therefore speculated that the TLS down-regulates minus-strand synthesis and 

enhance translation until replicase levels increase and can out-compete eEF1A for 

binding to the TLS (Matsuda et al. 2004). The TLS of BMV, like that of TYMV, is 

also a regulator of translation. In addition it functions as a telomere with the host 

CCA nucleotidyltransferase maintaining intact termini and is also required for virion 

assembly (Barends et al. 2004; Choi et al. 2002; Rao et al. 1989).  

1.4.2.6.2. Transfer messenger RNA 
The transfer messenger RNA (tmRNA) is a bacterial molecule with features of both 

tRNAs and mRNAs. Aminoacylated tmRNAs recognise stalled ribosomes, move the 
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started polypeptide to its amino acid and replace the faulty mRNA with an ORF 

within the tmRNA to tag the protein for proteolysis (reviewed in Dulebohn et al. 

2007).  

1.4.2.6.3. The threonyl-tRNA synthetase gene of E.coli 
The threonyl-tRNA synthetase (ThrRs) gene of E.coli regulates its own translation. 

When there is a high level of ThrRs it binds to tRNA-like structures in the operator 

that mimic the anticodon arm of E.coli tRNAThr, thereby blocking translation 

(Romby et al. 1996).  

1.4.3. miRNAs 

The first small RNA was discovered in 1993 during studies of genes controlling the 

timing of developmental stages of Caenorhabditis elegans (C. elegans) larva. The  

lin-4 gene, known to control timing, was found to not encode a protein but two small 

RNAs of 22 and 61nt (Lee et al. 1993). It was further found that the small lin-4 

RNAs had sequences complementary to 3’ sequences of lin-14 and that this 

interaction reduced the amount of lin-14 protein without affecting the mRNA levels 

(Wightman et al. 1993). Since then these small RNAs, now called miRNAs, have 

been found in worms, flies, and mammals, and affect many cellular pathways 

including control of development, cellular differentiation, proliferation and 

apoptosis. Dysregulation of miRNAs have been found in human disorders, including 

cancers (Iorio and Croce 2009). More than 700 miRNAs have been identified in 

human cells to date (MiRBase) and since one miRNA might have hundreds of 

targets, thousands of genes may be regulated by miRNAs (Selbach et al. 2008). 

Many miRNAs are conserved between species; around 50% of C. elegans miRNAs 

have homologues in humans, indicating the importance of these miRNAs (Ibanez-

Ventoso et al. 2008).  

1.4.3.1. miRNA biogenesis 

miRNAs are transcribed by RNA polymerase II or III in the form of long primary 

miRNAs (pri-miRNAs) that can form stable hairpin structures (Borchert et al. 2006; 

Cai et al. 2004; Lee et al. 2004). It was originally thought that miRNAs were 

transcribed only by RNA polymerase II, and the MHV-68 miRNAs were the first 
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found to be transcribed by RNA polymerase III. Recent research show that tRNA or 

tRNA-like coding units such as Alu elements can drive expression of miRNAs in 

mammalian genomes and it is estimated that more than 20% of human miRNAs 

could be transcribed by polymerase III (Borchert et al. 2006). The pri-miRNA 

transcripts often contain several miRNA sequences clustered together, can be capped 

and adenylated, and encoded from non-coding sequences or from introns, exons or 

UTRs of protein-coding sequences (Cai et al. 2004; Lee et al. 2002; Lee et al. 2004; 

Saini et al. 2007). miRNA expression is under the control of transcription factors and 

depends on the methylation status of the gene (Weber et al. 2007). Mammalian 

miRNAs often have multiple isoforms that may have some overlapping functions, 

but may also have distinct functions depending on target binding and different 

expression patterns (Tanzer and Stadler 2004; Ventura et al. 2008). 

Following transcription the hairpin structure with unpaired flanking regions is 

recognised and cleaved by the microprocessor complex, made up of at least two 

subunits (Figure 1.8) (Gregory et al. 2004). DGCR8 binds to the pri-miRNA and 

determines the cleavage site for Drosha, a RNase III enzyme, that makes a double 

stranded cleavage near the base of the hairpin generating a pre-miRNA hairpin with a 

3’ 2nt overhang and a 5’ terminal phosphate (Han et al. 2004; Han et al. 2006; 

Landthaler et al. 2004; Lee et al. 2003; Zeng and Cullen 2005; Zeng et al. 2005). 

Drosha cleavage occurs co-transcriptionally and, in the case of miRNAs present 

within introns, prior to splicing (Morlando et al. 2008). Following processing by the 

microprocessor the pre-miRNA is exported out of the nucleus through the nuclear 

pore complex by a protein complex containing the nucleoplasmic transport factor 

Exportin-5 and RanGTP (Lund et al. 2004; Yi et al. 2003). Exportin-5 binding is not 

dependent on sequence, but the length of the stem and 3’ overhang (Lund and 

Dahlberg 2006; Zeng and Cullen 2004). This interaction also protects the nuclear 

pre-miRNA from degradation (Zeng and Cullen 2004).  

In the cytoplasm the pre-miRNA is processed by the RISC loading complex (RLC), a 

multi-protein complex made up of Dicer, TRBP, PACT and Argonaute-2 (Ago2) 

(Chendrimada et al. 2005; Gregory et al. 2005; Lee et al. 2006; Maniataki and 

Mourelatos 2005). Dicer, a RNase III enzyme, cleaves the pre-miRNA into small 

RNA duplexes of ~22bp, removing the hairpin loop and generating 3’ 2nt overhangs  
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Figure 1.8 An overview of miRNA processing, showing the different processing steps. 
For more information see the text. Taken from Winter et al. 2009. 
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and 5’ terminal phosphates (Bernstein et al. 2001; Elbashir et al. 2001; Hutvagner et 

al. 2001). Following cleavage one arm of the miRNA duplex, usually the one with 

less stable base pairs at its 5’ end, is loaded onto Ago2, making up the core subunit 

of the RISC complex which is made up of over 50 proteins (Gregory et al. 2005; 

Hock et al. 2007; Khvorova et al. 2003; Liu et al. 2004; Maniataki and Mourelatos 

2005). The RISC complex then uses the mature miRNA bound to Ago to silence 

fully or partially complementary target genes.  

The above description of miRNA biogenesis is the general one; specific steps for 

individual miRNAs have been reported. In addition, each of the steps of the miRNA 

processing is under regulatory influence. Lin-28 has been found to inhibit both 

Drosha and Dicer cleavage of let-7, while let-7 targets Dicer mRNA creating a 

feedback loop (reviewed in Winter et al. 2009). Subunits of the microprocessor have 

been found to act as specificity factors and to regulate each others expression. In 

addition, factors binding individual pri-miRNAs enhance their cleavage by Drosha 

(Winter et al. 2009). By blocking or enhancing Drosha or Dicer cleavage tissue and 

cell type specific expression of miRNAs can be achieved (Obernosterer et al. 2006). 

The miRNAs are also subject to editing with ADAR changing adenines to inosines, 

which may affect processing or target specificity of the miRNA (Kim et al. 2009; 

Winter et al. 2009). The ends of the miRNA can also be subject to 1-2nt deletions or 

additions, most often uracil and adenine (Kim et al. 2009). 

1.4.3.2. miRNA functions 

In mammals the RISC complexes usually bind to partially complementary binding 

sites leading to translational arrest or RNA destabilisation; although Ago2 catalysed 

cleavage of fully complementary targets have been reported (Davis et al. 2005; 

Yekta et al. 2004). In addition, other types of regulation including heterochromatin 

formation have been reported (Bao et al. 2004; Kim et al. 2008).  

Binding of the miRNA to the target usually involves the 5’ seed region  

(nucleotides 2-8) of the miRNA, with partial pairing of the 3’end supplementing or 

sometimes compensating for a single nucleotide mismatch in the seed region  

(Bartel 2009). The binding site is most often in the 3’ UTR of the mRNA, although 

binding to ORFs and 5’ UTRs have also been reported, including miRNAs that bind 
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with their 3’ end to the 5’ UTR and 5’ end to the 3’UTR of a mRNA (Bartel 2009; 

Lee et al. 2009a). Some mRNAs have multiple binding sites for the same or different 

miRNAs that work independently or cooperate to control protein synthesis  

(Bartel 2009).  

The mechanism of translation repression is debated; however, inhibition of 

translation initiation and post-initiation steps as well as co-translational protein 

degradation have been reported (reviewed in Chekulaeva and Filipowicz 2009; 

Eulalio et al. 2008; Filipowicz et al. 2008). In addition, protein translation is 

inhibited by deadenylation of mRNAs leading to destabilisation and sometimes 

degradation or sequestering of mRNAs within P bodies (reviewed in Eulalio et al. 

2008; Filipowicz et al. 2008; Nilsen 2007). During certain circumstances miRNAs 

are able to up-regulate the expression of genes (reviewed in Chekulaeva and 

Filipowicz 2009). In one example the liver specific mir-122 up-regulates Hepatitis C 

virus (HCV) replication when binding to the 5’UTR of the HCV RNA; however, 

insertion of the binding site into the 3’UTR leads to repression of replication  

(Henke et al. 2008; Jopling et al. 2005; Jopling et al. 2008). 

miRNAs can act to switch off protein synthesis, but most often they fine-tune the 

protein expression to keep proteins at optimal levels; this means that although some 

proteins can be down-regulated by 50-80%, individual miRNAs often only reduce 

protein expression by less than 50% and often not by more than a third (Bartel 2009). 

1.4.3.3. Viruses and miRNAs 

The first virally encoded miRNAs were identified in 2004 in EBV (Pfeffer et al. 

2004). Since then every herpesvirus examined have been found to express several 

miRNAs, with several other DNA viruses found to encode one miRNA (Table 1.3) 

The most likely reason that all of these viruses are nuclear DNA viruses is that 

Drosha cleavage takes place in the nucleus and would destroy a RNA genome 

encoding RNAs. A miRNA that avoids the Drosha cleavage step has been proposed 

for HIV-1 (Ouellet et al. 2008); however, this miRNA has not been found in other 

studies (Pfeffer et al. 2005). For viruses with short life cycles the use of miRNAs 

would be limited as the miRNAs may not have time to affect the protein pool; 

consistent with this DNA viruses that are capable of establishing latency or persistent  
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Virus family Subfamily Name 
Number of 
pre-miRNAs References 

Herpesvirus alpha HSV-1 8 Cui et al. 2006; Umbach et al. 2008; 
Umbach et al. 2009 

  HSV-2 6 Tang et al. 2008; Tang et al. 2009; 
Umbach et al. 2010 

  MDV 1 14 Burnside et al. 2006; Yao et al. 2008 
 

  MDV 2 17 Waidner et al. 2009; Yao et al. 2007 
 

  HVT 17 Waidner et al. 2009; Yao et al. 2009 
 

  BV 3 Besecker et al. 2009 
 

  BoHV-1 10 Glazov et al. 2010 
 

  ILTV 7 Rachamadugu et al. 2009; Waidner et 
al. 2009 

 beta HCMV 11 Grey et al. 2005; Pfeffer et al. 2005 
 

  MCMV 18 Buck et al. 2007; Dolken et al. 2007 
 

 gamma EBV 25 Cai et al. 2006; Grundhoff et al. 2006; 
Pfeffer et al. 2004; Zhu et al. 2009 

  rLCV 16 Cai et al. 2006 
 

  KSHV 12 Cai et al. 2005; Grundhoff et al. 2006; 
Pfeffer et al. 2005; Samols et al. 2005 

  RRV 7 Schafer et al. 2007 
 

  MHV-68 9 Pfeffer et al. 2005 
 

Polyomavirus  SV40 1 Sullivan et al. 2005 
 

  SA12 1 Cantalupo et al. 2005 
 

  MCV 1 Seo et al. 2009 
 

  BKV 1 Seo et al. 2008 
 

  JCV 1 Seo et al. 2008 
 

  mPy 1 Sullivan et al. 2009 
 

Adenovirus  hAV 1 Aparicio et al. 2006; Sano et al. 2006 
 

Ascovirus  HvAV 1 Hussain et al. 2008 
 

 
Table 1.3 List of identified viral miRNAs. Abbreviations: HSV, Herpes simplex; MDV, Marek’s 
disease virus; HVT, Herpesvirus of Turkeys; BV, Herpes B virus; BoHV-1, Bovine herpesvirus-
1; ILTV, Infectious laryngotracheitis  virus; HCMV, Human cytomegalovirus; MCMV, Mouse 
cytomegalovirus; EBV, Epstein-Barr virus; rLCV, Rhesus Lymphocryptovirus; KSHV, 
Kaposi’s sarcoma-associated herpesvirus; RRV, Rhesus monkey Rhadinovirus; MHV-68, 
Murine gammaherpesvirus 68; SV40, Simian virus 40; SA12, Simian agent 12; MCV, Merkel 
cell polyomavirus; BKV, BK polyomavirus; JCV, JC polyomavirus; mPy, Murine 
polyomavirus; hAV, Human adenovirus; HvAV, Heliothis virescens ascovirus. 
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infection have been found to encode most of the miRNAs. The viral miRNAs are 

expressed during lytic, latent or both stages of infection, in clusters that can be 

expressed differently, or scattered. The miRNAs are advantageous to the viruses as 

they allow regulation of specific genes, one miRNA is capable of regulating several 

genes, they do not take up much space in the genome, and they are  

non-immunogenic.  

Viral miRNAs can target viral or cellular mRNAs or both (Table 1.4). Most viral 

mRNA targets identified encode proteins that would be targets of the host immune 

response (e.g. SV40 miR-S1 that cleaves the T antigen mRNAs), or viral gene 

regulators (e.g. HSV-1 miR-H2-3p targeting ICP0 and miR-H6 ICP4, both important 

for initiating productive infection) (Sullivan et al. 2005; Umbach et al. 2008). Most 

cellular mRNA targets are either regulators of apoptosis (e.g. EBV miR-BART5 

targeting PUMA) or immunomodulators (e.g. HCMV miR-UL112-1 targeting 

MICB) (Choy et al. 2008; Stern-Ginossar et al. 2007). However, the effect of these 

viral miRNAs in vivo still needs to be investigated. Viral targets can lie antisense to 

the miRNA leading to cleavage of the mRNA (e.g. EBV miR-BART2 and the viral 

DNA polymerase), or just down-regulation of the protein (HSV-1 miR-H2-3p and 

ICP0) or show partial complementary to an mRNA in other parts of the genome 

(Barth et al. 2008; Umbach et al. 2008). Fully complementary cellular targets have 

not been found. Some viral miRNAs mimic cellular miRNAs. KSHV miR-K12-11 

and MDV-1 miR-M4 have identical seed regions to the oncogenic cellular miR-155, 

while EBV instead induces miR-155 expression (Gottwein et al. 2007; Lu et al. 

2008; Skalsky et al. 2007; Yin et al. 2008; Zhao et al. 2009). MHV-68 miR-M1-4 

shares a seed region with murine miR-151 of unknown function, and EBV  

miR-BART5, rhesus lymphocryptovirus (rLCV) miR-rL1-8 and MHV-68  

miR-M1-7-5p with cellular miR-18 and miR18b, which are encoded within the 

oncogenic miR-17-92 cluster (Gottwein and Cullen 2008). 

In addition, virus infection has been shown to induce or inhibit cellular miRNAs in 

general or specific miRNAs, presumably to create a more optimal environment. It 

has been suggested that cellular miRNAs directly target viral transcripts. This seems 

unlikely since many cellular miRNAs are conserved between species, while viruses 

are not, and viruses that were not targeted by miRNAs would have been selected;  
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Viral targets 

Virus miRNA mRNA target Function of protein Reference 
EBV miR-BART2 BALF5 DNA polymerase Barth et al. 2008 

 
  miR-BART1-5p 

/16/17-5p 
LMP1 Signalling molecule Lo et al. 2007 

 
  MiR-BART22 LMP2A Immunogenic antigen Lung et al. 2009 

 
HvAV miR-1 ORF1 DNA polymerase Hussain et al. 2008 

 
SV40 miR-S1 T antigens Transcription factors, 

recognised by T-cells 
Sullivan et al. 2005 
 

HSV-1 miR-H2-3p ICP0 Initiate productive 
infection 

Umbach et al. 2008 
 

  miR-H6 ICP4 Initiate productive 
infection 

Umbach et al. 2008 
 

HSV-2 miR-H2-3p ICP0 Initiate productive 
infection 

Tang et al. 2009 
 

  miR-H3/H4 ICP34.5 Neurovirulence factor Tang et al. 2008; Tang et 
al. 2009 

HCMV miR-UL112 IE1 Transcription activator Grey et al. 2007; Murphy 
et al. 2008 

  miR-UL112 UL114 Uracil DNA glycosylase Stern-Ginossar et al. 
2009 

KSHV miR-K12-9* rta Replication and 
transcription activator Bellare and Ganem 2009 

 
Cellular targets 

Virus miRNA mRNA target Function of protein Reference 
KSHV miR-K12-11 

(seed miR-155) 
BACH1 and 
others 

Transcriptional suppressor Gottwein et al. 2007; 
Skalsky et al. 2007 

  miR-K12-6-3p + 
others 

THBS1 Anti-angiogenic, 
chemoattractant etc. 

Samols et al. 2007 

  miR-K5/9/10 BCLAF1 apoptotic factor Ziegelbauer et al. 2009 
 

  miR-K1 IκBα Inhibitor of NFκB 
complexes 

Lei et al. 2010 
 

  miR-K12-7  MICB NK cell-surface receptor 
ligand 

Nachmani et al. 2009 

HCMV miR-UL112 MICB NK cell-surface receptor 
ligand 

Stern-Ginossar et al. 
2007 

EBV miR-BART5 PUMA Proapoptotic factor Choy et al. 2008 
 

  miR-BHRF1-3 CXCL11 Chemokine, T-cell 
chemoattractant 

Xia et al. 2008 
 

  miR-BART2-5p MICB NK cell-surface receptor 
ligand 

Nachmani et al. 2009 

MDV-1 miR-M4 
(seed miR-155) 

BACH1 and 
others 

Transcriptional suppressor Zhao et al. 2009 
 

 
Table 1.4 Viral and cellular mRNA targets of viral miRNAs. KSHV miR-K12-11 and 
MDV-1 miR-M4 both have seeds identical to the cellular miR-155 and target at least 
some of the same mRNAs. 
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unless the virus could take advantage of the cellular miRNAs (Mahajan et al. 2009). 

This is the case for HCV whose replication is induced by 5’UTR binding of the liver 

specific miR-122 (Henke et al. 2008; Jopling et al. 2005). It is also possible that 

viruses could use cellular miRNAs to limit viral replication and facilitate the 

establishment of latency. Viruses can up-regulate cellular miRNAs that are beneficial 

to the virus or down-regulate anti-viral miRNAs. EBV infection leads to a reduction 

in cellular miRNAs and following initiation of the lytic cycle the immunomodulator 

miR-146a is induced by LMP1 (Godshalk et al. 2008; Motsch et al. 2007). MDV-1 

induces the expression of miR-221 and miR-222, which are involved in 

tumorigenesis (Lambeth et al. 2009). MCMV on the other hand down-regulates the 

anti-viral miR-27a and miR-27b (Buck et al. 2010). It is possible that the cellular 

miRNAs can be used as a part of the immune response against viruses by acting on 

cellular targets affecting the virus, without targeting the virus it self. 

The herpesvirus miRNAs are generally not well conserved; the exception being EBV 

and rLCV which have eight miRNAs that are highly similar and encoded at a similar 

location in the genomes (Cai et al. 2006). Even though there is poor sequence 

conservation the miRNA locations in the genomes are conserved in closely related 

viruses such as HSV-1 and HSV-2, MDV-1 and MDV-2, KSHV and RRV, and 

HCMV and MCMV. The lack of sequence similarity does not mean that the miRNAs 

do not have similar effects; they could have evolved to target different regions of the 

same mRNA or different mRNAs in the same cellular pathway. An example is the 

NK cell-surface receptor ligand MICB which is a target for HCMV miR-UL122-1, 

EBV miR-BART2-5p and KSHV miR-K12-7 as well as cellular miRNAs, leading to 

reduced NK cell killing of infected cells (Nachmani et al. 2009; Stern-Ginossar et al. 

2007; Stern-Ginossar et al. 2008). These viral miRNAs do not have any sequence 

homology and all target the 3’UTR at sites that do not overlap.  
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1.5. Project outline 

The role of the vtRNAs and miRNAs of MHV-68 during infection has not been 

extensively characterised and their biological functions are unknown. The functions 

of these non-coding RNAs were examined in a previous experiment using two 

viruses made through insertion of five of the vtRNAs and six of the miRNAs into 

MHV-76, which lacks the non-coding RNAs. These viruses behaved like MHV-76 

during lytic infection in vitro and during in vivo infection; like MHV-76 they were 

cleared more rapidly and established low levels of latency in the spleen compared to  

MHV-68 (Cliffe 2005).  

The aim of this study was to investigate the role of the non-coding RNAs during 

latent infection in vitro, utilising the insertion viruses. The initial objective was to 

determine if the mouse B-cell line NS0 was appropriate as an in vitro model to study 

the non-coding RNAs during latency and to study the expression of the vtRNAs and 

miRNAs. A second objective was to study the effects of the non-coding RNAs on the 

replication and reactivation kinetics in vitro. The final objective was to investigate 

differences in protein expression between cells latently infected with MHV-76 and 

insertion virus by analysing the global protein expression profiles of the cells.  

It was hypothesised that by characterising the effects of the non-coding RNAs during 

latent infection in vitro, possible functions of these, as well as other non-coding 

RNAs would be elucidated. 
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2.1. Cell Culture techniques 

2.1.1. Maintenance of cell lines 

All cell lines were cultured in tissue flasks (Nunc, UK) at 37°C + 5% CO2. Baby 

Hamster Kidney fibroblast 21 (BHK-21) cells were maintained in Glasgow’s 

Modified Eagle’s Medium (Invitrogen, UK), containing 10% (v/v) newborn calf 

serum (Invitrogen, UK), 10% (v/v) tryptose phosphate broth (Invitrogen, UK), 2mM  

L-glutamine (Invitrogen, UK), and 100U/ml penicillin and streptomycin. NS0 and 

S11 cells were cultured in Rosewell Park Memorial Institute 1640 (RPMI-1640) 

medium (Invitrogen, UK), supplemented with 10% (v/v) fetal calf serum (Sera 

laboratories international), 2mM L-glutamine (Invitrogen, UK), and 100U/ml 

penicillin and streptomycin.  

2.1.2. Harvesting and counting cells 

BHK-21 cells were detached by trypsin treatment. Growth medium was decanted and 

cells washed with 0.02% (w/v) versene, prior to adding 0.05% (w/v) trypsin-EDTA 

(Invitrogen, UK). The trypsin was inactivated by addition of an equal volume of 

medium and the cells pelleted by centrifugation at 470 x g for 5 min at room 

temperature. NS0 and S11 cells were scraped down from the flask and pelleted by 

centrifugation at 470 x g for 5 min at room temperature. The pellet was re-suspended 

in medium and an aliquot diluted 1:1 with 0.4% (w/v) trypan blue (Sigma, UK). The 

unstained, viable cells, were counted in a haemocytometer. 

2.1.3. Cytospins 

The cells were counted, fixed in 4% (w/v) paraformaldehyde for 10 min, washed and 

re-suspended in phosphate buffered saline (PBS) to 1x105 cells/ml. Subsequently, 

200μl of cells were pelleted onto polylysine slides (VWR international) at 1000 rpm 

for 5 min using a cytospin (Shandon cytospin 2). The slides were fixed in 4% (w/v) 

paraformaldehyde for 15 min, washed in PBS and left to dry.  
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2.1.4. Transfection 

Transfection of NS0 cells was preformed using a nucleofector (Lonza, UK) with a 

pre-optimised protocol (Amaxa, Lonza, UK). NS0 cells, cultivated in RPMI-1640 

medium (Invitrogen, UK) supplemented with 10% (v/v) fetal calf serum (Sera 

laboratories international), 2mM L-glutamine (Invitrogen, UK), and 100μg/ml 

Normocin (Amaxa, Lonza, UK), were infected with viruses at a multiplicity of 

infection (MOI) of 5 plaque forming units (pfu)/cell, 4 days or 2 hours prior to 

transfection or 48 hours post transfection. For each transfection reaction 2x106 cells 

were pelleted at 90 x g at room temperature for 10 min and the medium removed. 

The cell pellet was resuspended in 100μl Nucleofector solution C (Amaxa, Lonza, 

UK) prior to the addition of 0.5μg miRNA (miScript miRNA mimics, Qiagen), 

negative small interfering RNA (siRNA) (Qiagen), or 2μg plasmid DNA and 

66.5pmol siGLO red (Thermo Scientific Dharmacon, UK). The cells were moved to 

a cuvette and transfected using programme T-005. Following transfection 500μl pre-

warmed RPMI-1640 (supplemented as above) was added to the cuvette and the cells 

transferred to a 6-well plate with 1.4ml pre-warmed medium per well, using a plastic 

pipette. The plate was incubated at 37°C with 5% CO2. The transfection efficiency 

was determined 24 hours post transfection by counting the number of red fluorescing 

cells using a fluorescent microscope. 

2.2. Virological methods 

2.2.1. Preparation of virus stocks 

BHK-21 cells were harvested as described previously, counted, and infected at a 

MOI of 0.001 pfu/cell. The virus was left to infect the cells for 1 hour at 37°C while 

shaking. The cells were subsequently incubated in T175 flasks at 3x106 cells per 

flask for around six days, until there was complete cytopatic effect (CPE). The cells 

were removed by scraping and pelleted by centrifugation at 1900 x g for 20 min at 

4°C and the pellet re-suspended in PBS, in a volume of about 1/3 of the number of 

flasks used (e.g. 10 ml for 30 flasks). The cells were homogenised in a glass dounce 

20-30 times and subsequently sonicated in an ice bath for 15 min before being 

pelleted by centrifugation at 1900 x g for 20 min at 4°C and the supernatant 
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collected. The pellet was re-suspended in 1ml of PBS and homogenised again, 

pelleted by centrifugation at 1900 x g for 20 min at 4°C and the supernatant pooled 

with the previous. The virus suspension was aliquoted and stored at -80°C. 

2.2.2. Virus titration 

BHK-21 cells were harvested as described previously and counted. The virus, at an 

unknown concentration, was ten-fold serial diluted 10-2 to 10-9 in medium, following 

which 2x106 BHK-21 cells were added to each dilution and the tube incubated for 1 

hour at 37°C while shaking. Each dilution was plated onto two 60mm Petri dishes, 

resulting in 1x106 cells per dish. Uninfected cells were plated as negative controls for 

each experiment. The plates were incubated for 4 days at 37°C + 5% CO2, following 

which the medium was decanted and the cells fixed with 10% (v/v) neutral buffered 

formaldehyde (Surgipath Europe Ltd) for 1 hour, prior to staining with 0.1% (w/v) 

toluidine blue (BDH Laboratory supplies). The plaques formed by the virus particles 

were counted by light microscope. The titre was calculated as: (no. of plaques x 

dilution)/ final dilution volume added to plate.  

For titrations of cell associated virus, 1x105 virus infected cells in 1ml medium were 

lysed by freeze thawing three times. The cells were centrifuged at 850 x g for 10 min 

at room temperature to remove cell debris, prior to serial dilution.  

2.2.3. Infection of NS0 cells for virus characterisation studies 

NS0 cells were harvested and 5x106 cells were infected with each virus at a MOI of  

5 pfu/cell, followed by incubation at 37°C for 1 hour while shaking. The cells were 

subsequently counted and 2x106 cells incubated in two T25 flasks for each virus, in 

9ml of medium. Alternatively, 3x106 cells were infected with each virus in duplicate 

and 2x106 cells incubated in T25 flasks, in 9ml of medium. A sample of the 

supernatant was frozen for titration of infectious virus and 1x105 cells in 1ml 

medium frozen for titration of cell associated virus. The cells were split as 

appropriate and the cells harvested 5 and 9 days post infection, with some or all of 

the cells taken and pelleted by centrifugation at 470 x g for 5 min at room 

temperature. A sample of the supernatant was frozen for titration of the infectious 

virus produced by the viruses. The pellet was resuspended in 3ml medium and the 
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cells counted prior to washing the cells 3 times in medium. The cells were 

subsequently counted again and 1x105 cells in 1ml medium frozen for titration of cell 

associated virus, 1x105 cells taken for infective centres, and on occasions some cells 

taken for cytospins.  

2.2.4. Infective centre assay 

50, 100, and 1000 NS0 cells were co-cultivated with 106 BHK-21 cells in 60mm 

Petri dishes in 5ml complete RPMI medium for 5 days at 37°C + 5% CO2. Following 

incubation the medium was decanted and the cells fixed with 10% (v/v) neutral 

buffered formaldehyde (Surgipath Europe Ltd) for 1 hour, before staining with 0.1% 

(w/v) toluidine blue (BDH Laboratory supplies). The infective centres formed by 

reactivating virus particles were counted by light microscope. Uninfected controls 

were included for each experiment. 

2.2.5. GFP labelled viruses 

To determine the percentage of NS0 cells infected at different MOIs, two Green 

Fluorescent Protein (GFP) labelled viruses were utilised, LHΔgfp and MHV-76GFP. 

LHΔgfp was previously constructed by co-transfection of BHK-21 cells with  

MHV-68 DNA and DNA containing a HCMV GFP cassette (Dutia et al. 2004). 

MHV-76GFP has a GFP cassette downstream of a murine PGK promoter in the left 

end of the MHV-76 genome (personal communication with Simon Talbot).  

NS0 cells were infected at a MOI of 1, 5 and 10 pfu/cell with either LHΔgfp or 

MHV-76GFP, followed by incubation at 37°C for 1 hour while shaking. The cells 

were seeded out in a 24 well plate at 1x105 cells/ well. At days 2 and 6 cells were 

harvested and cytospins made. The slides were mounted in Vectashield  

(Vector laboratories).  

2.2.6. Cloning of infected cells 

NS0 cells were infected with MHV-76 or Int9 at a MOI of 5 pfu/cell, followed by 

incubation at 37°C for 1 hour while shaking. The infected cells were subsequently 

incubated at 37°C + 5% CO2 for 5 days, when they were cloned at 0.5 cells/well in a 

96-well plate in 1ml of medium (50:50, pre-conditioned: new media). The cells were 
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given fresh medium and split appropriately. When the clones had grown to larger 

numbers, they were moved to larger plates and then flasks.  

2.2.7. Staining for lytic proteins 

Cytospins were washed in PBS and blocked with Cas block (Invitrogen, UK) for 30 

min at room temperature. The slides were incubated with primary antibody, Rabbit A 

(a polyclonal sera raised against MHV-68 lytically infected rabbit cells  

(Sunil-Chandra et al. 1992b)) diluted 1/1000 in Cas block, for 2 hours at room 

temperature. After washing the slides 2x10 min in PBS they were incubated with the 

secondary antibody, biotinylated goat anti-rabbit (Sigma, UK) diluted 1/750 in Cas 

block, for 1 hour at room temperature. The slides were washed as previously and 

incubated with streptavidin/alexa fluor 488 (Invitrogen, UK) and Topro 3 

(Invitrogen, UK) both diluted 1/1000 in PBS, for 45 min. Following another wash 

the slides were mounted in Mowiol mounting media (25% (v/v) glycerol; 10% (w/v) 

Mowiol 4-88 (Calbiochem); 50% (v/v) 200mM Tris-HCl (pH 8.5)). 

2.3. In situ hybridisation 

2.3.1. Generation of labelled RNA probe 

A digoxigenin (dig) antisense probe was constructed from a plasmid (pEH1.4) 

consisting of nucleotides 106 to 1517, covering vtRNA1-4 (Bowden et al. 1997). 

This plasmid has both T7 and SP6 promoters. 

E.coli containing the plasmid were cultured and the DNA prepared as in section 

2.4.1. The plasmid DNA was digested with HindIII and purified with a Qiaquick® 

PCR Purification kit (Qiagen), according to the manufacturer’s instructions. In brief, 

the DNA was bound to the silica-gel membrane of the column and any contaminants 

washed away. Five volumes of Buffer PBI was added to the sample, the solution 

applied to the column and the DNA bound to the membrane by centrifugation at  

10 000 x g for 60 seconds, prior to washing with Buffer PE. The DNA was eluted 

with 50μl Buffer EB and run on a 0.8% (w/v) agarose gel, to check that complete 

cleavage of the plasmid had occurred.  
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The riboprobe was in vitro transcribed by T7 RNA polymerase using the DIG RNA 

labelling kit (Roche). 1μg DNA template was mixed with 1mM each of ATP, CTP 

and GTP, 0.65mM UTP, 0.35 DIG-11-UTP, 1x Transcription buffer and 36 units T7 

polymerase, to a final volume of 20μl, and the solution incubated for 2 hours at 

37°C. The reaction was stopped by addition of 2μl 0.2M EDTA (pH 8.0). The 

labelled RNA was precipitated by addition of 1μl yeast tRNA (1mg/ml), 2.5 volumes 

of cold 100% ethanol and 0.1 volumes of 3M sodium acetate (pH 5.5), followed by 

incubation on dry ice for at least 1 hour. The RNA was subsequently pelleted by 

centrifugation at 10 000 x g for 30 min at 4°C and the supernatant removed. The 

RNA pellet was washed in cold 70% (v/v) ethanol and air dried before being 

resuspended in 45μl RNase free water. 

Alkaline hydrolysis was performed to digest the labelled probe to approximately 170 

nucleotides. The probe was incubated with 5μl 0.4M NaHCO3, 0.6M Na2CO3  

(pH 9.8) for 47 min at 60°C. The optimum time was calculated as: t = L0-Lf / (K x L0 

x Lf), where t=time, L0= initial fragment length, Lf= final fragment length and 

K=0.11. The digested probe was precipitated by addition of 2.5 volumes of cold 

100% ethanol and 0.1 volumes of 3M sodium acetate (pH 5.5), followed by 

incubation at -70°C over night. Subsequently, the RNA was pelleted by 

centrifugation at 10 000 x g for 30 min at 4°C, the pellet washed in cold 70% ethanol 

and air dried prior to being resuspended in 45μl RNase free water. 

The probe was quantified by visual comparison between serial dilutions of the probe 

to a known control. Serial dilutions of the probe at 1/10 to 1/100000 were made in 

RNase free water and the control dig-labelled neo antisense RNA was 10-fold serial 

diluted from 10μg/ml to 0.1 ng/ml. 5μl RNA was dotted onto a nylon membrane and 

left to air dry, prior to crosslinking with the auto-crosslink function on a Stratalinker 

2400 (Stratagen, UK). The membrane was washed in buffer I (0.1M maleic acid, 

0.15M NaCl, pH 7.5, 3 x 5 min), prior to blocking with buffer II (buffer I containing 

0.1% (v/v) normal sheep serum), for 30 min with constant agitation. The membrane 

was subsequently incubated with anti-dig/alkaline phosphatase (AP) conjugated 

antibody (Roche, Germany) diluted 1/5000 in buffer II, for 1 hour. The membrane 

was washed with buffer I containing 0.3% (v/v) tween-20 (3 x 5 min), followed by 
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buffer III (0.1M Tris-HCl, 0.1M NaCl, 50mM MgCl2, pH 9.5, 1 x 5 min). AP was 

detected by incubation with 5-bromo-4-chloro-3-indolyl phosphate/nitroblue 

tetrazolium (BCIP/NBT, Sigma UK). The approximate concentration of the probe 

was determined by comparison of the colour intensity of the probe to that of the 

control.  

2.3.2. In situ hybridisation of cytospins 

NS0 cells were infected with MHV-68 at a MOI of 5 pfu/cell, followed by incubation 

at 37°C for 1 hour while shaking. The infected cells were incubated at 37°C + 5% 

CO2 for 5 days, when cytospins were made. Cytospins were washed in PBS three 

times for 10 min, prior to permeabilisation in 0.5% (v/v) Triton X-100 in PBS for 10 

min at 4°C, and rinsing in PBS three times for 10 min. The slides were subsequently 

washed in 2 x SSC for 5 min, prior to pre-hybridisation with prehybridisation buffer 

(50 % (v/v) formamide; 5 x salts (0.05M EDTA; 0.05M PIPES; 0.6M NaCl, pH 6.8), 

5 x Denhardt’s, 0.25mg/ml salmon sperm DNA (Sigma UK, boiled for 2 min at 

95°C), 0.25mg/ml yeast tRNA (Sigma, UK), 20U/ml heparin, 0.1% (w/v) sodium 

dodecyl sulphate (SDS)) for 1 hour at 55°C. The hybridisation buffer was made by 

adding 50mg/ml dextran sulphate and 200ng/ml of labelled probe to the 

prehybridisation buffer and the buffer was subsequently boiled for 2 min at 95°C 

prior to addition of 10mM DTT. The slides were incubated with the hybridisation 

buffer over night at 55°C, while covered with parafilm. Following hybridisation the 

slides were rinsed in 4 x SSC and unbound probe removed by washing with 2 x SSC 

(2 x15 min at 37°C), 1 x SSC (2 x15 min at 37°C) and 0.2 x SSC (2 x15 min at 

55°C).  

The slides were blocked in Cas block (Invitrogen, UK) for 30 min at room 

temperature and incubated with primary anti-dig antibody made in sheep (0.4ng/μl in 

Cas block, Roche) for 1.5 hours. The slides were subsequently rinsed in  

Tris-buffered saline (TBS; 3 x 15 min) and incubated for 1 hour with secondary 

biotinylated anti-sheep antibody (10ng/μl in Cas block, Vector laboratories). The 

slides were rinsed in TBS (3x15 min) and incubated for 45 min with 

streptavidin/alexa fluor 488 (Invitrogen, UK) diluted 1/1400 in TBS. The slides were 

again rinsed in TBS (3x15 min) followed by processing in 100% ethanol (2 x 5 min) 
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and xylene (2 x 3 min), prior to mounting in Vectashield mounting media for 

fluorescence with propidium iodide (Vector laboratories).  

On some occasions Mowiol mounting media (25% (v/v) glycerol; 10% (w/v) Mowiol 

4-88 (Calbiochem); 50% (v/v) 200mM Tris-HCl (pH 8.5)) was used. In that case 

Topro 3 (Invitrogen, UK) was added as a nuclear stain at 1/1000 in TBS, together 

with the alexa fluor 488. 

2.4. DNA isolation and manipulation 

2.4.1. Plasmid preps 

E. coli containing the plasmid pEH1.4 was cultured in L-Broth and 100μg/ml 

ampicillin over night at 37°C in an orbital shaker. The culture was pelleted by 

centrifugation at 3000 x g for 5 min and the DNA extracted by alkaline lysis of the 

bacteria using a QIAprep Spin Miniprep kit (Qiagen), according to the 

manufacturer’s instructions. The bacterial pellet was resuspended in 250μl Buffer P1 

and 250μl Buffer P2 was added prior to mixing by inversion of the tube, lysing the 

bacteria. 350μl of Buffer P3 was added and the solution mixed immediately by 

inversions to avoid localised precipitation of DNA. The lysed bacteria were pelleted 

by centrifugation at 17 900 x g for 10 min and the supernatant applied to a QIAprep 

spin column. The DNA was bound to the column by centrifugation at 17 900 x g for 

60 seconds and washed with Buffer PE, prior to elution with 50μl water.  

An EndoFree Plasmid Maxi Kit (Qiagen) was used according to the manufacture’s 

instructions to produce plasmid for transfection. In brief, the DNA was extracted by 

alkaline lysis and the lysate filtered through a QIA filter Maxi Cartridge. The 

endotoxins were removed by addition of buffer ER and the lysate loaded onto a 

anion exchange tip to which the plasmid DNA binds. Contaminants such as RNA 

and proteins were washed away prior to eluting the DNA. The DNA was further 

concentrated and salts removed by isopropanol precipitation. 
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2.5. RNA isolation and manipulation 

2.5.1. microRNA isolation 

Small RNAs were isolated from infected or uninfected cells with a mirVana miRNA 

isolation kit (Ambion, UK). This kit lyses the cells in a denaturing lysis solution, 

which stabilises RNA and inactivates RNases. Most cellular components are 

removed by an acid-phenol:chloroform extraction, and the solution is further purified 

by bringing the solution to 25% (v/v) ethanol and passing it through a glass-fibre 

filter. Larger RNAs are immobilised and smaller RNAs can be collected in the 

filtrate. By increasing the ethanol concentration to 55% (v/v) small RNAs become 

immobilised when passing the solution through a second glass-fibre filter. RNAs of 

≤ 200 nucleotides are then eluted with a low ionic strength solution.  

2.5.2. DNase treatment of RNA 

Contaminating DNA was removed from RNA samples by recombinant turbo  

DNA-free (Ambion, UK). 1μg of miRNA enriched RNA was treated with 3μL (6U) 

Turbo DNA free in 0.1 volume 10x Turbo DNase buffer for 1 hour at 37°C. Another 

3μL (6U) Turbo DNA free was then added and the reaction incubated at 37°C for  

1 hour. Following the DNase treatment the reaction was stopped by the addition of 

0.1 volume (at least 2 μl) inactivation reagent and the samples incubated at room 

temperature for 5 min. The inactivation reagent was pelleted by 5 min centrifugation 

at 10 000 x g and the supernatant moved to a fresh tube for RT-PCR analysis. 

2.5.3. Reverse transcription of RNA 

cDNA was generated from RNA using SuperScript™ III Reverse Transcriptase 

(Invitrogen). 8μL of DNase treated RNA was incubated with 50ng random primers 

and 1μL 10mM dNTP mix in a total volume of 13μL for 5 min at 65°C. The mixture 

was immediately chilled on ice and spun down briefly. 4μL 5x First-strand buffer, 

1μL 0.1M DTT, 1μL (40 U) RNase OUT and 1μL SuperScript III RT (200U) was 

added to the RNA/primer mix and the reaction gently mixed by pipetting. The 

reaction was subsequently incubated at room temperature for 5 min and then 50°C 

for 1 hour prior to inactivating the reaction at 70°C for 15 min. The cDNA was 
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cooled on ice before the addition of 1μL (2U) E. coli RNase H and the reaction 

incubated at 37°C for 20 min to remove RNA complementary to the cDNA. 2μL 

cDNA was used per PCR reaction. 

2.5.4. In vitro transcription of vtRNAs 

vtRNA1, 4 and 5 templates were initially annealed with T7 promoter (vtRNA1 and 

5) or forward strand (vtRNA4) by heating to 75°C for 2 min and cooling to 50°C, 

prior to addition of 1 μl 0.1M MgCl2. The vtRNAs were subsequently transcribed 

using a MEGAshortscript™ kit (Ambion), which utilises T7 polymerase to in vitro 

transcribe short transcripts. Unincorporated nucleotides were removed by Micro Bio-

spin® 30 columns (BioRad, UK), which purifies nucleic acids larger than 20 bases or 

base pairs. The vtRNAs were subsequently folded by heating to 80°C for 90 seconds, 

prior to cooling to room temperature and adding MgCl2 to a final concentration of 

20mM and placing the tubes on ice. 

2.6. Polymerase chain reaction (PCR)  

2.6.1. Standard PCR 

60-100ng template DNA was mixed with 1x PCR buffer (20mM Tris-HCl, pH8.4; 

50mM KCl, Invitrogen), 3mM MgCl2, 200μM each of dNTPs and 1μM of each 

primer, in a final volume of 50μl. The reactions were overlaid with mineral oil 

(Sigma, UK) and incubated at 94°C for 3 min. The program was paused at 80°C for 

the addition of 1 unit of Taq DNA polymerase (Invitrogen). The program continued 

with 35-40 cycles of denaturing at 94°C for 45 seconds, annealing at 51-56°C for 45 

seconds, followed by elongation for 1 min at 72°C. When all the cycles were finished 

the reactions were incubated at 72°C for 5 min and then allowed to cool down to 

room temperature. 

2.6.2. Whole cells and virus stock PCR 

20μl of cells or 1μl of virus stock was mixed with master mix containing 0.4μg/μl 

proteinase K, 1x PCR buffer (20mM Tris-HCl, pH8.4; 50mM KCl, Invitrogen), 

3mM MgCl2, 200μM each of dNTPs and 1μM of each primer, in a final volume of 
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50μl. The reactions were overlaid with mineral oil (Sigma, UK) and incubated at 

65°C for 15 min to allow the proteinase K to act, followed by 95°C for 5 min to 

inactivate the proteinase K. The program was paused at 80°C for the addition of 1 

unit of Taq DNA polymerase (Invitrogen). The program continued with 35-40 cycles 

of denaturing at 94°C for 45 seconds, annealing at 51-56°C for 45 seconds, followed 

by elongation for 1 min at 72°C. When all the cycles were finished the reactions 

were incubated at 72°C for 5 min and then allowed to cool down to room 

temperature. The reactions were run on a 1% agarose gel.  

2.6.3. qRT-PCR for miRNAs 

The levels of miRNAs in infected cells were compared using qRT-PCR, with an 

Invitrogen NCode miRNA First-Strand cDNA Synthesis Kit and Platinum SYBR 

Green qPCR SuperMix-UDG, according to a protocol optimised by Amy H Buck to 

use less of the reagents. A poly(A) tail was added to the 3’ end to increase the size of 

the miRNA, prior to reverse transcribing the miRNA using a universal RT primer. 

dsDNA was produced using a forward primer specific to the miRNA and a universal 

qPCR primer, in a PCR reaction. The levels of dsDNA produced were then 

determined using the intercalating dye SYBR green.  

Forward primers corresponding to the whole mature miRNA sequences were 

purchased from Invitrogen and resuspended to 100μM and aliquots of 1 μM made in 

PCR strips. Poly(A) tails were added to the miRNAs by incubating 4μl miRNA 

enriched RNA (section 2.5.1) with 1.25μl 5x miRNA Reaction Buffer, 0.625μl 

25mM MgCl2, 0.25μl ATP (10mM diluted 1:(1250/ng RNA used)), and 0.125μl Poly 

A Polymerase for 15 min at 37°C in a PCR machine. The universal primer was 

annealed to the polyadenylated RNA by incubating 2μl polyadenylated RNA with 

0.5μl 2x Annealing Buffer and 1.5μl 25μM Universal RT primer for 5 min at 65°C 

and chilling the reaction on ice for 1 min. The reverse transcription reaction was set 

up by adding 5μl 2x First-Strand Reaction mix and 1μl Superscript III/RNase OUT 

enzyme mix to the RNA and the tube was incubated at 50°C for 50 min before 

stopping the reaction at 85°C for 5 min. The cDNA was subsequently chilled on ice. 

5μl of the diluted forward primers for the Real Time PCR were added to wells of a 
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96-well plate (giving a final concentration of 200nM). A Real Time mastermix was 

set up consisting of 12.5μl 2x SYBR Green qPCR Supermix UDG, 0.5μl 10μM 

Universal qPCR primer and 7μl DEPC water, for each well used. 3-5μl cDNA was 

added to the mastermix, and 20μl of the mix added to each well. The plate was spun 

down and run on a MxPro3000 Real Time PCR machine (Stratagene). The reaction 

was started by a 50°C step for 2 min and an initial denaturing step of 95°C for 2 min, 

activating the Taq polymerase. 45 cycles of amplification was performed, consisting 

of denaturing at 95°C for 15 seconds, annealing at 60°C for 15 seconds and 

extension at 72°C for 20 seconds. The reaction was finished with a 1 min 95°C step 

and a melting curve was created by measuring the fluorescence from 55°C to 95°C. 

The levels of 5S ribosomal RNA and mouse miR-16 were used to normalise the 

levels of amplified PCR product.  

2.7. Agarose gel electrophoreses 

Agarose (SeaKem®, Flowgen, UK) gels were prepared in TAE or TBE buffer at 

varying concentrations depending of the size of DNA examined. Ethidium bromide 

was added to the gel to a concentration of 0.75μg/ml. The samples were mixed with 

appropriate volume of 10 x loading buffer (0.25% (w/v) orange G; 0.15% (w/v) 

Ficoll), loaded onto the gel, and electrophoresed at 60-90V in TAE or TBE buffer, 

prior to visualisation of bands by UV transilluminator.  

2.8. Northern analysis 

2.8.1. Electrophoresis and blotting 

1μg miRNA enriched RNA was mixed with an equal volume gel loading buffer II, 

boiled for 2-5 min at 95-100°C and loaded on 15% Polyacrylamide TBE-Urea Gels 

(8M Urea). The gels were electrophoresed at 180V in TBE and the RNA transferred 

to a nylon membrane (GE healthcare) by electroblotting. A stack of 3 blotting papers 

soaked in 0.5 x TBE was placed above and below the gel/membrane (soaked in 0.5 x 

TBE) and the RNA transferred at 200mA for 30 min. Following blotting, the RNA 
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was UV crosslinked to the membrane with the auto-crosslink function on a 

Stratalinker 2400 (Stratagen UK).  

A DecadeTM marker (Ambion, UK) was used to determine the sizes of bands. A 

150nt transcript was 5’ end-labelled by T4 polynucleotide kinase and 32P-ATP, and 

cleaved to generate a set of radiolabelled markers of 100, 90, 80, 70, 60, 50, 40, 30, 

20 and 10nt. These were run alongside the samples on the gel. 

2.8.2. Prehybridisation and hybridisation 

The membrane was prehybridised with ULTRAhyb®-Oligo Hybridization Buffer 

(Ambion, UK) for 30 min at 42°C. Hybridisation was then performed by incubating 

the membrane with ULTRAhyb®-Oligo Hybridization Buffer and 10μl 32P-UTP-

labelled probe for miRNA1 over night at 42°C. Following hybridisation the 

membrane was washed three times at 42°C for 30 min with washing solution  

(2x SSC and 0.5% (w/v) SDS). The blot was wrapped in plastic film and exposed to 

x-ray film.  

2.8.3. Generation of radiolabelled probe 

The probe was generated with a mirVanaTM miRNA probe construction kit 

(Ambion). Initially, a target-specific DNA oligonucleotide template was converted to 

dsDNA with a T7 promoter. This was done by hybridising a DNA oligonucleotide 

template (corresponding to the target RNA and with a 8nt sequence complementary 

to the T7 Promoter primer) with the T7 Promoter Primer, by incubating them at 70°C 

for 5 min in hybridisation buffer and then leaving them at room temperature for  

5 min to allow for hybridisation to occur. Exo-Klenow, dNTPs and Klenow reaction 

buffer was then added and the solution incubated at 37°C for 30 min, in order to 

produce the dsDNA template. Next, a 32P-labelled antisense RNA probe was 

transcribed in vitro by incubating the dsDNA template with T7 RNA polymerase, 

ATP, CTP, GTP, 32P-UTP and transcription buffer, for 10-30 min at 37°C. The DNA 

template was then removed by DNase I treatment for 10 min at 37°C. 

Unincorporated nucleotides were removed by Micro Bio-spin® 30 columns  

(BioRad, UK), which purifies nucleic acids larger than 20 bases or base pairs. 
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2.8.4. Stripping of membranes for re-probing 

The blot was rinsed in distilled water, prior to washing twice with boiling 0.1% (w/v) 

SDS in distilled water. The blot was then washed in 6 x SCC before  

pre-hybridisation. 

2.9. Protein techniques 

2.9.1. Protein extraction 

Around 4x107 cells were washed with PBS and pelleted by centrifugation at 212 x g. 

The pellet was resuspended in 5 pellet volumes of CE buffer (10mM HEPES, 60mM 

KCl, 1mM EDTA, 0.075% (v/v) NP40, 1mM DTT, 1mM Pefa block) and incubated 

on ice for 3 min prior to centrifuging at 100-150 x g for 4 min. The cytoplasmic 

extract was removed from the pellet to a clean tube and spun at max speed for 10 min 

to pellet any nuclei. The supernatant was transferred to a clean tube and stored at  

-70°C. 

2.9.2. Protein fractionation 

A ProteoExtract® Subcellular Proteome Extraction Kit (Calbiochem, Merck UK) 

was used to extract and fractionate cellular proteins, according to the manufacturer’s 

protocol. The kit utilises the different solubilities of the cellular compartments to 

produce four different fractions of proteins (cytosolic, membrane/organelle, nuclear 

and cytoskeletal), through the addition of different extraction buffers and 

centrifugation.  

2.9.3. Protein concentrations 

The total protein concentration of protein extracts from NS0 cells was determined by 

bicinchoninic acid (BCA) Protein Assay (Pierce). In brief, this assay utilises the 

reduction of Cu2+ to Cu1+ by the peptide bonds of proteins in an alkaline solution, 

followed by the chelation of BCA with Cu1+ forming a purple-coloured product of 

which an absorbance can be measured. The amount of Cu1+ formed, and thereby the 

intensity of the colour, is directly proportional to the amount of protein in the sample.  



Chapter Two  Materials and methods 

 85

0.1ml of bovine serum albumin (BSA) or sample (diluted in water, to an appropriate 

concentration range) was mixed with 2ml working reagent (50:1, reagent A:B) and 

the tubes incubated at 60°C for 30 min. After cooling to room temperature the 

absorbance of the samples was measured at 562nm. A standard curve was prepared 

by diluting BSA with the diluted sample buffer to a working range of 5-250μg/ml 

and plotting the absorbance against the concentration. The protein concentrations of 

the samples were determined by the equation produced by the Polynomial trendline 

of the standard curve. 

2.9.4. Acetone precipitation 

2-3 times sample volumes of acetone containing 60mM DTT was added to the 

sample. The sample was incubated at -20°C for 2 hours prior to centrifuging at 

12500 x g for 15 min. The pellet was washed with cold acetone containing 20mM 

DTT and spun at 12500 x g for 5 min prior to air-drying the pellet. 

2.9.5. SDS-PAGE gel 

Proteins were separated by 12% SDS- Polyacrylamide gel electrophoresis (PAGE) to 

demonstrate that the protein extracts contained numerous different proteins, prior to 

ICAT analysis. The resolving gel (12% (w/v) acrylamide (30% acrylamide/0.8% 

bisacrylamide, Severn Biotech ltd.); 375mM Tris-HCl pH 8.7; 0.1% (w/v) SDS; 

0.1% (w/v) ammonium persulphate; 0.1% (v/v) TEMED) was poured, layered with 

isobutanol and left to polymerise. The isobutanol was subsequently poured off and 

the gel rinsed with a small amount of stacking gel, prior to pouring the stacking gel 

(3.5% (w/v) acrylamide (30% acrylamide/0.8% bisacrylamide, Severn Biotech ltd.); 

144mM Tris-HCl pH 6.8; 0.1% (w/v) SDS; 0.06% (w/v) ammonium persulphate; 

0.1% (v/v) TEMED). 

Samples and 10μl prestained protein marker (broad range 6-175 kDa, Biolabs, UK) 

were mixed with 5μl sample buffer (2% (w/v) SDS; 20% (v/v) glycerol; 0.125M 

Tris-HCl pH 6.8; 0.004% (w/v) bromophenol blue; 5% (v/v) 2-mercaptoethanol) and 

boiled for 5 min before loading. Gels were run in 1x Tris-Glycine SDS  

(Severn Biotech) at 200V until the dye front had reached the bottom of the gel.  
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The gels were stained in Coomassie blue for 1 hour (0.25% (w/v) Coomassie blue 

R250 (Sigma), 5% (v/v) acetic acid, 50% (v/v) methanol) prior to destaining (10% 

(v/v) acetic acid, 20% (v/v) methanol) over night. 

2.9.6. Digestion of proteins in solution 

10μl of protein solution was mixed with 40μl 50mM ammonium bicarbonate (ABC) 

and DTT added to a final concentration of 5mM. The sample was subsequently 

heated at 60°C for 30 min, prior to cooling to room temperature. Iodoacetamide was 

added to a final concentration of 15mM and the sample placed in the dark for 30 min, 

prior to the addition of 0.8μg trypsin and the sample incubated at 37°C for 2 hours 

for digestion.  

2.9.7. ICAT 

2.9.7.1. Cleavable ICAT ®  

To investigate differences in protein expressions between cells infected with 

different viruses, cleavable isotope-coded affinity tag labelling (cICAT) was 

performed using a cICAT Reagent Kit from Applied Biosystems. This method tags 

the cysteines with heavy or light biotin labelled isotope-coded tags (C10H17N3O3), 

with the heavy tag containing 9x 13C and the light 9x 12C, thus allowing the 

identification and quantification of individual proteins in two samples following 

mass spectrometry. The kit protocol was followed with some adjustments.  

The two protein samples were concentrated and cleaned separately by acetone 

precipitation or by using Vivaspin 500 (Sartorius group) with a molecular weight cut 

off of 3000, according to the manufacturer’s instructions. The samples were 

denatured and reduced by the addition of Denaturing buffer and Reducing reagent 

and 10 min boiling on a heat block. The proteins were labelled by either light or 

heavy ICAT reagent resuspended in acetonitrile, during a 2 hour incubation at 37°C. 

The protein samples were subsequently combined and the proteins trypsin-digested 

over night at 37°C. The resulting peptides were run through a cation-exchange 

column to wash away TCEP (reducing agent that breaks disulfide bonds), SDS and 

unused ICAT reagents. The labelled peptides were selected by utilising an avidin 
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column to bind the biotin molecule on the isotope tag. The biotin molecule was 

subsequently cleaved off the tag by drying down the sample by vacuum or freeze 

dryer and incubation for 2 hours with cleavage reagents A and B at 37°C. The 

peptides were again dried down by vacuum dryer and resuspended in 0.5% (v/v) 

acetic acid, prior to running the sample on a LC-MS/MS system (LCQDeca or LTQ, 

ThermoScientific). 

2.9.7.2. 1-D PAGE cleavable ICAT 

The 1-D PAGE cICAT is a variation of the cICAT. The protocol for 1-D PAGE 

cleavable ICAT reagent applications development kit for targeted protein ID and 

quantification (Applied Biosystems) was followed with some adjustments. Reagents 

from the cICAT kit were used.  

The two protein samples were concentrated and cleaned separately by using Vivaspin 

500 (Sartorius group) with a molecular weight cut off of 3000 MW, according to the 

manufacturer’s instructions. The samples were denatured and reduced by the addition 

of Denaturing buffer and Reducing reagent and 10 min boiling on a heat block. The 

proteins were labelled by either light or heavy ICAT reagent resuspended in 

acetonitrile, during a 2-hour incubation at 37°C. The protein samples were 

subsequently combined and the sample vacuum dried to reduce the volume prior to 

mixing with 3x loading buffer and boiling for 10 min. The sample was run on a 

1.5mm 12% SDS- Polyacrylamide gel with a 5% stacking gel at 180-200V. The gel 

was subsequently washed in distilled water and stained with Coomassie blue (Sigma) 

for about 10 min before being destained. The gel was washed in distilled water for  

1 hour prior to excising the bands and cutting them into small pieces (1x1mm), and 

storing them at -20°C. The gel pieces were subsequently washed three times in 500μl 

gel washing buffer (50% (v/v) Acetonitrile (ACN) in 100mM ABC) at room 

temperature for 20 min and dehydrated with 100μl 100% ACN for 5 min at room 

temperature, the solution removed and the gel pieces left to air-dry. The proteins 

were in-gel trypsin digested by the addition of 60μl trypsin solution (0.8μg trypsin in 

60μl 50mM ABC). The gel pieces were left to rehydrate with the trypsin solution for 

10 min and more 50mM ABC added if needed to cover the gel pieces. The gel pieces 

were left to digest over night at 32°C. The peptides were extracted by sonicating the 
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gel pieces for 20 min in a sonic ice water bath and the supernatant transferred to a 

fresh tube. A 10μl ZipTip® (Millipore, UK), that has a bed of chromatography 

media in the tip, was used to concentrate the sample using a table top centrifuge at 

144 x g. The ZipTip® was washed with 5μl 100% methanol, followed by 10μl 0.1% 

(v/v) TFA, and the sample loaded onto the ZipTip®. The bound peptides were 

washed with 2 x 10μl 0.1% (v/v) TFA and eluted with 2 x 10μl 80% (v/v) ACN in 

0.1% (v/v) TFA. The labelled peptides were purified using an avidin column 

according to the protocol, and the solution concentrated using a ZipTip® as above 

and the concentrated peptide solution dried using a vacuum dryer for 10 min. The 

biotin tag was subsequently cleaved off by the addition of cleavage reagents A and B 

and incubation for 2 hours at 37°C, and the sample vacuum dried before re-

suspension in 60μl 0.5% acetic acid. The peptides were loaded onto a ZipTip®, as 

above, eluted and dried down in a vacuum dryer prior to loading onto the  

LC-MS/MS (LCQdeca or LTQ, ThermoScientific).  

On some occasions the peptide extraction involved addition steps. Following the 

initial sonication, extraction solvent was added (50% (v/v) ACN, 0.1% (v/v) TFA) 

and the gel pieces sonicated for 20 min in a sonic ice water bath. This was repeated 

three times. In addition, on some occasions vacuum drying and freeze drying was 

used instead of the ZipTip® prior to loading the sample onto the avidin column, and 

freeze drying prior to cleaving.  

2.9.8. Mass spectrometry 

2.9.8.1. Matrix-assisted laser desorption/ionization (MALDI) 

A Voyager DE STR MALDI–TOF MS (Applied Biosystems) was used for analysis 

of some protein and peptide samples. 0.5μl of sample was spotted on to a MALDI 

plate with 0.5μl CHCA matrix (10mg/ml CHCA (Sigma), 0.3% (v/v) TFA, 50% 

(v/v) ACN) for peptides and sinapinic acid matrix (10mg/ml (Sigma), 0.3% (v/v) 

TFA, 50% (v/v) ACN) for proteins. The spots were left to air dry prior to MALDI 

analysis.  
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2.9.8.2. LC-MS/MS analysis 

A LCQdeca or LTQ (Thermo Scientific) nanoLC-MS system was used to analyse 

peptide samples.  

The LCQdeca system consisted of a Famos autosampler, Switchos column switching 

unit, Ultimate nanoLC (Dionex) and LCQdeca mass spectrometer (ThermoScientific) 

fitted with a nanoLC ESI source interfaced to the MS with a PicoTip (New 

Objective). Separation of peptides was performed at 200µl/min on a PepMap C18 

column (3µm particle size, 75µm x 15cm), monitored at 214nm and the hplc method 

controlled by Chromeleon software (Dionex). The column was equilibrated with 

solvent A (0.1% (v/v) formic acid) and eluted with a linear gradient from 0 to 70% 

solvent B (0.1 % (v/v) formic acid in 100% acetonitrile) over 45 min.  

The LTQ system consisted of an Agilent 1200 Series hplc (Agilent technologies) 

with a Kasil sealed fused silica pre-column (Next Advance) packaged to a length of 

approximately 3cm with Pursuit C18 5µm particle size (Varian), and a PicoTip 

Emitter analytical column (New Objective) packaged to a length of approximately 

20cm with Pursuit C18 5µm particle size (Varian). The column was equilibrated with 

solvent A (0.1% (v/v) formic acid in 2.5% (v/v) acetonitrile) and eluted with a linear 

gradient from 0 to 8% over 6 to 8 min; from 8 to 60% over 8 to 35 min; from 60 to 

100% over 35 to 40 min; solvent B (0.1% (v/v) formic acid, 0.025% (v/v) TFA in 

90% (v/v) acetonitrile) over 45 min at a flow rate of 5µl/min. The LTQ mass 

spectrometer (ThermoScientific) was fitted with a nanoLC-ESI source.  

For both systems data dependent acquisition was controlled by Xcalibur software and 

database searching achieved using MASCOT software (Matrix Science).  



Chapter Two  Materials and methods 

 90

2.10. Stock solutions 

10x TBS buffer   100mM Tris-base 
     1500mM NaCl 
     pH 7.5 with HCl 
 
TBE buffer   0.44M Tris-base 
     0.44M Boric acid 
     12mM EDTA 
 
PBS (pH 7.4)   150mM NaCl 
     2.5mM KCl 
     10mM Na2HPO4 
     1mM KH2PO4 
 
20 x SSC    3M NaCl 
     300mM sodium citrate (pH 7.0) 

 
50 x Denhardt’s buffer 1% (w/v) Ficoll 400 
     1% (w/v) Polyvinylpyrrolidone 
     1% (w/v) Bovine serum albumin fraction V 
 
Paraformaldehyde  4% (w/v) paraformaldehyde 
     10mM NaOH 
     1 x PBS 
     pH 7.4 with 1M HCl 
     filtered through a 0.45 μm membrane filter 
 
L-broth (pH 7.5)  1% (w/v) tryptone 
     0.5% (w/v) yeast extract 
     1% (w/v) NaCl 
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2.11. Synthetic oligonucleotides used for in vitro 

transcription 

miRNA Northern probe 

template 

TAGAAATGGCCGTACTTCCTTTCCTGTCTC 
 

Sequence of the DNA oligonucleotide template used for making the miRNA1 probe. 

The template corresponds to the target RNA and also has a 8nt sequence 

complementary to the T7 Promoter primer, shown in red. 

vtRNA transcription 

T7 promoter  

5’- AATTTAATACGACTCACTATA -3’ 

vtRNA1 reverse 

5’-TGGGACCAGAGCTCGGACTTGAACCGAGAACCAGGATCGGTGACCTG 
TTGCTCTACCAATTGAGCTACTCTGGCCCTATATAGTGAGTCGTATTAAAT
T-3’ 
 

vtRNA4 forward 

5’-GATCCTAATACGACTCACTATAGGGTCGGGGTAGCTCAATTGGTAGAG 
CGGCAGGCTCATCCCCTGCAGGTTCTCGGTTCAATCCCGGGTCCCGACGC
CA-3’ 
 
vtRNA4 reverse 

5’-TGGCGTCGGGACCCGGGATTGAACCGAGAACCTGCAGGGGATGAGCC 
TGCCGCTCTACCAATTGAGCTACCCCGACCCTATAGTGAGTCGTATTAG-
3’ 
 

vtRNA5 reverse  

5’-TGGAACCAGGGCCCGGACTTGAACCGGAACCGACAGGATACTAGCC 
TGATGCTCTACCAATTGAGCTACCCTGGCCCTATATAGTGAGTCGTATTA
AATT-3’ 
 
The T7 promoter is shown in red and the 3’ CCA coding sequence in blue.  
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2.12. Primers 

 

Forward (F) 
Reverse (R) Primer pair

Anneal 
temp

Amplified 
region

ORF46-F 5'- CAT GCT TAC TGC CAT TGA TCA G -3' 55°C ORF 46
ORF46-R 5'- GGT TTG GCC TTT AGT GTT CAT G -3'

vtRNA1-F 5'- TAGAGCAACAGGTCACCGATC -3' 56°C vtRNA1
vtRNA1-R 5'- TGGACCCACTTCCTCGACCAG -3' nt 146-215

70bp product
vtRNA2-F 5'- GGTAGAGCAGCGGTTCCT -3' 56°C vtRNA2
vtRNA2-R 5'- ACTCCCCCTCTCAACCA -3' nt 505-573

69bp product
vtRNA4-F 5'- GCGGCAGGCTCATC -3' 56°C vtRNA4
vtRNA4-R 5'- ATCTCAACTCTGCGTCGG -3' nt 1205-1266

62bp product
vtRNA5-F 5'- TAGAGCATCAGGCTAGTA -3' 51°C vtRNA5
vtRNA5-R 5'- CTCCACCTTTAACCAG -3' nt 1607-1669

63bp product
vtRNA8-F 5'- CCCATCCTGTTGGTT -3' 51°C vtRNA8
vtRNA8-R 5'- CGCGGGTAGCTAGTC -3' nt 5418-5471

54bp product  
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3.1. Aims 

The aim of this project was to investigate the functions of the viral tRNAs and 

miRNAs encoded by MHV-68. The natural deletant virus MHV-76 is useful for this 

purpose as it is missing these genes. By infecting cells with MHV-68 and MHV-76 

and comparing the phenotypes (cell numbers, percentage of reactivating virus and 

amount of infectious virus), as well as gene and protein expression, a possible 

function for the viral tRNAs and miRNAs might be found. However, MHV-76 is 

also missing the four unique genes M1-M4, meaning that any phenotype found could 

be the action of any of these proteins. M2, M3 and M4 are all important for the 

establishment of latency (Bridgeman et al. 2001; Evans et al. 2006; Geere et al. 

2006; Jacoby et al. 2002; Macrae et al. 2003; Simas et al. 2004). M2 also promotes 

reactivation (Herskowitz et al. 2005; Jacoby et al. 2002), while M1 suppresses 

reactivation from latency (Clambey et al. 2000; Evans et al. 2008). To overcome this 

MHV-76 can be utilised to construct a recombinant knock-in virus, by re-inserting 

the genes of interest into the left end of the genome without the risk of disrupting any 

viral genes. This has previously been done in this laboratory, by inserting the M4 

ORF to look at the role of the M4 gene during infection (Townsley et al. 2004), as 

well as inserting vtRNAs1-5 and miRNAs1-6 (pers commun Yvonne Ligertwood; 

Cliffe 2005). Two independent insertion viruses were made in our laboratory by 

using the recombinant cassette pL2a5, consisting of vtRNAs1-5 and miRNAs1-6 

flanked by partial M4 and ORF4 from MHV-76 and a PstI fragment of the terminal 

repeats (Figure 3.1). These viruses, named Int2 and Int9, will serve as important tools 

to investigate the functions of the non-coding RNAs, since the only difference 

between MHV-76 and the insertion viruses is the vtRNAs and miRNAs. As a control 

a revertant virus made from Int9 was constructed by recombination using a cosmid 

(cM1) covering part of the MHV-76 genome from nt115587 to nt26842  

(Macrae et al. 2001). This virus was plaque purified and analysed by Southern 

hybridisations and it was determined that the vtRNAs had been removed from the 

insertion virus and the genome reverted back to that of MHV-76 (Cliffe 2005). 

A mouse myeloma B-cell line, NS0, was used to study latent infection. MHV-68 

establishes long-term latency in B-cells in vivo and NS0 cells have been shown  



Chapter Three  Characterisation of viruses 

 95

 

 

 

TR M
1

M
2

M
3

M
4

O
R

F4

1
/ 1

2
/ 2

,3
3

/ 4
4

/ 5
,6

5
/ 7

6
/ 8

7 8
/ 9

vtRNAs / miRNAs

MHV-68

TR O
R

F4

MHV-76

iM
4

TR O
R

F4

1
/ 1

2
/ 2

,3
3

/ 4
4

/ 5
,6

5

vtRNAs / 
miRNAs

Int9/2

iM
4

TR M
1

M
2

M
3

M
4

O
R

F4

1
/ 1

2
/ 2

,3
3

/ 4
4

/ 5
,6

5
/ 7

6
/ 8

7 8
/ 9

vtRNAs / miRNAs

MHV-68

TR O
R

F4

MHV-76

iM
4

TR O
R

F4

1
/ 1

2
/ 2

,3
3

/ 4
4

/ 5
,6

5

vtRNAs / 
miRNAs

Int9/2

iM
4

 

 

Figure 3.1 Diagram showing the differences between MHV-68, MHV-76 and the 
insertion viruses (Int9 and Int2) in the left side of the genome.  
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previously to support latent infection (Sunil-Chandra et al. 1993). Prior to any major 

experiment, infection of NS0 cells was examined to ensure this provided a suitable 

model to study latent infection.  

To be able to use the insertion viruses to compare subtle differences in protein 

expression and phenotypes of virus infected cells during latent infection, a very high 

percentage of cells need to be infected. It was not known how the infectivity of BHK 

cells, on which virus titration was performed, compared to that of NS0 cells. In 

addition, it was not known if the different viruses infected the same proportion of 

cells. Therefore, the percentage of infected NS0 cells needed to be determined.  

The insertion viruses have previously been shown to express the vtRNAs during lytic 

infection by RT-PCR and the levels of expression found to be similar to that of 

MHV-68 by northern blot analysis using a probe specific for vtRNA 1-4  

(Cliffe 2005). However, it had not been confirmed that the insertion viruses express 

the vtRNAs during latent infection of NS0 cells. Further, the insertion viruses had 

not been shown to express the miRNAs. The miRNAs are known to be expressed in 

latently infected S11 cells (Pfeffer et al. 2005); however, their expression had not 

been shown in MHV-68 infected NS0 cells or during lytic infection. Hence, the 

expression of the vtRNAs and miRNAs during lytic and latent infection was 

investigated. 

3.2. Determining the percentage of infected NS0 cells 

3.2.1. GFP labelled viruses 

The initial experiment to determine the number of infected NS0 cells utilised  

GFP-labelled viruses, LHΔgfp and MHV-76GFP. LHΔgfp is a recombinant MHV-68 

virus which carries a CMV-GFP cassette in the left end of the genome resulting in a 

deletion of nt 1-3223 (Dutia et al. 2004). The MHV-76GFP virus has a GFP cassette 

downstream of a murine PGK promoter (for the house keeping gene 

phosphoglycerate kinase) in the left end of the genome (pers commun Simon Talbot).  

NS0 cells were infected with the two viruses at a MOI of 1, 5 and 10 pfu/cell and 

cytospins were made at days 2 and 6 post infection. The GFP expressing cells were 
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counted using a fluorescent microscope at 40x magnification. MHV-76GFP did not 

generate any visible fluorescence. The reason for this is unknown, though it has been 

observed previously with this virus in NS0 cells. This virus has a promoter for a 

house keeping gene that should not be affected by latency. LHΔgfp did result in 

fluorescent cells; however, at a much lower level than expected (Figure 3.2). Since 

the virus has a CMV promoter that might be shut down during latency more cells 

could be infected but are not expressing the fluorescence. The best approach would 

be to infect the cells with the wild-type virus to avoid any effects of the inserted 

cassette and promoters.  

A MOI of 10 was found to affect the cell viability and since a MOI of 5 pfu/cell has 

previously been used in published studies (Simas et al. 1999; Sunil-Chandra et al. 

1993) it was decided that this MOI would be used for future experiments.  

3.2.2. In situ hybridisation 

To detect MHV-68 infected cells within a population of cells, in situ hybridisations 

were carried out with a dig-labelled anti-sense probe consisting of nucleotides 106 to 

1517, covering vtRNA1-4. The vtRNAs are commonly used as markers for latent 

infection as they are expressed at high levels (Bowden et al. 1997). In addition, there 

are currently no antibodies for any of the latent proteins.  

NS0 cells were infected with MHV-68 at a MOI of 5 pfu/cell and at day 5 post 

infection they were harvested and cytospins made. Initially the dig-labelled probe 

was detected by anti-dig/AP conjugated antibody and BCIP/NBT (results not 

shown). However, this approach was not sufficiently sensitive and a fluorescent 

antibody was used instead which allowed the use of confocal microscopy, giving 

greater resolution. A primary sheep anti-dig antibody was used to detect the  

dig-labelled probe, followed by a secondary biotinylated anti-sheep antibody and 

streptavidin/alexa fluor 488. The slides were blocked in Cas block (Invitrogen, UK), 

as this gave the least background staining. The majority of MHV-68 infected NS0 

cells were positive for vtRNAs (Figure 3.3), meaning that they were virus infected. 

The vtRNAs appeared to localise in the cytoplasm and be peri-nuclear, which is 

consistent with previous findings in latently infected S11 cells (Cliffe 2005).  
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Figure 3.2 Percentage of NS0 cells expressing GFP, 2 and 5 days post infection with 
LHΔgfp at a MOI of 1, 5 and 10 pfu/cell. The GFP expressing cells were counted using 
a fluorescent microscope at 40x magnification.  
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Figure 3.3 In situ hybridisation for vtRNAs1-4 on uninfected NS0 cells (A and C) and 
NS0 cells infected with MHV-68 at a MOI of 5 pfu/cell (B and D). The dig-labelled 
probe was detected by a primary anti-dig antibody, a secondary biotinylated antibody, 
and streptavidin/alexa fluor 488 (A and B). The cells were nuclear stained by 
propidium iodide (C and D). Confocal microscope was used at x63 magnification.  
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As a positive control in situ hybridisation was also carried out on S11 cells with and 

without the vtRNA probe (Figure 3.4). The S11 cells were positive for vtRNAs after 

in situ hybridisation with the probe and again the vtRNAs seemed to localise in the 

cytoplasm. There was some non-specific fluorescence around the edges of the S11 

cells even when no probe had been used for the in situ hybridisation (Figure 3.4). 

The cause of the slightly high background was found to be the secondary antibody. 

As no alternative antibody was available the antibody was titred; however, a lower 

concentration of antibody led to a loss of signal (results not shown). 

3.2.3. Cloning of infected cells 

Another method of generating a very high percentage of virus infected cells would be 

to clone infected cells. NS0 cells were infected at a MOI of 5 pfu/cell with MHV-76 

or Int9 and incubated for 5 days before being cloned at 0.5 cells/well in a 96-well 

plate. Wells with only one clone were kept growing and the cells moved to larger 

plates and eventually flasks as the cells grew in numbers. PCR was carried out to 

determine if the clones were virus infected using primers for ORF 46, a viral uracil 

DNA glycosylase (Virgin et al. 1997), and the products visualised on a 1% agarose 

gel. Of the 12 clones tested (six MHV-76 and six Int9) all were positive for viral 

DNA (Figure 3.5), indicating that a very high percent of cells are infected at a MOI 

of 5 pfu/cell.  

Although the clones would give a high number of infected cells they would not 

represent a population of cells; any phenotypes found could be a feature of that 

particular clone. Since a high percentage of infected cells could be achieved in a 

diverse population of cells, it was decided that the clones would not be used for 

further analysis. 

3.2.4. Staining for lytic proteins 

During latent infection a small number of cells will reactivate and cause a lytic 

infection. Around 3% of S11 cells and 5% of MHV-68 infected NS0 cells undergo 

spontaneous reactivation (Nash et al. 2001; Usherwood et al. 1996a). To determine 

the percentage of lytically infected cells, staining was performed using a polyclonal 

serum raised against lytically infected rabbit cells. NS0 cells were infected 
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Figure 3.4 In situ hybridisation for vtRNAs1-4 on S11 cells without probe (A, C and E) 
and with probe (B, D and F). The dig-labelled probe was detected by a primary anti-dig 
antibody, a secondary biotinylated antibody, and streptavidin/alexa fluor 488 (A and 
B). The cells were nuclear stained by Topro3 (C and D), with E and F showing the alexa 
fluor and nuclear stain overlaid. Confocal microscope at 63x magnification.  
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Figure 3.5 Identifying MHV-76 and Int9 infected clones by PCR analysis with primers 
for ORF46. The PCR products were visualised on a 1% agarose gel. The size of 
molecular weight markers in bp is shown to the right. Water control (–) and viral DNA 
as a positive control (+) were included in the PCR reaction.  
 

MHV-76 clones 

Int9 clones

A2 A3 A4 B5 D2 D5 - 
 
+ 

B2 B3 B4 B5 C2 C3 - + 

100 
200 
300 
400 

500 

100 

200 
300 
400 
500 



Chapter Three  Characterisation of viruses 

 103

with MHV-68, MHV-76, Int9, Int2 and revertant virus at a MOI of 5 pfu/cell and at 

day 5 post infection they were harvested and cytospins made. A secondary 

biotinylated anti-rabbit antibody and streptavidin/alexa fluor was used to detect the 

antibodies that had bound to viral antigens. The number of positive cells was counted 

using a fluorescent microscope at x40 magnification. 

The antibodies bound weakly to latently as well as lytically infected cells. However, 

there were clear differences, with brightly stained cells indicating lytic infection  

(Figure 3.5). The serum was raised during a lytic infection but may contain 

antibodies to antigens expressed during latent infection. However, this proved useful 

as it confirmed that a very high percentage of cells are infected at a MOI of  

5 pfu/cell. The percentage of lytically infected cells was estimated as 1% for  

MHV-68, 8% for MHV-76, and 0.1% for Int9 infected NS0 cells. 

3.3. miRNA expression 

3.3.1. Northern blot analysis 

To ensure that MHV-68 and the insertion viruses express the miRNAs during latent 

infection of NS0 cells and during lytic infection, northern blot analysis was 

performed using a probe for miRNA1.  

Small RNAs were extracted from lytically infected BHK cells and latently infected 

NS0 cells that had been mock-infected or infected with MHV-68, MHV-76, Int9 or 

revertant virus at a MOI of 5 pfu/ml for 24 hours or 5 days respectively, using a 

mirVana miRNA isolation kit (Ambion, UK), as well as from latently infected S11 

cells. The RNA was separated by electrophoresis on a 15% TBE-Urea gel, 

transferred to a nylon membrane by electroblotting, and hybridisation carried out 

using ULTRAhyb®-Oligo Hybridization Buffer (Ambion, UK) and a radiolabelled 

probe specific for miRNA1. The probe was generated using a mirVanaTM miRNA 

probe construction kit to in vitro transcribe the probe using T7 RNA polymerase. A 

DecadeTM marker (Ambion, UK) was used to determine the sizes of bands.  
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Figure 3.6 Staining of virus infected cells using a polyclonal serum raised against 
lytically infected rabbit cells. A secondary biotinylated anti-rabbit antibody and 
streptavidin/alexa fluor was used to detect the antibodies that had bound to viral 
antigens. The stained cells were visualised using a fluorescent microscope at x100 
magnification. The red arrows indicate lytically infected cells.  
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The northern analysis confirmed that latently infected S11 cells express miRNA1 

(Figure 3.7). It also confirmed that MHV-68 and Int9 express miRNA1 during lytic 

infection of BHK cells, while, as expected, MHV-76 and the revertant do not. In 

addition it showed that miRNA1 is expressed in NS0 cells latently infected with 

MHV-68; however, not with Int9. This was surprising as miRNA1 was expressed by 

Int9 during lytic infection.  

To confirm the lack of miRNA1 expression another northern blot analysis was 

performed on RNA from latently infected NS0 cells. The cells were infected with the 

viruses, including the second insertion virus Int2, at a MOI of 5 pfu/cell and small 

RNAs extracted 24 hours and 5 days post infection. In addition, 2μg of RNA from 

Int9 infected NS0 cells was loaded into one well, instead of the usual 1 μg, to see if 

the miRNA was expressed at a very low level. The second northern blot confirmed 

the previous result; while MHV-68 expressed miRNA1 during latent infection of 

NS0 cells both 24 hours and 5 days post infection, the insertion viruses did not 

(Figure 3.8). To further confirm this result and to examine the expression of the other 

miRNAs, a more sensitive qRT-PCR analysis was performed. 

3.3.2. qRT-PCR 

To confirm that the insertion viruses do not express miRNA1 and to determine if the 

other miRNAs are expressed, a qRT-PCR analysis for the miRNAs was performed 

using an Invitrogen NCode miRNA First-Strand cDNA Synthesis Kit and Platinum 

SYBR Green qPCR SuperMix-UDG. Using this kit a poly(A) tail was added to the 

3’ end and the miRNA reverse transcribed using a universal RT primer. dsDNA was 

produced using a forward primer specific to the miRNA and a universal qPCR 

primer in a PCR reaction. The levels of dsDNA produced were determined using the 

intercalating dye SYBR green. 

In an initial experiment small RNAs extracted from mock and MHV-68 infected NS0 

cells using a mirVana miRNA isolation kit (Ambion, UK) were used. All six 

miRNAs examined were detected in all MHV-68 infected cells and none in mock-

infected cells (Figure 3.9); however, the dissociation curve for miRNA2 was not 

good and no specific product seemed to be detected (see Appendix Figure 8.1). This 

is possibly because of the high C content of the miRNA and it was decided that this  
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Figure 3.7 Northern blot analysis of miRNA1 expression by MHV-68, MHV-76, Int9 
and revertant (Rev) viruses during lytic and latent infection. BHK cells were infected 
for 24 hours and NS0 cells for 5 days at a MOI of 5 pfu/cell and small RNAs extracted 
with a mirVana miRNA isolation kit (Ambion, UK). Hybridisation was carried out 
using ULTRAhyb®-Oligo Hybridization Buffer (Ambion, UK) and a radiolabelled 
probe specific for miRNA1. A DecadeTM marker (Ambion, UK) was used to determine 
the sizes of bands. 
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Figure 3.8 Northern blot analysis of miRNA1 expression by MHV-68, MHV-76, Int9 
and Int2 during latent infection. NS0 cells were infected for 24 hours or 5 days at a 
MOI of 5 pfu/cell and small RNAs extracted with a mirVana miRNA isolation kit 
(Ambion, UK). One well was loaded with twice as much RNA, 2μg, from Int9 infected 
NS0 cells. Hybridisation was carried out using ULTRAhyb®-Oligo Hybridization 
Buffer (Ambion, UK) and a radiolabelled probe specific for miRNA1. A DecadeTM 
marker (Ambion, UK) was used to determine the sizes of bands. 
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Figure 3.9 qRT-PCR amplification plots for miRNA1-6 on RNA from mock (blue) and 
MHV-68 (red) infected NS0 cells.  
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miRNA could not be quantified using this method. The miRNA5 primer seemed to 

pick up some non-specific products as well (see Appendix Figure 8.1); however this 

primer was used for further analysis to see if the dissociation curve could be 

improved.  

The miRNA expression by the insertion viruses, Int9 and Int2, during latent infection 

was subsequently compared to that of MHV-68 by qRT-PCR for miRNA1, 3, 4, 5 

and 6. The relative quantity of the miRNAs was normalised against cellular 5S 

ribosomal RNA, to compensate for differences in the amount of RNA used for the 

reverse transcription. The qRT-PCR results confirmed the previous northern 

analyses; the insertion viruses express miRNA1 at very low levels during latent 

infection (Figure 3.10). In addition, miRNA3, 4, 5 and 6 were all expressed at a 

lower level than by MHV-68. This time the dissociation curve for miRNA5 was 

slightly better, but amplification of some non-specific products still occurred  

(see Appendix Figure 8.2). However, it could still be concluded that NS0 cells 

latently infected with the insertion viruses contain less of the miRNAs than MHV-68 

infected cells.  

3.4. vtRNA expression 

To ensure that the insertion viruses express the vtRNAs during latent infection,  

RT-PCR analysis was carried out on miRNA enriched RNA from mock-infected 

NS0 cells or infected with MHV-68, MHV-76, Int9, or Int2 for five days. The RNA 

was DNase treated and RT-PCR carried out using primers specific for four of the 

vtRNAs and the products visualised on a 2% agarose gel. All four vtRNAs examined 

were expressed during latency (Figure 3.11). 

3.5. Discussion 

Two insertion viruses had previously been made by inserting five of the vtRNAs and 

six of the miRNAs into the natural deletant virus MHV-76. This generated two 

viruses with the only difference from MHV-76 being the vtRNAs and miRNAs. In 

addition a revertant virus had been made by reverting the insertion virus Int9 back to 

MHV-76 genome. These were to be used to investigate the functions of the  
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Figure 3.10 qRT-PCR for miRNAs. Showing the levels of miRNAs expressed by the 
insertion viruses (Int9 and Int2) relative to the expression by MHV-68. Error bars 
show the standard deviation. Values were normalised against cellular 5S ribosomal 
RNA levels to adjust for differences in the amount of RNA used. ND, not done. 
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Figure 3.11 RT-PCR analysis showing the expression of vtRNAs1, 2, 4 and 5 from NS0 
cells latently infected with MHV-68, MHV-76, Int9, Int2 and revertant (Rev), as well as 
mock-infected cells. The RNA was DNase treated, RT-PCR carried out for the vtRNAs 
(+RT) and the products visualised on a 2% agarose gel. Control RT-PCR reactions 
without reverse transcriptase (-RT) were also carried out, as well as a water control 
(H20) for the PCR reaction.  
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non-coding RNAs. However, prior to any major studies with the viruses they needed 

to be characterised. The recombinant viruses had already been analysed by Southern 

blot analysis to confirm correct insertion of the DNA fragments into the viral genome 

of the insertion viruses and that the revertant was identical to MHV-76. The 

expression of the vtRNAs by the insertion viruses during lytic infection had also 

been confirmed (Cliffe 2005). 

To compare subtle differences in phenotypes and protein expression a large 

proportion of cells need to be infected, and the viruses need to infect a similar 

proportion of cells. The viruses were titred on BHK-21 fibroblast cells, determining 

the number of pfu per ml in the virus stocks. It was not known if the viruses had 

similar infectivity on NS0 cells. In this study it was shown that five days post 

infection at a MOI of 5 pfu/cell the viruses (MHV-68, MHV-76, Int9, Int2 and 

revertant) have all infected close to 100% of the NS0 cells, and that the cells are 

healthy and growing well following infection. 

The initial experiment using GFP-labelled viruses was unsuccessful, probably due to 

the promoters driving the GFP expression not being fully active, perhaps being  

shut-down due to chromatin remodelling during latency. However, the in situ 

hybridisations carried out for vtRNAs in MHV-68 infected NS0 cells were more 

successful. In addition to showing that close to 100% of cells were infected with 

MHV-68, the in situ hybridisation also showed that the vtRNAs appear to localise in 

the cytoplasm during latency. The vtRNA1-4 probe has previously been used for in 

situ hybridisations and has been shown to bind specifically to vtRNAs (Bowden et 

al. 1997; Cliffe 2005; Simas et al. 1999). However, since MHV-76 and the revertant 

virus do not express the vtRNAs the in situ hybridisation could not be used for all 

viruses.  

There are no antibodies available for any proteins expressed during latency; 

however, a polyclonal serum raised against lytically infected rabbit cells proved 

useful as it bound to antigens produced at low levels during latent infection. It could 

thereby be confirmed that all the viruses infect close to 100% of NS0 cells. It was 

clear that MHV-76 and the revertant virus had a higher proportion of lytically 

infected cells, while the insertion viruses had a very low number.  
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In parallel to the other experiments, virus infected clones were grown up. All the 

clones tested were virus positive, corroborating that 100% of cells are infected at a 

MOI of 5 pfu/cell. It is possible that the virus infected cells are more viable; thus 

making it more likely that the surviving clones are virus infected. However, virus 

infected cells do not increase in cell numbers compared to uninfected cells  

(see chapter four), therefore virus infection does not seem to increase cell viability. 

The clones would have been useful if a high number of infected cells could not be 

achieved through infection of NS0 cells. However, it was decided that it was better to 

use a population of infected cells, instead of a clone.  

The viruses were further characterised in regards to vtRNA and miRNA expression. 

The insertion viruses were known to express the vtRNAs during lytic infection 

(Cliffe 2005) and we confirmed by RT-PCR that the vtRNAs are expressed during 

latent infection as well. This was expected since MHV-68 expresses the vtRNAs 

during both lytic and latent infection. We corroborated that MHV-68 expresses the 

miRNAs during latent infection of S11 cells and confirmed that they are expressed in 

latently infected NS0 cells. We further showed that MHV-68 expresses the miRNAs 

during lytic infection, which was expected since the vtRNAs are expressed. This had 

not been shown at that point, but has since been published (Diebel et al. 2010). Since 

MHV-68 expresses the miRNAs during both lytic and latent infection, it was 

surprising to find that during latent infection of NS0 cells the insertion viruses do not 

express miRNA1 at detectable levels and the other miRNAs at lower levels than 

MHV-68, especially since they express miRNA1 during lytic infection.  

The lack of miRNA1 expression by the insertion viruses during latency could be 

because promoter elements needed during latent infection are missing. Eukaryotic 

tRNA genes have upstream promoter elements around -30 relative to the 

transcription initiation site that can regulate tRNA transcription (reviewed in Dieci et 

al. 2007). The insert used for making the insertion viruses consists of nt 112-1694, 

covering vtRNA1-5 and miRNA1-6. vtRNA1 starts at nt 127 and since the promoter 

regions of the vtRNA/miRNA transcripts are not fully mapped and there may be 

unknown promoter/enhancer regions, it is possible that more of the sequence should 

have been included in the insert. If this is the case the vtRNA1 expression by the 

insertion viruses would be expected to be very low as well; however, since only a 
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non-quantitative RT-PCR was performed for the expression of the vtRNAs it is not 

known if this is the case.  

The lower expression of the miRNAs by the insertion viruses during latency is 

interesting. It is possible that the presence of the non-coding RNAs affect the copy 

number of the viruses. If there are fewer copies of the viral genome, lower amounts 

of miRNAs would be expressed. Preliminary qPCR data (not shown) indicates that 

this might be the case; however, this would need to be examined further. It would be 

interesting to see if the insertion viruses also express the vtRNAs at a lower level, 

which would be expected if the deficiency is at the level of transcription, since the 

vtRNAs and miRNAs are expressed on the same transcript. In addition, it is not 

known if there is a difference in expression levels of the non-coding RNAs between 

MHV-68 and the insertion viruses during lytic infection. Perhaps the unique genes 

are needed for efficient expression of the non-coding RNAs.  

Several methods to detect and/or quantify miRNAs have been made available during 

the last few years. Initially northern blot analysis was used; however, the 

development of qRT-PCR for miRNAs has made detection more sensitive, less time 

consuming and enables large scale analysis. The initial difficulty with qRT-PCRs 

was the short miRNAs sequence, making primer design difficult. This has been 

overcome by making the miRNA larger by using stem-loop primers (Ambion), 

adding a poly(A) tail (Invitrogen), or by using LNA nucleotides that allows for 

shorter primers (Exiqon). In this study we used the Invitrogen NCode miRNA  

First-Strand cDNA Synthesis Kit and Platinum SYBR Green qPCR SuperMix-UDG. 

This kit allows for designing of a miRNA primer specific for the miRNA, while 

other kits use pre-designed primers that do not include viral miRNAs. Because the 

primer used corresponds to the whole miRNA it is difficult in some cases to obtain 

specific products and good dissociation curves as there is little sequence variation 

allowed, as seen with miRNA2 and 5. In addition, if all miRNAs are to be analysed 

in one qRT-PCR experiment it is difficult to chose an annealing temperature suitable 

for all miRNA primers. For future experiments a possible alternative would be the 

TaqMan microRNAs assay (Applied Biosystems) to which specific stem loop 

primers for MHV-68 miRNAs can be ordered.  
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The aim of this study was to characterise the vtRNA and miRNA expression profiles 

of the viruses and determine whether infection of NS0 cells provided a suitable 

model to study differences in phenotypes and protein expression during latent 

infection. In conclusion, although some differences are observed, the NS0 cells 

provide a suitable model; a very high percentage of infected cells can be achieved 

and the non-coding RNAs are expressed.  
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4.1. Aims 

The roles of the non-coding RNAs of MHV-68 during infection have not been 

extensively characterised and it is not know what their biological functions are. The 

lack of the vtRNAs, miRNAs and M1-4 seen in MHV-76 leads to an attenuated 

phenotype, with the virus being cleared more rapidly and showing a deficiency in 

establishing latency (Macrae et al. 2001). However, the unique proteins are known to 

be important during infection (see section 1.3.10). In contrast, deletion of vtRNA1-4, 

miRNAs1-7 and M1 from MHV-68 did not result in a difference in either replication 

during in vitro infection or the ability of the virus to reactivate from latency in vivo 

compared to wild type virus (Simas et al. 1998). However, this was a limited study 

investigating infection in only four mice for each virus at one time point, with 

varying results obtained between mice. In addition, the non-coding RNAs may have 

similar functions so deleting just some of them might not abolish their effect. M1 is a 

multifunctional protein and deletion of M1 has since been shown to result in an 

increase in reactivation, which is inconsistent with the above study (Clambey et al. 

2000; Evans et al. 2008).  

The insertion viruses, Int9 and Int2, provide useful tools to study the non-coding 

RNAs, since the only difference between the two insertion viruses and MHV-76 are 

the five vtRNAs and six miRNAs, and any phenotype found will be caused by these. 

However, the insertion viruses will not tell us if the phenotype is caused by the 

vtRNAs or miRNAs. A previous in vivo study showed that, like MHV-76, the 

insertion viruses are cleared more rapidly and establish latency at a lower level in the 

spleen than MHV-68 (Cliffe 2005). Since a phenotype for the insertion viruses could 

not be found in vivo, we decided to investigate the functions of the non-coding RNAs 

during latent infection in vitro.  

NS0 cells were latently infected with the different viruses at a MOI of 5 pfu/cell and 

the replication and reactivation kinetics analysed by plaque assay and infective centre 

assay.  
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4.2. Replication and reactivation kinetics 

4.2.1. Preliminary experiment 

5x106 NS0 cells were mock-infected or infected with MHV-68, MHV-76, or Int9 at a 

MOI of 5 pfu/cell for one hour and 2x106 of the infected cells incubated in T25 

flasks in duplicate for each virus, for five days. These viruses had been titrated at the 

same time on the same BHK cells. Mock lysate was used to bring the virus solutions 

to the same volume, to minimise differences in the amount of cell debris present in 

the samples. On the day of infection and five and nine days post infection, cell 

numbers and titres of cell associated virus and virus in the supernatant were 

determined. In addition, infective centre assays were performed five and nine days 

post infection, by co-cultivating latently infected NS0 cells with BHK cells, to 

determine the percentage of NS0 cells reactivating virus.  

The titres of supernatant virus and cell associated virus following adsorption for one 

hour was determined to ensure that the same pfu of each virus had been used to 

infect the cells (Figure 4.1). The cell numbers showed that the virus infection did not 

give the cells a survival advantage (as discussed for the clones in the previous 

chapter), but infection with MHV-68 and MHV-76 seemed to lead to slightly 

reduced cell numbers (Figure 4.2); however this was not observed in subsequent 

experiments (Figure 4.9). There was a significantly larger amount of virus produced 

by MHV-68 and MHV-76 compared to Int9 (Figure 4.3). This difference was also 

seen in the amount of virus present in the cells; with Int9 infected NS0 cells having 

significantly lower levels of cell associated virus (Figure 4.4). The difference became 

more apparent when looking at the percentage of cells reactivating virus; Int9 

reactivated at a significantly lower level than MHV-68 and MHV-76 (Figure 4.5). At 

five days post infection MHV-76 also reactivated at a significantly higher level than 

MHV-68 and produced significantly more virus than MHV-68 both five and nine 

days post infection.  
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Figure 4.1 Supernatant (A) and cell associated (B) virus titres (pfu/ml and pfu/105 cells) 
from NS0 cells mock-infected or infected with MHV-68, MHV-76 or Int9 at a MOI of 5 
pfu/cell, following one hour of adsorption. Each bar shows the mean of two biological 
replicates, each with two technical replicates. Error bars represent the standard 
deviation.  
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Figure 4.2 Cell numbers from NS0 cells mock-infected or infected with MHV-68, 
MHV-76 or Int9 at a MOI 5 pfu/cell, five and nine days post infection. Each bar shows 
the mean of two biological replicates. Error bars represent the standard deviation. 

105 

106

107

day 5 day 9 

N
um

be
r o

f c
el

ls
 

Mock 
MHV-68
MHV-76
Int9 



Chapter Four  Investigating the functions of the non-coding RNAs 

 121

 
Figure 4.3 Supernatant virus titres (pfu/105 cells) from NS0 cells mock-infected or 
infected with MHV-68, MHV-76 or Int9 at a MOI 5 pfu/cell, five and nine days post 
infection. Each bar shows the mean of two biological replicates, each with two technical 
replicates. Error bars represent the standard deviation. * Int9 produced significantly 
less virus than MHV-68 and MHV-76 five days (p<0.025) and nine days (p<0.0025) post 
infection. * MHV-76 produced significantly more virus than MHV-68 both five 
(p<0.05) and nine (p<0.005) days post infection, as determined by Student’s t-test. 
 

 

 
Figure 4.4 Cell associated virus titres (pfu/105 cells) from NS0 cells mock-infected or 
infected with MHV-68, MHV-76 or Int9 at a MOI 5 pfu/cell, five and nine days post 
infection. Each bar shows the mean of two biological replicates, each with two technical 
replicates. Error bars represent the standard deviation. * Int9 infected NS0 cells had 
significantly less cell associated virus than MHV-68 and MHV-76 infected cells five 
days (p<0.025) and nine days post infection (p<0.05). * MHV-76 infected NS0 cells had 
significantly more cell associated virus than MHV-68 both five (p<0.01) and nine 
(p<0.005) days post infection, as determined by Student’s t-test. 
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Figure 4.5 Percentage of NS0 cells reactivating virus, mock-infected or infected with  
MHV-68, MHV-76 or Int9 at a MOI 5 pfu/cell, five and nine days post infection. The 
percentage of cells reactivating virus was calculated by subtracting the cell associated 
virus titres from the infective centres. Each bar shows the mean of two biological 
replicates, each with two technical replicates. Error bars represent the standard 
deviation. * Int9 reactivated at a significantly lower rate than MHV-68 and MHV-76 
both five days (p<0.0025) and nine days (p<0.01) post infection. * MHV-76 reactivated 
at a higher frequency than MHV-68 five days (p<0.001) but not nine days post 
infection, as determined by Student’s t-test. 
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4.2.2. Experiment with Int2 virus 

To confirm the reduction in reactivation seen with Int9 the experiment was repeated 

to include the second insertion virus Int2, which had been made independently of 

Int9. This time only the infective centres assay was performed five days post 

infection. The percentages of infective centres were analysed without subtracting the 

cell associated virus titre. 

The second insertion virus reactivated at the same level as Int9, strongly suggesting 

that the lower reactivation rate was due to the insert (Figure 4.6). The infective 

centres from this experiment replicated the results from the previous experiment 

(Figure 4.7). The cell associated virus titres did not have a great impact on the 

percentage of cells reactivating virus, since the same differences in reactivation 

between the viruses were observed even without subtracting the cell associated virus 

titres from the infective centres (Figure 4.5, Figure 4.7). This showed that the 

infective centres alone give a good measurement of reactivation.  

4.2.3. Experiment with revertant virus 

The replication and reactivation kinetics experiment was repeated with the revertant 

virus to confirm that the insertion viruses do reactivate at a lower level and produce 

less infectious virus. This time 3x106 NS0 cells were infected in duplicate for each 

virus (MHV-68, MHV-76, Int9, Int2 and revertant virus) at a MOI of 5 pfu/cell for 

one hour and 2x106 of the infected cells subsequently incubated in T25 flasks for five 

days. As previous, cell numbers and titres of cell associated virus and virus in the 

supernatant were determined on the day of infection and five and nine days post 

infection. Also, the percentage of cells reactivating virus was determined five and 

nine days post infection.  

The supernatant and cell associated virus titres following one hour of adsorption 

were similar for all viruses (Figure 4.8). In this experiment MHV-68 and MHV-76 

did not have lower cell numbers nine days post infection (Figure 4.9), as seen in the 

first assay. Both insertion viruses produced significantly less lytic (Figure 4.10), and 

cell associated virus (Figure 4.11), and reactivated at a significantly lower level 

(Figure 4.12) than MHV-68, MHV-76 and the revertant virus. Insertion of the  
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Figure 4.6 Percentage of infective centres from NS0 cells mock-infected or infected with  
MHV-68, MHV-76, Int9 or Int2 at a MOI 5 pfu/cell, five days post infection. Each bar 
shows the mean of two biological replicates, each with two technical replicates. Error 
bars represent the standard deviation. * Int9 and Int2 infected cells reactivated at a 
significantly lower level than MHV-68 and MHV-76 (p<0.0025). * MHV-76 reactivated 
at a significantly higher frequency than MHV-68 (p<0.001), as determined by Student’s 
t-test. 
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Figure 4.7 Comparing the percentage of infective centres between the two experiments, 
five days post infection of NS0 cells mock-infected or infected with MHV-68, MHV-76, 
Int9 or Int2 at a MOI 5 pfu/cell. Each bar shows the mean of two biological replicates, 
each with two technical replicates. Error bars represent the standard deviation. ND, 
not done.  
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Figure 4.8 Supernatant (A) and cell associated (B) virus titres (pfu/ml and pfu/105 cells) 
from NS0 cells mock-infected or infected with MHV-68, MHV-76, Int9, Int2 or 
revertant virus (Rev) at a MOI 5 pfu/cell, following one hour of adsorption. Each bar 
shows the mean of two biological replicates, each with two technical replicates. Error 
bars represent the standard deviation.  
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Figure 4.9 Cell numbers from NS0 cells, mock-infected or infected with MHV-68, 
MHV-76, Int9, Int2 or revertant virus (Rev) at a MOI 5 pfu/cell, five and nine days post 
infection. Each bar shows the mean of two biological replicates. Error bars represent 
the standard deviation.  
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Figure 4.10 Supernatant virus titres (pfu/105 cells) from NS0 cells, mock-infected or 
infected with MHV-68, MHV-76, Int9, Int2 or revertant virus (Rev) at a MOI 5 
pfu/cell, five and nine days post infection. Each bar shows the mean of two biological 
replicates, each with two technical replicates. Error bars represent the standard 
deviation. * Int9 and Int2 produced significantly less virus than MHV-68, MHV-76 and 
the revertant virus both five days (p<0.01) and nine days (p<0.01) post infection.  
* MHV-76 produced significantly more virus than MHV-68 and the revertant virus five 
days (p<0.025) and nine days (p<0.00005) post infection, as determined by Student’s t-
test. 

 

 
Figure 4.11 Cell associated virus titres (pfu/105 cells) from NS0 cells, mock-infected or 
infected with MHV-68, MHV-76, Int9, Int2 or revertant virus (Rev) at a MOI 5 
pfu/cell, five and nine days post infection. Each bar shows the mean of two biological 
replicates, each with two technical replicates. Error bars represent the standard 
deviation. * Int9 and Int2 infected NS0 cells had significantly less cell associated virus 
than MHV-68, MHV-76 and the revertant virus both five days (p<0.05) and nine days 
(p<0.001) post infection. * MHV-76 infected cells had significantly more cell associated 
virus than MHV-68 and the revertant virus five days (p<0.05) and nine days (p<0.001) 
post infection, as determined by Student’s t-test. 
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Figure 4.12 Percentage of NS0 cells reactivating virus, mock-infected or infected with 
MHV-68, MHV-76, Int9, Int2 or revertant virus (Rev) at a MOI 5 pfu/cell, five and 
nine days post infection. The percentage of cells reactivating virus was calculated by 
subtracting the cell associated virus titres from the infective centres. Each bar shows 
the mean of two biological replicates, each with two technical replicates. Error bars 
represent the standard deviation. Nine days post infection the infective centres from 
MHV-76 infected cells could not be counted as there were too many on the plates.  
* Int9 and Int2 reactivated at a significantly lower level than MHV-68, MHV-76 and 
the revertant virus both five days (p<0.025) and nine days (p<0.005) post infection.  
* MHV-76 reactivated at a higher frequency than MHV-68 and the revertant virus five 
days post infection (p<0.025), as determined by Student’s t-test. 
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vtRNAs and the miRNAs into the genome of MHV-76 led to a decrease in 

reactivation and production of lytic virus 10-fold or greater compared to revertant 

virus. MHV-76 reactivated at a higher rate and produced more lytic virus than both 

MHV-68 and the revertant virus (Figure 4.10, Figure 4.12).  

miRNA1 has a predicted target site in the 3’ UTR of the ORF50 gene that encodes 

the rta that is important for reactivation (Figure 4.13; pers commun Simon Talbot), 

which would be expected to lead to a reduction in ORF50 and thus a decrease in 

reactivation. However, since the insertion viruses express miRNA1 at very low levels 

during latent infection; this is unlikely to be the reason for the lower reactivation 

rates seen.  

4.2.4. In vivo reactivation kinetics 

To investigate if the lower reactivation rate seen by the insertion viruses could also 

be observed in vivo, a small study was performed where five BALB/c mice were 

infected intranasally with 4x105 pfu of MHV-76 and five with Int9. Previous in vivo 

studies had shown that Int9, like MHV-76, is cleared more rapidly than MHV-68 and 

established latency at a very low level in the spleen (Cliffe 2005); a feature that must 

therefore be because of the lack of the unique proteins M1-M4, and not the vtRNAs 

and miRNAs. However, these studies did not examine the MLN and it is possible 

that the establishment of latency is different in this location. Therefore, we 

investigated the reactivation kinetics of latently infected MLN cells. The cells were 

collected by disrupting the MLN with a scalpel, washing the cells by centrifugation 

and letting the debris settle, prior to removing the supernatant with the cells. The 

cells were counted and infective centres assays set up with 105 or 106 MLN cells. 

Although there were large variations in infectious centres between different mice, 

there did not appear to be a difference in reactivation between MHV-76 and Int9 

infected MLN cells (Figure 4.14, Figure 4.15). A larger study involving a larger 

number of mice may be useful.  
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TAGCCACAGGGATACGCCTGTCCAGCATATTGTGCAATCTGGCTCAACGCCCGC

CCCGCCAATTGTTGAGCCTCAGGGACAAGATTTTGTTGGAAAACAGGATGAGAC

ATGTTCCAACGTGTTCCCAGAACAAATTACTCAGGAAGCGTGTCCCGGATCATCT

GAGGACGCGTTCATCGATGATGCTATAAAGGAAATATTTGCATCGCTGGACTCT

ATGGCAAACCAGGACACTGCTGACAGTGACACATGTTCCATACTTGACCCCCAA

TCACCCACTCCCCCACCCTCCGTTCCCCCAATAACTACACTCTCGTTGTATGACA

TTTATGCCAGCATACTTAGTCCACTCGACCCAAACAGCCTGGAGTCATAAACGG

TGCCAAATACAAGACATTTCTAAATCCTTAAGTATAATGTTTATATTTAACTGAA

TAAAAGAAGTGACGCTATAAAACCCTCAACATGTGTGGCGTTAAA-3’ 
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Figure 4.13 Showing the possible miRNA1 target sequence in the ORF50 3’ UTR. (A) 
The 3’ end of ORF50. (B) The possible binding site of miRNA1 to the ORF50 3’ UTR. 
(C) Possible binding conformations.  (Pers commun Simon Talbot) 
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Figure 4.14 Infective centres per 106 MLN cells from mice infected intranasally with 
4x105 pfu of MHV-76 or Int9, five mice for each virus. Error bars represent the 
standard deviation. 
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Figure 4.15 Infective centres per 106 MLN cells from mice infected intranasally with 
4x105 pfu of MHV-76 or Int9, five mice for each virus. Showing the mean number of 
infective centres for mice infected with each virus. Error bars represent the standard 
deviation. 
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4.3. Transfection of non-coding RNAs and plasmids 

4.3.1. miRNA transfections 

The insertion viruses could not be used to distinguish whether the vtRNAs or 

miRNAs are responsible for the reduction in reactivation. Therefore, to determine if 

the miRNAs caused the reduction in reactivation, miRNAs1-6 were transfected into 

MHV-76 infected NS0 cells.  

Initially, the cells were infected with MHV-76 at a MOI of 5 pfu/cell for two hours 

prior to transfection with 0.5μg miRNA1-6 mimics (miScript miRNA mimics, 

Qiagen) or a negative siRNA and 66.5pmol siGLO red using a nucleofector. siGLO 

is a fluorescent RNA duplex that when co-transfected with miRNAs gives an 

indication of the transfection efficiency. The reactivation kinetics were analysed by 

infective centres assays 24 and 72 hours post transfection. Transfection of the 

miRNAs into MHV-76 infected cells did not lead to a change in the percentage of 

cells reactivating virus compared to the negative control; however, the transfection 

itself led to an increase in reactivation compared to untransfected cells (Figure 4.16). 

The previous reactivation experiments examined the infective centres five days post 

infection. To replicate these conditions NS0 cells were infected with MHV-76 at a 

MOI of 5 pfu/cell and the infected cells transfected with miRNAs1-6 or negative 

siRNA after four days, followed by infective centres assays after 24 hours  

(five days post infection) and 48 hours. In addition, supernatant virus titres were 

analysed. At 24 hours post transfection, miRNA transfected cells reactivated virus at 

a significantly lower level than the negative control (Figure 4.17). However, this was 

not seen at 48 hours post transfection, or in the amount of infective virus produced 

(Figure 4.18). Again, at 48 hours post transfection, negative siRNA transfected cells 

had a higher percentage of cells reactivating virus than the untransfected cells, and 

also produced a larger amount of infectious virus. 

To further investigate the difference in reactivation 24 hours post transfection of 

miRNAs, the previous experiment was repeated. This time NS0 cells infected for 

five days with Int9 was included as a control of the reactivation assay. The  
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Figure 4.16 Percentage of infective centres from MHV-76 infected NS0 cells, 
untransfected or 24 and 72 hours post transfection with negative control siRNA or 
miRNAs1-6. Each bar shows the mean of two biological replicates, each with two 
technical replicates. The transfection efficiency was around 76%. Error bars represent 
the standard deviation. * Untransfected cells had significantly (p<0.05) lower 
percentage of infective centres compared to transfected cells 72 hours post transfection, 
as determined by Student’s t-test. 
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Figure 4.17 Percentage of infective centres from NS0 cells latently infected with  
MHV-76 for four days, untransfected or 24 and 48 hours post transfection with 
negative control siRNA or miRNAs1-6. Each bar shows the mean of two biological 
replicates, each with two technical replicates. The transfection efficiency was around 
65%. Error bars represent the standard deviation. * miRNA transfected cells had 
significantly (p<0.01) lower percentage of infective centres compared to negative siRNA 
transfected cells 24 hours post transfection. * Untransfected cells had significantly 
lower (p<0.01) percentage of infective centres than negative siRNA transfected cells 48 
hours post transfection, as determined by Student’s t-test.  
 
 

 
Figure 4.18 Supernatant virus titres (pfu/105 cells) from NS0 cells latently infected with 
MHV-76 for four days, 24 hours and 48 hours post transfection with negative control 
siRNA or miRNAs 1-6, or untransfected cells. Each bar shows the mean of two 
biological replicates, each with two technical replicates. The transfection efficiency was 
around 65%. Error bars represent the standard deviation. * Untransfected cells had 
significantly (p<0.05) lower percentage of infective centres compared to negative siRNA 
transfected cells 48 hours post transfection, as determined by Student’s t-test. 

100

101

102

103

104

105

106

24h 48h
Hours post transfection

pf
u/

10
5  c

el
ls

untransfected
negative siRNA
miRNAs 1-6

*

*
*



Chapter Four  Investigating the functions of the non-coding RNAs 

 135

transfection of miRNAs1-6 into MHV-76 infected cells did not lead to a reduction in 

reactivation at 24 hours post transfection (Figure 4.19), as seen in the previous 

experiment. Consistent with the previous experiments, the Int9 infected cells 

reactivated virus at a significantly lower level than MHV-76 infected cells. 

To confirm that the transfection led to increased miRNA levels, a qRT-PCR for 

miRNA3 was performed on small RNAs from the transfected cells. As excepted, 

untransfected or negative siRNA transfected MHV-76 infected cells did not contain 

miRNA3. miRNA transfection of MHV-76 infected NS0 cells lead to significantly 

higher levels of miRNA3 than in Int9 infected NS0 cells (Figure 4.20).  

4.3.2. Dicer 

To further investigate the role of the miRNAs in virus reactivation, the miRNA 

processing pathway was disrupted by inhibiting Dicer through transfection of a 

siRNA targeting the Dicer mRNA. Dicer is a component of the RISC loading 

complex and cleaves the pre-miRNA into small RNA duplexes approximately 22nt 

in size. By reducing the production of Dicer, the processing of new miRNAs is 

inhibited. The siRNA was transfected into NS0 cells and after 48 hours the cells were 

infected with MHV-68, MHV-76 or Int9, followed by infective centres assays  

24 hours post infection. MHV-76 infected cells were included to ensure that cellular 

miRNAs were not inhibited resulting in a change in reactivation. By waiting  

48 hours following transfection the siRNA is allowed to be processed and inhibit 

Dicer synthesis prior to infection so that viral miRNAs can not be processed. It 

should not have a major impact on the cellular miRNAs as there should still be a 

pool of these in complexes with RISC. Transfection with a siRNA against Dicer did 

not have an effect on the reactivation (Figure 4.21). To ensure that the miRNAs had 

been knocked down qRT-PCR was performed for miRNAs3 and 4 on small RNAs 

from the transfected cells. However, because of the low amounts of miRNAs present 

within Int9 infected cells, an effect of the siRNA against Dicer on viral miRNA 

levels could not be detected (Figure 4.22, Figure 4.23). Further studies are needed to 

confirm the results.  
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Figure 4.19 Percentage of infective centres from NS0 cells latently infected with  
MHV-76 for four days, untransfected or 24 hours post transfection with negative 
control siRNA or miRNAs1-6. Int9 infected NS0 cells were included as a control for 
reactivation. Each bar shows the mean of two biological replicates, each with two 
technical replicates. The transfection efficiency was around 36%. Error bars represent 
the standard deviation. * The Int9 infected NS0 cells reactivated virus at a significantly 
lower level (p<0.005) than MHV-76 infected cells, whether transfected or not, as 
determined by Student’s t-test.  
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Figure 4.20 Relative quantity of miRNA3 as determined by qRT-PCR, in uninfected, 
MHV-68 infected, and Int9 infected NS0 cells, and MHV-76 infected NS0 cells: 
untransfected, negative siRNA transfected or miRNA transfected. Values normalised 
against cellular mir-16 levels and expressed relative to Int9 expression levels. Error 
bars represent the standard deviation. * miRNA transfected cells had significantly 
more (p<0.05) miRNA3 than In9 infected NS0 cells, as determined by Student’s t-test.
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Figure 4.21 Percentage of infective centres following transfection of a siRNA against 
Dicer. NS0 cells were transfected with siRNA and 48 hours later infected with either 
MHV-76, MHV-68 or Int9. Each bar shows the mean of two biological replicates, each 
with two technical replicates. The transfection efficiency was around 37%. Error bars 
represent the standard deviation. * Int9 infected NS0 cells reactivated virus at a 
significantly lower (p<0.005) percentage than MHV-68 and MHV-76 untransfected NS0 
cells, as determined by Student’s t-test.  
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Figure 4.22 qRT-PCR amplification plots for miRNA4. Showing uninfected cells (   ), 
MHV-68 infected cells (    ) and Int9 infected cells: untransfected (       ), negative siRNA 
(       ) and Dicer siRNA (        ) transfected.  
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Figure 4.23 Relative quantity of miRNA3 and 4 as determined by qRT-PCR on small 
RNAs from Int9 infected NS0 cells: untransfected, negative siRNA transfected or 
miRNA transfected. Values normalised against cellular mir-16 levels and expressed 
relative to untransfected cell expression levels. Error bars represent the standard 
deviation. 
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4.3.3. ORF50 

To examine if the Int9 infected NS0 cells were capable of reactivating virus, a 

plasmid expressing the MHV-68 rta (a gift from Bahram Ebrahimi) was transfected 

into the cells. This plasmid contains the rta (ORF 50) genomic sequence fused to a 

flag sequence, under the influence of CMV promoter (Wu et al. 2001).  

NS0 cells were infected with Int9 at a MOI 5 pfu/cell for four days and the plasmid 

transfected. After 24 hours infective centres assays were performed. MHV-68 

infected NS0 cells were included as a reactivation control. Transfection of rta 

expressing plasmid did not lead to a significant increase in reactivation (p=0.06) 

compared to negative control plasmid (Figure 4.24). Again, MHV-68 infected cells 

reactivated virus at a significantly (p<0.01) higher frequency than Int9 infected cells.  

To further investigate if the lack of induction of reactivation by rta over-expression 

was due to the inability of Int9 infected cells to reactivate, the experiment was 

repeated. This time MHV-68 infected cells were transfected as well. Over-expression 

of rta in MHV-68 infected cells should lead to an increase in reactivation  

(Wu et al. 2000). This time infective centres were performed 48 hours post 

transfection as well, since over-expression of rta in S11 cells was found to lead to a 

large increase in the production of lytic virus following reactivation at this time post 

infection (Wu et al. 2000). Over-expression of rta in MHV-68 or Int9 infected cells 

did not lead to an increase in reactivation (Figure 4.25). However, the transfection 

itself stressed both MHV-68 and Int9 infected cells to reactivate virus. Due to time 

constraints this was not followed up. 

4.3.4. vtRNAs 

Since transfection of miRNAs did not have an effect on the reactivation rates of 

infected NS0 cells, expression of the vtRNAs might be the cause of the reduction in 

reactivation seen in Int9 infected NS0 cells. To investigate this further, vtRNA1 was 

in vitro transcribed, folded, and transfected into NS0 cells infected with MHV-76 for 

four days. Infective centres assays were performed 24 hours post transfection, with 

Int9 infected cells included as a control. Transfection of vtRNA1 did not lead to a 

reduction in reactivation of MHV-76 infected NS0 cells (Figure 4.26); however, the  
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Figure 4.24 Percentage of infective centres 24 hours following transfection of Int9 
infected cells with ORF50 plasmid or negative control plasmid. MHV-68 infected cells 
were included as a control of reactivation. Each bar shows the mean of two biological 
replicates, each with two technical replicates. The transfection efficiency was around 
69%. Error bars represent the standard deviation. * MHV-68 infected cells reactivated 
virus at a significantly (p<0.01) higher frequency than Int9 infected cells, whether 
transfected or not, as determined by Student’s t-test. 
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Figure 4.25 Percentage of infective centres 24 and 48 hours following transfection of 
MHV-68 or Int9 infected cells with ORF50 plasmid or negative control plasmid. Each 
bar shows the mean of two biological replicates, each with two technical replicates. The 
transfection efficiency was around 60%. Error bars represent the standard deviation. * 
MHV-68 infected untransfected cells had significantly lower reactivation rates than 
negative plasmid transfected cells 24 hours (p<0.001) and 48 hours (p<0.025). * At 48 
hours post transfection Int9 infected untransfected cells had significantly lower 
reactivation rates (p<0.0001) than negative plasmid transfected cells. * Int9 infected 
untransfected NS0 cells reactivated virus at significantly lower levels than MHV-68 
infected untransfected NS0 cells both 24 hours (p<0.000001) and 48 hours (p<0.01) post 
transfection, as determined by Student’s t-test.  
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Figure 4.26 Percentage of infective centres from MHV-76 infected NS0 cells, 24 hours 
post transfection with vtRNA1. Each bar shows the mean of two biological replicates, 
each with two technical replicates. The transfection efficiency was around 21%. Error 
bars represent the standard deviation. * Int9 infected cells reactivated virus at a 
significantly (p<0.001) lower level than MHV-76 infected cells, whether transfected or 
not, as determined by Student’s t-test. 
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Figure 4.27 Percentage of infective centres from MHV-76 infected NS0 cells, 24 hours 
post transfection with vtRNA1, 4 and 5. Each bar shows the mean of two biological 
replicates, each with two technical replicates. The transfection efficiency was around 
30%. Error bars represent the standard deviation. * Int9 infected cells reactivated 
virus at a significantly (p<0.0025) lower level than MHV-76 infected cells, whether 
transfected or not, as determined by Student’s t-test. 
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transfection efficiency was low, 21%. Int9 infected NS0 cells reactivated virus at a 

significantly lower level than MHV-76 infected NS0 cells.  

The vtRNAs may co-operate to reduce reactivation; therefore, the previous 

experiment was repeated but this time vtRNAs1, 4 and 5 were co-transfected into 

MHV-76 infected NS0 cells. Transfection of vtRNAs1, 4 and 5 into MHV-76 

infected NS0 cells did not lead to a reduction of reactivation (Figure 4.27). This time 

the transfection efficiency was slightly higher, around 30%. Again, Int9 infected NS0 

cells reactivated virus at a significantly lower level than MHV-76 infected NS0 cells.  

4.3.5. pL2a5 

It is possible that the vtRNAs and miRNAs co-operate and that both are needed to 

cause a reduction in reactivation. To investigate this further the plasmid used to make 

the insertion viruses, pL2a5, was transfected into infected cells. NS0 cells were 

infected with MHV-76 at a MOI of 5 pfu/cell for four days, prior to transfection with 

pL2a5 or negative control plasmid. Infective centres assays were set up 24 hours post 

transfection. Transfection of pL2a5 into MHV-76 infected NS0 cells did not led to a 

reduction in reactivation (Figure 4.28). Int9 infected NS0 cells reactivated virus at a 

significantly lower level than MHV-76 infected NS0 cells, whether transfected or 

not.  

To give the plasmid longer time to express the non-coding RNAs the previous 

experiment was repeated and infective centres performed 48 hours post transfection. 

Transfection of the pL2a5 plasmid into MHV-76 infected NS0 cells did not lead to a 

reduction in reactivation after 48 hours either (Figure 4.29). Consistent with previous 

results, Int9 infected NS0 cells reactivated virus at a significantly lower level than  

MHV-76 infected NS0 cells, whether transfected or not. 

4.4. Discussion 

In this study we showed that the introduction of vtRNAs and miRNAs into MHV-76 

causes a reduction in reactivation and production of lytic virus of latently infected 

NS0 cells, and provide evidence that this is not caused by the miRNAs.  
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Figure 4.28 Percentage of infective centres from MHV-76 infected NS0 cells, 24 hours 
post transfection with pL2a5. Each bar shows the mean of two biological replicates, 
each with two technical replicates. The transfection efficiency was around 66%. Error 
bars represent the standard deviation. * Int9 infected cells reactivated virus at a 
significantly (p<0.0025) lower level than MHV-76 infected cells, whether transfected or 
not, as determined by Student’s t-test. 
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Figure 4.29 Percentage of infective centres from MHV-76 infected NS0 cells, 48 hours 
post transfection with pL2a5. Each bar shows the mean of two biological replicates, 
each with two technical replicates. The transfection efficiency was around 78%. Error 
bars represent the standard deviation. * Int9 infected cells reactivated virus at a 
significantly (p<0.001) lower level than MHV-76 infected cells, whether transfected or 
not, as determined by Student’s t-test. 
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We utilised insertion viruses, made by homologous recombination to insert the  

non-coding RNA genes into the left-end of MHV-76, to study the non-coding RNAs. 

This technique has previously been used to investigate the functions of the unique 

gene M4 (Townsley et al. 2004), and also the KSHV gene K1 (Douglas et al. 2004). 

In addition, MHV-76 was successfully rescued by recombination to generate a virus 

with growth properties indistinguishable to MHV-68 (Macrae et al. 2001). The 

technique was validated when disruption to M4 confirmed the results from the M4 

insertion virus study (Geere et al. 2006; Townsley et al. 2004). The non-coding 

RNAs of the insertion viruses are thereby expressed by their natural promoters and 

they are inserted into their original location in the genome.  

The initial replication and reactivation assays showed that the insertion virus Int9 

reactivates and replicates at a lower level than MHV-68 and MHV-76. The 

investigation of the second insertion virus Int2, made independently of Int9, 

confirmed that this was not a phenotype restricted to Int9. The revertant virus further 

confirmed the results: the decrease in reactivation and production of lytic virus 

observed with the insertion viruses was 10-fold or greater compared to revertant 

virus. Because of the rapid clearance and low levels of latency of MHV-76 and the 

insertion viruses, as well as large differences between mice, the phenotype could not 

be confirmed in vivo. A larger study involving more mice may be helpful. 

Since the only difference between the insertion viruses and MHV-76 and the 

revertant virus is the five vtRNAs and six miRNAs, these must be the cause of the 

phenotype. However, miRNA1 which has a predicted target site in the 3’ UTR of the 

viral rta (ORF50) and could be responsible for the reduction in reactivation by 

targeting the rta is expressed at very low levels by the insertion viruses during 

latency, so is not likely to affect the reactivation of the insertion viruses. To further 

investigate if the vtRNAs or miRNAs had a role in virus reactivation, miRNA 

mimics were transfected into MHV-76 infected cells. miRNA mimics are synthetic 

RNA oligonucleotides that function like the mature endogenous miRNA following 

transfection, down-regulating the target protein for up to 72 hours. Even though the 

levels of miRNA mimics, as assessed by qRT-PCR for miRNA3, were higher than 

for insertion virus infected cells, they did not cause a reduction in reactivation.  
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To further confirm that the miRNAs did not cause the reduction in reactivation, a 

siRNA against Dicer was transfected into virus infected cells. Inhibition of Dicer 

leads to a decrease in the production of mature miRNAs. However, by limiting the 

inhibition to 48 hours cellular miRNAs should not be affected. As a control MHV-76 

was included in the experiment as it does not encode any viral miRNAs. Transfection 

of a siRNA against Dicer did not lead to an increase or decrease in reactivation by 

MHV-68 or Int9 infected NS0 cells. However, the Dicer knock-down could not be 

confirmed by qRT-PCR of Int9 infected cells, since the miRNA expression is already 

low in these cells. To further confirm the results, qRT-PCR for miRNA levels in 

siRNA transfected MHV-68 infected NS0 cells or a western blot analysis looking at 

changes in the Dicer protein levels would be recommended.  

To examine if the Int9 infected NS0 cells were capable of reactivating, the rta was 

over-expressed in infected cells by transfecting a plasmid containing ORF50 under 

the influence of a CMV promoter. Over-expression of the rta using this plasmid has 

previously been found to initiate lytic replication in productively infected cells  

(Wu et al. 2001). In addition, transfection of a similar plasmid construct into S11 

cells lead to an increase in reactivation (Wu et al. 2000). In the infective centres 

assay the latently infected NS0 cells are stressed to reactivate the virus and it was 

thought that over-expression of the rta would lead to higher reactivation levels; 

however, this was not observed. The transfection itself led to an increase in 

reactivation that may have masked the effect of the rta. This increase in reactivation 

caused by the transfection was seen in several of the transfection experiments. This 

did show that Int9 infected NS0 cells are capable of reactivating. The expression 

levels of rta by the plasmid were, however, not confirmed due to time constraints. 

Since the miRNAs do not appear to be involved in the reduction of reactivation seen 

in insertion virus infected NS0 cells, it suggested that the vtRNAs are responsible. To 

further investigate this, vtRNAs were transfected into MHV-76 infected NS0 cells. 

This did not lead to a decrease in reactivation; however, since it is not known how 

the vtRNAs are processed and how they function, the transfected vtRNAs may not be 

functional vtRNAs. In addition, the transfection efficiencies achieved were quite low.  
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It is possible that expression of both the vtRNAs and miRNAs is needed to decrease 

the reactivation of infected NS0 cells. To investigate this, the plasmid used to make 

the insertion viruses was transfected into MHV-76 infected NS0 cells, but it did not 

result in a reduction in reactivation. This was not an ideal approach since the copy 

number of the plasmid was not known and the non-coding RNAs would not have 

been in the viral genome and possibly not expressed appropriately. It should be noted 

that the expression levels of the vtRNAs and miRNAs following transfection was not 

examined due to time constraints. Further work would be needed to confirm the 

results, including transfection of miRNAs and vtRNAs together.  

MHV-76 consistently reactivated at a higher level and produced more lytic virus than 

both MHV-68 and the revertant virus. The reason for this is not known. It is possible 

that the copy number of MHV-76 in the cell is higher; however, it is not known why 

the revertant would not have the same copy number since it is identical to MHV-76. 

A fresh MHV-76 virus stock could be used to see if the same phenotype is achieved. 

It may also be useful to repeat the transfection experiments using revertant virus 

infected NS0 cells. Importantly, the insertion viruses consistently reactivated at a 

much lower rate than the revertant, which is the control virus, as well as MHV-68 

and MHV-76.  

The experiment described in this chapter point to a role for the non-coding RNAs in 

virus reactivation. The miRNA transfections show that the reduction in reactivation 

is not due to the miRNAs alone, even though the miRNAs levels achieved were 

higher than in Int9 infected cells. The vtRNA transfection experiments did not 

confirm the role of the vtRNAs in viral reactivation and it is possible that the 

vtRNAs and miRNAs co-operate, which needs to be further investigated. The 

expression of the miRNAs by the insertion viruses is lower than that of MHV-68, 

and it is not known if the vtRNA levels are as well. Due to these problems a better 

approach would be to make mutations in the MHV-68 genome, which has previously 

been done to determine the functions of a number of viral genes, such as ORF 73, 

ORF50, M1 and K3 (Clambey et al. 2000; Fowler et al. 2003; Pavlova et al. 2003; 

Stevenson et al. 2002). To confirm that the vtRNAs are responsible for the reduction 

in reactivation, it would be useful to create a virus with disruption to the miRNAs 

which does not affect the processing of the vtRNAs. Since the vtRNAs and miRNAs 
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are transcribed on the same transcript and the processing of this transcript is not 

clear, it may not be possible to remove the whole miRNA. An option could be to 

mutate the seed sequences of the miRNAs. The seed sequence of the miRNA is 

usually important for target binding; however, this is not always the case and it 

would be difficult to confirm that the miRNAs actually were not functional since 

their targets are not known. Another possibility would be to disrupt the stem-loop 

structure of the vtRNAs; however, it is not know if this would affect the processing 

of the miRNAs. It may also be useful to insert only one of the vtRNA/miRNA 

transcripts into MHV-76 to investigate if the same phenotype can be achieved or if 

more than one vtRNA/miRNA transcript is necessary.  
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5.1. Aims 

To investigate the functions of the non-coding RNAs, the differences in protein 

expression during latency between MHV-76 and Int9 infected cells were examined 

using cICAT. In this method the cysteines of the proteins are labelled with heavy or 

light isotope-coded tags which allows for identification and quantification of 

differentially expressed proteins using mass spectrometry. The isotope-coded tags 

are made up of C10H17N3O3, with the light tag containing 9 12C and the heavy 9 13C 

resulting in a difference of 9 amu in weight. A biotin affinity tag on the  

isotope-coded tag enables purification of labelled peptides using an avidin column, 

decreasing the complexity of the sample. The biotin tag is subsequently cleaved off, 

reducing the size of the labelled peptide and thus allowing analysis of larger 

peptides. Samples taken during the labelling to monitor the process are analysed by 

MALDI (Matrix-assisted laser desorption/ionization) mass spectrometry, while the 

final labelled sample is separated on a liquid chromatograph (LC) and analysed using 

on-line tandem mass spectrometry (MS/MS). The cICAT method is described in 

Figure 5.1. 

Mass spectrometry utilises the production of ions that are separated according to 

their mass-to-charge ratio (m/z). An ionisation source such as electrospray ionisation 

(ESI) or MALDI is used to charge the peptides, via the addition of one (MALDI) or 

more (ESI) protons. A singly charged peptide with a molecular mass of 2000 daltons 

will thus have an m/z of 2001, while a doubly charged ion will have an m/z of 1001. 

During single mass spectrometry analysis using a MALDI-TOF (Time of flight) the 

ions enter a flight tube, with the ions travelling faster towards the detector the smaller 

they are. The ions are accelerated with the same potential at the same point and time, 

and will therefore be separated by their m/z. The relative abundance of the ions is 

then plotted for each m/z value in a mass spectrum. The masses of the peaks 

generated can be matched against databases of theoretical peptides generated from 

proteins to identify the protein they originated from. A protein score is calculated for 

each protein match, which indicates the probability that the match is a random event. 
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Figure 5.1 Step-by-step schematic description of the cICAT labelling. 
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During nanoLC-MS/MS, a reverse phase high performance liquid chromatograph 

(HPLC) separates the peptides according to polarity and they are introduced into the 

mass spectrometer. Following the single MS, ions are selected on peak intensities to 

go through a further MS. The selected ion is fragmented into product ions, usually 

through collision with a neutral gas, with b and y ions being most common  

(Figure 5.2A). The fragments are separated according to m/z, producing a MS/MS 

mass spectrum from fragments of that specific peptide (Figure 5.2B). The b and y 

ions can be identified in the spectra in Figure 5.2B by looking at differences in m/z 

values of fragment ions between the peptide labelled with light and heavy cICAT 

reagent. Since the labelled cysteine is in the far left end of this peptide, only b ions 

will be labelled and have a difference in charge in the two spectra, 9 m/z if the ion is 

singly charged and 4.5 m/z if doubly charged. The fragment masses generated are 

matched against a database of theoretical fragment masses of peptide ions of the 

same mass and an ion score reflecting the absolute probability that the match is a 

random event is calculated. The peptides identified are matched against proteins in 

the database and a protein score is derived from the ion scores, with multiple peptide 

matches for the same protein giving a high protein score and thus indicating a true 

match.  

Since the only difference between MHV-76 and Int9 is the non-coding RNAs, any 

difference in protein expression found should be caused by the vtRNAs and/or 

miRNAs. The cICAT would provide a screening method to identify proteins directly 

and indirectly affected by the non-coding RNAs. This could further be confirmed by 

western blot analysis to verify changes in protein levels, northern blot analysis to 

examine if the mRNA levels of the proteins are affected, and electric mobility shift 

assay (EMSA) to investigate if there is a direct interaction between the protein and 

the vtRNAs.  
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Figure 5.2 Demonstrating the fragmentation of a peptide, showing the different 
possibilities of fragmentation (A) with b and y ions being most common, and in the 
MS/MS spectrum (B) of a Hsp90-β peptide, labelled with light (top) and heavy (bottom) 
cICAT reagent. Since the labelled cysteine is at the far left end of the peptide, only the b 
ions will be labelled and have different m/z values in the two spectra, 9 m/z if singly 
charged and 4.5 if doubly charged. y ions will not have a different m/z value. 
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5.2. cICAT 

5.2.1. BSA 

Prior to analysing virus infected cells the technique was tested using a known 

protein, BSA, which was labelled according to the manufacturer’s protocol (section 

2.9.7.1) with some changes to the volumes used. 

Aliquots were collected at each step during the cICAT protocol and analysed by 

MALDI to monitor the process. 2.5μg BSA was denatured and reduced, and half of 

the protein solution labelled with light ICAT reagent (36μl protein + 9μl light 

reagent) and half mixed with acetonitrile as a non-labelled control (36μl protein + 

9μl acetonitrile). The proteins were trypsin digested over night at 37°C and the 

samples analysed by MALDI. The samples yielded mainly the same peptide peaks 

(Figure 5.3). Labelling of the peptides should yield peaks with m/z ratios that are 

higher than the unlabelled and not the same m/z, as was observed; however, the 

majority of the abundant peaks were BSA peptides that do not contain cysteines and 

would not be labelled (Table 5.1).  

The peptides of the cICAT labelled sample were subsequently purified using a 

cation-exchange column, which removed some of the peaks seen in the previous 

MALDI analysis (Figure 5.4). Some of these peaks could be from components of the 

denaturing buffer (SDS), reducing agent (TCEP, breaks disulfide bonds) or unused 

light cICAT reagent, which will be removed with the cation-exchange column. One 

of the most abundant peaks, a BSA peptide with an m/z of 1283, was also lost in the 

cation-exchange column. This indicated that some peptides may be lost, perhaps due 

to instability or that they do not bind or elute at the pH that was used. Labelled 

peptides were purified using an avidin column, which changed the MALDI spectrum 

with previously small peaks becoming more prominent as a results of losing some of 

the abundant non-labelled peptides and removal of salts that may interfere with the 

MALDI ionisation (Figure 5.4).  

Both the control and labelled peptide solutions were vacuum dried, prior to cleavage 

of the biotin tag of the labelled peptides, and the peptide samples subsequently dried 

using a vacuum dryer. The peptides were resuspended in 40μl 0.5% (v/v) acetic acid 
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Control: post-trypsin 

 

 

Labelled: post-trypsin 

 

Figure 5.3 MALDI analysis of BSA peptides generated by trypsin treatment of 
unlabelled control BSA or BSA labelled with light cICAT reagent. Abundant peaks of 
possible BSA peptides that do not contain cysteines and would not be labelled are 
circled. 
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Sequence No. of cysteines Unlabelled Light
GLVLIAFSQYLQQCPFDEHVK 1 2435.24 2662.37
DAIPENLPPLTADFAEDK 0 1955.96 1955.96
HPYFYAPELLYYANK 0 1888.93 1888.93
LFTFHADICTLPDTEK 1 1850.90 2078.03
RPCFSALTPDETYVPK 1 1823.90 2051.03
MPCTEDYLSLILNR 1 1667.81 1894.94
YNGVFQECCQAEDK 2 1633.66 2087.92
ECCHGDLLECADDR 3 1578.60 2259.99
DAFLGSFLYEYSR 0 1567.74 1567.74
LKPDPNTLCDEFK 1 1519.75 1746.88
VPQVSTPTLVEVSR 0 1511.84 1511.84
DDPHACYSTVFDK 1 1497.63 1724.76
LGEYGFQNALIVR 0 1479.80 1479.80
TVMENFVAFVDK 0 1399.69 1399.69
EYEATLEECCAK 2 1388.57 1842.83
YICDNQDTISSK 1 1386.62 1613.75
ETYGDMADCCEK 2 1364.48 1818.74
SLHTLFGDELCK 1 1362.67 1589.80
TCVADESHAGCEK 2 1349.55 1803.81
HLVDEPQNLIK 0 1305.72 1305.72
HPEYAVSVLLR 0 1283.71 1283.71
ECCDKPLLEK 2 1177.56 1631.82
LVNELTEFAK 0 1163.63 1163.63
CCTKPESER 2 1052.45 1506.71
EACFAVEGPK 1 1050.49 1277.62
CCTESLVNR 2 1024.46 1478.72
SHCIAEVEK 1 1015.49 1242.62
QTALVELLK 0 1014.62 1014.62
QNCDQFEK 1 1011.42 1238.55
LVVSTQTALA 0 1002.58 1002.58
NECFLSHK 1 977.45 1204.58
DLGEEHFK 0 974.46 974.46
YLYEIAR 0 927.49 927.49
AEFVEVTK 0 922.49 922.49
DDSPDLPK 0 886.42 886.42
LCVLHEK 1 841.46 1068.59
ATEEQLK 0 818.43 818.43
LVTDLTK 0 789.47 789.47
NYQEAK 0 752.36 752.36
CCAADDK 2 725.26 1179.52
SEIAHR 0 712.37 712.37
VLASSAR 0 703.41 703.41
GACLLPK 1 701.40 928.53
AWSVAR 0 689.37 689.37
TPVSEK 0 660.36 660.36
QEPER 0 658.32 658.32
IETMR 0 649.33 649.33
CASIQK 1 649.33 876.46
AFDEK 0 609.29 609.29
VASLR 0 545.34 545.34
FWGK 0 537.28 537.28
ADLAK 0 517.30 517.30
HKPK 0 509.32 509.32
FGER 0 508.25 508.25
DTHK 0 500.25 500.25
DVCK 1 464.22 691.35  
Table 5.1 Listing the predicted BSA derived peptides, with m/z values as expected in 
the unlabelled control and labelled with light cICAT reagent. 
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Labelled: pre-avidin 

 

 

Labelled: post-avidin 

 

Figure 5.4 MALDI analysis of BSA derived peptides labelled with light cICAT reagent 
following cation-exchange column (pre-avidin) and after the avidin column  
(post-avidin). 
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and analysed by MALDI, and also diluted 1 in 10 and analysed on an LCQdeca 

MS/MS system. The MALDI analysis of the labelled BSA sample showed that 

cleavage of the biotin molecule (m/z 680.34) reduced the size of the peptide peaks, 

moving the peaks to the left of the spectrum (Figure 5.5). This was demonstrated by 

the most abundant peak in the post-avidin sample with an m/z of 2729 (Figure 5.4) 

that was still the most abundant peak following cleavage with an m/z of 2051  

(Figure 5.5). MALDI analysis of the control sample showed that vacuum drying and 

re-suspension in acetic acid had changed the spectrum slightly, with previously 

abundant peptides becoming less abundant (Figure 5.3, Figure 5.5). This may be 

because the abundant peptides were less stable or dissolved less well in the acetic 

acid.  

Several of the expected BSA peptide peaks (Table 5.1), labelled and unlabelled, 

could be seen among the most abundant peaks (Figure 5.5). This was confirmed 

when around 100 of the most abundant peaks from the labelled sample were 

submitted to search against the Mascot database, identifying BSA (Figure 5.6). 

Although the sample contained only BSA and trypsin, several other possible protein 

matches were listed; however, these had non-significant protein scores and were 

unlikely to be true matches. BSA was also identified when analysing the labelled 

sample on the LC-MS/MS system (Figure 5.7).  

The labelling of BSA showed that the cICAT labelling worked and the technique was 

subsequently used to analyse proteins from virus infected cells.  

5.2.2. MHV-76 vs. Int9 latently infected NS0 cells 

After successfully identifying BSA labelled by the cICAT method it was decided to 

investigate if there was a difference in protein expression between MHV-76 and Int9 

infected NS0 cells. The proteins of cells infected with MHV-76 or Int9 at a MOI of 5 

for five days were extracted and fractionated into cytosolic, membrane/organelle, 

nuclear and cytoskeletal fractions, using a ProteoExtract® Subcellular Proteome 

Extraction kit, to make the protein samples less complex. A BCA Protein Assay was 

performed to determine the protein concentrations of the samples. Since the vtRNAs 

localise mainly to the cytoplasm during latency, it was decided to use the cytosolic 

fraction for further analysis. For each sample 100μg of cytosolic proteins were  
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Control: final sample 

 

 

Labelled: final sample  

 

Figure 5.5 MALDI analysis of the final BSA samples, unlabelled control or labelled 
with light cICAT reagent. The unlabelled control had been trypsin digested,  
mock-labelled, dried down by vacuum dryer and resuspended in 0.5% acetic acid. 
Showing possible BSA peptides containing cysteines (circled in red) and not containing 
cysteines (circled in green).  
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Figure 5.6 Results of the MALDI analysis of the BSA sample labelled with light cICAT 
reagent. Around 100 of the most abundant peaks were submitted to search the  
Swiss-Prot database, using Mascot software. BSA was identified with a significant 
(p<0.05) protein score of 109 that was above the threshold of 67 (as shown in the 
graph), indicating that this was a true match. Other possible protein matches did not 
have significant scores and were unlikely to be true matches.  
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Figure 5.7 Results of the LC-MS/MS analysis of BSA labelled with light cICAT reagent, 
using Mascot software to search against the Swiss-Prot database. BSA was identified 
with several peptides matched to BSA, as listed.  Search parameters: Peptide mass 
tolerance ± 2 Da; Fragment mass tolerance ± 0.8 Da; missed cleavages 1.  
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acetone precipitated and resuspended in denaturing buffer and labelling performed 

according to the protocol (section 2.9.7.1). Proteins from MHV-76 infected NS0 cells 

were labelled with light and Int9 with heavy cICAT reagent. A vacuum dryer was 

used to dry down the sample prior to (nine hours) and following (20 min) cleaving of 

the biotin tag. The sample was resuspended in 60μl 0.5% (v/v) acetic acid and 

analysed on an LCQdeca MS/MS system. Only two proteins were identified, 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with one peptide labelled 

with light cICAT reagent and pyruvate kinase with one peptide labelled with heavy 

cICAT reagent (results not shown).  

The MALDI analysis of samples taking during the labelling process showed that not 

many peptides were present following the trypsin digestion and after purification 

using the cation exchange and avidin columns there were few peaks with some 

background noise appearing, as shown by the less defined baseline (Figure 5.8). 

There were some peaks in the final sample following cleavage of the biotin tag, but 

also a lot of background noise, indicating low levels of peptides (Figure 5.9).  

The fact that there were few peptides present already following the trypsin digestion 

indicated that there was a problem with the protein samples. It was possible that there 

were very few different proteins present in the cytosolic fractions or that the tryptic 

digestion was not working properly. 

5.2.3. Troubleshooting protein extraction techniques 

To determine if the low number of proteins was due to the protein fractionation, the 

commercial kit was compared to a different cytoplasmic protein extraction method. 

Proteins were extracted from uninfected NS0 cells using both the ProteoExtract® 

Subcellular Proteome Extraction Kit and the cytoplasmic extraction protocol and the 

protein concentrations determined using a BCA Protein Assay. The cytoplasmic 

extraction, the different fractions from the kit, as well as the cytosolic protein 

fractions from MHV-76 and Int9 infected NS0 cells, were analysed by SDS-PAGE in 

differing amounts. The cytoplasmic extract had a higher concentration of proteins; 

however, the gel showed that although the cytosolic fraction of uninfected NS0 cells, 

as well as MHV-76 and Int9 infected, had a lower concentration of proteins they did 

contain a lot of different proteins, although at quite low concentrations (Figure 5.10). 
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Post-trypsin 

 

Pre-avidin 

 

Post-avidin 

 
Figure 5.8 MALDI analysis of peptides from cytosolic proteins from MHV-76 or Int9 
infected NS0 cells labelled with light or heavy cICAT reagent, following trypsin 
digestion (post-trypsin), cation-exchange column (pre-avidin) and avidin column  
(post-avidin).  
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Final sample 

 

Figure 5.9 MALDI analysis of peptides from the final sample of cytosolic proteins from  
MHV-76 and Int9 infected NS0 cells labelled with light or heavy cICAT reagent, 
following cleavage of the biotin tag. 
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Figure 5.10 SDS-PAGE (A) showing the protein bands present in samples from NS0 
cells using the cytosolic extraction (CE) and fractionation with the ProteoExtract® 
Subcellular Proteome Extraction Kit (cytosol, membrane, nuclear and cytoskeletal 
fractions), as well as the cytosolic samples of MHV-76 and Int9 infected NS0 cells used 
previously for the cICAT assay. The different protein concentrations for the samples 
are listed (B). 
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Since the cytoplasmic extraction generated a higher concentration of different 

proteins it was decided to use this extraction protocol for the cICAT labelling. It was 

also decided to leave out protease inhibitors in the extraction protocol to avoid the 

possibility of inhibiting the trypsin. To further ensure that the cytoplasmic extraction 

buffer would not inhibit the trypsin cleavage, even without the addition of the 

protease inhibitor, and to examine the effects of acetone precipitation on the proteins, 

tryptic digestion of BSA was performed.  

BSA was dissolved in water or extraction buffer and trypsin digested in solution. In 

addition, BSA dissolved in extraction buffer was acetone precipitated prior to trypsin 

digestion. MALDI analysis of the samples showed that the trypsin digestion worked 

in the cytoplasmic extraction buffer; with several of the same peaks present as in the 

BSA digest (Figure 5.11). However, a lot of protein was lost in the acetone 

precipitation, with some of the BSA peptide peaks obtained, but at a very low signal 

with some background noise appearing. The peaks to left of the spectrum did not 

appear to be BSA peptide peaks, but could be from the extraction buffer or CHCA 

matrix. These peaks were more abundant than the BSA peaks in the acetone 

precipitated sample, showing that the levels of the BSA peptides in this sample were 

very low. 

Through these experiments it was concluded that the cytoplasmic extraction protocol 

yielded higher levels of different proteins that should enable identification of more 

proteins. In addition, the acetone precipitation was identified as a source of loss of 

proteins and an alternative method needed to be utilised. 

5.2.4. MHV-76 vs. Int9 latently infected NS0 cells- Vivaspin 

Since a lot of proteins seemed to be lost in the acetone precipitation, the cICAT 

analysis of proteins from MHV-76 and Int9 infected cells was repeated using 

Vivaspins to concentrate the proteins. NS0 cells were infected with MHV-76 or Int9 

at a MOI of 5 for five days, followed by cytoplasmic protein extraction and 

determination of protein concentration using a BCA Protein Assay. The samples 

were analysed by SDS-PAGE to ensure the presence of multiple proteins. Although  
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BSA digest 

 

BSA CE digest 

 

BSA CE precipitation digest 

 

Figure 5.11 MALDI analysis of tryptic digestions of 10μg BSA in water (BSA digest), in 
cytoplasmic extraction buffer (BSA CE digest), mixed with cytoplasmic extraction 
buffer and precipitated with acetone precipitation (BSA CE precipitation digest). The 
low signal obtained following acetone precipitation is circled. Peaks that are from the 
extraction buffer or MALDI matrix are indicated by an arrow.  
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the protein concentrations were low there were a large number of protein bands 

(Figure 5.12). 

Because of the low number of proteins identified in the previous assay, a larger mass 

of proteins were used in this experiment. For each sample 182μg of cytoplasmic 

proteins were concentrated using Vivaspins with a molecular weight cut off of 3000, 

and the assay performed according to the protocol (section 2.9.7.1) with denaturing 

buffer added to bring the volume up to 80μl. Proteins from MHV-76 infected NS0 

cells were labelled with light and Int9 with heavy cICAT reagent. The sample was 

divided into two tubes for the vacuum drying step prior to cleavage of the biotin tag 

to try and reduce the drying time; however, it still took seven hours. The second 

vacuum drying step after the cleavage took almost an hour this time. The sample was 

resuspended in 120μl 2.5% (v/v) acetic acid and analysed by MALDI and  

LC-MS/MS on an LCQdeca system.  

The LC-MS/MS analysis identified six proteins, with four having peptides labelled 

with both light and heavy cICAT reagent (Figure 5.13). This is necessary to be able 

to determine the differences in the abundance of proteins, and shows that the cICAT 

technique is working. However, many more proteins should have been identified. 

BSA was identified, indicating that in future experiments the cells need to be washed 

more rigorously prior to protein extraction, to avoid having BSA peptides 

overshadowing the other peptides. The MALDI analysis showed that the peptides 

seemed to disappear in the last step, the cleavage of the biotin tag, with a very low 

signal obtained and background noise appearing (Figure 5.14). Since this involved 

vacuum drying the sample twice, which took seven and one hour respectively, this 

was suspected as the cause of the loss of peptides.  

Utilising Vivaspins instead of acetone precipitation to concentrate the proteins prior 

to labelling did lead to identification of more proteins; however, an alternative to the 

vacuum dryer needed to be found since the long vacuum drying times appeared to 

affect the peptides. 
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Figure 5.12 SDS-PAGE (A) of cytoplasmic proteins from MHV-76 and Int9 infected 
NS0 cells. Also listing the protein concentrations of the two samples (B). 
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Figure 5.13 Results of the LC-MS/MS analysis of peptides from cytosolic proteins from 
MHV-76 and Int9 infected NS0 cells labelled with light or heavy cICAT reagent, using 
Mascot software to search against the Swiss-Prot database. The identified proteins are 
listed (A) and the peptides identified for two of the proteins are shown as examples (B). 
Search parameters: Peptide mass tolerance ± 2 Da; Fragment mass tolerance ± 0.8 Da; 
missed cleavages 3. An example of a peptide identified labelled with light and heavy 
cICAT reagent is boxed.  
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Post-avidin 

 

 

Final sample 

 

Figure 5.14 MALDI analysis of peptides from cytoplasmic proteins from MHV-76 or 
Int9 infected NS0 cells labelled with light or heavy cICAT reagent, after the avidin 
column (post-avidin) and of the final sample following vacuum drying for seven hours, 
cleavage of the biotin tag and vacuum drying for one hour. The very low signal 
obtained in the final sample is circled. 
 

999.0 1399.4 1799.8 2200.2 2600.6 3001.0
Mass (m/z)

0

295.4

0

10

20

30

40

50

60

70

80

90

100

%
 In

te
ns

ity

Voyager Spec #1=>AdvBC(16,0.5,0.1)=>NF0.7[BP = 1895.7, 295]

1895.6822

2260.6567

1097.4359

2286.7578

1905.7063

2262.6890
2173.78601897.7153

2220.8069 2577.81161656.60121466.5997
1088.4040 2050.71501855.7197 2579.8506

1658.6507
1890.6869 2568.84932060.78611567.5533 1685.5710

2224.7923 2746.96841403.52591007.4618 1181.4321 2052.75231696.6057 2589.90031870.7333 2437.75622212.8272 2748.88291319.5860 2020.66451092.4913 1210.4851 1604.6224 1769.6956 1911.6964 2629.87741432.6092 2482.87632357.72502241.8159 2756.99232099.67001005.3683 1147.5397 1805.67141694.6291 2890.93631305.5097 1585.5995 1980.57781460.6153 2616.01782384.9741 2508.83402226.8233 2767.88891162.3386 1662.7341

799.0 1339.4 1879.8 2420.2 2960.6 3501.0
Mass (m/z)

0

5934.6

0

10

20

30

40

50

60

70

80

90

100

%
 In

te
ns

ity

Voyager Spec #1=>AdvBC(16,0.5,0.1)=>NF0.7[BP = 1167.4, 5935]

1167.3653

1158.3384

1453.5173

2867.8820

2885.9199
1194.4188

1185.4072 2857.9468

2083.6907 2731.8930

2066.6408 2740.90662535.8276
1307.5049 2842.90921938.6225 2575.83371020.4343 1170.3842 2188.70291464.5584 2015.65821737.5820 2860.96962411.76331256.4338 1406.53211082.4218898.4093 2570.84821566.5370 1925.6344 2213.72072069.67671720.5842 2876.9476 3030.8860 3260.94392396.8351



Chapter Five Investigating the effects of the non-coding RNAs on protein synthesis 
 

 171

5.2.5. MHV-76 vs. Int9 latently infected NS0 cells- freeze-dryer 

To minimise the loss of peptides, a freeze-dryer was used instead of the vacuum 

dryer for the long drying step prior to cleaving of the biotin molecule. NS0 cells were 

infected with MHV-76 and Int9 at a MOI of 5 for five days, the cytoplasmic proteins 

extracted, and the protein concentration determined with a BCA Protein Assay. A 

large number of proteins were present in the sample as visualised by  

SDS-PAGE (Figure 5.15).  

For each sample 150μg of cytoplasmic proteins were concentrated using Vivaspins 

with a molecular weight cut off of 3000, and the assay performed according to the 

protocol (section 2.9.7.1) with denaturing buffer added to bring the volume up to 

80μl. Proteins from MHV-76 infected NS0 cells were labelled with light and Int9 

with heavy cICAT reagent. The sample was freeze-dried for four hours prior to 

cleaving of the biotin tag, and vacuum dried for 17 min following the cleaving. The 

sample was resuspended in 60μl 0.5% (v/v) acetic acid and analysed by MALDI and 

LC-MS/MS on an LCQdeca system. The MALDI analysis showed that the peptides 

were no longer lost during last step of the assay, with a high signal obtained in the 

final sample, nor during any other step of the assay (Figure 5.16, Figure 5.17). 

However, there were not as many peptide peaks as had been expected. Some pairs 

with a difference of 9 amu could still be identified in the final sample (Figure 5.17). 

The LC-MS/MS analysis identified a number of significant protein matches (Figure 

5.18); however, very few cICAT light/heavy peptide pairs. The cICAT labelling was 

working; however, only the most abundant proteins were identified.  

It was decided that the protein samples were too complex and needed to be 

fractionated prior to LC-MS/MS analysis. By analysing samples with smaller number 

of different proteins, less abundant proteins may be identified.  
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Figure 5.15 SDS-PAGE (A) of cytoplasmic proteins from MHV-76 and Int9 infected 
NS0 cells. Also listing the protein concentrations of the two samples (B). 
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Figure 5.16 MALDI analysis of peptides from cytoplasmic proteins from MHV-76 or 
Int9 infected NS0 cells labelled with light or heavy cICAT reagent, following trypsin 
digestion (post-trypsin) and cation-exchange column (pre-avidin). 
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Post-avidin 

 

 

Final sample 

 

Figure 5.17 MALDI analysis of peptides from cytoplasmic proteins from MHV-76 or 
Int9 infected NS0 cells labelled with light or heavy cICAT reagent, after the avidin 
column (post-avidin) and of the final sample following freeze-drying, cleavage of the 
biotin tag and vacuum drying. The high signal obtained in the final sample is boxed 
and cICAT pairs are circled. 
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Figure 5.18 Results of the LC-MS/MS analysis of peptides from cytosolic proteins from 
MHV-76 or Int9 infected NS0 cells labelled with light or heavy cICAT reagent, using 
Mascot software to search against the Swiss-Prot database. Listing identified proteins 
with significant protein scores. Search parameters: Peptide mass tolerance ± 2 Da; 
Fragment mass tolerance ± 1.2 Da; missed cleavages 2.  
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5.3. 1-D PAGE cICAT 

5.3.1. Assay setup 

To make the protein samples less complex an alternative of the cICAT method was 

utilised. In the 1-D PAGE cICAT method the labelled proteins are separated by  

SDS-PAGE and the gel cut into pieces to fractionate the proteins (Figure 5.19). The 

proteins are trypsin digested in the gel and the peptides extracted prior to purification 

on an avidin column and cleavage of the biotin tag. 

The 1-D PAGE cICAT protocol introduced more vacuum drying steps, something 

that had been found to be a problem previously. Therefore the effect of the vacuum 

drying on BSA peptides was examined.  

BSA was run on SDS-PAGE in different amounts (100ng, 200ng, 300ng) and the 

bands excised, washed, proteins trypsin digested, and the peptides extracted 

according to the 1-D PAGE cICAT protocol. The extraction protocol consisted of 

two parts. The gel pieces were initially sonicated for 20 min in a sonic ice water bath 

and the supernatant collected. Further extractions were then performed three times by 

addition of extraction solvent (50% (v/v) ACN, 0.1% (v/v) TFA) and sonication for 

20 min, removing the supernatant following each extraction. The supernatants 

containing the extracted peptides were pooled and vacuum dried for two hours to 

remove the ACN and TFA, prior to freeze drying over night.  

Samples were taken for MALDI analysis after the first extraction step, following the 

full extraction, and after vacuum and freeze-drying and re-suspension in 100μl and 

500μl avidin buffer. The MALDI analysis showed that the peptides were lost during 

the procedure, with most peptides obtained after the first extraction step  

(Figure 5.20). The following extractions with extraction solvent did not extract any 

further peptides, and the sample was diluted so that the peptides present initially 

could not be detected. These peptides were lost during the vacuum and  

freeze-drying. It also showed that even following the first extraction step, not many 

BSA peptide peaks were present (Figure 5.21). This could be because of the smaller 

amount of BSA used, which was chosen to replicate the amount of individual  



Chapter Five Investigating the effects of the non-coding RNAs on protein synthesis 
 

 177

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Step-by-step schematic description of the 1-D PAGE cICAT protocol. 
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Figure 5.20 MALDI analysis of 100ng BSA in the vacuum drying test. Showing samples 
taken after the first and last extraction step, and following vacuum and freeze-drying 
and re-suspension in 100μl and 500μl avidin buffer.  
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1st extraction- 200ng BSA 

 

1st extraction- 300ng BSA 

 

BSA digest 

 

Figure 5.21 MALDI analysis of trypsin digested peptides from 200ng and 300ng BSA, 
following the first extraction step. Also showing the spectrum from a trypsin digest of 
10μg BSA from an earlier experiment for comparison.  
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proteins in the cICAT labelling. It could also be because of salts present in the 

sample affecting the MALDI analysis. 

It was concluded that the initial extraction step was sufficient to extract the peptides 

and that an alternative to the vacuum dryer needed to be found.  

5.3.2. BSA 

Following the findings in the assay setup, the 1-D PAGE cICAT protocol was tested 

with BSA, using ZipTips® instead of vacuum and freeze-drying to concentrate the 

samples during the assay, and only performing the first extraction step. The ZipTip® 

is a pipette tip with a bed of chromatography media in the end that allows for 

concentration and purification of peptides and proteins. 

10μg of BSA was denatured (10μl BSA + 40μl denaturing buffer + 1μl reducing 

agent) and labelled with light cICAT reagent. The labelled BSA was vacuum dried 

30 min to reduce the volume, run on SDS-PAGE and the band excised. There were 

two bands present on the gel, with the lighter band of smaller size probably 

consisting of unlabelled BSA. The BSA was in-gel trypsin digested and the peptides 

extracted, with only the first extraction step consisting of 20 min of sonication in a 

sonic ice water bath performed. A ZipTip® was used to concentrate the sample prior 

to purification using an avidin column and again prior to cleavage. Following 

cleavage of the biotin tag half of the sample was concentrated using a ZipTip® and 

half using a vacuum dryer for 25 min, prior to analysis by MALDI.  

The MALDI analysis showed that there were plenty of peptide peaks in the final 

sample, with the final concentrating method, vacuum drying or ZipTip®, not making 

much difference to the sample. Problems with calibration meant that although there 

was plenty of peptide peaks, BSA could not be identified when searching against the 

database. Several BSA peptide peaks (15/24 for the ZipTip® sample, Table 5.1) 

could be identified manually, as indicated by the circles in Figure 5.22, and when 

compared to the MALDI result from the previous BSA cICAT experiment it could be 

concluded that the adapted 1-D PAGE cICAT assay using ZipTips® was working.  
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Final sample: vacuum dry 

 

Final sample: ZipTip® 

 

BSA digest 

 

Figure 5.22 MALDI analysis of peptides from BSA labelled with light cICAT reagent. 
Final samples following concentration of the sample after cleavage of the biotin tag, 
using a vacuum dryer or a ZipTip®. Also showing the spectrum of BSA labelled with 
light cICAT reagent from an earlier cICAT experiment as a control. Green circles 
indicate BSA peptides and red circles probable BSA peptides.  
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5.3.3. MHV-76 vs. Int9 latently infected NS0 cells 

Following all the optimisation experiments, a definitive experiment examining the 

differences in protein expression between MHV-76 and Int9 infected NS0 cells was 

performed.  

NS0 cells were infected with MHV-76 and Int9 at a MOI of 5 for five days, the 

cytosolic proteins extracted using a ProteoExtract® Subcellular Proteome Extraction 

Kit, and the protein concentrations determined using a BCA Protein Assay. The 

extraction kit was used as this would make the protein sample less complex. 100μg 

of cytosolic proteins were concentrated using Vivaspins and the proteins labelled 

with light and heavy cICAT reagents according to the protocol (section 2.9.7.2). The 

samples were vacuum-dried for 30 min to reduce the sample volume prior to mixing 

with loading buffer and separation by SDS-PAGE. The gel strip of the lane loaded 

with labelled protein was cut into 11 pieces. The proteins were in-gel trypsin 

digested and the peptides extracted, with only the first extraction step performed. A 

ZipTip® was used to concentrate the sample prior to purification using an avidin 

column and again prior to cleavage. Following cleavage of the biotin the sample was 

concentrated using a vacuum drier, as this had not affected the peptides in the 

previous assay, and resuspended in 60μl 0.5% acetic acid. The peptides were loaded 

onto a ZipTip®, eluted, and briefly dried down in a vacuum dryer prior to analysing 

by LC-MS/MS on a LTQ. 

Initially, band 3 was further processed and the other bands stored at -20°C following 

excising from the gel. The MALDI analysis of samples taken during the assay 

showed that there were plenty of peptides present following the extraction from the 

gel piece and that there were still many peptides in the final sample; however at low 

intensities (Figure 5.23). The LC-MS/MS analysis identified three proteins with 

significant scores and several with non-significant scores when searching against 

murine proteins (Figure 5.24). The protein score is calculated from the ion scores, 

which gives the probability that the match is a random event, with higher scores 

indicating a true match. In this experiment an ion score of more than 30 (significance 

threshold 0.05) indicated identity or extensive homology. The proteins identified are 

among the more abundant in the cell.  
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Figure 5.23 MALDI analysis of band 3 peptides in the 1-D PAGE cICAT assay. 
Showing samples taken following extraction of the peptides and of the final sample. 
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Figure 5.24 Results of the LC-MS/MS analysis of peptides from cytosolic proteins from 
MHV-76 and Int9 infected NS0 cells labelled with light or heavy cICAT reagent from 
band 3, using Mascot software to search against the Swiss-Prot database. Search 
parameters: Peptide mass tolerance ± 3 Da; Fragment mass tolerance ± 0.4 Da; missed 
cleavages 3. Significant protein matches are boxed. 
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A long list of identified peptides was produced in the LC-MS/MS analysis. Since the 

software to analyse the data and identify cICAT pairs was not available, the data was 

analysed using a program developed by Mayank B. Dutia to identify peptides with 

the same sequence. Several cICAT light/heavy pairs were found (Table 5.2, Table 

5.3), with several proteins having more than one peptide pair labelled with light and 

heavy cICAT reagent. This was an improvement from the last cICAT analysis in 

which only a few pairs were identified and showed that fractionation of the sample 

improved the sensitivity of the technique. Only pairs with the same ion charge, and 

that had been cleaved at a lysine (K) or arginine (R) (the trypsin cleavage sites) were 

considered. Some peptides identified originate from the same protein, but had 

different numbers of missed cleavages. Since the probability of the missed cleavages 

would be different, these could not be considered as pairs.  

The time at which the peptides came off the LC was noted and the peptide peaks 

manually identified in the MS spectrum to determine the peak intensities. The 

peptide peak intensities were used to calculate the ratio of heavy/light  

(Int9/MHV-76) cICAT labelled peptides (Table 5.4). The analysis showed that there 

were a few differences of more than 0.4 in protein levels between MHV-76 and Int9 

infected NS0 cells. The differences observed all indicated that Int9 infected NS0 had 

higher levels of those proteins. The low ion scores and few peptides matched for 

individual proteins meant that it was difficult to be confident in some of the protein 

matches. The heat shock proteins were the protein matches that were most likely to 

be true because of the high ion and protein score; however, the proteins with lower 

protein score could still be true matches, since for many of them several peptides 

were identified. It is important to remember that the table here only lists pairs of 

labelled peptides; peptides that were labelled with only heavy or light cICAT reagent 

would still help give confidence in the protein match. It is difficult to have 

confidence in the protein matches with a protein score of 0, since these usually have 

very few peptide matches with low ion scores.  

The average ratio of the peptide pairs identified for Heat shock protein 90-beta 

(Hsp90-β) was 2.2; however, for the individual peptide pairs, the ratios were 

inconsistent (Table 5.5). The ratios of the peptides with higher scores were 0.4 and  
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m/z Ion score Peptide Protein / protein score

492.11 6 K.FENLCK.L + ICAT-C (C) Heat shock protein HSP 90-beta
495.11 7 K.FENLCK.L + ICAT-C:13C(9) (C) 53

590.23 10 K.AKFENLCK.L + ICAT-C (C)
594.79 9 K.AKFENLCK.L + ICAT-C:13C(9) (C)
596.00 6 K.AKFENLCK.L + ICAT-C:13C(9) (C)

720.75 6 K.CLELFSELAEDKENYK.K + ICAT-C (C) 
723.55 2 K.CLELFSELAEDKENYK.K + ICAT-C:13C(9) (C) 

763.46 35 K.CLELFSELAEDKENYKK.F + ICAT-C (C) 
767.04 28 K.CLELFSELAEDKENYKK.F + ICAT-C:13C(9) (C) 

1147.98 18 K.CLELFSELAEDKENYKK.F + ICAT-C:13C(9) (C) 
1144.64 35 K.CLELFSELAEDKENYKK.F + ICAT-C (C) 
812.26 32 K.GPAVGIDLGTTYSCVGVFQHGK.V + ICAT-C (C) Heat shock cognate 71 kDa protein
815.59 42 K.GPAVGIDLGTTYSCVGVFQHGK.V + ICAT-C:13C(9) (C) 52
492.11 6 K.FENLCK.I + ICAT-C (C) Heat shock protein HSP 90-alpha 
495.11 7 K.FENLCK.I + ICAT-C:13C(9) (C) 46

669.78 7 K.KTKFENLCK.I + ICAT-C (C)
675.00 13 K.KTKFENLCK.I + ICAT-C:13C(9) (C) 

1151.16 34 K.CLELFTELAEDKENYKK.F + ICAT-C (C) 
1155.39 46 K.CLELFTELAEDKENYKK.F + ICAT-C:13C(9) (C) 
577.07 3 R.VPTPNVSVVDLTCR.L + ICAT-C (C) Glyceraldehyde-3-phosphate dehydrogenase
579.35 14 R.VPTPNVSVVDLTCR.L + ICAT-C:13C(9) (C) 34

864.23 34 R.VPTPNVSVVDLTCR.L + ICAT-C (C) 
865.23 27 R.VPTPNVSVVDLTCR.L + ICAT-C (C) 
869.20 27 R.VPTPNVSVVDLTCR.L + ICAT-C:13C(9) (C) 
775.24 26 R.CLYASVLTAQPR.L + ICAT-C (C) Elongation factor 2
776.90 21 R.CLYASVLTAQPR.L + ICAT-C (C) 32
779.71 17 R.CLYASVLTAQPR.L + ICAT-C:13C(9) (C) 

833.34 21 R.TFCQLILDPIFK.V + ICAT-C (C) 
837.90 11 R.TFCQLILDPIFK.V + ICAT-C:13C(9) (C) 

853.24 22 R.RCLYASVLTAQPR.L + ICAT-C (C) 
858.30 11 R.RCLYASVLTAQPR.L + ICAT-C:13C(9) (C) 

868.87 7 K.DLEEDHACIPIKK.S + ICAT-C (C) 
875.67 0 K.DLEEDHACIPIKK.S + ICAT-C:13C(9) (C) 

883.14 8 R.ETVSEESNVLCLSK.S + ICAT-C (C) 
884.17 11 R.ETVSEESNVLCLSK.S + ICAT-C (C) 
887.56 8 R.ETVSEESNVLCLSK.S + ICAT-C:13C(9) (C) 
855.94 13 R.LGDVISIQPCPDVK.Y + ICAT-C (C) Transitional endoplasmic reticulum ATPase
857.37 16 R.LGDVISIQPCPDVK.Y + ICAT-C (C) 29
861.09 12 R.LGDVISIQPCPDVK.Y + ICAT-C:13C(9) (C) 

584.18 4 K.AIANECQANFISIK.G + ICAT-C (C) 
587.71 8 K.AIANECQANFISIK.G + ICAT-C:13C(9) (C) 

1282.00 37 K.LADDVDLEQVANETHGHVGADLAALCSEAALQAIR.K + ICAT-C (C) 
1285.10 19 K.LADDVDLEQVANETHGHVGADLAALCSEAALQAIR.K + ICAT-C:13C(9) (C) 
569.28 18 K.SCQFVAVR.R + ICAT-C (C) Bifunctional aminoacyl-tRNA synthetase
574.37 22 K.SCQFVAVR.R + ICAT-C:13C(9) (C) 22
785.55 22 R.AFFPCFDTPAVK.C + ICAT-C (C) Aminopeptidase B 
790.11 3 R.AFFPCFDTPAVK.C + ICAT-C:13C(9) (C) 22
716.20 4 K.NQALFPACVLK.N + ICAT-C (C) ATP-dependent RNA helicase DDX1 
720.40 2 K.NQALFPACVLK.N + ICAT-C:13C(9) (C) 21
682.18 9 R.LQEVFGCAIR.A + ICAT-C (C) Arginyl-tRNA synthetase, cytoplasmic 
687.18 20 R.LQEVFGCAIR.A + ICAT-C:13C(9) (C) 20

901.45 13 K.IVFVPGCSVPLTIVK.S + ICAT-C (C) 
906.31 4 K.IVFVPGCSVPLTIVK.S + ICAT-C:13C(9) (C) 
623.80 16 K.CLIEILASR.T + ICAT-C (C) Annexin A6 
627.87 17 K.CLIEILASR.T + ICAT-C:13C(9) (C) 19
765.32 29 R.NTGIICTIGPASR.S + ICAT-C (C) Pyruvate kinase isozymes M1/M2 
766.10 1 R.NTGIICTIGPASR.S + ICAT-C (C) 19
767.33 32 R.NTGIICTIGPASR.S + ICAT-C (C) 
769.04 19 R.NTGIICTIGPASR.S + ICAT-C:13C(9) (C) 
770.65 24 R.NTGIICTIGPASR.S + ICAT-C:13C(9) (C) 
1697.83 18 R.DTGNLYCTGRVDR.E + ICAT-C (C) Desmocollin-2 precursor 
1706.06 1 R.DTGNLYCTGRVDR.E + ICAT-C:13C(9) (C) 18
992.22 1 K.NLFEDQNTLTSICEK.V + ICAT-C (C) Exportin-2 
997.05 17 K.NLFEDQNTLTSICEK.V + ICAT-C:13C(9) (C) 17  

Table 5.2 Peptide pairs (light/heavy) identified from band 3, showing the ion scores, 
protein matches and protein scores. Protein matches with high protein scores 
indicating true matches are in red. 
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m/z Ion score Peptide Protein / protein score
609,18 2 K.ILDDICVAK.A + ICAT-C (C) Lysyl-tRNA synthetase 
613,49 20 K.ILDDICVAK.A + ICAT-C:13C(9) (C) 0

933,35 21 K.EICNAYTELNDPVR.Q + ICAT-C (C) 
937,52 7 K.EICNAYTELNDPVR.Q + ICAT-C:13C(9) (C) 
752,77 14 R.TLIQNCGASTIR.L + ICAT-C (C) T-complex protein 1 subunit gamma
758,00 3 R.TLIQNCGASTIR.L + ICAT-C:13C(9) (C) 0

800,72 20 K.IPGGIIEDSCVLR.G + ICAT-C (C) 
804,41 9 K.IPGGIIEDSCVLR.G + ICAT-C:13C(9) (C) 
752,33 21 R.LEDLVCDVVDR.V + ICAT-C (C) Asparaginyl-tRNA synthetase, cytoplasmic
756,54 14 R.LEDLVCDVVDR.V + ICAT-C:13C(9) (C) 0
828,55 11 R.VLVVGAGGIGCELLK.N + ICAT-C (C) SUMO-activating enzyme subunit 2
832,86 17 R.VLVVGAGGIGCELLK.N + ICAT-C:13C(9) (C) 0
728,79 3 R.GLGLSPDLVVCR.C + ICAT-C (C) CTP synthase 1
732,71 10 R.GLGLSPDLVVCR.C + ICAT-C:13C(9) (C) 0
880,56 12 R.VFANAPDSACVIGLR.K + ICAT-C (C) 6-phosphofructokinase, liver type
884,88 12 R.VFANAPDSACVIGLR.K + ICAT-C:13C(9) (C) 0
885,99 10 R.VFANAPDSACVIGLR.K + ICAT-C:13C(9) (C) 
585,21 15 QDQVCIAR + ICAT-C:13C(9) (C) G1 to S phase transition protein 1 homolog
580,09 10 QDQVCIAR + ICAT-C (C) 0
634,80 14 ALENDPDCR + ICAT-C:13C(9) (C) Plastin-2
631,96 4 ALENDPDCR + ICAT-C (C) 0
710,54 11 VIGSGCNLDSAR + ICAT-C (C) L-lactate dehydrogenase A chain
715,94 9 VIGSGCNLDSAR  + ICAT-C:13C(9) (C) 0
805,39 11 SCYDLSCHAR + 2 ICAT-C (C) Glycyl-tRNA synthetase
814,10 4 SCYDLSCHAR + 2 ICAT-C:13C(9) (C) 0
759,23 8 VVVCNLYPFVK + ICAT-C:13C(9) (C) Bifunctional purine biosynthesis protein PURH
755,93 8 VVVCNLYPFVK + ICAT-C (C) 0
591,67 5 ALCADLSPR + ICAT-C:13C(9) (C) Xaa-Pro aminopeptidase 1
588,58 0 ALCADLSPR + ICAT-C (C) 0
854,34 5 YAAMLSCLDEAIHNVTLALKR + ICAT-C (C) Arylsulfatase J precursor
857,26 2 YAAMLSCLDEAIHNVTLALKR + ICAT-C:13C(9) (C) 0
1417,70 4 IGTLLDAIICR + ICAT-C (C) TP53RK-binding protein
1426,75 2 IGTLLDAIICR + ICAT-C:13C(9) (C) 0
627,27 3 CENCGKK + 2 ICAT-C:13C(9) (C) PR domain zinc finger protein 5
619,46 1 CENCGKK + 2 ICAT-C (C) 0
573,44 3 TYGGCEGPDAMYVK + ICAT-C (C) Transcription elongation factor B polypeptide 1
577,42 3 TYGGCEGPDAMYVK + ICAT-C:13C(9) (C) 0
437,64 0 GCLGVGDNALR + ICAT-C:13C(9) (C) F-box/LRR-repeat protein 20
434,16 0 GCLGVGDNALR + ICAT-C (C) 0  

Table 5.3 Peptide pairs (light/heavy) identified from band 3 with a protein score of 0, 
showing the ion scores, protein matches and protein scores. 
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Protein Protein score
Peptide 

pairs ID'd Ratio H/L
Heat shock protein HSP 90-beta 53 6 2.2
Heat shock cognate 71 kDa protein 52 1 0.6
Heat shock protein HSP 90-alpha 46 3 1.0
Glyceraldehyde-3-phosphate dehydrogenase 34 3 1.2
Elongation factor 2 32 7 0.9
Transitional endoplasmic reticulum ATPase 29 4 0.8
Bifunctional aminoacyl-tRNA synthetase 22 1 0.8
Aminopeptidase B 22 1 1.2
ATP-dependent RNA helicase DDX1 21 1 0.9
Arginyl-tRNA synthetase, cytoplasmic 20 2 0.8
Annexin A6 19 1 2.0
Pyruvate kinase isozymes M1/M2 19 6 1.2
Desmocollin-2 precursor 18 1 1.5
Exportin-2 17 1 0.9
Lysyl-tRNA synthetase 0 2 1.0
T-complex protein 1 subunit gamma 0 2 0.9
Asparaginyl-tRNA synthetase, cytoplasmic 0 1 1.3
SUMO-activating enzyme subunit 2 0 1 0.9
CTP synthase 1 0 1 0.9
6-phosphofructokinase, liver type 0 2 0.9
G1 to S phase transition protein 1 homolog 0 1 1.3
Plastin-2 0 1 0.7
L-lactate dehydrogenase A chain 0 1 2.0
Glycyl-tRNA synthetase 0 1 0.8
Bifunctional purine biosynthesis protein PURH 0 1 2.0
Xaa-Pro aminopeptidase 1 0 1 1.3
Arylsulfatase J precursor 0 1 1.1
TP53RK-binding protein 0 1 1.5
PR domain zinc finger protein 5 0 1 5.7
Transcription elongation factor B polypeptide 1 0 1 3.0
F-box/LRR-repeat protein 20 0 1 2.2  
 
Table 5.4 Ratios of proteins from Int9 (H) and MHV-76 (L) infected NS0 cells, from 
band 3. Ratios with differences of at least 0.4 are indicated in red. Protein matches with 
high protein scores are in red, while proteins with lower protein scores are in green, 
and proteins with a protein score of 0 are in black.  
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m/z Ion score Intenstity Ratio H/L
492.11 6 5.33E+04 K.FENLCK.L + ICAT-C (C) 
495.11 7 3.04E+04 0.6 K.FENLCK.L + ICAT-C:13C(9) (C) 

590.23 10 2.13E+04 K.AKFENLCK.L + ICAT-C (C)
594.79 9 1.77E+05 8.3 K.AKFENLCK.L + ICAT-C:13C(9) (C)
596.00 6 2.16E+04 1.0 K.AKFENLCK.L + ICAT-C:13C(9) (C)

720.75 6 1.34E+05 K.CLELFSELAEDKENYK.K + ICAT-C (C) 
723.55 2 2.55E+05 1.9 K.CLELFSELAEDKENYK.K + ICAT-C:13C(9) (C) 

763.46 35 3.11E+05 K.CLELFSELAEDKENYKK.F + ICAT-C (C) 
767.04 28 1.22E+05 0.4 K.CLELFSELAEDKENYKK.F + ICAT-C:13C(9) (C) 

1147.98 18 8.47E+04 0.9 K.CLELFSELAEDKENYKK.F + ICAT-C:13C(9) (C) 
1144.64 35 9.89E+04 K.CLELFSELAEDKENYKK.F + ICAT-C (C) 

Heat shock protein HSP 90-beta 

 
 
Table 5.5 Rations of individual peptide pairs of heat shock protein 90-beta. Ratios with 
a difference of 0.4 or more are shown in red.  
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0.9, indicating that there was no real difference in protein levels between the 

samples. Hsp90 is a molecular chaperone and is one of the most abundant proteins in 

the cell. It is present in two isoforms (alpha and beta) and is a multifunctional protein 

involved in protein folding, degradation, and transportation, as well as signalling, and 

histone assembly, among other functions (reviewed in Csermely et al. 1998). HSP90 

is induced during stress, such as virus infection, and has been shown to be necessary 

for the replication of some viruses, such as HSV-1 (Burch and Weller 2005; Li et al. 

2004). Hsp90-β was identified as a possible vtRNA1 binding protein in an EMSA 

assay, but was thought to be a contaminant (Cliffe 2005).  

Two proteins with low protein scores had differences of more than 0.4. Annexin A6 

is a cytosolic protein that interacts with cell-membrane components (reviewed in 

Moss and Morgan 2004) and Desmocollin-2 is a transmembrane glycoprotein 

involved in cell adhesion and possibly other processes such as tumorigenesis and 

signal transduction (reviewed in Dusek et al. 2007).  

The LC-MS/MS results were also used to search against virus proteins; however, the 

only proteins identified had peptides with very low ion scores (results not shown) 

and were of no relevance to MHV-68.  

Subsequently, bands 1, 2, 4, 5, 7, 9, and 11 were processed. The LC-MS/MS analysis 

only identified three proteins with significant scores and two with low scores  

(Table 5.6). The MALDI analysis showed that there were few peptides present 

following the extraction and that those peptides were lost during the assay (data not 

shown). The reason for this is unknown, perhaps the trypsin digestion or the 

extraction of peptides from the gel bands did not work, or maybe the avidin column 

was no longer binding the labelled peptides sufficiently. 

One protein, Alpha-enolase, with a low protein score had a heavy to light ration of 

2.0, indicating that Int9 infected NS0 cells expressed more of this protein.  

Alpha-enolase, a multifunctional glycolytic enzyme, is one of the most abundant 

cytosolic proteins (reviewed in Pancholi 2001).  

Fractionation of the peptide sample by 1-D PAGE improved the sensitivity of the 

cICAT method and many light/heavy peptide pairs were identified. However, only  
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Protein Protein score
Peptide 

pairs ID'd Ratio H/L
Fructose-bisphosphate aldolase A 37 2 0.8
Triosephosphate isomerase 32 4 0.7
Pyruvate kinase isozymes M1/M2 55 2 1.0
Beta-enolase/Alpha-enolase 25 2 1.2
Alpha-enolase 25 1 2.0
Glyceraldehyde-3-phosphate dehydrogenase 0 1 0.7
Adenosine kinase 0 1 1.1
14-3-3 protein theta 0 1 1.0
GTP-binding nuclear protein Ran 0 1 2.0
14-3-3 protein zeta/delta 0 1 0.8
DNA-(apurinic or apyrimidinic site) lyase 2 0 1 0.9
FAST kinase domain-containing protein 3 0 1 2.9
Elongation factor 2 0 1 0.8
Heat shock 70 kDa protein 4 0 1 0.8
Tubulin beta-2A chain 0 1 1.0
FK506-binding protein 4 0 1 0.7
Delta-aminolevulinic acid dehydratase 0 1 5.7
Eukaryotic initiation factor 4A-II 0 1 1.0
Short transient receptor potential channel 4 0 1 0.6
Actin-binding protein anillin 0 1 0.9  

Table 5.6 Ratios of proteins from Int9 (H) and MHV-76 (L) infected NS0 cells from, 
bands 1, 2, 4, 5, 7, 9, and 11. Ratios with differences of at least 0.4 are indicated in red. 
Protein matches with high protein scores are in red, while proteins with lower protein 
scores are in green, and proteins with a protein score of 0 are in black.  

A 
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the most abundant proteins were identified, indicating that the sample was still too 

complex and that a different fractionation method might be needed.  

5.4. Discussion 

In this chapter we aimed to analyse the functions of the non-coding RNAs by 

investigating the differences in protein expression between MHV-76 and Int9 

infected NS0 cells using the cICAT assay. This method tags the cysteine containing 

proteins and enables comparison of the levels of individual proteins in two samples. 

The cICAT and 1-D PAGE cICAT techniques have been used, for example, to 

identify biomarkers for chronic lymphocyteic leukaemia (CLL) and brain tumours, as 

well as protein changes following saline stress of yeast cells (Barnidge et al. 2005; 

Khwaja et al. 2007; Li et al. 2003). cICAT analysis of cytosolic and membrane 

protein fractions of B cells from patients with mutated or unmutated CLL identified 

nine cytosolic and four membrane proteins that had a 3-fold or greater difference in 

expression (Barnidge et al. 2005). A subset of these was confirmed by western blot 

analysis. Khwaja et al. identified 53 proteins that were differentially expressed by 

more than 1.1 or less than 0.9 when analysing cerebrospinal fluid from patients with 

two different grades of glioma and normal controls using cICAT (Khwaja et al. 

2007). Li et al. used the 1-D PAGE cICAT method to analyse protein expression 

profiles in yeast cells following saline stress. They identified over 560 proteins, 51 of 

which showed more than 2-fold difference in expression (Li et al. 2003). These 

studies show that the cICAT method is a good technique to identify changes in 

protein expression during different conditions.  

Other techniques to examine protein differences include 2D gels, SILAC and 

ITRAQ. SILAC and ITRAQ are similar methods to ICAT. In ITRAQ the N-termini 

of trypsin digested peptides are labelled with a tag. Fragmentation of this tag during 

MS/MS analysis creates a reporter ion with which the peptide abundance can be 

determined. During SILAC the cells are grown in culture with normal growth 

medium or growth medium containing a heavy amino acid that is incorporated into 

the proteins. These techniques may be better than the cICAT method; however, the 

facilities needed for these techniques were not available to us. The cICAT method 

was chosen over 2D gels since it provides a more quantitative assay. A limitation of 
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the cICAT assay is that only the cysteines are labelled; however, the advantage is 

that the biotin tag enables purification of the labelled peptides, producing a less 

complex sample. 

The initial experiment labelling BSA with light cICAT reagent worked well, with 

several labelled BSA peptides identified manually and BSA correctly identified both 

by MALDI and LC-MS/MS. The analysis of cytosolic proteins from MHV-76 and 

Int9 infected NS0 cells proved more problematic. In the first experiment only two 

proteins were identified, even though there were a large number of proteins in the 

cytosolic samples, albeit at low concentration, as shown by SDS-PAGE. It was found 

that the proteins were lost during the acetone precipitation.  

The experiment was therefore repeated using a more crude cytoplasmic protein 

extraction that yielded higher protein concentrations and Vivaspins to concentrate the 

sample instead of acetone precipitation. This time six proteins were identified in the 

LC-MS/MS analysis of the labelled peptides, four with peptides labelled with light 

and heavy cICAT reagents. The long vacuum drying steps were found to be a source 

of peptide loss and the experiment was therefore repeated using freeze-drying to 

minimise the use of the vacuum dryer. The peptides were no longer lost during the 

cICAT assay and several proteins were identified; however, not many light/heavy 

peptide pairs. The proteins identified are very abundant in the cell and after solving 

the problem of loss of proteins and peptides via acetone precipitation and vacuum 

drying, it became clear that the sample was too complex.  

To fractionate the sample and make it less complex, cytosolic proteins produced with 

the initial fractionation kit were labelled using the 1-D PAGE cICAT protocol, which 

fractionates the protein sample. This technique introduced more vacuum drying 

steps, which had proved to be a problem earlier. In addition, testing with BSA 

showed that the peptides were lost during the extraction procedure. The 1-D PAGE 

cICAT protocol was therefore tested with BSA labelled with light cICAT reagent, 

using ZipTips to concentrate the sample where possible and only performing the first 

step of the peptide extraction. The analysis generated several peptide peaks that 

could manually be identified as BSA peptides labelled with light cICAT reagent 

showing that the adapted method was working.  
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The final experiment utilised all the optimisations that had been performed. The 

initial band to be processed, band 3, generated several peptide pairs, but only three 

protein matches considered significant and 11 with protein scores above zero. The 

protein scores are calculated from the peptide scores, which are calculated to give the 

probability that the peptide match is a random event, based on the quality and 

number of fragment ions present in the MS/MS spectra.  

The average ratio of Hsp90-β was 2.2, indicating that Int9 infected NS0 cells 

produced more of this protein; however, the individual peptide pair ratios were 

inconsistent. It is possible that this protein is continuously identified because of its 

abundance in the cell. However, since Hsp90 has been found to be important for 

virus replication of e.g. HSV-1 and influenza A by interactions with the viral 

polymerases (Burch and Weller 2005; Chase et al. 2008; Li et al. 2004) and the fact 

that Hsp90-β was identified as a possible vtRNA1 interacting protein (Cliffe 2005), it 

is still an interesting protein. This could be further analyse by examining the  

Hsp90-β protein levels by western blot and possibly using Hsp90-β inhibitors such 

as Geldanamycin to examine the effect on Int9 infected NS0 cells.  

It is not clear what functions the other proteins that appear to be up-regulated in the 

presence of the non-coding RNAs, Annexin A6 and Desmocollin-2, may have during 

virus infection. Annexin A6 is a cytosolic protein that interacts with cell-membrane 

components (reviewed in Moss and Morgan 2004) and Desmocollin-2 is a 

transmembrane glycoprotein involved in cell adhesion (reviewed in Dusek et al. 

2007). The levels of these proteins would need to be confirmed by western blot 

analysis.  

The other bands analysed did not generate as many protein matches as expected. The 

reason for this is not known, but is possible that the trypsin digestion or avidin 

column were not functioning properly. Due to time constraints, this could not be 

examined further. Three proteins with protein scores considered significant were 

identified and two with lower protein scores. One of these, Alpha-enolase, a 

glycolytic enzyme, had a ratio of 2.0 indicating that the introduction of the  

non-coding RNAs led to an increase of this protein; however, this would need to be 
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confirmed by western blot analysis. Again, this protein is one of the most abundant 

in the cytosol and it is not know for what purpose it would be up-regulated.  

In this study we set out to identify differences in protein expression with and without 

the presence of the non-coding RNAs. The cICAT protocol was optimised and the  

1-D PAGE cICAT protocol subsequently optimised and used. However, the assay 

did not generate many protein matches, making it difficult to draw any conclusions 

from the data. The reason for this is not know, but it is possible that the protein 

samples were still too complex, since only the most abundant proteins were 

identified. An option would be to fractionate the sample using a cation-exchange 

column, which would generate fewer proteins in each sample and enhanced 

sensitivity. The amount of protein that is fractionated in the 1-D PAGE cICAT assay 

is limited to the amount and volume that can be loaded in the gel lane.  

As seen in this study, there are many steps in the cICAT assay at which peptides can 

be lost and the assay is dependent on the equipment that is available. The technique 

had not previously been used in the Edinburgh Protein Interaction Centre mass 

spectrometry facility and although considerable progress was made, because of time 

constraints it was not possible to achieve the aims which had been set out.  

Any difference in protein levels between MHV-76 and Int9 infected cells could be 

because of the vtRNAs and/or the miRNAs. During the time this study was 

performed, the effect of miRNAs on protein levels have usually been found to be 

quite low, with often no more than 50% and sometimes less than 30%  

down-regulation observed (Bartel 2009). This small difference in protein expression 

may be difficult to observe using a technique to examine global protein expression; 

however it has been done. Baek et al. 2008 used SILAC to find that hundreds of 

proteins are down-regulated by individual miRNAs, most with low levels of  

down-regulation. This and the fact that uncharged tRNAs and other viral non-coding 

RNAs have an effect on protein expression, warrants further analysis of changes in 

global protein levels; perhaps by including a cation-exchange column in the cICAT 

protocol to fractionate the sample, or using the ITRAQ or SILAC methods, taking 

the samples to a laboratory where these techniques are in regular use.  
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An alternative to examining global protein levels would be to examine mRNA levels 

using microarrays; however, miRNAs often do not affect the mRNA levels of the 

proteins they target. It would still be worth performing microarrays to compare 

mRNA levels of MHV-76 and Int9 infected NS0 cells, since the vtRNAs may have 

an effect on mRNA levels if they are involved in gene expression.  
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In this study we utilised insertion viruses to investigate the functions of the  

non-coding RNAs of MHV-68, by examining growth properties and differences in 

protein expression in latently infected NS0 cells. These viruses had been made 

through recombination of the deletant virus MHV-76 and a plasmid containing five 

of the vtRNAs and six of the miRNAs, resulting in two insertion viruses with the 

only difference to MHV-76 and the revertant virus being these non-coding RNAs. 

The insertion viruses had been found to act indistinguishably to MHV-76 during  

in vivo infection, with increased clearance and low levels of latency in the spleen 

compared to MHV-68. Therefore, we sought to investigate the functions of the  

non-coding RNAs during latent infection in vitro.  

Initially, infection of the NS0 cells was investigated to ensure that this provided a 

suitable model for latency in vitro. The NS0 cell line is a murine myeloma B cell line 

that has been shown to support persistent infection (Sunil-Chandra et al. 1993). All 

viruses were found to infect close to 100% of the NS0 cells following infection for 

five days at a MOI of 5. In addition, MHV-68 infected NS0 cells expressed the 

vtRNAs and miRNAs during latent infection of NS0 cells, as in S11 cells. This 

showed that infection of NS0s provided a suitable model for latent infection. By 

examining the expression of the non-coding RNAs we also showed that MHV-68 

expresses the miRNAs during lytic infection, which had not been confirmed at that 

point. We were surprised to find that the insertion viruses expressed miRNA1 at very 

low levels during latent infection, even though it was expressed during lytic 

infection. In addition, the other miRNAs were expressed at lower levels than by 

MHV-68. The reason for this is not known, but possible explanations include: that 

promoter elements needed during latent infection are missing, the non-coding RNAs 

affect the virus copy numbers, or the unique genes are needed for efficient 

expression of the non-coding RNAs.  

The levels of expression of the vtRNAs during latent infection, as well as vtRNAs 

and miRNAs during lytic infection by the insertion viruses are not known. It would 

be interesting to examine this further, as it may help to explain the lower levels of 

miRNA expression. Since the vtRNAs are expressed on the same transcripts as the 

miRNAs, the levels of the vtRNAs would be expected to be low as well, if the 
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deficiency is at the level of transcription. However, the non-quantitative RT-PCR 

performed for the vtRNAs did not indicate any major differences in expression.  

Despite the lack of miRNA1 expression and the lower expression of the other 

miRNAs, the presence of the vtRNAs and miRNAs led to a decrease in reactivation 

and production of lytic virus. The decrease in reactivation could be seen both by 

stressing the infected cells to reactivate by infective centres assay, as well as by 

looking at spontaneous reactivation by staining for lytic proteins. The miRNAs alone 

did not seem to be responsible since transfection of miRNA mimics into MHV-76 

infected cells did not affect the reactivation rates, despite achieving higher miRNA 

levels than in insertion virus infected cells. Disruption of the miRNA biogenesis 

through transfection of a siRNA against Dicer did not have an effect either; however, 

the miRNA or Dicer knock-down was not confirmed. Transfections with the plasmid 

used to make the insertion viruses and vtRNAs were inconclusive and further 

experiments would be needed to confirm the role of the vtRNAs, or the co-operation 

between vtRNAs and miRNAs, in viral reactivation.  

It may not be the expression of the vtRNAs, but the presence of the vtRNA genes 

that is causing the reduction in reactivation. tRNA genes have been shown to 

regulate gene expression by affecting the chromatin organisation. In budding and 

fission yeast, tRNA genes have been found to act as chromatin barriers that limit the 

spread of heterochromatin into transcriptionally active regions (Biswas et al. 2009; 

Donze et al. 1999; Donze and Kamakaka 2001; Scott et al. 2006; Scott et al. 2007; 

Simms et al. 2004) and have also been shown to block enhancers or silencers from 

affecting promoters of nearby genes (Bolton and Boeke 2003; Hull et al. 1994). The 

functions of these tRNA genes are dependent on the ability of the gene to be 

transcribed; however, ectopic B-box elements not linked to functional polymerase III 

genes have also been found to act as chromatin barriers (reviewed in McFarlane and 

Whitehall 2009). In mammals SINES, believed to derive from tRNAs and containing 

B-box elements, are thought to have a similar role; an example of this is an Alu SINE 

element in transgenic mice that protects neighbouring reporter genes from 

transcriptional interference (Willoughby et al. 2000). It is not clear how the tRNA 

genes and B-box elements exert their barrier function. 
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The vtRNA genes could be acting in a similar manner to keep the area active during 

latency by acting as chromatin barriers or blocking enhancers or silencers of nearby 

genes, perhaps to regulate the transcription of the miRNAs or the unique genes. M1, 

for example, is likely to have promoter or enhancer sequences among the vtRNA 

genes (pers commun Bernadette M. Dutia). However, since the insertion viruses do 

not contain the unique genes and the miRNAs alone were found to have no effect on 

viral reactivation, these could not be the cause of the reduction in reactivation seen.  

It may be that there are sequences in the left end region that act as enhancers or 

promoters for other viral genes that may affect the reactivation, such as genes on the 

other side of the terminal repeats, since the genome circularises. In EBV LMP2 

initiates at the right end of the genome and stretches across the terminal repeats into 

the left end (Laux et al. 1988), while in KSHV, K1 and K15 both have promoter 

sequences in the terminal repeats (Bowser et al. 2002; Wong and Damania 2006). 

ORF73, whose product is essential for the establishment of latency, is known to have 

its transcription initiation site in the terminal repeats (Coleman et al. 2005), that 

perhaps is kept active due to the presence of the vtRNA genes. It would be 

interesting to examine the levels of ORF73 transcription to see if it is up-regulated in 

Int9 infected cells, as this could explain the decrease in reactivation. It is possible 

that in MHV-68 one or more of the unique genes or perhaps miRNAs act to limit 

ORF73 transcription, allowing reactivation. To investigate the possibility of the 

vtRNAs as chromatin barriers, one or more cellular tRNA genes could be inserted in 

the left-end of MHV-76 to examine if this also leads to a reduction in reactivation.  

Chromatin barriers are used in other herpesviruses to keep transcription of latency 

associated transcripts active during latency. HSV-1 has insulator-like elements  

up-stream and in the intron of the non-coding RNA LAT, that maintain chromatin 

boundaries, keeping heterochromatin (silencing) out and euchromatin (active) in. 

LAT also promotes heterochromatin on lytic promoters, which leads to lytic gene 

silencing during latency (Cliffe et al. 2009a; Wang et al. 2005b). Cellular non-coding 

RNAs have also been found to promote chromatin silencing, through recruitment of 

the Polycomb repressive complex 2 (PRC2) that methylates Lys 27 on histone H3 

(H3K27) leading to silencing. Examples of these include: RepA that is involved in  

X-chromosome inactivation, the HOX non-coding RNA HOTAIR which represses 
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transcription of the HOXD locus of transcription factors important during early 

embryonic development, and Kcnq1ot1 that confers lineage-specific silencing of the 

Kcnq1 cluster of potassium channel proteins (Pandey et al. 2008; Rinn et al. 2007; 

Zhao et al. 2008).  

Although the vtRNAs localise mainly in the cytoplasm, as seen by in situ 

hybridisations (see Chapter 3 and (Cliffe 2005), dot-blot analysis showed that 18% of 

the vtRNAs localise in the nucleoplasm during lytic infection and 19% during latent 

infection (Cliffe 2005). In addition, vtRNA1 was shown by EMSA to bind Jmjdla, a 

mouse protein of unknown function (Cliffe 2005), which has a jmjC domain. 

Proteins with jmjC domains have been found to be involved in modulation of 

heterochromatin by demethylating histones, such as H3K36, H3K9, H3K4 and 

H3K27 (reviewed in Klose and Zhang 2007; Swigut and Wysocka 2007). vtRNA1 

could act by inhibiting the demethylation activity of Jmjdla or recruiting the protein 

to promote histone demethylation. The vtRNAs may also have a function in 

recruiting chromatin modifying complexes, such as PRC2, and this could be further 

investigated by RNA immunoprecipitation. It may also be of interest to investigate 

the differences in chromatin contents on MHV-68, MHV-76 and insertion virus 

genomes by chromatin immunoprecipitations (ChIPs) to determine if there is a 

difference in the structure of the chromatin with or without the vtRNAs. 

The presence of five vtRNAs and six miRNAs led to a low level of reactivation 

(insertion viruses), while the presence of all non-coding RNAs as well as the four 

unique genes led to a higher rate of reactivation (MHV-68); however, not as high as 

the lack of all non-coding RNAs and the four unique genes (MHV-76). A possible 

explanation for this is that the non-coding RNAs and the unique genes co-operate to 

keep the virus latent and to keep the level of reactivation low enough to evade the 

immune response, but high enough to enable low level replication and spread of the 

viruses to permit long-term latency. The non-coding RNAs suppress reactivation, 

while the unique genes act to both suppress (M1) and promote (M2) reactivation 

(Clambey et al. 2000; Evans et al. 2008; Herskowitz et al. 2005; Jacoby et al. 2002). 

Without any of these genes the virus reactivates at much higher level.  
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The effect of the non-coding RNAs on protein expression could not be determined 

using the cICAT method. Despite thorough optimisation the protein samples were 

found to be too complex to detect anything but the most abundant proteins. Further 

experiments are needed to look at the differences in protein expression; however, the 

effects of the miRNAs on the protein levels may be difficult to examine, due to the 

low level of down-regulation. The fact that vtRNA1 has been found to bind to 

proteins (Cliffe 2005), as well as the functions of uncharged tRNAs and other viral 

non-coding RNAs, supports further investigation into differences in protein 

expression.  

Uncharged tRNAs as a result of amino acid starvation are involved in regulation of 

protein expression in both eukaryotic and prokaryotic cells. In bacteria binding of an 

uncharged tRNA to the ribosome stalls translation leading to lowering of the cell’s 

metabolism and over-expression of genes involved in amino acid synthesis  

(Jain et al. 2006). In addition, in gram-positive bacteria aminoacyl-tRNA synthetase 

genes and genes involved in amino acid synthesis contain T boxes to which specific 

tRNAs bind leading to termination of transcription. However, binding of an 

uncharged tRNA leads to stabilisation of an anti-terminator allowing transcription to 

proceed (Green et al. 2010). It is possible that the vtRNAs have evolved a similar 

mechanism in regulating viral genes.  

In eukaryotic cells uncharged tRNAs activate GCN2 which phosphorylates and 

inactivates eIF2, resulting in reduction in global protein synthesis, activation of 

amino acid biosynthesis genes and genes encoding aminoacyl-tRNA synthetases, and 

in mammals also regulation of gene expression at different levels (Harding et al. 

2000; Hinnebusch 2005; Jiang et al. 2004; Kilberg et al. 2005; Wek et al. 1995; 

Zhou et al. 2008). There is no evidence that the vtRNAs would function to  

down-regulate global cellular protein synthesis. Cytoplasmic protein extracts from 

MHV-76 and Int9 infected NS0 cells separated on a SDS-PAGE gel look very 

similar, with mainly the same protein bands present. Further experiments are needed 

to confirm this. 

Several viral non-coding RNAs regulate protein synthesis. The LATs reduce the 

transcription of lytic genes (Chen et al. 1997; Garber et al. 1997); the EBERs and 
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VAI prevent virus induced inhibition of protein synthesis by inhibiting PKR 

activation (Clarke et al. 1991) (Kitajewski et al. 1986; O'Malley et al. 1986); and the 

HSURs up-regulate genes associated with T-cell activation (Cook et al. 2004; Cook 

et al. 2005). 

If the vtRNAs work as chromatin barriers this would also affect the protein and 

mRNA levels. Taking all this in, the vtRNAs may have an effect on protein and/or 

mRNA levels, and it would be of interest to further examine the differences in 

protein and mRNA levels of cells infected with insertion virus and MHV-76. This 

could be done by including a cation-exchange column in the cICAT method to 

fractionate the sample, or by using ITRAQ or SILAC to examine changes in protein 

expression, and micro arrays to examine differences in mRNA levels.  

The fact that the vtRNAs are selectively packaged in the virion suggests that the 

vtRNAs are needed either in the virion particle or immediately following infection of 

the cell, perhaps regulating cellular or viral protein synthesis. It is not known if the 

miRNAs are packaged in the virion as well. 

The miRNAs did not seem to be involved in the reduction in reactivation; however, 

by comparison to other viral miRNAs, they are likely to target viral and/or cellular 

proteins such as viral proteins that are targets of the host immune response, viral 

gene regulators, regulators of apoptosis, or immunomodulators (Choy et al. 2008; 

Stern-Ginossar et al. 2007; Sullivan et al. 2005; Umbach et al. 2008). miRNA1 has a 

possible target site in the 3’UTR of ORF50, and this needs to be further investigated. 

This could be done by examining rta protein levels by western blot analysis 

following transfection of miRNA1 into MHV-76 infected NS0 cells; however, at 

present there is no antibody available to the rta. An alternative would be to transfect 

cells with a plasmid expressing the FLAG-tagged rta, and then miRNA1, to 

investigate if the rta is down-regulated by miRNA1. 

The adenovirus non-coding RNAs, VAs, share several features with the vtRNAs; 

they are transcribed by RNA polymerase III and encode miRNAs. The VAs inhibit 

the processing of cellular miRNAs by out-competing binding to the Exportin-5 

nuclear export factor and Dicer (Andersson et al. 2005; Lu and Cullen 2004). It is not 

known if the vtRNA/miRNA transcripts could have a similar effect in competing 
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with cellular miRNAs for export and processing. It is also possible that other  

non-coding RNAs may give rise to miRNAs.  

To take the current studies further, the reactivation experiments could be repeated 

with a different MHV-76 stock to see if the same increased reactivation rates seen 

with MHV-76 compared to the revertant virus is still observed. Further, the miRNA 

transfection could be repeated by transfecting revertant infected NS0 cells in stead of 

MHV-76 infected, to ensure that there is still no effect on the reactivation rates. To 

ensure that the miRNAs do not have an affect on the reactivation, the siRNA against 

Dicer transfection should be repeated and the levels of Dicer knock-down examined 

by western blot analysis and the levels of miRNAs by qRT-PCR.  

The current study shows that the presence of the non-coding RNAs in MHV-76 leads 

to a reduction in reactivation. The miRNAs alone do not have an affect on viral 

reactivation in this context; however, further studies are needed to determine the 

mechanism. To accomplish this it would be useful to examine if it is the expression 

or presence of the vtRNA genes that causes the reduction in latency, or if the 

vtRNAs and miRNAs co-operate. Virus constructs with mutations in the miRNA 

seed region in the MHV-68 genome and insertion of other tRNA genes or only one 

of the vtRNA/miRNA transcripts into the left end of MHV-76 may help to answer 

some of these questions.  

In addition the functions of the vtRNAs will need to be investigated. Previous studies 

have shown that the vtRNAs interact with proteins and it would be interesting to 

investigate if the vtRNAs bind specific proteins such as PKR, exportin-5, Dicer, or 

PRC2, as well as looking at changes in protein and mRNA levels in the presence of 

the vtRNAs. It may also be of interest to examine if the vtRNAs bind other RNAs.  

To determine the function of the miRNAs it may be useful to examine what mRNAs 

they interact with through RISC pull-down assays. It is not known how the 

vtRNA/miRNA transcripts are processed and if Drosha and Dicer are involved and 

this needs to be further investigated.  

Further investigation into the processing and functions of the vtRNAs and miRNAs 

may give an insight into not just viral non-coding RNAs but also cellular non-coding 

RNAs and add to the understanding of the functions of RNA molecules.  
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Figure 8.1 qRT-PCR dissociation curves for miRNA1-6 on RNA from mock (blue) and 
MHV-68 (red) infected NS0 cells. 
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Figure 8.2 qRT-PCR dissociation curves for miRNA expression by MHV-68 (red), Int9 
(green) and Int2 (grey) viruses and in mock-infected cells (blue). Showing miRNA1, 3, 
4, 5, 6 and 5S ribosomal RNA dissociation curves.  
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