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The Long-Term Design of FlectriCa 

Power Distribution Networks 

1. The Need for Long-Term Planning 

"The distinguishing feature of this great soldier's mind 

was that it dwelt as much on the future as on the present. 

He was a strategist not merely in space, but in time." 

- Sir Arthur Bryant describing Sir Arthur Wellesley 

(later Duke of Wellington). 

There are several arguments in favour of any project which 

seeks to contribute to the state of the art of planning elec-

trical power systems. Briefly they are:- 

(a) Economics. The Economic investment in the electrical 

suply industry is a considerable one. (An additional 

£2,750 millions will have been invested in Great Britain 

alone over the five year period ending 1966-67.) Any 

savings, however small when expressed on a percentage 

basis, will be very worthwhile. 

("o) Rate of growth. It. is well-known that the demand 

for electrical power in industrial countries has been 

doubling every 10, or even 7, years. Inevitably, there- 

fore, the electrical supply industry must plan ahead, 

and any discoveries which facilitate this process must 

helD to relieve this considerable burden. 

(c) The long time needed to commission plans. Even when 

a plan for the future has been formulated, the commission-

ing of the ideas it embodies may take a considerable time. 
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A major power station may take 5 years or more to site, 

design and erect, whilst even for an urban distribution 

substation the period may be 2 years. In unfavourable 

circumstances it has taken over 3 years to obtain per-

mission to erect a pylon in a field. In view of this, 

the need for long-term planning is obvious. 

(d) The renalty of failure. In a modern industrial 

society a failure to meet the demand for electric power 

is regarded as a serious matter. After "power-cuts" in 

the notorious winter of 1962-63 auestions were raised in 

Parliament. Any techniaues which can ensure the cer-

tainty of meeting future demand with a minimum of expen- 

' diture will obviously be welcome. 

Since the introduction of computers (and in particular 

digital computers ) into the field of power systems, there 

has been considerable development in the techniques of system 

analysis and static design (i.e. neglecting the variation of 

design parameters with time). Preliminary expl.orations into 

the field of the long-term design of electrical power systems 

have already been made, and the time is now right for a major 

attack in this direction. 

Furthermore, developments and experience in the long-

term design of electrical power systems would find wide 

aplication in other industrial fields. 
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2. Historical Background 

The development of technic -Lies for the analysis of power 

systems, once designed, (e.g. load ±lows with both dc. and 

a.c. circuit representations, fault level analysis, the stab-

ility of rotating machines, the economics of generation, etc.) 

is so well known and documented that the only comment reauired 

here is that powerful tools for this job are readily available 

to the designer. 

2.1 Definition of an TtOotimal System "  

Before proceeding further it will be convenient to define 

the term "optimal" system. An optimal electrical supply sys-

tem may be defined as the cheapest possible system which meets 

a given set of load demands subject to a given set of rules 

or constraints. The set of constraints may be rigid (e .g. a 

failure of any one item in the system must not give rise to 

the shedding of any load), or vague (e.g.. due re gard must 'cc 

paid to the worth of natural scenery). 

Avague (or subj e dtiveu) constraint arises when it is 

difficult to express what is required in strictly mathematical 

terms. Where subjective constraints apply, it will be assumed 

that a number of systems optimal with respect to the rigid 

constraints may be evolved, and the final choice on a basis 

of cost v. subjective constraints left to a design engineer 

(see section 

The body of this rerort will be concerned chiefly with 

distribution systems only. This is further discussed in 

section 4.2. 



2.2 .Desin of Static Onti.ma 

Considerable work has been done in the field of DrOdUclng 

optimal systems to meet load demands which do not vary with 

time. Among the approaches which have been considered are:- 

2.2.1 Trial and Error 

This involves a systematic search over the whole range 

of possible designs. Those designs wiich do not satisfy the 

system constraints are eliminated, and the cheapest of the 

remainder then selected. Consider the design of a network 

required to connect a supply substation with 6 load sub-

stations. There are 7 C 2  possible cable routes or variables 

(neglecting considerations of switchgear and transformer 

sizes). If not more than one cable will be required along 

any one route, each variable may take the value , O or 1, and 

the total number of different designs is 

22! z 2 x 106 

The corresponding figure for up to two cables along each route 

(i.e. 0 or 1 or 2) is 

721 	10,000 X 10& 

These figures indicate the magnitude of the problem of 

optimum design. The number of calculations involved even for 

the small problem described would involve excessive time and 

expenditure, despite the advent of the !?third generation" 

digital computer. 
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2.2.2 Housing Estate Design 

This particular problem was considered in a paper by 

C}rirnsdale and Sinclare [1]. The starting point of the

blem is the layout of a housing estate, and. the loads 

reuired at every point on that estate. It can be shown that 

the minimum cost is incurred when the substation supplying 

any section of load is placed at the "centre of gravity" of 

at load area. The technique applied. may be summarised 

thus:- 

Select substation sites, and apportion each load 

to the nearest substation. 

 Move each substation to the "centre of gravity" of 

its load area, and repeat iteratively to find the final 

substation sites. 

Calculate the theoretical cable sizes and routes. 

(a) Use a trial and error method to select the nearest 

standard cable sizes. 

(e) Reneat the design with substation sites moved in 

the direction of their largest feeders, to see if a 

cost saving is effected. Also possibly repeat the whole 

nroces•s with a different number of substations. 

These technicues are ohviosly a combination of trial 

and error and theoretical- methods. 

2.2.3 Selection of Standard Ratirs 

:.:os -t power sys:m design is done with the assumption 

that only eauipment in a certain range of standard sizes is 

available. Some thought has been given to the selection of 



p 
-0 - 

 these standard sizes by Knight [2, 3] 	The approach used 

involves assuming an area of uniform load density, and some 

ideal system layout for meeting this load (egg. a pattern of 

equal size hexagons with supply transformers at their centres). 

The total cost of meeting the load is expressed as a single 

complex function of those variables for which the optimum 

standard ratings are required e.g. transformer sizes, cable 

cross-sections, voltage levels, etc. The cost function is 

then minimised, subject to the constraint of meeting the load 

demand, by the method of Legrangian Multipliers, and the 

corresponding values of the variables evaluated. 

Whilst such an arproach introduces some logic into the 

problem of selecting standard ratings, it is open to the 

criticism that load densities are never uniform, nor can ideal, 

symmetrical, schemes to meat them be implemented in practice. 

In view of this, it would be interesting to study the nature 

of load distributions for a large number of real cases, to 

see if some statistical law would be found. It might then be 

ossible to do a large number of studies on different cases, 

simulated according to this law. The values of the studied 

variables which gave the lowest overall cost might then be 

determined. Extensive computing facilities would be required 

for this. 

2 2 .3LNetWork Desian by Linear Pro:rammi nq 

An excellent arer on this subject has been published by 

Knight [ 4 ] ,  Linear programming may be apDlied to any problem 

which can be presented in the form of a line ar cost function 
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which has to be minimised subject to a number of linear 

restraint eaualities or inequalities. 

In the problem studied by Knight, the variables consist 

of the number of lines along any particular route connecting 

two substations. If there are n supply or load substations 

there are C 2  possible paths or variables, and the cost func-  

tj.onis 	 A 	n 

= 

'=5J 

where C 	is the cost of a single circuit from substation i Lj 

to substation j, and P Lj  is the corresponding number of cir-

cuits. The approximation that the cost is directly propor-

tional to the number of circuits can be corrected, but at the 

expense of a large increase in the quantity.of computation 

required to solve the problem. 

In the design of distribution networks at higher voltage 

levels, the dominant consideration is uslly one of security 

of supply. This may conveniently be represented by a series 

of constraints to the effect that any group of t substations 

must have at least q(t) cables supplying it 	Values of q(t) 

must be supplied for all t from 1 to n. These requirements 

form a number of lower-bounded inequalities. Since t substa-

tions can be selected in C t  different ways, there must be 

= 2-1 



of these inequalities. Thrther upper-bounded ineaualities 

may also be introduced to limit the number of cables along 

any route, and the number of cables into any one substation. 

Values of the PLj which give the minimum of the cost function 

subject to these constraints may be found by the usual methods 

of linear programming. The values of the PLj so found will 

be non-integral, and some algorithni, such as that due to G-omory 

[5], must be used to find the nearest integral solution. 

A typical problem involving 9 load substations and 2 

supply substations gave rise to 55 paths or variables, and 

2 9 - 1 = 511 lower bounded inequalities. These formed a linear 

programming matrix of 29000 elements. Whilst the solution of 

a problem of this size is within the capabilities of modern 

computers, considerable computing time is required for it. 

Various suggestions have been made, for reducing the pro-

blem to more manageable proportions [6]. A general statement 

of the linear programming approach is given in [7], and an 

exampie of its application to another' problem of system design 

in [8, 9]. 

Important features of this approach to. network design 

are 

(a) It is only feasible for problems directly express-

ible in the form of linear cost functions and restraint 

equalities or inequalities. Even for the special case 

described above, the final solution must still be sub-

jected to a load flow analysis. Satisfaction of the 



S 

original constraints does not guarantee the production 

of a network with satisfactory electrical properties. 

At the present time the production of the optimal 

integer solution from the non-integer solution presents 

serious difficulties. 

It is a technique in which the processes of design 

and optimisation are intermixed. 

2.3 Long-Term Design Problems 

For the reasons given in section 1, more and more atten-

tionis being paid to the problem of producing not merely the 

cheapest design to meet a fixed load pattern, but the cheapest 

sequence of designs to meet a load which varies with time. 

Evidently it is not sufficient to consider merely that sequence 

of which each design is the static optimum with respect to 

its own corresponding load demand. When the cost of conver-

sion from one state to another is considered, a sequence of 

designs, none of which is optimal in the static sense, but 

involving the minimum of conversion costs, could well prove 

to be a cheaper solution. 

The idea of long-term design pre-supposes that a reason-

able forecast of load demand can be made. In the electrical 

supply industry it is common to consider a period up to about 

15 years ahead. As well as load demand, the variations of 

interest rates and costs, and also likely technological 

developments must be predicted.. Even if the estimates for 
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the distant future are not as accurate as for the near future, 

their effects on the choice of policy should be small. These 

estimates can then be revisedin the light of experience when 

the study is repeated on a periodic basis. 

Several methods have been proposed for producing the 

optimal sequence of designs. 

2.3.1 Trial and Error 

As in section 2.2.1,. consider a design involving n vari-

ables, each of which may have 2 possible states. At any given 

time there are 2a possible different designs. Then over ,  a 

period of time divided into N discrete divisions there must 

' nN cc '2 ) possible different sequences of designs. Simplifi-

cations may be effected by deleting all states which obviously 

will not satisfy the supply constraints. But the amount of 

computation involved for even the smallest of real-life pro-

blems would still be far too large to contemplate. This pin-

points the crux of the long-term design problem - the selection 

of one sequence of states from an extremely large number of 

possible combinations of alternative states. 

To overcome this problem of dimensionality a simplified 

approach has been suggested [10-18]. This uses the basically 

simple idea of policy comparison. A policy is a set of rules 

governing the expansion of a system when conditions are such 

as to require extension or reinforcement. The policies used 

imply no form of optimisation, but usually merely present a 
I 

table of alternative steps which may. be  tried in sequence, in 

any given set of conditions. By performing a number of studies 
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with varying policies, the cheapest overall policy may be 

found by direct comparison. In one typical study, this approach 

was used to investigate the effects of variations in policies 

of unit size selection, unit reliability, unit retirement, 

heat rate selection, etc. [15]. 

A slight variation on this method consists of trying all 

the alternative steps for each system modification [19] . In 

this way a 'tree" of possible design sequences is built up, 

and each "branch" may then be costed separately to find the 

cheapest design sequence. If the problem is to be kept to 

manageable proportions, the number of alternative correcti.ng 

measures, and the number of times they have to be applied 

must be suitably restricted. 

Whilst such "ad-hoc" approaches can not guarantee to 

produce that design sequence which is the true optimum, they 

can still provide useful background information for the 

planning engineer. 

2. 3.2 Extension of Linear Prorammin 

The method described in section 2.2.4 9  for obtaining a 

static optimal design by the application of linear programming, 

may be extended to cover the problem of long-term design also. 

The original variables F j  are replaced by 	t) signifying 

the time interval for which 	is being considered. For each 
Lj 

(t) there will be a different set of constrainss correspoding 

to the loads in that time interval. Assuming that in all 

cases the network is extended, and that no lines are ever 

removed, a set of constraints of the form Lj(+ i) ?~ 
p. . 

 - 	
may 

be added. The cost function must be suitably extended. 
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The comments of section 2.2.4 are valid for this case 

also. In addition, the increase in the number of variables 

and constraints would involve a very large increase in the 

auantity of computation required. It is possible, however, 

that the decomposition algorithm of Dantzig and Wolfe could 

be applied to this problem. It would be interesting to see 

some work done in this field. 

Linear programming has also been suggested for the long-

term design of a complete power system [20]. However, in this 

óase the distribution network involved.was restricted to a 

simple radial pattern. It was further assumed that units and 

lines of any size were available; thus removing the necessity 

of finding an integer solution. 

2.3.3 Sub-optimisation of Strategies 

This approach is de to P. G-aussens of the Electricite 

de France [2 1 ]. It is based on the breaking down of a large 

problem into 'a number of smaller sub-problems, which are opti-

mised independently. For this method a "topology" is defined 

as a description of the connections forming any particular 

design. The ratings of the individual elements, termed 

"dipoles", and consisting of lines, transformers, etc., are 

initially unspecified. The first step in the method is a 

series of sub-optimisations for each topology, to determine 

the sequence of states through thich each dipole must pass. 

For these sub-optimisations it is assumed that6the state 

of any dipole may be determined independently of the states 

of all other dipoles in the topology. Suppose that any di:pole 
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may have a limited number of possible states, denoted by a, b, 

c. Then the possible transitions which may occur are a -yb, 

a -> c, and b -> c. The optimal time tab for transition a -> b 

is determined from the equation 

saving in running costs 	expense of change-over. 

The other transition times are determined in the same 

way. If the state of the dipole is changed only at these 

transition times, then there exist 4 possible strategies 

governing the sequence of states through which the dipole may 

pass - Fig. 1. For a period of operation ending at a time t, 

the overall costs involved in each strategy may be evaluated, 

and the optimum strategy S(t), corresponding to the cheapest 

cost c(t), found. This is repeated for each value of t, to 

find s(t) for the full design period considered. The com-

bination of strategies for all the dipoles 'crives.the optimum 

state sequence of the topology for a period ending at any 

time t. 

When this has been performed for each topology, the next 

step is to determine the sequence of topologies giving the over-

all optimum design sequence. In exactly the same manner as 

for individual dipoles, the optimum times for transition 

between topologies E, E 29  E 3 , etc. may now be found. 

e.g. 	T2 1,T23 	T 3 	T21 	TLt 

Then possible strategies which must be considered are:- 

E 2EE 	EELE L ; 	E 	EE 	EE 1  ; E ; E 	_ E,3 ; E 3 	2 	 23 	 3 	 2   

For any period ending at some future time t, the cheapest of 

these may be selected to give the optimum design sequence. 
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Problems associated with this method are:- 

Dinole states are not really independent. 

The choice of topologies to be used must be specified 

by the designer either before or during the running of 

the rogram on the computer. This may considerably i:aease 

the time required to proôice a solution:. Furthermore 

the computer can then only find solutions within the 

range dictated by the eerience of the designer running 

the program. 

Even when the principle of sub-optimisation is used, 

it is still difficult to limit the number of different 

strategies which will arise from a reasonable number of 

topologies. 

2. 3.4 Parameter Optim i sat ion by Dynamic Prorarnmin 

In this method, proposed by Tsetkov [22],  the system is 

defined as a series of narameters (C 1
, C21 

 ..... Cn.), optimal 

values of which must be found extending over the period of 

time tqtdtk.  In the final interval td-tk  it is assumed 

that no change of state will take place (see section 6 , 1.5). 

Initially it is assumed that the sequences of values of all 

C except one, C, say, are given. 	The optimal sequence of 

states C n  is then found by a process of dynamic programiing 

which may be summarised as follows:- 

(a) For all possible states of C at td,  denoted by 

C n d  evaluate the running costs for td-tk  see Fig. 2. 
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Starting from each state of O -  in td-1,  define 

S 	as the cost of change of state at t,  plus the ru:rning 

costs up to t. Find the optimal value (S dk) mjn  for each 

Li
a

n
-i 

 
1 	 a-i i.e. 	(sa )min = r(c 	) 

Repeat (b) for td-2  i.e.. for each c2 find those 

which minimise S1, defined as the cost of the 

min- change in system at ta_i, plus the following (S dk ) min , 

Repeat this process until t 0 1 is reached. 

(a) The process terminates with (Si) mi n  for all states 

of C at ta.  Given the initial state 'Of O, 

may be evaluated, and the optimal sequenpe of Cn  back to 

td traced out. 

Having obtained the optimal seauence of On,  and taking 

this as part of the fixed data, the optimal sequence of 0n-I 

may be found in the same way. The process is continued for 

all C, and repeated iteratively until all seauences of C 

remain unchanging. 

The significant points to note about this 'method are:-

(a) Any practical system must be'represented by a large 

number of parameters. Since each parameter is optimised 

separately, and this optimisation is repeated a number 

of times in the course of the iteration process, a con-

siderable amount of computation will be required to 

perform the dynamic programming analysis alone. Further- 

more, the evaluation of every cost considered in this 
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process requires an analysis of the working conditions 

of the system being considered, which will involve yet 

more computation. 

The ouestion arises as to whether the iterative 

process used will converge after a finite number of iter-

ations. Whilst Tsetkov states "intuitively one can irra-

gine that the process will converge quickly", he offers 

neither theoretical proof, nor experimental evidence to 

this effect. 

Even if this process does converge, it could well 

converge to some local optimal sequence. It would be 

necessary to change more than one parameter at a time to 

see if this had happened, and if necessary "escape" to 

the truly optimal seouence. 

cd.) As with the methods.discussed in 2.2.4, 2.3.2, 2.3.3, 

this is again a method in which the processes of design 

and optimisation are intermixed. 
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3. The Twc-Sta:e Design.-Method 

The design of a power system must be satisfactory Wlt:.1 

respect to loading, regulation, stability, fault levels and 

security. The constraints introduced by each factor are 

often widely different in form and effect. Although only 

one or two factors may predominate, according to the particu-

lar system aDplicatOn being considered, the problem of pro-

ducing even a single satisfactory design can in itself be 

most complex. Thu the demand for a general purpose method 

of producing, by a single application, a sequence of designs 

which is both electrically satisfactory and economically opti-

mal, sets a difficult problem. Most of the methods mentioned 

in section 2 were evolved in answer to this demand. 

As a compromise between the difficulties arising from 

the large number of variables and from the complexity of the 

design process, and the economies to be gained by a search 

for optimality, the following two-stage planning method has 

been evolved. The intention was to provide a method in which 

the processes of design and optimisation were applied consecu-

tively rather than simultaneously. Great simplifications were 

then possible. 

The new method uses dynamic programming, but on a basis 

more akin to the method of policy comparison than to the 

other method.sreviewed in the previous section. (The theore-

tical details of the two-stage design method were presented 

by the author and his supervisor in a paper at the 1965 Power 
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Industry Computer Applications Conference of the I.E.E.E., 

which is given as reference [34] of the bibliography.) 

3.1 Basic Method  

Let the :period over which the optimal design seguence is 

required be divided into intervals t 0 , t , -----, t a ,, 	t o  

as in Fig. 3. Each interval will have its own set of load 

demands and corresponding constraint equations. Suppose that 

for each interval t, a set of acceptable designs P 0 9 

r-i 
may be evolved by any available means. Given the costs 

of converting each design to all of the permitted succeeding 

designs, the next step is to find the optimal sequence of 

designs, one being chosen from each of the intervals t o ,----, 

t o . For (k) intervals, with (r) acceptable designs in each 

interval, there are r k possible design seauences. An exhaus-

tive search is impractical for realistic cases. 

One obvious improvement is suggested by the method of 

dynamic programming, originally formulated. by Bellman [23], 

The solution to the problem in question is particularly straight-

forward when tackled by this method. A brief summary of 

dynamic programming follows in section 3.2.1; details of it 

implementation for the problem in question are given in 

Appendix Al.l. The computational effort required is approxi-

mately proportional to r2  x k instead of 

Another approach considered was to regard the transition 

costs between states as being analagous to distances. The 

problem is then presented in the form of finding the shortest 
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path from the starting point (i.e. state P 00 1n t 
0 
 ) to the 

finishing point (i.e. any of the states PQ in Q. The 

solution to this problem is well known [24-261. It is par-

ticulurly simple when restricted to the present form, where 

each Interval t 0-tp must be vlsi ted once only, and in a 

particular sequence. In fact it turns out that in terms of 

actual arithmetic operations the two methods are identical. 

In either case the processes of design and optimisation 

have now been completely separated. The second stage analysis 

is mathematically stable, and entirely independent of the 

first stage design process. Thus changes to the design pro-

cess may be made freely. Additional constraints applied at 

the design stage may actually speed up the process of compu-

tation by limiting the number of designs to be investigated 

The basic flow diagram for the two-stage method is given in 

Pig. 1. 

.2 Dynamic Programminand 

Markovian Cost Functions 

The general principles of dynamic programming are now so 

well known that a detailed description is not reauired. here. 

A brief summary will be given, however, in order to draw 

attention to a possible source of difficulty when the method 

is applied to the problem under study. 

3.2.1 Dnami cProgramming 

Dynamic programming is a theory applicable to any problem 

Mich may be presented in the form of a multi-stage decisio:a 
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process. For the :purposes of the DroiDlem in guestion it is 

only necessary to consider discrete time, deterministic, 

multi-stage decision rrocesses. Suppose a system may be 

characterised by a state vector 

X(i) 	(x (i), x 2 (i) -------, 

where (i) denotes the discrete time interval. Further suppose 

that at each stage in (±) a decision U(i) has to be made, 

resulting in the transformation 

X 	= 	[x () > U(i)L] 

Dynamic programming is concerned with the maximisation (or 

minimisation) of some cost function.. 

[A U 1= 

subject to given restrictions on the IJ(i). 

The solution is obtained by appeal to the I I Principle of 

Optimality"  which states that an optimal policy has the pro-

perty that, whatever the initial state and initial decision 

are, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the initial 

decision. From this principle the well known functional 

recurrence eauation of dynamic programming may be developed:- 

IN(C) = Max 	H [C ) U(1)] + N1 ( [C , u(fl])1 
U(I)L 

where fw[C] is defined as the value of I obtained by using an 

optimal policy over N stages starting from X(l) = c 	(This 

is a simplified form of the functional recurrence eauation, 
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applicable to stationary Drocesses, i.e. processes in whicn 

& and H are independent of (i).) 

3.2.2 iviarkovian Cost Fnctions, 

It is evident that the problem under study (viz, the 

selection of one state from each of the intervals t o , 

tk such that the overall systems costs are minimised) is 

suitable for treatment by dynamic programming. It is impor-

tant to note, however, that in the above statement of dynami 

programming, functionsG and H must be independent of X(i-l), 

11-1(i-2) etc., or in other words, of the history of the system. 

This is sometimes restated in the form that the cost functiDn 

to be analysed must exhibit the "Markoviant' property that t:ae 

optimal future policy must be determined only by the starting 

state of the system, and any future decisions which are made. 

If this requirement is not satisfied, then the Principle 

of Otimality is invalidated, and dynamic programming no 

longer applicable. When applied to distribution system design 

this means that the costs to be analysed must be independent 

of eauipment age. It will be shown that this condition can 

be satisfied, but some care is necessary in selecting the 

methods of caDi tali sat-  ion. A detailed discussion of this 

matter is given in section 6.1. 

These requirements are really another way of stating 

that the state vector X(i) must include all the relevant 

information concerning the system under study. Only when 

X(i) contains insufficient information about the system is 
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it necessary to investigate the history of the system in order 

to find that information. Thus if the di stribution system 

costs were dependent on eouipmet age, it would still be 

tossible to use dynamic programming if the eauipment age wa 

included in the state vector describing a system. 

Unfortunately this would have the effect of greatly 

increasing the number of states to be analysed, e.g. two 

systems made up of identical eouipment, but with one trans-

former of a different age in each case, would have to be 

described as being in two different states. Thus the size 

of tie problem would be so greatly magnified thet there would 

be little gain compared with the method of exhaustive search. 

Shortest path theory is in essence a special case of 

dynamic programming..'?  The distances which make up the cost 

function must always exhibit the required Markovian property. 

Next-Best Designs 

A design engineer reoaires more information than a 'bare 

description of the best sequence of designs. In order to 

arrive at the best design secuence it is necessary to assume 

the vlues of certain design parameters (e.g. load forecasts, 

interest rates, etc.). The engineer will want to know what 

effect variations in these parameters will have upon the imple-

mentation of his design sequence. There may be other design 

seQuences which, though not optimal under the preferred 

parameter values, would cost less to modify in the event of 

variations in these parameters. The value to be attached to 
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stab:i.Jty under parameter variations is frec!UefltlY too sub3ec-

tive to be expressed mathematically. Other aspects of elec-

trical networks also involve subjective judgements (e.g. the 

mnortance of preserving natural features and scenery). 

in the evaluation of such subjective matters, the 2nd, 

3rd ----, nth next best design sequences are also of interet. 

Both dynamic -programming-  [ 27] and shortest path theory [26 2  

26] provide a means of determining these sequences. In the 

case of dynamic prograniming the increase in computation is 

directly pro p or tiona l to the number of seauences reauired. 

But for the shortest rath problem, advantage may be taken of 

the comwutations already performed to find the best sequence, 

and the succeed:.ng seauences may be determined with corn-

naratively little extra labour. Details of "e actual method 

used are given in Appendix Al,2. 

3.4 Ootimalitr of the Solution 

The two-stage design method can not guarantee to find 

the best of all possible design sequences unless every possible 

design state for each design interval is included. In prac-

tical  cases an extremely large number of acceptable states 

would exist for each interval. But fortunately experience 

and common sense frecuently suggest that very many of these 

states are obviously non ontimal. It is then possible to 

work within a restricted range of states. The uncertainty 

of finding the truly optimal solution must be weighed against 

the nower and cost of the available computing facilities. 
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4. Selection of a Test Problem 

4.1 Use of a Real-Life Problem 

The flow chart of the two-stage approach to long-term 

design has been given in Fig. 4. To test the usefulness of 

this approach it was decided to choose a practical problem in 

the field of power system design which could act as a test 

case. 	 - 

The study of a real system introduces certain complexities. 

It is no longer possible to choose idealised situations or 

to make broad assumptions in order to shape a problem capable 

of neat and straightforward solution. Furthermore, a parti-

cular problem is likely to involve difficulties peculiar to 

itself, which may possibly detract from the general conceptions 

under investigation. However, the whole aim of the project 

was to provide a method of use in real cases. Also, a specific 

claim of section 3 was that the approach suggested should be 

of use whatever the nature of the problems involved in prouc-

ing feasible designs; This it was felt that the only fair 

test would involve the study of a real-life system. 

4.2 Choice of the Problem 

Since all parts of the British power system are inter-

related, even if only very indirectly, any attempt at optinis-

ation should theoretically involve the whole system. (In the 

presence of the cross-channel d.c. link the continental power 

system should also be included.) Such a problem is far too 

large to contemplate, and at the present time only some very 
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small ortion of it may be tackled. Fortunately the, con-

straints of geography and economics (which require the use of 

several distinct voltage levels within the system) produe 

divisions enabling one to isolate parts of the system which 

are at least to some extent independent. 

It was felt that it would be advantageous to study a 

rroblem which arose in an 'area local to the author's university. 

The South of Scotland Electricity Board, and in particular 

the local Edinburgh district board,'were most willing to 

co-operate on a design study. Therefore, it was decided to 

undertake an investigation of the, problems involved in the 

long-term design of the power system of the Edinburgh district. 

The advantages of studying this easily accessible problem were 

two-fold. Firstly, expert advice on the technical problems 

arising in the design process was readily-available (and 

freely given).. Secondly, comprehensive records of the past 

history of the Edinburgh system were available. It was felt 

that these would provide a useful basis for a retrospective 

study, and a good yardstick by which to measure the results.. 

Even when the area of study had been restricted to tha; 

of the Edinburgh system, it was felt that initially an even 

smallerpoblem was reciuired. The Edinburgh system may be 

divided into 4 distinct.levels, distinguished primarily by 

their working voltages:- 

(1) Supply of power, from the National Grid at 275 (or 

132) kV to 33 kV substations, and from local generation 

at 33 kV. 
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Distribution of power at 33 kV to 11 (or 66) iv 

substations.  

Distribution of power at 11 (66) kV for transfor-

mation to. the voltage required by individual users. 

Supply of individual users. 

Level two, that of distribution of power at 33 kV, was 

chosen as that most suitable for an initial investigation. 

This was because it held sufficient scope for development over 

a period of time, whilst not involving a large mass of detail. 

Obviously the part of the system at 33 kV could not be 

treated as completely independent, either of the supply system 

at higher voltage, or of the load system at lower voltage. 

But the areas of interaction were sufficiently confined to 

enable a system of "pararneterisation" to be used. It was 

assumed that the states of the higher and lower voltage sys-

terns could be taken as fixed data during the design of the 

33 kV system. The interrelationship between the various 

voltage levels could then be investigated only by repeating 

the design process with different sets of data. It was decided 

that only after experience had been gained with work on a sub-

system at a single voltage level should an attempt be made to 

cover more completely the problem of a system with more-than 

one voltage level, 

4.2.1 Srecification of the Proble m  

The aim of the initial study was therefore to use the 

two-stage design method to study the long-term design problems 

of the 33 kV Edinburgh distribution system. It was assumed 

that the following information would be supplied -as data:- 
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Loads on the 3/11 kV substations over a period of 

years. In general several substations were grouped to-

gether to supply a single independent "area" or "block" 

of 11 kV load. Because of the close electrical inter-

connection, it could be assumed to a good degree of 

approximation that the 33/11 kV transformers shared the 

area load in proportion to their admittances. Thus the 

load data could be'given as the, grouping of substations 

into "areas", and the corresponding total load in each 

area. The physical locations of the load substations 

were also required. 

Locations of the. 275.  (132) kV supply substations, 

and possibly also the maximum supply which could be taken 

from each. 

4.2.2 Use of a ComDuter 

It was obvious that the help of adigital computer would 

be essential for this problem. In view of the complexities 

of distribution system design, it seemed reasonable-to assume 

that a very powerful computer would be required. Details of 

the "Atlas" computer actually used are given in section7.3.1. 
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5. The First- Staje Desin Algorithm 

5.1 Choice of a Design Alporithm 

Having specified the area of study, the next step was to 

select a suitable design algorithm to formulate the sets of 

possible designs for. each of the' design intervals - i.e. for  

stage 1 o Fig. 4. It was appreciated that with the particu-

lar problem chosen, as indeed with any real-life problems, 

the major portion of the project's programming effort would 

be recjuired on this part of the study. 

One possibility considered was to try to make use of some 

form of algorithm whiáh produced  static optimal design (e.g. 

as in section 2.2.4). If a static optimal design for any 

interval was obtained, it could possi'oly.be used to evolve. 

permutations of different non-optimal, 'out'otherwise accept.- 

able, designs. Or conversely, if the optimal design was ob.- 

tained via a sequence of non-optimal ,but otherwise accepta'ble 

designs, (as is the case with linear programming,), 'then this 

sequence could form the group of possible designs for the 

corresponding interval. Unfortunately there seemed to be no 

method of obtaining a suitable algorithm . for producing even 

a static optimum for the specific problem under consideration. 

5.1.1 Ad-hoc Design 

It is a feature of the design of distribution networks 

that rarely is it reauired to design a whole new system at 

any one iistant.. Usually, in any one design interval, it is 

only recuired to add a few new substations to what is already 

an extensive network. Furthermore, very often' the load growth 
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is such that in a new interval only certain parts of the ne:-

work tend to become overloaded. The problem is not then one 

of complete redesign, but rather of selecting one of severa, 

frequently obvious, alternatives for extension of parts of 

the network. Indeed, it is for this reason that design 

engineers can cope at all with the problems of long-term 

design. 

Hence it was decided that an "ad-hoc" or common-sense 

algorithm, based on the logic used by a design engineer, might 

be successfully incorporated. The same conclusion might well 

be reached in many problems of real-life design, where no 

more attractive alternative is available. 

5.1.2 Imnlementation of Ad-hoc Desi gn  

The writing of an ad-hoc design program may itself  be a 

difficult project. The design algorithm is reguired to gener-

ate all the designs which it is considered would make likely 

candidates for the optimal design sequences. But at least it 

does not have to be so good that it produces only these des -igns. 

If some designs are produced, which a design engineer would 

discard as obviously non-optimal, these will be rejected 

automatically by the dynamic programming analysis. The only 

loss in this case is the waste of computational effort. 

It is impossible to foresee every design situation when 

writing the design program. There may well be cases where the 

design program is unable to modify a design for the next 

interval. The whole program run is not invalidated however 

The program may continue to operate, though the only designs 
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in the next interval will be those derived from the other 

designs which could be modified. If some indication of these 

events is given in the results print-out of the program, steps 

may be taken later to extend the design algorithm to meet the 

new situation. Meanwhile some useful results will still have 

been obtained. 

5,1.3 Restricting the Number of Designs 

The concept of "obvious alternatives", mentioned above, 

implies that the designer',s experience is being used to.  

restrict the range of solutions investigated. But since each 

design in one interval can give rise to several alternative 

designs in the following interval, it was thought that some 

further method of confining the growth of alternatives might 

still be required. 

Although the design changes from interval to interval are 

often of a local nature, this is not always true. Occasionally 

a radical rebrganisation of the old system is called for. This 

is freauently due to some change in an external system. For 

example, in the actual problem chosen for study, when all the 

supply substations are loaded to capacity, another substation 

must be introduced, and the 33 kV system reorganised tore-

distribute the supply substation loads. Such a time of major 

reorganisation could be a convenient time to restrict the 

number of completely new systems which are considered. 

Designs produced in the early design intervals may not 

be discarded, since they are required for the subsequent 

dynamic programming analysis. If the size of high-speed 
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computer store is limited, the problem may be eased by dumping 

the early designs on to magnetic tape (or in some other form 

of low-Teed store) until required for the final analysis. 

However, it was felt that the speed and size of the 

"Atlas" computer were such that, at least in the early studies, 

it would not be necessary to implement either of these 

measures. 

5.1.4 Relationship - to Other Design Methods 

Although simulating the design logic of the engineer, a CD 

two-stage design approach based on ad-hoc programming diffe:s 

greatly in one respect from the usual approach of a design 

engineer. At each interval the design engineerusually chooses 

only one of the best alternatives as preferable to the othe:s, 

and continues with this one design (o± at best 2 or 3) to t:ae 

next interval. But the two-stage algorithm carries all alter-

natives forward to the next interval,  and delays the choice of' 

alternatives until designs for the whole set of intervals have 

been formulated. 

The production of alternatives is similar to the method 

in which a "tree" of possible seauences.is completed, and each 

"branch" of the tree costed to find the best sequence (section. 

2.3. 1 ). The two-stage method differs from this in allowing 

design sequences to change from one branch to another in any 

interval.. it is similarly more extensive than the method 

which uses different policies to generate different design 

sequences, in that changes from one policy toanother.are 

also considered at all intervals in the design-period. 
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5.2 Details of the Design Algorithm 

Investigation showed that the basic design problem could 

be split into three sections, each being to some extent inde-

pendent of the others. These sections were:- 

AY Arranging supplies to new load substations as, 

demanded by the problem data. 

Checking the loads on transformers in both normal 

and fault conditions, making provision for an increase 

in the size of one or more transformers if required. 

Checking We " loads on cables in both normal and 

fault conditions, making provision for the alleviation 

of overloads if necessary. 

The design algorithm was based on these three sections. 

Obviously if a number of alternative network modifications 

were to be allowed, each section could give rise to some 

alternatives. For the se of simplicity the initial algor-

ithm was written such that only section (1) would put forward 

a number of alternative plans. For sections (2) and () it 

was decided that if modification of a system was required, 

then only one possible modification would be allowed (see 

section 5.2.4). 

The basic flow chart is shown in Figs. 5(a) and (b). 

The algorithm consisted of three basic program loops. The 

outer loop was porformed once for each interval within the 

design period. The next loop was the actual design portion 

of the algorithm, which was performed once for each possible 

starting system within the design interval. Within the first 

part of this loop a number of alternative new systems were 
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generated to include supplies to nw load. substations. This 

corresponds to section (i) above, and was performed by the 

routine named "menews' (meet new supplies). ?he inner loop 

of the design algorithm was then performed once for each of 

these new systems, and consisted of sections (2) and (3) 

above, and named respectively "trach (transformer check), 

and ttulochU  (unit load check) 

The writing of the algorithm was complicated by the his-

tory of the Edinburgh network. The early network was based 

on the use of closed rings of interconnected subsations. 

Each substation employed its own circuit-breaker which could 

be used to break the ring in the event of a fault. (This will 

afterwards be referred to as the "ring-main" system.) At a 

later date this policy was dropped in favour of the use of. 

open ended spurs. Each spur could consist of one or more sub-

stations connected in series, with a circuit-breaker at the 

supply end of the spur. only. (This will be referred to as the 

I? spur ?t system.) 

In order to perform a retrospective study of the Edinburgh 

system, it was hence necessary to have a design algorithm which 

could cope with either situation. Thus in reality two design 

algorithms were used, one for each policy. Initially it was 

assumed that only one policy would be used for each interval, 

the choice being controlled by the input data. 

For a complete study of the relative merits of each policy, 

both should be used simultaneously for each interval. This 

is particularly so if it is required to determine the optimal 
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date of change from one policy to another. However, this 

extended use of the design algorithm was left for later 

development. 

Details of the three basic sections of the design algor-

ithm are given in sections 5.2.4, .5, and .6. 

5.2.1 Storage of the System Data Within the Computer 

"System" is used to' indicate a complete distribution 

system which satisfies the load supply criteria for any given 

design interval. A "unit is defined as a group of inter-

connected load transformers, and the cables, switch-gear, etc. 

associated with them. Thus a system is composed of a set of 

units, which may be of ring-main or spur pattern, or of both. 

The basic item of storage was the unit. Each unit wa 

identified by a number denoting the first location in the com-

puter store where information concerning that unit was kept. 

Each item of information describing a unit could be addressed 	
S 

by the, use of a name and some identifying suffices. For example, 

"unno(u)" indicated the number of transformers in unit number 

(u). A special subroutine (known as a "mapping ñinction") was 

written for each name, so that the corresponding location in 

the computer store could be determined whenever a name and 

its associated suffices appeared in the program. As the pro-

gram was developed, it was necessary to re-arrange the storage 

pattern of unit information a number of times. When this 

occurred it was only necessary to change the routines for 

translating the names, and not to change every reference to 

the names within the program. Details of the information 
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actually stored for each unit are given in Pigs. A3(a) and 

(b) of the appendix. 

Each system was then stored as a list of unit numbers. 

The lists corresponding to each system were stored consecutively 

in what was known as the unit list. In order to locate the 

portion of this list corresponding to any system, a system 

list was also formed. There was one entry for each system, 

indicating the start of the corresponding portion of the unit 

list vector. The end of the list for each system could be 

found immediately as the location preceeding the start of the 

list of units of the following system. The systems of a par-

ticular design interval were grouped together, and markers to 

denote the end of one interval and the start of another placed 

at the corresponding points in the system list. 

The hierarchy of lists may be summarised as 

system list +unit list *individual unit information lists 

5.2.2 Geograohical Mapping of Systems 

Since the design algorithm had to deal with distribution 

systems situated in a city, a basic constraint was that all 

cables could only be laid along roads, and not along arbitrary 

straight lines. Thus a means was required of representing the 

permitted road plan within the computer. All road.  junctions - 

termed. "nodes" - were numbered. Each road was then rerese:ited 

as the pair of node numbers corresponding to its end., points, 

and a number denoting its length. 

It was assumed that cables would, always be laid along 

the shortest possible road route. A subroutine was written 

to derive the shortest route between any two specified nodes. 



The method used is described in [25] 

5.2;3 Correlation of Unit and Load Area Data 

In dealing  with the problem of system modification it was 

sometimes preferable to deal with the system in a unit by unit 

manner, and sometimes in a load area by load area manner, In 

order to change from one mode of operation to the other, 6 sets 

Of lists (a set comprising one list for each load area) were 

set up for each systemas it was modified. These were:- 

Set No. 	Name 	 Information 

	

(1) 	arnode Nodes making up corresponding load areas. 

	

• (2) 	usa 	Identification number of the unit supplying 

each node. 

	

() 	usar 	Corresponding rating symbol of the unit 

transformer. 

	

(4) 	Taln 	Normal load on the transformer. 

	

() 	Taff 	Factor by which all other transformer loads 

in the same area would be increased if this 

transformer was removed due to a fault. 

	

(6) 	toss 
	Indication of which transformers (being On 

the same spur) could lose their supply 

simultaneously. 

Set (1) was assembled directly from the input data, and 

was fixed for an y design interval. Sets (2) and () were 

assembled by the subroutine "dubs" (see Fig. 5), and sets 

(4), (5) and (6) by the subroutine "tralaff". The reason 

for using two separate routines will become evident in the 

next section. 



5.2,4 Details of Basic Routine "menews± 

New load transformers could be supplied either by extend-

ing existing units to include the new transformers, or by lay -

ing down completely new units specifically to supply them. In 

either case the possibilities were conditioned far more by the 

geographical relationships between the existing system and the 

new transformer positions than by considerations of load flows 

within the existing system. The consideration of various poss-

ible geographical patterns gave rise in general to a large - num-

ber. of alternative solutions. This was in contrast to the pro-

blems arising when a transformer or cable overload required. 

correction, and the number of obvious or common-sense alter-

native solutions was more limited. It was for this reason 

that the basic routine flmenew s ?I was selected as the one to 

put forward a number of alternative new systems, whilst the 

remaining two sections were originally allowed only one poss-

ible solution to each problem. It was these considerations 

which largely dictated the form of the basic flow chart of 

Fig. 5. 

Since the problem of meeting new loads was to be solved 

using only geographical considerations, only list sets (2) 

and (3) of the previous section were reouired for the firs; 

rart of the algorithm .. Sets (4), (5) and (6), concerned with 

load flows within the units, were only required, for the latter 

part of the algorithm. This is why two separate routines were 

used for assembling these lists. Sets (2) and (3) had to Dc 

re-computed after the action of menews U since unit numbers 
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were changed, whenever units were modified in any way. 

The basic flow charts for the two :oarts of 'menews" deal-

ing with spur and ring-main designs are given in Figs. 6 and 7 

respectively. They are similar in general outline. In each 

•case the first step was to group together new load Points 

according to their geographically nearest existing.units. 

For each group.two alternative ways of providing supplies were 

allowed. Thus, if there were N groups of new load points, 

then 2N different modified systems would be produced.. 

In both cases, the first alternative was to modify the 

unit considered to include all the new load points nearest 

to it in the simplest possible manner.'(i.e. using the least 

amount of cable). In the case of spur designs the possibility 

of the nearest unit being either of spur type, or of ring-main 

type from some earlier date, had to be provided for. 

For the second alternative with spur designs a further 

sub-division of each group was carried out, so that .the load 

points of each subgroup had the same nearest 275 (132) kV 

supply point. Each sub-group was then arranged into as many 

new spur units as were necessary to meet all the load points 

from the supply '  point using the minimum amount of cable. The 

subroutine used to do this, entitled tlaynewspuru, is discussed 

in appendix A2. 

Unlike the equivalent case involving spur designs, there 

were seldom enough new load points inserted in any one design 

interval to allow a second alternative of a completely new 

ring-main unit specifically to suDDly them. The alternative 



in this case was to again include the n.w load points in their 

nearest existing units, but at the same time to reinforce these 

units. This was achieved by laying an additional cable from  

the grid supply point to one of the load points already on the 

ring of the ring-main. This reinforcing cable was called a 

'tradial feeder", and was also used to suppiy some of the new 

load noints. 

If any of the flEW points, lay geographically within the 

ring, then the radial feeder was used to supply them, the load 

points being ordered along the feeder according to distance 

from the supply point. If no new load points lay within the 

ring, then a selection of the points to be included on the 

feeder was made with the aid of the t'laynewspur" subroutine. 

This subroutine was used to find the spur pattern which would 

connect the new load points to the supply point with least 

cable, ignoring the presence of the existing unit. The sn1u: 

with the most load points on it was then converted into a 

radial feeder by connecting its free end to the nearest load 

ocint already on the unit. 

5.2.5 Details of Basic Routine "trach" 

The flow chart of utrachtl  is given in Fig. 8, This rou-

tine performed a check area by area on transformer loads, 

firstly under normal conditions, secondly under fault condi;ions. 

The actual check in each instance was performed by the subr3utine 

tt c I olt rira tt (check loads of transformers in each area), the 

flow chart of which is given in Fig. 9. 
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Under normal conditions the normal transformer load was 

compared directly with its nominal rating. For fault conditions 

the transformer with the largest fault factor was failed, and 

the other transformer loads increased accordingly. The trans-

former ratings were also increased from nominal to their 

short-time ratings. 

in the event of an overload, only one way of modifying 

the existing system was to be allowed, as discussed previously. 

The modification was performed by replacing one transformer 

by another of next larger rating. The replaced transformer 

was to be one of those with the minimum fault factor for the 

area. The actual transformer was chosen such chat, with the 

larger transformer in place, the correspoding maximum cable 

load in its own unit was a minimum compared with equivalent 

maximum cable loads obtained by increasing the sizes of the 

other transformers. Thus the probability of the need for 

later cable reinforcement was reduced toa minimum. 

5,2.6 Details of Basic Routine tt ulo chtt 

The flow chart of "uloch" is given in Fig. 10. The basic 

loop of this routine was performed once for each unit in the 

system. A load flow study was first performed.with normal 

loads on all transformers. The study was then repeated with 

the increased transformer loadings which could arise from the 

failure of transformers on other units which supplied any 

area in common with the unit under examination. These condi-

tions could arise from:- 
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(i) The failure of a whole spur unit. 

(2) The failure of a single transformer on a ring-main 

(only the largest in any area being considered.) 

Once again, in the event of an overload, only one course 

of correction was allowed by this routine. If the overloaded 

unit was of spur type, the action taken was to slit the unit 

into two new spurs. The split was made just a sufficient num-

ber of load points along the spur from the supply point to 

alleviate the overload - thus using a minimum length of new 

cable. If the overloaded unit was of ring-main type then 

radial reinforcement feeders from the suTply substation to 

each load point on the ring-main were tried in turn. A list 

of all feeders which alleviated the overloads was compiled 

and stored for use later in the routine. 

At this stage all checks on a spur unitwere complete. 

It then remained to check the load flows in the ring-main 

units, with each cable in the ring-main loop failed in turn. 

In these cases the transformer loads were taken at their normal 

values, possibly modified by the loss of the transformers at 

either end ofthe failed cable, as determined by the switch-

gear layout of the unit. The correction of overloads was 

again by the use of radial feeders. If an overload had occurred 

during the check of load flows with transformers faulted, then 

only those feeders which had also been found to alleviate the 

earlier overloads were considered. The radial feeder which 

reduced the maximum cable load on the ut to a minimum was 

then used to reinforce the unit. 
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5.2.7 Note on Load Flow Studies 

Load flow studies on srur units were of a trivial nature. 

Load flow studies on ring-main units were facilitated by the 

use of the admittance matrix and its inverse, which were stared 

together with the other unit information (see Fig. A3 of the 

appendix). It was assumed that sufficient accuracy could be 

obtained by a d.c. rerresentation of the various impedance 

values - i.e. each impedance was treated as if it were -  a simple 

resistance of the same magnitude. (This was the assumrtion 

usually made by a design engineer. For a discussion of the 

errors involved see [291.) Loads were assumed to have a con-

stant current characteristic, and the iterations reauired for 

constant power studies were thus avoided. 

Studies involving the loss of an existing cable or the 

insertion of a new one were conveniently performed by the 

arrlication of a correction to the old inverse matrix. 

(Methods of inverse correction are discussed in [3 01.) 

5.3 Malor Design Changes 

The idea of major design changes, involving the intro-

duction of new 275 kV su..ply points and a complete reorganis-

ation of the 33 kV system, was mentioned in section 

The design algorithm as it has been described above was not 

capable of dealing with such a design situation. This was 

because the level of design experience and common-sense recuired 

to deal with such a situation was of a degree higher order 

than that reauired for the minor design changes. Since a 

considerable progremming effort had already been required on 
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the minor order design problems, it was thought to be more 

important to get this portion actually working than to con-

tinue deeper studies into the area of major design changes. 

Furthermore, it was felt that since major system changes 

were linked with changes to the 275 kV system, these problems 

were better dealt with in the context of the design of multi-

voltage level systems, which had already been set aside for 

later study. 
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6l Trsnsiton Costs 

A transition cost is defined as the sum of the capit 

costs incurred in changing a system from one state in a given 

dign interval into another state in the succeeding interval, 

plus the costs involved in running the new system for the wiole 

of the new interval. In order to compare the relative merits 

of incurring different costs at different times, all such 

costs must be corrected to their corresponding values at some 

similar moment in time. In this study the common conception 

of `--,resent- worth" was used - i.e.  the time of study was taken 

as the basic reference time. 

As stated in section 3.2, for the dynamic programming 

(or shortest path) analysis to be valid, the costs to be analysed 

must show certain "Markovian" properties. To see if this is 

so for electrical distribution systems, their separate cost 

components must be analysed in detail. These components are:- 

Running Costs 

10 Power losses 

20 Maintenance costs 

Capital Costs 

1, Installation and removal costs incurred at system 

changeover 

Carital chs.rges on all eouipment used by the new 

operating system 

Capital losses on equipment no longer used in the 

new system - 
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 Abandoned eauipment of no further use 

 Equipment which may be re-used elsewhere 

Of these, the items listed under A usually exhibit the 

reauired Ivlarkovian property. Whilst to some extent maintenance 

costs may vary with equipment age, they are frequently so 

difficult to determine accurately that they are budgeted fo: 

merely as a fixed percentage of the corresponding new capital 

costs. Capital costs B(l) will certainly also exhibit the 

reauired property, but items B(2) and  B(3) require closer 

study. 

6.1.1 Methods of CaDitalisatiOfl 

There are numerous approaches to the capitalisation of 

engineering works. Suppose some piece of equipment is pur-

chased at an initial cost V 0  [21] ,  Further suppose that it 

has a lifetime of T years, and that at the end of this time 

its residual value is VT.  One method of payment would be to 

lay down immediately the full sum V 0 0 At the end of T years 

a sum of VT  may be recovered. Hence the total effective cost 

referred to the time of installation is given by 

COST = v0- VT 

where i is the current interest rate. 

A second method assumes that initiallyV 0  is borrowed. 

Then in each year t, a sum 

a t  = iV 0  + r t  

is set aside (into what is commonly called a. "sinking fund", 

where iV 0  provides the interest on the borrowed capital, and. 



rt provides for the depreciation in the worth of the equipment 

from V_, in year (t-i) to V in year t. If the total cost 

referred to the year of purchase is to be the same for both 

methods of capitalisation, then 

L..1 
(t+i.)t 

	V0 -_VT 

The auantities at, r t  and Vare not independent. It is diffi-

cult to determine, the value V for any equipment, owing to the 

lack of a second-hand market. In the absence of any other 

information, and for the sake of convenienc,e in accounting, 

it is commonly specified that at,  and hence rt,  should remain 

constant. Thus 

at= 
Q. (I+ L7-1 

(VO(i+)'—VT) 

Either of these costing methods meets the requirements 

of the study for item B(2), namely that any cost incurred 

should be independent of the age of the equipment, and hence 

of the Drevious history of the system0 

6.1.2 Allowance for redundant EouiDme.nt 

The effects of these two charging methods on the capital 

losses, B(3), on equipment no longer used in ,a new system have 

still to be studied. Such equipment may be either (a) abandoned, 

or (b) re-used elsewhere. 

Consider the first method of costing '(a' single initial 

payment). Type (b) equipment which is removed at age t will 

be sold, providing an income of Vt -. Fig. 11. The evaluation 

of V would involve the age 'of the equipment. But for equipment 
t 
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of type (a) no income has to be evaluated; the equipment merely 

stands idle. 

Now consider the second method of costing (equal annual 

instalments). When type (b) equipment of age t is removed, 

the only point to 'be considered is that all payments cease. 

The equipment may 'cc sold for just that sum which, when added 

to the accumulated investments.of a t  , repays the outstanding 

loa. When type (a) equipment of age t is removed, two courses 

are possible. One. is to pay back the loan immediately, incurr-

ing a loss of Vt - a function of the age' of the equipment. 

The other course is to continue the annual instalments over 

the full T years. But the actual dat,e of the final year is 

again dependent on the age of the equipment. 

6.1.3. Choice of Costing Methods 

Thus in order to avoid methods of costing which involve 

cornrutation of quantities which are a function of equipment 

age, it is necessary to use method (i) with type (a) equipment 

and method (2) with type (b) equipment - as indicated in 

Fig. 11. The simultaneous use of two costing methods is merely 

a convenience to avoid using the age of the equipment. 

In this study, transformers and' switchgear were taken to 

be of type ('c). The distribution line's took the form of under-

ground cables, and were taken to be of', type (a). 

With this in mind, the various component costs may be 

regrouped under the twoheadings of operation costs and 

conversion costs. The' operation costs include all the items 

of recurrent annual costs." These consist of the running costs, 
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listed under A above, and the annual capital charges on type 

(b) euipment. The conversion costs are those costs which 

are incurred once only, when a conversion is made from one 

state to another. The installation costs of B(l) are included 

in this group. To them are added the total costs of any new 

type (a) eauipment. 

In a really long-term study the possibility of having to 

replace worn out equipment must be allowed for. Using method 

(1) for costing, aftirther payment of V 3  would then be required 

for either type of eiipment. The actual date of payment 

would depend on the date 'of installation, again a function of 

system history. However, since ,most electrical equipment is 

designed for a life of 20 years or more, and most planning 

studies consider a period of the order" of 15-20  years at the 

longest, this factor may usually be neglected. But in any 

case its effects will be reduced by the present worth calcula-

tion. 

6.1.4 Utilisation of Redundant Eauipmen 

A careful choice of accounting methods would thus appear 

to eliminate the effects of the non-Markovian property of costs 

involved in making equipment redundant. But unfortunately 

this factor still affects the problem solution. During both 

the design and costing stages no attempt can be made to make 

use of type (a) equipment which has been abandoned in some 

earlier interval of the design period. At the design stage 

it is not aparent which abandoned equipment (if any) will be 

available, since it is not clear which states from previous 
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intervals will be chosen to precede the one under examination. 

Even if this were possible, then which equipment was free for 

use would be a function of the pevidus history of the system, 

and so would be the transition costs, thus invalidating the 

dynamic programming analysis. 

The first analysis of results must be made ignoring this 

factor. Once the cheapest sequences have been evaluated, an 

examination may be made to see if any further improvements 

can be made by taking advantage of redundant type (a) equipment. 

However, these restrictions do not apply to equipment 

with age-dependent costs which is found in the starting state 

(i.e. Poo in t 3 ). In any succeeding state, this equipment 

will always have the same history (i.e. started int 0 ), and 

the dynamic programming will not be invalidated. 

6.1.5 Terminating the Design Period 

Another point to 'noted is the relative importance of 

operation and conversion costs during the final interval of 

the design period. Since in the proposed  costing method the 

full capital costs of type (a) equipment are included in the 

conversion costs, the figure for conversion costs could con-

siderably exceed the figure for annual operation costs. If 

the final interval was designated as a single year, therefore, 

the economic analysis would tend to favour state sequences 

ending in lower conversion costs and higher operation costs. 

It is true that a designers interest  will be focussed on the 

early intervals in the design sequences, and also that the 

effects of the events at the end of the design period are 
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greatly reduced by the present worth valuations. But the dts-

proportion between operation and conversion costs should st:Lll 

be corrected if possible. 

It is evident that at the end of the design period the 

whole system will not be abandoned, but will continue in opera-

tion, though modified by design changes not considered in the 

study. To reflect this continuation, and preserve a balance 

between operation costs and conversion costs., the last inter-

val in the design period should be set to a length correspcnd-

ing aDprbXimately to the average equipment life. (See also 

[22].) 

6,2 The Costing Algorithm 

The flow-chart of the cost analysis routine is given in 

Fig. 12. The list of systems in 

section 5.2.1) was first scanned 

puter store which would be requi 

concerning transition costs, and 

dynamic programming analysis. 

each interval (described in 

to assess the amount of corn-

ed both for the information 

for working space during the 

The complete set of transition costs was then evaluated. 

Each cost was formed as the sum of the operation costs incurred 

over the whole of the design interval, plus the corresponding 

conversion cost. 

Since the dynamic rograrnming analysis was more conveniently 

written to deal with a problem involving a single possible end 

state, a dummy end state was introduced,' together with the 

corresponding transition costs (all zero). The.routine for 

analysing the cheapest design sequences was then entered. 
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6.2.1 The Transition Cost Routine 

The basic flow chart for this routine is given in Fig. 

i. A list of the units in the new system was first corn-

piled. Fart of the information stored with each unit was the 

figure for the annual operating costs. The operating costs 

of the whole new system could hence be calculated. A list 

of the units in the old system was then compiled, and the 

units common to both lists deltéd, as these would obviously 

involve no conversion costs. 

To compute the conversion costs of removing old transfor-

mers and installing new ones, lists of transformers in the 

remaining units of both the old and new systems were compiled. 

Transformers appearing in both lists with similar ratings 

and installed in similar locations were deleted. The removal 

costs of the remaining transformers from the old system, and 

the installation costs of the remaining transformers from 

the new system, were then added to the total conversion cost. 

Costing of the removal and installation of switchgear was 

performed in a similar manner.. 

Only small variations of this approachwere required to 

cost the laying  of new cables. There was no question of re-

moving old cables which did not appear in the new system. The 

routes of new cables had to be broken down into the individual 

sections between pairs of map nodes, since a fixed laying  charge 

was applied for a given route hrever many cables were involved. 

6.2.2 The Dynamic Pro gramming Analysis Routine 

Theoretical details of the dynamic programming analysis 
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are given in aDpendix Al, The basic flow-chart for this routine 

is given in Fig. 14(a). 

Figure 14 (b) show 	 m s another version of the sae flow-chart, 

this time produced on the "Atlas" computer. To speed the 

documentation of the whole long-term design program, a srecial 

program was developed which would accept as data any autoccde 

orograrn (on 7-track paper tape), and output the same program 

instructions rearranged in a flow-chart format. Figure 14(b) 

is a tica1 example of the output from the "flow-chartt' pro-

gram.  It also illustrates the nature of the "Atlas Autocoe" 

language in which the whole design program was written. 

The first part of the dynamic programming analysis routine 

was concerned with finding the best (i.e. cheapest) design 

seQuence. The term "expense" is used in the diagram to denote 

the minimum cost involved in arriving at a design state via any 

seauence of earlier states. 

The expenses of the starting states were first set to 

zero. The expenses involved in arriving at each state in 

successive intervals were then cornputed. 

Each expense was determined as the minimum of the sums 

of the expense to reach each state in the previous intervah 

plus the corresponding transition cost between the two sta•:es. 

The exiense calculated for the single state in the final inter-

val.. (i.e. the dummy state inserted by thegeneral cost analysis 

routine), gave the minimum overall cost. The sequence of 

states giving rise to this cost could then be traced backwards 

from the end state to. the starting state. 
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If only the best design seauence was reauired, the ana:ysiS 

was complete, otherwise the second part of the routine proceeded 

to find the nextbest design sequences. For each previous 

next-best secuence, the extra costs of deviations from that 

seaJience were computed. Each new deviation could possibly 

form some later next-best sequence. Deviations from the whole 

seauence were not investigated, but only those from the 

initial part of the sequence, as far as, but not including, 

that transition which itself formed the deviation from an 

earlier sequence (see Appendix A1.2.2). 

Whilst the lower order next-best sequences were being 

formed, it was possible that the number of deviations so fa 

investigated had not yet exceeded the total number of next-

best sequences which was required. In this event the new 

deviations were immediately stored as possible candidates 

for later next-best sequences. 

If, however, sufficient candidates for all later sequences 

had already been stored, a test was made to see if the new 

deviation involved less extra cost than any of the earlier 

candidates. If not, it was discarded. Otherwise 'it was 

entered in the list of candidates in place of that candidate 

which had previously involved the maximum extra cost. 

When all the new deviations from the previous next-best 

secuence had been investigated, the deviation from the current 

list of candidates which involved the minimum extra cost was 

selected as the basis of the next of the next-best sequences. 

Thus each successive next-best design sequence could be 

computed. 
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Finally all the results so obtained 'could be output f:?om 

the computer. 
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7. A Computer Design Study 

Since good records of the Edinburgh distribution system 

were available, it was decided to perform a retrospective study, 

making use of the load figures actually monitored on the sys-

tem. For the preliminary study attention was confined to a 

small portion of the 33 kV system over a comparatively short 

time scale, in order to gain experience in the use of the 

program. 

A portion of the north-west Edinburgh system was chosen 

as being relatively independent. The study was to start with 

the system as it had developed by 1955, immediately after a 

major reorganisation of the 33 kV system and the introduction 

of a new 275 kV supply point. The next major ..reorganisatiOn 

of the 33 kV system for this part of Edinburgh did not take 

place until 1963/64 , thus leaving a period of 7 years over 

which the design program could be directly applied. In fact 

the first design study was performed for the, first 6 years of 

this period. 

7.1 In-out Data 

The input data for the study may be briefly summarised 

as follows:- 

1. Edinburgh map data. The road network of north-west 

Edinburgh was represented by 161 road junctions or "nodes". 

Details were supplied of the approximate (x, y) co- 

ordinates of each node, and of the 249 connecting roads 

or"links" (see section 5.2.2). A list was also given 
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of which "nodes" formed the external boundary of the map, 

as this information was needed to compute whether a given 

roint was situated inside or outside ofa closed ring of 

cable. 

2. Grid supply points. The locations of the 275 kV grid 

supply points were specified (one only in the first design 

study). 

. Basic cost data. The interest rate on borrowed capi-

tal (6%) and the expected lifetime of equipment (20 years 

for all equipment). 

Transformer and switchgear data. This included 

technical data and cost data for the individual items Of 

equipment. The details are given in Fig. 15.  (The cost 

data was of an approximate nature only, of sufficient 

accuracy to illustrate the validity of the design method, 

but not for use in real-life design comparisons.) Since 

only one size of cable was used, its technical and cost 

details were permanently "written in to the design pro-

gram rather than supplied as external data. These cable 

details are also given in Fig. 15. 

Initial system. Complete details of the starting 

system - in this case the system as it was in 1955. 

This was broken down into individual ring-main and sur 

units. For each unit detai]s were given firstly of the 

number, sizes and locations of all transformers, and 

secondly details of the interconnecting cables and swttch-

gear. Each cable was specified merely as a sequence of 
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map nodes, and an input subroutine was then used to com-

pute the correspond.in cable length and impedance, and 

to build uij the unit admittance matrix and. its Inverse.. 

Load data. The year by year load demands were then 

specified. As described in section 4.2.1, the load sub-

stations were grouped by area according to the blocks of 

11 kV load which they supplied. For each area the total 

load was specified, and also the location of any new sub-

station within the area, together with details of its 

transformer ratings. Pig. 16 gives a year 'by year sped-

ficàtion of the load demands. Also for each year an 

indication was given of whether a ring-main or spur 

policy was to be used for the development of new designs 

(section 5.2). 

Alternative sequence requirement. The final figure 

in the input data gave the number of next-best design 

seauences rea,uired from the dynamic progra 	analysis. 

7.2 Results - Design AsDects 

7.2.1 System Desi 

The study was run for a design period of six years, witn 

the data illustrated in Fig. 16. The starting system (corres-

ponding to 1955) turned out to be good enough to meet the 

requirements of the next three years also. In 1959 three new 

substations required supplies (Fig. 16(b)) and the design 

algorithm produced four alternative new designs. All these 

desi gns were satisfactory for the following year also. In the 
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last interval of the design period, three more new substations 

reouired. supplies- The design algorithm produced two new 

alternative designs from each of the four of the previous 

interval. This successive development of designs is sjOWfl in 

Fig. 17. In this figure each new system has been labelled with 

identifying suffices according to the notation of section 3.1 

and Appendix ALl; systems which have continued unchanged from 

the previous interval have been left unlabelled. (It must be 

emphasised that the lines connecting successive systems in Fig. 

17 represent logical steps in the ad-hoc design process and. not 

the only possible steps in a design seojuence. In determining 

the o-otimal design seauence, the possibility of stepsfrom any 

design in a given interval to 	of the designs in the succeed- 
CD 

ing interval were of course considered - see for example Fig. 19.) 

As described in section 7,1 the choice of design policy 

(ring-main or spur) was controlled by the input data. Since 

in the corresponding real-life situation 1961 was the time of 

changeover from a ring-main to  a spur policy, a corresponding 

change (i.e. for the last interval of the design period) was 

specified in the computer design study. 

In order to reflect the continued running of the system 

beyond the last year of the design study (section 6.1,5), the 

last interval of the design period was specified as 10 years. 

(i.e. so that the length of the whole design period was corr-

parable with the eau:i.pment lifetime - see also section 7.2.2.) 

Figs. 18(a) to (m) show the starting system and 12 

systems subseauently evolved by the desin algorithm. (The 
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identifying suffices for each system refer to Fig. 17.) The 

basis for these diagrams was prepared by the computer on a 

line-printer. (A discussion on the use of graphical output 

will be given in section 7.3.2.) A key to the notation used 

appears on Fig. 18(a), which illustrates the starting system 

as it was in 1955. This system consisted of a single grid 

supply substation supplying three separate units, with trans-

formers labelled A, B and C respectively. (A, B and C refer 

to units numbered 1, 68 and 119 within the computer. As each 

unit developed in time its unit number was constantly changed, 

but the same identifying  letters are used in successive dia-

grams to provide a sense of continuity.) Units A and B were 

of ring-main type, but unit C (a single transformer only) 

was of spur type - one of the many anomalies which occur in 

real-life situations. 

The four new systems designed to supply additional sub-

stations in 1959 are shown in Figs. 18(b)-(e). In the system 

of Fig. 18(b) the three new substations have been supplied y 

breaking open existing ring-mains and running out a double 

cable to include the new substations in the rings - one in 

unit A, two in unit B. For unit B this then meant that con•-

siderabie overloads were incurred in the event of a cable 

outage, and a reinforcing radial feeder was run out from the 

grid su;;p1y point to one of the new substations, to reinforce 

the ring. In the system of Fig. 18(e) the new substations 

have been supplie i by ru nning radial feeders out from the 

grid supply point to the new substations, and then continuing 



- 60 - 

them to terminate on substat:tofls a iready in existing units. 

The systems of Figs. 18(c) and (a) are alternative combinations 

of these two developments of units A and.B respec-tively. (All 

these designs are merely practical examples of the approaches 

discussed in section 5.) 

Figs. lS(f)-(rn) show the eight new systems developed in 

the final interval of the design period. This was the inter-

val in which a change was made to a spur design policy. Figs. 

18(f) and (g) show the two systems developed from system (4 9  o) 

of the irevious interval. In the system of Fig. 18(g) the 

three new substations, each with two transformers, have been 

supplied by running two spurs in parallel along the same route, 

each spur supplying one of the transformers at each of the 

substations. In Fig. 18(f) the new substations have been 

supplied by sours run out, not from the grid supply point, 

but from the nearby existing substations in unit B. The result 

of this was to overload unit B, and a reinforcing radial 

feeder was added as shown. The other three pairs of systems 

are variations on these two designs, but with minor differences. 

For example, the system of Fig. 18(1) differs from that of 

Fig. 18(f) both in the method of reinforcement for unit B, and 

also in the choice of one transformer for an increase in size. 

Having surveyed the range of systems evolved by the design 

algorithm the auestion naturally arises as to whether they 

resemble in any degree the systems actually developed. The:e 

was in fact only a slight resemblance. This was chiefly 

because the three substations added in 1959 were not completely 
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new substations, but were daached from another unit origi-

nally sunlied from a different grid supply point. Since these 

substations were already connected together by cable, advan-

tage was naturally taken of this cable in arranging a supply 

from the new grid point. The additional problem of 'free" 

available cables could not be handled by the design algorithm 

(i.e. effectively a major design change). But on the other 

hand, the spurs in the systems designed for the 1961 interval 

which connected directly back to the grid supply point did 

reoroduce exactly the real-life designs. 

It must be concluded that the design algorithm as first 

developed was evidently of limited use for the production of 

useful designs, though it was encouraging to see that tech-

nically satisfactory designs could be oroduced, even if they 

were not economically satisfactory. Further work is obviously 

recuired on the development of the design algorithm. Possible 

lines of approach will be suggested in section 8. 

Even with the small system examined in the first design 

study, problems arose concerning the interaction with the part 

of the system operating at 11 M. There were several examples 

of the design algorithm demanding changes in the sizes of the 

33/11 kV transformers, and in some cases '(e.g. Fig. 18(b)) 

even changing the sizes of new transformers just specified 

by the input data. This would have a considerable effect on 

the design of the 11 kV system. 

7.2.2 _ CostLng and Saauence Analysis 
Fig. 19 shows the corresponding system conversion and 
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operation costs (section 6.l.). (Particular systems on th 

diagram may be identified by reference to Fig. 17.) The con-

version costs are shown along the lines corresponding to changes 

betweon systems, and the annual operating costs next to the 

corresponding systems. The conversion costs usually exceeded 

the operating costs, except where a system continued in one:a-

tion in successive years, and a zero conversion cost was in-

curred. In the final interval the operation costs had to be 

summed over a period of 10 years. The summed costs (ttpr esent 

worth referred to the start of the interval) are shc.:: beneath 

the corresponding annual costs. 

The costs shown in Fig. 19 had to be corrected to their 

upresent worth" referred to the start of the study before the 

dynamic rrogramming analysis could be performed. The resul;s 

are shown in Fig. 20, where the six cheapest design sequence's 

and also the most expensive seauence are indicated. The 

figures inside the state circles show the cheapest costs 

involved in reaching each state. The loweat of these figures 

for the final interval determined the best (i.e. cheanest) 

seauence. The second best sequence shows a cost increase of 

36%. It differs, from the best seauence only in that one of 

the groups of new substations in the 1959 interval is met by 

a radial feeder arrangement rather than by tapping into the 

e:i sting ringof a ring-main. Seauences 3 and 4 start along 

the 2nd best secuence and converge back onto the best sequence. 

Secuence 5  starts along the best 	, seauence deviating only in 

the last design interval. It is the first sequence to end in 
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a state in which the new substations in the final interval 

were supplied by running spurs to the substations of existing 

ring-main units rather than back to the grid supply point. 

Altogether the first 11 sequences  gave costs within 10% of ;he 

'best sequence. 

As might be expected, the best sequence follows a natural 

path of logical ad-hoc development (see Fig. 17), as do the 

2nd and 6th best sequences. It is to be expected that this 

would generally be the case. If a best sequence did deviate 

from the logical sequence this would be most likely at a time 

of major system reorganisation, when even the logical develop-

ment itself would involve considerable changes. 

Having obtained the best design sequences, the designe: 

might well wish to perform further calculations, as discussed 

in section 3.3, to determine the stability of the solutions 

under the change of interest rates, load forecasts ', etc. It 

would be useful if such computations could be performed as an 

integral part of the long-term design process. The designe: 

could specify his requirements as part of the input data to 

the program. 

An investigation was performed of the effect on the se.- 

auence analysis of specifying a final design interval of 15 

Years rather than 10 years. As was expected, the results wsr.e 

comparatively insensitive to this change. The sequence orders 

for the two cases (10 year interval first) were 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

1 	2 	3 	4 	8 	6 	7 	5 	11 	10 
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It would be feasible to include such a check within the 

standard cost analysis routine. The check could be performed 

with a variation of ± 5 years on the specified final inter-

val. This may be done with very little -  extra computation by 

re-costing the best 20 sequences. (The re-costing involves 

merely the addition or subtraction of a simple rnutiple of the 

corresponding operation costs for the final interval.) 'If 

these 20 sequences are then re-ordered, it may be safely assumed 

that the first 10 of these are in fact the best 10 sequences 

for the new conditions. 

It would be unwise to draw any sweeping conclusions cn 

the basis of such a small scale test, but the results, obtained 

do seem to indicate the, usefulness of the two-stage design 

approach. 

7.3 Results - Comoutational Aspects 

7.3.1 Basic Proram Features 

All the computation for the long-term design project was 

done on an I,C.T./Ferranti Atlas Computer. (The completed 

program was usually run on the "Atlas" of the National Institute 

for Research in the Nuclear Sciences at Chilton.) This machine 

had an operation time of about 2 /2 sec. for basic indexing 

instructions and floating point add/subtract, and about 5 

sec. for floating  point multiplication. As far as a user was 

concerned the machine behaved aa though composed entirely of 

single level fast access core store. To achieve this, ex-

changes between drum and core store were controlled automati- 

cally by a supervisor program. On the Atlas computer at 
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N.I.R.I\T.S. Ui to 100 thousand words of store were available. 

The long-term design program was j rritten in "Atlas Auto-

code' 1 , a language very similar to Algol. (An example of 

Atlas Autocode has already been given in Fig. 14 (b).) The 

entire program was eressed in approximately 4000 individual 

autocode instructions. About 24 million machine instructions 

were performed in the process of translating the autocode 

source program into machine code object program. The object 

program itself occupied 44 thousand words of computer store, 

made ur of:- 

13% main design control program (including input and 

output subroutines) 

70% design routines 

12% costing routines 

5% dynamic programming (best sequences) routine. 

The store occupied by the design portion of the program was 

apportioned between the three basic routines (section 5.2) as 

follows:- 

9% "trach" 

58% "rnenews" 

23% "uloch" 

10% other common routines 

For the initial design study under discussion, the total 

storage reouired was 62 thousand words, made up of:- 

44000 program 

4000 compiler subroutines 

14000 data and working space 
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A complete program run reauired approximately 56 minutes 

of Atlas commuting time, of which 10 minutes was spent corn-

piling the object program. 

The above figures do not include the use of any graphical 

output facility. The routine which produced systems diagrams 

on the line-printer reQulred a further 2500 words of program 

storage, with a corresponding increase in computing time. 

7.3.2 

 

'rah -;cal outlut 

Fig. 21 shows a tyical extract from the program output 

obtained on a line-printer for one of the earliest comruter 

runs. This extract shows some of the results for the 1959 

interval. At the top of the extract are given detils of a 

new unit, no. 464, replacing unit 1 of the old system. The 

first line of this unit description contains details of the 

number of transformers, type of unit (ring-main), grid. supply 

Point, and various items referring to the storage of the remain-

ing information. The next line lists the map node numbers of 

the 5 transformers, followed on the next line by a list of 

transformer sizes (size 1 	5 MVA rating). Then follow 14 

lines, groured in rairs, each pair describing one cable of the 

unit. The first line of each pair gives details as to which 

two roints the cable connects, the switch-gear layout at each 

end of the cable, and storage details of the corresponding 

actual cable route, which is given node by node on the follow-

ing line. At the bottom of the extract each of the four new 

systems designed for this interval is checked for transformer 

and cable overloads. The caption "CHECK EW SYSTEM" is 
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followed by a list of the numbers identifying the units which 

make up the system. Details of changes of transformer sizes 

and laying  of reinforcing cables then follow, together with 

an indication of the corresponding changes in unit numbers. 

When all four systems have. been checked, the program contirnes 

to the next design interval, and the final line of the extract 

shows that it was about to commence the design process on the 

first of the four systems designed in the previous interval. 

Even for the small design study under examination it 

soon became apparent that the presentation of results in the 

form of Fig. 21 was not good enough for practical use. The 

large quantity of numerical information still had to be' analysed 

and re-presented in some more digestable form. In particular 

there was evidently a great need for some forr?i of graphical 

output. The labour of taking all the cable routes for a sys-

tem, presented in the form of sequences of may node numbers, 

and plotting out the actual routes on a map was especially 

laborious and time consuming. 

The ideal solution was to use a proper C.R.T. type graph-

ical display. Therewas a Stromberg-Carlson SC 4020 display. 

unit available (at the Atomic Weapons Research Establishment 

at Aldermaston). This device plotted diagrams on a 

1024 x 1024 raster (i.e. matrix of iidividual points), and 

was provided with vector and character plotting facilities. 

However, the SC 4020 was designed to work from an I.B.M. mag-

netic tape unit, and no software support for the production 

of such tapes was available on the Atlas. A project was set 



in hand to write orograms for the Atlas which would generate 

the reau:Lred command instructions for the SC 4020, and pack 

them on I.B.M. magnetic tape in the reauired format. Whilst 

this was viewed ourely as a long-term project, program develop-

ment at the time of writing this thesis is practically com-

plete, and the SC 4020 should be available for use with later 

design studies. 

In the short-term it was decided to try to use the line-

printer to obtain diagrams of the distribution systems. This 

project had the virtue of comparative simplicity. Also this 

form of output could be obtained from any Atlas, whereas 

facilities for the use of I.B.M. magnetic tape were limited to 

particular machines,. A standard line-printer had a maximum 

line length of 120 characters (at 10 pe,r inch), thus the dia-

grams had effectively to-be plotted on a 120 x 120 raster. 

This was considerably less accurate than the SC 4020 display. 

A complication arose from the fact that the vertical line spacing 

was 6 per inch, recuiring a different scaling along the verti-

cal axis, and even further reducing the accuracy of the 

diagram. The problem of accuracy was somewhat relieved by 

using the full stop and apostrophe characters superimposed in 

one character position (see Fig. 18(a) where a portion of 

cable route has been left in its original form, direct from 

the printer). 

The diagrams of Fig. 18 were produced on a scale of 1 inch 

to 800 yards. This was the smallest scale on which the cable 

routes along individual roads could be represented with any 
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accuracy. Whilst the systems under discussion could easily 

be represented on a 12 inch paper width, this would not be 

the case for the whole of the Edinburgh system, which will 

require the use of the SC 4020 display if satisfactory dia-

grams are to be obtained. 

Details of switchgear installatipns are not given on the 

diagrams, but must be obtained from the conventional output 

of which Fig. 21 is an example. No indication is given of how 

many cables lie along a particular cable route, but this may 

usually be deduced by inspection. 

The ma drawing subroutine was inserted into the design 

'program so that a diagram was produced of the starting sys-

tem, and of every new system after all the design changes 

had been made at the end of each 'design interval. 

7.3.3 Store and Instruction Economy 

The initial "de-bugging" runs of the prograni required a 

considerable amount of computing time - in excess of 4 minutes 

to cornnlete even a small part of the design phase of the study. 

To reduce the computing time, some of the most frequently 

used routines (matrix, inversion, matrix correction, lad flow) 

were re-written in machine code. The hand-coded routines 

showed savings of as much as 3.5:1 on the corresponding num 

ber of instructions in the translated versions of the autocode 

routines. This resulted in a marked reduction in computing 

time (although no precise measurements were made). 

The program made considerabl.e demands on computer storage 

also (details are given above). Although the reoulpements 
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for the first design study were well within the capacity of 

the N.TL.R.N.S. Atlas, they were nevertheless considerable 

when related to the very small size of the problem. Evidently 

any attempt at a rroblem of reasonable size would strain the 

available storage to its limits. Of the 14000 words of data 

and working space, 10000 words were used for the storage of 

the information describing the individual ring-main and spur 

units. Investigation showed that a considerable improvement 

could be made in the manner of unit storage. 

There were two main sources of inefficiency. Firstly, 

when a new unit was created, all the information describing 

that unit was entered in the unit information list. This was 

obviously wasteful if the new unit had been formed merely by 

changing one transformer in an older unit. In this case all 

that was really needed was a new list of transformer.sizes. 

Secondly, every new unit was stored in the unit informa-

tion 1it as it was formed. But consider the situation where 

the umenews u design routine had put forward a new design which 

I ad still to be checked for transformer and cable overloads. 

Supose that one partiular unit had aLnumber of overloads. 

Each time a transformer size was changed, or a cable was 

added, a new unit was formed and the corresponding information 

stored. Thus a whole series of new units could be formed in 

the course of evolving one satisfactory design. Although only 

the last of the series was referred to in the system list, 

all the redundant intermediate units were still held in the 

unit information list. (The first unit put forward by 
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menews' was not redundant, however, since this was referred 

to by other new systems formed at the same time.) The storage 

system as described (section 5.2.1 and Fig. A3 of the 

Appendix) is obviously capable of considerable, improvement - 

some suggestions will be given in section 8. 
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8. Sucested Future Developments 

"Its highest solution must be evolved from the eye and 

brain and soul of a single man, which from hour to hour are 

making  subconsciously all the unweighable adjustments, no 

doubt with many errors, but with an ultimate practical accuracy." 

- The art of war at the beginning of the 18th century, 

described by Sir W. S. Churchill. 

It is apparent from the previous section that much remains 

to be done in th:e practical, study of the use of the two-stage 

design algorithm 	Some of the steps which would be involved 

in carrying out a full study are discussed below:- 

8,1 Short-Term ImDrovements 

Certain features of the-existing computer program reauire CD 

immediate development. Perhaps the most important of these 

is an improvement in system storage arrangements. The diffi-

culty of redundancy within units could be overcome by only 

sli ght modifications to the existing scheme of storage. The 

original storage layout for a single ring-main unit is illu-

strated in Fig. A3(b)  of the Appendix. The term "link" is 

used to denote a word of store holding the address of some 

information of interest. "Links" were used in the original 

storage scheme to provide quick access to various items of 

information. But they could point only to store locations 

associated with their own unit, In the modified system of 

stora ge suggested in Pig. A3(c) the use of links has been 

considerably extended. A link would now also be permitted 
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to point to locations originally associated with an earlier 

unit. Thus if a new unit was created by a single modification 

of an earlier unit, most of the links in the new unit could 

Still point to the unchanged information of the old unit. For 

example, a ring-main unit with 4 transformers and 5 cables 

would reauire 67 words of store on the old storage scheme, 

71 on the new scheme, if both were completely new units. But 

for a unit developed from an earlier unit by the change in 

size of a single transformer, the new scheme would then reauire 

only 17 words 

The problem of completely redundant units is not so 

easily dealt with, and would be better left for later consider-

ation. 

Tlae 	would also be much to be gained from a general 

increase in the computational efficiency of the program. In 

the short-term this could be realised by continuing the 

policy mentioned in the previous section of replacing the 

autocode versions of the most frequently used routines by 

more efficient machine-coded versions. The obvious candidates 

for improvement in this way are the store mapping functions 

(section 5.2.1), and also the "shortest path" routine which 

determines the best routes for cables. 

With these improvements it should be possible to test 

the design algorithm with a larger test case involving the 

whole of the Edinburgh system and covering a period of the 

order of 7  years. 
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B2 1edium-Term Imrrovements 

8.2.1 Comrutational Asnects 

The short-term imnrovements are concerned only with the 

more practical aspects of computation, to allow further testing 

of the design algorithm to proceed immediately. This effort 

should also be continued in the medium-term studies 

However good may be the storage arrangement finally chosen, 

it now appears that even with the large amount of effectively 

oneleve 11' store available to users of the Atlas comDuter, 

some form of auxiliary storage will soon be required. With 

the Atlas this will probably take the form of magnetic tape. 

The logical extension of this step would then be to segment 

the program completely, and run the second, stage costing 

lgorithm separately, using the system information on magnetic 

taDe as data. This would provide, operational advantages. 

Also, the 'new systems would be available if later tests were 

required on the stability of the best seouences with respect 

to varicis input parameters (sections 3.3 and 7.2.2). 

At the same time careful consideration should be given 

to the use of a complete list processing language of the 

ULISPU type (see for example [311 ),, to replace the store 

mapping functions and list arrangements of the original pro-

gram. Languages of the LISP tyoe are designed specifically 

for the efficient use of computer storage, and may include 

special facilities to deal with the removal of redundant 

information. The best solution might be a general purpose 

language of this type especially adapted to take advantage of 
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the particular features of the long-term design problem. 

A further increase in computational efficiency might be 

obtained by complete reorganisation of the use of the "shortest 

path' routine. One extreme possibility would he to compute 

once and for all every possible cable route, (i.e. from every 

map node to every other map node), and to store thce on mag-

netic tape. A more likely compromise would be to compute every 

route as it was reauired, and then to store the results (in 

fast access store) in case the same problem should arise again. 

It is extremely likely that the same problem would recur fre-

auently, as may be seen from the diagrams of Fig. 18, parti-

cularly within the same design interval. At the end of each 

interval the old library of routes could be discarded and a 

new one built up for the new problems of the next interval. 

8.2.2 Design Asects of the Edinburgh System 

It is obvious from the results obtained from the first 

program runs that considerable improvements must be made to 

the actual system design routines, if results are to be pro-

duced wnich will be df real interest to a design engineer. The 

original expectation that most of the programming effort would 

be reauired on the ad-hoc design process is amply borne out 

by the figures given in section 7.3.1. Thirty thousand words 

of store were required for the design algorithm alone. Some 

of the difficulties were due to the reculiar nature of the 

sstems being studied, but others would be common to most 

rograms based on an ad-hoc design approach. Perhaps the 

chief difficulty was that of operating on geographical problems. 
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VIhilst eye and brain seem very adept at processing much 

visual information simultaneously, the reverse is true of a 

serially operated digital comruter. 

2rogramming was further complicated by the use of two 

searate design policies. In practice the ring-main policy 

seemed to involve more common-sense"  and experience, whereas 

tie spur policy needed less 'common-sense" but presented more 

alternatives from which to choose. Thus the latter policy 

was more suited to programming on a digital computer than the 

former. Furthermore, since the spur policy is now the only 

one in use, it would be more profitable in every respect to 

restrict program develqpment to this policy only, and to con-

tinue with investigations of future system development rather 

than with retrospective studies. 

One possibility is to continue the development of the 

existing spur design routines to a more sophisticated level. 

As well as general all-round development, four specific points 

reauire attention:- 

Production of Alternatives. In the original program, 

it had been decided (for the purpose of simplification) 

that only the design routine dealing with the laying of 

supplies to new load substations should put forward a 

number of alternative designs (section 5.2.4). The 

facility of producing a number of alternatives should be 

extended to the other two basic design routines dealing 

with the correction of transformer and cable overloads. 

Interdependence of Design Sections. It had been 
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assumed that the those basic design prpcesses, embodied 

in the corresponding design routines (section 5.2), were 

independent. In fact these processes are not completely 

independent. In particular, the way in which supplies 

are laid to new substations depends to some extent on the 

loading of the cables in existing units. For example, 

it may not be profitable to divert a cable which is loaded 

to capacity to supply a new substation, even if the diver-

sion would be a very short one. This aspect should be 

included in the design algorithm. 

3 ,  Sub-octimisation. Another feature of the original 

design program was that the designs produced in any one 

interval were decided purely by the load demands of that 

interval. On the large scale, the job of taking into 

account future load demands in selecting-designs for 

earlier intervals is done by the second stage costing 

analysis. On the small scale, however, limited consider-

ation of future loads could profitably be written into 

the design routines of the program. For example, instead 

of laying  a cable directly along the shortest path between 

two substations, it might be worthwhile to divert it to 

pass the site of a new substation to be introduced in the 

following year. This is essentially a prccess of sub-

optimisation, which should operate only over a very short 

time scale (two or three intervals within the design 

period). 

4. Improved Spur Design A description is given in 

Appendices A2.2 and A2.3 of how the routine for the 



- 78 - 

design of new spurs could be extended to include more 

realistic situations. With the added emphasis on spur 

systems, these suggestions should certainly be implemented. 

The four points so far mentioned are to some extent of 

lesser importance, and may be implemented whenever convenient. 

One design rroblem, however, is of far more pressing impor-

tance. It has been emphasised that the design routines as 

written were unable to deal with design situations -in which 

a major system reorganisation was reauired. There are three 

reasons why such an extension to the program should be given 

a high priority. 

Firstly, such design situations must inevitably be dealt 

with if design studies are to be made over realistic Ieriods 

of time (e.g. of the order of 15 years).. Secondly, the 

possibility of using such times of major reorganisation to 

limit the growth in the number of new designs (section 5.1.3) 

has yet to be investigated. thirdly, it is at such stages in 

the design (freouently associated with the addition of new grid 

supplypoints) that the maximum interaction takes place between 

parts of the system of different voltage levels. This impor-

tant topic will be discussed below. 

Careful consideration should be given to the method by 

which it is intended to tackle such design problems. An obvious 

arproach would be to develop ad-hoc design routines, along 

similar lines to those already used for the less complex design 

situations. This would re quire a major effort of design study 

and programming, though the problem would be considerably 
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eased if attention was confined to spur designs only. It might 

be Dossi'ole to save proramming effort (at the expense of corn- CD 

 time and storage) by writing a more general type of 

design program which produced a very large range of possible 

designs. As mentioned- in section 5.1.2, the dynamic programming 

analysis would eliminate the uneconomic designs, provided 

there were a few good ones amongst them. This design develop-

ment would be best undertaken - by a design engineer with some 

programming knowledge, rather than a specialist programmer. 

As a short-term 'stop-gap' it might be possible to avoid 

writing new design routines to deal, with major system changes 

by running the existing design program in sections. Each 

section would start with the design interval following a major 

reorganisation, and continue with modified designs until a new 

reorganisation was reauired. The results would then be returned 

to the designer who would put forward his own plans for the 

reorganisation, and supply his new systems as data for the 

next run of the design program. It should be emphasised that 

this possibility should only be considered as a temporary 

expedient. It should only be undertaken if computer facilities 

were available which offered the prospects of a "turn-round" 

time for programs of the order of, one day or less. A more 

sophisticated variation of-this approach is discussed in sec- 

tion 8,3 

8.2.3 General AsDects 'of Two-stage Design 

The programming improvements suggested above are aimed 

secifically at the production of useful results relating to 
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the design of the Edinburgh distribution system. Also of 

i:r.00rtance is the need to continue development and to gain 

experience in more general aspects of the applictiOn of the 

two-stage design method. Four facets are of particular 

importance: - 

1. Multi-level systems. The need to investigate the 

inter-actions between the particular system under study 

and external systems linked with it has already been 

mentioned above. A description was given in section 4.2 

of how the distribution, system at, 33 kV was isolated from 

the systems at higher and lower voltages by the device 

of using the description of these systems as fixed daca 

for the design of the 33 kV system. The next step is 

evidently to advance to the design of a, two-level system. 

For the actual Droblem in question this may probably 'be 

done most easily by considering also the design of the 

275 kV system. This would involve a relatively small 

quantity of additional information, as opposed to the 

11 kV system, which is very much more complex than the 

33 kV system. Furthermore, it would appear that any 

study of the future Edinburgh system would in any case be 

closely linked with the design of the grid supply network. 

The design of the grid network might be included 

most easily by merely listing a number of sites for the 

supply substations, together with the total additional 

costs incurred in making power available at each one, 

and the corresponding maximum load they could supply. 
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Then in the course of the design procedure, at any inter-

val in which the existing supply substations were shown 

to be overloaded, an additional supply substation could 

be selected from this list, and made available to the 

33 kV system design routine. In the first instance it 

might be convenient if only one possibility was put 

forward at this stage. Subsequently this restriction 

could be relaxed so that at each step, a number of alter- 

natives were put forward. 

The storage arrangements would have to be extended 

to cover the description of the distribution systems at 

both voltage levels. The costing analysis would also 

reauire extension so that the best design sequences for 

the combined systems could be determined. 

2. Use of Several Development Policies. In the design 

studies so far performed, either the ring-main or the 

spur development policy has been specified for each design 

interval by control from the input data. The next develop-

ment is to allow two (or more) policies simultaneously 

to :put forward alternative designs in each interval. If 

the suggestions given above are followed, then there will 

be a change of emphasis from the previous contrast of 

spur and ring-main policies to a range of policies all 

based on spur units. 

A first step would be to allow two design policies 

to put forward alternative designs, but confine the use 

of each 'colicy to systems previously developed by that 

same policy - Fig. 22 (a). (The lines connecting design 
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states in Fig. 22 again reresent steps in the ad-hoc 

development, and not the only possible steps in a design 

sequence. e.g. compare Figs. 17 and 19)  Thus the design 

algorithm would put forward for each interval designs of 

two distinct classes formed by /'he use of the to alter-

native policies. 

The next step would be to allow the development of 

mixed systems. i.e. systems developed by the use of 

different policies at different intervals in their his-

tories. The design algorithm would thus put forward not 

only two distinct types of systems, but also systems of 

intermediate types. Common sense suggests that in prac-

tice it would only be necessary to consider systems in 

which there had been only one change of policy during the 

succession of design modifications. (For example, a 

system derived by using two different policies in alter-

nate years would be most unlikely to be economic.) This 

would give rise to the possible ad-hoc growth of systems 

illustrated in Fig. 22(b). 

3. 	voidance of Redundant Computation. It is evident 

that 'when all the features so far described have been 

implemented, the program will reouire considerable 

quantities of comouting time. It will be of great impor-

tance that the processes of computation should be as 

efficient as possible. iVhen a system is being modified 

by an ad-hoc procedure, cases will freauently arise in 

which a considerable proportion of the particular local 
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oroolems encountered will also occur in identical form 

in similar systems arising from common roots in the ad-

hoc design sequence. For example, in the last interval 

of the design study discussed in section 7, the rairs of 

spurs connecting the three new substations back to the 

grid supply point were designed 4 times. Since the pair 

were identical, the same problm was effectively solved 

8 times. 

Not only might computing time be saved, but storage 

also, if the recurrence of similar situations could be 

recognised, and the corresponding design information 

stored once only. On the other hand much temporary stor-

age and extra computation would be involved in the search 

for common situations, and this would have to be weighed 

against any possible savings. 

The way in which a scheme to take advantage of this 

feature might be implemented is by no means obvious. The 

scheme suggested in section 8.2.1 for the storage of 

cable routes in case they were reauired again is effectively 

tackling the same tyre of problem, and a similar approach 

might be tried in this case. 

4. Generalised Long-term Design Program. The principle 

of two-stage design should be of interest over a wider 

context than the design of the Edinburgh distribution 

system. It would therefore be of advantage to make 

available a general purpose version of the long-term 

design program for use in other problems. This should 
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be done on two levels 	A completely generalised version 

of tIe program would consist of the dynamic programming 

routine for seouence analysis, together with the bare 

outlines of the main design and costing control rout-  ines0 

It would then be left to the user of this program to 

specify his own storage arrangements and write routines 

to deal with the design and costing processes. 

On an intermediate level, a general program for use 

in electrical network design would also be of use, incor-

porating much of the design Drogram as it was originally 

written. The concept of a "unit," would be common to mos 

of these problems, so the same storage system could be 

retained, but with scope for the user to redefine the store 

mapping  names to suit his- own 	A large part of 

the present costing routines could also be incorporated. 

Many other routines - 'shortest path" for cable routes, 

unIt input routine, graphical output routines, matrix 

inversion and modification and load flow routines, also 

the 'laynewstur" routine for the design of new spurs - 

w3uld form a useful library of routines for use in the 

design stage of the program. 

803 	onp-Term Imirovements 

The difficulties of writing ad-hoc design routines have 

already ben commented upon... Experience of tackling this pro-

b:Lem points to the conclusion that this might be a case in 

V!i.Ch a man and a machine (i.e. computer) together might be 
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far more effective than either alone. In the light of the 

comments originally made at the end of section 2 , 3.3, it is 

interesting to see how this conclusion has been forced upon 

the author. 

It is clear that the success of such a combination would 

be determined largely by the power and flexibility of the 

means of communication between the two. It is only the more 

recent advances in man-machine communications that have made 

the possibility of an efficient partnership between the two 

at all feasible. The first essential in such a situation is 

that the designer should have a powerful computing system 

immediately available to him. It must appear as if the com-

puting system is available "on-line" for his personal use. 

It is to be hoped that after the pioneering work on Project 

MAC at the Massachusetts Institute of Technology (see for 

example [32]) such facilities will soon be generally available. 

The second important requirement is that there should be 

some means of exchanging information between the man and the 

machine in a form which can be readily assimilated by both. 

In distribution system design much of the system information 

is topological and geographical. It is therefore logical to 

demand some device capable of visual input/output via which 

the man and machine may communicate. Fortunately such devices 

have recently been made cornmereially available - though much 

research is still needed into the most efficient ways of using 

them. 

Such a computing system as has just been envisaged would 
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enable a fresh approach to be made to the 	of ad-hoc 

design, and hence to the use of the two-stage design algorithm. 

In this situation there would be no need to evolve long and 

complex design programs, and the two-stage design algorithm 

could be imrlemented with relatively little time-lag. In 

any particular case, the machine would display the actual 

system situation to the designer, who would draw in pictorially 

a number of possible alternative developments. There would be 

no need to ensure that all his suggestions were technically 

sound. It would be left to the comuter to perform the 

necessary checks (e.g. load flows, short circuit analyses, 

etc.) on the suggested systems, possibly accepting some, 

rejecting others, and referring marginal cases back to the 

designer. It might still be worthwhile to develop sufficient-

design programs for the computer to tackle certain standard 

recurrent situations (e.g. reinforcing a ring-main with a 

radial feeder from the surly substation) without referring 

to the designer. 

Another advantage of the "on-line" use of a computer 

wculd be that the designer would develop a far deeper under-

standing of the problem he was tackling. He would. be  made 

more aware of the significance of various factors in the de- 

sign orocess by being presented not merely with the end results 

of a long nrocess of comrutation, but by being able to monitor 

the intermediate steps also. The ease with which new ideas 

may be investigated should encourage the designer to explore 

the more unorthodox possibilities which he would previously 



- 87 - 

have neglected as being less likely to repay the labour of 

examination. 

Lest these prospects should seem to be Only dreams of 

the distant future, it should be pointed out that a compre-

hensive project on the use of a visual input/output device is 

scheduled to start shortly within the author's own depart-

ment. The nrospects of the University of Ediourgh obtaining 

powerfnl tt on_line u comuting facilities are also extremely 

rromising. Provided both these rrojects progress satisfac-

torily, it seems quite feasible that at least a limited form 

of man-machine on-line implementation of the two-stage desigfl 

algorithm could be brought to fruition within the next 2-3 

years. 
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9. Conclusions 

It is felt that. the ...o-stage design approach may, for 

certain long-term design problems, provide a useful compromise 

between methods of exhaustive or intuitive search, and methods 

in which the problem is viewed -)urely in terms of the mathe-

matics of oTtimisatjon. 

The first design study has given encouraging results, 

but a much more intensive investigation is required. Continued 

development is particularly necessary in the. design phase of 

the program. It is recommended that this should be directed 

towards a study of future system growth, rather than retro-

spective studies. 

It is possible that the full potential of this approach 

to long-term design can only be fully realised in conjunction 

with a powerful "on-line" computing system incorporating good 

visual input/output facilities. 
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satisfactory 

states 

I P12 	p22 

j 	 I 

Possible sequences of design states 

Fiure3 

for each design interval 

PIQ 

 

Design Algorithm 
Formulate a set of 
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I 	optimal design sequences 	 Stage 2 
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Basic flow-chart of the two-stage design algorithm 
Figure 4 



Initial Input 

bardat I last design Interval completed 

for each possible starting system 

I dubs I 

menews 

for-all new systems generated by menews 

I dubs I 

tralaff I 

*trach 

*uboch 

.ZEeppeat 

r epeat 

start next design interval 	*Indicates the three basic 
design routines 

Basic flow-chart of the design algorithm 
Figure (a) 



Routine Name Specification 

bardat Input basic area load data for new interval 

dubs Draw up list of supplies at each load point 
(i 0 e 0  units and corresponding trtf' 1 r sizes 

menews* Arrange supplies to meet now load points 
- generates a number of alternatives 

tralaff Assemble list of transformer loads and fault factors 

trach* Check transformer loads in normal and fault 
conditions 

uboch* Check line loadings in normal and fault 
conditions 

*Indicates the three basic design routines 

Key to flow chart of the design algorithm (5a) 
Figure (b) 



Assemble list of nodes of now 
load points 

Group nodes according to 
geographically nearest existing unit 

Sub-divide groups according to 
nearest 275(132)kV supply point 

F' 

for each group of new nodes 

1st Alternative 
Incorporate all new loads directly 

into nearest unit _ 
2nd Alternative 

(for each sub_group> 

Form new spur units connecting 
sub-groups to nearest supply 

point using least length cable 

I repeat 	 I 

L -- ____  
repeat 

Form new systems, using all permutations 
of 1st and 2nd alternatives 

Flow-chart of 	 for meeting new loads with spur designs 
Figure 6 



fault conditions 	I ,normal condit 

Fault rating allowance1 o 3 	 Fault rating allowance=100 

Find max fault factor in area I 	 Max fault factor=100 

for 

.1 	
I 

each trf 9r in area) 

compare (nominal ratingx fault allowance) \verload 
with (normal load x max fault factor) 

no overload 

- repeat 

return 

Compile list of tr'f'rs with mm 
fault factor 

for each trf 9r with min fault factor 

Simulate increase in tr 9 f 9r size 
Perform load flow on corresponding 
unit and store max line load of 

whole unit 

repeat 

Select tr'fr increase which gives 
min of max line loads 

Modify unit data, system and 
area lists accordingly 

repeat check on area with new trf'r] 

Flow-chart of ocholtrina o .to check loads on all transformers in an area 
Figure 9 



) 	(for each unit in system) 

Assemble list of areas of each node 
and corresponding normal loads 

Load flow - normal loads 

for each area served by unit 

Fail each other spur unit in area, 
also ring-main tr ° fr lith max 

fault factor 

Load flow - fault conditions 
Store max of all cable loads 

rpat 

repeat 

f no cable over 

overloads 

Overload correction 

spur unit 

ring-main' unit 

Vuloch rmflo °  
Check load flows with 

cables failed 

repeat 

1 
Flow-chart of 'uloch' to check loads in unit cables 

Figure 10 



Equipment discarded at age t 
Method 

of Type (a) Type (b) 

Costing Abandoned Re-utilisable elsewhere 

10 Single Capital *Do nothing Sell for V 	- function of age 

Investment  

2 	Equivalent Continue instalments 
Annual to end of life *Stop paying instalments 

Instalments Pay back now - loss V 
a function of age 

*Chosen costing methods 

Choice of costing methods 
Figure 11 

Scan system list - allocate storage 

( for each interval in period 

for each starting state in previous 
interval 

for each new state in current interval 

Transition Cost Routine 
Evaluate conversion and operating 

costs 

Total transition cost 
=conversion cost + 
sum of operating costs over 

whole period 

t 

repeat 

1' reteat 

Set up dummy transition costs 
to one final end state 

rDynamic Programming 
Analysis 

END OF STUDY. 

Flow-chart of cost analysis routine 
Pi crivrA 12 



List all units in new system 
Sum operating costs of new units 

List all units in old system 

Remove common units from both lists 

Transformer conversion costs 

Switchgear conversion costs 

Cost of laying new cables 

Sum conversion costs 

Flow-chart, of transition cost routine 
Figure 13 



Set expenses of initial states to zero 

or each successive interva 

for each state in interval 

for each state in previous interval 

Form sum of expense to previous state 
and transition cost; store if a minimum 

peat 

TStore minimum expense to this statel 
repeat 

repeat 

Minimum cost = expense to final state 

Trace back state sequence which 
lead to minimum cost 

f only best path is required 

'for each next best path 

for each linkin root of previous path, 

for each deviation from this link 

If less deviations have been 
considered than paths reqd. 

Compute cost of deviation 

If cost > max cost of deviat-
ions currently hold 

	

Replace current maxcost 	 Store new 
deviation by new one. Search 	 deviation 

for new max among modified list 

repeat 	14 

it  
repeat 

Find min of currently held deviations! 
Use this to compute next best path, 

then remove from deviation list 

reusat 

Print results of analysis 

14(a) Flow-chart of dynamic programming analysis 



FWW CHART OF 
routine dp analysis 

comment for n intervals, ti(p) states per interval, transition 
comment costs T(p,i,j) routine finds the npath cheapest state 
comment sequences, places min cost in Cost, extra cost for 
comment subsequent alternatives in Excost, and details of sequences 
comment in path 
integer, p 	j,a,b,e,d,dev.max,min,nobas,sZ 
real Y Max, Mm, Cost, Z 
array Dmin(1td(n)+ti(n)) , Excost(lnpath), Extra(znpath) 
integer array path(1:npath,ln), def t  qe, is(2:npath) 
routine spec trace backpath(inte 	qr,$) 
routine spec print analysis 
real map D(integer p,i) 

52=addr(Dmin( 1) ) - 
comment set D for starting states to zero 

---------------------- cy 	4 cle i=1,ti(1) 
I 	 . D(1,i)=O? 

--------------- -------repeat 

- - - - ----------- - - ------ comment comptiteremaining D values  

----------------------cycle p=2,1n 
I 	 I 
I 	-----------------cycle j4,1,ti(p) 

I 	I 	 I 
II 	-----------cycle i=1,1,ti(p-1) 
I 	I 	I 	 Z=D(p-1,i)+T(p-1,j,j) 
I 	I 	I 	 I 
I 	I 	I 	 Y-Z?if ZuCY 
I 	I 	I 
I 	I 	-----------repeat 
I 	I 	 I 
1 	I 	 D(pj)=Y? 
I ----------------- rep eat 
I 	 I 
-----------------------repeat 

comment note details of best sequence 
Cost=D(n, 1)? 
Excost( i)=o 
trace back path(1n,i) 

->u if npath=1 ---------- > --------------------- > --------------------- >-------------------------- 
I 	 I 

comment find remaining next best sequences 	 - 
comment 'nobas' denotes first non-optimal step of last found sequence 	 I 
nobas=n? 	 . 	 I 
dev=1 	 I 
comment set costs of all next best sequences 	 I 

I 	 I 
----------------------

cycle b=2,1,npath 
I 	 Extra(b)=lalO 	 I 
----------------------repeat 

I 	 I 
------------------------ cla a=2,1,npath 	 I 

I 	 comment for each successive sequence, examine all possible deviations 	 I 
I 	 I 	 I 
I->5 !. nobas=1 ----------- > --------------------- > ------------- ------- 
I 	 I 	 I 	I 
I 	 d=a-1? 	 I 	I 
I 	 I 	 I 	I 
I 	-----------------cycle p=nobas-1-1,1 	 I 	I 
I 	I 	 j=path(d,p+1)? 	 I 	I 
I 	I 	 e=path(d,p) 	 I 	I 
I 	I 	 Y=Excost(d)-D(p+1,j)? 	 I 	I 
I 	I 	• 	1 	 I 	I 
I 	I 	---------- -cycle i=1,1,ti(p) 	 I 	I 
I 	I 	I 	 I 	 I 	I 
II 	I 	->4ifi=e  ---- ---------- )- --------------------- > 	-------------->--------- 	I 	I 
I 	I 	I 	 I 	 I 	I 	I 
I 	I 	I 	 dev=dev+1 	 I 	I 	I 
I 	I 	I 	 I 	 I 	I 	I 

->lifdev<npath --------- - ---------- ----------->--------------------- > 	 I 	I 	I 

I 	I 	I 	 Z=D(p,i)+T(p,i,j)+Y 	 I 	I 	I 	I 
I 	I 	I 	 I 	 I 	I 	I 	I 
I 	I 	I 	->4 unless Z(Max --------- )- --------------------- >-------------------- 

	

>----- --I-----I 	I 	I 
I 	I 	I 	 I 	 I 	I 	I 	I 
I 	I 	I 	 comment cost of current deviation less than max deviation stored, 	 I 	I 	I 	I 
I 	I 	I 	 comment replace maximum with current deviation 	 I 	I 	I 	I 
I 	I 	I 	 Extra(max)=Z? 	 I 	I 	I 	I 
I 	I 	I 	 def(niax)=d? 	 I 	I 	I 	I 
I 	I 	I 	 qs(max)=p? 	 I 	I 	I 	I 
I 	I 	I 	 is(max)=i? 	 I 	I 	I 	I 
II 	I 	 I---------------------' --------------------- <--------------- 	 I 	I 	I 	I 
I 	I 	I 	z:Max=-iaio 	 I 	I 	I 	I 	I 
I 	I 	I 	 comment find new maximum deviation 	 I 	I 	I 	I 	I 
I 	I 	I 	 I 	 I 	I 	I 	I 	I 
I 	I 	I 	 cicleb=a,1,npath 	 I 	I 	I 	I 	I 
I 	I 	I 	I 	I 	 I 	I 	I 	I 	I 

->3 unless Extra(b)>Max-->---------------------> ---------------------  

I 	I 	I 	I 	1 	 I 	I 	I 	I 	I 

I 	I 	I 	I 	Max=Extra(b) 	 I 	I 	I 	I 	I 
I 	I 	1 	I 	max=b 	 I 	1 	1 	I 	I 

II 	I 	I 	I---------------------< ---------------------<  -- 	 I 	I 	I 	I 

I 	I 	I 	---3:repeat  

I 	I 	I 	 I 	 I 	I 	I 	I 	I 

II 	I 	 ->4 ---------------------- > > >--I-----I-----I 	I 	I 

I 	I 	I 	 I 	I 	I 	I 	I 

I 	I 	I 	 I 	I 	I 	I 	I 

II 	I 	 I---------------------< ----------------------<  ----------  

I 	I 	I 	Udef(dev)zd? 	 I 	 I 	I 	I 

I 	I 	I 	 qs(dev)=p 	 I 	 I 	I 	I 
I 	I 	I 	 comment store first npath deviations as candidates for next 	 I 	 I 	I 	I 

-1 -----I---••I .--... 	. comment best sequences  

I 	I 	I 	 is(dev)=i? 	 I 	 I 	I 	I 

I 	I 	I 	 Extra(dev)=D(p,i)+T(p,i,j)+Y? 	 I 	 I 	I 	1 
I 	I 	I 	 I 	 I 	 I 	I 	1 
II 	I 	 -)Zifdev=npath --------- )- --------------------- >--------------------> 	 I 	I 	I 

I 	I 	I 	 I 	 I 	I 	I 

II 	I 	 I---------------------<---------------------< --------------------- 	 I 	I 

I 	I 	---------4:repeat 	 I 	I 

I -----------------repeat 	 I 	I 
I I I 1 I 
I I--------------------< --------------------- <----------------------< I 
I 5:Min=1al0 ! I 
I 

 
comment find min of all stored deviations as the next best sequence 	 I 

I 	 I 	 I 

I ----------------- -cycle b=a,1,npath 	 1 
I 	I 	 I 	 I 

1 	I 	 ->6 unless Extra(b)<Min--> --------------------- > --------------------- > -------------------- I 

I 	I 	 I 	 I 	I 

I 	I 	 Min=Extra(b) 	 I 	I 

I 	I 	 min=b 	 I 	I 

II • 	 I---------------------'----------------------<-----------------(------------------I 
I ---------------6:repeat 	 I 

I 	 ->10 i f  

I 	 I 	 I 	I 

I 	 comment store details of selected deviation 	 I 	I 

I 	 d=def(min)? 	 I 	I 
I 	 I 	 I 	I 

I 	-----------------cycle e=qs(min)+1,1,n 	 I 	I 

I 	I 	 path(a,e)=path(d,e)? 	 I 	I 
I -----------------repeat 	 1 	I 
I 	 I 	 I 	I 
I 	 trace back path(a, qs(min), is(min)) 	 I 	I 
I 	 Excost(a)=Min 	 I 	I 
I 	 nobas=qs(min)? 	 I 	I 
I 	 I 	 I 	I 
I 	 ->8ifmax=mi- ----------- - --------------------- ) ------------------- 

	

>--- 	 I 	I 
I 	 I 	 I 	I 	I 
I 	 comment delete selected deviation from list of candidates, 	 I 	I 	I 
I 	 comment and shorten list 	 I 	I 	I 
I 	 def(min)=def(a) 	 I 	I 	I 
I 	 qs(min)=qs(a) 	 I 	I 	I 
I 	 is(min)=is(a) 	 I 	I 	I 

I 	 Extra(min)=Extra(a)? 	 I 	I 	I 
I -'.9 ---------------------- > --------------------- > > 	 I 	I 	I 
I 	 I 	1 	1 	1 
I 	 I 	I 	I 	I 
I 	 --------------------- -c --------------------- - 	< 

	

--------I 	 I 	I 
I 	 8:Max=tal0 	 I 	 I 	I 
I 	 max=a+i  
II --------------------- - c --------------------- <-------------- 	c 	 3 	1 
-------- ------------ 9:repeat  

I 	 I 	I 
->11--------------------->---------------------> -----------------) ------------------ I-----I 

	

1 	1 

	

I 	I 
I --------------------- - c --------------------- < --------------------- ( ------------------- I 

- 	 I0:npath=a-1  
I--------------------- < --------------------- < ---------------------  ------------------------- 

11:printanalysis .- 	.. --- - 	,. --. ---- - 
return 

END OF FLOW CHART 

FLOW CHART OF 
routine trace back path(integer q,r,$) 

comment subroutine to trace best sequence from state s, interval r, 
comment back to starting interval, results stored as first part of qth 
comment next best sequence 
integer j,p,i,a 
real M,Z 

patb(q,r)=s 
j=s 

. 	. 	return if r=1 

------------------cycle p=r,-1,2 
M=lalO 

-----------------cycle i=1,1,ti(p-1) 
I 	 . Z=D(p-1,i)+T(p-1,i,j) 
I 	 I 
I 	 -).i unless Z<M ------- 	> --------------------- >------------ 

I 	 I 
I 	• 	 M=Z 
I 	 a=i 
I 	 I----------------- 

	<-------------------- < -------------------- -< ------------------------- 
--------------- 1:repeat 

path(q,p-1)=a 
j=a? 

------------------repeat 

end 

END OF FLOW CHART 

14(b) Computer-prepared flow-chart 

The dynamic programming best-sequence analysis routine 
Figure 14 



Rating 
cttt 

Pereet Total Installation Removal 

MVA Impedance Cost Cost Cost 

5 00058 6000 300 300 

705 
O  00075 7500 . 	 .350 350 

10 001 9000 450 450 
15 0001 16000 800 800 

15(a) Transformer details 

For use in:- Total Installation Removal 

Cost Cost Cost 

Spur unit 6000 300 300 

Ring-main unit, with 10000 500 500 

isolators and protective 

devices. 

15(b) Switchgear details 

Size 

sq 0  ins 0  
Rating 

MVA 

Impedance 

ohms/1000yd 0  
Cost 

per yd. 

Laying 

Charge 

03 20 1q24 9 2 

15(c) Cable details 

Transformer and switchgear input data, and cable data 

Figure 15 
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16a) Area groupings and loads: 1956, 1957, 1958 

Key:- 

	

29.75 	Area no. and load (MVA) 
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16(b) Area groupings and loads: 1959,  1960 
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ring-main policy 	 spur 
policy 

Successive development of designs - first design study 
Figure 17 



Key- 

Grid supply substation 

Load transformer 

New load transformer 

Load transformer increased in size 

Cable route 

---- New cable route (no 0  of arrows = no. cables) 

18(a) System (0,0) 
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18(i) System (6,3) 
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18(k) System (6,5) 
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- 	- 
18(1) System (6,6) 



18(m) System (6,7) 

Set of designs produced in first design study 
Figure 18 
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Sequence Cost(1000) 
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2 3919 
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Dynamic programming and best sequences 
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Extract from first computer output 

re 21 

RM UNIT 	1 REPLACED BY NEW UNIT 

PRINT OF UNIT 	464 
5 	1 	81 	91 	13023 

37 	45 	45 	57 127 
1 	1 	1 	1 	1 

0 	1 	1 	0 	1 	9 
81 	80 	32 	33 	34 	35 	38 151 	37 

1 	4 	2 	2 	10 	6 
37 	41 	43 	46 	53 	57 

0 	2 	1 	2 	16 	5 
81 	82 	47 	48 	45 

3 	4 	2 	2 	21 	8 
45 	48 	49 	5051 	52156 	57 

2 	3 	2 	2 	29 	2 
45 	45 

0 	5 	1 	1 	152 	12 
81 	82 	84 	83 	94 	95 	96 103 105 io6 126 127 

3 	5 	2 	0 	164 	11 

45 	48 	49 	98 	97 	96 	103 105 io6 126 127 
2. 169a -1 4 046a -1 00 000-99 0.000a-99 2 418 	-1 
3-006a 	0 6 o 579c 	1 6o582a -1 1 e 738a 	0 3 e 380a -1 
0 0 000a-99 10621a 	0 1 0 621a 	0 1.178a 	0 80325cx -1 
00000a-99-10000a 	3 10622a 	0 1 0 178a 	0 8 0 328a -1 

-20744a -1 0 0 000a-99-30221a -1 30112a 	0 60052a -1 
0 0 000a-99_0 0 000a-99 -20553a_-1_0 0 000a-99_20439a 0  

C}CK NEW SYSTEM 	379 	137 	119 
TRACH TRFR INCREASE - NODE 127, UNIT 379, NEW SIZE 

TEACH TRFR INCREASE - NODE 118, UNIT 137, NEW SIZE 

UNIT 640ADD RADIAL FEEDER NODE6NEw UNIT NO 75$—  
CHECK NEW SYSTEM 	464 	137 	119 

TEACH TRFR INCREASE - NODE 127, UNIT 464, NEW SIZE 

TEACH TRFR INCREASE - NODE i18, UNIT 137, NEW SIZE 

UNIT 967ADD RADIAL FEEDER NODE 	6NEw UNIT NO 1082 
CHECK NEW SYSTEM 	:379 	252 	119 
TEACH TRFR INCREASE - NODE 113, UNIT 252, NEW SIZE 

TRACH TRFR INCREASE - NODE 118, UNIT SIZE _1203,_NEW 

CHECK NEW SYSTEM 	4h4 	252 	119 

TRACE TRFR INCREASE - NODE 127, UNIT 464, NEW SIZE 

TRACE TRFR INCREASE - NODE 113, UNIT252, NEW SIZE 

NEW PERIOD 	1960 

STARTING STATE 	555 	755 	119 

2, NEW UNIT 'NO 555 
2, NEW UNIT NO 640 

2, NEW UNIT NO 876 
2, NEW UNIT NO 967 

2, NEW UNIT NO 1203 
2 9  NEW UNIT NO 1330 

2, NEW UNIT NO 1457 
2, NEW UNIT NO 15t8 



Time intervals 

States formed 

Possible 	 by policy 1 
alone 

Design 
States formed 

States 	 by policy 2 
alone 

22(a) No mixed systems 

Time intervals 

JStates formed 

/ 	I policy 1 
(then policy 2 / 

/1 	/1 States formed 

Possible 

Design 	

by policy 1 
alone 

States formed 
I by policy 2 
alone 

I States formed 

1 
States  

by policy 2 
then policy 1 

22(b) ,iviixed systeis with a single policy change 

Q-Q Development policy 1 
'I 	 11

2  

Note:- In a development program where a number of alternative new 
designs are put forvard at each step, each single growth 

00 should be replaced by 

0< 
Stages in the use of mixed policies for ad-hoc design 

Figure 22 
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ADoendix Al. DetJls of the DTnamic ro5zraThmifl 

(or Shortest Path) Otimisation 

Al.1 Alcrorithm for Determination of the 

Ontir 	State ecuence 

1et t 0 , t , -----, t represent the intervals of the 

design period (Fig. Al). Starting at reriod t., , consider in 

turn the policies which would give rise to each of the 

	in- 

'r 

 design states 	 P12 etc. The minimum cost 

involved in arriving at state F 10 , denoted by rn 1 : 0 , is simply 

the transition cost 00C 10  involved in changing from P 00  to 

P 0 . Thus rn 10  = 00C 10 . The remaining states of t 1  are 

similarly dealt with. 

To proceed to the next interval, t 2 , of the design period, 

the standard functional recurrence relation of dynamic oro-

gramming  may be used. Consider each design of the period t,,. 

Design 11 20  may be reached via any of the designs of period 

• In each case the total cost involved is the sum of the 

.inimum cost to reach the design of t 1 , plus the transition 

cost to reach P2Q in t 2 . Hence the minimum cost to reach P20  

= minimum of (m1 0 

(m 1 	+ c 20 ) 

(rn 10  ± 19c 20 ) 

This is repeated for every design state in period t 2 . Each 

interval is similarly processed until tk  is reached. If there 

are r_ 1  designs in interval n-1, the general formula becomes 

= min(m,7 _ 19 + 	C, ); 	j = 0, 1, -----, 

Finally at interval tk,  the optimal overall cost is 



given by the thinlmum of 

1 = O l ------ r J -•l 

Starting from the state at tk corresponding to the 

minimum cost, the step from tk_  which contributed to this 

cost may be found. Continuing in this manner, the comnlete 

seauence which gave rise to the optimal cost may be traced 

back to the s 1tarting state at t 0 . 

The number of comparisons (between one number and the 

sum of two other numbers) which must be performed during the 

process may be taken as an'indication of the quantity of com-

putation rebuire.d. Suppose there are r states in each of k 

intervals. Then.for the forward process there are r± r2 k-1)+r 

comparisons, and for the backward process r x k, giving 

(r 2 (k-l)±r(k+2)) in all, or approximately r 2  x k. 

A1.2 Algorithms for the Nth-best Path 

There are two possible methods of obtaining-not only 

the best, but also the 2nd, 3rd, etc. best secjuences:-

Al.2.l Extended Dynamic Pro gramming Method [27] 

This is a logical extension of the method of section 

Al.l. Insteadof computing at each stage merely the minimum 

cost mnL  to reach any particular design,, the N best values 

M 	(a = 1 5,  2, ----, N) are computed and stored. In this 
n La 

case each single comparison in the basic method of Al,l is 

replaced by N comparisons, giving approximately r 2  x k x N 

comparisons in all. 
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Al.2.2 :iethoa of Best Path Plus Alternativ e s [26, 281 

This method assumes that the minimum functions m r., L and 

the best sequence have been found, and then proceeds to gen-

erate the alternative sequences. (The term lp a tht? rather 

than "design sequence" will be used for the remainder of this 

section as it illustrates more clearly the relationship with 

the shortest path theory upon which it is based.) The follow -

ing brief description is based on the detailed analysis giver- 

in [28]. The slight variations from the approach of [28] gave 

an algorithm which was easier to program, and also slightly 

faster in use in cases where the number of alternatives required 

was small. 

Every path which is not a best path must be a deviation 

from the best path. (The possibility of different paths of 

equal length will be ignored. The analysis remains valid in 

the event of such an occurrence,) A link (i.e. a path between 

two successive points or states) is said to be non-optimal if 

it does not constitute part of the best path from the start-

ing point to the furthest end poiht of the link. A path from 

the starting point to -the finishing point is said to be a Qth 

order deviation, where Q is the number of non-optimal links 

in that path. The root of a path is defined as that part of 

the rath uo to, but not including, the first non-optimal link. 

In order to find the second best path it is. only necessary 

to find the shortest of all the first-order deviations (since 

this must be shorter than any 2nd or higher orderdeviation). 

The deviations of interest maybe made up, of (a)paths which 
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diverge from the best :path or never coincide with it, or (b) 

paths which converge onto the best path and continue along 

it. Type (a) oaths may be covered by investigating the 

shortest paths which end at all those states in tk  except the 

state on the best path. Their values (mk o., mk 2  in Fig. A2) 

are possible candidates to provide the 2nd best path, and 

are hence stored.. (These figures may arise from paths of a 

high order of deviation, but must include the best 1st order 

deviation if it is of te (a).) 

The type (b) deviations have then to be investigated. 

For interval t 	, consider those paths ending on all states 

of tkl  except that actuallyon the best. -path, and then 

joining the best path at tk 	Let ki 	
be the state in 

on the best path, k- L some other state in tk_ , and 

kb the state on the best path in tk.  The increased cost 

due to the first order diversion via ki, L is 

(mk, L + 	i, L Ck, b ) (mk, b) 

Hence the total costs of the paths diverted via the other 

states in tk_i  may be computed and stored. 

This is repeated for each interval until t 1  is reached. 

The cheapest of all the computedviatiofls must constitute 

the 2nd best path. 

For the 3rd best path it is necessary to find, the shor-

test of the 1st and 2nd order deviations (except of course the 

best and 2nd best paths). It is unnecessary to consider the 

2nd order deviations derived from the remaining 1st order 
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candidates for the 2nd best path, since each 2nd order devia- 

ion must be longer than the is t order deviation from which 

it is derived. It is only necessary to add to the list of 

1st order deviations those 2nd order deviations based on the 

2nd best path which has just been foTmed. This reauires a 

repetition of the nrocess described above for type (b) devia-

tions, performed on the root of the 2nd best path. The shor-

test of the paths from the augmented list will form the 3rd 

best path. This process may then be repeated in a similar 

manner to find as many of the next-best sequences as are re- 

quired. 

For a case of k intervals and r design states per inter-

val, the determination of each additional path requires 

% (kr) further comparisons, involving all deviations from 

the previously determined path. (The factor 	is an allow- 

ance for the increased reauirement of conaring the sum of 

three numbers With one other.) Thus N paths require 

(N-l) x %(kr) additional comparisons, giving 

r 2k.+ [(N-i)' x %(kr)] in all. Since it is not necessary to 

compute deviations from a whole path, but only from the root 

of each path, this figure is an over-estimate. On the other 

hand, certain subsidiary computations involving searches of 

a list of length N have also been neglected. 

Comparing this with the r 
2  k + (N-1)r 2k comparisons re-

auired by the method of extended dynamic programming, it can 

be seen that the second method requires less computation 

provided 
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(N-1)Y rk < (N-1)r 2 1 

i.e. % 

Since this condition was always satisfied, the second method 

was adopted for use in this study. The implementation of the 

algorithm is described in section 6,2.2. 
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Auiendix A2. The tlL aynewsnuru Problem 

A2.l Simulified PeDresentatiOfl 

The tniaynew spur subroutine was written to generate 

solutions to the following problem - given the geographic 

location of a supply substation and of a number of load 

substations, how should the load substations be connected 

into spur units so that a minimum length of cable is used? 

(A spur unit was defined in section 5.2 as a group of substa-

tions connected in series, one end of the series being 

connected to the supply substation, the other unconnected.) 

This is a simplified form of the problem as it arises in 

practice. Some of the possible complications, and the modi-

fications required to the method of solution will be given 

in sections A2.2 and A2.3 

An initial attempt was made to transform the problem into 

a linear programming problem of the "trans-shipment" type, 

where a cable could be looked upon as a shipment of goods 

from one substation to another, the cost being proportional 

to cable length. However, certain factors prevented such a 

transformation: - 

(i) There is no clear distinction between "source s' and 

"destination" for the substations at either end of a 

cable. 

There appeared to be no way of preventing the for-

mation of closed rings of substations. 

Although most substations have two cables laid to 

them, substations at the ends of sours, and the supply 
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substation are exceptions to this. 

It was then realised that the fact that most substations 

reauire two cables connected to them would allow the Droblefli 

to be transformed into one of the "travelling salesman" type. 

'In this t,-,De of rroblern a group of cities and the complete 

set of interconnecting distances is given, and it is reauired 

to find that route which, whilst visiting every city once and 

only once, and returning to the starting point, traverses the 

shortest th stance. The two cables entering and leaving a sub-

station may be regarded as the path takenby the salesman to 

visit the substation. 

There still remains the question of substations at the 

end of s -purs with. only one cable connected, and of the supply 

sudstation with any number of connected cables. Consider 

Figs. A4(a). and (b), where S is a supply substation, and A 

and B are two load substations. Suppose that the route 

S - A'->  B is being  evaluated for a travelling salesman.. For 

the case shown in Fig. A4(a), having traversed S -A, the 

remaining portion of the route is obviously A> B as indicated. 

This would also apply if a cable route for a spur was being 

evaluated. Consider Fig; A4(b) however. In the strict 

travelling salesman problem A - B is still the remaining 

portion of this route. But in the case of. cable routes, since 

S -> B is shorter than A -> B the obvious course in this case 

is to return to S (zero cost, since no cable laid), and lay 

a new spur S ->B (cost equivalent to distance S -B). 



This may still be regarded as the strict "travelling 

salesman approach however, if in the original input data 

the magnitude of distance A -> B is specified as the actual 

distance S -> B. Wherever in the resulting solution A -> B 

is specified, this mustbe interpreted as returning to 5, and 

then moving to B. Thus as far as computation is concerned, 

"travelling salesman" format is maintained, with both A and. 

B visited and left once each. 

It must he remembered that in the case of cable routes, 

after the final load substation is reached, there is no re-

turn to the surly substation. i.e. the ring of the sales-

man's route is left open. This was easily allowed for in the 

algorithm adopted for solution of the travelling salesman 

problem. 

A number of approaches to the travelling salesman pro-

blem have been suggested. The -method chosen was the appli-

cation of dynamic programming, which is fully described in 

[]. The chief reason for the selection of this method' was 

the comrarative ease with which a dynamic programming approach 

can frequently be extended to handle situations in which addi-

tional constraints are added to the original problem, without 

a complete change in the method of solution. This was to 

prove most useful when more complex situations were studied 

(see section A2.2). 

The method may be briefly summarised as follows. In the 

first stage select any starting city (i.e. load substation). 

Then comoute the set of distances corresponding to travelling 



from this city to each one of the remaining cities. 

e p e a t this taking every other city as a starting roint. 

In the second stage compute the minimum journeys starting 

 each city and ViS1t1 each other grou of t"o 	This 

reauires the use of the two-city journeys computed in the 

previous stage. This irocess is repeated stage by stage (i.e. 

from each city to each possible group of three, four, five 

etc.), until in thefinal stage all cities are included, and 

the best journey selected. The method is a direct applica-

tion of the usual functional recurrence equation of dynamic 

progrrnming (compare with section 3.2.1):- 

f(a; x 1 , x21  ----, 	 = minL'[(a -> x) 

+ f(xL; x , ----, x 	, 	, ----, 

where i = 1, 2, ----, n, and f(a, x) denotes the minimum 

journey from (a) visiting all the cities of set x. 

Fig. A5(a) shows a simple problem involving 4 load sub-

stations and a single supply substation. The corresponding 

distace table is givenin Fig. A5(b), with the corrected 

distances corresponding to a return to the supply substation 

marked by asterisks. Fig. A5(c) shows the stage by stage solu-

tion of the problem. (After the value of each,minimum func-

tion (f) the sequence which gave rise to this value has been 

recorded. It is not essential to carry this information 

forward. An alternative' method is to evaluate the minimum 

functions only, until the fall solution has been found, then 

trace backwards the sequence which gave rise 'to this solution.) 
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The solution - a single spur- is shown in Fig. A5(a). 

When the tnl aynewspurt subroutine was used within the 

body of the design algorithm, actual road routes were used, 

rather than the straight line paths shown in the examples of 

this appendix. 

For the small numbers of substations usually involved 

in individual 'problems it would generally have been more 

efficient to solve the problem of laying new spurs by the 

direct evaluation of all possible alternatives, but it was 

thought to be useful to have a routine capable of dealing 

with extreme cases. 

This simrlified approach to the problem was the one used 

in the main design algorithm of the long-term design program. 

In practice the problem is complicated by the load carrying 

limitation on the conductor used to form the spur units. It 

is auite possible for the tlaynewspur" subroutine to design 

spurs which would give rise to cable overloads with the given 

substation loadings. In the design program as written, this 

situation would then be corrected by the unit load checking 

routine (section 5.2.6), which would split an overloaded spur 

into two smaller units. But it does not follow that the re-

sulting solution is the optimum of all the solutions with 

accer,table cable loadings. A su'oseauent investigation  showed 

how the dynamic -or ogramming approach could be extended to 

determine the optimal solution when a maximum cable loading 

was also specified. This refinement was not incorporated- in 

the design algorithm, but since this problem is of general 
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interest to the electrical- sap Ply industry, it will be 

discussed in some detail in the following sections. 

A2.2 Cable Loading Restrictions 

Various approaches were considered to the :oroblem of 

laying new SDUYS when cable loading restrictions were also 

specified. The possibility of obtaining an optimal solution 

ignoring this facto±, and then applying corrections to 

alleviate any overloads proved to be unfruitful. Another 

approach also started from the ortimal solution to the simpli-

fied problem. If overloads were present in this solution then 

the second best solution could be determined, and so on with 

the succeeding next-best solutions, until the first alterna-

tive with no overloads was found. This was rejected as being 

comiiutationally inefficient, and also difficult to program. 

Fvidently what was reauired was a means of rejecting part-

solutions which involved overloads as they arose, rather than 

waiting for complete solutions to be formed and then checking 

for overloads. 

Consider a tynical roint.in the solution of the simpli-

fied problem in which f(A; BCD) is being evaluated - where 

function f is defined as in section A2.1. 

f(A; BCD) 	mm. of [(A - B) + f(B; cn)] 

[(A  ± r(C; BD)] 

(A  ±f(D; BC)] 

Now if cable loading is to be considered, then before 

[(A 	B) + f(B; CD)] is evaluated, it must first be decided 

whether substation A can be connected to the sequence (B; CD) 
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without causing an overload. This decision reauires a know-

ledge of the actual seouence of (B; CD) which corresponds to 

r(B; CD) - i.e. the history of how f(B; CD) was arrived at 

has to be known. As described in section 3.2, the use of a 

cost function involving system history would invalidate the 

dynamic programming procedure. 

In section 3.2.2 a discussion is given of how such a 

situation usually arises because the vector describing the 

system contains insufficient information. Obviously what is 

reauired in the resent case is the addition of another item 

of information to the description (B; CD) to denote the 

loading on ,the end of the sequence to which new substations 

will be added. For example, (B; CD io) would denote a load 

of 10 units on the cable supplying the start of this sub-

station sequence. Figs. A6(a) and (b) show examples of a 

sub-system (B; CD) with initial cable loads 10 and 4 respec-

tively, dependent upon the secuence of (B;. CD). Taking the 

case of (B; CD 10), if the load at A was specified as 5 say, 

then it is at once apparent that (A -> B) + (B; CD) would give 

rise to a group (A; BCD) with an initial cable loading of 15 

i.e. (A; BCD is).  Thus if a maximum cable load of less than 

15 has been specified, then the sequence (A 	B) ± (B; CD) 

would immediately be rejected. 

Thus a means has been found of rejecting within the 

optimisation process any solutions which would involve cable 

overloads. However, this has been obtained at the expense 

of 'a two-dimensional dynamic programming process - i.e. there 
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are now two eleients in the state vector. This means that 

the number of oossible states to be considered by, the pro-

gram is considerably increased. For example 

f(B; CD lO)= 86 

and f(B; CD 4) = 121 

are both possible candidates for the next stage of the o'otimis-

ation rrocess. Although the latter involves a' greater length 

of cable, the low cable loading might still enable a better. 

overall solution to be obtained in combination with a 

heavily loaded substation, which could not combine directly 

with the shorter alternative becuase of the loading restric-

tion. Thus an increase must be expected in the amount of 

comT.)utatiOn reauired to obtain a solution. The size of the 

increae will depend upon the ratio of average substation load-

ing to the maximum, permitted cable load. Provided this ratio 

is large (i.e. only a few substations can be permitted on 

any one spui,) then the number of possible loading combinations 

for each sub-group will remain comparatively' small. 

The use of a single sub-group with different loading 

conditions gives rise to another variation from the solution 

of the simplified problem. in the simplified problem, path 

A - B was replaced by A -> S ->:B (S denoting the supply sub-

station) where this was short€r. But when cable loading 

restrictions are included, paths (A -> B) + (B; CD) and 

(A -> S 	B) + (B; CD) must both be considered. Although the 

latter might involve a longer cable route, it will also give 

the solution with the minimum initial cable loading i.e. the 

load on A alone. 
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Fig. A7(a) shows the problem solved for the simpli-

fied case, but with substation loads and a maximum cable 

loading also specified. The distance table remains as for 

the earlier rroblem (Pig. A5(b)).  The stage by stage solu-

tion is given in Fig. A7(b), and the result has been shown 

on Fig. A7(a). (For the sake of convenience, the figure de-

noting the cable loading on each sib-group has been given CD 

after the actual substation sequence which gave rise to that 

corresponding solution, rather than within the sub-group 

label as above.) It will be seen that the computation re-

quired was approximately twice that of the simplified case. 

A2,3 Firther Extensions of the Method 

The previous section described a major extension of the 

dynamic programming approach to include a more realistic re-

presentation of the problem. Further minor extensions are 

also possible. 

A2.3.1 Several Snppl Points 

Problems may arise in which a group of load substations 

is to be supplied from more than one supply substatiOn. This 

factor may easily be included. The distance table is set up 

as if there were only a single supply point. For each load 

substation, the distance from this supply point is specified 

as the distance to the nearest of the actual supply sub-

stations. Theproblem is then solved in the usual way.  When 

the final solution is obtained, a route such as A -> S -> B 

will then be interrreted as A -> suprlypoint nearest B 	B. 
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An example is shown in Fig. A8 (a). In this problem an 

additional supply substation (s2) has been added to the other- 

wise unchanged specification of the previous example. The 

new distance table is given in Fig. A8(b), and the resnitant 

solution is shown on Fig. A8(a). 

In rds case no attempt is made to control the load shar- 

ing or maximum load of either supply roint. This aspect could 

be included by increasing the dimension of the problem yet 

again, to include in the state vectors the total loads so far 

reached on each supply substation. But the increase in com-

putation would probably be prohibitive.for any but the smallest 

of :problems. 

A2.3 	Cost of Switchear and System Losses 

In all the examples given above it was assumed that the 

only costs to be minimised were those of the system cables, 

and that these would be proportional to route len gths. 

Hoiever, there is no reason why other costs should not be 

included. in particular each separate spur will require a 

circuit-breaker at the suply substation. The cost of these 

circuit-breakers could be included by a corresponding increase 

in the cost of all routes from the load substations to the 

supply point. 

Another important factor to be considered is the cost 

of the power losses within the transmission or distribution 

system itself. To include the effects of these, it is 

possible to express the euipment costs (cables and switchgear) 

in terms of eauivalent annual instalments, and then to seek 
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to minimise the sum of the annual capital instalments plus 

tie yearly costs of the system rower losses. This aspect 

can also be included in thepresent approach to the probler:. 

A description is given in section .A2.2 of how the 

rii.nimu!fl functions f(B; CD) could be expanded to become 

r(B; CD L), where L is the corresponding load on any cable to 

B suprlying the group of substations. The value of L may be 

readily used to compute the power losses which would be 

incurred in any cable which is then used to supply this 

group. Suppose RAB denotes the yearly cost of losses which 

would be incurred in cable A -> B at: unit loading. Then in 

the determination of, for example, f(A; BOD), the minimum of 

functions of the type 

(A -> B) + f(B; CD L) + L RAB 

is required. 

As an illustration of this, the problem: shown in Fig. A7 

was re-solved taking these factors into account. Brief de-

tails of the costs used are as follows:- 

cable 0-3 sq. in. rated at 20 IvIVA, 33 kV 

Cost £9 per yard total; eauivalent annual cost 

(20 year life) £0-784 per yard. 

switchear a cost of £5000 per circuit breaker, eauiva-

lent to £436 per annum. 

cable power losses 37 - 8 kW11000 yards at 355 amPs. 

Assuming a cost of id. per kW hr., and average 

loads over a yearly interval of YI, of the maximum 

figures specified for each substation (Fig. A9(a)), 
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this becomes £0000838/yard/4nnum at I MVA maximum 

loading. 

Fig A9(a) gives the corresponding distance table, in 

units of 1000 yards, together with substation loadings (merely 

a re-scaled version of Fig. A7(a)). Fig. A9(b) gives the 

corresponding annual capital costs for cables and circuit-

breakers, and Fig. A9(c) the annual costs of losses in each 

cable at 1 MVA loading. The stage by stage dynamic programm-

ing analysis is given in Pig. A9(d). (in this analysis the 

suply of system losses was ignored in the calculation of 

cable loadings.) 

The solution turned out to be identical with that of 

the problem of Pig. AM),  in spite of th inclusion of the 

costs of switchgear and system power losses. The cost of. 

the Power losses formed- a significant portion of the total 

system costs, which might have been expected to favour a 

solution with more cable, but lower power losses. But this 

was balanced by the inclusion of switchgear costs, which. 

would tend to demand the minimum number of separate spur 

units. 
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Type Name Suffices Corresponding Information 

integer unno 
usri 

u 
•u 

No 0  of transformers or 'nodes' 
Indicator of 	spu 	or 'ring-main' type 

ussn u Location of 275(132)kV supply substation 
udim u Total length of this unit information list 
ucan u,i List of node locations ,  of transformers, 

i=1,2,- - -,unno(u) 
utrr u,i List of transformer sizes 
ucab u,i,j List of details of unit cables 

ucab(u,i 3 O)=noo of cables; i=1,- - -,ucab(u,1,0) 
j=1,2 end connection nodes 

=3,4 switchgear details for cable ends 
=5,6 location and length of cable route details 

real Ucap u Yearly capital charges on unit 
Uzac u,i Admittances of all cables connecting load tr'frs 

to supply node. 	i=1 9 2,- - - -,unno(u) 
Uami u,i,j Admittance matrix (ring-main type units only) 

• 	i,j=1,2,- - -,unno(u) 
Bella diagonal - actual admittance between nodes 
Above diagonal - inverse of admittance matrix 

Suffix u = unit identification number 

A3(a) Unit information and identifying names 
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A5(a) A four substation supply problem 

A 
[ 	

B C D 

S 100 5059 703 

A 3 q 41 4q 71 600 

B 100 A. 60 390 

C 100 z8i 

D 100 390 0-081 

Corrected cable routes 

A5(b) Problem distance table 



Stage 1 Stage 2 Stage 3 Stage 4 

f(A;13)=3 0 41 f(ABC)=8001(ABC) 
f(A;C)=4 0 71 f(A; BD) =731(ABD) f(A;BCD)=100 12(ABDC) 

f(A;D)=&oo f(ACD)=7052(ACD) 

f(;A)=1,00 f(B;AC)=5060(BCA) 
L(B;c)=40 60 f(B;AD)=4090(BDA) f(B;ACD)= 7 0 71(BDCA) 

f(B;D)=3090 f(B;cD)=b071(BCD) 
f (S ;ABCD) =110 12 

f(c;A)=1000 f(c;AB)=4041(CF3) (sABDc) 

f(C;B)=4048 f(C;AD)=3081(CDA) f(c;ABD)= 7 0 22(cDPB) 
f(c;D)=2081 I(CBL)=6071(CA)B) 

f(D;A)=1000 f(D;AB)=4041(DA13) 
f(D;B)=3090 f(D;AC)=3 0 81(DCA) f(D;ABC)= 7 0 22(DCAB) 
f(D;C)=2081 f(D;BC)=7 0 29(DBC)  

Solution = S -> A -> B -> D -> C ; length 1112 

A5(c) Dynamic programming solution 

A simplified olaynev,s pur e problem 
Figure A 
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Substation sequences with differing initial cable loads 
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A7(a) Four substation problem' with cable load restriction 

Stage 1 Stage 2 Stage 3 

(A;B)=3 0 41(AB 6) (A;Bc)= 9 0 00(ABSC 6) (A;BcD)=13097(ASBDSc 3) 
=40 48(ASB 3) = 9 0 08(ASBC 3) =13 0 09(ACBD 8) 

(A;c)=40 71(Ac 8) (A;BD)= 8.38(AsBD 3) 
-5 0 59(ASC 3) (A;CD)=11 0 74(ACSD 8) 

(A;D)=6 0 00(AD 10) =12062(AscSD 3) 
=7,03(ASD 3) =11 0 59(ADSC 10) 

(B;A)=1 0 00(BA 3) (B;Ac)= 5.71(BAC 3) (B;ACD)=12059(BADSC 3) 
(B;c)=406o(Bc 8) = 5 0 60(BcA 8) =1106o(BCAD 8) 

=5 0 59(BSC 3) (B;AD)= 7 0 00(BAD 3) = 9061(BDAC 10) 
(B;D)=3 0 90(BD 10) = 40 90(BDA 10) 

=7 0 03(BSD 3) (B;cD)=11 0 63(Bc5D 8) 
=12062(BscsD 3) 
= 9049(BDSC 10) 

(c;A)=1 0 00(CA 5) (c;AB)= 40 41(CAB 5) (c;ABD)= 9 0 38(CASBD 5) 
(c;B)=40 48(cB 5) (C;AD)= 7 0 00(CAD 5); 
(C;D)=7.03(CSD 5) (C;BD)= 8 0 38(cBD 5) 

(D;A)=1 0 00(DA 7) (D;AB)= 4Q 41(DAB 7) (D;ABC)=10 0 00(DABSC 7) 
(D;B)=3090(DB 10) (D;Ac)= 5 0 71(DAC 7) = 9 0 61(DBAC 10) 

=4048(DSE 7) (D;Bc)= 9 0 08(DSBC 7) 
(D;c)=5 0 59(Dsc 7) 

Stage 4 

(S;ABcD)=14.09(SAcBD 8) 
Solution = S-> A -) C ; S ->B -> D ; length = 1409 

A7(b) Extension of dynamic programming to two dimensions 

A laynewspur 2  problem with cable load restriction 



A8(a) Pxobleui with two supply substations 

A B C D 

Load 3 3 5 7 

/ 	s 1 0 00(sl) 4048(si) 505602) 3 0 02(S2) 

A 3,41 471 3 o02* 

B 1.00 I 46O 3 o 02* 

C 1 0 00* 4q 48 z81 

D 1,00 390 281 

' Corrected cable routes 

A8(b) Distance table - two supply substations 

A Qlaynewspur e problem with cable load restrictions and two 
supply substations 

Figure A8 



A B C D 

Load 6 6 10 14 

S 0.04 1,79 2.24 2081 

A  1.36 1.88 2b 40 

B 1.36  1.84 1.56 

C 1.88 1.84 1,12 

D 2.40 1056 1.12 

Maximum cable load 20 MVA 
Distances in units of 1000 yds. 

A9(a) Distance table 

A B C D 

S 0.750 1.840 2.193 2.640 

A i.o68 1.475 1,883 

B 0.750 :::><z:( 1.444 1.224 

C 
*75 1.444  0.878 

D *070  1.224 0.878 

Corrected cable routes 
/ 	Costs in units of p1000 

A9(b) Equivalent annual costs of cables and switchgear 

A B C D 

S 0.34 1050 1,88 2,36 

A ::::( 114 1.58 2.01 

B 
*34 

>( 1e54 1.31 

C 
*34 1.54  0.94 

D *034  1.31 0.94 >< 
Corected cable routes 

Costs in units of 1 

A9(c) Annual costs of system losses at 1 MVA cable loadings 



Stage 1 	I 	Stage 2 	 1 	Stage 3 

(A;BcD)=6 0302(ASBDSC 6) 
=6 0 099(ADSBC 20) 

(A;B)=1 0 109(AB 12) 
=1 0 894A5B 6) 

(A;C)=1.633(AC 16) 
=2 0 381(ASC 6) 

(A;D)=2 0277(AD 20) 
=3 0 103(ASD 6) 

(B;A)=0 0 726(BA 6) 
(B;C)=1 0 598(BC 16) 

=2 0381(BSC 6) 
(B;D)=1 0 481(BD 20) 

=3 0 103(BSD 6) 

(C;A)=0 0 762(CA 10) 
(C;B)=10499(CB 16) 

=1 0 894(csB 10) 
(c;D)=3 0 103(CSD 10) 

(D;A)=0 0762(DA 14) 
(D;B)=1 0 271(DB zo) 

=1 0 894(DSB 14) 
(D;C)=2 0381(DSC 14) 

(A;BC)=3 0 822(ASBC 6) 
=3 0 490(ABSC 12) 
=3 0 482(ACSB 16) 

(A;BD)=3 0 921(ASBD 6) 
(A;cD)=40736(ACSD 16) 

=5 0 484(ASCSD 6) 
=40 658(ADSC 20) 

(B;AC)=20469(BSAC 6) 
=20360(BCA 16) 

(B;AD)=3 0 161(BSAD 6) 
=2 0 243(BDA 20) 

(B;CD)=40701(BCSD 16) 
=5 0 484(BSCSD 6) 
=3 0 862(BDSC 20) 

(C;AB)=1 0 907(CAB 10) 
(C;AD)=3 0 161(CAD 10) 
(C;BD)=3.921(CSBD 10) 

(D;An)=1 0 907(DAB 14) 
(D;AC)=2 0 469(DAC 14) 
(D;BC)=3 0 822(DSBC 14) 

=3 0 652(DBSC 20) 

(B ;ACD) =50 542(BSADSC 6) 
=40759(BCAD 16) 
=3.950(BDAC 20) 

(c;ABD)=40 683(CASBD 10) 
=40 600cBsAD 16) 

(D;AEc)=4 0 288(DABsC 14) 
=3 0740(DBSAC zo) 

Stage 4 

(S;ABCD)=6 0390(SBDAC); 
Solution = S -> A -> C ; S -> B -> D : annual cost 16,390 

Costs in units of JIOOO 

A9(d) Dynamic programming solution 

A 2 laynewspur problem with the inclusion of switchgear and system loss costs 
Figure A9 
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