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ABSTRACT -

The fundamental link between prespectral measures and
Banach function spaces is to be found in a theorem of
T.A.Gillespie which relates cyclic spaces isomorphically
to certain Banach function spaces. We obtain here an
extension of this result to the wider class of precyclic

. spaces.

We then consider the properties of weak sequential
completeness and reflexivity in Banach function spaces:
necessary and sufficient conditions are obtained which in
turn,'via the afore-mentioned.isomorphisms, both extend
and simplify analogously formulated existing results for

cyclic spaces.

Finally the concept of a homomorphism between pairs of
Banach function spaces is examined.The class of such
mappings is determined and é complete description obtained
in the form of a (unique) disjoint sum of two mappings,
one of which is always an isomorphism and the other of
which is arbitrary in a certain sense, or null.It is

shown moreover that the iSomorphic component itself is
composed of two other isomorphisms in a  manner analogous
to the geometrical composition of a rotation and a
dilatation. i ' ‘ |



Ne la cherchez plus puisqu’élle est partie
Il 1’a appelée et elle a dit oui,

Ne la cherchez plus car elle a suivi

Celui qui un jour lui a souri...

Mais au. loin dans le vent, écoutez cette voix
Chanter un .printemps d’amour et de joie...
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PREFACE

The theory of normed vector lattices of functions was in-
itiated in the thirties by G:Kobthe, then pursued by sev-
eral others, most notably by Toeplitz. These function
lattices became known as normed Kdthe spaces, or also,

when their norm is complete, as Banach function spaces.

. The theory was prbperly established and standardised by
A.C. Zaanen and W.A.J. Luxemburg who produced a series of
very detailed papers entitled "Notes on Banach function
spaces" in Proc. Acad. Sci. Amsterdam and Indagationes
Mathematicaé. This extensive material was later distilled
ihtdﬁfhe succinc% and attractive theory rendered in [Z],
§ 63-73: |

The fundamental link between Banach function spaces and
prespectral measures was made by T.A. Gillespie in 1978
“when a Representation Theorem for cyclic spaces was ob-
tained in terms of. certain Banach‘function spaces. This
theorem, as one might expect, will be exploited quite con-.
siderably in this thesis. Indeed after Chapter I which
summarises the background notions pertinent to the fol-
lowing chapters, we begin, in Chapter Ii; by extending

the theofem to yield a representation for the wider class

of precyclic spaces.

The impulse for Chapter III came from.two pépers by

L. Tzafrifi ({1, [T,]) where necessary and sufficient
conditions for weak sequential completeness and for re-
flexivity of cyclic spaces are discussed. The important
'results‘are proved again here differently and more con-
cretély by invoking the represéntation theorems and work-
'ing within function SpacesL In the process they are ex-

tended as well as simplified.
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In Chapter IV which pertains essentially only to Banach
function space theory, the object was to explore the con-
cept of a homomorphic‘relatiOn between Banach function
spaces. The literature appears to have a gap in this area,
beyond the mere application of Riesz homomorphism theory
to this subclass of Riesz spaces. Riesz spaces in general
are not endowed with a norm and it was found that the
function norm, by its monotonicity, forces any pair of
Riesz (i.e. lattice-) homomorphic Banach function spaces
to be homomorphic-in a given sense in the norm topology.
Moreover it turns out that every Riesz homomorphism of
one Banach functibn space onto another arises as the re-
striction to the former space of a unique surjective
Riesz homomorphism between the respective parent spéces
of measurable functions. We show that this élways con-
sists of two uniquely defined diéjoint components,one of
which is injective (and consequently an isomdrphism on
"its domain) and continuous in the order topology, whilst
the other is_noWhere injective and everywhere dichntinﬁ—:.
ous in this topology, unless it vanishes. It is also |
shown that the isomorphic component has é strongly geo-
metric character in that it is composed of two isomor -
phisms in a manﬁer analogous to the Euclidean composi-

tion ‘of a rotation and a‘'dilatation.



CHAPTER I. INTRODUCTION AND PRELIMINARY RESULTS.

In this chapter, we present a brief account, in two
independent sections, of the elementary properties of
prespectral measures and of Banach function spaces, as
far as is relevant to the rest of this thesis. A
comprehensive account can be found for § 1 in [DSZ] and
for § 2 in [ 2z ].

We begin by giving some notation, for the most part

standard.

If X is a Banach space, X* will denote its Banach dual
space and B(X) will denote the set of bounded linear
operators on X. When x € X and ¢ é X*, <x, o) will
denote the value of the functional ¢ at the point x.

All spaces will be over € unless otherwise specified.

The symbol || -l will always denote the usual norm on
any given space, e.g. if ¢ € X*, |l¢]|| will mean the dual
norm of ¢, when no confusion arises from this

convention.

If (R, L, u) is a measure space, LT(p)and Lw(u) will
denote respectively the usual spaces of (equivalence
classes of)‘u-integrable and u-essentially bounded
functions defined on Q.

The linear span of elements'x1,xz}.;. will be denoted
by lin {x1, X;,-.:, -} and their closed iinear span by
Iin {xq, R s},

The symbols v, A will denote lattice supremum and

infimum respectively.



§ 1. Prespectral and spectral measures.

Let X be a Banach space.

1.1 Definitions. A Boolean algebra of projections B

on X is a commutative subset of B(X) such that
(i) P2 =p (P € B) ,
(ii) o € B ,

(iii) 4if P € B then I - P € B (where I is the
identity operator on X),

» (iv) if P, Q € B then P v Q=P + Q - PQ € B and
P A Q=PQ € B.

A Boolean algebra of projections B is called bounded if
there is a real constant K with ||P]] < K (P € B).

The Boolean algebra B is said to be abstractly oc-complete

if each sequence in B has a greatest lower bound and a
least upper bound in B; B is said to be o-complete if it

is abstractly o-complete and if for every sequence {Pp}

in B,

(Vp)x =T {PpX : n=1,2,...} ,

(/I}Pn)x N{P X :n=1,2,...}.

n

1.2 LEMMA ([DS;1,XVII.3.3). If a Boolean algebra of
projections is abstractly o-complete, then it is bounded.

1.3 LEMMA ([DS,],XVII.3.11). The restriction of a o-
complete Boolean algebra of projections to an invariant

subspace is o-complete.

A subset T of X* is called total whenever y € X and



<y, o> = 0 for all ¢ € T together imply that y = O.

1.4 Definition. A prespectral measure of class (I, T)

with values in B(X) is a mapping E(-). from some o-
algebra X of subsets of an arbitrary set @ into a
Boolean algebra of projections on X, satisfying the
following conditions for all §, 69, 65 € I:

(1) E(81) + E(83) = E(87 U 82) + E(S1)E(82);

(ll) E(61)E(62) =-E(51 n 52);
(iii) E(Q) = I;
(iv) IE(8)ll < K for some constant K > O;

(v) if T = {9 € X*¥ : <E(-)x, 9) is a countably
additive complex measure on I for every x € X}, then

I' is a total linear subspace of X*.

A spectral measure in B(X) is a prespectral measure of

class (I, X*). It can be shown that a prespectral
measure in B(X) is spectral if and only if it is
strongly countably additive.

1.5 LEMMA ([DS,]1,XVII.3.10). Let B be a Boolean algebra
of projections on X. Then B is o-complete if and only if

B is the range of a spectral measure defined on a o-
field of subsets of a compact space.

§ 2. Banach function spaces.

Let ¥ be a o-algebra of subsets of a non-empty set Q and
let yu be a o-finite measure defined on (Q, ). Let My
(resp. Mﬁ) denote the set of all complex-valued (resp.



non-negative extended-real-valued) measurable functions
defined on Q.

Note: a function in Mu (resp. Mﬁ) will be called
measurable if the inverse image of every Borel subset

of € (resp. [0, »]) belongs to IZ. Although this differs
slightly from the definition of measurability in [z ],
which is our principal source for the theory of Banach
function spaces, the difference is of little consequence
and the theory developed in [ Z ] applies here entirely.

Elements of M, (resp.‘Mﬁ) which agree p-a.e. are
identified and we shall not normally distinguish between
a function £ and the equivalence class of functions that
are equal to £ a.e. This means, in particular, that the
support of £ is defined only up to a pu-null set. Thus,
in fact, any two elements of I whose symmetric difference
is a p-null set could essentially be identified and we
shall not require to make a formal distinction between
the og-algebra I and its measure algebra I/N,where N
denotes the collection of p-null sets. (See for instance
Theorem 11.5.)

2.1 Notation and terminology.

(1) The characteristic function of a set ¢ will be
denoted by Xge

(ii) If o € ¢ and L is any subset of M;, then Xl will
denote {fx,; : f € L}.

(iii) If £ € My, supp £ = {x € Q@ : £(x) # O} and if
f e Mﬁ, {f <n} ={xe€Q : £(x) <n}, etc. (defined up
to a uy-null set).

(iv) IfA, €% (n=1,2,...),we shall write A, + A to
mean that A, < A for each n and Xan t Xp H-a.e. as n > o,
It is easily shown (by a measure-theoretic argument)



that whenever we have Ap 4 A and Aﬁ + A (Ap, Aﬁ € I;
n=1,2,...) then

!
An n An + A .

(v) When a simple measurable function is expressed in
n

the form § @;Xg, r this will always mean that the
i=1 1

scalars a4 are distinct and the sets Gi are pairwise

disjoint (i = 1,...,n).

(vi) Two functions are called mutually disjoint when-
ever their supports intersect only in a null set; if L

is a subset of M the function f € My is called dis-

(TR
joint to L if fg = O a.e. for every g € L.

When referring to functions in M;, "a.e." will always

mean py-a.e. unless otherwise indicated.

The remainder of this section provides an outline of
the theory of Banach function spaces. Proofs and further
detail may be found in [ Z ], §§ 63-73.

2.2 Function norms.

A function norm on (@, Z, u) is a mapping p : Mﬁ > [0, =]
such that for all £, g € Mﬁ and all o € [0, «=[,

(1) p(f + g) < p(f) + p(g);

(ii) p(af) ap(f);

(iii) p(f)

I A

p(g) whenever £ < g a.e.;
(iv) p(f) = 0 if and only if £ = O a.e.

Setting p(f) = p(|£f]) for £ € M;;, we define the normed

Kbthe space

L, = {f eM : p(f) < =} .



When L, is norm complete, it is known as the Banach

function space derived from p.

2.3 Properties of function norms.

(i) p is called saturated if, whenever ¢ € I and
p(g) > O, there exists o' € o with O < D(XU.) < o,

We shall always, for convenience, make the assumption
that p is a saturated norm: this assumption is
equivalent to simply deleting from Q a maximal p-purely
infinite set, i.e. a maximal set § such that for every

f € Ly, £fxg = O a.e. In this situation we can, and shall

frequently, invoke the Exhaustion Theorem ([ Z ],
Theorem 67.3): thié measure-theoretic result has
important consequences for our work, most notably the
following:

if p is a saturated function norm based on

(R, £, py) and if o € ¥, then there exists in

L _a sequence op + o with p(xO ) <o (n=1,2,0..).
== Plho,

(ii) The function norm p has the Riesz-Fischer property

if, whenever £; € M} (i = 1,2,...) and
< o]

L p(f;) < = then p( § £3) < =.

i=1 i=1

(iii) p has the weak Fatou property if it follows from

O <uy <y,

su (u.) <
np piuy,

£ ... tua.e., with each u_ € Mﬁ and
», that p(u) < =,
(iv) p has the Fatou property if it follows from

€ M:, that

O <u

p (u)

<uy < ... tua.e., with each u

sgp p(uy).

n

=

The Riesz-Fischer property is equivalent to completeness
of the normed space L, ([ 21, 64.2), and properties
(ii) - (iv) are listed in increasing order of strength,

i.e. (iv) = (iii) = (ii) ([ 2], 65.1). .



2.4 The Associate Norms.

For each f € M:, define
p'(£) = sup {f fg dp : g € Mﬂ, p(g) < 1} .

It is easily checked that p' satisfies conditions (i) -
(iii) of 2.2, so is a function'seminorm. If p is
saturated, then p' also satisfies condition (iv), and
is then called the associate norm of p. With some more

work it can also be shown that p' is saturated ([ Z ],

§ 69). Instead ovap.

function space the associate space of Ly

we will write L} and call this

We can define the second and nth associates of p by
(n) = (p(n’1))|

n > 3. The following fundamental results should be

p" = (p')' and, inductively, »p for

noted:
(i) p' always has the Fatou property ([ 2], 68.1);

(ii) p" < p, with equality if and only if p has the _
Fatou property; if p has the weak Fatou property, then
p and p" are equivalent norms, so L, and L! then contain

o p
the same elements ([ 2], 68.2, 71.3);
(iii) From (i) and (ii) clearly p®*2) = ;™) (5 1),

(iv) If p is a saturated function norm, then for all
+

u, v € Mu,

Juv du < p(u)p'(v) (H8lder inequality)

([z1, 68.5). In particular, if u € Ly and v € Ly, then
uv € L1(u).

2.5 The order ideal L).

An order ideal of M; is a linear subspace I such that,
if £ € I and g € My with |g| < [f] a.e., then g € I.




Every ideal I has a carrier set C € ¥ which is defined

to be the complement in @ of a maximal set C' € I such
that fxc. = O a.e. for every £ € I.

An element f of Loy is said to be of absolutely continuous

norm if, whenever fi € Lg (i =1,2,...) and
|£] > £, > £, > ... v O pointwise a.e. on Q, then it

follows that p(fj) - O, as i » =. Let Lg denote the set
of all functions of absolutely continuous norm in Lp.

(1) Lg is a norm-closed ideal of Lo, and we shall denote
by Qa the carrier set of Lg.

(ii) If p is an absolutely continuous norm, i.e. if
Ly, = Lg, and if p has the weak Fatou property, then p has
the Fatou property ([ 21, 73.a).

(iii) Lg is an order-dense ideal of XQ Lp , 1il.e. when-
a

ever O < £ = fXQa € Lo, then there exists a sequence {fn}

iniLg with 0 < £+ £ a.e. '

Proof. Let 0 < f = fXQa € L,. By the Exhaustion Theorem
([ z1, 67.3) and the definition of the carrier of Lg, we
can find a sequence of sets Q' 4 Q_ with ., € e

n ' “a Qn e
(n =1,2,...). Let Qﬁ = {f < n} and define Q, = Qﬁ n Q;
(n=1,2,...). Since £ < » a.e., Q; 4 Q and so (from
2.1(iv)), Qn 4 Qa. Hence O < fXQn 4 £ a.e., and for

each n,

a
fx <nyx <ny €L .
4 4 Qﬁ p
Taking fn.= fXQn (h = 1,2,...) we have a suitable
sequence.

Note (iii) implies, in particular, that for all f € M:,

p' (fxq ) = sup {f fg du : 0 < g € Lo, o(g) < 1) .



2.6 The dual space of Lg.

The dual space Lg is partially ordered by defining that
G1 <G, whenever <f, G1) < <f, G2> for every £ € L:

The non-negative linear functionals on L, are precisely

o)

those elements G of Lg satisfying G > 0, where O denotes

the null functional. Let @ < G € L;: then G is said to
be

(i) an order continuous linear functional if, whenever

fi € Lp (i=1,2,...) and £

12 f2 > ... ¥+ O a.e., we have
<fnl G)" o ;

(ii) a singular linear functional if, whenever

G > G1zémL; and G1 is order continuous, then Gy = 0.

THEOREM (see [ 2], § 48). Any G € LB has a Standard

(Jordan) Decomposition as

G = G1 - G2 + i (G3 - G4)

where each Gi >0 (i=1,...,4), and where this is the
most efficient decomposition in the sense that if we

also -have
G = G5 - G6 + i (G7 - G8)

non-negative and G4 - Gy = Gg — Gy is non-negative.

Let G € Lg: we call G order continuous (resp. singular)
if each of the non-negative components of G in its
Standard Decomposition is order continuous (resp.

singular).

In [ 2], § 70 it is shown that the mutually exclusive
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properties (i), (ii) for linear functionals define
disjoint linear subspaces of L;, and moreover that

every element G of L; has a unique decomposition as
G = G¢ + Gg

where G, is an order continuous, and Gg a singular
linear functional. It is shown also that an element G
of Lg is order-continuous if and only if there exists a

function g € Lé such that for every f € L

<fl G)'_'J'fgdu ’

pl

and in this case the dual norm |G| of G is precisely
p'(g). It is therefore standard practice to identify
the subspace of order continuous 'linear functionals
with Lé, and, letting L;,s denote the space of singular
linear functionals, we write

L* = L' @& L* .
p p pPrS

Moreover, Lé is a total linear subspace of L;.

Standard Decomposition of functions.

Note finally that every element f of My, has a unique
decomposition as f1 - f2 + i(f3 - f4) where for
J=1,...,4, fj is an element of M:, £, and £, are
disjoint, and f3 and f4 are disjoint. This fact
enables us to obtain results more easily by proving
them first for non-negative valued functions and
extending them by the Standard Decomposition above, to
all of My This extension process is usually trivial,

and when occurring, will therefore not be made explicit.



CHAPTER II. REPRESENTATION OF PRECYCLIC SPACES.

In [G1], T.A. Gillespie gave a representation theorem
for cyclic spaces, in terms of the ideal of functions
of absolutely continuous norm in a Banach function space.
In the present chapter we shall obtain a slight genera-
lisation of this result, and pursue one or two points
arising, particularly in relation to Banach function
spaces themselves. We begin by summarising Gillespie's
representation.

Definition. Let X be a Banach space and B be a g-

complete Boolean algebra of projections on X. Then X is
called cyclic with respect to B if there exists an
element xo of X such that '

X = Iin {px, : P € B} .. ' (1)

Such an element X5 is called a cyclic vector for X.

REPRESENTATION THEOREM ([G1],§ 3). Let B be a o-complete
Boolean algebra of projections on a Banach space X and

let X5 € X be such that

X = 1lin {Px, : P € B} .

v w0
Then there exist a finite meadsure uhdefined on a o-

algebra © of subsets of a compact Hausdorff space Q, a
saturated function norm p based on (£, Z, u), and a
linear isomorphism U from the ideal Lg of Lp onto X such
that

(i) p has the Fatou property:;

(1i) the constant function 1 belongs to Lz and to Lé;

(1ii) U1 = xg;
a

S and ¢ € L™ (1) ;

(iv) U(ef) = TLUE for £ € L

&) and o ssaecxfoi weaswe £ wikh ranqe B
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(v) NUEH < p(£) < 4K[Uf]| for £ € Lz ,

where Ty = [ @(A)E(dA) is well-defined in the norm
topology of B(X) ([DS2],p. 1929), and K is a uniform
bound on the norms ||E(o))] (o € £) (Lemma 1.2).

Via this isomorphism, the Banach space X inherits a
natural lattice ordering given by

X1 2 X, if U _g1 < U X, u-a.e.

The g-completeness of B ensures that for each x € X a
Bade functional can be found ([DSZ],XVII.3.12), that is
to say an element x* of X* such that '

(i) <Px, x*) > 0 (P € B) , and

(ii) <pPx, x*> = 0 only if Px = O.

The measure u of the theorem is defined by taking a Bade

functional xg corresponding to x_. and letting

o)
(o) = <E(0)xg, xé) a (o € Zf R

Since B is og-complete we also have (Lemma 1.5) that B is
the range of a strongly countably additive spectral
measure E(-) on X. We shall presently be considering
Banach spéces X of a form analogous to (1), where B is
replaced by the range of a prespectral measure on X.

§ 3. Prespectral measures in L, and Lg;

We begin with two lemmas of a general character which
will play an important part in later chapters also.

3.1 LEMMA. (L3)* = y_ L' (cf. [ 2], 72.5, 6).
o aale
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Proof. Recall that ([2], § 70, § 73)

* = ' *
Lp Lp ® Lp,s (2)
* aytL

and L%, s S (= . (3)

Let O < g € Lé and write
9a =g, + Ib =9 - 95 -
For any h € L&, h = hy. , so
la

(b, gp> = [ hgy du =0,

a)L

0 . 4Hence,

i.e. 9y, € (L

' a, L
Kaaa s € DL | (@)

a

1
o)

a

Suppose that 95 € (L o’

. Then for any o € I with Xg € L
0= <Xgr ga> = [ 9a du .
o}

Since 9, = nga > 0 a.e., this means that IaXg = O a.e.

By the Exhaustion Theorem ([ Z ], 67.3) we can find sets

) a

o, * 4 with each Xop € Lp, .

g, = O a.e. Hence g Lb is disjoint from (Lo)l. Putting
a

it follows easily that

this fact together with (3) and (4), compare then with
(2) which may be rewritten as
* = ' 1 *
LS = X Bp @ Xgug U ® L3,s -

The result then follows.

3.2 LEMMA. Let p be a saturated function norm with the

Riesz-Fischer property. Then

a _ a
Lp = XQa Lou



L
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Proof. We begin by showing that Lg is a closed subspace
of L3. Recall that p = p" on Ly ([ 21, 72.3). If £ € Lj
and £ > f1 > fz > ... +.O a.e., then p"(fn) = p(fn) + 0
as n » », Hence f € Lzﬁ and

a .

LS < LY. . (5)

Suppose that £ € LS (n=1,2,...) and £ € L} satisfy

p"(f-fn) + 0 as n » ». The sequence {fn} is p"-Cauchy and
hence p-Cauchy so, since L% is a closed ideal of L,, there
exists g € L) with p(g-f ) ~ O.

However then,
" (g=£,) = p(g-£)) + O .

So g=f a.e. and £ € Lg as required.

Let Qo denote the carrier of L?". From (5), Qa < Qc and
a a a

. ; ; a
0 < anLp". Hence, viewing Lp as a subspace of Lp",
a 41 a, bl
L " L .
(an 0 )T < | p)
We shall show the converse inclusion also holds. We have
* o= m * = ' * i i a
that Lp" Lp‘ ) Lp",s Lp. e Lp",s’ and viewing Lp as
a subspace of Lg,
a,tl a . 1l
L > (L, o L*, . 6
(L))" 2 (LJ)7 2 LE. o (6)
Since
L*, =L"™ & L*, =L' @& L*, = L' ® L' & L*,
o p p",s  Tp p"rs ~ XQa o XasagTe ¢ TpMis
it follows from (6) and from Lemma 3.1 that
a,L _ , *
(Lg) Xasg lp @ Tpu,s -
— ] . . -
If g = IXo\Qg € L), then trivially <h, g7 = 0 whenever
a a 1l
h =nh € L_,. Now suppose 0O < = eEL'nN L ).
XQa o ppose g gXQa 0 (XQa 0 )

_ . . a
Then for any ¢ € Zav- {§ n Q, ¢ § € £} with Xg € Lp",



0 =<xv9>=/gdun ,
g

so IXg = O a.e. By the Exhaustion Theorem ([ 2 ], 67.3),
we can find a sequence o4 4 Qa with Xon € Li" for each n.
It now follows that IXga = O a.e. and thus

a J- ] — | - a -L ]
= L = N
(anLp") nLy PN (Lp) n Lp

So finally, since Lg and anLg“ are both closed ideals
of

o
a a,ll a ,Jl1b a
12 = (L = L2, = L2, .
o = (Lp) (xq Lon) Xa_ Lo
3.3 COROLLARY. Lg = Lg" if and only if @, = Q_, where

Q. is the carrier of Lg".

We now give a further three lemmas which are crucial
to the present chapter.

3.4 LEMMA. Let p be a saturated function norm based on

(Q, Z, u). Then the set of multiplication operators

MXo : £ fxO (c € £, £ € Lp) constitutes a bounded
Boolean algebra of projections on L, and the mapping

E(-) : 0w My, on L is a prespectral measure of class Lé.
Moreover each element of L, has a corresponding Bade
functional in Lj. This prespectral measure E(.) is
spectral (i.e. strongly countably additive) if and only

if p is an absolutely continuous norm.

Proof. It is routine to check that the operators
{Mys : o € £} form a bounded Boolean algebra of pro-
jections each of norm at most one; whenever £ € L, and

g € Lé, then fg € L1(u) so the mapping

o P (chf, g> = [ fg du (o € )
o
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is a countably additive complex measure on I. Let f € Lp
and suppose that <f, g = O for all g € Lé. We show

that <|f|, g> = O for all g € L
function satisfying f6 = |f

5. Let 8 be a unimodular

. Then for any g € L},
gb € Lé also, and

0 =<£f, g6y = [ £g6 dau = [ |f|g du = <[|£f], gD .

Therefore there is no loss in assuming that f € L;.
Since p' is a saturated norm, the Exhaustion Theorem
([ 21, 67.3) allows us to find a sequence Q, + Q with
XQn € Lb for each n. By hypothesis,

én £ dau = <{f, X9n> =0

for each n. Hence fXQn = 0 a.e. for each n, and it
follows that £ = O a.e. on Q. Hence Lé is a total sub-
space of L*, and thus E(-) is a prespectral measure on
Lp, of class (I, Lb).

Now choose an element h of L} with h > 0 a.e. For any
fixed £ € Lp, let y = supp £ and let 6 be a iwdion o My
“ 18l<tae. awd . supp:8'=y, satisfying £6 = |f| a.e. For
any o € 1,

Xgfr h0>= [ £ho du = [ |E£|h dy > O ,
o (e)

and {x,f, he> = 0 only if |£|hx, = O wu-a.e. Since

h > 0 a.e. this occurs only when |[f|x; = O a.e., i.e.
when fx, = O a.e. Therefore hf® is a Bade functional for
f, and is in Lé since |h6| € h a.e.

Suppose finally that E(*) is strongly countably additive.
Let £ € L, and'{on} be a sequence in I such that o  + @.
Then we have :

p<fx0n) = p(E(o,y)f) = O

-
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But this shows that f is of absolutely continuous norm
Hence L, = L3. (53 21,32:.1).

Conversely if L, = L%,_then Ly = L, so the measure
E(+) is of class (Z, L;) and hence is strongly
countably additive (Def. 1.4).

3.5 COROLLARY. If Lo is weakly sequentially complete, -
then L, = LJ.

Proof. Assume Lp is weakly sequentially complete. Then
by [G3], Theorem 1 and Corollary, every prespectral
measure on L, is spectral. In particular, the measure

o » MXO is spectral. From Lemma 3.4 therefore, Lo = Lg.

In [G1] it was shown that whenever 1 € Lg, then L% is

dense in Lz. The next lemma generalises this fact.

3.6 LEMMA. Let p be a saturated function norm with the

Riesz~Fischer property, and let f € Lg.have support Q5.
Then, duot\‘-\s \"J 3-{ the ?ﬁv\u‘]x«(. vd eall Su\uated 53 .(,

More generally, for any g € L2 with supp g = vy € I,
o .

J =y 12 . :
g~ Xy"p : ?

" Proof. L% is a closed order ideal of Ly, so clearly
since f € Lg, the closed principal ideal J; generated
by £ is contained in Lg.

For the converse inclusion, suppose O < h € Lg. Since
Jg = J|f|' we shall assume that £ > 0 a.e. Let

E . =1{h<n} (n=1,2,...). By the Exhaustion Theorem

n
(Lz1l, 67.3), we may choose a sequence Qn 4 Qa with
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xgn € Lg for each n. Let F, = E, N Q. (n =1,2,...).

n
Since h < « a.e., En 4 Q so Fn 4 Qa and han + h a.e.
Since h € L§ and h > h - hxp; > h - hxg, > ... + 0 a.e.,
we have that p(h - han) + O; it is therefore sufficient
to prove that for each n, hxp, € Je.

Let n be fixed and write h = han; letting G, = {f > %}
(m =1,2,...), then XGn < mfom < mf, so XGm € Jf

: : a
so hnXGm * h, a.e. Since h, € L3, pth - hnXGm) > O as
m - o, Now for each m,

BaXey S PXppng, < ™Xeg € Jg

hence h € J¢ and the first assertion of the lemma
follows.

It is clear that the more general statement also follows

in a similar manner.

Note that by Lemma 1.5, Lemma 3.4 tells us that whenever
p is an absolutely continuous norm, then Lp is a cyclic
space. It is easy to see that more generally, the ideal
Lg of L, is cyclic with respect to the restricted pro-
jections ch L% (0 € ), by virtue of its invariance
under each MXo’ and by Lemma ¥.41. Recall however that the
ideal of functions of absolutely continuous norm occurring
in Gillespie's representation displayed several special
properties. The following lemma will derive directly from
any p which is complete and saturated, another function
norm T displaying properties (i) - (v) of the Represen-
tation Theorem, together with an appropriate linear iso-
morphism betweenwL% and L?.

3.7 LEMMA. Let p be a saturated function norm with the

Riesz-Fischer property, based on the o-finite measure

space (2, I, u). Let O < fo € L: with supp f0 = Qa.
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Then Lg is a cyclic space with respect to the Boolean

algebra of projections {MX I

OiLg : 0 € } and fo is a

cyclic vector.

Proof. From Lemma 3.4 and Lemma: 3.1 - the pro-
jections {MXoiL% : 0 € L} form a o-complete Boolean
algebra. From Lemma 3.6, Lg = Efo. Define a measure v

op 4 = {onNn Qg ¢ 0 € z} by

v(o) = [ £ o  du ,
(0}

where ¥, can be taken to be any fixed non-negative
element of L/, whose support is 57 v and ulEa are then
equivalent measures. Now define a function norm 1 on
M, by

1(g) = p"(gfy) (g € My) ,
and a mapping U1 : M, > M, by

U.f = ££ 1

Then for ea;h £ €M, T(U1f) = p"(foa) and

— -:'1 - — " —_ "
L. = {ffo : £ = fXQa € Lp} = U1(XQaLp)_‘
It is clear that 1 is a saturated norm. Now suppose we
have 0 < uy <uy; < ... + u a.e., with each u, € L;. Then,
since p" has the Fatou property,

t(u) = p"(uf) = sup p"(unfo) sup T(u,) .

Hence 1 has the Fatou property.

For any O < £ € Mv'

' (£) O a.e.}

sup {/ fg dv : 1(9) <1, g

|v

sup {J fgf o  du : p"(gf,)

A

1, g > 0 a.e.}
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sup {J f£go_ du : p"(g) <1, g > 0 a.e.}

p™ (£o_)

Il

p' (fcoo) .

In particular, t' (1) = p‘(wo) < o (where clearly, 1
d tes .
enote an)

Let O < g € L? and suppose we have
ng 2912952 - } O uy-a.e. Then

-1 -1
g 29,5 2 ngo 2 <+« ¥ O yu-a.e. on 9, therefore

also v-a.e., and we haVevT(gif;1) +0as i +» », i.e.
p"(g;) » O as i » =. Hence gfy € Lg". Since

. a
gfo = ngXQa' then from Lemma ‘3.2, gfo € Lp.

An equally easy argument in the converse direction
allows us to conclude that g € L? if and only if
gf, €'L2, or equivalently that

f € LS if and only if U4f € 1 .

In particular g1 = fo, so 1 € L? and thus the norm 1
displays all the desired properties.

Since Q5 is the carrier of Lg, it is evident that
U =U,|,a 1s one-one. Hence U : Lg > Li is a bijective
linear isomorphism. For each £ € L&,

T(UE) = p"(f£) = p(f), so U is bicontinuous. Thus U is

the required isomorphism of Lg, and finally,

a el '
Ly = lin {x,f, : o € L} .

Lemmas 3.6 and 3.7 show that the principal order ideal
generated in L, by any function of absolutely continuous
norm is a cyclic subspace of Lo. In fact a broader
result is true as we shall see in Prop. 3.9. But first we
need the definition of a precyclic space.
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8 Definition. Let X be a Banach space and E(+) be

prespectral measure. on X, of class (L, T),where I is

3.
a
a o-algebra of sets, and T = {x* € X* : <E(.)x, x*> is
a countably additive complex measure on I for every

X

€ X}. If there exists an element X, of X such that
X = 1lin {E(0)xg : 0 € £} ,

then X is called precyclic with respect to the range of
E(-), and X5 is called a cyclic vector for X.

Notation. Given a prespectral measure E(+) on a Banach
space X as above, we shall denote by M(x) the precyclic
subspace 1lin {E(o)x : o € £} of X, generated by the
element x of X.

3.9 PROPOSITION. Let p be a complete saturated function
norm based on (2, I, u) and let g € Lp. Then the closed
principal order ideal J

g is a precyclic subspace of Lp
with respect to the prespectral measure E(-) : o »> MX0

(0 € £), and g is a cylic vector, i.e.

Eg = 1in {xg9 : o € I} .

Proof. For each o € I, |xy 9| < |g| therefore X9 € Jgi
since an ideal is a linear subspace,

1in {Xg9 : 0 € £} =€ Jg and hence M(g) < Jg. For the
reverse inclusion, note firstly that whenever ¢ and § are

elements of I, then

My s (Xg9) = Xgned € M(g)

so M(g) is closed under multiplication by characteristic
functions and therefore also under multiplication by
simple functions. Now let ¢ > O be a bounded measurable

function: there is a sequence {sn} of simple functions
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*
such that 0 < s_ * ¢ a.e. uniformly as n » «®, and we may
therefore assume (or take a suitable subsequence to
ensure) that for each n,

n - el < 27" a.e.

For any £ € M(g), we have s, f € M(g) from above, and
p(0f = s £) = p(|o=s |£) < 27 "p(£) » O

as n > », Since M(g) is norm-closed, ¢f € M(g) and so
M(g) is closed under multiplication by any bounded
measurable function. Since g € M(g), it now follows that
the order ideal Jg is contained in M(g) and hence that
Jg < M(9) .

§ 4. A representation theorem for precyclic spaces.

Throughout this section, we let E(-) be a prespectral
measure of class (I, I') on a Banach space X, and we
suppose that there is an element e of X such that

X = 1in {E(g)e : o € T} .

Further, we assume that a Bade functional e* may be
found for e, in I'. We introduce definitions for a
measure space 4 on I and a function norm p on My,

similar to those of [G1j, viz.

u(o) =<E(o)e, e*) (o0 € 1)
and

p(£) = sup {lTgell : || < |£| a.e., ¢ € L"(n)} (£ €M),

recalling that T, = é ©(A)E(dA) is well-defined in the

uniform topology of B(X), for each ¢ € L”, and satisfies
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HT@M < 4K llofl, where K is a uniform bound for
IE(o)l = o € 2} ([DS,], p. 1929).

That p is then a saturated function norm follows
exactly as in [Gq]. We include at this stage a purely
technical lemma,and derive a corollary thereof which
will enable us to show completeness of the norm p. The
setting of this lemma is an arbitrary Riesz space (or
vector lattice): since the corollary, and its appli-
cation in Prop. 4.3 use none but the most elementary
lattice theory and the fact that L, is a Riesz space,
it is not pertinent to say any more about Riesz spaces
here. A fuller introduction to their properties will be
given at the beginning of Chapter IV, or may be found
in [LZ4 and [F ].

4.1 LEMMA ([F ], 14 Jb). Let E be a Riesz space. If

{xi : i=1,...,n} is a finite sequence in’E+; and vy € E
n
satisfies |y| < ] x;, then there exists a finite
i=1 ‘
sequence {yj : i

[

n
1/...,n} in E such that y = ) Yi
i=1

and |yj| < x; for each i.

Remark. From the proof of the lemma, it also follows
that the sequence obtained satisfies |y;| < |y| for

each i.
4.2 COROLLARY. Suppose we have x, x; € E' (i = 1,2,...)
satisfying x = ) xj, and y € E with |y| < x. Then there

i=1 '
exists a sequence {y;} in E such that |yj| < x; A |y]

n

(i =1,2,...), and for each n, y! =y - Y yi satisfies
|Y$[ < 1 x5
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@

Proof. For m = 1,2,..., define x! = } x, so that
m r=m+1

x = ¥ xr + x!. We apply the lemma and remark
r=1

iteratively with n = 2 at each step.

Step 1. sSince |y| < x = xq + xj, there exist elements
Yqr Y‘i of E with IY1I S XA |yl [Y‘il ix'i A ly| and
Yy =¥ty o

step n+1 (n > 1). We have |y!| < x| = x + so

. X L] .
n n+1 n+1’
in E with

there exist Ynet! yﬂ+1
DAVEN B SRR D SR SR O F
| Y49 £ %peq A Ypl 2 x50 A lyl and vy

= '
n+ Ynet ¥ Yneq-

‘The sequences {y;}, {yi}lthus defined satisfy the

required conditions.

4.3 PROPOSITION. p has the Riesz-Fischer property.

Proof. Suppose fi € M: (i=1,2,...) and 2 p(fi) < o
Let £ =’lz1 f;, € M) : we show that f € L.
1=

Let ¢ € L” with |9| < f a.e. Applying Cor. 4.2, there

are sequences {mi} such that for any N € N,

N

o = Q. + Y
121 N

ien’ Wiltien

where o, |

<0
|yl < ._z f;. We claim now that Yy + O a.e. as N » =.
i=N+1 N
Indeed, letting Te = {f = «} and g = y £
o i=1
(N=1,2,...), then gy t ® pointwise a.e. on Te. Since

< inf (£;, lo|) (i =1,...,N), and

i

() = <e, e*> < », a variant of Egoroff's Theorem
applies and yields an increasing sequence of measurable
sets Ty contained in T_, with u(t, \ ﬁ T, ) = O and such
that gy *+ ® uniformly on Ty for each k. Since e* is a
Bade functional, it follows that E(Teo \ ﬂ Tkx)e = 0.
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Suppose that E(t_)e # O. Then p(t.) = u(k{rk) # 0. Let

1 — 1 - .
1 = T4 and T, = Te N Troy

pairwise disjoint and \rj 1. = \rJ T, SO

(r > 2); then the sets 1. are

0 < u(yrr) = u(*iJ 1.) = E w(tl) .

Hence for some k € N, u(rﬁ) > 0, which implies that
E(Té)e # O, and therefore that E(Tk)e # O. Since gy t ®
uniformly on T}, there is a subsequence {ny} of N such
that for each m,

Therefore

p(gny) > o'(gnmka) 2m plXq) 2 mHTXn‘{en = mlE(t,)el

(m =1,2,...), and hence p(gnm) + ® gas m + <, However,
plany) =pC § £;,) < ) o(f5) < 1 p(fy) <.
i=1 i=1 i=1

From. this contradiction, we must have that E(Ty,)e = O.

Thus, u(t,) = O so § f; is convergent p-a.e. and
[+ (=]

| Y1 f£;] ~0a.e. as N » =, Since |y | < | £, it

N+1 N+1

follows that wN + 0 a.e. as was claimed above, and we

il
may thus write

<
0= ) o a.e.
i=1

n n
For m, n € N, ) ITo el < 1. p(£,), therefore by the
r=m r=m

[=]
initial hypothesis, § Ty e converges in X, to an
n=1
element z, say. We now show that z = Tgpe. Let x*€T:

then

Kz, x*y =( § Tp €, X*)
n=1 n

) (T, e, x*)
n=1 “n
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= Y ©_ (}) <E(dX)e, x*> . (7)
n=1

'If we can now show that (7) is equal to
[ @, (1) <E(d\)e, x*), then it follows immediately, by
the totality of T, that

z =[] o (ME(@@N)e = [ @(A)E(dN)e = Tpe

To obtain this equality, we shall resort to a dominated

convergence argument, and to this end we define
v(t) = <E(1)e, x*> (T € %)

There exist unimodular functions 6, 0p (n=1,2,...)

satisfying
6dv = d|v| and @ 6 = |o| (n=1,2,...)
For each N € N, we then have
N N
Y Joleylalvl = 1 [ o8 6 dv
n=1 n=1
N

= T T, e, x*

N
< ) T gl 1T el x|
N
< 4k llx*ll § p(£)
: n=1
< AR X} e(£))
n=1
< & ,

Hence,

A
8

TS lelalvl
n=1
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Since |v| is a positive measure, the Monotone Conver-

gence Theorem is applicable and yields

[0 legldlvl =} [ o ldlv] <= . (8)
n=1 n=1
n
Putting £ = Y ¢ » we have for each n,
- m=1
-1 n n
g o =gl =13 ol< 3 lol<o
m=1 m=1

say, where ¢= § |o_ | € L' (v), from (8). So for each n,

n=1
gne 1 € L1(v) and, applying Lebesgue's Dominated Conver-
gence Theorem, we have

. -1 . -1
f lﬁm £,8 dlv| = lém I g8 dlv| ,

o -1
lém f Z © 6 'dfv]

n
i.e. f l%m 21 © 8 1d[\)[ 1
m=

m=

i
'_J
|
8
i o~
—
—
S
<D

ie. [} o dv = [ ¢ dv

n=1 n

e~ 8

1

as required, and thus z Tpe. Hence finally

I

I Teell =11} T el
= h] %,

’ £.) ,
; T ell < g p(£;)

so by the definition of p,

p(f) <) p(£;) < =,

and thus p has the Riesz-Fischer property.

4.4 THEOREM. There is a bicontinuous bijection U of

the closed principal order ideal 31 generated by the
constant function 1 € Lp, onto X, satisfying U1 = e
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and

U(x£) = E(o)Uf (f €T3, 0 €5) .

17
Proof. Since the rangé of E(+) is bounded in norm by K,
p(1) < 4Kllell, so 1 is indeed an element of L,. If the
function ¢ is bounded a.e., then for some constant

c >0, |w|'§ cl a.e., so ¢ € J1; conversely, since it
is clear that every element of J1 is bounded a.e., we
have that J, is precisely the p-closure of L(Q, u).
Define Uy ¢ Jq4 » X by

f = Tee (f € J1) .
Since U1(x0) = E(oc)e (o € ), then
U;(34) 2 1lin {E(g)e : o € Z} . (9)

Clearly U1 is linear, and since for any y € J1 we have
ol = HTyell < sup (0T ell = y' € 34, [¥'] < [v[l=p(p) ,

-U1 is p-continuous and therefore extends continuously to
a mapping- U : J1 + X. For any bounded measurable functions
s, t with |t] < |s] a.e., there is a measurable function g
with |6 < 1 a.e. and t = 6s : we have

IT,ell = IT T ell < IT IITéell < 4Klioll T el < 4KlT_ell

gl
Hence p(s) < 4KlIT_ell < 4KlU sl < 4K p(s) and it follows
that whenever g € 31,
p(g) < 4Klugl < 4K po(g) ,

and thus that U is bicontinuous. Since 31 is closed, by
the Riesz-Fischer property it is complete. From (9),

U(J,) 2 lin {E(c)e : o € £} ;
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since U is bicontinuous U(31) is complete and therefore

closed, so

U(J,) 2 1in {E(o)e : 0 € L} =X .

Thus U(31) = X and so U is a linear isomorphism which
satisfies U1 = e; finally, since the relation
U(xof) = E(0)Uf (o € )

holds for f € J1s it holds also, by continuity, for

f € J1.

In order to construct the norm p at the beginning of this
section, we assumed that e, the cyclic vector for X, had
a Bade functional in I'. From [Gy4], Theorem 6, this
assumption is legitimate provided only that the pre-
spectral measure E(-) is countably decomposable at e,
i.e. provided that whenever I' is a subset of I whose
elements are pairwise disjoint, then E(c)e # O for only
countably many o € I'. ' '

Conversely, in the situation where the cyclic vector e
is known to have a Bade functional, then by the same
theorem we may conclude that the prespectral measure
E(-) is coﬁntably decomposable at e and, moreover, that
a Bade functional can be found in T, as required for the
isomorphism theorem. Since X = Iin {E(c)e : o € £}, it
follows also that E(*) is then countably decomposable at
each x € X and so that each x € X has a corresponding
Bade functional in T. For the precyclic subspace 31 of
Ly, these Bade functionals were easily found, in

Lemma 3.4.

The ideals 31 occurring in both representation theorems
(noting that Lg = 31 in the case where Ly = L% and
1 € Lg) are examples of Banach lattices with topological

order unit.
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4.5 Definitions.

(1) Let E be a vector lattice. A norm ll+J}] on E is
called a lattice norm if |[x| < |y| implies [Ixll < Iyl

(x, vy € E). If E is complete with respect to the
lattice norm ||-Jl, the pair (E, ll‘ll) is called a Banach
lattice.

(2) An element u > O of the Banach lattice (E, | ‘i)
is a topological order unit for E if the closure of

the principal order ideal E,; generated by u is E. An
alternative characterisation of a topological order
unit u € E* is the property that for every x € E+,

lx - x A null -0

as n > %,

If u satisfies the weaker condition that for every x
in Et

X ==V’(x A nu) ,
n

then u is called a weak order unit for E.

Note that in the function space Ly, any element f, which
is strictly positive a.e. is a weak order unit. If the
norm p is absolutely continuous, then by Lemma 3.6,f, is
also a topological order unit. Note however that the
order continuity of p at fo is not the crucial factor.
Indeed, in general, if h is any element of Lg whose
support contains Qg then the closed principal order
ideal J, must contain L%.(For any 0 < £ € L2,

f Anh+t £ a.e. so p(f = £ A nh) » 0; £ A nh € Jy for
each n, hence f € Eh.)

We have seen that every cyclic or precyclic space X may
be endowed with a Banach lattice structure by means of
a linear isomorphism with the principal order ideal

generated by the constant function 1; this isomorphism
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matches the function 1 with the cyclic vector for X,
and hence, in the vector lattice X, the cyclic vector

is a topological order unit.

However although the ideal Lg, and indeed every closed
principal order ideal of Ly, has a topological order
unit, Lp itself need not have one at all, even when
the norm p has strong continuity properties such as
the Fatou property. The following example illustrates
this.

4.6 EXAMPLE. Consider the space of Gould, described

in [LZ1].Heré the norm p is based on an infinite, o-

finite atomfree measure u and defined by

p(£) = inf {NEM, + NEJN_ : £ = £, +£,,

£, € L (), £, € L)} .
1 ©

Thus Lp =L + L . The associate norm p' is given by
o' (£) = sup {Ifll,, hen_y . (10)
Thus L} = L' n L®.For a fuller account, see [LZ4].Let X

denote Lb and suppose that fo € X is a topological order
unit for X. Then J¢_ = X and for each 0 < g € X,

p'(g - g A nfo) > 0

as n > ». Now £, must be strictly positive a.e. for
an-aull

otherwise, if § is an§§measurable subset of Q \ supp fo’

and g is any element of L; with supp g = §, then for

every n € N,
g A nfO =0 a.e. ,

so that p'(g - g A nfg) = p'(g) # 0 as n » », Define

sets oﬁ ='{% < f_ < } (n > 2) in Z. Then,

(o}

n-1i
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1

as n +~ », If there existed a positive integer ng such

that for all n > Ny, ukcﬁ) = Q, then

0 =u( U o) = ullfy < b

and £, > n‘L on Q. But since fo € L' (4) this cannot

1
o
occur. So we may delete from the sequence {06} any
elements which are p-null and be left with an infinite
sequence of sets {cn}, each of positive measure, and

satisfying llfoXOnII°° + 0 as n » o,
Let X, = lin {fx,; : o € I}. Since bounded functions
can be approximated uniformly by simple functions,

‘o

Xo»g {mfo s P E‘%-} = Jfo .

Since X, is closed, X, 2/Jg, = X. Hence,
X =X . (11)
Now for any g € X, , we have g = 121 aifoxﬁi’ for some

m € N, where the oy € € are distinct, and the sets
6i € I are pairwise disjoint. Then,

llgxgnll°° < 1<1<mla HlfoxO AU6 b < 1Ti§mla [fo ||°° + 0 (12)

as n » ». For any g € X,, there is a sequence {g)} in X
with p'(g - g3) + O, so that from (10), each of IIg--gk\l1
and llg - gkll°° tends to zero as k + ». Hence, given e > O,

ngonww < (g - gk)xgnll°° + harXg e

A

. .
5 + quxcnno° (for k > k4, say)

€

A
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for sufficiently large n, by (12) (applied to gk). Thus

HgXOnll°° + 0 as n » =,

However, consider now the function

where for each n, 1, < o, and o<p(x) < 272, Then Inll = 1,

-n
Iall, < § 27 =1, so h € X. But ”hx’on]

n .
Hence h £ X,. From this contradiction of (11) if follows

=14 0as n » =,

-

‘that X can have no topological order unit.
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CHAPTER III. WEAK SEQUENTIAL COMPLETENESS IN Lp'

The main result and the objective of this chapter is
stated at the very beginning as Theorem 5.1 but will
only be arrived at in three stages, starting from a
similar but less general result. This initial result
(Theorem 5.4) arises from a reinterpretation of a
theorem stated for cyclic spaces by L. Tzafriri [T,],
in the light of T.A. Gillespie's Representation
Theorem [Gq] given in Chapter II. This theorem re-
presents any cyclic space over a o-complete Boolean
algebra of projections as the ideal LZ of a Banach
function space Lp, in which the norm p has the Fatou

property.
§ 5. Conditions for weak sequential completeness in
L and L2.

5.1 THEOREM. Let p be a saturated function norm based
on (Q, I, ) and possessing the Riesz-Fischer property.

The following statements are equivalent.
(a) Lo is weakly sequentially complete.

(b) Lg is weakly sequentially .complete, and Qa = Q.

(c) L% contains no subspace isomorphic to Cqr and

Q. = Q.
(d) L_ contains no subspace isomorphic to cg,.
(e) Lp = Lz éndvp has the (weak) Fatou property.

(£) L? contains no subspace isomorphic to 1_, and
Q. = Q.
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It will be useful to be aware at an early stage of
certain simple facts which we therefore record at this
point.

5.2 PROPOSITION. A subset B of My (resp. Lp) is a
band of My (Lp) if and only if there is a measurable
subset y of @ such that

B"—'{fo:fGMu (Lp)} ’

and then v is the carrier of B.

Proof. Clearly any subset B of the given form is an

order closed solid linear subspace of M.

Conversely, if B is a band of M, , then B has a carrier
t and B M . Let < £f =1 € .

set vy S XM, et 0 < Xy M,. By the

definition of carrier sets, we may choose a sequence

yﬁ 4 v in I with th € B for each n. If we let

yg = {f < n}, then yg 4+ Q: hence writing Y = yﬁf\yg,

we have Yot Y and fXYn < nXYﬁ' so fXYn € B for each n.

Since B is order closed and f = sup fxy , then f € B and
n

thus XYMU < B, as required.

The same proof holds replacing My throughout by Lp- In
this chapter only the result for Lp will be required,
but that for Mu will become relevant in Chapter IV.

We shall make use several times of the following result
due to T.A. Gillespie ([G3], Theorem 1).

5.3 THEOREM. Let X be a complex Banach space with dual
space X*. The following statements are equivalent:

(i) X does not contain any subspace isomorphic to 1_;
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(ii) every prespectral measure on X of arbitrary class
(Z, T), where £ is a o-algebra of sets and T is a total
subset of X*,is strongly countably additive.

5.4 THEOREM. Let p be a saturated function norm with
the Fatou property, such that the constant function 1

is an element of both Lg and Lé. The following state-

ments are equivalent.

a
P

(b) Lg contains no subspace isomorphic to c

(a) L, is weakly sequentially complete.
o"

(c) Lg

c .

contains no complemented subspace isomorphic to

p o

(a) Lo is a complemented subspace of LS*.

o)

(e) Lp = Lp.

(£) Lp contains no subspace isomorphic to 1.

Proof.

(a) = (b). Trivial, since c_ is not weakly sequentially
loged
complete (w.s.c.) and an&%subspace of a w.s.c. space

" must also be w.s.c..
(b) = (c). A fortiori.

(c) = (e). We shall suppose that (e) does not hold and
show that Lg must then admit a bounded projection onto an
isomorphic copy of Cqyr thus precluding (c).

a
o >Lp

{gn} of simple functions with O < g, * g a.e. since

SO suppose we have 0 < g € L and choose a sequence
1 € Lg, L” < Lg so for each n, g € Lg. Since p has the
Fatou property, p(g) = sgp p(gn); but since Lg is a norm-
closed ideal of L,, we cannot have p(g - gn) + O. Define
My = {m-1 < g <m} form=1,2,... . Since g € Ly, g is

finite-valued a.e. so Q = ILn} n, and, if
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| o~

Y. = kX (j=1121.---) ’
3 k=1 Nk

a

0 for each j. Also,

then 0 < ¢, < ¢, < ... and . € L
- 71 =72 = J

p(wj) < o % (k-1)xn ) + o
k

< plg X . )t elx )

< pl(g) + p(1) .

Let ¢ = sup Oj. Then ¢ takes the constant value k on
each Ny r ﬁence wxnk > gxnk (ka= 1,2,...) and so ¢ > g
p.
and Py (n = 1,2,...) satisfy O < wn 4 ¢ a.e. with each

a a
©, € Lp but ¢ € Lp, and also

a.e. which implies that ¢ € L Thus the functions ¢

p(p) = sgp p(wj) < pl(g) + p(1)

whilst

p(p - wj)-+ o (1)

as j - ». Hence the sequence {wj} cannot converge in Lg,
for if it had a limit ¢ say, in Lo, then {o - wj} would
converge to @ - ¢, and so, from the proof of [2Z]

Theorem 64.2, some subsequence {¢ - would converge

S ®njtien
pointwise a.e. to ¢ - ¢; since every subsequence of

{p - wj} converges pointwise to zero a.e., this would
mean that ¢ = ¢ a.e., contradicting (1). It follows that
for some ¢ > O, we can find subsequences {jn} and {kn} of
N with

kn+1 ZJn? kn
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and

plog, = ¥k,) > € (n=1,2,...)

Setting Yy = @03, ~ wkn) observe that the functions L

in

have mutually disjoint supports - namely U Ny ~
k=kn+1
which we shall denote by Gn’ and that
e < p¥,) 2 2(p(g) + p(1)) (n=1,2,...) .

Let o = {an} be any bounded sequence: then,

N

N
p( n£1 a ¥,) = ol £1 la_| ¥_) since the y_'s are

disjoint
?
< sup |a.] p( v.)
n n n=1 n

N
L (@5, = @)

= lall p(
: - n=1

in

Hall, p(@gy = ©xq)

|A

hall, p(@5,)

< Nall, (plg) + p(1))

So by the Fatou property, it follows that § a ¥ €L

n

0
and

pC L aw) <llali, (plg) + p(1)) . (2)
n

On the other hand,

plaghy) = plxs - g a ¥ ) < ol g a )
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and

pla ¥ ) = la | p() > o le (m=1,2,...)

So

o( Y a ¥ ) > ellall,. (3)
q .

Define f = g a ¥ : then the mapping o » f4 (a € 1) is

positive and linear, it is one-one since the wn's are
disjoint,and bicontinuous by (2) and (3); hence its
range which we shall denote by iw is a subspace of L,
isomorphic to lw.

Now choose for each n a function O < u € Lé with

p'(un) < 1 and supp u_ < dn' satisfying

n
€
fvu du >3 .
For 0 < f ¢ Lye define
© [ fu_ dp
Pf = § Ts—w . (4)
s=1 bgug du s

This defines Pf as an element of iw, because for each s,

f fu_ du p(£)p' (uy)

2
| Tou_ au | < c <z elE)

2

so the sequence of coefficients of y_ in (4) is bounded.
For all r and s,

(5)

wrus - Grswrus ’

so letting cr(f) denote the coefficient of wr in (4),

P2f = P( § c (£)4.)
=1
J (§ e (£)yug du

.5 s
s=1 J wsusdu

v

S
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8

= 1 &lW,
= Pf .
Hence P2 = P. It also follows from (5) that for each

o0 € lo, PEq = £5, and P is a bounded linear projection
of Lp onto lw. Now if £ € Lp, then, since we have

\J N + R as s » «,

k=1

p(ExX g ) >0

Q\Unk
k=1
. k
and for each s, Gs = LJ nk = @\ Lf Ny s SO
k=kg+1 k=1
p(fxgs) + O. Hence,
f‘fus du 2
—_— < = £
! J’ lpsus dn I *F p (us)p( XGS) + 0

as s » ». Thus the sequence of coefficients of ws in Pf

or and so Pf is in 60, the isomorphic

copy of c_ imbedded in I_.

is an element of c

It now remains to be shown that ¢ < 13. Let a € Cor

suppose fa > f1 >f,2> ... +0a.e. and let ¢ > O. Since
€

£, = y o ¥, € Ly, then for some N € N, p( nZN a¥) < 5.
writing § = U § = \U supp Y+ then -
n>N n>N
£ . . a
p(fixs) < p(fxg) <5 fo§_?ach i. Now since y; € Lj
(i = 1'2"")"faXQ\5 = z anwn € Lg. Therefore since
n=1

£ Xgvs 2 EiXaas ¥ O aée., it follows that for sufficiently

large 3, p(fjxg\a) < 5 and then

p(fj) = p(ijG) + p(ijQ\é‘) < € .
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This shows that f4 € Lg as required.

(e) =» (a). Let {fn} be a weakly Cauchy sequence in Ly,
where L, = L3. Let K be a uniform bound on the norms
p(fn). Since 1 € Lé, Lp c L1(u) (algebraically); by
assumption, {J hfndu} is a Cauchy sequence in C for each
h € Ly = L;, so in particular, letting h € L® shows that
{fn} is weakly Cauchy in L'. Let £ € L be the weak L]
limit of {fn} so that whenever h € L%,

l%m f hf du = [ hf dp . (6)

Now let g € Lé: then g < » a.e. For any o € I such that
g is bounded on o,

| £ fg.dul = lim | [ £ g%, du]

< lim sup p(fn)p'(gxo)

|A

Kp'(g) . (7)

Choose a sequence {on} in I with o, * & and with g bounded
on each Opnr and let 6 be a unimodular function satisfying
fgé = |fg|. By (7),
[ fg6 du < K p'(g8) =K p'(g) .
Oon :
Hence, applying the Monotone Convergence Theorem,

J £g6 du = lim [ £g6 du < K p'(g) ,

n on

i.e. fg € L1(u) for each g € Lé, and

p(f) = p"(f) = sup | [fg du| <K ;

p'(g)<1

thus £ € Lp-

We show finally that for any g € Lé
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lim [ £ g du = [ fg du . (8)
n
Let g € Lé. For § € z, define

vy (8) = é (£,-f)g du .

Since fn-f'EIw and g € L}, (fn-f)g € L1(u), so v, is a
countably additive measure on I. Since l%m k-fng dp

exists, l%m vn(6) exists for each § € Z. Hence from

Nikodym's theorem ([DSq]1,III.7.4), the countable
additivity of vn(.) is uniform in n. Fix € > 0. Let
8y = {lg! < m}. Then 6p * @ so we can find an integer
m, such that

lvn(Q N Gm)l < % fo; m > mg, and all n=1,2,...;
so,

lim sup [v (@~ 6 )] < form > m_ .

o

Njm

Hence

| [ (£,-f)g du| | f (Ep=E)gxg  du+ v (2N ) |

(m > mg)

A

|I (fn-f)gxam du| +

N,

< €

by (6), if n is sufficiently large. Thus (%) follows,

and hence Lp is w.s.c. as required.

(e) = (d). Elementary, for since the Fatou property

implies p = p", then if Lp = Lz,
a a
LY)**x = (L')* = L" @ L* =L ® L* = L% @ L* .
( o) ( p) P p'ss P p',s p p'ss

(d) = (e). Let Q be the restriction to Lp of a bounded
a

projection mapping L;* onto L:, and suppose Lp # Lp
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Obtain, as in the proof of (c¢c) = (e) a linear subspace
iw of Lp
a projection P on Lp; Then P fixes im and Q fixes La,

which is isomorphic to 1, and is the range of

. ~ . .. .
and since c¢g is contained in each of these subspaces,

Eo is fixed by each of P and Q and thus also by PQ.

Hence PQ is a projection of Lp into P(Lg) = EO and
A~ = -~ ~ a =A
s PQ c.O cPQ1l, < P(Lp) o -

So PQ im = 80.,However it is well-known that o is not
complemented in 1, (see [P ]), and from this contra-
diction it follows that Lg must equal Lp.

We now have that (a), (b), (¢), (d), (e) are all equi-
valent. Assume that one and hence each of these condi-
tions holds, and suppose (f) does not. By (e), this
means that Lg contains an isomorphic copy of 1, and
hence also an isomorphic copy of c,, contradicting (b).

So (a) - (e) = (f).

(f) = (e). 1If L, # L?, then from the proof of (c) = (e),
Lo
contradicts (f).

must contain a subspace isomorphic to le; but this

Note. In the proof of (c) = (e), the subspace im is by

construction also lattice isomorphic to 1l,, as is there-
fore 80 to Co* Hence in each of statements (b), (c¢), (4d),
(£) of the‘theorem, the word "subspace" may be equivalently

closed
replaced by "sublattice".

Now suppose that p is a saturated function norm based on
(Q, Z, u) but endowed only with the Riesz-Fischer property.
Let £, € L§ be positive-valued a.e. on @  so that

Ly = Jf, (Lemma 3.6). Choosing any function ¢, € L} with

¢, positive a.e. on Qg, define a measure v on



- 44 -
I, = {ong :o0c€ L} by

v(g) = £ £, dv (c € 2)) s
then y and v are equivalent in I;. Now define a mapping

-1

Uf = ££f_ (f = fxq_ € My) .

U is clearly linear, one-one, onto and increasing. Define
a norm T on M, by
1(h) = p"(hfo) (h € M) ,
. = " ’ =
i.e. T(Uf) p" (£) (f fXQa € My) .
That this indeed defines a Banach function norm is easily

a’ v), then
7 1s saturated; moreover, T has the Fatou property since

verified, and taking 1t to be based on (Qa, z

p" does, and t'(h) = p'(hwo) for each h € M, so in’

particular 1 € L% (here 1 denotes XQa clearly). Since
p" (£)
p" (f)

o (f) for every £, IUILa" < 1; however if £ € Lg,

[

. p
p(f), so with U, = U‘L% we have

s W) s gl (telg). o

It is a routine exercise to check that h € L? if and only
if UT'n=£h € L3,.

To: conclude recall that by Lemma 3.2, Lz = XQaLZ"
then, since for every h € L., h = hXQa’ it is clear that

h € L? if and only if hfo € LS. Hence and from (9) it

follows finally that Ua is a norm-preserving isomorphism

and

between Lz and Li. Consequently, since 1 satisfies the .

conditions of Theorem 5.4, statements (b)), (c) and (f) {or Ly
are immediately equivalent to weak sequential completeness

of L%, even with the present relaxed conditions on p.

Before completing the theorem, we give another lemma.
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5.5 LEMMA. Let p be a saturated function norm with the

Riesz-Fischer property. Then, if Lg is weakly sequen-
a

tially complete, L,

ig order-closed, i.e. LS = anLp.
Proof. Let f = fXQa € L; and suppose that Lg is w.s.c.
Define sets Gp = {f <pl N Qa (p =1,2,...); then Gp 4 Qa
as p » ., Now choose a sequence of sets Tp + Q4 with

a I _
Tp S 6p and er € Ly for each p. Writing fp = fpr we
have fp ¢+ £ a.e. and

a

o -

f € L
p = < PXq p

Recall that (Lg)* = anLé (Lemma 3.1). Let O < g € Lg:
since g is an integral linear functional on Lp, it follows
that

{f -.fp, gy + O

as p » ». So,
<fp - £q. gy - O

as p, g > «, i.e. {f } is weakly Cauchy, and hence weakly
convergent in Lg. Let f, € Lp be its weak limit, so that
for every g € L},

<for g> = l%m <fpr g> = <fl g> .

Since Lé is a total subset of L*, this shows f5 = f a.e.

pl

Hence f € Lp and XQq Ly, Lg The converse inclusion is
_ ra
immediate and hence anLp = Lg.

5.6. Remark. The converse of. this lemma need not hold.

Consider, as .an example, the case where @ is N with the

discrete measure y,and let



sup |a_| , a_ > O,
n n
p({a }) = {
© , otherwise .
Here L, = Co = Lg, but Lo is not w.s.c.

However it is easily shown that with the additional
hypothesis of the weak Fatou property, the converse of
Lemma 5.5 does hold.

5.7 THEOREM. Let p be a saturated function norm based

on (R, I, u) and having the Riesz-Fischer property. The
following statements are equivalent.

a
o)

(b) Lg contains no subspace isomorphic to cqo.

(a) L, is w.s.c.

(c) Lg contains no complemented subspace isomorphic

to Co.

(d) Lg is complemented in (Lg)**.

(e) Lgv= anLp and the conclusion of the Fatou property
holds for increasing sequences in Lg.

(£) anLB contains no subspace isomorphic to lw.

[Note. We can express (e) alternatively as follows. Let

A be the function norm based on (Qa, z

a7 Hg) s where

denotes u]za, defined by
p(£) , Aif feLg‘

A(E) = {
o , otherwise ,

so that A is an absolutely continuous saturated norm.
Then

(e)' A has the Fatou property.

The equivalence of (e) and (e)' is a routine exercise.]
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Proof. As remarked earlier, that (b), (¢) and (f) are
each equivalent to (a) follows from the isomorphism Uy
-of Lg and L? described on p. 44, and from the appli-
cation of Theorem 5.4 to La.

Suppose now that (d) holds. Since Lp c XQ L XQ L"
and (Lp)** = (XQ L )* o XQ LY, it follows that there is
0 Let Q = UPU 1:
then Q = Q and Q is thus a bounded projection of L.
onto L. Thus L2 satisfies (d) of Theorem 5.4. If con-

versely, there is a bounded projection Q of L, onto L%,

a bounded prOJectlon P of XQa L" onto L2

put P = v~ 'ou. Then similarly P is a bounded projection
of XQaLS onto Lz. Hence by the equivalence of (a) and
(d) in Theorem 5.4, (a) and (d) of the present theorem

are equivalent.

Finally we show (a) and (e) are equivalent. Assume that
Lg is w.s.c. By Lemma'S.S,L% = anLp. Now suppose that

O <Vy<Vy< ... tva.e. withv, € L3 for each i. If

p(viy) » =, then p(v) = sup p(vi).trivially. If

p(Vi) 4 K < «», then p"(v) = K. So,

T(UV) = T(Vf;1) = p"(v) = K < o ,

But by isomorphism with LZ, L? is w.s.c. So LT = L?.
Hence v € L2"° Since v = sup Vir V= VXQa and so by
Lemma 3.2, v € Lg. Hence p(v—vi) - O and lim p(vi) = g (v)

as required.
Now assume conversely that (e) holds. We shall show that
Ly = L?. Let O < £ € Ly. Since 1 € L?, we can choose a
sequence {f_} in L2 with 0 < £ + f a.e. For each n,
-1 a .
f fnfO € LY and O < fnfo 4 ffo a.e. By hypothesis

p
therefore,

p(ffo) = sup p(fnfo) = sup p"(fnfo) = sup T(fn) = T(f) < o,

. . a
i.e. ffo € Ly; since supp ffo < Qa’ then ffo € L, and
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f € L? as required. It follows that L% is w.s.c. and
hence that LS is w.s.c.

We are now in a position to prove the main theorem.

Proof of Theorem 5.1.

(a) = (b). It follows from [DSq},XVII.3.8 that every pre-
spectral measure on a weakly complete space is in fact
spectral, i.e. strongly countably additive. Hence if Lp
is w.s.c., the measure E(-) : o -+ MXo is spectral and

so from Lemma 3.4, Ly = Lg and (b) follows.

~ Note. 1In (e) the word "weak" may be equivalently read
or omitted, because while usually, the Fatou pfOperty is
stronger than the weak Fatou property, in the case of
absolutely continuous norms, the two properties are
equivalent (see 2.5 or [ 2], 73a) i.e. if p is absolutely
continuous and has the weak Fatou prOpefty, then p has
the Fatou property.

(b) = (e) = (a). Both implications follow from the

equivalence in Theorem 5.7 of conditions (a) and (e).

(a) = (d) . Clear, since So is not w.s.c.

(d) = (c¢). 1If Lp contains no isomorphic copy of c nor

'
can it contain an isomorphic copy of le, and so by ;heorem
5.3 the prespectral measure E(-) : o > ng is spectral,
so as before Lp = Lg. Thus Lg contains no isomorphic copy
of S5 and Qa =  as required.

(¢) = (b), (e) = (f) = (c). Immediate from Theorem 5.7.

Notes. Consider the alternative statements:

(c)' Lg contains no complemented subspace isomorphic to
o and Qa = Q;
(d) ' Lo contains no complemented subspace isomorphic to
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co and Qa = Q;

(£)' Ly contains no subspace isomorphic to lm,and31a=Jl.

1. From Theorem 5.7, (¢) and (c); of Theorem 5.1 are

equivalent.

2. (d) ' is genuinely weaker than (d). For if we take

p to be the norm ll-ll, on the space of all complex
sequences, so that Lp = leo, then LS is Co, SO we have

Qa = Q. Since every complemented infinite-dimensional
subspace of 1, is isomorphic to l, itself ([LT11,2.a.7),
Lp cannot contain a complemented subspace isomorphic to

Co- Thus (d)' holds; however Lp # LS and Ly is not w.s.c.

3. (£)' is genuinely weaker than (f). For taking again

the space of complex sequences with, this time,

| hall, , if a_ > O ,
p({a }) = {~

© ;, Otherwise ,

~ then Lo = Lg , S0 Q = Q5 and Lp contains no copy of lw.

However co is not w.s.c.

§ 6. Applications of Theorem 5.1.

A.C. Zaanen has given necessary and sufficient conditions
for a Banach function space L, to be reflexive, namely,
that p and p' should both be absolutely continuous norms
and that p should have the weak Fatou property ([ 2],

§ 73). Applying the results of the present chapter, we
can give an alternative characterisation of reflexivity
in terms of the geometry of the function space.

p
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6.1 THEOREM. Let p be a saturated function norm with
the Riesz—-Fischer property. Then Lo is reflexive 1f and

only if no subspace of L, is isomorphic to either c, or
11.
Proof. The necessity of the condition is obvious, since

neither C, hor l1 is reflexive.

For the sufficiency, assume that Lp contains no iso-
o OF 11. The method for this
part of the proof borrows from that of [T1], Lemma 4.
By Theorem 5.1 ((d) & (e)), L Lz
property, t=le) Lp = L".

morphic copy of either ¢

and p has the Fatou

p
It remains to be shown that Lé = L?.: for then,
a a
L** = L %k = L' X = L * ="L" = 1
5 ( p) ( p) ( p.) 0 o !

and the required conclusion follows.

We consider ihitially the case where uy is a finite
measure, and suppose that'Lé # Lg.. Then we can find
functions hy € Ly (n = 1,2,...) with h, > hy > ... v+ O
a.e. while inf p'(hn) = g > 0.

By Egoroff's theorem, we can now find in I a sequence

Qi + @ such that hn ¥ O a.e. uniformly on Qi for

each i. By the saturation of p' and the Exhaustion

Theorem ([ Z2 ], 67.3), we can also choose sets Q; Yy @
; ] 3 - ! n

with XQ\Q; € Ly for each j. Let Qi Qi U Qi

(i=1,2,...). Then Q ~ Q; =9 N0 N Qe+ Q; since

[] ) :
XQ\Qi € Lp and hn ¥ O a.e. uniformly on Q $ Qi, there

is a subsequence'{ni} of N such that hni < £

~ a.e

on 9 N Qi (1 =1,2,...). Therefore for each i,

£
P'(hniXg ;) € 32

..



and
] [} ] - ] - .§. —] E
P (h1XQi)Z'p (hnjXgs) 2P (hni) P (hniXQ\Qi)Z.e 5 =5 .

By the definition of p', therefore, there exist functions
+ .
= € Lp with p(gi) < 1 and

jgih.lXQi du > % (1 =1,2,...) .

However in general, the functions giXQi are not pairwise
disjoint so we now choose a subsequence {ip} of N such
that the functions

P = JigXq. Q. ’
Ty

clearly pairwise disjoint, satisfy

[ ho du > £ (k = 1,2,...) .
_Now let a = {ai} € 11. For any N € WO,
) I
p( o, @) < Y |la | ple,)
Wi k% L 1% k
)
<y la | elgiy)
~ yer k 1k
N
<) logl
ki1
<) logl .
£ Pk

Since p has the Fatou property,

N
p( ¥ a@) =sup p( § a @) <73 Jo | < = .
L%k 5 L%k S L%

It follows that

p'(hy) Y Ja | > p'(h)p( ) a @)
1 K k 1 E k"k




- 52 -
= p'(h1)o(|E a0 )

= p'(hy)pl E lay [@p) (10)

| v

f hy % la | @ )du
= E Iakl f h o du (11)

> =

o|m
A1
Q
w
~-

where each of (10) and (11) follows immediately from the

preceding line by the disjointness of the wk's. Hence,
gsT%E_T "G"1 < pl} a ) < Ha"1 . (12)
1

The mapping a » Z 0 Py € Lp-is thus a linear bijection of
L1 into L
lin {¢k : k € N} = { % 0Py : {ak} € 11} is a linear sub-

or which by (12) is bicontinuous, and hence

space of L, isomorphic to 11. Since this contradicts the -

p
hypothesis, we must in fact have Lb = Lg..

In general, p is a o-finite measure: in this case, choose
. 1 . _
a function go € L (n), with Eo > 0 a.e. (let € = 5152

where 51 € Lp, gz € Lé and gi > 0 a.e. (% = 1,2)). Define

(o) = £ £, du (0 € £) .

Then Uy is a finite measure on I and is equivalent to u

=Jo) Mu1 = M. Define a norm Py based on (@, I, u1) by

01(f) = p(f) (f € Mu1) .

Then P4 is complete and saturated and
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sup {|J hf duq|

X3

1}

P1 (h)

IA

p;(f)

1}

| A

sup{| [ hfg dul : pq(h)

o' (££,)

for each £ € Mu1. Suppose we have O < g € Lé\\Lz,. Then
there is a sequence {gn} in'Lé with g > g+ O a.e. on
Q, while p'(gn) > &8 > O for every n. Then

p{(gg;1)= p'(g) so g£;1e L61,and

-1 -1
ggo > g1£o > ... ¥+ O a.e. but fo; each n,
' -1y _ -1 a
01(gngo ) = p (gn) > §. Hence ggo 4 Lpi.

From the first case, we deduce that Lp1 contains a sub-

space isomorphic to 11. But since L = Ly, this contra-

P1

dicts the hypothesis and hence in factALb = Lg,.

The following result also is based on a theorem for
cyclic spaces, given by Tzafriri ([T2], Theorem 10).

6.2 THEOREM. Let p be a saturated function norm with
the Riesz-Fischer property. Then L% is isomorphic to the

dual of some cyclic space Z = 1in {Ez, : E € B} where
z, € Z2 and B is a o-complete Boolean algebra of
projections on Z whose adjoints correspond to the
multiplication operators MXO : £ on (c € 2, £ € Lg),
if and only if

a _
(a) Lp = anLp , and

(b) Qa < Qps, the carrier of LZ,.
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Proof.

Case 1. Assume that p has the Fatou property (so p = p")
and that Ra = Q.

Suppose that (a) and (b) both hold. Then g, =9, =@ and

L" = 1" =5 =12

a
LS, )* =
( p') XQb p p o p

and, since by 3.4, 3.6 and 3.9 Lg. is a cyclic space with
respect to the Boolean algebra of multiplications
My, + £» £x, (o € I, £ € L7,), the result follows.

Conversely suppose that L% =~ Z2*¥ for Z as in the statement
of the theorem. Identify Lg with Z* and for each ¢ € I,

. If we
a : Xo
imbed Z canonically in Z** = (Lp)* = anLé = Lé, then the
projections in B correspond to the multiplications
MXc (c € Z) on Lé, and if we let g € Lb be the function
corresponding to the cyclic vector N then Z becomes the

denote by E; the element of B whose adjoint is M

p'-closed principal ideal Eg in Lé (Prop. 3.9). We may

assume g > O a.e. since Jg = J!g . We show now that

(i) supp g = @, and

(ii) g € Lg,.

If 0 < @ \ supp g, then for any £ € L2,
g, X7 =J gf dau =0 .
o

Hence <g', xof)'= O for every g' € Z and £ € Lg; there-

a

fore L2 « 2zt and z* < . SO o0 must be a null set
Xo p - — XQ\O p

.and supp g = Q.

Now let {o,} be a decreasing sequence of sets in I, whose

intersection is a null set. For each n,

= * % = i = i =
gXon EGng Eonzo’ and 1gf Mxon 0, so 1gf Eon 0.
Since B is o-complete, inf ”Ecnzo” = 0 and hence,

p'(xong) + O, which shows that g € Lz.. Since ), 2 Supp 9,
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it follows that Qb = Q.

Finally, from a result of Bessaga and Pelczynski ([BP],
Cor.4), Lg, being a Banach dual space, can contain no

complemented subspace isomorphic to Co- Hence by
Theorem 5.7, Lp = L% and the theorem now follows.

Case 2. Now consider p a saturated norm having the
Riesz~-Fischer property. We shall apply the isomorphism
U of L% onto L?, described following Theorem 5.4, since
the norm 1t will satisfy the conditions of Case 1.

Assume that (a) and (b) both hold for Lg. Then by the
isomorphism U, L% = Lt; since t'(f) = p'(fwo) for
£ = fXQa’ it is easily seen that

a _ -1 _ a — =1 a _ -1_.a
LT; - {f(pO f = fXQa € Lpi} = (po XQaLp' - (DO va ’
. a .. -1 _ S
so that the carrier of L;+ is supp s n Qb = Qa n Qb = Qa’

from (b). By Case 1 therefore, L? is isomorphic to the dual
of a cyclic space Z and hence so also is Lg.

a

Conversely, ifﬂLp is the dual of a cyclic space Z as in

the statement of the theorem, then also L? ~ 7%, so

a
Tl
a . = o1 = .

Lo = Xq,le and Q, = supp ‘¢;' N Qp = Q_ N Q. ; hence

L? = L. and the carrier of L is Q. Consequently

, < Q) as required.

We shall return to this theorem later in the light of the .
results of Chap. IV.

6.3 PROPOSITION. Let p be a saturated function norm
with the Riesz-Fischer property. Then L, is isomorphic

to the dual of a cyclic space Z = 1in {Ezoz E € B}, where.
z, € 2 and B is a o-complete Boolean algebra of
projections on Z whose adjoints correspond to the multi-
plication operators MXo : £ p fxo (c € £, £ € Lp), if

and only if
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(a) p has the weak Fatou property, and

(b) Qb = Q.

Proof. Suppose L, = Z* as in the statement of the

theorem. Identif¥ing Z** with L§ = L} © LS'S, the

canonical image Z of Z in Z** consists of order

continuous linear functionals on Lo, therefore is

contained in Lj and is of the form 1in {M{;9 : o € L}

for some g € Lb. Since B is o-complete, the restriction

of B** = {E** : E € B} = {Mi% : 0 € L} to Z, forms a o-
complete Boolean algebra of projections, and so by &eﬁqnuuﬁamn
Lemmas 3.4 and 1.5, the norm of Z is absolutely Theorim an
continuous, i.e. Z is an ideal of Lg,.
and Lemma 3.6, Z = Eg = Xsupp g LS.. However it is
easily shown, just as in Theorem 6.2, that supp g = Q.

By Prop. 3.9

Hence Eg = LZ. and clearlyQb = Q. Thus by Lemma 3.1,
a \x
L = (L = L" = L" .
o = (Bgv) Xop'p ~ Tp

Hence p and p" are equivalent norms, and so p has the
Fatou property.

Conversely if condition (a) of the theorem holds, then
L, = Lj. If (b) also holds, then we can find f € L?.
with £ > O a.e. By Lemmas 3.9 and 3.6,

Ef = Lg,.= Iin {x,f : o € £} and

F* = (12
o

* = " = 1" =
£ ') beLp L L. .

P P

Taking 2 to be Lz., the theorem now follows.

§ 7. Appendix..

The original theorems stated by L. Tzafriri, to which
we referred at the beginning of the chapter, concerned
cyclic Banach spaces, namely, spaces of the form
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X = lin {PxO : P € B} ,

where X, € X, and B is a o-complete Boolean algebra of
projections on X. These theorems, in [Tq] and [T2], gave
conditions for weak sequential completeness and for
reflexivity of cyclic spaces, as follows, similar in
form to those of our present theorems 6.1 and 5.1, 5.4,
5.7. The notation of F.2()) and 3.3 ic defined in [T] amd [7,)
f‘QSrechdj.

1. THEOREM ([Tq1], Theorem 5). The cyclic space
X = lin {PX, : P € B} is reflexive if and only if no

subspace of it is isomorphic to either cg or 1.

2. THEOREM ([T,], Theorem 4). Let X = lin {Pxy, : P € B}
be a cyclic space. Then the following conditions are

equivalent:
(a) X is weakly sequentially complete;
(b) No éubspace of X is isomorphic to co;

(c) For any sequence of Borel functions
0 < fq(w) < ... < f(w) < ... (0w € Q) with
sup I's(f,)x0ll < », we have xg € D(S(sgp £4)),

i.e. S(s%p falx, € X;

®)

(d) No complemented subspace of X ié isomorphic to cq;

(e) X is complemented in X**,

By [Gq], Theorem 3.4, every cyclic space is linearly
.isomorphic to the ideal Lg of a Banach function space Lo
whose norm p has the Fatou property. The results of this
chapter on weak sequential completeness and reflexivity
therefore apply, modulo isomorphism, to cyclic spaces in
particular, and they yield Tzafriri's results. However

the present proofs are considerably easier to handle,
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and since more concrete, are perhaps more transparent

than the proofs given in [T4] and [T,].

P. Meyer-Nieberg has also formulated some similar results,
this time for Banach lattices, obtained by different
methods again ([ M ], Theorems 13 and 16).

Since every Banach function space and every ideal
thereof is a Banach lattice, these results are of wider
application than ours; however their statements are
slightly weaker.

In [T7], Tzafriri also gave the following theorem, which
simplifies very considerably when cyclic spaces are
reinterpreted as Banach function spaces, and gives rise

to our Theorem 6.2.

3. THEOREM ([T,], Theorem 10). A cyclic space

X = TEH'{PXO-: P € B} is isomorphic to the conjugate of

a cyclic space 2 if and only if it is weakly sequentially
complete and at least one of the following conditions is
satisfied:

(a) P(s(T')) =1 ;

(b) there exists a strictly positive functional xf €T
such that x**x¥ = sup {xJx : 0 < x < x**, x € X} for

O < X** € X¥*;

(c) the closure of T in the o(X*, X) topology contains

* .
xo.
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CHAPTER IV. HOMOMORPHISMS OF BANACH FUNCTION SPACES.

Our intention in this chapter is to develop and study
the notion of a homomorphic relation between Banach
function spaces. For any space of functions M, M
(respéctively M+) will denote the subspace of real-
valued (respectively non-negative valued) functions

in M. As usual, we do not distinguish betwen a function
f and the equivalence class of functions that are ecual
to £ a.e. Note, in the case where M is M ,that (M )

a strlctly smaller class than M as deflned earller.

§ 8. Preliminaries and deflnltlons.

We follow the notation of [LZZ].

8.1 Definition. A Riesz space, or vector lattice, is

a partially ordered real linear space (L, +, *, <) such
that (L, <) is a lattice.

The complexification of L is the space of elements of
the form x + iy (x, y € L), often denoted .as the direct
sum I, @ iL.. However, in [MW], Mittelmeyer and Wolff have
axiomatised the notion of absolute value in a vector
space and hence established the definition of a‘coﬁplek
Riesz space. Moreover, whenever L is a complex Riesz ~
space and LY denotes the real vector lattice generated
by the positive cone Lt of L (the cone‘being determined
by the absolute value defined on L), then L is precisely
the standard complexification of LY. The basic concepts
-of real'Riesé'spaces carry over easily to the complex
setting, e.g. - :

an ideal of L is the complexification of an ideal of L
and so on. For a fuller discussion we refer the reader

to [ S] and we shall alWays use the term "Riesz space"

meaning "complex Riesz space". Familiarity with the

elementary properties of vector lattices is assumed ;
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these may be found in [1Z,] and [F ]. However the follo-

wing fact merits explicit mention.

8.2 LEMMA ([F ], 14D).. If L is a vector lattice, then

L is an infinitely distributive lattice, i.e. if A is a

subset of L such that sup A exists in L, then for every
y € L,

vy A sup A =sup {y A x : x € A} ;
similarly, if inf A exists in L, then for every y € L,

yv inf A = inf {y v x : x € A} .

8.3 Linear maps between Riesz spaces.

(a) A linear map T is increasing (or positive) if Tx > O

whenever x > O.

(b) A Riesz homomorphism is a linear map which is also a

lattice homomorphism. If T is a linear map of L1 to
L2, the following statements are equivalent ([F ],
14E(b) ) :

(i) T is a Riesz homomorphism;

(i1) (Tx)" = %" for all x € LI;
(iii) |Tx| = T|x| for all x € L
(iv) Tx A Ty = O whenever x A y = O.

It is easily checked that if ' T is a Riesz homomorphism
of L, to. L,, then T is increasing and (using (ii) and

(iv)) whenever x € Lf then Tx € Lg.

(c) A Riesz isomorphism is a bijective Riesz homomorphism.

(d) An increasing linear map T is order continuous if

whenever A is a non-empty directed subset of L+, then
A ¢ O implies T(A) + O, or equivalently, A 4 X
implies T(A) 4+ Tx.

(e) An increasing linear map T is sequentially order
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continuous if the condition of (d) holds with the

directed set A replaced by any monotone sequence.

8.4 Riesz subspaces. .

(a) A subset A of a vector lattice L is called solid if
it follows,whenever x € L and |x| < a for some
a € A, that x € A.

(b) An ideal of L is a solid linear subspace of L, and

is thus always a Riesz subspace.

(c) A band of L is an order closed ideal, i.e. an ideal
M, say, such that, if A « M and sup A exists in L,
then sup A € M.

(d) A Riesz subspace M of L is order dense if for each
+ .
Xx €L ,

x =sup {y : 0O <y <x,y € M} .

The range of a Riesz homomorphism is a Riesz subspace
of the codomain; the kernel of a Riesz homomorphism is
an ideal of the domain ([ F 1, 14F). '

8.5 Quotient spaces and homomorphic images.

If L is a Riesz space and I is an ideal of L, then L/I
is a Riesz space with respect to a partial order <

defined as follows:
given £, g € L, we say [f] < [g] whenever there
exist £, € [f] and g, € [g] with £, 294 -

The canonical mapping of L onto L/I is a Riesz homo-~
morphism with kernel I; conversely, any Riesz homo-
morphic image T(L) of L is Riesz isomorphic to L/ker T
(Lz,l, 18.7,18.9).

8.6 Dedekind completeness.

(a) The Riesz space L is called Dedekind complete (resp.

Dedekind o-complete) if every non-empty (resp. at most
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countable non-empty) subset of L which is bounded from

above has a supremum.

(b) L is called super Dedekind complete if L is Dede-

kind complete and every non-empty subset possessing a
supremum contains a countable subset with the same

supremum.

Note that (i) if L is a Dedekind complete Riesz space
and M is an ideal of L, then M is also Dedekind complete;
(ii) in a super Dedekind complete space, sequen-

tially order continuous mappings are order continuous.

8.7 The Riesz spaces Mu and Lp.

Let p be a saturated function norm based on (2, Z, u).
When endowed with the natural (pointwise) ordering,
whereby for £ and g in Mﬁ, f < g if and only if

f(x) < g(x) for almost every x € Q, M, is a Riesz space
with real part Mﬁ and positive cone M:. '

The following facts are fundamental to many results con-
cerning Banach function spaces, and will normally be
used without explicit reference.

8.7 (i) THEOREM. Mu is a super Dedekind complete Riesz
space ([Lzﬂ, 23.3(iv)) .

8.7 (ii) LEMMA. Lp is an order dense ideal of Mu.

Proof. Since whenever O < f < g a.e. we have p(f) < p(9),
clearly Lp is a solid subspace, and hence a Riesz sub-
space, of Mu. Since p is saturated, then by the
Exhaustion Theorem ([ 2 ], 67.3), there exists a sequence
Qn 4 © in I with p(XQn) < «» for each n. Let O < f € Mu
and let o, = {f < n} (n=1,2,...); then 9, + Q so if we

let 6§, = o, N Q. we have Gn 4+ Q (2.1(iv)), and for

n
each n,

fx < ny < ny €L .
Gn 6, Q, p
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So {fx6n} is a sequence in Lp with supremum £. Hence,

f = sup {fxg } < sup {g : 0O <g<f, g€ Lp} <t
n

Note that the existence of the second supremum here is
ensured by the Dedekind completeness of Lp (which follows
from 8.6 (i)). So f equals this supremum a.e. and the
result follows.

8.7 (iii) COROLLARY. If f € Mﬂ, we can always find a

sequence {f } in L, with 0 < £+ £ a.e.

§ 9. Homomorphisms between Banach function spaces.

Throughout the present and the following sections, p and
't will be saturated function norms with the Riesz-Fischer
property, based on the c—finite measure spaces (£, Z, u)
and (€, A, v) respectively. |

It is clear that since Lp is a Riesz subspace of Mu, the
restriction to Lp of any Riesz homomorphism on Mu is
also a Riesz homomorphism.

Now let II be any Riesz homomorphism of Lp onto LT. Let
the null ideal ker II have carrier set A < {; denote by
0 to Lp/ker I and by o
the induced isomorphism of Lp/ker II to LT. Thus the

g the canonical quotient map of L

following diagram commutes:

Il
e ————
Lp LT
ta
q
L /ker I

It follows from [ F ], 25D that the completeness of Lp
and monotonicity of the norm 1 are sufficient to ensure
that II is continuous, and hence that o is continuous
with respect to the usual quotient norm, denoted by o
and given by

p([£1) = inf {p(f') : £ - £' € ker I} .

Ay
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Thus, since o is both one-one and onto, it must, by the
Closed Graph Theorem, be bicontinuous. Consequently, if
f € Lp and g € LT we have

(1)  T(If) < k,p(LED) ,
(ii) B(a_1g) < ky1(9)

where k, = llall, k, = Ha-1n. From (i) and the definition
of p, clearly || = k, also, and from (ii), for an arbi-
trary € > O and for each g € LT we can find an element h
in the coset o 'g satisfying p (h) < (k, + €)1(g). Hence,
choosing any positive constant Cq < k-1 and letting

2

Cq = kd’ there exists for every g € L_, some h € Lp
satisfying Th = g and '

c,e(h) < T(g) < cyp(h) . | (1)

9.1 Definition. The Banach function space LT shall be

called a homomorphic image of the Banach function space

Lp if there exists a Riesz homomorphism of Lp onto LT.

9.2 Remark. We shall consider only the case where the

Riesz homomorphism I, say, is surjective, since other-
wise the image of an ideal of Lp, and indeed the range
H(Lp) itself, need not be ideals of LT nor, therefore,
Banach function spaces, under any monotone renorming.

For example,

take Lp = LT to be the space 1_ of all bounded complex
sequences with the usual norm [l -|l, and the pointwise
ordering of elements; for a ='{an} € Lp, define

Mo = (a1,a1,a2,a2,a3,...) ;

clearly I is linear, increasing and bounded, and
commutes with the lattice operations v, A: hence I
is a Riesz homomorphism on Lp, but is certainly not
onto; now if 0#xX'€ Loy let

1
B = (a1l §a1l azl %azl a3l "') H
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then |B| < |Na|, but B ¢ M(Lp) and the range of I is
therefore not an order ideal.

Thus, throughout the chapter, the homomorphism
I . Lp + Lt will be assumed surjective. Moreover, A will

always denote the carrier of ker II, and c will be

17 ©2
the constants of the inequalities (1).

9.3 LEMMA. Let {vn} be a monotone sequence of elements

+ . , +
of L;. Then there exists a monotone sequence {un} in Ly,
which is increasing or decreasing according as {vn} is

increasing or decreasing, and such that for each n,

Ma_ = v_ .
n n

Furthermore, in the case where {vn} decreases, each u,
may be chosen to satisfy additionally

cypluy) < t(vy) < cypluy) .

Proof. Suppose the sequence {vn} increases. Since I is

onto, we can find ua € Lp with Huﬁ =V, for each n. Since

TClui ) = |mug| = v, | n

we can replace, if necessary, each u! by |u!| and ensure
that the sequence lies in L;. Now write u, = u{ and

u =u'vu (n > 2). Then u

> u
n n n-1 -

n—1 a.e.; also,

n
p(uy) <pluf+u ) <p(ul) +p(u_4)<...<f2 jp(ul) <=,

and

Ma_ = Tu'! viiu ., = ... = sup Iu! = sup V. =V, .
n n n-1 1<r<n 1<r<n r n

This inductively defines the required sequence.
A similar procedure applies in the case where {vn}
3 — 1 — ]
decreases, by putting u,; = uy and u, = ul A U (n > 2).

But furthermore, we could choose the original sequence
{ul} to satisfy
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cp(ul) < t(vy)

as in (1). This condition is preserved if we replace uﬁ

by |uﬁ|, since p(f) = p(|£f]) for every f € M; finally,

‘since for each n, u_ < u

n ', we have

n
cipluy) < cyp(ul) < tlvy) .

The inequality T(vn)'i c2p(un) is immediate.

9.4 LEMMA. If o, o € I with xg5 € Lp and o, € ¢, then

1

jif = (I

Xg, (X6, ) Xgupp X,
Proof. Let O, = ONOqy and éi = supp oni (1 =1,2); let
f = Ixg and § = supp £. Since oy £ O, clearly Xoj € Lp
and oni < IIxgs s0 6; € 6 (L = 1,2). In fact

Ixgs = Hx01 + HXOZ so § = 61 U 62; since o, and o, are
disjoint, Hx01 A HXUZ = 0, so §, and §, are disjoint.

It follows that oni = fXGi (i =1,2).

9.5 COROLLARY. In the case where 1 € Lp, then letting
¢o = [I1, we have for every o € L,

on = ¢0X6
where § = supp on'

We conclude this section with two simple but important
properties of II.

a
pl

Proof. We may assume u > O a.e. Write v = [lu and suppose

9.6 LEMMA. If u € L%, then Tu € L?.

V>Vy2Vy>... +0a.e. on Q. Applying Lemma 3.3, we

can find a decreasing sequence {un} in L;,-majorised by

u and satisfying Nu = vh for each n.
Define u = inf Y > O. Since u < u  a.e., Mu < Mu,

(n =1,2,...) so Mu < inf Mu_ = inf v = 0, i.e.
u € ker 1.
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Nowu -u>u -u>... +0a.e., andu-ucxu¢€ LZ,

so p(u, - u) - O as n + «, Hence
T(Vn) = T(Hun = Mu) < c2p(un -u) » 0
as n » «», showing that v € Li.

9.7 PROPOSITION. Let Ha

continuous.

I

Then Ha is order

a.
L5

Proof. Recalling 8.6 (ii), it is sufficient to show that
Ha is sequentially order continuous. Let f € Lg, and
suppose O < £y < f5 < ... ¢+ f a.e. Then po(f - £)) + O,
and hence TtT(I f - Hafn) - 0 as n + =, The sequence

{Hafn} is increasing and bounded above by Haf, SO

sgp Haf < Haf and by Lemma 9.6, this implies that

n
a .

sup n £, € LT. Hence, since I £, < I f, < ... ¢ sup m £,

a.e., t(sup Hafn - Hafm) + 0 as m » «, Thus

Haf = sgp Hafn a.e., as required.

In particular, it follows from Prop. 9.7, that if p is
an absolutely continuous'norm, every Riesz homomorphism
of Lp onto_LT is order continuous. Hence this is true,
for example, when Lp is reflexive or when Lp is weakly
sequentially complete, since both these conditions imply
Lp = Lz (Theorems 5.1 and 6.1).

§ 10. Order continuity.

It is appropriate to record here some elementary facts
about Riesz homomorphisms.

10.1 PROPOSITION. If L and M are Riesz spaces and T is
a Riesz homomorphism of L onto M, then

(i) whenever I is an ideal of L, T(I) is an ideal of M;

(ii) if I1 and I2 are disjoint ideals of L, then T(I4)
and T(Iz) are disjoint ideals of M;

(iii) T is order continuous if and only if ker T is a
band.
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Proof. The proofs of (i) and (ii) are an easy exercise;
for (iii) see [LZ3]1,18.13.

Recalling from Prop. 5.2 that the bands of L, are pre-
cisely the subspaces of the form XcLp for some set C € I
which is then the carrier of that band, we can apply
(iii) directly to I : Ly =+ Lg:

10.2 COROLLARY. I is order continuous if and only if
ker 11 = XaLlp -

Before the main theorem of this section, we require a

further lemma.

10.3 LEMMA. Let the Riesz homomorphism I of L, onto L
be order continuous. Let h € L¢: then there is a

unique element f of Lp disjoint to ker I and satisfying
nf = h.

Proof. We first assume h > O a.e. Since II is onto,

h = Nf, for some f; € Lp. Let £ = f1XQ\A'

By Cor. 10.2,'f1 - £ € ker II. Since supp £ € Q\A, £ is

disjoint to ker II, and If = Hf1 - H(f1xA) = IIf1 = h.
Suppose g € Lo is also disjoint to ker II and satisfies
g = h. Since Ig = (Ig)" = h” =0 a.e., i.e. g € ker I,
we must have g~ = O a.e.; hence g € L+, and

I(E A g)

If A g =h = If ..

So £ - (£ A g) € ker 1I; but since O < £ - (£ A g) < £
a.e. and £ is disjoint to ker I, this means f = £ A g,
i.e. £ < g. Similarly II(f A g) = lIlg and it follows that
g < f a.e. Hence g = f a.e.; so £ > 0 a.e. and is unique

in satisfying the required condition.

In general, h = hy - h, + ih; - ih, where h; > O a.e.
(i =1,...,4) and hihy, = O = hyhy a.e. For each i, there
is a unique element fi of L, disjoint to ker I and satis-

fying If; = h,. Define £ = £, - £, + if3 - ify: then
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supp £ = VU supp fi so £ is disjoint to ker I, and IIf = h.
i

Suppose g € Lj is also disjoint to ker @I and NIg = h. If
g =9, -9, + ig3 - ig'4 in its standard decomposition,
it is easily deduced from 8.3 (b) that for each i,

Hgi = hi; since supp g; € supp g, each 95 is disjoint to
ker II, and so, by uniqueness, g; = fi a.e. Hence g = £
a.e.

For £ and h related as in the lemma, we shall write

f=1_'h |
(for reasons to become apparent) and call f the funda-
mental inverse of h under II. It follows without diffi-
culty from Lemma 10.3 that H;1
map of L¢ into Lj. Furthermore, observe that for any
g € Ly with Ig = h, IXo\A

mutually disjoint and g - £ = (g - f)XA; therefore

is an increasing linear

= f a.e., so IXp and £ are

p(g) = pllgl) = p(|E+(g~£)]) = p(E+]g-£]) > p(£f) .
Hence, . )
p(H;1h) = inf{p(g) : g = h} . (2)

In particular, £ = Iiy'h satisfies the left-hand in-

equality in (1), i.e. for h € L,

cip(MZ'hy < T(h) . (3)

10.4 THEOREM. Let II be a Riesz homomorphism of L, onto

Lt. There is a decomposition of II in the form
I=1n,6eTImI,

where

(a) Hc is one-one and order continubus,

(b) Hn is order discontinuous at every point where it

does not wvanish,

(c) the domains of I and N, are mutually complementary
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bands of L, and the rénges of Hc and Hn are mutually
complementary bands of Lt.

Proof. Let A be, as usual, the carrier of the null
ideal of I and let A' be Q\A; let Hc and Hn denote the
restrictions of II to XA'Lp and XALp respectively.

(a) That Hc is one-one is clear. Now suppose

fn = anA' v 0 a.e. in L, and le? 9, = an = Hcfn € Lq
(n =1,2,...). Then the sequence {gn} is decreasing
a.e. Let g, € Ly be its infimum. Then g, > O a.e. and

for some h € Lg, Th = Jo- For each n € N,

I(h A £) =Th A If, =g, A g, =g, =Th.

So

h-(ha£f) €kerT, (4)
and therefore supp(h - (h A fn)) ; A. Thus
(h = (b A £))Xa. =0 a.e., i.e. hy,, = (h A £)Xx,. £ £

Hence th. < inf fn =0 a.e., so h = th and
h A fn f th A fnxA' =0 a.e.

Thus from (4), h € ker 1T and 9o = Th = 0 a.e., as re=-

quired.

(b) Let O < h = th € Lp \ ker I. Put Xm = {h < m} for
m=1,2,..., and choose a sequence Ym 4 A in ¥ with
X¥p € ker I for each m. Since xm + @, we have Xm n Ym + A
(by 2.1(iv)) so that hXanYm 4 h a.e. For each m however,
hxx ny < MXy € ker 1T ,
m m m
SO sup Hn(hXanYm) = 0 and by assumption is not equal to
th. This shows that Hn is not order continuous at h.
{

(c¢) Since XALp and XA-Lp are disjoint ideals of Lo, the
first assertion is immediate. Their images H(XALD) and
H(XA.Lp) are disjoint ideals of L{ by Prop. 10.1 (ii),

and hence have disjoint carriers B and B' respectively,
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say, in A. Thus
Lt = TLp) = T(XaLy ® xpiLy) = I 0GLy) @ N (L)

and it follows that € = B U B' and that (c) holds. Hence

we can express II as the direct sum Hc ® Hn.

10.5 COROLLARY. If £ € LY, If = M(fxa) . i.e.
fo € ker II.

Proof. Let O < f € Lgxand choose any sequence

. . a
0 < fm 4 fXA a.e. Since fo and fm are in Lp m=1,2,...)
we have from Prop. 9.7 that

H(fo) = Ha(fo) = l;p Hafm = lém Hfm ’
i.e. anxA = lém anm .
Hence Hn is order continuous at fXA, so in fact, from

Theorem 10.4, H(fo) =0 a.e.

10.6 COROLLARY. 1II is order continuous if and only if
= 0.

I
Xalg

10.7 COROLLARY. If T is an isomorphism of Lp onto L.,

then I is necessarily order continuous.

Proof. If II is an isomorphism, I is one-one so

ker I = {O}. Hence A = @ and II = Hc.

10.8 Remark. From the theorem, I = II| is a Riesz
c XA.Lp

isomorphism of Xa1Lp onto XB,LT. In particular, this

means that the mapping H;1, which we had encountered
already in Lemma 10.3 for the case when II was order
continuous (and therefore B' = €), is a Riesz isomorphism

of XB,LT onto xA,Lp.

10.9 EXAMPLES. A simple example of an order continuous

homomorphism is the mapping Mw : £ - fp for some fixed
measurable function ¢ > O. If the domain here is Lp based
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W
on (2, I, u), then the range L = {fop : £ € Lp}, while
based on the same measurable space 2, need not however

be based on the same measure algebra I.

If ¢ is essentially bounded on Q, then My maps Ly into
itself; if also, ¢ > € > O a.e., then My maps L, one-one
onto itself (since for each f € Ly, fy € L, andAfm-1€:Lp)

and hence My is a Riesz isomorphism on Lp.

We now give an example of a homomorphism which is not
order continuous, to illustrate that Hn need not always
be trivial.

10.10 EXAMPLE. Let Q = N, let I be the g-algebra of
all subsets of N, and p the discrete measure. Let

p=1=1|"°ll,, both based on (Q, I, u). Then
Lp (= L) =1, Lg = Cq4 and p has the Fatou property.

Now 1 is linearly isomorphic to C(BN) (BN being the
Stone-Cech compactification of the positive integers),
so let X denote the canonical image in C(BN) of

x = {x;} € 1,, and choose an element ¢ of BN N\ N lying

in the compactification of the even integers. Define
Ix = (X(), Xqs X34 Xgs +o0) (x € 1) .

(i) Clearly, @1 is linear.

(ii) floxl, < max{|X(®)|,|}xlo} j I xll  max{{w|, 1} ,

so IIx € 1, and I is bounded.

. 3 3 ] - 3 -~ 3 .
(iii) Since N is dense in BN and x is continuous,

then whenever x > O, Q(w) > 0, and so_II is increasing.

(iv) 1 is a lattice homomorphism. It is sufficient
to show that |x|"(¢) = |X(9)] (x € 1), so let {ny} be
a net of even integers such that ny >~ in RN; for

each «a,
I;((na)l = lxndl= Ix[A(na) ’

(®) where ¢ m03 be obtained {mm [§ \ASiv\ﬁ ¥ ,in the obviout wctj)
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so the continuity of X gives the result.
(v) 1 is onto. Let y € 1,. Define x by

(n > 2) :

Xon =¥y (m21) and x5, 3 =y, 2

then x € 1, and llxlle = lylw. For any k € N,
X (2k) = Xox = Yqi hence, by continuity, X(p) = y,- It now
follows easily that IIx = y.

(vi) 1 is not order continuous. Consider the sequence

of elements {xn} of leo, where
2 1

x = (%, I e 1 - Pl 0, 0, ...). For each n,

An - . - - 1
x(p) = 0. Let x € 1, be defined by X, = 1 =T
(m = 1,2,...); then x? 4 X as n » «». However

lim Xom = lim x(2m) = 1 ,

so x(p) = 1 # §n(m).-Thus mx™ A Ix.

It follows by Prop. 10.1 (iii) that ker II is not a band.
_Indeed, consider the carrier of ker II: if x € ker I, then

Xon-1 = O (n=1,2,...), sOAcCN on the other hand,

< WNeven’
if k is any even integer, and x € 1li is defined by

X = Gnk (n € N) ,

then lIx = 0 so {k} = supp X € A, and A > Ngyepn- Thus
A = Ngyen- However, if o € 1, is given by

=1 =O (n=1,2,...) 7

%2n * %2n-1
then'supp o = A, but &(m) # O; so o € ker I and thus
ker I # XALp‘

Observe that if o has support contained in A = Ngyen:
then (Ha)n = 0 for n > 2, and whenever B has support
contained in Q\A = Nggq. then B(p) = O so

supp B « N~ {1}. It follows easily that the sets B and
B', defined in the proof of Theorem 10.4 (c), are
respectively {1} and N ~ {1}. Thus xgL{ ~ C and

XB-LTﬁ‘lwr and we can illustrate the decomposition
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theorem, for this example, as follows. We write 1$ and
19 to denote the bounded complex sequences with supports
in the even and odd integers respectively.

L, = lo = 19 @ 15
Hl ch lﬂn
r = 1, =1 & C
where M, : (¥4, O, ¥3, Oy Ygs O, «v.) ™ (Y4') Y30 Ygr +e2)s
M, = (0, Y5r Os ¥4s O, y6; cee) 00 Yor Of Yyr oee).

§ 11. Isomorphisms between Banach function spaces.

We have seen in Theorem 10.4 that any Riesz homomorphism
I of one Banach function space Lp say, onto another, has
a component acting isomorphically on a band of Lp. I will
itself be order continuous only if the other component,
acting on the orthogonal complement of that band,

vanishes on its domain.

This observation motivates the closer inspection of iso-
morphisms: indeed, it turns out that eVery such, from Lp
to L say, arises uniquely from a Riesz isomorphism bet-
ween the Riesz spaces M, and M, which is specified
completely by a pair (6, ¢g) where 6 is a measure algebra
isomorphism between I and A, and Yo is a fixed strictly

positive A-measurable function.

- Throughout this section, we assume therefore, that II is
one-one, i.e. we let II be a Riesz isomorphism of Lp onto
L’[.

For convenience, define
8o = supp HXO (o E_Z, Xg € Lp) . (5)

In fact the order continuity of II will enable us to extend
this definition consistently to all of L. We begin with

a simple but far-reaching observation.
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11.1 PROPOSITION. Let ¢ € I with X4 € Ly, and suppose
o = supp £ for some f € Lp- Then

supp IIf = 60 .

Proof. We may assume that £ > O a.e. Let
1
= {f < £ <n}. Then o, + o so fx

On on + £ a.e. Since
1
onn < onn < nxcn, we have
1
alX, < TW(Ex, ) <allx
n-“to, o4 oh
and hence supp H(fxon) = ecn for each n € N.

By order continuity, chn,+ Xy and so considering the
supports it follows that 6o
H(fxcn) + If,

n 4 080; hence, since

supp If = g supp H(fxcn) = H 8o, = 60 .

11.2 Definition. Let f, *+ @ in I with XQn_e L, for

each n. For any 0 € Z, 0 = g ocn and XonQn € Lj
(n =1,2,...). Define
60 =V 8(o n @) | | (6)
n .

where the r.h.s. is obtained from (5).

Because I is order confinuous, (5) and (6) are clearly
consistent in the case where Xg € Lp. In general, the
r.h.s. of (6) is an element of ¥ and if we choose any
u € LT with supp u = o, we have, from Prop. 11.1, that

o)
for each n € N, supp I (uy ) = 6(a N Qn). Hence,

O'nQn

6g = U supp H(ﬁx )
n

oNfn

Supp sup H(uxomn)

supp ITu .

This shows that 6 is well-defined, independently of the
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sequence {Qn} and moreover, that the restrictions of
Prop. 11.1 can be weakened:

11.1' PROPOSITION. For any o € & and any f € Lp with

supp £ = o,

suppWf = 80 .

11.3 PROPOSITION. 6 is continuous with respect to set

containment (<) in %.

Proof. Let On + o (o, on €, n=1,2,...). Choose

f € L; such that supp £ = o. Then onn 4+ £ a.e., and
by the order continuity of I, H(fxcn) +ff a.e. Hence,

by Prop. 11.1°',

60 = supp If = U supp I(fx_ ) = U oo, .
n On n n

11.4 PROPOSITION. 6

€.

Proof. Suppose the contrary, so that v(€ \ 8Q) > O. By
the Exhaustion Theorem ([ 2 ], 67.3), we can find in A a
sequence-{én} increasing to € \ eQ.with X6y € L, for
each n. Fix some m € N such that v(6,) > O and let §, x
denote Gm' Xam respectively. Let u = H'1x and ¢ = supp u.
From Prop. 11.1', 60 = supp IIu = §. Now choose a sequence

o7 by Def. 11.2, 8@ = g'egn and
Xongn € L,; however since o N Q, € 9
8(o N Qn) c 0, by (5). Hence,

Q, *+ Q@ with each X iP L

for each n, n’

6o = g 6(c N Q) < g 6Q, = 6Q .

Since 6¢g = &§, this is a contradiction.

Note. An entirely analogous proof shows that for each
o € I, 8(Q N\ o) = € \ 6o, but this will also follow
from the next theorem.

11.5 THEOREM. 6 is a measure algebra isomorphism of L

onto A.
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Proof. If o € I and 60 = @, then for any ¢' < o such
that Xg € L, we have supp ch, = 080' = @, so Xo' € ker I.
Since 11 is an isomorphism, Xgr = 0 a.e. It follows easily’
that xg = O a.e. Hence 6 is one-one, and it remains to
show that

(a) 0 commutes with the algebraic operations U, N, and

(b) 6 is onto.

(a). Let o, y € . Choose £, g € L; such that supp £ = o,

and supp g = y. Then supp 06 U vy = supp £ v g and
o Ny =3supp £ A g, so by Prop. 11.1"',

8 (oUy)=supp N (fvg)=supp (Ifvilg)=supp IIf U supp lIg =00 U 6Y,

6o N BY.

]

8 (oNy)=supp Il (fAg)=supp (IfAllg)=supp If N supp Iig

(b). Let 8§ € A and choose a sequence Gn 4 6 with

1

Xsp € Lpv and let w_ = Hf X6, (n =1,2,...). For each n,

M(w, A wn+1) = 0w, A QW ., = Xs, A X6n+1 = xg = Mw,

n
i L] L] < = * o o
Hence WA Yo nr L. w < w .4 (n 1,2, ) so the

sequence {wn} is increasing a.e. Let On = Supp w, and

= W

o = U g_. Define
n n

} (n=1,2,...) .

> 4
— In

n

We shall show that (i) U oﬁ = g, and (ii) eoﬁ + 8.
n

(if. Let x € o \ U oﬁ be such that wn(x) increases
as - n » o, This condition excludes only a u-null subset
of ¢ \ U oﬁ from consideration. Note that in this instance,
for o and for each oﬁ we have to choose a particular
(fixed) representative of the p-equivalence class of sets

normally denoted by each of these symbols.

Since x € o, there is a positive integer k for which
wk(x) # O. Since x ¢ oﬁ, wh(x) < % for each n. Hence for
. 1 .
each n > k, wk(x) < wk+1(x; < ... <L wn(x) < . This
implies that wk(x) = 0, contradicting the choice of k.
Thus, o0 = U o,
n n
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(ii) . For each n, H(wnxoa) < Hwn. Hence by
Prop. 11.1°"',
eoﬁ = supp H(wnXoﬁ) c supp Hwn = an .
] -
Sso g 80! < g §, = 8.

Suppose that this containment is strict, and choose a
non-null subset &' € A of & N g 60} satisfying X, € L_.
For r =1,2,..., let n. = ' N &.. The sequence {nr} is

clearly increasing in A, and by Lemma 9.4 applied to H-1,

_‘l _
o S A 2
= -1 -1 = =
where Yy = SUPP I X”r c supp I X5r = 0, (r =1,2,...),
and the sequence {yr} is increasing in .

However §' is disjoint from each eoﬁ n=1,2,...),
therefore so is each Ny (r =1,2,...). In particular,

each n, is disjoint from 60), and hence,

Xno A n(er0£) =0 (r =1,2,...) .

It follows that

= 1 =1 =
0 =1I Xﬂr AT H(Wrxg.) =

r

~e

rXO'

W X A
r 1r r

c \ o} .
hence vy, € o, o, for each r

Now O + ¢ and cé + 0 SO Xg4 , = 0, and therefore - 0

r\Or Yr
as r » »., But {er} is an increasing sequence. So in fact,
we must have Xy, = O on @ and hence x,_ = O on €

(r = 1,2,...). It follows that § = g 0o as required.

Hence finally, from (i) and (ii) together with Prop. 11.3,
we obtain ' '

eo=e(go;1)=\rjleor'l=a .

11.6 LEMMA. If u € L, and ¢ € I, then Il(ux,) = Mu Xgo*

Proof. First let u be a characteristic function Xy Say,
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where y € Z. Then,

I = I
(uxo) XYA“ -

(HXonY)Xe(cﬂy) (from def. of 8)

HX.Y Xe(Gn’Y) (from 9.4)

= IIxY Xgg (from def. of 6)

= [u Xgg *

It follows immediately that the lemma holds also when u
is a simple measurable function. Now let O < u € L, and
choose a sequence O < . 4 u a.e., with each u, simple

and measurable. Then O < U Xg 4 ux, a-.e. and so by the

order continuity of I,

H(uxc) B sgp H(unxo) = SgP M Xge = TuXg o

. as required.

11.7 EXAMPLE. Taking I as in Example 10.10, thenm:m 10
is an isomorphism and the corresponding measure algebra°°

isomorphism of the subsets of Ngygg onto those of NN\ {1}
is given by

8({2n-3}) = {n} (n =2,3,...) .

The measure algebra isomorphism 6 induces a natural mapping
H1, say, between the sets of measurable functions on Q and
€, given by

T1Xs = Xgg (c € ) . (7)

This can be extended immediately to simple functions by
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linearity, but before extending the domain to all of My,
we require the following lemma.

11.8 LEMMA. Let {un} be a sequence of simple measurable

functions such that up =+ O a.e. on Q. Then H1un - 0 a.e.
on €.

Proof. First assume that each u_ is real-valued a.e.

o

Then, as O < |u | + O a.e. and u; < Iunl, we have

0 < u; + O a.e. Hence
lim inf u; = 0 = lim ‘sup u; . (8)

The sequence {sup u+}keN is decreasing pointwise a.e.
n>k O
and from (8) has infimum zero a.e. Choose a sequence

Qn + 8 in I with XQm € L, and u(Qm) < o for each m. Fix

€ > 0: we can then apply Egoroff's theorem ([DS1],III.6.12)
to infer, for each m, the existence of a set Qé < Qm
with u(Qm*\Qﬁ).< m_1e,such that )

sup u; Xqgr ¥ O (uniformly as k » =) .
n>k - m

. m ' ' :
Let QF = ;:1 @/. For 1 <r <m, QL € Q.S Q soQr <.,
and the sequence {Q&} is increasing; so
1

n ' -
u(Qm\~Qm) < u(me\Qm) < m € and
+
Sup u_ Xan ¥ O
n>k n

uniformly as k -+ =, since the convergence is uniform on
Qé for 1 < r <m. Fix m € N and extract a subsequence
{nj} of N such that for each j
sup ul Xou < 277 xou - (9)
. n Q" — Q
n>nj m m
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Then, the l.h.s. of (9) is in Lp and

sup H(u; Xqu) = I(sup u; Xqu) < 27 IXqu - (10)
ninj m nzn 3 m m

By lemma 9.4, if 0, € 0 and x. € L_, then
1 — o} o]

HX01 = HX0X601 = on 1Xoq ¢

and it follows that if s is a simple measurable function
with supp s € o, then

Is = Iy 045 . | (11)

— " - + —
For each n, let o, = Qm N supp u, and let ¢ = HXQ&' Then -

6o, < 69& and, by lemma 9.4, onn = wxecn for each n. So,
from (11) . N

+ + +
M(u_ Xan) = Ox_ T,u_ = P¥x I,u
n Qm on 1™n eon 1T"n

and hence from (10),

+ -]
sup (x4, Hqu ) < 2 "¢
n>n eon 1T"°n

therefore, since ¢y > O a.e. and 60, < 6Q_

+ =]
sup (M,u_ X ) £ 2 7 Xgan
NoTua 1"n 60 8Q !
2]
and
+
lim sup (I, u_ ¥ ) = 0 a.e.
3 n>nj 1™ n ec

IQ e eno

Now for each)k ? N, there is a 3 € N such that nJ < k < n.

and since the sequence {sup H1un} is decreasing a.e.,
n>k

+ + -3
Sup Myuy Xggn < SUP Hqup Xgqu < 2 ’
m

X " hd
n>k n>nj %%

Thus lim sup I[1u+

a XSQ" = 0 a.e. for.every m € N.
m

J+1
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Now since Qn 4 Q and u(Qn\ QH) < n-1€, clearly Q; + Q
and so by the continuity of 6 (Prop. 11.3), 6Q; ¢+ €.
Hence in fact,

lim sup H1u: =0 a.e.
on €, and finally it follows that
. + _
lim H1un =0 a.e.

Likewise, u < |u |, s0o O < u  » O a.e. and similarly

n
we obtain
lim H1un =0 a.e. ,

so therefore

+ . -
lim T,u_ = 1lim J,u_ - lim I.,u_ = 0 a.e.
n 1 n n 1™n n 1n
In general u, = v, + iw, where Vit wn are real-valued;

if u, O a.e., then Vi > 0 and_wn +- O a.e. Hence from
the preceding part, H1vn + O and H1wn + 0 a.e. so
finally,

1 n H1

]
I

Vi + 1H1wn - 0 a.e.
Now letOﬁféMu. Choose a sequence of non—-negative

functions Sy each simple and measurable, satisfying

O <s,#* f a.e. Define
nfE = sgp Mys, - (12)

This definition of n1f is independent of the particular
choice of sequence {sn}. Indeed if {tn} is another
sequence of simple measurable functions with O < tn + £
a.e., then for each n, s_ - tn is also simple and

n

S, ~ tn - 0 a.e. From the lemma therefore,
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H1sn - H1t = l'[1(sn - tn) -0 a.e. ,

n

i.e. lim H1tn = lim I

S_.
n n 1 n

We now show that H1f € M,. For each p € N, let
Ap = {f > p} = %’{sn > pl € Z.

Since £ € M;, £ < » a.e. so Ap + @. By the continuity
of 6 (Prop. 11.3), eAp ¥ @ in A. Now

oa, = o U (s >p)

P
==§¥ 8 {sn > p} | (by continuity of 6)
=\ {n;s, > p} (from (7))
n
= {HTf > p} (from (12)) .

Hence {I,f = «} =N {I,f > p} = NoeA_ = @. Thus M < =
o p P

as required.

It follows from (7) that for every simple function
S € Lp, supp H1s = supp IIs. If f € LB and we choose a
sequence of simple functions £ with O < £ t f a.e.

n
then,
supp NM.f = supp sup m,£ =|g supp T £
= U supp nf = supp If ,
n

by the order continuity of II. Hence if f and g in L, are
disjoint, then H1f and H1g'are disjoint. If £ and g in
Mﬁ are disjoint, choose simple functions fn, 9,
(n =1,2,...) with 0 < fn + £ a.e. and O < 9n + g a.e.;
then for any m, n € N
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fm AgL <2 £t Ag=0 a.e.,
therefore

I A H1gn =0 a.e.

1fm

Since supp H1f = U supp H1fm, H1f is certainly disjoint
m

from eachlg, (n =1,2,...) and so since

supp M,g9 = g supp N,9,, M f is disjoint from I,g.

Hence since II1 is clearly linear, it follows from 8.3

(b) that II1 is a lattice homomorphism of M, to M,.

11.9 PROPOSITION. II, is bijective and order continous.

1

Proof. (i) I, _is one-one. Suppose O < u € ker M,. If

{u_} is any sequence of simple functions with
0

In B

u, tua.e., Tju> sup M,u, and so u, € ker I, for

each n. Letting 0, = Supp u,, and on be ‘the infimum of

u, on ¢, oOr zero if Ohn is null (n =1,2,...),

0 < H1 (anxcn) < H1un =0 ;

H1X°n = 0 a.e.; since 6

is an isomorphism, we have in either case that opn is

hence, either a, = 0O or Xeon =

g-null (n = 1,2,...) and since supp u = U o, it follows
n
that u = 0 a.e.

(ii) @I, is onto. Let v € M: and {v_} be a sequence of

simple functions with O < v+ v a.e. Since 6 is bi-

jective, it follows from (7) that for each § € A4,

X8 ='H1Xo for some ¢ € I. By linearity, each simple v-

measurable function is also in the range of H1, so for

each n, we can find a simple p-measurable function u
n’

O <u;<u, < ... <u < ....Itis sufficient to

with H1un = v_; since H1 is one-one, clearly
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prove that u = sup u_ < « a.e., for then u € M: and
n n

N.u = sup H1u
n

sup v_ = VvV .
1 np n

n
" Therefore suppose § € L and & < {u = »}. By shrinking ¢
if necessary,we may assume that u, 4+ o uniformly on §;
furthermore, by extracting an appropriate subsequence

of {un} we may also assume that
U Xs 2 MXg (n=1,2,...) .

However we then have

and hence vyg. > nxgs for every n, i.e. 88 € {v = =},
It follows that v(68§) = O and hence that u(s§) = 0. So

u < « a.e. as required.

(iii) Suppose that II1 is not order continuous on M.

Then there exists a sequence {fn} in M, with fn + O a.e.

U
and a function O # 9o € M, such that

H1fn ¥ Jdo @-e. .

Let § = supp 9o € A and let 61 be some subset of § on
which,go is bounded away from zero, so that

gox61 > ex51 a.e. ,

say. Since H1 is a lattice isomorphism, so is H;1;

hence for each n € N,
1oV, £ ) > To (g ) > el
1 YtnXgy! 2 % Y90Xgq’ 2 BRp Xgy
-1
i.e. £ x _ > (M, 9.)x _ > ex _ .
nte=1s 1 70 %9715 D
1 1 1
But since f ¥ O a.e., it follows that u(e_1
therefore that v(61) = 0. Hence in fact

61) = 0 and



1gf H1fn =0 a.e.

and H1 is order continuous.

11.10 The order continuous extension of II.

As the mapping H1 : Mu - Mv is in essence a lifting into
Mu of the measure algebra isomorphism 6, it is becoming
evident that the Riesz homomorphism N has a strongly
geometric character. This is best illustrated in the
case where 1 € Ly since then,with g = I1,we obtain from
equation (11) that

Ils = ¢ I

o} 1s

whenever s is a simple function in Ly and since we can
approximate any h € Lg by an increasing sequence of
simple functions each in Lg, it follows by the order
continuity of I and H1 that

Th = moH1h

whenever h € Ly. Since pointwise multiplication by a nomn%ahm.
measurable function is order continuous, the mapping

is an order continuous extension of II. Moreover since Lp
is order dense in Mu, such an extension is necessarily

unique.

With this in mind, we pass to the more general case where

no assumption is made about the norm of 1. Let'{Qn} be a

sequence of mutually disjoint elements of I, whose union

is Q, such that XQn € Lp for each n. If €n = eQn, then

by Theorem 11.5, U €_ = €. Let ¢, = IIX,,: by Prop. 11.1",
n n i 21
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supp ¢, = E - Let ¢ = sup @, : then the set {w = o} is
at most a countable unlon of v-null sets, hence is also
null, S0 ®g € M,, and

SuUpp @, = g supp ¢, = g €n =€ ;

thus ¢ > O a.e. So now for £ € M define
o

u

Hef = woﬂ1f . (13)

Since both H1 and the multiplication Mwo are order con-
tinuous Riesz isomorphisms on My, so is He’ Suppose

o € I with Xg € Lp: if 0 € Q; for some i, then 60 < €i
and

Hexo =@ II1X _'woxec = wixeo = HXO i

in general,

IIexo = He ( 12 chﬂ )

IIM8

O 1y ( Xona, )

i=1

@, E Xe(oﬂQi) (by order continuity of H1)

z ®iXg (5nQ. ) (by disjointness of 6(c N Qi))
i i

g onngi

on .

By linearity we have that H s = [Is for simple functions
s € Lo, If £ € Lp and the 51mple functions Sh increase
to £ a.e., then

Hef = sgp Hefn = sgp an = If ,

using, in turn, the order continuity of I and He. It
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follows that He as defined in (13), does indeed extend
II and by the order density of Ly in'M, it does so
uniquely. Note, finally, that @0, = He1 and that

Prop. 11.1' generalises further:

11.11 LEMMA. If o € £ and u € My with supp u = o,
then supp Heu = 00.

The inverse map H—1 : LT > Lp is also a Riesz iso-

morphism and hence has a unique order continuous

1) t: M > Mu. In fact,

tension B
ex (I e v

11.12 PROPOSITION. (I |

Proof. If g € Li, then H;1g = f only if g = Hef = IIf.
-1

Hence I, lLr

Suppose gn €My (n=1,2,...) and g, ¥ O a.e. Let

-1
He

= -1,ie. H;1 is an extension of I~7.

g, = fn € My and fo = igf fn. Then
Hefo = 1gf nefn = 1gf 9n = o.

1) .

By uniqueness therefore, H;1 is precisély (m- e

Not surprisingly, the measure algebra isomorphism under-

lying I ! and H;1 is precisely 6 1.

11.13 LEMMA. If o0 € £ and 60 = 6§ € €, then
-1
supp He Xg = -

Proof. Let f € My with supp £ = o; let g = Hef so that
supp g = §. Then by lemma 11.11,

supp H;1x5 = supp H;1g =supp £ =0 =06 6§ .
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If we denote by (H-1)1, the Riesz. isomorphism of M,
1 from 6, then the
preceding lemma may be equivalently restated as

onto Mu, derived from 6~1 as was I

follows.

1

11.13' _LEMMA. (1 '), = (n1)'1.

1

60 € A. Then, by 11.13. (I~
=1

Proof. Let §
so H1(H-1)
easily.

)1X(S = Xe-’]@r

1X§ 1Xg = Xg and the result then follows

Define wo = H;1

g e M\)’

1 (here 1 denotes X€)' Then for all

-1 _ -1

He g = wQH1 g .

Our final observations in this section relate @, and wo,
and yield an alternative description of I and I, to the
form given by (13). '

11.14 PROPOSITION.

= ] - . =1 = ¢! -
(a) H1wo = @, v-a.e. ; H1 Q. = wo y=-a.e.

(b) If £ € My then

(a) Let o € £ be arbitrary and let 6¢g = §. Then,

_ =1 _ -1 _ -1
Xg = Mg TeXy = Tg (wOXS) -‘(He @o)xe-16 = (UJOH1 wo)xo

Now let § € A be arbitrary and let 6-16

Y. Then,

_ -1 — _ _
Xsg = IIene X§ = He(onY) - (Hewo)xey - (won1wo)xé
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The result follows easily. Note that at the third step
of each sequence of equalities, we use the obvious
extension of Lemma 9.4.

(b) Using Lemma 11.13°',
M E=T_(_ (Ey-1)) =1_(v 07 1, (£-1))
e e''o o e "o 1 1 (o]
= -t gy ")) = 1 (£gy"T)
e e 1 o 1 o °

Thus, from Prop. 11.14 (b), He can be composed, either
as a multiplication (M¢o) on My following a measure
algebraic transformation (H1) or as a multiplication
(M¢81) on Mu followed by the (same) measure algebraic
transformation. The net and composite actions of He on
L, are depicted in the following commutative diagram,
where we define the Banach function norms A and « on My,
and M, respectively by

-8

ME) = p (Y f) (£ € )

k(g) = p(ri;1g) (g € M) ,

o=l , : .
so that L, = {wo h : h € Ly} and L. {I,h : h € Lpl.

T
L) Qwo-‘ | Lz‘
T
] N
S > L
T
M,
I = nele i T, = Mw$H1 =T, Mw_1 .
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11.15 Remark. 1In the case where @ and € are separable

complete metric spaces and I and A are the o-algebras
of their respective Borel subsets, then in fact the
measure algebra 0 is derived from a pointwise iso-
morphism (non-uniquely of course) of the sets Q, €.
This fact depends on a theorem given by P. Billingsley
in [ B].

11.16 Definition. Let II be a Riesz isomorphism of Lo
onto L¢ -and I its extension to M;. We call I, He
unitary if they are isometric with respect to the norm
B llo, where we admit +» as a possible value for the
ess sup norm by defining

NN, = = (f €M ~17(W)

and similarly in M, .

Note that if I is unitary,l(L, N L¥(u)) = L N L®(v).

11.17 LEMMA. Let He be a Riesz isomorphism of M, onto

My. The following statements are equivalent:
(a) He is unitary;

(b) He maps characteristic functions to characteristic

functions.

Proof. We keep the notation He’ 9 as earlier.

(a) = (b). Let o € r. By hypothesis, O < |Hexo| <1 a.e.

Let 8 = 060 = supp II_X; and suppose there is a\ subset P
I"\““

of § with "

(HeXO')X(S‘] < OLX51 (14)

a.e., for some O < o < 1. Since He is onto,
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+
(Hexo)x61 = Hef for some f € M. Let 0, = supp f. By
“ lemma 11.11, 601 = supp Hef = 61 < 8. Hence, since 0 is
a measure algebra isomorphism

= g1 -1 2
o, =8 6,6 §=o0.

By Lemma 9.4

l-[excn - (Hexo)xeo1 - (HeXO)X61 = 1-[ef :

Since He is one-one, £ = Xo1 a.e., so by hypothesis
I £l = I£)l, = 1. But this contradicts (14). So in fact
Hexo > 1 a.e. on its support and hence finally we have

Hexd = 1-xec = Xg a-e.

(b) = (a). Let f € M: n Lw(u) and let o = supp f£f. By
hypothesis, N_x = Xg,- Let a = NE then
0 < f < ax, a.g., so 0 < I £ < allx, = axg, a-e. Hence

.
o’

Im fll, < a .

Suppose that "Hef"°° = Db ; a. Let y = {E%E < f < al. By

definition of the norm H'Hw, Y is a non-null set and we
have

> =
He(fxy) > HexY Z bIl x bxeY .

a+b
2 Y
<

But He(fo) < I f < b a.e. From this contradiction it

follows that

Im e, = a = l£l

as required.

In the case where IIfllo° = o, a similar type of argument,
considering the sets Y = {M<£f <M} (M E N
shows that HHeme = ®», Thus the result follows.

From the remarks following Prop. 11.14, we saw that the
most general Riesz isomorphism of M, onto M, is a
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composition of a unitary isomorphism and a pointwise

multiplication.

Note 1. He is purely ﬁnitary if and only if He1 =1 a.e.

Proof. If He1 = 1 a.e., then, by Lemma 9.4, for each
o €z,

HeXc = (He1)xec = Xgg -
So by Lemma 11.17, He is unitary.

Conversely if He is unitary, then He1 = X for some

€' < €. Let § € €~ €' be A-measurable. By the charac-
terisation given in Lemma 11.17, H;1 must also be
unitary. Hence XG = l'[exO for some o € . However, since
Xg £ 1 ace., x5 = I Xy £ BT = Xgy @.e., so 6 €.
Thus § a null set and He1 = Xe-

Note 2.. I, is a pure multiplication (in the case where
(, ) = (€, A)) if and only if

supp Hef = supp f (f € Mu) .

Proof. If supp Hef = supp f for every £ € M then for

118
each o0 € £, 60 = ¢ and

Q%o = (He1)xeo = PoXg ¢

By linearity, Hg = 9,8 for every simple function s, and
by order continuity,Hef = wof for every £ € M.

Conversely suppose that Hef = wof (f € Mu) for some
©s € Mu. Since He'is a Riesz isomorphism we must have

@ . > O a.e. and then clearly supp Hef = supp f.

(o]



§ 12. The Associated Homomorphism.

”

Let I be once again a Riesz hmomorphism of Lp onto Lis
with kernel carried on A € I. It is an elementary exercise
in lattice theory to show that the adjoint of any sur-
jective lattice homomorphism of a lattice L is also a
lattice homomorphism, when L* is endowed with the usual
algebraic dual lattice structure (namely, that whereby

F is in the positive cone of L* if <{f, F) > O for every

£ € LY). Moreover this adjoint is always an order

continuous mapping.

When we identify with the Banach function space L%,
that subspace of L? which consists of the order
continuous linear functionals on LT, the restriction of
I* to this subspace is then a Riesz homomorphism on L%.
The question then poses itself naturally of what
conditions enable us to apply to this homomorphism some
of the results developed so far. The first two lemmas
of this section give an answer to this question.

12.1 LEMMA. If H € L: and TI*H € Lé, then H € L%,

i.e.

* * ! * '
T*(L¥) N L) < T*(LD) .

Proof. Suppose O < f = II*H € Lé and the sequence {vn}

in L satisfies v, > v, > ... + O a.e. By Lemma 9.3, we
+ .

o with

Tu, = v, (n =1,2,...). We may assume without loss that

lgf U, = 0a.e. (for if O < uj

Huo < Hun (n =1,2,...); hence Huo < igf Hun =0, i.e.

Ug € ker II; so replace each U, if necessary by

u_ - inf u_ ). Then, since £ € L' , £ is an order
n r r p

can find a decreasing sequence {un} in L

< u, (n=1,2,...), then

continuous linear functional on Lp, o)
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<vn, H) = (Hun, H) = (un, nN*¥H) = <u_, £ > 0

n
showing that H € L%.

12.2 LEMMA. 1%(L!) < L, if and only if T is order

continuous.

Proof. Suppose first that I is order continuous and
let O < v € L%. Let the sequence {fn} in L, satisfy

£, 2 £, > ... ¥+ O a.e. Then {Nf_} is decreasing in L,

and inf If_ = n(inf £_) = O, so, since v is an order
n n n n

continuous linear functional,
, * - -
1gf <fn, n*v) lgf <an, vy o,

and hence II*v € Lé.

Suppose now that I is not order continuous: then we
can find h € Lp and a sequence {hn} satisfying

>
0 < hn + h a.e. but Th % sgp th .

So S = supp(Ilh - sgp th) is non-null, and choosing
some O < v € L% whose support is non-trivial and

contained in §, we have,
<Ih - sup mh_, v> = g (Ih - sup Mh_)v du > O .

So <h, M*v) = <h, v) ; sup <Ih_, v) = sup <hn' n*v>.
n

Hence II*v is not order continuous,i.e. II*v ¢ Lé.

It follows by these two lemmas that if II : Lp - LT is

order continuous, then II* : L; > L; satisfies
* ' - ] * *
il (LT) Lp n I (LT) ’

and so If = M*|,, is an order continuous Riesz
T
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homomorphism of L% into Lé. We can make this more

precise:

12.3 LEMMA. If I : Lp > LT is order continuous, then
X - '
H(LT) Lp.

XQ\A

Proof. Let O < v € L% : from Lemma 12.2, v € Lé. For
any £ € L,, <f, (ﬁv)xA> = <fo, M*vy = <H(fo), v> = 0,
by Cor. 10.2. Hence (ﬁv)xA =0 a.e., SO

e ]
H(LT)

-~

T .

= X52\1-\.1';) )

Conversely, let O < g =g € L'. Define H € L* by
, - Xo\a P T

{v, B>

@' du (v €L ,

1V is the fundamental inverse of‘v introduced
in Lemma 10.3,i.e. H;1v = WXqo\a for any w such that

where Hc

Ilw = v. Since the mapping Hg1 is -positive, linear and
bounded (by (3)), H is a bounded positive linear
functional and

e i< Mag' o' (@) < eTlot i) .

Furthermore, if Vi2Vy2 «ee ¥O (vy €Ly 1=1,2,...),
then the segquence {H51vi} also decreases to zero a.e.
Hence, since g € Lé;
-1

{v,, HY = [ (@, vi)lg du + 0
as i'+ ». SO H is order continuous and may therefore be
identified with some element h € Lé such that
p'(h) < c;1p'(g). Finally, for any u € L,

1

<u, Th) {Tlu, HY = <H; Mu, g) = <uxQ\A, gy =<u, gd,

since g = gx,,,- Hence g = flh and so I maps L! onto

]
XQ\ALp'
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12.4 PROPOSITION. For any g € L%,

c,;T'(g) < o' (lg) < cyT'(g)

where c1, c, are the constants of (1).

Proof. For any G € L,

hn*Gl = sup {[<£f, N*G)| : p(f) < 1}
= sup {|<NEf, G)| : p(f) < 1}
< sup {t(Nf) Gl : p(f) < 1}
< c, el
where lll is used to denote the Banach dual norm both

in L; and in L%. So when G is some g € Li,

p'(lg) = II*GI < c,lGH = cyt'(g). Also, if O < g € L!,
then there exists a sequence {fn} in L. such that
T(£,) <1 and

£, gy = I £ g.dv t 1'(9)

- =1 - -
as n » =, Let hn = Hc fn’ so that hn = hnXQ\A (nh=1,2,...).
Then from (2), p(hn) = inf {p(h) ITh = fn}; S0

cyo(hy) < T(E) <1, i.e. p(hy) < ¢! for each n, and

Chy, Mg> =<0h , g> =<£, 9>+ 1'(9) .

Hence, sup {<h, fg)> : p(h) < 1} > c,t'(g), i.e. as
required, '

p' (fIg) > c t'(g) .
Since I is onto, clearly II* is one-one, soO I is a Riesz
isomorphism of L% to XQ\ALé’ Now the latter is a
Banach function space in its own right: if we redefine

u(A) to be zero, and p' to be based on the accordingly
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modified measure space, then the restricted p' is a

saturated norm.

The results of § 11 can now be applied to deduce that
"Il has a unique order continuous extension ﬁe’ which is
a Riesz isomorphism of M, onto xo ,M . Let 6 denote the

underlying measure algebra isomorphism of A onto

ZQ\A = {g\NA : g € £}, and let go = ﬁe1 (here 1 denotes
Xe): then supp Eo = Q\A and for each § € A,
HeXG = €OX§6 .

An order continuous mapping ﬁ1 of M,, onto XQ\AMu arises
naturally from 8, as did H1 from ¢ in § 11, and we can
write ‘

flog = §,09 (g € My) .

Our final result describes, albeit implicitly, the

structural connection between I and II. Take T, oand 0 to Lo

deri ved (91 in 544) {mm the fSt)mosFlu‘c Com poneat M= _n"?( Lf o{. 1.
S N-A

12.5 THEOREM. ©Let O < £ € M, and let o, vy € £ and

§ € A satisfy 60 = § and 66 = y. Then,
[ EE dn = f o I, £ dv = f £l (M f)dn . - (15)
o 6 Y

In particular, with £ =1 a.e.; we obtain
f £, du = f o, dv = i £, du . (16)
o ) Y

Proof. We prove (16) for simplicity, but (15) follows

very similarly. Suppose first that Xg € L Choose a

o
sequence €+ € with Xen € Li for each n. Then
ﬁxen € Lé, so (ﬁxen)xc € LY(y) for n = 1,2,..., and by

the Monotone Convergence Theorem (MCT),
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jﬁX€ du 4 [ sup ix, duw = [ 01 du . (17)
g n c B €n o
Hence,

J &5 du = sup | ﬁxe du (from (17))

o n g n

= sup Xg? Hx€n>
= sup I ;- Xg  ?
= slrllp én (poxec dv

= o, dv . (by MCT.)
6o

More generally, for ¢ € x, we can find a sequence o4 + o
with Xon € Lp for each n, and so, by two further
applications of MCT,

J gdu = sup [ g du = sup [ o dv
o] on fon

= [ ¢@dv= [ @dv .
U 6o, © 6o o

n

The second equality in (16) is obtained analogously.

Note. The equations (15) will hold for any £ € M

provided that at least one of f Eof *ay and f £.f du is

o]
finite, and indeed they hold for any £ € M;, provided

always that the integrals in (15) do exist.
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§ 13. Applications.

13.1 EXAMPLE. Consider the case where p and T are both
based on the same measure space (2, Z, u) and where I is

a Riesz isomorphism of L, onto Lt such that the under-
lying measure algebra isomorphism 6 fixes I, i.e. 60 = o
for every o € L. Then the action of I and of its
extension He on My is a pure multiplication, i.e.

Hef = on1f =»wof (£ € M) .
As usual we let o, = He1, wo = H;11 and it follows from
Prop. 11.14 (a), since H1f = f for every f € Mu, that
_ =1
®, = wo a.e.

Denote by n the associated isomorphism M of L% onto Lé,
and let go = ne1. We shall show that

(a) €o

(b) for each o € I, 80 = ¢ so that for each f € My,

= a.e., an
wo e., d

Proof.
(a) Let ¢ € % with x_ € L! and let £ € L;. Then
H(fxo)

(M) xg, = 0ofx, and

wof du < T(wof)T'(xo) < o .,

Q -

. . , _
Let Qn 4+ Q@ in ¥ with XQn € LT (n =.1,2,...). Then

o f du = é I (£x)du

Q -

sup f I(£fx)du (by MCT)
fn

sgp <H(fx0), X9n>
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sup <£XrnXg >

sup - £f 4
up £ (nxgn) u

= (ne1)f du (by MCT and def.of ne)
ag
= £, du .
o
Since t' is a saturated norm, it follows that mo = Eo

a.e. on Q.

(b) Now let ¢ € I with x0 € Lp n Lé n L% so that, in
particular, u(o) < plx)e'(x,) < =, and let 60 = y. By
the Exhaustion Theorem ([ Z ], 67.3), choose a sequence

. 1 =1 o
Qn 4 Q@ in ¥ such that XQn € LT and wo Xﬂn € Lp for each n;
then
-1 2

Xg dH

u(o) = f o @
QOO.

_ -1
= é.He(wo Xg)Xg QM

-1
f sgp ICN XoﬂQn)Xo du (by def. of m)

= -1
= sup f miog X )X, du (by MCT)

OnQn
_ -1
= Sgplf ©g xgnﬂn(nxc)du

_ -1
= sup [ 0, Xjng  EoXy ¥

= [ 1 du (from (a))
oNy

= u(o N y) .

Hence ¢ < y. On the other hand,

-1
p(y) J o, ®oXy A

-1
J oy ng(xg)an
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-1
= J @, sup nl )du
I o n xoﬂﬂn

-1

= sup f ©, )du (by MCT)

n(xoﬂQn

_ -1
= sup sup [ o, xq N (Xgnq)dH

-1
=sup [ N(e. X, )du
n,m oo, O oW

=sup | xo du
n,m Ongn m

= sup p(o N Q_ N Q)
n,m n m

= u(o) .

Hence ¢ = y, and so 60 = ¢ whenever Xg € L, N Lo N Li;

since each of p, p', T' is a saturated norm, it follows
that 8o = ¢ for every ¢ € . Hence

nf = @ £ = If for fe€L nL

and f = wof = Hef for all feM .

We now return briefly to Theorem 6.2 as promised.

13.2. Let E(:), F(+) be spectral measures on the Banach
spaces X, Z respectively, such that for some elements Xq

of X and z, of 2Z,

X = Iin {E(o)xo : o € £}

and Z = 1lin {F((S)zO : § € A} ,

where E(+), F(-) are of class (I, X*), (A, Y*) respec-
tively. From the Representation Theorem (Chapter II) we
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know there exist saturated function norms p and T, based
on finite measure spaces (Q, I, u) and (€, A, v) say,

where

a 1 a '
1Q € Lp n Lp and 16 € LT n LT ’
and such that X and Z may be identified isomorphically
with the ideals LZ and Li respectively. From this

identification, each of X and Z inherits a Riesz space

structure.

Suppose X is Riesz isomorphic to Z*.

p(£) if £ € LF ,
Define p1(f) = {
Vo™ otherwise .

Then P1 is also a saturated norm based on (Q, I, u),
Lo, = L%1 = Lg and 1 € Lp1 n L51. (Note that since the
carrier of Lg is § — i.e. L% is order dense in Lp'—
then Py = p' (see 2.4)). Since 1 € L?, (L?)* = L% and
hence our hypothesis is equivalent to the hypothesis:
Lp1 is Riesz isomorphic to L;. Letting I : Lp1 -~ L1
denote this isomorphism, then from the results of § 11
there exist a positive function @5 € L% and a measure
algebra isomorphism 6 of & onto A such that

r[1Q =

o
and

Xy = PoXgg (c € Z) .
Since p, is an absolutely continuous norm, it follows
from Lemma 9.6 that L% = Li,, and since t' has the
Fatou property, then by Theorem 5.1, L% is weakly
sequentially complete. By the isomorphism, Lp1 is also
weakly sequentially complete and therefore, again by
Theorem 5.1, P has the Fatou property. This implies
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that whenever u € Lp, u, € Lg (n=1,2,...) and
O<u tua.e., then

pq(u) = sup pq(uy) = sup p(uy) <-p(u) <=,

i.e. u € Lp1 = Lg; hence Lg is order closed. So in fact,

a— =
0o = Lp and 01 p. Thus, p has

the Fatou property. Now observe that letting =~ denote

since its carrier is Q, L

Riesz isomorphism,

|

t
il
=

L =1L zZ*x(L:)*—

so Lé
morphism of Lp onto L, then = H*[L" is an 1somorphlsm
of L; L.

,. Since La is order dense in L. it follows that

(Lp)* =~ (L%,)* = L' = L_. Since I is an iso-
onto Lé, and H[La is an 1somorph1sm of L

L, is order dense in Lé, i.e. that the carrier of Lz.

It is an easy exercise to verify that the hypothesis of
Riesz isomorphism between X and Z* is equivalent to the
hypothesis of Theorem 6.2, viz. that provided we identify
X with Lg as above from the outset, then the adjoints of
projections F(§) (8§ € A) on Z should correspond, under
the given isomorphism of X and Z*, to the natural

multiplication operators on 1.2. Hence in 13.2 above, we

P
have an alternative proof of the forward implication of

Theorem 6.2.
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