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Abstract

White matter hyperintensities (WMH) are neuroradiological features seen in T2 Fluid-

Attenuated Inversion Recovery (T2-FLAIR) brain magnetic resonance imaging (MRI)

and have been commonly associated with stroke, ageing, dementia, and Alzheimer’s

disease (AD) progression. As a marker of neuro-degenerative disease, WMH may

change over time and follow the clinical condition of the patient. In contrast to the early

longitudinal studies of WMH, recent studies have suggested that the progression of

WMH may be a dynamic, non-linear process where different clusters of WMH may

shrink, stay unchanged, or grow. In this thesis, these changes are referred to as the

“evolution of WMH”.

The main objective of this thesis is to develop machine learning methods for predic-

tion of WMH evolution in structural brain MRI from one time (baseline) assessment.

Predicting the evolution of WMH is challenging because the rate and direction of WMH

evolution varies greatly across previous studies. Furthermore, the evolution of WMH is

a non-deterministic problem because some clinical factors that possibly influence it are

still not known. In this thesis, different learning schemes of deep learning algorithm

and data modalities are proposed to produce the best estimation of WMH evolution.

Furthermore, a scheme to simulate the non-deterministic nature of WMH evolution,

named auxiliary input, was also proposed. In addition to the development of prediction

model for WMH evolution, machine learning methods for segmentation of early WMH,

characterisation of WMH, and simulation of WMH progression and regression are also

developed as parts of this thesis.
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Lay Summary

Most previous researches in medical imaging performed cross-sectional analysis, where

detection and diagnosis of pathologies are carried out from one assessment to find the

current state of pathology in a patient. While cross-sectional analysis is sufficient for

some pathologies, longitudinal analysis, where two or more assessments are carried

out, is more suitable for degenerative pathologies as they increasingly affect tissues or

organs and deteriorate over time. One example of degenerative disease is Alzheimer’s

disease (AD), which is a neuro-degenerative disease which affects the cognitive cap-

ability of a patient. This thesis propose a predictive model named Disease Evolution

Predictor (DEP) for predicting the evolution (i.e., progression and regression) of white

matter hyperintensities (WMH) which appear on brain magnetic resonance imaging

(MRI) from a longitudinal dataset. WMH themselves have been associated with the

progression of dementia and AD. This thesis examines whether the state-of-the-art

deep learning algorithms can be used for such task. In addition to that, this thesis also

demonstrates how segmentation of early and subtle WMH can be improved, proposes

a novel unsupervised method for characterising WMH, and demonstrates how WMH

progression and regression can be simulated using a novel irregularity map.
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Chapter 1

Introduction

This thesis focuses on the development of machine learning methods for segmentation,

characterisation, and prediction of the evolution of white matter hyperintensities (WMH)

using T2 Fluid-Attenuated Inversion Recovery (T2-FLAIR) brain magnetic resonance

imaging (MRI). This first chapter provides a general motivation for this thesis, its scope,

and its contributions. Finally, the structure of this thesis is also described at the end of

this chapter.

1.1 Motivation

WMH are neuroradiological features seen in T2-weighted (T2-W) and T2-FLAIR brain

MRI. WMH are considered a feature of small vessel disease (SVD) (Wardlaw et al.,

2013), partly because in many occasions they have been reported as having vascular

origin. Nevertheless, they have been also seen in autoimmune diseases that have effects

on the brain (Theodoridou and Settas, 2006), in neurodegenerative diseases (Ge, 2006),

and in psychiatric illnesses (Kempton et al., 2008; Videbech, 1997); none of which

necessarily encompasses the presence of SVD indicators. Clinically, WMH have been

commonly associated with stroke, ageing, dementia, and AD progression (Wardlaw

et al., 2013; Prins and Scheltens, 2015). For example, in AD patients, higher load

of WMH volume has been associated with higher amyloid beta deposits, presence

of markers of SVD, and reduced amyloid beta clearance; all these contributing to an

overall worsening of the cognitive functions in these patients (Birdsill et al., 2014).

In early studies, WMH and their severity were presumed to be linearly progressing

over time with age (Veldink et al., 1998; Schmidt et al., 2003) due to lack of data

with more than one follow-up assessment (Van Leijsen et al., 2017). With increasing

1
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longitudinal data over the years, recent studies have suggested that progression of WMH

may be a non-linear process over time (Wardlaw et al., 2017; Van Leijsen et al., 2017).

For example, the WMH volume of a patient may grow in the first follow-up assessment,

but shrink in the second (or vice versa). Furthermore, in an individual patient, different

WMH clusters may simultaneously shrink (i.e., regress), stay unchanged (i.e., stable), or

grow (i.e., progress) over a period of time (Ramirez et al., 2016; Chappell et al., 2017).

In this thesis, “evolution of WMH” is used to refer theses changes.

The main aim of this thesis is to develop a model for predicting the evolution of

WMH from T2-FLAIR brain MRI using a data-driven deep learning method. To achieve

this, various machine learning and deep learning methods to automatically quantify

WMH through segmentation are first explored. Then, a novel computer graphics-based

method for WMH characterisation named Limited One-time Sampling Irregularity Map

(LOTS-IM) is proposed to better quantify subtle WMH from T2-FLAIR brain MRI.

Lastly, a novel deep learning model to automatically predict the evolution of WMH

from brain MRI named Disease Evolution Predictor (DEP) model is proposed. Using

DEP, it is hoped that clinicians can estimate the size and location of WMH in time to

study their progression/regression in relation to clinical health and disease indicators

ultimately to design more effective therapeutic interventions.

1.2 Scope

The scope of this thesis is limited to specific neuroradiological features of WMH, and

encompasses the development and analysis of their segmentation, characterisation, and

evolution prediction methods in T2-FLAIR brain MRI in brains of individuals with mild-

to-moderate vascular pathology, where they are considered a biomarker for progression

to dementia and AD. Other brain features also observed in these images (e.g., stroke

lesions (SL), perivascular spaces) and pathologies, such as multiple sclerosis, are out of

the scope of this thesis.

1.3 Thesis Contributions

The main contributions of this thesis are listed below.

1. Analysing the performances of conventional machine learning and deep learning

methods for WMH segmentation in routine clinical brain MRI with none or mild
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vascular pathology (Rachmadi et al., 2017b,a).

2. Proposing the use of spatial information in deep learning methods to improve their

performance on segmenting early and subtle WMH (Rachmadi et al., 2018b).

3. Proposing a novel unsupervised quantitative method for WMH characterisation

and analysis named LOTS-IM (Rachmadi et al., 2017c, 2018c, 2020).

4. Demonstrating the use of irregularity map (IM), a novel modality of brain MRI

produced from T2-FLAIR by using LOTS-IM, for simulating the evolution of

abnormalities inside the brain (Rachmadi et al., 2018a).

5. Proposing novel deep learning methods to model and predict the evolution of

WMH (Rachmadi et al., 2019a,b).

1.4 Structure

The rest of the thesis is organised as follows:

1. Chapter 2 introduce WMH, their significance for clinical studies, and differ-

ent means to assess WMH quantitatively. Different computer-aided detection

and diagnosis (CAD) methods that have been proposed by previous studies for

quantitative assessment of WMH are also briefly discussed in this chapter.

2. Chapter 3 explains how GSI is important for WMH segmentation, especially

when using CNNs. In this chapter, the performance of deep learning methods

are compared to the performance of conventional machine learning methods,

such as Support Vector Machine (SVM) and Random Forest (RF), for WMH

segmentation.

3. Chapter 4 explains a novel unsupervised method for WMH characterisation,

analysis and segmentation named LOTS-IM. In this chapter, the performance of

LOTS-IM for WMH segmentation is compared to that of conventional machine

learning and deep learning methods. This chapter also demonstrates the use of

IM for simulating the evolution of abnormalities inside the brain.

4. Chapter 5 explains the newly proposed deep learning methods named DEP

model to predict the evolution of WMH. In this chapter, an ablation study of

GAN based DEP models, different learning approaches, and an ablation study of
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auxiliary input modalities for DEP model are discussed and compared to each

other.

5. Chapter 6 summarises all important results in this thesis. Furthermore, conclu-

sions and future work are described.



Chapter 2

White Matter Hyperintensities -

Characteristics and Assessment

In this chapter, the background and basic knowledge that underpin this thesis are

described. Firstly, white matter hyperintensities (WMH) are introduced, including their

clinical significance and their evolution over time. Secondly, an overview of different

means to quantitatively assess WMH from brain MRI is described. Lastly, an overview

of computer-aided detection and diagnosis (CAD) methods for WMH assessment from

brain MRI is discussed.

2.1 White Matter Hyperintensities

In this section, the nature of WMH, their appearance in brain MRI, their significance in

clinical studies, and their progression over a period of time are described. This section

provides brief explanations for each of the topics mentioned above, mostly from a

clinical point of view, to describe the clinical background of this thesis.

2.1.1 WMH and their significance in medical study

WMH, together with lacunar ischaemic strokes, lacunes, cerebral microbleeds, and

perivascular spaces, are neuroradiological features or markers of cerebral small vessel

disease (SVD) (Wardlaw et al., 2013), partly because in many occasions they have

been reported as having vascular origin. Nevertheless, they have been also seen in

autoimmune diseases that have effects on the brain (Theodoridou and Settas, 2006),

in neurodegenerative diseases (Ge, 2006), and in psychiatric illnesses (Kempton et al.,

5
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2008; Videbech, 1997); none of which necessarily encompasses the presence of small

vessel disease indicators. WMH are usually diagnosed using imaging techniques, such

as MRI, as it is difficult to visualise them in vivo (Shi and Wardlaw, 2016). WMH appear

as brighter (i.e., hyperintense) region in T2-weighted (T2-W) and T2 Fluid-Attenuated

Inversion Recovery (T2-FLAIR) of MRI. The appearance of WMH in T2-FLAIR and

the general schematic of their ill-posed boundary (i.e., the boundary between WMH

and non-WMH is not clear cut) can be seen in Figure 2.1.

Figure 2.1: Appearance of WMH in T2-FLAIR and the general schematic of their ill-posed

boundary. This figure is modified from (Wardlaw et al., 2013).

The underlying pathology of WMH mostly reflects demyelination and axonal loss

as a consequence of chronic ischaemia caused by cerebral SVD (Prins and Scheltens,

2015). Clinically, WMH have been commonly associated with stroke and dementia

progression (Wardlaw et al., 2013; Prins and Scheltens, 2015; Wardlaw et al., 2015).

Between 1990 and 2010, about 15 million people had a stroke and 35.6 million were

estimated to be living with dementia worldwide (Lozano et al., 2012). The prevalence of

WMH increases with increasing vascular risk factors such as hypertension, diabetes, and

smoking (Wardlaw et al., 2015). However, WMH are often found on MRI in virtually

every individual over 60 years old with highly variable degree of WMH volume load

(de Leeuw et al., 2001; van Leijsen et al., 2017).

WMH are well associated with poor clinical outcome such as increasing risk of

admission to a nursing home, stroke, and mortality (Debette and Markus, 2010; van der

Holst et al., 2016; Schmidt et al., 2016; van Leijsen et al., 2017). Furthermore, the

association between WMH and cognitive decline or dementia has also been well

established (Schmidt et al., 2005; Van Dijk et al., 2008; Debette and Markus, 2010;

Prins and Scheltens, 2015). More importantly, there have been studies showing that
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greater WMH volume loads at baseline increased the likelihood of progression from

normal aging to mild cognitive impairment (MCI) (Smith et al., 2008) and progression

from amnestic MCI to Alzheimer’s disease (AD) (van Straaten et al., 2008). All these

previous studies highlight the clinical importance of WMH.

In the human brain, the rate of growth of WMH has been strongly correlated with

regional grey matter atrophy, which contributes to the secondary reductions in global

brain volume (Lambert et al., 2016). However, the clinical effect of WMH depends on

their location in the brain. It has been reported that periventricular WMH (PVWMH)

are more closely associated with cognitive decline and brain atrophy than the deep

WMH (DWMH) (Huang et al., 2018). PVWMH were also reported to increase the

likelihood of progression from amnestic MCI to dementia and AD (van Straaten et al.,

2008). Regional WMH analyses revealed significant differences in WMH across regions

that also differed significantly by diagnosis (Yoshita et al., 2006). Furthermore, WMH

also may affect the white matter tracts of the brain. In a recent study using diffusion

tensor imaging (DTI), it was reported that WMH are associated with two patterns of

transformed diffusion characteristics in the surrounding white matter tract network

while the diffusion characteristics along white matter tracts improve further away from

WMH along its penumbra (Reginold et al., 2018). Different types of WMH also have

different nature and effect to the brain. For example, punctate WMH are well known to

be not ischaemic, not progressive, and thus benign. On the other hand, early confluent

and confluent lesions are ischaemic, progressive, and thus malignant (Schmidt et al.,

2003). Clinical studies are consistent with this categorisation which also showed that

WMH progression cannot be considered benign (Longstreth Jr et al., 2005; Schmidt

et al., 2005).

WMH may also be used as a surrogate marker for other clinical purposes. For

example, it has been suggested that WMH may serve as a marker for the progression

of SVD (Sachdev et al., 2007). Many cross-sectional and longitudinal studies have

also provided strong evidence that WMH are clinically important markers of increased

risk of stroke, dementia, depression, impaired gait, mobility, and death (Wardlaw et al.,

2015). Another proof-of-concept trial study also proposed the use of confluent WMH,

which show fast progression and has high correlation with cognitive decline, as a

surrogate marker to show treatment effects on lesion progression (Schmidt et al., 2016).

In fact, neuroimaging has been proposed as a way to achieve surrogate markers to assess

treatment effects in SVD since an earlier study (Pantoni, 2010). A similar concept and

model has also been suggested for other white matter diseases such as multiple sclerosis
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(MS) (Schmidt et al., 2004).

2.1.2 Evolution of WMH over time

In early studies, the WMH and their severity were presumed to be linearly progressing

over time with age (Veldink et al., 1998; Schmidt et al., 2003), this was found to be due

to the lack of data with more than one follow-up assessment (Van Leijsen et al., 2017).

With increasing longitudinal data over the years, recent studies have suggested that

the evolution of WMH may be a non-linear process over time (Wardlaw et al., 2017;

Van Leijsen et al., 2017) and have a dynamic behaviour in each patient (Ramirez et al.,

2016). For example, WMH volume may grow in the first follow-up assessment and

shrink in the second follow-up assessment or vice versa (see Figure 2.2 for example)

(Van Leijsen et al., 2017). This is different to most of the longitudinal studies dated

from more than a decade ago in which only one follow-up assessment was used (Veldink

et al., 1998; Schmidt et al., 2003). Furthermore, more recent studies have also reported

that different clusters of WMH in a patient may simultaneously either grow, shrink, or

remain stable in the same follow-up assessment (Ramirez et al., 2016; Jiaerken et al.,

2019; van Leijsen et al., 2018).

Figure 2.2: Temporal dynamic change of WMH over three time points by age at individual

level classified by baseline WMH severity using Fazekas visual rating scale (mild: 0-1,

moderate: 2, and severe: 3). See Section 2.2.1 for explanation of Fazekas visual rating

scale. This figure is modified from (Van Leijsen et al., 2017).

Extensive studies on longitudinal data have shown that the progress of prevalence,
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volume, and severity of WMH over time vary (Veldink et al., 1998; Schmidt et al., 1999,

2003, 2005; Pantoni, 2010). The rate of WMH progression itself varies considerably

across the studies (Schmidt et al., 2016; van Leijsen et al., 2017). Some of the most

common risk factors and predictors associated with WMH progression are baseline

WMH volume (Schmidt et al., 1999, 2002b,a, 2003; Sachdev et al., 2007; Van Dijk

et al., 2008; Wardlaw et al., 2017; Chappell et al., 2017), high blood pressure (i.e.,

hypertension) (Veldink et al., 1998; Schmidt et al., 1999, 2002b; Van Dijk et al.,

2008; Godin et al., 2011; Verhaaren et al., 2013), age (Van Dijk et al., 2008), current

smoking status (Power C et al., 2015), previous stroke and diabetes (Gouw et al.,

2008a), and genetic properties (Schmidt et al., 2000, 2002a, 2011; Godin et al., 2009;

Luo et al., 2017). Furthermore, the surrounding region of WMH, which appears like

normal appearing white matter (NAWM) with less structural integrity, usually called the

“penumbra of WMH” (Maillard et al., 2011), has been reported as having a high risk

of becoming WMH over time (Maillard et al., 2014; Pasi et al., 2016). Nevertheless,

baseline WMH volume is the strongest predictor and risk factor of WMH progression

(Wardlaw et al., 2015).

In the early longitudinal studies of WMH, reduction (i.e., regression) of WMH

volume was only observed in a small number of patients (Schmidt et al., 2003, 2005;

Sachdev et al., 2007; Gouw et al., 2008b; Maillard et al., 2009; Prins et al., 2004;

Rovira Cañellas et al., 2007). Because of that, most earlier studies regarded the re-

gression of WMH as a measurement error (Sachdev et al., 2007; Maillard et al., 2009;

Schmidt et al., 2003, 2005) or “no progression” with no further explanation (Prins et al.,

2004; Van Dijk et al., 2008; Gouw et al., 2008b). Furthermore, the bias in manual

delineation of WMH towards progression when the raters are aware of the scans’ time

sequence cannot be overlooked (Schmidt et al., 1999, 2005). It is worth to mention that

Sachdev et al. (2007) did investigate the possibility of WMH regression in some patients

but did not find any significant association to the evaluated risk factors, including the

strongest risk factor, baseline WMH volume. One possible explanation of this is that

WMH regression could be missed when using two neuroimaging assessments with a

long interval where WMH decline within a certain time window is compensated by

WMH progression thereafter in a cohort that, on average, showed progression (van

Leijsen et al., 2017). Thus, it is important to take into account the time window of

assessment when performing longitudinal study of WMH. On the other hand, recent

studies have reported the regression of WMH in several radiological observations, espe-

cially after some clinical conditions or interventions. For example, WMH regression
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was observed on MRI after cerebral infraction (Moriya et al., 2009), strokes (either

minor, lacunar, or ischaemic) (Durand-Birchenall et al., 2012; Cho et al., 2015; Wardlaw

et al., 2017), improved hepatic encephalopathy due to treatment (Mı́nguez et al., 2007),

lower blood pressure due to treatment (Wardlaw et al., 2017), liver transplantation

(Rovira Cañellas et al., 2007), and carotid artery stenting (Yamada et al., 2010).

Many aspects of WMH are still not yet clear given current results from longitudinal

studies, especially the regression of WMH. One study suggested that WMH should

not be viewed only as “untreatable” or “permanent” because in vivo imaging indicates

that water shifts and water content are prominent and could be used to representing

and detecting early changes in WMH (Wardlaw et al., 2015). Note that MRI is known

to rely on natural properties of the hydrogen molecules that form part of fluids (i.e.,

water) or lipids, and WMH are water-based tissues. There is also strong evidence

that novel imaging techniques, such as DTI, can detect subtle impairments in white

matter tract integrity before they can be seen on conventional MRI (Prins and Scheltens,

2015). These findings suggest that WMH might represent only the extreme end of

a continuous spectrum of white matter injury, i.e., the WMH are probably only the

“tip of the iceberg” (Zhang et al., 2013; Lockhart et al., 2012; Wardlaw et al., 2015).

Other studies have shown that there was a strong association of the deteriorating

microstructural integrity observed in DTI with WMH progression (Jiaerken et al., 2019;

van Leijsen et al., 2018). Jiaerken et al. (2019) reported that growing WMH had

significantly lower mean diffusivity and higher fractional anisotropy of DTI compared

to constant WMH. Interestingly, there was no significant difference of either metabolism

or micro-structure between shrinking WMH and constant WMH regions, either before

or after the regression from shrinking WMH to normal white matter. This finding

suggests that regions of shrinking WMH which appear to be normal white matter are

actually still damaged (Jiaerken et al., 2019). However, a most recent study showed that

SVD regression, including WMH regression, did not accompany brain atrophy, which

suggests that WMH regression follows a relatively benign clinical course (van Leijsen

et al., 2019). Therefore, there might be a possibility to detect WMH at an early stage,

predict WMH evolution (i.e., growth and shrinkage), and hold back WMH progression

by using cutting-edge imaging technologies in the future.
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2.2 Quantitative Assessment of WMH

In this section, different means to quantitatively assess WMH are described. This

section is divided into two subsections, which are about cross-sectional assessment of

WMH and longitudinal assessment of WMH.

2.2.1 Cross-sectional assessment of WMH

Cross-sectional assessment of WMH refers to the assessment of WMH at one time point,

independent of any previous or follow-up assessment. Thus, cross-sectional assessment

is usually performed in most cases to observe WMH on a patient at a specific time point.

Depending on the methods, cross-sectional assessment of WMH usually produces either

location, volume (load), severity level, type, or all of them at the end of the assessment.

Clinically, it is often challenging to assess the extent of the WMH contribution to the

patient’s cognitive level (Prins and Scheltens, 2015). However, some studies have

shown that total volume and location of WMH are important determinants for clinical

studies (Biesbroek et al., 2013; Yoshita et al., 2006). Location and volume of WMH

can be manually produced by clinicians by delineating regions indicated as WMH or

automatically produced using CAD intelligent systems. Generally speaking, however,

manual delineation of WMH is not widely applicable and can be time-consuming

(Gouw et al., 2008b).

The severity of WMH can also be assessed using visual rating scales. Visual rating

refers to an assessment done by radiologists by looking at the MRI scan and rating

the severity of WMH. Some examples of visual rating scales are Fazekas (Fazekas

et al., 1987), Scheltens (Scheltens et al., 1993), Longstreth (Longstreth et al., 1996), and

Age-Related White Matter Change (ARWMC) (Wahlund et al., 2001). Visual ratings

are widely used clinically for describing severity of white matter disease (Scheltens

et al., 1993) especially before the wide use of CAD. Note that assessment of WMH

using a visual rating scale is faster and more applicable than manually delineating all

of WMH in a patient. Nevertheless, studies have shown that WMH volume and WMH

clinical scores are very highly correlated (Valdés Hernández et al., 2013). A widely

applied visual rating scale, which is used in the validation of the computational methods

developed throughout this PhD, are Fazekas and Longstreth visual rating scales.

Fazekas visual rating subdivides WMH based on their location in relation to the

brain ventricles, namely PVWMH and DWMH, and rates each “subtype” according to

the size and confluence. PVWMH’s ratings of Fazekas are:
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1. PVWMH Fazekas 0: Absent.

2. PVWMH Fazekas 1: “Caps” or pencil-thin lining around ventricle.

3. PVWMH Fazekas 2: Smooth “halo”.

4. PVWMH Fazekas 3: Irregular periventricular (PV) signal extending into the

deep white matter.

Whereas, DWMH’s ratings of Fazekas are:

1. DWMH Fazekas 0: Absent.

2. DWMH Fazekas 1: Punctate foci.

3. DWMH Fazekas 2: Beginning confluence.

4. DWMH Fazekas 3: Large confluent areas.

On the other hand, Longstreth grades one slice of MRI scan at the level of the body

of the lateral ventricles, without distinguishing between PVWMH and DWMH, from 0

to 8 grades. The Longstreth’s grades are shown on list below.

1. Longstreth 0: Absent.

2. Longstreth 1: Discontinuous PV rim with minimal dots of subcortical disease.

3. Longstreth 2: Thin continuous PV rim with a few patches of subcortical disease.

4. Longstreth 3: Thicker continuous PV rim with scattered patches of subcortical

disease.

5. Longstreth 4: More irregular PV rim with mild subcortical disease; may have

minimal confluent PV hyperintensities.

6. Longstreth 5: Mild PV confluence surrounding the frontal and occipital horns.

7. Longstreth 6: Moderate PV confluence surrounding the frontal and occipital

horns.

8. Longstreth 7: PV confluence with moderate involvement of the centrum semi-

ovale.

9. Longstreth 8: PV confluence involving most of the centrum semiovale.

The illustration of Fazekas and Longstreth visual rating scales on brain MRI is depicted

in Figure 2.3.
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Figure 2.3: Illustration of Fazekas and Longstreth visual rating scales. Fazekas scores

are grouped into two, periventricular and deep white matter hyperintensities (i.e., PVWMH

and DWMH respectively). In the figure, they are shown as red and yellow arrows respect-

ively. On the other hand, Longstreth evaluates one slice of MRI without distinguishing

between PVWMH and DWMH, from 0 to 8 grades.

2.2.2 Longitudinal assessment of WMH

Longitudinal assessment of WMH refers to multiple assessments of brain magnetic

resonance (MR) images over time to know how WMH change (i.e., quantification of

WMH change/evolution). Thus, the current assessment is dependent from the previous

assessments. The most common approach to present the evolution of WMH is using

volumetric changes between two or more MRI assessments (i.e., longitudinal global

assessments over period of time) (Schmidt et al., 2012b; Van Leijsen et al., 2017).

However, it is worth to mention that some early studies used visual ratings of MRI

lesions to describe the progression of WMH by their severity (Veldink et al., 1998;

Schmidt et al., 2003). Clinically, a longitudinal study of WMH is important to determine

the natural course of WMH and may be used to study the effect of clinical interventions

(Prins et al., 2004).

Earlier longitudinal studies of WMH used visual ratings of MRI lesions as it was less

time consuming than manually delineating all WMH in longitudinal data. For example,

Veldink et al. (1998) used an adapted version of Schelten’s scale (Scheltens et al., 1993)

where a linear scale ranges from 0 to 4, depending on both size and number of lesions
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in each brain’s regions (i.e., frontal, temporal, parietal, and occipital), and summed

up together for a total score of WMH visual score. However, visual rating scales are

designed for cross-sectional assessment of WMH and have been indicated as not suited

for measuring change in WMH severity (Prins et al., 2004). One of the reasons is due to

a ceiling effect: a baseline scan that has the highest rating cannot be properly measured

in the follow-up assessment if the volume of WMH increases. Thus, a different study

used both volumetric changes and Fazekas visual rating scores (Fazekas et al., 1987) to

measure the WMH changes to get more reliable results (Chappell et al., 2017).

Because the visual rating scores used for cross-sectional assessment are not suitable

for measuring WMH changes, several attempts have been made to develop visual rating

scales to measure changes in WMH such as the Schmidt Progression Scale (SPC)

(Schmidt et al., 1999) and the Rotterdam Progression Scale (RPS) (Prins et al., 2004).

The SPC measures WMH changes as categories reflecting the number of WMH, that

is 0, 1 to 4, 5 to 9, and more than 9 lesions. On the other hand, using RPS, change

in WMH is scored by three grades (i.e., -1 for decrease, 0 for no change, and +1 for

increase) in three periventricular locations (i.e., frontal caps, lateral bands, and occipital

caps) and in four subcortical locations (i.e., frontal, parieatal, temporal, and occipital)

resulting in a total scale of -7 to +7. In a follow-up study, Gouw et al. concluded that

dedicated progression scales of SPC and RPS are more sensitive, reliable, and correlate

better with volumetric changes than cross-sectional visual rating scales of Fazekas,

Scheltens, and ARWMC visual rating scales (Gouw et al., 2008b).

In recent years, several studies have proposed the use of spatial dynamic change of

WMH as a complementary metric to the volumetric change of WMH. Spatial dynamic

change of WMH are performed by separating WMH into three categories, which are

growing WMH, shrinking WMH, and stable WMH (Ramirez et al., 2016; Jiaerken

et al., 2019; van Leijsen et al., 2018). WMH are labelled as growing if they are absent

at baseline but present at the follow-up, shrinking if WMH are present at baseline but

absent at the follow-up, and stable if WMH are present at both baseline and follow-up

assessments. The illustration of these categories can be seen in Figure 2.4. Using

these categories, the evolution of WMH is not only focused on the size of WMH in a

patient but also on the position of the changes. These previous studies suggested that

the progression of WMH may be more dynamic than previously thought (Ramirez et al.,

2016) and followed by dynamic changes in microstructural and metabolism in WMH

(Jiaerken et al., 2019).

Nevertheless, it has to be mentioned that there is no gold standard for the assessment
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of WMH changes. Volumetric change may provide the most objective assessment

method, but it cannot be interpreted as gold standard (Prins et al., 2004). The reason is

because the volume of WMH itself is an estimation of the real WMH volume, regardless

of manual or automated (computer-aided) assessment. Similarly, spatial dynamic

change of WMH are also subject to the expertise of the raters. However, because it is

difficult to assess WMH in noninvasive manner (Schmidt et al., 2004), the assessment

using medical images is still the preferred course of quantitative assessment of WMH

change.

Figure 2.4: Visualisation of dynamic change of WMH categorised into three categories;

growing WMH, shrinking WMH, and stable WMH. This figure is modified from (Ramirez

et al., 2016).

2.3 Computer-Aided Detection and Diagnosis for WMH

In recent years, CAD system has become mainstream in radiology and clinical work. A

CAD system is a class of computer systems that aim to assist in the detection and/or

diagnosis of diseases through a “second opinion” (Doi, 2007; Suzuki, 2012; Shiraishi

et al., 2011). The goal of CAD systems is to improve the accuracy of radiologists by

decreasing false negatives, usually due to observational oversights (Castellino, 2005;

Doi, 2007), with a reduction of time in the interpretation of images (Firmino et al.,

2016). With the increasing number of accuracy and reliability of CAD results due to the

rapid development of artificial intelligence and deep learning, CAD has been commonly

used in routine clinical use (Shiraishi et al., 2011) and proposed to perform independent

diagnosis in recent years (Litjens et al., 2017).
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In general, CAD systems can be classified into two groups: computer-aided detection

(CADe) and computer-aided diagnosis (CADx) systems (Firmino et al., 2016). CADe

are systems geared for the location of lesions in medical images whereas CADx systems

perform the characterisation of the lesions. For example, CADe is designed and

proposed for segmenting breast cancer (Dheeba et al., 2014) while CADx is used

for differentiating benign and malignant lesions in breast MRI (Newell et al., 2010).

In WMH case, CADe systems is used for WMH segmentation using well-known

machine learning algorithms (Klöppel et al., 2011) whereas CADx is used for WMH

characterisation based on etiology (i.e., demyelinating WMH and ischemic WMH (Leite

et al., 2015)), anatomical mapping (i.e., PVWMH and DWMH (DeCarli et al., 2005)),

blood flow (Promjunyakul et al., 2015), potential growth (Gwo et al., 2019), or other

WMH characteristics.

In this section, the basics of the machine learning techniques commonly used

nowadays for CAD of WMH is explained. Machine learning algorithms for assess-

ment of WMH proposed in previous studies are also presented. All machine learning

algorithms discussed in this section are divided into two groups, which are conventional

machine learning algorithms and deep learning algorithms.

2.3.1 Conventional machine learning algorithm

Machine learning is essentially a form of applied statistics with increased emphasis on

the use of computers to statistically estimate complicated features (Goodfellow et al.,

2016). Most machine learning algorithms can be broadly categorised into unsupervised

learning and supervised learning. These categories are based on how the machine

learning system should observe a dataset. Unsupervised machine learning algorithms

observe a dataset containing features and learn useful properties of the dataset (e.g., dis-

tribution of the features) without corresponding labels of the data (i.e., unlabelled data).

Unsupervised machine learning algorithms is usually done by performing clustering

(grouping) which groups unlabelled data in such a way that objects in the same group

are more similar to each other than the other objects in different groups. On the other

hand, supervised machine learning algorithms observe a dataset containing features and

associated labels or targets (i.e., labelled data). Thus, the supervised machine learning

algorithms learn a function that maps an input data to the associated output label from a

set of paired input-output training dataset in a training process.
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2.3.1.1 Unsupervised learning algorithms

Several unsupervised CAD methods for WMH have been proposed in the past few

years, and most of them perform a kind of clustering based on a map (atlas) of the

brain or intensity distributions. Some examples of unsupervised methods for WMH

segmentation are Lesion-TOADS (Shiee et al., 2010) and Lesion Growth Algorithm

from Lesion Segmentation Tool (LST-LGA) (Schmidt et al., 2012a). Lesion-TOADS

uses atlas of the healthy brain to produce a belief map of outliers or irregular intensities

(i.e., WMH). To perform the segmentation of WMH, the input MR images need to be

registered to the atlas so that outliers can be detected based on the topology of human

brain. On the other hand, LST-LGA creates intensity distributions of three classes (i.e.,

grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF)), and a voxel is

deemed as WMH if its intensity is located outside the distribution of these three classes.

The results is then refined by using lesion growth model to include more subtle WMH

in the neighbourhood of initial WMH. See Section 3.3 for further explanation of LST-

LGA. Other unsupervised methods that have been proposed for WMH segmentation are

fuzzy C-means methods (Gibson et al., 2010), Expectation–Maximization (EM) based

algorithms (Dugas-Phocion et al., 2004; Forbes et al., 2010; Kikinis et al., 1999), and

Gaussian mixture models (Freifeld et al., 2009; Khayati et al., 2008).

2.3.1.2 Supervised learning algorithms

The most common supervised machine learning algorithms used for WMH segmentation

are Support Vector Machine (SVM) and Random Forest (RF). SVM is a supervised

machine learning algorithm that separates data points projected to a high-dimensional

feature space by using a hyperplane (Cortes and Vapnik, 1995). SVM is a popular

supervised (conventional) machine learning algorithm for classification especially when

there are only two classes involved. SVM is optimised by maximising its margin, which

is the smallest distance between the hyperplane and the closest samples from each class.

These two closest samples from the separating hyperplane are usually called support

vectors. SVM has a property that corresponds to a convex optimisation problem in its

model determination, which is important to get the optimum hyperplane parameters

(Bishop, 2006). The SVM can be modelled as Equation (2.1) below

min
1
2
‖w‖2 subject to rt(xT

t w+β)≥+1,∀t ∈ T (2.1)

where t is a sample from dataset T , xt is a feature vector of sample-t, rt is the label of

sample-t where it has value either +1 or -1 to describe underlying classes for each data,
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β is a bias, and w are the parameters of the hyperplane that will maximise the margin

between the support vectors and produce the optimal separating hyperplane.

An important aspect of SVM is that it can be modified for handling more complex

dataset such as non-separable and non-linear datasets (Lyu and Farid, 2003). In the non-

separable dataset, some samples are either located not far enough from the hyperplane

or on the wrong side of the hyperplane (i.e., misclassified). In this case, SVM with

soft margin hyperplane, where a slack variables of ξt is employed, can be used. Slack

variable refers to the deviation of SVM’s margin, and it is defined as ξt ≥ 0 where

ξt = 0 if data xt is correctly classified, 0 < ξt < 1 if data xt is correctly classified but

it is not far enough from the hyperplane, and ξt ≥ 1 if data xt is misclassified. In the

non-linear dataset, transformation to a new space by using a non-linear transformation

is needed to solve the problem linearly in the new space. One of the most commonly

used transformation function for SVM is radial basis function (RBF) (Alpaydin, 2010).

RF is a collection of decision trees trained individually to produce one combined

output (Tin Kam Ho, 1995; Opitz and Maclin, 1999; Criminisi and Shotton, 2013).

Collection of RF’s trees are created by using bootstrap sample data where a few sets

of small training data are used to train the trees independently. Bootstrap sample data

is generated by creating m sets of sample data in which every of them contains of

n′ samples from a training dataset with n samples. Sampling is performed using a

uniform random generator for all training samples with replacement (i.e., a sample

can be selected multiple times). Some advantages of using bootstrap sample data

are improving accuracy and stability, avoiding overfitting, and reducing variance. In

addition to using bootstrap sample data, RF also uses unique method to construct a tree

where best splits are performed based on a set of randomly chosen features at each node.

In other words, each three of RF will be constructed based on different best splits of

features. It is said that these approaches performed better than any other supervised

conventional machine learning algorithms such as SVM.

Unlike unsupervised CAD algorithms where most of them use MRI’s intensity as

input, supervised CAD algorithms usually use hand-designed features as the input.

Some feature extraction methods that have been proposed for CAD WMH are statistical

histogram analysis, grey-level co-occurrence matrix (GLCM), grey-level run-length

matrix (GLRLM) (Leite et al., 2015), Gabor filters (Klöppel et al., 2011), and texton-

based features that consist of low-pass, high-pass, band-pass, and edge filters (Ithapu

et al., 2014). Detailed explanation of these previous studies mentioned above can be

found in Section 3.1.1.
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2.3.2 Deep learning algorithm

Deep learning is a kind of machine learning which learn the representation of the data

(i.e., features) automatically without using any feature extraction methods. The most

crucial step in machine learning, including in a CAD system, is the representation of

data. In conventional machine learning, various features (or data representation) are

defined by a designer after inspecting the data (i.e., hand-designed features). If the data

representation is unsuitable for the objective task (e.g., classification or segmentation),

the machine learning algorithm will struggle to find the optimal solution of the objective

task. On the other hand, a deep learning model learns not only the association between

representation and output but also the best possible representation of the data. To do so,

the deep learning model relies on one important principle called hierarchical feature

representation where multiple hidden layers are used to learn different levels of the data

representation. In the hierarchical feature representation, shallower hidden layers learn

low-level features (e.g., edges) while deeper hidden layers learn high-level features (e.g.,

context of the image). Because of the reasons described above, deep learning can be

categorised as a kind of representation learning (Goodfellow et al., 2016). Flowcharts

showing how conventional machine learning and deep learning differs can be seen in

Figure 2.5.

Figure 2.5: Flowcharts showing how conventional machine learning and deep learning

differs in learning process. Learning processes are performed in the shaded boxes. This

figure is modified from (Goodfellow et al., 2016).

Similar to conventional machine learning, deep learning algorithms can be gener-

ally divided into supervised deep learning algorithms and unsupervised deep learning

algorithms. In this subsection, the most common examples of supervised and unsuper-

vised deep learning models, named CNNs and GANs, are described. Some previous

studies of CAD systems using deep learning for the assessment of WMH are also briefly

introduced.
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2.3.2.1 Convolutional Neural Networks

CNNs (LeCun et al., 1989), also known as convolutional networks, are a specific kind of

neural network that is suitable for grid-like topology data such as images (Goodfellow

et al., 2016). CNNs rely heavily on convolution, a mathematical linear operation.

Typically, CNNs consist of convolutions, non-linear operations, and pooling operations

stacked together as convolutional layer. Depiction of convolutional layer can be seen in

Figure 2.6.

Figure 2.6: Illustration of convolutional layer which is formed by convolution, non-linear

operation, and pooling operation. This figure is modified from (Goodfellow et al., 2016).

Convolution refers to an operation on two functions of a real valued argument

(Goodfellow et al., 2016). With two-dimensional numerical images, convolution is

defined as:

S(i, j) = (I ∗K)(i, j) =
a

∑
m=−a

b

∑
n=−b

I(i−m, j−n)K(m,n) (2.2)

where I is the input image, K is the convolutional kernel, ∗ is the notation for convolution,

and S is the output called feature map. As for the indices, i and j are the two-dimensional

indices of the output S while a and b are the ranges of valid values in the two-dimensional

kernel. Convolution leverages three important ideas that improve learning capability

of machine learning system, which are sparse interactions, parameter sharing, and

equivariant representation (Goodfellow et al., 2016).

Sparse connectivity refers to limited interaction between output and input units

in local space. In conventional neural networks, all input units interact with each

output unit using large matrix multiplication. In CNNs, on the other hand, only small

numbers of inputs unit interact with output unit using convolution. The advantages of

using sparse connectivity are fewer parameters, better statistical efficiency, and lower

computational costs.

Parameter sharing refers to using the same parameter for more than one output unit.

In conventional neural networks, a connection (weight) between an input unit and an

output unit is used only once (i.e., tied to specific input and output). In CNNs, a weight
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between an input unit and output unit is used and shared by other input and output units.

This implies that a set of weights or feature detector can be used in different locations

instead of at a specific location.

Equivariant representation to translation means that convolution produces the same

result even if the image is transformed by a shift operation. This implies that a feature

still can be detected even if it is moved to a different location. This property is tied to

parameter sharing property of the convolution. It should be noted that convolution is

naturally not equivariant to other transformation such as rotation and scaling.

Non-linear operation is inherited from conventional neural networks where it

transforms the output of linear operation, such as convolution, using a non-linear

function. In neural networks, the non-linear function is often called activation function

because it restricts values that can activate the output unit. Non-linear functions such as

sigmoid (Equation (2.3)) and tanh (Equation (2.4)) are commonly used in conventional

neural networks, but they suffer from a problem called “vanishing gradient” where

gradients in the shallower layers vanish (Hochreiter, 1998). In deep learning, more

effective non-linear functions, such as Rectified Linear Unit (ReLU) (Equation (2.5)),

are commonly used in hidden layers because they do not suffer from the vanishing

gradient problem. It should be noted that sigmoid and tanh are still used in deep learning

but restricted to the last non-linear layer (i.e., final output) to produce real values from

0 to 1 (i.e., probability-like values) and real values from -1 to 1 respectively. Depictions

of sigmoid, tanh, and ReLU can be seen in Figure 2.7.

sig(x) =
1

1+ exp(−x)
(2.3)

tanh(x) =
sinhx
coshx

(2.4)

ReLU(x) = max(0,x) (2.5)

Pooling is another important concept used in CNNs, where it replaces the output of

previous operations with a summary statistic of a rectangular neighbourhood outputs.

For example, max pooling summarises a neighbourhood with the largest value in the

neighbourhood. Figure 2.8 provides an illustration for max pooling in two-dimensional

data. Pooling introduces a more compact representation that is approximately invariant

to small translations.
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Figure 2.7: Illustrations of non-linear functions ( f (x)) of sigmoid, tanh, and ReLU

respectively from left to right. These illustrations are modified from (Ghafoorian, 2018).

Figure 2.8: Illustrations of maximum pooling (left) and average pooling (right) operations

on two-dimensional data. These illustrations are modified from (Ghafoorian, 2018).

In the past few years, several architectures of deep learning have been proposed for

WMH segmentation. For example, one study proposed the use of parallel convolutional

layers with different size of input patches and additional hand-designed spatial features

to provide location information for the CNNs (Ghafoorian et al., 2017b). Moeskops et al.

(2018) proposed a multi-scale CNN with different resolution images of a T1-weighted

(T1-W), a T2-FLAIR, and a T1-W inversion recovery image as input for automatically

segmenting WMH and other brain regions (e.g., cortical grey matter and cerebrospinal

fluid). Guerrero et al. (2018) proposed simultaneous segmentation of WMH and SL

from T2-FLAIR using combination of U-Network (UNet) (Ronneberger et al., 2015;

Çiçek et al., 2016) and residual network (He et al., 2016) named U-Residual Network

(UResNet). Li et al. (2018) proposed a Fully Connected Network (FCN) ensembles

based on UNet which combine several models with same architecture to reduce over-

fitting problems of a complex model for WHM segmentation. In a more recent study,

Jeong et al. (2019) proposed the use of transfer learning to improve the performance of

UNet for WMH segmentation. Detailed explanation of the deep learning methods for

WMH segmentation mentioned above can be found in Section 3.1.1.
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2.3.2.2 Generative Adversarial Networks

GANs consist of two networks, generator and discriminator, which are trained based on

game theory scenarios in which the generator must compete against the discriminator

(Goodfellow et al., 2016). GANs (Goodfellow et al., 2014) are generally categorised as

unsupervised deep learning models because there is no label or target associated with

the input needed. However, some models of GANs, such as Conditional GAN (C-GAN)

(Mirza and Osindero, 2014), use valuable information like labels as additional input

parameter to generate meaningful outputs.

One of the most recent GANs model is the Wasserstein GAN with gradient penalty

(WGAN-GP) (Gulrajani et al., 2017). WGAN-GP was proposed as an improved

training scheme for GANs as the original one is notoriously unstable. In the training,

the discriminator (critic) network attempts to distinguish between real (desired) data

sampled from training dataset and fake (generated) data sampled from the generator

network. Let us assume x be the real image and a generator network (gθ) generates a

fake image x′ from vector z ∼ N (0,1) (i.e., x′ = gθ(z)). Once gθ is fully trained, x′

(fake image) and x (real image) should be indistinguishable by a critic/discriminator

function ( fw). The fw returns real values bigger than 0 if real image is inputted (i.e.,

fw(x)) while it returns real values lower than 0 if fake image is inputted (i.e., fw(x′)).
To optimise both generator gθ and critic fw, the following minmax objective is used:

argmin
g

max
f∈F

Ex∼Pr [ fw(x)]−Ex′∼Pg [ fw(gθ(z))] (2.6)

where x is a real image sampled from an underlying distribution Pr, x′ is a fake image

sampled from an underlying distribution Pg, E is the expected value (expectation), and

F is the set of 1-Lipschitz functions (Gulrajani et al., 2017).

In most cases, WMH segmentation can be performed by using GANs by learning

the manifold (latent) representation of brain’s normal tissues through disentanglement

of brain’s normal (i.e., non-WMH) and abnormal (i.e., WMH) tissues. Disentanglement

refers to a process of separating salient factors in the high-dimensional space of data

(Bengio et al., 2009). In WMH segmentation, the most important factors are the non-

WMH and WMH tissues. The idea behind this approach is that WMH can be detected

and then replaced by generated normal brain tissue to produce a “pseudo-healthy” brain

image if a latent representation of brain’s normal tissue is successfully learned. This

has been demonstrated just recently by Xia et al. (2019) where disentanglement of

WMH and other brain tissues is performed by using Cycle GANs (Zhu et al., 2017)

and pathology factorisation. Unfortunately, the use of GANs for WMH segmentation
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is still limited to this day as disentanglement of WMH and non-WMH regions is very

challenging.

2.4 Discussion

In this chapter, basic knowledge of WMH has been described. Different ways of quanti-

tative assessment of WMH in cross-sectional and longitudinal have also been introduced

and discussed. Finally, several kinds of automatic CAD system for WMH using both

conventional machine learning and deep learning algorithms have been introduced.

In the next chapters, the development of machine learning algorithms for segment-

ation, characterisation, and evolution prediction of WMH is explored. In Chapter 3,

the use of CNNs for segmentation of early, small, and subtle WMH is proposed and

discussed. Previous studies on WMH segmentation using both machine learning and

deep learning algorithms, which have been introduced in Sections 2.3.1 and 2.3.2 re-

spectively, mainly used old WMH which has relatively large volume. These previous

methods reported either no evaluation or low performance of small and early WMH

segmentation. Note that the segmentation of early WMH is clinically important for

preventing the progression of WMH.

In Chapter 4, a novel unsupervised quantitative characterisation method for WMH

from T2-FLAIR brain MRI, called Limited One-time Sampling Irregularity Map (LOTS-

IM), is proposed and described. The LOTS-IM produces irregularity map (IM) which

has higher level of WMH granularity than probability map, produced by machine

learning algorithm, and binary mask, produced by human expert. In this chapter, the

use of IM for segmentation of WMH and simulating the progression and regression of

WMH are described.

In Chapter 5, a novel deep learning model, named Disease Evolution Predictor

(DEP), for automatic prediction and estimation of WMH evolution is described. Two

DEP models are proposed, DEP based on U-Residual Network (DEP-UResNet) and

DEP based on Generative Adversarial Network (DEP-GAN). DEP-UResNet performs

prediction and estimation of WMH evolution by segmenting the WMH into three classes:

growing, shrinking, and stable WMH. Whereas, DEP-GAN performs prediction and

estimation of WMH evolution by regressing the real values of Disease Evolution Map

(DEM) (described in Section 5.2). To the best of our knowledge, this is the first extensive

study on modelling WMH evolution using deep learning algorithms.



Chapter 3

WMH Segmentation using CNNs with

Global Spatial Information

In this chapter, various algorithms from both conventional and deep learning are de-

scribed, tested, and evaluated for WMH segmentation. Furthermore, the use of Global

Spatial Information (GSI) to improve the performance of CNNs on segmenting small

and subtle WMH is also proposed. This chapter is based on the following publications:

1. Rachmadi, M., Valdés-Hernández, M., Agan, M., and Komura, T. (2017a). Deep

learning vs. conventional machine learning: Pilot study of WMH segmentation in

brain MRI with absence or mild vascular pathology. Journal of Imaging, 3(4):66.

2. Rachmadi, M., Valdés-Hernández, M., Agan, M., Di Perri, C., and Komura,

T. (2018b). Segmentation of white matter hyperintensities using convolutional

neural networks with global spatial information in routine clinical brain MRI with

none or mild vascular pathology. Computerized Medical Imaging and Graphics,

66, 28-43.

3.1 Motivation

In this section, previous studies that evaluate automatic methods for segmentation of

WMH, challenges of developing WMH segmentation, and contributions of this study

are presented.

25
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3.1.1 Existing methods for automatic WMH segmentation

Due to clinical importance of WMH (discussed in Section 2.1) and increasingly large

sample sizes of clinical trials and observational studies, considerable efforts have been

made to develop automatic assessment of WMH from brain MRI (Caligiuri et al.,

2015; Garcı́a-Lorenzo et al., 2013; Wardlaw et al., 2015). Amongst several attempts to

automatically segment WMH from brain MRI (Lao et al., 2008; Schmidt et al., 2012a;

Steenwijk et al., 2013; Roy et al., 2015; Yu et al., 2015; Khademi et al., 2012), few

methods have shown promising results. One of these works, done by Ithapu et al. (2014),

evaluated the application of supervised machine learning algorithms, namely SVM and

RF, on WMH segmentation using brain MRI from AD patients. The SVM and RF

were tested on 251 subjects, which come from one of the several studies conducted at

Wisconsin Alzheimer’s Disease Research Centre (WADRC). All scans were acquired

on a GE 3T scanner. WMH labels were produced by an expert who scanned through

all images and marked out all the WMH regions by using a semi-supervised Random

Walker based segmentation method (Grady, 2006) where the expert marked seed points

of WMH, traced the segmentation incrementally, and checked for accuracy in a second

session to ensure no WMH are missed. For predictors or features that characterise

WMH, Ithapu et al. used three-dimensional region of interests (ROIs) with size of

5×5×5 to extract greyscale values and feed them to a texton-based feature extraction

space (Malik et al., 1999). In their study, T2-FLAIR was used as the source for feature

extraction and T1-W was used for co-registration and preprocessing. From precision,

recall, and Dice similarity coefficient (DSC) measurements obtained for each algorithm,

Ithapu et al. concluded that RF was the best machine learning algorithm to do automatic

WMH segmentation on their sample.

Another work was done by Leite et al. (2015). They used manually segmented

regions from human brain images to train their automatic classifiers, namely SVM,

k-nearest neighbour (k-NN), Optimum Path Forest (OPF), and Linear Discriminant

Analysis (LDA). The classifiers were tested on 19 healthy volunteers and 54 patients of

MS and stroke. The manual region of interest were manually extracted by an expert from

two-dimensional slices of the T2-W MRI images and annotated based on the clinical

data of the patients. In their study, T2-FLAIR was used as the main source for feature

extraction. Features from T2-FLAIR were extracted using statistical analyses based

on grey-level histogram, GLCM, GLRLM, and image gradients. Principal component

analysis (PCA) was used to reduce the dimension of the feature vector. For evaluation,
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accuracy and confusion matrix measurements were used for analysing the performance

of each classifier. Leite et al. concluded that SVM was the best classifier in terms of

accuracy.

Klöppel et al. (2011) also investigated different methods for WMH segmentation

such as greyscale thresholding based on Otsu’s method (Otsu, 1975) (thresholding

method), k-NN (unsupervised method), and SVM (supervised method). Data for

evaluation were collected from 10 subjects with MCI and another set of 10 individuals

with dementia. An expert manually outlined WMH based on the T2-FLAIR image from

all 20 subjects, and a second expert outlined a subset of 10 randomly chosen images.

Their agreement was compared using area under Precision-Recall curve (AUC-PR).

Both T2-FLAIR and T1-W were used as sources in feature extraction, and the features

were formed by three-dimensional spherical ROI of image intensity values, probability

distribution of WMH based on their anatomical location in the brain, and Gabor filters in

1×1×3 three-dimensional ROIs. The best algorithm in this study in terms of AUC-PR

was SVM.

While SVM and RF work well on WMH segmentation according to previous papers,

they have a major drawback as conventional machine learning algorithms: hand-crafted

features are always needed. This major drawback is eliminated in the current state-

of-the-art approach, deep learning using CNN. CNNs (LeCun et al., 1995) are known

as the state-of-the-art approach for object recognition in natural images. In a recent

study, Moeskops et al. (2018) proposed a multi-scale CNN with different resolution

images of a T1-W, a T2-FLAIR, and a T1-W inversion recovery image as input. The

method automatically segment WMH and other brain regions (e.g., cortical GM and

CSF). The method was evaluated quantitatively with images publicly available from

the MRBrainS13 challenge1 (Mendrik et al., 2015) (n = 20) and produced high values

of DSC for WMH and other brain regions. The proposed method also produced high

correlation of automatic and manual WMH volumes with Spearman’s ρ = 0.83 for

relatively healthy older subjects (n = 96) from the Utrecht Diabetic Encephalopathy

Study part 2 (UDES2) (Reijmer et al., 2013).

In another study, Li et al. (2018) proposed an FCN ensembles for WHM segmenta-

tion which was evaluated and ranked 1st in the WMH Segmentation Challenge 20172 at

Medical Image Computing and Computer Assisted Intervention (MICCAI) 2017. The

proposed method is a variant of FCN architecture based on UNet (Ronneberger et al.,

1https://mrbrains13.isi.uu.nl/
2https://wmh.isi.uu.nl/
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2015), which takes as input the 2D axial slices of T2-FLAIR and T1-W modalities, and

trained in ensemble technique which combine several models with same architecture

and is helpful to reduce over-fitting problems of a complex model (Opitz and Maclin,

1999). The proposed method was trained on 60 subjects from 3 different scanners and

evaluated on 110 subjects from 5 different scanners (i.e., 2 of them are not represented

in the training set) by using five different measurements: DSC, Hausdorff distance

(95th percentile) (Huttenlocher et al., 1993), average volume difference (in percentage),

sensitivity for individual lesions, and F1-score for individual lesions. Li et al. (2018)

reported that the ensemble with 3 or more models clearly outperformed the ensemble of

only one model on all of the five measurements.

There is also anther study which proposed the use of CNN for segmenting hyper-

intensities and differentiating between WMH and SL (Guerrero et al., 2018). The

proposed method is called UResNet which combines UNet (Ronneberger et al., 2015)

with residual elements (He et al., 2016) to reduce model complexity. The proposed

UResNet was evaluated using 167 MRI data acquired at the Brain Research Imaging

Centre of Edinburgh3 on a GE Signa Horizon HDx 1.5 T clinical scanner (General Elec-

tric, Milwaukee, WI). WMH were delineated using Multispectral Coloring Modulation

and Variance Identification (MCMxxxVI) while SL were extracted semi-automatically

by thresholding and interactive region-growing method, guided by radiological know-

ledge, on T2-FLAIR and T2-star-weighted (Valdés Hernández et al., 2015a,b). Guerrero

et al. (2018) reported that the proposed UResNet outperformed DeepMedic (Kamnitsas

et al., 2017) and algorithms from the lesion segmentation toolbox (Schmidt et al., 2012a)

where DSC was used as the main evaluation measurement.

3.1.2 Challenges and contributions

WMH at early stages of several neurodegenerative diseases are difficult to assess for

two main reasons. The first is their subtlety (i.e., the intensities of WMH are close to

the normal tissues), which makes WMH hard to identify, even by human eyes, and

easily mistaken by imaging artefacts (Valdés Hernández et al., 2014). The second is

their small size which makes WMH hard to detect by automatic WMH segmentation

methods. These two facts make the development of automatic WMH segmentation

methods for brains with mild or none vascular pathology challenging.

The success of deep learning algorithms in pattern recognition have made them a

3http://www.bric.ed.ac.uk/



3.1. Motivation 29

good candidate for the automatic identification of WMH. For example, Lyksborg et al.

(2015), Havaei et al. (2017), and Pereira et al. (2016) used CNNs for segmenting brain

tumours; Kleesiek et al. (2016) and Stollenga et al. (2015) also used CNNs for brain

extraction and segmenting conventional tissues in general, respectively. Liu et al. (2012)

classified MRI data into AD vs. non-AD using Deep Boltzmann Machine (DBM).

These works obtained better results from deep learning methods than from classical

feature extraction methods, suggesting that the use of deep learning can significantly

improve the precision of automatic segmentation of brain MRI features.

In this chapter, a novel way to incorporate spatial information into CNNs for

segmenting WMH in the first convolutional layer is proposed and evaluated. This

approach is called CNN with GSI (CNN-GSI), where GSI stands for “Global Spatial

Information”. Spatial information becomes important in WMH segmentation because

appearance of the WMH partly depends on their location in the brain; there are regions

reported to have higher incidence of WMH (Valdés Hernández et al., 2015b, 2017).

These indicate that WMH have different characteristics, given their diverse aetiology,

in different locations. Their appearances also depend on clinical factors like blood

pressure, type of pathology, disease stage, etc. Therefore not only local and contextual,

but also global information are necessary for accurate WMH segmentation.

The most common strategy for incorporating GSI to WMH segmentation schemes

consists in masking or weighting the region where the segmentation is applied, either

before or after applying the segmentation technique per se, using template expressing

the probability of each voxel to be WMH (Schmidt et al., 2012a; Shiee et al., 2010).

This template is usually a result of averaging and rescaling multiple co-registered WMH

segmentation from cohorts of similar clinical characteristics to the one studied (Caligiuri

et al., 2015; Garcı́a-Lorenzo et al., 2013).

Specifically in the case of deep neural networks, Van Nguyen et al. (2015) introduced

three-dimensional Cartesian coordinates (i.e., x, y, and z) fused together with other

input features using a function for improving results of brain synthesis. In another

study, de Brébisson and Montana (2015) explored adding relative distances of each

voxel to the centroids of each brain’s regions for improving brain segmentation result.

Ghafoorian et al. (2017a) also proposed adding eight hand-crafted spatial location

features to segmentation layer of CNNs to improve the results. While these approaches

have been shown to be useful, relying to spatial information that are hand-crafted

produced by some specific functions may result in ignoring the scarce subtle WMH

due to inconsistencies. Hence, incorporating spatial information in the form of a
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synthetic volume (Steenwijk et al., 2013; Roy et al., 2015) as an input to CNNs through

additional channels is proposed. In this way, convolutional layers learn automatically the

representation of spatial information for all types of WMH (i.e., subtle and non-subtle

WMH) without hand-crafted features.

The performance of the proposed CNN-GSI framework is compared with those of

existing CNN (i.e., CNN without GSI), SVM, RF, and DBM. Both SVM and RF have

been reported to work well for WMH segmentation (Ithapu et al., 2014; Klöppel et al.,

2011). DBM is another model of supervised deep neural network which reportedly

works well for feature extraction of MRI (Liu et al., 2012). In this study, greyscale value

and texton features are used as features for SVM and RF, as per (Ithapu et al., 2014).

Whereas, only greyscale value of the voxels is used for DBM. The results obtained

by the proposed deep learning schemes are also compared against those obtained

from a popular public tool, namely LST-LGA (Schmidt et al., 2012a). The results of

all methods are compared and analysed. Finally, the results from six schemes that

performed best against the performance of trained human observers are evaluated in

neuroradiological clinical assessments.

In summary, the contributions in this study are comparing the use of CNNs with

the other algorithms (i.e., LST-LGA, SVM, RF, and DBM) for automatic WMH seg-

mentation in routine clinical brain MRI of individuals with none or mild vascular

pathology and proposing a way for incorporating spatial information into CNNs in the

first convolutional layer by creating an artificial volume information named GSI.

3.2 Materials and data processing

In this section, the MRI data samples, preprocessing steps, and postprocessing steps

used in this study are described. All preprocessing and postprocessing steps are used in

both conventional machine learning and deep learning algorithms.

3.2.1 Subjects and MRI data

The data used in this study is obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) 4 public database (Mueller et al., 2005; Weiner et al., 2013). ADNI

4Data used in preparation of this article were obtained from the ADNI database (adni.loni.usc.
edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_
apply/ADNI_Acknowledgement_List.pdf

adni.loni.usc.edu
adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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was launched in 2003 as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial

MRI, positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of MCI

and early AD. Note that ADNI did not provide any labels of WMH in their database.

• The first dataset used in this study contains MRI data from 20 ADNI participants

(12 men and 8 women, mean age at baseline 71.7 (standard deviation (SD) 7.18)

years), which are the first 20 patients from ADNI-GO study imaged in 3 con-

secutive years, resulting in data from a total of 60 MRI scans. Three of them

were cognitive normal (CN), 12 had early MCI, and 5 had late MCI. But the Mini

Mental State Examination scores did not differ considerably between these 3 cog-

nitive groups of individuals: mean values were 28.5 (SD 2.12) for the CN, 27.83

(SD 1.75) for early MCI and 27.67 (SD 2.08) for late MCI. The cognitive status

of the individuals that provided data for this study did not change across the 3

visits. Other than the availability of WMH labels (discussed in Section 3.2.2) and

measurements for inter-/intra-observer reliability analysis (discussed in Section

3.2.3), no other criteria (e.g., clinical, imaging, or demographic information) were

used for data/subject selection. The distribution of WMH size (volume) of this

dataset is depicted in Figure 3.1.

• The second dataset used in this study contains 268 MRI data from 268 different

ADNI participants, for which WMH reference masks are unavailable. The only

labels available for each MRI data from this second dataset are Fazekas scores

(described in Section 2.2.1) consisting of visual ratings of WMH burden in the

PVWMH and DWMH (Fazekas et al., 1987). In this study, paired Spearman’s

correlation is used to assess monotonic correlation between the total Fazekas score

(i.e., the sum of PVWMH and DWMH scores) and the WMH volume estimated

automatically by CNNs. This dataset was chosen to evaluate the performance of

different machine learning algorithms in a bigger dataset with different WMH

severity.

The mean and SD of the clinical data that has been reported to be relevant to WMH

burden and progression (Wardlaw et al., 2013) and acquired at each MRI visit (i.e.,

diastolic blood pressure, systolic blood pressure, and pulse rate) for the first dataset are

summarised in Table 3.1. To evaluate the clinical relevance of the results, the serum
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Figure 3.1: Individuals with mild or no vascular pathology have, in general, a small WMH

volumetric burden. Histogram showing the volumetric burden of WMH, represented by

their volume (mm3) in the first dataset (see Section 3.2.1).

cholesterol and glucose levels obtained on visit 1 are also used. Studies have shown

these factors could play a role in WMH progression (Dickie et al., 2016). The mean

(SD) values were 206.2 (35.38) mg/dL for cholesterol and 96.4 (11.35) mg/dL for

glucose. Finally, MRI data acquisition parameters of T1-W and T2-FLAIR for both

datasets are shown in Table 3.2.

3.2.2 Ground truth

Ground truth (GT) WMH labels of the first dataset were produced by an experienced

image analyst (Observer #1), semi-automatically by delineating the contours of WMH

in T2-FLAIR images using the region-growing algorithm in the Object Extractor tool

of AnalyzeT M software, simultaneously guided by the co-registered T1-W and T2-W

sequences. Each brain scan was processed independently, blind to any clinical, cognitive

or demographic information, and to the results of the WMH segmentation from the

Table 3.1: Mean and SD of the clinical data (diastolic blood pressure, systolic blood

pressure and pulse) of the individuals in the first dataset.

Parameter
Year 1 Year 2 Year 3

mean (SD) mean (SD) mean (SD)

Diastolic BP (mmHg) 72.60 (8.95) 73.25 (11.01) 73.80 (11.81)

Systolic BP (mmHg) 125.55 (12.56) 127.00 (12.94) 128.70 (13.97)

Pulse rate (bpm) 65.10 (10.78) 61.00 (9.53) 62.45 (13.82)
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Table 3.2: Data acquisition protocol parameters of both datasets.

Parameter T1-W T2-FLAIR

In-plane matrix (pixels) 256 × 256 256 × 256

Number of slices 256 35

Thickness (mm) 1.2 5

In-plane resolution (mm) 1.0 x 1.0 0.8594 x 0.8594

Repetition time (ms) 2300 9000

Echo time (ms) 2.98 90 or 91

Flip Angle 9.0 90 or 150

Pulse Sequence GR/IR SE/IR

same individual at different time points. The resultant mean WMH volume of the GT

labels for Year 1 was 6002.1 (mm3) (SD 4112.7), for Year 2 5794.9 (mm3) (SD 4281.6),

and for Year 3 7004.2 (mm3) (SD 5274.7). For more details and to access these labels,

please refer to the datashare Uniform Resource Locator (URL)5. Visualisation of WMH

label produced by Observer #1 is depicted in Figure 3.2 (middle).

3.2.3 Measurements for inter-/intra-observer reliability analyses

It is worth mentioning that relying on one assessment from one rater is often biased

towards the rater’s expertise and experience. Thus, a second image analyst (Observer

#2) generated two sets of longitudinal WMH binary masks for 7/20 subjects (i.e., 42

measurements in total), blind to the GT measurements and to previous assessments

for measurements for inter-/intra-observer reliability analyses. These were done semi-

automatically using Mango6, individually thresholding each WMH 3D cluster in the

original T2-FLAIR images. Note that Observer #1 and Observer #2 used different tools

based on their experience for creating the labels. Visualisation of WMH label produced

by Observer #2 is depicted in Figure 3.2 (right). As shown in Figure 3.2, there are

some differences between WMH labels produced by Observer #1 and Observer #2,

largely due to different experience on detecting early and subtle WMH. Information

and segmentation results of the 7 subjects for intra-/inter-observer reliability evaluation

can be accessed in another datashare URL7.
5http://hdl.handle.net/10283/2214
6http://ric.uthscsa.edu/mango/
7http://hdl.handle.net/10283/2706

http://hdl.handle.net/10283/2214
http://ric.uthscsa.edu/mango/
http://hdl.handle.net/10283/2706
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Figure 3.2: Visualisation of T2-FLAIR MRI (left) and corresponding WMH labels produced

by Observer #1 (middle) and Observer #2 (right). The difference between two WMH

labels produced by the two observers is measured in inter-observer analysis using

Equation (3.12).

3.2.4 Preprocessing

The preprocessing steps of the data comprise co-registration of the MRI sequences on

each scanning session, skull stripping and intracranial volume mask generation, cortical

GM/CSF/brain ventricle extraction, and intensity value normalisation. Rigid-body linear

registration of the T1-W to the T2-FLAIR image, as T2-FLAIR is the base sequence

for identifying WMH, is achieved using FSL-FLIRT (Jenkinson et al., 2002). Note

that rigid-body linear registration could be performed because there are no apparent

deformations to the brain’s regions (e.g., ventricle) in the both datasets. Skull stripping

and generation of the intracranial volume mask are done using optiBET (Lutkenhoff

et al., 2014). OptiBET, while attempting to extract the brain, also excludes parts of the

brain ventricles from the intracranial volume. Therefore, morphological operation of

fill holes is performed to the binary mask created by optiBET to obtain the intracranial

volume.

Cortical GM, CSF, and brain ventricles are three brain regions where WMH do not

appear and can present artefacts often wrongly mislabelled as WMH (Wardlaw et al.,

2015). Because of that, these regions are excluded by masking them out as follows.

Binary masks of NAWM and cerebrospinal fluid are obtained using FSL-FAST (Zhang

et al., 2001). The holes in the obtained white matter mask are filled using morphological

operation of “closing”. Subsequently, the ventricles (and possible lacunes) are removed

from it by subtracting the results of a logical “and” operation between the “filled white

matter” mask and the mask of cerebrospinal fluid.

Intensity value normalisation is done in two steps. The first step is adjusting the
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maximum grey scale value of the brain without skull to 10 percent of the maximum

T2-FLAIR intensity value so that each data has the same maximum intensity value

while not stretching the values too far. The second step is adjusting the contrast and

brightness of the MR images such that their histograms are consistent. To equalise

contrast and brightness, a histogram matching algorithm for MR images developed

by Nyúl et al. (2000) is performed where an MR image is used as a reference image.

The approach of using histogram matching for preprocessing images with non-healthy

tissue has been reported to be promising (Shah et al., 2011) and previously used for

preprocessing in CNNs approaches (Pereira et al., 2016). Furthermore, normalisation

of the intensities into zero-mean and unit-variance were also necessary so that the

modifications implemented to optimise the CNNs can run smoothly.

3.2.5 Postprocessing

Results from all segmentation schemes are expressed as probability maps of voxels being

WMH. To make a clear-cut segmentation, cutting of the probability map’s values using

a threshold value of t ≥ 0.5 (chosen as being the standard for two-class segmentation)

is performed, Then, the voxels that belong to 3D clusters smaller than 3 mm3 maximum

in-plane diameter (as per definition of WMH in Wardlaw et al. (2013)) are also removed.

Furthermore, the NAWM mask is used to eliminate the spurious false positives that

may appear in the cortical brain region. In the evaluation, both probability maps and

clear-cut segmentation results are used.

3.3 Conventional Machine Learning Algorithms, Feature

Extraction, and Public Toolbox

The performance of the CNNs is compared against the output from two conventional

machine learning algorithms, SVM (Cortes and Vapnik, 1995) and RF (Tin Kam Ho,

1995), and LST-LGA (Schmidt et al., 2012a) commonly used in medical image analysis

for WMH segmentation. SVM is a supervised machine learning algorithm that separates

data points projected to a high-dimensional feature space by using a hyperplane (Cortes

and Vapnik, 1995). RF is a collection of decision trees trained individually to produce

outputs that are collected and combined together (Tin Kam Ho, 1995; Criminisi and

Shotton, 2013). Detailed explanation of SVM and RF are described in Section 2.3.1.2.
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A public toolbox named W2MHS8, developed by Ithapu et al. (2014), was modified

so that the desired conventional machine learning algorithms, SVM and RF, could

be trained using the available GT whilst using the same feature extraction methods

for repeatability and reproducibility reasons. The modified version extracts greyscale

values and texton based features from either T2-FLAIR or T1-W MRI sequences on

5× 5× 5 regions of interest as per (Ithapu et al., 2014). Texton-based features are

formed by concatenating all responses from low-pass, high-pass, band-pass, and edge

filters (full explanation in Ithapu et al. (2014)). An array of 2000 values were generated

by the texton feature extraction and used for SVM and RF.

The results is also compared against LST-LGA (Schmidt et al., 2012a) version

2.0.159. LST-LGA performs lesion segmentation by producing intensity distributions

and belief classes of CSF, GM, and WM. The assumption is that lesions behave as

hyperintense outliers from these distributions. Afterwards, the proposed lesion growth

algorithm performs expansion of lesion seeds (i.e., hyperintense outliers), deemed as

conservative assumption for lesions, using approximation of gamma distribution while

the distributions of GM, WM, and CSF are approximated by a mixture of three Gaussian.

If a voxel is more likely to be part of other classes while completely surrounded by

lesion voxels, Markov random field is utilised for computing the final probability. The

threshold parameter κ is then used to cutoff the belief map for final segmentation.

In the original study, the LST-LGA was tested on 18 control patients and 52 MS

patients. The manual segmentation was independently performed by two investigators,

who were blinded to the study group, by applying a semi-automatic manual tracing

pipeline using commercially available software (Amira 5.3.3, Visage Imaging, Inc). A

difference image of the two labels was generated and both experts together decided

which differences were assigned to lesions or not. The performance of LST-LGA

was then evaluated using volumetric agreement (i.e., correlation and regression) and

spatial agreement (i.e., DSC (Dice, 1945)) measurements. Unfortunately, the original

study did not compare with any previous methods for lesion segmentation and did not

test the LST-LGA for small lesion segmentation (i.e., lesion volume ≤ 2 ml). In this

study, LST-LGA with kappa-value κ = 0.05, the lowest recommended kappa-value

from LST-LGA, was used to increase sensitivity to the subtle WMH.

8https://www.nitrc.org/projects/w2mhs/
9www.statisticalmodelling.de/lst.html
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3.4 Deep Learning Algorithms

In this section, a supervised deep learning algorithm named DBM is explained briefly.

Then, the setup of CNNs scheme using DeepMedic (Kamnitsas et al., 2017) and how

GSI is encoded into the CNNs are described in details.

3.4.1 Deep Boltzmann Machine

DBM is a variant of the Restricted Boltzmann Machine (RBM), a generative neural

network that works by minimizing its energy function, and uses multiple layers of

RBM instead of only one layer. Each hidden layer captures more complex high-order

correlations between activities of hidden units than the layer below (Salakhutdinov and

Hinton, 2009). Pre-training can be done independently in each layer to get better better

initialization of the weight matrix. In this study, a simple DBM with two hidden layers

is used (Figure 3.3). The energy function of DBM (E) is defined by Equation (3.1):

E
(
v,h1,h2;Θ

)
=−v>W1h1− (h1>)W2h2 (3.1)

where v is the vector of visible layer (i.e., voxel intensity values), h1 and h2 are

vectors for the first and second hidden layers respectively (i.e., feature maps), and Θ ={
W1,W2} encloses the model’s parameters where W1 and W2 are symmetric matrices

(i.e., weights) that connect visible-hidden and hidden-hidden layers respectively. The

DBM’s objective function is the probability that the DBM model generates back the

visible variables of v using the DBM model’s parameter Θ, as per Equation (3.2):

p(v;Θ) =
1

Z(Θ) ∑
h1,h2

exp
[
−E
(
v,h1,h2;Θ

)]
. (3.2)

where E is the energy function as per Equation (3.1), exp is the exponential function,

and Z(Θ) is a partition function over all possible configurations (i.e., a normalising

constant to ensure the probability distribution sums to 1). Given a restricted structure

where each layer units are conditionally independent from each other, the conditional

distribution of the probability for a unit in a layer given other layers can be computed as

in Equations (3.3), (3.4), and (3.5) as follows:

p
(
h2

p = 1|h1)= σ

(
∑
n

W 2
nph1

n

)
(3.3)
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Figure 3.3: Illustrations of DBM used in this study. Two RBMs (left) are stacked together

for pre-training to form a DBM (right).

p
(
h1

n = 1|v,h2)= σ

(
∑
m

W 1
mnvm +∑

p
W 2

nph2
p

)
(3.4)

p
(
vm = 1|h1)= σ

(
∑
n

W 1
mnhn

)
(3.5)

where σ is a sigmoid non-linear function and m, n and p are neuron’s index of input

layer vector, hidden layer vector, and output layer vector (please look at Figure 3.3 for

visual explanation). Full mathematical derivation of RBM and its learning algorithm

can be read in Hinton (2010) and the derivation of DBM and its learning algorithm in

Salakhutdinov and Hinton (2009).

In this study, 3D ROIs of 5×5×5 are used to get grayscale intensity values from the

T2-FLAIR MRI for DBM’s training process. The intensity values are feed-forwarded

into a 2-layer DBM with 125-50-50 structure where 125 is the number of units of

the input layer and 50 is the number of units of both hidden layers. Each RBM layer

is pre-trained for 200 epochs, and the whole DBM is trained for 500 epochs. After

the DBM training process is finished, a label layer is added on top of the DBM’s

structure and fine-tuning is done using gradient descent for supervised learning of

WMH segmentation. Salakhutdinov’s DBM public code10 was modified and used for

this study.

10http://www.cs.toronto.edu/˜rsalakhu/DBM.html

http://www.cs.toronto.edu/~rsalakhu/DBM.html
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3.4.2 Convolutional Neural Network

CNN (LeCun et al., 1995) has emerged as a powerful supervised learning scheme

on natural images that can learn highly discriminative features from a given dataset

(Kamnitsas et al., 2017). Unlike fully connected neural networks, CNN uses sparse

local connections instead of dense, which is realized by the convolutional layers that

apply local filters to a portion of input image called receptive field. Multiple filters

are used to learn more variants of object’s features in each convolutional layer where

their activations generate multiple number of feature maps. Because of the sparse local

connection, the convolutional layers of CNN have fewer parameters to train than the

fully connected neural networks, and it can naturally learn contextual information from

the data which is important in object detection and recognition (LeCun et al., 2015).

Several number of convolutional layers can also be stacked together to capture more

complex feature representations of the input image.

In this study, a CNN framework named “DeepMedic” proposed by Kamnitsas et al.

(2017), which efficiently implements a dual-pathway scheme for CNN (discussed in

Section 3.4.2.4), is used. The publicly available DeepMedic is chosen for reproducibility

and repeatability reasons. Also, 2D CNN is used instead of 3D CNN like in the

original study due to the anisotropy of the MR images used in this study (i.e., the

T2-FLAIR MRI from ADNI database have dimensions of 256×256×35 and voxel

size of 0.86×0.86×5 mm3). Note that the T2-FLAIR sequence is usually anisotropic

due to the acquisition time required and the limited practical use that clinically poses

to acquire it isotropically (i.e., a clinician does not need isotropic voxels to estimate

the burden of WMH, and by definition WMH are minimum 3 mm × 3 mm × 3 mm

in diameter for being considered relevant), meaning that in clinical practice there will

be either an inter-slice “gap” or a wider “thickness” between each T2-FLAIR slice. In

such case, a deep learning scheme with 3D operations would not be as effective as when

isotropic data are used.

3.4.2.1 Global Spatial Information for CNNs

GSI in this study refers to a set of synthetic images that encode spatial information of

brain in MRI. CNNs are powerful methods to extract features from a set of images when

these are local features of an object. However, CNNs are not designed to learn global

spatial information of some specific features, especially when patch-based CNNs is

performed. As spatiality of features is an important information for WMH segmentation



40 Chapter 3. WMH Segmentation using CNNs with Global Spatial Information

Figure 3.4: Illustration of four different types of GSI of MRI proposed in this study, which

are x axis, y axis, z axis, and radial. Upper ones are the synthesised images of spatial

information, while the lower ones are MRI overlaid by spatial information.

(Kim et al., 2008), the proposed GSI is designed to augment the performance of CNNs

for this task.

In this study, GSI is a set of four different spatial information from the three MRI

axes (i.e., x, y, and z axes) and a radial filter that encodes the distance from the centre of

the MR image. In each axis, numbers in the range of 0 to 1 are generated sequentially to

realise a spatial information slide for each axis. The radial filter is generated using a 2D

Gaussian function where x = y = 256, µ = 51, and σ = 51 (i.e., an arbitrary value that

generates a nice cover of the 2D Gaussian function to an MRI slice sized 256×256).

The illustration of GSI can be seen in Figure 3.4. An illustration of CNN-GSI is depicted

in Figure 3.5.

3.4.2.2 Network architecture

Small-sized and single stride kernels, preferred for MR images (Simonyan and Zis-

serman, 2014), are used in all convolutional layers. Two different CNN architectures,

which are 5 convolutional layers of 2D CNN and 8 convolutional layers of 2D CNN,

are implemented by using the DeepMedic framework (Kamnitsas et al., 2017). Two

different architectures are used to see different impacts of spatial information (i.e., GSI)

in different CNN architectures. The first network has a receptive field of 15×15 while

the second one has 17×17. The performance of the two architectures are compared

with each other and other conventional and deep machine learning algorithms in the
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evaluation (see Table 3.5).

To make the comparison feasible between schemes (and with other works that

may use DeepMedic for the same purpose), only the number of convolutional layers

and their kernel size are changed. The original 3D CNN of DeepMedic is formed

by 8 convolutional layers, 2 fully connected layers and 1 segmentation layer. Fully

connected layers are used to combine normal and sub-sampled pathways (will be

explained in the next sub-section) whereas the segmentation layer is an output layer for

voxel classification. There is a naive up-sampling operation layer in the sub-sampled

pathway to make sure that the size of input segment for fully connected layers from both

pathways are the same. For regularisation, DeepMedic uses dropout (Srivastava et al.,

2014; Hinton et al., 2012) in the two last layers (i.e., the second fully connected layer

and the classification layer), where some nodes from fully connected layers are removed

with some probability p thus forcing the network to learn better representations of

the data. In this study, the dropout probability is set to p = 0.5. Data augmentation,

which is useful for reducing overfitting (Krizhevsky et al., 2012), is also used with some

variations in rotation space (i.e., the original training data are rotated by the x axis with

probability p = 0.5). Pooling layer is not used because, while pooling is usually used to

make feature representation invariant to small changes and more compact (LeCun et al.,

2015), it might introduce some spatial invariances undesirable for lesion segmentation

(Kamnitsas et al., 2017). A diagram of the CNN architecture used in this study can be

seen in Figure 3.5.

3.4.2.3 Kernel function and loss function

Transformation in convolutional layers is achieved by convolving kernels to the input

image segments and applying the output to an activation function. Each convolution

computes a linear transformation between input values and weight values of kernels

whereas the activation function applies a non-linear transformation to its input. The

calculation of linear transformation between input values and kernel weight values can

be written as in Equation (3.6) where h is output to the neuron, x is a one-dimensional

input vector, w is a one-dimensional vector of kernel weight values, β is a bias value,

and σ is a non-linear activation function. In this study, Parametric Rectifier Linear Units

(PreLU) activation function (Equation (3.7)) is used where α is a trainable parameter
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Figure 3.5: A diagram of two CNN architectures used in this study, which are based

from 3D CNN DeepMedic framework (Kamnitsas et al., 2017). The upper one, (a), is

formed of 8 convolution layers whereas the lower one, (b), is formed of 5 convolution

layers. Black dashed arrows refer to the normal pathways whereas non-dash arrows

refer to the sub-sampled pathways. Red boxes and arrows refer to the GSI and its path

to the network respectively.

(He et al., 2015).

h = σ

(
x>w+β

)
(3.6)

σ(x) =

{
x, if x > 0

αx, otherwise
(3.7)

Voxels in the WMH segmentation scheme will be of two classes: WMH (i.e., y) and

non-WMH (i.e., (1− y)). Hence, a binary cross-entropy loss (BCEL) function, written

in Equation (3.8), is used, where q is the predicted (class) probability of the voxel, y

is the target (class) label of the voxel, i is the voxel index, and N is the number of all

voxels.

BCEL =− 1
N

N

∑
i=1

yi logqi +(1− yi) log(1−qi) (3.8)
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3.4.2.4 Multiple-pathway architecture of CNNs

Multiple-pathway architecture refers to the use of additional paths to extract more

contextual information. Approaches of multiple-pathway CNNs have been previously

studied by Havaei et al. (2017), Moeskops et al. (2016), and Kamnitsas et al. (2017). By

applying multiple-pathway architectures, different amounts of contextual information

can be extracted and used simultaneously. In Moeskops et al. (2016), for example, the

authors use three paths of CNN where the second and third paths use twice and thrice

the size of the first path’s receptive field. Note that the amount of contextual information

is decided by the size of the receptive field.

Multiple-pathway structures introduce more parameters and thus results in larger

memory usage and computation time. To avoid the explosion of memory usage and

processing time, Kamnitsas et al. (2017) introduced a new scheme of multiple-pathway

(i.e., two-pathway) where different resolutions of input images are fed into two different

networks and then merged together at the end. For example, by resizing MR images

to be 1/3 of the original size, three times bigger receptive field of MR images can be

obtained without increasing the number of parameters. Full reports on its application

can be read in (Kamnitsas et al., 2017). In this study, the resizing factor of either 1/3

(default) or 1/5 is used to see whether different resizing factor affects performance of

CNN-GSI. For the rest of this chapter, the original and resized paths will be referred as

normal and sub-sampled pathways respectively. The illustration of the dual-pathway

architecture of CNNs proposed by Kamnitsas et al. (2017) and used in this study can be

seen in Figure 3.5.

3.4.2.5 Image segments and training

Image segments are image patches used as input to the CNNs. As WMH segmentation

is performed on a voxel basis, a full MR image does not have to be loaded into the

CNNs. Image segments used in the training process are selected using the scheme

developed in DeepMedic framework where probability of 50% is used to extract an

image segment centred on a non-WMH or WMH (Kamnitsas et al., 2017). Root Mean

Square propagation (RMSprop) optimiser (Dauphin et al., 2015) is used to minimise

the binary cross-entropy loss function. RMSprop’s main idea is to divide the gradient

by a running average of its recent magnitude. This way, RMSprop can be used in

mini-batch training unlike its predecessor resilient propagation (rprop) (Riedmiller and

Braun, 1992). To speed up the training process, Nesterov’s Accelerated Momentum
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(Sutskever et al., 2013) is also used where the momentum value is kept constant to 0.6

while learning rate decreases linearly from its initial value of 0.001.

3.5 Experimental Setup

In this section, training and testing processes, parameter setup of machine learning

methods, and evaluation methods used in this study are presented.

3.5.1 Training and testing processes

Due to the limited number of data available in the first dataset (i.e., 60 MRI scans), a 5-

fold cross validation is used across the dataset, where 48 MRI scans from 16 individuals

are used as training samples and 12 MRI scans from 4 individuals are used for testing.

The selection of individuals/subjects for training and testing in each cross validation

was done randomly. All MRI scans from the first dataset are used as training samples

for generating the WMH segmentation of the second dataset (i.e., from 268 MRI scans),

which is used as testing sample. Performance is evaluated using the Fazekas scores.

Class balancing (i.e., WMH and non-WMH) from training datasets is done differ-

ently depending on the machine learning algorithm used. For SVM and RF algorithms,

the same sampling scheme as in (Ithapu et al., 2014) is performed, which is to equally

sample WMH and non-WMH data from the training dataset. For DBM, weighted

sampling method of WMH and non-WMH is performed, where the number of non-

WMH data are four times more than the WMH data. For CNNs, dense training on

image segments that adjusts to the true distribution of non-WMH and WMH provided

in DeepMedic framework (Kamnitsas et al., 2017) is used.

3.5.2 Parameter setup

There are some parameters for each machine learning method that need to be set before

starting the training process. In this study, for each machine learning methods, the sets

of parameters that previous studies reported to give the best results are used, verified in

the preliminary experiments (Rachmadi et al., 2017b). RBF is used for SVM classifier

and extracted features for conventional machine learning, discussed in Section 3.3,

is reduced to 10 using PCA and then whitened before training. The RF model used

in this training is set using the following parameters: 300 trees, 2 minimum samples

in a leaf, and 4 minimum samples before splitting. A 2-layer DBM with 125-50-50
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Table 3.3: Parameters of Convolutional Neural Network (adopted directly from (Kamnitsas

et al., 2017))

Convolutional Neural Network

Stage Parameter Value

Initialisation weights (He et al., 2015)

Regularisation
L1 0.000001

L2 0.0001

Dropout
p - 2nd last layer 0.5

p - Last layer 0.5

Training
epochs 35

momentum 0.5

Initial LR 0.001

structure is constructed where 125 is the number of units of the input layer and 50

is the number of units of both hidden layers. Each RBM layer is pre-trained for 200

epochs, and the whole DBM is trained for 500 epochs. In the end of the training

process, a label layer is added on top of the DBM’s structure and fine-tuning is done

using gradient descent for supervised learning of WMH segmentation. The CNN

has many hyper-parameters for constructing the network, so the default parameters

provided by DeepMedic framework are used as they have been reported to work well

for segmentation and also for reproducibility reason. All parameters of the CNN are

listed in Table 3.3.

3.5.3 Evaluation

AUC-PR and DSC measurements, the most commonly used measurements to evaluate

medical image segmentation results, are calculated for evaluation. AUC-PR calculates

the size of area under the precision (i.e., Positive Predictive Value (PPV)) and recall (i.e.,

True Positive Rate (TPR)) curve between GT and the automatic segmentation result.

DSC (Dice, 1945) measures similarity (i.e., spatial coincidence) between GT and auto-

matic segmentation results. Precision, recall, and DSC are defined in Equations (3.9),

(3.10), and (3.11) where True Positive (TP), False Positive (FP), and False Negative

(FN). A paired two-sided Wilcoxon signed rank significance test was performed to see
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whether the improvements were significant or not.

Precision = PPV =
TP

TP+FP
(3.9)

Recall = T PR =
TP

TP+FN
(3.10)

DSC =
2×TP

FP+2×TP+FN
(3.11)

As an additional evaluation, the non-parametric Spearman’s correlation coefficient,

which is used to assess monotonic correlation between the total Fazekas scores (Fazekas

et al., 1987) and the WMH volumes produced by all automatic schemes, is evaluated. It

is known that these two measurements are highly correlated (Valdés Hernández et al.,

2013). Fazekas scores (described in Section 2.2.1) consider the WMH subdivided

into PVWMH and DWMH. For the evaluation, the PVWMH and DWMH ratings are

summed for each of the 268 unlabelled MRI data in the second dataset.

Two additional measurements called Volume Difference (VD) and volumetric Dis-

agreement (D) were also calculated for evaluating intra-/inter-observer reliability meas-

urement. VD (Equation (3.12)) evaluates volumetric difference between predicted

segmentation (PS) and GT labels using volume (vol) function which computes volu-

metric measurement by multiplying the number of PS/GT voxels in one patient with

the real-world voxel size, 0.8594× 0.8594× 5 mm3 (see data acquisition protocol

parameters for T2-FLAIR in Table 3.2). On the other hand, D is used to evaluate

volumetric disagreement of intra-/inter-observer reliability. In intra-observer reliability

test, D (Equation (3.13)) is used to evaluate disagreement between automated schemes

(GT 1 = PS) and two manual WMH labels produced by the first observer (GT 2 = Ob-

server #1) on 12 random MRI scans. In inter-reliability test, D is used to evaluate

disagreement between automated schemes (GT 1 = PS) and two manual WMH labels

produced by two different observers (i.e., GT 2 = Observer #1 and GT 2 = Observer #2

in the first and second evaluation respectively) on 20 random MRI scans.

V D =
vol(PS)− vol(GT )

vol(GT )
(3.12)

D = abs
(

vol(GT1)− vol(GT2)

mean(vol(GT1),vol(GT2))

)
×100% (3.13)

In addition, the outcome of each segmentation method in relation with age, gender,

and clinical parameters selected based on clinical plausibility and/or previous research
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(i.e., blood pressure parameters (systolic and diastolic), pulse rate, cholesterol, and

serum glucose) was evaluated. One-way analysis of covariance (ANCOVA) were

performed to evaluate the association of candidate variables (clinical data) with potential

change in WMH volume at each time point. Since WMH volumes were obtained at

three time points (i.e., Year 1 (Y1), Year 2 (Y2), and Year 3 (Y3)), evaluation was

performed for potential change from Y1 to Y2, Y2 to Y3, and Y1 to Y3. Prior to

conducting each ANCOVA model, collinearity assessment using Belsley collinearity

diagnostics was performed (Belsley et al., 2005), independence between each covariate

and the independent variable, and homogeneity of regression slope assumptions, all

using MATLAB 2015a.

Finally, the results of the six best-performing schemes were visually evaluated

by a neuroradiologist using a form, which records the number of WMHs not iden-

tified, missed partially, and misclassified in the following anatomical brain regions:

pons, periventricular, corpus striatum, anterior, central, and posterior white matter

bundles. Completed forms by the neuroradiologist are given as supplementary material

in Appendix A.

3.6 Results and Discussions

In this section, the impact of using multiple MRI sequences for automatic segmenta-

tion of WMH, the difference in performance between conventional machine learning

algorithms (i.e., SVM and RF) and deep learning algorithms (i.e., DBM and CNN),

the differences in performance of the public toolbox (i.e., LST-LGA) versus other

algorithms, the impact of using GSI in CNN, the influence of WMH volume in the

performance of each algorithm, longitudinal analysis, intra- and inter-observer analyses,

the processing time needed for training and testing each algorithm, and the clinical

evaluation of automatic WMH segmentation schemes are discussed.

In total, 5 machine learning algorithms with 24 different schemes/settings were

tested in this study for automatic WMH segmentation. The list of the machine learning

algorithms can be seen in Table 3.4 whereas all schemes/settings and their general

evaluation can be seen in Table 3.5.
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Table 3.4: List of all machine learning algorithms and their category used in this study.

“ML”, “SPV”, “DL”, “NHL”, and “SN” stand respectively for “Machine Learning”, “Super-

vised”, “Deep Learning”, “Number of Hidden Layer”, and “Scheme Number”.

No. ML SPV DL NHL Input(s) SN

1 LST-LGA No No - T2-FLAIR 1

2 SVM Yes No - T2-FLAIR & T1-W 2,3

3 RF Yes No - T2-FLAIR & T1-W 4,5

4 DBM Yes Yes 2 T2-FLAIR 6

5 CNN Yes Yes 5 or 8 T2-FLAIR & T1-W 7-24

Table 3.5: Experiment results reporting DSC and AUC-PR measurements. “one” in the

scheme’s name refers to one-pathway CNN, and “two” refers to two-pathway CNN. Label

“diff” refers to the mean difference between CNN without GSI and CNN-GSI. Automated

WMH segmentation is produced by using threshold value of t = 0.5. Values in bold are

the best score whereas values in italic are the second-best score.

DSC DSC postprocessing AUC-PR
No. Scheme’s Name mean diff. mean diff. SD mean SD

1 LST-LGA (Schmidt et al., 2012a) 0.2921 - 0.2963 - 0.1620 0.0942 0.0682

2 SVM FLAIR 0.0855 - 0.0891 - 0.1266 0.1698 0.1203

3 SVM FLAIR T1W 0.1148 - 0.1194 - 0.1036 0.1207 0.0958

4 RF FLAIR 0.1516 - 0.1621 - 0.1464 0.4126 0.1671

5 RF FLAIR T1W 0.1589 - 0.1633 - 0.1513 0.3624 0.1767

6 DBM FLAIR 0.3152 - 0.3264 - 0.1425 0.3188 0.1592

7 CNN one FLAIR T1W (5-layer) 0.4332 - 0.5118 - 0.1519 0.5248 0.1838

8 CNN one FLAIR T1W GSI-xyz (5-layer) 0.4570 2.36% 0.5125 0.07% 0.1489 0.5498 0.1846

9 CNN one FLAIR T1W GSI-xyz-rad (5-layer) 0.4524 1.92% 0.5150 0.32% 0.1476 0.5485 0.1795

10 CNN one FLAIR T1W 0.4601 - 0.5178 - 0.1417 0.5418 0.1737

11 CNN one FLAIR T1W GSI-xyz 0.4789 1.87% 0.5227 0.49% 0.1474 0.5548 0.1777

12 CNN one FLAIR T1W GSI-xyz-rad 0.4738 1.37% 0.5230 0.52% 0.1508 0.5566 0.1761

13 CNN two FLAIR (5-layer) 0.4843 - 0.5226 - 0.1538 0.5673 0.1824

14 CNN two FLAIR GSI-xyz (5-layer) 0.4987 1.45% 0.5268 0.42% 0.1517 0.5738 0.1820

15 CNN two FLAIR GSI-xyz-rad (5-layer) 0.4984 1.41% 0.5273 0.47% 0.1542 0.5767 0.1831

16 CNN two FLAIR 0.4842 - 0.5287 - 0.1486 0.5716 0.1724

17 CNN two FLAIR GSI-xyz 0.4856 0.14% 0.5305 0.18% 0.1507 0.5637 0.1770

18 CNN two FLAIR GSI-xyz-rad 0.5174 3.33% 0.5307 0.20% 0.1485 0.5872 0.1754

19 CNN two FLAIR T1W (5-layer) 0.5051 - 0.5333 - 0.1505 0.5676 0.1869

20 CNN two FLAIR T1W GSI-xyz (5-layer) 0.5090 0.39% 0.5348 0.15% 0.1530 0.5768 0.1891

21 CNN two FLAIR T1W GSI-xyz-rad (5-layer) 0.5129 0.78% 0.5381 0.48% 0.1500 0.5778 0.1869

22 CNN two FLAIR T1W 0.4972 - 0.5359 - 0.1434 0.5764 0.1773

23 CNN two FLAIR T1W GSI-xyz 0.5147 1.75% 0.5390 0.31% 0.1437 0.5806 0.1796

24 CNN two FLAIR TW1 GSI-xyz-rad 0.5159 1.87% 0.5389 0.30% 0.1436 0.5815 0.1831
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3.6.1 Conventional machine learning vs. deep learning

Generally, deep learning algorithms (i.e., DBM and CNN) performed better than con-

ventional machine learning algorithms (i.e., SVM and RF). In the experiments, SVM’s

performance was low in both AUC-PR and DSC while RF’s performance was a lot

better than SVM in AUC-PR. On the other hand, DBM’s performance was a lot better

than SVM and RF, especially in DSC, even though DBM used the same ROI with SVM

and RF. These results suggest that a simple DBM architecture (i.e., 2-hidden layer) is

still more powerful than SVM and RF in WMH segmentation. However, in this study,

CNN outperformed all other methods with much better AUC-PR and DSC values.

3.6.2 LST-LGA vs. other methods

Interestingly, the average DSC value for the LST-LGA (with κ = 0.05) was higher than

that for SVM and RF. However, the AUC-PR for LST-LGA was the lowest from all

methods. A low value of AUC-PR means that the algorithm failed to detect subtle

hyperintensities, even though the κ-value parameter used in the experiment for LST-

LGA is recommended as the most sensitive one.

3.6.3 Impact of using multiple MRI sequences

In general, segmentation results improved when additional information (i.e., MRI

sequence/channel) was added, especially in DSC. Improvement in AUC-PR was not

always seen, as adding T1-W in SVM/RF decreased the value of AUC-PR (Table 3.5

Scheme No. 2-5). However, AUC-PR always increased for CNN when both sequences

were used although the improvement was very subtle (i.e., 0.02% and 0.48% in Scheme

No. 13 vs. No. 19 and Scheme No. 16 vs. No. 22 respectively).

3.6.4 Impact of incorporating GSI into CNNs

The use of synthetic GSI sequences improved the performance of CNNs in all cases

with variations in the level of improvement, both in AUC-PR and DSC (Table 3.5). The

least improvement occurred in Scheme No. 17 (i.e., 0.14% DSC improvement) while

the highest improvement happened in Scheme No. 18 (i.e., 3.33% DSC improvement).

Similar improvement was also seen after postprocessing: from 0.07% to 0.52% in DSC

measurement. Two different architectures of CNNs (i.e., 5-layer network and 8-layer

network) and different input of MRI sequences were deliberately tested in different
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experiments to see whether the improvements could be observed in different cases.

With the same intention, one-pathway (i.e., normal pathway) CNN was also evaluated

(Scheme No. 7-12). All improvements listed in Table 3.5 (see label “diff”) were tested

using the paired two-sided Wilcoxon signed rank, and all of them were improving

significantly with p≤ 0.00015.

General improvement of incorporating GSI into CNNs can be seen in Figure 3.6,

which shows the curve of average DSC score produced by using different threshold

values. Figure 3.6 shows that better performances in spatial agreement (DSC) can be

produced by using different threshold values while the effect of GSI on CNN becomes

smaller. It also shows that there is a limit of improvement that can be given by GSI

to the CNN, especially in higher threshold values. However, it is worth mentioning

that choosing the best threshold value for the best performance for all subjects is not

practical (i.e., each patient has its own optimum threshold value). Furthermore, the best

threshold value in a dataset might not work in different dataset due to different data

acquisition protocols. In this study, the threshold value of t ≥ 0.5 was chosen because it

is the standard threshold value for two-class segmentation task (i.e., the probability of

being one class is higher than the probability of being another class).

Figure 3.6: Average DSC score curve produced by using different threshold values

where general improvement of incorporating GSI into CNN on WMH segmentation can

be seen.

Interestingly, the impact of adding GSI into the CNNs was greater than adding

an MRI sequence (i.e., T1-W) into the CNNs, especially in AUC-PR values. Adding
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T1-W to Scheme No. 13 only improved AUC-PR from 0.5673 to 0.5676 (i.e., 0.03%

improvement), whereas adding GSI to the same scheme improved AUC-PR up to 0.5767

(i.e., 0.94% improvement). Similarly happened adding T1-W to Scheme No. 16: AUC-

PR only improved from 0.5716 to 0.5764 (i.e., 0.48% improvement). Whereas, adding

GSI to the same scheme improved AUC-PR up to 0.5872 (i.e., 1.56% improvement).

Additional evaluation of Fazekas scores to the unlabelled MRI data in the second

dataset was done using Spearman’s correlation. The r-value indicates the strength in the

correlation (i.e., variable−1≤ r≤ 1 is used to describe monotonic relationship between

paired data), and p-value indicates significance. As shown in Table 3.6, WMH volumes

produced by CNNs with GSI correlated better with the corresponding total Fazekas

score than the ones produced by CNNs without GSI. As a comparison, a preliminary

experiment in the first dataset showed that Spearman’s correlation between total Fazekas

scores and the manual reference WMH segmentation was r = 0.7385 (p < 0.0001) and

considered as the upper bound measurement of this experiment.

Figure 3.7: DSC values of automatic WMH segmentation in relation to the volume of

WMH for each patient based on automated WMH segmentation done by using LST-LGA

(Scheme No. 1), SVM (Scheme No. 3), RF (Scheme No. 5), DBM (Scheme No. 6),

CNN without GSI (Scheme No. 22), and CNN-GSI (Schemes No. 23 and 24). Each dot

represents one patient and its colour refers to its DSC value: red for low DSC, green for

high DSC. The x axis indicates volume of WMH from the GT (given in mm3) for each

patient, whereas y indicates the correspondent DSC value. Red horizontal line indicates

the mean of DSC values.

3.6.5 Influence of WMH burden

DSC and AUC-PR measurements in this study are low partly because almost half of

MRI data have very small WMH burden (i.e., volume of WMH in one patient). The
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Table 3.6: Spearman’s correlation coefficient between WMH volume of MRI data auto-

matically produced by CNNs and visual rating Fazekas score. Higher r-value and lower

p-value are better.

Corr. val.
No. Scheme’s Name r-value p-value

1 CNN without GSI 0.4275 1.92E-72

2 CNN with X, Y, and Z GSI (CNN-GSI-xyz) 0.4341 7.00E-75

3 CNN with X, Y, Z, and radial GSI (CNN-GSI-xyz-rad) 0.4367 7.66E-76

4 CNN one FLAIR T1W (5-layer) 0.3626 9.45E-10

5 CNN one FLAIR T1W GSI-xyz (5-layer) 0.3631 8.96E-10

6 CNN one FLAIR T1W GSI-xyz-rad (5-layer) 0.3779 1.60E-10

7 CNN one FLAIR T1W 0.3816 1.02E-10

8 CNN one FLAIR T1W GSI-xyz 0.3894 3.92E-11

9 CNN one FLAIR T1W GSI-xyz-rad 0.3818 9.91E-11

10 CNN two FLAIR (5-layer) 0.4479 1.25E-14

11 CNN two FLAIR GSI-xyz (5-layer) 0.4831 4.49E-17

12 CNN two FLAIR GSI-xyz-rad (5-layer) 0.4981 3.26E-18

13 CNN two FLAIR 0.4864 2.54E-17

14 CNN two FLAIR GSI-xyz 0.4865 2.51E-18

15 CNN two FLAIR GSI-xyz-rad 0.5104 3.51E-19

16 CNN two FLAIR T1W (5-layer) 0.4344 9.19E-14

17 CNN two FLAIR T1W GSI-xyz (5-layer) 0.4312 1.47E-13

18 CNN two FLAIR T1W GSI-xyz-rad (5-layer) 0.4369 6.39E-14

19 CNN two FLAIR T1W 0.4691 4.55E-16

20 CNN two FLAIR T1W GSI-xyz 0.4702 4.48E-17

21 CNN two FLAIR TW1 GSI-xyz-rad 0.4713 4.46E-17

volume of WMH can be calculated by multiplying the number of manual/predicted

WMH voxels in one patient with the real-world voxel size (explained in Section 3.5.3).

From Figure 3.7, it can be easily observed where all schemes evaluated performed

better on brains with medium and high load of WMH, including the LST-LGA toolbox.

Segmentation of small WMH was the most challenging. The DSC measurements for

scans with small burden of WMH were low in most of machine learning algorithms

except for deep learning algorithms, especially the CNNs, which performed much better

than the others. Furthermore, it is also important to see in the right-side of the Figure

3.7 how incorporating GSI into CNN can push the dots to the top of the graphs, which

means better performance of the CNN. Please note that CNN schemes depicted in

Figure 3.7 are Schemes No. 22-24.
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Table 3.7: Five groups of MRI data based on WMH volume.

No. Group Range of Number of

WMH vol. (mm3) MRI Data

1 Very Small [0, 1500] 5

2 Small (1500, 4500] 22

3 Medium (4500, 13000] 24

4 Large (13000, 24000] 5

5 Very Large > 24000 3

Table 3.8: Average values of DSC, AUC-PR, and VD for grouped MRI data based on

its WMH burden listed in Table 3.7. VS, S, M, L and VL stand for “Very Small”, “Small”,

“Medium”, “Large”, and “Very Large” which are names of the groups. Average values

listed below are directly corresponded to Figure 3.8. Bigger values of DSC and AUC-PR

are better while VD value closer to zero is better. Values in bold are the best score

whereas values in italic are the second-best score.

No. Scheme

DSC (mean) AUC-PR (mean) VD (mean)
VS S M L VL VS S M L VL VS S M L VL

1 LST-LGA 0.0699 0.2867 0.3106 0.2992 0.6038 0.0140 0.1214 0.1153 0.1488 0.2076 4.1536 0.5921 0.2343 0.5448 -0.3404

2 SVM 0.0250 0.1091 0.1111 0.1753 0.2714 0.0186 0.1020 0.1311 0.1625 0.3017 124.2099 33.6717 11.9839 5.6529 2.8556

3 RF 0.0200 0.1452 0.1599 0.2735 0.3645 0.1703 0.3204 0.3961 0.4890 0.6448 121.31 32.9548 12.3818 4.3804 2.6595

4 DBM 0.0481 0.2423 0.2617 0.3892 0.4474 0.2061 0.3363 0.3616 0.4454 0.3251 47.3302 12.9548 4.8097 1.6414 0.3066

5 CNN 0.1599 0.4461 0.5262 0.5590 0.7187 0.3187 0.5014 0.6150 0.6358 0.7998 22.8059 6.0561 1.5364 0.9259 -0.0155
6 CNN-GSI-xyz 0.1826 0.4596 0.5409 0.5837 0.7292 0.2959 0.4922 0.6239 0.6479 0.8154 15.7424 4.0804 1.4157 0.7298 0.0369

7 CNN-GSI-xyz-rad 0.1775 0.4623 0.5483 0.5849 0.7230 0.2687 0.5011 0.6302 0.6517 0.8161 14.7669 3.9256 1.3713 0.7697 -0.0423

For clarity, in this analysis, all MRI data were divided into 5 different groups based

on WMH volume (Table 3.7) and plotted the DSC and AUC-PR values in two separate

boxplots (Figure 3.8). Note that the grouping of the dataset into “Very Small”, “Small”,

“Medium”, “Large”, and “Very Large” groups is similar to (Brosch et al., 2016). Seven

different schemes were plotted in Figure 3.7: LST-LGA (Scheme No. 1), SVM (Scheme

No. 3), RF (Scheme No. 5), DBM (Scheme No. 6), CNN (Scheme No. 22), CNN-GSI-

xyz (Scheme No. 23), and CNN-GSI-xyz-rad (Scheme No. 24). From Figure 3.8, it

can be seen that GSI, both three axes and radial spatial information, helped to improve

CNN’s performance. This marks one of the purposes of this study: to improve WMH

segmentation in brain MRI data from subjects with small WMH burden. Full report of

average values from DSC, AUC-PR and VD measurements from grouped evaluation

can be seen in Table 3.8: adding GSI improved CNN’s performance up to 2.27% in the

“Very Small” group and gives an overall similar rate of improvement in other groups.
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Figure 3.8: Comparison of WMH segmentation accuracy (i.e., in DSC and AUC-PR)

using boxplot where all MRI data is grouped together based on its WMH burden for

seven different schemes: LST-LGA (Scheme No. 1), SVM (Scheme No. 3), RF (Scheme

No. 5), DBM (Scheme No. 6), CNN (Scheme No. 22), CNN-GSI-xyz (Scheme No. 23),

and CNN-GSI-xyz-rad (Scheme No. 24). Criteria of each group are listed in Table 3.7,

and the mean values for each scheme in each group are listed in Table 3.8.

3.6.6 Visual evaluation of the WMH segmentation results

Some visual examples of results from automatic WMH segmentation without postpro-

cessing can be seen in Figure 3.9. In the figure, three axial slices of MRI data from

three different subjects with different WMH volumes are presented. Raw segmentation

results from Scheme No. 1 (LST-LGA), 3 (SVM), 5 (RF), 6 (DBM), 22 (CNN), and

23 (CNN-GSI-xyz) are presented to visually appreciate differences in performance.

From the figure, it can be seen that the use of deep learning (i.e., DBM and CNN)

made automatic segmentation results cleaner than SVM and RF, which have many

false positives. How WMH volume affected the performance of each automatic WMH

segmentation scheme can also be appreciated. In general, CNNs were more sensitive

and precise than the other algorithms tested in this study.

To better appreciate the difference in performance between CNN and CNN-GSI (i.e.,

Scheme No. 22 and 23), the panels from Figure 3.9 were zoomed-in to Figure 3.10. GSI

improved CNN’s performance eliminating small false positives, which are pointed by

yellow arrows, and correctly segmenting WMH in some cases, pointed by green arrows

(as also seen in Table 3.5). Furthermore, also from Figure 3.10, it can be seen that the

DSC of Subjects 1 and 3 improved considerably (i.e., 7.58% and 7.99% improvements).

However, in the presence of extensive “dirty white matter”, the introduction of GSI
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Figure 3.10: Close-up image of sections from selected cases showing WMH segmenta-

tion results from the CNN and CNN-GSI schemes. From left to right: GT, CNN (Scheme

No. 22) and CNN-GSI (Scheme No. 23). The arrows indicate false positives which

disappear (yellow) and true positives which appear (green) due to the use of GSI in CNN.

Note that these are visualisations before postprocessing.

slightly decreased CNN’s performance as shown in Subject 2, as many non-WMH

regions appear very similar to WMH. This particular case can be observed more closely

in Figure 3.9 by comparing CNN results with the GT.
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Table 3.9: DSC scores for longitudinal test, VD for cross validation (CV) and longitudinal

(Long.) experiments, and percentage of volumetric disagreement measurement11(D)

between automated scheme and multiple human observers (i.e., intra-/inter-observation)

for LST-LGA, SVM, RF, DBM, CNN, CNN-GSI-xyz and CNN-GSI-xyz-rad (i.e., Scheme

No. 1, 3, 5, 6, 22, 23 and 24 in Table 3.5 respectively). Captions of “[Intra]” and “[Inter]”

refer to intra- and inter-observer evaluation. Higher DSC value is better, lower VD value

is better, and value of D close to zero is better. Values in bold are the best score whereas

values in italic are the second-best score.

No Scheme
DSC Long. VD (mean) D of Observer #1 [Intra] (%) D of both observers [Inter] (%)

mean SD CV Long. Label #1 SD Label #2 SD Obs. #1 SD Obs. #2 SD

1 LST-LGA - - 0.6647 - 67.64 32.30 77.48 45.15 60.59 41.58 49.89 42.37

2 SVM 0.1478 0.1117 9.1551 4.0259 131.38 48.41 136.77 52.50 61.01 52.42 66.60 41.46

3 RF 0.1816 0.1517 15.857 11.260 140.13 43.28 147.76 41.62 123.72 49.07 112.70 50.12

4 DBM 0.3054 0.1513 1.5460 0.1029 78.05 50.26 94.58 60.08 75.63 38.19 65.11 48.66

5 CNN 0.5982 0.1410 0.2541 -0.1883 38.92 32.79 63.87 60.57 33.18 38.48 35.01 36.62

6 CNN-GSI-xyz 0.6063 0.1411 0.2275 -0.1997 36.92 31.98 61.55 60.97 31.80 36.38 34.41 36.28
7 CNN-GSI-xyz-rad 0.6046 0.1512 0.3304 -0.1652 41.62 34.47 64.55 60.88 36.03 36.50 42.56 40.38

3.6.7 Volumetric disagreement and intra-/inter-observer reliability

analysis

VD (Equation (3.12)) evaluates WMH volume differences between manually segmented

WMH (GT) and automatically segmented WMH. This analysis is clinically important

if the WMH burden of one patient is to be expressed by the WMH volume. However,

different observers can annotate WMH differently and one observer might give different

opinion in the reassessment of the same data. Intra-/inter-observer reliability analysis

can be done to evaluate the confidence level of the labels by using D measurement

(Equation (3.13)). Intra-observer analysis evaluates agreement and reliability of mul-

tiple measurements generated by one human observer whereas inter-observer analysis

evaluates agreement and reliability of measurements from multiple observers. The intra-

observer D given by the percentage difference between measurements with respect to

the average value of both for Observer #1 was 36.06% (SD 52.21%) whilst for Observer

#2 it was 4.22% (SD 24.02%). The inter-observer D (i.e., between Observer #1 and #2)

was 28.03% (SD 57.25%). These results mean that Observer #2 produced more consist-

ent labels of WMH than the Observer #1 while the variations of Observer #1 is similar

to the variations between Observer # 1 and Observer #2. The high level of intra-/inter-

11For clarity in the presentation of the agreement with the human observers, standard deviation (SD)
values are given instead of 95% confidence intervals. Label #1 and Label #2 correspond to the two sets
of measurements from Observer #1.
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observer difference could be caused due to small and subtle WMH, which are abundant

features in the first dataset. From preliminary observation and internal documentation,

it has been observed that these types of WMH could be easily misidentified as artefacts

(or vice versa), especially the ones located around insular cortex, midline parasagittal

cortex, anterior temporal poles, inferior walls of the third ventricle, posterior thalamus,

and periaqueductal regions. The inconsistencies in intra-/inter-observer experiment

show the biggest shortcoming of supervised machine learning algorithms, especially

when WMH labels from one expert are used exclusively in the training process. To

reduce the inconsistencies, one study suggested to use high-field MR scan (i.e., 3T or

over instead of 1.5T used in this study) that is more sensitive to small and early WMH

and more MRI sequences (e.g., T2-W, DTI, positron density (PD), and magnetization

transfer image (MTI)) for better characterisation of WMH (Kim et al., 2008).

VD and intra-/inter-observer analysis of seven learning algorithms (i.e., Scheme No.

1, 3, 5, 6, 22, 23, and 24 of Table 3.5) are shown in Table 3.9. VD rate of CNN-GSI

(i.e., CNN-GSI-xyz) in the cross validation experiment is better than CNN without

GSI (i.e., 0.2275 and 0.2541 respectively) and is the best performer in terms of VD. In

the longitudinal test using the same measurement (VD), the performance of CNN-GSI

(i.e., CNN-GSI-xyz-rad) is better than CNN without GSI. With regards to volumetric D

against intra-/inter-observer reliability measurements, CNN-GSI (i.e., CNN-GSI-xyz)

always performed better than SVM, RF, DBM, and CNN without GSI. This means that

spatial XYZ information boosted the performance of CNNs according to VD, D, and

DSC measurements.

3.6.8 Longitudinal evaluation

This evaluation aims to determine the schemes’ performance in estimating the WMH

regions in the two years following the baseline scan, providing that the baseline meas-

urements are known. Hence, i.e., 1st year samples are used for training and the rests of

years are used for testing. Table 3.9 lists the DSC and VD measurements in longitudinal

test for schemes No. 1, 3, 5, 6, 22, 23, and 24 (i.e., LST-LGA, SVM, RF, DBM,

CNN, CNN-GSI-xyz, and CNN-GSI-xyz-rad respectively) listed in Table 3.5. From

the table, the incorporation of four types of GSI improved the performance of CNN

(i.e., 0.6046 compared to 0.5982 of CNN without spatial information). Furthermore,

the incorporation of XYZ spatial information also improved CNN’s performance, with

DSC of 0.6063. In summary, these results (i.e., listed in Table 3.5, Table 3.8, and Table
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Figure 3.11: Results of the longitudinal evaluation for 10 random subjects where first

year data is used as training data and second year data is used as testing data (shown in

the charts). The upper chart presents the WMH volume (mm3) of the GT and produced

by the automatic WMH segmentation schemes, and the lower one presents the DSC

values for the machine learning algorithms. See Figure 3.9 for reference of the schemes

represented.

3.9) show that GSI successfully improved the performance of the CNNs. Figure 3.11

shows the WMH volumes and DSC rates obtained for 10 random subjects from several

schemes, for schemes trained with data from the previous year. It can be seen that

conventional machine learning algorithms (i.e., SVM and RF) produced low agreement

of WMH volume and location while GSI improved CNN’s performance in both WMH

volume and location agreements.

3.6.9 Processing time

The processing time needed by each algorithm in training and testing processes was also

evaluated. The results of this evaluation are shown in Table 3.10. Note that SVM, RF,

and DBM used Central Processing Units (CPUs), and were run from a workstation in a

Linux server with 32 Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz processors. Whereas,

CNNs used General Processing Units (GPUs) and were run in a Linux Ubuntu desktop

with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and EVGA NVIDIA GeForce GTX

1080 8GB GAMING ACX 3.0. Based on the evaluation, SVM was the fastest algorithm

in the training process, but it was the slowest one in testing. On the other hand, CNNs

were faster than DBM in training and the fastest in testing.
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Table 3.10: Processing time of each algorithm in training phase and testing phases.

Times are given in minutes and seconds respectively.

Algorithm
Training Testing one MRI

(minutes) data (seconds)

SVM 25.4589 82.4877

RF 36.4649 40.6431

DBM 1340.3209 16.9841

CNNs 317.8757 9.1879

3.6.10 Clinical plausibility of the results

Despite WMH have been found to be associated with hypertension, hypercholester-

olaemia, and several vascular risk factors (Longstreth et al., 1996), their dynamic

progression in short term has only been reported associated with their extent at certain

time point considered the baseline measurement (Ramirez et al., 2016). In the ANCOVA

models described in Section 3.5.3 that used the GT WMH volume, in agreement with

clinical reports, the only predictor of the WMH volume one-year or two-year later was

the WMH volume considered baseline on each model (p < 0.0001 in all cases). When

these models were repeated but using the WMH volume obtained from all schemes

evaluated, the results were not different.

Visual inspection of the results revealed that conventional machine learning methods

do not distinguish T2-FLAIR hyperintense cortical sections well from subtle WMH as

Figure 3.9 shows. Deep learning algorithms, on the other hand, correctly classify most

of intense or obvious WMH, while misclassifying subtle white matter changes (i.e., pale

WMH) in some cases. The fact that all schemes produced results clinically plausible

(i.e., in agreement with published recent clinical reports) perhaps may be indicative that

all T2-FLAIR hyperintensities, regardless of their location and relative intensity, may

be part of a more generalised phenomena worth to be explored on a bigger sample.

3.6.11 Neuroradiological evaluation

Unlike image analysts (i.e., Observer #1 and #2) who measured WMH by delineating

the boundary of WMH, in this study, the neuroradiologist evaluated the results from the

six automated schemes that produced the best results on one scan (out of the three annual

scans) per patient. As mentioned in Section 3.5.3, the neuroradiologist performed the

evaluation by filling in a form which records the number of WMHs not identified,
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missed partially, and misclassified in specific anatomical brain regions (completed

forms can be seen in Appendix A). This evaluation was done to help regularising the

location and cause of the misclassified/missed WMH partially or totally as well as

to find out the effect of GSI on CNN from the point of view of a neuroradiologist.

This evaluation is also useful to devise future improvement strategies. The automated

schemes evaluated by the neuroradiologist were 5-layer dual-modality CNN with and

without GSI incorporated (Schemes No. 19-21 in Table 4.1) and 8-layer dual-modality

CNN with and without GSI incorporated (Schemes No. 22-24 in Table 4.1).

The neuroradiologist considered “missing” an average of 2 WMH clusters in the

anterior white matter (i.e., white matter in the frontal and parieto-frontal lobes) on only

7/20 datasets (subjects). Of the WMH clusters correctly identified, the neuroradiologist

did not consider relevant the differences in the extent of the clusters marked by any

scheme. Therefore, no “WMH partially missed” were recorded. False positives were:

artefacts in the pons, corpus striatum, deep white matter, and anterior cortex, on

an average of 5 WMH clusters in total per patient. All schemes evaluated by the

neuroradiologist were considered with “similar performance”. These results indicate

that GSI did not give negative impact to the CNN as per the neuroradiologist’s visual

observation, but at the same time GSI also did not give noticeable positive impact either.

This is reasonable because, as per Table 3.8, GSI gives positive impact to the very small

and small WMH which are easily missed by human observers. This also indicates that

human observers easily overlook very small and small clusters of WMH in MRI.

3.7 Conclusion

Conventional machine learning algorithms evaluated in this study, SVM and RF, did

not perform well on automatic WMH segmentation across the sample used in this

study. The addition of the T2-W image to the T2-FLAIR and/or T1-W (i.e., the use of

three structural MRI sequences instead of one or two) could increase the certainty of

WMH delineation and reduce false positives. The experiments show that deep learning

algorithms performed much better than the conventional ones for automatic WMH

segmentation. Lastly, GSI set, which is incorporated into CNN’s convolutional layer,

successfully helps the performance of CNN in every CNN’s schemes and tests done in

this study especially in spatial agreement measurement (DSC) evaluations.
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3.8 Future Work

The texture, shape, and prominence of WMH differ according to their anatomical

location and are related to the overall “damage” of a particular brain, reflected on the

presence of other indicators of small vessel disease (Wardlaw et al., 2013). Therefore,

the best performing approach in this study, which is CNN-GSI, needs to be evaluated

in brains with moderate to abundant vascular pathology (i.e., small vessel disease,

strokes). Other types of GSI such as brain’s landmark or tissue priors probability maps

can be investigated. Different approaches of incorporating GSI into the CNN like in

(Ghafoorian et al., 2017a), where GSI is incorporated in the segmentation layer, can

also be evaluated. Different deep neural network architectures, like the autoencoder

could be promising. Further study to increase the performance of automatic WMH

segmentation schemes on brains with heterogeneous WMH load and appearance, and

with images acquired with different acquisition protocols is needed.



Chapter 4

Quantitative Assessment of WMH

using Irregularity Map

In this chapter, a novel unsupervised method called Limited One-time Sampling Irregu-

larity Map (LOTS-IM) is described, tested, and evaluated for WMH segmentation. This

chapter is based on the following publications:

1. Rachmadi, M. F., Valdés-Hernández, M. D. C., Li, H., Guerrero, R., Meijboom, R.,

Wiseman, S., Waldman, A., Zhang, J., Rueckert, D., Wardlaw, J., and Komura, T.

(2020). Limited One-time Sampling Irregularity Map for automatic unsupervised

assessment of white matter hyperintensities and multiple sclerosis lesions in

structural brain magnetic resonance images. Computerized Medical Imaging and

Graphics, 79:101685.

2. Rachmadi, M. F., Valdés-Hernández, M. D. C.,M., and Komura, T. (2018a).

Transfer learning for task adaptation of brain lesion assessment and prediction

of brain abnormalities progression/regression using irregularity age map in brain

MRI. In International Workshop on PRedictive Intelligence In MEdicine, pages

85–93, Cham. Springer International Publishing.

4.1 Motivation

Since the widespread use of deep neural network algorithms (i.e. hereinafter referred to

as “deep learning”) in computer vision, these methods have become the state-of-the-

art for detection and segmentation problems in brain MRI. For example, it has been

shown in Chapter 3 that deep learning algorithms based on DeepMedic (Kamnitsas

63
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et al., 2017) outperformed the conventional machine learning algorithms (i.e., SVM and

RF) on automatic segmentation of WMH. However, as supervised methods, they are

highly dependent on manual labels produced by experts (i.e., physicians) for training

process. This dependency to expert’s opinion limits their applicability due to the

expensiveness of manual WMH labels and their limited availability. Furthermore, the

quality of manual label itself depends on and varies according to the expert’s skill.

Section 3.2.3 exhibits this problem clearly where inconsistency of Observer #1 is high

in intra-observer reliability test and inconsistency between Observer #1 and #2 is also

high in inter-observer reliability test.

Conventional unsupervised segmentation methods, such as LST-LGA (Schmidt

et al., 2012a) and Lesion-TOADS (Shiee et al., 2010), do not have the aforementioned

dependencies to segment WMH in brain MRI. Hence, these methods have been tested

in many studies and become the standard references to the other segmentation methods.

Unfortunately, their performance is usually worse than that of supervised machine

learning and deep learning methods. On the other hand, the more recent unsupervised

deep learning methods based on GAN (Goodfellow et al., 2014), such as Anomaly

GAN (AnoGAN) (Schlegl et al., 2017) and Adversarial Auto-Encoder (AAE) (Chen

and Konukoglu, 2018)), need large number of both healthy and unhealthy data for

adversarial training processes, usually not easily accessible.

Recently, a new unsupervised segmentation method named Irregularity Age Map

(IAM) (Rachmadi et al., 2017c) and its faster version One-time Sampling Irregularity

Age Map (OTS-IAM) (Rachmadi et al., 2018c) have been proposed and reported to work

better than the state-of-the-art unsupervised WMH segmentation method LST-LGA, the

conventional supervised machine learning methods (i.e., SVM and RF), and some deep

learning methods of DBM (Salakhutdinov and Larochelle, 2010) and Convolutional

Encoder Network (CEN) (Brosch et al., 2016). IAM and OTS-IAM uniquely produce

an irregularity map (IM) that has several advantages over deep learning’s probability

map (PM). Unlike PM, IM captures regular and irregular regions by retaining changes

of the original T2-FLAIR intensities. This cannot be achieved with deep neural network

algorithms, which are trained to reproduce manually generated binary masks. For

example, the gradual changes of hyperintensities along the border of WMH, usually

referred to as “penumbra” (Maillard et al., 2011), can be well represented in IM.

The penumbra of WMH has been subject of many studies in recent years, which

debate criteria to correctly identify the WMH borders (Firbank et al., 2003; Jeerakathil

et al., 2004; Valdés Hernández et al., 2010). Further discussion of WMH penumbra is
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described in Section 2.1.

While IAM and OTS-IAM have been tested in previous studies and produced

very good results in the segmentation of WMH in MRI scans from individuals with

minor vascular pathology, they had one main limitation: their lengthy computing

time. The most recent OTS-IAM takes 13 minutes (on GPU) to 174 minutes (on

CPU) for processing a single MRI scan data of 256×256×35 voxels in average. The

aforementioned computation times are not ideal especially if thousands of MRI are to

be processed.

In this study, a new version of IAM method called Limited OTS-IM (LOTS-IM)

is proposed. LOTS-IM greatly improves the processing time compared to IAM and

OTS-IAM without any perceivable quality degradation. This study also documents in

more detail the generation of the IM, the method’s performance (i.e. including limits of

validity), describes and evaluates the internal parameters involved in the computation of

the IM, and demonstrates the use of IM for simulating the evolution of abnormalities

inside the brain.

4.2 Irregularity Age Map Method

The IAM for WMH assessment on brain MRI was originally proposed in (Rachmadi

et al., 2017c) which is based on a computer graphics method developed to synthesise

time-varying weathered texture images (Bellini et al., 2016). In the original study,

Bellini et al. (2016) proposed a method to calculate the degree (i.e., age) of weathering

(e.g., mold and stains on the exterior walls caused by prolong exposure to weather) at

different regions of input texture by analysing the prevalence of texture patches. The

term “age value” and “age map” were originally used by Bellini et al. (2016) for the

2D array of values between 0 and 1 denoting the weathered regions considered texture

irregularities in texture images. In this study, the terms of age value and IAM are

changed to “irregularity value” and “irregularity map” (IM) as the concept of detecting

“aged/weathered” textural regions no longer applies. In the IM, the closer the value to 1,

the more probable a pixel/voxel belongs to a neighbourhood that has different texture

from that considered “normal”.

After segmenting the regions of interest where the algorithm will work (e.g. brain

tissue) using well established fully automatic computational methods (Step 1, depicted

in Figure 4.1(A)), IM is calculated from each structural MRI slice (i.e. preferably in

axial or coronal orientation) by applying the following steps: patch generation (Step
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Figure 4.1: Flow of the proposed LOTS-IM. 1) Pre-processing: brain tissue-only T2-

FLAIR MRI 2D slices are generated from the original T2-FLAIR MRI and its correspond-

ing brain masks (i.e., intracranial volume (ICV) and cerebrospinal fluid combined with

pial regions (CSF)). 2) LOTS-IM: the brain tissue-only T2-FLAIR MRI slice is processed

through the LOTS-IM algorithm on GPU. 3) Post-processing: final age map of the

corresponding input MRI slice is produced after a post-processing step (optional).

2, depicted in Figure 4.1(B)), irregularity value calculation (Step 3, depicted in Figure

4.1(C)), and final IM generation (Step 4, depicted in Figures 4.1(D) and 4.1(E)). These

four steps are described in the rest of this section. Note that steps 2 to 4 are executed

slice by slice (i.e., in 2D).

4.2.1 Brain tissue masking

For brain MRI scans, the brain tissue mask is necessary to exclude non-brain tissues

which can represent “irregularities” per se (e.g., skull, cerebrospinal fluid, veins, and

meninges). In other words, brain tissue patches are compared with themselves, not

with patches from the skull, other extracranial tissues, or fluid-filled cavities. For this

purpose, two binary masks, ICV and CSF masks, are used where the latter containing

also blood vessels and pial elements like venous sinuses and meninges. In this study,

the ICV mask was generated using optiBET (Lutkenhoff et al., 2014). However,
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several tools that produce accurate output exist and can be used for this purpose (e.g.,

bricBET1, freesurfer2). The CSF mask was generated by using a multispectral algorithm

(Valdés Hernández et al., 2015a). The brain tissue masking is schematically represented

in Figure 4.1(A).

The pre-processing step before computing LOTS-IM only involves the generation

of these two masks as per in the original IAM and OTS-IAM (Rachmadi et al., 2017c,

2018c). Their subtraction generates the brain tissue mask, which is, then, multiplied

by the T2-FLAIR volume. This study also uses the NAWM mask in a post-processing

step to exclude brain areas in the cortex that could be identified as false positives. The

NAWM masks were generated using FSL-FAST (Zhang et al., 2001), but these can also

be generated using other tools (e.g., freesurfer).

4.2.2 Patch generation

Similar to IAM (Rachmadi et al., 2017c), LOTS-IM requires the generation of two sets

of patches: non-overlapping grid patches called source patches and randomly-sampled

patches called target patches, which can geometrically overlap each other (Figure

4.1(B)). In the IM computation, a source patch is used as reference to the underlying

pixel (or patch) while a target patch is used to represent a sample of all possible image

textures. A set of target patches is randomly sampled from the same image. Note

that the distribution of randomly sampled target patches closely follows the underlying

distribution of all target patches, i.e., brain tissues’ textures.

Source and target patches are used to calculate the irregularity value, where each of

the source patches is compared with several randomly sampled target patches using a

distance function (Bellini et al., 2016). This will be discussed in the next subsection.

Hierarchical subsets of 2D image array are used where four different sizes of source

and target patches, which are 1×1, 2×2, 4×4 and 8×8 pixels. The patch generation

process is schematically depicted in Figure 4.1(B).

1https://sourceforge.net/projects/bric1936/files/MATLAB_R2015a_to_R2017b/
BRIClib/

2https://surfer.nmr.mgh.harvard.edu/

https://sourceforge.net/projects/bric1936/files/MATLAB_R2015a_to_R2017b/BRIClib/
https://sourceforge.net/projects/bric1936/files/MATLAB_R2015a_to_R2017b/BRIClib/
https://surfer.nmr.mgh.harvard.edu/
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4.2.3 Irregularity value calculation

The irregularity value calculation is the core of the IM generation process. Let s be a

source patch and t be a target patch, then the distance (d) between s and t is defined as:

d = average(|max(s− t)| , |mean(s− t)|). (4.1)

Based on Equation (4.1) above, the distance between source patch (s) and target

patch (t) can be calculated by averaging the maximum difference and the mean differ-

ence between s and t. The difference between s and t is calculated by subtracting their

intensities pixel wise. The averaging of maximum and mean differences is applied to

make the distance value robust against outliers. To capture the distribution of textures in

the image (i.e., slice MRI), each source patch is compared against a set of target patches

(e.g., 2,048 target patches in (Rachmadi et al., 2018c)) for which the same number of

distance values are produced.

The irregularity value for a source patch can be calculated by sorting all distance

values and averaging the second half of the third quartile (Q3) of the samples, i.e.,

outliers. The rationale is simple: the mean of outliers’ distance values produced

by an irregular source patch is still comparably higher than the one produced by a

normal source patch. Also, the mean is chosen as irregularities are compared to the

normal-appearing white matter, and normal tissue intensities are known to be normally

distributed, although other descriptive statistics (e.g., percentiles) have been identified

to discern degree of pathology (Dickie et al., 2015, 2014).

All irregularity values from all source patches are then mapped and normalised to

real values between 0 and 1 to create the IM for one MRI slice (see Figure 4.1(C)).

Lastly, the IM is up-sampled to fit the original size of MRI slice and smoothed using a

Gaussian filter as per (Bellini et al., 2016).

4.2.4 Final IM generation

The generation of the final IM consists of three sub-steps: a) blending of the four IMs

produced in the irregularity value calculation step, b) penalty, and c) global normalisa-

tion.

Blending of four IMs is performed by the following formulation:

IMblended = αIM× IM1 +βIM× IM2 + γIM× IM4 +δIM× IM8 (4.2)

where αIM +βIM + γIM +δIM is equal to 1 and IM1, IM2, IM4, and IM8 are IMs from

1×1, 2×2, 4×4, and 8×8 pixels of source/target patches. Note that combining all
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information from patches of different sizes is performed to capture different levels

of details, where smaller patches capture a more detailed information of the MRI’s

intensity while bigger patches capture a bigger contextual information of the brain

(Rachmadi et al., 2017c). The blended IM is depicted in Figure 4.1(D).

The blended IM is then penalised using:

pen = blend×ori (4.3)

where blend is the voxel value from the IMblended , ori is the voxel value from the

original T2-FLAIR MRI, and pen is the penalised voxel value. Penalisation is performed

to eliminate artefacts often caused by low quality ICV/CSF mask (Rachmadi et al.,

2017c). Artefacts might be produced in previous step (Equation (4.1)) when non-

brain tissues represented as hypo-intensities in T2-FLAIR MRI are unsuccessfully

excluded by ICV/CSF mask. Note that Equation (4.1) cannot differentiate between

hyper-intensities (bright voxels) and hypo-intensities (dark voxels).

Lastly, all IMs from different MRI slices are normalised together to produce values

between 0 to 1 for each voxel to estimate “irregularity” with respect to the normal brain

tissue across all slices. This normalisation procedure is called global normalisation.

The resulted IM, penalised, and globally normalised, is depicted in Figure 4.1(E).

Some important notes on IM computation are: 1) source and target patches need

to have the same size within the hierarchical framework, 2) the centre of source/target

patches needs to be inside the brain and outside the CSF masks at the same time to be

included in the irregularity value calculation, and 3) slices which do not provide any

source patch (i.e where no brain tissue is observed) are skipped.

4.3 Limited One-time Sampling Irregularity Map

As previously mentioned, while the original IAM has been reported to work well for

WMH segmentation, its computation takes considerable time because it performs one

target patch sampling for each source patch, selecting different target patches per source

patch. For clarity, this scheme is named Multiple-time Sampling (MTS) scheme. The

MTS scheme is performed in the original IAM so that no target patch is too close to the

source patch (location condition) (Bellini et al., 2016). Extra time in MTS to sample

target patches for each source patch is, therefore, unavoidable under these premises.

To accelerate the computation, a new scheme called One-time Sampling (OTS) was

proposed and evaluated, where target patches are randomly sampled only once for each
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MRI slice, hence abandoning MTS’s location based condition (Rachmadi et al., 2018c).

In other words, distance values of all source patches from one slice were computed

against one (i.e. the same) set of target patches. This new method is named “One-time

Sampling IAM” (OTS-IAM).

In this study, limited number of the OTS’s target patches is proposed to accelerate

the computation even more. This new method is named Limited OTS-IM (LOTS-IM).

Note that the original IAM, which runs on CPUs, uses an undefined large number

of target patches which could range from 10% to 75% of all possible target patches,

depending on the size of the brain tissue in an MRI slice.

Six numbers of target patches are sampled and evaluated for the computation of

LOTS-IM; 2048, 1024, 512, 256, 128, and 64. A more systematic way to calculate

the irregularity value is also proposed where the 1/8 largest distance values are used

instead of a fixed number of 100. The ratio of the 1/8 largest distance values is used

as it represents the second half of the third quartile (Q3) of the samples, i.e., outliers.

Thus, the 256, 128, 64, 32, 16, and 8 largest distance values, deemed as outliers,

are used to calculate irregularity values for 2048, 1024, 512, 256, 128, and 64 target

patches respectively. Smaller number of target patches in the LOTS-IM enables us to

implement it on GPU to accelerate the computation. The limited number of samples in

power-of-two is carefully chosen to ease GPU memory allocation.

4.4 IM for Simulation of Brain Abnormalities

Brain lesions evolution over a period of time is very important in medical image analysis

because it not only helps estimating the pathology’s level of severity but also selecting

the “best” treatment for each patient (Rekik et al., 2014). However, predicting brain

lesions evolution is challenging because it is influenced by various hidden parameters

unique to each individual. Hence, brain lesions can appear and disappear at any point

in time (Rekik et al., 2014) while the reasons behind it are still not fully well known.

Previous studies that have modelled brain lesion progression/regression, use longitudinal

(i.e., time-series) data to formulate lesions metamorphosis by estimating direction and

speed of the lesions evolution over time (Hong et al., 2012; Rekik et al., 2014). Hence,

multiple scans are necessary to simulate the evolution of the lesion.

The use of IM is proposed for simulating brain lesion evolution (i.e., progression

and regression) by using one MRI scan at one time point. This is possible thanks to the

nature of IM which retains original T2-FLAIR MRI’s complex textures while indicating
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irregular textures of WMH. Compared to manually produced WMH binary mask by

experts or automatically produced PM by machine learning algorithms, information

contained/retained in IM is much richer (see Figure 4.2). Note that this is based on

the original study of (Bellini et al., 2016) in computer graphics where simulation of

weathering effect on textured natural image was proposed.

Figure 4.2: Information density retained in each domain of the original T2-FLAIR, IM,

PM, and binary mask of WMH.

Algorithm 1: Brain lesions regression (shrinkage) simulation algorithm
input :Original T2-FLAIR MRI

output :Irregularity map and sequential time points of “healthier” T2-FLAIR

1 t = 1;

2 η = 0.05;

3 Fl(1) = T2-FLAIR ;

4 IOriginal = LOTS-IM(Fl(1));

5 Fl(0) = load/make pseudo-healthy of T2-FLAIR (see Algorithm 2);

6 while t > 0 do
7 t = t−η;

8 Irr(t) = IOriginal− (1− t);

9 Fl(t) = Fl(0)+(Fl(1)× Irr(t)) (Equation 4.4);

10 save Irr(t) and Fl(t);

11 end

4.4.1 Brain lesions regression (shrinkage) simulation algorithm

The regression pattern of brain lesions is simulated by lowering the irregularity values

of the IM gradually. This is possible as each voxel of IM contains different irregularity
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Algorithm 2: Pseudo-healthy MRI generation algorithm
input :Original T2-FLAIR MRI

output :Pseudo-healthy T2-FLAIR MRI

1 IOriginal = LOTS-IM(T2-FLAIR);

2 for each patch that has IOriginal > 0.178 do
3 sample all normal patches (i.e., IOriginal ≤ 0.178) close to the original patch

(i.e., distance between the original and normal patches is ≤ 12 pixels)

from original T2-FLAIR MRI;

4 calculate distance values between the original patch and all possible

sampled normal patches from T2-FLAIR MRI using Equation (4.1);

5 randomly pick a normal patch with small distance value (e.g., from 64

smallest normal patches) and average it with the original patch;

6 end

value associated with the original T2-FLAIR. It can be observed in Figure 4.2 where

irregularity values of brain lesion decrease gradually from the centre to the border of

each brain lesion. This is not possible using PM produced by most machine learning

algorithms or binary masks of WMH produced manually by expert where most lesion

voxels have flat value of 1.

The algorithm for simulating brain lesions regression is described in Algorithm

1 where the irregularity values of IM are gradually decreased by a fixed step (η) in

each loop. In this study, irregularity values of IM in time t (i.e., Irr(t)) are decreased

by η = 0.05 to get the irregularity values in time t−η (i.e., Irr(t−η)). Note that t

in this study is a real number, and t = 1 and t = 0 are reserved for the original input

and pseudo-healthy respectively. After Irr(t−η) is generated using Algorithm 1, the

corresponding T2-FLAIR with regressed abnormalities (i.e., Fl(t−η)) can be generated

by using Equation (4.4) below:

Fl(st) = Fl(0)+(Fl(1)× Irr(st)) (4.4)

where st = t − η stands for “simulated time” and represents the regression of the

abnormalities from time-t with fixed step η, Fl(1) is the original T2-FLAIR MRI, and

Fl(0) is the pseudo-healthy of T2-FLAIR MRI.

For simulating the brain lesions regression in T2-FLAIR, a pseudo-healthy of

T2-FLAIR MRI is needed and generated first. Pseudo-healthy is a generated (fake)

subject-specific “healthy” image from a pathological one (Xia et al., 2019). In this
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study, this can be done by replacing the original “abnormal” brain tissue patches with

the nearest neighbour of “normal” brain tissue patches with the help of distance value

calculated by Equation (4.1) and Algorithm 2. Let s be the original (not-normal) patch

and t be the candidate of nearest neighbour (normal) patch, the distance d between the

two patches is calculated by using Equation (4.1). The patch’s size used in this study to

produce pseudo-healthy T2-FLAIR MRI is 3×3.

4.4.2 Brain lesions progression (growth) simulation algorithm

Compared to the previous algorithm for simulating regression, the algorithm for sim-

ulating brain lesions progression is more complex as it involves nearest neighbour

searching and patch replacement processes. The idea is simple; similar IM patches (i.e.,

nearest neighbours) with slightly higher irregularity values (η = 0.05) than the original

IM patch are needed for each original IM patch. Once the nearest IM patch is found,

the original IM patch is then replaced. Once all patches are replaced by their nearest

IM patches, a new T2-FLAIR MRI showing brain lesion progression can be produced

by blending the new IM with the pseudo-healthy T2-FLAIR MRI by using Equation

(4.4) where st = t +η stands for “simulated time” and represents the progression of the

abnormalities from time-t with fixed step η. The algorithm for simulating brain lesion

progression is detailed in Algorithm 3.

4.5 Experimental Setup

In this section, subjects, MRI data, other MWH segmentation methods, and evaluation

measurements used in this study are described.

4.5.1 Subjects and MRI data

In this study, T2-FLAIR MRI from the ADNI (Mueller et al., 2005) database3 is used.

The dataset contains brain MRI data from 20 subjects with MCI and early AD. Note

that this is the first dataset described in Chapter 3 (see Section 3.2.1). All T2-FLAIR

MRI sequences have the same dimension of 256×256×35 pixels where each voxel is

3.69 mm3. Full data acquisition information are described in Table 3.2. GT WMH label

were produced by following the description in Section 3.2.2. For more details on this

3http://adni.loni.usc.edu/

http://adni.loni.usc.edu/
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Algorithm 3: Brain lesions progression (growth) simulation algorithm
input :Original T2-FLAIR MRI

output :Irregularity map and sequential time points of “more severe”

T2-FLAIR

1 η = 0.05 ;

2 Fl(1) = T2-FLAIR ;

3 IOriginal = LOTS-IM(Fl(1));

4 Fl(0) = load/make pseudo-healthy of T2-FLAIR (see Algorithm 2);

5 ε = 0.05 ; /* maximum increase of irregularity value */

6 for t = 1.05 : η : 2.00 do /* progression by η at one step */

7 [patches] = f ind(IOriginal ≥ 0.16) ; /* patch’s size is 3×3 */

8 for patch in [patches] do
9 [patchestemp] = f ind(IOriginal > patch+η and

IOriginal ≤ patch+η+ ε));

10 select 128 random patches from [patchestemp] as [candidates];

11 for candidate in [candidates] do
12 rotate candidate by 90◦ four times /* data augmentation */

13 end
14 calculate distance values between patch and [candidates] using

distance function (Equation (4.1));

15 select a nearest neighbour patch;

16 if irregularity value in nearest neighbour > irregularity value in patch

then
17 replace irregularity value;

18 end

19 end
20 Irr(t) is produced here ;

21 Fl(t) = Fl(0)+(Fl(1)× Irr(t)) (Equation 4.4);

22 save Irr(t) and Fl(t);

23 end
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dataset, please see data-share page URL 4. The investigators within ADNI5 contributed

to the design and implementation of ADNI and/or provided data but did not participate

in the analysis or writing of this study.

4.5.2 Other WMH segmentation methods

As LOTS-IM is an unsupervised method, LOTS-IM’s performance is mainly compared

with that from other unsupervised segmentation method: the LST-LGA (Schmidt et al.,

2012a) described in Section 3.3. Similar to Chapter 3, LST-LGA’s kappa value of

κ = 0.05 was used for WMH segmentation.

The performance of LOTS-IM is also evaluated and compared with that from several

supervised machine learning algorithms described and evaluated in Chapter 3, which

are SVM, RF, DBM, CEN, patch-based 2D CNN with global spatial information

(DeepMedic-GSI-2D), patch-based 2D UNet (Patch2D-UNet), and patch-based 2D

UResNet (Patch2D-UResNet). Note that UNet and UResNet are used in this study as

they have been applied for WMH segmentation in recent years (Guerrero et al., 2018).

This comparison aims to give broader insight of LOTS-IM’s performance compared to

other machine learning WMH segmentation methods.

Similar to Chapter 3, all supervised segmentation methods used in this study were

trained and tested using 5-fold cross validation and evaluated on all 60 WMH labelled

ADNI MRI scans (full explanation can be read in Section 3.5.1). Class balancing (i.e.,

WMH and non-WMH) for UNet and UResNet is performed similarly to DeepMedic-

GSI-2D (Kamnitsas et al., 2017). Configurations for SVM/RF, DBM, and DeepMedic-

GSI-2D algorithms are described in detail in Sections 3.3, 3.4.1, and 3.4.2 respectively.

Whereas, configurations for CEN, Patch2D-UResNet, and Patch2D-UNet can be found

in (Brosch et al., 2016), (Guerrero et al., 2018), and (Li et al., 2018) respectively.

4.5.3 Evaluation measurements

DSC (Dice, 1945), which measures similarity between GT and automatic segmentation

results, is used in this study as the primary measurement of evaluation. Higher DSC

score means better performance, and the DSC score itself can be computed using Equa-

tion (3.11). Additional measurements positive PPV (Equation (3.9)), TPR (Equation

4http://hdl.handle.net/10283/2214
5http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf

http://hdl.handle.net/10283/2214
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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(3.10)), and Specificity (SPC) (i.e., True Negative Rate (TNR)) (Equation (4.5) where

True Negative (TN)) are also calculated.

Specificity = T NR =
TN

FP+TN
(4.5)

Non-parametric Spearman’s correlation coefficient (Myers et al., 2010) is used to

compute monotonic correlation between WMH volume produced by each segmentation

method and visual ratings of WMH. In this study, Fazekas (Fazekas et al., 1987) and

Longstreth visual rating scales (Longstreth et al., 1996) are used for evaluation of

each automatic method. The grades of Fazekas and Longstreth visual rating scales are

described in Section 2.2.1.

Furthermore, the paired two-sided Wilcoxon signed rank test is performed to see

whether the difference between the performance of two algorithms is significant or

not, described by p-value and h-value. The latter shows the result of testing the null

hypothesis that there is no significant difference of performance between the two

algorithms (i.e., if h = 1 then the null hypothesis is rejected, and if h = 0 then the null

hypothesis is not rejected). In this study, if p < 0.05 then the null hypothesis is rejected.

4.6 Results and Discussions

In this section, LOTS-IM is evaluated for WMH segmentation, longitudinal WMH

assessment, and comparison with other methods including the original IAM and OTS-

IAM. In addition, LOTS-IM’s performance for scans with different WMH burden is

evaluated. Its speed, blending weights, and random sampling are also evaluated and

analysed.

4.6.1 LOTS-IM for WMH segmentation

Table 4.1 shows the performance of all methods evaluated for WMH segmentation.

Note that the original IAM is listed as IAM-CPU and different optimum thresholds (i.e.

TRSH in Table 4.1) are used to produce the best WMH segmentation for each methods.

The best values of DSC, PPV, SPC, and TPR evaluation measurements are underlined.

From Table 4.1, it can be seen that the binary WMH segmentations produced by all

IM method configurations (i.e., IAM, OTS-IAM, and LOTS-IM methods) outperformed

LST-LGA in mean DSC, PPV, SPC, and TPR measurements. Especially for LOTS-

IM-512, the best performer of all LOTS-IM methods, the performance differed up
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Table 4.1: Experiment results of WMH segmentation based on DSC, PPV, SPC, and TPR.

Best values for each measurements are underlined. Column “± (%)” shows relative

performance difference (mean of DSC) to the LOTS-IM-512. The paired two-sided

Wilcoxon signed rank test (with 5% significance level) is performed between LOTS-IM-

512 and other methods to see whether the performance difference is significant or not.

“Speed increase” is relative to IAM-CPU. Abbreviations: “DL” for deep learning method,

“#TP” for number of target patches, “TRSH” for optimum threshold, and “Train/Test” for

training/testing time in minute (min).

Method DL #TP TRSH
DSC Wilcoxon PPV

(mean)
SPC

(mean)
TPR

(mean)
Train
(min)

Test
(min)

Speed
increasemean (SD) ± (%) h p

LST-LGA

U
N

SU
PE

RV
IS

E
D

7 - 0.134 0.3037 (0.166) -16.92 1 0.000 0.3158 0.9946 0.3625 - 0.67 -

IAM (CPU) 7 75% 0.179 0.3930 (0.121) -7.99 1 0.000 0.7001 0.9993 0.3757 - 217.18 -

OTS-IAM-CPU 7 75% 0.164 0.4297 (0.173) -4.32 1 0.000 0.6994 0.9992 0.3827 - 173.50 1.26

LOTS-IM-2048 7 2,048 0.178 0.4710 (0.182) -0.19 0 0.051 0.6111 0.9984 0.4564 - 12.43 17.52

LOTS-IM-1024 7 1,024 0.178 0.4721 (0.183) -0.08 0 0.054 0.6082 0.9983 0.4607 - 3.82 56.85

LOTS-IM-512 7 512 0.178 0.4729 (0.185) - - - 0.5918 0.9980 0.4710 - 1.87 116.14

LOTS-IM-256 7 256 0.178 0.4711 (0.188) -0.18 0 0.225 0.5722 0.9977 0.4865 - 0.77 282.05

LOTS-IM-128 7 128 0.178 0.4660 (0.192) -0.69 0 0.556 0.5357 0.9970 0.5158 - 0.45 482.62

LOTS-IM-64 7 64 0.178 0.4539 (0.204) -1.90 0 0.752 0.4769 0.9952 0.5589 - 0.42 517.10

SVM

SU
PE

RV
IS

E
D

7 - 0.925 0.2630 (0.150) -20.99 1 0.000 0.0474 0.9869 0.1259 26 1.38 -

RF 7 - 0.995 0.3633 (0.184) -10.96 1 0.002 0.0482 0.9860 0.1320 37 0.68 -

DBM 3 - 0.687 0.3235 (0.135) -14.94 1 0.000 0.0642 0.9955 0.0542 1,341 0.28 -

CEN 3 - 0.284 0.4308 (0.158) -4.21 1 0.009 0.5255 0.9975 0.4815 152 0.08 -

Patch2D-UResNet 3 - 0.200 0.5277 (0.173) +5.48 1 0.000 0.5899 0.9970 0.5968 215 0.08 -

Patch2D-UNet 3 - 0.200 0.5030 (0.149) +3.01 1 0.047 0.6480 0.9985 0.4886 211 0.08 -

DeepMedic-GSI-2D 3 - 0.801 0.5225 (0.169) +4.96 1 0.000 0.5950 0.9985 0.5276 392 0.45 -

to 16.92% compared to LST-LGA. Furthermore, IAM/OTS-IAM/LOTS-IM not only

outperformed LST-LGA but also conventional supervised machine learning algorithms

(i.e., SVM and RF), and some of them outperformed supervised deep learning methods

of DBM and CEN in DSC measurement. Based on the paired two-sided Wilcoxon

signed rank test, the performance of all LOTS-IM configurations were significantly

different to LST-LGA, SVM, RF, and DBM with p < 0.05.

It is worth mentioning that the best performer of LOTS-IM method, LOTS-IM-

512, did not outperform the supervised deep learning methods of Patch2D-UResNet,

Patch2D-UResNet, and DeepMedic-GSI-2D. However, LOTS-IM produced output mo-

dality (i.e., IM) that is richer and has more granularity than the output of supervised deep

learning methods. Figure 4.3 (top) shows that the IM produced by LOTS-IM retains the

texture information of both non-WMH and WMH regions, including penumbra of WMH.

On the other hand, the PMs produced by DeepMedic-GSI-2D and UNet/UResNet lack

the ability to represent non-WMH regions and the penumbra of WMH. Furthermore,

IM also can be used for WMH segmentation by thresholding its values, as shown in
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Figure 4.3: Top: Visualisation of original outputs produced by LOTS-IM (i.e., IM) and

other machine learning methods such as CNN, UNet, and UResNet (i.e., PMs). Bottom:

Visualisation of WMH segmentation by cutting off the original values of IM and PM. This

figure shows that IM not only well represents the penumbra of WMH by retaining the

original textures but also is able to segment WMH by cutting off its values.

Figure 4.4: Large WMH visualised using IM produced by the proposed LOTS-IM method.

Note how both non-WMH and WMH regions, including the penumbra of WMH, are well

represented by irregularity values.

Figure 4.3 (bottom). Visualisation of the IM on a scan with large WMH load can be

seen in Figure 4.4.
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Figure 4.5: Mean of DSC score from all subjects for LST-LGA, SVM, RF, DBM, CEN,

Patch2D-UResNet, Patch2D-UNet, DeepMedic-GSI-2D, and LOTS-IM-512 against pos-

sible threshold values.

The unique ability of IM to retain the texture information of both non-WMH

and WMH regions means that it has different characteristic on performing WMH

segmentation. Figure 4.5 shows the DSC performance curves of LOTS-IM and other

WMH segmentation methods by cutting off the irregularity or probability values on

different threshold values. LOTS-IM uses lower threshold values than the other methods

to produce better WMH segmentation as the IM gives finer brain tissues details than the

other methods. It is also worth mentioning that the peak of LOTS-IM’s performance is

located close to the performance of supervised deep learning methods.

4.6.2 LOTS-IM vs. IAM and OTS-IAM

Table 4.1 shows that Limited One-time Sampling (LOTS) scheme not only accelerated

the computational time but also improved the overall performance due to the use of

limited number of target patches. Implementation of LOTS-IM on GPU increased the

processing speed by 17 to 435 times with respect to the original IAM (implemented

on CPU). Furthermore, it is worth stressing that this increase in processing speed was

not only due to the use of GPU instead of CPU, but also due to the limited number

of target patch samples used in LOTS-IM. Furthermore, one of the implementations

(i.e., LOTS-IM-64) ran faster than LST-LGA. The increase in speed shows the effect-

iveness of the proposed method of LOTS-IM GPU in terms of computational time and

overall performance. Note that the testing time in Table 4.1 excludes registrations and
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generation of brain masks in pre-/post-processing step.

4.6.3 Speed vs. quality of LOTS-IM

The biggest contribution of this work is the increase in processing speed without

compromising the quality of the results. The first iteration of IAM can only be run on

CPU because it uses MTS. OTS-IAM samples patches only once, but still uses a high

number of target patches to compute the IM. Through this study, it can be seen that

using a limited number of target patches leads not only to faster computation but also to

achieve small to none quality degradation.

The relation between speed and quality of the output (mean DSC) produced by IAM,

OTS-IAM, and all configurations of LOTS-IM is illustrated and described in Figure

4.6 and Table 4.1 respectively. Also, it is worth mentioning that the use of more target

patches in LOTS-IM produced better PPV and SPC evaluation measurements. The TPR

measurement, on the contrary, is better when less target patches are used.

Figure 4.6: Speed (min) versus quality (mean of DSC) of different settings of LOTS-IM

(extracted from Table 4.1). By implementing LOTS-IM on GPU and limiting the number of

target patch samples, computational time and result’s quality are successfully improved

and retained.

The paired two-sided Wilcoxon signed rank test shows that there was no significant

difference between LOTS-IM methods (i.e. p≥ 0.05). Thus, LOTS-IM is more flexible

than other methods in terms of speed as its computation speed can be adjusted as needed

without compromising the output’s quality.
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Figure 4.7: Curves of mean DSC produced by using different settings of blending weights.

LOTS-IM used in this experiment is LOTS-IM-512, and all weights are listed in Table 4.2.

Table 4.2: Mean and SD of DSC produced by using different settings of blending weights.

Plots corresponding to settings listed in this table can be seen in Figure 4.7. The

LOTS-IM tested in this experiment is LOTS-IM-512.

Name
Blending Weights

TRSH
DSC

αIM (1x1) βIM 2x2 γIM 4x4 δIM 8x8 mean SD

LST-LGA - - - - 0.134 0.2936 0.1658

IM-1000 1 0 0 0 0.128 0.4555 0.1774

IM-0100 0 1 0 0 0.267 0.3995 0.1646

IM-0010 0 0 1 0 0.376 0.3439 0.1627

IM-0001 0 0 0 1 0.495 0.2594 0.1289

IM-balanced 0.25 0.25 0.25 0.25 0.287 0.4158 0.1754

IM-4321 0.40 0.30 0.20 0.10 0.228 0.4486 0.1776

IM-default 0.75 0.19 0.05 0.01 0.179 0.4692 0.1820

4.6.4 Analysis on LOTS-IM’s blending weights

LOTS-IM has four internal parameters used to blend four IMs, hierarchically produced

by four different sizes of source/target patches, to generate the final IM (see Equation

(4.2) in Section 4.2.4). In this experiment, different sets of blending weights in LOTS-

IM’s computation were evaluated. 7 different sets of blending weights were tested and

listed in Table 4.2. The effect of different sets of blending weights is illustrated in

Figure 4.7.

From Figure 4.7 and Table 4.2, it can be seen that blending irregularity values from

different IMs produced better WMH segmentation results. The IM produced by 1×1

pixels of source/target patches influences the WMH segmentation more than the others
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Table 4.3: Three groups of MRI data based on WMH volume.

No. Group WMH Vol. (mm3) # MRI Data

1 Small WMH ≤ 4500 27

2 Medium 4500 < WMH ≤ 13000 25

3 Large WMH > 13000 8

(i.e. those of dimensions 2× 2, 4× 4, and 8× 8 pixels). Furthermore, the skewed

blending weights of 0.75, 0.19, 0.05, and 0.01 produced the best DSC score. The

skewed blending weights come from the ceiling operation of normalising the power of

two (i.e., 26/85, 24/85, 22/85, and 20/85 where 85 = 26 +24 +22 +20). Based on the

paired two-sided Wilcoxon signed rank test, the performances of the skewed blending

weights to the IM produced by 1×1 pixels of source/target patches were significantly

different (p < 0.05). As the skewed blending weights of 0.75, 0.19, 0.05, and 0.01

produced the best DSC score in this experiment, it is chosen to become the default

blending set for the LOTS-IM. Also, note that this default blending set was used for all

other experiments in Section 4.6.

Through this experiment, it can be seen that it is necessary to consider not only the

intensity of the individual pixels but also those from the group of pixels (textons) which

convey the textural information. Furthermore, combining IMs produced by different

sizes of non-overlapping sources is also similar to calculating IM using overlapping

source patches. It is also useful to reduce pixellation or discretisation of IM by averaging

(i.e., generalising) irregularity values from different sizes of patch instead of using

one irregularity value from pixel-wise computation. Nevertheless, individual pixel

intensities constitute the strongest feature for irregularity detection.

4.6.5 WMH burden scalability test

In this experiment, all methods were evaluated to see their performances on segmenting

WMH in MRI scans with different burden of WMH. The DSC measurement is still used,

but the dataset is categorised into three different groups according to each patient’s

WMH burden (Table 4.3). The results can be seen in Figure 4.8 and Table 4.4. Note that

LOTS-IM is represented by LOTS-IM-512, the best performer amongst the LOTS-IM

methods in Table 4.1.

From Figure 4.8, it can be appreciated that LOTS-IM-512 performed better than

LST-LGA in all groups. LOTS-IM-512 also performed better than the conventional
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Figure 4.8: Distributions of DSC scores for all methods tested in this study in respect to

WMH burden of each patient (see Table 4.3).

supervised machine learning algorithms (i.e. SVM and RF) in “Small” and “Medium”

WMH burden groups. Whereas, LOTS-IM-512’s performance was at the level, if not

better, than the supervised deep learning algorithms DBM and CEN. However, LOTS-

IM-512 still could not beat the state-of-the-art supervised deep learning algorithms in

any group. It also can be observed that the SD of LOTS-IM-512’s performances in

“Small” WMH burden is still relatively high compared to one from the other methods

evaluated. However, LOTS-IM-512’s performance is more stable in “Medium” and

“Large” WMH burdens (i.e., lower SD). Furthermore, it is worth mentioning that all

tested methods have high SD in “Small” burden of WMH which exhibits the challenge of

performing small (i.e., early) WMH even for deep learning algorithms. Note that small

WMH has marginal effect to the overall performance of machine learning algorithms

on WMH segmentation, so supervised machine learning algorithms usually “sacrifice”

the performance of small WMH segmentation in the training process most of the time.

4.6.6 Analysis on LOTS-IM’s random sampling

To automatically detect T2-FLAIR’s irregular textures (i.e., WMH) without any expert

supervision, LOTS-IM works on the assumption that normal brain tissue is predominant

compared with the extent of abnormalities. Based on this assumption, random sampling

is used in the computation of LOTS-IM to choose the target patches. However, it raises
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Table 4.4: Mean and SD values of DSC score’s distribution for all methods tested in this

study in respect to WMH burden of each patient (see Table 4.3). Note that LOTS-IM-512

is listed as LIM-512 in this table.

Method TRSH
DSC - Small DSC - Medium DSC - Large

mean SD mean SD mean SD

LST-LGA 0.138 0.2335 0.1785 0.3524 0.1208 0.4645 0.1399

LIM-512 0.179 0.4682 0.2278 0.4660 0.1331 0.4940 0.0932

SVM 0.925 0.1792 0.0958 0.3360 0.1284 0.4966 0.0377

RF 0.995 0.2512 0.1298 0.4150 0.1662 0.6055 0.0559

DBM 0.687 0.3127 0.1432 0.3442 0.1350 0.4014 0.1474

CEN 0.284 0.4359 0.1802 0.4474 0.1485 0.4896 0.1122

Patch2D-UResNet 0.200 0.5007 0.2064 0.5403 0.1432 0.6064 0.0579

Patch2D-UNet 0.200 0.4872 0.1596 0.5079 0.1697 0.5447 0.0574

2D Patch-CNN 0.801 0.5230 0.1722 0.5118 0.1340 0.6053 0.0341

Table 4.5: Distribution measurements (mean and SD) based on DSC for each LOTS-IM’s

settings. Each LOTS-IM setting is tested on a random MRI data 10 times.

No Method TRSH
DSC

mean SD

1 LOTS-IM-2048 0.178 0.5681 0.0041

2 LOTS-IM-1024 0.178 0.5901 0.0018

3 LOTS-IM-512 0.178 0.5922 0.0033

4 LOTS-IM-256 0.178 0.5925 0.0075

5 LOTS-IM-128 0.178 0.5848 0.0092

6 LOTS-IM-64 0.178 0.5852 0.0141

an important question on the stability of LOTS-IM’s performance to produce the same

level of results for one exact MRI data, especially using different number of target

patches.

In the first experiment, a random MRI data was chosen out of the available 60

MRI data and LOTS-IM was performed for 10 times using different number of target

patches. Each result was then compared to the GT and listed in Table 4.5. From this

experiment, it can be seen that each setting produced low SD values which indicates

that the results are closely distributed around the corresponding mean values. However,

there is an indication that higher deviations are produced when using fewer number of

target patches.

In the second experiment, three random MRI data were chosen from each group
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Table 4.6: Distribution measurements (mean and SD) based on DSC for subject with

different WMH burden. Each subject is tested 10 times using LOTS-IM-512.

WMH Burden Subject
DSC

mean SD

“Small”

S1 0.2481 0.0148

S2 0.1998 0.0038

S3 0.5516 0.0067

“Medium”

S4 0.6301 0.0058

S5 0.3044 0.0013

S6 0.2907 0.0039

“Large”

S7 0.5659 0.0037

S8 0.3623 0.0045

S9 0.5671 0.0051

Table 4.7: Mean and SD values produced in longitudinal test (see Figure 4.9). LOTS-

IM-GPU-512 is listed as LIM-512 in this table. The best values are written in bold while

the second-best values are underlined. In this longitudinal test, LIM-512 outperformed

LST-LGA while competed with the supervised deep learning methods.

DSC

Method
Grow Stay Shrink

Mean SD Mean SD Mean SD

LST-LGA 0.1301 0.0350 0.2343 0.0199 0.2706 0.0058

LIM-512 0.2260 0.0084 0.4585 0.0104 0.3715 0.0018

Patch2D-UNet 0.2242 0.0125 0.4207 0.0125 0.3675 0.0242

Patch2D-UResNet 0.2523 0.0199 0.4664 0.0211 0.3912 0.0044

2D Patch2DCNN 0.1440 0.0228 0.4066 0.0298 0.3660 0.0129

of WMH burden (i.e., “Small”, “Medium”, and “Large” listed in Table 4.3). Then,

LOTS-IM-512 was performed 10 times on the selected MRI data. Lastly, the results

were compared with the GT. The results are listed in Table 4.6. Similar to the first

experiment, low SD values were produced for each subject, regardless of the WMH

burden.

The results indicate that LOTS-IM produces stable results of WMH segmentation in

multiple test instances regardless of WMH burden while employing a simple random

sampling scheme. However, of course, more sophisticated sampling method could be

applied to make sure patches of normal brain tissue are more likely to be sampled.
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Figure 4.9: Quality of spatial agreement (mean of DSC) of the produced results in

longitudinal test. Longitudinal test is done to see the performance of tested methods in

longitudinal dataset of MRI (see Section 4.6.7 and Table 4.7 for full report).

4.6.7 Longitudinal test on MCI/AD patients

In this experiment, spatial agreement analysis between the produced results in three

consecutive years was evaluated. For each subject, Y2 and Y3 MRI were aligned to

the Y1 using niftyReg through TractoR (Clayden et al., 2011), performed subtraction

between the aligned WMH labels of baseline/previous year and follow-up year(s) (i.e.,

Y2-Y1, Y3-Y2, and Y3-Y1), and then labelled each voxel as either “Grow”, “Shrink”,

or “Stay”. The voxel is labelled “Grow” or “Shrink” if it has value above zero or below

zero after subtraction respectively. Whereas, it is labelled as “Stay” if it has value of

zero after subtraction and one before subtraction. This way, it can be seen whether the

method captures the progression of WMH across time or not.

Figure 4.9 depicts the results of longitudinal test listed in Table 4.7 for all methods,

where LOTS-IM is represented by LOTS-IM-512. In this longitudinal test, LOTS-IM-

512 is the second-best performer (underlined) on “Grow”, “Shrink”, and “Stay” regions

segmentation task evaluated using DSC measurement after Patch2D-UResNet (written

in bold). This, again, confirms that the LOTS-IM shows comparable performance with

the state-of-the-art supervised deep learning methods (i.e., Patch2D-UNet, Patch2D-

UResNet, and DeepMedic-GSI-2D).
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Table 4.8: Non-parametric correlation using Spearman’s correlation coefficient between

manual/automatic WMH volume and Fazekas and Longstreth visual ratings.

Visual Rating Fazekas (Total) Longstreth

Method
Spearman’s Corr. Spearman’s Corr.
ρ p ρ p

Manual label 0.7562 1.04×1−12 0.7752 1.45×10−12

LST-LGA 0.5718 3.38×6−12 0.4813 1.50×10−4

LIM-2048 0.4727 2.05×10−4 0.4579 3.42×10−4

LIM-1024 0.4892 1.13×10−4 0.4849 1.32×10−4

LIM-512 0.5010 7.19×10−5 0.5065 5.82×10−4

LIM-256 0.5009 7.22×10−5 0.5085 5.37×10−4

LIM-128 0.4505 4.38×10−4 0.4946 9.22×10−4

LIM-64 0.4393 6.30×10−4 0.4858 1.28×10−4

SVM 0.4062 1.70×10−2 0.3602 5.90×10−3

RF 0.2447 6.66×10−2 0.2128 1.12×10−1

DBM 0.2436 6.79×10−2 0.1659 2.17×10−1

CEN 0.2359 7.74×10−2 0.3618 5.70×10−3

Patch2D-UResNet 0.3602 5.90×10−3 0.5171 3.80×10−5

Patch2D-UNet 0.4618 2.99×10−4 0.5140 4.33×10−5

DeepMedic-GSI-2D 0.7054 9.01×10−10 0.8664 3.19×10−18

4.6.8 Correlation with visual scores

This experiment was performed to see how close LOTS-IM’s results correlate with

visual rating scores of WMH, specifically Fazekas and Longstreth visual scores. Table

4.8 shows the results of Spearman’s correlation coefficient between 1) the total Fazekas

score (i.e., the sum of PVWMH and DWMH) and manual/automatic WMH volumes

and 2) Longstreth total score and manual/automatic WMH volumes. The grades of

Fazekas and Longstreth visual rating scales are described in Section 2.2.1.

Table 4.8 shows that, although not much better, all LOTS-IM methods are highly

correlated with visual rating clinical scores. It is worth mentioning that LST-LGA

produced WMH segmentation results that are highly correlated with visual ratings

but produced the lowest DSC measurement of all (see Table 4.1). On the other hand,

LOTS-IM produced high values of DSC measurement and high correlation with visual

scores at the same time. Visual inspection of the LOTS-IM results revealed systematic

false positive detection in the cerebellum, aqueduct, Sylvian fissure, and some cortical

regions. These errors are consistent with those reported by other WMH segmentation
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methods (Valdés Hernández et al., 2010).

4.6.9 Simulation of Brain Abnormalities

Figure 4.10: Visualisation of brain lesions progression and regression simulation by

manipulating irregularity values of IM2.

Figure 4.10 shows an example of simulated IM and T2-FLAIR from the original IM

and T2-FLAIR (centre with t = 1.00). The regression step of IM and T2-FLAIR (2nd

column with t = 0.50) was generated by using Algorithm 1. Whereas, the progression

steps of IM and T2-FLAIR (4th and 5th column with t = 1.25 and t = 1.50) were

generated by using Algorithm 3. On the other hand, the pseudo-healthy T2-FLAIR (1st

column with t = 0.00) was generated using Algorithm 2.

As Figure 4.10 shows, simulation of brain lesions regression works really well for

WMH, but simulation of brain lesions progression shows a small unmatched tessellation

problem, which is a common problem in computer graphics field. Once this shortcoming

is tackled, the simulation results can be used for other purposes such as sources of data

augmentation for supervised deep learning methods. However, more investigations are

needed to ensure that simulation results follow clinical risk factors of WMH (e.g., blood

pressure) and other brain pathologies that usually appear alongside WMH (e.g., stroke

and brain atrophy). Note that large WMH is usually followed by deformation of the

brain (e.g., large volume of ventricle and brain atrophy). Nevertheless, this experiment

shows the suitability of IM for simulating brain lesions progression/regression.

2Full simulation can be seen at https://github.com/febrianrachmadi/iam-tl-progression.

https://github.com/febrianrachmadi/iam-tl-progression
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4.7 Conclusion and Future Work

In this study, the development and use of LOTS-IM for WMH segmentation and

simulation of brain abnormalities are described and evaluated. It has been shown that

the optimisation of the proposed IM method (LOTS-IM) accelerates processing time

by large margin without excessive quality degradation compared with the previous

iterations (IAM and OTS-IAM). LOTS-IM speeds up the overall computational time,

attributable not only to implementation on GPU but also to the use of a limited number

of target patch samples. In addition, different scenarios and settings of LOTS-IM are

tested, evaluated, and reported.

Unlike other WMH segmentation methods, LOTS-IM successfully identifies and

represents both non-WMH and WMH regions using IM, including the “penumbra”

of WMH. Despite not being a WMH segmentation method per se, LOTS-IM can be

applied for this purpose by thresholding the value of the IM. Being unsupervised confers

an additional value to this fully automatic method as it does not depend on expert-

labelled data, and therefore is independent from any subjectivity and inconsistency

from human experts, which typically influence supervised machine learning algorithms.

The results show that LOTS-IM outperforms LST-LGA (i.e., the current state-of-the-

art unsupervised method for WMH segmentation), conventional supervised machine

learning algorithms (i.e., SVM and RF), and some supervised deep learning algorithms

(i.e., DBM and CEN). Furthermore, the results also show that LOTS-IM has comparable

performance with the state-of-the-art supervised deep learning algorithms (DeepMedic,

UResNet, and UNet).

IM also has shown to be very useful for the simulation of brain lesions progression

and regression. There are still some problems in the simulation of progression such as

unmatched tessellation, T2-FLAIR contrast changes, and slightly higher computation

time compared to simulating regression. The accuracy of simulated image against the

original data (i.e., MR image and other clinical data) have to be investigated as well.

However, it does not change the fact that the use of IM facilitates the simulation of brain

lesions progression and regression.

One limitation of LOTS-IM is the influence that the quality of brain masks (i.e.,

CSF and NAWM) has in its performance. It has been shown that the tested random

sampling has a small impact to the final result on WMH segmentation, but more effective

sampling method could be used as well. Some improvements also could be done by

adding other brain tissues masks, such as cortical and cerebrum masks.
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In the future, the IM could provide unsupervised information for pre-training su-

pervised deep learning, such as UResNet and UNet. In (Rachmadi et al., 2018a), UNet

successfully learned the IM produced by the LOTS-IM. The simulation results of brain

abnormalities regression and progression could potentially be used for data augmenta-

tion of training data in supervised deep learning WMH segmentation methods. Due to

its principle, it could be applicable to segment brain lesions in CT scans or different

brain pathologies, but further evaluation would be necessary. Further works could also

explore its implementation on a multispectral approach that combines different MRI

sequences. The implementation of LOTS-IM on GPU is publicly available.6

6https://github.com/febrianrachmadi/lots-iam-gpu.

https://github.com/febrianrachmadi/lots-iam-gpu


Chapter 5

Disease Evolution Predictor Deep

Neural Networks

In this chapter, deep learning models for predicting and estimating the evolution of

WMH are described. This chapter is based on the following publications:

1. Rachmadi, M. F., del C. Valdés-Hernández, M., Makin, S., Wardlaw, J. M., and

Komura, T. (2019a). Predicting the evolution of white matter hyperintensities in

brain MRI using generative adversarial networks and irregularity map. In Medical

Image Computing and Computer Assisted Intervention – MICCAI 2019, pages

146–154, Cham. Springer International Publishing.

2. Rachmadi, M. F., Valdés-Hernández, M. D. C., Makin, S., Wardlaw, J. M., &

Komura, T. (2019b). Automatic spatial estimation of white matter hyperintensities

evolution in brain MRI using disease evolution predictor deep neural networks.

bioRxiv, 738641. Submitted to Medical Image Analysis (in revision).

5.1 Motivation

In Section 2.1.1, it has been described that WMH are commonly associated with the

progression of stroke, dementia, and congnitive decline (Wardlaw et al., 2013; Prins and

Scheltens, 2015). Furthermore, in Section 2.1.2, it also has been described that WMH

have dynamic changes over time where WMH in a patient may simultaneously shrink

(regress), stay unchanged (stable), and grow (progress) as indicated by recent previous

studies (Ramirez et al., 2016; Chappell et al., 2017; Wardlaw et al., 2017). This chapter

describes the development of deep learning methods for predicting WMH changes over

91
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time. For simplicity, the aforementioned WMH changes are referred as “evolution of

WMH” in this study.

In this study, an end-to-end training model for automatically predicting and spatially

estimating the dynamic evolution of WMH from baseline to the following time point

using deep neural networks is proposed. The proposed model is called Disease Evolution

Predictor (DEP) model (discussed in Section 5.3). The DEP model produces a map

named Disease Evolution Map (DEM) which characterises each voxel of WMH or brain

tissues as progressing, regressing, or stable WMH (discussed in Section 5.2). Deep

neural networks are chosen for this study due to their exceptional performance on WMH

segmentation (Rachmadi et al., 2017a; Li et al., 2018; Kuijf et al., 2019), reportedly have

produced better results than the conventional machine learning algorithms. Specifically,

GAN (Goodfellow et al., 2014) and UResNet (Guerrero et al., 2018) are chosen as

base architectures for the DEP model. These architectures represent the state-of-the-art

unsupervised and supervised deep neural network models, respectively.

This study differs from previous studies on predictive modelling in the fact that

predicting the evolution of specific neuroradiological MRI features (i.e., WMH in

T2-FLAIR) is the main interest and objective of this study, not the progression of a

disease as a whole and/or its effect. For example, previous studies have proposed

methods for predicting the progression from MCI to AD (Spasov et al., 2019) and

progression of cognitive decline in AD patients (Choi and Jin, 2018). Instead, the

proposed DEP model generates three outcomes: 1) prediction of WMH volumetric

changes (i.e., either progressing or regressing), 2) estimation of WMH spatial changes,

and 3) spatial distribution of white matter evolution at the voxel-level precision. Thus,

using the DEP model, clinicians can estimate the size, extent, and location of WMH

in time to study their progression/regression in relation to clinical health and disease

indicators, for ultimately design more effective therapeutic interventions. Results and

evaluations can be seen in Section 5.8.

The main contributions of this study are as follows.

1. A standard training scheme to predict the evolution pattern of WMH between

two time points of assessment is proposed. The proposed scheme consists of two

parts: 1) generation of the spatial representation of WMH evolution named DEM

and 2) generation of the DEM using deep neural networks.

2. Three different modalities to produce the DEM, which are 1) irregularity map, 2)

probability map, and 3) binary WMH label, are proposed and evaluated.
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3. Three different DEP learning approaches, which are 1) unsupervised learning, 2)

indirectly supervised learning, and 3) supervised learning, are proposed. Unsuper-

vised and indirectly supervised learning approaches are based on GAN (i.e., DEP

based on Generative Adversarial Network (DEP-GAN)) whereas the supervised

learning approach is based on UResNet (i.e., DEP based on U-Residual Network

(DEP-UResNet)). DEP-GAN and DEP-UResNet are discussed in Sections 5.3.1

and 5.3.2 respectively.

4. An ablation study of using different kinds of GAN for DEP-GAN model, namely

1) WGAN-GP, 2) Visual Attribution GAN (VA-GAN), 3) DEP-GAN with 1 critic

(DEP-GAN-1C), and 4) DEP-GAN with 2 critics (DEP-GAN-2C), is performed

and analysed.

5. An ablation study of four different auxiliary inputs to the DEP model: 1) no

auxiliary input, 2) baseline WMH load, 3) baseline WMH and SL loads, and 4)

Gaussian noise, is performed and analysed. Further explanation can be read in

Section 5.4 while the results can be seen in Section 5.8.2.

6. An analysis of plausibility of the WMH volumetric changes predicted by the DEP

models and risk factors of WMH evolution using ANCOVA is performed and

analysed. The results can be seen in Section 5.8.2.4.

5.2 Disease Evolution Map

In this study, a standard representation of WMH evolution named DEM is proposed.

DEM is produced by using a simple subtraction operation between two images from

two time points (i.e., baseline assessment and follow-up assessment). In this study,

three different modalities for the subtraction operation are proposed: irregularity map,

probability map, and binary WMH label.

As previously described in Chapter 4, irregularity map (IM) is a map/image that

describes the “irregularity” level of each voxel with respect to the normal brain tissue

using real values between 0 and 1. The IM is unique as it retains some of the original

MRI textures (e.g., from the T2-FLAIR image intensities), including gradients of

WMH. Furthermore, IM is also independent from a human rater or training data, as it

is produced using an unsupervised method (i.e., LOTS-IM). DEM resulted from the

subtraction of two IMs has values ranging from -1 to 1 (first row of Figure 5.1). Note
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Figure 5.1: DEM (right) is produced by subtracting baseline images (middle) from

follow-up image (left). In DEM produced by IM (first row) and PM (second row), bright

yellow pixels represent positive values (i.e., progression) while dark blue pixels represent

negative values (i.e., regression). On the other hand, DEM produced by LBL (third row)

has three foreground labels which represent progression or “Grow” (green), regression

or “Shrink” (red), and “Stable” (blue). This special DEM is named LBL-DEM.

how both regression and progression (i.e. dark blue from negative values and bright

yellow pixels from positive values in Figure 5.1) are well represented at the voxel level

precision on the DEM obtained from IMs.

Probability map (PM) in the present study refers to the WMH segmentation output

from a supervised machine learning method. Similar to IM, PM has real values between

0 and 1 which describe the probability for each voxel of being WMH. However, PM

differs from IM in the fact that PM only has WMH gradients on the borders of WMH

(note that the centre of relatively big WMH clusters have probability of 1). Thus, the

DEM produced from the subtraction of two PMs also has values ranging from -1 to

1 representing regression and progression respectively, but these are usually located

on the WMH clusters’ borders and/or representing small WMH. On the other hand,
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the rest of DEM’s regions (i.e., the centers of big WMH and non-WMH regions) have

probability value of 0 (see the second row of Figure 5.1). Another caveat is that the

quality (i.e., accuracy and meaning) of DEM from PM depends on the performance of

the automatic WMH segmentation method that generated the PM.

Lastly, binary WMH label (LBL) refers to the WMH label produced by an expert’s

manual segmentation, which is often considered as gold standard (Valdés Hernández

et al., 2015a). DEM from LBL can be produced by subtracting the baseline LBL from

the follow-up LBL, and each voxel of the resulted image is then labelled as either

“Shrink” if it has value below zero, “Grow” if it has value above zero, or “Stable” if it

has value of zero. In this study, this DEM is called three-class DEM label (LBL-DEM),

and its depiction can be seen in the bottom-right of Figure 5.1.

5.3 DEP Model using Deep Neural Networks

In this study, two learning approaches of DEP model are proposed and evaluated: 1)

non-supervised DEP model based on GANs (DEP-GAN) and 2) supervised DEP model

based on UResNet (DEP-UResNet). Each DEP model’s workflow consists on two parts:

1) construction of the WMH spatial representation and 2) generation of the predicted

DEM. The general flow of DEP model is depicted in Figure 5.2.

DEP-GAN uses either IM or PM to represent the WMH while DEP-UResNet uses

T2-FLAIR and LBL-DEM. DEP-GAN using IM is categorised as unsupervised learning

because the input modality (IM) is produced by an unsupervised method: LOTS-IM.

DEP-GAN using PM is categorised as indirectly supervised learning because the PM is

produced by a supervised deep learning algorithm, which is UResNet in this case (see

Section 5.6). Finally, DEP-UResNet is categorised as supervised learning as it simply

learns DEM labels from LBL-DEM.

5.3.1 DEP Generative Adversarial Network

DEP-GAN is based on GAN, a well established unsupervised deep neural network

model commonly used to generate fake natural images (Goodfellow et al., 2014). Thus,

in this study, DEP-GAN is proposed to predict the evolution of WMH when there are

no longitudinal WMH labels available. DEP-GAN is based on a VA-GAN, originally

proposed to detect atrophy in T2-W MRI of AD (Baumgartner et al., 2018). DEP-GAN

consists of a generator based on a UResNet (Guerrero et al., 2018) and two separate
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Figure 5.2: Flow diagram of DEP models grouped by learning approach. Each DEP

model’s workflow is divided into two, which are input modality construction and DEM

generation. See Section 5.3 for explanation of DEP models.

Figure 5.3: Schematic of the proposed DEP-GAN with 2 discriminators (critics). DEP-

GAN can take either IM or PM as input. DEP-GAN also has an auxiliary input to deal

with the non-deterministic factors in WMH evolution (see Section 5.4 for full explanation).

convolutional networks based on FCN and used as discriminators (hereinafter will be

referred as critics). The schematic of DEP-GAN can be seen in Figure 5.3.

Let x0 be the baseline (year-0) image and x1 be the follow-up (year-1) image. Then,

the “real” DEM (y) can be produced by a simple subtraction (y = x1−x0). To generate

the “fake” DEM (y′), i.e. without x1, a generator function (M(x)) is used: y′ = M(x0).

Thus, a “fake” follow-up image (x′1) can be produced by x′1 = x0 +y′. Once M(x)

is fully trained, the “fake” follow-up (x′1) and the “real” follow-up (x1) should be

indistinguishable by a critic function D(x), while “fake” DEM (y′) and “real” DEM

(y) should be also indistinguishable by another critic function C(x). Full schematic of

DEP-GAN’s architecture (i.e., its generator and critics) can be seen in Figure 5.4.

The DEP-GAN’s UResNet-based generator (M(x)) has two parts, an encoder which

encodes the input image information to a latent representation and a decoder which

decodes back image information from the latent representation. The baseline IM/PM



5.3. DEP Model using Deep Neural Networks 97

Figure 5.4: Architecture of DEP-GAN, which consists of one generator (upper side,

“A”) and two critics (lower side, “C” and “D”). Note how the proposed auxiliary input is

feed-forwarded to convolutional layers (yellow, “B”) and then modulated to the generator

using FiLM layer (green) inside Residual Block (ResBlock) (light blue, “E”). Please see

Section 5.4 for full explanation about auxiliary input. On the other hand, DEP-UResNet

(upper right side, “F”) is based on DEP-GAN’s generator, including its auxiliary input,

with modification of the last non-linear activation function (i.e., from tanh to so f tmax).

(x0) is feed-forwarded to this generator to generate a “fake” DEM (y′). There is also an

auxiliary input modulated into the generator using a Feature-wise Linear Modulation

(FiLM) layer (Perez et al., 2018) inside the ResBlock to deal with non-determinis-

tic factors of WMH evolution. This auxiliary input and its modulation will be fully

discussed in Section 5.4. The architecture of the DEP-GAN’s generator is depicted in

the upper side of Figure 5.4 (with “A”, “B”, and “E” annotations for UResNet-based

generator of M(x), auxiliary input, and ResBlock respectively).

Unlike VA-GAN that uses only one critic (i.e., only D(x)) (Baumgartner et al.,

2018), DEP-GAN uses two critics (i.e., D(x) and C(x)) to enforce anatomically realistic

modifications to the follow-up images (Baumgartner et al., 2018) and encode realistic

plausibility in the modifier (i.e., DEM). Anatomically realistic modifications to the

follow-up images can be achieved by optimising the critic D(x) and the anatomically

realistic plausibility of the modifier can be achieved by optimising the critic C(x). In

other words, an anatomically realistic DEM is also essential to produce anatomically

realistic (fake) follow-up images. The architecture of the DEP-GAN’s critics and their
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connection to the generator are depicted in the lower side of Figure 5.4 (with “C” and

“D” annotations for critic C(x) and D(x) respectively).

The DEP-GAN’s optimisation process is the same as the optimisation of VA-GAN,

where the optimisation processes of WGAN-GP using a gradient penalty factor of 10

is used (Gulrajani et al., 2017). The optimisation of M(x) is given by the following

function

M∗ = argmin
M

max
D∈D

Lcritic(M,D)+ argmin
M

max
C∈C

Lcritic(M,C)+Lreg(M) (5.1)

where

Lcritic(M,D) = Ex1∼P1[D(x1)]−Ex0∼P0[D(x0 +M(x0))], (5.2)

Lcritic(M,C) = Ex0,x1∼P0,P1 [C(x1−x0)]−Ex0∼P0[C(M(x0))], (5.3)

Lreg(M) = λ1MAE(x′1,x1)+λ2(1−DSC(x′1,x1))+λ3MAE(vol(x′1),vol(x1)), (5.4)

x0 is the baseline image that has an underlying distribution P0, x1 is the follow-up

image that has an underlying distribution P1, M(x0) represents the “fake” DEM, x′1 is

the “fake” follow-up image, vol is a function which computes volumetric measurement

by multiplying the number of voxels in the segmentation with the real-world voxel

size (i.e., 0.9375×0.9375×4 mm3), D and C are the critics (i.e. a set of 1-Lipschitz

functions (Baumgartner et al., 2018; Gulrajani et al., 2017)), and MAE and MSE

are mean absolute error and mean square error (i.e., L1 and L2 losses) respectively.

The optimisation is performed by updating the parameters of the generator and critics

alternately, where (each) critic is updated 5 times per generator update. Also, in the first

25 iterations and every 100 iterations, the critics are updated 100 times per generator

update (Baumgartner et al., 2018; Gulrajani et al., 2017).

In summary, Equation (5.1), which optimises both critics (i.e., D(x) and C(x) using

Equations (5.2) and (5.3) respectively) based on WGAN-GP’s optimisation process and

is regularised using Equation (5.4), needs to be solved to optimise the generator M(x).

Each term in the regularisation function (Equation (5.4)) simply says:

1. Intensities of “fake” follow-up images (x′1) have to be similar to the “real” follow-

up images (x1) based on mean absolute error (MAE) (i.e., L1 loss).

2. The WMH segmentation estimated from x′1 has to be spatially similar to the

WMH segmentation estimated from x1 based on the DSC (Equation (3.11)).
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3. The WMH volume (in ml) estimated from x′1 has to be similar to the WMH

volume estimated from x1 based on mean square error (MSE) (i.e., L2 loss).

The WMH segmentation of x′1 and x1 is estimated by either thresholding IM values

(i.e., irregularity values) to be above 0.178 (see Section 4.6.1) or PM values (i.e.,

probability values) to be above 0.5. Furthermore, each term in Equation (5.4) is

weighted by λ1, λ2, and λ3 which equals to 100 (Baumgartner et al., 2018), 1 and 100

respectively. The importance of each regularisation term is discussed in Section 5.8.3.

5.3.2 DEP U-Residual Network

In case LBL for both time points (i.e., baseline and follow-up in longitudinal dataset) are

available, a simple supervised deep neural network method can be used to automatically

estimate WMH evolution. As previously described in Section 5.2, DEM produced from

LBL (i.e., LBL-DEM) consists of 3 foreground labels (i.e., “Grow” (green), “Shrink”

(red), and “Stable” (blue)) and 1 background label (black). An example of LBL-DEM

can be seen in the bottom-right figure of Figure 5.1.

In this case, the DEP-GAN’s generator is detached from the critics and modified

into DEP-UResNet by changing the last non-linear activation layer of tanh (i.e., for

regression) to so f tmax (i.e., for multi-label segmentation). Thus, the DEP-UResNet’s

schematic is similar to the DEP-GAN’s generator, which can be seen in Figure 5.4

(with “A”, “B”, and “E” annotations). DEP-UResNet uses T2-FLAIR as input and

LBL-DEM as target output. Note that this configuration makes all DEP models have

similar generator networks based on UResNet (Guerrero et al., 2018). Furthermore, the

auxiliary input proposed in this study can be also applied to the DEP-UResNet. See

Section 5.4 for the full explanation about auxiliary input in DEP model.

5.4 Auxiliary Input in DEP Model

The biggest challenge in modelling the evolution of WMH is mainly the amount of

factors involved in WMH evolution. In this study, an auxiliary input module which

modulates non-image features involved in WMH evolution is proposed. To modulate

the auxiliary input to every layer of the DEP-GAN’s generator, FiLM layer (Perez et al.,

2018) is used. The FiLM layer is depicted as the green block inside the ResBlock in

Figure 5.4 (annotated as “E”). In the FiLM layer, γm and βm modulate feature maps Fm,
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where subscript m refers to mth feature map, via the following affine transformation

FiLM(Fm|γm,βm) = γmFm +βm. (5.5)

where γm and βm for each ResBlock in each layer are automatically determined by

convolutional layers (depicted as yellow blocks in Figure 5.4 with “B” annotation).

Please note that the proposed auxiliary input module can be easily applied to any deep

neural network model. Thus, the proposed auxiliary input module is applied to the two

DEP models proposed in the present study: DEP-GAN and DEP-UResNet.

In this study, an ablation study of auxiliary input modalities for DEP model was

performed. Auxiliary input modalities tested in this study are 1) no auxiliary input

(No Auxiliary), 2) baseline WMH volume (+WMH), 3) both baseline WMH and SL

volumes (+WMH+Stroke), and 4) Gaussian noise (+Gaussian). Firstly, DEP models

without any auxiliary input were tested. Secondly, some risk factors that have been

commonly associated with WMH evolution were used. Note that while all factors which

influence WMH evolution are not fully well known, baseline WMH load (i.e., cited as

the most common and strongest predictor) (Schmidt et al., 2003; Sachdev et al., 2007;

Van Dijk et al., 2008; Wardlaw et al., 2017; Chappell et al., 2017) and baseline SL load

(Gouw et al., 2008a; Wardlaw et al., 2017) have been found strongly associated with

WMH evolution over time. The WMH and SL volumes were obtained from WMH

and SL labels/masks. Please see Section 5.5 for full explanation on how WMH and

SL masks were produced. Lastly, an array of 32 random noises which follow Gaussian

distribution of z∼N (0,1) was used as auxiliary input. Hereinafter, this array is referred

as Gaussian noise. It is worth to mention that changing the auxiliary input modality

from WMH and SL loads to Gaussian noise changes the nature of the DEP model from

deterministic to non-deterministic.

5.5 Subjects and Data

An MRI dataset from stroke patients (n = 152) enrolled in a study of stroke mechanisms,

from which full recruitment and assessments have been published (Wardlaw et al.,

2017), was used. Written informed consent was obtained from all patients on protocols

approved by the Lothian Ethics of Medical Research Committee (REC 09/81101/54)

and NHS Lothian R+D Office (2009/W/NEU/14), on the 29th of October 2009. In the

clinical study that provided the data, patients were imaged at three time points (i.e.,

first time (baseline) 1-4 weeks after presenting to the clinic with stroke symptoms,
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Table 5.1: Demographics and clinical characteristics of the samples used in this study

(n = 152).

V
as

cu
la

r

ri
sk

fa
ct

or
s

Diabetes (n, (%)) 18 (12)

Hypertension (n, (%)) 114 (75)

Hypercholesterolaemia (n, (%)) 86 (57)

Recent or present smoker (n, (%)) 96 (64)

R
el

ev
an

t

SV
D

im
ag

in
g

m
ar

ke
rs

Presence of at least 1 microbleed (n, (%)) 26 (17)

Presence of a previous lacune (n, (%)) 37 (24)

SVD score (median [interquartile range (IQR)]) 1 [0 2]

PV WMH Fazekas score (median [IQR]) 1 [1 2]

Deep WMH Fazekas score (median [IQR]) 1 [1 2]

at approximately 3 months, and a year after (follow-up)). All images were acquired

at a GE 1.5T MRI scanner following the same imaging protocol (Valdés Hernández

et al., 2015a). Ground truth segmentations were performed using a multi-spectral

semi-automatic method (Valdés Hernández et al., 2015a) only from baseline and 1-year

follow-up scan visits in the image space of the T1-W scan of the second visit, in n = 152

(out of 264) patients. T2-W, T2-FLAIR, gradient echo, and T1-W structural images

at baseline and 1-year scan visits were rigidly and linearly aligned using FSL-FLIRT

(Jenkinson et al., 2002). The resulted resolution of the images is 256×256×42 with

voxel size of 0.9375×0.9375×4 mm3. Note that this voxel size is used to calculate

the volume of manual/automated segmentation of WMH. All patients who had the

three scan visits and ground truth generated as mentioned above were used in this

study. Hence, the total MRI scans are 304 (n×2) which consist of baseline and 1-year

follow-up data. Out of all patients, there are 70 of them that have stroke subtype lacunar

(46%) with median SVD score of 1. Other demographics and clinical characteristics of

the patients that provided data for this study can be seen in Table 5.1.

The primary study that provided the data used a semi-automatic multi-spectral

method to produce several brain masks including ICV, CSF, SL, and WMH, all which

were visually checked and manually edited by an expert (Valdés Hernández et al.,

2015a). The image processing protocol followed to generate these masks is fully

explained in (Valdés Hernández et al., 2015a). Extracranial tissues, SL, and skull were

removed from the baseline and follow-up T2-FLAIR images using the SL and ICV

binary masks from previous analyses (Chappell et al., 2017; Wardlaw et al., 2017).

Furthermore, binary WMH labels produced for the primary study that provided the

data (Valdés Hernández et al., 2015a) were used as the gold standard (i.e. ground truth)
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for evaluating the DEP models. As per these labels, 98 and 54 out of the 152 subjects

have increasing (i.e., progression) and decreasing (i.e., regression) volume of WMH

respectively.

As previously explained, IM and PM are needed for DEP-GAN (i.e., the non-

supervised learning approach of DEP model). LOTS-IM with 128 target patches was

used to generate IM from each MRI data. To generate PM, a 2D UResNet (Guerrero

et al., 2018) with gold standard WMH and SL masks was trained and used for WMH and

SL segmentation. For this training, all subjects in the dataset were used in a 4-fold cross

validation training scheme. Thus, out of 304 MRI data (152 subjects × 2 scans), 228

MRI data (114 subjects × 2 scans) were used for training and 76 MRI data (38 subjects

× 2 scans) were used for testing in each fold. Note that this UResNet is different from

the DEP-UResNet, which is newly proposed in this study. Notice that “DEP” key-word

is affixed to any model’s name used for prediction and delineation of WMH evolution.

Whereas, the UResNet was previously proposed for WMH and SL segmentation by

(Guerrero et al., 2018).

5.6 Experiment Setup

For the present study, 2D architectures were chosen for all networks rather than 3D ones

because the number of data available in this study is limited (i.e. only 152 subjects).

VA-GAN (i.e., the GAN scheme used as basis for DEP-GAN) used roughly 4,000

subjects for training its 3D network architecture, yet there was still an evidence of

over-fitting (Baumgartner et al., 2018). The 2D version of VA-GAN has been previously

tested on synthetic data (Baumgartner et al., 2018).

To train DEP models (i.e., DEP-GAN and DEP-UResNet), 4-fold cross validation

was performed. In each fold, out of 304 MRI data (152 subjects × 2 scans), 228 MRI

data (114 subjects × 2 scans) were used for training and 76 MRI data (38 subjects ×
2 scans) were used for testing. Note that DEP models are subject-specific models, so

pairwise MRI scans (i.e., baseline and follow-up) are needed and necessary for both

training and testing. Out of all slices from the training set in each fold (i.e., 114 pairwise

MRI scans), 20% of them were randomly selected for validation. Furthermore, slices

without any brain tissues were omitted. Thus, around 4,000 slices were used in the

training process in each fold. Values of IM and PM did not need to be normalised as

these are between 0 and 1. Finally, each DEP model was trained for 200 epochs (i.e.,

200 generator updates for DEP-GAN).
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In this study, an ablation study using different GAN architectures for DEP model

was performed first. GAN architectures testsed in this study are WGAN-GP, VA-GAN,

DEP-GAN-1C, and DEP-GAN-2C. This ablation study is intended to see the impact of

the number of critics, the location of the critic(s) and the additional losses proposed in

this study. WGAN-GP only generates DEM and has one critic for DEM (i.e., C(x)). On

the other hand, VA-GAN and DEP-GAN-1C generate both: DEM and the follow-up

image, but only have one critic for generating the follow-up image (i.e., D(x)). The

difference between VA-GAN and DEP-GAN-1C is that DEP-GAN-1C has additional

losses for optimisation in the training (see Section 5.3.1). Lastly, DEP-GAN-2C, which

generates both: DEM and follow-up image, has two critics for both of them (i.e., C(x)

and D(x)), and has additional losses for the training.

Furthermore, an ablation study using different types of auxiliary input was also

performed and analysed to see the effect of auxiliary input to the DEP models (i.e.,

DEP-UResNet, DEP-GAN using IM, and DEP-GAN using PM). Note that DEP-GAN

used in this ablation study is the DEP-GAN-2C used in the previous ablation study. The

procedure of using auxiliary input depends on the input modality and training/testing

process. If SL and WMH volumes were used as auxiliary input, these (i.e., not the

volumes per slice, but the volume per subject) were feed-forwarded together with one

MRI slice. Thus, all slices from one subject used the same number of WMH and SL

volumes. Note that WMH and SL loads for the whole dataset (i.e., all subjects) were

first normalised to zero mean unit variance before their use in training/testing.

If Gaussian noise were used as auxiliary input, an array of Gaussian noise was feed-

forwarded together with an MRI slice in the training process as follows: 10 different

sets of Gaussian noise were first generated and only the “best” set (i.e., the set that

yielded the lowest M∗ loss (Equation (5.1))) was used to update the DEP model’s

parameters. Note that this approach is similar to and inspired by Min-of-N loss in 3D

object reconstruction (Fan et al., 2017) and variety loss in Social GAN (Gupta et al.,

2018). In the testing process, 10 different sets of Gaussian noise were generated and

the average performance was calculated. Furthermore, in the evaluation, the “best”

prediction of WMH evolution based on DSC was also reported.

5.7 Evaluation Measurements

In this study, the following tests and evaluation measurements were performed to assess

the performance of DEP models:
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1. Prediction error of WMH volumetric change (i.e., whether WMH volume in a

subject will increase or decrease).

2. Volumetric agreement between ground truth and predicted WMH volumes of the

follow-up assessment using Bland-Altman plot (Bland and Altman, 1986).

3. Volumetric correlation between ground truth and predicted WMH volumes of the

follow-up assessment.

4. Spatial agreement of the automatic map of WMH evolution in a patient (i.e. after

binarisation) using DSC (Dice, 1945).

5. Clinical plausibility test between the outcome of DEP models in relation with

baseline WMH load and clinical risk factors of WMH evolution suggested in

clinical studies.

Prediction error is a simple measurement to assess how good a DEP model can

predict the WMH evolution in the future follow-up assessment (i.e., increasing or

decreasing). On the other hand, volumetric agreement using Bland-Altman plot presents

the mean volumetric difference and upper/lower limit of agreement (LoA) (i.e., mean

± 1.96 × SD) between ground truth and predicted WMH volumes of the follow-up

assessment. Volumetric correlation between ground truth and follow-up predicted

WMH volumes was also calculated, complementary to the Bland-Altman plot. Whereas,

for evaluating the spatial agreement between ground truth and automatic delineation

results, DSC was used. Higher DSC means better performance. The DSC itself can be

computed by using Equation (3.11).

In addition, clinical plausibility test, which evaluate the outcome of DEP models

in relation with the baseline WMH load and clinical risk factors of WMH change and

evolution suggested in clinical studies, was also performed . For this, ANCOVA were

performed as follows:

1. The WMH volume at follow-up, predicted from each of the schemes evaluated

was used as outcome variable.

2. The baseline WMH volume was the dependent variable or predictor.

3. After running Belsley collinearity diagnostic tests, the covariates in the models

were: 1) type of stroke (i.e. lacunar or cortical), 2) basal ganglia perivascular

spaces (BG PVS) score, 3) presence/absence of diabetes, 4) presence/absence of
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hypertension, 5) recent or current smoker status (yes/no), 6) volume of the index

SL (abbreviated as “index SL”), and 7) volume of old SL (abbreviated as “Old

SL”).

The outcome from an ANCOVA model using the baseline and follow-up WMH

volumes of the gold-standard expert-delineated binary masks was used as reference

to compare the outcome of the ANCOVA models that used the volumes generated by

thresholding the input and output of the DEP models. All volumetric measurements

involved in the ANCOVA models were previously adjusted by patient’s head size.

Therefore, all ANCOVA models used the percentage of these volumetric measurements

in ICV rather than the raw volumes.

5.8 Results and Discussion

5.8.1 Ablation study of different GAN architectures for DEP model

In this ablation study, different GAN architectures were used and evaluated for DEP

model to see the impact of number of critics, location of critic(s), and additional losses.

As previously described in Section 5.6, WGAN-GP has one critic for DEM (i.e., C(x)),

VA-GAN has one critic for the follow-up image (i.e., D(x)), DEP-GAN-1C has one

Table 5.2: Results from ablation study of different GAN architectures for DEP models.

Prediction error of WMH change, volumetric agreement of WMH volume, and spatial

agreement of WMH evolution were calculated and compared to the gold standard expert-

delineated WMH masks (i.e., LBL-DEM). “Vol.” stands for volumetric and “G” and “S”

stand for percentage of subjects correctly predicted as having growing and shrinking

WMH by DEP models. The best value for each learning approaches and evaluation

measurements is written in bold.

Unsupervised
(IM)

Grow
(G) [%]

Shrink
(S) [%]

Avg. [%]

((G+S)/2)

Vol. Bias [ml]

mean(SD)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg. ((St+

Sr+Gr)/3)

WGAN-GP 85.71 40.74 63.23 -11.70(24.12) -59.11 35.70 0.3179 0.0809 0.3294 0.0595 0.0325 0.1405

VA-GAN 65.31 62.96 64.13 2.52(16.43) -29.69 34.72 0.3361 0.0789 0.3506 0.0356 0.0361 0.1408

DEP-GAN-1C 65.31 68.52 66.91 3.88(15.93) -27.33 35.10 0.3343 0.0583 0.3711 0.0388 0.0265 0.1454

DEP-GAN-2C 61.22 72.22 66.72 5.54(15.98) -25.79 36.87 0.3204 0.0946 0.3684 0.0238 0.0445 0.1456

Indirectly
Supervised (PM)

Grow
(G) [%]

Shrink
(S) [%]

Avg. [%]

((G+S)/2)

Vol. Bias [ml]

mean(SD)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg.((St+

Sr+Gr)/3)

WGAN-GP 55.10 79.63 67.37 4.19(8.28) -12.05 20.42 0.6139 0.2082 0.5906 0.1494 0.0899 0.2766

VA-GAN 42.86 94.44 68.65 5.78(8.13) -10.15 21.70 0.6070 0.1946 0.5952 0.1584 0.0641 0.2726

DEP-GAN-1C 59.18 85.19 72.18 3.66(7.64) -11.32 18.63 0.6116 0.1711 0.6012 0.1186 0.0800 0.2666

DEP-GAN-2C 69.30 75.93 72.66 2.48(8.47) -14.13 19.08 0.6083 0.2246 0.5812 0.1515 0.1105 0.2811
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(a) DEMs using IM.

(b) DEMs using PM.

Figure 5.5: Examples of real DEM and generated DEMs produced by different GAN

architectures for DEP model. From left to right: real DEM and generated DEMs produced

by WGAN-GP, VA-GAN, DEP-GAN-1C, and DEP-GAN-2C respectively.

critic for the follow-up image (i.e., D(x)) and additional losses for optimisation in the

training (see Section 5.3.1), and DEP-GAN-2C has two critics for both of DEM and

follow-up image (i.e., C(x) and D(x)) and additional losses. Furthermore, all methods

evaluated used IM and PM as main input modality and did not use any auxiliary input.

5.8.1.1 Spatial agreement (DSC) and qualitative (visual) analyses

Based on Table 5.2 (columns 8-13), it can be seen that DEP-GAN-2C produced better

spatial agreement (i.e., higher DSC score) than WGAN-GP, VA-GAN, and DEP-GAN-

1C, especially for changing and growing WMH. Qualitative (visual) assessment of
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Table 5.3: Volumetric correlation analysis in ablation study of GAN architectures for DEP

model. The best value for each correlation measurement is written in bold.

Unsupervised (IM) WGAN-GP VA-GAN DEP-GAN-1C DEP-GAN-2C

R2 0.1394 0.5644 0.5999 0.6068
Trend y = 0.3354x+6.5866 y = 0.4056x+2.7858 y = 0.4225x+2.3714 y = 0.4159x+2.0128

Indirectly Supervised (PM) WGAN-GP VA-GAN DEP-GAN-1C DEP-GAN-2C

R2 0.8735 0.8813 0.8916 0.8659

Trend y = 0.8525x−0.1265 y = 0.8289x−0.3792 y = 0.8799x−0.1667 y = 0.898x+0.0258

generated DEM depicted in Figure 5.5 also shows that DEP-GAN-2C produced more

detailed DEM than the other methods, especially when compared to VA-GAN. These

results show that DEP-GAN-1C and DEP-GAN-2C are more responsive to the changes

of WMH and better in predicting the changes of WMH than VA-GAN. Furthermore, it

can also be seen from both Table 5.2 and Figure 5.5 that the use of PM produced better

spatial agreement than IM, regardless of the GAN architecture.

5.8.1.2 Volumetric agreement (Bland-Altman) and correlation analyses

From Table 5.3, it can be seen that the volume of WMH predicted by DEP-GAN-1C and

DEP-GAN-2C correlated better with the volume of the ground truth than the volume

of WMH predicted uusing WGAN-GP and VA-GAN. However, as per the volumetric

agreement analysis (Bland-Altman plot), the performance of DEP-GAN-1C and DEP-

GAN-2C depended on the working domain, IM or PM (see columns 5-7 of Table 5.2).

If PM was used, DEP-GAN-1C and DEP-GAN-2C performed better than the other

methods. On the other hand, VA-GAN achieved the best volumetric agreement when

IM was used. However, it is worth to mention that VA-GAN’s good performance in the

volumetric agreement analysis did not translate to good spatial agreement as previously

described in Section 5.8.1.1.

Based on the Bland-Altman and correlation plots depicted in Figure 5.6, it can

be seen that PM is better than IM for representing the volumetric change of WMH.

From the correlation plots, it can be seen that the correlation between ground truth

and predicted WMH volumes when PM was used is higher than when IM was used,

regardless of the GAN architecture. Furthermore, Bland-Altman plots show evidence

of increasing discrepancy and variability between ground truth and predicted volumes

with increasing volume of WMH when IM was used. These discrepancy and variability

are less prominent when PM was used.
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(a) GAN architectures for DEP model using IM.

(b) GAN architectures for DEP model using PM.

Figure 5.6: Volumetric agreement (in ml) and correlation (in ICV %) analyses between

BG PVS and predicted volume of WMH (Pred) produced by WGAN-GP, VA-GAN, DEP-

GAN-1C, and DEP-GAN-2C using (a) IM and (b) PM using Bland-Altman and correlation

plots.
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5.8.1.3 Prediction error analysis and discussion

From Table 5.2 (columns 2-4), it can be seen that most the GAN architectures for

DEP models could correctly predict the progression/regression of WMH volume, as

they performed better than a random guess system (≥ 50%). Furthermore, based

on this ablation study, it can be concluded that DEP-GAN-2C performed generally

better for predicting the evolution of WMH due to additional losses and two critics

in the architecture. Note that DEP-GAN is used to refer the DEP-GAN-2C in other

experiments. Furthermore, there is evidence that PM is better for representing the

evolution of WMH than IM when GAN architectures are used for DEP model.

Table 5.4: Results from ablation study of auxiliary input in DEP models. Prediction

error of WMH change, volumetric agreement of WMH volume, and spatial agreement of

WMH evolution were calculated to the gold standard expert-delineated WMH masks (i.e.,

LBL-DEM). “Vol.” stands for volumetric and “G” and “S” stand for percentage of subjects

correctly predicted as having growing and shrinking WMH by DEP models. The best

value for each machine learning approaches and evaluation measurements is written

in bold. Furthermore, the best value of all learning approaches for each evaluation

measurements is underlined and written in bold.

Supervised
(DEP-UResNet)

Grow
(G)[%]

Shrink
(S) [%]

Avg. [%]

((G+S)/2)

Vol. Bias [ml]

mean(SD)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg. ((Sr+

Gr+St)/3)

No Auxiliary 70.41 72.22 71.32 1.16(7.31) -13.17 15.48 0.6091 0.2234 0.6332 0.1551 0.1128 0.3004

+WMH 73.47 77.78 75.62 1.59(7.85) -13.80 16.97 0.6005 0.2532 0.6188 0.1688 0.1409 0.3095

+WMH+Stroke 79.59 75.93 77.76 0.81(8.14) -15.14 16.76 0.6080 0.2565 0.6311 0.1688 0.1415 0.3138

+Gaussian (mean) 81.63 59.26 70.45 -0.58(7.99) -16.24 15.09 0.6135 0.2629 0.6230 0.1717 0.1477 0.3141

+Gaussian (best) 81.63 57.41 69.52 -0.79(7.96) -16.40 14.81 0.6162 0.2686 0.6280 0.1787 0.1409 0.3159

Unsupervised
(DEP-GAN & IM)

Grow
(G) [%]

Shrink
(S) [%]

Avg. [%]

((G+S)/2)

Vol. Bias [ml]

mean(SD)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg. ((Sr+

Gr+St)/3)

No Auxiliary 61.22 72.22 66.72 5.58(15.98) -25.79 36.87 0.3204 0.0946 0.3684 0.0238 0.0445 0.1456

+WMH 75.51 53.70 64.61 -1.18(19.71) -39.80 37.45 0.3249 0.0901 0.3551 0.0580 0.0458 0.1530

+WMH+Stroke 71.43 64.81 68.12 0.92(19.91) -38.11 39.95 0.3291 0.0922 0.3476 0.0590 0.0468 0.1511

+Gaussian (mean) 61.22 70.37 65.80 4.59(14.99) -24.79 33.98 0.3359 0.2252 0.3768 0.0485 0.0361 0.1538

+Gaussian (best) 72.45 64.81 68.83 0.44(15.37) -29.67 30.56 0.3429 0.1053 0.3795 0.0619 0.0633 0.1682

Indirectly Spv.
(DEP-GAN & PM)

Grow
(G) [%]

Shrink
(S) [%]

Avg. [%]

((G+S)/2)

Vol. Bias [ml]

mean(SD)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg. ((Sr+

Gr+St)/3)

No Auxiliary 69.39 75.93 72.66 2.48(8.47) -14.13 19.08 0.6083 0.2246 0.5812 0.1515 0.1105 0.2811

+WMH 68.37 70.37 69.37 1.70(8.24) -14.45 17.84 0.6125 0.2295 0.6006 0.1467 0.1267 0.2913
+WMH+Stroke 66.33 75.93 71.13 2.69(9.14) -15.22 20.60 0.6098 0.2229 0.5943 0.1581 0.1091 0.2872

+Gaussian (mean) 58.16 79.63 68.90 2.91(8.81) -14.36 20.18 0.6107 0.1801 0.6245 0.1216 0.0868 0.2776

+Gaussian (best) 65.31 88.89 77.10 3.63(7.85) -11.75 19.02 0.6155 0.2415 0.6044 0.1834 0.1265 0.3048
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5.8.2 Ablation study of auxiliary input in DEP models

In this ablation study, different types (modalities) of auxiliary input were used and

evaluated to see how they affect the performance of DEP models for predicting the

evolution of WMH. 4 modalities of auxiliary input were tested, namely 1) no auxiliary

input (No Auxiliary), 2) baseline WMH volume (+WMH), 3) both baseline WMH

and SL volumes (+WMH+Stroke), and 4) Gaussian noise (+Gaussian). Specific to the

Gaussian noise, both of the mean and “best” performances are evaluated and reported.

All quantitative results can be seen in Tables 5.4 and 5.5. Whereas, qualitative results

(image examples) can be seen in Figures 5.10, 5.11, and 5.12.

5.8.2.1 Volumetric agreement (Bland-Altman) and correlation analyses

From Table 5.4 (columns 5-7), it can be seen that DEP-UResNet using Gaussian

noise (+Gaussian (mean)) produced the best estimation of WMH volumetric changes

with −0.58±7.99 ml mean difference with respect to the gold standard in volumetric

agreement analysis. Furthermore, it can also be seen that almost all DEP-UResNet

Table 5.5: Volumetric correlation analysis of DEP models with different types/modalities

of auxiliary input in ablation study of auxiliary input.

Supervised (DEP-UResNet) R2 Trend

No Auxiliary 0.9031 y = 0.9781x−0.1397

+WMH 0.8893 y = 1.0113x−0.2435
+WMH+Stroke 0.8939 y = 0.984x−0.2768

+Gaussian (mean) 0.8855 y = 0.9772x+0.2841

+Gaussian (best) 0.8869 y = 0.9821x+0.3073

Unsupervised (DEP-GAN & IM) R2 Trend

No Auxiliary 0.6068 y = 0.4159x+2.0128

+WMH 0.3293 y = 0.3539x+3.9732

+WMH+Stroke 0.3129 y = 0.3817x+3.275

+Gaussian (mean) 0.6461 y = 0.4684x+1.9418

+Gaussian (best) 0.6037 y = 0.4724x+2.9103

Indirectly Spv. (DEP-GAN & PM) R2 Trend

No Auxiliary 0.8659 y = 0.898x+0.0258

+WMH 0.8755 y = 0.9541x−0.1169
+WMH+Stroke 0.8916 y = 0.9102x−0.0987

+Gaussian (mean) 0.8541 y = 0.9228x−0.23

+Gaussian (best) 0.8836 y = 0.8972x−0.2629
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models with auxiliary input performed better in volumetric agreement analysis than

ones without auxiliary input (No Auxiliary). Only DEP-UResNet with WMH performed

slightly lower than DEP-UResNet without auxiliary input. This shows the importance

of auxiliary input for predicting the evolution of WMH using deep neural networks.

On the other hand, from all DEP models, DEP-GAN models using IM produced the

worst SD and (lower and upper) limits of agreement (LoA) in the volumetric agreement

analysis, regardless of the modalities of auxiliary input. This is another indication that

IM is not adequate for predicting the evolution of WMH. Interestingly, DEP-GAN using

PM, which seemingly had better (lower and upper) LoA than the DEP-GAN using

IM, had some of the worst mean of volumetric bias. This indicates that there is a bias

towards regression (i.e., shrinking of WMH) when DEP-GAN using PM was used for

predicting the evolution of WMH.

From Bland-Altman plots depicted in Figure 5.7, the volumetric agreement of

DEP-GAN using PM is similar to the volumetric agreement of DEP-UResNet. In

contrast, Bland-Altman plots produced by DEP-GAN using IM show increasing dis-

crepancy and variability between ground truth and predicted volumes with increasing

volume of WMH, similar to the results from previous experiment in Section 5.8.1.2.

Furthermore, the correlations between ground truth and predicted volumes of WMH for

DEP-UResNet and DEP-GAN using PM were much higher than the ones produced by

DEP-GAN using IM, especially when auxiliary input is incorporated (see Table 5.5 and

Figure 5.8).

5.8.2.2 Spatial agreement (DSC) analysis

On the automatic delineation of WMH change’s boundaries in the follow-up year,

DEP-UResNet using Gaussian noise produced the best performances with mean DSC

of 0.6135 and average of stable, shrinking, and growing WMH clusters with mean

DSC of 0.3141 (see “DEP-UResNet+Gaussian (mean)” in Table 5.4 columns 8-13).

Furthermore, it also outperformed the rest of the models on changing, shrinking, and

growing WMH clusters. These results clearly show the advantage of performing fully

supervised learning and modulating Gaussian noise as auxiliary input for predicting the

evolution of WMH. It is also worth to mention that its performance could be improved

if the “best” Gaussian noise is used and evaluated (see “DEP-UResNet+Gaussian (best)”

in Table 5.4 columns 8-13)

Based on Table 5.4 results, the (indirectly supervised) DEP-GAN using PM had

close performance to the (supervised) DEP-UResNet in all performed analyses, espe-
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Figure 5.7: Volumetric agreement analysis (in ml) between GT and predicted volume of

WMH with different types/modalities of auxiliary input (Pred) using Bland-Altman plot

which correspond to data presented in Table 5.4. Solid lines correspond to “Vol. Bias”

while dashed lines correspond to either “Lower LoA” or “Upper LoA” of the same table.

cially in the spatial agreement analysis (columns 8-13). To give a better visualisation of

the spread of the performances, the distributions of DSC scores for all WMH categories

(i.e., entire WMH, changing WMH, shrinking WMH, growing WMH, and stable WMH)

produced by all DEP models and different types of auxiliary input were plotted by

using box-plot in Figure 5.9. Furthermore, paired two-sided Wilcoxon signed rank
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Figure 5.8: Correlation plots between manual WMH volume produced by the expert (GT)

and predicted WMH volume by various DEP models with different types/modalities of

auxiliary input (Pred). WMH volume is in the percentage of ICV to remove any potential

bias associated with head size.

tests were also performed to evaluate whether the medians and distributions of DSC

scores produced by the non-supervised DEP-GAN using IM and PM were significantly

different to those produced by the supervised DEP-UResNet.

From Figure 5.9, it can be seen that performances of DEP-GAN using PM and
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(a) Distributions of DSC scores from the (supervised) DEP-UResNet models.

(b) Distributions of DSC scores from the (unsupervised) DEP-GAN using IM models.

(c) Distributions of DSC scores from the (indirectly supervised) DEP-GAN using PM models.

Figure 5.9: Distributions of DSC scores from all evaluated DEP models in auxiliary input

ablation study. These distributions correspond to the Table 5.4, columns 8-13.

DEP-UResNet on delineating different WMH clusters did not differ from each other in

term of the distribution of DSC scores. Based on the result from the Wilcoxon tests,

there is no significant difference between the performances of DEP-GAN using PM

and DEP-UResNet in all WMH clusters, especially when the same auxiliary input was

used, with p-value > 0.17. In contrast, the distribution of DSC scores produced by

DEP-GAN using IM and DEP-UResNet are significantly different to each other with

p-value < 0.0012.
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Figure 5.10: Qualitative (visual) assessment of DEM label produced by the super-

vised DEP model, DEP-UResNet, with different types/modalities of auxiliary input. The

corresponding T2-FLAIR (input data) can be seen in Figure 5.12.
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Figure 5.11: Qualitative (visual) assessment of DEM produced by the unsupervised and

indirectly supervised DEP models; DEP-GAN using IM and DEP-GAN using PM, with

different types/modalities of auxiliary input. The corresponding T2-FLAIR (input data)

can be seen in Figure 5.12.

5.8.2.3 Qualitative (visual) analysis

It is worth to mention first that the growing and shrinking regions of WMH are consid-

erably smaller than those unchanged (stable) as depicted in Figure 5.10. Note that it

is very difficult to discern the borders between growing and shrinking regions when

SL coalesce with WMH even though SL were removed from the analysis as previously

explained. Nevertheless, inaccuracies while determining the borders between coalescent
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Figure 5.12: Qualitative (visual) assessment of DEM and its corresponding DEM label

produced by the unsupervised and indirectly supervised DEP models; DEP-GAN using

IM and DEP-GAN using PM respectively, with different types/modalities of auxiliary input.

The corresponding golden standard of DEM label can be seen in Figure 5.10.

WMH and SL and the small size of the volume changes in each WMH cluster might

have influenced in the low DSC values obtained in the regions that experienced change

as seen in Table 5.4. It is also worth to note that most regions of WMH are stable, and
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DEP-UResNet and DEP-GAN using PM did not have any problem on segmenting these

regions as depicted in Figures 5.10 and 5.12. Furthermore, the small spatial changes

of growing and shrinking WMH might not influence the outcome of clinical diagnosis

because volumetric changes of WMH did not change drastically in total when different

auxiliary inputs were used as depicted in Figures 5.7 and 5.8 (described in Section

5.8.1.2). However, clinical diagnosis outcome might be influenced by the types of DEP

model as each of them produced different result characteristics of volumetric agreement

and correlation (see Section 5.8.1.2).

Based on qualitative (visual) assessment of DEM produced by DEP-GAN using

IM/PM depicted in Figure 5.11, auxiliary input improved the quality of the generated

DEMs where they had more correct details than the ones generated without using

auxiliary input. However, good details of the generated DEM from IM/PM did not

necessarily translate to good three-class DEM label (i.e., three labels of growing,

shrinking, and stable WMH) as depicted in Figure 5.12. Some reasons that might

have caused this are; 1) the generated DEM from IM/PM is result of a regression

process from the baseline IM/PM using DEP-GAN and 2) the three-class DEM label

itself is generated from the resulted regression, where WMH is defined by having

irregularity/probability values greater than or equal to 0.178 for IM (see Section 4.6.1)

and 0.5 for PM. Note that regression of the whole brain using IM/PM is harder than

direct segmentation of three regions of WMH (i.e., stable, shrinking, and growing

WMH). Furthermore, small changes in IM/PM did not necessarily change the state of

voxel from WMH to non-WMH or vice versa. These are the challenges of performing

prediction of WMH evolution using DEP-GAN and IM/PM instead of DEP-UResNet.

5.8.2.4 Clinical plausibility analysis

From Table 5.6, it can be seen that the use of expert-delineated binary WMH masks and

WMH maps obtained from thresholding IM or PM (see the second to the fourth rows),

all produced the same ANCOVA model’s results; none of the covariates of the model

had an effect in the 1-year WMH volume change, yielding almost identical numerical

results in the first two decimal places. Therefore, the use of LOTS-IM and UResNet,

generators of the IM and PM respectively, for producing WMH maps in clinical studies

of mild to moderate stroke seems plausible.

As discussed in Section 5.1, baseline WMH volume has been recognised the main

predictor of WMH change over time (Chappell et al., 2017; Wardlaw et al., 2017),

although the existence of previous SL and hypertension have been acknowledged as



5.8. Results and Discussion 119

Table 5.6: Results from the ANCOVA models that investigate the effect of several clinical

variables (i.e. stroke subtype, stroke-related imaging markers, and vascular risk factors)

in the WMH volume change from baseline to one year after. The first column at the

left hand side refers to the models/methods used to obtain the follow-up WMH volume

used in the ANCOVA models as outcome variable. The rest of the columns show the

coefficient estimates B and the significance level given by the p-value (i.e. B(p)), for each

covariate included in the models.

Reference
(binary mask)

Stroke
lacunar

BG PVS
scores

Diabetes
(y/n)

Hypertension
(y/n)

Smoker
(y/n)

Index SL
(% in ICV)

Old SL
(% in ICV)

Expert-delineated -0.04(0.65) 0.07(0.25) -0.10(0.48) -0.05(0.66) -0.07(0.42) -0.03(0.46) 0.13(0.15)

Thresholded IM -0.04(0.66) 0.08(0.19) -0.12(0.44) -0.04(0.71) -0.09(0.38) -0.03(0.43) 0.14(0.14)

Thresholded PM -0.04(0.66) 0.08(0.19) -0.12(0.44) -0.04(0.71) -0.09(0.38) -0.03(0.43) 0.14(0.14)

Supervised
(DEP-UResNet)

Stroke
lacunar

BG PVS
scores

Diabetes
(y/n)

Hypertension
(y/n)

Smoker
(y/n)

Index SL
(% in ICV)

Old SL
(% in ICV)

No Auxiliary -0.12(0.11) 0.10(0.03) -0.06(0.57) 0.03(0.73) -0.08(0.29) -0.04(0.14) 0.30(<0.001)

+WMH -0.10(0.13) 0.11(0.006) 0.04(0.65) 0.01(0.87) -0.05(0.38) -0.04(0.13) 0.20(<0.001)

+WMH+Stroke -0.07(0.29) 0.06(0.14) 0.07(0.48) -0.02(0.75) -0.10(0.15) -0.05(0.10) 0.32(<0.001)

+Gaussian (mean) -0.09(0.26) 0.11(0.04) 0.06(0.61) 0.02(0.81) -0.10(0.21) -0.06(0.08) 0.36(<0.001)

Unsupervised
(DEP-GAN & IM)

Stroke
lacunar

BG PVS
scores

Diabetes
(y/n)

Hypertension
(y/n)

Smoker
(y/n)

Index SL
(% in ICV)

Old SL
(% in ICV)

No Auxiliary 0.03(0.68) -0.03(0.58) -0.07(0.54) 0.0006(0.99) -0.08(0.33) -0.11(0.001) 0.25(0.001)

+WMH 0.22(0.09) 0.08(0.36) -0.004(0.98) 0.12(0.40) -0.08(0.54) -0.06(0.25) 0.32(0.01)

+WMH+Stroke -0.11(0.45) -0.08(0.40) 0.03(0.88) 0.10(0.53) 0.11(0.47) -0.02(0.77) 0.34(0.02)

+Gaussian (mean) -0.02(0.86) -0.07(0.24) -0.06(0.69) -0.05(0.62) -0.07(0.43) -0.14(0.0004) 0.20(0.03)

Indirectly Spv.
(DEP-GAN & PM)

Stroke
lacunar

BG PVS
scores

Diabetes
(y/n)

Hypertension
(y/n)

Smoker
(y/n)

Index SL
(% in ICV)

Old SL
(% in ICV)

No Auxiliary -0.10(0.24) 0.14(0.009) 0.10(0.45) 0.04(0.67) -0.03(0.70) -0.05(0.18) 0.18(0.03)

+WMH -0.03(0.72) 0.09(0.09) -0.14(0.31) -0.04(0.68) -0.06(0.46) -0.04(0.30) 0.19(0.03)

+WMH+Stroke -0.10(0.28) 0.17(0.006) 0.10(0.50) 0.10(0.36) -0.02(0.81) -0.08(0.05) 0.24(0.01)

+Gaussian (mean) -0.09(0.25) 0.10(0.04) 0.02(0.87) -0.0001(0.99) -0.08(0.27) -0.04(0.17) 0.14(0.05)

contributed factors. However, from the results of the ANCOVA models (Table 5.6),

none of the DEP models that used these (i.e WMH and/or SL volumes) as auxiliary

inputs showed similar performance (i.e. in terms of strength and significance in the

effect of all the covariates in the WMH change) as the reference WMH maps. The only

DEP model that shows promise in reflecting the effect of the clinical factors selected

as covariates in WMH progression was the DEP-GAN that used as input the PM of

baseline WMH and Gaussian noise (i.e. written in bold and underlined in the left hand

side column of Table 5.6).

Some factors might have adversely influenced the performance of these predictive

models. First, all deep-learning schemes require a very large amount of balanced (e.g.
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in terms of the appearance, frequency and location of the feature of interest, i.e. WMH

in this case) data, generally not available. The lack of data available imposed the use

of 2D model configurations, which generated unbalance in the training: for example,

not all axial slices have the same probability of WMH occurrence, also WMH are

known to be less frequent in temporal lobes and temporal poles are a common site of

artefacts affecting the IM and PM, error that might propagate or even be accentuated

when these modalities are used as inputs. Second, the combination of hypertension, age

and the extent, type, lapse of time since occurrence and location of the stroke might be

influential on the WMH evolution, therefore rather than a single value, the incorporation

of a model that combines these factors would be beneficial. However, such model is

still to be developed also due to lack of data available. Third, the tissue properties have

not been considered. A model to reflect the brain tissue properties in combination with

vascular and inflammatory risk factors is still to be developed. Lastly, the deep-learning

models as we know them, although promising, are reproductive, not creative. The

development of more advanced inference systems is paramount before these schemes

can be used in clinical practice.

5.8.2.5 Prediction error analysis and discussion

From Table 5.4 (columns 2-4), it can be seen that all DEP models tested in this ablation

study could correctly predict the progression/regression of WMH volume better than

a random guess system (≥ 50%). Furthermore, it also can be seen that DEP models

with auxiliary input, either Gaussian noise or known risk factors of WMH evolution

(i.e., WMH and SL loads), produced better performances in most cases and evaluation

analyses than the DEP models without any auxiliary input. These results show the

importance of auxiliary input, especially Gaussian noise which simulates the non-de-

terministic nature of WMH evolution. Furthermore, it is clear now that PM is better

for representing the evolution of WMH than IM when DEP-GAN is used, especially if

ones would like to have good volumetric agreement and correlation, spatial agreement,

and clinical plausibility of the WMH evolution.

5.8.3 Ablation study of the DEP-GAN’s regularisation terms

In this study, three regularisation terms are proposed for DEP-GAN (i.e., intensity, DSC,

and volume) instead of one term (i.e., only intensity) like in the VA-GAN. Table 5.7

shows prediction results where the weights of each term are set to 0 to investigate how
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Table 5.7: Results from ablation study of the DEP-GAN’s regularisation terms tested

using PM (see Equation 5.4). The prediction error of WMH change, volumetric agreement

of WMH volume, and spatial agreement of WMH evolution were calculated and compared

to the gold standard expert-delineated WMH masks (i.e., LBL-DEM). “Vol.” stands for

volumetric and “G” and “S” stand for percentage of subjects correctly predicted as

having growing and shrinking WMH by DEP models. The best value for each learning

approaches and evaluation measurements is written in bold.

DEP-GAN (PM) Grow Shrink Avg. [%] Vol. Bias [ml] Lower Upper Entire Change Stable Shrink Grow Avg. ((St+

λ1 λ2 λ3 (G) [%] (S) [%] ((G+S)/2) mean(SD) LoA [ml] LoA [ml] WMH (C) (St) (Sr) (Gr) Sr+Gr)/3)

0 0 0 64.29 85.19 74.74 3.03(7.65) -11.9684 18.0372 0.6131 0.1667 0.6178 0.1045 0.0813 0.2679

0 0 100 65.31 79.63 72.47 2.28(8.16) -13.7197 18.2747 0.6132 0.1749 0.6166 0.1009 0.0909 0.2695

0 1 0 50.00 83.33 66.67 4.32(8.18) -11.7181 20.3473 0.6093 0.1919 0.6063 0.1366 0.0706 0.2712

100 0 0 57.14 83.33 70.24 3.79(7.83) -11.5525 19.1234 0.6075 0.1827 0.6143 0.1312 0.0741 0.2732

0 1 100 67.35 75.93 71.64 2.37(8.50) -14.2904 19.0237 0.6101 0.1889 0.6177 0.1203 0.0922 0.2767

100 1 0 58.16 77.78 67.97 2.23(8.85) -15.1197 19.5748 0.6096 0.1912 0.6079 0.1209 0.0925 0.2738

100 0 100 57.14 88.89 73.02 4.51(8.15) -11.4546 20.4778 0.6078 0.1993 0.5996 0.1446 0.0760 0.2734

100 1 100 56.12 81.48 68.80 3.46(8.26) -12.7218 19.6500 0.6107 0.1801 0.6245 0.1216 0.0868 0.2776

each of these three terms affect the prediction results. Note that λ1 is the weight for

intensity loss, λ2 is the weight for DSC loss, and λ3 is the weight for volumetric loss

(see Equation 5.4). This ablation study was performed using DEP-GAN-2C using PM.

From this ablation study, the use of more terms in the regularisation had a positive

impact in the prediction results. It is expected because multiple terms forced the DEP-

GAN’s generator to generalise and perform well on all important measurements used

in the evaluation of the prediction of WMH evolution, i.e., intensities in the regression

of PM’s values, WMH segmentation correctness in DSC, and volumetric prediction of

WMH. However, it is worth mentioning that the improvements were limited and still

could be improved in the future.

5.9 Conclusion and Future Work

In this study, an end-to-end training scheme was proposed to predict the evolution of

WMH using deep learning algorithms called DEP model. To the best of our knowledge,

this is the first extensive study on modelling WMH evolution using deep learning al-

gorithms. Different configurations of DEP models (i.e., unsupervised (DEP-GAN using

IM), indirectly supervised (DEP-GAN using PM), and supervised (DEP-UResNet))

with different types of auxiliary input (i.e., Gaussian noise, WMH load, and WMH and

SL loads) were evaluated. These configurations were designed and evaluated to find
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the best approach to automatically predict and delineate the evolution of WMH from a

baseline measurement to a follow-up visit.

Based on the two ablation analyses done as part of the present study, DEP-GAN-2C

performed better than WGAN-GP, VA-GAN, and DEP-GAN using 1 critic. Further-

more, Gaussian noise successfully improved all DEP models in almost all evaluation

measurements when used as auxiliary input. This shows that there are indeed some

unknown factors that influence the evolution of WMH. These unknown factors make

the problem of predicting/delineating WMH evolution non-deterministic, and Gaussian

noise were proposed to simulate this scenario. The intuition behind this approach is

that Gaussian noise fills in the missing (unavailable) risks factors or their combination,

which could influence the evolution of WMH. Note that it is very challenging to collect

and compile all risk factors of WMH evolution in a longitudinal study.

From the experiments, on average, supervised DEP-UResNet yielded the best results

in almost every evaluation measurement. However, it is worth to mention that it did

not perform well in the clinical plausibility test. The indirectly supervised DEP-GAN

yielded similar average performance to the supervised DEP-UResNet’s performance

and yielded the best results out of all schemes in the clinical plausibility test. Moreover,

results from DEP-UResNet and DEP-GAN using PM were not statistically different to

each other on delineating the WMH clusters.

If we consider the results, time, and resources spent in this study, then DEP-GAN

using PM showed the biggest and strongest potential of all DEP models. Not only did it

perform similarly to the supervised DEP-UResNet but it also did not need manual WMH

labels on two MRI scans for training (i.e., baseline and follow-up scans). The PM needed

as input for this model can be efficiently produced by any supervised deep/machine

learning model. Moreover, the development of automatic WMH segmentation for

producing better PM could be done separately and independently from the development

of the DEP model. If a better PM model is available in the future, then the DEP-GAN

model can be retrained using the newly produced PM for better performance. Also,

DEP-GAN using PM could be used for other (neuro-degenerative) pathologies, as long

as a set of PM from these other pathologies could be produced and used to (re-)train the

DEP-GAN.

There are several shortcomings anticipated from the results of this study. Firstly,

manual WMH labels of two MRI scans (i.e., baseline and follow-up scans) are necessary

for training the DEP-UResNet. In many scenarios, this is not applicable and efficient

in terms of time and resources. Secondly, the unsupervised DEP-GAN using IM is
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computationally very demanding as it involves regressing IM values across the whole

brain tissue. This resulted in low performances of DEP-GAN using IM in almost all

evaluation measurements. Thirdly, the schemes’ performances depend on the accuracy

of the quality of input. For example, the PM generated in this study are slightly

biased towards overestimating the WMH in the optical radiation and underestimating

WMH in the frontal lobe. This could be caused by the absence of correcting the

T2-FLAIR images for b1 magnetic field inhomogeneities. However, a previous study

on small vessel disease images demonstrated this procedure might affect the results

underestimating the subtle white matter abnormalities characteristics of this disease,

and recommends this procedure to be used in T1- and T2-W structural images but not

in T2-FLAIR images for WMH segmentation tasks (Valdés Hernández et al., 2016)

Hence, the biggest challenge of using DEP-GAN using PM is its highly dependency on

the quality of initial PM. Fourthly, volumetric agreement analyses suggest that there

are still large differences in absolute volume and in change estimates produced by the

proposed DEP models. While this study is intended as a “proof-of-principle” study to

advance the field of white matter - and ultimately brain- health prediction, it is worth to

mention that better reliability in the WMH assessment is necessary so as DEP models

can be used in clinical practice. Furthermore, better understanding of what DEP models

extract to estimate WMH evolution would be very useful in clinical practice. Lastly,

the limitation of using (Gaussian) random noise in DEP models is the fact that we do

not really know which set of Gaussian random noise should be used to generate the

best result for each subject. Note that, in this study, all DEP models that used Gaussian

noise as auxiliary input were tested 10 times to calculate the mean and the “best” set

of Gaussian noise which produced the best automatic delineation of WMH evolution

overall. In conclusion, DEP models suffer similar problems and limitations to any

machine learning based medical image analysis methods.

The DEP models proposed in this study open up several possible future avenues to

further improve their performances. Firstly, multi-channel (e.g., PM and T2-FLAIR)

input could be used instead of single channel input. In this study, single channel input

was used to draw a fair comparison between DEP-UResNet which uses T2-FLAIR

and DEP-GAN which uses either IM or PM. Secondly, 3D architecture of DEP-GAN

could be employed when more subjects are accessible in the future. 3D deep neural

networks have been reported to have better performances than the 2D ones, but they

are more difficult to train (Çiçek et al., 2016; Baumgartner et al., 2018). Thirdly,

Gaussian noise and known risk factors (e.g., WMH and SL loads) could be modulated



124 Chapter 5. Disease Evolution Predictor Deep Neural Networks

together instead of modulating them separately in different models. By modulating

them together, DEP model would be influenced by both known (available) risk factors

and unknown (missing) factors represented by Gaussian noise. Lastly, different random

noise distribution could be used instead of Gaussian distribution. Note that each risk

factors of WMH evolution (e.g., WMH load, age, and blood pressure) could have

different data distribution, not only Gaussian distribution. If a specific data distribution

(i.e., the same or similar to the real risk factor’s data distribution) could be used for a

specific risk factor, then the real data could replace the random noise if available in the

testing.



Chapter 6

Conclusion and Future Work

The preceding chapters of this thesis have described the development of segmentation,

characterisation, and evolution prediction methods for WMH in structural brain MRI. In

this chapter, a general summary of this thesis is provided. Furthermore, contributions,

impacts, and possible future investigations for each chapter (study) are also discussed.

6.1 Summary

WMH are neuroradiological features seen in T2-FLAIR and have been commonly

associated with stroke, ageing, and dementia progression (Wardlaw et al., 2013). Recent

studies have shown that WMH may shrink (i.e., regress), stay unchanged (i.e., stable),

or grow (i.e., progress) over a period of time (Ramirez et al., 2016; Wardlaw et al.,

2017). The objective of this thesis is to propose automatic methods for segmentation,

characterisation, and evolution prediction of WMH that can be used in clinical research

to estimate the size and location of WMH in time to study their progression/regression in

relation to clinical health and disease indicators, for ultimately designing more effective

therapeutic interventions.

Chapter 3 tackles the problem of segmenting early (i.e., small and subtle) WMH

using CNNs and GSI. Segmenting early WMH is crucial for early detection of dementia

and AD GSIand longitudinal study of dementia’s progression. In this study, synthetic

GSI is incorporated to the patch-based CNNs as additional input channels, and it

successfully improves the performance of CNNs to segment small WMH. Thus, showing

that spatial information is important for the segmentation of WMH.

Chapter 4 describes a novel unsupervised method to characterise the WMH named

LOTS-IM. LOTS-IM produces an IM which describes the intensities of WMH by real

125
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values between 0 to 1 instead of binary label which describes the hard border of WMH.

IM is also better than the well known PM as it can well characterise both non-WMH and

WMH regions, including the WMH “penumbra”. The WMH penumbra is especially

important for the study of WMH progression (Kapeller et al., 2003; Bendfeldt et al.,

2009; Callisaya et al., 2013). This chapter also describes the simulation of progression

and regression of WMH over a period of time using IM. In the evaluation of WMH

segmentation, it is shown that LOTS-IM outperforms LST-LGA (i.e., the current state-

of-the-art unsupervised WMH segmentation method), conventional supervised machine

learning algorithms (i.e., SVM and RF), and some supervised deep learning algorithms

(i.e., DBM and CEN). Furthermore, the results also show that LOTS-IM has comparable

performance with the state-of-the-art supervised deep learning algorithms (DeepMedic,

UResNet, and UNet). Whereas, the biggest limitation of the proposed simulation of

WMH progression and regression using IM is that it is not based on real longitudinal

data (i.e., not a data-driven method).

Finally, Chapter 5 describes novel deep learning models for predicting and estimat-

ing the evolution (i.e., progression and regression) of WMH using longitudinal data,

addressing the limitation of our previous study on simulation of brain abnormalities

using IM described in Chapter 4. In this experiment, an end-to-end model called DEP

model which uses deep learning and an auxiliary input module is proposed and evaluated

for the prediction of WMH evolution from baseline to follow-up while addressing the

non-deterministic nature of this process. Two models of DEP are proposed, which are

DEP-UResNet and DEP-GAN, representing supervised and unsupervised deep learning

algorithms respectively. DEP-UResNet uses baseline T2-FLAIR as the main input while

DEP-GAN uses either baseline IM or PM instead. To simulate the non-deterministic

and unknown parameters involved in WMH evolution, a modulation of Gaussian noise

array to the DEP model as an auxiliary input is proposed. This forces the DEP model to

imitate a wider spectrum of alternatives in the results. Based on the results, DEP-GAN

using PM and Gaussian noise as an auxiliary input yielded one of the best results in

almost all evaluations, including clinical plausibility. The DEP-UResNet regularly

performed better than the DEP-GAN using PM and Gaussian noise in some evaluations,

but eventually it did not show promise in the clinical evaluation.
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6.2 Contributions of this thesis

The main contribution of this doctoral thesis is the development of methods for early

WMH segmentation, characterisation of WMH, and prediction of WMH evolution

using machine learning algorithms. This thesis is arranged such that each chapter

contributes to one of the contributions. The contributions of each chapter (i.e. study, set

of experiments) in this thesis are discussed below.

Spatial information for early WMH segmentation: From previous studies, it has

been suggested that WMH are only the “tip of the iceberg” where they represent the

extreme end of a continuous spectrum of white matter injuries (Zhang et al., 2013;

Lockhart et al., 2012; Wardlaw et al., 2015). This is especially a challenge for early

WMH segmentation as they appear very subtle and are indistinguishable from the

non-WMH (i.e., healthy) regions in T2-FLAIR brain MRI. In this thesis (i.e., Chapter

3), it has been shown that spatial information is a good additional prior knowledge to

the textures of T2-FLAIR brain MRI for achieving a good segmentation of early WMH

(i.e. small and subtle WMH).

Irregularity map for characterisation of WMH: The newly proposed IM, de-

scribed in Chapter 4, is unique, and differs from the PM and binary WMH labels as it is

able to represent not only the WMH but also the non-WMH regions in T2-FLAIR brain

MRI. Unlike PM and binary WMH labels, IM is also able to represent the “penumbra

of WMH” (Maillard et al., 2011), which has been suggested to be important for the

study of WMH progression (Maillard et al., 2014; Pasi et al., 2016). Furthermore, IM

has a good performance as unsupervised WMH segmentation approach and can be used

for the simulation of WMH progression and regression.

Automatic spatial estimation of WMH Evolution: Predicting the evolution (i.e.,

progression and regression) of WMH is a challenging task, especially because it involves

both commonly known and unknown clinical risk factors. In other words, evolution

of WMH is a non-deterministic (probabilistic) process. In Chapter 5 where DEP

models are described, it has been shown that the non-deterministic nature of WMH

evolution can be well simulated by using Gaussian noise as an auxiliary input of the

DEP model. Furthermore, it has been shown that the unsupervised model of DEP-GAN

using PM performed statistically similar to the supervised model of DEP-UResNet on

estimating the spatial evolution of WMH. It also has been suggested in this thesis that

DEP-GAN using PM and Gaussian noise performed the best in clinical plausibility test,

outperforming the DEP-UResNet. To the best of our knowledge, DEP model is the first
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predictive model using deep learning to estimate the evolution of pathology in medical

image analysis research field.

6.3 Future Work

In this section, a number of possible future investigations is discussed.

Development of better irregularity map: While IM has shown promising results

for the characterisation of WMH, its accuracy on WMH segmentation and estimation

of WMH evolution are still worse than the PM produced by deep learning algorithms.

Better means of target patch sampling and distance value calculation might improve the

quality of IM for WMH segmentation. Furthermore, the use of 3D voxels might also

improve IM quality.

Main input of the DEP model: The performance of DEP models, both DEP-

UResNet and DEP-GAN, still can be improved by using multi-channel inputs instead

of one-channel input. While DEP-GAN using PM and Gaussian noise performed better

than other DEP models, its main input (i.e., PM) might be not enough for representing

the actual patient/subject clinical condition. Thus, combination of MRI modalities (e.g.,

T2-FLAIR, T2-W, and T1-W), IM, and PM as main input channels might improve the

performance of DEP-GAN.

3D convolutional layer for DEP model: In this thesis, 2D convolutional layer

is used for DEP model because the number of available longitudinal data is limited.

However, multiple previous studies have reported that 3D convolutional layer improved

the performance of deep neural networks in medical image analysis (Çiçek et al.,

2016; Kamnitsas et al., 2017). The biggest challenge of this future work would be

the availability of longitudinal data for training, as 3D deep neural networks are more

difficult to train (Baumgartner et al., 2018).

Better representation of clinical risk factors of WMH evolution: A good pre-

dictive modelling of WMH evolution should be able to represent at least two things: 1)

the non-deterministic nature and unknown (or missing) risk factors of WMH evolution

and 2) commonly known clinical risk factors of WMH evolution. This thesis has shown

that the non-deterministic nature and unknown risk factors of WMH evolution can

be represented by using Gaussian noise. However, in this thesis, the Gaussian noise

was used in substitution of the clinical risk factors. In the future, both of known and

unknown risk factors of WMH evolution should be considered in the DEP model.



6.4. List of Publications 129

6.4 List of Publications

In this section, all publications (i.e., paper and software) authored and co-authored

by the author of this thesis while doing his doctoral study in medical image analysis

research field are listed.

6.4.1 Papers in international journals

1. Rachmadi, M. F., Valdés-Hernández, M. D. C., Li, H., Guerrero, R., Meijboom,

R., Wiseman, S., Waldman, A., Zhang, J., Rueckert, D., Wardlaw, J., and Komura,

T. (2020). Limited One-time Sampling Irregularity Map (LOTS-IM) for automatic

unsupervised assessment of white matter hyperintensities and multiple sclerosis

lesions in structural brain magnetic resonance images. Computerized Medical

Imaging and Graphics, 79:101685.

2. Malla, P., Uziel, C., Valdés-Hernández, M. D. C., Rachmadi, M. F., & Komura,

T. (2019). Evaluation of enhanced learning techniques for segmenting ischaemic

stroke lesions in brain magnetic resonance perfusion images using a convolutional

neural network scheme. Frontiers in Neuroinformatics, 13, 33.

3. Jeong, Y., Rachmadi, M. F., Valdés-Hernández, M. D. C., & Komura, T. (2019).

Dilated saliency U-Net for white matter hyperintensities segmentation using

irregularity age map. Frontiers in Aging Neuroscience, 11, 150.

4. Rachmadi, M. F., Valdés-Hernández, M. D. C., Agan, M. L. F., Di Perri, C.,

Komura, T., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Segmenta-

tion of white matter hyperintensities using convolutional neural networks with

global spatial information in routine clinical brain MRI with none or mild vascular

pathology. Computerized Medical Imaging and Graphics, 66, 28-43.

5. Rachmadi, M. F., Valdés-Hernándezez, M. d. C., Agan, M. L. F., and Komura, T.

(2017a). Deep learning vs. conventional machine learning: Pilot study of WMH

segmentation in brain MRI with absence or mild vascular pathology. Journal of

Imaging, 3(4):66.

Submitted:

1. Rachmadi, M. F., Valdés-Hernández, M. D. C., Makin, S., Wardlaw, J. M., &

Komura, T. (2019). Automatic spatial estimation of white matter hyperintensities



130 Chapter 6. Conclusion and Future Work

evolution in brain MRI using disease evolution predictor deep neural networks.

bioRxiv, 738641. Submitted to Medical Image Analysis (in revision).

6.4.2 Papers in conference proceedings

1. Rachmadi, M. F., del C. Valdés-Hernández, M., Makin, S., Wardlaw, J. M., and

Komura, T. (2019a). Predicting the evolution of white matter hyperintensities in

brain MRI using generative adversarial networks and irregularity map. In Medical

Image Computing and Computer Assisted Intervention – MICCAI 2019, pages

146–154, Cham. Springer International Publishing.

2. Rachmadi, M. F., Valdés-Hernández, M. d. C., and Komura, T. (2018c). Auto-

matic irregular texture detection in brain MRI without human supervision. In

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018,

pages 506–513, Cham. Springer International Publishing.

3. Rachmadi, M. F., Valdés-Hernández, M. D. C.,M., and Komura, T. (2018a).

Transfer learning for task adaptation of brain lesion assessment and prediction

of brain abnormalities progression/regression using irregularity age map in brain

MRI. In International Workshop on PRedictive Intelligence In MEdicine, pages

85–93, Cham. Springer International Publishing.

4. Rachmadi, M. F., Valdés-Hernández, M. d. C., and Komura, T. (2017c). Voxel-

based irregularity age map (IAM) for brain’s white matter hyperintensities in

MRI. In 2017 International Conference on Advanced Computer Science and

Information Systems (ICACSIS), pages 321–326. IEEE.

5. Rachmadi, M. F., Valdés-Hernández, M. d. C., Agan, M. L. F., and Komura,

T. (2017b). Evaluation of four supervised learning schemes in white matter

hyperintensities segmentation in absence or mild presence of vascular pathology.

In Medical Image Understanding and Analysis, pages 482–493, Cham. Springer

International Publishing.

6.4.3 Publicly published software

1. DBM for MRI
URL: https://github.com/febrianrachmadi/boltzmannmachine

https://github.com/febrianrachmadi/boltzmannmachine


6.4. List of Publications 131

2. LOTS-IM
URL: https://github.com/febrianrachmadi/lots-iam-gpu

3. DEP model
URL: https://github.com/febrianrachmadi/dep-gan-im

https://github.com/febrianrachmadi/lots-iam-gpu
https://github.com/febrianrachmadi/dep-gan-im




Appendix A

Supplementary Materials

In this appendix, we attached proformas filled in by a neuroradiologist for neuroradiolo-

gical evaluation described in Section 3.6.11.
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