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Abstract 
Goats are an economically important livestock species providing a resource of 

meat and milk across the world. They are of particular importance in 

developing countries contributing to sustainable agriculture, alleviation of 

poverty and utilisation of marginal grazing. Recently, a highly contiguous 

refence genome (ARS1) of the domestic goat was released. However, gene 

expression information on the domestic goat is particularly limited when 

compared to other ruminants. Despite great genetic similarity, ruminants vary 

in their susceptibility to similar pathogens, but the underlying molecular 

mechanisms remain largely unknown. To elucidate the molecular basis of 

variation in disease response in small ruminants, a gene expression atlas of 

the domestic goat was generated from a subset of 22 tissue and cell types and 

compared to the previously developed sheep gene expression atlas.  

Fifty-four mRNA-Seq (poly-A selected) 75bp paired-end libraries spanning all 

major organ systems in the domestic goat were produced, generating a total 

of 8.7×108 paired end sequence reads. The tissues and cell-types sampled 

were all transcriptionally complex, with each expressing at least 50% of the 

total protein coding genes at detectable levels. 18,528 protein coding genes 

(out of a possible 21,343) had detectable expression in at least one tissue 

sampled, enabling the capture of 90% of the reference transcriptome. 

Additionally, of the 21,343 protein coding genes in the ARS1 reference 

transcriptome 7,036 (33%) had no informative gene name. Using the HISAT2 

annotation pipeline,  informative gene names were assigned to 1,114 (15%) of 

the previously un-annotated protein coding genes in ARS1, greatly expanding 

the previously available genetic and genomic resources available for goat. 

Using network cluster analysis, genes were assigned to specific biological 

pathways or cell populations based on expression profiles. Clusters of genes 

in the liver, gastro-intestinal tract and those involved in innate immunity are 

analysed and discussed in detail.  
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Additionally, a protocol to isolate goat bone marrow derived macrophages 

(BMDM) and culture them in the presence of macrophage colony stimulating 

factor (CSF1) was developed and optimized. The goat BMDM were 

characterised using light microscopy to confirm morphology as well as flow 

cytometry to investigate the cell surface markers. Flow cytometry results 

revealed that goat BMDM express CD14, CD16 and CD172a on the surface 

similar to sheep macrophages. When exposed to bacterial lipopolysaccharide 

(LPS), goat BMDM responded by inducing inflammatory cytokines such as 

TNF, interferon-associated genes including IFI6, IFIT3 and IFNG and 

interleukins such as IL10RA, IL12B, IL16 and IL1RAP similar to sheep BMDM. 

However, unlike sheep, goat BMDM produced detectable levels of nitric oxide 

(NO) post-LPS stimulation. The goat BMDM post-LPS stimulation were also 

analysed with RNA-Seq to reveal hundreds of upregulated genes further 

expanding the transcriptional data available for goat. 

Finally, the data generated from the network cluster analysis of the goat was 

used to run a comparative analysis with the larger gene expression atlas of the 

domestic sheep, revealing transcriptional differences between the two species 

which may underlie the mechanisms controlling disease variation. 
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Lay Summary 
Goats are an economically important livestock species providing meat and 

milk across the world. There are excellent genetic and genomic resources 

available for goats, including a highly contiguous reference genome, but the 

gene expression information available is limited compared to other livestock 

species.  

To support functional annotation of the goat genome and comparative 

transcriptomics with other livestock species, this project aimed to create an 

atlas of gene expression for the domestic goat. Using this resource in 

combination with other similar available resources for sheep gene expression 

in the two different species was compared. The outcomes of this project will 

greatly support effective breeding of the domestic goat and enable 

investigation on how goats differ from sheep and other livestock species 

especially in their immune response. 
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Chapter 1 Introduction 

 Improving the genomic resources for goats   
 

Section 1.1 of this chapter is adapted from the authors published work (Muriuki, 

Bush et al. 2019).  

Goats are an important livestock species across the globe and are of particular 

importance in tropical agri-systems contributing to sustainable agriculture, 

alleviation of poverty, social cohesion and utilisation of marginal grazing. The 

International Goat Genomics Consortium (IGGC) 

(http://www.goatgenome.org) has provided extensive genetic tools and 

resources for goats including a 52K SNP chip (Tosser-Klopp, Bardou et al. 

2014), a functional SNP panel for parentage assessment and breed 

assignment (Talenti, Palhière et al. 2018) and large-scale genotyping datasets 

characterising global genetic diversity (Stella, Nicolazzi et al. 2018). In 2017 a 

highly contiguous reference genome for goat (ARS1) was released (Bickhart, 

Rosen et al. 2017, Worley 2017), a year later in 2018 the ARS1 assembly was 

released on the Ensembl genome portal (Zerbino, Achuthan et al. 2018) 

(https://www.ensembl.org/Capra hircus/Info/Index) greatly facilitating the 

utility of the new assembly and providing a robust set of gene models for goat.  

RNA-Sequencing (RNA-Seq) has transformed the analysis of gene expression 

from the single-gene to the whole genome allowing visualisation of the entire 

transcriptome and defining how we view the transcriptional control of complex 

traits in livestock (reviewed in (Wickramasinghe, Cánovas et al. 2014)). Using 

RNA-Seq my lab group generated a large-scale high-resolution atlas of gene 

expression for sheep (Clark, Bush et al. 2017). This dataset included RNA-

Seq libraries from all organ systems and multiple developmental stages and 

provided a model transcriptome for ruminants. Analysis of the sheep gene 

expression atlas dataset indicated we could capture approximately 85% of the 

transcriptome by sampling twenty ‘core’ tissues and cell types (Clark, Bush et 

al. 2017). One of the main aims of my thesis was to recreate this resource on 
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a smaller scale for goat. This would provide a smaller, cost-effective, atlas of 

gene expression for the domestic goat based on transcriptionally rich tissues 

from all the major organ systems.  

In the goat genome there are still many predicted protein-coding and non-

coding genes for which the gene model is either incorrect or incomplete, or 

where there is no informative functional annotation. For example, in the current 

goat reference genome, ARS1 (Ensembl release 97), 33% of the protein-

coding genes are identified only with an Ensembl placeholder ID. Many of 

these unannotated genes are likely to have important functions. RNA-Seq data 

can be used to annotate them and assign function (Krupp, Marquardt et al. 

2012). With datasets of a sufficient size, genes form co-expression clusters, 

which can either be ubiquitous, associated with a cellular process or be cell-

/tissue specific. This information can then be used to associate a function with 

genes co-expressed in the same cluster, a method of functional annotation 

known as the ‘guilt by association principle’ (Oliver 2000). Using this principle 

for the sheep gene expression atlas dataset it was possible to annotate 

thousands of previously unannotated transcripts in the sheep genome (Clark, 

Bush et al. 2017). By applying this rationale to the goat mini-atlas dataset it 

would be possible to do the same for the goat genome.  

A high-quality functional annotation of existing reference genomes can help 

considerably in understanding the transcriptional control of complex traits such 

as immunity and contribute to further improvements in productivity. A 

substantial component of my thesis focuses on the transcriptional signatures 

of macrophages in goats and comparative analysis with sheep. Species-

specific differences in response to disease, or other traits, are likely to be 

reflected in gene expression profiles of immune cells. Sheep and goats are 

both small ruminant mammals and are similar in their physiology. They also 

share susceptibility to a wide range of viral, bacterial, parasitic and prion 

pathogens, including multiple potential zoonoses (Sherman 2011), but there 

have been few comparisons of relative susceptibility or pathology between the 

species to the same pathogen, nor the nature of innate immunity. 
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 An overview of Innate Immunity 
The immune system is a complex mechanism within an organism that protects 

against disease broadly classified into innate and adaptive immunity. It 

functions by distinguishing foreign material from self, identifying and killing a 

wide range of pathogens including viruses, bacteria and parasitic worms. 

Innate or native immunity is the evolutionarily primitive, and germ-line specific 

form of protection that acts as the first line of defence against pathogens. It is 

universal, antigen-independent and relatively non-specific, making it a more 

rapid response to infection. Native immunity is considered the most important 

form of protection, it does not depend on prior exposure to a pathogen and 

many organisms survive through it alone. Adaptive or acquired immune 

system is the second layer of protection against disease. It is characterised by 

its antigen-specific nature, dependence on memory of prior exposure to a 

pathogen and a time-lapse between exposure and full protection. In many 

instances, innate and adaptive mechanisms overlap. The focus of my thesis is 

the innate immune response.  

Innate immunity is constituted of physical, cellular and chemical components. 

The physical component is made up by the mucous membrane that covers all 

internal organs and poses a barrier against entry by pathogens and 

environmental contaminants. The chemical component is comprised of cell-

associated or soluble molecules known as pathogen recognition receptors 

(PRR) capable of recognizing pathogens via unique signatures collectively 

referred to as pathogen associated molecular patterns (PAMPs), as well as 

enzymes and peptide molecules which possess the ability to hydrolyse 

microbes. It also includes cytokines and chemokines e.g. IL-1, IL-6 and IL-8 

that are responsible for triggering and coordinating the immune response. The 

cellular component arm of innate immunity is made up of natural killer (NK) 

cells, T-cells, epithelial cells, mast cells, classical dendritic cells and 

phagocytic macrophages. Host-pathogen interactions are under continuous 

selective pressure from rapidly evolving pathogens, and as a result, the innate 

immune system has evolved to exhibit a high level of diversity across different 

species (Basset, Holton et al. 2003, Beutler 2004, Tosi 2005).  
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Pathogens can cross the anatomical barrier posed by the epidermis and 

penetrate into the tissue. In such situations, the interaction of the pathogen 

recognition receptors (PRRs) and pathogen through the PAMPs leads to 

activation of an immune response.  As a consequence, an acute inflammatory 

reaction occurs characterised by symptoms such as high fever. PAMPs are 

important elements of the microbial cell structure and have remained 

preserved across evolution. Lipopolysaccharide, also known as endotoxin, is 

a component of the cell-wall of gram-negative bacteria and is one of the well-

studied PAMPs, due to its stability, availability and the wide spectrum of 

biological responses it can elicit. In small doses, LPS renders a protective 

property, making an organism resistant to other pathogens, a condition known 

as endotoxin tolerance (Beutler 2004).  While in large amounts it 

overstimulates the immune response resulting in wide-spread sepsis-shock, a 

fatal reaction that can result in organ-failure (Dobrovolskaia and Vogel 2002). 

LPS has been used extensively in in vitro assays to mimic immune responses 

during infection. Studying gene expression profiles following exposure to LPS 

gives a good indication of how the organism responds to microbial infections 

(Dobrovolskaia and Vogel 2002, Fujihara, Muroi et al. 2003). The molecular 

mechanisms that regulate this phenomenon have been the basis of extensive 

experimental studies on LPS-mediated responses in mouse models, pigs 

(Kapetanovic, Fairbairn et al. 2012) as well as in humans revealing the large 

extent of alternative control systems. Little knowledge is available on the 

differential responses in ruminants (Dobrovolskaia and Vogel 2002, Nilsson, 

Bajic et al. 2006). During my PhD I aimed to fill this gap and advance our 

understanding of the ruminant immune response using functional genomics. 

The response of pathogen recognition receptors (PRRs) is crucial in 

determining the outcome of infection and is one of the main components of the 

innate immune system affected by stimulation with LPS. PRRs are either found 

on the surface of cells, in intracellular compartments or as soluble components 

in the blood and tissue fluids. They are associated with most cells of the innate 

immune system including macrophages, monocytes, granulocytes, mast cells 

and epithelial cells. They play a role in phagocytosis, opsonisation, induction 
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of apoptosis and the activation of inflammatory signalling pathways. There are 

different classes of PRRs from glycan and mannose receptors like 

macrophage mannose receptor (MRR), scavenger-type PRRs e.g. 

macrophage scavenger receptor (MSR), complement receptors like CR3, 

soluble receptors like CD14 and the well-studied toll-like receptors (TLRs) 

(Basset, Holton et al. 2003).  

Toll-like receptors are a type of transmembrane proteins embedded in the cell 

membrane and contain specific motifs in their structure crucial for the 

identification of PAMPs. They have been conserved through-out the evolution 

process, largely remaining unaltered across different species. Depending on 

their location in the cell and what they recognize, TLRs are broadly classified 

into groups. Group one are those expressed on the cell surface that mainly 

recognize microbes e.g. TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10. The 

second group is made up of intercellular receptors e.g. TLR3 TLR7 and TLR9 

which recognize nucleic acid components of pathogens. Activation of TLRs 

triggers two different signalling pathways: myeloid differentiation primary 

response gene 88 (MyD 88) dependent pathway and the interferon regulatory 

factor (IRF) dependent pathway. One of the most studied TLRs is TLR4 in 

response to LPS where it activates production of pro-inflammatory cytokines 

and chemokines e.g. IL-1, TNF, IL-6 and IL-8 which in turn recruit other 

components of the innate immune system and result in the development of an 

acute inflammatory reaction (Zarember and Godowski 2002, Beutler, Jiang et 

al. 2006, Kannaki, Shanmugam et al. 2011, Schroder, Masterman et al. 2012). 

 Macrophage biology 

 Mononuclear Phagocyte System 

The mononuclear phagocyte system (MPS) is a family of cells of the innate 

immune system made up of tissue macrophages, bone marrow precursors, 

circulating blood monocytes and dendritic cells (Hume, Ross et al. 2002, Hume 

2006, Hume 2008, Fairbairn, Kapetanovic et al. 2011). Tissue macrophages 

are ubiquitous in the body, making approximately 15% of all cells. They are 

known as Kupffer cells in the liver, langerhans in the mucosa, osteoclasts in 
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the bone, alveolar macrophages in the lungs, microglia in the brain among 

many other cells. Each of these resident tissue specific macrophages are 

functionally and biologically different (Davies et al. 2013). MPS cells participate 

in innate immune mechanisms as well as growth, development and 

homeostasis and share a lot of similar features especially their phagocytic 

activity. Differentiation and maturation of cells of the MPS is controlled by 

special growth factors e.g. CSF-1 and IL-34 both of which activate the 

macrophage colony stimulating factor receptor (CSF-1R). Regulation of blood 

monocytes and tissue macrophages through CSF-1R has been widely studied 

and shows great similarity across species suggesting that interaction between 

the ligands (CSF1, IL-34) and receptor is crucial for function of macrophages 

in immune responses (Hume, Ross et al. 2002, Hume 2006). For instance, 

CSF-1 knock-out mouse and rat models have huge inadequacies of tissue 

macrophages (Freeman 2014). In addition, blocking of CSF-1R with antibodies 

leads to reduction of tissue macrophage populations but not of monocytes 

(Rojo, Raper et al. 2019).  

Traditionally, tissue macrophages have been identified by use of specific 

macrophage surface markers e.g. F4/80 (Hume, Ross et al. 2002). Their 

development is considered to follow a linear pattern from pluripotent 

progenitors to committed myeloid progenitors, promonocytes, blood 

monocytes and eventually tissue macrophages. This view has however since 

been challenged by more recent studies which have since divided the MPS 

into distinct lineages, originating from either the yolk sac, foetal liver or bone 

marrow progenitor. Recent views have also questioned how much of the tissue 

macrophages derive from circulating monocytes, how frequent they are 

replenished and the life-span of the resident tissue macrophages in their 

respective tissues. Debate on the principle definition of MPS is still ongoing 

and experimental studies to investigate different features continue to be 

developed (Jenkins and Hume 2014).  

Each individual cell-type in the complex biology of a mammal, has its own 

unique transcriptional profile (Hume, Summers et al. 2010). Therefore, to fully 
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appreciate the role of macrophages in immune regulation and of the MPS in 

general, a transcriptomic approach is required. Despite the differing views on 

the concept of the MPS, its transcriptomic control has been widely studied in 

mouse and human including macrophage responses during disease (Freeman 

2014). Similarly, others have studied transcriptional responses in livestock 

species including pig (Fairbairn, Kapetanovic et al. 2011, Freeman, Ivens et 

al. 2012), sheep (Clark, Bush et al. 2017), water buffalo (Young, Lefevre et al. 

2019) and chicken (Bush, Freem et al. 2018). Investigation of transcriptomic 

control of the MPS in goat will help us to gain a better understanding of the 

complex genetic control of the immune system and how this varies between 

livestock species. 

 Transcriptomics of the MPS 

Genes with similar functions, are more often than not expressed together in 

specific cell or tissue types, and are under similar transcriptional control. As 

such, it is possible to infer the function of a gene by looking at the function of 

genes it is co-expressed with and those with which it shares transcriptional 

regulation. This is referred to as the principle of ‘guilt-by-association’ (Hume, 

Summers et al. 2010, Freeman 2014). Using this method however depends on 

the availability of a large amount of transcriptional data to have enough 

statistical power. Next-generation sequencing technologies such as 

microarrays, RNA-Seq and the development of advanced bioinformatics tools 

have enabled the acquisition and analysis of large-scale transcriptomic data. 

The mouse gene expression atlas created by Su et.al (Su, Cooke et al. 2002, 

Su, Wiltshire et al. 2004) revolutionized how these analyses were carried out, 

by measuring gene expression across multiple tissues and cell-types from 

humans and mice. Extensive transcriptomic analyses have also been 

undertaken by the Functional Annotation of the Mammalian Genome 

(FANTOM) consortium that aims to assign functional annotation to full-length 

transcripts (Consortium 2001, Exploration 2005). The analysis undertaken in 

these pioneering studies not only revealed clustering of genes with similar 

function but also those involved in similar processes e.g. genes encoding the 

cell-cycle, RNA and protein synthesis. Similar analysis has also been 



 8 

performed in the domestic pig (Freeman, Ivens et al. 2012), sheep (Clark, Bush 

et al. 2017), water buffalo (Young, Lefevre et al. 2019) and chicken (Bush, 

Freem et al. 2018) and, as mentioned above, one of the main aims of my PhD 

was to generate a gene expression atlas of the goat albeit to a smaller extent 

(compared to the sheep gene expression atlas), with a specific focus on the 

innate immune system and compare this across the transcriptome of sheep 

and other ruminants. This comparative analysis will help us to understand the 

species-specific transcriptional differences that underlie variation in 

susceptibility to pathogens. 

 Toll-like receptor polymorphism, genetics of disease 
resistance and their role in animal production 

Domestic ruminants e.g. cattle, sheep and goats all evolved from a common 

ancestor, the Caprinae lineage (sheep and goats) and diverged from the larger 

Bovinae up to 25 million years ago (MYA) while sheep and goats became 

distinct species about 4 MYA (Jiang, Xie et al. 2014). This close evolutionary 

relationship is also evidenced by the great genetic similarity and large number 

of orthologous genes shared. In addition, the first goat reference genome 

(CHIR_2.0) was assembled into scaffolds by anchoring its chromosomes onto 

the better studied cattle genome based on the great level of collinearity 

between goat and cattle chromosomes (Dong, Xie et al. 2013). Despite their 

great genetic similarity, ruminants vary in their susceptibility and resistance to 

pathogens. Mycobacterium bovis for example hardly causes disease in sheep 

despite prolonged co-grazing with cattle (Munoz Mendoza, Juan et al. 2012), 

while Johne’s disease caused by Mycobacterium paratuberculosis exhibits 

strain specific variation in pathogenicity between cattle, sheep and goats 

(Clarke 1997). The molecular mechanisms responsible for these phenotypic 

differences remain largely unknown. However, considering the great genotypic 

similarity, the phenotypic variations observed in disease susceptibility can be 

explained by non-orthologous divergence resulting in genes of different 

function, or a change in regulation of transcription of orthologous genes. 

Evidence of divergence of transcriptional control has been widely studied in 

the human and mouse models (Su, Cooke et al. 2002) and from this, 
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hypotheses can be formulated on the evolution of ruminant transcriptional 

control and TLR polymorphism. By performing comparative transcriptomic 

analysis of macrophages from goats with other livestock species, we will begin 

to elucidate these mechanisms and understand the evolution of immunity 

across different ruminant species.  

In addition to their role in immunity, TLRs have been implicated in other 

biological processes of animal production including ovulation, fertilization, 

gestation, parturition and spermatogenesis in males. Evidence also shows that 

they are involved in disease processes like mastitis and as such, genetic 

polymorphisms within TLRs can be targeted as markers for breeding programs 

(Tirumurugaan, Dhanasekaran et al. 2010, Kannaki, Shanmugam et al. 2011). 

Toll-like receptors although evolutionarily conserved, have been shown to be 

alternatively spliced leading to a variation in the signalling cascade of 

inflammatory response, one consequence of which is the different disease 

susceptibilities observed across species (Wells, Chalk et al. 2006). This great 

repertoire of varying innate immune responses is vital to the survival of 

populations under disease pressure.  

By investigating the innate immune responses in different livestock species, 

we will begin to understand the complex transcriptional patterns of toll-like 

receptor genes and the functional consequences this might have for disease 

susceptibility. By identifying key genes involved in the immune response in one 

species this is likely to highlight genes of interest in the other. These genes 

could be targets for gene editing or novel therapeutics to improve disease 

resilience in livestock.  

 Aims of this study 
The overall aims of this study were as follows: 

i) To improve the transcriptomic resources for goat by generating a 

mini-atlas of gene expression. This would provide a valuable 

resource for the livestock genomics community to complement the 

available genomic tools. 
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ii) Provide the first comprehensive characterisation of bone marrow 

derived macrophages (BMDM) from goat providing a methodology 

for culturing and characterisation and a detailed analysis of 

transcription post stimulation with LPS. 

iii) Examine the transcriptional basis for differences in the immune 

response between goats and sheep using comparative analysis of 

RNA-Seq data from macrophages from these two species. 

iv) Provide a foundation for further studies that will investigate 

transcriptional control of the immune response in both tropical and 

temperate goat breeds. 
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Chapter 2 A Gene Expression Atlas of the 
Domestic Goat 

This chapter is adapted from the authors published work (Muriuki, Bush et al. 

2019). 

 Introduction  
The aim of this chapter was to generate a gene expression atlas of the 

domestic goat from a subset of tissue and cell-types. The Hume lab in which 

this study was performed, has had a long-standing interest in elucidating the 

transcriptional landscape of multiple species by generating gene expression 

atlases such as for pig (Freeman, Ivens et al. 2012, Kapetanovic, Fairbairn et 

al. 2012), sheep (Clark, Bush et al. 2017), chicken (Bush, Freem et al. 2018) 

and water buffalo (Young, Lefevre et al. 2019). These studies have 

demonstrated the utility of a gene expression atlas to better understand the 

biology and genome-wide transcriptional regulation within cells and tissues 

and have provided a useful resource of data for comparative transcriptomic 

analysis studies. This history provides the premise under which the goat gene 

expression project was initiated, adapting methods and analysis pipelines 

developed for other species, particularly the sheep gene expression atlas 

project (Clark, Bush et al. 2017) to profile the transcriptional landscape of the 

domestic goat. 

Whole transcriptome sequencing using RNA-Sequencing has proven to be a 

high-throughput means of generating genome-wide gene expression data at 

increasing reliability and reducing cost (Wickramasinghe, Cánovas et al. 

2014). Pioneering work in large-scale gene expression projects (Su, Cooke et 

al. 2002, Su, Wiltshire et al. 2004) revealed the complexity of the genome and 

transcriptional control of gene expression using micro-arrays. More recent 

transcriptomics projects using Next Generation Sequencing (NGS) 

technologies such as FANTOM 5 (Andersson, Gebhard et al. 2014), the 

ENCODE project (Birney, Stamatoyannopoulos et al. 2007) and the GTEx 
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consortium (Mele, Ferreira et al. 2015) have provided great insight into the 

molecular mechanisms underlying human biology and disease. Similarly, the 

Functional Annotation of Farm Animal Genomes consortium (FAANG) 

(Andersson, Archibald et al. 2015) is aimed at providing functional genomics 

information, including transcriptomic data, to improve the annotation of the 

genomes of livestock and companion animals. This information will help the 

livestock genomics community investigate how variation in gene expression 

drives phenotypic diversity and the control of complex traits such as disease 

resilience and productivity. This study therefore contributes to the objectives 

of FAANG by providing comprehensive transcriptomic data on the domestic 

goat. We have generated a gene expression atlas to investigate transcriptional 

patterns in tissues and cell-types of the goat and to improve the annotation of 

the current reference genome ARS1 (Derek M Bickhart, Benjamin D Rosen et 

al. 2017).  

Transcriptomic analysis have previously been used to reveal the cell and 

tissue-type specificity of gene expression patterns (Krupp, Marquardt et al. 

2012) and genes encoding protein products required for a cell-specific function 

or pathway are more likely to be co-expressed. Based on the principle of ‘guilt-

by-association’, co-expression networks can be exploited to assign function to 

unknown genes (Oliver 2000, Hume, Summers et al. 2010, Mabbott, Baillie et 

al. 2010). An extension of this principle is that variants associated with a 

complex trait or phenotype tend to be located within sets of genes that are co-

expressed (Baillie, Bretherick et al. 2018).  This observation is critical in linking 

observable phenotype to gene expression by revealing the expression profile 

of candidate genes associated with key traits. For instance, the sheep 

expression atlas (Clark, Bush et al. 2017) was utilized to assign functional 

annotation to >1000 previously unannotated protein-coding genes in the OAR 

v3.1 sheep reference genome (Jiang, Xie et al. 2014). Similarly, the sheep 

mastitis study (Banos, Bramis et al. 2017) utilized the sheep gene atlas to 

assess expression of genes within candidate regions for mastitis resistance, 

further demonstrating the utility of a gene expression atlas as a resource to 
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identify genes involved in disease susceptibility and other physiological 

processes. 

Despite the recent release of a greatly improved and contiguous goat 

reference genome (Derek M Bickhart, Benjamin D Rosen et al. 2017, Worley 

2017), functional annotation of the domestic goat remains relatively limited 

compared to other ruminant species such as sheep and cattle, and thousands 

of genes have no informative gene name. As such the aim of this chapter was 

to generate an atlas of gene expression for goat that could improve the existing 

annotation and provide a resource that is useful to both the livestock genomics 

community and ruminant researchers more broadly.  
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 Materials and Methods 

 Animals 

This study was reviewed and approved by The Roslin Institute, University of 

Edinburgh’s Animal Work and Ethics Review Board (AWERB). All animal work 

was carried out under the regulations of the Animals (Scientific Procedures) 

Act 1986. All animals used in this study were sourced from the same farm 

following culling as part of normal husbandry routine. Six healthy males and 

one female crossbred goat, approximately five to six days old were used for 

this study.  

 
 Tissue collection 

A total of seventeen different tissues and two cell types (with two conditions 

for one of the types), spanning all major organ systems, were harvested from 

six males and one female crossbred goat. Based on prior knowledge from the 

sheep expression atlas (Clark, Bush et al. 2017), we sought to collect the most 

transcriptionally rich tissues to maximise the diversity and complexity of the 

transcriptome we could capture from a limited sample set.  The majority of the 

tissue and cell samples were collected from four male goats. Tissue from the 

nervous system and alveolar macrophages were collected from a different set 

of two males, and four tissue samples of the reproductive tract were collected 

from the one female.  Tissues were collected ensuring, where possible at least 

two biological replicates per tissue sample. The tissue samples were excised 

post-mortem in sterile conditions within one hour of death, cut into slices about 

0.5cm thick and infused in RNAlater (Thermo Fisher Scientific, Waltham, USA) 

to stabilise and protect cellular RNA before transporting back to the lab. Spleen 

tissue chunks and lipid-rich brain tissue were snap-frozen in dry ice, 

transported back to the lab on ice, and kept in a -80oC freezer for long-term 

storage. Tissue samples in RNAlater were stored in the cold-room at 4oC for 

short-term storage. Within one week, the infused tissue samples were 

removed from the RNAlater put in 1.5ml screw cap cryovials then stored at -

80oC for long-term storage and until RNA isolation. 
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 Cell isolation 

Alveolar macrophages were isolated from two male goats by pouring 200mL 

of sterile PBS (Mg2+ and Ca2+ free) into excised lungs. Cells were collected 

from the lung walls by gentle massaging and the lung contents collected in a 

sterile beaker using a funnel to pour. The lavage was repeated twice until the 

wash ran clear. The alveolar wash was aliquoted into 50mL tubes and placed 

on ice for transport back to the lab. Once in the tissue culture lab, the alveolar 

wash was filtered through 100uM cell strainers to remove debris and 

centrifuged at 400 × g for 10 minutes. The cell pellet was recovered and 

suspended in 50mL of pre-warmed goat media (RPMI 1640 supplemented with 

20% heat-inactivated goat serum, 5mL GlutamaX and 1.25mL 

Penicillin/Streptomycin), then counted on a haemocytometer. Alveolar 

macrophages were seeded in 6-well tissue culture treated plates (Nunc, 

ThermoFisher) in 2mL of goat media at a density of 2.0×106cells/mL. Cells 

were grown in the presence of recombinant human colony stimulating factor 1 

(rhCSF1, a gift from Chiron, Emeryville, CA, USA) at a final concentration of 

104 U/ml (100ng/mL) and plates incubated at 370C in 5% CO2 for 24hrs. Fully 

differentiated, cells were recovered by washing with 1mL Trizol Reagent 

(Invitrogen, Darmstadt, Germany) then collected in pre-labelled cryovials and 

stored at -80 oC until RNA isolation. The rest of the cells not used for culture 

were prepared for cryopreservation as described for pig (Kapetanovic, 

Fairbairn et al. 2012) by suspending in freezing media (90%FBS, 10%DMSO), 

slowly to avoid shocking the cells with DMSO and aliquoted at a density of 

5×107cells/mL per cryovial. The cryovials were stored in an isopropanol 

freezing unit (Mr Frosty) at -80oC for 24hrs to allow a slow reduction in 

temperature. The next day, cells were transferred to a -155oC freezer for long-

term storage.  

Bone marrow cells were also collected and differentiated into bone-marrow 

derived macrophages (BMDM). The isolation, culture and characterisation of 

BMDM is described in Chapter 3.  
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 Total RNA Isolation 

Before isolating RNA from the tissues, all surfaces and equipment were 

cleaned with RNase-Zap (ThermoFisher Scientific, UK) to remove all traces of 

RNases and nucleic acid contaminants. Total RNA was isolated from frozen 

tissue and cells using an organic method. Difficult to lyse tissue samples such 

those from the gastro-intestinal tract were homogenised using CKMIX (431-

0170; VWR, Radnor, USA) lysing matrix ceramic beads while soft tissues were 

lysed using CK14 (432-3751; VWR, Radnor, USA) beads. 1 ml of chilled Trizol 

Reagent (Invitrogen, Darmstadt, Germany) was added to 50-100mg of tissue 

and lysis performed on the Precellys 24 (Bertin Instruments) by pulsing at 

5000rpm for 20sec. Alveolar macrophage cells samples that had been 

collected in 1mL Trizol were lysed by mixing with a pipette. Following lysis, 

200ul of BCP (1-bromo-3-chloropropane) (Sigma) was added to the lysis tube 

and samples shaken vigorously for 15 secs, and then incubated for 3 min at 

room temperature. Tubes were centrifuged for 15 min at 12000xg at 4 oC to 

phase separate the homogenate into clear aqueous layer containing RNA, an 

interphase containing DNA and a red lower layer containing protein. The 

aqueous layer containing RNA was recovered carefully and cleaned using spin 

columns with the RNeasy Mini Kit (Qiagen, UK). The RNeasy Mini Kit Protocol: 

Purification of Total RNA from Animal Tissues and RNeasy Mini Kit Protocol: 

Purification of Total RNA from Animal Cells was used from step 5 onwards. 

Samples were eluted in a final volume of 50uL of RNase-free water. 5uL of 

sample was set aside for quality control checks while the rest of the sample 

was stored at - 80oC for long-term storage. This method is widely used and 

well reported to produce high yields and good quality RNA, without the need 

for precipitation (Grabmuller, Madea et al. 2015). 

 

 RNA quantification and quality check 

RNA quality was initially estimated by measuring 1uL from each sample on the 

NanoDrop spectrophotometer (NanoDrop Products, Wilmington USA), and 

assessing the absorbance readings at a wavelength of 260nm, 280nm and 
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230nm. To confirm NanoDrop readings, samples were also analysed on the 

Qubit RNA BR fluorometric quantitation (ThermoFisher Scientific UK) kit using 

the RNA Broad Range Assay on the Qubit 2.0 fluorimeter. A working solution 

of 200uL for each sample and standard was prepared by diluting the Qubit 

RNA BR reagent with Qubit RNA BR buffer at a ratio of 1:200. 190uL of 

working solution was added to 10uL of standard (two standards provided as 

part of kit) while 199uL of working solution was added to 1uL of each RNA 

sample. The tubes were gently vortexed, allowed to incubate at room 

temperature for 5mins and measured on the Qubit 2.0 fluorimeter after 

calibrating with freshly prepared standards.  

The RNA integrity number (RIN) was measured on the Agilent 2200 

TapeStation (Agilent Technologies, Santa Clara CA USA) using an RNA 

Screentape (5067-5579, Agilent Technologies), and following the 

manufacturer’s instructions. After diluting RNA samples with RNase-free water 

to attain a maximum concentration of 200ng, 1 µL of High Sensitivity RNA 

Sample Buffer (supplied with kit) was added to 2uL of diluted RNA sample, 

tubes vortexed at 200rpm for 1min then spun down to position the sample at 

the bottom of the tube. RNA was denatured by heating at 72 oC for 3min and 

then cooled on ice for 2min. Samples were loaded onto the Agilent 2200 

TapeStation instrument with the corresponding RNA Screentape and 

measured. 

 

 Library preparation and RNA sequencing  

Library preparation and RNA sequencing was performed by Edinburgh 

Genomics (Edinburgh Genomics, Edinburgh, UK). Libraries were run on the 

Illumina HiSeq 4000 platform (Illumina, San Diego, USA) and sequenced at 30 

million; 75bp paired-end reads per sample. All libraries were prepared using 

the Illumina TruSeq mRNA library preparation protocol (poly-A 

selected)(Illumina 2017). Briefly, oligo (dT) coated magnetic beads were used 

to purify polyA containing mRNA molecules which were then fragmented and 
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primed for cDNA synthesis. The first strand cDNA was synthesised by reverse 

transcribing cleaved RNA fragments with random hexamers. Actinomycin D 

was added to the synthesis mix to prevent pseudo DNA-dependent synthesis, 

only allowing RNA-dependent synthesis to improve strand specificity 

(Ruprecht, Goodman et al. 1973). The second strand cDNA was synthesised 

using DNA polymerase 1 and RNase H by replacing deoxythymidine 

triphosphate (dTTP) with deoxyuridine triphosphate (dUTP) to generate a 

double stranded cDNA molecule (ds cDNA). One adenine (A) nucleotide was 

added to the 3’ ends of the ds cDNA molecules and a corresponding thymine 

(T) nucleotide added to 3’ end of the adapter to provide a complimentary 

overhang to ligate the adapter to the fragment. The adapter-fragment chimera 

was hybridized onto a flow cell and using PCR, and only those fragments 

having adapter molecules on both ends were amplified. 

 

 Data processing 

Sequencing data was processed and analysed using methods and analysis 

pipelines developed for the sheep gene expression atlas (Clark, Bush et al. 

2017) and summarised in Appendix E. Kallisto (Bray, Pimentel et al. 2016) was 

used to calculate gene expression estimates as transcripts per million (TPM). 

Kallisto employs an algorithm to create an index of short sequences, known 

as k-mers, about 31 bases in length from a known set of transcripts comprising 

the reference transcriptome of the species being investigated. It then estimates 

expression levels from the reads directly without the need to align each read 

to each transcript, thereby greatly reducing the computing time and power 

required for analysis. For instance, approximately 30 million reads can be 

processed in less than ten minutes on a laptop  (Bray, Pimentel et al. 2016). 

The algorithm relies on the availability of a robust reference transcriptome and 

cannot reconstruct novel transcripts or splice junctions. To enable detection of 

novel transcripts using Kallisto, a ‘two-pass’ approach was applied to the 

Kallisto algorithm.  In the first ‘pass’, all raw reads from the sequencing were 

pseudo-aligned against the ARS1 goat reference transcriptome (Bickhart, 

Rosen et al. 2017) available from NCBI 
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(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_

ARS1/GCF_001704415.1_ARS1_rna.fna.gz). Output from the first pass was 

then parsed to create a revised version of the reference transcriptome for the 

second pass. The second pass included any transcripts missing in the 

reference transcriptome in cases where the annotation was incomplete. To do 

this, any reads that Kallisto could not pseudo-align were assembled de novo 

into putative transcripts and retained only if they could be robustly annotated 

(by, for instance, encoding a protein similar to one of known function) and if 

they showed coding potential. Additionally, transcripts with no detectable 

expression levels in any of the sequenced libraries were removed from the 

second pass as these were likely to represent transcripts that were highly 

restricted to a tissue that was not sampled or those in which the expression 

level was below the detection limit of the sampling depth used.  

To complement the Kallisto pipeline, the conventional alignment-based 

pipeline using HISAT2 (Kim, Langmead et al. 2015) and StringTie (Pertea et 

al. 2015; Pertea, Kim et al. 2016) was run in parallel. The HISAT2-StringTie 

pipeline was employed as a confirmatory validation of the estimates derived 

by Kallisto and to detect novel transcripts. 

 

 Network cluster analysis 

Miru (Kajeka Ltd, Edinburgh UK), a network analysis program previously used 

for the analysis of large transcriptomic datasets including sheep (Clark, Bush 

et al. 2017) and pig (Freeman, Ivens et al. 2012), was used to analyse the 

gene expression data resulting from this project. The Miru algorithm is based 

on an earlier program, BioLayout Express3D (Theocharidis, van Dongen et al. 

2009). The algorithm determines similarities between individual gene 

expression profiles by calculating a Pearson correlation matrix and rendering 

the output as a network graph in an interactive three-dimensional graphical 

interface.  Integrated within Miru is the Markov Cluster Algorithm (MCL) 

(Dongen and Abreu-Goodger 2012), that divides the network graph into co-
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expression clusters in which all of the members are correlated to all others at 

a pre-determined correlation coefficient. As discussed above, genes coding for 

proteins in the same biological pathway or cell type tend to be located within 

co-expression clusters. As such, it is possible to infer function of an unknown 

gene based on the known functions of genes with which it co-expresses (Oliver 

2000, Mabbott, Baillie et al. 2010, Freeman, Ivens et al. 2012).   

For data validation, and to ensure all samples were correctly labelled, firstly 

the output from Kallisto (Appendix A) was saved as a ‘.expression’ file and 

loaded into Miru where it was transposed and then clustered as a sample-to-

sample network graph using a Pearson correlation co-efficient of r=0.75 and a 

Markov Cluster Algorithm (MCL) inflation value of 2.2. No spurious samples 

were identified. Post validation, the ‘.expression’ file was manually curated 

using an iterative approach to ensure that a biologically relevant number of 

nodes and clusters was achieved. A suitable Pearson correlation co-efficient 

of r=0.83 and MCL inflation value of 2.2, pre-inflation of 6.0, and minimum 20 

nodes per cluster, was applied and the gene-to-gene network graph 

generated. Lowly expressed transcripts (≤ 1 TPM) were excluded from the 

gene-to-gene graph.  

 

 Cluster annotation 

Co-expression clusters were annotated visually based on the observed tissue 

or cell type specific gene expression patterns in Miru. Gene members in each 

cluster were searched for manually against the GeneCards database (Stelzer, 

Rosen et al. 2016) and Protein Analysis Through Evolutionary Relationships 

(PANTHER) (Mi, Dong et al. 2010). Each cluster was assigned a functional 

class and sub-class. This manual annotation method was supplemented by 

running Gene Ontology (GO) term enrichment analysis (Ashburner, Ball et al. 

2000) for the top 30 largest clusters using the R package topGO (Alexa and 

Rahnenfuhrer 2016). Finally, cluster annotations were confirmed by broadly 

comparing gene content with equivalent tissue and cell-specific clusters in 

other large-scale gene expression atlases for sheep (Clark, Bush et al. 2017) 

and pig (Freeman, Ivens et al. 2012).  
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 Results 

 Establishing the quality of RNA 

The ratio of absorbance at 260nm and 280nm (A260/280) was used to assess 

the purity of RNA, with a value of approximately 2.0 indicating ‘pure’ RNA and 

a lower ratio indicating presence of protein contaminants. As a secondary 

measure of purity, the ratio of absorbance at 260nm and 230nm (A260/230) 

was assessed. Pure RNA has absorbance values ranging between 2.0 and 

2.2, with lower values indicating contamination with carry-over phenol. As 

illustrated in Table 2-1, the A260/280 and A260/230 ratios for all the RNA 

samples isolated in this study were within the acceptable range and the RNA 

purity met the recommended requirement. Further, the integrity of the RNA 

assessed using the Agilent 2200 TapeStation machine (Appendix C) indicated 

that all samples had RIN values ranging between 7 and 10 reflecting a high 

level of purity.   

 

 Scope of the goat atlas dataset, sequencing depth and 
coverage 

The goat gene expression atlas dataset includes 54 mRNA-Seq (poly-A 

selected) 75bp paired-end libraries spanning all major organ systems ( 

Table 2-2).  Approximately 8.7×108 paired end sequence reads were 

generated in total. The tissues and cell-types sampled were all transcriptionally 

complex, with each expressing at least 50% of the total protein coding genes 

at detectable levels (Figure 2-1), ranging from alveolar macrophages which 

had the lowest transcriptional complexity (56%) to the testes which had the 

highest (75%) (Appendix G). 18,528 protein coding genes (out of a possible 

21,343) had detectable expression (TPM>1) in at least one tissue, 

representing 90% of the reference transcriptome, ARS1 (Bickhart, Rosen et 

al. 2017). This goat gene expression atlas expands on previously available 

goat RNA-Seq datasets (Dong, Xie et al. 2013, Bickhart, Rosen et al. 2017) by 

adding a new set of seventeen tissues and three immune cell types. 
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Table 2-1: Quantity and Quality measurements of isolated RNA from all 
tissue and cell-types 

Sample 
No. 

Sample 
ID 

ng/ul RIN 260/280 260/230 Date of 
Extraction 

Liver 
1 York 

Goat 1  
178.68 9.50 2.12 1.99 15/02/16 

2 York 
Goat 2  

2908.65 8.60 2.08 2.11 15/02/16 

3 York 
Goat 3  

752.31 8.60 2.07 2.25 15/02/16 

4 York 
Goat 4  

319.87 9.20 2.10 2.09 15/02/16 

Spleen 
5 York 

Goat 1  
4073.05 7.70 2.04 2.11 23/02/16 

6 York 
Goat 2  

2538.46 7.30 2.08 2.28 23/02/16 

7 York 
Goat 4  

2120.42 7.60 2.09 2.34 23/02/16 

Testes 
8 York 

Goat 1  
4455.89 9.10 1.85 2.05 17/02/16 

9 York 
Goat 2 

3429.12 9.40 2.07 2.21 17/02/16 

10 York 
Goat 3  

2046.73 9.30 2.09 2.31 17/02/16 

11 York 
Goat 4  

2448.05 9.40 2.10 2.28 17/02/16 

Muscle 
12 York 

Goat 1  
1852.97 8.90 2.10 2.31 01/03/16 

13 York 
Goat 2  

1337.97 8.80 2.09 2.31 01/03/16 

14 York 
Goat 4  

1803.1 9.10 2.09 2.24 01/03/16 

Adrenal Gland 
15 York 

Goat 1  
1160.78 9.50 2.10 2.30 01/03/16 

16 York 
Goat 2  

1005.04 9.10 2.09 2.27 01/03/16 
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17 York 
Goat 3  

1578.95 9.40 2.10 2.25 01/03/16 

18 York 
Goat 4  

2077.97 7.30 2.07 2.32 01/03/16 

Rumen 
19 York 

Goat 3  
1568.95 7.70 2.09 2.16 15/02/16 

20 York 
Goat 4  

1630.01 8.40 2.09 2.15 15/02/16 

Ileum+Peyers Patches 
21 York 

Goat 1  
2100.25 7.50 2.10 2.25 17/02/16 

22 York 
Goat 2  

4157.1 7.50 1.95 2.09 17/02/16 

Thymus 
23 York 

Goat 1  
4452.07 9.20 1.87 1.95 10/03/16 

24 York 
Goat 2  

3733.49 9.80 1.97 2.18 10/03/16 

25 York 
Goat 3  

3270.69 9.70 2.04 2.18 10/03/16 

26 York 
Goat 4  

3707.73 8.60 2.02 2.19 10/03/16 

Kidney Cortex 
27 York 

Goat 1  
3327.04 8.30 2.05 2.20 10/03/16 

28 York 
Goat 2  

1805.23 8.90 2.10 2.32 10/03/16 

29 York 
Goat 3  

2048.73 7.30 2.10 2.30 10/03/16 

30 York 
Goat 4  

2124.14 7.70 2.09 2.31 10/03/16 

Large Colon 
31 York 

Goat 1  
1277.45 7.50 2.11 2.28 17/03/16 

32 York 
Goat 2  

2024.15 8.90 2.11 2.28 17/03/16 

33 York 
Goat 3  

1716.41 9.00 2.10 2.30 17/03/16 

34 York 
Goat 4  

1913.33 8.30 2.11 2.26 17/03/16 
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Skin 
35 York 

Goat 1  
262.94 7.00 2.09 2.26 17/03/16 

36 York 
Goat 2  

188 8.10 2.08 2.19 17/03/16 

37 York 
Goat 3  

312.48 8.10 2.08 1.84 17/03/16 

38 York 
Goat 4  

361.8 7.60 2.07 1.97 17/03/16 

BMDM  
39 York 

Goat 2 
0hr 

392 10.00 2.07 2.07 30/11/16 

40 York 
Goat 2 
7hr 

322 10.00 2.06 1.87 30/11/16 

41 York 
Goat 3 
0hr 

286 10.00 2.08 2.05 30/11/16 

42 York 
Goat 3 
7hr 

264 10.00 2.03 1.85 30/11/16 

43 York 
Goat 4 
0hr 

520 9.60 2.10 2.13 30/11/16 

44 York 
Goat 4 
7hr 

548 9.90 2.08 1.93 30/11/16 

AM 
45 York 

Goat 6 
AM 

169 9.80 1.98 1.01 20/04/17 

46 York 
Goat 7 
AM 

159 9.70 2.02 1.93 20/04/17 

Cerebellum 
47 York 

Goat 6  
1790 8.30 2.11 2.37 24/04/17 

48 York 
Goat 7  

1260 8.50 2.13 2.39 24/04/17 
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Cortex 
49 York 

Goat 6  
1350 8.50 2.10 2.34 24/04/17 

50 York 
Goat 7  

664 7.00 2.13 2.29 24/04/17 

Reproductive organs 
51 York 

Goat 8 
Ovaries 

1320 8.70 2.12 2.27 03/05/17 

52 York 
Goat 8 
Uterus 

3420 8.40 2.11 2.26 03/05/17 

53 York 
Goat 8 
Fallopian 
tube 

3140 9.30 2.11 2.29 03/05/17 

54 York 
Goat 8 
Uterine 
horn 

1670 8.60 2.11 2.24 03/05/17 

 

 

 

 

Figure 2-1: Percentage of protein coding genes per tissue. All tissue and 
cell-types sampled for this project were highly transcriptionally active 
and expressed >50% of the total protein coding genes 
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Table 2-2:Details of tissues and cell-types sampled 

Tissue/Cell type Organ System Protein-

coding 

genes 

expressed 

(TPM > 1) 

% of 

protein-

coding 

genes 

per 

tissue 

No. of 

replicates 

Adrenal gland Endocrine system 13655 72.39 4 

Alveolar 

macrophage 

Immune system 10659 56.51 2 

BMDM  0 HRS Immune system 12193 64.64 3 

BMDM  7HRS Immune system 12038 63.82 3 

Cerebellum Nervous system 13899 73.69 2 

Colon large Digestive system 13679 72.52 4 

Fallopian tube Reproductive 

system(female) 

13432 71.21 1 

Frontal lobe 

cortex 

Nervous system 13880 73.59 2 

Ileum + Peyers 

patches 

Digestive + 

Lymphatic system 

14173 75.14 2 

Kidney cortex Urinary system 14161 75.08 4 

Liver Endocrine system 12630 66.96 4 

Ovary Reproductive 

system(female) 

13351 70.78 1 

Rumen Digestive system 12815 67.94 2 

Skeletal muscle Muscular system 12011 63.68 3 

Skin Integumentary 

system 

13785 73.08 4 

Spleen Immune system 13530 71.73 3 
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Testes Reproductive 

system(male) 

14244 75.52 4 

Thymus Lymphatic system 13403 71.06 4 

Uterine horn Reproductive 

system(female) 

13292 70.47 1 

Uterus Reproductive 

system(female) 

13286 70.44 1 

 

 Gene annotation and novel transcript discovery 

The proportion of transcripts (lncRNA, protein coding, pseudogenes etc), with 

detectable expression (TPM >1) in the goat atlas relative to the ARS1 

reference transcriptome is summarised at the gene level in Appendix H and at 

the transcript level in Appendix I. Of the 21,343 protein coding genes in the 

ARS1 reference transcriptome 7036 (33%) had no informative gene name. 

Using the HISAT2 annotation pipeline used for the sheep atlas project and 

described in (Clark, Bush et al. 2017) informative gene names were assigned 

to 1114 (15%) of the previously un-annotated protein coding genes in ARS1. 

These genes were annotated by reference to the NCBI non-redundant (nr) 

peptide database v77 (Pruitt, Tatusova et al. 2007). A short-list containing a 

conservative set of gene annotations, to HGNC (HUGO Gene Nomenclature 

Committee) gene symbols, is included in Appendix J. Appendix K contains the 

full list of genes annotated using the goat atlas dataset and annotation pipeline 

developed for the sheep atlas project (Clark, Bush et al. 2017). Many 

unannotated genes can be associated with a gene description, but not 

necessarily an HGNC symbol; these are also listed in Appendix L. Assigned 

gene names were manually validated on the full list using network cluster 

analysis and the ‘guilt by association’ principle. 
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 Network cluster analysis 

The gene expression estimates generated by Kallisto (Appendix A), were used 

to run the network cluster analysis in Miru. First a sample-to-sample network 

graph (Figure 2-2) was generated, which comprised of 54 nodes (each node 

represents a library generated for this project) connected by 213 edges 

(correlations above the set Pearson correlation coefficient R=0.75). All 

biological replicates clustered closely together, as expected, resulting in seven 

tissue-specific clusters and two cell-specific clusters.  One mixed cluster 

containing male and female reproductive organs, kidney and lymphatic tissue 

was observed.   

The gene-to-gene network graph generated by Miru, as described in section 

2.2.8, was large and highly structured (Fig 2.3). It comprised of 16,172 nodes 

(transcripts) connected by 1,574,259 edges (correlations above the set 

threshold, Pearson correlation coefficient of r=0.83). Based on the MCL 

algorithm, (MCL inflation value of 2.2), the gene network graph separated into 

75 distinct co-expression clusters, with the largest cluster (Cluster 1) 

comprising of 1592 transcripts (Fig 2.4). Only about 759 transcripts (4%) of the 

detectable transcripts (16,931) failed to cluster at this correlation (r=0.83) and 

as such were excluded from the resulting gene-to-gene network graph.  

The profile and gene content of the top thirty clusters, based on size, was 

examined in detail and clusters assigned a functional class based on the tissue 

or cell-types in which genes within each cluster had the highest expression 

(Table 2-3). GO term enrichment with TopGO was used to validate the 

assignment of functional class. A list of GO terms associated with each cluster 

are contained in Appendix B.
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Table 2-3:Tissue/cell/pathway association of the 30 largest network clusters in the goat gene expression dataset 

Cluster 

ID 

Number of 

Transcripts 

Profile Description Class Sub-class 

1 1592 Brain (Cortex>cerebellum) CNS cortex, neuronal function, synaptic transmission 

2 1017 Thymus>Spleen>Ileum Pathway Cell-cycle 

3 972 General House Keeping House Keeping 1, gene regulation 

4 467 Liver GI tract Liver, cholesterol homeostasis 

5 454 Testes Reproduction gamete generation, spermatogenesis 

6 405 Brain (Cerebellum>cortex) CNS cerebellum, signal transduction 

7 398 Skin Skin keratinocyte differentiation, skin development 

8 363 Fallopian Tube Reproduction motile cilia, flagella, ciliogenesis 

9 353 Skeletal muscle Musculature skeletal muscle 

10 281 Spleen>Ileum Immune B-cell activation, cytokine binding 

11 244 Rumen>Skin GI tract ruminal epithelium, epidermis morphogenesis 

12 243 Colon GI tract glycosylation, microvillus  

13 206 Adrenal Gland Endocrine steroid hormone biosynthesis 

14 191 Fibroblasts Fibroblasts angiogenesis, fibroblast proliferation 

15 160 Macrophages>Spleen Immune phagocytosis, pathogen recognition 

16 158 Kidney Early 

Development 

kidney development 
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17 155 General (highest in 

macrophages) 

House Keeping House Keeping 2, molecular chaperones 

18 129 Ovary Reproduction embryogenesis, sperm-egg recognition 

19 125 General House keeping House Keeping 3 

20 122 Kidney Renal uptake of intestinal bile acids, hepatic lipid metabolism 

21 105 General Pathway Krebs cycle, ROS metabolism 

22 102 General  House Keeping House Keeping 4, polyubiquitination 

23 100 General House Keeping House Keeping 5, protein synthesis 

24 97 Uterus Reproduction late embryogenesis, fertilization 

25 94 Ileum immune B-cell signalling, lymphatic system 

26 91 General Pathway Ribosome biogenesis 

27 86 LPS-inducible Immune LPS-binding, inflammatory response, cytokine 

signalling 

28 81 General  Pathway Mitochondrial 

29 67 General but not even Early 

Development 

Development 

30 65 General but not even House Keeping House Keeping 6 
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Figure 2-2:Sample to Sample network graph. The network graph shown 
here is the representation of the sequence libraries generated for the 
goat gene expression atlas project. Each node represents an individual 
tissue sample, and edges represent the connections between the 
samples, resulting in biological replicates clustering together to form a 
tissue cluster. The graph is comprised of 54 nodes and 213 edges 
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Figure 2-3:Gene to Gene network graph. A three-dimensional 
visualization of the Pearson correlation gene-to-gene graph of the 
expression data derived from analysis of goat tissues and cells. Each 
node represents a gene and the edges (lines) correspond to correlations 
between individual measurements above the set threshold. The graph is 
comprised of 16,172 nodes (genes) and 1,574,259 edges (correlations ≥ 
0.83). Using the MCL algorithm, groups of similarly expressed genes 
were connected forming tissue-specific co-expression clusters. 
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 Tissue-specific co-expression clusters 

The majority of co-expression clusters comprising the goat gene atlas 

contained sets of genes showing uniquely high expression signals in a specific 

tissue or cell-type (Fig 2.4A) e.g. liver (Fig 2.4B (i)), colon (Fig 2.4B (ii)) and 

muscle (Fig 2.4B (iii)). In each case, the likely function of unannotated protein-

coding genes within these clusters could be inferred by association with genes 

of known function that share the same cell or tissue specific expression 

pattern, through the principle of ‘guilt-by-association’. As observed in previous 

gene atlas studies such as sheep (Clark, Bush et al. 2017) and pig (Freeman, 

Ivens et al. 2012), some clusters, show very little evidence of tissue specificity 

and are commonly labelled as housekeeping clusters. These clusters contain 

a set of transcripts required for ‘generic’ cellular functions that are expressed 

at similar levels in all mammalian cells.   

The largest of the clusters (Cluster 1) contained 1,592 genes that were almost 

exclusively expressed in the central nervous system (cortex, cerebellum) 

reflecting the high transcriptional activity and complexity in the brain. 

Significant GO terms for cluster 1 included synaptic transmission (p<1.0×10-

30), axon development (p=2.2×10-22), locomotory behaviour (p=3.10×10-19), 

GABA receptor activity (p=1.2×10-7) and neurotransmitter receptor activity 

(p=2.1×10-5). Some other clusters had highly tissue specific expression 

patterns, including Cluster 9 (Fig 2.4B (iii)), which included genes associated 

with skeletal muscle function and development. One gene found within cluster 

9 was MSTN which encodes a protein that negatively regulates skeletal 

muscle cell proliferation and differentiation (Wang, Yu et al. 2012). Several 

myosin light and heavy chain genes (e.g. MYH1 and MYL1) and transcription 

factors that are specific to muscle including MYOG and MYOD1 were also 

found in cluster 9. GO terms for muscle were enriched in cluster 9 e.g. myofibril 

assembly (p=4.7×10-18) skeletal muscle tissue development (p=5.5×10-18), 

muscle system process (p=1.4×10-16), structural constituent of muscle 

(p=2.9x10-8) and actin cytoskeleton (p=5.2×10-12). Genes expressed in muscle 

are of particular biological and commercial interest for livestock production and 

represent potential targets for gene editing (Yu, Lu et al. 2016). Cluster 8 also 
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had a highly tissue specific expression pattern and included genes expressed 

in the fallopian tube with enriched GO terms for cilium morphogenesis 

(p=1.2×10-14), microtubule-based movement (p=9.7×10-12), motile cilium 

(p=1.5×10-9) and microtubule organizing centre part (p=2.5×10-5). A motile cilia 

cluster was identified in the fallopian tube in the sheep gene expression atlas 

(Clark, Bush et al. 2017) and a similar cluster was enriched in chicken in the 

trachea (Bush, Freem et al. 2018).   

Other tissue-specific clusters; e.g. 4 (liver) Fig 2.4Bi and 12 (colon) Fig 2.4Bii, 

25 (ileum), 11 (rumen) and 15 (macrophages) were similarly enriched for 

genes associated with known tissue-specific functions and these clusters are 

described in more detail below. 

 Liver cluster  

Cluster four (Fig 2.4B (i)) contained 467 transcripts showing highly unique 

expression in the liver, of which 336 had an informative annotation and 131 

had placeholder LOCUS IDs. The identity of the cluster was validated by 

expression of known liver-specific genes including serum albumin (ALB). The 

over-represented gene sets tested using Gene Ontology (GO) term 

enrichment analysis (biological process) (Appendix B) were consistent with 

known metabolic functions of the liver. A significant proportion of genes in this 

cluster were involved in such processes as oxidation-reduction process (p= 

5.7×1010), aromatic amino acid family (p= 3.4×10-10), cholesterol homeostasis 

(p= 4.4×10-9) and plasminogen activation (p= 1.0×10-8). Similarly, the GO 

terms (molecular function) associated with this cluster included peptidase 

inhibitor activity (p= 2.8×10-8), serine-type endopeptidase activity (p= 9.10×10-

8), lipoprotein particle receptor binding (p= 2.0×10-6) and fatty acid ligase 

activity (p= 6.7×10-6), while GO terms (cellular component) included 

extracellular vesicular exosome (p= 4.3×10-20), high-density and very-low-

density lipoprotein particle at (p= 6.7×10-12) and (p= 6.2×10-10) respectively. 

This cluster contained genes encoding numerous serine protease inhibitors 

(SERPINS) such as SERPINA10, SERPINA11, SERPINA7, SERPINC1, 

SERPIND1, SERPINF1 and SERPINF2, a considerable number of genes in 
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the solute carrier (SLC) gene family including SLC10A1, SLC27A2, SLC27A5, 

SLC2A2, SLC30A10, SLC39A5 and SLCO2B1 and notable rate-limiting 

gluconeogenic genes such as PCK, FBP1 and G6PC. The genes encoding 

growth hormone receptor (GHR) and its targets including insulin like growth 

factor binding acid labile subunit (IGFALS) and insulin like growth factor 

binding protein (IGFBP4) were also enriched in cluster 4. Growth promoting 

hormones play an essential role in hepatic liver metabolism (Fan, Menon et al. 

2009) and are therefore likely to be enriched in the liver of neonatal goats.   
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 The gastrointestinal (GI) tract  

The gastrointestinal tract tissues included in the goat expression atlas 

separated into three main clusters based on the three regions of the digestive 

system sampled: colon, ileum and Peyer’s patches and rumen. This separation 

of clusters was similar to that observed in a detailed analysis of the 

transcriptional signatures in the gastrointestinal tract of sheep (Bush, 

McCulloch et al. 2019). Each cluster was inspected individually to highlight 

genes and associated biological processes related to GI tract function as 

described below. 

2.3.5.2.1 Ileum and Peyer’s patches cluster 

 

Figure 2-5:Ileum cluster. Expression profile of the Ileum-specific cluster 

 

2.3.5.2.2 Colon cluster 

The gene expression pattern uniquely associated with the colon was observed 

in cluster 12 (Fig 2.4 (ii)). Gene set enrichment analysis revealed GO terms 

(biological processes) such as microvillus organization (p= 1.3×10-6), positive 

regulation of peptide hormone secretion (p= 9.6×10-5) and inorganic anion 

transmembrane transport (p= 1.7×10-4). The molecular functions of GO 
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associated with the colon cluster included serine-type endopeptidase inhibitor 

activity (p= 2.2×10-4), ion gated channel activity (p= 7.43×10-3) and 

acetylglucosaminyltransferase activity (p= 9.5×10-3) while cellular components 

comprised of brush border (p= 7.6×10-4), golgi membrane (p= 6.4×10-4), 

microvillus (p= 6.0×10-4), tight junction (p= 9.6×10-3) and myosin complex (p= 

2.2×10-2). Notable genes contained in the colon cluster included phospholipid-

transporting ATPases ATP10B and ATP8B1, mucin family genes such as 

MUC13 and MUC2, as well as protein disulphide isomerases (PDI) AGR2 and 

AGR3. Additionally, members of the myosin superfamily of genes including 

MYO15B, MYO1A, MYO7B, keratins such as KRT19, KRT20, KRT8 and 

KRTCAP3, a considerable number of SLC genes such as SLC13A2, 

SLC6A14, SLC12A2, SLC22A16, SLC26A3, SLC35A1 as well as membrane 

bound glycoprotein B3GALT5 and beta galactosyltransferases B3GNT3, 

B3GNT6 and B3GNT7 were enriched in the colon. 

2.3.5.2.3 Rumen cluster 

Cluster 11 included 244 genes showing very high expression in the rumen and 

minimal expression in the skin (Fig 2.6). The rumen epithelium and skin share 

similar transcriptional signatures as has been documented in other studies 

(Xiang, McNally et al. 2016, Bush, McCulloch et al. 2019). Some of the GO 

terms (biological processes) associated with this cluster included keratinocyte 

differentiation (p= 9.5×10-5) and establishment of skin barrier (p= 3.3×10-5), 

which are characteristic of a rumen epithelial signature. The molecular 

functions associated with the rumen cluster included such terms as serine-type 

peptidase activity (p= 1.3×10-4), peroxidase activity (p= 2.68×10-3) and 

phosphatidic acid binding (p= 7.72×10-3) while cellular components included 

cornified envelope (p= 1.5×10-4) and basal plasma membrane (p= 1.68×10-2). 

In concordance with the biological processes and molecular functions 

associated with the rumen cluster, notable genes enriched genes included 

members of the keratin family such as KRT4, KRT6A, KRT78 and KRTDAP, 

immune genes including IL17C, IL20RA and IL36B and the SLC gene SLC9A2 

(also known as NHE-2).  
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Figure 2-6:Expression profile of cluster 11 highest in the Rumen, with 
detectable signal in the skin 

 

 Cellular processes 

In addition to the tissue specific clusters, some of which are described in 

section 2.3.5 above, a few clusters showed ubiquitous expression across 

multiple tissues, albeit not at the same level in all tissues, indicating they are 

involved in a diverse range of cellular processes. For example, the second 

largest cluster (cluster 2) (Fig 2.7) contained 1017 transcripts with detectable 

expression across all tissues and cells but showed strong enrichment in the 

thymus, spleen and ileum. As revealed by gene set over-representation 

analysis (Appendix B), the GO terms (biological process) significantly enriched 

in cluster 2 included mitotic sister chromatid segregation (p= 3.5×10-19), DNA 

repair (p= 1.2×10-13) and centrosome cycle (p= 8.6×10-10). Some of the GO 

terms (molecular function) associated with this cluster included histone binding 

(p= 3.7×10-10) and DNA-directed DNA polymerase activity (p= 3.9×10-5) while 

GO terms (cellular component) included nuclear body (p= 8.2×10-19), 

chromosome (p= 4.0×10-16) and spindle (p= 1.2×10-17). Notable genes 

contained in cluster 2 included several RHO GTPases e.g. ARHGAP15, 

ARHGAP19, ARHGAP30, ARHGAP4 and ARHGAP45 involved in cell 
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migration, proliferation, and differentiation, actin remodelling, and G1 cell cycle 

progression, high mobility group (HMG) genes HMGN2, HMGN5, HMGB1 and 

HMGB2 and cyclins CCND3 and CCNJL. The cluster appears enriched for 

transcripts associated with cell proliferation which are enriched to the greatest 

extent in immune tissues (e.g. thymus, spleen and ileum). The frequency of 

cells undergoing mitosis in these tissues, particularly the Peyer’s patches, 

ileum and thymus of neonatal goats might explain the association of cell cycle 

genes with an immune signature (David, Norrman et al. 2003).  As expected 

with large co-expression clusters, numerous genes contained in cluster 2 

lacked meaningful names and were annotated with LocusLink (LOC) gene 

identifiers. 

 

 

Figure 2-7:Expression profile of the cell-cycle cluster 2 with detectable 
expression across all tissue but strongly enriched in the thymus, spleen 
and ileum 
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 Macrophage-associated clusters 

Some clusters showed strong association with the alveolar and bone marrow 

derived macrophage cells. Cluster 15 (Fig 2.8) showed highly specific and 

unique expression pattern in macrophages, with a stronger signature in the 

alveolar macrophages relative to bone-derived macrophages. The GO terms 

(biological process) associated with it included integrin-mediated signalling 

pathway (p= 3.1×10-5), osteoclast differentiation (p= 2.4×10-4) and 

phagocytosis (p= 7.0×10-4), GO terms (molecular function) included cytokine 

receptor activity (p= 1.9×10-3) and hydrogen-exporting ATPase activity (p= 

5.5×10-3), while the GO terms (cellular component) included immunological 

synapse (p= 9.7×10-5) and lysosome (p= 1.8×10-5). Colony stimulating factor 

CSF1 and CSF2RA encoding the receptor for CSF2 which is required 

specifically for AM differentiation (Shibata 2001, Schneider, Nobs et al. 2014) 

and CD44 which promotes the survival of fetal bone-marrow monocyte derived 

alveolar macrophages (Dong, Poon et al. 2018) were both found within cluster 

15. Other notable genes contained in cluster 15 include, myeloid differentiating 

protein LY96, CXCR4, IL7R, mitogen-activated protein kinase MAPKAPK3, 

scavenger receptor CD84, transcription factor MITF and toll-like receptor 

TLR8. Genes that encode major C-type lectins, a family of genes that play a 

role in inflammation and immunity such as CLEC4D, CLEC5A and CLEC6A 

were also found within cluster 15. Many of the genes that were up-regulated 

in AM in cluster 15, including C-type lectins CLEC5A and CLEC4A, have been 

shown to be down regulated in sheep (Clark, Bush et al. 2017, Bush, 

McCulloch et al. 2019), pigs (Freeman, Ivens et al. 2012) and humans (Baillie, 

Arner et al. 2017) in the wall of the gut. This highlights functional transcriptional 

differences in macrophage populations. AM respond to microbial challenge as 

the first line of defence against inhaled pathogens, while macrophages in the 

wall of the gut, where this response would be undesirable, down-regulate their 

response to microorganisms. 

Although genes contained in cluster 17 (Fig 2.9) showed detectable 

expression across all tissues and cells, they exhibited a stronger signal in the 

alveolar and bone marrow derived macrophages and appeared to be generally 
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constitutively expressed. The gene set enrichment analysis associated with 

cluster 17 revealed that the genes were involved in more generalized cellular 

processes, such as those related to molecular chaperones. Evidently, the GO 

terms (biological process) enriched in this cluster included ribosome 

biogenesis (p= 2.5×10-8), regulation of telomere maintenance via telomerase 

(p= 1.4×10-6) and internal ribosome entry segment (IRES)-dependent 

translational initiation of linear mRNA (p= 1.4×10-4). GO terms (molecular 

function) included RNA binding (p= 2.4×10-24), GTP binding (p= 7.96x10-3), 

and RNA helicase activity (p= 8.48×10-3) while GO terms (cellular component) 

included nucleolus (p= 1.0×10-23), cajal body (p= 7.10×10-6), and myelin 

sheath (p= 1.81×10-3).  

 

 

Figure 2-8:Expression profile of the macrophage phagocytic cluster 15. 
The subset of immune related genes belonging to this cluster showed 
higher expression in the alveolar macrophages than in the bone-derived 
macrophages 
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Figure 2-9:Expression profile of cluster 17 showing detectable 
expression across all tissues and cell types but enriched for in the 
alveolar and bone-marrow derived macrophages. Majority of the genes 
contained in this cluster were molecular chaperones 

 

Cluster 27 (Fig 2.10) contains numerous well-studied pro-inflammatory 

cytokines and chemokines which show induction following challenge of bone 

marrow derived macrophages with lipopolysaccharide (LPS). The GO terms 

associated with this cluster included inflammatory response (p= 1.4×10-10), 

cellular response to lipopolysaccharide (p= 9.10×10-9) and cytokine activity (p= 

4.40×10-10). Identification and analysis of LPS-inducible transcripts is 

described in detail in Chapter 3. 
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Figure 2-10:Expression profile of the LPS-inducible cluster 27
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 Discussion 

 General Overview 

The RNA-Seq data presented in this chapter, generated from six male and one 

female crossbred dairy goats captured approximately 90% of the goat 

reference transcriptome by quantifying gene expression across a diverse set 

of twenty tissue and cell-types, covering all the major organ systems. This 

dataset includes ten tissues unavailable in previous goat RNA-Seq projects 

(Dong, Xie et al. 2013, Bickhart, Rosen et al. 2017)  contributing a considerable 

new resource for functional genomics studies in the goat. Most importantly, 

this dataset provides a resource of tissue-specific gene expression patterns 

for goat, which can be compared with other livestock. 

The overall structure of the goat expression atlas was similar to that observed 

in other large expression datasets of sheep (Clark, Bush et al. 2017), pig 

(Freeman, Ivens et al. 2012), human (Ravasi, Suzuki et al. 2010, Andersson, 

Gebhard et al. 2014) and mouse (Su, Cooke et al. 2002) (Hume, Summers et 

al. 2010), where transcriptionally active tissues such as liver and brain 

comprised the largest co-expression clusters. However, the goat testes 

appeared to be less transcriptionally active than in other species (sheep and 

pig), presumably because the animals used in this study were neonatal and at 

this immature stage, the testes have yet to develop the specialized functions, 

and transcriptional complexity, unique to the adult testes. A detailed 

comparative analysis of gene co-expression clusters in goat and sheep has 

been carried out and discussed further in Chapter 4 of this thesis. 

The goat reference transcriptome (Bickhart, Rosen et al. 2017)  comprised 

21,343 transcripts. The goat gene mini-atlas generated by this project captures 

18,528 transcripts, approximately 90% of the transcriptome. This provides 

‘proof of concept’ that a mini-atlas approach can be utilized for global 

transcriptomics analysis, by selecting a small sub-set of transcriptionally rich 

tissues. The remaining 10% (about 2,815 transcripts) are likely to be highly 

tissue specific genes for a tissue not sampled e.g. from the eye, or transcripts 

with expression levels was too low to be detected at the sequencing depth 
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used (>30 million reads per sample). Similarly, the animals used in this project 

were neonatal from one time point during development and therefore 

transcripts with highly developmental stage-specific expression would not be 

captured by this analysis. Additionally, the gene level clustering carried out in 

Miru, excluded about 4% (750 transcripts) of the detectable transcripts based 

on their highly unique expression pattern. For example, the ARG2 gene 

despite showing substantial expression (estimated at 140 TPM in the alveolar 

macrophages (Appendix F)) failed to cluster with other immune related genes 

and was assigned as ‘no-class’.  Some of these cases arise because individual 

genes have multiple separate tissue-specific promoters driving expression in 

different tissues (Anderrson et al. 2014). A notable example in humans is 

SERPINA1 encoding alpha-1-antitrypsin, which has separate liver-specific and 

inducible myeloid-macrophage promoters (Baillie, Arner et al. 2017)). Of note, 

SERPINA1 expression is entirely liver-specific in sheep, and goat.  

Of the 75 distinct co-expression clusters obtained from the gene level network 

analysis in Miru, six housekeeping clusters were identified, a common 

occurrence in large graphs where a relatively low correlation threshold has 

been employed. The majority of the genes contained in them were 

unannotated with uninformative LOCIDs.   This is similar to observations made 

in the sheep and pig atlases (Freeman, Ivens et al. 2012, Clark, Bush et al. 

2017) and reflects the fact that most functional annotation has focused on 

tissue-specific genes with important functions leaving the majority of the 

housekeeping genes uncharacterised. To highlight the utility of the goat gene 

expression atlas, a sub-set of clusters are discussed in more detail below 

highlighting their role in ruminant physiology and immunity. 

 Role of the liver in gluconeogenesis and fatty acid 
oxidation  

The liver is the most important metabolic organ in mammalian animals and 

plays a crucial role in glucose and fatty acid homeostasis. It is estimated that 

up to 90% and 75% of glucose requirement in adult and neonatal ruminants 

respectively is provided by the liver through gluconeogenesis (Nafikov and 
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Beitz 2007). Hepatic gluconeogenesis is especially important in ruminants due 

to the uniquely low dietary glucose availability when compared to non-

ruminants. From the goat gene expression dataset, high expression of PCK1, 

FBP1 and G6PC transcripts encoding the rate-limiting gluconeogenic enzymes 

was detected. As expected, the liver-specific cluster contains GHR, encoding 

the growth hormone receptor, which controls somatic growth in part by 

regulating liver expression of insulin-like growth factor 1 (IGF1) (reviewed in 

(Chia 2014). GHR and its targets including IGFALS and IGFBP4 were also 

enriched in the liver, which was to be expected as growth promoting hormones 

play an essential role in hepatic liver metabolism and growth in neonatal 

animals (Fan, Menon et al. 2009). In dairy cattle the PDK4 gene, which 

encodes part of the pyruvate dehydrogenase complex was highly upregulated 

in the liver, and associated with increased gluconeogenesis from lactate, 

alanine and pyruvate (Laporta, Rosa et al. 2014). In contrast to the observation 

in cattle the goat data replicated the observations in the sheep atlas (Clark, 

Bush et al. 2017) showing higher expression of the PDK4 gene in the muscle 

than in the liver, consistent with a role in mitochondrial oxidation of glucose as 

well as gluconeogenesis.  

Peroxisome proliferator-activated receptors PPAR are known to be involved in 

multiple cellular processes including lipid catabolism, glucose homeostasis, 

inflammation and adipogenesis (reviewed in (Mandard, Muller et al. 2004). 

Natural PPAR ligands include fatty acids and eicosanoids. PPAR function as 

regulators of lipid and lipoprotein metabolism and glucose homeostasis and 

influence cellular proliferation, differentiation and apoptosis, and is highly 

expressed in tissues such as liver, muscle, kidney and heart, which are all 

tissues characterized by a relatively high rate of fatty acid catabolism, where it 

stimulates the beta-oxidative degradation of fatty acids (Braissant 1996).  

PPAR alpha is a master regulator of lipid metabolism in multiple species and 

has been shown to be highly upregulated in dairy cattle liver especially during 

winter gestation (Laporta, Rosa et al. 2014). The goat gene expression dataset 

demonstrates that, as observed in sheep (Clark, Bush et al. 2017), although 
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expression of PPAR alpha gene can be detected in the goat liver, its 

expression was highest in the kidney. The expression of PPAR alpha in both 

the kidney and liver in goat indicates the kidney is an additional important site 

for lipid metabolism.  

Several solute carriers showed significantly higher expression in the liver. 

Although the membrane-bound transporters encoded by the solute carrier 

superfamily have been well demonstrated in humans (Lei 2009), they remain 

poorly characterised in ruminants. In sheep, as in humans, the high capacity 

glucose transporter (SLC2A2) is most highly expressed in liver, kidney and 

intestine(Clark, Bush et al. 2017).  In the goat atlas, expression was higher in 

liver than in kidney or intestine, but this may reflect the juvenile status of the 

animals. Expression of fatty acid (SLC27A2, SLC27A5), amino acid (SLCA14) 

and bile acid (SLC10A1) transporters, consistent with roles of the liver in fatty 

acid metabolism, gluconeogenesis and cholesterol homeostasis respectively 

was detected. Additionally, multiple SERPINS such as SERPINA10, 

SERPINA11, SERPINA7, SERPINC1, SERPIND1, SERPINF1 and 

SERPINF2 were detected. SERPINS are a family of ubiquitous genes across 

a wide range of orgasms, involved in diverse functions including inhibition of 

proteases and controlling proteolytic cascades.  Many of these genes encode 

major plasma protease inhibitors, including inhibitors of enzymes of the 

coagulation cascade (e.g. SERPINA10, SERPINC1, SERPIND1) and have 

previously been shown to be enriched in human, pig and sheep liver  (Law, 

Zhang et al. 2006). The SERPINA1 transcript in the goat gene atlas was not 

initially annotated in the NCBI goat reference transcriptome used in this project 

(Bickhart, Rosen et al. 2017), instead identified by its locus placement ID 

LOC102185401 which as in sheep showed highest expression in the liver.  

There are fundamental differences in metabolism across species reflected by 

the diverse regulatory strategies employed to meet their physiological needs 

for maintenance and production, which are reflected in transcriptional 

differences between the species.  
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 Transcriptional profiling of the Goat GI tract 

Gene expression analysis of the gastrointestinal tract in the domestic goat is 

particularly interesting because goats are ruminants (like sheep and cattle) and 

have a complex digestive system. The sheep (Clark, Bush et al. 2017) and pig 

(Freeman, Ivens et al. 2012) atlas projects carried out extensive analysis of 

the gastrointestinal tract, collecting tissue from multiple regions. Despite the 

limited extent of the GI tract represented within the goat gene atlas (in 

comparison to sheep and pig), specific marker genes, correlated with the 

function of the three sampled regions were detected and detailed below. 

The GI tract is the largest surface area in the mammalian body exposed to 

external environment and the lumen of the GI tract is laden with pathogens, 

antigens and commensal bacteria. As such, it is important that a strong 

immune response is maintained at the intestinal epithelial barrier. It was 

therefore, not surprising that many immune related genes were expressed in 

the gastrointestinal tract. Expression of the majority of immunogenic genes 

was two- to threefold higher in the ileum and  Peyer’s patches cluster than in 

other GI regions. Similar observations were also made in the pig and sheep 

datasets (Freeman, Ivens et al. 2012, Clark, Bush et al. 2017). For instance, 

genes encoding the protein components of the B-cell receptor complex such 

as CD19, CD22, CD79B, CD180 and CR2 as well as interleukin genes IL26 

and IL21R and NFKB1D were expressed at high levels in the ileum and 

Peyer’s patches cluster. The gut associated lymphoid tissue (GALT) is one of 

the largest lymphoid organs comprising nearly 70% of the body’s lymphocytes. 

The aggregated lymphoid follicles which make up the Peyer’s patches are 

found throughout the ileum and form an integral part of the immune system by 

surveilling populations of intestinal bacterial and deterring pathogenic bacteria 

(Jung, Hugot et al. 2010). Other notable immune genes highly expressed 

within the ileum and Peyer’s patches cluster included SIGLEC10 an 

immunoglobulin mainly expressed on the cell surface and C-type lectin 

CLEC17A. However, unlike in the sheep and pig gene expression datasets 

(Freeman, Ivens et al. 2012, Clark, Bush et al. 2017), core components of cell-

cycle processes such as cyclins, DNA polymerases and kinesins were not 
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detectable within the ileum and Peyer’s patches cluster of the goat, and were 

instead identified within the wider atlas as cluster 2 and are detailed below. 

Together with the small intestine, the large colon is a major site for nutrient 

absorption in ruminants. Additionally, the colon plays a role in water and 

vitamin absorption from the digested material passing through, before 

excreting the remaining material as faeces from the rectum. A simple columnar 

epithelium lines the mucosa of the colon with a thin brush border and 

numerous goblet cells (Pelaseyed, Bergstrom et al. 2014). It was therefore 

unsurprising that gene members of the cadherin superfamily such as CDH17, 

CDHR2 and CDHR5 that function in mucus production (Suli et al. 2019)  were 

highly expressed within the colon cluster. Additionally, the presence of myosin 

genes MYO15B, MYO1A, MYO7B within the colon cluster could be related to 

the presence of the thin brush border in the colon (Yu, Planelles-Herrero et al. 

2017). Epithelial mucins such as MUC13 and MUC2 genes detected within the 

colon cluster belong to a family of secreted and cell-surface glycoproteins 

expressed by ductal and glandular epithelial tissue characteristic of that found 

in the colon. Similarly, as observed in the pig gene atlas(Freeman, Ivens et al. 

2012), KRT8 and KRT19, marker genes for columnar epithelium were enriched 

within the colon cluster. Associated with the role of the colon in nutrient and 

water absorption numerous solute carrier proteins such as SLC13A2, 

SLC6A14, SLC12A2, SLC22A16, SLC26A3 and SLC35A1 were detectable 

within the colon cluster. 

Lastly, the rumen is the primary site for microbial fermentation of plant material 

in ruminants. The rumen wall is a strong stratified epithelium related to skin, 

with multiple layers  and surrounded by a muscle layer to enable it contract to 

move and mix the rumen contents (Xiang, McNally et al. 2016). This was 

reflected in Fig 2.6 which shows transcriptional similarity in rumen and skin as 

well as the GO terms associated with the colon cluster such as keratinocyte 

differentiation (p= 9.5×10-5) and establishment of skin barrier (p= 3.3×10-5) as 

well as enrichment with numerous keratin family genes such as KRT4, KRT6A, 

KRT78 and KRTDAP. The lamina propria layer of the rumen hosts active 
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immune cells as reflected by the presence of several immune genes, 

especially those involved in innate immunity of the epithelium, including 

intestinal bacterial pathogens such as IL17C and IL17RE, IL20RA a subunit of 

the receptor for IL20 which is involved in epidermal function and IL36B which 

is part of the IL36 signalling system that is present in epithelial barriers such 

as in the rumen where it takes part in local inflammatory response. In relation 

to regulatory mechanisms in the different processes and layers of the rumen 

wall, several transcription factors showed significant expression within the 

rumen cluster. These included key epithelial transcription factors such as 

GRHL1, GRHL3 and OVOL1 involved in epithelial differentiation and 

proliferation and transcription factors involved in the Lipid/oxo-acid metabolism 

process such as TP63 and ZNF750. These observations correspond to other 

studies describing gene network analysis of the sheep rumen (Xiang, McNally 

et al. 2016). As observed in the sheep atlas dataset (Clark, Bush et al. 2017), 

the goat rumen cluster did not contain a lot of solute carriers, and only SLC9A2 

(also known as NHE-2) showed high expression within the rumen cluster. This 

is a key Na-H antiporter and has been shown to correlate to rumen-sodium 

transport.  

 Cell-cycle processes in the domestic goat 

The majority of genes within the cell-cycle cluster 2 were involved in mitosis. 

Mitotic cell division takes place in all eukaryotic organisms. It is achieved 

through a highly organised process in four phases, namely G1 (Gap phase), S 

(DNA replication), G2 and M (mitosis). The molecular mechanisms controlling 

the cell cycle and transcriptional changes associated with this process have 

been extensively studied in a wide range of species revealing high 

conservation (Giotti, Chen et al. 2018). Genes encoding for cell cycle 

regulators CDK1, CCNA2, CDC25A, CDC25B and CDC25C, known to play a 

role in the G2/M boundary were detected in within this cluster as were genes 

encoding for kinetochore proteins CENPC, CENPF, CENPH and CENPI. 

Additionally, numerous motor proteins such as KIF11, KIF14, KIF15, KIF18A, 

KIF18B, KIF201B, KIF200, KIF23, KIF2C and KIF4A were expressed with the 

cell-cycle cluster. Similarly, mitotic cyclins including CCNB2, CCNB3, CCND3, 
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CCNJL and BUB1 that are involved in the metaphase checkpoint were 

detected within this cluster. Several high mobility group (HMG) genes, a family 

of nucleosome binding proteins that bind to chromatin and modulate the 

structure and activity of chromatin, during the cell cycle such as HMGN2, 

HMGN5, HMGB1 and HMGB2  were detected within this cluster. The survival 

of cells across the body depends on proper progression through cell cycle, 

ensuring the correct transmission of genetic information to the newly formed 

cells. As expected, genes within this cluster were detectable across all tissues 

and cells reflecting that cell-cycle processes in all cells, but the enrichment in 

thymus, spleen and ileum may indicate that in the neonatal goat, these organs 

contain the highest proportion of mitotically active cells.  

 Innate and adaptive immunity 

As is the case in the sheep and pig gene atlases, multiple clusters in the goat 

expression atlas contained genes involved in innate immune responses. For 

example, cluster 15 contained numerous genes involved in phagocytosis such 

as LY96 which associates with toll-like receptor 4 (TLR4) and the macrophage-

specific surface marker CXCR4, that mediates the innate immune response 

against bacterial lipopolysaccharide (LPS) by inducing expression of the 

archetypal pro-inflammatory gene TNF. A detailed analysis of innate and 

adaptive immune responses in the domestic goat has been discussed in 

chapter 3 of this thesis while comparative analysis of goat and sheep is 

detailed in chapter 4. 
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 Conclusion 
This chapter describes the first detailed analysis of the transcriptional 

landscape of the domestic goat. As previously demonstrated in sheep (Clark, 

Bush et al. 2017), cattle (Harhay, Smith et al. 2010) and pig (Freeman, Ivens 

et al. 2012), gene expression atlases of livestock species are useful resources 

for functional annotation. Transcriptional profiles for goat varied across tissue 

and cell types, and we describe the expression pattern of genes involved in 

metabolism, rumination and immunity. The goat atlas dataset represents a 

model transcriptome for the domestic goat. The data generated by this project 

was used to improve the annotation of the goat assembly and incorporated in 

the most recent Ensembl genebuild for goat 

(https://www.ensembl.org/Capra_hircus/Info/Index), providing a resource for 

the livestock genomics community. We have generated a significant new 

dataset that provides the foundation for further work to investigate candidate 

genes for numerous complex traits in goats, in the same way the sheep gene 

atlas was utilized to identify candidate genes for resistance to mastitis (Banos, 

Bramis et al. 2017). 
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Chapter 3 Goat bone-marrow derived 
macrophages and their response to 
bacterial lipopolysaccharide 

 Introduction 
This chapter focusses on characterising goat bone-marrow derived 

macrophages and their response to challenge with bacterial 

lipopolysaccharide (LPS). As detailed in Chapter 1 of this thesis, the 

mononuclear phagocyte system (MPS) constitutes a major component of the 

innate immune system and acts as a first line of defence against invading 

pathogens (Hume, Ross et al. 2002, Hume 2006, Hume 2008). The maturation 

and differentiation of cells of the MPS including bone marrow progenitors, 

monocytes and tissue macrophages is controlled by hemopoietic growth 

factors particularly colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-

34).  

Lipopolysaccharide (LPS) is a major component of the cell wall of gram-

negative bacteria, and a potent activator of macrophages. Its recognition is 

facilitated through toll-like receptor 4 (TLR4) and CD14 found on the surface 

of mammalian cells that subsequently trigger the ensuing immune signalling 

pathways (Dobrovolskaia and Vogel 2002). LPS has been widely used in vitro 

to simulate infection and inflammation and enable investigation of innate 

immune responses. Studying the cascade of gene expression profiles in 

macrophages following stimulation with LPS has been the basis for 

understanding LPS-mediated responses in different species. For example, a 

deep analysis of the human MDM response to LPS revealed a sequential 

cascade of transient transcriptional activation over 48 hours (Baillie, Arner et 

al. 2017). This study and others highlighted the importance of inducible 

feedback regulation in limiting the duration and magnitude of the response to 

LPS. Other studies have compared the LPS response in human and mouse 

macrophages (Schroder, Irvine et al. 2012) and characterised transcriptional 
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networks in underpinning activation of mouse macrophages (Raza, Barnett et 

al. 2014). In livestock several studies have characterised the transcriptional 

response of macrophages to LPS in different species such as pig 

(Kapetanovic, Fairbairn et al. 2012), horse (Karagianni, Kapetanovic et al. 

2017), sheep (Clark, Bush et al. 2017), water-buffalo and cattle (Young, Bush 

et al. 2018). These studies in livestock have involved the isolation and culture 

of primary cells, such as bone marrow derived macrophages (BMDM), 

exposing them to LPS and subsequently characterising the immune responses 

triggered by analysing gene expression profiles.  

However, there is little knowledge available on goat bone marrow derived 

macrophages, and the study of innate immunity in the domestic goat has 

progressed relatively slowly compared to other livestock species. A previous 

study compared the regulation of inducible nitric oxide synthase (iNOS) in 

cattle and goat by isolating cattle and goat MDM before stimulating them with 

LPS (Adler et al. 1996). Another study isolated goat peripheral blood 

mononuclear cells (PBMC) to study the anti-viral immune response in the joint 

after infection with caprine arthritis encephalitis virus (Lechner and Peterhans 

1999). All previous studies have however used RT-qPCR to measure the 

expression of a small subset of genes. Using RNA-Seq, as for the livestock 

species mentioned above, we could provide a transcriptome wide profile of the 

gene expression in response to LPS in goat BMDM. As such the aim of the 

work presented in this chapter was to optimise culture methods used for other 

livestock species (Clark, Bush et al. 2017, Young, Bush et al. 2018) to establish 

a protocol for the isolation, culture and differentiation of goat BMDM and 

characterise their responses to LPS using RNA-Seq. The dataset we 

generated would enhance our understanding of the innate immune response 

in the domestic goat and provide a comparable dataset for cross-species 

immune transcriptomic analysis.
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 Materials and Methods 
The focus of this chapter is the characterisation of bone marrow derived 

macrophages (BMDM), from three male crossbred dairy goats, approximately 

six days old and their response to challenge with lipopolysaccharide (LPS) 

(Salmonella enterica serotype Minnesota Re 595). It follows similar protocols 

as described for the domestic pig (Kapetanovic, Fairbairn et al. 2012), sheep 

(Clark, Bush et al. 2017) and water-buffalo (Young, Bush et al. 2018) over a 7-

hour time-course treatment. This dataset comprises a significant component 

of the macrophage specific and LPS-inducible clusters within the wider goat 

gene expression atlas discussed in Chapter 2.  

 Animals 

This study was reviewed and approved by The Roslin Institute, University of 

Edinburgh’s Animal Work and Ethics Review Board (AWERB). All animal work 

was carried out under the regulations of the Animals (Scientific Procedures) 

Act 1986. Three healthy male crossbred goats, approximately five to six days 

old were used for this study (a subset of animals described in Chapter 2).  

 Cell isolation and cryopreservation 

The rib cage from each animal was removed, within two hours post euthanasia, 

and transported to the lab in zip-lock bags containing 2L of sterile PBS while 

kept on ice. Upon arrival, the ice was replenished, and ribs placed in the cold-

room overnight at 40C. All cell processing was performed under a tissue culture 

hood. Ten posterior ribs (five from each side) were stripped clean by scraping 

of the attached muscle and fat with PM40 knives, washed in 70% ethanol and 

cut into sections approximately 1 inch long. Bone marrow was flushed from the 

ends with a 10G needle using RPMI 1640 (Sigma UK) containing 5mM EDTA 

to prevent clotting and collected in a 50mL tube. The cell suspension was 

filtered through a 100-µm cell strainer to remove bone debris and centrifuged 

at 400xg for 5 mins. The supernatant was discarded, and cell pellet 

resuspended in 5mL of red blood cell (RBC) lysis buffer (10mM KHCO3, 

150mM NH4Cl, 0.1mM EDTA pH 8) and incubated in the dark for 5 mins. Sterile 

PBS was added to the RBC lysed cells to dilute the red cell lysis buffer and 
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cells centrifuged again at 400xg for 5 mins and supernatant was discarded. 

The cell pellet resuspended in 50mL goat media made of 400mL RPMI 1640 

(Sigma UK), 100mL goat serum (Sigma UK: G6767), 5mL GlutamaX 

(Invitrogen UK) and 1.25mL Penicillin/Streptomycin (25U/25µg/mL, Gibco) and 

cells counted with a haemocytometer.  

Bone marrow cells were prepared for cryopreservation as described for pig 

(Kapetanovic, Fairbairn et al. 2012) and horse (Karagianni, Kapetanovic et al. 

2017) by suspending in freezing media (90%FBS, 10%DMSO), slowly to avoid 

shocking the cells with the DMSO and aliquoted at a density of 5x107cells/mL 

per cryovial. The cryovials were stored in an isopropanol freezing unit (Mr 

Frosty) at -80oC for 24hrs to allow a slow reduction in temperature. The next 

day, cells were transferred to a -155oC freezer for long-term storage. This 

procedure of isolating cells from all individuals followed by cryopreservation 

enables downstream in vitro study of immune responses from multiple animals 

at the same time and in comparable culture conditions. 

 Cell culture  

The steps taken to establish and optimise the protocol for culture and 

differentiation of goat bone marrow derived macrophages (BMDM) are detailed 

in section 3.3.1. Briefly, bone marrow cells were recovered from 

cryopreservation as described for pig (Kapetanovic, Fairbairn et al. 2012) and 

horse (Karagianni, Kapetanovic et al. 2017). Each vial was rapidly thawed in a 

water bath (370C) for 2mins and the contents transferred to a 50mL falcon 

tube. 9mL of pre-warmed goat media (RPMI 1640 supplemented with 20% 

heat-inactivated goat serum, 5mL GlutamaX and 1.25mL 

Penicillin/Streptomycin) was added to the thawed cells, slowly in a drop-wise 

manner, to avoid shocking the cells. The tube was gently inverted a few times 

to mix the cells fully and then centrifuged at 400xg for 5 mins. Supernatant was 

discarded, and cells counted using a haemocytometer. After assessing the 

viability of the cells with Trypan Blue 0.4% (ThermoFisher), cells were plated 

on T75 polystyrene tissue culture treated plates (Nunc, ThermoFisher) at a 

density of 2.0x106cells/mL. Cells were differentiated in the presence of 
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recombinant human colony stimulating factor 1 (rhCSF1, a gift from Chiron, 

Emeryville, CA, USA) at a final concentration of 104 U/ml (100ng/mL) and 

plates incubated at 370C in 5% CO2 for 10 days.  

 LPS stimulation 

On day 11, adherent cells were gently detached from the plate using a cell 

scraper and washing with 10mL of warm media, taking about 4-5 rounds to 

recover all cells. Cells were centrifuged at 400xg for 5 mins and the 

supernatant discarded. Cells were counted and seeded in duplicate in 6-well 

tissue culture plastic plates (Nunc, ThermoFisher) ensuring each well had 

2×10
6
cells in a total of 2mL goat media + 20uL rhCSF1.  Plates were incubated 

overnight at 370C in 5% CO2 to allow cells to adhere onto the tissue culture 

plastic. The following day, cells were stimulated with LPS from Salmonella 

enterica serotype Minnesota Re 595) at a final concentration of 100ng/mL for 

7 hours. The 7-hour time point was chosen as it represented the peak 

activation of marker immune genes including TNF (Freeman, Ivens et al. 

2012), which was the only available dataset for a livestock species when these 

experiments where undertaken. Supernatants from each well were collected 

in cryovials and stored at -20 oC to enable measurement of nitrite using the 

Griess assay (see section 3.2.6). The adherent cells were recovered by 

washing with 1mL Trizol Reagent (Invitrogen, Darmstadt, Germany) then 

collected in pre-labelled cryovials and stored at -80 oC until RNA isolation. 

 Cell imaging and Flow Cytometry 

 Microscopy 

To assess the morphology of the goat BMDM, cells were grown for 10 days 

until fully differentiated then seeded at 5.0x10
4 

cells on cover slips in 12-well 

plates and incubated overnight.  The next day, cells were washed once with 

sterile PBS, and then fixed with freshly prepared 4% paraformaldehyde (PFA) 

for 30min at room temperature. After fixing, cells were permeabilised by adding 

PBST (0.1% Triton x100) for 1min at room temperature, any unspecific staining 

was minimised by blocking cells in 3% bovine serum albumin (BSA) for 1 hour. 

The blocking solution was replaced with a solution of Texas Red-X phalloidin 
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(ThermoFisher) at a concentration of 1:500 to mark cell boundaries and DAPI 

(4', 6-diamidino-2-phenylindole) at a concentration of 1:1000 was added to 

mark the cell nucleus. After incubating the plate in the dark for one hour, cells 

were washed three times in sterile PBS and cover slips mounted onto glass 

slides using ProLong Gold mountant (ThermoFisher). Unstained cells were 

imaged using standard light microscopy and ZEN software (Zeiss, Cambridge, 

U.K) while the stained cells were imaged using a Leica DMLB-2 upright 

fluorescent microscope and analysed using the ImageJ software (NIH, 

Maryland, USA). 

 Phagocytosis assay 

The phagocytic activity of goat BMDM was assessed using pHrodo Red E.coli 

BioParticles (ThermoFisher), based on a modified version of the method 

described in (Heike Bicker, Conny Hoflich et al. 2008) and (Pridans, Davis et 

al. 2016) . Cells were cultured until they were fully differentiated as described 

in section 3.2.3. For each sample, 10
5
cells in a total volume of 100uL were 

added to a 1.5mL microcentrifuge tube. An equal volume of pHrodo particles 

(stock concentration, 1mg/ml, and working dilution 1:20) was added to the cells 

and the tubes wrapped in foil to keep in the dark then incubated at 37oC for 

one hour, with respective control tubes kept on ice at 4oC as phagocytosis is 

inhibited at this temperature. After one hour, the assay tubes were placed on 

ice for 10min to stop phagocytosis and cells prepared for double staining with 

different antibodies.    

 CD14, CD16 and CD172a cell surface expression  

The pHrodo stained cells were pelleted by centrifuging at 1400 rpm for 4 mins, 

and the supernatant was discarded. To reduce background and unspecific 

staining, cells were incubated in 100uL of blocking buffer made up of 2% horse 

serum in PBS and kept on ice for 15min. Cells were maintained in the dark by 

wrapping the tubes in foil. The antibodies used in this assay were adopted from 

a previous study on sheep monocytes (Pridans, Davis et al. 2016) with the 

assumption that they would cross-react with goat macrophages. Cells were 

pelleted by centrifuging and resuspended in blocking buffer containing either 
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of the following primary antibodies: anti-human CD14:AF647 (clone TUK4, 

1:20) mouse anti-human CD16: FITC (clone KD1, 1:200), and mouse anti-

bovine CD172a (clone CC149, 1:200) all from AbD Serotec. Isotype controls 

were used at the same concentration as the primary antibodies and included: 

mouse IgG2a, IgG2b (AbD Serotec) and rat IgG2a (BioLegend. IgG2b-RPE 

(1:400) (BioLegend) was used as secondary antibody. Sytox Blue (Life 

Technologies) was used to exclude dead cells and cells analysed on a BD LSR 

Fortessa X20 (Oxford, UK). Data was acquired after approximately 5000 

events.   

 Griess assay 

In rodents, but not in humans or pigs, LPS stimulation of macrophages leads 

to metabolism of arginine by inducible nitric oxide synthetase (NOS2) and the 

production of Nitric Oxide (NO)(Kapetanovic, Fairbairn et al. 2012, Kate 

Schroder, Katharine M. Irvine et al. 2012). Previous studies indicated that goat 

macrophages do not produce large amounts of NO (Adler et al. 1996, Jungi, 

Adler et al. 1996). Nitrite, the stable metabolite of NO was measured against 

sodium nitrite standards using the Griess reagent: 1%sulfanilamide, 0.1%N-

(1-naphtyl) ethylenediamine diHCl, 2.5%phosphoric acid. An equal volume of 

cell culture supernatants collected after LPS stimulation as mentioned in 

section 3.2.3 was added to 100uL of freshly prepared Griess reagent and 

incubated at 37°C for 30 min. Absorbance was measured using on a Multiskan 

v2.6 (ThermoScientific, USA) at 570 nm. Chicken cell culture supernatants 

from BMDM stimulated with LPS in a similar manner were used as positive 

control as they have been shown to produce NO in response to LPS (Wu, Hu 

et al. 2016).  

 Total RNA isolation  

Extraction of good quality RNA is an important pre-requisite to produce high 

quality expression data. Prior to performing any RNA work, all surfaces and 

equipment were thoroughly cleaned with RNase-Zap (ThermoFisher) to 

remove all traces of nucleic acid contaminants. Only RNase free reagents and 

consumables were used, having been set aside specifically for RNA work. Cell 
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lysate samples previously stored at -80 oC were thawed on ice and brought to 

room temperature for 5 min. 200µl BCP (bromochloropropane) (Sigma Aldrich) 

was added, shaking each tube vigorously for 15sec, then incubating for 3 mins 

at room temperature. Tubes were centrifuged for 15 minutes at 12,000 x g, at 

4C and the homogenate separated into a clear upper aqueous layer 

(containing RNA), and interphase and red lower organic layers (containing the 

DNA and proteins). After centrifugation, the upper aqueous phase was 

removed and RNeasy Mini Kits (Qiagen UK) were used to extract total RNA 

from each sample. The protocol to isolate RNA was followed according to the 

manufacturer’s instructions and included an on-column DNase treatment step 

using the RNase-Free DNase treatment kit (Qiagen UK) to digest any 

contaminating DNA. The quantity of RNA isolated from each sample was 

estimated using a NanoDrop spectrophotometer (NanoDrop Products, 

Wilmington USA) and confirmed using the Qubit fluorometric quantitation 

(ThermoFisher Scientific UK) kit. RNA quality was analysed by measuring the 

RNA integrity on the Agilent 2200 TapeStation (Agilent Technologies, Santa 

Clara CA USA). All samples had RNA integrity number equivalent (RIN) of 9.0 

(Appendix M). (RIe≥7.0 is recommended for RNA sequencing). 

 cDNA synthesis 

One microgram of total RNA was used as template for the reverse transcription 

to complementary DNA (cDNA). The SuperScriptIII First-Strand Synthesis 

System for RT-PCR (ThermoFisher) was used according to manufacturer’s 

instructions. A 13uL reaction mix was made containing 1ug of total RNA, 1uL 

of Oligo(dT)20 primer, 1uL of dNTPs and RNase/DNase free water. This 

solution was heated at 65 oC for 5min and then incubated on ice for 1min. The 

cDNA synthesis mix was prepared by adding 2uL of 10X RT buffer, 4uL of 

25mM MgCl2, 0.1M DTT, 1uL RNaseOUT(40U/uL) and 1uL of SuperScriptIII 

RT enzyme(200U/uL). 10uL of the synthesis mix was added to each 

RNA/primer mixture, mixed gently and collected by centrifugation. Negative 

controls to check for genomic DNA contamination, were included by omitting 

the SuperScriptIII enzyme. The samples were incubated at 50 oC for 50min, 

and the reaction terminated by incubating at 85 oC for 5min, then chilled on ice 
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at 4 oC. The cDNA was stored at -20 oC until further use in the reverse 

transcription polymerase chain reaction (RT-qPCR).   

 RT-qPCR 

RT-qPCR analysis against representative pro-inflammatory genes and 

cytokines was performed to validate the LPS response. All RT-qPCR reactions 

were carried out using the SYBR Green quantitative PCR system 

(ThermoFisher) in 20 µL reactions on MicroAmp Optical 96-well Reaction 

plates (ThermoFisher). Each reaction contained 10uL of 2X Power SYBR 

Green master mix, 10uM forward and reverse primers, 3.8uL of water and 5uL 

of diluted cDNA. Primers used in this study were selected based on already 

published and publicly available primer sequences (Zhang, Zhang et al. 2013, 

Brenaut, Lefevre et al. 2014, Yadav, Dangi et al. 2016, Chopra-Dewasthaly, 

Korb et al. 2017), and are listed in Table 3-1. The RT-qPCR assay was 

designed to adhere to the MIQE guidelines (Bustin, Benes et al. 2009) by 

testing each sample in triplicate and including two negative controls; one with 

no reverse transcriptase (NRT) and another with no cDNA (or no template 

control) (NTC). Samples were run on the ABI 7500 RT-qPCR machine 

(ThermoFisher) using the cycling conditions shown in Table 3-2. Relative 

quantitation of transcript abundance against housekeeping genes HPRT or 

GAPDH was determined using the 2-∆∆CT method (Livak and Schmittgen 2001). 
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fragment chimera was hybridized onto a flow cell and using PCR, only those 

fragments having adapter molecules on both ends were amplified. RNA-Seq 

data was processed using methods and pipelines developed for the sheep 

gene expression atlas (Clark, Bush et al. 2017), detailed in Chapter 2 (section 

2.2.7) and summarised in Appendix E.  

 

 Network Cluster Analysis 

Miru (Kajeka Ltd, Edinburgh UK), a network clustering program widely used 

for the analysis of large transcriptomic datasets including sheep and pig 

(Theocharidis, van Dongen et al. 2009, Freeman, Ivens et al. 2012, Clark, 

Bush et al. 2017) was used to analyse the goat BMDM data. Details about the 

Miru algorithm are included in Chapter 2 (section 2.2.8). The BMDM dataset 

(Appendix N) was used for the network cluster analysis. Using a Pearson 

correlation co-efficient cut-off of r=0.99, MCL (Markov Cluster Algorithm) 

inflation value of 2.2 (Dongen and Abreu-Goodger 2012), pre-inflation of 6.0, 

and minimum 20 nodes per cluster,  a gene-to-gene network graph was 

generated. A high correlation co-efficient was necessary due to the small 

number of samples being analysed (two conditions (+/- LPS) and four 

biological replicates). The resultant graph was made up of nodes representing 

genes, connected by edges representing the correlations above the set 

threshold of r=0.99. Lowly expressed transcripts (≤ 1 TPM) were excluded. 
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 Results 

 Establishing a protocol for culture and differentiation of 
goat BMDM 

 Goat cells need autologous serum 

Serum is an integral component of the culture media, providing a source of 

basic nutrients, vitamins, growth and adhesion factors and minerals. 

Heterologous fetal bovine serum (FBS) is used routinely in culture media 

compositions to generate macrophages from multiple species including human 

(Baillie, Arner et al. 2017), mice (Marim, Silveira et al. 2010) and pig 

(Kapetanovic, Fairbairn et al. 2012). However, in parallel studies in the group 

working on sheep (M.McCulloch, personal comm) and horse (Z.Lisowski, A. 

Karagianni; personal comm) autologous serum was optimal. Two media 

compositions were therefore assessed for the culture of goat BMDM, RPMI 

1640 supplemented with either 20% goat serum or 20% FBS.  

As shown in Fig 3.1(A and B), freshly isolated cells cultured in media 

containing 20% goat serum attained the expected stellate morphology of 

macrophages, differentiated and adhered to the bottom of the plate after one 

week in culture.  BM cells grown in 20% FBS, Fig 3.1 (C and D) appeared 

viable but failed to develop an adherent population.  Accordingly, goat serum 

was used in all subsequent experiments.  
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Figure 3-1:Goat 1 bone marrow cells differentiating into BMDM over the 
week. Top panel: cells growing in media containing 20% goat serum on 
day 6 (A) and day 8(B). Bottom panel: cells growing in media containing 
20% FBS on day 6(C) and day 8(D). Photographs are taken at x20 
magnification and are representative in appearance of all bone marrow 
cells for the other three individuals 

 

 Goat cells are recoverable from cryopreserved stock and 
differentiate when plated on tissue culture treated plastic. 

Bone marrow isolation yielded a total of 3.52×109 cells across all individuals 

(1.37×109 cells, from goat 1, 2.3×108 cells from goat 2, 8.2×108 cells from goat 

3 and 1.1×109 cells from goat 4). According to routine practice, cells were 

cryopreserved using the method described in section 3.2.2. It was therefore 

important to test the viability of goat bone marrow cells following 

cryopreservation. In the first instance, recovered cells were plated on 100mm2 

bacteriological plastic as used for other species pig (Kapetanovic, Fairbairn et 

al. 2012), mouse (Marim, Silveira et al. 2010), and sheep (Pridans, Davis et al. 

2016) and grown in complete goat media in the presence of rhCSF1. To test 

the optimal cell density required, cells were plated at different cell 

concentrations. However, as illustrated in Fig 3.2, the thawed cells failed to 

differentiate, and further optimisation of the protocol was required.   
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Figure 3-2:Goat 1 bone marrow cells differentiating into BMDM over one 
week. From right to left, cells cultured at a final density of 1×106 cells/mL 
(A), 2.0×106 cells/mL (B) and 2.5×106 cells/mL (C). Photographs are all 
taken at x20 magnification and are representative in appearance of all 
individuals 

 

Cells from two different individuals were cultured in goat media containing 

bovine granulocyte-macrophage colony stimulating factor (GM-CSF) (donated 

by Prof. Gary Entrican, Moredun Research Institute) or media from an ovine 

embryonic fibroblast (OEF) culture. GM-CSF promotes macrophage 

maturation, (Francisco-Cruz, Aguilar-Santelises et al. 2014), while OEFs 

synthesise endogenous CSF and activate macrophage maturation and were 

added to the goat culture media to facilitate macrophage differentiation. To 

conserve stocks by minimising the number of cells used for this assessment, 

cells were seeded in 24-well tissue culture plastic plates at 4×10
4 
cells/well and 

plates incubated at 370C in 5% CO2   for 10 days with monitoring every 2-3 

days. Cells grown in control goat media without GM-CSF and OEF were 

included. As summarised in Fig 3.3, each of these different media 

compositions tested were successful as cells showed the expected 

macrophage morphology and adherence after 10 days in culture.  Previously, 

the thawed cells had been cultured on bacteriological plastic. This observation 

indicated that the key variable was the substratum, rather than the media and 

seemingly, goat macrophage differentiation requires adhesion to tissue culture 

(TC) plastic.  
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Figure 3-3: Goat 4 differentiated bone marrow derived macrophages after 
10 days in culture maintained in different media compositions. Cells were 
maintained in control goat media (A), goat media containing OEF (B) or 
goat media containing GM-CSF (C). Cells were grown in the presence of 
rhCSF1 and photographs are all taken at x20 magnification 

 

Having established that BMDM could differentiate in the conditions described 

above, it was then important to decide which of the conditions were ideal to 

use for this study. Since one of the main objectives for this study was to carry 

out a comparative analysis between goat and other species, it was imperative 

that culture conditions were as consistent as possible across the two species. 

As such, conditions as close as possible to those described for sheep (Pridans, 

Davis et al. 2016, Clark, Bush et al. 2017) and pig (Kapetanovic, Fairbairn et 

al. 2012) were used, the only difference being that the goats cells required 

plating out on TC plastic, rather than bacteriological plastic. Cells from the 

remaining individuals were recovered and cultured in goat media comprised of 

RPMI 1640 supplemented with 20% heat-inactivated goat serum, 5mL 

GlutamaX and 1.25mL Penicillin/Streptomycin. Cells were plated on T75 tissue 

culture treated plastic plates and grown in the presence of rhCSF1. Plates 

were incubated at 37oC in 5% CO2   for 10 days with monitoring every 2-3 days. 

As demonstrated in Fig 3.4, all cells showed increased size, granularity and 

adherence to the tissue-cultured treated plastic, typical of observations from 

other species and studies where bone marrow progenitor cells have been 

cultured in similar conditions. This protocol was used for all future work.  
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Figure 3-4: Goat bone marrow derived macrophages differentiation over 
10 days. From left to right, Goat BMDMs at Day2, 3, 6, 7 and 10. All cells 
were grown on tissue-culture plastic in the presence of rhCSF1. 
Photographs are all taken at x20 magnification, and images are 
representative of all the three individuals used in this study 

Generally, as shown in Table 3-3, numbers of monocytes from goat were lower 

compared to cattle and pig and more comparable to sheep. The progenitor 

cells were also very fragile and needed to be treated very gently whilst in 

culture. 

Table 3-3:Comparison on monocyte counts across livestock species 

Species Monocyte count  % 

Pig 2-10 

Cattle  0-8 

Sheep 0-6 

Goat 0-4 

 

 Goat BMDM are CD14, CD16 and CD172a positive 

To characterise the goat bone marrow derived macrophages, expression of 

relevant cell surface markers was assessed using flow cytometry. Forward 

scatter (size) and granularity (side scatter) were used to distinguish the 

different population of cells and exclude granulocytes from the analysis. Fig 

3.5 (C III), demonstrates that up to 95.4% of the cells were positive for CD14, 

the co-receptor for LPS.  The level of expression of CD16 (15.9%) Fig 3.5 (D 

III) and CD172a (30.4%) Fig 3.5 (E II) was low similar to observations made 

for sheep monocytes (Pridans, Davis et al. 2016). 
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Figure 3-5: Functional characterisation of goat BMDM: Morphology of 

goat BMDM analysed by light microscopy (A) and fluorescent 

microscopy (B) shows expected stellate and adherent nature of 

macrophages. Expression of CD14, CD16 and CD172a was determined in 

freshly isolated goat BMDM. Threshold levels to determine CD14 and 

CD16 positivity were set with no antibody control (unstained) for CD14 

(C I) and CD16(D I). Isotype controls (C II), (D II) and (E I) were used to 

measure background staining for CD14, CD16 and CD172a respectively. 

Antibody expression determined by double staining, demonstrated that 
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up to 95.4% of the cells were positive for CD14 (C III).  The level of 

expression of CD16 at 15.9% (D III) and CD172a at 30.4% (E II) was low 

similar to observations made for sheep monocytes. Figures are 

representative of two goats 

 

 LPS induced TNF, IL1 β, CCL4 and IL8 mRNA expression 
in goat BMDM 

 Before submitting samples for RNA sequencing, the response of goat BMDM 

to LPS was validated using RT-qPCR. Messenger RNA (mRNA) expression 

for a selected set of known LPS-inducible genes including the cytokines TNF, 

IL1β and chemokines IL8 and CCL4 was measured after stimulating cells with 

100ng/mL of LPS for 7hrs. Transcription levels were calculated as relative fold 

change against the housekeeping gene HPRT1. All genes tested showed 

induced expression in stimulated cells relative to unstimulated cells. The 

highest induction was observed for IL1 β followed by CCL4 while TNF and IL8 

had comparable induction levels. The level of induction varied greatly between 

the individuals. RT-qPCR results (averaged across individuals for each gene) 

are presented in Fig 3.6. 
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Figure 3-6: Expression of pro-inflammatory cytokines and chemokines 
in Goat BMDM after stimulation with 100ng/mL LPS for 7hrs. Averaged 
expression levels of TNFa (A), IL-1B (B), IL8 (C) and CCL4 (D) are 
presented as relative fold changes against the housekeeping gene 
HPRT1 
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 Goat BMDM induce NOS2 and produce detectable levels 
of NO in response to LPS 

Nitric Oxide (NO) is widely recognized as an immunological agent and has 

anti-microbial and anti-tumoricidal activity. Mouse macrophages produce NO 

in response to LPS while pig and human do not (Kapetanovic, Fairbairn et al. 

2012). Transcript levels of inducible NO synthase (NOS2) in goat BMDM 

measured by RT-qPCR relative to the housekeeping gene HPRT1 showed 

induced expression after 7hrs stimulation with LPS (Fig 3.7, A). To determine 

whether there was nitrite induction, nitrite levels were measured in the 

supernatants for each sample using the Griess assay after 24hr of LPS 

stimulation. As a positive control, supernatant obtained from chicken BMDM, 

which produce large amounts of NO in response to LPS (Wu, Hu et al. 2016), 

was used. By comparison, nitrite produced by goat BMDM was barely 

detectable (Fig 3.7 ,B).  This finding is consistent with the earlier study by 

(Jungi, Adler et al. 1996).  In that study, cattle macrophages produced low but 

detectable NO, which has been confirmed in our group (Young, Bush et al. 

2018). Fig 3.7, C compares goat BMDM to cattle BMDM.  In this comparison, 

there was low but detectable production of NO after 24hr LPS stimulation by 

goat, indicating goats produce less NO than cattle and chicken although the 

mRNA transcript is induced after 7 hours stimulation with LPS.  
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Figure 3-7: Nitric Oxide (NO) production by Goat BMDM post LPS 
stimulation. Expression of NOS2 was assayed by RT-qPCR (A) while NO 
production was assayed by Griess assay (B) and (C). 
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 RNA-Seq analysis of goat BMDM post-LPS stimulation 

Further analysis on the gene expression profile of goat BMDM following 

stimulation with LPS for 7hrs, was performed using RNA sequencing as 

described in section 3.2.10 and 3.2.11. As expected from studies on human 

(Martinez, Gordon et al. 2006), mice (Raza, Barnett et al. 2014) and pig 

(Kapetanovic, Fairbairn et al. 2012), LPS stimulation of goat BMDM led to the 

induction of a large number of genes. The expression estimates for each gene 

from the Kallisto output (Appendix N), as transcripts per million (TPM), were 

analysed using network cluster analysis in Miru. Genes were clustered using 

a correlation of r=0.99 and MCL of 2.2 resulting in a gene-to-gene network 

graph which comprised of 14,747 nodes connected by 190,406 edges, 

representing correlations above the set threshold (r=0.99). As illustrated in Fig 

3.8, the BMDM gene-to-gene network graph separated into three main 

clusters. The largest cluster contained genes, which had a basal expression 

pattern and remained largely unchanged post-LPS stimulation. Of the other 

two clusters one contained genes whose expression was down-regulated post-

LPS stimulation and the other contained genes that were up-regulated by LPS 

stimulation. The genes in each cluster were inspected manually to classify 

them further. This was then confirmed with an automated method using the 

gene ontology database PANTHER (Mi, Dong et al. 2010).  

The cluster of basally expressed genes contained 2,587 expressed genes 

(Appendix O). The gene enrichment analysis with PANTHER (Appendix P) 

revealed these genes were mainly involved in metabolic processes and 

pathways. GO terms associated with the cluster of basally expressed genes 

included sensory perception of chemical stimulus (p= 1.10×10-30), RNA 

metabolic process (7.61×10-29), sensory perception of smell (7.87x10-29), 

metabolic process (1.64×10-25) and primary metabolic process (7.14×10-25). 

The expression profile of these genes remained largely unaltered under the 

influence of LPS.   

The cluster of down regulated genes 7hrs post-LPS stimulation contained 

2,151 genes (Appendix R). The gene enrichment analysis using PANTHER 

(Appendix Q) indicated that the processes associated with this cluster mainly 
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involved cell-cycle related processes. The top GO terms associated with this 

cluster included sensory perception of chemical stimulus (1.28×10-16), RNA 

metabolic process (7.17×10-6), glycolysis (2.68×10-5), cell adhesion (3.86×10-

05) and biological adhesion (3.86×10-05). The down-regulation of the cell-cycle 

genes, which is also observed in mice (Nilsson, Bajic et al. 2006), indicates 

there might be an anti-proliferative effect of LPS on macrophages. 

The cluster of upregulated genes 7hrs post-LPS stimulation contained 774 

genes (Appendix T). Genes in this cluster were mainly involved in innate 

immune signalling and cellular defence processes as illustrated by the GO 

term analysis in Appendix S. Significant GO terms associated with this cluster 

included immune system process (3.93×10-10), cellular defence response 

(2.19×10-7) and immune response (1.55×10-6). As has been observed in the 

pig (Kapetanovic, Fairbairn et al. 2012) and mouse studies (Nilsson, Bajic et 

al. 2006), the upregulated genes cluster included cytokines involved in 

interferon induced signalling such as: IFI35, IFI44, IFI6, IFIT3 and IFNG.  

Additionally, expression of interleukin genes such as IL10RA, IL12B, IL16, 

IL1RAP, IL21 and IL4R was greatly induced by LPS. Also included in this 

cluster were genes involved in the mitogen activator protein kinase (MAPK) 

signalling cascade and in particular, the MAP3K8 gene that is also upregulated 

in mice and associated with activation of TNF. Similarly, TNF related genes 

such as TNFAIP2, TNFRSF8, TNFSF13B, and TNFSF8 were also upregulated 

by LPS. 
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Figure 3-8: Gene-to-Gene network graph of Goat BMDM post LPS 
stimulation. Each node represents a gene and the edges (lines) 
correspond to correlations between individual measurements above the 
set threshold of r=0.99, MCL inflation=2.2, pre-inflation=6.0, and 
minimum nodes=20 
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 Discussion 
As already demonstrated in previous studies, transcriptomic analysis of 

macrophages from livestock species like pig (Freeman, Ivens et al. 2012, 

Kapetanovic, Fairbairn et al. 2012), sheep (Clark, Bush et al. 2017) and cattle 

(Harhay, Smith et al. 2010, Casey, Meade et al. 2015) provides useful 

information for understanding the innate immune system. The domestic goat 

is an economically important livestock species especially in low- and middle-

income countries and is susceptible to a wide range of pathogens. However, 

there are few published studies focused on the transcriptional control of the 

innate immune response in goats. Few specific reagents are available for 

immunological studies in goat, with most studies relying on cross-reactivity 

with sheep and cattle antibodies (Entrican 2002, Hope, Sopp et al. 2012), Most 

available data on goat macrophages is based upon monocyte derived cells 

(Taka, Liandris et al. 2013, Walia, Kumar et al. 2015), but the blood monocyte 

count in goats and sheep is very low (C Pridans Pers. Comm.).  As such I 

chose to focus on bone marrow derived macrophages, to generate a 

methodology for successful cryopreservation and recovery that would provide 

an alternative source of progenitors that could be utilised to study the goat 

innate immune response. 

In this chapter, I developed and optimised the culture conditions for goat 

BMDM, differentiating them successfully and characterising them using FACS 

and pHrodo staining. Using these cultures of BMDM I was able to perform 

stimulation with LPS and measure the transcriptional response of a small 

subset of immune genes using RT-qPCR and the whole transcriptome with 

RNA-Seq. The dataset I have generated provides a resource of transcriptional 

information that can be used to improve our understanding of the innate 

immune response in goat.  

The RNA-Seq analysis of goat BMDM carried out in section 3.3.5 revealed 

more than 700 genes that were up-regulated by LPS stimulation. The up-

regulation of important cytokines and chemokines such as TNF, interferon-

associated genes including IFI6, IFIT3 and IFNG and interleukins such as 
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IL10RA, IL12B, IL16 and IL1RAP was similar to patterns of gene expression 

post LPS stimulation observed in sheep 

(http://biogps.org/sheepatlas/#goto=welcome), indicating that the innate 

immune system in these species has evolved in a similar manner.  

One example of shared evolutionary patterns in the innate immune response 

is Nitric Oxide (NO) production which is widely recognized as an essential 

component of anti-microbial defence, especially in rodents having anti-

microbial and anti-tumoricidal activity (Ito, Koide et al. 2005, Takacs, Swierzy 

et al. 2012). Neither pig nor human produce NO in response to LPS 

(Kapetanovic, Fairbairn et al. 2012). A previous study comparing goat and 

cattle macrophages production of NO in response to LPS (Heiko Adler, 

Barbara Adler et al. 1996) illustrated that the production of NO by activated 

goat macrophages was low and nearly undetectable reaching levels lower than 

that of resting cattle macrophages. Recently, colleagues have also reviewed 

the species-specific differences in NO production following stimulation with 

LPS (Young, Bush et al. 2018) and extended the number of species that do 

not induce NOS2/NO production to include sheep and horse. Conversely, 

water buffalo shared similar expression of NOS2 with cattle. The differences 

between ruminant species were attributed to insertion of mobile genetic 

elements in the NOS2 promoter region that confer LPS-responsiveness in 

bovids (Young, Bush et al. 2018). Bovids and small ruminants differ in their 

susceptibility to a diversity of pathogens and variation in NO production could 

provide one explanation.   

Species-specific variation in response to pathogen challenge are likely to be 

driven by differences in gene expression post infection. The dataset generated 

in this chapter from BMDM provides a useful resource for comparative analysis 

with other species. Sheep and goats are both small ruminant mammals and 

are similar in their physiology. They also share susceptibility to a wide range 

of viral, bacterial, parasitic and prion pathogens, including multiple potential 

zoonoses (Sherman 2011), but there have been few comparisons of relative 

susceptibility or pathology between the species to the same pathogen, nor the 
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nature of innate immunity. In chapter 4 a comparative analysis of species-

specific gene expression is performed to reveal transcriptional similarities and 

differences between sheep and goats. 
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Chapter 4 Comparative transcriptomic 
analysis of immune related genes in 
the domestic goat and sheep.  

The RNA-Seq and differential expression analysis described in this chapter is 

adapted from the authors published work (Muriuki, Bush et al. 2019). 

 Introduction 
Diversity in disease susceptibility in mammals is partly attributed to rapid 

pathogen evolution, the sustained pressure exerted on the host’s immune 

system to co-evolve, resulting in changes in gene expression and regulation. 

This chapter aims to investigate the similarities and differences in the LPS-

inducible macrophage transcriptional responses of domestic goat and sheep. 

As mentioned in Chapter 2 of this thesis, the goat gene expression project was 

undertaken in the same laboratory as the sheep gene atlas study (Clark, Bush 

et al. 2017) adopting similar experimental strategies to enable a cross-species 

comparison. In both cases, crossbred animals were used, and macrophages 

were isolated and cultured using similar protocols. This chapter contains two 

comparative analyses; the first is a global comparison of transcription between 

the goat mini-atlas dataset detailed in Chapter 2 and an equivalent subset of 

data from the sheep gene atlas. The second takes data from a parallel study 

in our laboratory investigating transcriptomics of sheep macrophages and their 

response to LPS (M. McCulloch, 2018) and integrates them with results from 

Chapter 3 of this thesis to enable a comparative analysis of the immune 

response in goat and sheep BMDM in response to LPS. 

Although the basic biology of macrophage signalling is highly conserved in 

mammals, there are fundamental differences in LPS-regulated gene 

expression between mammalian species (Young, Bush et al. 2018). Previous 

studies from our laboratory have highlighted similarities and differences in the 

macrophage response to LPS between laboratory mice, humans and pigs. In 

these comparisons, pigs were more similar to humans, providing a more 

informative model of human disease than mice (Kapetanovic, Fairbairn et al. 
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2012). The differences between mouse and human macrophage responses to 

LPS were associated with divergence of regulatory elements in the inducible 

promoters (Fairbairn, Kapetanovic et al. 2011, Kapetanovic, Fairbairn et al. 

2012, Kate Schroder, Katharine M. Irvine et al. 2012).     

One of the widely appreciated species-specific transcriptional differences is 

the LPS induction of nitric oxide synthase (NOS2) and subsequent production 

of the antimicrobial effector nitric oxide (NO) by macrophages (Jungi TW, Adler 

H et al. 1996). A previous study demonstrated that NOS2 induction by LPS 

was observed in cattle macrophages but absent in goat (Heiko Adler, Barbara 

Adler et al. 1996).  This finding was re-examined in our lab (Young, Bush et al. 

2018) and has been discussed in detail in Chapter 3 of this thesis. In (Young, 

Bush et al. 2018) data from the goat BMDM experiment (Chapter 3) was 

combined with RNA-Seq data from pig, cattle, water buffalo, sheep, horse, rat 

and human macrophages. These data were used to investigate the 

mechanisms controlling variation in the expression of genes involved in 

arginine metabolism, looking specifically at NOS2 as well as other LPS-

inducible transcripts (Young, Bush et al. 2018). Rats were similar to mice, 

expressing large amounts of NOS2, arginine transporter SLC7A2, arginase 1 

(ARG1), GTP cyclohydrolase (Gch1) and argininosuccinate synthase (ASS1). 

These responses to LPS were not conserved across the other species and the 

response of goats and sheep are described within this chapter. The results 

from this multi-species transcriptional comparison confirmed that divergence 

in expression of NOS2 and other genes is mainly driven by evolution of cis-

acting regulatory elements. The insertion of a BOV-A2 retrotransposon in the 

promoter region of cattle and water buffalo was associated with increased 

expression of NOS2 and NO production in the bovid lineage (Young, Bush et 

al. 2018).  

Evolution of transcriptional regulation is linked to species-specific variations in 

disease susceptibility. Variation in susceptibility to disease has been widely 

documented across all major farm animals, reviewed in (Bishop and Woolliams 

2014). For instance, ruminants differ in their response to a wide range of 
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economically important infectious bacterial diseases. Mycobacterium bovis is 

an important pathogen of cattle and water buffalo but causes limited disease 

in sheep despite prolonged co-grazing with cattle (Munoz Mendoza, Juan et 

al. 2012) while Johne’s disease caused by Mycobacterium avium subspecies 

paratuberculosis (MAP) exhibits strain specific variation in pathogenicity 

between cattle, sheep and goats (Stevenson 2015). In some cases, one 

ruminant species acts as a reservoir for a pathogen that adversely affects 

another species. For example, Malignant Catarrhal Fever (MCF) caused by 

alcelaphine herpesvirus 1 (AlHV-1) elicits asymptomatic infection in sheep and 

African wildebeest but is fatal in cattle and water buffalo (Russell, Stewart et 

al. 2009, Wambua, Wambua et al. 2016). Although the factors determining 

disease resistance are polygenic and involve an interplay of multiple genes, 

quantitative trait loci (QTL) studies have identified several candidate genes 

associated with variable disease resistance within ruminants. For instance, 

variations in CD14, CD18, CXCR2 and MHC genes are associated with 

mastitis resistance in certain breeds of cattle (Ibeagha-Awemu, Kgwatalala et 

al. 2008) and SLC11A1 variation controls the sheep and goat responses to 

Johne’s disease (LA Reddacliff, K Beh et al. 2005, Cecchi, Russo et al. 2017). 

Similarly, resistance to Haemonchus contortus infections in sheep and goats 

is associated with a stronger Th2-type immune response in the resistant 

animals (Alba-Hurtado and Munoz-Guzman 2013).  

As discussed in the main introduction, goats and sheep are closely related, 

they diverged four million years ago and commonly occupy similar 

environmental niches (Jiang, Xie et al. 2014). Immune-associated genes are 

known to undergo rapid evolution between closely-related species (as 

evidenced by high rates of non-synonymous amino acid substitution) and are 

polymorphic within species at the protein level (Ellegren 2008). As discussed 

previously macrophages are an important immune cell involved in the 

inflammatory and immune response. Amongst inbred mouse strains, DNA 

sequence variation in regulatory elements has been associated with 

differences in both basal and inducible gene expression in macrophages (Link, 

Duttke et al. 2018). As such we would expect that species-specific differences 
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in the immune response might be reflected in the transcriptional patterns 

observed in macrophages under pathogen challenge. This chapter will 

highlight some of the transcriptional similarities and differences between goat 

and sheep alveolar macrophages and bone marrow derived macrophages 

post challenge with LPS. This will help us to understand how the innate 

immune response is regulated in two closely related ruminant species. 
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 Materials and Methods 

 Tissue samples included in the analysis 

Approval to carry out this project was issued by the Animal Welfare and Ethics 

Review Boards of The Roslin Institute and the University of Edinburgh. Details 

of the goat data included in the analysis for this chapter (see Chapter 2 for a 

detailed description of the samples) is summarised in Table 4-1.  For 

comparative analysis with sheep, a subset of data from the large RNA-Seq 

sheep dataset (Clark, Bush et al. 2017) was used. Details of the data from 

sheep included in the analysis for this chapter are also included in Table 4.1. 

A total of 54 goat and 52 sheep RNA-Seq libraries were utilised for the analysis 

described in this chapter.  

 RNA-sequence data and processing 

The experimental protocols for tissue collection, cell isolation, RNA extraction 

and library preparation used to generate the goat RNA-Seq dataset are 

described in Chapter 2 and 3 of this thesis. The sheep RNA-Seq dataset was 

derived from the published sheep gene atlas project (Clark, Bush et al. 2017) 

carried out in the same laboratory using similar experimental protocols and 

data processing methods. RNA-Seq data was processed in Kallisto to produce 

gene level estimates as transcripts per million (TPM) using the methodology 

described in Chapter 2 of this thesis.  
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Table 4-1:Details of the data from goat (from Chapter 2) and from sheep 
(Clark, Bush et al. 2017) used for comparative analysis 

Species Sample type Age Tissue type Number of 

Individuals 

Goat Core tissues 5-6 days old adrenal 

gland,colon,ileum,

kidney,liver,rumen,

muscle,skin,spleen

,testes,thymus 

4, males 

 
Brain 5-6 days old cerebellum, cortex 2, males 

 
Female 

reproduction 

5-6 days old ovary,  fallopian 

tube, uterus, 

uterine horn 

1, female 

 
BMDM 5-6 days old 0hr(-LPS), 

7hr(+LPS) 

3, males 

 
AM 5-6 days old 24hr(-LPS) 2, males 

Sheep Core tissues adult adrenal gland, 

cerebellum, 

kidney,  liver, 

muscle, skin, 

spleen, testes, 

thymus 

3, males 

 
GI tract lamb/1week colon, ileum, 

rumen, 

3, males 

 
Female 

reproduction 

adult intercaruncular 

tissue, fallopian 

tube, ovary 

3, females 

 
BMDM adult 0hr(-LPS), 

7hr(+LPS) 

3, males 

 
AM adult 24hr(-LPS) 3, males 
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 Network Cluster Analysis 

The network cluster analysis of the goat dataset using the network 

visualisation tool Miru (Kajeka Ltd, Edinburgh, UK) is described in detail in 

Chapter 2 of this thesis. To enable comparative analysis, network cluster 

analysis was performed on the subset of data from sheep (summarised in 

Table 4.1 and included in Appendix U) using the same parameters on Miru as 

the goat dataset (MCL 2.2, r=0.83) to generate a gene-to-gene network graph. 

An all-against-all comparison of the top 30 largest clusters was carried out for 

every goat with every sheep cluster (top 30 largest clusters). This method 

allowed identification of the number of annotated genes held in common 

between the goat and sheep clusters.  

 Differential Expression Analysis 

 Comparing BMDM response between goat and sheep 0 and 7hr 
post-LPS stimulation 

The differential expression analysis of goat BMDM was performed using the 

tximport pipeline and edgeR (Robinson, McCarthy et al. 2009) packages. The 

analysis of differentially expressed genes (DEG) analysis in sheep BMDM (+/-

-) LPS was performed as part of a parallel study (M. McCullouch, 2018). All 

comparative analysis of differentially expressed genes in goat and sheep 

BMDM at 0hr and 7hr post-LPS stimulation was performed using R (version 

3.4.0).  

The lists of DEGs in goat and sheep BMDM (Appendix V and Appendix W 

respectively) were first filtered at FDR<10% and then merged based on 

GENE_ID using the inner_join function to only return the observations that 

overlapped between goat and sheep (i.e. genes with similar annotation in goat 

and sheep). This was performed using the following R script:  

merged <- inner_join(x = goat[goat$FDR < 0.1 , ], y = sheep[sheep$FDR < 

0.1, ], by = "GENE_ID"). 

Next, a dissimilarity index (Dis_Index) was determined by taking the absolute 

difference (ABS) of |log2FC| between sheep and goat using the formula:  
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ABS(|log2FC|  Sheep- |log2FC|  Goat). 

A high Dis_Index indicated that a gene was differently regulated in goat and 

sheep, likely due to unique species-specific responses. 

The direct comparison of DEGs in goat and sheep BMDM was then merged 

with the results of the network cluster analysis performed in Miru (section 2.2.3) 

to identify genes in goat and sheep that were involved in the same biological 

pathway. To do this, an intersection was calculated using the formula:  

Intersection = (N/T) x 100 

Where:  N= number of genes shared between the sheep and goat cluster and 

T = number of genes in the smaller cluster. 

A high intersect value indicated that the clustering pattern of the gene was 

highly similar in goat and sheep, and therefore probably had a similar biological 

function in the two species.   

 Comparing AM response in goat and sheep 

Similarly, differential expression analysis was used to compare transcriptional 

patterns in alveolar macrophages in goat and sheep. The gene level 

expression estimates from alveolar macrophages from two male goats and 

three male sheep were analysed using the same method with tximport and 

edgeR packages utilised for BMDM. Only genes with the same annotation, 

expressed at a raw read count of more than 10, FDR<10% and |log2FC|  2 in 

both goat and sheep were included in the analysis.  

 Validation of gene expression using qPCR 

To validate gene expression estimates for target immune genes, RNA was 

extracted from BMDMs (+/- LPS) from age-matched one-week old sheep, as 

described in Chapter 2 and amplified using quantitative PCR. Two genes (TNF 

and NOS2) were selected for validation based on results observed from goat 

BMDM in Chapter 3 (primer sequences and citations are included in Chapter 

3). cDNA was synthesised using the same protocol described in Chapter 3 
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(section 3.2.8). All RT-qPCR reactions were carried out using the SYBR Green 

quantitative PCR system (ThermoFisher) in 20 µL reactions on MicroAmp 

Optical 96-well Reaction plates (ThermoFisher). Each reaction contained 10uL 

of 2X Power SYBR Green master mix, 10uM forward and reverse primers, 

3.8uL of water and 5uL of diluted cDNA. Positive and negative controls were 

included for each set of reactions. Relative quantitation of transcript 

abundance against housekeeping gene GAPDH was determined using the 2-

∆∆CT method (Livak and Schmittgen 2001). 
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 Results  

 Overlap of co-expression gene clusters between goat 
and sheep  

An all-against-all comparison of the top 30 largest clusters for each species 

was performed to identify the number of annotated genes that were shared 

between the two species (Table 4.2). The percentage of annotated genes 

shared between the two species for each cluster (or ‘functional class’) is 

summarised in Figure 4.1. There was substantial overlap of genes shared 

between some of the larger clusters, particularly those associated with cellular 

processes such as cell cycle (85%) and tissue types such as fallopian tube 

(64%) and cerebellum (60%) (Figure 4.1). There was also significant overlap 

(>50%) between both species for GI tract clusters including liver, ileum, rumen, 

and colon. This reflects similarities in the function of these tissues in the two 

species. Clusters exhibiting less similarity between the two species included 

testes (30%) and ovary (17%). These are more likely to be developmental 

stage-specific differences rather than species-specific differences in 

transcription. Gene expression has been shown to change with developmental 

stage in the ovary in sheep (Clark, Bush et al. 2017) and in the testes of sheep 

(Zhang, Zhang et al. 2019) and goats (Faucette, Maher et al. 2014).  One of 

the caveats of this analysis is that data from goats was from neonatal animals 

and the sheep data is from adult animals. Differences in the age of individuals 

used in this analysis, adult sheep and neonatal goats, may have had a 

significant effect on gene expression. The strong overlap of clusters of genes 

associated with general biological functions such as cell-cycle and skeletal 

muscle in goat and sheep Table 4-2 does however indicate that the datasets 

were broadly comparable. Similarly, the close pairing of the colon, ileum and 

rumen clusters also suggest that transcriptional patterns in the ruminant GI 

tract are conserved across the two species, irrespective of age-specific 

differences.
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Table 4-2 :Goat and Sheep co-expression cluster comparison 

Cluster ID 

(goat) 

Profile 

Description 

(Goat) 

Cluster ID 

(sheep) 

Profile 

Description(Sheep) 

% of 

annotated 

genes in 

common 

No. of 

genes in 

goat 

cluster 

(annotated/

total) 

No. of 

genes in 

sheep 

cluster 

(annotated/

total) 

No. of 

annotated 

genes 

common 

between  

goat and  

sheep 

Cluster0001 Cortex Cluster0002 CNS 56.18 1461/1592 1189/1455 668 

Cluster0002 Cell-cycle Cluster0014 House keeping 84.91 849/1017 159/169 135 

Cluster0003 HKG_gene 

regulation 

Cluster0005 House keeping 41.16 881/972 396/456 163 

Cluster0004 Liver Cluster0006 Liver 57.83 336/467 249/370 144 

Cluster0005 Testes Cluster0001 Testes 30.55 275/454 1142/1711 84 

Cluster0006 Cerebellum Cluster0002 CNS 60.51 352/405 1189/1455 213 

Cluster0007 Skin Cluster0012 Skin 47.01 225/398 117/204 55 

Cluster0008 Fallopian Tube Cluster0003 Fallopian Tube 64.16 293/363 471/611 188 

Cluster0009 Skeletal 

muscle 

Cluster0007 Skeletal muscle 66.77 326/353 316/355 211 
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Table 4.2 continued 

Cluster ID 

(goat) 

Profile 

Description 

(Goat) 

Cluster ID 

(sheep) 

Profile 

Description(Sheep) 

% of 

annotated 

genes in 

common 

No. of 

genes in 

goat 

cluster 

(annotated/

total) 

No. of 

genes in 

sheep 

cluster 

(annotated/

total) 

No. of 

annotated 

genes 

common 

between  

goat and  

sheep 

Cluster0010 Spleen Cluster0019 Spleen 48.61 175/281 72/135 35 

Cluster0011 Rumen Cluster0015 Rumen 55.56 182/244 135/164 75 

Cluster0012 Colon Cluster0017 Colon 55.45 198/243 110/139 61 

Cluster0013 Adrenal Gland Cluster0016 Adrenal Gland 38.4 175/206 125/159 48  

Cluster0014 Fibroblasts Cluster0008 Immune 

phagocytosis 

5.49 182/191 255/298 10 

Cluster0015 Immune 

phagocytosis 

Cluster0008 Immune 

phagocytosis 

33.58 134/160 255/298 45 

Cluster0016 Kidney 

development 

Cluster0011 Kidney  10.64 141/158 176/210 15 
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Table 4.2 continued 

Cluster ID 

(goat) 

Profile 

Description 

(Goat) 

Cluster ID 

(sheep) 

Profile 

Description(Sheep) 

% of 

annotated 

genes in 

common 

No. of 

genes in 

goat 

cluster 

(annotated/

total) 

No. of 

genes in 

sheep 

cluster 

(annotated/

total) 

No. of 

annotated 

genes 

common 

between  

goat and  

sheep 

Cluster0017 HKG_molecula

r chaperones 

Cluster0008 Immune 

phagocytosis 

7.28 151/155 255/298 11 

Cluster0018 Ovary Cluster0001 Testes 17.91 67/129 1142/1711 12 

Cluster0019 House keeping Cluster0005 House keeping 13.45 119/125 396/456 16 

Cluster0020 Kidney Cluster0011 Kidney 45.74 94/122 176/210 43 

Cluster0021 Pathway_meta

bolism 

Cluster0007 Skeletal muscle 9.52 84/105 316/355 8 

Cluster0022 House keeping Cluster0004 House keeping 13.64 88/102 362/545 12 

Cluster0023 House Keeping Cluster0005 House keeping 21.18 85/100 396/456 18 

Cluster0024 Uterus Cluster0001 Testes 6.58 76/97 1142/1711 5 
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Table 4.2 continued 

Cluster ID 

(goat) 

Profile 

Description 

(Goat) 

Cluster ID 

(sheep) 

Profile 

Description(Sheep) 

% of 

annotated 

genes in 

common 

No. of 

genes in 

goat 

cluster 

(annotated/

total) 

No. of 

genes in 

sheep 

cluster 

(annotated/

total) 

No. of 

annotated 

genes 

common 

between  

goat and  

sheep 

Cluster0025 Ileum Cluster0013 Ileum 57.5 80/94 149/183 46 

Cluster0026 Pathway_ribos

omal 

Cluster0027 House keeping 46.43 85/91 56/100 26 

Cluster0027 LPS-inducible Cluster0020 LPS-inducible 40.32 62/86 110/134 25 

Cluster0028 Mitochondrial Cluster0004 House Keeping 7.69 78/81 362/545 6 

Cluster0029 Early 

Development 

Cluster0001 Testes 14.29 7/67 1142/1711 1 

Cluster0030 House Keeping Cluster0017 Colon 9.38 64/65 110/139 6 
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Figure 4-1:Goat-Sheep cluster comparison. Comparison of co-expression clusters in goat and sheep gene expression 
atlases shows high similarity of cell-cycle functions (84.9%), skeletal muscle (66.7%) and tissues from the GI tract 
(Ileum, Colon, Rumen). LPS-Inducible and phagocytosis clusters show 40.3% and 33.58% similarity respectively while 
the house-keeping genes containing molecular chaperones in the goat has a 7.28% similarity with the sheep 
phagocytosis cluster. The general cluster comparison suggests species-specific differences related to immune 
response 



 97 

 Comparative expression of key genes required for 
response to LPS. 

Figure 4.2 shows the TLR4 receptor complex, adaptors and key regulators 

involved in both the MyD88-dependent and MyD88-independent pathways of 

response to LPS. In principle, global differences between the two species 

might arise if particular signalling molecules are differentially-expressed. A 

comparison of the expression of molecules required for signal transduction 

following activation by TLR4 in goat and sheep macrophages is presented in 

Table 4.3. All of the signalling components shown in Figure 4.2 were 

expressed at detectable levels in goat and sheep BMDM, but there were 

quantitative differences between species. Goat macrophages expressed much 

lower levels of TLR4, CD14 and LY96 but expressed much higher levels of 

TRAM1, TAB2 and the transcription factor IRF3 in comparison to sheep (Table 

4.3). In both species, BMDM expressed mRNA encoding CSF1 and its 

receptor, CSF1R. CSF1 was highly expressed at both 0 and 7 hours in goat 

but was LPS inducible in sheep macrophages (Table 4.3). 

 

Figure 4-2:The TLR4 receptor complex highlighting MyD88-dependent 
and MyD88 independent mediators. Figure adapted from (Akira, Uematsu 
et al. 2006) 
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Table 4-3:Expression of transcripts required for LPS response in BMDM 

Transcript Gene Name Goat Sheep 
|log2FC| TPM_0 

hr 
TPM_7 

hr 
|log2FC| TPM_0 

hr 
TPM_7 

hr 
CD14 CD14 Molecule 1.18 76.26 159.38 -0.22 668.63 434.36 

TLR4 Toll Like Receptor 4 0.74 25.81 82.76 0.93 72.21 110.04 

LY96 Lymphocyte Antigen 96 (Myeloid 
Differentiation Protein-2) 

-0.14 81.44 68.57 0.62 262.84 330.67 

TIRAP (MAL) TIR Domain Containing Adaptor Protein 0.38 17.19 21.21 0.50 23.41 26.38 

MyD88 Myeloid Differentiation Primary 
Response 88 

-0.22 21.75 17.60 -0.29 70.32 46.95 

TRAM1 Translocation Associated Membrane 
Protein 1 

0.37 351.85 425.50 0.35 74.32 77.21 

IRAK1 Interleukin 1 Receptor Associated 
Kinase 1 

-0.39 24.81 17.98 -0.09 31.34 24.16 

IRAK4 Interleukin 1 Receptor Associated 
Kinase 4 

0.26 18.48 20.86 0.32 43.77 44.46 

TICAM1 (TRIF) Toll Like Receptor Adaptor Molecule 1 0.55 8.12 11.23 0.92 1.21 1.81 
TAB1 TGF Beta-Activated Kinase-Binding 

Protein 1 
-0.36 17.23 12.79 -0.27 10.85 7.38 

TAB2 TGF Beta-Activated Kinase-Binding 
Protein 2 

0.69 52.92 79.42 1.08 18.35 31.28 

MAP3K7(TAK1) Mitogen-activated protein kinase kinase 
kinase 7 

0.11 67.22 68.41 -0.06 34.85 27.18 

TRAF6 TNF Receptor Associated Factor 6 0.14 14.44 15.10 0.22 6.54 6.21 
TRAF3 TNF Receptor Associated Factor 3 0.58 11.80 16.61 1.56 6.89 16.21 
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Table 4.3 continued 
Transcript Gene Name Goat Sheep 
  |log2FC| TPM_0 

hr 
TPM_7 
hr 

|log2FC| TPM_0 
hr 

TPM_7 
hr 

TBK1 TANK Binding Kinase 1 0.74 22.62 35.28 0.26 23.02 22.41 
NFKB1 Nuclear Factor Kappa B Subunit 1 2.55 29.29 158.48 2.34 27.97 111.39 
IRF3 Interferon Regulatory Factor 3 0.40 45.43 55.85 0.29 9.69 9.44 
CSF1 colony-stimulating factor-1 0.61 115.66 161.47 2.67 35.22 190.01 
CSF1R colony-stimulating factor-1 receptor -0.49 51.28 34.16 -1.09 152.21 60.97 
IL34 Interleukin 34 0.97 2.61 4.73 -1.00 0.64 0.26 
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 Validation of LPS response in sheep BMDM using RT-
qPCR 

The sheep used to generate BMDM for the sheep gene atlas were 

approximately two years of age while the goats used in this study were 

neonatal. As such, it was necessary to validate the LPS response is a small 

subset of immune genes in age-matched animals. mRNA expression of TNF 

and NOS2 in age and sex-matched sheep and goats were measured using 

RT-qPCR and transcription levels calculated as relative fold changes against 

housekeeping gene GAPDH. As illustrated in Fig 4.3, sheep BMDM showed 

induced expression of both TNF and NOS2 after 7hr stimulation with LPS, 

similar to observations made in goat BMDM (Chapter 3).    

 

 

Figure 4-3: Expression of TNF and NOS2 mRNA in sheep BMDM after 
stimulation with 100ng/mL LPS for 7hours (Top panel). Averaged 
expression levels are presented as relative fold changes against the 
housekeeping gene GAPDH. Bottom panel: Expression of TNF and NOS2 
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mRNA in goat BMDM after stimulation with 100ng/mL LPS for 7hours 
(adapted from Chapter 3). 

 

 Differences in BMDM response to LPS stimulation 
revealed by comparative analysis  

The DEG in goat and sheep BMDM in response to LPS stimulation are 

included in Appendix V and W respectively. Comparative analysis of the DEG 

in goat and sheep resulted in 188 genes (Appendix X) that showed significant 

differences in gene expression response to LPS (FDR<10%, |log2FC| ≥2) that 

were shared between goats and sheep. The most dissimilar genes between 

goat and sheep (Dis_Index≥2) are illustrated in Fig 4.4. The top right quadrant 

of the graph contains genes that were upregulated in both goat and sheep 

BMDM in response to LPS stimulation. This included several immune genes, 

IL33, IL36B, PTX3, CCL20, CSF3 and CSF2 that showed a higher level of 

induction by LPS in sheep macrophages compared to goat, and ICAM1, IL23A, 

IFIT2, TNFSF10, and TNFRSF9 that showed a higher level of induction by 

LPS in goat macrophages compared to sheep. The top left quadrant contained 

genes that were upregulated in sheep but downregulated in goat macrophages 

and included CARD10, KIT, STC1 and KCNJ8. The bottom right quadrant 

contained genes that were upregulated in goat but downregulated in sheep 

macrophages including FOXO1, WWC1, TGFBR3, HEXDC and IGFBP4. 

Similarly, the proto-oncogene MERTK and guanine nucleotide exchange factor 

RAB3IL1 showed a high level of intersect between goat and sheep, with similar 

downregulation response in both goat and sheep macrophages while KIT was 

upregulated in sheep macrophages but downregulated in goat. 

An overlay of DEG genes with the clusters generated in Miru to determine 

whether the differentially expressed genes were involved in the same 

biological pathway in goat and sheep is illustrated in Fig 4.5. The degree of 

intersect is represented by the size of the node, and genes with a high intersect 

(intersect %>1) are shown. IL33, IFIT2, IL23A and TNFSF10 were upregulated 

in both goat and sheep macrophages (although with different levels of 
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induction) and showed a high level of intersect between goat and sheep, 

indicating that they were involved in the same biological pathway in the two 

species. As the genes were differentially inducible in goat and sheep, it is 

possible they are differentially regulated and may play a role in species-

specific immune responses.  

In mammals one of the key innate immune defences against infection is the 

interferon response (Schoggins, Wilson et al. 2011, Schoggins 2019). A 

comparison of the absolute level of induction of a select set of interferon 

inducible-inducible genes is presented in Table 4.4. The majority of these 

genes showed a similar level of expression in goat and sheep BMDM (+/-) 

LPS. IL33 was the only exception, which showed twice as much induction after 

LPS treatment in sheep relative to goat. Future studies could investigate the 

species-specific interferon response in sheep and goats by challenging the 

cells with type 1 interferon as in (Shaw, Hughes et al. 2017).  
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Table 4-4:Expression of select set of interferon-inducible genes 

Transcri

pt 

Gene Name Goat Sheep 

|log2F

C| 

TPM_

0 hr 

TPM_

7 hr 

|log2F

C| 

TPM_

0 hr 

TPM_

7 hr 

IL33 Interleukin 33 4.75 1.51 37.41 10.28 0.09 92.55 

IFIT2 Interferon 

Induced 

Protein With 

Tetratricopept

ide Repeats 2 

4.59 1.55 33.38 1.45 16.99 36.96 

IL23A Interleukin 23 

Subunit Alpha 

4.71 1.26 29.10 1.35 26.28 54.44 

TNFSF1

0 

TNF 

Superfamily 

Member 10 

6.11 0.06 4.26 2.33 1.40 5.54 

ISG15 Interferon-

Stimulated 

Protein, 15 

5.86 6.23 325.3

2 

5.88 8.54 401.4

7 

MX1 MX Dynamin 

Like GTPase 

1(Interferon-

Inducible 

Protein P78) 

4.00 26.01 367.2

1 

4.86 14.89 341.5

7 

IFIH1 Interferon 

Induced With 

Helicase C 

Domain 1 

3.46 6.52 64.49 2.74 8.01 42.09 

IL1B Interleukin 1 

Beta 

7.95 6.93 1552.

06 

8.72 6.94 2179.

39 
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Figure 4-4:Comparative analysis of differentially expressed genes  in goat and sheep BMDM. The genes showing the 
highest level of dissimilarity in response to LPS between goats and sheep (Dis_Index≥2) are shown. (A) Top left 
quadrant: genes that up-regulated in sheep but down-regulated in goat. Bottom right quadrant: genes up-regulated in 
goat, but down-regulated in sheep. 
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Figure 4-5:Analysis of differentially expressed genes (FDR<10%, |log2FC| ≥2) in goat and sheep BMDM showing high 
intersect. The genes which showed the highest level of intersect (≥1%), between goats and sheep) are shown. Level of 
intersect is represented by the size of the node. IL33, TNFSF10 and IL23A show the highest level of intersect between 
the goat and sheep. 
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 Species-specific immune differences in alveolar 
macrophage response 

The full list of all differentially expressed genes between goat and sheep 

alveolar macrophages is included in Appendix Y. The differentially expressed 

genes with the top 25 high and 25 low |log2FC|  between goat and sheep are 

shown in Fig 4.4. Goat alveolar macrophages showed elevated expression 

relative to sheep of several immune genes including IL33, IL1B, IL34 and 

IL1RN, c-type lectin CLEC5A, and colony stimulating factor CSF1. Conversely, 

the set of genes down regulated in sheep relative to goat were not obviously 

immune-related and included CMYA5, collagen COL8A1 and solute carrier 

SLC22A3.  

 Comparative Gene Annotation 

Some of the unannotated genes in goat were already annotated in sheep (and 

to a lesser extent, vice versa). To improve the annotation of genes within 

clusters that shared transcriptional similarity across species, the longest 

peptide for each unannotated gene in each cluster was used to calculate 

percentage identity with the EMBOSS Needle (Rice, Longden et al. 2000) 

which runs global end-to-end alignments for each gene. On this basis, 

provisional annotations to previously unannotated genes in both goat and 

sheep were added and are summarised in Table 4.5. The transcript encoding 

for the SERPINB2 gene is duplicated in sheep macrophages (personal 

communication, M. McCulloch), shown in Table 4-5 as transcripts 

ENSOARG00000006889 and ENSOARG00000005159, which are both 

strongly induced by LPS.  The two sheep SERPINB2 transcripts show a high 

similarity with a single goat transcript LOC102181552 at 98.3% and 88.7% 

respectively indicating that the duplicated SERPINB2 gene is specific to 

sheep. The goat SERPINB2 gene was induced by LPS but was expressed at 

a much lower level than either of the transcripts that are expressed in sheep 

macrophages. The sheep genome also contains two transcripts 

(ENSOARG0000014496 and ENSOARG0000016940) on separate 

chromosomes that are each annotated on ENSEMBL as CXCL8, encoding the 

major neutrophil chemokine interleukin 8. Both were LPS-inducible in sheep 
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macrophages. The goat genome contains only one CXCL8 gene, which is 

syntenic and identical at the protein sequence level to ENSOARG0000014496. 

 

Table 4-5:Comparative gene annotation 

Cluster Sheep Goat % 

Identit

y 

Muscle 

  

  

  

  

  

ENSOARG00000001361 JSRP1 80.8 

ENSOARG00000006444 MYH13 98 

ENSOARG00000017195 TTN 98.2 

ENSOARG00000010028  LOC102177638 98.8 

ENSOARG00000012656(1932a

a) 

LOC102181426(193

9aa) 

95 

ENSOARG00000012656(1932a

a) 

MYH8(1937aa) 92.3 

Fallopi

an 

Tube 

  

  

  

ENSOARG00000013919 NEK10 (NIMA 

related kinase 10)  

93.4 

ENSOARG00000020208 ROPN1 (rhophilin 

associated tail 

protein 1)  

99.5 

ENSOARG00000016978 FAM47E (family with 

sequence similarity 

47 member E)  

83.3 

ENSOARG00000020032  LOC102178119 100 

Cell-

cycle 

  

  

ENSOARG00000005764  STMN1 100 

STMN1=ENSOARG000000122

93 

 
  

ENSOARG00000019455  GTSE1 (G2 and S-

phase expressed 1)  

92.3 



 108 

LPS 

  

  

  

  

  

ENSOARG00000014496 (101 

aa) 

CXCL8 (101 aa) 100 

ENSOARG00000004253(109 

aa) 

LOC102180880(92 

aa) 

83.5 

ENSOARG00000004367 (93 

aa) 

LOC102181154 (93 

aa) 

97.8 

ENSOARG00000005159(SERP

INB2-like) (416 aa) 

LOC102181552 (416 

aa) 

88.7 

ENSOARG00000006889(SERP

INB2) (416 aa) 

LOC102181552 (416 

aa) 

98.3 

ENSOARG00000016940 (102 

aa) 

CXCL8 (101 aa) 81.4 
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Figure 4-6:Differentially expressed genes (FDR<10%) between goat and sheep alveolar macrophages. The top 25 up-
regulated in goat relative to sheep (red) and the top 25 down-regulated in goat relative to sheep (blue) are shown 
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 Discussion 

 General overview 

The generation of equivalent gene expression atlases of the domestic goat 

and sheep has enabled a comparative transcriptomic analysis between two 

closely related species to investigate species-specific differences in gene 

expression. By selecting sex-matched individuals, the effect of gender on 

transcriptional control was minimised. However, differences in the age of 

individuals used in this analysis, adult sheep and neonatal goats, may have 

had a significant effect on the observed gene expression patterns. To remedy 

this, we validated the expression of a sub-set of immune genes using RT-

qPCR and found that expression patterns of a small subset of immune genes 

were similar in age-matched sheep and goats. Another caveat is that at the 

time of the global comparison of transcriptional profiles across tissues in sheep 

and goat, the annotation of the goat reference assembly (ARS1) was not 

available on Ensembl and the quality of the annotation was limited compared 

to the sheep assembly and as such, some of the differences observed may 

relate to differences in the quality of the goat annotation.  

 Divergent signalling pathways in response to LPS 
stimulation 

As previously discussed, activation of macrophages by LPS requires the 

sequential engagement of CD14 and TLR4/MD-2 signalling. The active 

receptor recruits two sets of adaptor proteins to initiate two distinct pathways. 

The MyD88-dependent and MyD88-independent (TRIF/TRAM-dependent) 

pathways target distinct sets of inducible genes (Akira, Uematsu et al. 2006). 

As shown in Table 4-3 goat macrophages expressed much lower levels of 

CD14, the TLR4 co-receptor that regulates LPS sensitivity, and somewhat 

lower levels of both TLR4 and MD2. CD14-deficient mice do not respond to 

LPS (Haziot, Ferrero et al. 1996) while soluble CD14 increases the sensitivity 

of mammary epithelial cells to mastitis infections (Yan Wang, Dante S. 

Zarlenga et al. 2002). While sheep BMDM seemed to downregulate the 

expression of CD14 slightly after 7hr stimulation with LPS (|log2FC|  of -0.22), 

goat BMDM upregulated CD14 expression after 7hr LPS stimulation |log2FC| 
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of 1.18). Previously, human monocytes were shown to upregulate expression 

of CD14 after stimulation with LPS which enabled them to maintain cell-

responsiveness (Landmann, Knopf et al. 1996). A more recent study in cattle 

reported that differentiation of bovine CD14-positive monocytes in the 

presence of the chemokine CCL5 generated macrophages with reduced CD14 

expression rendering them unresponsive to LPS (Hussen and Schuberth 

2017). Both CD14 and TLR4 were inducible by LPS in goat macrophages. 

Assuming CD14 and TLR4 mRNA levels reflect expression of the protein, goat 

BMDM appear to be less sensitive to initial contact with LPS than sheep BMDM 

but their response mechanism compensates for this by maintaining activation 

through inducible receptor expression. 

The expression of many of the components of the MyD88-dependent signalling 

pathway including MyD88, IRAK1 and IRAK4 was lower in goat macrophages 

compared to sheep. Conversely, TRAM1, IRF3 and TBK1 specifically involved 

in the MyD88-independent signalling pathway (Yamamoto, Sato et al. 2003) 

were expressed in much higher levels in goat macrophages than sheep. Taken 

together, these results suggest that goat BMDM may have a bias towards the 

MyD88-independent pathway of macrophage activation. The MyD88-

independent pathway through the activation of interferon regulatory factor 3 

(IRF3) initiates the expression of IFN1 and an autocrine induction of target 

genes of type 1 interferon. A detailed temporal analysis of this cascade in 

human macrophages was presented by (Baillie, Arner et al. 2017). 

 Species-specific differences in immune responses 

 BMDM immune response to LPS stimulation  

As previously stated, IL33 was the most dissimilar gene in expression pattern 

between goat and sheep BMDM with a |log2FC| of 4.7 in goat compared to 

10.28 in sheep. Previous studies have reported that IL33 plays a protective 

role in inflammatory bowel disease (IBD) by inducing a Th2 immune response 

(Lopetuso, Chowdhry et al. 2013). As discussed in section 4.1 of this chapter, 

an enhanced Th2 response has been associated with Haemonchus contortus 

resistance in sheep (Alba-Hurtado and Munoz-Guzman 2013) by accelerating 
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parasite expulsion. IL36B also had dissimilar gene in expression pattern 

between goat and sheep BMDM. Little is known about the role of IL36 in goat 

biology, but its presence in the IL-1 family of genes (together with IL33) is 

suggestive that it is involved in gut health and homeostasis. 

IFIT2 is an interferon induced antiviral protein and has been associated with 

differential response to bluetongue virus (BTV) (Singh, Prasad et al. 2017), 

and the enhanced IFN response in goats is in line with our previous 

observation that goat macrophages may have a bias towards the MyD88-

independent signalling pathway. Similarly, high IL23A levels have been 

associated with inflammatory infiltration during infection with MAP, which 

inhibits bacterial proliferation in sheep. Conversely, in nematode infections, 

higher expression of IL23A is associated with lambs susceptible to T. 

circumcincta (Gossner, Venturina et al. 2012). There is not much comparable 

literature for goats but given the significant similarities in the gene expression 

profiles observed between sheep and goats, it is reasonable to accept that 

these genes are regulated in a similar manner to sheep and involved in similar 

biological pathways. Collectively, these results suggest species-specific 

differences in the expression of immune genes could underlie variation in 

susceptibility to nematode and MAP infections between goats and sheep as 

hypothesised in previous studies (Bishop and Stear 2003, Bishop and Morris 

2007).  

 Primed alveolar macrophage response evident in neonatal goats 

Alveolar macrophages are the first line of defence against air-borne 

pathogens. There was a stronger immune response in the neonatal goat 

alveolar macrophages in comparison to adult sheep alveolar macrophages 

indicated by elevated expression of such genes as IL33, IL1B, IL34 and IL1RN 

as well as c-type lectin CLEC5A, and colony stimulating factor CSF1. This may 

reflect that the alveolar macrophage immune response is age-dependent, 

showing a primed response in younger individuals whose adaptive immunity 

is still primitive, but showing a much more subdued response in older 

individuals whose adaptive immunity has reached full development. Further 
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work could examine expression patterns of these genes in alveolar 

macrophages in age-matched sheep and goats, using RT-qPCR, to determine 

whether this is indeed the case.  
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 Conclusion 
This chapter describes comparative analysis of transcription profiles in 

domestic goat and sheep. There was a strong overlap of clusters of genes 

associated with general biological functions such as cell cycle and skeletal 

muscle in goat and sheep indicating that broadly the datasets were highly 

comparable and transcriptional patterns were broadly similar between the two 

species. Species-specific differences were most obvious in immune tissues 

and cells. For example, assuming CD14 and TLR4 mRNA levels reflect 

expression of the protein, goat BMDM are seemingly less sensitive to initial 

contact with LPS than sheep BMDM, but their response mechanism 

compensates for this by maintaining activation through inducible receptor 

expression. As demonstrated, only a small subset of IFN-induced genes was 

inducible, but this analysis is based only on the 7hr time-point after LPS 

stimulation and many of the IFN-inducible genes are known to be induced 

relatively late in response to LPS. Given the observed similarities in gene 

expression profiles between sheep and goats after LPS stimulation, it is 

reasonable to accept that the majority of immune genes are regulated in a 

similar manner in both species and are involved in similar biological pathways. 

In this chapter comparative analysis, using network cluster analysis was useful 

for functional annotation of unannotated genes in one species relative to 

another, improving the genomic resources available for both. 
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Chapter 5 Summary and Future Directions 

 General Discussion 
The aim of chapter 2 of my thesis was to generate a mini-atlas of gene 

expression for goat. From seventeen tissues and 2 cell types I was able to 

detect 90% of the transcriptome, providing proof of concept that this mini-atlas 

approach is useful for studying gene expression and for functional annotation. 

Using the mini-atlas dataset we annotated 15% (representing more than 1000 

genes) of the previously unannotated genes in ARS1 (Bickhart, Rosen et al. 

2017). The dataset I generated was used by the Ensembl team (Hubbard 

2002, Zerbino, Achuthan et al. 2018, Yates, Achuthan et al. 2020) to create a 

new gene build for the goat ARS1 reference genome 

(https://www.ensembl.org/Capra hircus/Info/Index) (Bickhart, Rosen et al. 

2017, Worley 2017). This will provide a valuable resource for the livestock 

genomics community to complement the available genomic tools (Tosser-

Klopp, Bardou et al. 2014, Stella, Nicolazzi et al. 2018, Talenti, Palhière et al. 

2018). Future work could focus on improving the goat genome further by 

generating datasets to annotate the regulatory regions of the genome using 

ATAC-Seq (Corces, Trevino et al. 2017). The annotation of ARS1 could also 

be improved by adding Iso-Seq (full-length isoform sequencing) data to 

accurately construct complete transcript models (Gonzalez-Garay 2016). Even 

undertaking these assays on a small number of tissues would provide a 

considerable amount of functional annotation information to improve the 

current goat genome.  

One potential area of analysis of the transcriptomic data I generated for goat, 

that I was not able to explore within the scope of my PhD, was allele-specific 

expression (ASE), however, this analysis was eventually carried out and 

included in the main publication of this thesis (Muriuki, Bush et al. 2019)  

Similar studies have examined ASE across tissues in cattle (Chamberlain, 

Vander Jagt et al. 2015), sheep (Salavati, Bush et al. 2019) and goat (Cao, Xu 

et al. 2019). Using the goat mini-atlas dataset it would be possible to analyse 
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ASE at the gene level across tissues and cell types. It would also be possible 

to measure ASE at the variant (SNV) level. This would identify variants 

exhibiting ASE and determine whether they were located within or near 

important genes for production traits. These variants could then be weighted 

in genomic prediction models. The sequencing depth used for the goat mini-

atlas is, however, insufficient for statistically robust analysis at the SNV level. 

It does however provide a foundation for further analysis of ASE using a 

suitable dataset, from more individuals (e.g. for aseQTL analysis (Wang, 

Hancock et al. 2018)) and at a greater depth. 

 

 The innate immune response in goats and sheep 
In chapter 3 of my thesis I provided the first comprehensive characterisation of 

BMDM from goat providing a methodology for culturing and characterisation 

and a detailed analysis of transcription post stimulation with LPS. Prior to this 

study little was known about the transcription in goat macrophages. While 

more information is available on goat monocyte derived macrophages 

(Adeyemo, Gao Rj Fau - Lan et al. 1997, Taka, Liandris et al. 2013, Walia, 

Kumar et al. 2015), there was previously relatively little knowledge available 

on the characteristics of goat BMDM. In addition, few reagents are available 

for immunological studies in goat, with most studies relying on cross-reactivity 

with sheep and cattle antibodies (Entrican 2002, Hope, Sopp et al. 2012). 

Recently a characterization of goat antibody loci has been published using the 

new reference genome ARS1 (Schwartz, Philp et al. 2018), demonstrating the 

usefulness of a highly contiguous reference genome with high quality 

functional annotation for the development of new resources for livestock 

species.  

The analysis for chapter 4 built on the results from chapter 3 to examine the 

transcriptional basis for differences in the immune response between the two 

species. Overall the results of my analysis indicated that BMDM from goat and 
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sheep do not vary hugely in their transcriptional response to LPS. Several 

immune genes were upregulated in both goat and sheep BMDM in response 

to LPS stimulation but differed in their level of induction between the two 

species. For example, immune genes including IL33, IL36B, PTX3, CCL20, 

CSF3 and CSF2 exhibited higher levels of induction in sheep BMDM relative 

to goat, and vice versa for ICAM1, IL23A, IFIT2, TNFSF10, and TNFRSF9.   

There were two main caveats to my analysis. The first was that the sheep and 

goats were not age-matched (the sheep were a year old while the goats were 

one week old) and though they had been raised in similar environments rearing 

conditions were not identical. Though the logistics of collecting samples from 

large animals can be difficult this caveat could be remedied in future studies 

by collecting bone marrow from age-matched sheep and goats which had been 

reared in identical environments and comparing transcriptional patterns. The 

second caveat was that there was a high level of individual variation between 

goats. This pattern was also observed in other species e.g. (Clark, Bush et al. 

2017, Young, Bush et al. 2018). A similar larger study in pig monocytes 

showed similar variation between individuals but found no evidence for breed-

specific differences (Fairbairn, Kapetanovic et al. 2013). A larger number of 

biological replicates could help to control for individual-specific effects, but as 

mentioned previously sourcing and collecting sufficient samples from livestock 

can be difficult. Expression QTL analysis in humans revealed >80% of LPS 

inducible genes in monocytes exhibited heritable variation in the level of 

expression (Fairfax, Humburg et al. 2014). An eQTL analysis in 60-100 goats 

would help to determine the heritable variation in the level of expression and 

help to narrow down the search space for the variants underlying variation in 

the immune response. These variants could then be prioritised in breeding 

programmes for goats. This kind of an experiment would probably need to be 

based on samples from blood or milk, for the logistical reasons mentioned 

above. Similar eQTL studies have been performed in 300 cattle from whole 

blood, milk and somatic cell counts (SSC) (Wang, Hancock et al. 2018).  
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In general, expanding the analysis I present here to include additional cell 

types would be interesting. The results of the comparative analysis between 

sheep and goats provide a foundation for further comparative analysis in both 

BMDM and additional immune cell types (e.g. monocytes or sorted populations 

of cells from blood). Similarly, here I measure the response of BMDM to LPS, 

and further work could measure other components of the immune response, 

for example, using stimulation with interferon gamma e.g. (Shaw, Hughes et 

al. 2017). Now I have established a culture system for goat BMDM it would 

also be possible to investigate transcription after viral challenge with capripox 

or caprine arthritis encephalitis e.g. (Adeyemo, Gao Rj Fau - Lan et al. 1997, 

Larruskain and Jugo 2013). The pathogen burden will be very different across 

the globe, in tropical environments for example, there will be populations of 

goats that are locally adapted to pathogen or climatic burdens. As such further 

work could assess the transcriptional response of immune cells from locally 

adapted goats to Haemonchus contortus e.g. (Gill, Altmann et al. 2000) and/or 

other pathogens that are important in the tropics. 

 A gene expression atlas for African goats 
Goats are an important livestock species across the globe, but they are of 

particular importance in tropical agri-systems contributing to sustainable 

agriculture, alleviation of poverty, social cohesion and utilisation of marginal 

grazing. In tropical agri-systems they are subject to a broader range of 

pathogens and environmental stressors than in temperate regions. The goat 

mini-atlas was generated using samples from crossbred dairy goats from the 

UK. A logical next step would be to generate a mini-atlas of gene expression 

for a tropical breed of goat. Transcriptional patterns in tissues that are relevant 

to metabolism and immunity are likely to be different in tropical breeds. This 

approach would provide a valuable resource for understanding adaptation to 

a tropical environment and identifying key loci underlying disease and 

resilience traits. There is considerable potential for genome engineering in 

goats using CRISPR/Cas9 and other technologies (Yu, Lu et al. 2016, Kalds, 
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Zhou et al. 2019), which could be applied to exploit loci underlying resilience 

to tropical environments.  

One example of a breed that would be suitable for generating an atlas of gene 

expression for a tropical goat would be the Galla goat, which is a multi-purpose 

breed of goat indigenous to Northern Kenya (Kenya 2019). Galla goats are 

popular with both small and large-scale farmers, and have been crossbred 

successfully with European breeds such as the Toggenburg to improve milk 

yield (Kenya 2019). It would be possible to buy Galla goats and house them at 

the International Livestock Research Institute (ILRI), Nairobi. As for this project 

I would collect the same set of tissue samples from neonatal animals to 

minimise the exposure to natural infection in the field. I would also isolate 

BMDM and other immune cells including AM and sort populations of cells from 

blood to characterise immune mediated transcription in a tropical goat breed. 

This would improve our understanding gene expression in healthy animals and 

would provide a foundation for investigating transcription during disease 

infection or under heat or drought stress. Other studies have successfully 

studied gene expression profiles in immune cells after infection with diseases 

that are relevant in tropical agri-systems, including Peste-Des-Pestis-

Ruminants virus (PPRV) (Wani, Sahu et al. 2019), in live animals. Establishing 

a culture system for BMDM and other immune cells allows measurement of 

transcriptional responses in vitro as an alternative or precursor to challenge 

experiments in vivo. 

 Investigating goats with a different genetic 
background 

Goat populations in Africa are genetically different to the managed herds of 

dairy goats in the UK and Europe. This was reflected in the results of the 

ADAPT Map project, which genotyped more than 2000 goats from across the 

globe, including several populations from North, West, East and South East 

Africa (Colli, Milanesi et al. 2018, Stella, Nicolazzi et al. 2018). This project 

further characterized the genetic diversity of African goat breeds and identified 
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signatures of selection related to adaptation to a tropical environment. My 

research group has sequenced the genomes of 269 goats from twenty different 

countries for the 1000 Goat Genomes Project (VarGoats 2019). This 

information will be used to inform the development of new genetic tools for 

goats, including an update on the current 50K chip. This update will include 

additional content from African animals and improve the utility of the chip in 

African agri-systems. Another future direction for this project would be to 

overlay the expression data from the mini-atlas of expression with the whole 

genome sequencing dataset from African goats. The intersection of genomic 

DNA with functional annotation information could provide insights into the 

molecular basis of population-specific differences and adaptation to a tropical 

environment. Functional variation particularly in immune genes, for example, 

between populations, from different ecosystems with varying pathogen or 

climatic burdens, are likely to underpin differences in susceptibility to changing 

climatic conditions or disease. This variation can then be utilised for breeding 

the hardiest individuals while concomitantly improving production traits in 

community-based breeding programmes.  
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  Conclusion 
The work described in my thesis has made a significant contribution to the 

understanding of gene expression in the domestic goat and in comparative 

innate immune responses in small ruminants. The data generated is in the 

public domain and was used to annotate the current reference genome (ARS1) 

providing a valuable resource that can be used by the livestock genomics 

community. It provides a foundation for further studies that will elucidate the 

genetic basis of the immune response in tropical and temperate goat breeds. 

The goat is a hugely important livestock species, which contributes 

significantly to the stability and sustainability of agri-systems across the globe.  

 

  



   
 

 122 

References 

 

Adeyemo, O., H. C. Gao Rj Fau - Lan and H. C. Lan (1997). "Cytokine 

production in vitro by macrophages of goats with caprine arthritis-encephalitis." 

Cell Mol Biol(0145-5680 (Print)). 

Akira, S., S. Uematsu and O. Takeuchi (2006). "Pathogen recognition and 

innate immunity." Cell 124(4): 783-801. 

Alba-Hurtado, F. and M. A. Munoz-Guzman (2013). "Immune responses 

associated with resistance to haemonchosis in sheep." Biomed Res Int 2013: 

162158. 

Alexa, A. and J. Rahnenfuhrer (2016). topGO: Enrichment Analysis for Gene 

Ontology. R package version 2.30.1. 

http://bioconductor.uib.no/2.7/bioc/html/topGO.html. 

Andersson, L., A. L. Archibald, C. D. Bottema, R. Brauning, S. C. Burgess, D. 

W. Burt, E. Casas, H. H. Cheng, L. Clarke, C. Couldrey, B. P. Dalrymple, C. 

G. Elsik, S. Foissac, E. Giuffra, M. A. Groenen, B. J. Hayes, L. S. Huang, H. 

Khatib, J. W. Kijas, H. Kim, J. K. Lunney, F. M. McCarthy, J. C. McEwan, S. 

Moore, B. Nanduri, C. Notredame, Y. Palti, G. S. Plastow, J. M. Reecy, G. A. 

Rohrer, E. Sarropoulou, C. J. Schmidt, J. Silverstein, R. L. Tellam, M. Tixier-

Boichard, G. Tosser-Klopp, C. K. Tuggle, J. Vilkki, S. N. White, S. Zhao and 

H. Zhou (2015). "Coordinated international action to accelerate genome-to-

phenome with FAANG, the Functional Annotation of Animal Genomes project." 

Genome Biol 16: 57. 

Andersson, R., C. Gebhard, I. Miguel-Escalada, I. Hoof, J. Bornholdt, M. Boyd, 

Y. Chen, X. Zhao, C. Schmidl, T. Suzuki, E. Ntini, E. Arner, E. Valen, K. Li, L. 

Schwarzfischer, D. Glatz, J. Raithel, B. Lilje, N. Rapin, F. O. Bagger, M. 

Jorgensen, P. R. Andersen, N. Bertin, O. Rackham, A. M. Burroughs, J. K. 

Baillie, Y. Ishizu, Y. Shimizu, E. Furuhata, S. Maeda, Y. Negishi, C. J. Mungall, 

T. F. Meehan, T. Lassmann, M. Itoh, H. Kawaji, N. Kondo, J. Kawai, A. 

Lennartsson, C. O. Daub, P. Heutink, D. A. Hume, T. H. Jensen, H. Suzuki, Y. 

Hayashizaki, F. Muller, A. R. Forrest, P. Carninci, M. Rehli and A. Sandelin 



   
 

 123 

(2014). "An atlas of active enhancers across human cell types and tissues." 

Nature 507(7493): 455-461. 

Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather 

Butler, J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, 

Janan T. Eppig, Midori A. Harris, David P. Hill, Laurie Issel-Tarver, Andrew 

Kasarskis, Suzanna Lewis, John C. Matese, Joel E. Richardson, Martin 

Ringwald, G. M. Rubin and G. Sherlock (2000). "Gene Ontology: tool for the 

unification of biology.pdf." Nat Genet 25. 

Baillie, J. K., A. Bretherick, C. S. Haley, S. Clohisey, A. Gray, L. P. A. Neyton, 

J. Barrett, E. A. Stahl, A. Tenesa, R. Andersson, J. B. Brown, G. J. Faulkner, 

M. Lizio, U. Schaefer, C. Daub, M. Itoh, N. Kondo, T. Lassmann, J. Kawai, I. 

Consortium, D. Mole, V. B. Bajic, P. Heutink, M. Rehli, H. Kawaji, A. Sandelin, 

H. Suzuki, J. Satsangi, C. A. Wells, N. Hacohen, T. C. Freeman, Y. 

Hayashizaki, P. Carninci, A. R. R. Forrest and D. A. Hume (2018). "Shared 

activity patterns arising at genetic susceptibility loci reveal underlying genomic 

and cellular architecture of human disease." PLoS Comput Biol 14(3): 

e1005934. 

Baillie, J. K., E. Arner, C. Daub, M. De Hoon, M. Itoh, H. Kawaji, T. Lassmann, 

P. Carninci, A. R. Forrest, Y. Hayashizaki, F. Consortium, G. J. Faulkner, C. 

A. Wells, M. Rehli, P. Pavli, K. M. Summers and D. A. Hume (2017). "Analysis 

of the human monocyte-derived macrophage transcriptome and response to 

lipopolysaccharide provides new insights into genetic aetiology of 

inflammatory bowel disease." PLoS Genet 13(3): e1006641 

Banos, G., G. Bramis, S. J. Bush, E. L. Clark, M. E. B. McCulloch, J. Smith, G. 

Schulze, G. Arsenos, D. A. Hume and A. Psifidi (2017). "The genomic 

architecture of mastitis resistance in dairy sheep." BMC Genomics 18(1): 624. 

Basset, C., J. Holton, R. O’Mahony and I. Roitt (2003). "Innate immunity and 

pathogen–host interaction." Vaccine 21: S12-S23. 

Beutler, B., Z. Jiang, P. Georgel, K. Crozat, B. Croker, S. Rutschmann, X. Du 

and K. Hoebe (2006). "Genetic analysis of host resistance: Toll-like receptor 

signaling and immunity at large." Annu Rev Immunol 24: 353-389. 



   
 

 124 

Beutler, B. (2004). "Innate immunity: an overview." Molecular Immunology 

40(12): 845-859. 

Derek M Bickhart, Benjamin D Rosen, Sergey Koren, Brian L Sayre, Alex R 

Hastie, Saki Chan, Joyce Lee, Ernest T Lam, Ivan Liachko, Shawn T Sullivan, 

Joshua N Burton, Heather J Huson, John C Nystrom, Christy M Kelley, Jana 

L Hutchison, Yang Zhou, Jiajie Sun, Alessandra Crisà, F Abel Ponce de León, 

John C Schwartz, John A Hammond, Geoffrey C Waldbieser, Steven G 

Schroeder, George E Liu, Maitreya J Dunham, Jay Shendure, Tad S 

Sonstegard, Adam M Phillippy, Curtis P Van Tassell and T. P. L. Smith (2017). 

"Single-molecule sequencing and conformational capture enable de novo 

mammalian reference genomes." Nature Genetics. 

Bickhart, D. M., B. D. Rosen, S. Koren, B. L. Sayre, A. R. Hastie, S. Chan, J. 

Lee, E. T. Lam, I. Liachko, S. T. Sullivan, J. N. Burton, H. J. Huson, J. C. 

Nystrom, C. M. Kelley, J. L. Hutchison, Y. Zhou, J. Sun, A. Crisa, F. A. Ponce 

de Leon, J. C. Schwartz, J. A. Hammond, G. C. Waldbieser, S. G. Schroeder, 

G. E. Liu, M. J. Dunham, J. Shendure, T. S. Sonstegard, A. M. Phillippy, C. P. 

Van Tassell and T. P. L. Smith (2017). "Single-molecule sequencing and 

chromatin conformation capture enable de novo reference assembly of the 

domestic goat genome." Nat Genet 49(4): 643-650. 

Birney, E., J. A. Stamatoyannopoulos, A. Dutta, R. Guigo, T. R. Gingeras, E. 

H. Margulies, Z. Weng, M. Snyder, E. T. Dermitzakis, R. E. Thurman, M. S. 

Kuehn, C. M. Taylor, S. Neph, C. M. Koch, S. Asthana, A. Malhotra, I. 

Adzhubei, J. A. Greenbaum, R. M. Andrews, P. Flicek, P. J. Boyle, H. Cao, N. 

P. Carter, G. K. Clelland, S. Davis, N. Day, P. Dhami, S. C. Dillon, M. O. 

Dorschner, H. Fiegler, P. G. Giresi, J. Goldy, M. Hawrylycz, A. Haydock, R. 

Humbert, K. D. James, B. E. Johnson, E. M. Johnson, T. T. Frum, E. R. 

Rosenzweig, N. Karnani, K. Lee, G. C. Lefebvre, P. A. Navas, F. Neri, S. C. 

Parker, P. J. Sabo, R. Sandstrom, A. Shafer, D. Vetrie, M. Weaver, S. Wilcox, 

M. Yu, F. S. Collins, J. Dekker, J. D. Lieb, T. D. Tullius, G. E. Crawford, S. 

Sunyaev, W. S. Noble, I. Dunham, F. Denoeud, A. Reymond, P. Kapranov, J. 

Rozowsky, D. Zheng, R. Castelo, A. Frankish, J. Harrow, S. Ghosh, A. 



   
 

 125 

Sandelin, I. L. Hofacker, R. Baertsch, D. Keefe, S. Dike, J. Cheng, H. A. Hirsch, 

E. A. Sekinger, J. Lagarde, J. F. Abril, A. Shahab, C. Flamm, C. Fried, J. 

Hackermuller, J. Hertel, M. Lindemeyer, K. Missal, A. Tanzer, S. Washietl, J. 

Korbel, O. Emanuelsson, J. S. Pedersen, N. Holroyd, R. Taylor, D. Swarbreck, 

N. Matthews, M. C. Dickson, D. J. Thomas, M. T. Weirauch, J. Gilbert, J. 

Drenkow, I. Bell, X. Zhao, K. G. Srinivasan, W. K. Sung, H. S. Ooi, K. P. Chiu, 

S. Foissac, T. Alioto, M. Brent, L. Pachter, M. L. Tress, A. Valencia, S. W. 

Choo, C. Y. Choo, C. Ucla, C. Manzano, C. Wyss, E. Cheung, T. G. Clark, J. 

B. Brown, M. Ganesh, S. Patel, H. Tammana, J. Chrast, C. N. Henrichsen, C. 

Kai, J. Kawai, U. Nagalakshmi, J. Wu, Z. Lian, J. Lian, P. Newburger, X. Zhang, 

P. Bickel, J. S. Mattick, P. Carninci, Y. Hayashizaki, S. Weissman, T. Hubbard, 

R. M. Myers, J. Rogers, P. F. Stadler, T. M. Lowe, C. L. Wei, Y. Ruan, K. Struhl, 

M. Gerstein, S. E. Antonarakis, Y. Fu, E. D. Green, U. Karaoz, A. Siepel, J. 

Taylor, L. A. Liefer, K. A. Wetterstrand, P. J. Good, E. A. Feingold, M. S. Guyer, 

G. M. Cooper, G. Asimenos, C. N. Dewey, M. Hou, S. Nikolaev, J. I. Montoya-

Burgos, A. Loytynoja, S. Whelan, F. Pardi, T. Massingham, H. Huang, N. R. 

Zhang, I. Holmes, J. C. Mullikin, A. Ureta-Vidal, B. Paten, M. Seringhaus, D. 

Church, K. Rosenbloom, W. J. Kent, E. A. Stone, N. C. S. Program, C. Baylor 

College of Medicine Human Genome Sequencing, C. Washington University 

Genome Sequencing, I. Broad, I. Children's Hospital Oakland Research, S. 

Batzoglou, N. Goldman, R. C. Hardison, D. Haussler, W. Miller, A. Sidow, N. 

D. Trinklein, Z. D. Zhang, L. Barrera, R. Stuart, D. C. King, A. Ameur, S. Enroth, 

M. C. Bieda, J. Kim, A. A. Bhinge, N. Jiang, J. Liu, F. Yao, V. B. Vega, C. W. 

Lee, P. Ng, A. Shahab, A. Yang, Z. Moqtaderi, Z. Zhu, X. Xu, S. Squazzo, M. 

J. Oberley, D. Inman, M. A. Singer, T. A. Richmond, K. J. Munn, A. Rada-

Iglesias, O. Wallerman, J. Komorowski, J. C. Fowler, P. Couttet, A. W. Bruce, 

O. M. Dovey, P. D. Ellis, C. F. Langford, D. A. Nix, G. Euskirchen, S. Hartman, 

A. E. Urban, P. Kraus, S. Van Calcar, N. Heintzman, T. H. Kim, K. Wang, C. 

Qu, G. Hon, R. Luna, C. K. Glass, M. G. Rosenfeld, S. F. Aldred, S. J. Cooper, 

A. Halees, J. M. Lin, H. P. Shulha, X. Zhang, M. Xu, J. N. Haidar, Y. Yu, Y. 

Ruan, V. R. Iyer, R. D. Green, C. Wadelius, P. J. Farnham, B. Ren, R. A. Harte, 



   
 

 126 

A. S. Hinrichs, H. Trumbower, H. Clawson, J. Hillman-Jackson, A. S. Zweig, 

K. Smith, A. Thakkapallayil, G. Barber, R. M. Kuhn, D. Karolchik, L. Armengol, 

C. P. Bird, P. I. de Bakker, A. D. Kern, N. Lopez-Bigas, J. D. Martin, B. E. 

Stranger, A. Woodroffe, E. Davydov, A. Dimas, E. Eyras, I. B. Hallgrimsdottir, 

J. Huppert, M. C. Zody, G. R. Abecasis, X. Estivill, G. G. Bouffard, X. Guan, N. 

F. Hansen, J. R. Idol, V. V. Maduro, B. Maskeri, J. C. McDowell, M. Park, P. J. 

Thomas, A. C. Young, R. W. Blakesley, D. M. Muzny, E. Sodergren, D. A. 

Wheeler, K. C. Worley, H. Jiang, G. M. Weinstock, R. A. Gibbs, T. Graves, R. 

Fulton, E. R. Mardis, R. K. Wilson, M. Clamp, J. Cuff, S. Gnerre, D. B. Jaffe, 

J. L. Chang, K. Lindblad-Toh, E. S. Lander, M. Koriabine, M. Nefedov, K. 

Osoegawa, Y. Yoshinaga, B. Zhu and P. J. de Jong (2007). "Identification and 

analysis of functional elements in 1% of the human genome by the ENCODE 

pilot project." Nature 447(7146): 799-816. 

Bishop, S. C. and C. A. Morris (2007). "Genetics of disease resistance in sheep 

and goats." Small Ruminant Research 70(1): 48-59. 

Bishop, S. C. and J. A. Woolliams (2014). "Genomics and disease resistance 

studies in livestock." Livest Sci 166: 190-198. 

Bishop, S. C. and M. J. Stear (2003). "Modeling of host genetics and resistance 

to infectious diseases: understanding and controlling nematode infections." 

Veterinary Parasitology 115(2): 147-166. 

Braissant O, F. F., Scotto C, Dauça M, Wahli W. (1996). "Differential 

expression of peroxisome proliferator-activated receptors (PPARs)-tissue 

distribution of PPAR-alpha, -beta, and -gamma in the adult rat.pdf." 

Endocrinology. 137(1): 354-366. 

Bray, N. L., H. Pimentel, P. Melsted and L. Pachter (2016). "Near-optimal 

probabilistic RNA-seq quantification." Nat Biotechnol 34(5): 525-527. 

Brenaut, P., L. Lefevre, A. Rau, D. Laloe, G. Pisoni, P. Moroni, C. Bevilacqua 

and P. Martin (2014). "Contribution of mammary epithelial cells to the immune 

response during early stages of a bacterial infection to Staphylococcus 

aureus.pdf." VETERINARY RESEARCH 45(16). 



   
 

 127 

Bush, S. J., L. Freem, A. J. MacCallum, J. O'Dell, C. Wu, C. Afrasiabi, A. 

Psifidi, M. P. Stevens, J. Smith, K. M. Summers and D. A. Hume (2018). 

"Combination of novel and public RNA-seq datasets to generate an mRNA 

expression atlas for the domestic chicken." BMC genomics 19(1): 594-594. 

Bush, S. J., L. Freem, A. J. MacCallum, J. O'Dell, C. Wu, C. Afrasiabi, A. 

Psifidi, M. P. Stevens, J. Smith, K. M. Summers and D. A. Hume (2018). 

"Combination of novel and public RNA-seq datasets to generate an mRNA 

expression atlas for the domestic chicken." BMC Genomics 19(1): 594. 

Bush, S. J., M. E. B. McCulloch, C. Muriuki, M. Salavati, G. M. Davis, I. L. 

Farquhar, Z. M. Lisowski, A. L. Archibald, D. A. Hume and E. L. Clark (2019). 

"Comprehensive Transcriptional Profiling of the Gastrointestinal Tract of 

Ruminants from Birth to Adulthood Reveals Strong Developmental Stage 

Specific Gene Expression." G3: Genes|Genomes|Genetics 9(2): 359. 

Bustin, S. A., V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. 

Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele and C. T. 

Wittwer (2009). "The MIQE guidelines: minimum information for publication of 

quantitative real-time PCR experiments." Clin Chem 55(4): 611-622. 

Cao, Y., H. Xu, R. Li, S. Gao, N. Chen, J. Luo and Y. Jiang (2019). "Genetic 

Basis of Phenotypic Differences Between Chinese Yunling Black Goats and 

Nubian Goats Revealed by Allele-Specific Expression in Their F1 Hybrids." 

Frontiers in Genetics 10: 145. 

Casey, M. E., K. G. Meade, N. C. Nalpas, M. Taraktsoglou, J. A. Browne, K. 

E. Killick, S. D. Park, E. Gormley, K. Hokamp, D. A. Magee and D. E. MacHugh 

(2015). "Analysis of the Bovine Monocyte-Derived Macrophage Response to 

Mycobacterium avium Subspecies Paratuberculosis Infection Using RNA-

seq." Front Immunol 6: 23. 

Cecchi, F., C. Russo, D. Iamartino, A. Galiero, B. Turchi, F. Fratini, S. 

Degl'Innocenti, R. Mazza, S. Biffani, G. Preziuso and C. Cantile (2017). 

"Identification of candidate genes for paratuberculosis resistance in the native 

Italian Garfagnina goat breed." Trop Anim Health Prod 49(6): 1135-1142. 



   
 

 128 

Chamberlain, A. J., C. J. Vander Jagt, B. J. Hayes, M. Khansefid, L. C. Marett, 

C. A. Millen, T. T. T. Nguyen and M. E. Goddard (2015). "Extensive variation 

between tissues in allele specific expression in an outbred mammal." BMC 

Genomics 16: 993. 

Dennis J Chia (2014). "Minireview: mechanisms of growth hormone-mediated 

gene regulation." Mol Endocrinol 28(7): 1012-1025. 

Chopra-Dewasthaly, R., M. Korb, R. Brunthaler and R. Ertl (2017). 

"Comprehensive RNA-Seq Profiling to Evaluate the Sheep Mammary Gland 

Transcriptome in Response to Experimental Mycoplasma agalactiae 

Infection." PLoS One 12(1): e0170015. 

Clark, E. L., S. J. Bush, M. E. B. McCulloch, I. L. Farquhar, R. Young, L. 

Lefevre, C. Pridans, H. Tsang, C. Wu, C. Afrasiabi, M. Watson, C. B. Whitelaw, 

T. C. Freeman, K. M. Summers, A. L. Archibald and D. A. Hume (2017). "A 

high resolution atlas of gene expression in the domestic sheep (Ovis aries)." 

PLOS Genetics 13(9): e1006997. 

Clarke, C. J. (1997). "The Pathology and Pathogenesis of Paratuberculosis in 

ruminants and other species." Journal of Comparative Pathology 116(3): 217–

261. 

Colli, L., M. Milanesi, A. Talenti, F. Bertolini, M. Chen, A. Crisà, K. G. Daly, M. 

Del Corvo, B. Guldbrandtsen, J. A. Lenstra, B. D. Rosen, E. Vajana, G. Catillo, 

S. Joost, E. L. Nicolazzi, E. Rochat, M. F. Rothschild, B. Servin, T. S. 

Sonstegard, R. Steri, C. P. Van Tassell, P. Ajmone-Marsan, P. Crepaldi, A. 

Stella and C. the AdaptMap (2018). "Genome-wide SNP profiling of worldwide 

goat populations reveals strong partitioning of diversity and highlights post-

domestication migration routes." Genetics Selection Evolution 50(1): 58. 

Consortium, RIKEN Genome Exploration Research Group Phase II Team and 

the FANTOM Consortium (2001). "Functional annotation of a full-length mouse 

cDNA collection." NATURE 409. 

Corces, M. R., A. E. Trevino, E. G. Hamilton, P. G. Greenside, N. A. Sinnott-

Armstrong, S. Vesuna, A. T. Satpathy, A. J. Rubin, K. S. Montine, B. Wu, A. 

Kathiria, S. W. Cho, M. R. Mumbach, A. C. Carter, M. Kasowski, L. A. Orloff, 



   
 

 129 

V. I. Risca, A. Kundaje, P. A. Khavari, T. J. Montine, W. J. Greenleaf and H. 

Y. Chang (2017). "An improved ATAC-seq protocol reduces background and 

enables interrogation of frozen tissues." Nature methods 14(10): 959-962. 

David  C. W., Norrman  J., Hammon  H. M., Davis  W. C. and B. J. W. (2003). 

"Cell Proliferation, Apoptosis, and B- and T-Lymphocytes in Peyer’s Patches 

of the Ileum, in Thymus and in Lymph nodes of Preterm Calves, and in Full-

Term Calves at Birth and on Day 5 of Life." J. Dairy Sci. 86: 3321–3329. 

Davies L.C., et al. (2013) Tissue-resident macrophages. Nat. Immunol. 14, 

986-95. 10.1038/ni.2705 

Dobrovolskaia, M. A. and S. N. Vogel (2002). "Toll receptors, CD14, and 

macrophage activation and deactivation by LPS.pdf." Microbes and Infection 

4: 903-914. 

Dong, Y., G. F. T. Poon, A. A. Arif, S. S. M. Lee-Sayer, M. Dosanjh and P. 

Johnson (2018). "The survival of fetal and bone marrow monocyte-derived 

alveolar macrophages is promoted by CD44 and its interaction with 

hyaluronan." Mucosal Immunol 11(3): 601-614. 

Dong, Y., M. Xie, Y. Jiang, N. Xiao, X. Du, W. Zhang, G. Tosser-Klopp, J. 

Wang, S. Yang, J. Liang, W. Chen, J. Chen, P. Zeng, Y. Hou, C. Bian, S. Pan, 

Y. Li, X. Liu, W. Wang, B. Servin, B. Sayre, B. Zhu, D. Sweeney, R. Moore, W. 

Nie, Y. Shen, R. Zhao, G. Zhang, J. Li, T. Faraut, J. Womack, Y. Zhang, J. 

Kijas, N. Cockett, X. Xu and S. Zhao (2013). "Sequencing and automated 

whole-genome optical mapping of the genome of a domestic goat (Capra 

hircus)." Nat Biotechnol 31(2): 135-141. 

Dongen, S. v. and C. Abreu-Goodger (2012). "Using MCL to Extract Clusters 

from Networks.pdf." Methods in Molecular Biology 804: 281-295. 

Ellegren, H. (2008). "Comparative genomics and the study of evolution by 

natural selection." Mol Ecol 17(21): 4586-4596. 

Entrican, G. (2002). "New technologies for studying immune regulation in 

ruminants.pdf." Veterinary Immunology and Immunopathology(87): 485-490. 

FANTOM Consortium (2005). The Transcriptional Landscape of the 

mammalian genome. Science 309. 



   
 

 130 

Fairbairn, L., R. Kapetanovic, D. P. Sester and D. A. Hume (2011). "The 

mononuclear phagocyte system of the pig as a model for understanding 

human innate immunity and disease." J Leukoc Biol 89(6): 855-871. 

Fairbairn, L., R. Kapetanovic, D. Beraldi, D. P. Sester, C. K. Tuggle, A. L. 

Archibald and D. A. Hume (2013). "Comparative Analysis of Monocyte Subsets 

in the Pig." The Journal of Immunology 190(12): 6389-6396. 

Fairfax, B. P., P. Humburg, S. Makino, V. Naranbhai, D. Wong, E. Lau, L. 

Jostins, K. Plant, R. Andrews, C. McGee and J. C. Knight (2014). "Innate 

Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte 

Gene Expression." Science 343(6175): 1246949. 

Fan, Y., R. K. Menon, P. Cohen, D. Hwang, T. Clemens, D. J. DiGirolamo, J. 

J. Kopchick, D. Le Roith, M. Trucco and M. A. Sperling (2009). "Liver-specific 

deletion of the growth hormone receptor reveals essential role of growth 

hormone signaling in hepatic lipid metabolism." J Biol Chem 284(30): 19937-

19944. 

Faucette, A. N., V. A. Maher, M. A. Gutierrez, J. M. Jucker, D. C. Yates, T. H. 

Welsh, Jr., M. Amstalden, G. R. Newton, L. C. Nuti, D. W. Forrest and N. H. 

Ing (2014). "Temporal changes in histomorphology and gene expression in 

goat testes during postnatal development1,2." Journal of Animal Science 

92(10): 4440-4448. 

Francisco-Cruz, A., M. Aguilar-Santelises, O. Ramos-Espinosa, D. Mata-

Espinosa, B. Marquina-Castillo, J. Barrios-Payan and R. Hernandez-Pando 

(2014). "Granulocyte-macrophage colony-stimulating factor: not just another 

haematopoietic growth factor." Med Oncol 31(1): 774. 

Hume DA and Freeman TC (2014). "Transcriptomic analysis of mononuclear 

phagocyte differentiation and activation." Immunological Reviews 262: 74-84. 

Freeman, T. C., A. Ivens, J. K. Baillie, D. Beraldi, M. W. Barnett, D. Dorward, 

A. Downing, L. Fairbairn, R. Kapetanovic, S. Raza, A. Tomoiu, R. Alberio, C. 

Wu, A. I. Su, K. M. Summers, C. K. Tuggle, A. L. Archibald and D. A. Hume 

(2012). "A gene expression atlas of the domestic pig." BMC Biol 10: 90. 



   
 

 131 

Fujihara, M., M. Muroi, K.-i. Tanamoto, T. Suzuki, H. Azuma and H. Ikeda 

(2003). "Molecular mechanisms of macrophage activation and deactivation by 

lipopolysaccharide: roles of the receptor complex." Pharmacology & 

Therapeutics 100(2): 171-194. 

Gill, H. S., K. Altmann, M. L. Cross and A. J. Husband (2000). "Induction of T 

helper 1- and T helper 2-type immune responses during Haemonchus 

contortus infection in sheep." Immunology 99(3): 458-463. 

Giotti, B., S. H. Chen, M. W. Barnett, T. Regan, T. Ly, S. Wiemann, D. A. Hume 

and T. C. Freeman (2018). "Assembly of a Parts List of the Human Mitotic Cell 

Cycle Machinery." J Mol Cell Biol. 

Gonzalez-Garay, M. L. (2016). Introduction to Isoform Sequencing Using 

Pacific Biosciences Technology (Iso-Seq). Transcriptomics and Gene 

Regulation. J. Wu. Dordrecht, Springer Netherlands: 141-160. 

Gossner, A. G., V. M. Venturina, A. Peers, C. A. Watkins and J. Hopkins 

(2012). "Expression of sheep interleukin 23 (IL23A, alpha subunit p19) in two 

distinct gastrointestinal diseases." Vet Immunol Immunopathol 150(1-2): 118-

122. 

Grabmuller, M., B. Madea and C. Courts (2015). "Comparative evaluation of 

different extraction and quantification methods for forensic RNA analysis." 

Forensic Sci Int Genet 16: 195-202. 

Harhay, G. P., T. P. Smith, L. J. Alexander, C. D. Haudenschild, J. W. Keele, 

L. K. Matukumalli, S. G. Schroeder, C. P. Van Tassell, C. R. Gresham, S. M. 

Bridges, S. C. Burgess and T. S. Sonstegard (2010). "An atlas of bovine gene 

expression reveals novel distinctive tissue characteristics and evidence for 

improving genome annotation." Genome Biol 11(10): R102. 

Haziot, A., E. Ferrero, F. Kontgen, N. Hijiya, S. Yamamoto, J. Silver and C. L. 

Stewart (1996). "Resistance to Endotoxin Shock and Reduced 

Disseminationof Gram-Negative Bacteria in CD14-Deficient Mice." Cell Press 

4: 407-414. 



   
 

 132 

Heike Bicker, Conny Hoflich, Kerstin Wolk, KatrinVogt, Hans-Dieter Volk and 

R. Sabat (2008). "A simple assay to measure phagocytosis of live 

bacteria.pdf." Clinical Chemistry 54(5): 911-915. 

Heiko Adler, Barbara Adler, Paola Peveri, Ernst R. Werner, Helmut Wachter, 

Ernst Peterhans and T. W. Jungi (1996). "Differential Regulation of Inducible 

Nitric Oxide Synthase Production in Bovine and Caprine Macrophages.pdf." 

The Journal of Infectious Diseases 173: 971-978. 

Hope, J. C., P. Sopp, S. Wattegedera and G. Entrican (2012). "Tools and 

reagents for caprine immunology." Small Ruminant Research 103(1): 23-27. 

Hume, D. A., K. M. Summers, S. Raza, J. K. Baillie and T. C. Freeman (2010). 

"Functional clustering and lineage markers: insights into cellular differentiation 

and gene function from large-scale microarray studies of purified primary cell 

populations." Genomics 95(6): 328-338. 

D. A. Hume and C. Pridans (2019). "Deletion of a Csf1r enhancer selectively 

impacts CSF1R expression and development of tissue macrophage 

populations." Nat Commun 10(1): 3215. 

David A Hume, Ian L. Ross, S. Roy Himes, R. Tedjo Sasmono, Christine A. 

Wells and Timothy Ravasi (2002). "The mononuclear phagocyte system 

revisited." Journal of Leukocyte Biology 72. 

David A Hume (2006). "The mononuclear phagocyte system." Curr Opin 

Immunol 18(1): 49-53. 

David A Hume (2008). "Differentiation and heterogeneity in the mononuclear 

phagocyte system." Mucosal Immunol 1(6): 432-441. 

Hume DA and Freeman TC (2014). "Transcriptomic analysis of mononuclear 

phagocyte differentiation and activation." Immunological Reviews 262: 74-84. 

Hussen, J. and H. J. Schuberth (2017). "Heterogeneity of Bovine Peripheral 

Blood Monocytes." Front Immunol 8: 1875. 

Ibeagha-Awemu, E. M., P. Kgwatalala, A. E. Ibeagha and X. Zhao (2008). "A 

critical analysis of disease-associated DNA polymorphisms in the genes of 

cattle, goat, sheep, and pig." Mamm Genome 19(4): 226-245. 

Illumina (2017). TruSeq Stranded mRNA Reference Guide. 



   
 

 133 

Ito, H., N. Koide, A. Morikawa, F. Hassan, S. Islam, G. Tumurkhuu, I. Mori, T. 

Yoshida, S. Kakumu, H. Moriwaki and T. Yokochi (2005). "Augmentation of 

lipopolysaccharide-induced nitric oxide production by alpha-

galactosylceramide in mouse peritoneal cells." J Endotoxin Res 11(4): 213-

219. 

Jenkins, S. J. and D. A. Hume (2014). "Homeostasis in the mononuclear 

phagocyte system." Trends Immunol 35(8): 358-367. 

Jiang, Y., M. Xie, W. Chen, R. Talbot, J. F. Maddox, T. Faraut, C. Wu, D. M. 

Muzny, Y. Li, W. Zhang, J. A. Stanton, R. Brauning, W. C. Barris, T. Hourlier, 

B. L. Aken, S. M. Searle, D. L. Adelson, C. Bian, G. R. Cam, Y. Chen, S. 

Cheng, U. DeSilva, K. Dixen, Y. Dong, G. Fan, I. R. Franklin, S. Fu, P. Fuentes-

Utrilla, R. Guan, M. A. Highland, M. E. Holder, G. Huang, A. B. Ingham, S. N. 

Jhangiani, D. Kalra, C. L. Kovar, S. L. Lee, W. Liu, X. Liu, C. Lu, T. Lv, T. 

Mathew, S. McWilliam, M. Menzies, S. Pan, D. Robelin, B. Servin, D. Townley, 

W. Wang, B. Wei, S. N. White, X. Yang, C. Ye, Y. Yue, P. Zeng, Q. Zhou, J. 

B. Hansen, K. Kristiansen, R. A. Gibbs, P. Flicek, C. C. Warkup, H. E. Jones, 

V. H. Oddy, F. W. Nicholas, J. C. McEwan, J. W. Kijas, J. Wang, K. C. Worley, 

A. L. Archibald, N. Cockett, X. Xu, W. Wang and B. P. Dalrymple (2014). "The 

sheep genome illuminates biology of the rumen and lipid metabolism." Science 

344(6188): 1168-1173. 

Julia A, P., M. Suli, M. Bryan A, K. Evan S, F. James J and T. Matthew J 

(2019). "Brush border protocadherin CDHR2 promotes the elongation and 

maximized packing of microvilli in vivo." Molecular Biology of the Cell 30. 

Jung, C., J. P. Hugot and F. Barreau (2010). "Peyer's Patches: The Immune 

Sensors of the Intestine." Int J Inflam 2010: 823710. 

Jungi TW, Adler H, Adler B, Thöny M, Krampe M and P. E. (1996). "Inducible 

nitric oxide synthase of macrophages. Present knowledge and evidence for 

species-specific regulation." Vet Immunol Immunopathol Nov,54(1-4): 323-

330. 



   
 

 134 

Kalds, P., S. Zhou, B. Cai, J. Liu, Y. Wang, B. Petersen, T. Sonstegard, X. 

Wang and Y. Chen (2019). "Sheep and Goat Genome Engineering: From 

Random Transgenesis to the CRISPR Era." Front. Genet. . 

Kannaki, T. R., M. Shanmugam and P. C. Verma (2011). "Toll-like receptors 

and their role in animal reproduction." Anim Reprod Sci 125(1-4): 1-12. 

Kapetanovic, R., L. Fairbairn, D. Beraldi, D. P. Sester, A. L. Archibald, C. K. 

Tuggle and D. A. Hume (2012). "Pig bone marrow-derived macrophages 

resemble human macrophages in their response to bacterial 

lipopolysaccharide." J Immunol 188(7): 3382-3394. 

Karagianni, A. E., R. Kapetanovic, K. M. Summers, B. C. McGorum, D. A. 

Hume and R. S. Pirie (2017). "Comparative transcriptome analysis of equine 

alveolar macrophages." Equine Vet J 49(3): 375-382. 

Kenya, L. (2019). "Meat goat breeds in Kenya."   Retrieved August 1st 2019, 

from https://www.livestockkenya.com/index.php/blog/sheep-and-goats/141-

meat-goat-breeds-in-kenya. 

Kim, D., B. Langmead and S. L. Salzberg (2015). "HISAT: a fast spliced aligner 

with low memory requirements." Nat Methods 12(4): 357-360. 

Krupp, M., J. U. Marquardt, U. Sahin, P. R. Galle, J. Castle and A. Teufel 

(2012). "RNA-Seq Atlas - A reference database for gene expression profiling 

in normal tissue by next generation sequencing." Bioinformatics 28. 

Krupp, M., J. U. Marquardt, U. Sahin, P. R. Galle, J. Castle and A. Teufel 

(2012). "RNA-Seq Atlas-a reference database for gene expression profiling in 

normal tissue by next-generation sequencing." Bioinformatics 28(8): 1184-

1185. 

Landmann R, Knopf HP, Link S, Sansano S, Schumann R and Z. W. (1996). 

"Human monocyte CD14 is upregulated by lipopolysaccharide." INFECTION 

AND IMMUNITY 65(5): 1762-1769. 

Laporta, J., G. J. Rosa, H. Naya and M. Carriquiry (2014). "Liver functional 

genomics in beef cows on grazing systems: novel genes and pathways 

revealed." Physiol Genomics 46(4): 138-147. 



   
 

 135 

Larruskain, A. and B. M. Jugo (2013). "Retroviral infections in sheep and goats: 

small ruminant lentiviruses and host interaction." Viruses 5(8): 2043-2061. 

Law, R. H., Q. Zhang, S. McGowan, A. M. Buckle, G. A. Silverman, W. Wong, 

C. J. Rosado, C. G. Langendorf, R. N. Pike, P. I. Bird and J. C. Whisstock 

(2006). "An overview of the serpin superfamily." Genome Biology 7(216). 

F. Lechner, A. S., U. Von Bodungen, G. Beroni, H. Pfister,  T. W. Jungi, and 

E. Peterhans (1999). "Inducible nitric oxide synthase is expressed in joints of 

goats in the late stage of infection with caprine arthritis encephalitis virus." Clin 

Exp Immunol 117: 70-75. 

Lei, H. K., Vasiliou Daniel W, Nebert (2009). "Analysis and update of the 

human solute carrier (SLC) gene superfamily." Human Genomics 3: 195-206. 

Link, V. M., S. H. Duttke, H. B. Chun, I. R. Holtman, E. Westin, M. A. 

Hoeksema, Y. Abe, D. Skola, C. E. Romanoski, J. Tao, G. J. Fonseca, T. D. 

Troutman, N. J. Spann, T. Strid, M. Sakai, M. Yu, R. Hu, R. Fang, D. Metzler, 

B. Ren and C. K. Glass (2018). "Analysis of Genetically Diverse Macrophages 

Reveals Local and Domain-wide Mechanisms that Control Transcription 

Factor Binding and Function." Cell 173(7): 1796-1809 e1717. 

Livak, K. J. and T. D. Schmittgen (2001). "Analysis of relative gene expression 

data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method." 

Methods 25(4): 402-408. 

Lopetuso, L. R., S. Chowdhry and T. T. Pizarro (2013). "Opposing Functions 

of Classic and Novel IL-1 Family Members in Gut Health and Disease." Front 

Immunol 4: 181. 

Mabbott, N. A., J. K. Baillie, D. A. Hume and T. C. Freeman (2010). "Meta-

analysis of lineage-specific gene expression signatures in mouse leukocyte 

populations." Immunobiology 215(9-10): 724-736. 

Mandard S, Muller M and Kersten S (2004). "Peroxisome proliferator-activated 

receptor alpha target genes." Cell Mol Life Sci 61(4): 393-416. 

Marim, F. M., T. N. Silveira, D. S. Lima, Jr. and D. S. Zamboni (2010). "A 

method for generation of bone marrow-derived macrophages from 

cryopreserved mouse bone marrow cells." PLoS One 5(12): e15263. 



   
 

 136 

Martinez, F. O., S. Gordon, M. Locati and A. Mantovani (2006). 

"Transcriptional profiling of the human monocyte-to-macrophage 

differentiation and polarization: new molecules and patterns of gene 

expression." J Immunol 177(10): 7303-7311. 

Mele, M., P. G. Ferreira, F. Reverter, D. S. DeLuca, J. Monlong, M. Sammeth, 

T. R. Young, J. M. Goldmann, D. D. Pervouchine, T. J. Sullivan, R. Johnson, 

A. V. Segre, S. Djebali, A. Niarchou, G. T. Consortium, F. A. Wright, T. 

Lappalainen, M. Calvo, G. Getz, E. T. Dermitzakis, K. G. Ardlie and R. Guigo 

(2015). "Human genomics. The human transcriptome across tissues and 

individuals." Science 348(6235): 660-665. 

Mi, H., Q. Dong, A. Muruganujan, P. Gaudet, S. Lewis and P. D. Thomas 

(2010). "PANTHER version 7: improved phylogenetic trees, orthologs and 

collaboration with the Gene Ontology Consortium." Nucleic Acids Res 

38(Database issue): D204-210. 

Munoz Mendoza, M., L. Juan, S. Menendez, A. Ocampo, J. Mourelo, J. L. 

Saez, L. Dominguez, C. Gortazar, J. F. Garcia Marin and A. Balseiro (2012). 

"Tuberculosis due to Mycobacterium bovis and Mycobacterium caprae in 

sheep." Vet J 191(2): 267-269. 

Muriuki, C., S. J. Bush, M. Salavati, M. E. B. McCulloch, Z. M. Lisowski, M. 

Agaba, A. Djikeng, D. A. Hume and E. L. Clark (2019). "A Mini-Atlas of Gene 

Expression for the Domestic Goat (Capra hircus)." Frontiers in Genetics 10. 

Nilsson, R., V. B. Bajic, H. Suzuki, D. di Bernardo, J. Bjorkegren, S. Katayama, 

J. F. Reid, M. J. Sweet, M. Gariboldi, P. Carninci, Y. Hayashizaki, D. A. Hume, 

J. Tegner and T. Ravasi (2006). "Transcriptional network dynamics in 

macrophage activation." Genomics 88(2): 133-142. 

Oliver, S. (2000). "Proteomics: Guilt-by-association goes global." Nature 

403(6770): 601-603. 

Pelaseyed, T., J. H. Bergstrom, J. K. Gustafsson, A. Ermund, G. M. 

Birchenough, A. Schutte, S. van der Post, F. Svensson, A. M. Rodriguez-

Pineiro, E. E. Nystrom, C. Wising, M. E. Johansson and G. C. Hansson (2014). 

"The mucus and mucins of the goblet cells and enterocytes provide the first 



   
 

 137 

defense line of the gastrointestinal tract and interact with the immune system." 

Immunol Rev 260(1): 8-20. 

Pertea, M., G. M. Pertea, C. M. Antonescu, T. C. Chang, J. T. Mendell and S. 

L. Salzberg (2015). "StringTie enables improved reconstruction of a 

transcriptome from RNA-seq reads." Nat Biotechnol 33(3): 290-295. 

Pertea, M., D. Kim, G. M. Pertea, J. T. Leek and S. L. Salzberg (2016). 

"Transcript-level expression analysis of RNA-seq experiments with HISAT, 

StringTie and Ballgown." Nat Protoc 11(9): 1650-1667. 

Pridans, C., G. M. Davis, K. A. Sauter, Z. M. Lisowski, Y. Corripio-Miyar, A. 

Raper, L. Lefevre, R. Young, M. E. McCulloch, S. Lillico, E. Milne, B. Whitelaw 

and D. A. Hume (2016). "A Csf1r-EGFP Transgene Provides a Novel Marker 

for Monocyte Subsets in Sheep." J Immunol 197(6): 2297-2305. 

Pruitt, K. D., T. Tatusova and D. R. Maglott (2007). "NCBI reference 

sequences (RefSeq): a curated non-redundant sequence database of 

genomes, transcripts and proteins." Nucleic acids research 35(Database 

issue): D61-D65. 

Rafael A. Nafikov and Donald C. Beitz (2007). "Carbohydrate and lipid 

metabolism in farm animals." The Journal of Nutrition 137: 702-705. 

Ravasi, T., H. Suzuki, C. V. Cannistraci, S. Katayama, V. B. Bajic, K. Tan, A. 

Akalin, S. Schmeier, M. Kanamori-Katayama, N. Bertin, P. Carninci, C. O. 

Daub, A. R. Forrest, J. Gough, S. Grimmond, J. H. Han, T. Hashimoto, W. 

Hide, O. Hofmann, A. Kamburov, M. Kaur, H. Kawaji, A. Kubosaki, T. 

Lassmann, E. van Nimwegen, C. R. MacPherson, C. Ogawa, A. Radovanovic, 

A. Schwartz, R. D. Teasdale, J. Tegner, B. Lenhard, S. A. Teichmann, T. 

Arakawa, N. Ninomiya, K. Murakami, M. Tagami, S. Fukuda, K. Imamura, C. 

Kai, R. Ishihara, Y. Kitazume, J. Kawai, D. A. Hume, T. Ideker and Y. 

Hayashizaki (2010). "An atlas of combinatorial transcriptional regulation in 

mouse and man." Cell 140(5): 744-752. 

Raza, S., M. W. Barnett, Z. Barnett-Itzhaki, I. Amit, D. A. Hume and T. C. 

Freeman (2014). "Analysis of the transcriptional networks underpinning the 



   
 

 138 

activation of murine macrophages by inflammatory mediators." J Leukoc Biol 

96(2): 167-183. 

LA Reddacliff, H. M. K Beh and R. Whittington (2005). "A preliminary study of 

possible genetic influences on the susceptibility of sheep to Johne’s disease." 

Australian Veterinary Journal 83: 435-441. 

Rice, P., I. Longden and A. Bleasby (2000). "EMBOSS: The European 

Molecular Biology Open Software Suite." Trends in Genetics 16(6): 276-277. 

Robinson, M. D., D. J. McCarthy and G. K. Smyth (2009). "edgeR: a 

Bioconductor package for differential expression analysis of digital gene 

expression data." Bioinformatics 26(1): 139-140. 

Rojo, R., A. Raper, D. D. Ozdemir, L. Lefevre, K. Grabert, E. Wollscheid-

Lengeling, B. Bradford, M. Caruso, I. Gazova, A. Sanchez, Z. M. Lisowski, J. 

Alves, I. Molina-Gonzalez, H. Davtyan, R. J. Lodge, J. D. Glover, R. Wallace, 

D. A. D. Munro, E. David, I. Amit, V. E. Miron, J. Priller, S. J. Jenkins, G. E. 

Hardingham, M. Blurton-Jones, N. A. Mabbott, K. M. Summers, P. Hohenstein,  

Russell, G. C., J. P. Stewart and D. M. Haig (2009). "Malignant catarrhal fever: 

a review." Vet J 179(3): 324-335. 

Ruth M. Ruprecht, N. C. Goodman and S. Spiegelman (1973). "Conditions for 

the selective synthesis of DNA complementary to template RNA.pdf>." 

Biochimica et Biophysica Acta 294: 192-203. 

Salavati, M., S. J. Bush, S. Palma-Vera, M. E. B. McCulloch, D. A. Hume and 

E. L. Clark (2019). "Elimination of reference mapping bias reveals robust 

immune related allele-specific expression in cross-bred sheep." bioRxiv: 

619122. 

Schneider, C., S. P. Nobs, M. Kurrer, H. Rehrauer, C. Thiele and M. Kopf 

(2014). "Induction of the nuclear receptor PPAR-gamma by the cytokine GM-

CSF is critical for the differentiation of fetal monocytes into alveolar 

macrophages." Nat Immunol 15(11): 1026-1037. 

Schoggins, J. W., S. J. Wilson, M. Panis, M. Y. Murphy, C. T. Jones, P. 

Bieniasz and C. M. Rice (2011). "A diverse range of gene products are 



   
 

 139 

effectors of the type I interferon antiviral response." Nature 472(7344): 481-

485. 

Schoggins, J. W. (2019). "Interferon-Stimulated Genes: What Do They All 

Do?" Annu Rev Virol 6(1): 567-584. 

Kate Schroder, Katharine M. Irvine, Martin S. Taylor, Nilesh J. Bokil, Kim-Anh 

Le Cao, Kelly-Anne Masterman, Larisa I. Labzin, Colin A. Semple, Ronan 

Kapetanovic, Lynsey Fairbairn, Altuna Akalin, Geoffrey J. Faulkner, John 

Kenneth Baillie, Milena Gongora, Carsten O. Daub, Hideya Kawaji, Geoffrey 

J. McLachlan, Nick Goldman, Sean M. Grimmond, Piero Carninci, Harukazu 

Suzuki, Yoshihide Hayashizaki, Boris Lenhard, David A. Hume and M. J. 

Sweet (2012). "Conservation and divergence in Toll-like receptor 4-regulated 

gene expression in primary human versus mouse macrophages." PNAS 

109(16). 

Schwartz, J. C., R. L. Philp, D. M. Bickhart, T. P. L. Smith and J. A. Hammond 

(2018). "The antibody loci of the domestic goat (Capra hircus)." 

Immunogenetics 70(5): 317-326. 

Shaw, A. E., J. Hughes, Q. Gu, A. Behdenna, J. B. Singer, T. Dennis, R. J. 

Orton, M. Varela, R. J. Gifford, S. J. Wilson and M. Palmarini (2017). 

"Fundamental properties of the mammalian innate immune system revealed 

by multispecies comparison of type I interferon responses." PLoS Biol 15(12): 

e2004086. 

Sherman, D. M. (2011). "The spread of pathogens through trade in small 

ruminants and their products." Rev Sci Tech(0253-1933 (Print)): 207-217. 

Shibata, Y., Berclaz, P.Y., Chroneos, Z.C., Yoshida, M., Whitsett, J.A. & 

Trapnell, B.C (2001). "GM-CSF regulates alveolar macrophage differentiation 

and innate immunity in the lung through PU.1.pdf." Immunity 15: 557-567. 

Singh, A., M. Prasad, B. Mishra, S. Manjunath, A. R. Sahu, G. Bhuvana Priya, 

S. A. Wani, A. P. Sahoo, A. Kumar, S. Balodi, A. Deora, S. Saxena and R. K. 

Gandham (2017). "Transcriptome analysis reveals common differential and 

global gene expression profiles in bluetongue virus serotype 16 (BTV-16) 



   
 

 140 

infected peripheral blood mononuclear cells (PBMCs) in sheep and goats." 

Genom Data 11: 62-72. 

Stella, A., E. L. Nicolazzi, C. P. Van Tassell, M. F. Rothschild, L. Colli, B. D. 

Rosen, T. S. Sonstegard, P. Crepaldi, G. Tosser-Klopp, S. Joost, M. Amills, P. 

Ajmone-Marsan, F. Bertolini, P. Boettcher, R. Boyle Onzima, D. Bradley, D. 

Buja, M. E. Cano Pereira, A. Carta, G. Catillo, L. Colli, P. Crepaldi, A. Crisà, 

M. Del Corvo, K. Daly, C. Droegemueller, S. Duruz, A. Elbeltagi, A. 

Esmailizadeh, O. Faco, T. Figueiredo Cardoso, C. Flury, J. F. Garcia, B. 

Guldbrandtsen, A. Haile, J. Hallsteinn Hallsson, M. Heaton, V. Hunnicke 

Nielsen, H. Huson, S. Joost, J. Kijas, J. A. Lenstra, G. Marras, M. Milanesi, C. 

Minhui, M. Moaeen-ud-Din, R. Morry O’Donnell, O. Moses Danlami, J. 

Mwacharo, E. L. Nicolazzi, I. Palhière, F. Pilla, M. Poli, J. Reecy, B. A. 

Rischkowsky, E. Rochat, B. Rosen, M. Rothschild, R. Rupp, B. Sayre, B. 

Servin, K. Silva, T. Sonstegard, G. Spangler, A. Stella, R. Steri, A. Talenti, F. 

Tortereau, G. Tosser-Klopp, E. Vajana, C. P. Van Tassell, W. Zhang and C. 

the AdaptMap (2018). "AdaptMap: exploring goat diversity and adaptation." 

Genetics Selection Evolution 50(1): 61. 

Stelzer, G., N. Rosen, I. Plaschkes, S. Zimmerman, M. Twik, S. Fishilevich, T. 

I. Stein, R. Nudel, I. Lieder, Y. Mazor, S. Kaplan, D. Dahary, D. Warshawsky, 

Y. Guan-Golan, A. Kohn, N. Rappaport, M. Safran and D. Lancet (2016). "The 

GeneCards Suite: From Gene Data Mining to Disease Genome Sequence 

Analyses." Current Protocols in Bioinformatics 54(1): 1.30.31-31.30.33. 

Stevenson, K. (2015). "Genetic diversity of Mycobacterium avium subspecies 

paratuberculosis and the influence of strain type on infection and 

pathogenesis: a review." Vet Res 46: 64. 

Su, A. I., M. P. Cooke, K. A. Ching, Y. Hakak, J. R. Walker, T. Wiltshire, A. P. 

Orth, R. G. Vega, L. M. Sapinoso, A. Moqrich, A. Patapoutian, G. M. Hampton, 

P. G. Schultz and J. B. Hogenesch (2002). "Large-scale analysis of the human 

and mouse transcriptomes." Proc Natl Acad Sci U S A 99(7): 4465-4470. 

Su, A. I., T. Wiltshire, S. Batalov, H. Lapp, K. A. Ching, D. Block, J. Zhang, R. 

Soden, M. Hayakawa, G. Kreiman, M. P. Cooke, J. R. Walker and J. B. 



   
 

 141 

Hogenesch (2004). "A gene atlas of the mouse and human protein-encoding 

transcriptomes." Proc Natl Acad Sci U S A 101(16): 6062-6067. 

T. Hubbard, D. B., E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, J. Cuff, 

V. Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond, L. 

Huminiecki, A. Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C. Melsopp, E. Mongin, 

R. Pettett, M. Pocock, S. Potter, A. Rust, E. Schmidt, S. Searle, G. Slater, J. 

Smith, W. Spooner, A. Stabenau, J. Stalker, E. Stupka, A. Ureta-Vidal, I. 

Vastrik, M. Clamp (2002). "The Ensembl genome database project." Nucleic 

Acids Res 30(1). 

Taka, S., E. Liandris, M. Gazouli, K. Sotirakoglou, G. Theodoropoulos, M. 

Bountouri, M. Andreadou and J. Ikonomopoulos (2013). "In vitro expression of 

the SLC11A1 gene in goat monocyte-derived macrophages challenged with 

Mycobacterium avium subsp paratuberculosis." Infect Genet Evol 17: 8-15. 

Takacs, A. C., I. J. Swierzy and C. G. Luder (2012). "Interferon-gamma 

restricts Toxoplasma gondii development in murine skeletal muscle cells via 

nitric oxide production and immunity-related GTPases." PLoS One 7(9): 

e45440. 

Talenti, A., I. Palhière, F. Tortereau, G. Pagnacco, A. Stella, E. L. Nicolazzi, P. 

Crepaldi, G. Tosser-Klopp and C. AdaptMap (2018). "Functional SNP panel 

for parentage assessment and assignment in worldwide goat breeds." 

Genetics Selection Evolution 50(1): 55. 

Theocharidis, A., S. van Dongen, A. J. Enright and T. C. Freeman (2009). 

"Network visualization and analysis of gene expression data using BioLayout 

Express(3D)." Nat Protoc 4(10): 1535-1550. 

Tirumurugaan, K. G., S. Dhanasekaran, G. D. Raj, A. Raja, K. Kumanan and 

V. Ramaswamy (2010). "Differential expression of toll-like receptor mRNA in 

selected tissues of goat (Capra hircus)." Vet Immunol Immunopathol 133(2-4): 

296-301. 

Tosi, M. F. (2005). "Innate immune responses to infection." J Allergy Clin 

Immunol 116(2): 241-249; quiz 250. 



   
 

 142 

Tosser-Klopp, G., P. Bardou, O. Bouchez, C. Cabau, R. Crooijmans, Y. Dong, 

C. Donnadieu-Tonon, A. Eggen, H. C. M. Heuven, S. Jamli, A. J. Jiken, C. 

Klopp, C. T. Lawley, J. McEwan, P. Martin, C. R. Moreno, P. Mulsant, I. 

Nabihoudine, E. Pailhoux, I. Palhière, R. Rupp, J. Sarry, B. L. Sayre, A. 

Tircazes, W. Jun, W. Wang, W. Zhang and C. and the International Goat 

Genome (2014). "Design and Characterization of a 52K SNP Chip for Goats." 

PLOS ONE 9(1): e86227. 

VarGoats. (2019). "VarGoats: Identification of Variations in Goat genomes 

related to domestication and adaptation."   Retrieved 1st August, 2019, from 

http://www.goatgenome.org/vargoats.html. 

Walia, V., R. Kumar and A. Mitra (2015). "Lipopolysaccharide and 

Concanavalin A Differentially Induce the Expression of Immune Response 

Genes in Caprine Monocyte Derived Macrophages." Anim Biotechnol 26(4): 

298-303. 

Wambua, L., P. N. Wambua, A. M. Ramogo, D. Mijele and M. Y. Otiende 

(2016). "Wildebeest-associated malignant catarrhal fever: perspectives for 

integrated control of a lymphoproliferative disease of cattle in sub-Saharan 

Africa." Arch Virol 161(1): 1-10. 

Wang, M., T. P. Hancock, A. J. Chamberlain, C. J. Vander Jagt, J. E. Pryce, 

B. G. Cocks, M. E. Goddard and B. J. Hayes (2018). "Putative bovine 

topological association domains and CTCF binding motifs can reduce the 

search space for causative regulatory variants of complex traits." bioRxiv. 

Wang, M., H. Yu, Y. S. Kim, C. A. Bidwell and S. Kuang (2012). "Myostatin 

facilitates slow and inhibits fast myosin heavy chain expression during 

myogenic differentiation." Biochemical and Biophysical Research 

Communications 426(1): 83-88. 

Wani, S. A., A. R. Sahu, R. I. N. Khan, A. Pandey, S. Saxena, N. Hosamani, 

W. A. Malla, D. Chaudhary, S. Kanchan, V. Sah, K. K. Rajak, D. Muthuchelvan, 

B. Mishra, A. K. Tiwari, A. P. Sahoo, B. Sajjanar, Y. P. Singh, R. K. Gandham, 

B. P. Mishra and R. K. Singh (2019). "Contrasting Gene Expression Profiles of 



   
 

 143 

Monocytes and Lymphocytes From Peste-Des-Petits-Ruminants Virus 

Infected Goats." Frontiers in Immunology 10: 1463. 

Wells, C. A., A. M. Chalk, A. Forrest, D. Taylor, N. Waddell, K. Schroder, S. R. 

Himes, G. Faulkner, S. Lo, T. Kasukawa, H. Kawaji, C. Kai, J. Kawai, S. 

Katayama, P. Carninci, Y. Hayashizaki, D. A. Hume and S. M. Grimmond 

(2006). "Alternate transcription of the Toll-like receptor signaling cascade." 

Genome Biol 7(2): R10. 

Wickramasinghe, S., A. Cánovas, G. Rincón and J. F. Medrano (2014). "RNA-

Sequencing: A tool to explore new frontiers in animal genetics." Livestock 

Science 166: 206-216. 

Worley, K. C. (2017). "A golden goat genome." Nat Genet 49(4): 485-486. 

Wu, Z., T. Hu, L. Rothwell, L. Vervelde, P. Kaiser, K. Boulton, M. J. Nolan, F. 

M. Tomley, D. P. Blake and D. A. Hume (2016). "Analysis of the function of IL-

10 in chickens using specific neutralising antibodies and a sensitive capture 

ELISA." Dev Comp Immunol 63: 206-212. 

Xiang, R., J. McNally, S. Rowe, A. Jonker, C. S. Pinares-Patino, V. H. Oddy, 

P. E. Vercoe, J. C. McEwan and B. P. Dalrymple (2016). "Gene network 

analysis identifies rumen epithelial cell proliferation, differentiation and 

metabolic pathways perturbed by diet and correlated with methane 

production." Sci Rep 6: 39022. 

Yadav, V. P., S. S. Dangi, V. S. Chouhan, M. Gupta, S. K. Dangi, G. Singh, V. 

P. Maurya, P. Kumar and M. Sarkar (2016). "Expression analysis of NOS 

family and HSP genes during thermal stress in goat (Capra hircus)." Int J 

Biometeorol 60(3): 381-389. 

Yamamoto, M., S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, O. 

Takeuchi, K. Takeda and S. Akira (2003). "TRAM is specifically involved in the 

Toll-like receptor 4-mediated MyD88-independent signaling pathway." Nat 

Immunol 4(11): 1144-1150. 

Yan Wang, Dante S. Zarlenga, Max J. Paape and G. E. Dahl (2002). 

"Recombinant bovine soluble CD14 sensitizes the mammary gland to 



   
 

 144 

lipopolysaccharide." Veterinary Immunology and Immunopathology 86: 115-

124. 

Yates, A. D., P. Achuthan, W. Akanni, J. Allen, J. Allen, J. Alvarez-Jarreta, M. 

R. Amode, I. M. Armean, A. G. Azov, R. Bennett, J. Bhai, K. Billis, S. Boddu, 

J. C. Marugan, C. Cummins, C. Davidson, K. Dodiya, R. Fatima, A. Gall, C. G. 

Giron, L. Gil, T. Grego, L. Haggerty, E. Haskell, T. Hourlier, O. G. Izuogu, S. 

H. Janacek, T. Juettemann, M. Kay, I. Lavidas, T. Le, D. Lemos, J. G. Martinez, 

T. Maurel, M. McDowall, A. McMahon, S. Mohanan, B. Moore, M. Nuhn, D. N. 

Oheh, A. Parker, A. Parton, M. Patricio, M. P. Sakthivel, A. I. Abdul Salam, B. 

M. Schmitt, H. Schuilenburg, D. Sheppard, M. Sycheva, M. Szuba, K. Taylor, 

A. Thormann, G. Threadgold, A. Vullo, B. Walts, A. Winterbottom, A. Zadissa, 

M. Chakiachvili, B. Flint, A. Frankish, S. E. Hunt, I. I. G, M. Kostadima, N. 

Langridge, J. E. Loveland, F. J. Martin, J. Morales, J. M. Mudge, M. Muffato, 

E. Perry, M. Ruffier, S. J. Trevanion, F. Cunningham, K. L. Howe, D. R. Zerbino 

and P. Flicek (2020). "Ensembl 2020." Nucleic Acids Res 48(D1): D682-D688. 

Young, R., L. Lefevre, S. J. Bush, A. Joshi, H. S. Singh, Jadhav S., D. 

Iamartino, K. M. Summers, A. L. Archibald, J. L. Williams, S. Gokhale, S. 

Kumar and D. A. Hume (2019). "A gene expression atlas of the domestic water 

buffalo (Bubalus bubalis). ." Frontiers Genetics   

Young, R., S. J. Bush, L. Lefevre, M. E. B. McCulloch, Z. M. Lisowski, C. 

Muriuki, L. A. Waddell, K. A. Sauter, C. Pridans, E. L. Clark and D. A. Hume 

(2018). "Species-Specific Transcriptional Regulation of Genes Involved in 

Nitric Oxide Production and Arginine Metabolism in Macrophages." 

ImmunoHorizons 2(1): 27-37. 

Yu, B., R. Lu, Y. Yuan, T. Zhang, S. Song, Z. Qi, B. Shao, M. Zhu, F. Mi and 

Y. Cheng (2016). "Efficient TALEN-mediated myostatin gene editing in goats." 

BMC Developmental Biology 16(1): 26. 

Yu, I. M., V. J. Planelles-Herrero, Y. Sourigues, D. Moussaoui, H. Sirkia, C. 

Kikuti, D. Stroebel, M. A. Titus and A. Houdusse (2017). "Myosin 7 and its 

adaptors link cadherins to actin." Nat Commun 8: 15864. 



   
 

 145 

Zarember, K. A. and P. J. Godowski (2002). "Tissue Expression of Human 

Toll-Like Receptors and Differential Regulation of Toll-Like Receptor mRNAs 

in Leukocytes in Response to Microbes, Their Products, and Cytokines." The 

Journal of Immunology 168(2): 554-561. 

Zerbino, D. R., P. Achuthan, W. Akanni, M R. Amode, D. Barrell, J. Bhai, K. 

Billis, C. Cummins, A. Gall, C. G. Girón, L. Gil, L. Gordon, L. Haggerty, E. 

Haskell, T. Hourlier, O. G. Izuogu, S. H. Janacek, T. Juettemann, J. K. To, M. 

R. Laird, I. Lavidas, Z. Liu, J. E. Loveland, T. Maurel, W. McLaren, B. Moore, 

J. Mudge, D. N. Murphy, V. Newman, M. Nuhn, D. Ogeh, C. K. Ong, A. Parker, 

M. Patricio, H. S. Riat, H. Schuilenburg, D. Sheppard, H. Sparrow, K. Taylor, 

A. Thormann, A. Vullo, B. Walts, A. Zadissa, A. Frankish, S. E. Hunt, M. 

Kostadima, N. Langridge, F. J. Martin, M. Muffato, E. Perry, M. Ruffier, D. M. 

Staines, S. J. Trevanion, B. L. Aken, F. Cunningham, A. Yates and P. Flicek 

(2018). "Ensembl 2018." Nucleic Acids Research 46(D1): D754-D761. 

Zhang, G.-M., T.-T. Zhang, S.-Y. An, M. A. El-Samahy, H. Yang, Y.-J. Wan, 

F.-X. Meng, S.-H. Xiao, F. Wang and Z.-H. Lei (2019). "Expression of Hippo 

signaling pathway components in Hu sheep male reproductive tract and 

spermatozoa." Theriogenology 126: 239-248. 

Zhang, Y., X. D. Zhang, X. Liu, Y. S. Li, J. P. Ding, X. R. Zhang and Y. H. 

Zhang (2013). "Reference gene screening for analyzing gene expression 

across goat tissue." Asian-Australas J Anim Sci 26(12): 1665-1671. 

 

 

 

 

 

 



   
 

 146 

 Appendices 

Appendices are in files contained in the CD on the inside back cover of this 

thesis. 

Appendix A     Unaveraged TPM estimates_kallisto output 

Appendix B     GO term enrichment analysis cluster 1-30 

Appendix C     TapeStation Results 

Appendix D      Annotations of novel transcript models 

Appendix E      Roslin_SOP_Alignment-based RNA-Seq-Processing 

Appendix F      Expression profile of ARG2 gene 

Appendix G     Gene expression representation per tissue 

Appendix H     Gene level comparison to reference annotation 

Appendix I       Transcript level comparison to reference annotation 

Appendix J Annotations of novel transcript models in reference 

transcriptome 

Appendix K Functional evidence for unknown genes in reference 

transcriptome 

Appendix L Possible names for all unknown protein coding genes in 

reference transcriptome 

Appendix M   Goat BMDM sample submission form to Edinburgh Genomics 

Appendix N   Goat BMDM Unaveraged TPM estimates_kallisto output 

Appendix O   List of housekeeping genes expressed by goat BMDM post-

LPS stimulation 

Appendix P   GO terms of housekeeping genes expressed by goat BMDM 

post-LPS 

Appendix Q    GO terms of downregulated genes in goat BMDM post-LPS  

Appendix R List of downregulated genes in goat BMDM post-LPS 

stimulation 

Appendix S   GO terms of upregulated genes in goat BMDM post-LPS 

Appendix T    List of upregulated genes in goat BMDM post-LPS stimulation 

Appendix U      Sheep RNA-Seq subset data 



   
 

 147 

Appendix V      DEG in goat bmdm post LPS 

Appendix W     DEG in sheep bmdm post LPS 

Appendix X      DEG in both goat and sheep BMDM post LPS stimulation 

Appendix Y      DEG in goat and sheep AM 

 

 




