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SYNOPSIS 

The investigation is concerned with the simulation of random 

vibration environments. It is relevant to the problems of 

environmental testing of aero-space structures and components where 

there is a need to replace the primary service environment by a 

substituted form of excitation, such as electrodynamic vibration 

generators. 	It is assumed that the structures are linear and 

elastic, and that the environments are well represented as 

stationary and gaussian. 

The question of the equivalence of the service and simulated 

responses of a general structure is examined from a general 

standpoint. 	It is shown that simulation in probability is a 

meaningful basis, and that simulation in spectral density of 

every structure response implies this. The latter represents the 

more useful basis from a practical viewpoint, since spectral 

densities may be controlled directly by selective filtering of white 

noise sources. 

By considering the responses of a general elastic structure to 

random excitation it is shown that simulation in spectral density of 

every response of the structure at every frequency is not possible 

in general. However, by considering only resonant response to be 

significant, a finite degree of freedom representation of the 

response relations is justified and the possibility of achieving 

accurate simulation in spectral density, using only a few vibrators, 

is deduced. The minimum number of force generators required is 

shown to be equal to the number of mode's of vibration having resonant 



frequencies within or near any particular frequency interval of 

significant response, the forces being programed to reproduce 

the spectral densities of and the cross spectral densities between 

a set of the same number of reference responses. The procedure 

is particularly simple if the structure has widely spaced natural 

frequencies. The possibility of simulating the motions of the 

whole structure using a single vibrator and a single reference 

response then arises. 

An experimental demonstration of one and two vibrator 

simulation is presented to illustrate the theoretical results. 

Simulation of the responses of a beam is attempted using one or 

two vibrators. For the purpose of these tests a harmonic analogue 

of the random vibrations response relations is devised. In this 

approach, random forces are represented by sets of harmonic forces 

and equivalent measures of spectral density and cross.spoctral density 

are obtained from measurements of amplitude and phase of harmonic 

responses. 

A further development of the theory shows that simulation may 

be based upon reproducing broad-band averages of the reference spectral 

densities. This is supported by further experimental results. 

Finally, the prospects for an approximate form of simulation, 

based upon the simulation of broad-band spectral densities are 

examined. Each response band is assumed to contain a number of 

modal contributions of indeterminate magnitude and the approach is a 

possible one for treating the high frequency responses of complex 

structures. Analytical studies and related computer studies.show 

that the approach can lead to a useful degree of simulation, but that 

the number of modal contributions in each response band is required to 

be large before a reasonable accuracy is obtained. Experimental 

results from a rectangular plate model show a reasonable agreement with 

predictions from the theory. 
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CHAPTER 1 

INTRODUCTION 

1.1 Random Vibration and the Simulation Problem 

Many of the current spheres of engineering activity involve 

considerations of vibration. A particular class of these problems is 

concerned with situations where the excitation pressures and forces vary 

in such an irregular and complicated fashion that the traditional methods 

of vibration analysis and response prediction are found to be inadequate 

for various reasons. A particular example of this is the excitation 

and response of a rocket structure to its turbulent boundary layer, and 

to the intense acoustic pressures of its jet. Indeed, the main impetus 

for the study of this class of problem has come from the recent develop-

ments in aero—space structures and systems, with the associated demands 

for efficient design and component reliability in the presence of arduous 

and novel environments. 

In principle, at least for linear systems, if the precise form of 

the excitation is specified, then the response quantities of interest may 

be computed from a knowledge of the system frequency or impulse response 

functions. 'while such methods are the basi of vibration analysis, their 

use in the present situation is limited for the followtng reason. A 

general feature of excitations of this type is that the fluctuations of 

the exciting pressures or forces are not reproduced in successive tests 

or trials even if the controllable parameters of the trials are exactly. 

reproduced. For example, the detailed variations of a turbulent boundary 

layer pressure on the skin of a missile would not be exactly reproduced 

even if the overall parameters of the turbulence, such as mean velocities 

-and temperatures were reproduced in a further trial. Only a general 

similarity will he maintained in successive trials and as a result, a 



044 UT  .I0JO 	uç P0STT e.x seaueojei eq4 

uçsep oqsej c4 peonpo.x eq q.ouu 	sUoqt1JqTA uJopumx JO SOt0W 

TL3OTqGJOOLjq Gljq qUqq 40UJ aqq jo oouonbosuoo u sT STLIJ 	(96T) x  MOJ-10kl Sq 

pezTscqduio ueeq Si{ swaqsSs oopds—ojeu jo SU0WdOT0AeP  GT4q  UT  UO.W[flWTS 

uoJqA Sq potid eoJ iiueo 014J 	.xoaxeuei UOqJqA OJOW JO 0110 

uTSn uoTqoTJToeds qseq. OUJOS cq. 2UTPJOOQU s.xd q.ueuodrnoo io sernpnr.s 

04 Usoq. JO qSTSUOD STTPJGUGO  seJnpeooad U0T.1TnUJTS 	POTJ.IO 

sqseq OUTAcid UTS0P PU 'P0TO0AUT suioqod eT1TEJ TPinqorjqs pu 

sUoq.ounjtw quouoduoo 'P@SEeSSP eq uo SuoTq.pUoO OOTJLIOS  .xeptm uOTOJ0do 

JO  'TTTqTT° eqq qqq. os 'suoTTpuo3  JoJoq[ .xopuri GJn4Dndqs  eqq. .io 

suoTow OOçAJOS eq. 'esues cmos uç 'eonpodo.x 04 ST UOT1TU1JTS .10 WTU OT.(3 

SUOTq.OUJ WOU0J Jo UOTUTnWTS  cT qTPl Peu.xouOo ST UOTTS0AUT GTLLL 

SUJJ0 OOUTUJJ010PUT UT qtoqij 

SGSUOdGGJ eqTssod JO 0UJ 0[OqM cqq. s.U3seJcioJ 4SpJ000J OTdUJI?S /t0j UJO.Xj 

sq.UGu1OJnC3IU uo pesq eq Suul saeqeuroJDd osoqt 'epoui [3TUJ9t{UJ eqq. puu 

sTsSTuuu oLln UT paquasajdGa ST euewouoqd ouq UT quGsaid JcouuJoq.opu eqq  

p-aoaddu 54q. j 	sosseood GsuodsGj ao UOTTOX0 OTjq JO SJC'.011JtJd cqq. Jo 

soTuqse uçqo oq. pesseood Odu  FJpJoOOJ T4UGWTJ0dx 	sui.ieq peqseJ 

pus o 	qCqoJd UT  0OUJ oq A'iuo  uso sasucdcaj ;o SucTqOp0Jd 'q.puso.x 

SU PLM UO-q.ETOX0 G4 eqçaosep Oq  pemi GXO  suioq. oTq.STTquqoJ 	SS000Jd 

oqooq.s Jo UOUJ eq 	T OUGUIOUOI eqqA'qpe3peJdepOuJ 

eqj, • SLToç'LuJqçJ UOPIISTh jo Sjoaqq aqq JO quawdOTOAGP Oqq O4 P@T  CA54 

SUTWOOJO4S OSGqq. puss 1wopus1 st pesssio Oju  suOlquqTDx@ qotis 

ejnqnT UT sasuodsoa oqssod jo ouI eqq. 

JO 0JW0Td PTTT V GATO 1ciuo UO 'OAOq5 pGUTTV1O spoqq.0Ui 0TGTUTUJJ0I.OP 

eq; jo sueui Aq esuodso qopeJG c4  posh OJ1 osoqq. JT We UOTTOX0  

@q4 0zTJocOsisqo Aeqedmoo 40uuuD 	eTUTS t? WOJJ SJO00J JO .0S 

0 



3. 

calculations for all but the simplest cases. The methods require complete 

description of the dynamical propel-ties of the structure, together with 

a complete probabilistic description of the service environment. Such 

information is not in general available, so that equipment development 

is aJinot entirely dependent upon repeated environmental test and re-

design. In this way the vibration test specification suplants the 

actual environment as the design specification. It is clear that if the 

crucial balance is to be struck between over conservatism with associated 

weight penalties on the one hand, and the prospect of serious structural 

failure or malfunction on the othor, then accurate test specifications 

and test methods are essential. 

1.2 Review of Previous Work 

The earliest aplication of probabilistic methods to dynamical 

systems on other than a molecular scale can be traced to extensions of 

the work of Einstein, Langeviri and Smoluchowski on the Brownian movement 

of particles. Ornstein (1917) studied the random motion of an elasti-

cally restrained particle and in 1927  applied the same ideas to a finite 

string. The elastically bound particle was considered furthr by 

Uhienbeck and Ornstein (1930) and Chandrasekhar (1943). The method 

used by these authors required that the excitation be temporally 

uncorrelated (white noise). The response process could be regarded as 

a Markoff process. For prescribed initial conditions, solution of a 

differential equation of the diffusion type yielded the conditional 

density function of the response of the phase space variables of the 

system. This function could be integrated to obtain the moments of the 

responses as a function of time, or corresponding asymptotic values. 

This method has been superseded for linear systems by the frequency 
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domain approach, but has found recent application in the study of non-

linear system response. 

In 1920, G. I. Taylor, in a study of turbulence, introduced the 

autocovariance function, or aiitocorrelation function. N. Weiner, in 

1930, while extending the ideas of harmonic analysis to arbitrary 

functions, introduced the power spectral density function and showed 

that this was the fourier transform of the autocorrelation function. 

This important relation was discovered independently by Khintchine 

( 1934), and these related functions played a central role in the appli- 

cation of the theory to problems in comrrtunicatons, control and vibrations 

A paper by Lin (1943) seems to he the first application of correlation 

functions to a vibration problem. Lin studied the response of a peridulw 

immersed in a turbulent flow. The classic work of Rice (1944)  which 

followed, did much to popularize the application of correlation functions 

and spectral densities to linear problems and presented important results 

concerning the response of non-linear systems and the statistical proper-

ties of sample functions. Wang and IJhlenbeck (1948)  reviewed both the 

classical approach through the diffusion or Fokker-Planck equation and 

the spectral density approach. The comparative simplicity of the latter 

approach, and its ability to treat non-white excitations was demonstrated 

by application to (a) a simple oscillator and (b) a system of coupled 

oscillators. 

Over this period, papers, principally by Kolmogorov (1933),  Khintchine 

(1934), Cram5r  (1940)  and Doob (1942),  were concerned with the rigorous 

development of the theory of stochastic processes. These works considered 

problems of existence and uniqueness, and did not contribute directly to 

the practical applications of the theory. 
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The next decade witnessed a wide range of papers dealing with appli-

cations of the theory to structural vibrations problems. These are 

reported in detail in the reviaw by Crandall (1959) and included the 

buffeting of aircraft (Liepmann, 1952), landing impacts (Fling, 1955), 

the response to turbulent boundary layers of strings, (Lyon, 1956), beams 

and plates (Eringen 1957; Dyer, 1959). 	Thomson and Barton (1957) 

examined the response of a general system to a simple form of general 

loading, and showed that important approximations could be introduced to 

simplify the mean square response expression if the system had low damp-

ing and separated natural frequencies. Lyon and Dyer demonstrated the 

important coincidence effect in finite strings and plates respectively. 

This takes place when the coherent patterns in the turbulence convect 

over the surface at speeds near to the phase velocities of the structural 

modes, and can lead to enhanced amplitudes of vibration. The problem 

of fatigue failure prediction under random vibration was considered by 

Miles (1954) and Powell (1958). 	Miles treated a single degree of freedom 

system and used Rice's results for peak distribution of a normal process, 

together with a cumulative damage criterion. Powell took several modes 

into account and emphasized the role of the excitation space-time cor-

relations and the correlations between the motions in the different modes. 

In 1958 Blackman and Tukey investigated the problem of estimation 

of the autocorrelation function and spectral density from finite records. 

Methods were discussed for the analysis of signals by analogue and 

digital means, and the basic difficulty of reconciling spectral resolu-

tioni. record length and standard error of the estimte was emphasized. 

By 1959, solutions had been pr'esented for the response of continuous 

linear elastic structures to general random excitation. The solution 

required that space-time correlations of the excitation over the whole 
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structure be completely specified and that the normal modes, natural 

frequencies and corresponding damping ratios he known. Responses could 

then he obtain.d in terms of spectral densities, and these implied 

complete probahlistic description of the response, subject to the assump-

tion of' a Gaussian excitation process. The paper by Powell (Crandall, 

1958, Chapter 8) illustrates the method. 

It was clear that the method would have a limited usefulness for 

application to real structures. Notwithstanding the sheer weight of 

numbers of participating modes in a complex missile structure, it was 

unlikely that the detailed information about mode shapes and excitation 

fields would be available. This practical difficulty has led to the 

subsequent development of the statistical energy method of response 

prediction. The method asserts that the response spectral density, 

averaged over a frequency band, is fairly homogeneous over the structure 

provided a reasonable number of modes contribute their energies in the 

band. 

Simple expressions for the average structural response for each 

frequency band can be obtained on the basis of a statistical treatment 

of the structure modes and an approximate treatment of the excitation. 

Dyer (Crandall, 1963, Chapter 7 ) describes the method and illustrates 

its application to the response of a Titan missile. Further considerations 

are presented by Lyon and Maidanik (1964) and by Eichler (1965). This 

method holds interesting promise for the solution of practical problems, 

but further work must seek to establish how representative these average 

responses are when considering for example, fatigue life at critical 

locations. 
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1.3 Review of the Simulation Problem 

In 1955 Morrow and Muchmore emphasized the importance of introducing 

random vibration testing, drew attention to the basic differences between 

sine wave and random signals and pointed out the features of a continuous 

spectrum of random vibrations and the associated measurement difficulties. 

Papers by Metzgar and by Priest in Random Vibrations Vol.1. (Crandall 

1959) explain the philosophy and oracticalities of random vibrations test-

ing at that time, and similar papers by Vigness, Booth and Morrow in 

Random Vibrations Vol.11 (Crandall 1963) contain a subsequent review of 

the same area. The papers by Metzgar, Priest and Booth discuss in detail 

the uses and limitations of vibration test equipment, while Vignessand 

Morrow discuss in more general terms, the aims and means of vibration 

testing as currently practised. The central type of simulation discussed 

by these authors is the simulation of the rando:n motions at the points 

of support of equipment according to a prescribed acceleration spectral 

density spectrum. The test specification is derived somewhat unprecisely 

by envelopping field measurements, or by extrapolation from previous 

specifications. The final form of the test specification usually, consists 

of straight line segments for ease of application. Figure 1.3.1  shows 

a typical test specification. More recently Piersol (1966) has reviewed 

the problem of vibration testing. He considers the test method outlined 

above to be the most feasible, and attempts to develop astandardized 

approach to the implementation of the test. The paper contains an exten-

sive bibliography. 

This type of simulation may he termed "direct" simulation since one 

attempts to replace the equipment environment, namely the spectral 

density of the mounting point motions, by a probabilistically similar 

environment. While this is a straightforward approach to use, it is 

clearly only relevant to the testing of equipment with distinct points 
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FIG. 1.3.1 

Typical Random Vibration Test Envelope. 

(Vigness, 1963.) 



of attachment to a superstructure, and where the only service excitation 

is via the mounting point. Substantial errors can still occur due to 

(a) the test specification not reflecting the finely scaled spectral 

variations of the actual environment over critical intervals of frequency 

and (b) incorrect compensation for the effects of equipment motion on the 

motion of the support points. 

Such tests generally required equipment with a high power rating, and 

extensive capital investment. It was natural that there would be a search 

for equivalent tests based on the idea of. cycling a sine wave input or a 

narrow band of random noise over the test frequency range. Such methods 

have been reported by Booth (1963), Booth and Broch (1965) and Broch 

(1966). Some degree of equivalence can be arranged in these tests, 

based on the accumulated number of stress peaks in a range of stress 

fltervals, but it is subject to severe assumptions about the nature of 

cumulative fatigue damage. The general feature of wide band random 

excitation, that many modes are excited at resonance simultaneously, is 

not reproduced in such a test. Consequently they have not gained general 

acceptance. (Piersol, 1966), 

The monograph by Lyon (1967) contains a comprehensive review of the 

intensive efforts and methods currently being aprlied in environmental. 

test programs in the United States. Lyon describes a wider range of test 

methods than previous authors, including the substitution of an acoustic 

excitation for a turbulence environment and the replacement of either by 

mechanical vibrators. This type of simulation may he termed simulation 

by substitution, and has wide ap7lication in environmental testing. Lyon 

discusses the problems of simulation in general terms, and refers to 

the work of Noiseux (1964) as the most comprehensive investigation to 

date of the simulation of an acoustic environment by force generators. 
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Noiseux, in fact, used a single vibrator to reproduce the response of a 

missile computer to reverberant acoustic excitation. The basis of the 

method was that the input power transmitted by the vibrator to the test 

structure was adjusted to predicted levels in each third octave band, 

the predictions being based upon the root mean square pressure of the 

acoustic field and the estimated radiation resistance of the structure 

in each band. This is a most promising approach because of its inherent 

simplicity. Only a single para:ncterof the service environment is required, 

namely the r.m.s. pressure in (say) third octave bands. However the 

approach is based on the assumptions of the statistical energy method 

and hence is valid only for wide band average responses of struct.ires 

where the modal frequencies in any band are sufficiently dense. This is 

borne out by Noiseux's results, in that poor simulation is obtained at 

low frequencies where there are only a few modal frequencies in each band. 

At high frequencies, good simulation is implied, but the results presented 

by Noiseux are not extensive enough to determine this with any great 

accuracy. 

An investigation of the substitution of a sound field for a turbulence 

field is reported by Lyon (1965). Lyon considers the similarities- 

between the response of a structural panel to each type of excitation and, 

concludes that, if the damping of the panel is lo ,..,  enough, such that the 

reflected energy from the boundaris is significant, then the response 

will be insensitive to the precise spatial distribution of the excitation, 

and simulation will be realistic if the required nodal energy levels in 

the various frequency bands can be reproduced. The calculations are 

based on the statistical energy approach. 

In sumnary, the techniques of direct simulation, relevant to the test-

ing of equipment modules, excited through their supports only, are 
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soundly based but as currently practised, must make many concessions 

of accuracy to the limitations of testing facilities. When equipment 

and structures are excited by acoustic or turbulent, or support exci-

tation, or combinations of these, simulation by substitution may. be  

the only practicable approach. With such an approach the question of 

equivalence of the substituted environment is a basic one, but investi-

gations of this approach so far have been restricted to a few particular 

cases, and have been based on the statistical energy method. 

1.4 Scope of the Present Investigation 

It is clear from the papers reviewed in the previous section, that 

at the present time, approaches to simulation are severely constrained 

by economic factors, time limitations, equipment limitations, and the 

necessity for dealing with only the sirnelest form of test specification. 

One must take the view, however, that in a matter of some years more 

comprehensive approaches to the simulation will he entirely possible, as 

a result of advances in transducers, data recording and processing, and 

in test equipment technology. For this reason it is desirable to establi 

something of the nature of theoretical and practical limits to what can 

be achieved in simulation of environments by substitution. 

The present investigation examines the problem of simulation of the 

motions of a general elastic structure, starting from the general respons 

relation in terms of probability distributions. Subject to some assump- 

tions about the nature of the service environment, it is shown that 

simulation can be reasonably achieved, but in general multi-force exci-

tation is required, and cross-correlations play a significant role. Some 

simple results, of practical importance emerge in particular circumstance 
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however. Some idealizations are made in the theoretical model. For 

example it is assumed that electro-magnetic vibration generators are 

ideal force generators, having negligible output impedance, and that 

any relevant response of the structure to the service environment can 

be recorded for use in the simulation experiment. These assumptions 

are justified because they enable the analysis to circumveiit current 

practical difficulties. 

A preliminary publication of the theoretical work of the present 

investigation was made in 1965 (Robson and Roberts, 1965) 2  and contains 

some of the results of Chapter 3 of the present thesis. 
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CHAPTER 	2 

THE RESPONSE OF AN ELASTIC STRUCTURE TO RANDOM EXCITATION 

2.1 Introduction 

In this preliminary chapter, the description of a stationary multi-

dimensional random process is reviewed, and the response of a general 

structure to random excitation is swnm.'rized as a prelude to the discus-

sion of simulation in chapter 3. The treatment of response uses standard 

methods. (Robson, 1963). 

2.2 Probabilistic Description of a Random Process 

Let q (t), j = 1, 2 ... n be a set of c:ntinuous simultaneous 

records of physical parameters of interest. When deteriinistic descrip-

tions of q(t) are not feasible, then q(t) may be considered as a 

stochastic process of real contin'ious type and the set constitutes an 

n dimensional process. This implies that for any t = tk, q(t) is 

considered as a random or chance variable of continuous type, and further, 

for any m and for distinct times t 1 , t •• t 1  then q(t j ), ... q3 (t,) 

constitute a set of joint random variailes or a random vector of con-

tinuous type. It is useful to think of each q  (t) as representing a 

set of possible' sample functions, designated an ensemble. Figure 2.2.1 

represents some typical sample functions of the q(t) and q(t) processes. 

A set of joint random variables may also be chosen from the component 

processes in the following way. Let t 1 , t 2  ... t, be a set of times, 

not necessarily distinct. Then q 1 (t 1 ), q2 (t) .. 	constitute'a 

set of joint random variables. In Figure 2.2.1, q(t 1 ), q(t), q(t 3 ) 

q(t4 ) are each random variables, and any combination of these constitutes 

a set of joint random variables. Such joint random variables are des-

cribed by their probability distribution function or probability density 



q 1 (t) 2  

q(t)1  

t i 	 t2 

Fig. .2.2.1 

Sample Functions of Random Processes. 
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function. For example, let Fm(X%,Xa ... )(p; t 1  , t2 ... tm) be the joint 

distribution function of the random variables q, (t,) ... q(t m ). Then: 

..t4 pr0h<q,(ti),< x, a 	..and -e <ct 	 2.2.1 

Similarly, lot f,(x 1  , x2  ... x; tj, t 2  ... t,) be the joint density 

function of the random variables q 1 (t 1 ) ... q(t). Then: 

im (x i ,x2 ,..xm;t,tz ..t fl )dO i S?<g..dm 

Prob{x u <q,ti) 	+d 1  end.. .nd Xm 	 x 	 2.2.2 

Complete probabilistic description of tho joint random variables is 

obtained if either Fmor fm  is specified at all points in the m dimen-

sional sample space of the variables. 

Complete probabilistic description of the n dimensional process 

requires that the diotributions or density functions of all such joint 

random variables of any finite order, generated by the process, be 

specified at all points in the relevant sample space. These are termed 

the finite dimensional distributions of the process. In general it is 

impracticable to determine these by measurement from sample functions. 

The usual practice is to infer the form of these distributions from a 

priori considerations of the processes, and then to determine the para-

meters of the distributions from certain averages. 

Denote the expectation or ensemble average of a function g ( ) of 

random variables q 1 (t 1 ),...q(t) by Efg[q , q2 ...q} 

4P OP 

Then  

For example the mean of a(tk) = Efvtki 

It will he assumed, unless otherwise stated 

mean. 

2.2.3 

f XL fi (td 	2.2.4 

that processes have zero 
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The variance of q  (tk) can be obtained: 

var{q(t 	= O 2 (t') = 	 in the zero mean case. 	2.2.5 

Furth r, define the autocorre].atiofl function of the ith process: 

RL( ti ,ta) = 	E q(t 1  ) .q(t2) 	 2.2.6 

For fi::ed t 1  , t2 , this is essentially the covariance of the (zero mean) 

random variables q(t [ ) and q(t), but for any t1, t 2 , this becomes a 

function defined on the t1 , tDlane. An extension of 2.2.6 leads to the 

cross-correlation function for a distinct pair of component processes: 

	

R( t 1  ,t) = Efc (ti ).Q(ta)} 	 2.2.7 

An important class of process is the Gaussian or Normal case. If the 

random variables q, (t,) ... q,(t m ) 
are jointly normal, then fm  can be 

expressed in the following form: 

;ti,tatm) = ()! 	 XXJJ 
U 	

2.2.8 

[A] is the m square covariance matrix of the m random variables 

= [R1(t1,ti)J = [ E[9t.t}] 	 2.2.9 

and 	are the cofactors of [A] . 

An important property of the gaussian case is observed from 2.2.8. 

Complete specification of fm is obtained if the covarianco matrix of 

the set is specified. Consequently, com?lete probabilistic description 

of the n dimensional process is obtained in the gaussian case if the 

autocorrelation function for each member process and the cross-

correlation function for each pair of member processes are specified 

for all points (t i , t2). The n square matrix ER (t 1  , t a )J , 

[R(t1,t2)] = 	R 11 (t 1  ,t2' R a(ti ,t 2 ) .. Rin.(ti ,t) 
	

2 • 2 • 10 

R21 (t1 pt?_ ) Ba(ti ,t2) 

R. 1(t1 ,ta) 
	

R-,, (t. ,ta) 
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defined for all pairs of time instants (t 1 , ta) implies a complete 

probabilistic description of the n dimensional process. It is clear 

that any covariance matrix 	of any order m, for an m dimensional 

random vector, obtained by sampling one or more member processes of 

the n dimensional set can be derived from 2.2.10. 

Many random processes of practical interest can he assumed to be 

gaussian. The justification derives from the Central Limit Theorem 

(Papoulis 1965) and further, from the result that linear transform-

ations of a gaussian process are also gaussian. 

The following properties of the element functions of 2.2.10 may 

be readily derived: 

R jj (ti,t.a) = 	R3jt,t) 	 2.2.11 

a 2.2.12 CrL  (ti')  

0 ( 	R(ti,ta) ( R(t.i,ti).Rjj(ta,t) 	2.2.13 

If R (t, ,ta) is identically zero for all t 1  ,ta, the processes 

q(t) and q,j (t) are ancorrelated, or orthogonal in the zero mean case, 

while for gaussian processes, this implies statistical independence. 

The upper limit in 2.2.13: 

R,(t1,t) = 	Cri 	 2.2.14 

holds if and only if the random variables q.(t 1 ) and q(t) are 

linearly dependent. 

2.3 Stationary Random Processes 

A further simplification of the description occurs if the processes 

are stationary. By definition a process is strictly stationary if 
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its finite dimensional distributions or density functions are invariant 

under a translation in time. A process is stationery in wide sense 

if its correlation functions are invariant with respect to a trans-

lation in time. Strict stationarity implies wide sense stationarity 

but the converse is not generally true. In the gaussian case the 

converse holds. In practice stationarity can only be inferred over 

some time interval T if the overall conditions under which the process 

is generated remain steady over this time. For a wide sense stationary 

process, it follows from 2.2.5 that the variances: 

	

Otk) 
= 2 	

2.3.1  aL 

and from 2.2.6 with ta = t 1  + t: 

	

R 1 ( 1 ,t+t-) = R 11 	(-c) 	 2.3.2 

Similarly from 2.2.7: 

	

= Rij 	 2.3.3 

All correlation functions are functions of a single parameter t., 

being the time interval between the pair of samples in 2.2.6 and 

2.2.7. 

In the stationary case, 2.2.11 implies that autocorrelation 

functions are even: 

= 
and: 

R1(o) = 

Also, the cross-correlation functions satisfy: 

= R 1  (-t.) 

The relation 2.2.13 becomes: 

2.3.4 

2.3.5 

2.3.6 

0 ( 	 2.3.7 
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2.4 Ergodic Processes 

Parameters of stationary random processes, such as auto and cross-

correlation functions are in principle obtained from sampling the 

ensemble. This is not usually practic&ple since only a few sample 

records of finite length will be available in general. It is desir-

able that estimates of these parameters may he obtained from corres-

ponding time averages, measured on a single sample function. Let 

q(t,k) be a finite length of the kth sample function of the ith process 

t.[o,Ti. 

Then for example, the sample autocorrelation function is given by: 

= 	
T-t  T,  f 	L 

Clearly R (t) is itself a random variable and if this is to furnish 

a good estimate of Ru (t) for the process, then it is required that: 

E{ R(t)'j = 	Ru(t) 

and that: 

	

Ll 
	- 0 	as T- cP 	2.4.3 

Under these conditions, the time average autocorrelation function 

converges in mean square to the ensemble average. Processes for which 

time averages on a sample function converge in some sense to the corres- 

ponding ensemble functions are generally termed ergodic processes. 

Ergodicity of a stationary process implies in general that the fluc- 

tuations of any sample function are typical of the whole ensemble. 

Strictly, each average must be investigated to prove its ergodicity 

(Papoulis 1965, Section 9.8, ; Cramr and Leadbetter 1967, Section 7.10) 

but this requires knowledge of the finite dimensional distributions. 

A. simple condition for ergodicity of the class of gaussian processes, 

having continuous autocorelation functions is (Davenport and Root, 

1958): 

2.4.4 
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2.5 Description in Terms of Spectral—Densities 

For a stationary process q(t), the spectral density may be 

defined as the fourier transform of the autocorrelation function: 

2.5.1 

By the properties of fourier transforms, Sj () is a real, even 

function of circular frequency w • It is also non—negative. The 

inverse relation may be rritten: 

do 

Ril 	= 	fe S ii 	 2.5.2 

Hence for I. = 0: 
0' 

R1(0) Efq(t)} = [ 
S(c) d 	 2.5.3 

The mean square of the process is represented by the area under the 

spectral density curve. 

An alternative definition is often given of the spectral density 

in terms of the sample functions of the process: 

Let q(t), t € E0,T1 , be the kth sample function of the process 

q(t). Assume that q(t) is zero outside the interval E0,T1 . Then 

q(t) has a fourier transform: 

= f9(t) 	(—wt)dt 

Let: 	S) =2.1TT
(Xf 	 2.5.4 

Then: 	 = Lim 	 2.5.5 

2.5.5. is the definition of spectral density of an arbitrary 

function from the theory of generalized harmonic analysis. Clearly 

ST 	is is a random vsriahle, and the relationship of 2.5.5 to the 

spectral density of the process 2.5.1  is a delicate one. One may show 

(Lin 1967) that Lim E{S (w)l is equal to S(w)j but it is not 

true in general, not even for gaussian processes that Lim var{S(c4.) 
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tends to zero. So, s-() does not converge in mean square to the 

spectral density of the process, and hence would not give reliable 

estimates of S(). Estimates of the spectral density can be obtained 

from a single sample function in the form of a weighted average over 

an arbitrarily small frequency interval. Such an average may he 

shown.to converge in mean square sense to the corresponding ensemble 

average for an ergodic process. (Crandall 1963, Chapter 2). 

For an n dimensional process, the cross spectral densities may be 

defined as the fourier transforms of the cross-correlation functions:

CP  
SC) 	 2.5.6 

Sj (u) is in general complex. From the properties of fourier trans-

forms one may derive the Hermitian property of cross spectral densities: 

* 

	

Sij= S(w) 
	

2.5.7 

and further: 

	

S 1 (-) = S () 	 2.5.8 

In the stationary case, one may take the fourier transform of the 

correlation function matrix 2.2.10 to obtain the n square spectral 

density matrix: 

Isij Ml 	s 11 () 	 S,(c) 	S1() 	 2.5.9 

S 1 (c.i) 

S(") 

Consequently, in the stationary and gaussian case, specification 

of the n square spectral density matrix at all frequencies w implies 

a complete probabilistic description of the n dimensional process. 

( 
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By 2.5.7 [3(w)] is an Hermitian rnatri at any frequency. A 

further property of Ls()j is that of non-negative definiteness. 

Indeed for any pair of component processes, q(t), q(t), the coherence 

relations hold at any frequency: 

< 	SI).S3(w ) 	 2.5.10 

and the non-negative definiteness of 2.5.9  follows. The property 

2.5.10 seems to have been reported, first by Cramer (1940),  and may be 

considered as a form of the Cauchy - Schwarz inequality on the space 

of complex valued, zero-mean random variables, having inner product 

defined as: 

(f 2  ) 	Eç 	 2.5.11 

where j 	are elements of the space s   

satisfies the Cauchy - Schwarz inequality: 

< 	 2.5.12 

T  

Now, let 	X(c.) = fL(t ) k) 	-ict) dt 	

2.5.13 
and 	 f 9(t,k) e-ct)d.t 

XT and YT are the fourier transforms of the kth sample functions of 

the ith and jth processes and are complex random variables. 

One has, by 2.5.5: 

= 	Lim Et IXTw,)I} , with a similar expression for 	. 
ZTFT 

Further, Sj () may be expressed in the following form: 

S6 (W) = Lim 	E{X. YT*  } 	 2.5.14 
21T  

Using 2,5.12, one may write: 

< 	I.E { XT.T)I
E[IXTI2}.E(ITIZ) 
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Divide through by (21 T)' : 

0 	 < 	E{!XTI}  
ZTTT 	 a1T 	aliT 

Now let T - & 	and 2.5.10 follows. 

2.6 Resoonse of a General Elastic Str.cture to Excitation Forces 

Consider a continuous elastic structure S, excited by time depen-

dent forces on its boundary C (Figure 2.6.1) 

Fig. 2.6.1 

General Elastic Structure. 

For such a structure, the normal mode shapes of free undamped 

vibration 	(x) constitute a complete orthogonal set. The response 

(if at any point in S with position vector X can be written in terms 

of the normal co-ordinates 	, r = 1 9  2, '3 y' ... 

= 	(x) t(t') 	 2.6.1 

The scalar response recorded by a transducer, having its sensitive 

a xis aligned in the direction of the unit vector Tiat position x 

is 	(t) where: 

IV 
	 2.6.2 

IL i .t (t 

or 	 = 	q 	 2.6.3 
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Where 	is the projection of the rth mode shape on the transducer 

axis at 

It is important to note that an expression similar to 2.6.3 may 

be obtained for any response quantity of interest such as velocity, 

acceleration, stress or strain components in a prescribed direction 

at the point. For axamplethe velocity response at x in direction 

can be obtained from 2.6.3 by differentiation: 

	

fAIL 	 f 	 2.6.4 

while responses such as strees or strain may be obtained in terms of 

the derivatives of at XL. This type of response may be written 

in the general form: 

2.6.5 

C 	is the influence coefficient relating the amplitude of some 

response at x for a unit displacement of the rth normal mode. 

For the idealized, conservative structure, the equations of 

motion may be obtained in terms of the normal co-ordinates by well 

known techniques: 

+w-1* 	—±. r 1,2,• 00 	2.6.6 

where 	is the rth natural frecuency and Mr is the generalized 

mass of the rth mode. 

= 	f P(X) . as 2.6.7 

_-r(t) is the generalized force in the rth mode, and may be derived 

from considerations of work done in virtual displacements. 

For a force e at a discrete point xc  , consider the work done 

in a set of virtual displacements of the normal co-ordinates. 

P. 	 2.6. 

Since the normal co-ordinates are indepa .dent, the 	i-  are arbitrary. 
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Hence: 	 = P. 	.tc 	 2.6.9 

For a force fixed in direction, PK 	= PV F,<  , where F is a unit 

vector at x 

Hence: 	 = P +  , where 	= +( c).FK • 	2.6.10 

Consider now a distributed normal pressure p(x,t). Let N(x) be 
ell 

the unit outward normal to the surface at xc.  Then the normal force 

on an element of area dA at x,_ is dA N and the generalized force 

for the rth mode follows from 2.6.9: 

= 	f P( c ,1) N(Xc). d#(xc) cLP. 	 2.6.11 

or 	t = f (xt) tN () cLA  

where 	is the component of the rth mode shape normal to the 

surface at 

The equations of motion 2.6.6 do not allow for energy dissipation 

which is always present in real structures. This may be allowed for 

in the mathematical model by (a) introducing a corm)lex stiffness to 

allow for hysteresis or (b) introducing a representative coefficient 

of viscous damping in each mode. In practice a distributed damping 

force in the structure will lead to damping coupling terms in the 

equations 2.6.6. However experimental eviderre on aircraft and similar 

structures suggests that the expedient of neglecting damping coupling 

between the modes gives a satisfactory representation of vibrations in 

these structures. (Pandered 1965). The question of damping coupling 

will be re-examined in a subsequent section. Strictly, the approach 

(a) is limited to steady-state harmonic excitation. Following (b), 

assume some representative coefficient of damping in each mode: 

2 
. + 	a 	 -- ci 	= 	

; r = 1,2,.. OP 	 2,6.12 
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It is useful to refer to particular cases of 2.6.12. Let 	(t) be a 

unit impulse applied at t = 0. Then the response h(t) is termed the 

modal impulse response. Secondly let (t) be a harmonic force with 

frequency 
jt..,t 

 v e. 

Then the steady state response may be found from 2.6.12 in the form: 

= & -t( 	e. 

Where 	
I 	 2.6.13 

o(w) is the modal receptance of-the rth mode. It may be shown that 

o- and h+ are fourier transform pairs. 

The structure may also be characterized by its set of impulse 

responses. hk(t) 	hl k (x,T ; x, T; t) is the response in a pre- 

scribed direction T 1  at position xj. for a unit impulse applied at x 

in direction T. Only stable structures will be considered, in the 

sense that any hK(t) is absolutely integrable: 

f I k jj' (t)jCLt 	< CP 	 2.6.14 
to 

2.6.14 is a sufficient condition for the existence of the fourier trans-

form of h. Let oj)E 	 T ; Xb( T;w) be the fourier 

transform of hIK. 	will in general be complex. It may be shown 

that 	() re-resents the steady state response at XL  in direction 

Ti. 	for a unit harmonic force et  applied at x 	in direction T g  

i.e. 	are the complex receptances of the structure. (Bishop 

and Johnson 1960). 
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2.7 Response of a General Elastic Structure to Random Excitation 

Consider an excitation which can be satisfactorily modelled as 

a stationary, gaussian random process. Such a process is described by 

its correlation functions or its spectral densities. The response of 

the structure, after the initial transient has diedout, will be station- 

ary, and maybe described by its correlation functions or spectral 

densiti7t'es. 

Consider excitation by a set of discrete random forces Pk(t), 

k = 1, 2 1  ... N. 

Then, by 2.6.10, the generalized force in the rth mode at time t can 

be written: 

= 	P (t) 	K 	 2.7.1 

Similarly, the generalized force in the sth mode at time t +t can be 

written: 

	

t+t) 	 2.7.2 

Multiplying and taking the ensemble average of both sides: 

R 5(t) 	 K4SL pKct.pt#t) 	 2.7.3 

= 	 KSL RL(t) 	 2.7.4 

2.7.4 follows because the operation E I 1 is linear. 
Taking fourier transfrms of both sides: 

	

S's ((J) = 	 +ic SL SL(t 	 2.7.5 
KL 

2.7.5. expresses the cross spectral density of the generalisod forces 

in the rth and sth modes in terms of the excitation force spectral 

densities at any frequency. 

For a random pressure field using 2.6.12 the cross correlation of 
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the generalized forces in the rth and sth modes may be obtained: 

* 
R?$ (t) = 	 2.7.6 

cc- 

The order of integration and ensemble averaging in 2.7.6 may be inter-

changed: 

= f j w(i). sN(XZ) 	 ,i) dp dAa 	 2.7.7 
C 

Taking fourier transforms of both sides: 

= f f OtN (Xi) 	s 2.) 5(x ,,w 	' 	 2.7.8 
cc 

This expresses the cross spectral density of generalized force 

of the rth and sth modes in terms of the cross spectral density of the 

pressure field over the whole surface of the structure. 

Now consider the response in terms of the generalized co-ordinates 

, to a set of arbitrary random generalized forces. The equations 

of motion are given in 2.6.12. For the rth mode, the response to an 

arbitrary generalized force .(t) can he written as a convolution with 

h(t): 

(t) = 	 2.7.9 

Similarly, the response of the sth generalized co-ordinate at time 

t + t may be written 

15(t+t) = 	 H S (-t+ -C- -tr)dv 	 2.7.10 

Taking an ensemble average of the product of 2.7.9 and 2.7.10 leads to 

R5(t) = 	f f 	 2.7.11 

= 	ffht) k, M R(t a-v) & 

Finally taking fsurier transforms of both sides leads to the cross 

spectral density of the response in terms of the cross spectral density 
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of the generalized forces and the modal receptances: 

	

= 	 2.7.12 

In particular, the direct spectral density of the rth generalized co-

ordinate is: 

	

S) = 	
a 

cX(C4S)I 5. 	 2.7.13 

Observe that the cross-spectral densities of the generalized co-ordinate 

velocities or accelerations may be obtained in a similar manner, using 

the appropriate modal receptance. Indeed: 

Sts 	..) Ss 	and 	S1.5 	(.&) St 	 2.7.14 

Finally, expression for the cross spectral density between any pair of 

responses at x and xj in prescribed directions may be obtained from 

the generalized co-ordinate cross pectral densities using 2.6.3 or 

2.6.5. For example: 

Ur 	 I 
Sij (w) = 	i 0Sj 5rs () 	 2.7.15 

tS 

2.7.15 may be generalized in the following way for any pair of response 

quantities in prescribed directions. Let CtL be the (complex) harmonic 

response of 	for a unit harmonic response of the rth mode. Then 

Sj () may be written with appropriate response co-efficients 

- 

S1() = L Ci-L Cs S+5 	 2.7.16 
1-' S 

2.7.16 is appropriate to velocity, acceleration, stress or strain res-

ponses. These relations constitute a formal solution to the response 

of a linear elastic structure to stationary random excitation. For 

discrete forces, an alternative expression of response in terms of 

receptances will be useful. 

Consider a set of discrete forces P(t); K = 1, 2 1  ... N. Then 

the response at x in direction T can be written: 
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M 	6' 

= 	I h(u) PK (- u k ) d UK 	 2.7.17 
I(.3 

Similarly, the response at xi 	in dirsction Tj can he written: 

= [ f d hiL (ut ) 	(t +t - UL) du L 	 2.7.18 

Taking ensemble average of the product leads to: 

R(t) = 	f fhKhiLvL) RL (T+UK - vL) duKdvL 	2.7.19 

Finally taking fourier transforms of both sides leads to the cross—

spectral density of the responses: 

T * 	P 
S( w) 	L 	LK 	L SKL(c..) 	 2.7020 

K,Li 

This may he written using matrices. Let [s 	be the N 

square matrix of the spectral densities of the applied forces. Let 

(o fOi,O(Lz. .OiN} and he row matrices of 

complex receptances for the ith and jth locations. Then: 

St = 	 2.7.21 

The bar denotes the conjugate of the matrix. For a set of n responses, 

the n square spectral density matrix s] 	[S jJ may be written: 

[se] = [][sPJ[c] 	 2.7.22 

where [o] is the n  N matrix whose rows are 	, i = 1, 2 1  ... n. 
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CHAPTER 	3 

T1{EORST ICAL BASIS FOR S Ii'IIJLAT 1011 

3.1 Introduction 

In this chapter, the simulation of the random motions of a general 

elastic structure is considered, simulation being interpreted as the 

replacement of an arbitrary form of random excitation corresponding 

to the service environmsnt, by another representing the laboratory 

test, controlled to produce a response which is equivalent in some 

sense. The service excitation is assumed to be well reresentod as 

stationary and gaussian. In particular, the replacement of such a 

service load by a set of force generators is considered. 

The assusption of randomness of the excitation makes it necessary 

to base the equivalence of the two situations, service and simulation, 

on some probabilistic measure of the type discussed in chapter 2. It 

is considered that spectral densities represent the most useful 

measure of randomness from the practical point of view that control 

of a random vibration test is most easily effected by frequency 

selective filtering, which acts directly on the spectral densities 

3.2 Necessary Conditions for Simulation 

The degree of equivalence of a simulated response mu:t be based 

upon a comparison with the response of the structure in the service 

situation. The reproduction of the actual time history of any 

service response would o a valid simulation test, but in the first 

place this would lead to extreme practical difficulties, and in the 

second place, it is not necessary since in the context of the random 
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behaviour, such a time history cannot be regarded as the unique out-

come of the service environment, but only as a typical sample record. 

Consequently there is no point in faithfully reproducing the detailed 

fluctuations of any one sample record. 

The characterization of the responses as a set of random 

processes implies that equivalence can be reasonably based on prob-

abilistic measures, and leads to the following conditions for sim-

ulation. 

Let q(t), I = 1,2...m be any set of responses at defined 

locations within S. 	The responses need not be distinct. 	Consider 

the following event: 

K %(t+ti) < x.+Sx 1  and xz <dI(t+tz) x+xa and.. 

..end Xm .9 m (t+tni) 	X vfl +SXmJ 	 3.2.1 

Then a necessary condition for simulation is that the probability of 

this event be the same in the service and in the simulated motion for 

any set of time ditferences I , 	... Tm and for any interval of the 

m dimensional sample space. 

Prob A(1) = Prob A (11) 	 3.2.2. 

The subscripts I and II are used to represent the service and simu-

lated eases. 

The statement 3.2.2 implies that the finite dimensional density 

and distribution functions of the m dimensional process 

must be reproduced. 	Let 	 ; ij,ta .t m) be the joint 

distribution function of the random variables q 1  (t + ti ), ... q(t +tm). 

Then the condition for simulation is: 
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F )  = 	Fm (f) 	 3.2.3 

for any m, T 1  , Ta ... 	, and for all points (x 1 , :... x) 

This basis for simulation will be termed simulation in distri-

bution. Stationarity has been assumed in 3.2.3. For a gaussian 

process it has been demonstrated in chapter 2 how the finite dimensional 

distributions may be dôrired wholly from the set of correlation functions. 

Let q(t), q(t) be a pair of responses within S. Then for a gaussian 

process, by 3.2.3 1  a necessary condition for simulation in distribution 

is that the cross-correlation function Rt (t) be the same in the 

simulated case for any q-,, I  q and for all T.. 

r R-t 	rc(-c1 	 3.2.4 

Finally, taking fourier transforms of both sides leads to a statement 

of spectral density simulation. 

SLo')JL = 	 3.2.5 

A necessary condition for simulation in probability of all 

events of the type 3.2.1 is that the cross spectral density of the 

responses of any pair of co-ordinates in S be reproduced at all 

frequencies w • While 3.2.5 represents a simplification of the 

statement of simulation in probability 3 1,2.1, it must apply to all 

pairs of responses in 3, and in this form does not suggest a practical 

solution to the simulation problem. By considering the general response 

relations for the structure, outlined in chapter 2, further sisipil-

fications are possible. 

The cross spectral density of the responses 	and q  may be 

written: 
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= 	 3.2.6 
=1 

I •  

	

= 	c-,i C j (* 	 3.2.7 
• 

where C, CsJ are the previously defined influence coefficients of 

the responses for unit harmonic response of the norial co—ordinates, 

and t, s are the modal recepbances. Itf011ows that spectral 

density simulation of the whole structure requires that the cross 

spectral density of any pair of normal co—ordinates is reproduced at 

any frequency ô 

4s (L) 	 S ts (i 	 3.2.8 

or that the corresponding generalized force cross spectra are 

reproduced: 

	

Sfs (n) = 	S (z) 	 3.2.9 

Strictly, conditions 3.2.8 and 3.2.9 must be satisfied at all. frequencies 

for the infinite set of modes but this cannot lead to a practical 

basis for simulation. 

3.3 Finite Degree of Freedom Approximation 

It is possible to justify a finite series description of response 

of the form of 3.2.6 

Si 
i  9 

= 	CftCsj S!-s  = 	 3.3.1 

or: 

S 	= 	 3.3.2 

Recall the form of the modal receptances: 
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= 	 I 	 3.3.3 
M+ [c$ - + 	W+ (13 

Hence: 

	

(+ o() = 	 I 	 3•3•4 
MtM5[($ - ')' --  iZ f . 	W S  

= 1W1 ,v5Ie 	 where 	''= t an St&3.3.5 
['4 - LiZJ 

and: 

10(r I 
a 

= I 	 3.3.6 
M [($_()t)2+. 4Jw] 

For a typical structure the modal receptances are highly selec-

tive in frequency, exhibiting a peak at the corresponding natural 

frequency. Such characteristics are illustrated in Figure 3.3.1. It 

is also clear from Figure 3.3.1  that cross products of modal rocep-

tances o the type 3.3.4 will he small at any frequency unless the 

natural frequencies of the two modes are close enoigh such that the 

peaks of 	and o1c s  overlap. 

In the first place, a finite degree of freedom approximation 

(3.3.1) may. be  based on the fact that any physically realisable 

excitation has an upper frequency limit, but on this basis alone, n 

will be large in general. Further simplification can be made by 

considering the resonant motions of the structure. 

In the general case, the forms of the response spectral densities 

are d.terrnined by the shapes of the excitation spectra and by the 

receptances. If the excitation spectra, represented by the 

terms in 3.3.2  are slowly varying functions of frequency compared with 

the fluctuations of the 	terms, then any response spectral density 

will parallel the form of the receptances and will exhibit a series of 
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peaks at the natural frequencies.. This ic the common experience with 

practically important excitations and structures. Significant levels 

of response spectral denity occur in the neighbourhood of the 

structure natural frequencies and represent the resonant motions of 

the structure. Under these circumstances, at a frequency w near, 

say, the rth resonant frequency, the leading term in the first series 

of 33.2 will be the rth term because of the weight of the rth modal 

receptance. Significant contributions niightalso come from the adjacent 

terms. The second series of 3.3.2 represents the contributions arising 

from correlations between the generalized forces in the different modes, 

weighted by receptance cross products, and the magnitudes of these 

contributions depend on the closeness of the natural frequencies. 

These considerations sw:gest that at frequencies near a resonant 

frequency, the representation of the response by the motions in only 

a few modes would be satisfactory, so that n might be reasonably low. 

Indeed for structures possessing low damping, n might be taken to be 

one over frequency intervals where the natural frequencies were widely 

spaced. 

3.4 Theoretical Basis for the Simulation of Resonant Motion 

Consider spectral density simulation of the structure S over an 

interval of frequency. Suppose that the response over this frequency 

interval may he represented by the motions of n modes. The following 

statements may be made. 

Necessary and sufficient conditions for the simulation in spectral 

density of the motions of the whole structure over this frequency 

interval are that (a) the n square spectral density matrix of a set of 
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n reference responses be reproduced and (b) the n square matrix of 

the modal influence coefficients of the reference co-ordinates bp 

non-singular. 

In addition, the motions ma be simulated by a set of n force 

generators, subject to the condition that the n square matrix of the 

projections of the n mode shapes on the lines of action of the forces 

bje non-singular. 

Proof of these-statements follows: 

Let q, q 	be a pair of response co-ordinates within S. Then 

by 3.3.1 their cross spectral density may be expressed as: 

S()= [C*z CSj s! 	 3.4.1 

or in matrix form: 

I s 	= [cJ1[s] [ca] 3• 4.2 

It follows that for simulation of all such responses i.n S, it is 

required that the n square spectral density matrix of the normal co-

ordinates be reproduced over the frequency interval: 

[shI1 = [s1] 
	

3.4.3 

Now, let q, a = 1,2,...n be a set of reference response co-ordinates 

of S. The n square spectral density matrix of these co-ordinates may 

be expressed as: 

[&] = 
	

3.4.4 

where 	is the n square matrix of modaLinfluence coefficients for 

the n modes at the reference co-ordinates. 
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It follows from 3.2.5 that a neàessary condition, for simulation is 

151 	_ 	151 
1 	 3.4.5 U1 	I J 

Condition 3.2.5 is also sufficient provided that d.et Ic 	0. Then 
[cj exists and is unique. 3.4.4 may he written: 

	

sh] = 	c ]t[s ] ca:i] 	 3.4.6 

In 3.4.6 [s1 is unique so that condition 3.4.5 implies 

= M i  
and it follows from 3.4.2 that: 

fornyq 1 , q 	in S. 

Simulation in spectral density of all responses of S over the 

frequency interval follows if the spectral densities of the n ref- 

erence co-ordinates are reproduced. The reference transducers must 

be placed so that dot 0. This means that no rows or columns 

or Lc] may be zero, and that all rows or columns must be linearly 

independent. The condition would not be satisfied if a transducer 

had its sensitive axis orthogonal to the vectors of the deformation 

in each of the n modes at the transducer location. 

Now consider excitation by a set of n force generators Pk , 

k = 1,2,...n with controllable spectral densities. Let 

k,. = l,...n be the spectral density matrix of the forces. 

The responses of the structure at the n reference points may 

be expressed in terms of the receptances between the excitation 

locations and the reference locations: 
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, 

[ 	[se]  [&] 	 3.4.7 

where [A] = 	is the matrix of complex receptarices (2.7.22) 

Suppose det[A] A 0, then [A]xists and is unique. 

also 
I 

[]
- 	

[] 3.4.8 

Hence 3.4.7 may be written: 

[se] = 	E5i [0  [] where [B]= [] 	3.4.9 

Provided dot [A]# 0, there exists a unique spectral density 

matrix of the n forces which will reproduce a given set of response 

spectra of n reference points, and which will therefore achieve 

spectral density simulation of the whole structure over the prescribed 

frequency interval. The required spectral density matrix [S e] may 

be determined from measured receptances of the structure, or it may 

be possible to adjust the levels by feedback from the responses. 

The condition of non-singularity of the receptance matrix is a 

restriction on the siteing of the force generators, similar to the 

condition imposed on the reference transducers. In practice, non-

singularity may be checked from the measured receptancos. On the 

basis of the n degree of freedom approximation with no damping coupling, 

the receptance matrix [A] may be expressed as: 

[] 	

= 	[c]'[oc.][f] 
	

3.4.10 

where [] = diag 	, 	 . o] is the matri of the n modal 

receptances, [c°] is the matrix of modal influehce coefficients 

and 	If 	1~011 is the n square matrix of the projections of the 

n mode shapes r = l,2, ... n on the lines of action of the forces at the 

locations k = l,2 .... n. 
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Hence det [A] = dot [COl.  dot [] ciet [c] 	 3,4.11 

and non-singularity of [A]requires that [CL] and [f]be non-singular. 

It is suggested that the relevant value of n at any frequency 'O 

is the number of nodes having resonant froeuonc y  'near' A • This 

presupposes that significant levels of response spectra are always a 

conse quence of resonant notion. The question of a quantitative 

measure of tnearnessl will be discussed presently. It is clear that 

the complexity of the simulation experiment increases with n, and that 

only at low orders of n does the procedure become a practical possi-

bility. 

3,5 Sjn1e Vibrator. Simulation 

If, over some range of frequency a structure has widely spaced 

natural frequencies and low damping, then at frequencies in the neigh-

bourhood of a resonant frequency, significant response of any co-

ordinate will be associated with a large contribution from the term 

in expression 3.3.2 which relates to the corresponding mode. A one 

degree of freedom approximation of the response would be valid, and the 

general theory with n = 1 states that simulation in spectral density 

of the whole structure would be obtained by reproducing the direct 

spectral density at a single point usin g  a single vibrator. The siteing 

	

conditions for the force and transducer locations are simply that 	0 

and C\0. 

From 3.4.1 the response cross spectral density of any pair of 

co-ordinatsof the structure can be written: 

S ij = 	Ctj 	 c C+, Ioc*jS- 	3.5.1 
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Let q be the reference transducer. Then in the service case: 

S (1)  = fCo4 Z  5 t 	 3.5.2 

If, in the simulation test, a force Pk isadjusted so that 	= 

i.e. 	 S 
P 	- 	 3.5.3 

I O(  

This will be possible provided +kO. Then from 3.5.2, if Cia. 	0 

I 
S4() - 3.5.'4 

By 3.5.1 this implies 	= 	for any q 1 , q 	in S. 	3.5.5. 

It would seem however that the assumptions would only he valid for 

certain types of service excitations. It is clear that for 	, 

the mode adjacent to c+  might well contribute significantly at 

by virtue of its generalized force spectral density being sufficiently 

large to overcome the attenuation of the response by its modal recep-

tance. Consequently the one degree of freedom assumption need not be 

valid in the neighbourhood of each resonance if the service excitation 

caused a wide range of values of generalized force spectra. Observe 

however, that if S >> St. 	so that the one degree of freedom 

model is not valid near )* , then at frequencies near o+ the 

accuracy of th one degree of freedom assumption is improved by the 

fact that S+, >.> S 	and further, the peak at 	is the more 

severe. Consequently, for the case of widely spaced natural frequencies 

the use of one vibrator simuiition mi ght lead to errors due to non-

unifnrniity of the service generalized force spectra but the accuracy 

of the simulation would increase with the sevei'ity of the resonance. 

At frequencies between the resonant frequencies, the one dimensional 

model would not be valid, since several terms of 3.3.1 would be required 
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to represent the motion. It may he reasonably assumed that such off-

resonant contributions would be small however so that the possibil±ty 

of simulation errors at these frequencies need not detract seriously 

from the validity of the method, and must be viewed in the light of 

the ability of the raet.od to reproduce the severe resonant response 

of the whole structure on such a simple basis. 

3.6 Two Vibrator  Simulation 

It is expected that the single vibrator simulation would be rele-

vant to many practical structures at low frequencies. If two modes 

have close natural frequencies, however, the expression for the response 

spectra 3.3.1 would require n = 2 over the frequency interval containing 

the natural frequencies. From the general case of simulation with n 

significant modes, it is inferred that spectral density simulation of 

the whole structure over the resonant frequency interval can be achieved 

if the direct and cross spectral densities between two reference responses 

are reproduced, and this can be obtained by adjusting the direct and 

cross spectral densities of two suitably located vibrators. 

It is of interest to note that reproduction of only the direct 

spectral densities of the reference responses does not guarantee simu-

lation of the whole structure. Suppose q, q b  are the reference 

responses. Then for a general service excitation, the direct spectral 

densities may be written: 

S:LL 
= 	

~ 	 + a ?.{c c S5 	
3.6.1 

sib 	lC, 42 S 4-  JCsbIS+ 2{C+b Csb SS 
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This relation does not have a unique inverse, so the conditions: 

= SLCT ) 	and 	Sb CIE) = Sb) 
	 3.6.2 

do not guarantee the condition for simulation 

'11 1S 

(• f 
ss 

)ii Oils 

	 3.6.3 

I 

3.7 Errors in One Vibrator Siu1atiori 

Arguments for the justification of one or two vibrator simulation 

have been based upon the closeness or otherwise of the natural frequ-

encies of the normal modes and upon corresponding assumptions of a one 

or two mode representation of the structure. Such assumptions are 

approximate because strictly, every modal receptance exists at all 

frequencies. In view of the useful simplicity of the single vibrator 

case, it is of some interest to obtain 	some quantitative measure of 

how close two natural frequencies must be before the one dimensional 

representation becomes inadequate. This is obtained in the present 

section. 

Consider a pair of modes, denoted the rth and sth, having natural 

frequencies c. and ws • Let q L  be an arbitrar;7 response co—ordinate 

and let q be a reference co—ordinate for one vibrator simulation. For 

simplicity these will be taken to be displacements. It is assumed that 

at frequencies near wt and ws,, a two mode representation of the 

structure response is adequate. Any service excitation may be repre-

sented by the generalized force spectral density matrix: 
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I S.4. S5 

55 S I ,. 	S ss  

Using.3.3. 1 	the diroct spectral densities of the responses q  and 

q may be written: 

	

= 	k Lsss 4- a4&fczots S.,.} 	3.7.1 

'1 

	

Sacx' 	cp; k'1s -4— 	 a s&eJcxocsS} 	3.7.2 

Now suppose a single vibrator is used to reproduce Si) . Let P K  

be the force and 	he the projections of the rth and sth modes 

on its line of action. 

Thithe required spectral density is: 

SkK = 	Si 	 3.7.3 

So that the simulated response at q. is given by: 

- 51.10tik  a 
	

3.7.4 11 CIE)  

l°(0.K 
I 

The ratio S7) ./S 1(i).. 	gives a measure of the accuracy of the simu- 

lation at any frequency where: 

- 	lJ 	 3.7.5 
S; 	j0'k l 	Vii  

In 3.7.5, the receptances may be expressed in terms of the two contri-

buting modes 

CkiK = 	0.,i #kD(i-4- 	&PskO-s 

2. 	.2. 	Z 	2. 	2. 
Whence : 	lQ<.ucl = q) 4-k I°-1 + 	sk ksl +- 

3.7.6. 

[sr] 

with a similar expansion for l&ak.l 
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For accurate simulation, the ratio 3.7.5 must he close to unity, 

and by 3.7.1, 3.7.2, 3.7.7 this ratio depends on the service excitation 

properties, the force, reference and test locations and the natural 

frequencies and damping factors of the two modes. By making reasonable 

assumptions about the force, reference and test locations it is possible 

to obtain bounds for the ratio 3.7.5 which demonstrate ho ld the simu-

lation error depends on the closeness of the natural frequencies. 

In 3.7.1 and 3.7.2, S5 may he written using the coherence 

relations (2.5.10) as: 

LZ lOts 
= 	v[St.Ssc J e 3,7.8 

where V
= Ls.s5J 	is the coherence ratio. ; 

0 'J I . 3.7.9 

Now O+s may be such that [o(, e 	is a real number, positive 

or negative, so that the third term in 3.7.2 must lie within the limits: 

± 24)s  OS. V[Sv,..SscJ O(*II'S! 	 3.7.10 

which take on the greatest magnitude in the fully coherent case, = 1 

This defines limits for Scx' for arbitrary S 

l z. 
s. in range 	[ 	sa.I sI S 5 	a410(i1IsI ( 	el, "YE  J 	3.7.11 

or 	in range 	C 4a 	± 	l(I 1 ?  s 3.7.12 

where s 

Similarly from 3.7.1, 	S71 	lies in the range: 

k~ l 	t 	q' sf_ lodJS 	 3.7.13 

and the limiting values in 3.7.12 and 3.7.13 are obtained at the same 

value of 9 s  . Also, for close natural frequencies the phase difference 

.2 
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between the modal receptances will he less than li/a so that 	>0. 

Using the limiting values of Sx) and Si). in 3.7.5 it is possible 

to determine the limits for the ratio s7 	1/S 	in terms of the 

single parameter of the service excitation 	. By considering the 

most unfavourable phasing of all the mode shape components (it is con-

venient to regard the mode shape components at the reference location, 

as positive) so that the numerator in 3.7.5 has maximum 

value while the denominator has minimum value, the upper limit for the 

ratio 3.7.5 may be expressed in ter1&. of 	, the absolute values of 

the modal components and the modal receptances: 

2 1. 	 2 

S?,a 	[kII çt4s ks+ 2 I 	k&kI ] [IaI 	I + 	If 3 . 7 -14  
[ 	ithi+ 	sksI-2 	 [dIoc.I— 	sJkcL] 1  i(x) 

Similarly, a lower limit exists for this ratio when the numerator of 

3.7.5 has least value and the denominator has greatest value. This is 

found from 3.7.14 by changing the signs of all the cross product terms. 

S 	-. 	+thtkItI+'s 4:k o 
1 2_aj 	 [Ithl k&l - 	4JcI] 

2.  
3.7.15 

It is apparent from 3.7.14 and 3.7.15 that serious departures from 

unityof the response ratio 3.7.5 can occur in particular cases. The 

lower limit 3.7.15 may be zero for a non trivial service excitation if 

III*!/ 	= 	and the L(t) and 5(t processes are fully 

coherent and critically phased. This means that the response spectral 

density at the reference location is zero and the simulation gives a 

solution SK 	0. A corresponding result leads to the ratio 3.7.5. 

having infinite value if the service response in the test position 

S 	is zero, and the simulated response 	is finite. These 

results demonstrate the severe effects on the single vibrator approach 

of overlapping of the modal responses. For the purposes of studying 
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the onset of small departures from uniof the ratio 3.7.5 it may be 

reasonably assumed that all mode shape components are of a similar 

order in absolute value, so that they may he cancelled out of 3.7.14 

and 3.7.15. The lo!er limit 3.7.15 then becomes the reciprocal of the 

upper limit which is given by: 

	

1JLi4 + 1 "( 5 1 2 ~ 2o(\][ ktl + 	IosI1 
LoIt 	t [Io! - 	 3.7.16 

Computed curves for the limits of the ratio S i (.)/b.( x). are 

plotted in Figure 3.7.1 against the natural Lrequenc ratio of the two 

modes for four values of the service generalized force spectral density 

ratio 	for the same value of damping (assumed equal in both modes). 

The limits are evaluated at the natural frequency of the rth mode, and 

the generalized masses of the two modes are assumed equal. In Figure 

3.7.2 the limits are shOwn for four different values of damping for a 

value of 	of one. The curves show that the range of possible simu- 

lation errors increases as R approaches one, and that for fixed R, the 

range of possible errors increases with 	and with the amount of damping. 

A difficulty in using such curves to determine the limits of 

accurate one vibrator simulation is that the parameter 	depends on 

the service excitation and will not in general be known. It may be 

inferred that the case ' 	 1 representsthe most useful assumption. For 

< I the errors will be smaller while > I implies that the- adjacent 

mode is the more significant of the two, and that this latter mode has 

£  
the ratio 	 as the parameter of  its error limits where 

= 	< 1. SS 

Takihg 	= 1 2  it is useful to represent the separation of the 

resonant frequencies of the two modes in terms of the sharpness of the 
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resonance peaks. The ratio of the frequency difference to the three 

decibel band width of the modal receptance:- ( s—#)/2)t , is a 

convenient measure of this. Figures 3.7.3 and  3.7.4 show the error 

limits for a range of Q factors of 15 to 100 plotted against the number 

of bandwidths of separation of the resonant frequencies. It is seen 

that on this basis the curves pratically coincide and that errors of 20% 

are pàssible at separations of less that ten times the three decibel 

bandwidth. This figure may be taken as an approximate but useful guide 

to the application of single vibrator simulation. 

3.8 Effects of DampinR Couling 

It is of interest to discuss the case where damping coupling exists 

between the modes. Using the mode shapes of free undamped vibration to 

define a set of generalized co-ordinates as before: 

r(x,t) = 	 3.8.1 

The equations of motion now have the general form: 

11 	4- 	 ±K,= 	() 	1= 	P. 	3.8.2 
S.' 

An n degree of freedom approximation may be justified over a limited 

frequency range as before. It follows from 3.8.1 that simulation of the 

n square spectral density matrix of the generalized co-ordinates 

leads to spectral density simulation of the whole structure over this 

frequency range, and this is achieved if the responses of a suitable set 

of n reference co-ordinates are simulated, as in section 3.4. The 

possibility of simulating the responses of the n reference co-ordinates 

by a set of n random forces P K (t), k = 1 2  2 ... n, is now considered. 
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As in section 3.4. the responses of the reference co-ordinates may be 

expressed in terms of the spectral density matrix of the forces and the 

receptances between the respective force and response locations: 

r-_u.] = 	 3.8.3 

The existence of [A] is still guaranteed by the stability assumption. 

As in section 3.4, a solution to the simulation is assured if [A] is 

non-singular. Let [c] be the matrix of modal influence coefricients 

at the n reference locations. Then for harmonic response in the n 

modes: 

[st] = [c][] 
	

3.8.4 

Also let [f] be the matrix of the projections of the n mode shapes on 

the lines of action of the forces. Then for harmonic forces: 

[1 = [fi[P] 	 3.8.5 

By definition: 

= [r][P] 

Provided [c] and [f] 	are non-singular, then: 

[] = cj'[9 = c]' []r11 [] 	3.8.6 

or: 	 [3] = [] [] 	 3.8.7 

where 	is the modal receotance matrix and by 3.8.6 exists at all W. 

[o.] will not be diagonal if damping coupling exists between the modes. 

It remains to show that [.] is non-singular. 

From 3.8.2 with a harmonic set of generalized forces: 

IV] [] = [i 	 3.8.8 

where; 	[vi = [ic] — 	[M] +. 	[s] 	 3.8.9 
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[K] and [M] are diagonal matrices, while Ibis]  is symmetric, positive 

definite. By 3.8.8, [v] is the inverse of [] and by inspoction of 

3.8.9 it is seen that [v] exists at all frequencies. Hence oj is 

non-singular and by 3.8.6 [A] is non-singular, so that the presence 

of damping coupling  between the modes does not invalidate the theoretical 

basis of simulation. 

3.9 Conclusions 

A theoretical basis for simulation has been presented which shows 

that spectral density simulation implies simulation in distribution, 

and that simulation of resonant motion of the whole of certain structures 

may be reasonably achieved using simple facilities. 	In narticular if 

the natural frequencies are widely separated and the damping is small, 

a single vibrator may be used to achieve simulation of the service 

environment. In general the minimum number of vibrators required cor-

responds to the number of modes n which may contribute to the motion at 

any frequency, and these vibrators must be controlled to reproduce the 

service magnitudes of direct spectral density and cross spectral density 

at a set of n suitable reference co-ordinates. This result is valid even 

if there is apprciable damping coupling between the modes. It has been 

demonstrated that significant errors in the simulation using a single 

vibrator are probable if the natural frequencies of a pair of adjacent 

modes are closer than ten times the three decibel bandwidth of the 

modes. 

On a practical level, the results for single vibrator 

simulation should not be taken to mean that the whole simulation test 

can be carried out using a single vibrator, but only that over any 

frequency sub-interval a single vibrator will be adequate. 



49. 

The possibility of the same vibrator being adequate over the whole 

frequency range of the service response depends entirely upon the 

set of relevant structure mode shapes, and whether these allow 

all the modes to be excited from a single position. 	This possibility 

must be considered to be remote since the modes involved will 

generally consist of both the overall modes of the structure and of 

localized modes of loosely coupled distinct structure parts and 

sub-systems. 	It is impossible to generalize about this but a 

multiplicity of vibrators and of reference response spectral densities 

may be required to cover the whole of the relevant frequency range 

over all of the structire and its sub-systems, although in the 

context of single vibrator simulation these may be operated 

independently over different frequency intervals. 



CHAPTER 	4 

EXPE1UMENTAL INVESTIGATION OF ONE AND TWO VIBRATOR SINULTION 

4.1 Introduction 

At the time when experimental verification of the theory of simu- 

lation was considered, several difficulties were encountered. In the 

first place, the desired degree of resolution of spectral density measure-

ments could not be obtained using the available instruments and facilities 

for the measurement of cross spectral density were not available. k 

high degree of accuracy in the spectral density estimates was also 

required and it was felt that this could not be easily obtained. These 

considerations led to the development of a discrete frequency analogue 

of the response relations of the structure in terms of spectral density. 

The theoretical basis of this is presented in section 4.4 and its useful-

ness derives from the fact that random forces with prescribed spectral 

densities may be represented by harmonic forces and that the correspon-

ding response spectral densities may be inferred from measurements, made 

quickly and accurately, of harmonic responses. In the second place, the 

range of possible simulation experiments was restricted by available 

facilities. The easiest method of exciting a model structure was by 

using electrodynamic vibrators attached at discrete points to the 

structure. It was considered that a valid demonstration of one and two 

vibrator simulation would be to excite some response of the structure 

using say ri vibrators, record the motions of some sample points and then 

to attempt to reproduce these motions using one or two vibrators. This 

course uus adopted. 
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4.2 The E.xperiinental Model 

The experimental model was required to have the following facilities: 

(a) frequency intervals of approximately unimodal response; (b) frequency 

intervals of approximately bi-modal response; (c) means of adjustment 

of the frequency ratio of a pair of adjacent modes; (d) ease of deter-

mination of the natural frequencies and mode shapes; (e) ease of inter-

changeability of the excitation and (r) adjustment of damping. 

The experimental model is shown in Figure 4.2.1 and consisted of a 

horizontal brass cantilever 20 inches long and having a circular cross 

section of 0.75 inches diameter. The cantilever was clamped in a 

lathe chuck and carried at its free end a horizontal steel cross bar. 

The cross bar was screwed and jockey weights could be locked at any 

position on its length. The purpose of the cross bar was to provide a 

different rotatory inertia at the tip for motions in the horizontal and 

vertical planes. In the case of a plain round cantilever bar, the 

flexural modes occur in pairs, having very close natural freuencies 

which are separated only by the effects of imperfections in the symmetry 

of the clamping and by imperfections in the mass distribution. Further 

the modes are fixed in preferred planes in the model, but these are not 

predictable. By introducing the horizontal cross bar at the free end, 

mass is added at the tip which causes a drop in frequency of each mode, 

but in addition rotatory inertia is added which is much larger for 

rotations about a vertical axis at the tip than for rotations about a 

horizontal axis. This gross imperfection tends to make the mode pairs 

align themselves to the horizontal and vertical planes and reduces the 

frequencies of the horizontal modes relative to the vertical modes. 

The effect could be varied by altering the positions of jockey weights 

'I. 

110 

/ If 

6,  1 C79 1,  4 v 6~~ "5( 

on the cross bar. 



Fig. 4.2.1 

Plan and Elevation of Dcperimental Model. 

Accelerometer 

Fig. 4.2.2 

Accelerometer Mounting Ring. 



52. 

A suitable size of tip inertia was found by trial and error. A 

useful range of natural frequency ratios was easily obtained for the 

mode pair corresponding to the second flexural mode. Using the tip 

inertia shown in Figure 4.2.1 the mode shapes were found to be within 

a few degrees of the horizontal and vertical planes and for a constant 

natural frequency of the vertical mode f, of 164.4 Hz frequency ratios, 

f /f, in the range 1 .05  to 1.23 were obtainable. 

The mode pair corresponding to the fundamental flexural frequency 

occurred at about 38 Hz and only a relative separation of 0.5 Hz could 

be produced by adding the cross bar. The observed frequencies corres-

ponding to the third flexural mode were at 656 Hz and 492 Hz for the 

vertical and horizontal modes respectively in the case of the plain 

cross bar. It was felt that the frequency range in the neighbourhood of 

the second pair of natural frequencies provided a useful area for simu-

lation tests. 

Bruel and Kjaer accelerometers were used to detect the motions, and 

these were mounted on aluminium rings which could be slid along the bar 

and locked by means of grub screws at any angle. Figure 4.2.2 shows the 

arrangement. Small Pye-Ling vibrators, type V47,  were used to excite 

the model and these were coupled through 4BA screwed brass rod to 

aluminium rings similar to the transducer rings, which could be locked 

at any angle at any axial plane. To support the vibrators, an aluminium 

bracket was clamped on the lathe bed at right, angles to the model ads. 

The model passed through a clearance hole in the bracket, while a con-

centric slot in the bracket enabled vibrators mounted in individual 

brackets to be supported at various angles. Vibrators could be mounted 

on both sides of this bracket so that the points of attachment to the 

model were dispersed along its axis and up to four vibrators could be 
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used simultaneously. The arrangement is shown in Figure 4.2.3. A fifth 

vibrator was mounted on the lathe tool post to provide an additional 

horizontal excitation. 

A Hewlett-Packard Oscillator type 203A was obtained to excite the 

model. This was an extremely useful oscillator, having a reference 

output section with sine and s:1uare waves available simultaneously, and 

a similar output section driven from the reference section through a 

continuously adjustable phase shift. Two vibrators could be driven 

simultaneously via power amplifiers, having any prescribed phase shift. 

Alternatively, iien using a single vibrator to make receptance measure-

ments, the variable phase section could be used to obtain the phase lag 

of the response. This was achieved by feeding the transducer signal to 

the Y amplifier of an oscilloscope, feeding the variable phase output to 

the X amplifier and adjusting the phase lag control to obtain a straight 

line with positive slope. The phase lag could be read off the calibrated 

dial to 20  accuracy. The method proved more versatile than a commercial 

phasemeter in its ability to handle a wide range of signal levels and 

to deal with distort-ad signals at low levels. An alternative method was 

used for phase measurements when both sine channels of the oscillator 

were being used to drive vibrators. This is described later. The 

square wave output was used to drive a digital counter for period measure-

ment. The outputs of the 5VA power amplifiers were connected to the 

five vibrators through a switch system, and the vibrator currents were 

monitored rn .avometers. 

The accelerometer outputs were connected through a five way switch 

to the Bruel and Kjaer preamplifier type 1606, and then to the Bruel 

and Kjaer frequency analyser type 2107. This was used essentially as a 

valve voltmeter but its frequency selective section could be switched 
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in to deal with distorted signals if necessary. The output from the 

2107 was displayed on an oscilloscope for phase measurement purposes. 

Figure 4.2.4 shows a photograph of the experimental model. 

4.3 Preliminary Measurements 

Tests to determine the dynamical characteristics were carried 

out. Four accelerometers were mounted on the model. The natural 

frequencies of the modes were found by observing the frequencies at 

which peak responses were obtained using horizontal and vertical 

vibrators. At such peaks all accelerometers were examined to check 

that in-phase response was taking place. Figure 4.3.1 shows the 

natural frequencies of the second flexural mode in the horizontal and 

vertical directions as a function of the spacing of the jockey 

weights on the cross bar. Towards the innermost limit of the weights 

it was found that the H and V modes were not quite in the horizontal 

and vertical planes, but up to 
50  out of plane. It became necessary 

to change the angles of the vibrators to obtain unimodal responses. 

This was probably due to lack of symmetry in the cantilever clamp 

stiffness. Linearity of response was investigated at several frequen-

cies for a range of vibrator current. It was found that large depart-

ures from linearity took place at currents in excess of 0.250 amps, at 

frequencies near resonance and that the non linear behaviour was 

accompanied by changes in phase lag of the order of 300  with increasing 

vibrator current. A limit of 0.200 amps was imposed to ensure approxi-

mately linear behaviour for future tests. 

Receptance plots relating accelerometer response to vibrator 

current are shown in Figure 4.3.2. These demonstrate unimodal response 
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when the exciter is aligned in the horizontal or vertical plane, and 

bi-modal response when the exciter is able to excite both nioes and 

the transducer is sensitive to motions in both modes. 

The damping factors of the modes were measured using the three 

decibel bandwidth method, taking care to ensure that in-phase motion 

of the whole structure was obtained over the band. Values of magni-

fication factor Q of 40 to 45 were obtained. Additional damping was 

introduced if desired by attaching a rectangular paddle to the end of 

a piece of 4BA screwed rod. The rod was screwed into a transducer ring 

and the paddle was immersed in an oil bath. The arrangement is shown 

in Figure 4.3.3. 

Figure 4.3.4 shows the effect of 'connecting the, damper at mid-

span on the response of the second flexural vertical mode. There is 

a small reduction in resonant frequency and the Q  factor of the mode 

was reduced from 42 to 20. The damper could be inclined up to 45 

to introduce damping coupling between the modes. 

4.4 Harmonic Analogue of the Response of a Structtire to Random Forces. 

The problems of measuring spectral densities are well known. 

Such measurements take the form of estimates in the statistical sense 

and accuracy can only be gauged in terms of a variance or standard 

error of the estimate. When dealing with vibrations, narrow bandwidths 

are necessary to resolve accurately the variations in spectral density 

with frequency, and 'extremely long records are required to ensure con-

fidence of the estimates. It was envisaged that many such measurements 
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would be required to demonstrate simulation, so an alternative method 

was adopted. 

For the case of a linear elastic structure excited by N random 

forces it is shown (a) that a set of N harmonic forces can represent 

the excitation spectral densities at any frequency and that the response 

spectral densities at that frequency may be inferred from measurements 

of the harmonic response, provided that the N random forces are fully 

coherent at that frequency. 

Further, (b) any general N dimensional, spectral density matrix 

may be expressed as a sum of spectral density matrices representing 

fully coherent processes, so that the harmonic representation may be 

extended to the general case by superposition. 

Recall the expression for the cross spectral density between a 

pair of co-ordinates q L and q j  in terms of receptences for a set of 

random forces PL(t),  L = 1 2 2,...N. 

SLJ
=

[04 [s] by- j'  LI 
	

4.4.1 

where [J is the row matrix [oi,z. Or,i1j of complex receptances 

and [s'] 	[s] is the N square spectral density matrix of the 

forces. 

Now let PL  (t), L = 1,2,...N be a set of harmonic forces: 

F(t') = 	cos(t — L ) 	 4.4.2 

tt)t 	OL  
=Re.e 
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or: 	P L  (t) = ( q, [L 
et} 	 443 

A 	-L 

with complex amplitude PL  =  PL  e 

AJ 

Now define the quantity 	 j 	 4.4.4 

H may be expressed in terms of the complex representation of the 

harmonic forces: 

prAA 

H LM 	= 	P"L  Pp, e'] 
A /' 

= 
' 	LA 
	-i4'ti 	-it)t 

= 	FLe.e 	PM  P_ 	a 

= PL*  PM 	 4.4.5 

1 1 1 P1 It follows that the N square matrix LH PJLHid is given by: 

[H PI = 
[* 	

4.4.6 

or 	[H PI = 	[ PJ' 	 4.4.7 

where [R] is the column matrix of force complex amplitudes. 

By inspection of 4.4,5 it follows that 1IH1 is Hermitian. Further 
P  it is seen from 4.4.6 that LHJ is positive semi-definite of rank 1, 

since every minor of [H] of order 2 is zero and the diagonal 

elements are non-negative. 

Now let q(t), q(t) be the responses of any pair of co-ordinates 

of the system. 

Write: 	q. (t) 	cos(wt - 

	

) 	 4.4.8 

C A 

= 

with 	q 

LWt 	 A 	-Lj 
Similarly: 	 = 	 with 	e 	• 494.10 
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Now the quantity H ij  can be defined as 

H!j cos('—) 	+ L 	 4•4•U 

= 	q9J e 

= 	 4.4.12 

tt 
(Note that H = 9c. 	 ) 

By definition of complex receptance: 

N 

= 	E 	= 	[° L][] 	 4.4.13 
K-I 

F 

	

qj = 	FUJI [P] = [P][oKj] 	 4.4.14 

	

/ 	, 

Hence: 	 = 	 [P]k] 
, 

or: 	 Hij = 	[][H][3] 	 4.4.15 

Comparison of 4.4.1 and 4.4.15 shows that the transformation of 

[if] into n7 	is identical to the transformation of [5P]  into SLj 

It follows that if a set of phased harmonic forces can be arranged such 

that [if] as defined in 4.4.4 takes on the same set of values as 
[P]  

then the cross spectral density of the response S7 	may be inferred 

from H 	which is derived as in 4.4.11 from measured responses to the 

harmonic force system. Since [if] is of rank one, the harmonic repre-

sentation is restricted so far to spectral density matrices of rank one. 

It remains to show for part (a) that any spectral density matrix of 

rank one can be represented by the form 4.4.6. 

Let [s] be an arbitrary spectral density matrix of rank r( N. 

Then since [] is positive semi-definite Hermitian, it is con-

junctive to the canonical matrix: [1-c 01 	where [Ir] is the 
[ooj 

identity matrix of order r. 	 4.4.16 
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That is, there exists a non-singular matrix [Q] with complex 

elements such that: 

[se] = C-Q] 1, + 0] [1 	 4.4.17 

Indeed [s e] is conjunctive to any positive semi-definite Hermitian 

matrix of order N and rank r, which in turn is conjunctive to 4.4.16. 

In particular, a non-singular matrix [] exists with complex elements 

such that: [se] = [T] 	Diag [g, 	g..g,o,o,..oj[T]' 	4.4.18 

where g1, .. g.e, are arbitrary positive elements. 

4.4.18 implies that any N dimensional random process having arbitrary 

correlation between its component processes may be considered to be 

derived from a set of r statistically independent random processes where 

r is the rank of the spectral density matrix, by linear filtering. 

Further, the generating set of independent processes is not unique. 

Now let the columns of 	[T] be: IT,] , [T2] , .. [j . Then: 

[] = 	 diag[g 1 ..g,,,0 0] T'L 	4.4.19 

TNJ  

or: 	 [] =
gkk [ 	[ r,J 	 4.4.20 

In the case where r = 1 , [se] can be expressed as: 

[se] = g11[T[Tj = [pj[pj , say. 	 4.4.21 
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It follows from 4.4.7 and 4.4.21 that in this case a harmonic repre-

sentation of [se]  can always be derived. Note that in 4.4.21, [] 
is determined up to an arbitrary phase angle. 

In the general case, r 	N, the expansion 4.4.20 shows that [s?] 

may be written as a sum of N square matrices and further, each matrix 

in the sum is of rank I. 
1' 

	

[si = 	~ kK[TK1 [Tx] 
K. I 

1' 

	

= 	E [s] 	say, 	 4.4.22 

where each [s] is of rank 1. 

Introducing this expansion into 4.4.1: 

' -I 	= 	[][ 	[s]][] '  
K 

= 
K 

= 	(K) 	say,where S( K) 	][s][]4.4.23 
K 

Relations 4.4.22 and 4.4.23 indicate how the harmonic analogue may 

be extended to the general case of the spectral nsity matrix having 

rank r 
( 

N. Each of the component matrices [s] of the expansion 

4.4.22, being of rank one has a harmonic representation [H] [PK] 
[]. 

If each corresponding harmonic force set [j is applied to the 

structure, the amplitudes and phases of a pair of respaises may be used 

to construct a harmonic representation of a cross spectral density 

component. 

e.g. 	 = [i] [PK] 	; q = [j] [PK] 

, 

(K) = 	= 	i:i [PI] L II 

= 
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By applying each force set [j in turn, K = 1,2,,..r, and adding 

the complex harmonic representations HL(k)  according to 44.23, a 

final harmonic representation of any response spectral density or cross 

spectral density may be obtained. The expansion 4.4.22  is not unique 

and consequently there is a whole set of equivalent harmonic represen-

tations of a given spectral density matrix. This concludes the proof 

of statement (b). 	In the case of a direct spectral density, the 

harmonic representation of the kth component response 	is 

obtained from (q q1 
)(k) 	IqL1(S) 	(k) 

• 	Consequently the final 

representation of the response spectral density is a sum of squares of 

harmonic amplitudes. 

In the case of a general 2 x 2 spectral density matrix it is easily 

seen that many expansions of the type 4.4.22 can be found by inspection. 

Given: [sI1 	[s s 
SP21 SPZZ 

Write:
p11 	 r o1i _,. 	rbll blal s 1  s_j 	La21 

aaJ 	
Lb21 

b2j 

Now the expansion must satisfy: 

all  + P b11  = S11 	, a 	-I- TO b 	= -S s 

o 	-F h 	= 	; 9 	qit\ + 	b1 3 9i 4.4-24 

and the component matrices must have rank 1: 

J Q-iaj= aii .aat   

Eight real numbers must be chosen to satisfy six equations ., so the 

expansion is not unique. For example let b = 0. Then either b11 



or baa  is zero. Taking the former, the expansion is obtained: 
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[5P] = P1 o 0 [.Ssi S121 + 

0 	aaJ

1 
 p

22J  

	

RI p p1 	p a 	 p 	pl 

	

S 22. 	is chosen so that S 11 S 	Sal and S22. = 	- Sa 

To apply the harmonic analogue, complex vectors [Ps] and [Pa] 

derived such that: 

/ - 	rp p1 
S1 2  

22 

EP, I [] 	r 1 [p11  021]  

11 	 P 

LIJ 	 LS2I S] 

/ 

	

and : 	[][ 2] 	ri 1Z aa] = 	[0 01 

	

I 	0 LaaJ 	
S22j 

4.4.25 

are 

4.4.26 

Since [Pi ] and [p2] 	are determined up to an arbitrary phase 

angle, it is convenient to set p  and p 	real initially. The values 11 
 

of the elements follow easily from 4.4.26, and these represent the 

amplitudes of harmonic forces which may be applied in sequence to the 

structure. 

For orders of [se] 	greater that 2 x 2, an expansion of the form 

4.4.22 may be found from the eigenvalues and eigenvectors of [se] ; 

If [s'] is of rank r < N then it has r positive eigenvalues A l  - Ar 

and (N - r) zero eigenvalues. A result in the theory of matrices is that 

[5P] 	is unitarily similar to a diagonal matrix 

[se] = 	[u] diag[1,X2... i[]_1 
	

4.4.27 

-J 	t 
where [u] is a unitary matrix; [u] 	= [u] ; whose columns [U L].. . Lull] 
are the eigenvectors of [se] , normalized to have unit length. 4.4.27 

is a special case of the conjunctive transformation 4.4.13, in that 



the columns of Mare prescribed to be mutually orthogonal. 

Hence: 

[] = 	>[u] [1 	= , [s] 	 4?4.2 
KrL 	 K=1 

In this case, the expansion 4.4.28 is unique. 

Although originally devised as a means of demonstrating simulation 

of spectral densities, it is considered that the harmonic analogue 

has application in many experimental aspects of random vibrations. 

For example the responses of a complex structure to discrete random 

forces with prescribed spectral densities may be evaluated accurately 

by experiments based on the analogue, and tI method is easily 

extended to the case of prescribed random support motions of equipment. 

45 Application of the Harmonic Analogue to Simulation Exoeriments 

It has been stated in the introduction that the most feasible 

method of testing the validity of the simulitiori theory was to attempt 

to replace one set of point forces by another set, using small vibrators. 

It may be argued that this restricted form of experiment would cons bitute 

a valid test of the possibility of simulating more general environments 

because in chapter 2 it has been shown that any general environment, 

consisting of distributed or discrete forces with spatial and temporal 

correlations, generates a set of generalized force spectral densities 

from vinich the response of the structure follows. Simulation is there-

fore concerned with reproducing these generalized force terms without 

reference to their origin. On this basis, the laboratory tests are 

essentially equivalent to the more general types of excitation in that 

63. 
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the vibrators are capable of producing a range of generalized force 

spectral densities in a highly convenient manner. 

The harmonic analogue representation of the random forces and 

responses was used in conjunction with the Hewlett-Packard Two-Phase 

Oscillator. The two output sections of the oscillator could be used 

to drive two vibrators simultaneously with a prescribed phase lag 

between their currents. In this way and by superposition, random 

forces with a wide range of correlation could be represented. The 

method required that phase angles of the harmonic response be measured, 

and since both sections of the oscillator were being used to excite 

the structure, an alternative method was used. The square wave output 

of the oscillator was used to drive a Servomex function generator Type 

LF141 in synchronism and the variable phase output of this instrument 

was used in conjunction with an oscilloscope display to determine phase 

angles in the manner described in section 4.2 The arrangement of the 

instrumentation is shown diagrammatically in Figure 4.5.1. During the 

tests all vibrators were coupled to the model so that the dynamical 

characteristics would not be changed. It was felt that vibrator current 

was a convenient and sufficient guide to the excitation, and that force 

transducers were not necessary. Consequently receptarice measurements 

were based on force units of 0.100 amps of vibrator current. 

Tests were carried out to demonstrate (a) single vibrator simu-

lation (b) two vibrator simulation and (c) the growth of errors in 

single vibrator simulation, and these are now described. 

In the case of single vibrator simulation, the procedure was as 

follows. Having set up the model to have the required dynamic charac-

teristics, an arrangement of vibrators was chosen to represent the 
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the service environment. At least three were used. These were energised 

in pairs with arbitrary ohase aneles to renresent a fairly general load. 

For each pair, amplitude and phase data was obtained from four acceler-

ometers. The tests were repeated at a number of frequency points 

around the resonant frequency intervals. It was convenient to keep the 

same force amplitudes and phases over the frequency interval. 

Simulation of the environment was attempted at each frequency 

point by choosing a reference accelerometer and energising a further 

vibrator to reproduce the reference response spectral density. In the 

context of the harmonic representation, this meant that the mean 

square of the reference harmonic response was set to be equal to the 

sum of the mean squares of reference responses to each of the set of 

harmonic forces representing the service environment. Having done this, 

the amplitudes and phases of other accelerometers were recorded. The 

calculations involved in reducing the amplitude and phase data of the 

accelerometers to the equivalent spectral densities and cross spectral 

densities were somewhat tedious and an Atlas Autocode program was 

written to do this. Finally, the accuracy of the simulation was gauged 

from a comparison of the twoEets of spectral densities. 

The procedure in the case of two vibrator simulation was to repre-

sent the service loading by a system of vibrators as above, but in this 

case a pair of reference accelerometers were used and two further 

vibrators were used to simulate the motion. It was necessary to obtain 

first of all the 2 x 2 spectral density matrix of the required vibrator 

currents. In general, this matrix would be non-singular. There was 

no hope of obtaining simulation by a trial and error adjustment of 

currents and phase because a superposition of two harmonic force sets 

would be required (see 4.4.25). It was necessary to calculate the 
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required force spectral density matrix using relation 3.4.9 together 

with measured receptances between the simulating forces and the 

reference transducers and then resolve the resulting matrix into a 

pair of harmonic force sets according to 4.4.26. This was a tedious 

calculation and in the end was computerized. The final method adopted 

was to make the service measurements at all frequency points; prepare 

a data tape from the accelerometer amplitudes and phases and measured 

receptances, compute (a) the equivalent spectralensities; (b) the 

spectral density matrix of required simulating forces and (c) the 

resolution of this matrix into its harmonic force representation. 

Finally the computed force system was applied to the model and a 

further data tape prepared from the measured responses to compute the 

equivalent spectral densities for the simulated case. 

4.6 Results of Simulation Tests 

The results of five tests are presented to demonstrate one and two 

vibrator simulation. Details of the locations of the vibrators and 

accelerometers for these tests, are recorded in Appendix I. 

Test A 

In this test, single vibrator simulation of a system having an 

isolated resonant peak was investigated. By confining the service and 

simulating vibrators to the horizontal plane, only motion of the H 

mode was produced. The transducers were not confined to the hori-

zontal plane. The results are given in Fig. 4.6.1. The encircled 

points represent the service reponse while the crosses represent the 

simulated response. S44 (Fig. 4.6.1(d)) is the reference response. 
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The other responses show excellent agreement between service and simulated 

responses with the exception of S33, (c), which shows a small error. 

This is due to the relative largeness of the non-resonant response at 

the tip of the cantilever. In (e) and (f) C14 and C23 are the real 

parts of the cross spectral densities, and show good agreement. The 

imaginary parts are not shown, being virtually zero throughout. 

Test B 

In this test single vibrator simulation of a system having a pair 

of reasonably well separated resonant frequencies was investigated. 

The system was set up with a tip inertia to produce a frequency ratio 

£v/H of 1.23.  The service forces were not confined to anyp'ane. The 

accelerometers were positioned so that (i) and (2) had large responses 

in both modes but with phase differences. (3) and (4) were positioned 

so as to be nearly uniinodal. The simulating force was positioned to 

produce good response in both modes and accelerometer (1) was used as 

reference. The results are shown in Fig. 4.6.2. The reference response 

spectral density Sli clearly shows the two peaks. It is clear from the 

other responses that fairly accurate simulation is obtained in the 

neighbourhood of the resonant peaks. Although the imaginary part of 

the cross spectral density, Q12, (e), shows some disparity, it is drawn 

to a large scale compared with C12. The outstanding feature is the 

large discrepancy which appears at frequencies between the resonant 

frequencies. S22, (b), shows the effect as an additional peak in the 

spectral density at 148 Hz and there is evidence of similar distortions 

in all the other responses. This is due to an anti-resonance effect 

in the receptance between the simulating vibrator and the reference 

transducer. This is shown in the plot of Fig. 4.6.3 in which the 

receptance reaches a minimum at about 1k8 Hz. The receptance between 

the simulating vibrator and accelerometer (2) is also drawn and shows 
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no such strong anti-resonance. At 148 Hz this receptance is almost 

seven times the value of the reference receptance so that for excit-

ation by the single random force, the response spectral density S22 

will be 49 times Sil. It is clear therefore why the peak arises. 

This is an interesting result. It had previously been assumed that 

large errors might occur at frequencies away from resonant frequencies 

because of the breakirigdown of the uni-modal assunption, but it was 

assumed that the absolute values of spectral density produced would still 

be insignificiant compared with values in the resonant frequency region. 

The experiment shows that such errors can cause serious distortions 

of spectral densities. The effect---can be minimised by judicious choice 

of reference response. For example if accelerometer (2) had been used 

as reference, the simulated response of Sil would have been 49 times 

less than the simulated response S22, and this would have represented 

an acceptable error in Sli. The anti-resonant effect was noticeable 

during the test, because the vibrator current required to maintain a 

fairly low response at accelerometer (1) increased substantially in 

the frequency interval around 148 Hz. 

Test C 

In test C, single vibrator simulation was attempted on a model 

having close natural frequencies, with a frequency ratio fv/fH of 

1.05. This was obtained by clamping the jockey weights at the inner-

most position on the cross bar. The service loading was identical to 

that for test B and accelerometer (1) was used as reference. The results 

are shown in Figure 4.6.4. All the responses show large errors between 

service and simulated values, particularly at frequencies between the 

resonant frequencies. Single vibrator simulation is clearly not 

accurate for such a system. 
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Test D 

In test D the system and service loading were identical to that of 

test C, but in this case two additional vibratas were used to simulate 

the motions of two reference accelerometers. The. simulating vibrators 

were inclined at 450  to the horizontal plane and on opposite sides of 

the model, so that each vibrator could excite responses in both H and 

V modes. The reference accelerometers were similarly positioned, 

being sensitive to both modes, but with phase differences. In the 

context of the simulation theory, the relevant modal influence coef-

ficient matrices were far from singular. The other two accelerometers 

were mounted at different axial planes in the horizontal and vertical 

directions respectively. The required currents and phase angles for the 

simulating vibrators were obtained from the computer program and since 

this involved a time delay, a minor difficulty was found in reproducing 

the reference responses because of small changes in the receptances of 

the structure. It was found that receptances measured on two successive 

days did not correspond exactly so that when computed solutions were 

applied to the model, the reference spectral densities were not exactly 

reproduced. The errors involved were fairly small. The results of the 

test are shown in Figure 4.6.5 and show very good agreement between 

service and simulated cases for all direct and cross responses. 

Test E 

In this test one and two vibrator simulation was attempted on a 

model having very close natural frequencies with damping coupling 

between the modes. The cantilever was us3d with a plain cross bar to 

obtain a frequency ratio of 1.005. After checking the natural frequencies 

and mode shape components at the accelerometers, the dashpot was attached 

at an angle of 450  to the vertical to obtain damping coupling. The 

simulating vibrators were again inclined at 45°  to the horizontal on 
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either side of the model. Only one was used to try single vibrator 

simulation. The two reference accelerometers were in the same positions 

as for test D. The results are shown in Figure 4.6.6. Circles indicate 

the service response points, crosses indicate the two vibrator simul-

ation response and squares indicate the single vibrator response using 

accelerometer (1) as reference. It is seen that the single vibrator 

approach produces gross errors in the responses, vkiile the two vibrator 

approach reproduces all the responses extremely well. Small errors are 

a consequence of the fluctuations in the measured receptances mentioned 

above. 

These tests are representative of the tests carried out on the 

model and it is considered that they verify the theory of simulation. 

Further tests were carried out at particular freencies to verify the 

effects of having poorly conditioned reference locations in two 

vibrator simulation. This is achieved by having the ref ernce accel-

erometers almost parallel and at close axial positions on the model. 

The effect was that the solutions for the simulating vibrator currents 

obtained from the computer were too large to be applied and the situ-

ation was made worse by adjusting the simulating force positions to be 

almost parallel. 

Finally a range of tests were carried out to determine experi-

mentally the effects of different correlations between generalized 

forces in the service loads on the errors produced by single vibrator 

simulation. Using the theory of section 3.7 it was possible to make 

theoretical predictions of the limits of the ratioc 	sc)/ s 

for the whole range of possible correlations between the generalized 

forces in the service case. These predictions were for a particular 
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ratio of generalized force spectral densities in the service case, 

denoted ' = S/ 	and for specific locations of the simulating 

force, reference transducer and sample response. The theoretical 

limits were obtained for different values of the resonant frequency 

ratio R, and were evaluated at the single frequency co, , for w s  above 

and below 	• The ratio of the generalized masses of the two modes 

was required for accurate prediction of these limits. This was 

obtained exp 	by the method of displaced frequencies. A 

small amount of mass (plasticine) was added to the model at the ref-

erence section, (12 inches from the clamp) where the mode shapes of the 

H and V modes were considered to have unit radial amplitude. The 

change in natural frequency or period caused by this was obtained 

accurately for each mode and the ratio of generalized masses found from 

the measurements. Let 	-, 	be the unperturbed natural frequencies. 

Then 	w? 	wibh K-r and Mr generalized stiffness and mass.Mr  

For a small change in generalized mass 

- 	 C.DT 8M 
—: 	2Mi 

Since SM r  is caused by the addition of a small mass m at xm 

= 

Taking the ratio of changes in the rth and sth frequencies: 

Ms = _____ 
-j 	 4.6.1 

It was found that changing the position of the jockey weights on 

the cross bar altered the generalized mass ratio appreciably and this 

is shown in Fig. 4.6.7. 

The theoretical limits for the ratio 	Sii 	S(x) 	are shown 
11 

in Fig. 4.6.3. The curves are drawn for the case where all mode shape 

components at the various locations have the same amplitude and 
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unfavourable phasing. Two cases are shown, corresponding to ' 	1 

and 2. Experimental results were obtained for a range of values of 

resonant frequency ratio and covering a wide range of correlations 

using the harmonic analogue. Careful scaling was necessary to obtain 

the requisite value of 	• 	The results are plotted with circles. 

to show fully coherent cases, sj= S. S 	, and crosses to show 

intermediate correlations, while squares indicate the uncorrelated 

case 	0 	• To achieve these service cases, a horizontal and 

a vertical vibrator were used to excite the H and V modes independently. 

In Figure 4.6.3 the existence of the limits is confirmed and the 

growth of the range of possible errors in the ratio 	S(.i1)/ S(1)  as 

the frequency ratio approaches 1 is fairly accurately confirmed. 

4.7 Conclusions 

An experimental investigation of one and two vibrator simulation 

has been carried out using a harmonic analogue method. The results 

show that single vibrator simulation using a single reference response 

can give.- :an accurate result over frequency intervals of approximately 

uni-modal response, but can lead to large errors if two natural frequencies 

are close together. Over such frequency intervals, a two vibrator simu-

lation, using two reference responses can achieve satisfactory simulation. 

The single vibrator simulation experiments have also shown that large 

errors can occur at frequencies between resonant peaks because of anti-

resonance effects. Such effects are characterized by sharp minima in 

the receptance between the simulating force and the reference response, 

with a corresponding increase in the force required to maintain the 

reference spectral density. This is only to be expected since the uni-

modal representation is no longer valid at such frequencies. There is 

0 
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some danger that such errors could occur in practical applications of 

single vibrator simulation, even although accurate simulation of the 

resonant peaks is obtained. A simple remedy is to take due notice 

of such receptance minima, and avoid compensating the vibrator force 

for them. Strictly simulation errors will still occur, but they will 

not be in the form of undesirable large peaks, comparable with 

resonant peaks. 
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CHAPTER 	5 

SIMULATION BASED ON BROAD BAND SPECTRAL DENSITIES 

5.1 Introduction 

The discussion of simulation in chapters 3 and 4 has been based 

on the concept of spectral densities as continuous functions of 

frequency, and simulation has implied a point by point matching of 

spectral densities. This means in practice that the bandwidth of 

spectral density estimates must be chosen to be small enough to resolve 

accurately the fluctuations of response spectral density, and this 

entails bandwidths of the order of -1  of the 3db bandwidth of the 

resonant peaks. Such small bandwidths make long sample records neces-

sary and require a massive amount of data processing. The associated 

problem of adjusting force levels in correspondingly narrow contiguous 

bands seems likely to cause practical difficulties. There is therefore 

some interest in seeking simplifications of the procedure. 

A major simplification is possible over frequency intervals con-

taining a single resonant peak, i.e. where a single degree of freedom 

representation is valid, provided that the service excitation is such 

that the generalized force spectral density of the resonant mode is a 

relatively smooth function compared with the fluctuations of the modal 

receptance. In this case, a single value of average response spectral 

density for the frequency interval may be used as a reference for simu-

lation, and its reproduction ensures an accurate reproduction of the 

actual narrow band spectral densities and cross spectral densities of 

the whole structure over the frequency band. This is the main result 

of the chapter. The result is not valid if there is more than one 

resonant frequency within the band. In this case simulation using an 

arrangement of forces with a multiplicity of reference responses is 

possible in theory and this is discussed briefly. Finally some experi-

mental results are reported. 
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5.2 Simulation using _a Single Broad-Band Reference Response 

Consider a frequency interval B containing a single resonant 

frequency, wT.  • B is considered to be much wider than the bandwidth 

of the resonant peak associated with the mode. For the case of low 

damping, the assumption is made that any significant response at any 

frequency within B is caused by the resonant mode, so that a single 

degree of freedom approximation may be used to represent the cross 

spectral density between any pair of response co-ordinates qL ; - qj 

C s,J  = 	TLCTJ S,-r 5.2.1 4   

In 5.2.1, Cii is the previously defined influence coefficient, 

and o<.- , oc s  are modal receptances. The assumption is made that 

s-@) is a smooth function of frequency within the interval B. 

The direct spectral density of a reference response co-ordinate 

is similarly obtained: 

2 	2 
09 	- C' - 	lc/-r I DTT 5.2.2 

Introduce the broad band average spectral density of the reference 

response: 

<S Q)E 	f SL d 	 5.2.3 

This is essentially the spectral density measured using an ideal 

rectangular filter of band width B. 

From 5.2.2 

2 	2. 

=B f I CT- 1 IOCI I S 
B 	 - 

= Sr1JC-aII0T1 cL 	
5.2.4 

In 5.2.4. CT, may be frequency dependent, if for example q L, is 

a velocity or an acceleration. But' for low modal damping, O<.-r 	IS 
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in the form of a function having a single prominent peak at c* 

In 5.2.1 	
1a 

will act in the nature of an irmule function, so that 

can be taken outside the integral. Further, since the area 

under the curve of IC24t  is concentrated near LO# 	integration of 

over the interval B can be conveniently replaced by integration 

over the semi-infinite interval provided B is much greater than the 

3db bandwidth of 	• This integral has a simple closed form for 

the case where oi- has the representation: 

11; $ )2 + 26+0*  

That is, 	
k+1 2 

aw 	f C<+ 
a 
 cLo 	14* 	 5.2.5 

where:  

5.2.4 becomes: 
a 	a - 	1C)I fIol 

5.2.6 

In 5.2.6, Iit is always positive, and provided that Ci.. 	0, then 

5.2.6 has a unique inverse. If <S'o-) = 	, then  

, and by 5.2.1, narrow band simulation will be obtained for 

any  q1,, q ,j  

SL()L = St(o)i 	; c- E B . 	5.2.7 

A single vibrator, having an adjustable spectral density SXK  

(constant over B) may be used to reproduce the broad band spectral 

density at the reference transducer. 

For such an excitation: 

sqoo_ 	
= 	tia 

Hence 	 <S= 	 5.2. 
B 
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In 5.2., the integral is non negative. Provided the force 

P 
causes some generalized force in the rth mode, then a value of SK 

can be obtained which will reproduce a prescribed value of (S> and 

this force will achieve narrow band spectral density simulation of the 

whole structure. 

While this result has a highly approximate basis, namely the 

assumption of uni-modal response in the band, its inherent simplicity 

makes it highly attractive as a practical basis for simulation. 

Clearly, the amount of data processing.is  reduced, and adjustment of 

the force spectral density is achieved by setting up the required 

levels in broad contiguous bands. The choice of B need not reflect 

the fluctuations of the response spectral densities. As long as the 

band B contains only one resonant frequency the assumptions would 

seem to be reasonably valid. The reproduction of the reference level 

could well be achieved by means other than a vibrator, e.g. a control-

lable acoustic field. 

If the band B contains two natural frequencies, the simple single 

vibrator approach will not be valid. In this case, a two degree of 

freedom representation of the structure is necessary over the band B: 

It 
ShJ 	- 

a 	 2. 
- * 
L Ct Csj Ss = 	 StS  5.2.9 

a 

and 
	

OcLQ. 
	 CCsO(O(s ss 	 5.2.10 

Taking the band average of SL 	 : 

a 

= 	
*SIS f C Cs 	O"S CLLJ 

	
5.2.11 

$gj 	B 
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The influence coefficients may be frequency dependent if the 

resoonse q,_ 	is a velocity or acceleration, but if B << f0 	where 

f0 	is the band centre, then C& 	and Csa, may be taken outside 

the integral and evaluated at the band centre frequency. Then: 

= 	-k jC&CSQ ss { f5 dw 	5.2.12 a 

= 	[ 	IcIi 	ZCZCL C5CL 	su1 5.2.13 
1• 

	

In 5.2.13 the integral: 5 	has been replaced by its cor- 

responding closed form: It-,-' 

	

,-1 = 	5 1ijZd..-) . Integrals involving 

modal receptance products may be likewise replaced by integrals denoted 

Is = Jco s  cLw 	the assumption being that both modal receptances 

have no significant value outside the interval B so that the limits of 

integration may be extended without much error. Closed forms for 

integrals of the type Is 	have been given by Robson (1966) for the 

case where the damping in the modal receptances is assumed hysteretic. 

For the case of assumed viscous damping the integrals are evaluated in 

Appendix II. Its 	is of course complex, with Isi- = Is 

By the Cauchy-Schwarz inequality: 

	

j.5j a < 	
I.t. Iss 	 5.2.14 

Computed values of 
	

from the expression 11.16 of Appendix 

II, are shown in Fig. 5.2.1 for two different values of viscous damping, 

assumed equal in both modes. These curves show that fitsj 	is large 

if the modal receptances overlap, but falls off rapidly if the natural 

frequencies are separate. 

Writing 5.2.13 as: 

<s,>= 	*[t}c[2 It*  s 	± 	CSCL 	s5] 	 5.2.15Ift 

.ti 
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and recalling the expression for the narrow band cross spectral 

density betTeen any pair of structure responses: 

a 
S ij 	= 	Csj o c*s 	; w £ B. 	5.2.16 

t,S: j 

It is clear from 5.2.15 that reproduction of the single reference 

broad band spectral density, <S9 > , does not guarantee the repro-

duction of the individual values of the four service generalized 

force quantities, and does not lead in general to narrow band simu-

lation of any response of the type 5.2.16. 

5.3 Multi-Force Simulation using Broad-Band Observations 

The result that narrow band simulation of the whole structure 

using a single broad band reference response breaks down when there are 

two resonant frequencies within the band suggests the possibility of 

achieving narrow band simulation using a more complicated system of 

simulating forces and broad band references. It is possible to theorize 

about this, but practical difficulties. arise in implementing such 

solutions. 

An initial result is that if there are N modes having resonant 

frequencies within the band, and the assumption still holds that the 

set of service generalized force spectral densities are smooth over B. 

then simulation can be achieved by a set of N forces having a particular 

spectral density matrix whose elements are constant over B. 

Let [SL] be the spectral density matrix of the simulating 

forces. Then the matrix of generalized force spectral densities is 

given by: 



[s] = 	15,L] 101 , 	 5.3.1 

where [0] 	is the N square matrix of the mode shape components at 

the force locations. Assume det [0] to 	Then [0] exists and: 

[sJ = [T' [s5] [1 	 5.3.2 

By 5.3.2 1  there exists a set of N random forces which can reproduce 

a prescribed set of spectral densities of N generalised forces and can 

therefore simulate all the narrow band spectral densities of the 

structure. This proves the existence of a solution. The difficulty 

is that the elements of [Sss] 	are not observable, and the solution 

rPi 	
i LSJ 	must be nferred from observed spectral densities. This is 

illustrated by the case N = 2. 

The concept of a broad band cross spectral density can be intro-

duced, being the average over a broad frequency interval of a cross 

spectral density. For the case of two resonant frequencies within the 

band, it is shown that simulation of the broad band spectral densities 

and cross spectral densities of a pair of reference responses can 

achieve simulation of the narrow band spectral densities of the whole 

structure. 

Recall the expression for the cross spectral density of any pair 

of response co-ordinates (5.2.9). This may be written using matrices: 

sL = [cLjt[s#] [c.] 	 5.3.3 

= 	 5.3.4 

Now consider a pair of reference responses, q,,_ , q, . having 

spectral density matrix [sJ . Denote [c ] = [c0. , cb] , the 

2 x 2 matrix of modal influence coefficients for the two references. 
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Then: 	 = 	[C 	It [ci 	 5.3.5 

= 	 5.3.6 

Simulation of any nairow band response (5.3.3) requires that [s] 

be reproduced. Now in 5.3.5 take an average over the frequency band. 

Again, [c] may be considered independent of frequency. Then: 

Rs' b>1 	= [cJ[<S!s>] [c] 	 5•3•7 

where 

<st> 	L  f  
B 

* 
= 	sotO(sc{L)  

B 

± I+ S 5% 5 . 3 .8  
B 

	

Hence: 1<5=  * [ D.S .  d 	 5.3.9 

Now, provided that the transducer locations are such that det[C] r-"  0, 

then [c] exists and from 5.3.7 

[<s 	[c1[<sb>1ICI 	 5.3.10 

5.3.10 shows that a set of broad band reference spectral densities 

	

[<59  6>] 	implies a unique set of broad band spectral densities of the 

two generulized co-ordinates 	[<S! s>j . By reproducing [<s1 
<sts>j 	are reproduced. From 5.3.8 this implies that the set 	[  

	

[s] 	is reproduced provided I-ts 	0, and finally 5.3.4 implies 

simulation of the narrow band spectral densities of the whole structure. 

The necessary condition that the Is quantities be. non zero must be 

examined. While Iti 	and Iss 	are non-zero (5.2.5),  I-t.s is complex, 

and JItsi  depends on the degree of overlapping of the modal receptances. 

Fig. 5.2.1 shows that 	will tend to be small compared with In- 
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and Iss 	if the modal receptances do not overlap significantly. 

Strictly JI-tsl 	will be non zero but the relation 5.3.9 will he 

poorly conditioned, with an adverse effect upon the accuracy of simu-

lation. 

Ideally, if the modal receptances do not overlap significantly, 

then the interval B may be sub-divided into a pair of intervals each 

containing a single resonant frequency and hence the unimodal repre-

sentation would be valid in each band. This may not be possible if 

bandwidths are pre-determined by test equipment. In such a case a 

simplification occurs in that narrow band simulation requires that only 

StIt 	and S SS 	be reproduced, with no constraint on Sts . This 

is seen from 5.2.9. where cross products of modal receptances may be 

considered to be second order at any frequency in B. Studies of this 

situation show that it is possible to achieve narrow band simulation 

over B by reproducing only a pair of broad band direct spectral den-

sities. There is then no unique solution for the system of forces 

required to achieve this. It is not, however, always possible to 

achieve this using a pair of independent forces. 

There is clearly a marked increase in the complexity of the simu-

lation test in progressing from the uni-modal to the bi-modal case. 

In the uni-modal case, the test can be set up by adjusting a single 

excitation gain control in each band to achieve a prescribed response 

of a single reference response. In the bi-modal case, the direct 

and cross spectral densities of a pair of simulating forces must be set 

up to obtain a prescribed set of responses at a pair of reference 

transducers. This would seem to be difficult.. The required excitation 

may be calculated from the service reference responses and measured 

receptances, but this is extremely tedious. Writing down the corres- 
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ponding relationships for narrow band spectra: 

/ 

ki [sLj 10C  1 	 5.3.11 

Taking a frequency average of both sides: 

= < 	[s 	]> 	 5.3.12 

By assumption Es 1 	is not frequency dependent, but the recep- 
tance elements are. It is necessary to invert this relationship to 

calculate [S<L] 	from [<S. b>] , and this can only be achieved by 

expanding the right hand side and taking a frequency average of the 

coefficients of S L  . These involve products of receptances. 

Then the relation 5.3.12 may be inverted. In principle it is possible, 

but it involves the calculation of frequency averages of receptance 

products, of the form: 	J OL 0LL d 	 , from 

measured receptances. 

5.4 Ixerimental Verification of Broad Band Simulation 

Some experiments were carried out to demonstrate the validity of 

Broad-Band Simulation. The tests were limited in scope but were 

sufficient to demonstrate that (a) if there is a single resonant 

frequency within a particular broad band, then accurate simulation of 

narrow band direct spectral densities is obtained if a single reference 

broad band spectral density is reproduced, and (b) if there is more 

than one resonant frezuency within the band, then reproduction of only 

a single broad band spectral density can give rise to large errors in 

the simulated narrow band spectral cdensities. 



84. 

The cantilever model was used, and the service environment was 

produced by an arrangient of small vibrators. Simulation was then 

attempted using a further vibrator, adjusting the gain to reproduce 

the broad band spectral density of a reference accelerometer. In 

each case, the broad band spectral densities of a further three 

accelerometers were measured and sample records of the accelerometer 

outputs were stored on magnetic tape so that narrow band spectral 

densities could be obtained by digit/al computation. Comparisons of 

the service and simulated cases were then made. 

5.5 Apparatus and Method of Test 

The tests were originally carried out using two Peekel noise 

generators to obtain a pair of statistically independent forces for 

the service case. One was found to have a troublesome intermittent 

fault, while the output of the second was found to fluctuate, making 

accurate response measurements very difficult. The tests were sub-

sequently carried out with the addition of a Hewlett Packard Noise 

Generator which proved to have a very stable output and had an addit-

ional facility of variable noise bandwidth. 

To obtain the broad band spectral densities, the acceleromete's 

were connected through a switch to the Bruel and Kjaer 2107 analyser 

which was adjusted to have a 1 3  octave pass-band. The output of the 

analyser was taken to the Bruel and Kjaer type 2417  random noise 

voltmeter. This instrument has a variable time constant of up to 

100 secs and was used to measure the r.m.s. value of the analyser 

output. This reading was proportional to the square root of the broad 

band spectral density over the 3-  octave band. 
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Narrow band spectral densities were obtained using a conventional 

data processing scheme. The accelerometers outputs ¶.rere recorded 

using an Elliot-Tandberg tape recorder on the F.M. channel, after 

passing through the octave filter. A PDP$ computer was used to 

convert the recordings into 8 bit samples on punched tape 'which was 

finally used as data for an Atlas Autocode program to obtain the spec-

tral densities. The programs were developed jointly by the author and 

by G. R. Campbell (Campbell, 1968) and only a brief description is 

given here. 

The PDP8 program gave control of the sampling interval as a 

multiple of 30ps , and the number of samples stored. The store capacity 

was 3830 samples. On completion of the sampling, the samples were 

transferred to eight track paper tape, together with a tape identifier. 

The Atlas Autocode program was then used with the KDF9 computer to 

compute the autocorrelations of each record from the lagged products, 

and then to compute the spectral density estimates by the standard 

Fourier Series Transformation (Bendat and Piersol, 1967). For this 

part of the program, a fast Harmoxic Analysis library routine was used 

in a modified form. The bandwidth of the spectral density estimates 

is of course determined by the sampling interval and the maximum lag 

number of the autocorrelations. This was originally arranged to be 

1 Hz with a sampling interval of 2.5 mS and a maximum lag number of 

200. Early trials of the program gave rise to negative spectral den-

sities and although this was subsequently found to be due to a 

programming fault, a triangular lag 'window was introduced into the 

program to avoid the effects of negative side lobes on spectral windows. 

This meant that the effective bandwidth was increased to 2 Hz. The 

standard error of the estimates was of the order of 0.2. This was 

considered adequately small. 
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Figure 5.5.1  shows diagrammatically the equipment used in the 

tests. During the sarm,ling, the signals were monitored on an oscil-

loscope and the tape recorder play back gain was adjusted for each 

record to make full use of the PDP8 input range (0 to -10 Volts). 

A -5 volts bias was required and was obtained by using the zero control 

of the Rochar amplifier to off-set its output to -5  v. In view of 

these gain adjustments, the computer program was designed to normalize 

all autocorrelation functions, and the final narrow band spectral 

densities were scaled in proportion to their corresponding broad band 

values. 

5.6 Test 1 

This was a test of broad band simulation for the case of a single 

resonant frequency within the band. The second horizontal mode of 

the model was used, having a resonant frequency of 134.4 Hz. The 

analyser was tuned to 135 Hz and set to have a 3db bandwidth of 

octave. All vibrators were confined to the horizontal plane so that 

the adjacent vertical mode was not excited. Fig. 5.6.1 shows the 

positions of the two service vibrators and the simulating vibrator. 

Table 5.6.1 shows the mode shape components at the accelerometer 

locations. Accelerometer (1) was used as reference. 

Table 5.6.1 

Accelerometer 1 	(ref) 2 3 4 

Mode Component +0.726 -0.3 -0.32 -0.45 



Fig. 5.6.1 

Wide Band Simulation Test 1. 

Locations of Vibrators and Accelerometers. 
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In the trial case (A), vibrators 1 and 2 were driven independently 

with 8 5 mA r.m.s. and in the simulation case (B), the current of 

vibrator 3 was adjusted until the same broad band spectral density was 

achieved at the reference accelerometer. Table 5.6.2 compares the 

results for the measured broad-band spectral densities of the four 

accelerometers in the two cases. 

Table 5.6.2 Comparison of Broad-Band Spectral Densities 

Accelerometer I 	(ref) 2 3 4 

Case (A) 344 442 84.3 1.25 

Case (B) 344 466 79.5 112 

Ratio BA 1.0 1.05 0.94 0.91 

The corresponding narrow band spectral density estimates are 

shown in Figure 5.6.2. 

The values of Table 5.6.2 show a high degree of correspondence 

between the two cases, showing that simulation of the broad band spec-

tral densities was achieved. The graphs of Fig. 5.6.2 show that simu-

lation of the narrow band spectral densities for all four positions 

was reasonably well achieved, bearing in mind the inevitable scatter 

of results due to sampling. 

5.7 Test 2 

Broad band simulation with a single vibrator will produce errors 

in general if there is more than one resonant frequency within the 



band. This experiment demonstrates these errors. The model was set 

up so that the second horizontal and vertical modes had natural 

frequencies of 143.5 and 164.0  Hz respectively. With the 2107 Analyser 

tuned to 155 Hz with a * octave bandwidth, the two frequencies were 

well within the 3db band. The service excitation was represented by 

a horizontal and a vertical vibrator, each driven from an independent 

noise generator. The simulating vibrator was coupled at 450  to the 

horizontal so as to excite both modes. 	Table 5.7.1 shows the components 

of the mode shapes at the accelerometer positions, and Fig. 5.7.1 shows 
11 

the arrangement of vibrators. 

Table _5.'7.1 

Accelerometer 1 	(ref) 2 3 4 Frequency 

Horizontal Mode 

Vertical Mode 

.698 

.687 

.715 

—.732 

.368 

.023 

.064 

—.946 

148.5 

164.0 

Simulation of the response was attempted by reproducing the broad 

band spectral density of accelerometer 1. Table 5.712 lists the 

measured values of broad band spectral density for the four accelerometers. 

Case A is the service case and case B the simulated case. 

Comparison of Broad—Band Spectral Densities 

Accelerometer 1 	(ref) 2 3 4 

Case A 164 180 36 97 

Case B 164 236 24 187 

Ratio B/A 1.0 1.31 0.67 1.93 

88, 



Fig. 5.7.1 

Wide Band Simulation Test 2. 

Locations of Vibrators and Accelerometers. 
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The corresponding narrow band spectral density estimates are 

shown in Figure 5.7.2. In this case there are large discrepancies 

between the broad band spectral densities in the two cases and in 

the magnitudes and shapes of the narrow band spectral densities, 

showing that very poor simulation was achieved. 

5.8 Conclusion 

A modification of spectral density simulation using wide band 

average spectral densities has been discussed. In the case of a 

single resonant frequency within each observation band, a major 

simplification occurs in that reproduction of a single average value 

of reference spectral density over the band can lead to simulation of 

the actual (narrow band) spectral densities of the whole structure 

over the band. If two or more resonant frequencies occur within a 

particular band, then the proóedure can lead to inaccurate simulation. 

These statements have been verified -experimentally. A multi-force 

simulation is theoretically possible for the case of more than one 

resonant frequency per band, but there would seem to be practical 

difficulties in applying it. 
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CHAPTER 6 

STATISTICAL APPROACH TO SIMULATION 

6.1 Introduction 

It is clear that severe practical difficulties will arise in 

attempting to use the basic theory of simulation at high frequencies 

in complex multi-modal structures. While simulation, in theory, 

can always be attained, its realization must be considered to be 

beyond the scope of practical test capability when control of more 

than a few vibrators is required. 	In such cases there are prospects 

for meaningful simulation using an approximate approach which makes 

reasonable demands on test facilities. 	In similar circumstances, 

the problem of the prediction of response has been approached using 

the statistical energy method (Lyon, 1967). This method attempts to 

predict only averages over space and frequency bands of response 

spectral densities for structures containing numbers of homogeneous 

modes in each band. 	It is assumed that sample responses are well 

represented by space averages and these may be predicted from the 

average properties of the environment. 	(Dyer, 1963) 

Noizeux (1964) has investigated the simulation of a reverberant 

acoustic field by vibrators, using results from the statistical energy 

approach. His method was based upon the expression for the nett 

power flow from the acoustic field to the structure in a frequency 

band: 

P. P 	 6 • 1• 1 

where TLs is the modal density of the structure, Ms is the 

structure mass, c and ? are ambient speed of sound and density in 

the fluid, w is the band centre and 	the mean square acoustic 

pressure. 
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The quantity RRAD is the average radiation resistance of the modes 

in the band such that with a mean square velocity over the structure 

of Cz , the radiated power P. is given by: 

P0  = 10R 
	

6.1.2 

Using 6.1.1, the power input in each frequency band can be 

estimated for the structure. 	In Noiseux's approach, the power inputs 

of vibrators are monitored and adjusted to achieve the predicted levels 

in each band. The input power per band is also the power dissipated 

per band by radiation and by internal friction, and may be written: 

= 	[R 	± RMECH] 	 6.1.3 

RME( N  is a resistance term, such that t RMECH is the internally 

dissipated power. 	represents the space average mean square 

velocity for a single filtered band - effectively the broad band 

velocity spectral density. By 6.1.3, it is this latter quantity 

which is simulated. 

The attractions of this approach are the simplicity of its 

parameters, and the absence of any need for reference responses from 

a clynamically similar structure in the service environment. The 

approach is limited to the simulation of acoustic fields, but there 

are prospects for a related approach for environments in general. 

Implicit in the Noiseux approach is the idea that sample responses at 

different points on the structure will be adequately reproduced if 

their space average is reproduced, and that this condition is satisfied 

by observing only broad band average spectral densities. The band 

encompasses a number of modal frequencies so that in theory, averaging 

over a number of modal contributions irons out the fluctuations in 

response spectral density from point to point. 	If such a condition 

holds then simulation can be envisaged in the following way: 
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For any frequency band, a single broad band reference response, 

or an average over a few sample responses, will give a good 

indication of the space average response in the band. This may be 

reproduced by a single vibrator or some other controllable test 

environment, requiring a single level adjustment in each band. By 

the initial assumption the broad band average responses of every point 

on the structure will be reasonably well reproduced. 

However this projected form of simulation must be examined 

carefully to establish a basic legitimacy. It is clear that a broad 

observation band for spectràldensiby measurements brings about only an 

apparent reduction in the complexity of the response. Broad band 

measurements are practical expedients which mask the finely scaled 

variations of response spectral density. Simulation of broad band 

responses will not in general lead to simulation of the actual spectral 

densities within the band, and therefore does not represent a simulation 

in probability of the sample function behaviour of any response as 

discussed in Chapter 3. However a justification of this degree of 

simulation can be formulated on the basis of a distribution of peaks 

and level crossings in sample functions. It Is also important to 

establish the accuracy of the approach. This is too general a question, 

but the relevant parameters are deduced, and a considerable insight 

is gained from digital computer calculations and from experimental 

work on a large rectangular plate. 

6.2 Basis for Simulation 

Broad band direct spectral densities, where the band width is 

much wider than the band width of a resonant peak of a structure mode, 

are convenient measures of the response of complex multi - modal structures 

to random environments, and they play a control role in the statistical 

energy approach. 
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It remains to show that the simulation of broad band average spectral 

densities at every point of the structure is a reasonable goal of 

simulation. The approximate broad band approach cannot guarantee a 

point by point simulation of the narrow band spectral densities within 

each band and so cannot achieve simulation in distribution of the 

response processes. 	It can be justified in the following way. 

Consider a process 	(t) , being stationary and gaussian. 

At any time t i< , the probability distribution of the amplitude 

(t) is determined only by the variance o(t) which is 

independent of tk and is given by: 

0,2  = 	2 f S1 ((, )ctt 	 6.2.1 

where 	is the spectral density of q(t.) . 	In 6.2.1 the 

integral may be replaced exactly by the sum of broad band spectral 

densities in contiguous bands: 
L i- - 	f 	SI C 	= a Bj < 	 6.2.2 

L 

In 6.2.2 BE represents a set of contiguous bands, having 

band centre frequency cii . Further, consider Rice's result (Rice, 

1945) for the probability of a peak in the 9(t) process in a specified 

interval ( x ,&t) , as modified by Robson (1963). With R 

'I 

and 	R 	 etc. 

I, 

Prob[peak in 6x,&t] = X 	 6.2.3 1=2 RJj* 	LiJ 
Now: 	 R = 	21 S.-)ck) 	 6.2.4 

and : 	 R" 	alc.i2  S(w)cc& 	 6.2.5 

6.2.4 has already been related to broad band spectral densities. 

6.2.5 may be approximated by a sum of broad band spectral densities 

weighted by the square of the band centre frequency provided thatthe band 

width Bi 	is much less than the band centre c 	: 
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'I 

R 	 a B L. <S)> 	 6.2.6.
Bi  

, 

 WC

L. 

It follows from 6.2.2 and 6.2.6 that two independent processes 

having the same broad band spectral densities will have the same 

probability distributions of amplitudes and of peaks. Consequently 

in a long record the total number of crossings of any specified 

amplitude level and the total number of peaks in a prescribed 

amplitude interval will be similar for both processes. This would 

seem to constitute a valuable basis for approximate simulation. 

It is approximate in the sense that higher order probabilities e.g. 

Prob[peak in (x 1  ,St 1) and peak in(&xa,t z )Jare not reproduced, nor 

are joint probabilities of the occurence of simultaneous peaks in -two 

distinct responses reproduced. 	(The basic theory of simulation 

in distribution does take care of all these higher orderprobabilities). 

6.3 Application to Complex Multi - Modal Structures 

The approximate basis for simulation is that broad band spectral 

densities are reproduced for all responses of the structure in 

contiguous bands over the frequency range of interest • In the 

introduction the possibility arose of achieving this with simple 

facilities by virtue of the averaging effect of a number of modal 

contributions in each band. This is now examined. 

Consider a band B containing N resonant frequencies. 

The direct spectral. density of any response co-ordinate q still has 

form: 

do 

= 	C'CsL S() 	ICCsc.o( 	S ç (') 	6.3.1 
= I 
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This is valid for any environment, represented by the values of 

generalized force spectral density in the various modes. The summation 

is strictly over all the modes. 	In taking a band average of 6.3.1 

It will be assumed that the spectral densities of the environment, 

represented by Ss , are slowly varying functions over B. The modal 

influence coefficients c+c etc. may be frequency dependent (e.g. for 

velocity response) but may be evaluated at the band centre frequency. 

Then: 

cP 

= 	 <St> = 	 Sts 6,3.2 
B 

	

tsI 	 ts=I 

The angular brackets denote band average. This expression may 

be approximted in the following way. Band averages of modal receptance 

products like 	<CXCX.S> 	will be considered significant only if both 

modes have resonant frequency within the band. The summation need only 

be taken over the N modes within the band denoted r = 1,2,.. N. 

It is convenient to replace integrals of receptance products by integrals 

over the infinite interval as in Chapter 5. 

<+> = 	f0c4 dw 	-ELS 1 	dL. = 	Ls 	6.3.3 
B 

'p 
Note that: 	<S> 	S.t.<tod2> 	J Loictw = - 	6.3.4 

where the overbar denotes time average. Finally a further 

simplification is possible if correlations between the modes are 

neglected. The basis for this is that I 1s k< I-#-r. Iss 

if the peaks of the modal receptances do not overlap within B. To this 

degree of approximation, the broad band response spectral density may 

be expressed as: 

N 

<sc i  > = * i Icpi. i+ St 	 6.3.5 



It can be seen from 6.3.5 that even in the case of uncorrelated 

motion in the modes, accurate simulation of all broad band responses 

of the structure requires that the set of N generalized force 

spectral densities, S , r = 1,2,.. N, be reproduced. This is 

not to be considered feasible for large N. 

The alternative is to consider the average properties of the series 

expression, 6.3.5, treating the individual terms in a statistical sense 

in the spirit of the statistical energy approach. For any given 

environment, represented by a set of values of S, r = 1,2,... N, 

the modal influence coefficients at any location will not be known. 

So the expression 6.3.5 may be regarded as a weighted sum of non- 

negative random numbers at nny location. A parallel may then be drawn 

between such a series and sums of independent non-negative random 

variables. (e.g. a chi-square random variable with N degrees of freedom) 

A general result for such sums is that the fluctuations about the mean 

decrease with increasing N, so that it may be expected that the 

fluctuations about the space mean of the broad bnd spectral density 

from point to point will decrease with increasing N for a given 

environment. This relies on the mode shapes being distributed 

through the structure in a fairly homogeneous fashion. A further 

complication is that the S+terms themselves arise from the interaction 

of the mode shapes with the environment, so these must be considered 

to be indeterminate in detail. In examining the possibilities for 

accurate simulation, one method would be to use a mathematical model 

of a specific environment, together with a specific structure having 

a defined set of modes, and carry out smple calculations. It was 

considered that only a limited picture could be obtained by this method. 

Results of greater generality are possible using a probabilistic treatment 

of the environment, in which e set of values of S+, r = 1 9 2,... N, 

is regarded as a random sample drawn from a suitable population. 
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There then exists an ensemble of possible responses which characterizes 

the indeterminacy of the practical situation. 

It is convenient to take the particular case of a plate or shell 

like system, so that the modal influence coefficient for displacement 
Uh at 

(, ) 
for the r 	mode may be written: 

= 
	

6.3.6 

where c+(x,) 	is the rth mode shape. 	It is convenient now to 

use S to represent broad band spectral density. The displacement 

spectral density at 	 becomes: 

6.3.7 

The simulation approach can be conceived as replacing one sample 

set of values of S tt by another set drawn from a similar, or a 

different population. Each sample set generates a response 'surface' 

for displacement S(x,) according to 6.3.7 and for other response 

types e.g. velocity, acceleration, strain, there is a corresponding 

response surface S~ii 	according to 6.3.5. The response surface 

corresponding to the simulating environment, denoted 	5; (n.) is 

required to be a close match to Scz) 	generated by the service 

environment after amplitude scaling has taken place. Scaling of the 

simulated response may be based on matching the service response at a 

single reference: 

= 	S9(Xc,1 	 6.3.8 

or it may be possible to reproduce the space mean response: 

= 	 6.3.9 

The angular brackets now denote space average over structure area A. 



The effects of amplitude scaling are indirectly included inthe 

analysis by requiring that the 'shapes' of the unsealed response 

surfaces are similar. This means that the service and simulated 

responses at every point must correspond after some form of 

normalization. A convenient form of normalization is to divide 

by the space average displacement response. This is embodied in 

the following condition for simulation: 

fr,r all 	• 	6.3.10 

	

The quantities 	S 	, 	 and the corresponding space 

averages in 6.3.10 are not to be regarded as deterministic, but as 

random samples. Condition 6.3.10 may be expected to hold with high 

probability in a single trial if, for all x,,i. 

	

E{ S1I (} 	Ef s' 	 6.3.11 

z 

	

C I  = 	I ci - 	< < 1 

	

= 	vat 	c} 	<< 	1 	

6.3.12 

2. 

E [ S 	1L) 

	

The prime on 	denotes normalization as in 6.3.10. Et 

and var denote expectation and variance of the corresponding 

random variables over an ensemble of possible environments. E is the 

normalized standard deviation, or coefficient of variation. 

The validity and accuracy of the method both depend on adequately 

satisfying conditions 6.3.11 and 6.3.12, and to examine these it is 

necessary to introduce a. probabilistic description of the range of 

possible environments. Referring to 6.3.5 this would seem to require 

that distributions of the S+ quantities be specified. 



In fact it is convenient to include the I,- terms within the 

probabilistic model so that an environment may be represented by a 

-a sample set of values of ( I..r. S+,) 	r = 1 9 2,.. N. 	(These 

may be conveniently referred to as modal energies). 

Denote the kth  sample set of modal energies drawn from a 

population by: 

	

(k) = 	H+Ck) , r = 1 9 2,.. N 
	

6.3.13 

For any type of environment, assume that H* is a random variable 

with the representation: 

	

= G.h- ; r = 1,2,.. N 
	

6.3.14 

where G is an arbitrary multiplier, and h- is a random variable 

with: 

	

E[h} = m ; r = 1,2,.. N 	 6.3.15 

	

var [h+} = 	r = 1,2,.. N 	 6.3.16 

E [hi. h 	= ma; r 	s ; r,s = 1,2,.. N 	6.3.17 

The modal energies are assumed to be equally and independently 

distributed, having effectively a single parameter, namely the 

normalized standard deviation 	07rfl. 	The actual distribution of 

Hi- is not specified. This model is justified by its simplicity and 

its generality. 	it is certainly relevant to the case of point forces 

located at random on the structure. In the case of distributed 

pressure fields, it is conceivable that in some cases the assumption 

of independence of modal energies will not be strictly valid since 

correlations will certainly exist between the responses of modes close 

together in wavenumber within the band. 
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Now for the kth sample set of modal energies from the 

hypothetical population, the broad band spectral density of any response 

qL 	may be written from 6.3.5: 

N 	 N 

[ IciJ2H(k) 	G(k 	1cij a 	6.3.18 

and the spectral density of displacement at (x 4 , 	is given by: 

LLr 	
)7 2 

= 	 = -s--  Lç6 	 6.3.19 
I 	 I 

Taking the space average of 6.3.19: 

N 
= Qk) <cM> h+(x) = 

B 

= G(K) <.N.m() 	 6.3.20 B 

is the sample mean of modal energies for the k th sample. 

In 6.3.20 all mode shapes are assumed to be normalized to have the same 

mean square. From 6.3.18 and 6.3.20 follows the normalized response 

for the k th sample: 

Sjj (k) = 	= 	I 	[ Ic 	ht 	 6.3.21 

	

•t:1 	m(k) 

Taking the expectation of this over the sample space of 

) 	environments: 

6.3.22 

The expected values of the quotients in 6.3.22 are difficult to 

evaluate even if the distribution of ht is specified. But for large 

N 	m(k) will be close to m for any sample set, and: 

E r 	CC h+c) = 	1 	6.3.23 
M 



101. 

Hence: 

'4 

E 
	1 

	

- 	N<c -> 	
Ic+d 	 6.3.24 

Since .3.24 is independent of the environment parameters, it 

follows that condition .3.11 is satisfied for all broad band responses, 

even if the service case (I). and simulated case (II) are represented 

by different populations. 

Now consider the coefficient of variation for the sample space of 

environments, through the variance of S(). From 6.3.21 and 6.3.22 

this may be written: 

var[sJ = E((S?1') I - Ea[ S/1 

	

2 N 	
6.3.25 - 	I [IcIIcsJ E[ h4s(} - EJc.t Icsi.I 	Y • (K) J El 

The expectations in 6.3.25 are not amenable to exact analysis, 

but for large N , the following approximation is valid: 

2 

E 	 E { 	- 1 ± vnaJ I 

	

Also the random variables 	and 	are not strictly 

independent since Yn N 	h 	, 	but the correlation will be 

small for large N , and will be neglected. 6.3.25 reduces to: 

	

(m)2 	ICtI4 
var[S;j} = 	NZ 	t 	 6.3.26 

Hence the coefficient of variation is given by: 

N 

2. 
a1 	= 	varS 	

= ( m)Z ICrLI 	 6.3.27 

	

EZ(S 	
N 

UI 	1IIiC1.L.l 1c5a.I 

6.3.27 shows that the coefficient of variation for any response 

is proportional to the dispersion of the modal energies arising from 

the environment,() 
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It will also vary from point to point on the structure. There is a 

general indication in 6.3.27  of the convergence of El 	to zero with 

increasing N from the fact that there are N terms in the numerator 

and N 2  terms in the denominator. On this basis condition 6.3.12 will 

be adequately satisfied at some ultimate value of N, so that in 

principle, the validity of the statistical approach is established. 

It is desirable to obtain a quantitative estimate of the requisite 

number of modes per band. This is possible frr displacement response, 

in which case 6.3.27 takes the form: 

2 	var [S 5 	 6.3.28 -  

	

___ 	('')2 
EZ} - 

LL 	 fL 	5L 

Following  Bolotin (1964), the plate or shell modes in the interior 

region may be represented by: 

= sin k(x - x)s1n k(y - yo) 6.3.29 

In 6.3.29, kix and k 	are wavenumbers in the X and Y directions 

and x0 , y are phase constants. 6.3.28 cannot be evaluated easily 

at any particular position, but its space average over the structure 

area may be estimated: 

= ( 	 6.3.30 m< 	>  
If the m-des are distributed throughout the structure, then at 

large N the denominator in 6 .3.25 will not vary much from point to 

point and may be replaced by its space average. Hence: 

(m)2<>> 	 6.3.31 

Substituting from 6.3.29, the space averages may be obtained by 

integration. 
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For the numerator terms, integration of 41  over a single 

wavelength in the X and Y directions is required. The integral is 

independent of wavenumber and may be evaluated in terms of Gamma 

Functions. (Dwight, 	1961). Hence 0.140 . 	 The 

space average of the denominator terms may be estimated by integration. 

If the wavenumbers are not the same, k ~ k 5x and k1 	k5  , then by 

integrating over several wavelengths of one mode shape and neglecting 

small end effects, 	< 	> = 0.0625 	. For many mode 

pairs in the same band, the mode shapes in the X or Y direction will 

be similar and the above estimate will be poor for such pairs. This 

effect cannot be easily included, so the estimate will be used for 

all pairs. 

Finally: 

- 	 6.3.32 

This is an approximate but useful guide to the accuracy of the 

statistical approach with a given number of modes per band. The space 

average of 	for displacement response is inversely proportional to 

N , and at any given N its value depends directly on the dispersion of 

modal energies for the particular environment. The problem of 

estimating this latter quantity has not been investigated in detail, 

but presumably suitable values can be arrived at on the basis of 

experimental results or analytical models of the environment. 

The case of excitation of a plate by single or multiple point 

forces is easily treated. This case is relevant to simulation conditions, 

and may be used to gain some insight into the area of validity of the 

statistical approach. For the case of a single force with spectral 

density S kk positioned at random on the structure, 	'vn 	is 1.12, 

assuming equal generalized masses and damping for the modes. 
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With a set of K independent forces having equal spectral densities, 

'71M is proportional to K 	. Returning to the single force case, 

expression 6.3.32 shows that the space average of C will, be 0.1 

or 10% with 280 modes in the band. By appeal to the Central Limit 

Theorem, 3. 	will be more or less Gaussian irrespective of the 

actual distribution of the modal energies, so that in a single trial, 

will be within 20% of the expected value with 0.95 probability. 

The accuracy of the simulation process as a whole must be 

considered. 	This consists of replacing one sample response surface 

by another, scaled to reproduce the space mean or alternatively 

scaled to reproduce the response at a single reference location or the 

average response of a multiple set of references. 	In terms of the 

statistical approach each surface is considered to be a random function, 

so that the accuracy to be expected in a single trial can only be 

inferred from probabilistic statements. An exact treatment of this 

problem, that is seeking to establish a variance for S 1.(1i)/S., c 

or even for its space average, subject to amplitude scaling, would 

seem prohibitive. 

Let 	SLL 	and SL (I) 	represent the response at any point 

of the structure in the service and simulated cases respectively, and 

let 	S.) 	and S ii (U) 	denote the normalized responses. 

	

9' 	 5 

Suppose that a representative value of coefficient of variation 

6,, Is known. This of course depends on the particular environment 

and is a function of position. For convenience a single value will 

be assumed to be valid for both service and simulated environments. 

The ratio S9 
(U)/ SLL) is a random variable in any simulation test. 

Writing this: 

9' 	 /W 	\ 
- 	5 ( 	\SLLQt/ 	 6.3.33 _SUM

q 	 - 	 q' 

	

5L (L) 	 \ S. LL)> 
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If the simulation achieves reproduction of the space average 

displacement response, then: 

-si 	 6.3.34 

For any structure response qL , the numerator and denominator 

in 6.3.34 take the form of a sum of N positive random numbers. A 

well known procedure for obtaining approximate distribution functions 

for such sums is to represent them by chi-square distributions having 

an appropriate number of degrees of freedom. 	(Crandall, 1963, 

Chapter 2). The equivalent number of degrees of freedom, n, is obtained 

from: 

- 	a - 6.3.35 

Carrying the analogy a stage further, the ratio 6.3,34 may be 

regarded as the ratio of two independent chi-square random variables 

and its distribution will be well represented by Fisher's F-distribution 

(Kendall and Stuart, 1958), in which case the expectation of the 

response ratio is given by: 

E f-g. = 	—fl-- 	I ; for large n. 	6.3.36 n a 

and the variance by: 

var[ 3L.C11)T 	
- 	a nZ(ua) 	-i--- 	 6.3.37 n 

In 6.3.36 and 37, the results for the F-distribution with equal 

degrees of freedom in the numerator and denominator have been used. 

In the case of simulation of a single reference response a 

similar prediction of the variance of the response ratio may be made. 
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Let 	represent the service response at the reference: 

Then S aa S 
q  
aa Li) 6.3.38 

This does not in general achieve simulation of the space mean. 

By 6.3.38: 

	

,' ur 	= 	s(I • 	

6.3.39 

Hence, the response ratio in the simulation test for any response 

co-ordinate q 	is given by: 

S';ci)<SI)> 	- 	59); (n 	Ez.  
- 	(S> - 	, 	

6.3.40 

In this case, the response ratio may be regarded as the product 

of two F-distributed random variables, assumed independent for 

responses at points not too close to the reference. 

Then: 

q 

6 

	

E 	- 	1 	for n large.o 	. 

	

varfkcn} var 	Ef5&Lz 	var(s 	}E2 	
1ç 	- 6.3.42 S... 	 S )  

The results 6.3.37 or 6.3.42 in conjunction with the estimated 

number of degrees of freedom 6.3.35 make possible simple predictions 

of the variance or standard deviation of the response ratio at any 

point, and together with the result that the F-distribution tends to 

normality at large n , allow estimates to be made of the simulation 

accuracy to be expected in a single trial. By 6.3.35, the coefficient 

of variation of normalized response &L plays a central role in the 

estimation of simulation accuracy, and must be known. For 

displacement response, 	may be estimated from its space average 

6.3.32 provided the dispersion of the modal energies can be estimated. 
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The question of the accuracy of simulation of other kinds of 

response will be considered in the next section. 

Returning to the case of a single random force on the structure, 

it is possible to simulate the response with a second force located 

at random on the structure, whose spectral density is adjusted to 

match the broad band response at a single reference. With 280 modes 

in the band, C was estimated to be 0.1 By 6.3.35, the equivalent 

number of degrees of freedom is estimated to be 200. By 6.3.42 the 

variance of the response ratio is .04,  i.e. a standard deviation of 

0.2. The analysis predicts that errors in the response ratio of 

20% are quite possible, and errors of 40% not impossible. While 

the general validity of the statistical approach has been established 

it would seem from the illustrative case considered that a distressingly 

large number of modes per band are required to obtain a nominal degree 

of accuracy. 

6.4 Further Considerations of the Statistical Approach 

From the results of the previous section it is possible to estimate 

the accuracy if simulation of displacement responses. The accuracy 

of simulation of other responses e.g. velocity and acceleration, may 

be important. Also accurate stress or strain simulation will be 

obviously important in endurance tests. The formal expression 

(6.3.27) for the coefficient of variation is relevant to all such 

• responses and is the key factor in considering simulation accuracy. 

For velocity and acceleration responses, it follows immediately 

that the results for displacement simulation accuracy can be used. The 

influence coefficients for displacement have only to be multiplied by 

(Lu) or (- w') 	to represent velocity or acceleration. 
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L&) may be replaced by the band centre frequency in taking the band 

average, and the grequency factor cancels out in 6.3.27. 

In the cases of stress and strain responses, a complication 

arises in that the modal influence coefficients contain space derivatives 

of the mode shapes, and will contain wavenumbers explicitly. Further, 

for a plate or shell structure, a frequency band will usually contain 

a wide range of wavenumbers so that a wider distribution in the values 

of influence coefficients might be expected for any response. This 

can only result in a reduction in the simulation accuracy of such 

responses. There is little hope of obtaining general results for 

this aspect of simulation, but the rectangular plate case has been 

studied to obtain insight into the problem. 

Consider a rectangular plate, having side lengths a and b, 

thickness h, plate rigidity D, and material density e • For simply 

supported edges, the natural frequencies are given by: 

-- 	 6.4.1 

with 	k x 	thit 	; k = nit; m,n = 1,2 1  .. 	 6.4.2 
a 	 b 

The solutions 6.4.1  and  6.4.2 are good approximations for other 

edge conditions ab frequencies well above the fundamental. 	(Bolotin, 

1964). For points away from the boundaries, the representation of 

the rth  mode shape: 

0+(x,y ) 	sin k(x - x-o)sin k-(y - y4o) 	 6.4.3 

is valid for all boundary conditions. X-to 	and y 	are phase 

constants. 	 - 

The modes may be usefully represented as points of intersection 

of a grid in wavenuxnber space, as in Fig. 6.4.1. 



rr 

Es 

Fig. 6.4.1 

Nodes of a Simply--Supported Rectangular 

Plate as Points of Intersection of a 

Grid in iIavenuiiiber Space. 

-J 
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From equation 6,4.1  it is seen that a line of constant frequency in 

wavonumber space is a circular arc, so that the modes having resonant 

frequency within a prescribed frequency band bounded by w, and 

are represented by the intersections of the grid between two circular 

arcs of radius R = (0, cth )4 and R2  = (c 	h )"1 

From this it is seen that a band of frequencies contains modes having 

a wide range of wavenumbers. 

From Fig. 6.4.1 Bolotin's result for the sumber of modes having 

frequency less than Q may be derived: 

1b— 	hk 411L DJ 6.4.4 

and hence the modal density (number of modal frequencies/radian/sec): 

d 	
obI 

P ki 
= 	J 6.4.5 

Only flexural strains will be considered, so it is convenient to 

use curvature to represent direct strain. From 6.4.3  the modal 

influence coefficient for the curvature at ( x L  ,y1  ) in a direction 

making an angle \frL  with the X axis may be obtained by differentiation: 

(Curvatures are assumed small) 

C*(x) = kly. k sit sih aç. [COS k, (xi-'(t.) cos k( 	 - 

6.4.6 
[k cosZ+ k 

The expression for the corresponding broad band spectral density 

follows by substituting from 6.4.6 into 6.3.5. The general complexity 

of the influence coefficients and their dependence upon wavenumbers 

makes it impossible to obtain even a space average guide to the magnitude 

of the coefficient of variation (6.3.27.) 
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Bolotin (1964) has shown that the mean square stress at a 

clamped edge may befour times higher than the values in the interior. 

This sets additional importance on the accuracy of simulation of strains 

near a clamped or stiffened boundary-. The modal influence coefficient 

for curvature in a direction normal to a clamped edge may be obtained 

from Bolotin's edge effect representation. (Bolotin, 1964). 

For a clamped edge at X 0 , the rth  mode has the approximate 

form: 

J. 

q (x ) = [ kx - 2 k ] a[ si i n kix - ku cos k4x  z - k~ a x -x (k 
2

+  a k 
[a(k)J 	 [k 	Zk] 

X [Sin 	
- 	

6.4.7 

For large X this tends to the expression 6.4.3 for the interior 

region. The influence coefficient for curvature at x = 0 
, normal 

to the boundary- follows: 

= 
x 2. 

which yields after simplification: 

£ 

a2  k.[k+ k'] 2 sin 	 to) 	6.4.8 

In this case observe that ICtil
iZ. 
	has the form: 

a 	 2. 
= 	 s ) n k, 	L +o) 	 6.4.9 

Let ( k.,.0  , G+) 	be the polar co-ordinates of the r 	mode in 

wavenumber space defined as: 

k-,. = k-Po  sin 9+ 

k+ 	k 0  cos 9* 

k. 0 + k 	j 	 6.4.10 

6.4.9 may be written: 

4  C (o,) = 	2 kt0 sir E)+  s i n 2  k+ V 	 64.11 
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2. 
Apart from the scale factor, 2kto 	, C+ 	for clamped edge 

strains has the same form as the square of the influence coefficient 

for displacement in the plate interior viz: 

= 	 — +o) 	6.4.12 

Further, in considering the formal expression for the 

coefficient of variation (6.3.27) for clamped edge strain response, 

k may be replaced in each term by its band centre value and may be 

cancelled out in 6.3.27. 	In both these cases, the terms in the 

expression for coefficient of variation can take on the same range 

of values, so it may be expected that the space mean and the dispersion 

of sample values of S. will be the same for clamped edge strain 

response as for displacement response, and the accuracy of simulation 

will be comparable in any band. 

It is not clear how formal analysis can make any further 

contributions. 

6.5 D igital Computer Studies of Broad Band Responses. 

In problems of a probabilistic nature which are not amenable 

to analysis, recourse may be made to numerical experiments based 

on the use of random numbers. Such methods, generally classed as 

"Monte Carlo "  methods, have an impressive history of successful 

application, (Harnznersley and Handscomb, 1964)  and have gained 

recent impetus from the advent of the high speed computer. In their 
ZD 

most elementary form, Monte Carlo methods lead to estimates of 

distributions or expected values of functions of random variables by 

simulating a large number of trials using random numbers drawn from 

suitable populations. 
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A procedure of this type was used to investigate the 

behaviour of broad band spectral densities of displacement and 

strain for a rectangular plate. The specific quantities which were 

estimated were sample values of the coefficient of variation C. of 

the normalized broad band spectral densities for (a) displacement at 

a number of random location on the plate, (b) direct strain at a 

number of sample locations and in randomly sampled directions in the 

plate interior, and (c) direct strain normal to a clamped boundary 

at a number of locations. 	In each case the effect of increasing the 

number of modes per band was studied. 

In the first place it was necessary to specify a suitable 

distribution for the modal energies. Initially it was planned that 

the distribution should be representative of practical situations, 

but by virtue of the Central Limit Theorem, responses with more than 

a dozen modes involved approach a normal distribution irrespective 

of the actual form of the modal energy distribution. This latter is 

only then required to have a representative ratio of standard deviation 

to mean. Since it has been shown that Ec is always proportional 

to m 	the calculations were in fact carried out with i 	1; 

results for other cases may be obtained by scaling. 

The distribution finally selected to represent modal energies 

was the normalized )L2L  distribution: 

= 	 6.5.1 

where Z'j ; j = 1, 2 ..n are independent normal random variables 

having zero mean and unit variance. The random variable () has unit 

mean and variance; 
r 	2. 

var- 	=.a 

	

W 	 6.52 
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So the ratio of standard deviation to mean is: 

= 	[In] 	 6.5.3 
 

This can be easily adjusted by changing the number of terms 

in 6.5.1. For n ) 2 the distribution is unimoda.l. For 

fl 	2 	, it is J shaped. 	Since - samples are positive with 

unit mean and adjustable variance they were regarded as a suitable 

choice to represent modal energies. Furthermore they may be easily 

generated on a computer. Starting with the basic routine RandoinK , 

which generated independent random numbers uniformly distributed between 

o and 1, gaussian samples with zero mean and unit variance were 

obtained from these by taking the sum of a sequence of twenty of them 

and re-scaling. Finally the gaussian samples were squared and 

combined according to 6.5.1  with n = 2 to achieve the correct 

dispersion, rn = 1. A program was written in Atlas Autocode to 

generate and store 5 x 10 samples on magnetic tape for subsequent 

use. 

The next stage was concerned with specifying the characteristics 

of the plate model. It was highly convenient to specify the model 

dimensions at this stage, although there is a little loss of 

generality in doing this. The following sizes were used: 

Side lengths a = 48 ins; b = 37 ins. 

Thickness 	h = 0.064 ins. 

Modulus of Elasticity E = 12 x 10 6 

Poisson's Ratio V = 0.3 

Third octave frequency bands with standard centre frequencies 

were used. A program was developed which evaluated all the natural 

frequencies and corresponding mode shapes (characterized by a pair 

of wavenumbers) in each frequency band. 



The calculations were based on the simply - supported edge case. 

The results were filed on magnetic tape. 

Finally, the estimation program was developed and used for 

selected * octave bands containing a range of numbers of modes. 

The quantity to be estimated in each case was the coefficient of 

variation: 

Ivgr[  

Sl 

where SIL 	is the broad band response spectral density for 

displacement or strain, and the prime indicates normalization by 

dividing through by the space average displacement response: 

S!' 	= 	Si. 	 6.5.5 

In each case EL was estimated from the results of fl = 10 

independent trials using the estimators: 

	

.E {s ' 	
* L(k) 	

6.5.6 
LL 

k I 

	

var[S) 	i r 	 - nEzfs] 	6.5.7 
K1 

The actual program was elaborate in its organization, but the 

calculations themselves were straightforward. A detailed listing 

is not included in the report. Matrix operations were used where 

possible to reduce running time. In outline the program was 

arranged as follows. The random sample locations were first 

allocated using the RandomK 	rout ine. For a specific band and 

response type, the influence coefficient for each location and mode 

were evaluated using the filed data. 

11 40 
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At this stage the phase constants of the mode shapes were assumed 

to be randomly distributed in ( 0, 2ff). 	Independent trial 

calculations were then made of S 	using sets of modal energy 

samples from the magnetic tape file. The difficulty of normalizing 

S LL without computing the actual space mean displacement was 

solved in the following way: 

From 6.3.18 and 6.3.20 S 	may be expressed as: 

= 	N 	 lC*Lj H(K) 	 6.5.8 

tai 

N 

	

N<> 	i 
	H(k) 	 6.5.9 

In 6.5.8 and 6.5.9, Ht(k) 	is the rth modal energy in the 

kth sample set, and: 

HIM 
Ht  (k) - 

N L H-K) I 
6.5.10 

In 6.5.9 the factor N<> 	is constant for the band and 

will not affect the estimate of E. . 6.5.9 shows that normalization 

Of SIL 	is efficiently carried out by correcting each sample set 

of modal energies to have unit mean. 

Sample values of S'( 	and 
(5)Z  were stored and finally 

Vas estimated through 6.5.6 and  6.5.7 

The first set of trials investigated displacement response at 

a set of 25 randomly chosen locations. Subsequent trials investigated 

direct strain (curvature) response at 25 locations in randomly 

chosen directions and clamped edge normal strain at 25 random edge 

locations. 
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On the question of accuracy of the estimates, the standard error 

of £c may be estimated to be of the order of 3% using results from 

Hammeraley and Handscomb. The standard error is proportional to 
_1. 
n, where n is the number of trials. This was considered to be 

an acceptable order of accuracy. 

It was originally intended to extend the Monte Carlo studies 

to investigate the distributions of actual simulation errors and to 

give confidence in the application of the F—distribution to this 

problem. This was not possible because of restrictions on computer 

usage. 

6.6 Discussion of Results 

The results for displacement response are shown in Fig. 6.6.1. 

Estimates of the coefficients of variation are given for the 25 sample 

locations and for 6 frequency bands containing from 12 to 190 modes 

per band. The mean of the results in any band may be taken to be 

an estimate of the space average value, and this obviously decreases 

with increasing modes per band in proportion to N 

The results of Fig. 6.6.1 also show that in any band a sizeable 

variation of 6L may, occur from point to point on the plate. While 

25 samples are not enough to accurately define the spatial distribution 

Of s-" , they do give an estimate of its extent. For N = 12 the 

samples occupy a range of 60% of the mean. For N = 190 they are 

contained in a range of 20% of the mean. This dispersion is caused 

by the dispersion of values of 	over the individual modes at any 

location. 

The approximate estimate for the space average of C. given by 

6.332 is shown dashed in Fig. 6.6.1. 

£ 

= 	 a 
N] 
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The approximation would seem to give a marked over-estimate 

of the space average of C in any band, being of the order of 

30110 higher than the root mean square of the 25 samples in each band. 

This can only by the result of the approximations made in deriving 

6.3.32. 	In particular,replacing the energy sample mean by the 

population mean in deriving 6.3.32 is equivalent to normalizing the 

kth response by dividing through by the expected value of the space 

average instead of using the kth sample space average and can only 

lead to an over-estimate of the coefficient of variation. 

Fig. 6.6.2 shows the results for the coefficient of variation 

of curvature responses for 25 random points on the plate. There is 

an obvious reduction of the band average value, proportional to N 2  

and the space average value is very close to the displacement response 

case. However the dispersion of sample values about the mean is 

extremely large, being spread over a range of about 75% of the mean 

in every band. It is further obvious from the scatter of results 

that there are jnsufficient points in each band to adequately define 

the limits of the distribution of values of £4. for direct strain. 

It is clear that strain responses will cover a wider range of values 

than displacement responses for the same number of modes per band. 

This is the result of the complexity and wavenumber dependence of the 

modal influence coefficients for direct strain which therefore assume 

a wide range of values, a range which increases with increasing 

frequency due to the wavenumber range also increasing. This causes 

an increased variability of the terms of the series expression for S ILL 

and compensates for the variance reducing effect of the increasing 

number of terms. 
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The final set of results were obtained for the normal curvature 

at a clamped edge. Fig. 6.6.3 shows the results for 25 random points 

along a clamped boundary. The sample mean falls off with increasing 

N 	, in proportion to N- 1 	The dispersion of samples in 

each band is much smaller than for strain in the plate interior and in 

£ act the results for sample mean and dispersion about the mean for this 

case are almost identical to the results for displacement response. 

This is to be expected on the basis of the discussion of the previous 

section. 

Results for the ratio of broad band strain spectral densities at 

a clamped edge and in the plate interior are shown in Fig. 646.4. 

The results represent the average values over the 25 sample locations 

in each case. The ratio reaches a fairly constant level of 5.7 for 

bands containing more than 24 modes, showing that higher strain response 

levels are to be expected in the vicinity of clamped or stiffened edges 

than in the plate interior. 

In summary, the restricted number of results obtained in the 

Monte Carlo calculations clearly demonstrate the reduction in the 

fluctuations of the normalized broad band response surfaces with 

increasing modes per band. Representative values of the coefficient 

of variation are obtained and the variations from point to point on 

the plate for each band are illustrated. The similarity between the 

results for plate displacement and clamped edge strain is confirmed 

although the approximate theoretical estimate of the space average 

coefficient of variation for displacement is shown to give a poor 

prediction of the experimental values. It may be concluded that there 

will be comparable accuracy of simulation of displacement response and 

of clamped edge strain response for a given number of modes per band, 
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Many more modes per band will be required to obtain a comparable 

accuracy of simulation of interior strains but these will be less 

critical than the clamped edge strains. 

6.7 aperimental Investigation 

An experimental investigation of the statistical approach to 

simulation was carried out using a large rectangular plate model. 

An aluminium sheet, size 47 x 36 x 0.128 ins., was used and this 

was supported in a vertical position, being clamped along its 

longer edge to a lathe bed. Fig. 6.7.1 shows the arrangement. 

Initial mode counting tests were carried out to check the 

estimated modal density of 0.109 modes/Hz 	Modal frequencies 

were obtained by sweeping through the frequency range 0 to 1 kHz 

using a small vibrator and counting response peaks. This was 

repeated with the. vibrator attachedat two further locations. 

Fig. 6.7.2 shows the cumulative number of recorded modes compared 

with the theoretical estimate from Bolotin's result (6.4.4). Agreement 

is fairly good. The possibility of the response of a mode being 

masked by other modes cannot be avoided. 

The investigation of simulation was based upon the representation 

of a service environment by a single vibrator sited at random on the 

plate surface. The broad band response spectral densities at a 

number of sample locations were recorded. Simulation of this 

response was attempted using a further vibrator located at random on 

the plate, the excitation level being adjusted in each band to repro-

-duce the broad band responat a designated reference point. The 

responses at the other sample points were recorded and from the 

response ratios in the two cases a measure of the accuracy of the 

simulation was obtained. 
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Although the single vibrator service environment may seem far removed 

from the general case, it produces the essential feature of the 

general case, namely an indeterminate set of modal energies in any 

band. Furthermore in this case the dispersion of modal energies may 

be estimated on the basis of sinusoidal mode shapes. 

In carrying out the tests, individual bands were examined in 

isolation, and a useful short cut was introduced. The process of 

adjustment of response levels at reference locations proved very time 

consuming. This was discarded in favour of recording responses at 

arbitrary excitation levels and scaling these up to simulate a matched 

response at the reference. 

Fig. 6.7.3 shows the arrangement of apparatus for the tests. 

Filtering of the selected band was obtained using the Bruel and Kjaer 

Analyser Type 2107, set to have a 3db bandwidth of - octave. 

Measurements were obtained for a number of bands containing a wide 

range of modes. The bandpass characteristic of the 2107 is not close 

to the ideal reëtangular shape, so that it was never possible to state 

with precision the number of modes per band. At frequencies below 

1 kHz, the filter was tuned to obvious clusters of modes, so that the 

number per band was reasonably well defined. At high frequencies 

this was not possible and the number per band was estimated from the 

product of modal density and 3db bandwidth. 

The Hewlett Packard noise generator was used to provide the 

excitation. Note that the 2107 filter was inserted into the excitation 

system, following the noise generator and preceeding the power amplifier. 

In this way, all of the amplifier power was concentrated into a single 

band to obtain higher response levels, and also the problem of large 

low frequency motions being present when examining high frequency bands 

was avoided. 
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The vibrator was mounted in a heavy floor stand which permitted height 

adjustment and was coupled to the plate through 4BA screwed rod. 

Twelve excitation points distributed at random over the plate surface 

were used. 

Several transducer systems were tried. The final choice was a 

stereo crystal cartridge (Acos Type GP-93) which gave a good output 

level proportional to displacement and was easily transferred from point 

to point. The cartridge was mounted on an inverted pendulum device 

as shown in Fig. 6.7.4. This was arranged to give the required stylus 

pressure of 6g against the vertical plate. The system was supported 

in a retort stand. The output from the pick-up was taken directly 

to the Bruel and Kjaer Random Noise Voltmeter, which measured the 

root mean square of the broad band signals (effectively the square root 

of the broad band spectral density). Some difficulty was experienced 

at high frequencies where it was found that a considerable amount of 

low frequency plate motion was present in the signal from the pick-up. 

This seemed to be due to noise leaking through the filter outside its 

passband. A further pre-amplifier was inserted after the pick-up, 

followed by a simple high pass filter having a cut-off frequency of 

2 kHz and an attenuation of 18db/octave. This proved satisfactory,. 

and enabled readings t6 be made up to band centre frequencies of 13 kHz. 

The results were obtained for twelve frequency bands containing 

up to 170 modes per band. Twelve exciter positions were used and 

fourteen pick-up positions. By choosing each pick-up position in 

sequence as a reference and scaling up measured responses in the required 

ratio a large number of samples of response ratio were obtained. 	In 

fact 315 sample values together with their reciprocals were obtained 

in each band. 
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An Atlas Autocode program was used to scale the raw experimental levels 

to produce simulated response ratios. 

6.8 Discussion of Experimental Results 

The results are shown in Fig. 6.8.1. which is a graph of samples 

of Simulated Response Spectral Density/Service Response Spectral 

Density, with single point matching, against estimated modes per 

band. 	In Fig. 6.8.1, the extremes of the observed results are given 

together with the limits of the central 60% of observed results for 

each band. The results show that even with a sizeable number of 

modes per band a wide range of simulation errors is possible. The 

extreme values of response ratio show a reduction in spread with 

increasing modes per band although even with 170 modes per band the 

indicated range of possible error is large. The results for the 60% 

of distribution limits show a fairly obvious reduction in width with 

increasing modes per band for N greater then 50. Because of the 

relatively- small sample size these cannot be taken to be accurate 

limits of the actual distribution of samples. A theoretical 

prediction of the 60% limits is shown by the dashed lines in Fig. 6.8.1. 

This was based upon an estimate for the coefficient of variation for 

the case of single force excitation. The space average of the Monte 

Carlo results was used, scaled up for /m = 1.12. The standard 

deviation of the response ratio at different numbers of modes per band 

was estimated using the F distribution approach of section 6.3 for 

single reference simulation. The 60% limits were obtained from tables 

of the normal distribution and the results are shown in Fig. 6.8.1. 

Bearing in mind the effects of a small sample size on the experimental 

results it is felt that the correspondence is fairly good between the 

theoretical and experimental limits. 
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A final point is that while the effects of correlations between 

the modes have been neglected in the theoretical development they 

will certainly have occurred to some degree in the experimental 

responses, without producing any noticeable departures from the 

predicted behaviour. 

6.9 Sumnarand_Conclusion 

A statistical approach to simulation has been examined for 

possible application to complex multi modal structures. The 

reproduction of broad band spectral densities at every point of the 

structure has been justified as a valuable goal of simulation and 

this may be adequately achieved using simple facilities due to the 

averaging effect of a large numb 'er of modal contributions in each band. 

The simulation test may be based upon reproducing a space average of 

severe], responses or a single reference response using substituted 

environment, which may be a single random force. 

In analysing the response to service or simulating environments 

it has been assumed that the structure mode shapes cannot be precisely 

known and that the individual responses in each mode are not predictable 

in any particular case. In order to study the basis and the accuracy 

of this approach a probabilistic model of the environment was used so 

that hypothetical ensembles of possible responses were considered. 

Prediction of the accuracy of simulation in a single trial can only be 

based on a standard 	deviation of the response ratio over an ensemble 

of such trials. 

It was shown that the coefficient of variation 6.., of the 

normalized response surface was the key factor in the accuracy of the 

simulation. 
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While a general formulation for •E., has been obtained in terms of the 

dispersion about the mean of the modal energies arising from an 

environment and its convergence to zero may be deduced for increasing 

modes per band, a numerical estimate of . is not in general possible 

since it depends on the modal influence coefficients for the particular 

point. For displacement response, an approximate root mean square 

space average estimate of £i was derived for plate or shell structures 

having homogeneous sinusoidal mode shapes. The estimate is also valid 

for velocity and acceleration responses. Monte Carlo simulation trials 

on a digital computer were used to check this estimate and to give 

insight into the range of spatial variations of F-L in frenuency bands 

for displacement and strain responses. 	It was shown that the 

theoretical space average estimate gave a poor over-estimate of £ 

Finally experimental results were obtained for the accuracy of simulation 

of a single random force on a large rectangular plate model. A fair 

measure of agreement was obtained between the experimental results and a 

theoretical prediction of their distribution. 

Prospects for the statistical approach would seem to be 

diminished by the large number of modes per band apparently needed to 

achieve a nominal accuracy of say 20%.  Even with a hundred modes per band, 

large errors were recorded in the cases studied. The question 

of what is an acceptable level of error is a difficult one and has not 

been established. There is no point in seeking greater accuracy than 

the order of measurement accuracy for spectral density estimates which 

might reasonably be of the order of 10% standard error. However further 

considerations would seem to give some hope that a much wider margin of 

error could be tolerated in each band. 



The accuracy need only relate to the simulation of sample function 

behaviour as discussed in section 6.2. It may be shown for a 

random process with given mean square, that the expected number of 

peaks per second occurring in any amplitude interval is proportional 
I,  

to [R/R] 	, and this may be related to the broad band spectral 

densities as follows: 

I, 

F—Ri . 	

a 

6.9.1 

'0 

E—R" 1 
The quantity L -"J 	is seen to be a characteristic frequency 

of the process, namely the radius of gyration of the spectral density 

curve about 4o = 0 . Denote this SL 	. 	It is seen from 69.1 

that the cumulative effect of band errors on So is the important 

consideration rather than the magnitude of the simulation errors in 

individual bands, provided that the root mean square of the response 

is also adequately reproduced. Simulation accuracy for the statistical 

approach might well be defined as a tolerance of say 5% on the 

reproduction of the service value of SL, for every response of the 

structure. This improves the prospects for the statistical approach 

for three reasons. In the first place, errors in different bands 

will be positive or negative and statistically independent. This will 

reduce the overall errors in the series expressions in 6.9.1. 

Secondly, the square root operation in 6.9.1 means that error limits 

for any band should be referred to root spectral density rather than to 

spectral density. Thirdly, the radius of gyration analogue of 6.9.1 

implies that large errors in the simulated spectrum in bands near S1 0  

will have only a small effect upon the accuracy of simulation of Si0 

itself, while errors in the extreme upper and lower parts of the spectrum 

will have an accentuated effect, 
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Since fl o  will generally lie in the mid-upper part of the frequency 

range, this means that large errors in broad band simulation can 

be tolerated in this region. At high frequencies, simulation errors 

will have a strong effect on ..Q0 , but the accuracy will generally 

be improved in this region by the increased number of modes per band. 

Low frequency errors will also be significant, but this corresponds 

to frequency intervals where accurate uni-modal simulation will be 

possible. These effects remain to be established quantitatively but 

they would seem to hold somepromise for an increased range of 

applicability of the statistical approach. 

A final point is that the discussion of simulation accuracy 

contained in this chapter is equally rel,' ant to the power flow 

simulation approach of Noiseux, (1964). 
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CHAPTER 	7 

CONCLUSIONS 

7.1 Review of the Principal Results 

The investigation has treated a highly idealized form of 

simulation, tests being based upon the availability of complete and 

accurate data from the responses of a dynamically similar structure 

in the service environment. 	This is justified since the intention 

has been to examine theoretical barriers to and theoretical 

possibiites for reasonably exact simulation by substitution, looking 

beyond current equipment limitations and the difficulties of basing 

tests upon inadequate information. Throughout the analysis the 

practical importance of simple results has been recognised and such 

results have been sought by introducing reasonable approximations. 

A consequence of the generality -of the subject is the qualitative 

nature of the results. 

In summary, the main results are as follows. Simulation in 

probability or in distribution is the fundamental basis for the tests 

as a consequence of the indeterministic nature of the environment, 

and simulation in spectral density of all structure responses at every 

frequency implies this. Exact simulation in spectral density at every 

frequency is not a practical possibility since it implies simulation 

of an infinite set of generalized force spectral densities at every 

frequency. By considering only resonant motion to be significant,. 

a finite degree of freedom representation is justified for frequencies 

of interest. 	It then follows that simulation in spectral density of 

every response is achieved if the direct and cross spectral densities 

of a limited number of reference responses are reproduced; 
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the number corresponding to the number of modes having resonant 

frequency in the vicinity of the frequency under consideration. The 

simulation may be achieved using a set of the same number of force 

generators programmed to reproduce the reference spectral densities. 

The result is of extreme practical interest when the number of modes 

involved is only one, as will be the case if the structure has low 

damping and widely spaced natural frequencies. In this case a single 

direct spectral density is an adequate reference for the motions of 

the whole structure. 

If two modes are contributing, the direct and cross spectral 

densities of a pair of reference responses characterize the structure 

motion and two programmed vibrators are required. For more than 

just a few contributing modes simulation is theoretically possible 

but obvious practical difficulties arise in dealing with a multitude 

of programmed vibrators. 

In the case of frequency intervals of approximately unimodal 

response, the simulation can be simplified without loss of accuracy if 

broad observation bandwidth measurements of the reference response 

are used and the simulating force is adjusted in corresponding bands. 

The bandwidth may be arbitrarily wide provided it contains a single 

resonant frequency. 

Finally, for complex multi—modal structures where the basic 

approach cannot lead to practical forms of simulation, an approach 

based upon reproducing the broad band spectral densities of the 

structure, where each band contains many modal frequencies, has been 

examined. This has been shown to be equivalent to reproducing the 

distributions of peaks and level crossings of the response sample 

functions. 
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There is possibility of achieving a close approximation to this 

degree of simulation using simple facilities e.g. a single vibrator, 

as a result of the averaging effects of a number of modal contributions 

within each band. While computer studies and experimental results 

indicate that a very large number of modes are required per band 

before the expected range of errors in the simulated broad band spectral 

densities is acceptably low, there is good reason to believe that the 

overall accuracy of the simulation can be much greater than the 

accuracy of simulation of the individual band responses, so that in 

fact a wider margin of error is tolerable in some bands. Further work 

remains to be done to establish the limits of applicability of this 

approach. 

7.2 Application of the Results to Practical Environmental Testing 

It is clear that a great deal of vibration testing is carried out 

on the basis of incomplete information and engineering judgement, with 

little pretence of accurately reproducing a service environment. 

Under such circumstances the results of the present work merely serve 

as a reference to demonstrate the minimal considerations that are 

necessary to achieve accurate simulation. 

In circumstances where accurate simulation is desired and is 

economically feasible, the results of the present work are highly 

relevant. In applying the basic theory of simulation, two major 

practical difficulties emerge. In this approach there is first of all 

a need for a number (albeit a limited number) of accurate response 

measurements from a model in the service environment, and secondly there 

is a stringent reauirement for dynamical similarity between the model 

:used for field measurements and the environmental test model. The basic 

approach of Chapter 3 would lead to serious errors if the resonant 

frequencies did not precisely match in each case. 
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One would be trying to excite resonant amplitudes at non-resonant 

frequencies and vice versa. This difficulty is alleviated if the 

broad band approach of Chapter 5 is used. This approach is not 

susceptible to small variations of individual resonant frequencies 

from model to model and ensures that a resonant mode within a broad 

frequency band contributes its share of energy to the response 

irrespective of its precise position within the band. However the 

difficulties of dealing with the case of more than one resonant mode 

within each band have already been discussed in Chapter 5. 

The question of the availability of service response information 

is an important one. It may be that the cost of obtaining this 

information is prohibitive, or that the structure is unique of its 

kind with no possibility of field response information for that 

particular model. Theoretically the possibility of simulating the 

environment still exists and may be conceived in the following way. 

(a) Estimate the generalized force spectral densities from an 

analytical model of the environment and knowledge of the natural modes 

of the structure. (b) Choose the important modes in any frequency 

range. (c) Estimate the system of vibrator forces required over each 

frequency interval containing resonant response to reproduce the 

service values of generalized force spectral densities,and apply these 

to the structure. The method reauires accurate specification of the 

service environment, together with detailed knowledge of the structure 

modes. Consequently its usefulness would seem to be limited to well 

defined low frequency modes. 

The statistical approach of Chapter 6 has obvious practical 

application to the testing of multi modal structures at high frequencies. 
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In this case the central problem is that of achieving a reasonable 

accuracy- and while many aspects of this remain to be established, 

it is clear that the number of modal frequencies per band should be 

as high as possible, commensurate with the bandwidth being small 

compared with its centre frequency. There is no reo.uirement for 

precise dynamical similarity between the field test and the 

environmental test models. In the complete absence of service 

reference responses, the scaling laws of the statistical energy 

approach may be used to compute spatial average responses for frequency 

bands which may be reproduced using vibrators. 



PRINCIPAL NOTATION 

a, b Plate dimensions. 

A Area. 

B Width 6f frequency band. 

C 	. Modal influence coefficient. r]. 

D Plate rigidity. 

Ef 	ç Expectation. 

f 	( 	 ) Probability density function. 

F ( 	 ) Probability distribution function. 

h Plate thickness. 

h(t) Impulse response at co-ordinate q. 

h(t) Impulse response of r th mode. 

Hr  Modal energy of rth 	de 

'rs Integral of modal receptance product ( 	 O(0( 	d 	
) 

k 	 Wavenumber, rx 

Generalized stiffness of r th mode. r 

m 	 Mean of a random variable. 

M r 	 Generalized mass of r th  de 

N 	 Number of modes in a frequency band. 

p 	 Pressure. 

P 	 Force. 

q 1., q 	 Generalized co-ordinates. 

Q 	 Magnification factor. 
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r, a 	 Subscripts referring to modes of vibration. 

() 	 Cross-correlation function of q 1 (t), q (t). 

S 	() 	 Cross spectral density of q.(t), q(t). 

t 	 Time, 

U ( ) 	 Unit step function 

var 	 Variance. 

W 	 Plate deflection, 

x, y 	 Spatial co-ordinates. 

Z 	 Random variable. 

Cross receptance between q 1  and Pk. 

r ('a) r 	modal receptance. 

Sr Coefficient of viscous damping of rth  mode, 

S ( 	) Delta function. 

Ivan 	} Coefficient of variation. 	( 	= 	JEZC 	) 

Ratio of Generalized force spectral densities. 

X Eigenvalue. 

Poisson's ratio. 

rth normal co-ordinate. 

Generalized force In rth mode 

Density. 

Cr Standard deviation. 

Time delay. 

rth mode shape. 

Phase angle. 

Circular frequency. 

Undamped natural frequency of rth mode. 



Circular frequency. 

1 34, 

[A] 	 Matrix. 

[A]' 	 Transpose of [A]. 

[] 	 Conjugate of [A]. 

[A]t 	 Conjugate transpose of [A]. 

[A] -1 	 Inverse of [A]. 

(A, B) 	 Inner product. 

X 	 Vector. 
IV 

X . Y 	 Scalar product. 

<. .> 	Averaging Operator. 

Complex conjugate of Z. 

D 
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APPENDIX I 

SIMULATION TESTS USING THE HARNONIC ANALOGUE. 

This Appendix contains the details of the locations of vibrators 

and accelerometers for the tests reported in chapter 4. 

Test A: 

System Natural Frequency: f  

System Damping: 	 Q 	45 

Vibrator and accelerometer Locations: Fig. 1.1 shows the 

positions of the three vibrators used to represent the service 

environment and the simulating vibrator. The four accelerometers 

are also shown, end the mode shape components at the four 

accelerometer positions are g iven in Teble 1.1. These were 

obtained by exciting a uni—modal response. The maximum radial 

amplitude of vibration ws measured at a designated reference 

axial plane (at x = 0.4L, measured from the clmp) using a pair 

of orthogonal accelerometers, and this was scaled to be unity. 

Table 1.1 Mode Shape Components at Accelerometers. 

Accelerometer 1 2 3 4 

Mode Component 0.75 0.67 0.20 0.57 

ACC 	ACC  

\e 

..t_.cc 3 

Fig. 1.1 

S 
L 

Test A: Locations of Vibrators and fccelerometers. 
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Table 1.2 : Details of Locatir - ns in Fig. 1.1. 

S S 

Accelerometer (1) 0.4 140 1citing Vibrator Fl 0.70 180 

 0.4 230 F4 0.26 0 

 1.0 0 Simulating Vibrator F3 0.49 0 

 0.25 180 

Test B: 

System Natural Frecuencies: f = 134.8 Hz; f V = 163.4 Hz. 

System Damping: H  /5 	= 40. 

Table 1.3 : Mode Shape Components at Accelerometers. 

Accelerometer 1 2 3 4 

H-Mode Component 

V-Mode Component 

0.72 

0.64 

0.71 

-0.77 

0.02 

-0.33 

0.62 

-0.02 

S 9 S 9. 

Accelerometer(l) 0.4 135 Exciting Vibrator Fl 0.21 90 

(2) 0.4 225 F4 0.26 0 

(3) 1.0 90 F5 0.70 180 

(4) 0.25 180 Simulating Vibrator F2 0.44 45 

Fig. 1.2 

Test B: Locations of Vibrators and Accelerometers. 
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Test C: 

In Test C the locations of Vibrators and Accelerometers were the 

same as for Test B. (Fig. 1.2 ) . Accelerometer (1) was used as 

reference. 

System Natural Frequencies: f H 	156.9 Hz; f V = 165.0 Hz. 

System Damping: 	 H 42 ; 	= 45. 

Table 1.4 : Mode Shape Components at Accelerometers. 

Accelerometer 1 2 3 4 

H--Mode Component 

V-Mode Component 

0.72 

0.6 

0.70 

-0.74 

0.16 

-0.29 

0.36 

0.00 

Test D: 

In Test D. both the system and the exciting vibrators were 

identical to the Test C case. The mode shape components at the 

accelerometers are given by Table 1.4.  In this Test, accelerometers 

(1) and (2) were used as references and two vibrators (F2 and F3) were 

used to simulate the response. 

S 9 s 

Accelerometer(1) 0.4 135 Exciting Vibrator Fl 0.21 90 

(2) 0.4 225 F4 0.26 0 

(3) 1.0 90 F5 0.7 180 

(4) 0.25 180 Simulating Vibrator F2 0.44 45 

F3 0.49 135 

Fig. 1.3 

Test D: Locations of Vibrators and Accelerometers. 
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Test E: 

In this Test a plain cross-bar was used to give a freouency ratio 

v'f of 1.005. 	The oil, damper was attached at an angle of 400  to the 
'H 

vertical at x = 0.6 L to give some degree of damping coupling. The 

system natural frequencies and mode shapes were obtained before 

attaching the damper. 

System Natural Frequencies : f H 
	176.4 Hz; f = 177.2 Hz. 

Table 1.5 : Mode Shape Components at Accelerometers: 

Accelerometer 1 2 3 4 

H-Mode Component 

V-Mode Component 

0.74 

0.77 

0.67 

-0.64 

-0.06 

-0.31 

0.64 

-0.02 

The locations of vibrators and accelerometers for Test E were 

identical to those for Test D. (Fig. 1.3). For single vibrator 

simulation, accelerometer (i) and vibrator F2 were used. For two 

vibrator simulation, accelerometers (1) and (2) were used as references 

and vibrators F2 and F3 were used to simulate the response. 
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APPENDIX 	II 

INTEGAT ION OF MODAT 	TTANnl PRODUCTS 

The quantity Its 	0(+ O( s  d- w 	is a complex valued integral, 

relevant to the broad-band response of elastic structures to random 

forces. o-- and o are modal receptances, and may be assumed to 

take the form: 

= 	 1 
	

II • .1 
M*[i_wz + 

when dissipation is represented by a coefficient of viscous 

damping, (St , in the mode. 

An alternative representation of t is possible, where dis-

sipation is represented by a coefficient of hysteretic or structural 

damping: 

ct ((4J) = 	
fr1 1-[ w. — (•)l + 

	 H.2 

where 	is a coefficient of structural damping. Strictly, 

by definition of structural damping, the representation 11.2 is only 

valid for steady-state harmonic responses. Indeed, 11.2 does not 

satisfy the condition for a real impulse response, o(-c 

The integral I- 	with the representation 11.2 has been evaluated by 

Robson (1966) by contour integration. It is more difficult to deal 

with the representation 11.1, because the imaginary part of the integral 

is an odd function. 

The integral has the form: 

Its 	= 	 t t 2. 
0 M'+ M5 [+— 

— 	 — 	p 	
11.3 
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It is convenient to write Its as an integral over the infinite range 

using the unit sten function, U(): 

its = 	 11.4 
CP 

Recalling that oL+, o 	are Fourier transforms of the modal 

impulse responses, denoted h(t), h(t), and using U(w) = 1 — 

and W (—(J) = oi( ), then by Parseva]) s formula: 

 00 

Its = 	 - afc±)tdt 	11.5 

where f(t) is the inverse Fourier transform of the quantity 

(04As ), and g(t) is the inverse Fourier transform of UI(L). 

h+ (t) is given by: 

—)t 
h+ (t) = U(t) e. 	stn c4 t; with 	= 	[1 

- ] 	
11.6 

The first integral in 11.5 may be evaluated using standard 

integrals. 

	

all ~I k s dt
- -[6 	555Jt 

- 	art 	e. 	 sirct  Si 	dt 	II.? 
- 	 ___ M+Ms 0 

- 

II. 
- Mt[()+ 4 

using Dwight, page 234. 

The inverse transform of th( ) is easily found: 

	

1 	( 
U(') e. 	c 

Starting from the Fourier transform of 11(t): 

—ut 

J 11(t) e 	Lt 	n (L) -f- 	 11.9 
-, 	 t(&) 
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Divide through by 21 	and put v = - 	Hence: 

9(t) = 	!) + 	 11.10 

	

2. 	2Ttt 

Next, f(t) 	
tL)t 	

is obtained. This has beenTI  

found by the Convolution theorem and checked by contour integration. 

The former method is illustrated. 

f(t) may be 'written as a convolution: 

ft) = Lt) h 5 (-t) d. 	 11.11 

where hc (t ) is the inverse transform of o () 

Hence h (t ) 	= 	ht (_t.) 

- 	—U (— t) e 	Sin t 71  

- 	M44 

= [u(-t— iJ e8tt SIn c$t. 	 11.12 

h(t --c ) is obtained from 11.6 and the convolution can be 

evaluated after integration by parts: 

Stiort 
f(t) = 	. a 	 i- [c$– w - 

11-13 
M M  

for t < 0.. 

f 	= 	 + 
M, M 	 11.14 

for t > 0.. 

Observe that f(t) is continuous at t = 0. 

Finally, substituting in 11.5 

LIP 

	

an f d h t  h, d.t - ZTI f fctr ft) 	j 	(it
L2.+j 

-00 	 -0P 



Hence: 

= 2fhhdt - n f(o) - 	f f(t) at 	 11.15 
- 	 —6' at 

The third term in 11.15 may be evaluated after some manipulation, 

using standard integrals (Dwight, page 235). 

1 
MM5 	

2 	 2 	 - 2 	2  

- [ 
Z(8pt4 t  +S3 Los) log 	 C)5 	2S3 L0, (8w+65)) 

tai1 
(I_&2 

)J••
2 

WS 	 ki, C 	 S 5  

+ 2&*(Sr() -I 8) t,n-' 
(1t)t •) 

- 	 - 	 11.16 

Observe that I st 	Its 	Also if c=i 5  and St= S 

the imaginary part is zero and Its reduces to the well known result 

for a single degree of freedom. 

TT 
Irt• = 	MI. 3 S t 

 
11-17 

The quantity It s  satisfies all the requirements as an inner 

product of the two modal receptances: 

Is = 	( o 	 11.18  

Applying the Cauchy-Schwarz inequality leads to: 

a 
Jitsi ( 	I.t.t. Iss 	 11.19 
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