STRUCTURAL AND FUNCTIONAL STUDIES ON DROSOPHILA ADH

Lluís Ribas i de Pouplana

Thesis presented for the degree of Doctor of Philosophy.

University of Edinburgh, 1992.

Contents:

Contents II
Dedication VI
Foreword VII
Abbreviations IX
Abstract XII
Declaration XIII
1 Introduction 1
1.1 Historical review of Drosophila alcohol dehydrogenase research 1
1.2 The classification of dehydrogenases 4
1.3 The structure of short-chain dehydrogenases 8
1.3.1 Structural similarities between members of the family 8
1.3.2 The structure of $3 \alpha, 20 \beta$-hydroxysteroid dehydrogenase 11
1.4 The biochemistry of Drosophila alcohol dehydrogenase 18
1.4.1 The $A d h$ gene and its regulation 18
1.4.2 The ADH product, allelic variation 21
1.4.2.1 Allelic variation within D melanogaster 21
1.4.2.2 Allelic variation of Adh /ADH in the genus Drosophila 25
1.5 The enzymology and structure of Drosophila ADH 32
1.5.1 The mechanism and kinetics of cofactor binding and reduction 32
1.5.2 The recognition of the substrate and kinetics of its oxidation 36
1.5.3 The reaction mechanism 38
1.6 The physiological role of Drosophila ADH 39
1.6.1 Ethanol as a nutrient 40
1.6.2 Alcohols as poisons 41
1.6.3 Other environmental factors affecting ADH activity and distribution 43
1.7 Aims and strategy of the project 45
2 Experimental Materials and Methods 47
2.1 Materials 47
2.1.1 Cloning, expression, mutagenesis and sequencing materials 47
2.1.1.1 Plasmids 47
2.1.1.2 Strains 47
2.1.1.3 Enzymes 48
2.1.1.4 Media, antibiotics and related 48
2.1.1.5 Oligonucleotides and radiochemicals 48
2.1.1.6 Kits 48
2.1.1.7 Hardware 49
2.1.1.8 Chemicals 49
2.1.1.9 Miscellaneous 49
2.1.2 Protein purification and analysis materials 49
2.1.2.1 Chemicals 49
2.1.2.2 Hardware 50
2.1.3 Enzyme characterization materials 50
2.1.3.1 Enzymes 50
2.1.3.2 Chemicals 51
2.1.3.3 Hardware 51
2.2 Experimental methods 52
2.2.1 Standard DNA and protein techniques 52
2.2.2 Site-directed mutagenesis 53
2.2.3 DNA subcloning 55
2.2.4 DNA sequencing 55
2.2.5 Growth and transformation of yeast 57
2.2.6 Analysis of yeast transformants and DNA isolation from yeast 59
2.2.7 The analysis of $A d h$ expression in yeast 60
2.2.7.1 Immunoblotting analysis of DADH expression in yeast 61
2.2.7.2 DADH activity measurements in crude extracts 63
2.2.8 Protein purification methods 64
2.2.8.1 Crude extract preparation and Ammonium sulphate fractionation 65
2.2.8.2 Sepharose G-25 and Q-Sepharose FF steps 66
2.2.8.3 Sample concentration and Superose-12 steps 66
2.2.9 Characterization methods for pure DADHs 67
2.2.9.1 Guanidine hydrochloride denaturation studies 67
2.2.9.1.1 Circular dichroism analysis 68
2.2.9.1.2 Denaturation monitored by ADH activity measurements 70
2.2.9.1.3 Determination of the conformational free energy of the enzymes 75
2.2.9.2 Determination of the thermal stability of DADH's 79
2.2.9.3 Determination of kinetic constants 80
3 Cloning, mutagenesis, sequencing and expression of ADH. 81
Results and discussion
3.1 Cloning of the $A d h$ gene into M13mp18 and PVT-U-100 81
3.2 Site-directed mutagenesis of the M13-Adh clone and sequencing 84 of the mutations
3.3 Cloning of the wild type and mutagenized M13-Adh clones into 88 PVT-U-100
3.4 Transformation of yeast, rescue and sequencing of the whole Adh 90 genes
3.5 Analysis of growth behaviour of the different yeast strains and of 94
ADH activity in crude extracts
3.6 Inmunological analysis of ADH expression 99
4 Purification and characterization of wt and mutant ADH enzymes. 102
Results and Discussion
4.1 Purification of Drosophila ADH from yeast cells 102
4.1.1 Cell harvesting and lysis 102
4.1.2 Ammonium sulphate fractionations and de-salting procedures 102
4.1.3 Anion exchange chromatography 103
4.1.4 Gel filtration chromatography and previous concentrating step 105
4.1.5 General evaluation of the purification protocol 108
4.2 Characterization of the wild type and mutant ADH enzymes 112
4.2.1 Enzyme kinetics 112
4.2.2 Guanidine-induced denaturation studies of Drosophila ADH 134
monitored by circular dichroism and enzyme activity
4.2.2.1 Studies based on enzyme activity measurements 134
4.2.2.2 Circular dichroism monitoring of the denaturation 146 kinetics
4.2.2.3 Comparative studies with horse liver ADH and yeast ADH 147
4.2.3 Thermal denaturation studies of Drosophila ADH 150
5. Computer modelling of Drosophila ADH 153
Introduction, methods, results and discussion
5.1 Introduction 153
5.2 Modelling methods 156
5.2.1 Sequence alignment procedures 156
5.2.2 Secondary structure prediction methods 158
5.2.3 Model construction methods 159
5.2.4 Molecular dynamics methods 162
5.2.5 Quality assessment methods 163
5.3 Results and discussion 165
5.3.1 Sequence alignment and secondary structure predictions. Results and discussion 165
5.3.2 Structure modelling.Results and discussion 172
5.3.2.1 NAD binding site.Results and discussion 178
5.3.2.2 A reaction mechanism hypothesis 185
5.3.2.3 Monomer-monomer binding site.Results and discussion 192
5.3.2.4 Assessment of the structural correctness of the model 196
6. Final conclusions and future work 203
7. Bibliography 206
8. Published article
9. Coordinates of the ADH model in Brookhaven database format

> "Pixo a l'abisme,
> al fons la mar blava, allí el cap de Bagur, aqui el cap de la fava" J.M. de Segarra
"Potser ja seré lluny, però el camí no voldria oblidar-lo perquè sempre sigui benigne i fàcil el retorn. Tancant els ulls veuré de nou la casa i l'heura i el xiprer quan, a sol post, fa de bon seure a sota l'olivera ..."
$\underline{\text { Miquel Martí i Pol }}$
"All science is either physics or stamp-collecting."

Rutherford

Als de casa.

Foreword .

Although the final decision of coming to Scotland was mine there is a group of people who are also to blame, and to be thanked, for suggesting and supporting such move. My family, Montserrat and Professor Roser Gonzàlez-Duarte helped to provide both the opportunity and the necessary encouragement that it took to leave Catalonia.

A part of my learning process since 1989 has been in the field of biochemical research. Dr. Linda Gilmore's supervision has always been enthusiastic and encouraging. I specially appreciate the independence I was given to pursue my research, it did not make life easier but it made it much more interesting.

Eventually Scotland started to become 'home', as friends slowly appeared. I first shared the feeling of being an alien with João, then Myrtle appeared with her wordily sapience. Chickpea not only increased my list of funnily-named friends, but took a fair deal of headaches out of my acquaintance. Malcolm's sense of humour kept my brain active and alert, if only we had had a common language... . Undeservedly Fiona was left with the horrible task of sharing most of these years with me, with her love and maturity she has made all the difference, and is responsible for many magic times.
The 'lab 327 ' people and the crystallography group of the department provided the environment for many discussions, celebrations, questions, answers, fights and all sort of events. I owe them a big deal.

Dr. N.C. Price was another notable scientific stimulus, who must also be thanked for the invaluable help with all the denaturation data and the use of the Stirling CD facility. This facility is run by Sharon Kelly, who, although theologically speaking very distant, made me actually look forward to my visits to Stirling University.

I must also thank Dr. Steve Chapman, for his help to analyze the computer model, and Dr. Joan Fibla for the gift of the anti-ADH antibodies and the technical assistance with the immunodetection.

Drs. Atrian, Albalat, Fibla, Marfany, Gonzalez-Duarte, Ribas, Collet, and Vilageliu, of the genetics department of the University of Barcelona, offered indispensable technical help at many stages of this thesis, they also pushed me forwards with innumerable E-mail messages of support.
The economical support was provided by a British Council/La Caixa fellowship, a faculty of Medicine scholarship and, when everything run out, by my family.
Three friends,Andrea, Cristina and Eugeni, have been in Scotland all the time, with a fantastic reassuring obstinacy. It seems to be impossible to get rid of them, and is just as well.

Finally, I must thank my family. Without them I simply would not have managed. They always offered their help before anyone, and it was always the best help too. This work is for them, I am sure they will understand it better than anyone else.

Abbreviations.

1. Miscellaneous.

A- adenine
Adh- alcohol dehydrogenase gene
ADH- alcohol dehydrogenase enzyme
ATP- adenosine-5'-triphosphate
bp- base pairs
C- cytosine
C- - carboxy-
CD- circular dichroism
cDNA- complementary deoxyribonucleic acid
D. - Drosophila
d- - deoxy-
DNA- deoxyribonucleic acid
ds- double stranded
DTT- dithiothreitol
E. coli - Escherichia coli

EDTA- ethylendiaminetetraacetic acid
FPLC- fast pressure liquid chromatography
G- guanine
GdnHCl- guanidinium hydrochloride
Iso- isopropanol
kb- kilobase
Kcat- catalytic constant
Km- apparent Michaelis constant
LDH- lactate dehydrogenase
Mr - relative molecular mass

NAD- nicotinamide adenine dinucleotide
NADH- nicotinamide adenine dinucleotide reduced
OD- optical density
PAGE- polyacrylamide gel electrophoresis
RNA- ribonucleic acid
rpm- revolutions per minute
SDH- $3 \alpha-20 \beta$ hydroxysteroid dehydrogenase
SDS- sodium dodecyl sulphate
SDW- sterile distilled water
ss- single stranded
T- thymine
Tris- tris (hydroxymethyl) amino methane
Vmax- apparent maximum velocity
wt- wild type
Yeast-Saccharomyces cerevisiae
2. Amino acids :

A Ala Alanine
C Cys Cysteine
D Asp Aspartic acid
E Glu Glutamic acid
F Phe Phenylalanine
G Gly Glycine
H His Histidine
I Ile Isoleucine
K Lys Lysine
L Leu Leucine
M Met Methionine

N	Asn	Asparagine
P	Pro	Proline
Q	Gln	Glutamine
R	Arg	Arginine
S	Ser	Serine
T	Thr	Threonine
V	Val	Valine
W	Trp	tryptophan
Y	Tyr	Tyrosine

Abstract

. Structural and functional studies of Drosophila alcohol dehydrogenase.

The enzyme alcohol dehydrogenase of the fruit-fly Drosophila (DADH) catalyzes the same reaction as the mammalian alcohol dehydrogenases, transforming alcohols into aldehydes through the reduction of nicotinamide-adenine-dinucleotide. Despite this identical chemical behaviour the enzyme's structure belongs to a different class of proteins, called short-chain dehydrogenases, which have a totally different three-dimensional architecture to the mammalian alcohol dehydrogenases. The study of the structure-fuction relationships of DADH is of interest because, while we still lack a crystal structure for the protein, large amounts of biochemical,evolutionary and genetical data have accumulated which require structural information on the enzyme for its proper interpretation.

The aim of this project was two-fold: to set up a suitable system for the undertaking of protein engineering studies on DADH and to start such studies by producing and analyzing a first set of site-directed mutants. The first part of the project involved: a) creating suitable genetic vectors for the introduction of mutations, their sequencing and the expression of the mutated enzymes in yeast; b) the development of a purification method to obtain pure enzyme solutions from the expressing yeast culture; c) the development of biochemical and biophysical assays for the evaluation of the mutation's effects and, d) the construction of a three-dimensional model for the enzyme that could offer structural explanations to such effects.

The second part consisted of the actual introduction of five different mutations in the enzyme's sequence, and their further evaluation using the system set up in the first place.

Declaration :

The work presented in this thesis is the result of my own research unless otherwise stated, and it has not been presented for any other academic degree elsewhere.

Lluís Rib:

Edinburgh, Scotland. 28th of September of 1992.

1.1 Historical review of Drosophila adh research.

The Drosophila alcohol dehydrogenase gene/enzyme system has been the object of scientific analysis for some twenty-eight years. During the same period the appearance of genetic engineering techniques and the massive increase in protein structure information has allowed researchers to gain a more molecular insight into biological problems. This has not only altered the nature of our scientific methodology, but to a large extent it has also turned scientific interests towards questions that are better suited to our new technologies.
The research in the adh system is a very good example of this scientific migration towards more molecular approaches, and, at the same time, it constitutes a rather peculiar case, having remained a good model system for many of the newly appearing research disciplines.

In the 1960's the Adh locus of Drosophila melanogaster started to be used as a genetic marker for population studies (Johnson \& Denniston, 1964). Today the adh system is used in research in ecology, enzymology, molecular evolution, molecular genetics and protein structure (Chambers, 1988).

Highlighting the main breakthroughs of all this scientific effort is, of course, a matter of opinion. However, of special relevance to this thesis must be :
(a) The determination of the sequence of the alcohol dehydrogenase enzyme from D. melanogaster (Thatcher, 1980), (b) the cloning and sequencing of the $A d h$ gene of D. melanogaster (Benyajati et al., 1980), (c) the discovery of the family of the short-chain dehydrogenases into which the Drosophila alcohol dehydrogenases
(DADH) were soon included (Jörnvall et al. 1981), (d) the detailed analysis of the kinetic behaviour of the enzyme (see Winberg et al.,1982a, 1982b, 1983, 1985, 1986, 1988a, 1988b, 1989) and, more recently, the determination of the three-dimensional structure of a member of the short-chain dehydrogenase family, $3 \alpha, 20 \beta-$ hydroxysteroid dehydrogenase (Ghosh et al., 1991).
The determination of the DADH sequence allowed biochemists to start to analyze the structure-function relationships of the enzyme, and, through comparison between the behaviour of various natural and laboratory-induced isoenzymes, start to identify the residues with possible roles in the enzyme's mechanism (Thatcher \& Retzios, 1980). At the same time the first computer analysis of the sequence, in the form of secondary structure predictions, were published (Thatcher \& Sawyer, 1980; Benyajati et al., 1980).
The cloning of the D. melanogaster Adh gene (Benyajati et al., 1980; Goldberg, 1980) confirmed the protein sequence, and set the ground for further extensive research on the molecular regulation of the gene expression.
Most of our knowledge about the kinetics and reaction mechanisms of DADH come from the work of Winberg and collaborators. Their detailed enzymological studies of the enzyme have produced a complete picture of the reaction mechanism, specificity, and order.
Recently, more detailed structural studies have started to be undertaken. This has been due to the appearance of the techniques of site-directed mutagenesis (Kunkel, 1985, Fritz and Eckstein, 1985) and to the availability of the cloned adh gene, which has allowed the construction of expression systems in microbial organisms (Atrian et al., 1990, Chen et al., 1990).

These structural studies, however, lack the vital information that only a three-dimensional structure for the molecule can provide. The publication of the crystallographic structure of a member of the shortchain dehydrogenases family represents a very important step forward (Ghosh et al., 1991). Based on this structure techniques of protein modelling can be used to obtained a realistic picture of the threedimensional organization of DADH.

1.2 The classification of dehydrogenases

The group of enzymes known as alcohol dehydrogenases (E.C. 1.1.1.1), by definition, catalyse the reaction shown below :

$$
\text { Alcohol }+\mathrm{NAD}^{+} \longrightarrow \text { Aldehyde or Ketone }+\mathrm{NADH}+\mathrm{H}
$$

But, despite their identical catalytic reaction, alcohol dehydrogenases do not constitute a uniform family of enzymes with generally applicable characteristics. Today they are divided into three main groups, which, according to their monomer sizes, are named: short-chain, mediumchain and long-chain dehydrogenases with monomers of about 250 , 380 , or 750 amino acids respectively.

The best characterized of the three groups is the medium-chain one, to which the mammalian alcohol dehydrogenases belong. These enzymes form soluble dimers or tetramers, require zinc to carry out their reaction, and prefer primary alcohols to other substrates. They are present in a variety of organisms, from mammals and yeast to plants, being generally involved in the catabolic metabolism of ethanol, often in the form of several isoenzymes displaying tissue and substrate specificity (Brändén et al, 1975). Some members of this family, notably a lens crystallin, lack the metal cofactor or, indeed, any dehydrogenase activity. ξ-Crystallin seems to have evolved towards structural roles but it has kept significant sequence similarity to the rest of enzymes of the group (Borrás et al.1989).

High resolution three-dimensional structures are available for the human and horse liver enzymes, and their catalytic mechanism is very well understood (Eklund \& Brändén, 1987). The structure of each monomer has two domains, a substrate-binding domain in the N terminal half, and a nucleotide-binding domain in their C-terminal half.

Only parts of the nucleotide binding domain show some sequence similarity to the short-chain dehydrogenases, and, as will be described later, their reaction mechanisms are very different. There are few reasons to believe that medium-chain dehydrogenases and short-chain dehydrogenases may have evolved from a common ancestor, and they are frequently pointed to as a classical example of convergent evolution (Brändén \& Tooze, 1991).

The long-chain dehydrogenases form a recently defined group of enzymes, and are, unquestionably the least known of the three groups. These enzymes are found in ethanol fermentative bacteria, and show sequence similarity to methanol dehydrogenases from methylotrophic bacteria. They require pyrroloquinoline quinone as a prosthetic group, and form membrane-bound polyenzymatic complexes with respiratory functions (Inoue et al., 1989).

The third group of dehydrogenases, the short-chain ones, were defined as a class of their own for the first time in 1981 (Jörnvall et al., 1981). The first two known members of this family were the Klebsiella ribitol dehydrogenase and DADH. A glucose dehydrogenase was soon added to the list of members of the group (Jörnvall et al., 1984), and new related enzymes have been discovered, notably among hormone dehydrogenase enzymes. The list of members of the family as of 1991 can be seen in table 1 .

The sequence identity between the different members of the family is generally low, mainly ranging about 25%, and they show a great disparity of substrates. Their sequence similarities, however, are uniform throughout the sequence, their sizes are similar, they all present the same patterns of hydrophilicity and similar secondary structure prediction patterns, none of them uses metal cofactors, and the proposed catalytic residues are conserved throughout the family (Persson et al., 1991).

Enzyme(DH=dehydrogenase)	Species	Reference
Alcohol DH	D.melanogaster (I)	Thatcher, 1980
Glucose DH	B. megaterium (B)	Jany et al., 1984
Ribitol DH	E. aerogenes (B)	Irie et al., 1987
Sorbitol-6P-DH	E. coli (B)	Yamada \& Saier, 1987
Steroid DH	Eubacterium sp.	White et al., 1988
11 β-Hydroxysteroid DH	Rat (M)	$\begin{aligned} & \text { Agarwal et al., } \\ & 1989 \end{aligned}$
17及-Hydroxysteroid DH	Human (M)	$\begin{aligned} & \hline \begin{array}{l} \text { Peltoketo et al., } \\ 1988 \end{array} \\ & \hline \end{aligned}$
20ß-Hydroxysteroid DH	S. hydrogenans (B)	Marekov, Krook \& Jörnvall, 1990
cis-Benzene glycol DH	P. putida (B)	Dothie et al., 1985
Dihydrodiol DH	P.pseudoalcaligenes (B)	Furukawa, et al.,1987
2,3Dihydroxybenzoate DH	E. coli (B)	Liu,et al. 1989
1,2Dihydroxybenzoate DH	P.pseudoalcaligenes (B)	Neidle et al., 1989
FixR protein	B. japonicim (B)	Thöny et al., 1897
NodG protein	R. meliloti (B)	Debellé \& Sharma, 1986
Acetoacetyl-CoA reductase	A. eutrophus (A)	Peoples \& Sinskey, 1989
Acetoacetyl-CoA reductase	Z. ramigera (B)	Peoples \& Sinskey, 1989
Putative oxoacyl reductase	S. coelicolor (B)	Hallam,et al. 1988
Adipocyte P27 protein	Mouse (M)	Navre \& Ringold, 1988
15-Hydroxyprostaglandin DH	Human (M)	Krook, et al. 1990
3ß-Hydroxysteroid DH	P. testosteroni (B)	Yin et al., 1991

Table 1. List of short-chain dehydrogenases. Adapted from Persson et al., 1991. $(\mathrm{I})=$ insect. $(\mathrm{B})=$ bacteria. $(\mathrm{M})=$ mammal.

1.3 The structure of short-chain dehydrogenases

1.3.1 Structural similarities between members of the family

The disparity of enzymes listed in table 1 immediately suggests a large amount of evolutionary divergence between the different members of the short-chain dehydrogenase family. They are, nonetheless, assumed to have a common structure which, if this common fold assumption is correct, has now been revealed with the solving of the three-dimensional structure of the enzyme $3 \alpha, 20 \beta-$ hydroxysteroid dehydrogenase (Ghosh et al., 1991).

Short-chain dehydrogenases form dimers or tetramers of about 250 amino acids per monomer and do not contain metal ions. The members of the family show varying amounts of sequence similarity to each other. In most of the cases sequence identities are about 25%, but they range between 14% to 54% (Persson et al., 1991). The necessary amount of sequence identity required to be able to assume common folding between polypeptides of more than 80 amino acids has been calculated at about 24.8 \% residues (Sander \& Schneider, 1991). This value is very close to the one generally observed between short-chain dehydrogenases.

Other common aspects to all short-chain dehydrogenases support the view of a shared structure. The majority of the enzymes of the family catalyse red-ox reactions with the participation of NAD^{+}, and most of them share a common sequence near the N -terminus of the form GxGxxG (G being glycine and x any amino acid).
ADHs from all Drosophila species have the sequence GxGxxG with the exception of D. lebanonensis which has the sequence $A x G x x G$ (A being alanine) (Villaroya et al., 1989).

The sequence $G x G x x G$ was initially pointed at as a universal feature of nucleotide binding folds (Argos, 1990). It was also suggested that the sequence $G x G x x G$ was universal for all $N A D^{+}$specific dehydrogenases while those using NADP ${ }^{+}$had the sequence GxGxxA (Scrutton et al., 1990). Scrutton and collaborators (1990) proposed that the substitution of the last residue of this sequence to alanine or glycine should be enough to shift the cofactor specificity of any nucleotide binding fold. Their proposal was strongly supported by their experiments on glutathione reductase (Scrutton et al., 1990).

This view, however, has been challenged by the work of Lilley and colleagues (1991), who have discovered the opposite specificity relationship between the last base of the sequence and the cofactors NAD^{+}and NADP^{+}in the enzyme glutamate dehydrogenase of Clostridium symbiosum. This enzyme is highly selective for NAD^{+} despite having the sequence GxGxxA in its nucleotide binding fold.

Their results, and the sequences of the short-chain dehydrogenases, indicate that the structure and specificity of the poly-glycine loops of nucleotide binding folds do not only depend on the exact sequence and distribution of the glycine residues.

Proteins	residues	sequence
Glyceraldehyde phosphate DH	$1-15$	SKIGIDGFGRIGRLV
Lactate DH	$21-35$	NKITVVGVGAVGMAC
Horse liver alcohol DH	$193-207$	STCAVFGLGGVGSVI
Drosophila alcohol DH	$8-22$	NVIFVAGLGGIGLDT
Glutamate DH	$233-247$	KTVALAGSGNVABWGA

Table 2. Sequence alignment of the poly-glycine loop of nucleotidebinding domains of some NAD^{+}-specific dehydrogenases (DH).

The poly-glycine motif was identified as soon as the first sequences of DADH were obtained, and the presence of a nucleotide binding domain at the N-terminus of the enzyme was hypothesized on the basis of its presence and from secondary structure predictions (Thatcher \& Sawyer, 1980; Benyajati et al., 1980). At the time a two domain structure for the enzyme was proposed, clearly influenced by the known structure of horse liver alcohol dehydrogenase (Eklund et al., 1976). The presence of an N-terminal nucleotide binding domain and of a C-terminal substrate binding domain was hypothesized. This view has been proven to be wrong with the solving of the $3 \alpha, 20 \beta-$ hydroxysteroid dehydrogenase structure.
Another part of sequence shared among all short-chain dehydrogenases is found between positions 150 and 160 (DADH residue numbers will always be used unless otherwise stated otherwise). Tyrosine 152 and lysine 156 are conserved in all the sequences, and have been pointed to as the possible amino acids involved in the proton transfer reaction (Krook et al., 1990). In fact, site-directed mutagenesis of the conserved tyrosine to phenylalanine or alanine render DADH, or 15-hydroxyprostaglandin dehydrogenase respectively, completely inactive (Albalat et al., 1992; Ensor \& Tai, 1991).
A common fold for all the members of the family finds further confirmation in the similarity of sequence-based analysis, like hydrophobicity plots and secondary structure predictions (Persson et al., 1991).
Several secondary structure predictions for DADH have been published (Thatcher \& Sawyer, 1980; Benyajati et al., 1980; Ribas de Pouplana et al., 1991). They show values of secondary structure typical of a soluble, globular protein, and seem to detect an alternation of helices and strands in the N -terminal part of the enzyme.

Circular dichroism analysis of DADH (Ribas de Pouplana et al., 1991; see results section) gave a value of helical structure of about 28%, and a value of β-strand of about 40%, very similar to the secondary structure contents of horse liver alcohol dehydrogenase (Eklund et al., 1976).

1.3.2 The structure of $3 \alpha, 20 \beta$ hydroxysteroid dehydrogenase.(SDH)

The solving of the structure of SDH (Ghosh et al, 1991) is one of the main steps towards an understanding of the family of the short-chain dehydrogenases.
Contrary to the predictions, the tetrameric SDH is composed of four single-domain monomers. Each monomer constitutes a classical $\alpha-\beta$ alternating mononucleotide binding fold, somehow resembling a cubical structure. Such a cube is composed of three layers of secondary structure : an internal, parallel β-sheet, packed on both sides by $\alpha-$ helices. SDH has both the cofactor and the substrate binding sites in the superior side of the cube, at the C-terminal side of each β-strand (figure 1-I).
Each monomer has two main interaction sites with other monomers. One contact involves the pairing of the C-terminal β-strand of the β sheet of one monomer to the C -terminal β-strand of another monomer.

These two adjacent β-strands form an antiparallel and unconnected hairpin, practically creating a 14 -stranded β-sheet that expands along both monomers. The active sites of each monomer are placed at the opposite faces of the dimer.
If, for the sake of clarity we take the described dimer as a unit, the tetramer is then formed by the lateral assembly of two such units, through the interaction of helices E and F (and their preceding turns) of each monomer with the same helices and turns of an equivalent
monomer from the second unit.(figure 1-II). Of course the real assembly order of the monomers is not necessarily the one used for the description of the quaternary structure of the enzyme.

Figure 1-I. Schematic representation of the SDH structure. The top view is perpendicular to the B -sheet. The bottom view looks down the B-sheet from the C-terminal end of the strands.

The putative binding site for the steroid substrate of SDH is placed by Ghosh and coworkers just above strand F, closely in contact with its Cterminal loop $\left(\lambda F^{\prime}\right)$. This binding site would have some structural contributions from the loop $\lambda \mathrm{G}$, from the adjacent subunit. However, this positioning is still hypothetical, since no steroid or substrateanalogue was present in the crystals used for data collection.

Figure 1-II. Schematic representation of the assembly of the SDH tetramer. (a) monomer. (b) Dimer formation through pairing of the Cterminal strands of their B-sheet. (c) Pairing of dimers along helices-D and -E.

Of more relevance to this project is the architecture of the NAD^{+} binding site. The crystals of SDH used for the determination of the enzyme structure had been grown in the presence of 4 mM NADH. A region of electron density was assigned by Ghosh et al. to the cofactor structure. This solution locates the cofactor molecule in a totally different position from the one previously found in other dehydrogenases.
The NADH molecule in SDH is bound to a cleft generated by N terminal ends of α-helices B, C and D; C-terminal ends of β-strands A, B and C and midsections of βD and αE.

The nicotinamide end of the coenzyme is buried, in contact with residues Ile11 to Arg16, Ala36 to Leu39, Ala88 to Ile90 and Ile110, its carboxamide group being at hydrogen bonding distance of Asp 37, a residue conserved in most nucleotide binding folds (Eklund \& Brändén, 1987). The ribose ring of the cofactor is close to Ile10, while its adenine moiety is sandwiched between Trp67 and Ile117.
The cofactor is in an extended conformation, $2 \AA$ longer than observed in medium-chain dehydrogenases (Eklund et al., 1984).

An approximate comparison of the relative positioning of the NAD^{+}cofactor in medium-chain dehydrogenases and in the SDH structure is shown in figure 1-III. The cofactor in SDH is located much more externally than in other nucleotide binding folds.

As a consequence, the residues that in other dehydrogenases make contacts with the adenine (exterior) part of the cofactor in SDH are located around the nicotinamide region, close to the supposed reaction centre.

Figure 1-III. Schematic representation of the cofactor positioning in the nucleotide binding fold of horse liver alcohol dehydrogenase (top) and in SDH (bottom).

This result is in apparent contradiction with other published observations from mutagenesis and kinetic experiments (Winberg, 1989; Chen et al., 1991). The poly-glycine loop, at positions 14 to 19 , is, as mentioned earlier, a common feature of many nucleotide binding folds. Its role in the structure is meant to be that of allowing a very sharp turn of the polypeptide backbone in that area, thus providing the necessary space for entry of the cofactor into the binding cleft.

The relative positioning of this loop with the cofactor is invariable in all dehydrogenases: always being contiguous to the phosphate chain of the cofactor (Eklund \& Brändén, 1987). In SDH the poly-glycine loop is located close to the nicotinamide end, near what would be expected to be the reaction centre of the enzyme.

Another conserved residue in most dehydrogenases (including SDH) is Asp38. Its role in medium-chain dehydrogenases is that of providing a hydrogen bond between the enzyme and the ribose of the adenine moiety of the cofactor. Its mutation in DADH affects the recognition of the cofactor by the enzyme (Chen et al., 1991; this thesis) in a way that suggests that it could play a similar role to that in medium-chain dehydrogenases.

The mutation of Asp38 to Gln changes the enzyme's specificity towards NADP ${ }^{+}$(Chen et al., 1991), again suggesting that the residue is in close proximity of the adenine ribose of the coenzyme. In SDH, however, Asp38 is in hydrogen-bonding distance of the carboxamide group of the nicotinamide moiety. It is important to notice that in the SDH structure another negative residue, Glu65, has a relative position with the adenine ribose of the NAD^{+}similar to the one of Asp38 in other medium-chain dehydrogenase structures.

Clearly, the positioning of the cofactor in the SDH structure is in contradiction with the function of the mentioned residues in other studied enzymes and with biochemical data obtained for other shortchain dehydrogenases. Although the origin of the identical residues in nucleotide binding folds is still in dispute; whether evolutionary remains of a common enzyme or product of convergent evolution, one would expect their function to be the same, since a common role is the only obvious reason for their appearance in so many different proteins.

A number of possibilities could explain the discrepancies between the positioning of NAD^{+}in the SDH structure and the rest of data in the subject.
a) The NAD^{+}binding site of SDH has changed in respect to other dehydrogenases to accommodate larger substrates than alcohols.
b) There are more than one possible NAD^{+}binding positions in SDH. It is known that the enzyme is capable of recognizing its steroid substrate in two different orientations and catalyses the dehydrogenase reaction with both extremes of the steroid molecule (Ghosh et al., 1991). This suggests a large degree of flexibility in the architecture of the reaction centre. Perhaps such flexibility is in part achieved through differential positioning of the cofactor molecule.
c) Short-chain dehydrogenases have a different binding mechanism for NAD^{+}from the rest of dehydrogenases. As mentioned, this is in contradiction with the data on DADH, but this possibility can not be ruled out until structures for other short-chain dehydrogenases are obtained.
d) The cofactor position in the SDH is an artefact of crystallization.

To summarize, the solved structure of SDH probably shows the general fold of all short-chain dehydrogenases. This structure can now be used to model the structures of other members of the family. The binding site for the substrate proposed by Ghosh and colleagues is hypothetical, and in any case, can not be used to make predictions about the substrate binding site of other short-chain dehydrogenases that oxidize very different molecules. The cofactor positioning in the SDH is novel, and in contradiction with biochemical data obtained for DADH. The reasons for this discrepancy are not clear, and can not be analyzed in depth as, unfortunately, Gosh and colleagues have not
released the whole set of published data to the Brookhaven protein data bank for public examination. This unreleased data and the solving of other short-chain dehydrogenases's structures will be required to understand these structural discrepancies.

1.4 The biochemistry of Drosophila alcohol dehydrogenase.

1.4.1 The $A d h$ gene and its regulation.

The enzyme alcohol dehydrogenase of Drosophila melanogaster is encoded by a single gene, located at position 50.1 in the left arm of the second chromosome (Grell et al., 1965). The function of the gene is to produce high levels of ADH (around 1% of total protein) in larvae and adults. The gene was cloned simultaneously in two different laboratories, during the early stages of gene cloning and construction of genetic libraries (Maniatis et al., 1978; Goldberg, 1980). The total length of the gene is 903 base pairs (bp), and it contains two small introns of 65 and 70 bp , respectively.
The first intron is located between codons 32 and 33, the second one between codons 167 and 168 (Benyajati et al., 1980). The Adh gene of D. melanogaster is unusual in that it has two different promoters, (distal and proximal, with respect to the ATG codon) which regulate the expression of the gene at different stages of development (Benyajati et al., 1983).

In larvae, transcription begins from the proximal promoter, located 70 bp 5 ' to the ATG. This transcript ends with a short 3^{\prime} noncoding segment, that includes the polyadenylation signal. In adults, the transcription begins at the distal promoter, located some 700 bp 5 ' to the proximal promoter, and the transcripts require the splicing of a
large extra intron of 654 bp to produce the mature mRNA (Sofer \& Martin, 1987). The final polypeptide is identical in both cases, and the reasons for the different promoters are not clear.
An isolated transcription factor that initiates expression from the distal promoter is implicated in the regulation of, at least, two other Drosophila genes (dopadecarboxylase and antennapedia) (England et al., 1990), so it seems likely that the differential use of promoters may be connected to more global changes in gene expression programs during development. The structure of the gene is shown in figure 1-IV.
The research on the molecular regulation of the Adh gene expression has unveiled a fascinating and extremely complex mechanism of control. Many questions remain unanswered, and the Adh expression system is probably one of the more intensively studied models for eukariotic gene regulation. The description of the system is beyond the scope of the this thesis (for a review see Chambers, 1991).
(a)

Larval or proximal RNA

Adult or distal RNA

(b)

Figure 1-IV. (a) Structure of the genomic region of $A d h$ in D. melanogaster. The boxes represent the exons of the gene. D.P.= distal promoter, P.P. = proximal promoter. Dashed lines represent the untranslated regions of the mRNA, including poly-A signals. (b) The level of expression of the distal and proximal mRNA's during development. The black area represents maternal mRNA. Hatched areas represent proximal mRNA and dashed ones distal mRNA. ($\mathrm{L}=$ different larval stages, $\mathrm{pP}=$ prepupae, $\mathrm{P}=$ pupae, $\mathrm{A}=$ adult)

1.4.2 The $A d h$ product, allelic variation.

1.4.2.1 Allelic variation within D. melanogaster.

The variation among Adh alleles within D. melanogaster has been characterized both at the genetic and biochemical levels. The genetic variation has been extensively analyzed by Kreitman and collaborators (Kreitman, 1983; McDonald \& Kreitman, 1991).

In an attempt to study the mechanisms of genetic evolution, the sequences of eleven $A d h$ genes from five different populations of D. melanogaster were compared (Kreitman, 1983). Out of 43 genetic polymorphisms only one was a non-silent change, which resulted in the substitution of Lys 192 by Thr. This very low ratio of substitutions to silent mutations was interpreted as an indication of a high selective pressure upon mutation. This nucleotide change defines the two main isoenzymes found in natural populations: ADH-F (with Thr192) and ADH-S (with Lys192). Other isoenzymes are known and will be described later on, but their frequency of appearance is very small compared to the one of the F and S isoenzymes.

From the distribution of the polymorphisms Kreitman was able to divide the eleven sequences into two groups. Those groups actually separated the F alleles from the S alleles. Only three different polymorphisms distinguished the two groups, suggesting a recent separation event, but the group of $A d h-\mathrm{S}$ showed more heterogeneity within itself than the $A d h-\mathrm{F}$ group. This suggests that $A d h-\mathrm{S}$ was the ancestor allele. Interestingly a similar two-group classification has come out of the biochemical analysis, which separates the molecules between isoenzymes with Lys and Thr at positions 192.

The biochemical analysis of the melanogaster isoenzymes has been carried out by different groups over the years (Day et al., 1974; Winberg et al., 1982; Chambers et al., 1984). Chambers and collaborators analyzed thirteen different ADH variants from different populations (see table 3). The analysis of the mobility of the isoenzymes in isoelectrofocusing gels gave four different groups of enzymes, namely ultraslow (isoenzyme ADH-US), slow (isoenzymes ADH-S and ADH-Ss), fast (isoenzymes ADH-F, ADH-FChD, ADH-F71K, ADH-Fr, ADH-Fs and ADH-FR.city) and ultrafast (isoenzymes ADH-UF and ADH-D).

Classically, ADH isoenzymes have been classified using this method because it allows a fast determination of the allelic content of many individuals. Hence, for example, ADH-F (for "fast") migrates further in isoelectrofocusing gels than ADH-S (for "slow"), due to the mentioned substitution of a Lys in ADH-S for a Thr in ADH-F, at position 192. However, the method only provides information about the isoelectric point of each variant, and so other biochemical parameters are necessary to compare the functionality of isoenzymes.

Drosophila ADHs are more active with secondary alcohols than with primary ones (Winberg et al., 1982). An activity ratio was defined as the ratio of activity recorded with propan-2-ol to that recorded with ethanol (Gibson et al., 1980). This ratio, plotted against the specific activity with propan-2-ol, was used to compare the thirteen ADH variants.

Isoenzyme	Phenotype com- pared to ADH-S	Distribution	Changes relative to ADH-S
ADH-US	Ultra-slow mo- bility.	Africa	not sequenced
ADH-Ss	Heat sensitive	N. America	not sequenced
ADH-S	Standard ADH-S	World-wide	Standard
ADH-F	See text.	World-wide	Lys192 to Thr
ADH-Fr (a)	Heat-stable	N. America	Lys192 to Thr Pro214 to Ser
ADH-FChD	Heat-stable	Australia	Lys192 to Thr Pro214 to Ser
ADH-71K (a)	Heat-stable	Laboratory	Lys192 to Thr Pro214 to Ser
ADH-FR.city	Heat-stable	N. America	not sequenced
ADH-F'	Stable enzyme	Africa	Ala 51 to Glu
ADH-UF	Ultra-fast mobi-	Spain	Asn8 to Ala
lity	Ala45 to Asp		

Table 3. Data from Chambers, 1988. (a) Updated in Chambers, 1991.
The reference sequence is that of ADH-S (Ashburner, 1985).

The result of the comparison clearly suggested the presence of two different classes of enzymes : an ADH-S-like group, with values of activity ratio between 4.14 and 4.86 , and an ADH-F-like group with variants of activity ratio between 6.16 and 7.44. The members of the F group had higher specific activities than the S -like isoenzymes.

In general, those enzymes with Thr192 belonged to the F functional class, although not necessarily to the F-mobility class. Similarly most functionally S-like isoenzymes had Lys192, although their mobilities were not necessarily S-like. This clearly suggested that the residue at position 192 was the determinant of the functional nature of the isoenzyme, while the other changes present in the compared ADHs had little effect on the functionality of the molecule, although they affected the electrophoretic mobility.

The determination of proper kinetic constants with purified enzymes was carried out by Winberg and collaborators (Winberg et al., 1982a, 1985). The isoenzymes ADH-F, ADH-UF and ADH-S and the ADH from D. lebanonensis were purified and compared. The main difference between ADH-S and the F-class enzymes is that the former binds NAD^{+}more tightly. Winberg and colleagues (1983) proved that the release of the cofactor was the rate-limiting step in the ADH reaction. Hence the higher affinity for NAD^{+}showed by ADH-S must be responsible for its lower specific activity, and it suggests a positioning for residue 192 in proximity to the cofactor.

An exception to the two class distribution of isoenzymes is the thermo-stable enzyme ADH-FChD, which belongs to the S-like functional class but has a Thr192, thus having F-like mobility. This enzyme has a specific activity half the way between ADH-F and ADH-S, but an activity ratio very similar to ADH-S. ADH-FChD, in fact, belongs to a whole subgroup of thermo-stable isoenzymes : ADHFChD, ADH-FR and ADH-71K. These were initially found as isolated polymorphisms in different parts of the world, but the sequencing of the different enzymes has revealed a single change for all of them with respect to the isoenzyme ADH-F: Pro214 to Ser (Chambers, 1991).

These isoenzymes display a marked increase in thermal stability (Chambers, 1984; Hernandez et al., 1986), retaining 75% of the activity after 60 minutes at $44^{\circ} \mathrm{C}$; a temperature at which, after 40 minutes, ADH-F and ADH-S lose all activity (Chambers, 1984). As already mentioned, a comparison of their biochemical properties reveals that these isoenzymes are more similar to ADH-S than to ADH-F, despite the fact of having a threonine at position 192. Clearly the Pro214 to Ser substitution has a double effect: it increases the stability of the enzymes and, at the same time, decreases their specific activity, perhaps increasing the strengths of binding to the cofactor. Interestingly, no ADH-S with a Pro214-Ser mutation has been described. The investigation of this observation is part of the subject of this thesis.

1.4.2.2 Allelic variation of Adh /ADH in the genus Drosophila

A great deal of research has been dedicated to comparing the characteristics of the Adh genes and their products from different species of Drosophila, mostly with a view to unravelling the neutral or adaptive nature of their genetic evolution.
The genus Drosophila is divided into various radiations, or subgenera, which, in turn, separate into groups and subgroups. The two radiations that have been more intensively studied are Sophophora and Drosophila, which are thought to have diverged approximately 40-60 million years (Myr) ago (Beverley \& Wilson, 1985). Once again, the research on the variation of the Adh /ADH system has concentrated on : a) the genetic polymorphisms between species, and b) the biochemical differences in the ADH enzymes.

Many Drosophila Adh genes have been cloned and sequenced to date, and every article reporting a new sequence invariably compares it to those previously reported from different species (Kreitman, 1983; Coyne and Kreitman, 1986; Bodmer and Ashburner, 1984; Schaeffer and Aquadro, 1987; Rowan and Dickinson, 1988; Fischer and Maniatis, 1985; Atkinson et al., 1988).
For the sake of clarity I will divide the gene in 5 ' regulatory sequences, coding region (including introns) and 3^{\prime} genomic regions. The regulatory sequences at the upstream end of the gene are very different between the members of the subgenera Sophophora and Drosophila. In the former two different promoters exist, as described previously. In the case of some members of the Drosophila radiation, like D. mulleri, D. mojavensis and D. hidey, the system is totally different : the gene has been duplicated and one of the copies has a larval promoter while the other gene has an adult promoter (Fischer and Maniatis, 1985, Atkinson et al., 1988). Other members of this subgenus like D. affinisdisjuncta, however, have a two promoters structure, similar to D. melanogaster (Rowan \& Dickinson, 1988). This variation in promoters organization makes finding an explanation to the different expression mechanisms very difficult, because D. affinisdisjuncta, belonging to the subgenus Drosophila, is a much closer species to D. mulleri than to D. melanogaster, which, confusedly, belongs to the subgenus Sophophora.
In the coding region the general structure of the genes is similar, and the two introns found in the Sophophora group keep the same approximate length and position in all the species analyzed. A striking observation is a different grade of mutability in different parts of the coding region.

This phenomenon was first described by Bodmer and Ashburner, and has been confirmed in other genes. There is a significant difference in substitutive mutation accumulation between the three exons of the gene, with exon three accumulating more mutations than one and two, and number two being the most conserved of the three.

Despite the lack of structural evidence this distribution of mutation rate was speculated to be due to conformational constraints, which were connected to the distribution of functional domains in the enzyme. It was suggested that the cofactor and substrate binding sites would be encoded by exons one and two (Bodmer and Ashburner, 1984; Schaeffer \& Aquadro, 1987). More surprising was the finding that the rate of silent mutation was also nonrandomly distributed, showing a similar pattern as the one found for the substitutive mutations. This observation can be explained by unknown mutational constraints in supposed silent sites or by a change of mutational rates across the gene (Schaeffer and Aquadro, 1987).

The overall amino acid variability encoded by the different genes does not exceed 30% even in very distant species like D. affinisdisjuncta and D. melanogaster (79% identical). This is not surprising when we consider that all the comparisons are made within a single genus.
The downstream region of the gene had been shown by Kreitman (Kreitman, 1983) to have a high degree of conservation. During their analysis of this part of the D. pseudoobscura gene, Schaeffer and Aquadro (1987) discovered an open reading frame, which had a high sequence identity with the Adh gene. This was proposed to be the result of an ancient duplication of the gene. Such gene duplications have been detected at the 3 ' end other Adh genes (Atkinson et al., 1988, Marfany and Gonzàlez-Duarte, 1991).

Their transcription to mRNA has been proven but their translation product, if any, has not yet been identified (Schaeffer \& Aquadro, 1988).

The biochemical characterization of the ADH enzymes from different Drosophila species has been the subject of intense research, in an attempt to find a correlation between the observed genetic variations and functional differences, either in the enzyme or the metabolism of the whole fly. The different species of Drosophila studied (mainly by the group of Gonzàlez-Duarte : Juan \& Gonzàlez-Duarte, 1980; Atrian \& Gonzàlez-Duarte, 1982; Atrian \& Gonzàlez-Duarte, 1985; Winberg et al., 1986; Hernández et al., 1988) occupy very different ecological environments. The main physiological variable concerning the ADH enzyme is, of course, the amount of alcohol present in the media, and most of the studies attempted to find correlations between the activity of the ADH enzyme of each species with its resistance to alcohols, and the amount of them that the flies are likely to encounter in the wild.
Large variations of ADH activity can be found in crude extracts of different flies, and these, generally, correlate well with the kind of environment where the flies are found. In most cases the species more resistant to alcohol ingestion were the ones with higher ADH activity in crude extracts (Atrian \& Gonzàlez-Duarte, 1982). However, when the enzymes were purified and their kinetic characteristics obtained they were found to be quite similar to each other in terms of affinity for substrate and cofactor, and in specific activity (Atrian \& GonzàlezDuarte, 1985).

A variation was found in the amount of enzyme that could be recovered from each species, suggesting that the difference in ethanol tolerance depends on the amount of active enzyme in the fly more than on the specific activity of the enzyme.

This could be due to increased expression or a lower turn-over, which, in turn, could be a function of the enzyme's sequence-induced stability. The possible structural effects of the characterized polymorphisms will be discussed in 1.3.5.
Although the amount of ADH activity per fly, their resistance to ethanol and their presence or absence in alcohol-rich environments correlate quite well, there are some exceptions. D. simulans, a sibling species of D. melanogaster that has a somewhat smaller amount of ADH activity to D. melanogaster, completely avoids the alcoholic environments where D. melanogaster thrives. Possibly, this indicates that ecological behaviour is a function of a large variety of factors, not necessarily limited to ADH metabolism.

The kinetic parameters for many different pure Drosophila ADH enzymes have been obtained. In general, and despite sequence differences of up to 21%, as in the case of D. lebanonensis and D. melanogaster, their kinetic values are similar (Winberg et al., 1986; Atrian \& Gonzàlez-Duarte, 1985). Enzymes purified from flies, bacteria (Chen et al., 1990), or yeast (see results section), show the same catalytic uniformity.
The Km for NAD^{+}is around $200 \mu \mathrm{M}$ for most species, Km 's for propan-2-ol are in the order of 1 mM and the ones for ethanol about 8 $\mathrm{mM} . \mathrm{k}_{\text {cat }}$ values for isopropanol are around $7 / \mathrm{sec}$, and for ethanol around $4 / \mathrm{sec}$. The variability in catalytic activity is also small, and ADH-S and ADH-F differ from each other by a maximum factor of three. A certain amount of variability in these values can be found in the literature, probably the more reliable measures are the ones by Winberg and collaborators (Winberg et al; 1982a, 1985, 1986, 1988a) because the authors developed and used a method for the quantification of enzyme active-sites in solution.

It is clear that the amount of polymorphism encountered in different Drosophila ADH isoenzymes does not result in large kinetic variation. The only reported kinetic value that significantly differs from the rest is the Km for isopropanol of the ADH from D. affinisdisjuncta (Green et al., 1989), which is about two orders of magnitude higher than the mean value of the rest of species. This enzyme, expressed and purified from bacteria, has a Km value for NAD^{+}of the same order as in other species, and a similar specific activity. Unfortunately, the kinetic constants for ethanol are not reported by the authors.

It seems clear from the studies at the genetic level that there is a strong evolutionary pressure against changes in the genome that result in amino acid variation. At the same time, most of the polymorphisms at the protein level seem to have little effect on the enzyme's catalytic mechanism. Also, Middleton and Kacser have reported that the variations in ADH activity due to genetic polymorphisms do not cause variation in the metabolic flux of alcohol utilization (Middleton \& Kacser, 1983). This seems to be in good agreement with Kimura's neutral evolution theory, where most changes would be deleterious, and the majority of the non-deleterious would be neutral (Kimura, 1983).

In contrast to this fact, McDonald \& Kreitman (1991), with a simple analysis of the ratios of amino acid substitutions to silent mutations between and within species, conclude that such ratios can not be explained by a neutral theory of evolution. They find many more amino acid replacements compared to silent mutations between species than within single species. If neutral evolution was the main cause for sequence variation those rates would be expected to be equal both between and within related species.

If there is an effective selective pressure behind the sequence variation in ADH it does not seems to be working solely on the catalytic properties of the enzyme. As mentioned before, there may be many possible factors involved in the suitability of a specific gene or protein sequence. If the amount of ADH is important for the metabolism of the fly, as the results described earlier suggest, then the stability of the enzyme and its levels of expression may be more relevant factors than catalytic alcohol dehydrogenase activity. Perhaps the differences found in stability between the ADHs of different species are showing a selection trend (Atrian \& Gonzàlez-Duarte, 1985).

The amount of gene expression is related to the codon usage in each species (Grantham et al., 1981), and a difference in third-codon position nucleotide content has been reported between the subgroups Drosophila and Sophophora (Starmer \& Sullivan, 1989). This difference in third-base frequency seems to be specific for the Adh gene, and it could mean that the evolutionary pressure concerning Adh is applied at the expression level by altering the third-base frequency.

The third-base nucleotide content between the three species studied by McDonald \& Kreitman (1991) are similar, as they used members of the Sophophora group only. This means that their definition of silent mutations is correct. But codon usage values will have to be taken into consideration when defining the concept of silent genetic change if comparisons between Drosophila groups are to be made.

Finally, it has to be mentioned that the metabolic role of Drosophila ADH is far from well understood, having even been suggested that the enzyme could be involved in pheromone metabolism (Winberg et al., 1982b) (see 1.4). Clearly, no explanation for the observed non-neutral evolution can be offered until the role of ADH is clear.

1.5 The enzymology and structure of Drosophila ADH

As mentioned previously, most of the enzymological research on Drosophila ADH has been carried out by Winberg and colleagues (see Winberg et al., 1982a, 1982b, 1983, 1984, 1985, 1986, 1988, 1988b, 1989). Their analysis of the catalytic mechanism of the isoenzymes ADH-F, ADH-S and ADH-UF of D. melanogaster and the ADH enzyme of D. lebanonensis offers a large amount of information concerning the architecture and mechanism of the active site, the nature of the residues involved in catalysis, and the differences between isoenzymes.

1.5.1 The mechanism and kinetics of the cofactor binding and reduction

The nucleotide-binding site of Drosophila ADH is supposed to be very similar to the one found in medium-chain dehydrogenases. As seen in section 1.2.2, this is confirmed by the structure of $3 \alpha-20 \beta$ SDH.

It was found that the reaction catalysed by Drosophila ADHs follows a compulsory-order mechanism, where the cofactor binds first, followed by the alcohol (Winberg et al., 1985, 1986, 1988a). In the case of secondary alcohols the dissociation of the enzyme-NADH complex (ER) becomes the rate-limiting step of the reaction. This is due to the high binding affinity between the enzyme and NADH, which makes the release of the reduced coenzyme a slower process than the proton transfer. As a consequence, the strength of binding of the enzyme to the coenzyme is directly related to the kinetic efficiency of the reaction, and the isoenzymes that show strongest binding to NAD^{+}have the lowest specific activities.

Similar to horse-liver ADH (LADH), the analysis of the pH dependence of the cofactor-enzyme complex formation showed that the enzyme-NAD ${ }^{+}$complex (EO) was inhibited by the protonation of two groups with pKs of 6.5 and around 9 , respectively.

The ER complex, on the other hand, was only dependant on the protonation of a group with a pk of around 8. (Winberg \& McKinleyMcKee, 1988a).

This implies that a group with a pk of 6.5 is responsible for the inhibition of the formation of the EO complex but not of the ER complex, hence this group must interact with the nicotinamide end of the cofactor. This situation is similar in LADH, where residue His51 binds to the oxygens of the nicotinamide ribose and is suggested to repel the oxidized cofactor when positively charged.
The ADHs of D. melanogaster have four histidines, two of which can be chemically modified (Thatcher, 1981), but inactivation results from the modification of only one of them (Retzios, 1982), and can be protected by the cofactors NAD^{+}and NADH.
Another residue that affects coenzyme binding is Lys or Thr192. As described before, position 192 is the only amino acid difference found between ADH-F and ADH-S. These isoenzymes differ in the strength with which they can bind NAD^{+}, with ADH-S (Lys192) having a stronger interaction than ADH-F (Thr-192).
If thio- NAD^{+}is used, the difference is abolished and the binding in ADH-S takes ADH-F-like values, suggesting that Lys192 interacts with the nicotinamide part of the cofactor, possibly binding to the carboxamide group. Lys 192 could be the residue that, in ADH-S, shows a pk of about 9.2 affecting the coenzyme recognition. The pH dependence of this process has not been determined in the Thr 192 containing enzymes (Winberg, 1989).

Drosophila ADH contains two cysteines and no disulfide bridges, and these cysteines have been pointed at as possible catalytic residues. Their chemical modification was shown to abolish enzyme activity, while the presence of the coenzyme protected them against chemical attack (Thatcher, 1977, 1981; Chambers, 1984).
However, the substitution of both cysteines to alanines did not affect the enzymes activity (Chen et al., 1990), proving that they are not involved in the reaction mechanism. Nevertheless, they might be in contact with the coenzyme and the substrate, which would explain the observation that both substrate and cofactor protect Cys218 against chemical modification. Interestingly, the binding of substrate and coenzyme seems to make Cys135 accessible to chemical attack (Chen et al., 1990).

The investigation of the pH dependence of the ER and EO dissociation process showed the existence of a group, with a pk of 7.6 whose protonation increases EO dissociation. Protonation of the same residue also unstabilises the binding of alcohols and ethanol competitive inhibitors to the EO complex (Winberg et al., 1988). Since this group does not affect acetaldehyde binding or NADH dissociation in the pH range 6 to 10 , it must have a pk higher than 10 when in the ER complex. Winberg and collaborators compared this behaviour to the pk's of the zinc atom in medium-chain enzymes, which are 9 in the free enzyme, 7.6 in the EO complex and 11.2 in the ER complex (Winberg et al., 1988; Petterson, 1987). This residue has not been determined in Drosophila, although Tyr152 seems to be the a probable candidate, in view of its total conservation and because its substitution abolishes all enzyme activity (Krook et al., 1990; Ensor \& Tai, 1991; Albalat et al., 1992).

Other residues are known to affect the binding of the coenzyme to the enzyme. As described earlier isoenzymes where the residue Pro214 is changed to Ser show increased thermal stability and a reduction in specific activity that makes them more similar to ADH-S despite the fact that they contain Thr at position 192. This effect is due to an increase in the binding energy to NAD^{+}, which suggests that this mutation occurs in the proximity of the cofactor binding site or somehow modifies it.

At positions 1 and 82 respectively, all D. melanogaster isoenzymes have Ser and Gln, while ADH from D. simulans has Ala and Lys. The binding of the D. simulans ADH to the coenzyme is stronger than in ADH-S from D. melanogaster, and it results in an even smaller catalytic activity (Bodmer \& Ashburner, 1984; Winberg, 1989).

This suggests that residue 82 is involved in the binding of the cofactor (since residue number 1 is in an extremely variable region of the enzyme, and is very likely to have a disordered structure). A possible role of this residue is suggested by a computer model for the structure of Drosophila ADH (see modelling section of this thesis).

Asp38 is a conserved residue in most nucleotide-binding folds where it hydrogen bonds to one of the hydroxyl groups of the adenine ribose of the cofactor (see 1.2.2). As discussed earlier, in SDH this residue seems to have a different relative positioning in respect of the coenzyme, and a glutamic acid at position 65 seems to be closer to the adenine ribose of the cofactor. In the light of a multiple sequence alignment it has also been suggested that another aspartate residue (Asp64) maybe the conserved aspartate in the nucleotide binding folds of short-chain dehydrogenases (Persson et al., 1991).

However these observations are in contradiction with experimental results that sustain that Asp38 of D. melanogaster ADH interacts with the cofactor in a similar way to the seen in medium-chain dehydrogenases (discussed in 1.2.2)(Chen et al., 1991).

Site-directed mutagenesis experiments have demonstrated the anticipated proximity of the poly-glycine sequence G-X-G-X-X-G, at positions 14-19 to the cofactor (Chen et al., 1990; Results section of this thesis). The mutation of Gly14 to alanine reduces the enzymes activity to 30%. Its mutation to valine totally inactivates the enzyme (Chen et al., 1990; Results section of this thesis). This is in perfect agreement with the structural role assumed for this part of the sequence, that is, to provide an empty space to allow the accommodation of the cofactor inside the binding-site. As predicted the bigger the group that is introduced into the sequence the larger the effect on the enzyme's mechanism, presumably because of increasing distortion of the nucleotide recognition. The mutation of Gly19 to Ala, also affects the structure of the nucleotide-binding site (Results section of this thesis).

1.5.2 The recognition of the substrate and kinetics of its oxidation

All Drosophila ADHs are more efficient oxidizers of secondary alcohols like propan-2-ol than of primary alcohols like ethanol (Winberg et al., 1982). This specificity indicates that the substrate binding sites of Drosophila ADHs are probably very different to the medium-chain structures, which recognize primary alcohols more efficiently.

The substrate specificities, and the activity ratios (see 1.3.1), of D. melanogaster ADH-F, ADH-S and ADH-UF and D. lebanonensis ADH are very similar (Winberg et al., 1982, 1985). The substitution of the non-transferable hydrogen of ethanol by a methyl group in propan-2-ol increases the $\mathrm{k}_{\mathrm{cat}}$ value of the enzymes by a factor of 20 (Winberg et al., 1982a; Chambers, 1984; Atrian \& González-Duarte, 1985).
Through the comparison of the specific activity of ADH-S and ADHUF with a large range of primary and secondary alcohols, Winberg and collaborators (Winberg et al., 1982b) concluded that the enzyme binds secondary alcohols through a double hydrophobic interaction, which, in the case of propan-2-ol, affects the two methyl groups of the alcohol. This is supported by the fact that the enzymes are not active with charged or polar alcohols (Winberg et al., 1984, 1986). This is different to the substrate-binding mechanism of horse-liver ADH, where the methyl group of the ethanol is bound to a single hydrophobic funnel in the active site (Eklund \& Brándën, 1987).

Winberg (1989) assigns a difference on binding energy of -1.6 to $-1.8 \mathrm{kCal} / \mathrm{mol}$ between primary and secondary alcohols. Using the calculated values for the free-energy of transfer of a methyl group from water to n -octanol $(-0.68 \mathrm{kCal} / \mathrm{mol})$ he proposes that the second methyl group of propan-2-ol binds to a region of the enzyme that is about 2.5 times more hydrophobic than n-octanol.
The specificity of the active site is, however, extremely flexible and the enzymes manage to oxidize alcohols of very different structures and sizes, suggesting a very open conformation of the substrate binding-site. In contrast, the enzymes show a marked preference for the Renantiomers of the substrates (Winberg et al., 1982a).

The difference in substrate specificity between Drosophila ADHs and the medium-chain ADHs makes clear that the structures of the bindingsites are different between the two classes of enzymes, and so it is not possible to extrapolate crystallographic data from the latter to the Drosophila enzymes. At the same time the similarities in substrate recognition between the ADHs of different Drosophila species do not allow the identification of possible residues involved in the binding site.

1.5.3 The reaction mechanism

The dehydrogenase reaction is started with the binding of the cofactor molecule to the enzyme. The reasons for this order are not clear, but the observation that coenzyme binding may induce conformational changes (Chen et al., 1990) may indicate that structural shifts induced by the cofactor may be necessary for substrate recognition, as it is found in medium-chain ADHs. Once the substrate is bound the reaction proceeds, supposedly with the participation of Tyr152 or lys 156 . The speed of the reaction is much lower if primary alcohols are being metabolized, and hydride transfer becomes a rate-limiting process (Winberg et al., 1986).

If secondary alcohols are used as substrate, the rate-limiting step becomes the dissociation of the reduced coenzyme from the enzyme. This has been proved by:a) the similar Vm shown for different secondary alcohols, b) the substrate activation with some secondary alcohols, c) the lack of primary kinetic isotope effects when deuterated secondary alcohols were used (Winberg et al., 1984, 1985, 1986).

In the reverse reaction, the maximum velocity for acetaldehyde reduction was found to be the dissociation rate of NAD^{+}from the EO complex, while with acetone a ternary complex interconversion seemed to be rate limiting (Winberg \& McKinley-McKee, 1988).
This reaction mechanism seems to be general to all the Drosophila ADHs tested so far, as they all show similar substrate specificity and consistently similar Vmax values for the secondary alcohols tested (Thatcher, 1977; Chambers, 1984; Juan \& González-Duarte, 1980; Atrian \& González-Duarte, 1985).
In contrast to this well documented mechanism it must be mentioned that Heinstra and collaborators (Heinstra et al., 1988) have reported that NADH can act as a competitive inhibitor with respect to ethanol as a variable substrate, this observation would suggest a rapid equilibrium random mechanism for the oxidation of primary alcohols. This appears to be an isolated observation.

1.6 The physiological role of Drosophila ADH

The main physiological role of Drosophila ADH is the dietary utilization of alcohols. In addition, a function of detoxification when high levels of alcohols are present in the environment is also clear, although the experimental results are better understood if the processes of ethanol utilization and of ethanol resistance are treated as different ones (Chambers, 1991). Other functionalities, like a role in pheromone metabolism, have been proposed (Winberg et al., 1982: Madhavan et al., 1973), but they have not been further investigated.

1.6.1 Ethanol as a nutrient.

From experiments with Adh null strains, and population studies of flies starved in ethanol rich environments it is clear that ethanol can be used as a nutritional source (Parsons, 1981; Parsons \& Spence, 1981). The metabolic pathway of this utilization is not well understood, although it is known that the ingestion of ethanol produces an accumulation of triacylglycerides in the fat body. Acetate is supposed to be an intermediate in this process (Geer et al., 1985).
ADH activity seems to be the main control point of this pathway, having a control coefficient of nearly one according to ${ }^{13}$ NMR studies on the ethanol --> lipid flux (Freriksen et al., 1991). This is in contrast with the observation that flies with different $A d h$ genotypes and different global ADH activities do not show differences on the flux of the alcohol metabolizing pathway (Middleton \& Kacser, 1983). A second enzymatic activity, oxidizing acetaldehyde to acetate, has been shown for Drosophila ADH (Brooks et al., 1985), although this activity has too high optimum $\mathrm{pH}(>10)$ to be significant in vivo (Chambers, 1988).

The main question surrounding the role of ADH in the utilization of ethanol is whether there is an adaptive connexion between the amount of ADH activity that one fly obtains from its ADH isoenzymes and its fitness in the population. The fact that ADH is such an abundant protein in the fly's body (about 1% of total protein), and that D. melanogaster and other species are mostly associated with fermenting habitats makes it unavoidable that a connexion between ADH activity and ecological or evolutionary fitness be searched.

When comparisons between different species are made, a correlation between amount of ADH activity and presence in ethanol-rich niches seems to be well stablished (Oakeshott et al., 1982). However, when the comparisons are made within D.melanogaster's different allelic populations results are not so clear, and ADH-F flies, which contain more ADH activity do not always outperform ADH-S flies when grown in ethanol-rich environments (Oakeshott et al., 1984).

This last observation would agree with the previously mentioned results of Middleton and Kacser and suggest that the differences observed between different species may be the result of other, not taken into account, differences between the species compared. The net contribution of the ADH enzyme to the ecological and physiological relationship between Drosophila and ethanol is not totally defined yet.

1.6.2 Alcohols as poisons.

Once again, a large amount of contradictory data has accumulated concerning the relationship between ADH activity and the tolerance to ethanol or other alcohols. Experiments involving inbred lines of flies or laboratory strains generally show that ADH-F strains have an advantage over ADH-S strains when grown in ethanol rich media (> 6\% ethanol) (Maroni et al., 1982). However, experiments using freshly captured flies fail to demonstrate any increase of the ADH-F alleles when grown in the same conditions (Gibson \& Wilks, 1988). At high concentrations of ethanol a toxic build up of acetaldehyde occurs, and so the capacity of resisting high concentrations of ethanol will depend on the capacity to digest ethanol and, also, on the capacity to remove the accumulating acetaldehyde (Anderson \& Barnett, 1991).

Probably, a more important alcohol in terms of toxicity is propan-2ol, whose oxidation product, acetone, is highly toxic to the fly (Geer et al., 1985). When flies are grown in the presence of propan-2-ol the ADH activity is rapidly suppressed. This is due to the covalent attachment of NADH and acetone to the enzyme, creating an inert tertiary complex.

When Drosophila ADH is analyzed in isoelectrofocusing gels three forms are observed with different mobilities: Adh-1, Adh-3 and Adh-5, corresponding to dimers with two, one or nil NAD^{+}molecules bound, respectively (Johnson \& Denniston, 1964). In normal conditions, the Adh-5 population represents about 90% of the total amount of enzyme (Winberg, 1989), but the amount of Adh-3 and Adh-1 can be increased if the enzyme is incubated with a mixture of NAD^{+}and acetone due to the formation of this ternary complex (Jacobsen et al., 1972).

The ternary complex is irreversible, because In vivo the recovery of ADH activity after incubation with propan-2-ol is totally due to de novo synthesis of enzyme (González-Duarte \& Atrian, 1986).

Propan-2-ol can be an abundant alcohol in the organic environments where Drosophila larvae prefer to grow, and it has been proposed that the inactivation of the ADH activity is in fact a protection mechanism against an excessive build-up of acetone in the larvae (Chambers, 1988). An NADP^{+}-dependent aldo-keto reductase activity has been reported in D. melanogaster and D. hidey, it is independent of ADH activity and it has been proposed to have a detoxifying role, converting aldehydes and ketones back to alcohols, a role that ADH cannot perform due to the formation of the inert ternary complex (Atrian \& Gonzàlez-Duarte, 1985).

Adh alleles are not randomly distributed, and the different polymorphisms follow a clinal geographic distribution. The search for the factors that determine such distribution is intense, because these may be the same factors that determine the actual existence of the polymorphisms (Vigue \& Johnson, 1973). The frequency of the allele $A d h-\mathrm{F}$ increases with latitude both north and south of the equator, while Adh-S behaves in an opposite way (Oakeshott et al., 1984; Vigue \& Johnson, 1983).

This allelic distribution is quite constant in all continents (Chambers, 1988), despite some variations like the very high frequency of ADHFChD in China ($\sim 30 \%$ of wild populations), which is thought to be due to the fact that China is the area were the mutation first appeared.

Which are the factors that govern this distribution?. Temperature is probably the main candidate. A correlation between altitude and increase in ADH-F frequency has been found in mountains of Mexico and Russia (Grossman et al., 1970; Pipkin et al., 1976). ADH-F, which seems to be more common in cooler locations is reportedly less thermo-stable than ADH-S, an allele which attains maximum frequencies in the tropics.

As mentioned earlier, ADH-F is believed to have appeared from ADH-S (Kreitman, 1983), and, from the clinal data, it would appear to have colonized areas of lower temperatures more efficiently. Perhaps flies with an F genotype tend to occupy niches where S genotypes no longer have the advantage of thermal stability.

Against the clinal observations we must cite the report of Sampsell \& Barnette (1985), which shows that ADH-F flies grown at $29^{\circ} \mathrm{C}$ have more enzyme activity than if grown at $20{ }^{\circ} \mathrm{C}$. And, at both temperatures, ADH-F flies have more ADH activity than ADH-S flies.

Also, a clinal analysis of the distribution of Adh alleles in South Africa failed to show a latitudinal distribution, but found a positive correlation between Adh-S distribution and increase in rainfall (Getz \& Grant, 1990). The authors try to explain such correlation with a possible increase of amount of alcohols in zones of higher humidity, due to lower evaporation. In such conditions they argue that a more active enzyme like ADH-F would be selected against, because of the larger amount of toxic intermediates that would accumulate in the flies with such genotype.
Once again there seems to be a general trend that correlates Adh allelic distribution with environmental factors (latitude, temperature), but this correlation is confronted with contradictory reports that reminds us that the factors involved in metabolic and ecological processes are far to complicated to be explained by a single parameter.
The alcohol dehydrogenase gene/enzyme system, because of its well described polymorphism and distribution, and its central role on the metabolism of Drosophila, seemed a good candidate for obtaining simple and general answers to many evolutionary and ecological questions. As usual, this has proved not to be the case.

This project was originally planned as part of a collaborative effort between the Department of Genetics of the University of Barcelona and the Department of Biochemistry of the University of Edinburgh. The overall goal remains the elucidation of the structure of Drosophila ADH , the analysis of the structure-function relationships in the enzyme and the study of the effect of the introduction of induced polymorphisms into Drosophila populations. The project described here aimed to investigate the role of residues of interest in the protein by site-directed mutagenesis with the use of various biochemical and biophysical characterization techniques.
Specifically, two main aspects of the enzyme structure were to be investigated :
a) The existence of the proposed nucleotide-binding site at the N terminus of the protein was to be investigated through mutagenesis of the residues Gly14, Gly19 and Asp38.
b) The thermal stability effect of the mutation Pro214 to Ser was to be investigated, first by introducing the mutation into an ADH-S isoenzyme, where it has not been found in natural populations.

To carry out these experiments the $A d h-\mathrm{S}$ gene was cloned into a plasmid where all the mutagenesis and sequence analysis were performed. The mutated genes where then subcloned again into a yeast expression vector, and the mutated enzymes purified to homogeneity from yeast cultures.
The mutant enzymes were then analyzed with a variety of techniques in order to characterize the effect of the introduced changes.

During the process of this research it became clear that the structure of Drosophila ADH would not be readily available due to the low quality of the crystals obtained from the enzyme. Since a threedimensional structure is essential for the proper understanding of sitedirected mutagenesis experiments, an alternative three-dimensional model of the enzyme was necessary.
The recent publication of the structure of $3 \alpha, 20 \beta$-hydroxysteroid dehydrogenase, and the release of its α-carbon coordinates in the Brookhaven database, provided the necessary material to build such a three-dimensional model for Drosophila ADH, using the new techniques of protein modelling. Such a model offers the unusual possibility of analyzing the structural evolution of an enzyme for which a large number sequences with a relatively small divergence time are available.

2. Experimental Materials and Methods.

2.1 Materials.

2.1.1 Cloning, expression, mutagenesis and sequencing materials.

2.1.1.1 Plasmids.

1. pUC115-3008, from Dr. W. Sofer, Waksman Institute, Rutgers University, USA. Vector pUC118, containing the Drosophila melanogaster Adh-S gene,
2. M13mp18, from Bethesda Research Laboratories (UK) Ltd, Cambridge, UK. M13mp18E. coli bacteriophage DNA. Used for mutagenesis and sequencing procedures.
3. PVT-U-101, from Dr. S. Atrian, Dept. of Genetics, Barcelona University, Catalonia. Phagemid, capable of replicating in yeast, or in bacteria as a bacteriophage. It contains the expression promoter of the yeast ADH-1 gene, for protein expression in this organism.

2.1.1.2 Strains.

1. Escherichia coli TG1. K12, A(lac-pro), SupE, thi, hsdDS/F'traD36, pro $\mathrm{A}^{+} \mathrm{B}^{+}$, lac I^{q}, lacZ $\Delta \mathrm{M} 15$. From Amersham plc., Aylesbury, UK.
2. Escherichia coli BW313. dut, ung, thi-1, relA, spoT1/F'lysA. From Dr. T. McNally, Biochemistry Dept., Leeds University.
3. Sacharomyces cerevisiae WV36.201. Mat a, ura 3, trp1, ade2, ade4, adh1 Δ, adh2 Δ, adh3. From Dr. S. Atrian.

2.1.1.3 Enzymes

BamHI, EcoRI, HindIII, PstI, XbaI, SacI and SphI were from Northumbria Biologicals Ltd., Cramlington, UK.
SpeI was from New England Biolabs, Cambridge, USA.
T4 DNA ligase and Rnase A were from Boehringer Mannheim, Lewes, UK.

2.1.1.4 Media, antibiotics and related

Bacto peptone, purified agar and yeast nitrogen base w/o amino acids were from Difco labs, East Molesly, UK.

Tryptone and yeast extract were from Oxoid Ltd., Haverhill, UK. Ampicillin, Xgal, IPTG and all amino acids and nucleotides were from Sigma Chemical Co., Poole, UK.

2.1.1.5 Oligonucleotides and radiochemicals

All oligonucleotides were synthesized by and purchased from Oswel DNA service, Dept. of Chemistry, University of Edinburgh, except the M13 sequencing oligonucleotides, which were from Amersham.
Deoxyadenosine $5^{\prime}-\alpha-\left({ }^{35} \mathrm{~S}\right)$ thiotriphosphate, triethylammonium salt, was from Amersham.

2.1.1.6 Kits.

All sequencing reactions were performed using the Sequenase ${ }^{\text {TM }}$ DNA sequencing kit, provided by Cambridge Biosciences, Cambridge, UK.

2.1.1.7 Hardware.

DNA agarose electrophoresis was performed in a Pharmacia (Pharmacia, Uppsala, Sweden) gel electrophoresis apparatus GNA-100, connected to a Sandos (Sandos, Stockport, UK) power unit.

DNA sequencing was done on a Pharmacia sequencing cast connected to a Pharmacia power unit.

2.1.1.8 Chemicals

All chemicals were supplied by Sigma, BDH (BDH, Poole, UK) or IBI (IBI, New Haven, USA), and were of the best grade commercially available.

2.1.1.9 Miscellaneous

Hyperfilm MP X-ray film was from Amersham. Polaroid 665 film and agarose were from Sigma. Plastic tubes (Falcon, 5 and 50 ml) were from A\&J Beveridge (Beveridge, Edinburgh, UK).

2.1.2 Protein purification and analysis materials.

2.1.2.1 Chemicals.

Sepharose G-25, Blue Sepharose, Q-Sepharose FF, S-Sepharose FF, Superose 6 and Superose 12, either unpacked or prepacked, were from Pharmacia.

Ammonium sulphate, dichloroisocumarin, 1,10 phenanthroline, E-64, TEMED, ammonium persulfate, SDS, DTT, acrylamide, N,N'-methylene-bis-acrylamide and Trizma base were from Sigma. Methanol, $\mathrm{H}_{2} \mathrm{O}_{2}$ and 4-chloro-1-naphtol were from Merck, Schuchardt, Germany.

2.1.2.2 hardware

Protein electrophoresis in SDS-polyacrylamide gels was done in either Bio-Rad miniprotean systems (Bio-Rad, Hemel Hempstead, UK) or in Hoeffer (Hoeffer, San Francisco, USA) SE 280 gel electrophoresis units.

Protein blotting to nitrocellulose membrane was done in a Bio-Rad mini trans-blot electrophoretic transfer cell using nitrocellulose filters (Schleicher \& Schuell, Dassel, Germany).

All Chromatographic steps were performed using :

- Gilson minipuls3 peristaltic pump
- Pharmacia-LKB redifrac fraction collector.
- Isco UA-5 UV detector and chart recorder.
- Pharmacia FPLC system LCC-500.

2.1.3 Enzyme characterization materials.

2.1.3.1 Enzymes.

Horse liver alcohol dehydrogenase was from Boehringer Mannheim. yeast alcohol dehydrogenase was from Sigma. Alcohol dehydrogenase from Drosophila melanogaster and Drosophila lebanonensis were purified from adult flies by Drs Atrian and González-Duarte as published (Ribas de Pouplana et al., 1991).

2.1.3.2 Chemicals.

Guanidinium chloride (Aristar grade), propan-2-ol and NAD^{+}(both AnalaR grade) were from BDH .

NADH (grade I), Trizma base and kanamycin were from Sigma.

2.1.3.3 Hardware

Circular dichroism spectra were recorded using a Jasco J-600 spectropolarimeter.
Spectrophotometric assays were performed using a Phillips PU 8720 UV/VIS scanning spectrophotometer.

Temperature-controlled incubations and reactions were carried out using Grant instruments Ltd. (Cambridge, UK) thermostatted waterbaths.

2.2 Experimental methods.

Although various alternative methods were tried at various points of this project only the ones that were used for the final experiments will be described here. The results obtained with the rest of methods used will be discussed in the experimental results section.

2.2.1 Standard DNA and protein techniques.

The following DNA and protein techniques were performed according to standard protocols, as described in "Guide to Molecular Cloning" 2nd edition (Sambrook et al., 1989) :
Technique Page n°
-Enzymatic cleavage of double stranded 1.85
DNA
-Ligation of DNA fragments 1.68-1.69
-Growth and storage of E. coli A. 5
-Preparation and transformation of 1.76-1.84
competent E. coli
-Purification of plasmids and phage 1.25-1.28
DNA from E.coli .
-Protein SDS-polyacrylamide gel 18.47-8.48, 18.55
electrophoresis and Coomassie bluestaining.

2.2.2 Site-directed mutagenesis.

The relevance of the principle of site-directed mutagenesis (SDM) to the bio-molecular sciences is evidenced by the large number of methods that have been designed to perform it. All these methods share a common initial step where a single-stranded DNA (ssDNA) template containing the sequence to mutagenize is annealed to a complementary oligonucleotide whose sequence has the desired modification. This oligonucleotide is then used as a primer for the polymerization of the complementary strand of the template, giving way to a hybrid doublestranded DNA molecule, one strand of which contains the desired mutation. The crucial step is the selection of the mutated strand over the wild type one. This is achieved by different strategies in each method (for a review see Carter, 1986).
The method used in this project is that designed by Kunkel (Kunkel, 1985), which is based on the utilization of the E. coli strain BW313, a strain deficient for the Dut and Ung genes. These genes code for the enzymes dUTPase and uracil glycosidase, which are utilized by the cell to digest uracil-containing DNA and to modify uracil to stop its incorporation into replicating DNA. The lack of these enzymes creates a bacterium that contains high levels of uracil in all its cellular DNA molecules. As a consequence ssDNA isolated from such a strain will be unable to survive in a normal cell, because it will be digested by the uracil glycosidase. If such ssDNA is used as a template for annealing with a mutation-containing oligonucleotide, and a second, mutant strand is obtained by polymerization with normal nucleotides, a hybrid molecule is obtained. One, containing the wild type sequence and a high number of uracil bases, and another containing the desired mutation and normal base content.

If such double-stranded DNA is used to transform a $U n g^{+}$strain of E. coli only the mutation-containing strand should survive since the uracil containing DNA will be digested by uracil glycosidase.

This method provides an economic, efficient and elegant way of introducing specific mutations into a DNA sequence.

Procedure :

M13mp18 ssDNA containing the intronless Adh-S sequence (hereinafter 'Adh gene') was purified from phages isolated from a single phage plaque in E. coli BW313 infected plates. This DNA, supposedly containing large quantities of uracil bases was tested for such quality by transforming E. coli TG1 cells with it. An infection efficiency of less than ten plaques per plate was taken as an indication of a satisfactory presence of uracil in the ssDNA.

Two $\mu \mathrm{g}$ of uracil-rich ssDNA were mixed with $2 \mu \mathrm{l}$ of KGBx 10 buffer and the phosphorylated oligonucleotide containing the desired mutation. The molar ratio between ssDNA template and oligonucleotide was typically 0.2 to 0.5 , water was added to a final volume of $16 \mu \mathrm{l}$. This mixture was incubated at $65^{\circ} \mathrm{C}$ for 3 min and allowed to cool down to room temperature, for at least one hour, to achieve optimum annealing. The polymerization reaction was started by adding to the mixture 2μ l of a solution containing dATP, dTTP, dCTP and dGTP, at a concentration of $7.5 \mu \mathrm{M}$ each, $1 \mu \mathrm{l}$ of Klenow fragment of DNA polymerase at a concentration of 5 units $/ \mu \mathrm{l}$, and $1 \mu \mathrm{l}$ of DNA ligase at a concentration of 10 units $/ \mu$ l.

The polymerization and ligation reactions were allowed to proceed for 30 min at room temperature. The presence of dsDNA was checked by agarose gel electrophoresis and, if this check was satisfactory, the DNA from the reaction was separated from the enzymes by a phenol extraction followed by ethanol precipitation. The final DNA sample obtained was used to transform E. coli TG1 cells. From the bacteriophage plaques obtained three were randomly chosen, and their ssDNA purified and sequenced to confirm the presence of the desired mutation.

2.2.3 DNA subcloning.

Using standard DNA subcloning techniques the $A d h$ gene contained in the vector pUC-Adh-S was removed from this vector and subcloned into M13mp18 for the mutagenesis experiments.

The Adh genes from the M13 clones were then subcloned into PVT-U-101, for further introduction and expression in yeast using convenient restriction sites (see results chapter for a description of the cloning steps and vectors used).

2.2.4 DNA sequencing.

DNA sequencing was used at three different stages of the site-directed mutagenesis process:

First, the Adh gene in the plasmid pUC-Adh- S, provided by Dr. Sofer, was totally sequenced to confirm its expected sequence. Secondly, the ssDNA from the phage plaques obtained at the last stage of the mutagenesis process were sequenced to confirm the presence of the desired mutations. Finally, once each mutated gene was subcloned
into the expression vector PVT-U-101 and transformed into yeast for expression, the plasmid was recovered and the Adh gene fully sequenced, to ensure that the introduced mutation was the only difference between the mutant gene and the original $A d h-S$.

Procedures :

ssDNA sequencing of Adh in either M13 or PVT vectors was done following Sanger's dideoxynucleotide method, which was used as supplied in kit form (Sequenase ${ }^{\text {TM }}$ DNA sequencing kit, from Cambridge Bioscience). Sequencing gels were run on a Pharmacia gel cast, fixed, dried on 3MM Whatman paper and autoradiographed using Hyperfilm MP.

During the sequencing of the $A d h$ gene present in the pUC-ADH vector the following steps were performed in order to obtain ssDNA:

The dsDNA pUC-Adh was purified from 100 ml of liquid culture of E. coli TG 1 cells by CsCl gradient ultracentrifugation. $10 \mu \mathrm{~g}$ of the DNA were denatured by adding NaOH and EDTA to a final concentration of 0.2 M and 0.2 mM , respectively. The solution was then neutralized by addition of ammonium acetate to a final concentration of 0.2 M . The DNA was precipitated with ethanol, resuspended in $30 \mu \mathrm{l}$ of ice-cold water and used immediately for standard sequencing.

2.2.5 Growth and transformation of yeast .

The yeast strain S. cerevisiae WV.36.201, was used for the expression of the Adh gene as published (Atrian et al., 1990). This strain is auxotrophic for tryptophan, adenine and uracil, and it can be grown either in rich non-selective media as YEPD (1% yeast extract, 2% bactopeptone, 2% glucose) or in selective media supplemented with tryptophan, adenine and uracil, known as YD (0.67% yeast nitrogen base, 2% glucose, 1% casein amino acids, 0.002% tryptophan, 0.002% adenine, 0.002% uracil).

The expression plasmid used throughout this project, PVT-U-101 carries s functional Ura gene, so WV. 36.201 cells carrying the plasmid can be detected by their ability to grow in selective media without uracil.

All the growth curves carried out with the strains expressing different ADH variants were done as follows :

Single colonies were inoculated into small cultures ($\sim 5 \mathrm{ml}$) of selective media and grown overnight at $30{ }^{\circ} \mathrm{C}$ in an orbital shaker. After 24 hours, the optical density at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$ was measured for every culture. Different volumes of each small culture were transferred to 50 ml cultures of either selective or non-selective media, to obtain initial inoculates with approximately equal number of cells.
The growth of each culture was monitored by measuring the OD_{600} of each culture at regular intervals. When necessary the cultures were diluted before measuring their optical density to ensure that OD values stayed on the 0.1 to 1.5 OD units range.

Transformation of yeast :

The method described by Ito and colleagues (Ito et al., 1983) was used. This is based on the treatment of yeast cells in exponential growth state with alkali cations, in our case lithium acetate.

This method has a lower efficiency than that of Beggs (Beggs, 1978), which used enzymatic digestion of the yeast cell wall with lyticase, but it is simpler, faster and, for the purposes of this thesis, the most convenient.

Procedure :
A 100 ml culture of WV. 36.201 strain was grown up to a OD_{600} of 0.3 and the cells were harvested with a 2 min centrifugation at 2000 rpm in a bench centrifuge. The collected cells were washed in 5 ml of TE buffer (10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8,1 \mathrm{mM}$ EDTA), centrifuged again and resuspended in 5 ml of 0.3 M lithium acetate.
The cells were incubated in this solution for an hour at room temperature in an orbital shaker, then centrifuged again, resupended once more in 5 ml 0.3 M lithium acetate and divided into 0.3 ml aliquots. Between 2 and $5 \mu \mathrm{~g}$ of DNA were added to each aliquot together with $10 \mu \mathrm{~g}$ of fragmented genomic DNA (from herring sperm). The aliquots were then left at room temperature for 30 min before 0.7 ml of a 50% solution of polyethylene glycol in TE buffer were added. The mixtures were homogenized by inversions and incubated at $30^{\circ} \mathrm{C}$ in a water bath for 30 min . The cells were then heatshocked at $42^{\circ} \mathrm{C}$ for 5 min , centrifuged with a 10 second pulse in a bench microfuge and resuspended in YEPD media. After 1 or 2 hours at $30{ }^{\circ} \mathrm{C}$, the cells were again centrifuged, resuspended in $200 \mu \mathrm{l}$ of water, plated onto plates containing YD without uracil, and left incubating at $30^{\circ} \mathrm{C}$. Colonies appeared in 4-5 days.

2.2.6 Analysis of yeast transformants and DNA isolation from yeast .

The yeast colonies that, after transformation, grew on a uracil deficient selective medium had to be checked for the presence of the expression construct, and this construct had to be isolated for the sequencing of its $A d h$ gene.

In practice, an intermediate step was used where the plasmid contained in the transformed yeast was first transferred into E. coli, from which it was later purified and analyzed. This technique, known as plasmid rescue, provides the simpler way of checking for the presence of a certain plasmid in yeast, provided such plasmid is capable of replicating in bacteria and has a functional selection marker in this organisms (Hoffman \& Winston, 1987).

Procedure :
Yeast colonies that grew in uracil deficient YD were inoculated in 5 ml liquid cultures of the same media and incubated at $30^{\circ} \mathrm{C}$ for $24-48$ hours. Cells from 1 ml aliquots of culture were then collected by a 5 second centrifugation in a bench microfuge, and resuspended in $200 \mu \mathrm{l}$ of a solution containing : 2% Triton X-100, 1% SDS, 100 mM NaCl , 10 mM Tris $\mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA.
To this solution $200 \mu 1$ of phenol were added, and, immediately, glass beads were added up to the meniscus of the solution surface. This mixture was vortexed for 30 seconds and the tubes centrifuged in a bench microfuge for 5 min . The objectives of this methods are: a) to break the yeast cells and liberate their possible plasmid content and, b) the separation of the DNA from the cellular protein by a phenol separation.

The aqueous phase obtained after the centrifugation was collected, and its DNA content precipitated in ethanol and resuspended in a small volume of water. This was then used to transform E. coli TG1 cells, and the presence of the plasmid was checked by testing the resistance to ampicillin of the transformed bacteria.

The bacterial clones that showed resistance to ampicillin were isolated, and their plasmid DNA isolated by standard methods. This DNA could be used to check the presence of the correct construct by restriction analysis in agarose gels or to confirm the presence of the right gene sequence by DNA sequencing techniques.

2.2.7 The analysis of Adh expression in yeast .

The analysis of the expression of any gene can be undertaken at three different levels. First, the content of mRNA being transcribed can be quantified. This analysis gives a good measure of the amount of expression activity at the gene level, and is the method of choice when the effect of regulatory sequences on the amount of gene expression is being studied. However, it does not necessarily give information on the amount of protein actually being produced, because of the effect of the codon content of the mRNA on its level of translation efficiency, and it does not provide any information on the levels of active protein.

The amounts of total protein being synthesized from mRNA can be checked by immunoblotting analysis of the protein content of the cells. This method requires the availability of antibodies against the expressed protein, but it can give very accurate accounts of the amounts of protein being produced. The method will not discriminate between inactive or active forms of the protein, and so it can not be used to
check the protein activity levels in the expressing cells if, for instance, the expressed polypeptide is an enzyme.

The quantification of the amount of protein activity in the expressing cells can be achieved in vivo, if the activity of the expressed molecule affects the metabolism of the expressing organism, or in vitro, either in crude extracts or after the purification of the expression product, if a suitable activity assay is available.
For the analysis of the expression of wild type and mutant DADHs in yeast three different approaches were used. The amount of total protein produced was analyzed by immunoblotting, the expressing cells were analyzed in terms of their growth behaviour (see 2.2.5) and the amount of DADH activity was measured in cell crude extracts.

2.2.7.1 Immunoblotting analysis of DADH expression in yeast .

A series of mouse monoclonal and polyclonal antibodies raised against Drosophila ADH by Dr. J. Fibla (Fibla et al., 1989), of the Genetics Department of the University of Barcelona were used for the immunoblotting analysis.

Procedure :

Yeast cells containing the PVT-U-101 expression vectors with the wild type and mutant $A d h$ genes were grown in 50 ml cultures of YD media without uracil. Yeast cells without plasmid, and cells with the PVT-U-101 plasmid without the Adh gene were used as controls.

When each culture reached stationary growth the cells were harvested by centrifugation at 5000 rpm , for 15 min at $4^{\circ} \mathrm{C}$. The cell pellet obtained was resuspended in an equivalent volume of ice-cold lysis buffer (20 mM Tris $\mathrm{HCl} \mathrm{pH} 8.0,10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA, 5% glycerol, 1 mM DTT, 0.3 M ammonium sulphate, $100 \mu \mathrm{M}$
dichloroisocumarin, $100 \mu \mathrm{M} \mathrm{1,10}$ phenathroline and $20 \mu \mathrm{M} \mathrm{E-64)}$. Cells were lysed by filling the solution with glass beads up to the surface meniscus and vortexing for 6 min in two min intervals, separated by 2 min periods where the extract was cooled in ice. The resulting crude extract was centrifuged at 10000 rpm for 30 min to remove all insoluble material and cellular debris, and the supernatant was kept for further analysis.
The total protein content of the crude extracts was determined using the Bradford method (Bradford, 1976), and equal amounts of total protein from each different strain analyzed were loaded onto a SDSpolyacrylamide gel, for standard electrophoresis separation.
After electrophoresis the gels were transferred to a renaturizing buffer ($80 \% 50 \mathrm{mM}$ Tris $\mathrm{HCl} \mathrm{pH} 7.6,20 \%$ glycerol) as a previous step to the electrotransfer of the protein bands to a nitrocellulose filter.
The bands were transferred to the filter with a Bio-Rad mini transblot electrophoretic transfer cell, for 30 min . After that period the filter was removed form the transfer apparatus for immunological detection.

The protein-free areas of the filter were first saturated by incubating the filter in a 10% solution of freeze-dried milk in phosphate buffer saline (PBS, $0.8 \% \mathrm{NaCl}, 0.02 \% \mathrm{KCl}, 0.11 \% \mathrm{Na}_{2} \mathrm{HPO}_{4}, 0.02 \%$ $\mathrm{KH}_{2} \mathrm{PO}_{4}$), for 2 hours at room temperature, this step is designed to stop non specific binding of the first antibody to the nitrocellulose fibres of the filter.
Excess saturating protein was removed by washing the filter in PBS in three $15-\mathrm{min}$ periods. The filter was then incubated with the antiADH polyclonal or monoclonal antibodies at adequate dilutions for 1 hour. The excess antibody was removed by washing the filter in a PBS solution containing 0.5% freeze-dried milk in three 5 -min steps.

A second antibody, raised against mouse IgG antibodies and complexed to the enzyme peroxidase, was then added to the filter at a convenient dilution, for a period of 1 hour. The excess antibody was again removed by washing the filter with PBS containing 0.5% freezedried milk. The filter was then developed by adding two solutions simultaneously (solution $1: 50 \mathrm{ml}$ of PBS containing 0.035% hydrogen peroxide. Solution 2: 50 ml of a 60% PBS, 40% Methanol, $0.001 \% 4$ 4-chloro-1-naphthol). Bands containing material recognized by the peroxidase-complexed antibody appeared as a result of the oxidation of 4-chloro-1. naphtol, which gives a coloured compound.

2.2.7.2 DADH activity measurements in crude extracts.

Crude extracts were prepared as described in the previous chapter and their protein content also quantified using the method of Bradford (Bradford, 1976), or the method of Layne (Layne, 1957). This last method uses the differential absorbance of proteins and DNA at 280 and 260 nm . The concentration of protein is given by the equation :

$$
\text { [protein] }=1.55 x\left(\mathrm{~A}_{280}\right)-0.76 x\left(\mathrm{~A}_{260}\right)
$$

Although this method is simpler and faster than the Bradford analysis it has the disadvantage of not being able to discriminate between protein absorbance at 280 nm or other aromatic compounds that might be present in the crude extract. Once the total protein content of the crude extracts was known, three different volumes of the protein solution (typically 1,5 and $10 \mu \mathrm{l}$) were assayed for enzyme activity. The ADH activity was determined at $25^{\circ} \mathrm{C}$ by monitoring the increase in optical absorbance at 340 nm due to the production of NADH. The assays were performed in 1 ml cuvettes, the assay mix contained 1 mM NAD, 10 mM isopropanol and 100 mM Tris- HCl pH 8.7.

The crude extract sample was added first to the cuvette, and 1 ml of reaction mix was pipetted inside the cuvette to rapidly mix the components of the reaction. The reactions were linear for at least two min, and one unit of enzyme was defined as the amount of enzyme that catalyses an increment of 1 unit of absorbance at 340 nm per minute.

The activity of each sample and its protein concentration were used to determine the specific activity of each crude extract, and the total amount of ADH activity recovered from each different strain.

2.2.8 Protein purification methods.

Purification of DADH from either adult flies or third-instar larvae have been reported for years, and a considerable amount of expertise exists. However, the purification of the enzyme from yeast had not been attempted before this project.

For this reason, a series of different chromatographic steps were tested trying to take advantage of the already existing expertise in the purification of the enzyme from flies. However, the final purification procedure from yeast is quite different. Only the techniques that were finally used will be described here (a more detailed account of the results given by the other techniques tested is given in the results section), but it is worth mentioning that one of the most effective purification steps when dealing with flies or larvae, the affinity column Blue-Sepharose (Ribas de Pouplana et al., 1991), was shown to be less effective in the purification of the enzyme from yeast. Another setback of this technique, of course, was that very large behaviour differences would have been expected when trying to purify enzymes with mutations in the nucleotide binding site.

For the purpose of the purification of DADH large cultures with high cell density were required. These were obtained by growing cells from a single colony in a pre-culture of 50 ml of YD minus uracil, for 24 to 48 hours. These cultures were then transferred to 750 ml cultures of YEPD media, were they were allowed to grow at $30{ }^{\circ} \mathrm{C}$, under vigorous shaking, until stationary phase was reached.

Similarly as with small crude extract preparation cells were harvested by 15 min centrifugation at 5000 rpm , resuspended in an equal volume of the lysis buffer and the cells were lysed with glass beads as described in 2.2.7.1 .

The ammonium sulphate concentration of the crude extract was then raised to 35% saturation by slowly adding the necessary amount of the salt while the extract was in ice and in moderate agitation. The salt concentration was allowed to equilibrate for 30 min and then the crude extract was centrifuged at 35000 rpm , for 20 min at $4^{\circ} \mathrm{C}$, to remove all cellular debris and proteins that precipitated at 35% saturated ammonium sulphate or less. In a similar fashion, ammonium sulphate was again slowly added to the supernatant solution to a final 70% ammonium sulphate saturation, and after a 30 min equilibration in ice it was centrifuged again in the same conditions described. The amount of ADH activity left in the supernatant was measured and, if found to be less than 10%, the supernatant was discarded.

2.2.8.2 Sepharose G-25 and Q-Sepharose FF steps.

The pellet obtained at the last step of the ammonium sulphate fractionation was resuspended in a 25 mM Tris HCl pH 8.0 and the solution (typically about 5 ml) loaded onto a Sepharose G- 25 column ($20 \times 400 \mathrm{~mm}$), with a flow rate of $1 \mathrm{ml} / \mathrm{min}$. Fractions containing ADH activity were pooled (typically a total volume of $\sim 12 \mathrm{ml}$) and passed through a previously equilibrated Q-Sepharose FF column ($15 \times 60 \mathrm{~mm}$) with a flow rate of $60 \mathrm{ml} /$ hour. Both chromatographic steps were performed at $4^{\circ} \mathrm{C}$.

Fractions containing DADH activity did not stick to this column and were directly recovered, identified and pooled (typically about 15 ml total volume).

2.2.8.3 Sample concentration and Superose-12 steps.

The volume typically collected from the Q-Sepharose FF step (~ 15 $\mathrm{ml})$ was too large to be applied to the Superose- 12 column available in the Department (25 ml), so the sample had to be reduced. This was achieved by saturating the sample with ammonium sulphate and centrifuging the precipitated protein at 35000 rpm , for 30 min at $4{ }^{\circ} \mathrm{C}$. The resulting pellet was then resuspended in a small volume ($\sim 1 \mathrm{ml}$) of 25 mM Tris HCl pH 8.0 buffer.
The solution was injected onto the FPLC Superose- 12 column in steps of $200 \mu \mathrm{l}$. The column was run at a flow rate of $0.2 \mathrm{ml} / \mathrm{min}$, at room temperature. Fractions of $500 \mu \mathrm{l}$ were collected ant assayed for ADH activity. Those with such activity were kept and analyzed for purity in a SDS-polyacrylamide electrophoresis gel stained with Coomassie blue.

2.2.9 Characterization methods for pure DADHs.

Once the different ADH enzymes had been purified they had to be analyzed in order to investigate the effects of the introduced mutations.

For this purpose three main analytical procedures were used : a) the stability of the enzymes and the strength of their binding to the coenzyme were analyzed by guanidine hydrochloride denaturation kinetics monitored by circular dichroism and enzyme activity analysis, this allowed the calculation of the $\Delta \Delta \mathrm{G}$ values of the cofactor binding process, b) the thermal stability of the molecules was analyzed by incubating them at different temperatures and monitoring the loss of activity with time, and c) the kinetic parameters $\mathrm{Km}_{\text {app }}$, Vmax and $\mathrm{k}_{\text {cat }}$ were determined both for isopropanol and for NAD.

2.2.9.1 Guanidine hydrochloride denaturation studies.

The study of the denaturation kinetics of enzymes is an effective way of quantifying the difference in free energy between the unfolded and the folded states of the molecules, and obtaining information about their structural stability (for a review see Pace, 1986). The denaturation agents normally used are either temperature or chemical agents (mainly urea and guanidine hydrochloride (GdnHCl)); and the systems used to monitor the denaturation process are mainly optical systems (fluorescence, circular dichroism (CD), UV difference spectroscopy, optical rotatory dispersion), nuclear magnetic resonance, differential calorimetry or biological activity measurements.

In this study the denaturation process of the wild type and mutant DADH's in the presence of GdnHCl was monitored both by CD analysis and by ADH activity measurements. Also, the effect of the binding of NAD ${ }^{+}$on the enzyme's stability was studied by incubating the enzyme with the cofactor prior to denaturation.
The denaturation kinetics of the enzymes monitored by ADH activity measurements were used to determine the free energy values of the folded enzymes in solution.

2.2.9.1.1 Circular dichroism analysis.

Circular dichroism activity (CD) is defined as the differential absorption of left- and right-circularly polarized light by any molecule in solution. This difference in absorption is directly dependent on the structural asymmetry of the molecule, and so a molecule with a random conformation in solution will show little CD activity, since no average asymmetry will be present.

Molecules with high structural asymmetry and rigid conformations will have measurable amounts of CD activity at certain wavelengths, but will lose such property if their structure becomes random. Because CD measurements are, in fact, optical absorbance measures, only the regions of the light spectra where a molecule shows optical absorbance will be useful to determine the CD activity of such molecule.
These characteristics of CD make it a highly informative way of analyzing the conformation of proteins in solution. Protein structures have two main regions of optical absorbance: the polypeptide backbone of proteins in solution absorbs and is optically active in the far UV region, below approximately 240 nm .

The aromatic residues of polypeptides, on the other hand, have high optical absorbance properties in the near UV region, around 280 nm . Far UV CD activity of proteins is, hence, a measure of their backbone asymmetry, which is a direct function of the amount of secondary structure of the molecule. If a protein is subjected to denaturation the fixed conformation of its structure disappears, and so does its CD activity. In this way, CD values can be used to monitor the denaturation of a certain polypeptide in solution.

Alpha-helical structures are much more asymmetrical than extended or random regions and so they are the main contributors to the far UV spectra of proteins (for reviews on CD techniques see Johnson, 1988 and Johnson, 1990).

GdnHCl is an excellent denaturing agent for such studies because it does not absorb far UV radiation and, consequently, does not interfere with the CD measurements (Pace, 1986)

Procedure :
ADH-F from D. melanogaster, ADH from D. lebanonensis, and ADH's from horse-liver and yeast were used for the CD analysis. All enzymes were diluted in the same buffer, and their concentrations had been determined by amino acid analysis. GdnHCl solutions were prepared from fresh GdnHCl , and their concentrations were checked by refractive-index measurements (Nozaki, 1972). All CD analyses were performed at the Scottish CD facility, Department of Molecular and Biological Sciences, University of Stirling, which is run by S. M. Kelly and Dr. N. C. Price.

Firstly, the necessary incubation time to reach denaturation equilibrium was determined for each enzyme using a low (0.5 M) concentration of GdnHCl . All incubations were carried out at $25^{\circ} \mathrm{C}$, for the amount of time found to be required to reach equilibrium.

A fixed volume of enzyme was added to a microcentrifuge tube, and a fixed volume of appropriately diluted GdnHCl was added to obtain the desired final GdnHCl concentration. This mixture was left at $25^{\circ} \mathrm{C}$ for the period required to reach equilibrium and the CD spectrum was then obtained, using cell pathlengths of 0.02 or 0.1 cm , depending on the enzyme concentration. The samples where the cofactor binding effect was being measured were treated equally, but for the addition of NAD^{+} to a final $220 \mu \mathrm{M}$ concentration 5 min prior to the addition of the denaturant. CD spectra were recorded over the range $250-190 \mathrm{~nm}$. Molar ellipticity values (CD activity/mol of enzyme) were calculated by using a value of 108 for the mean residue weight (Thatcher, 1980; Jörnvall, 1970; Jörnvall et al., 1975).

The secondary structure contents were derived by the CONTIN procedure (Provencher \& Glöckner, 1981).

2.2.9.1.2 Denaturation monitored by ADH activity measurements.

The monitoring of the biological activity of an enzyme can be a very sensitive way of detecting structural changes in the protein's structure and of determining its denaturation kinetics. As it would be expected this method of characterization is much more sensitive to subtle effects of small structural modifications than methods like CD or fluorescence spectroscopy. However, the results from this kind of analysis can be difficult to interpret because the adding of protein denaturants can seriously alter the solution conditions, hence altering the catalytic constants of the enzymes being measured. Also, as the level of denaturant increases and the proportion of folded enzyme decreases changes in the relative amounts of substrates to enzyme can occur, causing byphasic effects in the denaturation process (Shrake \& Ross,
1990). This last problem can be overcome by ensuring that the substrate concentrations are at saturating levels at all times.

Procedure :

The denaturation process and enzyme activity determination for each denaturant concentration point were done in duplicate, and the analyses of the denaturation in the presence or absence of NAD^{+}were done simultaneously. The GdnHCl , isopropanol, NAD^{+}and buffer stock solutions used were always the same for all the analyses carried out in a single day to minimize variation.

As a previous step to the development of the assay the following controls were performed :
a) The time required for the denaturation process to reach equilibrium at a low concentration of denaturant was determined and used in all analyses. It was found that 15 min at $25^{\circ} \mathrm{C}$ was enough to reach such equilibrium at 0.3 M GdnHCl (figure 2.2.9-I).

Figure 2.2.9-I. Evolution of ADH activity with time of incubation in GdnHCl.
b) The reversibility of the denaturation process was analyzed by incubating DADH in 0.6 M GdnHCl for 15 min and then diluting the sample 5 fold in buffer containing $0 \mathrm{M}, 0.2 \mathrm{M}, 0.4 \mathrm{M}$ and 0.6 M GdnHCl . ADH activity was increasingly recovered with the dilution of the denaturant, and with time, showing the reversibility of the denaturation process (figure 2.2.9-II).

Figure 2.2.9-II. Recovery of ADH activity upon dilution .
c) The additive effect of the coenzyme in protecting DADH against denaturation was checked by incubating the enzyme with increasing amounts of cofactor. It was shown that the protection provided by the coenzyme increased with the coenzymes concentration. (figure 2.2.9-III)

Figure 2.2.9-III. Effect of increasing concentrations of NAD^{+} on the denaturation on the loss of ADH activity.
d) The specificity effect of NAD^{+}was checked by incubating the enzyme with a control molecule, of a similar molecular weight but of a totally different structure. Kanamycin was used for this purpose and it was shown to have no effect on the denaturation process of DADH (figure 2.2.9-IV).

Figure 2.2.9-IV. The effects of addition of NAD^{+}and kanamycin on the loss of ADH activity.

Small aliquots of the enzyme (typically $20 \mu 1$) were placed at the bottom of four spectrophotometer cuvettes. To two of the cuvettes 10 $\mu \mathrm{l}$ of a 10 mM solution of NAD^{+}were added and left to equilibrate at $25^{\circ} \mathrm{C}$ for 5 min . After that period a calculated amount of buffer (100 mM Tris HCl pH 8.7) was added to the four tubes, immediately followed by the necessary amount of 2 M GdnHCl to reach the desired denaturant concentration in a total volume of 100μ l. The solutions were mixed and left to incubate for 15 min at $25^{\circ} \mathrm{C}$.
During that period the reaction buffer was prepared for the four cuvettes. The reaction buffer contained NAD, isopropanol and GdnHCl in 100 mM Tris HCl pH 8.7 .
The concentrations of substrates and denaturant were such as to make the final concentrations in the reaction as follows : NAD: 1 mM , isopropanol: $10 \mathrm{mM}, \mathrm{GdnHCl}$: same concentration as the one the enzyme had been previously incubated in.

Provided that the denaturation kinetics of a protein comply with certain conditions (i.e., denaturation equilibrium reached, reversibility of the reaction, denaturation process following a two-step mechanism) the free energy corresponding to the initial state of the protein ($\Delta \mathrm{G}$ (water)) can be estimated, and hence the differential $\Delta \mathrm{G}$ induced by specific mutations, or by the effect of the binding of a cofactor or substrate, can be quantified. An example of an ideal denaturation curve following the mentioned conditions is shown in figure $2.2 .9-\mathrm{V}$.

Figure 2.2.9-V. Ideal denaturation curve of a protein upon addition of denaturant.

In figure $2.2 .9-\mathrm{V}, \mathrm{Y}$ represents the parameter used to measure the unfolding process, A B and C are the three different regions of the curve, f and u represent the proportion of folded and unfolded protein at each region of the curve. In region A, at low concentration of
denaturant, the folded state of the protein predominates. Region B corresponds to the concentrations of denaturant where the foldedunfolded transition occurs, while region C is the zone where the unfolded state of the protein predominates.

If one defines Ff and Fu , as the fraction of unfolded and folded protein present at any given concentration of denaturant then, at any point of the curve

$$
\mathrm{Ff}+\mathrm{Fu}=1
$$

and, clearly, the Y value at any point of the curve will be

$$
\mathrm{Y}=\mathrm{YfFf}+\mathrm{YuFu}
$$

where Yf and Yu are the characteristic Y values of the folded and unfolded states of the protein.
Combining both equations the value of Fu at any point is

$$
\mathrm{Fu}=(\mathrm{Yf}-\mathrm{Y}) /(\mathrm{Yf}-\mathrm{Yu})
$$

Since the equilibrium constant of unfolding K equals

$$
\mathrm{K}=\mathrm{Fu} /(1-\mathrm{Fu})=\mathrm{Fu} / \mathrm{Ff}=(\mathrm{Yf}-\mathrm{Y}) /(\mathrm{Yf}-\mathrm{Yu})
$$

the Boltzmann equation can then be used to calculate the $\Delta \mathrm{G}$ at any point of the curve

$$
\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{~K}=-\mathrm{RT} \ln (\mathrm{Yf}-\mathrm{Y}) /(\mathrm{Yf}-\mathrm{Yu})
$$

where R is the gas constant ($1.987 \mathrm{cal} / \mathrm{deg} / \mathrm{mol}$) and T is the absolute temperature.

The value of K , however, can only be accurately measured in the transition region B , because of the substantial experimental error that occurs in regions A and C , where the one of the two conformational populations is very small.

For this reason the $\Delta \mathrm{G}$ values in the transition region B are used to obtain the $\Delta \mathrm{G}$ (water) value of the protein by extrapolation from the trend of the calculated transition Δ G's, as shown in figure 2.2.9-VI.

Figure 2.2.9-VI. The extrapolation of the $\Delta \mathrm{G}$ (water) value of a protein from points of the denaturation curve.

Clearly, if the introduction of a certain mutation in the protein, or the binding of a ligand, affects the thermal stability of the molecule (without affecting the unfolding pathway), the $\mathrm{Fu} / \mathrm{Ff}$ ratio at any denaturant concentration will change, and different $\Delta \mathrm{G}$ (water) values will be obtained. The difference between the wild type and mutant (or enzyme ligand) $\Delta \mathrm{G}$ (water) values will be the $\Delta \Delta \mathrm{G}$ effect of the introduction of the mutation (or of the ligand binding), as seen in figure 2.2.9-VII .

Figure 2.2.9-VII. The calculation of the $\Delta \Delta G$ effect by subtraction of the $\Delta \mathrm{G}$ (water) extrapolated values.

2.2.9.2 Determination of the thermal stability of DADH's

The molecular effect of chemical denaturants like GdnHCl or urea is not well understood (Creighton, 1988). It is generally believed that their denaturing effect is due to their ability to increase the solubility of hydrophobic groups of proteins, and hence decreasing the hydrophobic energy that contributes to the tight packing of protein cores.

The effect of rising temperature is quite different and much more extensive because a rise in the general energy state of the system decreases the energetic constrains of not only the hydrophobic interactions but also of the electrostatic and structural (backbone rigidity etc.) forces that contribute to the architecture of the protein.
As described in the introduction, the thermal stability of DADH's is one of the candidates to explain the differential distribution of
isoenzymes, for this reason thermal stability analyses of DADH's are common in the literature (eg. Atrian \& Gonzàlez-Duarte, 1985).

Since the conformational free energies of DADH's had not been previously analyzed, the thermal stability of each enzyme purified in this project was determined in order to be able to compare the effects of the introduced mutations in DADH to published reports in stability. Procedure :

Aliquots of each purified enzyme were incubated at three different temperatures $\left(0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}\right.$ and $\left.40^{\circ} \mathrm{C}\right)$. Small volumes were removed from the aliquots at fixed time periods and the ADH activity present was immediately analyzed as described previously. All activity assays were done in duplicate.

2.2.9.3 Determination of kinetic constants.

Determination of apparent Km's:

The $\mathrm{Km}_{\text {app }}$ values for NAD, NADP ${ }^{+}$and propan-2-ol were calculated maintaining the concentration of one of the substrates constant in the assay conditions and varying the concentration of the other substrate.

The assay conditions were as described in 2.2.7.2 except for the substrate being analyzed. The $\mathrm{Km}_{\text {app }}$ for isopropanol was calculated keeping the NAD^{+}concentration at 1 mM and using the following concentrations of propan-2-ol : $0,0.25,0.5,1,4$ and 16 mM .
The $\mathrm{Km}_{\text {app }}$ for NAD^{+}was calculated with a constant concentration of propan-2-ol of 10 mM and with the following concentrations of the cofactor : $0,0.05,0.2,0.8,1.6$ and 3.2 mM .

Similarly, the $\mathrm{Km}_{\text {app }}$ for NADP ${ }^{+}$was calculated keeping the propan-2-ol concentration at 10 mM and using the following concentrations of NADP $^{+}: 0,0.1,0.4,1.6,3.2$ and 6.4 mM .

All assays were done in triplicate, standard deviations were calculated and an additional control with the higher substrate concentrations and without enzyme was performed.
The $\mathrm{Km}_{\text {app }}$ values were obtained from a Hanes plot ([substrate] vs. [substrate]/velocity), where $\mathrm{Km}_{\text {app }}$ values are obtained from the plot equation, and equal -x when $\mathrm{y}=0$.

Determination of Vmax and $\mathrm{k}_{\mathrm{cat}}$ values.

Vmax values were also determined from the Hanes plot, as they are defined as $1 / \mathrm{m}$, where m is the slope of the equation.
$\mathrm{k}_{\text {cat }}$ values were calculated as $\mathrm{k}_{\text {cat }}=\mathrm{Vmax} / \mathrm{e}_{\mathrm{o}}$, where e_{o} is the enzyme concentration which was calculated using the published molar absorption coefficients for D. melanogaster ADH (Cornish-Bowden \& Wharton, 1988; Juan \& Gonzàlez-Duarte, 1981). Although an enzymatic assay is available for the determination of the active site concentration of the enzyme (Winberg et al., 1985), it requires large amounts of enzyme at high concentrations, and is not normally used in the literature.

3. Cloning, mutagenesis, sequencing and expression of ADH.

Results and discussion.

3.1. Cloning of the $A d h$ gene into M13mp18 and PVT-U-100.

The Adh gene included in the vector pUC-118 had to be subcloned into M13mp18 to obtain single-stranded DNA for the introduction of site-directed mutations and to confirm the final Adh sequence by DNA sequencing.

The restriction map of the plasmid pUC-118 is shown in figure 3.1-I. The plasmid was digested with the enzymes HindIII and SpeI to isolate a 1.3 kb fragment containing the Adh coding sequence. Simultaneously, the M13mp18 DNA was digested with the restriction enzymes HindIII and XbaI, which cut once through the polylinker region of the phage's DNA. The digested M13mp18 DNA and the 1.3 kb fragment containing Adh were ligated taking advantage of the compatibility of the hanging sequences generated by SpeI and XbaI (see figure 3.1-II for representation of the resulting M13-Adh plasmid).
Once the subcloning conditions were optimized an M13mp18 clone containing the $A d h$ insert was obtained, as demonstrated by the restriction analysis in figure 3.1-III. This clone was called M13-Adh.

Figure 3.1-I. Map of the plasmid pUC115-3008, provided by Dr. Sofer, containing the $A d h$ gene without introns.

Figure 3.1-II. Map of the plasmid M13-Adh obtained by subcloning the Hind III/Spe I fragment of pUC-3008 containing the Adh-S gene into M13mp18 digested with Hind III and Xba I.

Figure 3.1-IIIa. Restriction analysis of the plasmids pUC-3008 and M13mp18 digested with the enzymes Hind III and Spe I. (1) Molecular weight marker. (2) pUC-3008. (3) M13mp18.

1	2	3	4	5	6

Figure 3.1-IIIb. Restriction analysis of M13mp18 and M13-Adh digested with the enzymes Hind III and Sac I. (1) M13mp18. (2-5) M13-Adh, the band of 1.3 Kb containing the Adh gene can be seen at the end of each track. The intermediate band in tracks 2 and 5 corresponds to undigested plasmid in super-coiled form. (6) Molecular weight marker.

3.2. Site-directed mutagenesis of the M13-Adh clone and sequencing of the mutations.

Rationale of the mutations introduced:
Table 3.2-1 summarizes all the mutations that were introduced into the Adh gene of the M13-Adh clone, all mutations were introduced using the Kunkel site-directed mutagenesis system (Kunkel, 1985).

Mutation	Adh-S sequence and mutations introduced
Gly 14 to Ala	37-GTTGCCGGTCTGGGAGGC-54 GCT
Gly 19 to Ala	49-GGAGGCATTGGTCTGAC-63 GCT
Asp 38 to Ala	109-ATCCTCGACCGCATTGAG-126 GCC
Asn 136 to Stop	403-ATCTGCAACATTGGATCC-420 TAA
Pro 214 to Ser	634-CCCACCAGCCATCGTTG-651 TCA

Table 3.2-1. List of the mutations introduced into the Adh-S gene. Below the native $A d h$ sequence the codon mutated is indicated and the bases changed are shown in bold characters.

Mutations G14A, G19A, D38A and 136Stop: as described in the introduction, the main structural interpretation that could be made from the sequence of Drosophila ADHs was the existence of a nucleotide binding domain at the N -terminal part of the protein. Although such hypothesis is now supported by the evidence from the crystal structure of SDH, this information was only published at the end of this project, and the need still remains for detailed information on the enzyme-coenzyme interactions in Drososphila ADH.

For these reasons a series of mutations affecting residues thought to be important for the cofactor recognition were designed. Residues Gly 14 and Gly 19, located in the poly-glycine region of the N-terminal sequence of the enzyme, were mutated to alanines in order to try to disrupt the space that the glycines are meant to provide in the cofactorbinding site. During the development of this project similar or identical experiments have been reported in the literature (Scrutton et al., 1990; Chen et al., 1991; Feeney et al., 1990), confirming the importance of the poly-glycine sequence for cofactor recognition.
Residue Asp 38 in the short-chain dehydrogenases was originally thought to correspond structurally to the Asp 223 of Horse liver alcohol dehydrogenase, and to the conserved aspartic acid of other nucleotide binding domains, where it creates a hydrogen bond with one of the hydroxyl groups of the adenine ribose of the cofactor. To test such possibility we decided to mutate Asp 38 to alanine, in order to destroy any possible hydrogen bond of the side chain with the coenzyme molecule.
The availability of antibodies against the enzyme encouraged the attempt to introduce a stop codon at the end of the supposed N -terminal NAD-binding domain. The purpose of introducing this mutation was to test whether the N -terminal part of Drosophila ADH would be capable of folding into a functional binding domain. The presence of a soluble polypeptide expressed from the truncated gene could be tested with antibodies against Drosophila ADH, and its dinucleotide binding capacity analyzed by techniques like equilibrium dialysis.

Mutation P214S : The mutation P214S in ADH, as described in the introduction, is found in some wild populations of D. melanogaster, always in the ADH-F form of the enzyme. The mutation has a double effect: it increases the thermal stability of the enzyme, and it modifies
its kinetic properties making it ADH-S like, presumably by increasing the binding affinity of the enzyme with the cofactor, hence slowing down the turn-over rate (Chambers, 1984; Chambers, 1988). So far, no ADH-S isoenzyme containing the P214S mutation has been found. The effect of the mutation has hence a double interest: it is intrinsically interesting to study the physical effect of the change that induces an increase in structural stability; it is also interesting to find out what kind of effect the change has in an ADH-S form of the enzyme.

Mutagenesis results :
The frequency of mutation was always 75% or higher (four clones were selected for sequencing after every mutagenesis experiment, and a minimum of 3 were always found to be mutant). The sequences of all the mutants produced are shown in figure 3.2-I. At this point no attempt was made to sequence the whole gene as this was to be done for all mutants, after the yeast transformation steps.

Figure 3.2-I. Autoradiographs of the sequencing gels showing the five mutations introduced into the Adh gene. The mutated bases are underlined.

3.3. Cloning of the wild type and mutated M13-Adh clones into PVT-U-100.

The transfer of the wild type and all mutated $A d h$ genes, except Adh136Stop, into PVT-U-100 was carried out using the restriction sites HindIII and SacI, both present in the polylinkers of M13mp18 and PVT-U-100 in the right orientation for expression from the ADH1 promoter present in the plasmid (see figure 3.3-I for a restriction map of PVT-U-100).

Adh136Stop was subcloned into PVT-U-100 using the sites HindIII and BamHI, which produce a fragment of 570 bp , containing the initiation codon ATG and the introduced stop codon ATT.

Figure 3.3-I. Map of the PVT-Adh plasmids obtained by subcloning the HindIII/SacI fragment of M13-Adh that contained the Adh gene into M13mp18 digested with HindIII and SacI. The mutant Adh136Stop was digested from M13 with HindIII and BamHI (the latter cutting the gene 30 bases upstream from the introduced stop codon) and subcloned into M13mp18 using the same restriction sites. .

Photographs of the agarose gels containing restriction analysis samples of the PVT-U-100 clones with the wild type and mutagenized Drosophila Adh genes are shown in figure 3.3-II. It can be seen that new plasmids, carrying the $A d h$ containing fragments, were obtained.

Figure 3.3-II. Restriction analysis of the PVT-Adh . (1) Molecular weight marker. (2) pUc-3008. (3) pUC-3008 digested with HInd III and Spe I as in figure 3.1-III. (4) PVT-Adh. (5) PVT-Adh digested with Hind III and Eco RI, this digestion produces a fragment of 1.8 Kb containing PVT material, and a larger fragment of 6.4 Kb containing the entire coding sequence of Adh. (6) PVT-Adh136Stop. (7) PVT-Adh136 Stop digested with Hind III and Eco RI, the large fragment contains the Adh 136 Stop codifying sequence. As it can be seen the larger band is smaller than that containing the entire $A d h$ coding sequence run in track 5 .

3.4 Transformation of yeast, rescue and sequencing of the whole $A d h$ genes.

The plasmids obtained by subcloning of the various $A d h$ mutants into PVT-U-100 were used to transform the yeast strain WV.36.201 as described previously. Once the yeast clones containing the desired plasmids were obtained, the plasmids were rescued, their presence tested by restriction analysis and their $A d h$ genes wholly sequenced to confirm that only the desired changes were present.

To our surprise several unreported mutations were found in the sequence. All the new changes were found in all the plasmids sequenced, ruling out possible artifacts of mutagenesis or yeast transformation, and pointing to a common origin for all of them.
To confirm the presence of the changes in the original Adh sequence obtained from Dr. Sofer the whole Adh gene of the plasmid pUC-118 was sequenced in both orientations, between the nucleotide 129 upstream from the initiation codon to nucleotide 201 downstream from the termination codon. This confirmed that all the new changes detected had their origin in the starting Adh coding sequence.

Table 3.4-1 lists all the changes found with respect to the 'consensus' ADH-S sequence as described by Kreitman (Kreitman, 1983). Autoradiographs of the sequencing gels containing the described changes are shown in figure 3.4-I.

	Position of the change	Change from consensus	Transcriptional effect
1	Nucleotide 518	T changes to C	Ile 173 changes to Thr
2	Nucleotide 531	C changes to G	Silent change
3	Nucleotide 540	C changes to T	Silent change
4	Nucleotide 684	G changes to A	Silent change
5	Nucleotides 786 to 795	Deletion of A	Past termination codon
6	Nucleotide 819	Insertion of a T	Past termination codon
7	Nucleotides 849 to 850	Deletion of a T	Past termination codon

Table 3.4-1. List of changes found in the $A d h$ sequence used in this thesis relative to the 'consensus' sequence proposed by Kreitman (Kreitman, 1983). The nucleotide numbering starts at the first nucleotide of the initiation codon of the gene.

Discussion :

Of all the changes found in the Adh sequence, three of them, at positions 531, 540 and 684, had already been described as polymorphisms by Kreitman, although these were not found together in the same gene.

Of the four remaining changes, two (insertion of T at position 819 , and deletion of a T at positions 849-850) have not been reported previously. The remaining two (change of a C by a T at position 518 , and deletion of an A between positions 786-795) are located in areas found by Kreitman to be polymorphic between different populations, but the changes that we found are of different nature. The mutation at position 518, that creates a change in the protein sequence was, in fact, found by Kreitman at position 519, where the change is silent.

Figure 3.4-I. Autoradiographs showing the new nucleotide changes found inside the coding region of the Adh gene provided by Dr. Sofer. The new nucleotides found are underlined and their correspondent number (from the initiation codon) is shown.

The strategy used by Dr. Sofer's group for the construction of the intron-less Adh gene is of relevance in this discussion because it involved various genetic manipulations that could have resulted in the introduction of changes in the sequence.
The final gene is in fact a mosaic, constructed by hybridising a DNA primer, containing a fragment of an ADH-S clone ranging from nucleotides 568 to 1003, to an mRNA molecule encoding for ADH-F. The DNA primer did not contain any of the intron sequences of the Adh gene and it was extended with reverse transcriptase, using the mRNA molecule as template, and producing a hybrid DNA-RNA molecule. The RNA was then digested leaving a single stranded DNA molecule encoding for Drosophila ADH, without the intron sequences.

This DNA molecule originated from an $A d h-F$ mRNA from nucleotides 1 to 567, and from an Adh -S gene from nucleotides 711 (this numbering includes intron sequences) to its end. Dr. Sofer's group was interested in constructing an intronless Adh -S 'gene' for expression studies, and since the only known difference between ADH-S and ADH-F is at amino acid 192 (caused by a change at nucleotide 575) they assumed that the DNA produced would encode for an -S type ADH. They confirmed that by checking the isoelectrofocusing analysis, but the final sequence of this mosaic 'gene' was not obtained (Clarke, 1988). To further complicate matters, the sequence of the mRNA used for the construction of the intronless $A d h$ was not checked.

As can be seen from all the exposed and table 3.4-1, the changes numbered 1,2 and 3 , found during this project, must belong to the sequence of the mRNA molecule, while the rest of the changes correspond to the original sequence of $A d h-S$.

However one cannot rule out the possibility that some of these changes may have been introduced during the genetic engineering manipulations used for the construction of the final coding sequence. Strongly against such possibility argues the fact that most of the changes are either previously described polymorphisms or similar to these in both position and nature. The only two novel changes are in the non coding upstream region of the gene.
Of major relevance to this work was the finding of the change at position 518, which determines a non-reported difference in the sequence of the enzyme, substituting the expected isoleucine by a threonine. The amino acid that is changed, Ile 173, is conserved in all the Drosophila ADH enzymes sequenced so far. Although a change of an isoleucine for a threonine can be considered as a rather conservative substitution its appearance made it mandatory to fully characterize the new enzyme (which, for simplicity, we will continue to call ADH-S in this thesis), in order to be able to compare the mutations introduced in it with the rest of published data on ADH-S.
3.5 Analysis of growth behaviour of the different yeast strains and of ADH activity in crude extracts.

The yeast clones transformed with the PVT-U-100 plasmids containing the wild type, G14A, G19A, D38A, 136Stop and P214S forms of Adh will be named respectively : WVwt, WV14A, WV19A, WV38A, WV136Stop and WV214S. The cells containing the plasmid without the Adh gene will be named WV. (Growth curves shown in figure $3.5-\mathrm{I}$)

Figure 3.5-Ib

Figure 3.5-I . A) Growth curves for the different strains described. Strains WV136Stop and WV214S showed identical behaviour to strain WV, and are not displayed for clarity. B) Logarithmic transformation of the original growth values.

The growth curve for each of these clones was obtained several times and a consistent difference was found in the growth behaviour of the different cells analyzed (figure 3.5-I). Simultaneously, the amount of ADH specific activity found in crude extracts of the different clones at stationary phase of growth was tested (figure $3.5-\mathrm{II}$).

Figure 3.5-II

Figure 3.5-II. The specific activity values for the crude extracts of the different strains relative to the activity of the activity of the crude extract of the WVwt strain.

The relationship between the different clones according to maximum cell density attained in liquid culture is as follows :
WVwt $>$ WV38A > WV14A > WV19A > WV214S = WV136Stop $=$ WV Similarly, the relationships according to ADH specific activity in crude extract are :

WVwt $>$ WV38A $>$ WV19A $>$ WV14A $>$ WV214S $>$ WV136Stop $=W V=0$

The main differences between these two comparisons are : a) crude extracts of WV19A cells have higher specific activity than WV14A cells, but they grow to slightly lower cell densities in cell cultures. b) WV214S cells do not grow to higher cell densities than WV136Stop or WV cells, but a certain amount of ADH activity can be detected in the former, while, as expected, neither WV136Stop or WV cells have any detectable ADH activity in their crude extracts.

Discussion :

As clearly shown by the growth curves of the different strains used in this thesis the expression of the Drosophila Adh gene has an enhancing effect on the growth rate and on the attainable cell density properties of its expressing yeast cells. Although it would be necessary to check whether such effects are lost when the enzyme is expressed in wild type yeast cells, it seems very probable that the reason for such enhancement may be a complementation of the ADH activity that in the strains used has been eliminated through deletion of the three yeast Adh genes.

In wild type yeast growing in glucose-rich media and in aerobic conditions the main ADH activity (carried out by the ADH-1 isoenzyme) is dedicated to the production of ethanol from the acetaldehyde that is obtained from the glycolytic pathway. When ethanol is used as a carbon source the first step of utilization involves its oxidation to acetaldehyde by the effect of ADH-2 (Wills, 1990). In the case of the WV. 36.201 cells used in this project, the lack of ADH-1 should, in glucose-rich conditions, lead to an accumulation of acetaldehyde, to a decrease in the available pool of NAD^{+}in the cell and to a lack of ethanol as a metabolite once the glucose pool has been depleted. Also, the lack of ADH-2 should lead to a poor utilization of ethanol.

Drosophila ADH could be partially complementing both alcohol dehydrogenase activities, by shifting the equilibrium towards the production of ethanol as acetaldehyde accumulated and, inversely, catalyzing the oxidation of ethanol once the glucose pool had been depleted. This explanation would agree with the fact that the growth capacity of the cells used in this project generally correlates with the ADH activity detectable in their crude extracts, which, in turn, gives a preliminary indication of the level of activity of the different mutants expressed in the cells.

However, the level of ADH activity found in the crude extracts and the effect of each enzyme in its expressing cells is not only a function of the enzyme's catalytic efficiency. It is a combination of chemical efficiency with expression and stability, and so it will also depend on the level of production of each mutant, in its physical stability, and in its resistance to proteolytic cleavage. Differences in these two last factors may be the causes for the apparent contradiction between the results of growth of WV14A and WV19A cells and their relative ADH activity in crude extracts. WV14A cells grow slightly faster and to slightly higher densities than WV19A cells, but the crude extracts of the latter have higher ADH specific activity. This could be due to a relatively higher instability of the enzyme ADH G14A, that could result in a higher loss of its activity, due to denaturation or proteolysis, during the crude extract preparation process.
Without any analysis of enzyme production or kinetic evidence from purified enzyme solutions it was not possible to know at this stage if all the detected differences are, or are not, due to differences in the level of expression, enzyme activity or stability of each of the ADH variants. These analyses will be described in the rest of this chapter.

3.6 Immunological analysis of ADH expression.

The presence of cross-reacting material with monoclonal and polyclonal antibodies against Drosophila ADH was tested in WV, WVwt, WV14A, WV38A and WV136Stop cells. The results for the different clones and antibodies used can be seen in figure 3.6-I.

Because similar amounts of total protein were used from all the cells analyzed the intensity of the recognized bands can be used to assess the relative amounts of ADH in each cell type. All the antibodies used recognized a band of the same molecular weight as Drosophila ADH in WVwt, WV14A and WV38A cells, and several bands of lower molecular weight that can be attributed to degradation products because their band patterns are similar to the ones found in crude extracts from Drosophila flies (Fibla et al., 1989). No such bands were detected in the WV and WV136Stop cells.
Three of the antibodies used (polyclonal serum and the monoclonal antibodies LLBE8 and 10BB2) cross-reacted with other proteins of higher molecular weight that were present in all the clones tested, including WV (which does not contain an Adh gene). The monoclonal antibody MMBB8 did not cross-react with any bands in the WV or WV136Stop cells, hence showing specific reaction with ADH.

As it can be seen in figure 3.6-I, no significant differences in amount of seropositive material can be seen between clones WVwt, WV14A and WV38A. The rest of the clones analyzed (WV and WV136Stop) had no seropositive material when the monoclonal antibody MMBB8 was used, and no band of lower molecular weight than ADH could be detected.

Monoclonal antibody MMBB8

Polyclonal antibody

Figure 3.6-I. Immunodetection of ADH in crude extracts of yeast cells. Lanes 1 to 5 show the results with similar amounts of crude extract of the strains WVwt, WVG14A, WVD38A, WV136Stop and WVPVT respectively. Lane 10 is a purified ADH control. Lanes 6-9 are not relevant.

Discussion :

The results obtained seem to indicate that the level of expression of the wild type enzyme is largely equivalent to the expression of the mutants ADH G14A and ADH D38A. That, in turn, points to differences in intrinsic enzyme properties as the cause for the differential growth characteristics seen in the previous section, at least for the strains expressing these three enzymes. The final determination of the nature of these differences required the analysis of pure preparations of the enzymes.

A second important result of the immunological analysis of the different strains was the finding of no cross-reacting material in the WV136Stop cells, specially when polyclonal antibodies were used. Although such result is not conclusive, it seems to suggest that no soluble peptide is being produced by that strain, either because the truncated gene is not expressed, its mRNA its not correctly processed or translated, or because the translated peptide is not stable and either precipitates or is degraded. In any case, no further analyses were done on that mutant. It is unfortunate that the expression levels of the Adh genes could only be tested for five of the seven strains used in the project, but, as it will be seen in the purification results, there is no evidence of different levels of expression in the untested strains WVG19A and WVP214S.

4. Purification and characterization of wild type and mutant ADH enzymes. Results and Discussion.

4.1 Purification of Drosophila ADH from yeast cells .

General considerations :
In the Materials and Methods section of this thesis I have described only the procedures that form the final purification protocol used to obtain pure ADH from yeast cultures. However many different purification techniques were actually tried before reaching the definite purification scheme. In this section the results of each of the steps finally used for all the enzymes purified will be described, and a mention will be made of the results that were obtained with related techniques that were also tried.

4.1.1 Cell harvesting and lysis .

The procedure for cell harvesting and lysis was essentially a scale-up of the methods used to check for the presence of ADH activity in crude cell extracts, and so the results obtained from this step are essentially the same as those described in section 3.5. The total protein concentrations at this stage of the purification oscillated from 1 to 10 $\mathrm{mg} / \mathrm{ml}$ depending on the cell density attained by the yeast cultures used (See tables 4.1-1 to 4.1-5).

4.1.2 Ammonium sulphate fractionations and de-salting procedures.

Two ammonium sulphate cuts were carried out on the crude extracts at concentrations of salt of 35% saturation and 70% saturation. That step had four main consequences on the sample : the lysate was homogenized and freed of general debris, the total volume of the samples was reduced by a factor of approximately 4 , the total protein concentration was increased and the specific ADH activity of the samples was enhanced.

The specific activity values suggest a purification factor of around three after the salt cut. However, the treatment of ADH with ammonium sulphate enhances the activity of the enzyme, which suggests that such purification factor may partially be an artifact.

The ammonium sulphate that remained in the crude solution after the second fractionation was removed by running the samples through a Sephadex G-25 column as described. This step increased the volume of the sample by a factor of 3 to 5 and allowed recoveries of $80-85 \%$ of the total enzyme activity (see results tables 4.1-1 to 4.1-5).
Membrane dialysis was tried as an alternative at this stage of the purification but the method is slower and allows for much poorer recoveries of enzyme activity. Typically 30 to 40% of the enzyme activity was lost, probably due to enzyme denaturation and proteolysis.

4.1.3 Anion exchange chromatography.

As described in the materials and methods section, it was felt that ionic exchange columns would be more suitable for the purification of ADH than the previously described affinity methods. To determine the
optimal conditions to apply to our system a battery of small columns of anionic and cationic exchange nature was prepared (see table 4.1.4-I).

The most encouraging results were obtained with the ion exchange matrix Q-Sepharose, equilibrated at pH 8.00 . Under this conditions a large amount of the protein content of the samples was retained by the column, but almost 90% of the loaded ADH activity was eluted directly out of the matrix, giving rise to a 20 fold purification or more for the ADH wild type enzyme (tables 4.1-1 to 4.1-5, and figure 4.1.4-I).

A set back of this procedure is the loss of the sample concentrating advantages of normal ion-exchange methods, where, after a positive binding of the protein of interest, a salt gradient can be applied to elute the material in a small volume of solvent. In our case the volume of the sample was slightly increased after the Q-Sepharose column.

Figure 4.1.4-I. Photograph of an SDS-polyachrilamide gel showing samples at different stages of the purification of ADH-S. (1) Molecular weight markers.
(2) Crude extract of WVwt yeast cells. (3) Sample of the fractions with ADH activity pooled after the Q-Sepharose column. (4-6) Consecutive fractions with ADH activity eluted from the Superose-12 column.

4.1.4 Gel filtration chromatography and previous concentrating step.

As can be seen in figure 4.1.4-I, a remarkable purification of the ADH enzyme was achieved after the anion-exchange column, but some contaminants were still present at this stage. The main contaminant band appeared to be of a much higher subunit mass ($\sim 55 \mathrm{kDa}$) than the ADH monomer. A good choice to separate these two molecules was, hence, a gel-filtration technique.

Three different gel-filtration approaches were tried, the Pharmacia Superose 12 FPLC column (exclusion mass of $2 \times 10^{6} \mathrm{Da}$), a combination of a Superose 12 column followed by a Superose 6 column (exclusion mass of $4 \times 10^{7} \mathrm{Da}$), and the Pharmacia Superdex FPLC column. The best results were obtained with the first approach. The combination of Superose 12 followed by Superose 6 gave slightly better resolution of peaks but, due to the lower flux that Superose 6 columns can support, the processing times were dramatically increased. That factor, coupled to the lack of refrigeration system in the FPLC system used, gave rise to unacceptably high losses of enzyme activity due to denaturation.

On the other hand, the Superdex column gave poor resolution of peaks compared to the Superose 12 column alone. In figure 4.1.5-I a chromatogram of a typical Superose 12 separation is shown. That separation yielded samples of pure ADH when analyzed by Coomasie staining of SDS-polyacrylamide gels (figure 4.1-I). One of the mutants produced, D38A, behaved differently (figure 4.1.5-II), and was always eluted with variable, but detectable, amounts of a second protein of an apparently slightly larger monomeric molecular weight.

Figure 4.1.5-I. Chromatogram of the Superose 12 results.

Figure 5.1.5-II. SDS-polyacrylamide gel with samples of various stages of the purification of ADH-D38A. (1-3) Fractions from the Superose- 12 column with higher ADH activity.(4) Pure ADH-S control. (5) sample of the fractions with ADH activity pooled after the Q-sepharose column. (6) Crude extract of WVD38A yeast cells. (7) Molecular weight markers.

By reducing the volume of the fractions collected the amount of such contaminant was reduced, but, as a result of its presence the purification of ADH D38A could not be achieved at better than 80% of the total protein. The difference in behaviour of this mutant enzyme is difficult to explain. Although its difference in charge may be responsible for differences in its aggregation properties this enzyme eluted from the Superose column at the same times as those of the rest of the ADHs purified, and so the possibility that D38A could be somehow aggregating with the contaminant protein seems unlikely.

Although this technique allowed for efficient recoveries of purified enzyme it had a major inconvenience in the low capacity of the columns that were available. The volume of the Superose columns was 20 ml , hence limiting the volume of the sample to a maximum of $200 \mu \mathrm{l}$ if optimal resolution was to be achieved.

As has been described in the previous chapter the peculiar nature of the ionic-exchange method used actually increased the volume of the final sample to typical values of about 15 ml . The processing of these volumes with the Superose 12 columns available would have been extremely slow and inefficient, so the introduction of a concentrating step was decided.
This was achieved by saturating the sample obtained from the QSepharose column with ammonium sulphate, collecting the precipitated protein by centrifugation and resuspending in a smaller volume of buffer ($\sim 500 \mu \mathrm{l}$). This step accomplished the necessity of reducing the total volume of protein sample, and allowed a much more efficient use of the gel-filtration system. However, this step proved to have two main problems which, as can be seen in tables 4.1-1 to 4.1-5 made of it the most inefficient step of the purification procedure.

Firstly, the recoveries of ADH activity from this step were far from ideal, and from 30 to 40% of the activity recovered from the QSepharose column was normally lost. The explanations for this poor efficiency are probably that : a) the protein concentrations of the samples eluting from the anion-exchange columns were too low to allow a very efficient protein precipitation and, b) the necessity to keep the final volume of the sample to a minimum meant that poor solubilization efficiencies were attained.

Despite the problems described this concentrating step was carried out on all the samples due to its global convenience. There are a number of alternative techniques that should be tried in the future to try to reduce the loss of enzyme activity at this stage of the purification. Techniques of sample concentration by filtration, either using vacuum, tangential flow or centrifugal force could provide better ways to concentrate the samples.

4.1.5 General evaluation of the purification protocol.

To summarize, a rapid, small-scale method to purify Drosophila ADH from yeast cultures expressing different forms of the enzyme was developed. The purification grade obtained was to homogeneity in SDSpolyacrylamide gels stained with Coomassie blue, except for the mutant D38A. A second contaminant, that amounted to 20% of the total protein, could not be removed from the preparations of this latter mutant with the method described. This purification method was used to obtain enzyme preparations for the characterization of the effects of the mutations introduced into the wild type Drosophila enzyme.

ADH WT	Total volume	Total protein	Enzyme nnits	Specific activity	\%Yield	Purification (times)
C. E.	9 ml	90 mg	93	$1 \mathrm{u} . / \mathrm{mg}$	100	0
A.S. 1	2.4 ml	19.2 mg	72	$3.7 \mathrm{u} . / \mathrm{mg}$	77	3.7
G-25	12 ml	18.5 mg	70	$3.8 \mathrm{u} . / \mathrm{mg}$	75	3.8
Q-Seph.	15 ml	2.6 mg	63.5	$24 \mathrm{u} . / \mathrm{mg}$	68	24
A.S. 2	0.5 ml	2.3 mg	40	$17 \mathrm{u} . / \mathrm{mg}$	43	17
Superose	4.5 ml	1.3 mg	31	$24 \mathrm{u} . / \mathrm{mg}$	33	24

Table 4.1-1. Purification results for ADH-S.

ADH G14A	Total volume	Total protein	Enzyme units	Specific activity	\%Yield	Purification (times)
C. E.	15 ml	60 mg	22.5	$0.3 \mathrm{u} . / \mathrm{mg}$	100	0
A.S. 1	4 ml	18 mg	15.8	$0.8 \mathrm{u} . / \mathrm{mg}$	70	3.5
G-25	12 ml	16 mg	14.8	$0.9 \mathrm{u} . / \mathrm{mg}$	66	3.6
Q-Seph.	13 ml	1.9 mg	13.9	$7.3 \mathrm{u} . / \mathrm{mg}$	51	23.5
A.S. 2	0.4 ml	1.3 mg	7.6	$5.8 \mathrm{u} . / \mathrm{mg}$	34	17
Superose	4 ml	0.5 mg	6.3	$12.4 \mathrm{u} . / \mathrm{mg}$	28	22

Table 4.1-2. Purification results for ADH G14A.

ADH G19A	Total volume	Total protein	Enzyme units	Specific activity	\%Yield	Purification (times)
C. E.	7 ml	13 mg	10.5	0.8	100	0
A.S. 1	2 ml	3.5 mg	7.6	2.2	76	2.7
G-25	6 ml	3.2 mg	6	1.9	57	2.3
Q-Seph.	8 ml	0.35 mg	4.5	12.9	43	16
A.S. 2	.25 ml	0.22 mg	3.5	15.9	33	20
Superose	2 ml	0.09 mg	2.9	32.6	28	41

Table 4.1-3. Purification results for the enzyme ADH G19A

ADH D38A	Total volume	Total protein	Enzyme nnits	Specific activity	\%Yield	Purification (times)
C. E.	20 ml	85 mg	134	$1.6 \mathrm{u} . / \mathrm{mg}$	100	0
A.S. 1	4 ml	19.7 mg	92	$4.6 \mathrm{u} . / \mathrm{mg}$	69	2.9
G-25	20 ml	19.6 mg	68	$3.4 \mathrm{u} . / \mathrm{mg}$	51	2.2
Q-Seph.	25 ml	4.1 mg	57.5	$14 \mathrm{u} . / \mathrm{mg}$	43	8.7
A.S. 2	0.5 ml	3.4 mg	40	$12 \mathrm{u} . / \mathrm{mg}$	31	7.3
Superose	6 ml	1.6 mg	32	$20 \mathrm{u} . / \mathrm{mg}$	24	12.5

Table 4.1-4. Purification results for the enzyme ADH D38A

ADH P214S	Total volume	Total protein	Enzyme units	Specific activity	\%Yield	Purification (times)
C. E.	7 ml	11 mg	5.5	$0.5 \mathrm{u} . / \mathrm{mg}$	100	0
A.S. 1	2 ml	4.4 mg	4.9	$1.1 \mathrm{u} . / \mathrm{mg}$	85	2.2
G-25	6 ml	4.2 mg	4.5	$1.1 \mathrm{u} . / \mathrm{mg}$	82	2.2
Q-Seph.	8 ml	0.8 mg	4.1	$5.1 \mathrm{u} . / \mathrm{mg}$	74	10.2
A.S. 2	0.25 ml	0.6 mg	2.3	$3.8 \mathrm{u} . / \mathrm{mg}$	42	7.6
Superose	2.5 ml	0.25 mg	1.9	$7.5 \mathrm{u} . / \mathrm{mg}$	34	15

Table 4.1-5. Purification results for the enzyme ADH P214S.

4.2 Characterization of the wild type and mutant ADH enzymes.

4.2.1 Enzyme kinetics .

Results:
Figures 4.2.1-I to 4.2.1-XIV show the Michaelis-Menten and Hanes plots for each of the enzymes and substrates studied. Table 4.2.1-1 summarizes the $\mathrm{Km}, \mathrm{k}_{\mathrm{cat}}$ and $\mathrm{k}_{\mathrm{cat}} / \mathrm{Km}$ values obtained for all the enzymes analyzed and for all substrates tested.

	NAD			NADP ${ }^{+}$			Isopropanol		
	$\begin{gathered} \mathrm{Km} \\ (\mathrm{mM}) \end{gathered}$	$\begin{array}{r} \mathrm{k}_{\text {cat }} \\ \left(\mathrm{s}^{-1}\right) \\ \hline \end{array}$	$\mathrm{k}_{\mathrm{cat}} / \mathrm{Km}$	$\begin{aligned} & \mathrm{Km} \\ & (\mathrm{mM} \end{aligned}$		$\mathrm{k}_{\mathrm{cat}} / \mathrm{Km}$	$\begin{aligned} & \mathrm{Km} \\ & (\mathrm{mM}) \end{aligned}$	$\mathrm{k}_{\text {cat }}$ $\left(\mathrm{s}^{-1}\right)$	$\mathrm{cat} / \mathrm{Km}$
ADH wt	0.18	16.6	89.5	1.4	3.9	1.8	0.6	16.7	27.7
G14A	0.36	7.1	19.8	2.4	1.3	0.5	0.64	7.14	11.2
G19A	0.32	17.2	53.7	No d	tectab	activity	0.66	17.2	26.06
D38A	0.45	9	20	4.27	1	0.2	1.99	9	4.5
P214S	0.09	3	33.3	1.9	0.5	0.3	0.47	3	6.66

Table 4.2.1-1 . Kinetic results for all the enzymes and substrates studied. All the rate values measured had standard errors lower than \pm 5%, except for two points : $6.4 \mathrm{mM} \mathrm{NADP}^{+}$for the enzyme ADH D38A $(\pm 24 \%$, figure $4.2 .1-\mathrm{X})$ and $0.8 \mathrm{mM} \mathrm{NAD}^{+}$for the enzyme P214S ($\pm 9.5 \%$, figure 4.2.1-XII).

Figure 4.2.1-Ia

Figure 4.2.1-Ib

[NAD]
Figure 4.2.1-I . Kinetic plots for ADH wild type and NAD+, (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-IIa

Figure 4.2.1-IIb

Figure 4.2.1-II. Kinetic plots for ADH wild type and NADP ${ }^{+}$. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-IIIa

Figure 4.2.1-IIIb

Figure 4.2.1-III . Kinetic plots for ADH wild type and isopropanol. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-IVa

Figure 4.2.1-IVb

Figure 4.2.1-IV. Kinetic plots for ADH G14A and NAD+. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-Va

Figure 4.2.1-Yb

Figure 4.2.1-V. Kinetic plots for ADH G14A and NADP+. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-YIa

Figure 4.2.1-VIb

Figure 4.2.1-VI. Kinetic plots for ADH G14A and isopropanol. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-VIIa

Figure 4.2.1-YIIb

Figure 4.2.1-VI. Kinetic plots for ADH G19A and NAD+. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-VIIIa

Figure 4.2.1-VIIIb

Figure 4.2.1-VIII. Kinetic plots for ADH G19A and isopropanol. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-IXa

Figure 4.2.1-IXb

Figure 4.2.1-IX. Kinetic plots for ADH D38A and NAD+. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-Xa

Figure 4.2.1-Xb

Figure 4.2.1-X. Kinetic plots for ADH D38A and NADP ${ }^{+}$. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-XIa

Figure 4.2.1-XIb

Figure 4.2.1-XI. Kinetic plots for ADH D38A and isopropanol. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-XIIa

Figure 4.2.1-XIIb

[NAD]

Figure 4.2.1-XII . Kinetic plots for ADH P214S and NAD+. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-XIIIa

Figure 4.2.1-XIIIb

Figure 4.2.1-XIII. Kinetic plots for ADH P214S and NADP+. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Figure 4.2.1-XIVa

[isopropanol]
Figure 4.2.1-XIVb

Figure 4.2.1-XIV. Kinetic plots for ADH P214S and isopropanol. (a) Michaelis-Menten plot. (b) Hanes plot using the mean rate values (simple regression calculated with the program CRICKET GRAPH). The equation defining the regression line and its regression coefficient are shown at the base of the plot.

Discussion:
As described in the introduction chapter, Drosophila ADH catalyzes the oxidation of alcohols through a ternary-complex, ordered mechanism, where NAD^{+}binds first to the enzyme. The release of the reduced cofactor is the limiting step of the reaction, and it can be seen by studying different isoenzymes that an increase in affinity for the cofactor results in a slower reaction due to a decrease in the dissociation constant of NADH (Chambers, 1988).
This immediately suggests that a mutation that may be capable of decreasing the affinity constant of the enzyme for the cofactor without affecting the reaction rate will result in a faster enzyme. The Michaelis constant (Km) is not a simple measure of affinity, it is negatively dependent on the constant of formation of the enzyme-substrate complex, and positively dependent on the dissociation constant of such a complex plus the constant of its transformation into the complex enzyme-substrate.
Due to this fact, it is expected that mutations that increase the Km values for a substrate in ADH will fall into two categories: those that affect the affinity of the enzyme for the cofactor but do not affect the rate of reaction and those that, while affecting the affinity for NAD, do also decrease its rate of reduction. The first class of mutations would be expected to accelerate the reaction rate of the enzyme, because a lower affinity of the enzyme for the cofactor would allow the release of NADH to occur at higher rate, hence approaching the reaction rate to the rate of proton transfer. The second class of mutants would probably be slower enzymes, because of loss of reaction efficiency.

Clearly, any mutation is likely to have a certain effect on all the rates, and its global effect in the Km will be the result of the sum of the effects in all the constants. The two cases described above are the extreme cases where one constant is affected by the substitution while the others are not. However, from the comparison of the values of the different mutants it should be possible to draw conclusions on the predominant effect of each change.

Enzyme ADH-S:
The kinetic results obtained with the ADH-S enzyme expressed and purified in this project are similar to the various kinetic data published. Perhaps more importantly, they are very similar to the kinetic values published by Chen and colleagues (1990), which were used as reference for their site-directed mutagenesis experiments on the enzyme. This result has two main implications for this project: it makes the kinetic results directly comparable to the ones reported by Chen and colleagues, and it shows that the amino acid change at position 173 caused by the unexpected change found in the gene sequence has no effect on the enzyme's mechanism.

Enzyme ADH G14A:

The G14A mutation has already been analyzed by other investigators (Chen et al., 1990), and they reported similar kinetic effects to the ones found in this work. The enzyme shows a two fold increase in the Km for both NAD^{+}and NADP^{+}, while it seems to have no effect in the recognition of isopropanol. These results agree with the expected positioning of G14 in the enzyme, at the nucleotide binding site.

The fact that the $\mathrm{k}_{\text {cat }}$ is also reduced two fold may indicate that the mutation somehow disrupts the normal positioning of the NAD, impairing the catalytic efficiency of the enzyme. Because the same kind of effect is seen for both NAD^{+}and NADP^{+}it is likely that the residue G14 does not interact with the phospho group of NADP ${ }^{+}$.

Enzyme ADH G19A:

This mutation also produces a two-fold increase in Km for the cofactor but, interestingly, it does not impair the speed of the reaction. In fact, a small increase in the $\mathrm{k}_{\text {cat }}$ value is obtained. This increase is probably not significant, but it shows that in this mutant, the loss in cofactor recognition is probably compensated by a faster rate of enzyme turn-over, which leaves the catalytic efficiency of the enzyme untouched.

A very important indication of the spatial positioning of this residue is given by the fact that no detectable activity could be measured with this mutant when NADP ${ }^{+}$was used as a cofactor. This seems to indicate that residue 19 is in close proximity to the phospho group of NADP ${ }^{+}$, and that the introduction of a methyl group totally disrupts its environment. Again the mutation does not seems to have any effect on substrate recognition, supporting a location distant from the alcohol binding site and from the reaction centre.

Enzyme ADH D38A:

Mutations in this amino acid have already been reported by Chen and colleagues (1991), although no substitution to alanine was done in their work. Chen and colleagues worked on the hypothesis that D38 may be the residue that is responsible for hydrogen-bonding the hydroxyl groups of the adenine-ribose of NAD.

As mentioned in the introduction, this hypothesis is based on the general structure of NAD^{+}binding sites, although some alignment results and the structure of SDH indicate that such interactions may be between the cofactor and residue 64, another aspartic acid (Marekov et al., 1991; Ghosh et al., 1991).

Chen and colleagues found that mutating D38 to hydrophobic (leucine) or positively charged (arginine) residues resulted in inactivation of the enzyme. But mutating the aspartic side-chain to asparagine, hence removing its charge but maintaining its capacity to form hydrogen bonds, resulted in an enzyme capable of utilizing NADP ${ }^{+}$as efficiently as NAD.
The mutation to asparagine increased the Km for NAD^{+}by 50%, and also increased the catalytic efficiency ($\mathrm{k}_{\mathrm{cat}}$) two fold. This is expected since, as discussed, a mutation that removes binding energy between the cofactor and enzyme without affecting their three-dimensional positioning will produce a faster enzyme. The same mutation, however, reduced the Km for NADP^{+}by a factor of 60 and increased the $\mathrm{k}_{\text {cat }}$ by a factor of 10 , making the enzyme almost as efficient with NADP ${ }^{+}$as with NAD.

In their work the authors argue that the negative charge of aspartic acid must be responsible for the low affinity of ADH for NADP ${ }^{+}$, due to direct charge repulsion between the side-chain and the phospho group of the cofactor. They propose that such repulsive interaction is eliminated when a glutamine is introduced at position 38, producing an enzyme capable of using both NAD^{+}and NADP^{+}.

There can be little doubt than the removal of the negative charge of the aspartic acid allows the enzyme to use NADP ${ }^{+}$. However that is not necessarily an indication of direct interaction between the cofactor and the enzyme. In fact, Chen et al. do not try to explain how is the extra
phospho group is sterically accommodated in the NAD^{+}binding site of the enzyme. This is of major importance, because if residue 38 is located within hydrogen bonding distance of the hydroxyl groups of the adenine ribose a substitution of one of these hydroxyls by a phospho group is likely to create pure steric clashes that would not be avoided if a residue of similar size to aspartate is placed at position 38 .
Nothing can be concluded from the inactivation that the authors find when substituting the residue 38 by leucine and arginine, because the structural effects of these mutations were not investigated.

The introduction of an alanine at position 38 done as part of this project introduces at this position a side-chain of smaller size, not capable of creating hydrogen bonds. With respect to NAD^{+}the mutation results in a two-fold increase in Km and a two-fold decrease in $\mathrm{k}_{\text {cat }}$, indicating that the mutation probably affects both the affinity for the cofactor and the reaction efficiency.

Since the enzyme is active and the mutation abolishes the negative charge of the aspartate 38 , if the proposition of Chen and colleagues is true one would expect this mutant to have better kinetic constants for NADP ${ }^{+}$than the wild type enzyme. Instead ADH D38A shows an 3fold increase in Km for NADP^{+}, and a four fold decrease in $\mathrm{k}_{\text {cat }}$, suggesting that the effect of the mutation has similar effects in the kinetics of both NAD^{+}and NADP ${ }^{+}$.

The kinetic results for isopropanol of ADH D38A are surprising, since the mutation increases the Km for the alcohol by three-fold. This result could suggests that residue 38 may be positioned close to the active site, or interacting with residues involved in the recognition of the alcohol. This would argue against the proposed hypothesis of residue 38 having a similar role as that in long-chain dehydrogenases, and, by default, would support the works of Marekov and colleagues
(1991) and Ghosh and colleagues (1991). Surprisingly, Chen and colleagues (1991) do not report the kinetic constants for alcohol of their D38N mutant.

The results obtained for our mutant at position 38 could have been affected by the fact that the purity of the enzyme was not higher than 80%, with a second contaminant that could not be removed (see purification results). However, interferences from such contaminant seem unlikely because it has no isopropanol dehydrogenase activity, since crude extracts of WV. 36.201 cells show no such activity.

Enzyme ADH P214S:
The P214S substitution is found in nature, but only in ADH-F type isoenzymes. It seems to have two main consequences: it largely increases the thermal stability of the molecule and it changes the kinetic characteristics of the enzyme making it more similar to ADH-S. (Chambers, 1984; Chambers, 1988; Winberg, 1989).

The reasons for the increase in thermal stability are not clear, but the change in the kinetic constants are thought to be due to an increase in the affinity of the enzyme for the cofactor, which, as discussed, does slow down the enzyme velocity (Winberg, 1989).

The same mutation at position 214 has not been reported in an ADH-S enzyme. That fact becomes clear when the kinetic constants of the ADH P214S produced in this project are analyzed. The enzyme has a twofold reduced Km for the cofactor in respect to the wild type enzyme which, as expected, results in a slower reaction speed, with a k_{c} at reduced by a factor of 5.5 , making this enzyme the slowest of all those tested.

The mutation has little effect on the Km for isopropanol, causing a reduction of about 20%. Winberg and colleagues (1982) have proposed that the substrate binds to ADH in two hydrophobic pockets.
The residue at position 214 is clearly affecting the interaction with the cofactor NAD, and, since it is located at he C-terminal part of the enzyme, is also possible that it could be in the environments of the reaction centre. However, from the kinetic results obtained in this project it seems likely that this residue is not in direct contact with the substrate.
The effect of this mutation on the stability of the enzyme required other kinds of analysis to be investigated. They will be described in the next sections of this chapter.

4.2.2 Guanidine-induced denaturation studies of Drosophila ADH

 monitored by CD and enzyme activity .
4.2.2.1 Studies based on enzyme activity measurements.

Figures 4.2.2-I to 4.2 .2 -VI show the results obtained from monitoring the enzyme activity remaining in enzyme solutions incubated in different concentrations of guanidine chloride. The second part of each figure shows the transformation used to calculate, in each case, the $\Delta \mathrm{G}_{\text {(water) }}$ (units: cal/mol) of the holoenzymes and of the enzymes saturated with cofactor NAD^{+}. The results are joined and processed in table 4.2.2.-1.

	GdnHCl_{50}		$\Delta \mathrm{G}_{(\text {water })}(\mathrm{Kcal} / \mathrm{mol}) \Delta \Delta \mathrm{G}_{(\mathrm{NAD})}$		
	$-\mathrm{NAD}^{+}$	$+\mathrm{NAD}^{+}$	$-\mathrm{NAD}^{+}+\mathrm{NAD}^{+}$		
ADH-F	0.4	0.58	3.2	4.5	1.3
ADH-S	0.38	0.74	3.9	7.4	3.5
ADH-G14A	0.26	0.52	2.6	5.9	3.3
ADH-G19A	0.18	0.19	2.8	3.2	0.4
ADH-D38A	0.28	0.31	2.4	2.7	0.3
ADH-P214S	0.64	0.95	7.7	11.4	3.7

Table 4.2.2-1. Joined results of the denaturation studies monitored by enzyme activity. The " GdnHCl_{50} " values show the guanidine hydrochloride concentrations at which 50% of the initial activity is lost. $\Delta \Delta \mathrm{G}_{\text {(NAD) }}$ values are the difference between the extrapolated $\Delta \mathrm{G}_{\text {(water) }}$ value of each enzyme with and without NAD^{+}.

Figure 4.2.2-Ia

Figure 4.2.2-Ib

Figure 4.2.2-I . a) Loss of enzyme activity of a solution of ADH-F purified from D. melanogaster after incubation with increasing concentrations of guanidine hydrochloride, with and without NAD. b) The transformation of the ratio of inactivated enzyme against activated enzyme into free energy values, and their extrapolation to the $\Delta \mathrm{G}_{\text {(water) }}$ ($\mathrm{cal} / \mathrm{mol}$) value for the enzyme with and without NAD.

Figure 4.2.2-IIa

Figure 4.2.2-IIb

Figure 4.2.2-II . a) Loss of enzyme activity of a solution of ADH-S purified from S. cerevisiae after incubation with increasing concentrations of guanidine hydrochloride, with and without NAD. b) The transformation of the ratio of inactivated enzyme against activated enzyme into free energy values, and their extrapolation to the $\Delta \mathrm{G}_{\text {(water) }}$ (cal/mol) value for the enzyme with and without NAD.

Figure 4.2.2-IIIa

Figure 4.2.2-IIIb

Figure 4.2.2-III . a) Loss of enzyme activity of a solution of ADH G14A purified from S. cerevisiae after incubation with increasing concentrations of guanidine hydrochloride, with and without NAD. b) The transformation of the ratio of inactivated enzyme against activated enzyme into free energy values, and their extrapolation to the $\Delta \mathrm{G}_{\text {(water) }}(\mathrm{cal} / \mathrm{mol})$ value for the enzyme with and without NAD.

Figure 4.2.2-IVa

Figure 4.2.2-IVb

Figure 4.2.2-IV . a) Loss of enzyme activity of a solution of ADH G19A purified from S. cerevisiae after incubation with increasing concentrations of guanidine hydrochloride, with and without NAD. b) The transformation of the ratio of inactivated enzyme against activated enzyme into free energy values, and their extrapolation to the $\Delta \mathrm{G}_{\text {(water) }}$ ($\mathrm{cal} / \mathrm{mol}$) value for the enzyme with and without NAD.

Figure 4.2.2-Ya

Figure 4.2.2- Vb

Figure 4.2.2-V . a) Loss of enzyme activity of a solution of ADH D38A purified from S. cerevisiae after incubation with increasing concentrations of guanidine hydrochloride, with and without NAD. b) The transformation of the ratio of i nactivated enzyme against activated enzyme into free energy values, and their extrapolation to the $\Delta \mathrm{G}_{\text {(water) }}(\mathrm{cal} / \mathrm{mol})$ value for the enzyme with and without NAD.

Figure 4.2.2-VIa

Figure 4.2.2-VIb

Figure 4.2.2-VI . a) Loss of enzyme activity of a solution of ADH P214S purified from S. cerevisiae after incubation with increasing concentrations of guanidine hydrochloride, with and without NAD. b) The transformation of the ratio of inactivated enzyme against activated enzyme into free energy values, and their extrapolation to the $\Delta \mathrm{G}_{\text {(water) }}$ ($\mathrm{cal} / \mathrm{mol}$) value for the enzyme with and without NAD.

Discussion:
The stability of each of the enzymes tested is determined by the $\Delta \mathrm{G}_{\text {(water) }}$ value extrapolated from the $\Delta \mathrm{G}$ values of various points in the denaturation curves. As discussed in the Materials and Methods chapter, the binding of the cofactor induces an increase in enzyme stability which can be quantified by determining the $\Delta \mathrm{G}_{\text {(water) }}$ value for each enzyme when NAD^{+}is present in the solution. The difference between the value obtained in the absence and presence of the cofactor, the $\Delta \Delta \mathrm{G}_{(\mathrm{NAD})}$ value of cofactor binding, is a measure of the energy effect of cofactor binding. Since the energy of binding between the enzyme and the cofactor is a major determinant of the reaction speed it would be expected to find a correlation between the catalytic constants of each enzyme and its $\Delta \Delta \mathrm{G}_{(\mathrm{NAD})}$ value of cofactor binding.

ADH-S and ADH-F:

Previous attempts to compare the stability properties of these two natural isoenzymes using crude thermal denaturation studies showed that results were variable and dependant on assay conditions (Chambers, 1984). However, when the stability of the enzymes was investigated by thermal gradient electrophoresis the isoenzyme ADH-S was found to be more stable than ADH-F (Thatcher and Sheikh, 1981). This difference in stability seems to be confirmed by our studies, which show a difference in free energy of about $700 \mathrm{cal} / \mathrm{mol}$ in favour of ADH-S.

Confirming the also known fact that ADH-S binds tighter to NAD^{+} than ADH-F, a difference between the $\Delta \Delta \mathrm{G}_{(\mathrm{NAD})}$ values of about $2.3 \mathrm{kCal} / \mathrm{mol}$ was found. This value is similar to the calculated energies for a hydrogen bond between tyrosyl-tRNA synthetases and their substrate (Fersht, 1987), which range from 0.5 to $1.8 \mathrm{kCal} / \mathrm{mol}$.

Although the estimated energy of a hydrogen bond depends on a large number of factors and the values estimated in the literature vary largely between 1 and $20 \mathrm{kCal} / \mathrm{mol}$ (Williams, 1991), the result obtained in this project can at least be compared to the published values, and seems to suggest that the difference in binding NAD^{+}between ADH-F and ADH-S can be due to a single interaction. To know how this relates to the amino acid substitution at position 192 that constitutes the only difference between these two isoenzymes will require threedimensional information on the contacts between protein and cofactor.
Interestingly, the difference between the apo forms and the holo forms of the two isoenzymes are not equal, the difference between the apo forms is $674.3 \mathrm{cal} / \mathrm{mol}$ while the difference between the holo forms is $2939 \mathrm{cal} / \mathrm{mol}$. This difference seems to show that the substitution at position 192 does have a larger effect on the binding of the cofactor than on the intrinsic energy of the enzyme.
Enzymes ADH G14A, G19A and D38A:
The $\Delta \mathrm{G}_{\text {(water) }}$ values of these three enzymes are all reduced from the original wild type ADH-S by similar amounts (from 1.4 to $1 \mathrm{Kcal} / \mathrm{ml}$). However, they present variation in the slopes of their denaturation curves, which is thought to be an indication of changes in the solvation energy of the denatured state of the polypeptide (Green et al., 1992).
This variation in slope results in an apparent contradiction, where ADH G19A loses 50% of its activity at lower GndHCl concentrations despite having a higher $\Delta \mathrm{G}_{\text {(water) }}$ value than the other two enzymes.

If this interpretation of the slope of the denaturation curves is correct, ADH G19A is marginally more stable in water than the other two enzymes (a maximum of $371 \mathrm{cal} / \mathrm{mol}$ of difference). There is a large variation, however, in the energy that NAD^{+}binding transfers to each of these mutants. ADH G14A shows an energy of NAD^{+}binding only
slightly smaller than the one of ADH-S. This result is very interesting when compared to the kinetic values obtained for this mutant with NAD. ADH G14A shows a two-fold increase in Km and a two-fold reduction in $\mathrm{k}_{\text {cat }}$, suggesting that the mutation primarily impairs the reactivity of the enzyme. This is confirmed by this analysis, showing that the overall energy of binding is not changed, hence the reason for the increase in the Km is probably due to changes in the catalytic constant. A possible structural explanation is that the mutation induces a small repositioning of NAD, maintaining its normal interactions but affecting the architecture of the reaction centre.

ADH G19A and ADH D38A, on the other hand, show a very small increase in the energy of binding of NAD. Their $\Delta \Delta G_{(N A D)}$ values of about $0.3 \mathrm{Kcal} / \mathrm{mol}$ represent a reduction on binding energy of about $3.3 \mathrm{Kcal} / \mathrm{mol}$ in respect to ADH-S. In the case of ADH G19A this result fits very well with the catalytic constants determined for this enzyme, where the rise in Km is not accompanied by a decrease in $\mathrm{k}_{\mathrm{cat}}$, and hence one can deduce that the recognition of the cofactor has not been affected, but that the interaction energy between both enzymes has been reduced.

ADH D38A has a similar behaviour to ADH G19A, but these results are difficult to interpret because the mutation could have various effects on the recognition system of the enzyme. Not taking into account trivial structural distortions of three-dimensional structure, there are two major possibilities for the kind of effect observed: the side-chain binds directly with the cofactor, and its loss reduces the interaction energy, or the side-chain is not in contact with the NAD^{+}molecule, but its absence increases the entropic energy of the surroundings of the binding surface, hence decreasing the free energy of binding.

As described in the Materials and Methods chapter, all the denaturation curves in the presence of cofactor were carried out by incubating the enzymes with 1 mM NAD. This concentration was used because it is about ten fold the published Km values of the wild type enzyme for NAD, hence ensuring saturation. Since the Km values of the mutants ADH G14A, ADH G19A and ADH D38A are higher than the Km of the wild type enzyme it could be possible that the difference in the protective effect of NAD^{+}was due to the fact that the enzymes were not saturated.
However the mutant ADH G14A shows a similar $\Delta \Delta G_{(N A D)}$ value to the wild type enzyme despite having a higher Km , suggesting that this enzyme was also saturated. To find out whether ADH G19A and ADH D38A were undersaturated the same analysis should be repeated at higher concentrations of NAD.

Enzyme ADH P214S:
The results obtained with this enzyme confirm that the substitution of the proline at position 214 for a serine has the same stabilizing effect in ADH-S as the one observed in ADH-F isoenzymes. The mutant enzyme has a $\Delta \mathrm{G}_{\text {(water) }}$ value of $7.7 \mathrm{Kcal} / \mathrm{mol}, 3.8 \mathrm{Kcal} / \mathrm{mol}$ higher than the original ADH-S molecule. From the kinetic studies it is clear that ADH P214S has a higher affinity for the cofactor than ADH-S, but this doesn't seem to be reflected in the difference in $\Delta \Delta G_{(N A D)}$ values for both enzymes which are quite similar (only $150 \mathrm{cal} / \mathrm{mol}$ higher for ADH P214S).

It may be possible that the stabilizing effect of substrates follows a sigmoidal behaviour, reaching saturation above a certain value of $\Delta \mathrm{G}_{\text {(water) }}$ for the enzyme. This is however pure speculation as very little information is available on the energy behaviour of protein-ligand complexes.

Another possibility may be that the residue at position 214 does not in fact interact with the cofactor directly, but with parts of the enzyme structure that are involved in the recognition of the NAD^{+}molecule. This last possibility would explain why the mutation has a large effect on the $\Delta \mathrm{G}_{\text {(water) }}$ of the apoenzyme, but does not change considerably the $\Delta \Delta \mathrm{G}$ value of NAD^{+}binding.

One of the purposes of developing the denaturation assay described in this project was that of trying to correlate changes in the kinetic behaviour of the enzyme with physical parameters directly linked to the molecule's structure and its interaction with the substrates. Although it is possible to correlate the energy of NAD^{+}binding of some of the mutants with their kinetic behaviour a general relationship does not exist between the $\Delta \Delta G_{(N A D)}$ values obtained and the $K m$ or $k_{\text {cat }}$ constants determined.

Clearly, other factors than binding energy are determining the changes in catalytic values; perhaps alterations of the binding pocket that result in positional distortions of the substrates. In any case the determination of the molecular effect of each mutation will require the availability of a high-resolution crystal structure for ADH.

4.2.2.2 Circular dichroism monitoring of the denaturation kinetics.

 Results :Figure 4.2.2-VII displays the results obtained by monitoring the circular dichroism values of solutions of ADH-F purified from D. melanogaster larvae which were incubated at increasing concentrations of guanidine hydrochloride.

Figure 4.2.2-VII

Figure 4.2.2-VII- Denaturation curve of ADH-F monitored with circular dichroism. (•) Enzyme in the presence of NAD. (॰) Enzyme in the absence of NAD.

Discussion:
Since the parameter measured in circular dichroism of far UV is the amount of secondary structure it is expected that the denaturation curve would show a more shallow gradient that the ones obtained when monitoring enzyme activity. However, the CD results still confirm the protective effect of the cofactor on the enzyme, at similar concentrations of denaturant as found in the enzyme activity analyses.

4.2.2.3 Comparative studies with horse liver ADH and yeast ADH.

To be able to compare the denaturation kinetics and the effect of NAD^{+}on the unfolding of Drosophila ADH to other alcohol dehydrogenases, the same kind of analyses performed on DADH were carried out with solutions of alcohol dehydrogenase from horse liver and from yeast. The results are shown in figures 4.2.2-VIII and -IX. Discussion:

The monitoring of the denaturation kinetics of two long-chain dehydrogenases was done with the intention of obtaining data on other NAD^{+}binding enzymes that could be compared with the results obtained with Drosophila ADH. However, both horse liver ADH and yeast ADH proved to behave in a quite different manner in their denaturation process. From our data, it appears that horse liver ADH is more stable to GdnHCl than is the short chain alcohol dehydrogenase from Drosophila . Moreover, it appears that only the latter enzyme can be stabilised by addition of NAD. The precise structural reasons for this contrasting behaviour must await a detailed structure of the Drosophila enzyme, but presumably are a consequence of different domain and subunit organisations in the two dimeric enzymes.

In the experiments with the tetrameric long-chain enzyme from yeast it was found that NAD^{+}offers no protection against inactivation or unfolding by GdnHCl , i.e. a similar result to the horse liver (longchain) enzyme. In the case of the yeast enzyme inactivation occurs at lower concentrations of GdnHCl , consistent with earlier reports (Brändén et al., 1975) which indicate that the yeast enzyme is less stable than the horse-liver enzyme towards thermal inactivation. The greater instability of the yeast enzyme is thought to be related to a greater ease of dissociation into monomers.

Previous observations on the effect of NAD^{+}on the stability of the yeast and horse-liver enzymes have been somewhat contradictory. Thus, Sekuzu et al. (1957) reported that $\mathrm{NAD}^{+}(>1 \mathrm{mM})$ protected yeast alcohol dehydrogenase against inactivation by urea, but Wiseman \& Williams (1971) found that NAD^{+}at these high concentrations had a destabilising effect on the enzyme against thermal inactivation.
In the case of the horse-liver enzyme, there appears to be at least one intermediate in the unfolding process as indicated by the plateau region of figure 4.2.2-VIII (Strambini \& Gonelli, 1990). In the plateau region (0.5 M GdnHCl) there is a 30% loss of activity and a 10% loss of secondary structure (as judged by the ellipticity at 225 nm). The nature of this (these) intermediate(s), including its (their) quaternary structure, would require further investigation, possibly by use of nuclear magnetic resonance studies or cross-linking analysis.

Figure 4.2.2-VIII

Figure 4.2.2-VIII. Results of the monitoring of the decrease in enzyme activity for horse liver ADH (continuous line) and yeast ADH (dashed line) when incubated with increasing concentrations of guanidine hydrochloride in the presence (0) or absence (\cdot) of NAD.

Figure 4.2.2-IX. Results of monitoring the decrease in circular dichroism activity for horse liver ADH (continuous line) and yeast ADH (dashed line) when incubated with increasing concentrations of guanidine hydrochloride in the presence (0) or absence (\cdot) of NAD.

4.2.3 Thermal denaturation studies of Drosophila ADH.

As described in the materials and methods chapter, the loss of enzyme activity with time during incubation at different temperatures was analyzed for the enzyme ADH-S and all the mutants produced. Figures 4.2.3-I to 4.2 .3-III show the results obtained from the experiments carried out at 4,25 and $40^{\circ} \mathrm{C}$ respectively.

Discussion:

Although thermal denaturation has been used regularly as a way to measure the stability of Drosophila ADH from crude extracts and in purified form (Chambers, 1984; Hernandez et al., 1988; Chen et al., 1990, 1991) the results from this kind of analysis are subject to too many different factors (thermal stability, enzyme concentration, purity, proteolytic activity) to be able to be used reliably to determine small differences in stability.

Large modifications, as in the case of the thermo-stable ADH-FChD, can however be consistently observed (Chambers, 1984). The results of the experiments carried out in this project show that, over the time analyzed all the enzymes are stable when kept at $4^{\circ} \mathrm{C}$. At $25{ }^{\circ} \mathrm{C}$ two groups of enzymes seem to appear, ADH-S and ADH P214S are stable at this temperature, and retain 80 and 95% of their respective activities after 150 minutes of incubation. The ADHs G14A, G19A and D38A are much more labile, retaining 50,40 and 5% of their respective original activities. Proteolytic cleavage cannot be discarded in any case, especially in the case of ADH D38A, where pure enzyme solutions could not be obtained. However, the results correlate quite well with the $\Delta \mathrm{G}_{\text {(water) }}$ values obtained for all the enzymes, confirming the general pattern of stability.

At $40^{\circ} \mathrm{C}$ all the enzymes but ADH P214S had lost all their activity after 30 minutes of incubation. This is slightly faster than other reported experiments (Chambers, 1984; Chen et al., 1991).

ADH P214S retains 50% of its activity after 40 minutes at $40{ }^{\circ} \mathrm{C}$, and 20% after 60 minutes. This results confirmed the increased structural stability that this mutation confers to the molecule.

Figure 4.2.3-I

Figure 4.2.3-I. Loss of activity at $4^{\circ} \mathrm{C}$ with time.

Figure 4.2.3-II

Figure 4.2 .3-II. Loss of activity at $25^{\circ} \mathrm{C}$.

Figure 4.2.3-III

Figure 4.2 .3-III. Loss of activity at $40^{\circ} \mathrm{C}$.

5. Computer modelling of Drosophila ADH. Introduction, methods, results and discussion.

5.1 Introduction

Several attempts at crude three-dimensional modelling of Drosophila ADH have been published over the years (Thatcher \& Retzios, 1980; Thatcher \& Sawyer, 1980; Benyajati et al., 1980). These attempts were directed at the N -terminal part of the enzyme, and tried to superimpose the predicted secondary structure of this part of the sequence on the NAD-binding domain of horse liver alcohol dehydrogenase.

Although the basic philosophy of these experiments is the same that is behind the modern techniques of protein modelling, the lack of a proper frame-structure for the model and the crudeness of the comparisons gave very little information about the actual structure of ADH. Today, the need to close the gap between the huge sequence databases and the structural database of the Brookhaven databank has forced researchers to develop a large number of methods that allow the construction of accurate protein models for sequences with sufficient similarity to existing structures.

The definition of 'sufficient similarity' is not a simple one, because we still do not understand what are the determinants of protein structure. The parameter of sequence identity alone is not very adequate unless other information is used, like length of the sequences compared, biological activity, etc.. For sequences of over 80 amino acids it is believed that identities of over 25% indicate the existence of a common fold between both proteins (Sander \& Schneider, 1991).

However, some ancient protein families, like the aminoacyl-tRNA synthetases, have common structures despite having sequences far below 20% identical (Schimmel, 1987). It is clear from the existing databases that the variability in protein folds is much smaller than that found in the sequences, and the assumption that protein families that share biological function, monomer length and significant sequence identity will have similar three-dimensional folds is generally accepted (Blundell et al., 1987). As discussed in the introduction the family of the short-chain dehydrogenases complies with these three conditions, and hence the availability of a crystal structure for a member of the family made it possible and logical to try to model the structure of Drosophila ADH on it.

The rationale of a modelling experiment starts by identifying the sequence equivalences between the frame-structure and the protein to be modelled. This is achieved through sequence alignment analysis and by comparison of the secondary structure contents of the framestructure with the secondary structure predictions of the problem protein.
Once the parts of the problem sequence that correspond to the main secondary structure elements of the frame-structure have been determined the process of building the three-dimensional model begins. Firstly, the pieces of sequence of the problem protein can be fit into the secondary elements of the structure taking into account their predicted secondary structure, the distribution of hydrophobicity and charges, the presence of residues normally found at definite positions in secondary structure elements, etc. (Richardson, 1985).

The result of this first exercise provides an initial base, over which the parts of the problem sequence that showed poor relationships to the frame structure have to be added. These sequences will normally correspond to the loops connecting major secondary structure elements, and the way of incorporating them will depend on the amount of threedimensional information available. In the cases where only one structure is used as reference, loops with little sequence identity to the original ones can be constructed through extensive database search procedures, which will identify regions of the database with better sequence identities and similar length and N - and C -terminal structural positioning.
The result at this stage is a crude approximation to the final model, which includes the total sequence of the problem protein, with large numbers of incorrect angle and bond geometries, large steric clashes, and many local structural incongruities.
The task of improving this first model is done by means of hand refinement, energy minimisation, and molecular dynamics. All three procedures try to correct errors in the structure, hand refinement can be used to remove large steric clashes or improve the environment of determinate side-chains. Energy minimisation is effective in reducing the structural constraints and correcting angles and distances between atoms at a local scale. Finally, molecular dynamics procedures are used to search for a global minimal energy conformation for the whole molecule.

Clearly the whole procedure must be monitored at all stages by comparing the incoming results with biological data on the protein and general data on protein structures, to ensure that no gross mistake is incorporated at any point in the construction of the model.

5.2 Modelling methods.

5.2.1 Sequence alignment procedures.

The direct comparison of DNA and protein sequences was initially used by evolutionary biologists as a way to define pathways of speciation. With the growth of the databases, the appearance of the first three-dimensional structures of proteins and the growth of interest in the molecular structure-function relationships of enzymes, the methods of sequence comparison and alignment have become basic tools for the detection of topological and functional similarities.

Several methods have been devised to carry out pair-wise and multiple sequence alignment analysis (for reviews see Doolittle, 1990 or Argos et al., 1991). They differ in their way of scoring sequence similarities and in the method of regulating the creation of gaps in the sequence alignment. Changes in these parameters can largely affect the sensitivity of the alignment procedure, while the characteristics of the alignment algorithm will determine the computational efficiency of the method.

However, the importance of correctly determining the proper alignment parameters, which is usually a matter of experience, increases with the phylogenetic distance between the compared sequences, and with their difference in length (Argos et al., 1991). In the case reported here, where the length of all the sequences compared is very similar, the determination of the conserved residues is straightforward, and no big differences in the alignment results could be seen between different alignment methods.

One pair-wise alignment algorithm (GAP, UWGCG package, Devereux et al., 1984), and two multiple alignment programs (PILEUP, UWGCG package, Devereux et al., 1984; and CLUSTAL, Higgins \& Sharp, 1988) were used for the final model construction. All the sequences used were retrieved from either the Protein Information Resource (PIR) databank (National Biomedical Research Foundation, Maryland, USA), or from the Genebank (EMBL, Heidelberg, Germany).

The alignment program GAP uses the Needleman and Wunsch (1970) algorithm, which gradually searches all the possible alignment positions by locating the sequences in a matrix and calculating the scores of all possible residue pairs using the Dayhoff PAM matrix (Dayhoff et al., 1983). Once this matrix is calculated the best alignment is found by checking the pairs with higher scores, starting at the bottom right (the last residues of each sequence) of the matrix. The penalties for gaps are applied to the the pair scores, allowing breaks to be introduced only if the final score of the pairing is still higher than without the gap.

The multiple alignment algorithms used in this project apply a pairwise system by which all possible pairs between all the sequences are aligned, the best pair is chosen and the rest are added and aligned successively by order of affinity to the first pair.

The search for the best possible alignment between Drosophila ADH and the sequence of SDH (corresponding sequence to the frame structure) was started by carrying out multiple alignment analysis of several Drosophila ADHs, with the purpose of defining the conserved parts of the sequence which, in turn, will correspond to the structural core of the structure or to residues with a direct role in the catalytic mechanism.

Since the core of related protein structures tend to be more conserved (Greer, 1981), the conserved sequences between the ADHs analyzed are the parts of the enzyme's sequence that should have clearer equivalents in the sequence of SDH. This expected conservation was then used to analyze the result of the ADH-S alignment with the SDH sequence, to search for significant alignment results.

5.2.2 Secondary structure prediction methods.

The prediction of the secondary structure contents of proteins from their primary sequence has been attempted by many authors for the last 20 years (Lim, 1974; Chou \& Fasman, 1978; Garnier et al., 1978; Levin \& Garnier, 1988; Gilbert, 1992).

The first, and still most widely used methods, use statistical analysis of the tendency of each amino acid to appear at certain kind of secondary structure type. The sequence, divided in short windows of a few residues, is compared to these calculated values for each residue and a prediction of structure is made on the basis of the score obtained. The problem with this statistical approach is that is largely biassed by the database used for the calculations, and that, considering the sequence of the protein as a linear concatenation of residues, the effect of long-range interactions is not taken into account. These algorithms rarely manage to predict the correct conformation for more than 65% of the total sequence analyzed, and the introduction of threedimensional information into the predicted algorithms has been attempted recently, with promising results (Garratt et al., 1991; Gilbert, 1992).

In the process of molecular modelling the secondary structure prediction of the problem sequence is a tool that, in conjunction with the sequence alignments, is used to decide what parts of the problem protein will be modelled into the secondary structure elements of the frame structure.

To such purpose we used a protein prediction program (PREDICT, E.E. Eliopoulos, University of Leeds, UK) that contains in itself six different classical secondary prediction algorithms (Garnier et al., 1978; Lim, 1974; Chou \& Fasman, 1974; Nagano, 1973; Burgess et al., 1974; Dufton \& Hider, 1977). These prediction algorithms differ among each other in the scoring matrices used to analyze the sequence, the way they define secondary structure elements and the length of sequence windows used for the analysis. PREDICT carries out each individual prediction analysis and finds a consensus prediction based on the overall results.

5.2.3 Model construction methods.

The process of building and manipulating the computer model for ADH was done using the modelling package SYBYL version 5.4 (Tripos Associates Inc.), run on an Evans and Sutherland ESV10 workstation. The frame structure of SDH used in this project has only been released to the databank in the form of α-carbon coordinates, so it was necessary to build a proper protein backbone based on this information. This is done using the 'backbone construct' facility of SYBYL, based on a algorithm designed by Claessens and colleagues (1989).

This method uses a database of high resolution crystal structures to search for fragments of 4 residues with total overall length equal to groups of 4 contiguous α-carbons in the structure to be built. The algorithm proceeds linearly, one residue at a time, from the N -terminus of the structure, finding suitable groups of peptides which are then further selected by comparing the distances between all the α-carbons in the fragments to the ones in the protein being constructed. The best fragments are kept and selected again on the basis of an RMS fit between the equivalent α-carbons in the fragment and in the structure. This method produces a protein backbone with an expected mean error of 0.3 to $0.6 \AA$.

Once the backbone was constructed the sidechains were added. The procedure for the incorporation of sidechains does not rely in database searching methods, as these will be extremely computationally expensive. It relies rather in general conformational values and, as a result, is expected to introduce a significant amount of error in the structure (estimated by SYBYL manufacturers at $\sim 2.45 \AA$).

For the purposes of the construction of a protein model this is not a very large problem. The correctness of the α-carbon coordinates is much more crucial, as the side chains are directly substituted with the problem sequence and steric clashes and high energy conformations between rotamers can be lately removed by molecular dynamics (see section 5.2.4).

Once the sequence of ADH had been fitted to the parts of the structure suggested by the sequence alignments and the secondary structure predictions, the sequences of ADH that had no identity with the SDH sequence had to be incorporated to the model.

These sequences invariably corresponded to connective structures between helices and strands, and were constructed using a loop search algorithm included in SYBYL. The loop construction procedure requires an initial educated guess of which residues may constitute the end and beginning of the particular pair of secondary structure elements that are to be connected.

Once these have been established the program will search the database of crystallographic structures for sequences that have the following characteristics: same length as the sequence that is going to be incorporated to the structure, similar relative three-dimensional positioning of the residues defined as previous and following to the loop sequence and sequence similarity to the sequence of the problem protein. The program will produce the 25 loop structures that best fit these parameters, and these can be then analyzed for coherence with the adjacent parts of the model.

Every small modification made to the SDH structure was followed by a cycle of energy minimisation, with the intention of eliminating structural and steric constraints introduced during the previous stages. This process calculates the energy state of each atom for each of its six degrees of freedom (three translational and three rotational). The value obtained, calculated in arbitrary units, is a function of the amount of bad contacts and angles of each residue. The minimisation process used in this project is a combination of an initial, non-derivative method, which will work atom by atom reducing the energy of each of them below a certain threshold followed by 100 cycles of a first-derivative method known as steepest descent, which adjusts the coordinates of all the atoms contemporarily, using the first derivative of the energy equation for all the degrees of freedom.

During the performance of this kind of energy minimisation the electrostatic energies of the model atoms were not considered, because their inclusion made the calculations far too intensive for the computer power available. It is important to stress that these energy corrections were only applied locally, during the process of construction of the first complete model. These methods are not capable of searching the entire experimental space for a protein structure, and are not adequate for the searching of a global minima state for the model.

5.2.4 Molecular dynamics methods.

As argued in the last section, the methods of energy minimisation used for local modelling operations are not powerful enough to find an energy state of global minimum for the model. This is due to the fact that this methods do not force the energy of the model up at any moment, they just look for possible energy decreasing pathways from the given conformation.

Molecular dynamics methods, in contrast, search the conformational space of the structure analyzed in a much thorough way, by first increasing the internal energy of the atoms of the models by thousands of degrees. This sets the atoms in theoretical motion and, as they are computationally cooled down, allows them to reach much lower energy configurations (Karplus \& Petsko, 1990).

The program X-PLOR (Brunger et al., 1987) was used for the molecular dynamics calculations. Typically, the structure was subjected to 200 iterations of energy minimisation to remove large steric clashes before the molecular dynamics procedure. The dynamics analysis was started by increasing the energy of the molecule to $2000{ }^{\circ} \mathrm{K}$, followed
by 34 steps of cooling where the temperature was decreased $50{ }^{\circ} \mathrm{K}$ at a time, to reach a final $300{ }^{\circ} \mathrm{K}$.

Although the inclusion of solvent in molecular dynamics calculations is the recommended procedure (Gunsteren \& Mark, 1992), water molecules were not included in our calculations because the whole modelling process was carried out in a single monomer. The reason for this is that the modelling of a monomer-monomer interface is far too complex to be carried out with sequences of low identity.
Because the protein surfaces involved in subunit interactions normally have large amounts of hydrophobic residues (Chothia \& Lesk, 1987) the inclusion of solvent in the molecular dynamic calculations performed in a single subunit will produce large structural shifts due to the high solvation energy of the hydrophobic residues exposed in the monomer-monomer interaction surface.

5.2.5 Quality assessment methods.

Unlike in protein crystallography, where the quality of a certain crystal structure can be assessed by physical parameters like atomic resolution or temperature factors, there is no experimental way of quantifying the quality of a computer model. This problem of quality assessment is a major one and attempts have been made to provide tools that may allow to examine the likeliness of a model.
Some of them are classical crystallographic parameters, like the Ramachandran analysis of the φ and ϕ angles of the amino acids (Ramachandran \& Sasisekharan, 1968), or the rational rules that determine side chains orientations (Blundell et al. 1987); others rely on the comparisons between the three-dimensional analysis of the
environments of the residues of the model with the environments found in crystal structures of the database (Lüthy et al., 1992).

When biological data is available, as in the case of ADH, it can be used to asses the likelihood of the final residues distribution, together with the positions of variable and conserved parts of the protein sequence.

The quality of the model obtained for ADH was studied using all the methods mentioned. The Ramachandran analysis was performed using SYBYL. The program PROFILE (Lüthy et al., 1992), compares the environment of each residue of the model to the normal environments found for residues of the same type in the same kind of secondary structure elements in the database of crystal structures. It produces a plot that indicates the parts of the model where anomalous environments are found, and these have been shown in various examples to correspond to incorrectly constructed models. PROFILE was used to analyze both the SDH structure and the ADH model obtained for it, to check for regions of impaired quality.

The most important quality assessment made involved the contrast of the biologic data described in the introduction chapter with the final model structure. The residues known to have some role in the enzymes mechanism can be checked for positioning compatible with their expected role, and regions of the ADH sequence that are strictly conserved, or largely variable, can be used to look for structural incongruities (no variable sequences should be expected to be found in the core of the structure, for instance).

5.3.1 Sequence alignment and secondary structure predictions. Results and discussion.

The sequence alignment used for the assignment of ADH sequences to the SDH structure is shown in figure 5.3-I. The total identity between the two sequences amounts to 21.5%, a value slightly lower than the found by Sander and Schneider (1991) to be necessary to be able to assume a common fold between two polypeptides. However, as discussed along this thesis, there is good evidence to believe that both enzymes share a common fold.
The similarity between both sequences is not uniformly distributed along the alignment but rather clustered in 11 groups separated by divergent patches of sequence or, in two cases, by gaps.
The distribution of this conserved clusters is identical to the one found when ADH is aligned to 15-prostaglandin-dehydrogenase (figure 5.3-II), another member of the family, suggesting that the conserved clusters may correspond to conserved parts of the structure of these enzymes, possibly the structural core of the fold.
When the three sequences (ADH, SDH and 15-prostaglandindehydrogenase) are aligned together the amount of similarity drops, as it would be expected from a triad of enzymes that have evolved in independent directions, but regions of higher similarity still appear at the same positions of the conserved clusters between ADH and SDH (figure 5.3-III). The comparison between the secondary structure contents of SDH with the alignment results (figure $5.3-\mathrm{IV}$) reveals that most of the conserved clusters do in fact correspond to the strands of SDH.

Figure 5.3-I. Alignment results obtained from the sequences of ADH and SDH with the program GAP, using a gap penalty of 10 .

$\begin{aligned} & \text { ProsDH } \\ & \text { ADH } \end{aligned}$	
ProsDH ADH	$\begin{aligned} & \text { L-FIQCDYADQ-QQLRDTFRKVVDHFGRIDILVNNAGVNNEKNWEKTLQINLVSVISGTY } \\ & \text { VTFYPYDYTVPIAETTKLLKTIFAQLKTYDVLINGAGILDDHQIERTIAVNYTGLVNTTT } \\ & \text {. ..**. } \end{aligned}$
ProsDH ADH	LGLDYMSKQNGGEGGII INMSSLAGLMPVAQQPVYCASKHGIVGFTRSAALAANLMNSGV AILDFWDKRKGGPGGIICNIGSVTGFNAIYQVPVYSGTKAAVVNFT--SSLAKLAPITGV
ProsDH ADH	
ProsDH ADH	DAI NGAIMKITTSKGIHFQDYDTTPFQAKTQ NQ-NGAIWKIDLGT---LEAIQWTKHWDSGI $\ldots \star * * * *$.

Figure 5.3-II. Alignment result of the comparison of the sequences of ADH and 15 -prostaglandin dehydrogenase (ProsDH) with the program GAP, using a gap penalty value of 10 .

Figure 5.3-III. Alignment results from the comparison of the sequences of ADH, SDH, and 15 -prostaglandin dehydrogenase (ProsDH), using the multiple alignment program CLUSTAL, with gap penalty values of 2 .

SDH	MN-DLSGKTVIITGGARGLGAEAARQAVAAGAR--VVLADVLDEEGAATARELGD--AAR
ADH	MSFTLTNKNVIFVAGLGGIGLDTSKELLKRDLKNLVILDRIENPAAIAELKAINPKVTVT
SDH	YQHLDVTIE-EDWQRVVAYAREEFGSVDGLVNNAGISTGMFLETESVERFRKVVDINLTG
ADH	FYPYDVTVPIAETTKLLKTIFAQLKTVDVLINGAGI-----LDDHQIER---TIAVNYTG
	¢0000 \%
SDH	VFIGMKTVIP---AMKDAGGGSIVNISSAAGLMGLALTSSYGASKWGV----RGLSKLAA
ADH	
	00000000000000000
SDH	VELGTDRIRVNSVHPGMTYTPMTAETGIR-QGEGNYPNTPMGRVGNEPGEIAGAVVKLLS
ADH	
	*.**.* *.

[IIIITA
DTSSYVTGAELAVDGG-WTTG----PTVKYVM----GQ

ADH

Figure 5.3-IV. Alignment of the sequences of SDH and ADH as in figure 5.3-I. On top of the SDH sequence the helical and extended regions of the structure are indicated with circles and bars respectively. The same code, underneath the ADH sequence, is used to show the results of the secondary structure predictions on ADH, for comparison.

ADHvsSDH

ADHs
ADH
ADHvsSDH

ADHs
ADH
ADHvsSDH

ADHS
ADH
ADHvsSDH

Figure 5.3-V. Alignment of the sequence of ADH from D. melanogaster with the conserved residues from the multiple alignment of 25 Drosophila ADHs. All the regions of the Drosophila sequences that have two or more conserved residues separated by not more than one variable amino acid are boxed. The multiple alignment was done with the program CLUSTAL. The conserved residues found between ADH and SDH are marked at the bottom.

Of the eleven clusters of conserved sequences that can be seen in the alignment between ADH and SDH, seven are at the positions of the seven strands of SDH. The strands of SDH account for only 20% of the total sequence, so it can be considered significant that more than 50% of the conserved residues between SDH and ADH falls into the strand sequences.

It is very interesting to notice that of the six helices of SDH only one shows some sequence similarity to ADH. This conserved helix (helix-E) forms one of the main monomer-monomer binding surfaces in the SDH tetramer, and the same region of ADH that shows identity to this part of SDH constitutes part of the larges similarity cluster between ADH and 15 -prostaglandin-dehydrogenase. It seems to indicate that, with the core of the protein, the region involved in this monomer-monomer interaction has also been preserved in the family. Since ADH is a dimer, this similarity is an indication of the possible location of the monomer-monomer binding-site.
Figure $5.3-\mathrm{V}$ shows an alignment of the sequence of Drosophila melanogaster ADH (the sequence used for the model) with the conserved sequence from the alignment of the 25 different Drosophila ADHs available in the databases. The residues that are conserved between ADH and SDH are also shown, and it can be seen that all the regions of the sequence that have high identity with SDH correspond to well preserved areas among ADHs. This seems to indicate that the variable regions are the same between ADHs and short-chain dehydrogenases in general, a clear suggestion of the existence of a common fold for the whole family.

All the secondary structure predictions of ADH published (Thatcher \& Sawyer, 1980; Benyajati et al., 1980; Ribas de Pouplana et al., 1991) show an alternation of strands and at the N -terminal part of the protein that was normally considered to correspond to the N -terminal domain.

In figure 5.3-IV the prediction done with PREDICT is superimposed to the sequence alignment between SDH and ADH , and to the secondary structure contents of SDH. In general, the predictions for ADH match quite closely the structure of SDH for the first 100 residues. The first divergence, appears at the sequences that match the helix-D of SDH. This sequence has little similarity to SDH and is, in fact predicted as extended structure. Helix-D of SDH forms also part of the monomermonomer binding surface, like helix-E, although contributing less surface to the recognition.

From this position onwards the alignment of the secondary structures of SDH with the predictions for ADH becomes less clear. The stranded regions of SDH have clear equivalents in the predictions for ADH, but a number of shifts are introduced in the predictions for the remaining helical structures. The region with similarity to helix-E of SDH contains a predicted helical structure of shorter length, this discrepancy could be due to the special residue content of this part of the sequence, which is very hydrophobic. The hydrophobicity of that fragment could again be an indication of involvement in the monomer-monomer recognition surface.

A region of similar length to the helix-G of SDH is predicted in ADH with a shift nine residues. helix-G is delimited by the presence of prolines at both its N - and C -terminal, as does the region predicted as helix in ADH. The structure of SDH, between helix-G and the next strand contains a large loop region that was poorly resolved during the crystallographic study of the enzyme (Ghosh et al., 1991). The
sequence of ADH that is aligned to that part of SDH , between residues 215 and 230, has a predicted helical configuration.

5.3.2 Structure modelling. Results and discussion.

Table 5.3.1 shows the fragments of the ADH sequence that, based on the alignment and secondary structure prediction results were selected to construct the main secondary structure elements of the model. As it can be seen, the length of the secondary structure elements was not necessarily conserved. Other parameters, mainly the presence of prolines, alignment gaps or regions of poor sequence similarity, were taken into account for the assignment of the length of a particular element. The residues of the regions that are shown in table 5.3.1 were directly substituted into the SDH structure and were locally refined to remove steric clashes. Once the core structure was created the connecting loops were searched using the method described earlier in this chapter, the list of loops used in the model is shown in table 5.3.2.

The crystal structure of SDH revealed a large loop of 32 residues between helix-G and strand-G (Ghosh et al., 1991). This region of the enzyme is virtually impossible to model because that part of the SDH sequence has no similarity to ADH, and it is far too long to use any standard database search algorithms. Another part of the enzyme that could not be modelled is the c-terminal end, after the strand-G. This region provides very low electron density and has a very large temperature factor in the SDH structure. Again, this region has poor similarity to ADH, in fact, it appears to be a very variable region among all short-chain dehydrogenases. These regions were simply substituted with the sequence of ADH and energy minimized without any further modification. It is important to mention at this point that
the high temperature factor and the poor electron density of the cterminal tail of SDH suggests that this region may be undergoing large structural shifts. The possible relevance of this fact will become apparent later.

Once the whole polypeptide was constructed and local structural incongruities removed by means of energy minimisation the whole molecule was minimized with molecular dynamics, using X-PLOR. The final fold of the model can be seen in figure 5.3-VI .

Strands	$\begin{aligned} & \hline \hline(\mathrm{SDH}) \\ & (\mathrm{ADH}) \end{aligned}$	Helices	(SDH) (ADH)
Strand-A	$\begin{aligned} & \hline 7 \text {-KTVIIT-12 } \\ & \text { 7-KNVIFV-12 } \\ & \hline \end{aligned}$	Helix-A	16-ARLGAEAARQAVAA-29 18-IGLDTSKELLKR-29
Strand-B	$\begin{aligned} & \text { 32-RVVLADV-38 } \\ & \text { 34-LVILDR-39 } \\ & \hline \end{aligned}$	Helix-B	40-DEEGAATARELGDAA-54 44-AAIAELKAIN-53
Strand-C	$\begin{array}{\|l\|} \hline 58-\mathrm{HLDVTI}-63 \\ \text { 62-PYDVTV-67 } \\ \hline \end{array}$	Helix-C	$\begin{aligned} & \hline \text { 67-WQRVVAYAREE-77 } \\ & \text { 72-TTKLLKTIFAQ-82 } \\ & \hline \end{aligned}$
Strand-D	$\begin{aligned} & \text { 81-VDGLVNNAGIS-91 } \\ & 86 \text {-VDVLINGAGI-95 } \end{aligned}$	Helix-D	100-SVERFRKVVDINLTGVFIGMKTVIP-124 103-RTIAVNYTGLVNTTTTAILDFWDKRK-127
Strand-E	$\begin{aligned} & \hline 132-G S I V N I S-138 \\ & 132-G I I C N I G-138 \end{aligned}$	Helix-E	150-SSYGASKWGVRGLSKLAAVELGT-172 151-VYSGTKAAVVNFTSSLAKLA-170
Strand-F	174-RIRVNSVH-181 175-VTAYTVN-181	Helix-F	189-MTAETGIRQGEGNY-202 189-LVHKFNSWLDVE-200
Strand-G	$\begin{aligned} & \text { 234-GAELA-238 } \\ & 235-K L D L G-239 \\ & \hline \end{aligned}$		

Table 5.3.1. List of the secondary structure elements of the SDH structure and the fragments of the ADH sequence used to substitute them in the model.

The backbone of the ADH model has a mean structural difference of $1.6 \AA \mathrm{rms}$ in respect to the backbone of SDH. Obviously the fold shape is generally identical, and the process of modelling has not disrupted the general hydrogen bond pattern of the proteins core, suggesting a compatibility of the fold with the sequence of ADH. Apart from the
low-electron density zones of SDH, the main differences between the original structure and the model are at the regions of the loops between strand-D and helix-E, between strand-E and helix-F and between strand-F and helix-G, which is expected since these regions are the ones that were constructed using the database search methods for loop sequences. Large structural differences were introduced by the dynamics procedure in the large loop between residues 200 and 230, and at the C-terminal tail of the enzyme.

It is difficult to interpret the meaning of the structural features of the ADH model. The sequence alignments and secondary structure prediction analysis clearly suggest that the regions of higher sequence divergence are located at the loop regions of SDH. That sequence differences may not necessarily mean a large structural change in these areas, and the results from the loop searching algorithm offer only the more probable conformation for the sequences searched given the used database. Table 5.3.2 shows the list os loop sequences constructed using the loop search algorithm.

In general, the structural accuracy of a certain model is a direct function of its sequence identity with the original structure (Blundell et al., 1987), as a result the resolution of the ADH model is bound to be low, and extreme care must be taken before linking its structural features to functional properties of the enzyme.
However, the model can be tested with the biochemical data available on the enzyme, and it may offer possible explanations to its catalytic behaviour. This possible explanations can then be used as working hypothesis for experimental tests, a possibility that is not existent at the moment.

Loop sequence	Frame structure	\AA RMS	\% Identity
14-GLGI-17	1PYP	0.9	50
30-DLKN-33	8ADH	0.6	6
40-IENP-43	1LZT	0.49	6
54-PKVTVTFY-61	5CPA	0.48	11
68-PIAE-71	3TLN	0.74	27
83-LKT-85			
96-LDDHQIE-102	3ADK	0.72	25
128-GGPG-131	3BCL	0.56	30
139-SVTGFNAIYQ VP-150	2HCO	0.67	15
171-PITG-174	1PHH	0.57	46
182-PGITRTT-188			

Table 5.3.2. List of the fragments of the ADH sequence used to construct the loops connecting the secondary elements of the model. The frame structure is the set of coordinates from which the best fitting loop coordinates were selected. \AA RMS refers to the spatial difference between the residues at the beginning and end of the loop region in the model and the equivalent regions in the loop of the frame structure. The identity value refers to the sequence identity between the loop added to the model and the equivalent loop of the frame structure.

An indication of the soundness of the model comes from the position on it of the parts of the Drosophila sequences that are not conserved among ADHs. The analysis of variability carried out by Villaroya and Juan (1991) was used for that analysis.

The variable regions found by these authors accumulate at the furthest possible position of the NAD binding site, mainly at the loops preceding the helices of the structure (figure 5.3-VII). The regions of the model at the C-terminal ends of helices, which construct the surface of the structure that are meant to construct the active-site of the enzyme, are highly conserved. The two largest helices of the model, D and E, are also mainly conserved, but not so the region of the last strand of the model and its preceding loop. Since the two large helices and the last strand form the two main subunit contact surfaces of the SDH tetramer that difference in conservation found in ADH may be of relevance for the identification of the dimer interface, as will be discussed later.

Figure 5.3-VI. Ribbon representation of the general fold of the model.

Figure 5.3-VII. Analysis of the distribution of the variable regions of Drosophila ADH sequences in the model for ADH. The variability analysis of Villaroya \& Juan (1991) was used to colour the regions differentially. The regions were divided in 5 groups according to their variability score.Totally conserved regions are in dark blue (score 0), scores 1-4 are in pale blue, 5-10 in green, 11-15 in orange and highly variable areas (more than 15) are in red. The NAD molecule in its proposed positioning is in bright yellow. The bottom left view is over the NAD molecule with the enzyme below it, the bottom right view is the opposite, the enzyme being above the cofactor.

5.3.2.1 NAD^{+}binding site. Results and discussion.

As discussed in the introduction, Ghosh and colleagues found that the position of NAD^{+}in the SDH structure was far more external to the positions found in other dehydrogenases. From their cofactor positioning they suggested an steroid binding site that would include a cleft that runs along the surface of the protein. Residues Tyr 152 and Lys 156, conserved in all the members of the family, seemed to have a simple role of recognition of the substrate, being too far away from the cofactor to be able to participate in the catalysis. Ghosh and colleagues proposed that residue $\operatorname{Arg} 16$, which is only present in three other short-chain dehydrogenases (Persson et al., 1991), could be involved in catalysis.

The positioning of the NAD^{+}molecule in ADH in a similar position as the one found in SDH leaves the nicotinamide part of the cofactor at least $10 \AA$ away from any residue with catalytic activity. Since the results of the site-directed mutagenesis experiments exposed in this thesis and by others (Chen et al., 1990 and 1991) suggest a very different positioning of NAD, it was attempted to find an alternative location in the constructed model that could satisfy the range of biochemical observations made on ADH.

The effect of the mutation at position G19, which selectively knocks out activity with NADP^{+}, suggested a binding more likely to that found in medium-chain dehydrogenases. Similarly the results obtained comparing the binding strength to NAD^{+}of $\mathrm{ADH}-\mathrm{S}$ and $\mathrm{ADH}-\mathrm{F}$ suggest that the residue 192 is in the proximity of the cofactor. Also, the results of mutating the residue Tyr 152 (Ensor and Tai, 1991; Albalat et al., 1992) suggest that this residue can be involved in catalysis.

A molecule of NAD, in a similar conformation to the one described by Ghosh and colleagues as bound to SDH, was used to try different positionings that could agree with an structural proximity of all the mentioned residues to the cofactor molecule. A rotation and translation movement of the cofactor, without modifying its conformation, was enough to locate it in a position where the carbamide atom of the nicotinamide ring finds an environment typical of a non-metal dehydrogenase active site (Adams, 1987). Figure 5.3-VIII shows the environments of the NAD^{+}molecule in this conformation.

The loop between residues 39 and 46 interacts with the adenine ring and its adjacent ribose. The strand preceding that loop, together with its following helix and the strand formed by residues 92 to 94 form a cleft that could accommodate both the adenine ring and its ribose.

Their extension of burial inside the cleft is difficult to determine, but seems probable that the adenine ribose may pack against the hydrophobic Ile 40, Val 12 and Ala 93, which form the bottom of the cleft, this environment is similar to the one found in other dehydrogenases, like malate dehydrogenase (Grau, 1982).

Unfortunately it is not possible to decide whether the ribose may be hydrogen bonding to residue Asp 38 or to Glu 41, as it would depend in its position inside the cleft. If this positioning of the cofactor is the correct one, the residue Asp 64, proposed by Jörnvall and collaborators (Persson et al., 1991) as the one responsible for hydrogen bonding to the ribose, is too far away to carry out this function.
The ribose of the adenine moiety of the cofactor, and the first atoms of the pyrophosphate are in close contact with the loop from residues 11 to 19. This is the polyglycine loop characteristic of all nucleotide binding domains. The residues 12 to 15 of the loop bend inwards creating a a pocket close to the ribose, capable of accommodating a
phosphate group as the one in NADP ${ }^{+}$. Figure 5.3-IX shows this loop with the cofactor. Residue Gly 14 is at the bottom of the pocket mentioned, pointing outwards. The incorporation of a methyl group by mutating residue 14 to alanine seems likely to produce steric clashes with the neighbouring loop at about position 40, but the methyl group is well accommodated by the loose packing around residue 14 itself.

In contrast, Gly 19 is in very close packing to the backbone of residues 12 and 13 , and the introduction of a methyl group at its position could distort the overall structure of the loop, especially the pocket created by residues 12 to 15 . That may be able to explain the inability of the ADH G19A to use NADP ${ }^{+}$, because its perturbation of the loop may be enough to make impossible the accommodation of the phosphate group of that cofactor.

This may also be the reason for the difference found in $\Delta \Delta \mathrm{G}$ of NAD^{+}binding between the two enzymes. While ADH G14A has a $\Delta \Delta \mathrm{G}$ value of NAD^{+}binding similar to the wild type enzyme, in ADH G19A this energy is reduced by 90%.
Maybe this is due to unfavourable interactions caused by the larger perturbation of the mutation G19A compared to G14A. Although both glycines at positions 14 and 19 are conserved among all the short-chain dehydrogenases (Persson et al., 1991), an exception exists among the Drosophila ADHs, the enzyme from D. lebanonensis having an alanine at position 14 .

Figure 5.3-VIII. The suggested environment of the NAD molecule in the ADH model. The ribbon diagram alsho shows the Van der Waals surfaces of Lys 152 (yellow) and isopropanol (green).

Figure 5.3-IX. The modelled polyglycine loop and the possible effect of the mutations G14A and G19A. the top images show different perspectives of the loop with its original sequence and the Van der Waals surface of A13, G14 and G19. The bottom views are identical except for residues 14 and 19 , which are now alanines.

Another part of the model in contact with this adenine moiety of the cofactor is the sequence Gly-Ala-Gly, at positions 92 to 94 . The AlaGly sequence is conserved in 17 of the 20 sequences of short-chain dehydrogenases aligned by Jörnvall and colleagues (Persson et al., 1991), and the three residues are totally conserved among all the Drosophila enzymes. These three residues form part of the strand-D of the model, and they role is probably the same postulated for the Glyrich loop of NAD^{+}binding structures, that is to produce the space to allow the cofactor to enter the binding pocket (Brändén et al., 1975). Such recognition role for these residues has not been proposed so far, and it should be tested by mutating these sidechains to bulkier ones that may affect the binding of the cofactor without modifying the extended conformation of this part of the molecule.

The rest of the pyrophosphate groups and the ribose of the nicotinamide moiety have major interactions with the loop formed by residues 182 to 190 , the residue Thr 185 is at $2.5 \AA$ of the hydroxyl groups of the ribose, and could hydrogen bond to them. The structure of this loop is interesting for two reasons. Firstly, the residue 192, responsible for the difference between ADH-F and ADH-S as it changes from threonine to lysine, modifies the strength of recognition of the cofactor. In this model, residue 192 is located at the exterior part of the first turn of the helix that follows the 182-190 turn.

In this position a direct interaction between that residue and the cofactor seems unlikely, and an explanation of the effect of the mutation is not simple. A possible reason could be an interaction between the residue 186 , an arginine that points towards the exterior of the loop, and the residue at position 192. But such theory is pure speculation and would require several mutagenesis experiments of the residues in the area to be properly analyzed.

Secondly, the loop at this region is of interest because it has a striking similarity with a region of bacterial lactate dehydrogenases also involved in the catalytic mechanism. The region between residues 100 to 120 of the lactate dehydrogenase enzyme form part of the highly mobile loop that directly participates in catalysis through closure over the active site (Parker \& Holbrook, 1977).

The analysis of the sequences of this loops in various lactate dehydrogenases done by Gernstein and Chothia (1991) shows a high degree of sequence conservation between the loops of bacterial dehydrogenases. As can be seen in figure 5.3-X, the region between 182 and 190 of ADH shares a high similarity with that region of lactate dehydrogenase. It also shares a similar three-dimensional function, connecting an internal strand of the nucleotide binding fold to an external helix. In lactate dehydrogenase the loop in question closes over the active site, removing water, and allowing the reaction to proceed (Parker \& Holbrook, 1977).

Figure 5.3-X. Alignment of the sequence of the catalytic loop of various bacterial LDHs (modified from Gernstein and Chothia, 1991) with the sequence of Drosophila ADH around residue 192.

The similarity between these two protein regions may be not significative, but it is tempting to speculate that ADH may have a similar loop-closing mechanism. Clearly, all dehydrogenases require structural shifts to exclude water from the active site and allow the proton transfer reaction to occur.
The two domains of horse liver alcohol dehydrogenase close over each other to allow water exclusion (Eklund \& Brändén, 1987), but smaller enzymes like lactate dehydrogenase use smaller structural shifts. Perhaps the 182-190 loop, maybe with other structures in the enzyme, undergoes similar structural shifts, closing over the region of the nicotinamide ring of the cofactor, and excluding water. In such situation, the effect of change at position 192 may have a different implication, as it may be affecting the dynamics of the loop.
In the binding position being described, the nicotinamide ring of the cofactor lies over a set of hydrophobic residues, namely Ile 95, Leu 96 and Ile 137. The C-4 of the ring gets in close proximity to residues Lys 156 and Ser 139, also in the vicinity of the nicotinamide ring are residues aspartic 97 and tyrosine 152. Although the conformation of this last sidechain seems to point its OH group in a different direction, the definition of the model is not good enough to provide information about the real conformation of the sidechains. Although the process of molecular dynamics can find the minimal energy conformation for them, a conformation of the tyrosine pointing towards the nicotinamide ring of the cofactor can not be ruled out.

As described in the introduction a number of residues are good candidates to participate in the catalytic mechanism of ADH. The chemical modification of one of the four histidines of ADH results in the inactivation of the enzyme (thatcher, 1981; Retzios, 1982). Of the four histidines only three are totally conserved, at positions 191, 210 and 250 .

In the model presented here His 210 is not in the proximity of the active site of the enzyme, His 191 is the same helix as Lys 192, and its chemical modification could have a certain effect on the interaction of its preceding loop with the cofactor but the residue does not directly interact with either cofactor or substrate. On the other hand His 250 is part of the C-terminal tail, a region of very little sequence similarity to the SDH sequence, and which, in the latter, and on the basis of its poor electron density, is probably a largely mobile structure.

Using pH dependent kinetics, Winberg and colleagues identified a group in the enzyme which, in the range of $\mathrm{pH} 6-10$, shows different effect on the binding of the alcohol or aldehyde. The binding of acetaldehyde is not affected in that pH range, but that of isopropanol is destabilized by a residue with a pK of 7.6 (Winberg \& McKinleyMcKee, 1988).

Winberg and colleagues propose the existence of a group that binds the hydroxyl of the alcohol and the oxygen of the acetaldehyde, and which has a pK of 7.6 when bound to the former, and one over 10 when bound to the latter. The four candidates proposed for such behaviour are histidines, tyrosines, lysines and cysteines. Cysteines, however have been shown to play no role on the activity of the enzyme by site-directed mutagenesis (Chen et al., 1990).

The two best known classes of dehydrogenase reactions are epitomized by horse liver alcohol dehydrogenase and by lactate dehydrogenase (Adams, 1987). The former uses zinc in the active site to act as a Lewis acid and catalyze the proton transfer reaction (Eklund and Brändén, 1987), the latter does not have any metals and rely on a histidine group which, in the dehydrogenase reaction, removes the hydrogen of the lactate's hydroxyl (Parker \& Holbrook, 1977), the limiting step of that reaction is the dissociation of the reduced cofactor, which depends on the opening of a mobile loop of the enzyme that covers the active site.

Drosophila ADH contains no metal ions, and the limiting step of its reaction is also the dissociation of NADH (Thatcher, 1981; Winberg et al., 1986), the similarity to the lactate dehydrogenase mechanism also extends to clear structural identity between lactate and isopropanol. However, the pH dependence of ADH seems to be more similar to horse liver alcohol dehydrogenase than to lactate dehydrogenase (Winberg and McKinley-McKee, 1988).

The proposed binding position of NAD^{+}in the computer model for ADH clearly delimited a possible active site space (figure 5.3-XI). The analysis of this space showed an striking similarity with the threedimensional arrangement of the lactate dehydrogenase binding site.
In this hypothetical reaction centre lysine 156 and aspartic 97 are aligned in a very similar positioning to that of arginine 109 and aspartic 168. No histidine residues are present in that region of the molecule, but the C-terminal tail of the enzyme is in the vicinity, and histidine 250 could easily reach the active site in the right angle if the C-terminal tail closed over the proposed catalytic centre (figure 5.3-XII).

Figure 5.3-XI. Photograph of the space around the carbamide group of the NAD^{+}in the model. The isopropanol molecule placed in the active site is shown.

Figure 5.3-XII. Representation of the proposed closing of the C-terminal tail of the enzyme over the active site.

An attempt was made to locate an isopropanol molecule in the right positioning in respect to the $\mathrm{C}-4$ of the nicotinamide ring, and no steric clashes or conformational constrains were found that prevented such orientation. In this positioning one can propose a theory for a reaction mechanism involving residues aspartic 97, lysine 156 and histidine 250 , which would be essentially identical to the reaction mechanism of lactate dehydrogenase (Parker \& Holbrook, 1977; Clarke et al., 1989).

We propose that the cofactor binds first and somehow modifies the environment of the active-site allowing it to receive the substrate molecule (lysine 156 hydrogen bonds to the oxygen of the substrate's hydroxyl) and triggering the closing of the C-terminal loop over the reaction centre. Histidine 250 acts then as a general base binding to the hydrogen of the alcohol's hydroxyl group, and promotes the hydride transfer to the NAD. The imidazolium ion is stabilized by aspartate 97 .

Once the dehydrogenase reaction is complete the loop opens its conformation, perhaps due to electrostatic repulsion with NADH and the products are released. Having lost the stabilizing effect of Asp 97, His 250 loses its proton to the solvent, and the reaction is repeated (figure 5.3-XIII).

Figure 5.3-XIIIa. First step of the proposed reaction mechanism for Drosophila ADH. The NAD^{+}molecule enters the active site followed by the alcohol, which is stabilized by hydrophobic interactions and by a hydrogen bond with the residue Lys 156.

Figure 5.3-XIIIb. The C-terminal loop closes over the active site and His 250 acts as a general base promoting the hydride transfer to NAD.

Figure 5.3-XIIIc. The product ketone is formed by transfer of the proton of the hydroxyl to His 250 . The imidazolium ion formed is stabilized by Asp 97.

Figure 5.3-XIIId. The C-terminal loop opens and products dissociate from the enzyme. The imidazolium ion looses the stabilizing effect of Asp 97 and deprotonates.

This reaction mechanism offers explanations for the effect of chemical modification of histidines, and for the rate-limiting effect of the release of NADH, as this would be a function of the opening of the C-terminal loop, also, all the residues involved are totally conserved in all the ADHs sequenced so far.
It should be stressed, however, that this reaction mechanism can not apply to all the group of short-chain dehydrogenases, because the residue His250 is not conserved in the family (Persson et al., 1991). Whether this is due to the existence of different kinds of reaction mechanisms in short-chain dehydrogenases, to the fact that Drosophila ADH does not use His 250 in its reaction mechanism, or to different positionings of catalytic His residues in different members of the family will require further investigation.
The positioning of the isopropanol molecule, which is highly determined by the presence of the cofactor and other sidechains, is such to pack the methyl groups of the substrate against residue 140, a valine also conserved in all ADHs. This is consistent with the observations of Winberg and colleagues, which lead them to believe that each methyl group of the substrate interacts with a hydrophobic group of the enzyme. Tyrosine 152, is part of the active site architecture, and it could be hydrogen bonding to the cofactor. Although its mutation to phenylalanine inactivates the enzyme (Albalat et al., 1992) that could be due to non-specific perturbations of the active site structure.
Holbrook and colleagues (Clarke et al., 1989) have studied the reaction mechanism of lactate dehydrogenase with a series of sitedirected mutants whose effects were found to be highly predictable using their reaction mechanism.
The same kind of analysis, helped by the model, should be undertaken to prove or dismiss the hypothetical reaction centre proposed here.

5.3.2.2 Monomer-monomer binding site. Results and discussion.

The three-dimensional structure of SDH shows that the four subunits forming the tetramer assemble through two main interactions. One is formed through the antiparallel pairing of the last strand of the fold of two subunits, forming a twisted sheet of 14 strands that runs along two subunits. This type of interaction is similar to the assembly method of horse liver alcohol dehydrogenase (Eklund And Brändén, 1987), where the two nucleotide-binding folds are joined to form the dimer.

The other main interaction involves the pairing of helices D and E against the same helices of another subunit. Each helix runs along its equivalent helix, creating a two-fold axis of symmetry. The most important of this is the contact between helix E and its preceding loop, with themselves. In this interaction less important contacts exist between the large loop following helix- G of one subunit with the C terminal tail of the other subunit.

ADH is a dimer, and if, as suspected, shares a common origin with SDH, it is reasonable to expect that its monomer-monomer binding site will be one of the two found in SDH. If this is accepted, then a certain sequence similarity between the common recognition sequences is also expectable, while the region that serves as monomer-monomer binding site only in SDH will probably have evolved differently, as it has different constrains in each of the enzymes.

It is obvious from the alignments shown in figures 5.3-I and 5.3-II, that the region at the C-terminal of both enzymes is highly divergent, while there is a region of high similarity between positions 127 to 170 of the ADH sequence. The last twenty-odd residues of that region correspond to the helix-E of SDH, being one of the helical regions of SDH with highest identity with a sequence of ADH.

The similarity in this region is even higher between ADH and prostaglandin dehydrogenase, making that region of the sequence the most likely subunit interaction area of ADH. The construction of the dimer was attempted by duplicating the model structure for the monomer and assembling the two monomers with the same orientation of their helices E as the one found in SDH (figure 5.3-XIV). Interestingly, the regions modelled as helices D and E in ADH have a large number of hydrophobic residues, that can not be organized in the normal amphiphilic distribution of helices on the surface of proteins. This abundance of hydrophobic residues may be the reason why the secondary structure predictions of this part of the enzyme has a prediction for strands, despite being aligned with parts of SDH that are helical. The abundance of hydrophobic residues is also consistent with a monomer-monomer binding role, as this kind of surfaces are very rich in hydrophobic-hydrophobic interactions (Richardson, 1985).

Once a model dimer of ADH is constructed in this way the main features of the interactions between the two monomers are as follows:
The main helix-helix interaction is that of helix-E, with its N-terminal loop. The loop of one monomer interacts with the C-terminal end of the same helix of the second monomer, through a hydrophobic packing of the residues Val 149 and Pro 150 of the loop with Leu 166 and Leu 169 of the helix. With the exception of D. affinisdisjuncta and D. picta (where the residue Leu 166 is isoleucine), the four residues are conserved among the 25 ADHs aligned.

A second hydrophobic interaction between the central part of the pair of helices-E seem to occur between residue Phe 162 and Gly 154, residue 162 is conserved in all ADHs, and in prostaglandin dehydrogenase, residue 154 is a glycine in half of the sequences and an alanine in the rest, including prostaglandin dehydrogenase.

At the middle point of this helices interaction, residues Ala 157 and Ala 158 pack against their equivalents in the other helix, both residues are also conserved among all ADHs. Finally, the sidechain of Ser 165 is at hydrogen bonding distance $(2.9 \AA)$ of the Gln 148 sidechain of the pairing helix, both residues are also totally conserved, with the exception of D. mojavensis, where position 148 is a proline in the enzyme encoded by the second $A d h$ gene of this species.
The second helix-helix interaction is the antiparallel pairing of helixE. In this case a very interesting combination of hydrophobic interactions occurs. Helix-E has three pairs of hydrophobic residues pointing out of the enzyme's core, Leu 112 and Val 113, at the N terminus of the helix, Ile 105 and Ala 106 at the middle and Ile 119 and Leu 120 at the C-terminus. At the pairing of the helices the first pair of residues faces the last pair of the other helix, while the middle pair packs against its equivalent. The middle pair, Ile 105-Ala 106 is conserved through all the ADHs, but the other two pairs are not.
Half of the sequences of the aligned ADHs have Leu-Val as first pair, while the other half have Thr-Val, and exactly the same half that have Leu-Val as first pair has Ile-Leu as third pair, while the rest have now Ile-Met.

Clearly, if the interaction between the two helices is totally symmetric, the first residue of the first pair will face the second residue of the third pair, and vice-versa. And it is highly interesting to see that the enzymes where the first residue of the first pair is hydrophobic (Leu), have a hydrophobic residue as second amino acid of the third pair, while the enzymes where the first residue of the first pair has hydrogen-bonding capabilities (Thr), have a second residue of the third pair with the same capacity (Met).

This suggests that the evolution of this amino acids may have been coupled, perhaps to ensure optimal arrangement of the sidechains at this interaction. It would be interesting to check whether the two groups of enzymes differ in strength of monomer-monomer association.
Finally, the association of the models suggests the possibility of interactions between the C-terminal tail of one monomer with the large 30 -residues loop between helix-G and strand-G, from positions 200 to 230. This suggestion would be too weak to be mentioned if it was not the only simple way to explain the effect of the mutation P214S on the stability of the enzyme.
The residue 214 of the model, located at the mentioned loop, is too far away from the core of the enzyme, or from the active site of its own monomer for the effect of its change to serine to be easily explained. If, however, the loop that contains it is interacting with the other subunit of the dimer, the change in stability due to the mutation may be related to the strength of that interaction. Clearly, further experimentation will be necessary to test this possibility.

Figure 5.3-XIV. The modelled ADH dimer from two perspectives. An NAD ${ }^{+}$molecule is added to each monomer at their proposed location.

5.3.2.4 Assessment of the structural correctness of the model.

The compatibility of the model with the existing biochemical data on ADH has been discussed in the previous sections of this chapter. Other methods of assessment that are independent of biological function were used to test for structural incongruities in the proposed model.
The Ramachandran plot of SDH shows six nonglycine residues in non allowed regions of the plot (Ghosh et al., 1991), all belonging to loop areas of poor electron density. The model of Drosophila ADH has 21 residues in non allowed regions of the plot. Of these, eleven are located at the large loop preceding strand-G, which could not be modelled. Six are at the C-terminal tail, which was not modelled either, and the 4 remaining ones are distributed in three loop regions. That result indicates that the two non-modelled regions of the structure probably have very different conformations to SDH.
A more sophisticated method of assessing the structural correctness of a protein structure has been devised recently by Lüthy and colleagues (Lüthy et al., 1992). The method, included in the program PROFILE, tests the structural likeliness of a set of coordinates by checking the environment of each residue and comparing it to the average environments found for residues in the same three-dimensional positioning in a database of high-resolution structures.
A set of 20 parameters is used to define each residue, and its environments are defined by three parameters: the area of the residue that is buried, the fraction of the side-chain area that is covered by polar atoms (O and N) and the local secondary structure.

The compatibility of segments of the sequence with their assigned three-dimensional structure can be assessed by plotting the average score of each residue (in a window of defined length) against the sequence number. The method has been proven able to discriminate between correct models and misfolded proteins (Lüthy et al., 1992), and to detect mistaken regions of crystallographic structures. As an average the authors found that correct models scored generally above 0.2 all around the sequence, and never had negative values (figure 5.3XV).

The scoring plots calculated by the authors for various proteins shows a large variability in the score along their sequences. This is expectable since the method, albeit more sophisticated and thorough than the other assessment techniques, still relies in the statistical occurrence of certain kind of environments and their variability in the database used. Regions that are highly constrained structurally in the database are likely to give extreme scores, because the similar regions of the model will either fit the database largely or present large differences. in contrast variable structural domains may show a more graded score as different levels of similarity may be encountered. Seemingly, protein regions that are poorly represented in the database may give systematical low scores, their low frequency being interpreted as structural errors.
Although the authors do not discuss the statistical bias that the database used may be introducing in the analysis, it is reasonable to expect that regions were the environments of residues are not constant, like subunit interaction regions for instance, will score low values, while regions like B-sheets, where the packing of side-chains follows general and abundant patterns, will be judged with higher accuracy.

The results obtained on the SDH structure constructed from the α carbon coordinates are shown in figure 5.3-XV. The plot shows large fluctuations in the scores obtained along the sequence.

Since the side-chain environments were constructed artificially it is difficult to use this analysis to asses the quality of the structure, however the side-chains were added in a knowledge-based way, and regions with low scoring may be indicating regions of the enzyme were the structure shows peculiarities. On the other hand the regions with higher scores probably correspond to regions of the molecule were the side-chains have been correctly constructed thanks to a regular backbone fold. 110 residues (43% of the total sequence of SDH) has scores below 0.2 , which would be considered a sign of misfolding, although such conclusion can not be reached here, as discussed earlier. Three regions (residues 55-70, 90-105 and 188-192) score below zero with some or all of the window lengths used for the analysis (see figure $5.3-\mathrm{XV}$, and figure 1-I, page 12, for the structure of SDH). The first of them corresponds to strand C , which is partly exposed. The other two regions correspond to loop regions at the C-terminal ends of strands D and F . The regions scoring above 0.2 cover regions $10-35,75-85,115-$ 180 and 200-210. This covers the majority of the sequence that forms the internal B-strands of the monomer (not the last strand, G), helices A, C, part of helix D and helix E . The initial region of the large loop between residues 202-234 scores also above 0.2 , but the quality of the model decreases steadily from then on.

The length of the window used to analyze the structures is arbitrary; although the authors of the program suggest a window of 21 residues I could find no significant differences in the overall shape of the plot using windows of $15,20,25$ or 30 residues. The plots shown in this thesis were produced using windows of 20 residues.

Figure 5.3-XV. PROFILE plot for the SDH structure used as basis for the modelling of ADH. Protein sequences form the X axis and the score at each position the Y axis.

Figure 5.3-XVI. Comparision of the PROFILE plot for SDH (dark line) with the plot for the ADH model (lighter line). Protein sequences form the X axis and the score at each position the Y axis.

The external regions of the structure generally perform worse than the internal ones, and regions in the two main subunit interactions of the tetramer have scores below 0.1 (residues $90-110$ which correspond to helix D and its preceding loop, and 230-245 which cover the last strand of the structure), confirming the possibility that regions with peculiar structural constraints may be underscored by the program.

The comparison of the PROFILE plots for ADH and SDH (figure 5.3-XVI) immediately shows that both structures behave in a very similar way along their sequences although the score for the ADH model is consistently lower (by a difference of about 0.1) than that for SDH.

A possible interpretation of this behaviour may be the following : the construction of a model of ADH based on the SDH structure can introduce two main kind of architectural errors: firstly, errors of ineffective packing, that is regions where the general fold of the model is correctly similar to the frame structure but minor changes in the environment of the side chains have not been well accounted for, and produce a general all-along decrease in the quality of the final structure; secondly, gross errors of folding, where the final model is largely incorrect, due to big differences between the frame structure and the real architecture of the modelled enzyme.

The first kind of error may be expected to produce a uniform decrease in the score of the model as calculated by PROFILE, but the general pattern of the plot would stay similar because the sequence of the model is equally suited to its fold as the one of the original structure.

In the second case, however, one may expect large changes in the pattern of the plot, because as sequences that actually create different
kinds of folds are compared, their suitability for the measured structure will be very different.
The region between residues 10 to 85 of SDH and ADH seem to show the first kind of error in the model. The pattern of both plots is largely the same, but the ADH model accumulates a constant amount of penalty which may be assigned to small mistakes in the side-chain packing. The region between residues 90 and 140, is the best performing one in both enzymes, and buy very similar values.
The region 140-190, where the hypothetical active site of ADH has been proposed (see 5.3.2.2) displays again a parallel behaviour between SDH and ADH, but the difference between the score of both models is here of about 0.2 in favour of SDH.
Between residues 190 and 225 a difference in the pattern appears, and the score of ADH continues to fall while SDH improves in the plot. This is what one would expect in the second kind of mistake discussed earlier, and it is very interesting to see this happening in the part of the sequence that covers the large loop between residues 200 and 230 , which has already been described as a largely unmodelable region, due to its highly undefined nature. Very significantly, the quality of the ADH score rises again when the sequence of the modelled last strand comes along, between residues 235 and 239 , reaching similar values to SDH in this zone.
If the interpretation of the differences between both plots discussed earlier is correct, the differences found in the PROFILE analysis of SDH and ADH suggest the following conclusions :

- The general fold of SDH is compatible with the sequences of ADH that have been assigned to it, although a certain amount of systematical error is introduced mainly in the regions 10-85 and 140-190.
- The region between residues $85-180$ of ADH seems correctly folded, implicating that the whole N -terminal region of the model up to residue 180 has been correctly assigned to the sequence of ADH .
- Although the profiles follow the same pattern a large difference of about 0.2 exists between both structures in the region $140-180$, this is the region proposed as active site of ADH. The difference may be due to different functionalities of that part of the structure between both enzymes, and/or to mistakes in the final packing of the side-chains of ADH in that area.

The fact that helix-E, the main subunit interaction surface of the proposed ADH dimer, is in this part of the structure may be another reason for the divergence, as the orientation of the residues of this helix is difficult to define in the model.

- The loop region between residues 200-230 is probably wrong in the model, and this region of ADH may be very different to the equivalent area of SDH. That was suggested too by the Ramachandran plots of the ADH model.

Finally, the sequence assigned to the last strand of ADH is probably correctly located, as it reaches a similar score to the one obtained by the SDH structure in the same region. Unfortunately nothing can be said about the C-terminal tail of the enzymes, because the window regions used for the analysis leave the values for the first and last residues of the plot without any meaning.

6. Final conclusions and future work.

1- A suitable system for the mutagenesis and expression of Drosophila ADH in yeast has been devised and a fast and simple method for the purification of ADH from yeast cells has also been produced. The method has been used to purify wt ADH, and three of the four mutant enzymes studied, to homogeneity. The method should be modified to improve the purification of the enzyme ADH D38A.

2- The sequence of the chimeric gene used for the expression of ADH was obtained and several unreported mutations were found. One of them encodes for a new amino acid difference in the enzyme, which does not seem to have any effect on the functional characteristics of the protein.

3-A denaturation assay, coupled to enzyme activity determination, for the calculation of the $\Delta G_{\text {(water) }}$ values of the enzymes and the $\Delta \Delta G$ effect of cofactor binding was devised. The assay, and circular dichroism measurements were used to study the denaturation of Drosophila ADH-F, ADH-S, horse liver ADH and yeast ADH (see paper attached).

4-Four different site-directed mutations were introduced in ADH. The mutant enzymes were totally sequenced, expressed in yeast, purified and analyzed kinetically. Their $\Delta \mathrm{G}_{\text {(water) }}$ values and the $\Delta \Delta \mathrm{G}$ effect of cofactor binding were calculated for all of them. They were also analyzed for their resistance to thermal denaturation.

5- The mutation performed in residue P 214 confirms that the thermostable effect that this mutation confers to the isoenzyme ADH-F can be transfered to an ADH-S isoenzyme reproducing the P214S change. The mutation G19A was found to knock out detectable activity with NADP, suggesting a positioning of the cofactor that is in contradiction with that found by Ghosh and colleagues (1991) in the structure of SDH. Similarly the mutations at positions 14 and 38 confirmed the importance of that part of the molecule for the recognition of NAD.
The results obtained complement and confirm other work published during the development of this thesis on the importance of residues G14, and D38 of ADH in the recognition of NAD.

6- Based on the structure of SDH a computer model was constructed to try to find structural explanations for the observed effects of the mutations introduced. The model is largely compatible with the existent biochemical data on the enzyme. The positioning of NAD^{+} supported by the results of the G19A mutation suggests a well defined possible active site. A reaction mechanism based on that putative reaction centre is proposed. The mechanism is very similar to that of lactate dehydrogenase, and would involve the closure and opening of the C-terminal tail of the enzyme which carries the proposed catalytic residue H 250 .

7- A possible monomer-monomer interaction site was identified in ADH, and a hypothetical model of the dimeric structure was constructed.

The project presented here describes the set-up and initial utilization of a general system for the study of an enzyme. There are several ways in which the project may be continued:

1- If large quantities of the enzyme are desired for the production of crystals the expression system should be optimized, possibly by attempting the expression of the enzyme in bacteria.

2- The structural model presented in this thesis does now suggest a larger number of residues that can be studied for their possible role in the mechanisms and structure of the enzyme. This is a significant improvement as it introduces a rational basis to the design of further ADH mutants. A number of mutations can now be introduced to test the hypothesized active-site and the monomer-monomer interaction surface, the recognition mechanism of NAD, the broad substrate specificity displayed by the enzyme, the function of the region around residue 192, and the role of the large loop at the region 200-235.

3- The model itself should be improved as better data for SDH becomes available. An improved model might be used efficiently for the application of molecular replacement techniques to the existing crystallographic data on ADH.

7. Bibliography.

Adams, M.J. (1987) in Enzyme mechanisms (Page, M.I. \& Williams, A., eds.), pp. 477-505, The Royal Society of Chemistry, Cambridge, UK

Agarwal, A.K., Monder, C., Eckstein, B. \& White, P.C. (1989) J. Biol. Chem. 264, 18939-18943

Albalat, R., Gonzàlez-Duarte, R. \& Atrian, S. (1992) FEBS lett. 308, 235-239

Argos, P. (1990) Methods Enzymol. 182, 751-776
Argos, P., Vingron, M. \& Vogt, G. (1991) Protein Engng. 4, 375-383
Ashburner, M. (1985) Dros. Inform. Serv. 62, 9-13
Atkinson, P.W., Mills, L.E., Starmer, W.T. \& Sullivan, D.T. (1988) Genetics 120, 713-723

Atrian, S., Gonzalez-Duarte, R. \& Fothergill-Gilmore, L.A. (1990) Gene 93, 205-212

Atrian, S. \& Gonzàlez-Duarte, R. (1982) in Advances in Genetics, Development and Evolution of Drosophila (Lakovaara, S., ed.), pp. 251-261, Plenum Press, New york

Atrian, S. \& Gonzàlez-Duarte, R. (1985) Biochem. Genet. 23, 891911z

Beggs, J.D. (1978) Nature 275, 104-109
Benyajati, C., Place, A.R., Powers, D.A. \& Sofer, W. (1980) Proc. Natl. Acad. Sci. U. S. A. 78, 2717-2721

Benyajati, C., Spoerel, N., Haymerle, H. \& Ashburner, M. (1983) Cell 33, 125-133

Beverley, S.M. \& Wilson, A.C. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 4753-4757

Blundell, T.L., Sibanda, B.L., Sternberg, M.J.E. \& Thornton, J.M. (1987) Nature 326, 347-352

Bodmer, M. \& Ashburner, M. (1984) Nature 309, 425-430
Borrás, T., Persson, B. \& Jörnvall, H. (1989) Biochemistry 24, 61336139

Bradford, M.M. (1976) Anal. Biochem. 72, 248-254
Brändén, C.-I., Jörnvall, H., Eklund, H. \& Furugren, B. (1975) in The Enzymes Vol. XI (P.D. Boyer, ed.) Academic Press, New York

Branden, C.-I. \& Tooze, J. (1991) in Introduction to Protein Structures p. 145, Garland Publishers.

Brooks, W.M., Moxon, L.N., Field, J., Irving, M.G. \& Doddrell, D.M. (1985) Biochem. Biophys. Res. Commun. 128, 107-112

Brünger, A.T., Kuriyan, J. \& Karplus, M. (1987) Science 235, 458460

Carter, P. (1986) Biochem. J. 237, 1-7
Chambers, G.K. (1984) Biochem. Genet. 22, 529-549
Chambers, G.K. (1988) in Advances in Genetics, Vol. 25 (Caspari, E.W. \& Scandalios, J.G., eds.), pp. 39-107, Academic Press, Inc.,

Chambers, G.K. (1991) Comp. Biochem. Phys. 99, 723-730
Chambers, G.K., Wilks, A.V. \& Gibson, J.B. (1981) Aust. J. Biol. Sci. 34, 625

Chen, Z., Lee, W.R. \& Chang, S.H. (1991) Eur. J. Biochem. 202, 263267

Chen, Z., Lu, L., Shirley, M., Lee, W.R. \& Chang, S.H. (1990) Biochemistry 29, 1112-1118

Chothia, C. \& Lesk, A.M. (1987) J. Mol. Biol. 196, 901-918
Chou, P.Y. \& Fasman, G.D. (1974) Biochemistry 13, 222-245
Claessens, M., Van Cutsem, E., Lasters, I. \& Wodak, S. (1989) Protein Engng. 2, 335-345

Clark, W. (1988) PhD Thesis, Rutgers University.

Clarke, A.R., Atkinson, T. \& Holbrook, J.J. (1989) Trends in Biochemical Sciences 14, 101-104

Cornish-Bowden, A. \& Wharton, R.P. (1988) in Introduction to enzyme kinetics: In Focus (Rickwood, D., ed.) IRL press, Oxford

Coyne, J.A. \& Kreitman, M. (1986) Evolution 40, 673-691
Creighton, T.E.. (1984) in Proteins pp. 150-151, W.H. Freeman, New York

Day, T.H., Hillier, P.C. \& Clarke, B (1974) Biochem. Genet. 11, 141.
Dayhoff, M.O., Barker, W.C. \& Hunt, L.T. (1983) Methods Enzymol. 91, 524-545

Debellé, S. \& Sharma, S.B. (1986) Nucleic Acids Res. 14, 7453-7472
Devereaux, J., Haeberli, P. \& Smithies, O.A. (1984) Nuc. Acids Res. 12, 765-784

Doolitle, R.F.(editor of the volume, the whole book is relevant) (1990) Methods Enzymol. 183

Dothie, J.M., Giglio, J.R., Moore, C.H., Taylor, S.S. \& Hartley, B.S. (1985) Biochem. J. 230, 569-578

Dufton, M.J. \& Hider, R.C. (1977) J. Mol. Biol. 115, 177-193
Eklund, H. \& Brändén, C.-I. (1987) in Biological Macromolecules \& Assembly, Vol. 3 (Jurnak, \& McPherson, , eds.), pp. 74-142, Wiley,

Eklund, H., Nordström, B., Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, T., Tapia, O., Brändén, C.-I. \& Åkeson, Å. (1976) J. Mol. Biol. 102, 27-59

Eklund, H., Samama, J.-P. \& Jones, T.A. (1984) Biochemistry 23, 5982-5996

England, B.P., Heberlein, U. \& Tjian, R. (1990) J. Biol. Chem. 265, 5086-5094

Ensor, C.M. \& Tai, H.H. (1991) BBRC 176, 840-845

Feeney, R., Clarke, A.R. \& Holbrook, J.J. (1990) Biochem. Biophys. Res. Commun. 166, 667-672

Fersht, A. (1987) Trends in Biochemical Sciences 12, 301-309
Fibla, J., Enjuanes, L. \& Gonzàlez-Duarte, R. (1989) BBRC 160, 638646

Fischer, J.A. \& Maniatis, T. (1985) Nucleic Acids Res. 13, 6899-6917
Furukawa, K., Arimura, N. \& Miyazaki, T. (1987) J. Bacteriol. 169, 427-429

Garnier, J., Osguthorpe, D.J. \& Robson, B. (1978) J. Mol. Biol. 120, 97-120

Garrat, R.C., Thornton, J.M. \& Taylor, W.R. (1991) FEBS lett. 280, 141-146

Geer, B.W., Langevin, M.L. \& McKechnie, S.W. (1985) Biochem. Genet. 23, 607-622

Gernstein, M. \& Chothia, C. (1991) J. Mol . Biol. 220, 133-149
Getz, C. \& Grant, W.S. (1990) Biochem. Genet. 28, 503-507
Ghosh, D., Weeks, C.M., Grochulski, P., Duax, W.L., Erman, M., Rimsay, R.L. \& Orr, J.C. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 10064-10068

Gibson, J.B., Chambers, G.K., Wilks, A.V. \& Oakeshott, J.G. (1980) Aust. J. Biol. Sci 33, 479

Gibson, J.B. \& Wilks, A.V. (1988) Heredity 60, 403-407
Gilbert, R.J. (1992) J. Mol. Graphics 10, 112-119
Goldberg, D.A. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5794-5798
González-Duarte, R. \& Atrian, S. (1986) Heredity 17, 123-128
Grantham, R.C., Gautier, C., Gouy, M., Jacobzone, M. \& Mercier, R. (1981) Nucleic Acids Res. 9, 43-74

Grau, U.M. (1982) in The Pyridine Nucleotide Coenzymes p. 135 (Everse, J., Anderson, B. \& You, K., eds.) Academic Press, New York

Green, M.M., Fang, X., Churchill, P. \& Brennan, M.D. (1989) Arch. Biochem. Biophys. 273, 440-448

Green, M.S., Meeker, M.K. \& Shortle, D. (1992) Biochemistry 31, 5717-5728

Greer, J. (1981) J. Mol. Biol. 153, 1027-1042
Grell, E.H., Jacobson, K.B. \& Murphy, J.B. (1965) Science 149, 80-82
Grossman, A.I., Koreneva, L.G. \& Ulitskaya, L.E. (1970) Sov. Genet. 6, 211-214

Hallam, S.E., Malpartida, F. \& Hopwood, D.A. (1988) Gene 74, 305320

Heinstra, P.W.H., Thörig, G.E.W., Scharloo, W., Drenth, W. \& Nolte, R.J.M. (1988) Biochim. Biophys. Acta. 967, 224-228

Hernández, J.J., Vilageliu, Ll. \& Gonzàlez-Duarte, R. (1988) Genetica 77, 15-24

Hernández, M., Padrón, G. \& Cabrera, V.M. (1986) Genet. Res. Camb. 47, 143-146

Higgins, P.G. \& Sharp, P.M. (1988) Gene 73, 237-244
Hovik, R., Winberg, J.O. \& McKinley-McKee, J.S. (1984) Insect Biochem. 14, 345-351

Inoue, T., Sunagawa, M., Mori, A., Chuhei, I., Fukuda, M., Tagaki, M. \& Yano, K. (1989) J. Bacteriol. 171, 3115-3122

Irie, S., Doi, S., Yorifuji, T., Tkagi, M. \& Yano, K. (1987) J. Bacteriol. 169, 5174-5179

Ito, H., Fukuda, I., Murata, K. \& Kimura, A. (1983) J. Bacteriol. 153, 163-168

Jacobsen, K.B., Murphy, J.B., Knopp, J.A. \& Ortiz, J.R. (1972) Arch. Biochem. Biophys. 149, 22

Jany, K.-D., Ulmer, W., Fröscle, M. \& Pfleiderer, G. (1984) FEBS lett. 165, 6-10

Johnson, F.M. \& Denniston, C. (1992) Nature 204, 906-907
Jörnvall, H., Persson, M. \& Jeffrey, J. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4226-4230

Jörnvall, H., Von Bahr-Lindström, H., Jany, K.D., Ulmer, W. \& Fröschle, M. (1984) FEBS lett. 165, 190-196

Karplus, M. \& Petsko, G.A. (1990) Nature 347, 631-639

Kimura, M. (1983) The Neutral Theory of Molecular Evolution, Cambridge Univ. Press, London and New York

Kreitman, M. (1983) Nature 304, 412-417
Krook, M., Marekov, L. \& Jörnvall, H. (1990) Biochemistry 29, 738743

Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. 82, 488-492
Layne, E. (1957) Methods Enzymol. 3, 447-454
Liu, J., Duncan, K. \& Walsh, C.T. (1989) J. Bacteriol. 171, 791-798
Levin, J.M. \& Garnier, J. (1988) Biochim. Biophys. Acta 955, 283295

Lilley, K.S., Baker, P.J., Britton, K.L., Stillman, T.J., Brown, P.E., Moir, A.J.G., Engel, P.C., Rice, D.W., Bell, J.E. \& Bell, E. (1991) Biochim. Biophys. Acta 1080, 191-197

Lim, V.I. (1974) J. Mol. Biol. 88, 857-872
Lüthy, R., Bowie, J.U. \& Eisenberg, D. (1992) Nature 356, 83-85
Madhavan, K., Conscience-Egli, M., Sieber, F \& Ursprung, H. (1973) J. Insect Physiol. 19, 235-241

Maniatis, T., Hardison, R.C., Lacy, E., Lauer, J., O'Connel, C., Quon, D., Sim, J.K. \& Efstratiadis, A. (1978) Cell 15, 687-701

Marekov, L., Krook, M. \& Jörnvall, H. (1990) FEBS lett. 266, 51-54
Maroni, G., Laurie-Ahlberg, C.C., Adams, D.A. \& Wilson, A.N. (1982) Genetics 101, 431-446

McDonald, J.H. \& Kreitman, M. (1991) Nature 351, 652-654
Middleton, R.J. \& Kacser, H. (1983) Genetics 105, 663-650
Nagano, K. (1973) J. Mol. Biol. 75, 401-405
Navre, M. \& Ringold, G.M. (1988) J. Cell Biol. 107, 279-286
Needleman, S.B. \& Wunsch, C.D. (1970) J. Mol. Biol. 48, 443-453
Neidle, E.L., Hartnett, C., Ornston, N.L., Bairoch, A., Rekik, M. \& Harayama, S. (1989) Swiss Prot Databank

Nozaki, Y. (1972) Methods Enzymol. 26, 43-50
Oakeshott, J.G., Gibson, J.B., Anderson, P.R., Knibb, W.R., Anderson, D.G. \& Chambers, G.K. (1982) Evolution 36, 86-96

Oakeshott, J.G., Gibson, J.B. \& Wilson, S.R. (1984) Heredity 53, 5167

Pace, N.C. (1986) Methods Enzymol. (1986) 131, 266-280
Parker, D.M. \& Holbriook, J.J. (1977) in Pyridine Nucleotide Dependent Enzymes p. 485 (Sund, H., ed.) Walter de Gruyter, Berlin

Parsons, P.A. (1981) Aust. J. Zool. 29, 33-39
Parsons, P.A. \& Spence, G.E. (1981) Am. Nat. 117, 568-571
Peltoketo, H., Isomaa, V., Mäentausta, O. \& Vihko, R. (1988) FEBS lett. 239, 73-77

Peoples, O.R. \& Sinskey, A.J. (1989) J. Biol. Chem. 264, 15293-15297
Persson, B., Krook, M. \& Jörnvall, H. (1991) Eur. J. Biochem. 200, 537-543

Petterson, G. (1987) Crit. Rev. Biochem. 21, 349
Pipkin, S.B., Franklin-Springer, E., Law, S. \& Lubega, S. (1976) J. Hered. 67, 258-266

Provencher, S.W. \& Glöckner, J. (1981) Biochemistry 20, 33-37

Ramachandran, G.N. \& Sasisekharan, V. (1968) Adv. Prot. Chem. 23, 283-437

Retzios, A. (1982) PhD Thesis, Edinburgh University, Edinburgh
Ribas de Pouplana, Ll., Atrian, S., Gonzàlez-Duarte, R., FothergillGilmore, L.A., Kelly, S.M. \& Price, N.C. (1991) Biochem. J. 276, 433-438

Richardson, J.S. (1985) Methods Enzymol. 115, 349-358
Rowan, R.G. \& Dickinson, W.J. (1988) J. Mol. Evol. 28, 43-54
Sambrook., J., Fritsch, E.F. \& Maniatis, T. (1989) Molecular Cloning Vol. 1-3 Cold Spring Harbor Laboratory Press

Sampsell, B.M. \& Barnette, V.C. (1985) Biochem. Genet. 23, 53-59
Sander, C. \& Schneider, R. (1991) Proteins 9, 69-78
Schaeffer, S.W. \& Aquadro, C.F. (1987) Genetics 117, 61-73
Schimmel, P. (1987) Annu. Rev. Biochem. 56, 125-158
Scrutton, N.S., Berry, A. \& Perham, R.N. (1990) Nature 343, 38-43
Sekuzu, I., Yamashita, J., Nozaki, M., Hagihara, B., Yonetani, T. \& Okunuki, K. (1957) J. Biochem. 44, 601-614

Shrake, A. \& Ross, P.D. (1990) J. Biol. Chem. 265, 5055-5059
Sofer, W. \& Martin, P. (1987) Ann. Rev. Genet. 21, 203-225
Starmer, W.T. \& Sullivan, D.T. (1989) Mol. Biol. Evol. 6, 546-552
Strambini, G.B. \& Gonelli, M. (1990) Biochemistry 29, 196-203
Thatcher, D.R. (1977) Biochem. J. 163, 317-323
Thatcher, D.R. (1980) Biochem J. 187, 875-886
Thatcher, D.R. (1981) Biochem. Soc. Trans. 9, 299
Thatcher, D.R. \& Retzios, A. (1980) Protides Biol. Fluids 28, 157-160
Thatcher, D.R. \& Sawyer, L. (1980) Biochem J. 187, 884-886

Thatcher, D.R. \& Sheikh, R. (1981) Biochem. J. 197, 111-117
Thöny, B., Fischer, H.-M., Anthamatten, D., Bruderer, D. \& Hennecke, H. (1987) Nucleic Acids Res. 15, 8479-8499

Van Gunsteren, W.F. \& Mark, A.E. (1992) Eur. J. Biochem. 204, 947-961

Vigue, C.L. \& Johnson, F.M. (1973) Biochem. Genet. 9, 213-226
Villaroya, A., Juan, E., Egestad, E. \& Jörnvall, H. (1989) Eur. J. Biochem. 180, 191-197

White, W.B., Franklund, C.V., Coleman, J.P. \& Hylemon, P.B. (1988) J. Bacteriol. 170, 4555-4561

Williams, D.H. (1991) Aldrichimica acta 24, 71-80
Wills, C. (1990) Critical reviews in Biochem. and Mol. Biol. 25, 245277

Winberg, J.-O., Hovik, R. \& McKinley-McKee, J.S. (1985) Biochem. Genet. 23, 205-216

Winberg, J.-O., Hovik, R., McKinley-McKee, J.S., Juan, E. \& Gonzalez-Duarte, R. (1986) Biochem J. 235, 481-490

Winberg, J.-O., Thatcher, D.R. \& McKinley-McKee, J.S. (1982) Biochim. Biophys. Acta 704, 17-25

Winberg, J.-O., Thatcher, D.R. \& McKinley-McKee, J.S. (1982) Biochim. Biophys. Acta 704, 7-16

Winberg, J.-O., Thatcher, D.R. \& McKinley-McKee, J.S. (1983) Biochim. Genet. 21, 63-80

Winberg, J.O. (1989) PhD Thesis, University of Oslo, Oslo
Winberg, J.O. \& McKinley-McKee, J.S. (1988) Biochem. J. 251, 223227

Winberg, J.O. \& McKinley-McKee, J.S. (1988) Biochem. J. 255, 589599

Wiseman, A. \& Williams, N.J. (1971) Biochim. Biophys. Acta 250, 15

Yamada, M. \& Saier, M.H.Jr (1987) J. Biol. Chem. 262, 5455-5463
Yin, S.-J., Vagelopoulos, N., Lundquist, G. \& Jörnvall, H. (1991) Eur. J. Biochem. 197, 359-365
8. Published Article

Structural properties of long- and short-chain alcohol dehydrogenases

Contribution of NAD ${ }^{+}$to stability

Lluís RIBAS DE POUPLANA,* Silvia ATRIAN, \dagger Roser GONZÀLEZ-DUARTE, \dagger
Linda A. FOTHERGILL-GILMORE,* Sharon M. KELLY \ddagger and Nicholas C. PRICE \ddagger
*Department of Biochemistry, University of Edinburgh, George Square, Edinburgh EH8 9XD, Scotland, U.K.,
\dagger Departament de Genetica, Universitat de Barcelona, Av. Diagonal 645, 08071 Barcelona, Spain, and
\ddagger Department of Biological and Molecular Sciences, University of Stirling, Stirling FK9 4LA, Scotland, U.K.

Abstract

Structural studies were undertaken on long-chain and short-chain alcohol dehydrogenases (from horse liver and Drosophila respectively). Far-u.v. c.d. measurements were used to estimate the secondary structure contents of the enzymes. For the horse liver enzyme, the results agree well with the X-ray data; for the Drosophila enzyme (for which a crystal structure is not yet available), the results are in good agreement with those obtained by applying a range of structure-prediction procedures to the amino acid sequence of this enzyme. The conformational stabilities of the two enzymes were investigated by studying the unfolding brought about by guanidinium chloride (GdnHCl) by using activity and c.d. measurements. The unfolding of the Drosophila enzyme was analysed in terms of a two-state model; the presence of the substrate NAD^{+}leads to considerable protection against unfolding. By contrast, the unfolding of the horse liver enzyme shows a plateau effect at intermediate concentrations of GdnHCl , indicating that a two-state model is not appropriate in this case. NAD^{+}affords little, if any, protection against unfolding for the horse liver enzyme.

INTRODUCTION

Alcohol dehydrogenases (ADH; EC 1.1.1.1) are enzymes that occur widely across the range of living organisms, where they are important for the detoxification and metabolism of ethanol and other alcohols. They catalyse the oxidation of primary and secondary alcohols to the corresponding aldehydes and ketones, with the concomitant reduction of NAD ${ }^{+}$. They can be grouped into two main families (Jörnvall et al., 1981, 1984), which appear to be unrelated at the sequence level. Long-chain ADHs are characterized by a preference for primary alcohols (Dalziel \& Dickinson, 1966), by a requirement for Zn^{2+} ions (Dunn \& Hutchinson, 1973) and by hydride transfer with 4-proR stereospecificity (You, 1982). In contrast, short-chain ADHs prefer secondary alcohols (Sofer \& Ursprung, 1968; Winberg et al., 1982), have no requirement for metal cofactors (Chambers, 1984) and show 4-pro-S stereospecificity (Benner et al.,1985). It is clear from these observations that the catalytic mechanisms of the two types of ADH must be different, although the overall reactions are the same.

Long-chain alcohol and polyol dehydrogenases have approx. 350 amino acid residues per subunit, and examples include the familiar mammalian liver ethanol dehydrogenase, as well as ADHs from birds, plants, yeast and bacteria. Mammalian sorbitol dehydrogenase is also a member of the long-chain ADH family (Jörnvall et al., 1981, 1984). The short-chain ADHs have been found in mammals, insects and bacteria. These enzymes have approx. 250 amino acid residues per subunit, and examples include Drosophila ADH (Thatcher, 1980), bacterial ribitol, glutamate and 20β-hydroxysteroid dehydrogenases (Jörnvall et al., 1984; Marekov et al., 1990), and mammalian 17-hydroxysteroid (Peltoketo et al., 1988) and 15-hydroxyprostaglandin (Krook et al., 1990) dehydrogenases.

The three-dimensional structure of the long-chain ADH from horse liver is known in great detail from crystallographic and sequence studies (Eklund et al., 1976; Jörnvall, 1970; reviewed in

Eklund \& Brändén, 1987). It is reasonable to assume that the other members of the homologous long-chain ADH family have similar topologies. The short-chain family is as yet much less well characterized, although suitable crystals of Drosophila ADH have recently been obtained, and diffraction data are currently being collected (E. Gordon \& L. Sawyer, personal communication). In the absence of a crystal structure, it is of interest to explore predicted structures derived from sequences and spectroscopic data. A secondary-structure prediction for ADH from Drosophila melanogaster (Thatcher \& Sawyer, 1980) gives a strong suggestion that the N-terminal half of the enzyme folds into the alternating α-helix $/ \beta$-strand structure characteristic of nucleotide-binding domains [reviewed in Richardson (1981)]. The C-terminal half does not appear to have an alternating α / β structure.

Each subunit of the long-chain dehydrogenases (as exemplified by the horse liver enzyme) folds into two domains, with the active site at the interface between the domains [reviewed in Eklund \& Brändén (1987)]. One molecule of NAD ${ }^{+}$binds to this interdomain region and makes contacts with both domains. It thus may be expected that the cofactor could stabilize the enzyme to a variety of insults such as heat or denaturing agents. It is the main aim of the present study to compare the structural properties of long-chain and short-chain ADHs (such as those from horse liver and from Drosophila), and the contribution which NAD^{+} makes to the stability of the enzymes against unfolding by guanidinium chloride (GdnHCl).

EXPERIMENTAL

Materials

ADHs from horse liver and from yeast (Saccharomyces cerevisiae) were purchased from Boehringer and Sigma respectively. Before use, the crystalline suspension of liver ADH was dialysed for 18 h against 20 mm -Tris $/ \mathrm{HCl}, \mathrm{pH} 8.0$. Yeast ADH was

Fig. 2. Secondary structure prediction for D. melanogaster ADH
The histograms show the scores of the residues according to the prediction package PREDICT. The interpretation of those scores is shown in lines over the histograms. α-Helix, $29.6 \% ; B$-strand, 33.5%; other structures, 36.9%. The interpretation of the results of the prediction procedure was undertaken in the light of the known secondary-structural pattern in liver ADH and other dehydrogenases (Eklund \& Brändén, 1987).

Fig. 4. Structural changes in ADH upon addition of GdnHCl as demonstrated by c.d.
(a) D. melanogaster; (b) horse liver (-) and yeast (---). \bigcirc, Without NAD^{+}; with NAD^{+}.

Fig. 5. Inactivation of horse liver (-) and yeast (---) ADH by GdnHCI

Details of the procedures are given in the Experimental section. - Enzyme in the presence of $\mathrm{NAD}^{+} ; \bigcirc$, enzyme in the absence of NAD^{+}.
are depicted in Fig. $4(b)$. As with the Drosophila enzyme, these changes occur at higher GdnHCl concentrations than do the changes in activity. There is no significant effect of NAD^{+}on the structural changes, consistent with the data from the activity studies. Similar protection experiments with yeast ADH also showed that NAD^{+}provides little protection to this enzyme (results not shown).

DISCUSSION

In this paper we report on the analysis of the secondary structure of the short-chain ADH from Drosophila. The far-u.v. c.d. spectrum provides estimates for α-helix and β-sheet which are in good agreement with results of the structure-prediction methods, and the validity of the c.d. approach has been confirmed with reference to the horse liver enzyme, where a crystal structure is available. Previously Benyajati et al. (1981) published an amino acid sequence (derived from cDNA sequence) for the Drosophila enzyme. Apart from residues 25 and 251, their sequence was identical with that published previously by Thatcher (1980), which was determined by direct protein sequencing. However, Benyajati et al. (1981) reported the result of a structure prediction using the Chou-Fasman method as suggesting that the enzyme contained $50 \% \alpha$-helix, a value considerably larger than that reported by Thatcher \& Sawyer (1980) using this predictive method. The cause of this discrepancy is not clear, but it should be noted that the results of our multiple prediction studies are closer to the value obtained by Thatcher \& Sawyer (1980). Benyajati et al. (1981) also mentioned that analysis of the c.d. spectrum gave a value of $50 \% \alpha$-helix, in accordance with their structure-prediction results. We are unable to explain the discrepancy between their value and our values (Table 1), because they did not provide the primary data on which the analysis was based.

At present, no crystal-structure information is available for the Drosophila enzyme, although preliminary results are encouraging (E. Gordon \& L. Sawyer, personal communication). We are therefore at present unable to confirm the validity of the c.d. analysis. The analysis suggests that the enzyme contains significant amounts of both α-helix and β-strand structures. The presence of large amounts of these secondary structures would indicate that a typical NAD^{+}-binding site exists in this enzyme; this proposal would be consistent with other data, including the binding of the enzyme to Cibacron Blue (Juan \& GonzalezDuarte, 1980).

The conformational stability $\left(\Delta G_{\left(\mathrm{H}_{2} \mathrm{O}\right)}\right)$ of the Drosophila enzyme has been estimated by a linear extrapolation procedure as shown in Fig. 3(b). Although the justification for using this procedure has been the subject of considerable debate [see Pace (1986) and references therein], the value obtained [$13.5 \mathrm{~kJ} / \mathrm{mol}$ $(3.20 \mathrm{kcal} / \mathrm{mol})]$ can at least be used as a basis for discussion. It lies at the lower end of the range of values $[21-63 \mathrm{~kJ} / \mathrm{mol}$ $(5-15 \mathrm{kcal} / \mathrm{mol})]$ quoted by Pace (1990) for the stabilities of a number of globular proteins. However, it should be noted that in any particular case the exact value can be markedly affected by factors such as temperature, pH and ionic strength, and no attempt was made in the present study to optimize the stability of the enzyme.

The inclusion of $\mathrm{NAD}^{+}(220 \mu \mathrm{~m})$ serves to increase the conformational stability of the Drosophila enzyme by $6.61 \mathrm{~kJ} / \mathrm{mol}(1.57 \mathrm{kcal} / \mathrm{mol})$ (Fig. $3 b$). Although this value may seem low when the number of likely interactions between the enzyme and the substrate is considered, it is of a similar magnitude to other examples of ligand-induced stabilization, e.g. the stabilization of $2.1 \mathrm{~kJ} / \mathrm{mol}(0.5 \mathrm{kcal} / \mathrm{mol})$ afforded to lysozyme by inclusion of the competitive inhibitor (N-acetylglucosamine $)_{3}$
9. Coordinates of the ADH model in Brookhaven database format

HEADER COMPND AUTHOR SEQRES 20

ATOM

ATOM

 ATOMPROTEIN

Lluis Ribas de Pouplana PhD project Edinburgh 1989-1992
1255 SER PHE THR LEU THR ASN LYS ASN VAL ILE PHE VAL AL 22255 GLY LEU GLY GLY ILE GLY LEU ASP THR SER LYS GLU LEU 255 LEU LYS ARG ASP LEU LYS ASN LEU VAL ILE LEU ASP ARG 255 ILE GLU ASN PRO ALA ALA ILE ALA GLU LEU LYS ALA ILE 255 ASN PRO LYS VAL THR VAL THR PHE TYR PRO TYR ASP VAL
255 THR VAL PRO ILE ALA ILE THR THR LYS LEU LEU LYS THR
255 ILE PHE ALA GLN LEU LYS THR VAL ASP VAL LEU ILE ASN
255 GLY ALA GLY ILE LEU ASP ASP HIS GLN ILE GLU ARG THR
255 ILE ALA VAL ASN TYR THR GLY LEU VAL GLN THR THR THR
255 ALA ILE LEU ASP PHE TRP ASP LYS ARG LYS GLY GLY PRO
255 GLY GLY ILE ILE CYS ASN ILE GLY SER VAL THR GLY PHE
255 ASN ALA ILE TYR GLN VAL PRO VAL TYR SER GLY THR LYS
255 ALA ALA VAL VAL ASN PHE THR SER SER LEU ALA LYS LEU
255 ALA PRO ILE THR GLY VAL THR ALA TYR THR VAL ASN PRO
255 GLY ILE THR ARG THR THR LEU VAL HIS LYS PHE ASN SER
255 TRP LEU ASP VAL GLU PRO GLN VAL ALA GLU LYS LEU LEU
255 ALA HIS PRO THR GLN PRO SER LEU ALA CYS ALA GLU ASN
255 PHE VAL LYS ALA ILE GLU LEU ASN GLN ASN GLY ALA ILE
255 TRP LYS LEU ASP LEU GLY THR LEU GLU ALA ILE GLN TRP
255 THR LYS HIS TRP ASP SER GLY ILE

N	SER	1	-6.758	-8.423	-15.621	1.00	0.00
CA	SER	1	-5.902	-7.396	-15.001	1.00	0.00
C	SER	1	-7.008	-6.458	-14.317	1.00	0.00
O	SER	1	-8.192	-6.646	-14.575	1.00	0.00
CB	SER	1	-5.135	-6.601	-16.063	1.00	0.00
OG	SER	1	-5.659	-6.824	-17.399	1.00	0.00
HG	SER	1	-5.141	-6.305	-18.073	1.00	0.00
H	SER	1	-6.963	-8.333	-16.574	1.00	0.00
N	PHE	2	-6.725	-5.387	-13.485	1.00	0.00
CA	PHE	2	-7.654	-4.436	-12.799	1.00	0.00
C	PHE	2	-8.544	-5.205	-11.847	1.00	0.00
O	PHE	2	-9.660	-4.737	-11.472	1.00	0.00
CB	PHE	2	-8.411	-3.800	-13.925	1.00	0.00
CG	PHE	2	-8.669	-2.296	-13.670	1.00	0.00
CD1	PHE	2	-8.478	-1.803	-12.383	1.00	0.00
CD2	PHE	2	-9.063	-1.432	-14.704	1.00	0.00
CE1	PHE	2	-8.679	-0.457	-12.109	1.00	0.00
CE2	PHE	2	-9.236	-0.107	-14.324	1.00	0.00
CZ	PHE	2	-9.065	0.392	-13.077	1.00	0.00
H	PHE	2	-5.787	-5.251	-13.409	1.00	0.00
N	THR	3	-8.163	-6.438	-11.458	1.00	0.00
CA	THR	3	-8.929	-7.322	-10.629	1.00	0.00
C	THR	3	-8.093	-7.598	-9.363	1.00	0.00
O	THR	3	-7.143	-8.431	-9.405	1.00	0.00
CB	THR	3	-9.134	-8.558	-11.542	1.00	0.00
OG1	THR	3	-9.511	-8.121	-12.864	1.00	0.00
CG2	THR	3	-10.272	-9.397	-11.021	1.00	0.00
HG1	THR	3	-9.921	-7.238	-12.660	1.00	0.00
H	THR	3	-7.245	-6.731	-11.591	1.00	0.00
N	LEU	4	-8.312	-6.867	-8.305	1.00	0.00
CA	LEU	4	-7.529	-7.161	-7.127	1.00	0.00
C	LEU	4	-8.129	-8.412	-6.553	1.00	0.00
O	LEU	4	-9.139	-8.423	-5.860	1.00	0.00
CB	LEU	4	-7.603	-6.059	-6.034	1.00	0.00
CG	LEU	4	-6.553	-6.056	-4.956	1.00	0.00
CD1	LEU	4	-5.195	-5.800	-5.414	1.00	0.00
CD2	LEU	4	-6.799	-4.798	-4.165	1.00	0.00
H	LEU	4	-8.945	-6.137	-8.304	1.00	0.00
N	THR	5	-7.365	-9.461	-6.936	1.00	0.00
CA	THR	5	-7.807	-10.824	-6.545	1.00	0.00
C	THR	5	-7.145	-11.032	-5.190	1.00	0.00
O	THR	5	-6.370	-11.943	-4.911	1.00	0.00
CB	THR	5	-7.274	-11.861	-7.536	1.00	0.00

ATOM	44	OG1	THR	5	-7.833	-11.434	-8.776	1.00	0.00
ATOM	45	CG2	THR	5	-7.690	-13.379	-7.324	1.00	0.00
ATOM	46	HG1	THR	5	-7.153	-10.754	-9.117	1.00	0.00
ATOM	47	H	THR	5	-6.611	-9.341	-7.534	1.00	0.00
ATOM	48	N	ASN	6	-7.344	-10.059	-4.283	1.00	0.00
ATOM	49	CA	ASN	6	-6.574	-10.148	-2.987	1.00	0.00
ATOM	50	C	ASN	6	-7.269	-9.542	-1.754	1.00	0.00
ATOM	51	0	ASN	6	-7.539	-8.318	-1.681	1.00	0.00
ATOM	52	CB	ASN	6	-5.168	-9.454	-3.117	1.00	0.00
ATOM	53	CG	ASN	6	-4.473	-9.545	-4.451	1.00	0.00
ATOM	54	OD1	ASN	6	-4.963	-9.147	-5.530	1.00	0.00
ATOM	55	ND2	ASN	6	-3.360	-10.311	-4.436	1.00	0.00
ATOM	56	HD22	ASN	6	-2.918	-10.582	-5.291	1.00	0.00
ATOM	57	HD21	ASN	6	-3.118	-10.671	-3.582	1.00	0.00
ATOM	58	H	ASN	6	-7.959	-9.298	-4.406	1.00	0.00
ATOM	59	N	LYS	7	-7.790	-10.306	-0.745	1.00	0.00
ATOM	60	CA	LYS	7	-8.366	-9.721	0.453	1.00	0.00
ATOM	61	C	LYS	7	-7.323	-8.827	1.098	1.00	0.00
ATOM	62	\bigcirc	LYS	7	-6.086	-9.089	1.044	1.00	0.00
ATOM	63	CB	LYS	7	-8.757	-10.854	1.338	1.00	0.00
ATOM	64	CG	LYS	7	-9.466	-10.322	2.569	1.00	0.00
ATOM	65	CD	LYS	7	-9.405	-11.156	3.819	1.00	0.00
ATOM	66	CE	LYS	7	-9.440	-10.218	4.967	1.00	0.00
ATOM	67	NZ	LYS	7	-9.095	-10.975	6.159	1.00	0.00
ATOM	68	HZ1	LYS	7	-8.884	-10.388	6.975	1.00	0.00
ATOM	69	Hz2	LYS	7	-8.227	-11.540	5.947	1.00	0.00
ATOM	70	Hz3	LYS	7	-9.880	-11.605	6.431	1.00	0.00
ATOM	71	H	LYS	7	-7.836	-11.297	-0.827	1.00	0.00
ATOM	72	N	ASN	8	-7.757	-7.780	1.789	1.00	0.00
ATOM	73	CA	ASN	8	-6.820	-6.723	2.161	1.00	0.00
ATOM	74	C	ASN	8	-7.134	-6.191	3.554	1.00	0.00
ATOM	75	0	ASN	8	-8.266	-6.490	4.005	1.00	0.00
ATOM	76	CB	ASN	8	-6.943	-5.635	1.057	1.00	0.00
ATOM	77	CG	ASN	8	-8.324	-5.125	0.641	1.00	0.00
ATOM	78	OD1	ASN	8	-9.047	-4.487	1.386	1.00	0.00
ATOM	79	ND2	ASN	8	-8.648	-5.331	-0.626	1.00	0.00
ATOM	80	HD22	ASN	8	-9.547	-5.031	-0.971	1.00	0.00
ATOM	81	HD21	ASN	8	-8.025	-5.930	-1.126	1.00	0.00
ATOM	82	H	ASN	8	-8.645	-7.784	2.048	1.00	0.00
ATOM	83	N	VAL	9	-6.155	-5.565	4.184	1.00	0.00
ATOM	84	CA	VAL	9	-6.462	-4.932	5.527	1.00	0.00
ATOM	85	C	VAL	9	-6.447	-3.358	5.621	1.00	0.00
ATOM	86	\bigcirc	VAL	9	-7.196	-2.836	6.491	1.00	0.00
ATOM	87	CB	VAL	9	-5.484	-5.379	6.669	1.00	0.00
ATOM	88	CG1	VAL	9	-5.870	-5.050	8.064	1.00	0.00
ATOM	89	CG2	VAL	9	-5.425	-6.817	6.609	1.00	0.00
ATOM	90	H	VAL	9	-5.275	-5.925	4.046	1.00	0.00
ATOM	91	N	ILE	10	-5.699	-2.576	4.812	1.00	0.00
ATOM	92	CA	ILE	10	-5.615	-1.124	4.915	1.00	0.00
ATOM	93	C	ILE	10	-5.423	-0.429	6.329	1.00	0.00
ATOM	94	0	ILE	10	-6.386	-0.199	7.123	1.00	0.00
ATOM	95	CB	ILE	10	-6.837	-0.463	4.233	1.00	0.00
ATOM	96	CG1	ILE	10	-7.282	-1.115	2.953	1.00	0.00
ATOM	97	CG2	ILE	10	-6.429	0.975	3.896	1.00	0.00
ATOM	98	CD1	ILE	10	-8.510	-0.404	2.258	1.00	0.00
ATOM	99	H	ILE	10	-5.317	-3.015	4.001	1.00	0.00
ATOM	100	N	PHE	11	-4.180	0.000	6.552	1.00	0.00
ATOM	101	CA	PHE	11	-3.741	0.649	7.767	1.00	0.00
ATOM	102	C	PHE	11	-4.402	2.012	8.040	1.00	0.00
ATOM	103	0	PHE	11	-5.312	2.103	8.894	1.00	0.00
ATOM	104	CB	PHE	11	-2.158	0.750	7.697	1.00	0.00
ATOM	105	CG	PHE	11	-1.417	-0.305	8.582	1.00	0.00
ATOM	106	CD1	PHE	11	-0.287	0.056	9.180	1.00	0.00
ATOM	107	CD2	PHE	11	-1.860	-1.621	8.615	1.00	0.00
ATOM	108	CE1	PHE	11	0.480	-0.934	9.830	1.00	0.00
ATOM	109	CE2	PHE	11	-1.152	-2.626	9.207	1.00	0.00

ATOM	110	Cz	PHE	11	0.040	-2.214	9.806	1.00	0.00
ATOM	111	H	PHE	11	-3.483	-0.047	5.826	1.00	0.00
ATOM	112	N	VAL	12	-4.023	3.102	7.404	1.00	0.00
ATOM	113	CA	VAL	12	-4.712	4.382	7.610	1.00	0.00
ATOM	114	C	VAL	12	-6.222	4.473	7.409	1.00	0.00
ATOM	115	0	VAL	12	-6.839	5.287	8.054	1.00	0.00
ATOM	116	CB	VAL	12	-3.965	5.455	6.730	1.00	0.00
ATOM	117	CG1	VAL	12	-4.186	5.098	5.238	1.00	0.00
ATOM	118	CG2	VAL	12	-4.511	6.853	7.008	1.00	0.00
ATOM	119	H	VAL	12	-3.199	3.041	6.913	1.00	0.00
ATOM	120	N	ALA	13	-6.740	3.560	6.649	1.00	0.00
ATOM	121	CA	ALA	13	-8.094	3.276	6.317	1.00	0.00
ATOM	122	C	ALA	13	-9.194	4.348	6.335	1.00	0.00
ATOM	123	0	ALA	13	-9.612	4.862	5.348	1.00	0.00
ATOM	124	CB	ALA	13	-8.605	2.181	7.293	1.00	0.00
ATOM	125	H	ALA	13	-6.056	3.063	6.123	1.00	0.00
ATOM	126	N	GLY	14	-9.515	4.747	7.559	1.00	0.00
ATOM	127	CA	GLY	14	-10.644	5.629	7.814	1.00	0.00
ATOM	128	C	GLY	14	-10.531	7.116	7.515	1.00	0.00
ATOM	129	0	GLY	14	-11.279	7.862	8.131	1.00	0.00
ATOM	130	H	GLY	14	-8.909	4.578	8.295	1.00	0.00
ATOM	131	N	LEU	15	-9.616	7.572	6.692	1.00	0.00
ATOM	132	CA	LEU	15	-9.559	8.988	6.352	1.00	0.00
ATOM	133	C	LEU	15	-9.903	9.049	4.893	1.00	0.00
ATOM	134	0	LEU	15	-9.231	8.402	4.074	1.00	0.00
ATOM	135	CB	LEU	15	-8.172	9.635	6.604	1.00	0.00
ATOM	136	CG	LEU	15	-8.128	11.175	6.487	1.00	0.00
ATOM	137	CD1	LEU	15	-8.619	11.835	7.792	1.00	0.00
ATOM	138	CD2	LEU	15	-6.649	11.664	6.217	1.00	0.00
ATOM	139	H	LEU	15	-8.866	6.965	6.440	1.00	0.00
ATOM	140	N	GLY	16	-10.984	9.721	4.593	1.00	0.00
ATOM	141	CA	GLY	16	-11.531	9.935	3.282	1.00	0.00
ATOM	142	C	GLY	16	-10.642	10.509	2.238	1.00	0.00
ATOM	143	0	GLY	16	-11.096	11.025	1.235	1.00	0.00
ATOM	144	H	GLY	16	-11.490	10.158	5.276	1.00	0.00
ATOM	145	N	GLY	17	-9.291	10.425	2.273	1.00	0.00
ATOM	146	CA	GLY	17	-8.416	10.986	1.266	1.00	0.00
ATOM	147	C	GLY	17	-7.812	9.861	0.477	1.00	0.00
ATOM	148	0	GLY	17	-7.470	10.040	-0.703	1.00	0.00
ATOM	149	H	GLY	17	-8.931	10.026	3.089	1.00	0.00
ATOM	150	N	ILE	18	-7.526	8.704	1.091	1.00	0.00
ATOM	151	CA	ILE	18	-6.861	7.552	0.474	1.00	0.00
ATOM	152	C	ILE	18	-7.489	6.168	0.826	1.00	0.00
ATOM	153	0	ILE	18	-8.046	5.584	-0.074	1.00	0.00
ATOM	154	CB	ILE	18	-5.328	7.324	0.835	1.00	0.00
ATOM	155	CG1	ILE	18	-4.679	8.558	1.563	1.00	0.00
ATOM	156	CG2	ILE	18	-4.612	7.170	-0.523	1.00	0.00
ATOM	157	CD1	ILE	18	-4.614	8.316	3.050	1.00	0.00
ATOM	158	H	ILE	18	-7.763	8.615	2.083	1.00	0.00
ATOM	159	N	GLY	19	-7.537	5.670	2.093	1.00	0.00
ATOM	160	CA	GLY	19	-8.018	4.350	2.443	1.00	0.00
ATOM	161	C	GLY	19	-9.377	4.020	2.057	1.00	0.00
ATOM	162	0	GLY	19	-9.655	3.145	1.164	1.00	0.00
ATOM	163	H	GLY	19	-7.154	6.250	2.770	1.00	0.00
ATOM	164	N	LEU	20	-10.313	4.665	2.707	1.00	0.00
ATOM	165	CA	LEU	20	-11.761	4.493	2.464	1.00	0.00
ATOM	166	C	LEU	20	-12.250	4.598	1.038	1.00	0.00
ATOM	167	0	LEU	20	-12.960	3.700	0.558	1.00	0.00
ATOM	168	CB	LEU	20	-12.589	5.501	3.263	1.00	0.00
ATOM	169	CG	LEU	20	-14.141	5.611	3.399	1.00	0.00
ATOM	170	CD1	LEU	20	-14.729	4.377	4.069	1.00	0.00
ATOM	171	CD2	LEU	20	-14.381	6.867	4.177	1.00	0.00
ATOM	172	H	LEU	20	-10.018	5.286	3.485	1.00	0.00
ATOM	173	N	ASP	21	-11.653	5.513	0.291	1.00	0.00
ATOM	174	CA	ASP	21	-11.782	5.694	-1.192	1.00	0.00
ATOM	175	C	ASP	21	-11.219	4.500	-2.054	1.00	0.00

ATOM	176	0	ASP	21	-11.817	4.212	-3.128	1.00	0.00
ATOM	177	CB	ASP	21	-11.119	7.052	-1.661	1.00	0.00
ATOM	178	CG	ASP	21	-12.126	8.165	-1.881	1.00	0.00
ATOM	179	OD1	ASP	21	-12.556	8.808	-0.932	1.00	0.00
ATOM	180	OD2	ASP	21	-12.523	8.311	-3.010	1.00	0.00
ATOM	181	H	ASP	21	-11.015	6.079	0.797	1.00	0.00
ATOM	182	N	THR	22	-10.059	3.928	-1.617	1.00	0.00
ATOM	183	CA	THR	22	-9.585	2.815	-2.335	1.00	0.00
ATOM	184	C	THR	22	-10.606	1.659	-2.226	1.00	0.00
ATOM	185	0	THR	22	-10.886	0.939	-3.198	1.00	0.00
ATOM	186	CB	THR	22	-8.244	2.287	-1.805	1.00	0.00
ATOM	187	OG1	THR	22	-7.341	3.418	-1.541	1.00	0.00
ATOM	188	CG2	THR	22	-7.642	1.348	-2.777	1.00	0.00
ATOM	189	HG1	THR	22	-7.661	3.843	-0.816	1.00	0.00
ATOM	190	H	THR	22	-9.720	4.101	-0.717	1.00	0.00
ATOM	191	N	SER	23	-11.182	1.395	-1.033	1.00	0.00
ATOM	192	CA	SER	23	-12.073	0.301	-0.868	1.00	0.00
ATOM	193	C	SER	23	-13.212	0.248	-1.845	1.00	0.00
ATOM	194	0	SER	23	-13.598	-0.822	-2.379	1.00	0.00
ATOM	195	CB	SER	23	-12.719	0.257	0.504	1.00	0.00
ATOM	196	OG	SER	23	-11.696	0.511	1.452	1.00	0.00
ATOM	197	HG	SER	23	-11.280	-0.263	1.813	1.00	0.00
ATOM	198	H	SER	23	-10.852	1.887	-0.258	1.00	0.00
ATOM	199	N	LYS	24	-13.822	1.451	-1.976	1.00	0.00
ATOM	200	CA	LYS	24	-14.942	1.622	-2.900	1.00	0.00
ATOM	201	C	LYS	24	-14.738	0.940	-4.163	1.00	0.00
ATOM	202	0	LYS	24	-15.664	0.211	-4.600	1.00	0.00
ATOM	203	CB	LYS	24	-15.177	3.060	-3.280	1.00	0.00
ATOM	204	CG	LYS	24	-15.638	3.961	-2.161	1.00	0.00
ATOM	205	CD	LYS	24	-15.575	5.376	-2.694	1.00	0.00
ATOM	206	CE	LYS	24	-16.116	6.384	-1.665	1.00	0.00
ATOM	207	NZ	LYS	24	-15.542	6.147	-0.396	1.00	0.00
ATOM	208	HZ1	LYS	24	-14.591	5.789	-0.589	1.00	0.00
ATOM	209	HZ2	LYS	24	-16.134	5.408	0.015	1.00	0.00
ATOM	210	Hz3	LYS	24	-15.407	7.064	0.101	1.00	0.00
ATOM	211	H	LYS	24	-13.568	2.141	-1.363	1.00	0.00
ATOM	212	N	GLU	25	-13.517	1.075	-4.784	1.00	0.00
ATOM	213	CA	GLU	25	-13.171	0.452	-6.053	1.00	0.00
ATOM	214	C	GLU	25	-13.461	-1.055	-6.012	1.00	0.00
ATOM	215	0	GLU	25	-14.094	-1.611	-6.894	1.00	0.00
ATOM	216	CB	GLU	25	-11.725	0.740	-6.387	1.00	0.00
ATOM	217	CG	GLU	25	-11.290	2.190	-6.500	1.00	0.00
ATOM	218	CD	GLU	25	-9.762	2.346	-6.748	1.00	0.00
ATOM	219	OE1	GLU	25	-8.993	2.361	-5.801	1.00	0.00
ATOM	220	OE2	GLU	25	-9.357	2.380	-7.894	1.00	0.00
ATOM	221	H	GLU	25	-12.766	1.623	-4.385	1.00	0.00
ATOM	222	N	LEU	26	-12.935	-1.667	-4.936	1.00	0.00
ATOM	223	CA	LEU	26	-12.809	-3.079	-4.708	1.00	0.00
ATOM	224	C	LEU	26	-14.241	-3.687	-4.410	1.00	0.00
ATOM	225	0	LEU	26	-14.477	-4.879	-4.667	1.00	0.00
ATOM	226	CB	LEU	26	-11.979	-3.459	-3.488	1.00	0.00
ATOM	227	CG	LEU	26	-10.673	-2.770	-3.387	1.00	0.00
ATOM	228	CD1	LEU	26	-10.177	-3.063	-2.038	1.00	0.00
ATOM	229	CD2	LEU	26	-9.698	-3.065	-4.533	1.00	0.00
ATOM	230	H	LEU	26	-12.593	-1.120	-4.210	1.00	0.00
ATOM	231	N	LEU	27	-15.203	-2.953	-3.778	1.00	0.00
ATOM	232	CA	LEU	27	-16.480	-3.537	-3.532	1.00	0.00
ATOM	233	C	LEU	27	-17.277	-3.318	-4.792	1.00	0.00
ATOM	234	0	LEU	27	-18.087	-4.162	-5.083	1.00	0.00
ATOM	235	CB	LEU	27	-17.198	-2.872	-2.416	1.00	0.00
ATOM	236	CG	LEU	27	-16.646	-3.351	-1.080	1.00	0.00
ATOM	237	CD1	LEU	27	-16.289	-2.199	-0.242	1.00	0.00
ATOM	238	CD2	LEU	27	-17.600	-4.361	-0.514	1.00	0.00
ATOM	239	H	LEU	27	-15.019	-2.008	-3.578	1.00	0.00
ATOM	240	N	LYS	28	-17.254	-2.138	-5.466	1.00	0.00
ATOM	241	CA	LYS	28	-18.039	-1.965	-6.633	1.00	0.00

ATOM	242	C	LYS	28	-17.658	-2.949	-7.793	1.00	0.00
ATOM	243	0	LYS	28	-18.513	-3.512	-8.486	1.00	0.00
ATOM	244	CB	LYS	28	-17.890	-0.545	-7.191	1.00	0.00
ATOM	245	CG	LYS	28	-18.530	0.616	-6.390	1.00	0.00
ATOM	246	CD	LYS	28	-18.094	1.938	-7.013	1.00	0.00
ATOM	247	CE	LYS	28	-18.688	3.025	-6.150	1.00	0.00
ATOM	248	NZ	LYS	28	-18.028	4.306	-6.459	1.00	0.00
ATOM	249	HZ1	LYS	28	-18.207	4.533	-7.441	1.00	0.00
ATOM	250	HZ2	LYS	28	-16.995	4.255	-6.285	1.00	0.00
ATOM	251	HZ3	LYS	28	-18.386	5.058	-5.859	1.00	0.00
ATOM	252	H	LYS	28	-16.825	-1.378	-5.066	1.00	0.00
ATOM	253	N	ARG	29	-16.364	-2.891	-8.043	1.00	0.00
ATOM	254	CA	ARG	29	-15.811	-3.604	-9.225	1.00	0.00
ATOM	255	C	ARG	29	-14.910	-4.610	-8.634	1.00	0.00
ATOM	256	0	ARG	29	-14.498	-4.486	-7.491	1.00	0.00
ATOM	257	CB	ARG	29	-15.054	-2.635	-10.155	1.00	0.00
ATOM	258	CG	ARG	29	-14.906	-3.126	-11.545	1.00	0.00
ATOM	259	CD	ARG	29	-14.593	-1.961	-12.435	1.00	0.00
ATOM	260	NE	ARG	29	-15.660	-0.961	-12.448	1.00	0.00
ATOM	261	Cz	ARG	29	-15.442	0.230	-12.978	1.00	0.00
ATOM	262	NH1	ARG	29	-16.438	1.067	-13.145	1.00	0.00
ATOM	263	NH2	ARG	29	-14.211	0.601	-13.331	1.00	0.00
ATOM	264	HE	ARG	29	-16.482	-1.158	-11.984	1.00	0.00
ATOM	265	HH12	ARG	29	-16.405	2.060	-13.444	1.00	0.00
ATOM	266	HH11	ARG	29	-17.324	0.644	-12.842	1.00	0.00
ATOM	267	HH2	ARG	29	-14.057	1.460	-13.730	1.00	0.00
ATOM	268	HH2	ARG	29	-13.359	0.039	-13.051	1.00	0.00
ATOM	269	H	ARG	29	-15.692	-2.496	-7.400	1.00	0.00
ATOM	270	N	ASP	30	-14.409	-5.604	-9.373	1.00	0.00
ATOM	271	CA	ASP	30	-13.451	-6.564	-8.882	1.00	0.00
ATOM	272	C	ASP	30	-13.766	-7.386	-7.577	1.00	0.00
ATOM	273	0	ASP	30	-12.905	-8.181	-7.170	1.00	0.00
ATOM	274	CB	ASP	30	-11.989	-5.845	-8.786	1.00	0.00
ATOM	275	CG	ASP	30	-11.574	-4.853	-7.743	1.00	0.00
ATOM	276	OD1	ASP	30	-11.647	-3.674	-7.958	1.00	0.00
ATOM	277	OD2	ASP	30	-11.279	-5.237	-6.615	1.00	0.00
ATOM	278	H	ASP	30	-14.683	-5.662	-10.280	1.00	0.00
ATOM	279	N	LEU	31	-14.978	-7.172	-7.013	1.00	0.00
ATOM	280	CA	LEU	31	-15.426	-7.619	-5.666	1.00	0.00
ATOM	281	C	LEU	31	-14.957	-9.043	-5.293	1.00	0.00
ATOM	282	0	LEU	31	-15.143	-10.030	-6.040	1.00	0.00
ATOM	283	CB	LEU	31	-16.984	-7.577	-5.536	1.00	0.00
ATOM	284	CG	LEU	31	-17.907	-8.333	-6.625	1.00	0.00
ATOM	285	CD1	LEU	31	-19.112	-9.121	-6.114	1.00	0.00
ATOM	286	CD2	LEU	31	-18.386	-7.231	-7.538	1.00	0.00
ATOM	287	H	LEU	31	-15.533	-6.491	-7.448	1.00	0.00
ATOM	288	N	LYS	32	-14.481	-9.267	-4.087	1.00	0.00
ATOM	289	CA	LYS	32	-13.902	-10.544	-3.789	1.00	0.00
ATOM	290	C	LYS	32	-14.197	-10.838	-2.326	1.00	0.00
ATOM	291	0	LYS	32	-15.195	-10.356	-1.786	1.00	0.00
ATOM	292	CB	LYS	32	-12.406	-10.512	-3.919	1.00	0.00
ATOM	293	CG	LYS	32	-11.925	-11.798	-4.633	1.00	0.00
ATOM	294	CD	LYS	32	-11.113	-11.401	-5.818	1.00	0.00
ATOM	295	CE	LYS	32	-11.584	-12.321	-6.892	1.00	0.00
ATOM	296	NZ	LYS	32	-11.064	-11.886	-8.217	1.00	0.00
ATOM	297	HZ1	LYS	32	-11.344	-10.906	-8.357	1.00	0.00
ATOM	298	HZ2	LYS	32	-11.463	-12.586	-8.878	1.00	0.00
ATOM	299	H23	LYS	32	-10.040	-11.882	-8.177	1.00	0.00
ATOM	300	H	LYS	32	-14.305	-8.574	-3.441	1.00	0.00
ATOM	301	N	ASN	33	-13.489	-11.731	-1.637	1.00	0.00
ATOM	302	CA	ASN	33	-13.796	-12.102	-0.233	1.00	0.00
ATOM	303	C	ASN	33	-13.497	-11.014	0.710	1.00	0.00
ATOM	304	O	ASN	33	-12.574	-10.256	0.605	1.00	0.00
ATOM	305	CB	ASN	33	-13.049	-13.373	0.156	1.00	0.00
ATOM	306	CG	ASN	33	-11.571	-13.252	0.548	1.00	0.00
ATOM	307	OD1	ASN	33	-10.731	-13.233	-0.332	1.00	0.00

ATOM	308	ND2 ASN	33	-11.138	-13.139	1.782	1.00	0.00
ATOM	309	HD22ASN	33	-10.163	-13.128	2.020	1.00	0.00
ATOM	310	HD21ASN	33	-11.782	-13.102	2.494	1.00	0.00
ATOM	311	H ASN	33	-12.662	-12.094	-1.964	1.00	0.00
ATOM	312	N LEU	34	-14.404	-11.048	1.657	1.00	0.00
ATOM	313	CA LEU	34	-14.640	-10.211	2.811	1.00	0.00
ATOM	314	C LEU	34	-13.416	-9.346	3.247	1.00	0.00
ATOM	315	- LEU	34	-12.506	-9.752	3.973	1.00	0.00
ATOM	316	CB LEU	34	-15.036	-11.078	3.971	1.00	0.00
ATOM	317	CG LEU	34	-16.538	-11.469	4.242	1.00	0.00
ATOM	318	CD1 LEU	34	-16.677	-12.898	4.753	1.00	0.00
ATOM	319	CD2 LEU	34	-17.114	-10.361	5.109	1.00	0.00
ATOM	320	H LEU	34	-15.164	-11.641	1.548	1.00	0.00
ATOM	321	N VAL	35	-13.272	-8.134	2.707	1.00	0.00
ATOM	322	CA VAL	35	-12.220	-7.158	2.915	1.00	0.00
ATOM	323	C VAL	35	-12.546	-6.397	4.201	1.00	0.00
ATOM	324	- VAL	35	-13.741	-6.244	4.531	1.00	0.00
ATOM	325	CB VAL	35	-12.086	-6.118	1.712	1.00	0.00
ATOM	326	CG1 VAL	35	-11.852	-6.974	0.571	1.00	0.00
ATOM	327	CG2 VAL	35	-13.255	-5.275	1.371	1.00	0.00
ATOM	328	H VAL	35	-13.942	-8.072	2.085	1.00	0.00
ATOM	329	N ILE	36	-11.477	-5.881	4.879	1.00	0.00
ATOM	330	CA IlE	36	-11.563	-5.047	6.079	1.00	0.00
ATOM	331	C ILE	36	-10.696	-3.813	6.163	1.00	0.00
ATOM	332	- ILE	36	-9.766	-3.786	5.364	1.00	0.00
ATOM	333	CB ILE	36	-11.260	-5.846	7.409	1.00	0.00
ATOM	334	CG1 ILE	36	-10.139	-6.805	7.211	1.00	0.00
ATOM	335	CG2 ILE	36	-12.604	-6.415	7.958	1.00	0.00
ATOM	336	CD1 ILE	36	-9.959	-7.715	8.382	1.00	0.00
ATOM	337	H ILE	36	-10.640	-5.964	4.393	1.00	0.00
ATOM	338	N LEU	37	-10.952	-2.823	7.004	1.00	0.00
ATOM	339	CA LEU	37	-10.158	-1.584	7.104	1.00	0.00
ATOM	340	C LEU	37	-9.632	-1.597	8.548	1.00	0.00
ATOM	341	- LEU	37	-10.405	-1.646	9.491	1.00	0.00
ATOM	342	CB LEU	37	-11.049	-0.330	6.902	1.00	0.00
ATOM	343	CG LEU	37	-11.823	-0.071	5.608	1.00	0.00
ATOM	344	CD1 LEU	37	-13.170	-0.699	5.554	1.00	0.00
ATOM	345	CD2 LEU	37	-12.180	1.417	5.612	1.00	0.00
ATOM	346	H LEU	37	-11.668	-2.936	7.645	1.00	0.00
ATOM	347	N ASP	38	-8.296	-1.584	8.795	1.00	0.00
ATOM	348	CA ASP	38	-7.667	-1.667	10.116	1.00	0.00
ATOM	349	C ASP	38	-7.474	-0.274	10.743	1.00	0.00
ATOM	350	- ASP	38	-6.413	0.371	10.706	1.00	0.00
ATOM	351	CB ASP	38	-6.309	-2.413	10.074	1.00	0.00
ATOM	352	CG ASP	38	-5.605	-2.510	11.427	1.00	0.00
ATOM	353	OD1 ASP	38	-4.597	-1.867	11.572	1.00	0.00
ATOM	354	OD2 ASP	38	-6.022	-3.180	12.349	1.00	0.00
ATOM	355	H ASP	38	-7.612	-1.429	8.043	1.00	0.00
ATOM	356	N ARG	39	-8.552	0.201	11.352	1.00	0.00
ATOM	357	CA ARG	39	-8.559	1.497	12.043	1.00	0.00
ATOM	358	C ARG	39	-7.384	1.826	13.000	1.00	0.00
ATOM	359	- ARG	39	-7.636	1.846	14.189	1.00	0.00
ATOM	360	CB ARG	39	-9.912	1.560	12.781	1.00	0.00
ATOM	361	CG ARG	39	-10.194	0.366	13.694	1.00	0.00
ATOM	362	CD ARG	39	-11.258	0.861	14.649	1.00	0.00
ATOM	363	NE ARG	39	-11.446	-0.145	15.633	1.00	0.00
ATOM	364	CZ ARG	39	-12.028	0.133	16.804	1.00	0.00
ATOM	365	NH1 ARG	39	-12.127	-0.875	17.672	1.00	0.00
ATOM	366	NH2 ARG	39	-12.485	1.344	17.004	1.00	0.00
ATOM	367	HE ARG	39	-11.008	-1.026	15.465	1.00	0.00
ATOM	368	HH12ARG	39	-12.752	-0.648	18.479	1.00	0.00
ATOM	369	HH11ARG	39	-11.886	-1.808	17.308	1.00	0.00
ATOM	370	HH22ARG	39	-12.971	1.657	17.835	1.00	0.00
ATOM	371	HH21ARG	39	-12.304	2.027	16.273	1.00	0.00
ATOM	372	H ARG	39	-9.244	-0.509	11.349	1.00	0.00
ATOM	373	N ILE	40	-6.194	2.284	12.457	1.00	0.00

ATOM	374	CA	ILE	40	-4.942	2.659	13.168	1.00	0.00
ATOM	375	C	ILE	40	-5.144	3.461	14.509	1.00	0.00
ATOM	376	0	ILE	40	-4.504	3.230	15.540	1.00	0.00
ATOM	377	CB	ILE	40	-4.100	3.460	12.138	1.00	0.00
ATOM	378	CG1	ILE	40	-2.797	3.947	12.752	1.00	0.00
ATOM	379	CG2	ILE	40	-4.967	4.678	11.733	1.00	0.00
ATOM	380	CD1	ILE	40	-1.734	4.236	11.644	1.00	0.00
ATOM	381	H	ILE	40	-6.046	2.166	11.456	1.00	0.00
ATOM	382	N	GLU	41	-6.094	4.361	14.480	1.00	0.00
ATOM	383	CA	GLU	41	-6.295	5.359	15.557	1.00	0.00
ATOM	384	C	GLU	41	-7.446	4.921	16.564	1.00	0.00
ATOM	385	0	GLU	41	-7.604	5.494	17.664	1.00	0.00
ATOM	386	CB	GLU	41	-6.597	6.716	14.914	1.00	0.00
ATOM	387	CG	GLU	41	-7.790	6.678	13.932	1.00	0.00
ATOM	388	CD	GLU	41	-8.183	7.935	13.142	1.00	0.00
ATOM	389	OE1	GLU	41	-8.649	8.848	13.795	1.00	0.00
ATOM	390	OE2	GLU	41	-8.013	7.945	11.973	1.00	0.00
ATOM	391	H	GLU	41	-6.852	4.169	13.852	1.00	0.00
ATOM	392	N	ASN	42	-8.197	3.871	16.192	1.00	0.00
ATOM	393	CA	ASN	42	-9.203	3.187	17.051	1.00	0.00
ATOM	394	C	ASN	42	-10.419	3.831	17.614	1.00	0.00
ATOM	395	0	ASN	42	-10.951	3.592	18.725	1.00	0.00
ATOM	396	CB	ASN	42	-8.457	2.527	18.284	1.00	0.00
ATOM	397	CG	ASN	42	-7.693	1.260	17.916	1.00	0.00
ATOM	398	OD1	ASN	42	-8.304	0.245	17.626	1.00	0.00
ATOM	399	ND2	ASN	42	-6.407	1.082	18.063	1.00	0.00
ATOM	400	HD2	ASN	42	-5.949	0.283	17.651	1.00	0.00
ATOM	401	HD2	ASN	42	-6.095	1.813	18.633	1.00	0.00
ATOM	402	H	ASN	42	-7.825	3.428	15.351	1.00	0.00
ATOM	403	N	PRO	43	-11.027	4.736	16.873	1.00	0.00
ATOM	404	CA	PRO	43	-12.235	5.383	17.238	1.00	0.00
ATOM	405	C	PRO	43	-13.429	4.755	16.443	1.00	0.00
ATOM	406	0	PRO	43	-13.845	5.212	15.322	1.00	0.00
ATOM	407	CB	PRO	43	-11.992	6.833	16.942	1.00	0.00
ATOM	408	CG	PRO	43	-10.993	6.824	15.765	1.00	0.00
ATOM	409	CD	PRO	43	-10.583	5.326	15.616	1.00	0.00
ATOM	410	N	ALA	44	-14.108	3.765	17.029	1.00	0.00
ATOM	411	CA	ALA	44	-15.133	2.937	16.393	1.00	0.00
ATOM	412	C	ALA	44	-16.176	3.540	15.456	1.00	0.00
ATOM	413	0	ALA	44	-16.705	2.800	14.667	1.00	0.00
ATOM	414	CB	ALA	44	-15.815	2.170	17.501	1.00	0.00
ATOM	415	H	ALA	44	-14.050	3.850	18.013	1.00	0.00
ATOM	416	N	ALA	45	-16.528	4.836	15.589	1.00	0.00
ATOM	417	CA	ALA	45	-17.504	5.517	14.857	1.00	0.00
ATOM	418	C	ALA	45	-17.312	5.399	13.374	1.00	0.00
ATOM	419	0	ALA	45	-18.295	5.643	12.625	1.00	0.00
ATOM	420	CB	ALA	45	-17.478	7.055	15.161	1.00	0.00
ATOM	421	H	ALA	45	-15.958	5.439	16.113	1.00	0.00
ATOM	422	N	ILE	46	-16.112	5.094	12.830	1.00	0.00
ATOM	423	CA	ILE	46	-15.850	4.868	11.451	1.00	0.00
ATOM	424	C	ILE	46	-16.821	3.808	10.910	1.00	0.00
ATOM	425	0	ILE	46	-17.099	3.742	9.724	1.00	0.00
ATOM	426	CB	ILE	46	-14.342	4.504	11.182	1.00	0.00
ATOM	427	CG1	Ile	46	-13.384	5.476	11.826	1.00	0.00
ATOM	428	CG2	ILE	46	-14.115	4.606	9.730	1.00	0.00
ATOM	429	CD1	ILE	46	-13.736	6.987	11.716	1.00	0.00
ATOM	430	H	ILE	46	-15.241	5.054	13.364	1.00	0.00
ATOM	431	N	ALA	47	-17.448	2.921	11.740	1.00	0.00
ATOM	432	CA	ALA	47	-18.439	1.943	11.300	1.00	0.00
ATOM	433	C	ALA	47	-19.438	2.287	10.171	1.00	0.00
ATOM	434	0	ALA	47	-19.424	1.560	9.173	1.00	0.00
ATOM	435	CB	ALA	47	-19.344	1.502	12.500	1.00	0.00
ATOM	436	H	ALA	47	-17.238	2.998	12.732	1.00	0.00
ATOM	437	N	GLU	48	-20.073	3.461	10.196	1.00	0.00
ATOM	438	CA	GLU	48	-21.057	3.702	9.189	1.00	0.00
ATOM	439	C	GLU	48	-20.450	4.045	7.832	1.00	0.00

ATOM	440	\bigcirc	GLU	48	-21.074	3.759	6.806	1.00	0.00
ATOM	441	CB	GLU	48	-21.954	4.735	9.683	1.00	0.00
ATOM	442	CG	GLU	48	-23.048	4.193	10.596	1.00	0.00
ATOM	443	CD	GLU	48	-23.101	5.025	11.917	1.00	0.00
ATOM	444	OE1	GLU	48	-24.129	5.610	12.275	1.00	0.00
ATOM	445	OE2	GLU	48	-22.065	5.065	12.668	1.00	0.00
ATOM	446	H	GLU	48	-19.839	4.072	10.935	1.00	0.00
ATOM	447	N	LEU	49	-19.250	4.630	7.879	1.00	0.00
ATOM	448	CA	LEU	49	-18.558	4.954	6.667	1.00	0.00
ATOM	449	C	LEU	49	-18.317	3.680	5.871	1.00	0.00
ATOM	450	0	LEU	49	-18.626	3.514	4.688	1.00	0.00
ATOM	451	CB	LEU	49	-17.286	5.662	7.128	1.00	0.00
ATOM	452	CG	LEU	49	-17.512	6.865	7.983	1.00	0.00
ATOM	453	CD1	LEU	49	-16.161	7.378	8.354	1.00	0.00
ATOM	454	CD2	LEU	49	-18.322	7.975	7.375	1.00	0.00
ATOM	455	H	LEU	49	-18.749	4.630	8.647	1.00	0.00
ATOM	456	N	LYS	50	-17.808	2.688	6.566	1.00	0.00
ATOM	457	CA	LYS	50	-17.634	1.324	5.994	1.00	0.00
ATOM	458	C	LYS	50	-18.906	0.770	5.431	1.00	0.00
ATOM	459	0	LYS	50	-18.980	0.434	4.260	1.00	0.00
ATOM	460	CB	LYS	50	-17.047	0.392	7.017	1.00	0.00
ATOM	461	CG	LYS	50	-15.699	0.939	7.605	1.00	0.00
ATOM	462	CD	LYS	50	-15.230	0.189	8.882	1.00	0.00
ATOM	463	CE	LYS	50	-13.989	0.762	9.555	1.00	0.00
ATOM	464	NZ	LYS	50	-13.587	0.132	10.761	1.00	0.00
ATOM	465	HZ1	LYS	50	-13.169	-0.823	10.647	1.00	0.00
ATOM	466	Hz2	LYS	50	-14.403	0.068	11.408	1.00	0.00
ATOM	467	HZ3	LYS	50	-12.865	0.685	11.330	1.00	0.00
ATOM	468	H	LYS	50	-17.432	2.797	7.445	1.00	0.00
ATOM	469	N	ALA	51	-19.971	0.785	6.254	1.00	0.00
ATOM	470	CA	ALA	51	-21.284	0.223	5.890	1.00	0.00
ATOM	471	C	ALA	51	-21.998	0.716	4.601	1.00	0.00
ATOM	472	0	ALA	51	-22.785	-0.036	4.004	1.00	0.00
ATOM	473	CB	ALA	51	-22.335	0.386	7.001	1.00	0.00
ATOM	474	H	ALA	51	-19.882	1.292	7.123	1.00	0.00
ATOM	475	N	ILE	52	-21.774	1.973	4.146	1.00	0.00
ATOM	476	CA	ILE	52	-22.328	2.439	2.904	1.00	0.00
ATOM	477	C	ILE	52	-21.871	1.549	1.761	1.00	0.00
ATOM	478	0	ILE	52	-22.708	1.266	0.923	1.00	0.00
ATOM	479	CB	ILE	52	-21.903	3.851	2.653	1.00	0.00
ATOM	480	CG1	ILE	52	-22.427	4.689	3.798	1.00	0.00
ATOM	481	CG2	ILE	52	-22.512	4.349	1.352	1.00	0.00
ATOM	482	CD1	ILE	52	-21.761	6.077	3.968	1.00	0.00
ATOM	483	H	ILE	52	-21.354	2.525	4.732	1.00	0.00
ATOM	484	N	ASN	53	-20.612	1.144	1.679	1.00	0.00
ATOM	485	CA	ASN	53	-20.016	0.317	0.578	1.00	0.00
ATOM	486	C	ASN	53	-20.584	-1.115	0.479	1.00	0.00
ATOM	487	0	ASN	53	-20.934	-1.520	-0.622	1.00	0.00
ATOM	488	CB	ASN	53	-18.509	0.263	0.812	1.00	0.00
ATOM	489	CG	ASN	53	-17.854	1.572	0.703	1.00	0.00
ATOM	490	OD1	ASN	53	-17.362	1.956	-0.366	1.00	0.00
ATOM	491	ND2	ASN	53	-17.660	2.289	1.774	1.00	0.00
ATOM	492	HD22	ASN	53	-17.195	3.188	1.727	1.00	0.00
ATOM	493	HD21	1ASN	53	-17.918	2.012	2.682	1.00	0.00
ATOM	494	H	ASN	53	-20.059	1.328	2.479	1.00	0.00
ATOM	495	N	PRO	54	-20.865	-1.860	1.578	1.00	0.00
ATOM	496	CA	PRO	54	-21.842	-2.875	1.616	1.00	0.00
ATOM	497	C	PRO	54	-23.208	-2.561	1.052	1.00	0.00
ATOM	498	0	PRO	54	-23.631	-3.296	0.137	1.00	0.00
ATOM	499	CB	PRO	54	-21.835	-3.278	3.075	1.00	0.00
ATOM	500	CG	PRO	54	-20.381	-3.260	3.390	1.00	0.00
ATOM	501	CD	PRO	54	-20.069	-1.938	2.774	1.00	0.00
ATOM	502	N	LYS	55	-23.725	-1.451	1.545	1.00	0.00
ATOM	503	CA	LYS	55	-25.127	-1.063	1.221	1.00	0.00
ATOM	504	C	LYS	55	-25.533	-0.826	-0.262	1.00	0.00
ATOM	505	0	LYS	55	-26.562	-1.309	-0.641	1.00	0.00

ATOM	506	CB	LYS	55	-25.703	0.263	1.879	1.00	0.00
ATOM	507	CG	LYS	55	-26.499	-0.159	3.073	1.00	0.00
ATOM	508	CD	LYS	55	-26.630	1.076	3.974	1.00	0.00
ATOM	509	CE	LYS	55	-27.433	0.884	5.294	1.00	0.00
ATOM	510	NZ	LYS	55	-27.429	1.932	6.265	1.00	0.00
ATOM	511	HZ1	LYS	55	-27.493	2.872	5.781	1.00	0.00
ATOM	512	HZ2	LYS	55	-26.493	2.016	6.697	1.00	0.00
ATOM	513	HZ3	LYS	55	-28.170	1.869	7.057	1.00	0.00
ATOM	514	H	LYS	55	-23.141	-0.851	1.983	1.00	0.00
ATOM	515	N	VAL	56	-24.658	-0.157	-1.036	1.00	0.00
ATOM	516	CA	VAL	56	-24.850	0.075	-2.444	1.00	0.00
ATOM	517	C	VAL	56	-24.197	-1.032	-3.343	1.00	0.00
ATOM	518	0	VAL	56	-23.993	-0.711	-4.489	1.00	0.00
ATOM	519	CB	VAL	56	-24.317	1.473	-2.933	1.00	0.00
ATOM	520	CG1	VAL	56	-25.225	2.539	-2.497	1.00	0.00
ATOM	521	CG2	VAL	56	-22.870	1.684	-2.447	1.00	0.00
ATOM	522	H	VAL	56	-23.881	0.214	-0.584	1.00	0.00
ATOM	523	N	THR	57	-24.030	-2.316	-2.895	1.00	0.00
ATOM	524	CA	THR	57	-23.366	-3.358	-3.712	1.00	0.00
ATOM	525	C	THR	57	-24.046	-4.665	-3.325	1.00	0.00
ATOM	526	0	THR	57	-25.261	-4.863	-3.557	1.00	0.00
ATOM	527	CB	THR	57	-21.772	-3.502	-3.490	1.00	0.00
ATOM	528	OG1	THR	57	-21.209	-2.204	-3.408	1.00	0.00
ATOM	529	CG2	THR	57	-21.108	-4.447	-4.591	1.00	0.00
ATOM	530	HG1	THR	57	-21.446	-1.867	-2.533	1.00	0.00
ATOM	531	H	THR	57	-24.380	-2.520	-2.046	1.00	0.00
ATOM	532	N	VAL	58	-23.473	-5.587	-2.600	1.00	0.00
ATOM	533	CA	VAL	58	-24.124	-6.805	-2.292	1.00	0.00
ATOM	534	C	VAL	58	-24.224	-6.744	-0.789	1.00	0.00
ATOM	535	0	VAL	58	-23.171	-6.852	-0.125	1.00	0.00
ATOM	536	CB	VAL	58	-23.307	-8.036	-2.878	1.00	0.00
ATOM	537	CG1	VAL	58	-23.716	-8.130	-4.306	1.00	0.00
ATOM	538	CG2	VAL	58	-21.766	-7.878	-2.886	1.00	0.00
ATOM	539	H	VAL	58	-22.599	-5.380	-2.176	1.00	0.00
ATOM	540	N	THR	59	-25.410	-6.602	-0.229	1.00	0.00
ATOM	541	CA	THR	59	-25.563	-6.378	1.219	1.00	0.00
ATOM	542	C	THR	59	-25.407	-7.653	2.049	1.00	0.00
ATOM	543	\bigcirc	THR	59	-26.314	-8.144	2.689	1.00	0.00
ATOM	544	CB	THR	59	-26.951	-5.660	1.359	1.00	0.00
ATOM	545	OG1	THR	59	-27.558	-5.477	0.020	1.00	0.00
ATOM	546	CG2	THR	59	-26.781	-4.325	2.071	1.00	0.00
ATOM	547	HG1	THR	59	-27.168	-4.663	-0.351	1.00	0.00
ATOM	548	H	THR	59	-26.236	-6.613	-0.659	1.00	0.00
ATOM	549	N	PHE	60	-24.221	-8.278	2.025	1.00	0.00
ATOM	550	CA	PHE	60	-24.077	-9.527	2.747	1.00	0.00
ATOM	551	C	PHE	60	-22.810	-9.431	3.611	1.00	0.00
ATOM	552	0	PHE	60	-22.490	-10.369	4.272	1.00	0.00
ATOM	553	CB	PHE	60	-23.950	-10.651	1.819	1.00	0.00
ATOM	554	CG	PHE	60	-25.259	-11.058	1.117	1.00	0.00
ATOM	555	CD1	PHE	60	-25.496	-10.779	-0.251	1.00	0.00
ATOM	556	CD2	PHE	60	-26.206	-11.687	1.880	1.00	0.00
ATOM	557	CE1	PHE	60	-26.780	-11.114	-0.782	1.00	0.00
ATOM	558	CE2	PHE	60	-27.444	-12.018	1.282	1.00	0.00
ATOM	559	CZ	PHE	60	-27.757	-11.750	-0.007	1.00	0.00
ATOM	560	H	PHE	60	-23.409	-7.853	1.641	1.00	0.00
ATOM	561	N	TYR	61	-22.177	-8.272	3.841	1.00	0.00
ATOM	562	CA	TYR	61	-20.918	-8.055	4.564	1.00	0.00
ATOM	563	C	TYR	61	-21.184	-7.683	6.012	1.00	0.00
ATOM	564	0	TYR	61	-21.864	-6.711	6.263	1.00	0.00
ATOM	565	CB	TYR	61	-20.086	-6.991	3.957	1.00	0.00
ATOM	566	CG	TYR	61	-19.557	-7.312	2.573	1.00	0.00
ATOM	567	CD1	TYR	61	-20.392	-7.220	1.497	1.00	0.00
ATOM	568	CD2	TYR	61	-18.244	-7.731	2.461	1.00	0.00
ATOM	569	CE1	TYR	61	-19.882	-7.503	0.247	1.00	0.00
ATOM	570	CE2	TYR	61	-17.729	-8.028	1.226	1.00	0.00
ATOM	571	CZ	TYR	61	-18.569	-7.892	0.152	1.00	0.00

ATOM	572	OH	TYR	61	-18.130	-8.149	-1.069	1.00	0.00
ATOM	573	HH	TYR	61	-18.951	-8.220	-1.698	1.00	0.00
ATOM	574	H	TYR	61	-22.728	-7.489	3.723	1.00	0.00
ATOM	575	N	PRO	62	-20.872	-8.501	7.044	1.00	0.00
ATOM	576	CA	PRO	62	-20.531	-8.075	8.375	1.00	0.00
ATOM	577	C	PRO	62	-19.040	-7.848	8.520	1.00	0.00
ATOM	578	0	PRO	62	-18.284	-8.689	8.069	1.00	0.00
ATOM	579	CB	PRO	62	-21.120	-9.167	9.311	1.00	0.00
ATOM	580	CG	PRO	62	-21.971	-10.108	8.391	1.00	0.00
ATOM	581	CD	PRO	62	-21.283	-9.887	7.087	1.00	0.00
ATOM	582	N	TYR	63	-18.607	-6.763	9.167	1.00	0.00
ATOM	583	CA	TYR	63	-17.206	-6.557	9.371	1.00	0.00
ATOM	584	C	TYR	63	-16.943	-6.599	10.929	1.00	0.00
ATOM	585	0	TYR	63	-17.786	-6.278	11.783	1.00	0.00
ATOM	586	CB	TYR	63	-16.771	-5.198	8.852	1.00	0.00
ATOM	587	CG	TYR	63	-16.812	-4.876	7.275	1.00	0.00
ATOM	588	CD1	TYR	63	-16.556	-3.553	6.912	1.00	0.00
ATOM	589	CD2	TYR	63	-17.027	-5.853	6.370	1.00	0.00
ATOM	590	CE1	TYR	63	-16.502	-3.269	5.554	1.00	0.00
ATOM	591	CE2	TYR	63	-16.973	-5.613	5.030	1.00	0.00
ATOM	592	CZ	TYR	63	-16.712	-4.293	4.653	1.00	0.00
ATOM	593	OH	TYR	63	-16.746	-4.049	3.301	1.00	0.00
ATOM	594	HH	TYR	63	-16.360	-4.798	2.877	1.00	0.00
ATOM	595	H	TYR	63	-19.285	-6.109	9.440	1.00	0.00
ATOM	596	N	ASP	64	-15.687	-7.010	11.216	1.00	0.00
ATOM	597	CA	ASP	64	-15.250	-7.037	12.566	1.00	0.00
ATOM	598	C	ASP	64	-13.764	-7.011	12.564	1.00	0.00
ATOM	599	0	ASP	64	-13.091	-7.685	11.759	1.00	0.00
ATOM	600	CB	ASP	64	-15.674	-8.296	13.336	1.00	0.00
ATOM	601	CG	ASP	64	-14.948	-8.617	14.664	1.00	0.00
ATOM	602	OD1	ASP	64	-14.695	-9.810	14.965	1.00	0.00
ATOM	603	OD2	ASP	64	-14.787	-7.754	15.538	1.00	0.00
ATOM	604	H	ASP	64	-15.082	-7.287	10.500	1.00	0.00
ATOM	605	N	VAL	65	-13.096	-6.066	13.283	1.00	0.00
ATOM	606	CA	VAL	65	-11.704	-5.866	13.509	1.00	0.00
ATOM	607	C	VAL	65	-11.369	-4.902	14.632	1.00	0.00
ATOM	608	0	VAL	65	-12.108	-3.959	14.851	1.00	0.00
ATOM	609	CB	VAL	65	-10.979	-5.325	12.288	1.00	0.00
ATOM	610	CG1	VAL	65	-10.265	-6.536	11.759	1.00	0.00
ATOM	611	CG2	VAL	65	-11.875	-4.503	11.315	1.00	0.00
ATOM	612	H	VAL	65	-13.696	-5.487	13.848	1.00	0.00
ATOM	613	N	THR	66	-10.262	-5.277	15.304	1.00	0.00
ATOM	614	CA	THR	66	-9.554	-4.580	16.360	1.00	0.00
ATOM	615	C	THR	66	-10.190	-4.386	17.719	1.00	0.00
ATOM	616	0	THR	66	-11.383	-4.335	17.937	1.00	0.00
ATOM	617	CB	THR	66	-9.099	-3.189	15.806	1.00	0.00
ATOM	618	OG1	THR	66	-8.682	-3.305	14.436	1.00	0.00
ATOM	619	CG2	THR	66	-8.057	-2.659	16.692	1.00	0.00
ATOM	620	HG1	THR	66	-8.783	-2.509	13.937	1.00	0.00
ATOM	621	H	THR	66	-9.809	-6.083	15.004	1.00	0.00
ATOM	622	N	VAL	67	-9.291	-4.536	18.733	1.00	0.00
ATOM	623	CA	VAL	67	-9.604	-4.362	20.179	1.00	0.00
ATOM	624	C	VAL	67	-8.844	-3.015	20.444	1.00	0.00
ATOM	625	0	VAL	67	-7.721	-2.965	20.069	1.00	0.00
ATOM	626	CB	VAL	67	-8.958	-5.495	21.054	1.00	0.00
ATOM	627	CG1	VAL	67	-8.847	-5.327	22.546	1.00	0.00
ATOM	628	CG2	VAL	67	-9.962	-6.582	21.059	1.00	0.00
ATOM	629	H	VAL	67	-8.349	-4.656	18.536	1.00	0.00
ATOM	630	N	PRO	68	-9.470	-1.966	20.915	1.00	0.00
ATOM	631	CA	PRO	68	-8.845	-0.592	21.032	1.00	0.00
ATOM	632	C	PRO	68	-7.437	-0.731	21.568	1.00	0.00
ATOM	633	0	PRO	68	-6.597	-0.017	21.013	1.00	0.00
ATOM	634	CB	PRO	68	-9.836	0.136	21.929	1.00	0.00
ATOM	635	CG	PRO	68	-10.539	-1.029	22.636	1.00	0.00
ATOM	636	CD	PRO	68	-10.845	-1.982	21.498	1.00	0.00
ATOM	637	N	ILE	69	-6.999	-1.498	22.613	1.00	0.00

ATOM	638	CA	ILE	69	-5.591	-1.657	22.953	1.00	0.00
ATOM	639	C	ILE	69	-4.951	-2.630	21.984	1.00	0.00
ATOM	640	0	ILE	69	-4.535	-3.787	22.226	1.00	0.00
ATOM	641	CB	ILE	69	-5.373	-2.100	24.508	1.00	0.00
ATOM	642	CG1	ILE	69	-5.961	-3.518	24.840	1.00	0.00
ATOM	643	CG2	ILE	69	-6.186	-1.213	25.467	1.00	0.00
ATOM	644	CD1	ILE	69	-5.058	-4.701	25.094	1.00	0.00
ATOM	645	H	ILE	69	-7.653	-1.795	23.222	1.00	0.00
ATOM	646	N	ALA	70	-4.729	-2.186	20.757	1.00	0.00
ATOM	647	CA	ALA	70	-4.273	-2.932	19.628	1.00	0.00
ATOM	648	C	ALA	70	-2.892	-3.516	19.707	1.00	0.00
ATOM	649	0	ALA	70	-1.953	-2.808	19.363	1.00	0.00
ATOM	650	CB	ALA	70	-4.450	-2.059	18.322	1.00	0.00
ATOM	651	H	ALA	70	-4.875	-1.245	20.620	1.00	0.00
ATOM	652	N	ILE	71	-2.839	-4.780	20.145	1.00	0.00
ATOM	653	CA	ILE	71	-1.568	-5.518	20.170	1.00	0.00
ATOM	654	C	ILE	71	-1.772	-6.533	19.100	1.00	0.00
ATOM	655	0	ILE	71	-2.786	-7.194	18.990	1.00	0.00
ATOM	656	CB	ILE	71	-1.489	-6.097	21.600	1.00	0.00
ATOM	657	CG1	ILE	71	-1.066	-4.988	22.452	1.00	0.00
ATOM	658	CG2	ILE	71	-0.527	-7.275	21.763	1.00	0.00
ATOM	659	CD1	ILE	71	-1.371	-5.401	23.938	1.00	0.00
ATOM	660	H	ILE	71	-3.684	-5.272	20.358	1.00	0.00
ATOM	661	N	THR	72	-0.736	-6.644	18.295	1.00	0.00
ATOM	662	CA	THR	72	-0.590	-7.675	17.210	1.00	0.00
ATOM	663	C	THR	72	-1.488	-8.959	17.236	1.00	0.00
ATOM	664	\bigcirc	THR	72	-2.382	-9.081	16.388	1.00	0.00
ATOM	665	CB	THR	72	0.860	-8.144	17.137	1.00	0.00
ATOM	666	OG1	THR	72	1.712	-6.987	17.061	1.00	0.00
ATOM	667	CG2	THR	72	1.056	-9.132	16.051	1.00	0.00
ATOM	668	HG1	THR	72	2.169	-6.960	16.208	1.00	0.00
ATOM	669	H	THR	72	-0.102	-5.961	18.254	1.00	0.00
ATOM	670	N	THR	73	-1.273	-9.763	18.267	1.00	0.00
ATOM	671	CA	THR	73	-2.107	-10.925	18.554	1.00	0.00
ATOM	672	C	THR	73	-3.607	-10.821	18.377	1.00	0.00
ATOM	673	0	THR	73	-4.126	-11.493	17.615	1.00	0.00
ATOM	674	CB	THR	73	-1.800	-11.338	20.011	1.00	0.00
ATOM	675	OG1	THR	73	-0.388	-11.143	20.314	1.00	0.00
ATOM	676	CG2	THR	73	-2.207	-12.808	20.198	1.00	0.00
ATOM	677	HG1	THR	73	-0.067	-11.816	20.921	1.00	0.00
ATOM	678	H	THR	73	-0.560	-9.453	18.929	1.00	0.00
ATOM	679	N	LYS	74	-4.295	-9.784	18.909	1.00	0.00
ATOM	680	CA	LYS	74	-5.756	-9.541	18.750	1.00	0.00
ATOM	681	C	LYS	74	-6.182	-9.255	17.304	1.00	0.00
ATOM	682	0	LYS	74	-7.273	-9.573	16.855	1.00	0.00
ATOM	683	CB	LYS	74	-6.215	-8.322	19.579	1.00	0.00
ATOM	684	CG	LYS	74	-5.857	-8.482	21.105	1.00	0.00
ATOM	685	CD	LYS	74	-6.944	-9.428	21.655	1.00	0.00
ATOM	686	CE	LYS	74	-6.656	-10.143	22.970	1.00	0.00
ATOM	687	NZ	LYS	74	-6.368	-9.074	23.932	1.00	0.00
ATOM	688	HZ1	LYS	74	-7.183	-8.374	24.114	1.00	0.00
ATOM	689	Hz2	LYS	74	-5.478	-8.510	23.588	1.00	0.00
ATOM	690	H23	LYS	74	-6.074	-9.656	24.740	1.00	0.00
ATOM	691	H	LYS	74	-3.630	-9.220	19.385	1.00	0.00
ATOM	692	N	LEU	75	-5.241	-8.767	16.604	1.00	0.00
ATOM	693	$C A$	LEU	75	-5.497	-8.312	15.261	1.00	0.00
ATOM	694	C	LEU	75	-5.361	-9.455	14.322	1.00	0.00
ATOM	695	0	LEU	75	-6.235	-9.792	13.496	1.00	0.00
ATOM	696	CB	LEU	75	-4.505	-7.222	14.947	1.00	0.00
ATOM	697	CG	LEU	75	-4.604	-5.804	15.637	1.00	0.00
ATOM	698	CD1	LEU	75	-3.357	-4.907	15.217	1.00	0.00
ATOM	699	CD2	LEU	75	-5.896	-5.081	15.219	1.00	0.00
ATOM	700	H	LEU	75	-4.408	-8.531	17.059	1.00	0.00
ATOM	701	N	LEU	76	-4.321	-10.223	14.592	1.00	0.00
ATOM	702	CA	LEU	76	-3.868	-11.408	13.781	1.00	0.00
ATOM	703	C	LEU	76	-5.016	-12.411	13.798	1.00	0.00

ATOM	704	0	LEU	76	-5.388	-13.042	12.784	1.00	0.00
ATOM	705	CB	LEU	76	-2.665	-12.067	14.403	1.00	0.00
ATOM	706	CG	LEU	76	-1.254	-11.561	14.477	1.00	0.00
ATOM	707	CD1	LEU	76	-0.323	-12.722	14.796	1.00	0.00
ATOM	708	CD2	LEU	76	-0.884	-10.936	13.123	1.00	0.00
ATOM	709	H	LEU	76	-3.804	-9.914	15.319	1.00	0.00
ATOM	710	N	LYS	77	-5.542	-12.570	15.003	1.00	0.00
ATOM	711	CA	LYS	77	-6.663	-13.516	15.223	1.00	0.00
ATOM	712	C	LYS	77	-8.000	-13.233	14.470	1.00	0.00
ATOM	713	0	LYS	77	-8.605	-14.200	13.976	1.00	0.00
ATOM	714	CB	LYS	77	-7.041	-13.466	16.702	1.00	0.00
ATOM	715	CG	LYS	77	-5.999	-13.901	17.634	1.00	0.00
ATOM	716	CD	LYS	77	-5.457	-15.328	17.625	1.00	0.00
ATOM	717	CE	LYS	77	-5.734	-15.875	18.938	1.00	0.00
ATOM	718	NZ	LYS	77	-7.175	-15.974	19.171	1.00	0.00
ATOM	719	HZ1	LYS	77	-7.533	-16.668	18.485	1.00	0.00
ATOM	720	HZ2	LYS	77	-7.673	-15.094	19.053	1.00	0.00
ATOM	721	HZ3	LYS	77	-7.308	-16.355	20.176	1.00	0.00
ATOM	722	H	LYS	77	-5.180	-12.045	15.741	1.00	0.00
ATOM	723	N	THR	78	-8.562	-12.046	14.329	1.00	0.00
ATOM	724	CA	THR	78	-9.896	-11.816	13.772	1.00	0.00
ATOM	725	C	THR	78	-9.842	-12.152	12.266	1.00	0.00
ATOM	726	0	THR	78	-10.546	-12.881	11.604	1.00	0.00
ATOM	727	CB	THR	78	-10.298	-10.330	13.974	1.00	0.00
ATOM	728	OG1	THR	78	-9.114	-9.586	13.606	1.00	0.00
ATOM	729	CG2	THR	78	-10.647	-9.978	15.381	1.00	0.00
ATOM	730	HG1	THR	78	-8.663	-9.329	14.420	1.00	0.00
ATOM	731	H	THR	78	-8.067	-11.214	14.430	1.00	0.00
ATOM	732	N	ILE	79	-8.843	-11.434	11.702	1.00	0.00
ATOM	733	CA	ILE	79	-8.534	-11.408	10.278	1.00	0.00
ATOM	734	C	ILE	79	-8.635	-12.833	9.730	1.00	0.00
ATOM	735	0	ILE	79	-9.614	-13.065	9.014	1.00	0.00
ATOM	736	CB	ILE	79	-7.151	-10.787	10.117	1.00	0.00
ATOM	737	CG1	ILE	79	-6.898	-9.428	10.603	1.00	0.00
ATOM	738	CG2	ILE	79	-7.210	-10.529	8.579	1.00	0.00
ATOM	739	CD1	ILE	79	-5.419	-8.986	10.502	1.00	0.00
ATOM	740	H	ILE	79	-8.230	-10.944	12.313	1.00	0.00
ATOM	741	N	PHE	80	-7.714	-13.713	10.002	1.00	0.00
ATOM	742	CA	PHE	80	-7.608	-15.036	9.501	1.00	0.00
ATOM	743	C	PHE	80	-8.713	-15.919	10.007	1.00	0.00
ATOM	744	\bigcirc	PHE	80	-9.455	-16.460	9.165	1.00	0.00
ATOM	745	CB	PHE	80	-6.273	-15.771	9.879	1.00	0.00
ATOM	746	CG	PHE	80	-5.325	-16.141	8.713	1.00	0.00
ATOM	747	CD1	PHE	80	-5.142	-17.463	8.295	1.00	0.00
ATOM	748	CD2	PHE	80	-4.674	-15.098	8.110	1.00	0.00
ATOM	749	CE1	PHE	80	-4.318	-17.788	7.274	1.00	0.00
ATOM	750	CE2	PHE	80	-3.839	-15.384	7.071	1.00	0.00
ATOM	751	Cz	PHE	80	-3.660	-16.732	6.672	1.00	0.00
ATOM	752	H	PHE	80	-7.064	-13.386	10.613	1.00	0.00
ATOM	753	N	ALA	81	-8.943	-16.114	11.308	1.00	0.00
ATOM	754	CA	ALA	81	-9.891	-17.129	11.839	1.00	0.00
ATOM	755	C	ALA	81	-11.371	-16.962	11.372	1.00	0.00
ATOM	756	0	ALA	81	-12.200	-17.874	11.551	1.00	0.00
ATOM	757	CB	ALA	81	-10.031	-17.145	13.441	1.00	0.00
ATOM	758	H	ALA	81	-8.373	-15.510	11.979	1.00	0.00
ATOM	759	N	GLN	82	-11.702	-15.800	10.756	1.00	0.00
ATOM	760	CA	GLN	82	-13.107	-15.606	10.383	1.00	0.00
ATOM	761	C	GLN	82	-13.365	-15.600	8.971	1.00	0.00
ATOM	762	0	GLN	82	-14.391	-15.360	8.412	1.00	0.00
ATOM	763	CB	GLN	82	-13.772	-14.938	11.519	1.00	0.00
ATOM	764	CG	GLN	82	-15.255	-15.029	11.699	1.00	0.00
ATOM	765	CD	GLN	82	-15.821	-16.459	11.996	1.00	0.00
ATOM	766	OE1	GLN	82	-16.961	-16.535	12.442	1.00	0.00
ATOM	767	NE2	GLN	82	-15.120	-17.624	11.901	1.00	0.00
ATOM	768	HE2	2GLN	82	-15.556	-18.503	12.097	1.00	0.00
ATOM	769	HE2	1GLN	82	-14.163	-17.575	11.653	1.00	0.00

ATOM	770	H	GLN	82	-11.259	-14.811	11.006	1.00	0.00
ATOM	771	N	LEU	83	-12.532	-16.549	8.364	1.00	0.00
ATOM	772	CA	LEU	83	-12.693	-16.960	6.986	1.00	0.00
ATOM	773	C	LEU	83	-12.398	-15.920	5.948	1.00	0.00
ATOM	774	0	LEU	83	-12.810	-16.063	4.775	1.00	0.00
ATOM	775	N	LYS	84	-11.717	-14.877	6.348	1.00	0.00
ATOM	776	CA	LYS	84	-11.265	-13.838	5.431	1.00	0.00
ATOM	777	C	LYS	84	-9.806	-14.208	5.081	1.00	0.00
ATOM	778	0	LYS	84	-9.083	-14.556	6.009	1.00	0.00
ATOM	779	N	THR	85	-9.452	-14.070	3.817	1.00	0.00
ATOM	780	CA	THR	85	-8.043	-14.332	3.466	1.00	0.00
ATOM	781	C	THR	85	-7.505	-13.029	2.876	1.00	0.00
ATOM	782	0	THR	85	-8.173	-12.519	1.974	1.00	0.00
ATOM	783	N	VAL	86	-6.334	-12.609	3.357	1.00	0.00
ATOM	784	CA	VAL	86	-5.823	-11.339	2.763	1.00	0.00
ATOM	785	C	VAL	86	-4.631	-11.646	1.899	1.00	0.00
ATOM	786	0	VAL	86	-3.855	-12.569	2.215	1.00	0.00
ATOM	787	N	ASP	87	-4.366	-11.062	1.099	1.00	0.00
ATOM	788	CA	ASP	87	-3.328	-11.309	0.104	1.00	0.00
ATOM	789	C	ASP	87	-2.488	-10.151	-0.058	1.00	0.00
ATOM	790	0	ASP	87	-2.242	-9.592	-0.496	1.00	0.00
ATOM	791	CB	ASP	87	-4.177	-12.027	-0.931	1.00	0.00
ATOM	792	CG	ASP	87	-3.335	-12.906	-1.905	1.00	0.00
ATOM	793	OD1	ASP	87	-2.565	-13.772	-1.437	1.00	0.00
ATOM	794	OD2	ASP	87	-3.484	-12.810	-3.119	1.00	0.00
ATOM	795	H	ASP	87	-4.768	-10.322	1.408	1.00	0.00
ATOM	796	N	VAL	88	-3.065	-8.993	0.233	1.00	0.00
ATOM	797	CA	VAL	88	-2.361	-7.787	-0.005	1.00	0.00
ATOM	798	C	VAL	88	-2.461	-6.971	1.278	1.00	0.00
ATOM	799	0	VAL	88	-3.564	-6.920	1.917	1.00	0.00
ATOM	800	CB	VAL	88	-2.934	-7.004	-1.306	1.00	0.00
ATOM	801	CG1	VAL	88	-4.343	-6.499	-1.042	1.00	0.00
ATOM	802	CG2	VAL	88	-2.085	-5.751	-1.586	1.00	0.00
ATOM	803	H	VAL	88	-3.878	-8.852	0.653	1.00	0.00
ATOM	804	N	LEU	89	-1.421	-6.364	1.741	1.00	0.00
ATOM	805	CA	LEU	89	-1.399	-5.575	3.028	1.00	0.00
ATOM	806	C	LEU	89	-1.164	-4.150	2.506	1.00	0.00
ATOM	807	\bigcirc	LEU	89	-0.239	-3.978	1.641	1.00	0.00
ATOM	808	CB	LEU	89	-0.154	-6.012	3.848	1.00	0.00
ATOM	809	CG	LEU	89	-0.313	-6.360	5.356	1.00	0.00
ATOM	810	CD1	LEU	89	1.001	-6.822	5.887	1.00	0.00
ATOM	811	CD2	LEU	89	-0.725	-5.136	6.155	1.00	0.00
ATOM	812	H	LEU	89	-0.642	-6.441	1.243	1.00	0.00
ATOM	813	N	ILE	90	-1.929	-3.188	2.893	1.00	0.00
ATOM	814	CA	ILE	90	-1.628	-1.829	2.446	1.00	0.00
ATOM	815	C	ILE	90	-1.027	-1.252	3.642	1.00	0.00
ATOM	816	0	ILE	90	-1.770	-0.754	4.519	1.00	0.00
ATOM	817	CB	ILE	90	-2.841	-0.856	2.140	1.00	0.00
ATOM	818	CG1	ILE	90	-3.394	-1.331	0.848	1.00	0.00
ATOM	819	CG2	ILE	90	-2.476	0.629	1.889	1.00	0.00
ATOM	820	CD1	ILE	90	-4.189	-2.720	0.766	1.00	0.00
ATOM	821	H	ILE	90	-2.653	-3.322	3.470	1.00	0.00
ATOM	822	N	ASN	91	0.339	-1.269	3.731	1.00	0.00
ATOM	823	CA	ASN	91	1.010	-0.546	4.820	1.00	0.00
ATOM	824	C	ASN	91	0.959	0.921	4.360	1.00	0.00
ATOM	825	0	ASN	91	1.780	1.430	3.579	1.00	0.00
ATOM	826	CB	ASN	91	2.544	-0.919	5.017	1.00	0.00
ATOM	827	CG	ASN	91	2.703	-2.332	5.523	1.00	0.00
ATOM	828	OD1	ASN	91	2.081	-2.748	6.504	1.00	0.00
ATOM	829	ND2	ASN	91	3.527	-3.123	4.904	1.00	0.00
ATOM	830	HD22	2ASN	91	3.630	-3.979	5.228	1.00	0.00
ATOM	831	HD21	1ASN	91	4.025	-2.758	4.149	1.00	0.00
ATOM	832	H	ASN	91	0.865	-1.781	3.053	1.00	0.00
ATOM	833	N	GLY	92	-0.068	1.573	4.793	1.00	0.00
ATOM	834	CA	GLY	92	-0.294	2.985	4.555	1.00	0.00
ATOM	835	C	GLY	92	-0.233	3.649	5.870	1.00	0.00

ATOM	836	0	GLY	92	-1.245	3.614	6.528	1.00	0.00
ATOM	837	H	GLY	92	-0.648	0.983	5.282	1.00	0.00
ATOM	838	N	ALA	93	0.913	4.066	6.442	1.00	0.00
ATOM	839	CA	ALA	93	0.909	4.751	7.681	1.00	0.00
ATOM	840	C	ALA	93	1.455	6.101	7.405	1.00	0.00
ATOM	841	0	ALA	93	2.112	6.346	6.407	1.00	0.00
ATOM	842	CB	ALA	93	1.855	4.176	8.762	1.00	0.00
ATOM	843	H	ALA	93	1.693	4.061	5.903	1.00	0.00
ATOM	844	N	GLY	94	0.971	7.102	8.140	1.00	0.00
ATOM	845	CA	GLY	94	1.411	8.456	8.051	1.00	0.00
ATOM	846	C	GLY	94	0.230	9.408	8.477	1.00	0.00
ATOM	847	0	GLY	94	-0.936	8.995	8.561	1.00	0.00
ATOM	848	H	GLY	94	0.307	6.853	8.835	1.00	0.00
ATOM	849	N	ILE	95	0.653	10.644	8.716	1.00	0.00
ATOM	850	CA	ILE	95	-0.247	11.715	9.266	1.00	0.00
ATOM	851	C	ILE	95	0.267	12.877	8.483	1.00	0.00
ATOM	852	0	ILE	95	0.661	12.727	7.291	1.00	0.00
ATOM	853	CB	ILE	95	-0.013	11.966	10.762	1.00	0.00
ATOM	854	CG1	ILE	95	0.227	10.721	11.575	1.00	0.00
ATOM	855	CG2	ILE	95	-1.227	12.662	11.215	1.00	0.00
ATOM	856	CD1	ILE	95	1.032	11.024	12.846	1.00	0.00
ATOM	857	H	ILE	95	1.528	10.935	8.416	1.00	0.00
ATOM	858	N	LEU	96	0.421	14.125	8.949	1.00	0.00
ATOM	859	CA	LEU	96	0.746	15.146	8.018	1.00	0.00
ATOM	860	C	LEU	96	2.017	15.928	8.224	1.00	0.00
ATOM	861	\bigcirc	LEU	96	2.361	16.192	9.355	1.00	0.00
ATOM	862	CB	LEU	96	-0.393	16.091	7.995	1.00	0.00
ATOM	863	CG	LEU	96	-1.604	15.467	7.381	1.00	0.00
ATOM	864	CD1	LEU	96	-2.828	16.136	7.982	1.00	0.00
ATOM	865	CD2	LEU	96	-1.430	15.418	5.851	1.00	0.00
ATOM	866	H	LEU	96	0.283	14.328	9.910	1.00	0.00
ATOM	867	N	ASP	97	2.622	16.249	7.058	1.00	0.00
ATOM	868	CA	ASP	97	3.805	17.083	7.072	1.00	0.00
ATOM	869	C	ASP	97	3.511	18.545	7.468	1.00	0.00
ATOM	870	0	ASP	97	3.831	19.532	6.827	1.00	0.00
ATOM	871	CB	ASP	97	4.398	16.975	5.648	1.00	0.00
ATOM	872	CG	ASP	97	5.834	16.509	5.515	1.00	0.00
ATOM	873	OD1	ASP	97	6.117	15.323	5.525	1.00	0.00
ATOM	874	OD2	ASP	97	6.653	17.366	5.354	1.00	0.00
ATOM	875	H	ASP	97	2.275	15.990	6.230	1.00	0.00
ATOM	876	N	ASP	98	2.856	18.786	8.609	1.00	0.00
ATOM	877	CA	ASP	98	2.345	20.070	9.033	1.00	0.00
ATOM	878	C	ASP	98	2.416	19.987	10.531	1.00	0.00
ATOM	879	0	ASP	98	1.480	19.608	11.330	1.00	0.00
ATOM	880	CB	ASP	98	0.947	20.241	8.567	1.00	0.00
ATOM	881	CG	ASP	98	0.646	21.326	7.541	1.00	0.00
ATOM	882	OD1	ASP	98	0.690	20.988	6.379	1.00	0.00
ATOM	883	OD2	ASP	98	0.350	22.433	7.949	1.00	0.00
ATOM	884	H	ASP	98	2.875	18.083	9.250	1.00	0.00
ATOM	885	N	HIS	99	3.653	20.255	10.940	1.00	0.00
ATOM	886	CA	HIS	99	4.024	20.353	12.321	1.00	0.00
ATOM	887	C	HIS	99	5.378	20.922	12.312	1.00	0.00
ATOM	888	0	HIS	99	6.092	20.694	11.387	1.00	0.00
ATOM	889	CB	HIS	99	4.094	18.987	13.006	1.00	0.00
ATOM	890	CG	HIS	99	2.898	18.138	13.362	1.00	0.00
ATOM	891	ND1	HIS	99	1.595	18.434	13.444	1.00	0.00
ATOM	892	CD2	HIS	99	3.014	16.803	13.655	1.00	0.00
ATOM	893	CE1	HIS	99	0.920	17.381	13.761	1.00	0.00
ATOM	894	NE2	HIS	99	1.777	16.421	13.865	1.00	0.00
ATOM	895	HE2	HIS	99	1.631	15.580	14.300	1.00	0.00
ATOM	896	HD1	HIS	99	1.203	19.278	13.217	1.00	0.00
ATOM	897	H	HIS	99	4.420	20.397	10.365	1.00	0.00
ATOM	898	N	GLN	100	5.722	21.684	13.310	1.00	0.00
ATOM	899	CA	GLN	100	7.111	22.160	13.195	1.00	0.00
ATOM	900	C	GLN	100	8.143	21.044	13.427	1.00	0.00
ATOM	901	0	GLN	100	8.100	20.435	14.491	1.00	0.00

ATOM	902	CB	GLN	100	7.293	23.326	14.133	1.00	0.00
ATOM	903	CG	GLN	100	6.898	23.104	15.570	1.00	0.00
ATOM	904	CD	GLN	100	6.681	24.322	16.435	1.00	0.00
ATOM	905	OE1	GLN	100	7.083	25.423	16.043	1.00	0.00
ATOM	906	NE2	GLN	100	6.057	24.231	17.600	1.00	0.00
ATOM	907	HE22	GLN	100	6.219	25.048	18.147	1.00	0.00
ATOM	908	HE21	GLN	100	5.600	23.426	17.990	1.00	0.00
ATOM	909	H	GLN	100	5.211	21.872	14.083	1.00	0.00
ATOM	910	N	ILE	101	8.936	20.716	12.378	1.00	0.00
ATOM	911	CA	ILE	101	10.093	19.855	12.313	1.00	0.00
ATOM	912	C	ILE	101	10.231	18.922	13.538	1.00	0.00
ATOM	913	0	ILE	101	10.167	17.715	13.310	1.00	0.00
ATOM	914	CB	ILE	101	11.372	20.651	12.233	1.00	0.00
ATOM	915	CG1	ILE	101	11.349	22.079	11.542	1.00	0.00
ATOM	916	CG2	ILE	101	12.272	19.729	11.436	1.00	0.00
ATOM	917	CD1	ILE	101	11.861	23.169	12.563	1.00	0.00
ATOM	918	H	ILE	101	8.595	21.045	11.536	1.00	0.00
ATOM	919	N	GLU	102	10.520	19.390	14.738	1.00	0.00
ATOM	920	CA	GLU	102	10.604	18.555	15.966	1.00	0.00
ATOM	921	C	GLU	102	9.360	17.743	16.268	1.00	0.00
ATOM	922	0	GLU	102	9.532	16.551	16.427	1.00	0.00
ATOM	923	CB	GLU	102	11.022	19.441	17.169	1.00	0.00
ATOM	924	CG	GLU	102	12.454	19.882	16.916	1.00	0.00
ATOM	925	CD	GLU	102	12.499	21.405	16.840	1.00	0.00
ATOM	926	OE1	GLU	102	12.601	22.112	17.866	1.00	0.00
ATOM	927	OE2	GLU	102	12.475	21.924	15.751	1.00	0.00
ATOM	928	H	GLU	102	10.798	20.343	14.778	1.00	0.00
ATOM	929	N	ARG	103	8.197	18.381	16.243	1.00	0.00
ATOM	930	CA	ARG	103	6.980	17.633	16.383	1.00	0.00
ATOM	931	C	ARG	103	6.952	16.434	15.400	1.00	0.00
ATOM	932	\bigcirc	ARG	103	6.772	15.253	15.767	1.00	0.00
ATOM	933	CB	ARG	103	5.813	18.586	16.178	1.00	0.00
ATOM	934	CG	ARG	103	5.600	19.330	17.530	1.00	0.00
ATOM	935	CD	ARG	103	4.307	20.148	17.390	1.00	0.00
ATOM	936	NE	ARG	103	4.443	21.193	16.375	1.00	0.00
ATOM	937	Cz	ARG	103	3.415	21.993	16.157	1.00	0.00
ATOM	938	NH1	ARG	103	3.560	23.026	15.319	1.00	0.00
ATOM	939	NH2	ARG	103	2.242	21.918	16.784	1.00	0.00
ATOM	940	HE	ARG	103	5.266	21.280	15.878	1.00	0.00
ATOM	941	HH12	2ARG	103	2.833	23.727	15.257	1.00	0.00
ATOM	942	HH11	1 ARG	103	4.362	23.058	14.757	1.00	0.00
ATOM	943	HH22	2RRG	103	1.655	22.696	16.553	1.00	0.00
ATOM	944	HH21	1ARG	103	2.121	21.214	17.553	1.00	0.00
ATOM	945	H	ARG	103	8.156	19.355	16.108	1.00	0.00
ATOM	946	N	THR	104	7.176	16.743	14.116	1.00	0.00
ATOM	947	CA	THR	104	7.068	15.772	12.992	1.00	0.00
ATOM	948	C	THR	104	8.088	14.601	13.213	1.00	0.00
ATOM	949	0	THR	104	7.749	13.420	13.082	1.00	0.00
ATOM	950	CB	THR	104	7.392	16.523	11.655	1.00	0.00
ATOM	951	OG1	THR	104	6.840	17.843	11.772	1.00	0.00
ATOM	952	CG2	THR	104	6.722	15.964	10.457	1.00	0.00
ATOM	953	HG1	THR	104	7.521	18.489	11.503	1.00	0.00
ATOM	954	H	THR	104	7.627	17.609	13.948	1.00	0.00
ATOM	955	N	ILE	105	9.343	14.914	13.569	1.00	0.00
ATOM	956	CA	ILE	105	10.402	13.936	13.865	1.00	0.00
ATOM	957	C	ILE	105	10.067	13.061	15.089	1.00	0.00
ATOM	958	0	ILE	105	10.219	11.863	15.076	1.00	0.00
ATOM	959	CB	ILE	105	11.727	14.707	14.116	1.00	0.00
ATOM	960	CG1	ILE	105	12.183	15.409	12.877	1.00	0.00
ATOM	961	CG2	ILE	105	12.830	13.743	14.531	1.00	0.00
ATOM	962	CD1	ILE	105	13.375	16.414	12.886	1.00	0.00
ATOM	963	H	ILE	105	9.530	15.860	13.589	1.00	0.00
ATOM	964	N	ALA	106	9.608	13.727	16.141	1.00	0.00
ATOM	965	CA	ALA	106	9.295	12.971	17.346	1.00	0.00
ATOM	966	C	ALA	106	8.177	11.944	17.128	1.00	0.00
ATOM	967	0	ALA	106	8.393	10.800	17.512	1.00	0.00

ATOM	968	CB	ALA	106	8.896	13.916	18.479	1.00	0.00
ATOM	969	H	ALA	106	9.658	14.685	16.138	1.00	0.00
ATOM	970	N	VAL	107	7.059	12.322	16.537	1.00	0.00
ATOM	971	CA	VAL	107	6.018	11.308	16.373	1.00	0.00
ATOM	972	C	VAL	107	6.301	10.474	15.147	1.00	0.00
ATOM	973	0	VAL	107	5.418	9.743	14.700	1.00	0.00
ATOM	974	CB	VAL	107	4.636	11.944	16.284	1.00	0.00
ATOM	975	CG1	VAL	107	4.255	12.383	17.680	1.00	0.00
ATOM	976	CG2	VAL	107	4.628	13.055	15.223	1.00	0.00
ATOM	977	H	VAL	107	6.990	13.257	16.247	1.00	0.00
ATOM	978	N	ASN	108	7.542	10.432	14.621	1.00	0.00
ATOM	979	CA	ASN	108	7.812	9.526	13.449	1.00	0.00
ATOM	980	C	ASN	108	7.661	8.048	13.777	1.00	0.00
ATOM	981	\bigcirc	ASN	108	7.648	7.247	12.847	1.00	0.00
ATOM	982	CB	ASN	108	9.164	9.740	12.883	1.00	0.00
ATOM	983	CG	ASN	108	9.182	9.658	11.358	1.00	0.00
ATOM	984	OD1	ASN	108	8.811	8.668	10.797	1.00	0.00
ATOM	985	ND2	ASN	108	9.664	10.643	10.672	1.00	0.00
ATOM	986	HD22	ASN	108	9.493	10.635	9.697	1.00	0.00
ATOM	987	HD21	1ASN	108	10.060	11.420	11.111	1.00	0.00
ATOM	988	H	ASN	108	8.333	10.900	14.981	1.00	0.00
ATOM	989	N	TYR	109	7.423	7.636	15.072	1.00	0.00
ATOM	990	CA	TYR	109	7.198	6.200	15.524	1.00	0.00
ATOM	991	C	TYR	109	6.052	5.621	14.711	1.00	0.00
ATOM	992	0	TYR	109	6.224	4.511	14.147	1.00	0.00
ATOM	993	CB	TYR	109	6.830	6.035	17.034	1.00	0.00
ATOM	994	CG	TYR	109	7.761	6.750	18.004	1.00	0.00
ATOM	995	CD1	TYR	109	9.156	6.712	17.989	1.00	0.00
ATOM	996	CD2	TYR	109	7.119	7.462	18.951	1.00	0.00
ATOM	997	CE1	TYR	109	9.796	7.484	18.950	1.00	0.00
ATOM	998	CE2	TYR	109	7.732	8.211	19.871	1.00	0.00
ATOM	999	CZ	TYR	109	9.087	8.229	19.855	1.00	0.00
ATOM	1000	OH	TYR	109	9.791	9.061	20.692	1.00	0.00
ATOM	1001	HH	TYR	109	10.723	9.062	20.525	1.00	0.00
ATOM	1002	H	TYR	109	7.292	8.398	15.685	1.00	0.00
ATOM	1003	N	THR	110	5.045	6.461	14.462	1.00	0.00
ATOM	1004	CA	THR	110	3.759	6.103	13.782	1.00	0.00
ATOM	1005	C	THR	110	4.064	5.641	12.351	1.00	0.00
ATOM	1006	\bigcirc	THR	110	3.357	4.787	11.771	1.00	0.00
ATOM	1007	CB	THR	110	2.880	7.350	13.828	1.00	0.00
ATOM	1008	OG1	THR	110	3.218	8.001	15.139	1.00	0.00
ATOM	1009	CG2	THR	110	1.470	7.031	13.785	1.00	0.00
ATOM	1010	HG1	THR	110	3.428	8.858	14.909	1.00	0.00
ATOM	1011	H	THR	110	5.022	7.339	14.974	1.00	0.00
ATOM	1012	N	GLY	111	5.148	6.126	11.798	1.00	0.00
ATOM	1013	CA	GLY	111	5.449	5.635	10.489	1.00	0.00
ATOM	1014	C	GLY	111	6.570	4.605	10.392	1.00	0.00
ATOM	1015	0	GLY	111	6.433	3.438	9.978	1.00	0.00
ATOM	1016	H	GLY	111	5.857	6.641	12.320	1.00	0.00
ATOM	1017	N	LEU	112	7.712	5.144	10.787	1.00	0.00
ATOM	1018	CA	LEU	112	8.992	4.387	10.875	1.00	0.00
ATOM	1019	C	LEU	112	9.017	3.005	11.473	1.00	0.00
ATOM	1020	0	LEU	112	8.955	1.978	10.776	1.00	0.00
ATOM	1021	CB	LEU	112	10.140	5.105	11.694	1.00	0.00
ATOM	1022	CG	LEU	112	10.904	6.325	11.139	1.00	0.00
ATOM	1023	CD1	LEU	112	11.784	6.844	12.215	1.00	0.00
ATOM	1024	CD2	LEU	112	11.627	6.024	9.804	1.00	0.00
ATOM	1025	H	LEU	112	7.761	6.146	10.991	1.00	0.00
ATOM	1026	N	VAL	113	9.057	2.880	12.787	1.00	0.00
ATOM	1027	CA	VAL	113	9.187	1.613	13.429	1.00	0.00
ATOM	1028	C	VAL	113	7.945	0.740	13.313	1.00	0.00
ATOM	1029	0	VAL	113	8.165	-0.417	13.120	1.00	0.00
ATOM	1030	CB	VAL	113	9.591	1.805	14.887	1.00	0.00
ATOM	1031	CG1	VAL	113	11.004	2.314	14.947	1.00	0.00
ATOM	1032	CG2	VAL	113	8.609	2.704	15.605	1.00	0.00
ATOM	1033	H	VAL	113	8.880	3.652	13.320	1.00	0.00

ATOM	1034	N	GLN	114	6.734	1.303	13.197	1.00	0.00
ATOM	1035	CA	GLN	114	5.507	0.525	13.107	1.00	0.00
ATOM	1036	C	GLN	114	5.448	-0.475	11.896	1.00	0.00
ATOM	1037	\bigcirc	GLN	114	5.320	-1.664	12.033	1.00	0.00
ATOM	1038	CB	GLN	114	4.332	1.455	13.072	1.00	0.00
ATOM	1039	CG	GLN	114	3.011	0.886	13.622	1.00	0.00
ATOM	1040	CD	GLN	114	1.848	1.070	12.718	1.00	0.00
ATOM	1041	OE1	GLN	114	0.958	0.244	12.631	1.00	0.00
ATOM	1042	NE2	GLN	114	1.778	2.082	11.816	1.00	0.00
ATOM	1043	HE22	GLN	114	1.209	1.969	11.110	1.00	0.00
ATOM	1044	HE21	1GLN	114	2.396	2.825	11.883	1.00	0.00
ATOM	1045	H	GLN	114	6.692	2.308	13.276	1.00	0.00
ATOM	1046	N	THR	115	5.655	0.060	10.720	1.00	0.00
ATOM	1047	CA	THR	115	5.587	-0.613	9.396	1.00	0.00
ATOM	1048	C	THR	115	6.707	-1.705	9.316	1.00	0.00
ATOM	1049	0	THR	115	6.444	-2.790	8.826	1.00	0.00
ATOM	1050	CB	THR	115	5.777	0.470	8.380	1.00	0.00
ATOM	1051	OG1	THR	115	4.685	1.414	8.606	1.00	0.00
ATOM	1052	CG2	THR	115	5.779	-0.092	6.900	1.00	0.00
ATOM	1053	HG1	THR	115	5.112	2.241	8.897	1.00	0.00
ATOM	1054	H	THR	115	5.782	1.060	10.663	1.00	0.00
ATOM	1055	N	THR	116	7.883	-1.459	9.794	1.00	0.00
ATOM	1056	CA	THR	116	8.962	-2.392	9.797	1.00	0.00
ATOM	1057	C	THR	116	8.612	-3.593	10.669	1.00	0.00
ATOM	1058	0	THR	116	8.901	-4.776	10.383	1.00	0.00
ATOM	1059	CB	THR	116	10.169	-1.642	10.338	1.00	0.00
ATOM	1060	OG1	THR	116	10.111	-0.344	9.745	1.00	0.00
ATOM	1061	CG2	THR	116	11.466	-2.373	10.141	1.00	0.00
ATOM	1062	HG1	THR	116	9.820	0.352	10.342	1.00	0.00
ATOM	1063	H	THR	116	8.097	-0.512	10.057	1.00	0.00
ATOM	1064	N	THR	117	7.924	-3.254	11.816	1.00	0.00
ATOM	1065	CA	THR	117	7.482	-4.232	12.777	1.00	0.00
ATOM	1066	C	THR	117	6.400	-5.083	12.050	1.00	0.00
ATOM	1067	0	THR	117	6.413	-6.323	12.212	1.00	0.00
ATOM	1068	CB	THR	117	6.992	-3.496	13.983	1.00	0.00
ATOM	1069	OG1	THR	117	8.145	-3.017	14.617	1.00	0.00
ATOM	1070	CG2	THR	117	6.179	-4.307	14.938	1.00	0.00
ATOM	1071	HG1	THR	117	8.493	-2.298	14.048	1.00	0.00
ATOM	1072	H	THR	117	7.559	-2.357	11.950	1.00	0.00
ATOM	1073	N	ALA	118	5.486	-4.556	11.229	1.00	0.00
ATOM	1074	CA	ALA	118	4.410	-5.367	10.692	1.00	0.00
ATOM	1075	C	ALA	118	4.897	-6.406	9.676	1.00	0.00
ATOM	1076	0	ALA	118	4.355	-7.521	9.504	1.00	0.00
ATOM	1077	CB	ALA	118	3.415	-4.480	10.002	1.00	0.00
ATOM	1078	H	ALA	118	5.645	-3.677	10.930	1.00	0.00
ATOM	1079	N	ILE	119	6.106	-6.258	9.054	1.00	0.00
ATOM	1080	CA	ILE	119	6.617	-7.178	7.993	1.00	0.00
ATOM	1081	C	ILE	119	6.921	-8.565	8.547	1.00	0.00
ATOM	1082	0	ILE	119	6.458	-9.582	8.003	1.00	0.00
ATOM	1083	CB	ILE	119	7.930	-6.635	7.339	1.00	0.00
ATOM	1084	CG1	ILE	119	7.742	-5.229	6.853	1.00	0.00
ATOM	1085	CG2	ILE	119	8.290	-7.509	6.074	1.00	0.00
ATOM	1086	CD1	ILE	119	6.488	-4.845	5.985	1.00	0.00
ATOM	1087	H	ILE	119	6.659	-5.447	9.226	1.00	0.00
ATOM	1088	N	LEU	120	7.385	-8.616	9.806	1.00	0.00
ATOM	1089	CA	LEU	120	7.672	-9.863	10.438	1.00	0.00
ATOM	1090	C	LEU	120	6.355	-10.450	10.911	1.00	0.00
ATOM	1091	0	LEU	120	6.080	-11.617	10.655	1.00	0.00
ATOM	1092	CB	LEU	120	8.704	-9.665	11.619	1.00	0.00
ATOM	1093	CG	LEU	120	9.920	-8.872	11.184	1.00	0.00
ATOM	1094	CD1	LEU	120	9.832	-7.435	11.850	1.00	0.00
ATOM	1095	CD2	LEU	120	11.158	-9.648	11.536	1.00	0.00
ATOM	1096	H	LEU	120	7.299	-7.766	10.297	1.00	0.00
ATOM	1097	N	ASP	121	5.480	-9.667	11.578	1.00	0.00
ATOM	1098	CA	ASP	121	4.352	-10.221	12.260	1.00	0.00
ATOM	1099	C	ASP	121	3.333	-10.903	11.404	1.00	0.00

ATOM	1100	0	ASP	121	2.579	-11.799	11.801	1.00	0.00
ATOM	1101	CB	ASP	121	3.751	-9.054	13.146	1.00	0.00
ATOM	1102	CG	ASP	121	4.662	-8.546	14.225	1.00	0.00
ATOM	1103	OD1	ASP	121	5.335	-9.279	14.918	1.00	0.00
ATOM	1104	OD2	ASP	121	4.738	-7.333	14.458	1.00	0.00
ATOM	1105	H	ASP	121	5.709	-8.663	11.527	1.00	0.00
ATOM	1106	N	PHE	122	3.382	-10.510	10.142	1.00	0.00
ATOM	1107	CA	PHE	122	2.544	-11.059	9.115	1.00	0.00
ATOM	1108	C	PHE	122	3.228	-12.209	8.306	1.00	0.00
ATOM	1109	0	PHE	122	2.582	-13.203	8.019	1.00	0.00
ATOM	1110	CB	PHE	122	2.133	-9.981	8.140	1.00	0.00
ATOM	1111	CG	PHE	122	0.963	-9.248	8.710	1.00	0.00
ATOM	1112	CD1	PHE	122	-0.292	-9.803	8.672	1.00	0.00
ATOM	1113	CD2	PHE	122	1.047	-8.029	9.272	1.00	0.00
ATOM	1114	CE1	PHE	122	-1.501	-9.208	9.123	1.00	0.00
ATOM	1115	CE2	PHE	122	-0.037	-7.343	9.766	1.00	0.00
ATOM	1116	CZ	PHE	122	-1.328	-7.915	9.688	1.00	0.00
ATOM	1117	H	PHE	122	4.044	-9.846	9.896	1.00	0.00
ATOM	1118	N	TRP	123	4.508	-11.973	7.967	1.00	0.00
ATOM	1119	CA	TRP	123	5.327	-12.913	7.183	1.00	0.00
ATOM	1120	C	TRP	123	5.051	-14.379	7.058	1.00	0.00
ATOM	1121	0	TRP	123	4.837	-14.863	5.934	1.00	0.00
ATOM	1122	CB	TRP	123	6.817	-12.738	7.636	1.00	0.00
ATOM	1123	CG	TRP	123	7.950	-13.411	6.864	1.00	0.00
ATOM	1124	CD1	TRP	123	8.402	-14.661	7.175	1.00	0.00
ATOM	1125	CD2	TRP	123	8.750	-12.885	5.865	1.00	0.00
ATOM	1126	NE1	TRP	123	9.425	-14.931	6.427	1.00	0.00
ATOM	1127	CE2	TRP	123	9.674	-13.917	5.598	1.00	0.00
ATOM	1128	CE3	TRP	123	8.778	-11.726	5.127	1.00	0.00
ATOM	1129	CZ2	TRP	123	10.630	-13.807	4.630	1.00	0.00
ATOM	1130	Cz3	TRP	123	9.718	-11.593	4.145	1.00	0.00
ATOM	1131	CH2	TRP	123	10.665	-12.620	3.879	1.00	0.00
ATOM	1132	HE1	TRP	123	9.923	-15.764	6.504	1.00	0.00
ATOM	1133	H	TRP	123	4.936	-11.066	8.332	1.00	0.00
ATOM	1134	N	ASP	124	4.940	-15.046	8.213	1.00	0.00
ATOM	1135	CA	ASP	124	4.766	-16.467	8.286	1.00	0.00
ATOM	1136	C	ASP	124	3.454	-16.890	7.637	1.00	0.00
ATOM	1137	\bigcirc	ASP	124	3.430	-17.864	6.850	1.00	0.00
ATOM	1138	CB	ASP	124	4.771	-16.986	9.725	1.00	0.00
ATOM	1139	CG	ASP	124	3.725	-16.396	10.705	1.00	0.00
ATOM	1140	OD1	ASP	124	3.393	-15.250	10.667	1.00	0.00
ATOM	1141	OD2	ASP	124	3.121	-17.104	11.532	1.00	0.00
ATOM	1142	H	ASP	124	5.036	-14.529	9.047	1.00	0.00
ATOM	1143	N	LYS	125	2.386	-16.144	7.767	1.00	0.00
ATOM	1144	CA	LYS	125	1.065	-16.372	7.181	1.00	0.00
ATOM	1145	C	LYS	125	1.000	-16.152	5.690	1.00	0.00
ATOM	1146	\bigcirc	LYS	125	0.279	-16.836	4.957	1.00	0.00
ATOM	1147	CB	LYS	125	0.082	-15.427	7.839	1.00	0.00
ATOM	1148	CG	LYS	125	-0.138	-15.868	9.328	1.00	0.00
ATOM	1149	CD	LYS	125	-0.914	-15.026	10.272	1.00	0.00
ATOM	1150	CE	LYS	125	-0.359	-15.470	11.646	1.00	0.00
ATOM	1151	NZ	LYS	125	-1.467	-15.470	12.534	1.00	0.00
ATOM	1152	HZ1	LYS	125	-2.179	-16.195	12.113	1.00	0.00
ATOM	1153	HZ2	LYS	125	-1.898	-14.524	12.656	1.00	0.00
ATOM	1154	HZ3	LYS	125	-1.091	-15.744	13.471	1.00	0.00
ATOM	1155	H	LYS	125	2.469	-15.254	8.204	1.00	0.00
ATOM	1156	N	ARG	126	1.845	-15.219	5.299	1.00	0.00
ATOM	1157	CA	ARG	126	1.873	-14.898	3.857	1.00	0.00
ATOM	1158	C	ARG	126	2.586	-15.953	3.049	1.00	0.00
ATOM	1159	0	ARG	126	2.261	-16.078	1.861	1.00	0.00
ATOM	1160	CB	ARG	126	2.563	-13.536	3.708	1.00	0.00
ATOM	1161	CG	ARG	126	2.361	-12.443	4.726	1.00	0.00
ATOM	1162	CD	ARG	126	0.944	-11.862	4.655	1.00	0.00
ATOM	1163	NE	ARG	126	0.842	-10.751	3.751	1.00	0.00
ATOM	1164	CZ	ARG	126	-0.249	-9.967	3.729	1.00	0.00
ATOM	1165	NH1	ARG	126	-0.311	-8.944	2.877	1.00	0.00

ATOM	1166	NH2	ARG	126	-1.311	-10.334	4.490	1.00	0.00
ATOM	1167	HE	ARG	126	1.695	-10.411	3.243	1.00	0.00
ATOM	1168	HH12	2ARG	126	-1.113	-8.367	2.915	1.00	0.00
ATOM	1169	HH11	1 ARG	126	0.352	-8.865	2.174	1.00	0.00
ATOM	1170	HH2	ARG	126	-2.110	-9.816	4.431	1.00	0.00
ATOM	1171	HH2	1ARG	126	-1.347	-11.223	5.020	1.00	0.00
ATOM	1172	H	ARG	126	2.482	-14.759	5.889	1.00	0.00
ATOM	1173	N	LYS	127	3.520	-16.661	3.605	1.00	0.00
ATOM	1174	CA	LYS	127	4.318	-17.625	2.924	1.00	0.00
ATOM	1175	C	LYS	127	3.696	-18.983	3.033	1.00	0.00
ATOM	1176	\bigcirc	LYS	127	3.738	-19.820	2.116	1.00	0.00
ATOM	1177	CB	LYS	127	5.652	-17.599	3.622	1.00	0.00
ATOM	1178	CG	LYS	127	6.783	-18.126	2.807	1.00	0.00
ATOM	1179	CD	LYS	127	8.161	-18.205	3.379	1.00	0.00
ATOM	1180	CE	LYS	127	8.293	-19.203	4.590	1.00	0.00
ATOM	1181	NZ	LYS	127	7.844	-20.573	4.270	1.00	0.00
ATOM	1182	HZ1	LYS	127	6.958	-20.608	3.752	1.00	0.00
ATOM	1183	Hz2	LYS	127	7.762	-21.079	5.155	1.00	0.00
ATOM	1184	HZ3	LYS	127	8.564	-21.026	3.721	1.00	0.00
ATOM	1185	H	LYS	127	3.647	-16.470	4.564	1.00	0.00
ATOM	1186	N	GLY	128	3.251	-19.360	4.260	1.00	0.00
ATOM	1187	CA	GLY	128	2.438	-20.518	4.413	1.00	0.00
ATOM	1188	C	GLY	128	1.154	-20.406	3.588	1.00	0.00
ATOM	1189	0	GLY	128	0.470	-21.432	3.375	1.00	0.00
ATOM	1190	H	GLY	128	3.610	-18.928	5.052	1.00	0.00
ATOM	1191	N	GLY	129	0.638	-19.262	3.227	1.00	0.00
ATOM	1192	CA	GLY	129	-0.505	-19.057	2.321	1.00	0.00
ATOM	1193	C	GLY	129	0.020	-18.366	1.020	1.00	0.00
ATOM	1194	0	GLY	129	-0.309	-17.184	0.888	1.00	0.00
ATOM	1195	H	GLY	129	0.957	-18.456	3.670	1.00	0.00
ATOM	1196	N	PRO	130	0.772	-19.048	0.156	1.00	0.00
ATOM	1197	CA	PRO	130	1.850	-18.568	-0.715	1.00	0.00
ATOM	1198	C	PRO	130	1.547	-17.399	-1.699	1.00	0.00
ATOM	1199	0	PRO	130	1.483	-17.472	-2.901	1.00	0.00
ATOM	1200	CB	PRO	130	2.310	-19.717	-1.491	1.00	0.00
ATOM	1201	CG	PRO	130	1.712	-20.873	-0.803	1.00	0.00
ATOM	1202	CD	PRO	130	0.361	-20.340	-0.291	1.00	0.00
ATOM	1203	N	GLY	131	1.276	-16.310	-1.047	1.00	0.00
ATOM	1204	CA	GLY	131	0.981	-15.037	-1.732	1.00	0.00
ATOM	1205	C	GLY	131	1.541	-13.987	-0.795	1.00	0.00
ATOM	1206	0	GLY	131	2.763	-13.961	-0.478	1.00	0.00
ATOM	1207	H	GLY	131	1.476	-16.295	-0.099	1.00	0.00
ATOM	1208	N	GLY	132	0.543	-13.329	-0.242	1.00	0.00
ATOM	1209	CA	GLY	132	0.705	-12.228	0.673	1.00	0.00
ATOM	1210	C	GLY	132	1.573	-11.076	0.205	1.00	0.00
ATOM	1211	0	GLY	132	2.680	-10.848	0.611	1.00	0.00
ATOM	1212	H	GLY	132	-0.267	-13.816	-0.390	1.00	0.00
ATOM	1213	N	ILE	133	0.995	-10.360	-0.736	1.00	0.00
ATOM	1214	CA	ILE	133	1.631	-9.210	-1.354	1.00	0.00
ATOM	1215	C	ILE	133	1.676	-8.125	-0.285	1.00	0.00
ATOM	1216	0	ILE	133	0.704	-7.594	0.229	1.00	0.00
ATOM	1217	CB	ILE	133	0.780	-8.742	-2.615	1.00	0.00
ATOM	1218	CG1	ILE	133	0.778	-9.674	-3.789	1.00	0.00
ATOM	1219	CG2	ILE	133	1.381	-7.441	-3.208	1.00	0.00
ATOM	1220	CD1	ILE	133	-0.124	-10.905	-3.719	1.00	0.00
ATOM	1221	H	ILE	133	0.022	-10.631	-0.891	1.00	0.00
ATOM	1222	N	ILE	134	2.813	-7.691	0.185	1.00	0.00
ATOM	1223	CA	ILE	134	2.932	-6.558	1.116	1.00	0.00
ATOM	1224	C	ILE	134	3.167	-5.237	0.332	1.00	0.00
ATOM	1225	0	ILE	134	4.192	-5.106	-0.287	1.00	0.00
ATOM	1226	CB	ILE	134	4.067	-6.691	2.186	1.00	0.00
ATOM	1227	CG1	ILE	134	3.933	-7.874	3.060	1.00	0.00
ATOM	1228	CG2	ILE	134	4.058	-5.395	2.977	1.00	0.00
ATOM	1229	CD1	ILE	134	4.942	-8.957	2.640	1.00	0.00
ATOM	1230	H	ILE	134	3.707	-8.013	-0.078	1.00	0.00
ATOM	1231	N	CYS	135	2.227	-4.291	0.377	1.00	0.00

ATOM	1232	CA	CYS	135	2.308	-3.151	-0.474	1.00	0.00
ATOM	1233	C	CYS	135	2.425	-1.861	0.356	1.00	0.00
ATOM	1234	0	CYS	135	1.568	-1.671	1.246	1.00	0.00
ATOM	1235	CB	CYS	135	1.093	-2.982	-1.371	1.00	0.00
ATOM	1236	SG	CYS	135	1.112	-3.940	-2.930	1.00	0.00
ATOM	1237	H	CYS	135	1.700	-4.245	1.118	1.00	0.00
ATOM	1238	N	ASN	136	3.432	-1.026	0.059	1.00	0.00
ATOM	1239	CA	ASN	136	3.765	0.174	0.858	1.00	0.00
ATOM	1240	C	ASN	136	3.510	1.369	0.024	1.00	0.00
ATOM	1241	0	ASN	136	3.864	1.511	-1.148	1.00	0.00
ATOM	1242	CB	ASN	136	5.180	0.209	1.268	1.00	0.00
ATOM	1243	CG	ASN	136	5.687	-1.070	1.908	1.00	0.00
ATOM	1244	OD1	ASN	136	5.441	-1.494	3.069	1.00	0.00
ATOM	1245	ND2	ASN	136	6.407	-1.794	1.089	1.00	0.00
ATOM	1246	HD22	2ASN	136	6.867	-2.575	1.395	1.00	0.00
ATOM	1247	HD2	1ASN	136	6.400	-1.485	0.140	1.00	0.00
ATOM	1248	H	ASN	136	3.899	-1.311	-0.690	1.00	0.00
ATOM	1249	N	ILE	137	3.038	2.481	0.606	1.00	0.00
ATOM	1250	CA	ILE	137	2.880	3.759	-0.120	1.00	0.00
ATOM	1251	C	ILE	137	4.216	4.516	-0.186	1.00	0.00
ATOM	1252	0	ILE	137	5.117	4.036	0.559	1.00	0.00
ATOM	1253	CB	ILE	137	1.703	4.542	0.659	1.00	0.00
ATOM	1254	CG1	ILE	137	1.130	5.674	-0.147	1.00	0.00
ATOM	1255	CG2	ILE	137	2.300	4.997	1.941	1.00	0.00
ATOM	1256	CD1	ILE	137	0.334	5.137	-1.331	1.00	0.00
ATOM	1257	H	ILE	137	2.864	2.417	1.582	1.00	0.00
ATOM	1258	N	GLY	138	4.499	5.538	-0.947	1.00	0.00
ATOM	1259	CA	GLY	138	5.749	6.217	-1.077	1.00	0.00
ATOM	1260	C	GLY	138	5.255	7.650	-1.355	1.00	0.00
ATOM	1261	0	GLY	138	4.030	7.929	-1.237	1.00	0.00
ATOM	1262	H	GLY	138	3.673	5.965	-1.384	1.00	0.00
ATOM	1263	N	SER	139	6.121	8.617	-1.479	1.00	0.00
ATOM	1264	CA	SER	139	5.736	9.927	-1.873	1.00	0.00
ATOM	1265	C	SER	139	6.970	10.721	-2.333	1.00	0.00
ATOM	1266	0	SER	139	8.046	10.632	-1.642	1.00	0.00
ATOM	1267	CB	SER	139	5.079	10.759	-0.752	1.00	0.00
ATOM	1268	OG	SER	139	4.258	10.236	0.262	1.00	0.00
ATOM	1269	HG	SER	139	3.590	9.698	-0.217	1.00	0.00
ATOM	1270	H	SER	139	7.068	8.448	-1.233	1.00	0.00
ATOM	1271	N	VAL	140	6.861	11.479	-3.451	1.00	0.00
ATOM	1272	CA	VAL	140	7.996	12.203	-4.050	1.00	0.00
ATOM	1273	C	VAL	140	9.124	12.730	-3.182	1.00	0.00
ATOM	1274	0	VAL	140	10.271	12.602	-3.576	1.00	0.00
ATOM	1275	CB	VAL	140	7.498	13.412	-4.877	1.00	0.00
ATOM	1276	CG1	VAL	140	6.757	12.944	-6.143	1.00	0.00
ATOM	1277	CG2	VAL	140	6.568	14.311	-4.037	1.00	0.00
ATOM	1278	H	VAL	140	5.983	11.499	-3.933	1.00	0.00
ATOM	1279	N	THR	141	8.796	13.342	-2.026	1.00	0.00
ATOM	1280	CA	THR	141	9.746	14.021	-1.125	1.00	0.00
ATOM	1281	C	THR	141	11.032	13.148	-0.901	1.00	0.00
ATOM	1282	0	THR	141	12.099	13.697	-1.050	1.00	0.00
ATOM	1283	CB	THR	141	9.077	14.194	0.243	1.00	0.00
ATOM	1284	OG1	THR	141	7.690	14.211	0.030	1.00	0.00
ATOM	1285	CG2	THR	141	9.531	15.457	0.993	1.00	0.00
ATOM	1286	HG1	THR	141	7.286	14.126	0.885	1.00	0.00
ATOM	1287	H	THR	141	7.861	13.375	-1.763	1.00	0.00
ATOM	1288	N	GLY	142	10.954	11.830	-0.737	1.00	0.00
ATOM	1289	CA	GLY	142	12.072	10.894	-0.515	1.00	0.00
ATOM	1290	C	GLY	142	12.978	10.647	-1.717	1.00	0.00
ATOM	1291	0	GLY	142	14.068	10.085	-1.553	1.00	0.00
ATOM	1292	H	GLY	142	10.050	11.432	-0.936	1.00	0.00
ATOM	1293	N	PHE	143	12.553	11.154	-2.834	1.00	0.00
ATOM	1294	CA	PHE	143	13.268	10.916	-4.099	1.00	0.00
ATOM	1295	C	PHE	143	14.097	12.130	-4.486	1.00	0.00
ATOM	1296	0	PHE	143	15.268	12.030	-4.862	1.00	0.00
ATOM	1297	CB	PHE	143	12.287	10.604	-5.203	1.00	0.00

ATOM	1298	CG	PHE	143	11.669	9.211	-5.246	1.00	0.00
ATOM	1299	CD1	PHE	143	12.137	8.377	-6.218	1.00	0.00
ATOM	1300	CD2	PHE	143	10.745	8.791	-4.343	1.00	0.00
ATOM	1301	CE1	PHE	143	11.669	7.110	-6.331	1.00	0.00
ATOM	1302	CE2	PHE	143	10.288	7.507	-4.488	1.00	0.00
ATOM	1303	Cz	PHE	143	10.730	6.634	-5.472	1.00	0.00
ATOM	1304	H	PHE	143	11.773	11.697	-2.921	1.00	0.00
ATOM	1305	N	ASN	144	13.439	13.319	-4.440	1.00	0.00
ATOM	1306	CA	ASN	144	14.101	14.549	-4.834	1.00	0.00
ATOM	1307	C	ASN	144	15.271	14.864	-3.944	1.00	0.00
ATOM	1308	0	ASN	144	15.159	14.821	-2.729	1.00	0.00
ATOM	1309	CB	ASN	144	13.164	15.771	-4.934	1.00	0.00
ATOM	1310	CG	ASN	144	13.782	16.863	-5.766	1.00	0.00
ATOM	1311	OD1	ASN	144	14.363	17.774	-5.200	1.00	0.00
ATOM	1312	ND2	ASN	144	13.667	16.797	-7.108	1.00	0.00
ATOM	1313	HD22	2ASN	144	14.066	17.517	-7.677	1.00	0.00
ATOM	1314	HD21	1ASN	144	13.179	16.041	-7.546	1.00	0.00
ATOM	1315	H	ASN	144	12.479	13.410	-4.183	1.00	0.00
ATOM	1316	N	ALA	145	16.402	15.174	-4.599	1.00	0.00
ATOM	1317	CA	ALA	145	17.621	15.484	-3.862	1.00	0.00
ATOM	1318	C	ALA	145	17.643	16.766	-3.066	1.00	0.00
ATOM	1319	0	ALA	145	18.086	16.700	-1.912	1.00	0.00
ATOM	1320	CB	ALA	145	18.773	15.509	-4.851	1.00	0.00
ATOM	1321	H	ALA	145	16.370	15.177	-5.554	1.00	0.00
ATOM	1322	N	ILE	146	17.155	17.879	-3.651	1.00	0.00
ATOM	1323	CA	ILE	146	17.037	19.118	-2.888	1.00	0.00
ATOM	1324	C	ILE	146	15.753	19.159	-2.084	1.00	0.00
ATOM	1325	\bigcirc	ILE	146	15.715	19.839	-1.070	1.00	0.00
ATOM	1326	CB	ILE	146	17.116	20.321	-3.852	1.00	0.00
ATOM	1327	CG1	ILE	146	18.366	20.191	-4.746	1.00	0.00
ATOM	1328	CG2	ILE	146	17.209	21.636	-3.059	1.00	0.00
ATOM	1329	CD1	ILE	146	18.167	21.001	-6.039	1.00	0.00
ATOM	1330	H	ILE	146	16.824	17.853	-4.597	1.00	0.00
ATOM	1331	N	TYR	147	14.687	18.435	-2.507	1.00	0.00
ATOM	1332	CA	TYR	147	13.434	18.405	-1.750	1.00	0.00
ATOM	1333	C	TYR	147	13.421	17.353	-0.657	1.00	0.00
ATOM	1334	0	TYR	147	12.409	17.168	-0.001	1.00	0.00
ATOM	1335	CB	TYR	147	12.315	18.179	-2.796	1.00	0.00
ATOM	1336	CG	TYR	147	10.904	18.015	-2.242	1.00	0.00
ATOM	1337	CD1	TYR	147	10.123	16.950	-2.694	1.00	0.00
ATOM	1338	CD2	TYR	147	10.385	18.918	-1.310	1.00	0.00
ATOM	1339	CE1	TYR	147	8.785	16.847	-2.300	1.00	0.00
ATOM	1340	CE2	TYR	147	9.051	18.805	-0.908	1.00	0.00
ATOM	1341	CZ	TYR	147	8.237	17.792	-1.431	1.00	0.00
ATOM	1342	OH	TYR	147	6.885	17.716	-1.095	1.00	0.00
ATOM	1343	HH	TYR	147	6.596	18.439	-0.548	1.00	0.00
ATOM	1344	H	TYR	147	14.740	17.865	-3.327	1.00	0.00
ATOM	1345	N	GLN	148	14.555	16.652	-0.443	1.00	0.00
ATOM	1346	CA	GLN	148	14.676	15.516	0.496	1.00	0.00
ATOM	1347	C	GLN	148	15.022	16.013	1.890	1.00	0.00
ATOM	1348	0	GLN	148	15.510	15.282	2.697	1.00	0.00
ATOM	1349	CB	GLN	148	15.861	14.645	-0.043	1.00	0.00
ATOM	1350	CG	GLN	148	15.839	13.189	0.436	1.00	0.00
ATOM	1351	CD	GLN	148	16.823	12.323	-0.364	1.00	0.00
ATOM	1352	OE1	GLN	148	17.985	12.168	0.007	1.00	0.00
ATOM	1353	NE2	GLN	148	16.423	11.657	-1.509	1.00	0.00
ATOM	1354	HE22	GLN	148	17.071	11.341	-2.141	1.00	0.00
ATOM	1355	HE21	1GLN	148	15.457	11.608	-1.588	1.00	0.00
ATOM	1356	H	GLN	148	15.408	16.723	-1.042	1.00	0.00
ATOM	1357	N	VAL	149	14.630	17.193	2.333	1.00	0.00
ATOM	1358	CA	VAL	149	15.070	17.747	3.641	1.00	0.00
ATOM	1359	C	VAL	149	14.271	17.032	4.811	1.00	0.00
ATOM	1360	0	VAL	149	13.079	16.806	4.699	1.00	0.00
ATOM	1361	CB	VAL	149	14.887	19.252	3.635	1.00	0.00
ATOM	1362	CG1	VAL	149	15.724	19.863	2.503	1.00	0.00
ATOM	1363	CG2	VAL	149	13.432	19.620	3.446	1.00	0.00

ATOM	1364	H	VAL	149	14.081	17.746	1.712	1.00	0.00
ATOM	1365	N	PRO	150	14.875	16.785	5.993	1.00	0.00
ATOM	1366	CA	PRO	150	14.670	15.556	6.737	1.00	0.00
ATOM	1367	C	PRO	150	13.164	15.248	7.022	1.00	0.00
ATOM	1368	\bigcirc	PRO	150	12.669	14.212	6.765	1.00	0.00
ATOM	1369	CB	PRO	150	15.487	15.752	8.012	1.00	0.00
ATOM	1370	CG	PRO	150	15.375	17.295	8.147	1.00	0.00
ATOM	1371	CD	PRO	150	15.598	17.814	6.765	1.00	0.00
ATOM	1372	N	VAL	151	12.513	16.231	7.703	1.00	0.00
ATOM	1373	CA	VAL	151	11.133	16.307	8.231	1.00	0.00
ATOM	1374	C	VAL	151	10.414	15.045	8.445	1.00	0.00
ATOM	1375	0	VAL	151	10.246	14.703	9.653	1.00	0.00
ATOM	1376	CB	VAL	151	10.121	17.213	7.411	1.00	0.00
ATOM	1377	CG1	VAL	151	10.643	18.630	7.669	1.00	0.00
ATOM	1378	CG2	VAL	151	10.183	17.086	5.916	1.00	0.00
ATOM	1379	H	VAL	151	13.050	17.060	7.766	1.00	0.00
ATOM	1380	N	TYR	152	9.986	14.381	7.396	1.00	0.00
ATOM	1381	CA	TYR	152	9.343	13.090	7.457	1.00	0.00
ATOM	1382	C	TYR	152	10.007	12.274	6.299	1.00	0.00
ATOM	1383	\bigcirc	TYR	152	9.932	11.052	6.298	1.00	0.00
ATOM	1384	CB	TYR	152	7.795	13.232	7.115	1.00	0.00
ATOM	1385	CG	TYR	152	6.898	12.297	7.846	1.00	0.00
ATOM	1386	CD1	TYR	152	6.907	12.364	9.258	1.00	0.00
ATOM	1387	CD2	TYR	152	6.065	11.446	7.178	1.00	0.00
ATOM	1388	CE1	TYR	152	5.972	11.550	9.967	1.00	0.00
ATOM	1389	CE2	TYR	152	5.235	10.626	7.812	1.00	0.00
ATOM	1390	Cz	TYR	152	5.201	10.692	9.173	1.00	0.00
ATOM	1391	OH	TYR	152	4.344	9.824	9.818	1.00	0.00
ATOM	1392	HH	TYR	152	4.726	9.771	10.676	1.00	0.00
ATOM	1393	H	TYR	152	10.147	14.876	6.523	1.00	0.00
ATOM	1394	N	SER	153	10.729	12.883	5.391	1.00	0.00
ATOM	1395	CA	SER	153	11.346	12.280	4.171	1.00	0.00
ATOM	1396	C	SER	153	12.000	10.940	4.283	1.00	0.00
ATOM	1397	0	SER	153	11.839	10.075	3.393	1.00	0.00
ATOM	1398	CB	SER	153	12.227	13.300	3.708	1.00	0.00
ATOM	1399	OG	SER	153	11.417	14.475	3.680	1.00	0.00
ATOM	1400	HG	SER	153	12.014	15.223	3.540	1.00	0.00
ATOM	1401	H	SER	153	10.904	13.816	5.565	1.00	0.00
ATOM	1402	N	GLY	154	12.691	10.710	5.376	1.00	0.00
ATOM	1403	CA	GLY	154	13.393	9.398	5.525	1.00	0.00
ATOM	1404	C	GLY	154	12.360	8.223	5.617	1.00	0.00
ATOM	1405	0	GLY	154	12.728	7.104	5.238	1.00	0.00
ATOM	1406	H	GLY	154	12.700	11.401	6.088	1.00	0.00
ATOM	1407	N	THR	155	11.159	8.458	6.155	1.00	0.00
ATOM	1408	CA	THR	155	10.100	7.455	6.239	1.00	0.00
ATOM	1409	C	THR	155	9.712	6.972	4.773	1.00	0.00
ATOM	1410	0	THR	155	9.603	5.752	4.544	1.00	0.00
ATOM	1411	CB	THR	155	8.808	8.057	6.899	1.00	0.00
ATOM	1412	OG1	THR	155	9.206	8.775	8.049	1.00	0.00
ATOM	1413	CG2	THR	155	7.782	6.945	7.133	1.00	0.00
ATOM	1414	HG1	THR	155	8.946	8.228	8.816	1.00	0.00
ATOM	1415	H	THR	155	11.025	9.295	6.531	1.00	0.00
ATOM	1416	N	LYS	156	9.630	7.955	3.906	1.00	0.00
ATOM	1417	CA	LYS	156	9.332	7.644	2.510	1.00	0.00
ATOM	1418	C	LYS	156	10.484	7.016	1.768	1.00	0.00
ATOM	1419	0	LYS	156	10.377	6.216	0.905	1.00	0.00
ATOM	1420	CB	LYS	156	8.841	8.957	1.826	1.00	0.00
ATOM	1421	CG	LYS	156	7.471	9.361	2.356	1.00	0.00
ATOM	1422	CD	LYS	156	7.427	10.865	2.071	1.00	0.00
ATOM	1423	CE	LYS	156	6.451	11.602	2.960	1.00	0.00
ATOM	1424	NZ	LYS	156	6.130	12.891	2.479	1.00	0.00
ATOM	1425	HZ1	LYS	156	5.950	13.436	3.311	1.00	0.00
ATOM	1426	HZ2	LYS	156	5.299	12.754	1.904	1.00	0.00
ATOM	1427	H23	LYS	156	6.998	13.270	1.948	1.00	0.00
ATOM	1428	H	LYS	156	9.619	8.914	4.210	1.00	0.00
ATOM	1429	N	ALA	157	11.683	7.361	2.223	1.00	0.00

ATOM	1430	CA	ALA	157	12.820	6.716	1.651	1.00	0.00
ATOM	1431	C	ALA	157	12.883	5.218	2.012	1.00	0.00
ATOM	1432	0	ALA	157	13.231	4.356	1.217	1.00	0.00
ATOM	1433	CB	ALA	157	14.017	7.394	2.066	1.00	0.00
ATOM	1434	H	ALA	157	11.718	8.225	2.810	1.00	0.00
ATOM	1435	N	ALA	158	12.602	4.907	3.264	1.00	0.00
ATOM	1436	CA	ALA	158	12.561	3.568	3.801	1.00	0.00
ATOM	1437	C	ALA	158	11.655	2.739	2.999	1.00	0.00
ATOM	1438	0	ALA	158	12.099	1.732	2.448	1.00	0.00
ATOM	1439	CB	ALA	158	12.007	3.724	5.205	1.00	0.00
ATOM	1440	H	ALA	158	12.378	5.589	3.885	1.00	0.00
ATOM	1441	N	VAL	159	10.428	3.277	2.846	1.00	0.00
ATOM	1442	CA	VAL	159	9.454	2.430	2.208	1.00	0.00
ATOM	1443	C	VAL	159	9.738	2.048	0.769	1.00	0.00
ATOM	1444	0	VAL	159	9.115	1.100	0.274	1.00	0.00
ATOM	1445	CB	VAL	159	7.905	2.998	2.271	1.00	0.00
ATOM	1446	CG1	VAL	159	7.402	3.158	3.700	1.00	0.00
ATOM	1447	CG2	VAL	159	7.848	4.342	1.612	1.00	0.00
ATOM	1448	H	VAL	159	10.181	4.242	3.031	1.00	0.00
ATOM	1449	N	VAL	160	10.741	2.717	0.127	1.00	0.00
ATOM	1450	CA	VAL	160	11.151	2.356	-1.241	1.00	0.00
ATOM	1451	C	VAL	160	12.132	1.176	-1.132	1.00	0.00
ATOM	1452	0	VAL	160	11.831	0.172	-1.695	1.00	0.00
ATOM	1453	CB	VAL	160	11.852	3.440	-2.059	1.00	0.00
ATOM	1454	CG1	VAL	160	11.778	3.191	-3.543	1.00	0.00
ATOM	1455	CG2	VAL	160	11.319	4.766	-1.715	1.00	0.00
ATOM	1456	H	VAL	160	11.308	3.366	0.627	1.00	0.00
ATOM	1457	N	ASN	161	13.148	1.454	-0.278	1.00	0.00
ATOM	1458	CA	ASN	161	14.310	0.598	-0.269	1.00	0.00
ATOM	1459	C	ASN	161	14.076	-0.796	0.320	1.00	0.00
ATOM	1460	0	ASN	161	14.757	-1.797	-0.053	1.00	0.00
ATOM	1461	CB	ASN	161	15.533	1.277	0.475	1.00	0.00
ATOM	1462	CG	ASN	161	16.104	2.386	-0.346	1.00	0.00
ATOM	1463	OD1	ASN	161	16.978	2.307	-1.204	1.00	0.00
ATOM	1464	ND2	ASN	161	15.723	3.602	-0.067	1.00	0.00
ATOM	1465	HD2	2ASN	161	16.170	4.135	-0.693	1.00	0.00
ATOM	1466	HD2	1ASN	161	15.101	3.792	0.697	1.00	0.00
ATOM	1467	H	ASN	161	13.005	2.047	0.484	1.00	0.00
ATOM	1468	N	PHE	162	13.331	-0.900	1.415	1.00	0.00
ATOM	1469	CA	PHE	162	13.048	-2.245	1.915	1.00	0.00
ATOM	1470	C	PHE	162	12.640	-3.325	0.993	1.00	0.00
ATOM	1471	0	PHE	162	12.961	-4.505	1.156	1.00	0.00
ATOM	1472	CB	PHE	162	12.096	-2.060	3.050	1.00	0.00
ATOM	1473	CG	PHE	162	12.880	-2.342	4.313	1.00	0.00
ATOM	1474	CD1	PHE	162	13.302	-3.631	4.613	1.00	0.00
ATOM	1475	CD2	PHE	162	13.262	-1.289	5.178	1.00	0.00
ATOM	1476	CE1	PHE	162	14.116	-3.847	5.754	1.00	0.00
ATOM	1477	CE2	PHE	162	14.027	-1.539	6.264	1.00	0.00
ATOM	1478	CZ	PHE	162	14.478	-2.793	6.578	1.00	0.00
ATOM	1479	H	PHE	162	12.939	-0.126	1.923	1.00	0.00
ATOM	1480	N	THR	163	11.890	-2.934	-0.055	1.00	0.00
ATOM	1481	CA	THR	163	11.346	-3.960	-0.961	1.00	0.00
ATOM	1482	C	THR	163	12.537	-4.637	-1.632	1.00	0.00
ATOM	1483	0	THR	163	12.724	-5.816	-1.436	1.00	0.00
ATOM	1484	CB	THR	163	10.388	-3.202	-1.954	1.00	0.00
ATOM	1485	OG1	THR	163	9.442	-2.656	-1.075	1.00	0.00
ATOM	1486	CG2	THR	163	9.773	-3.982	-3.118	1.00	0.00
ATOM	1487	HG1	THR	163	9.048	-1.863	-1.444	1.00	0.00
ATOM	1488	H	THR	163	11.505	-2.016	-0.067	1.00	0.00
ATOM	1489	N	SER	164	13.328	-3.897	-2.464	1.00	0.00
ATOM	1490	CA	SER	164	14.586	-4.366	-3.073	1.00	0.00
ATOM	1491	C	SER	164	15.495	-5.036	-1.987	1.00	0.00
ATOM	1492	0	SER	164	16.108	-6.014	-2.285	1.00	0.00
ATOM	1493	CB	SER	164	15.270	-3.066	-3.724	1.00	0.00
ATOM	1494	OG	SER	164	14.400	-2.404	-4.563	1.00	0.00
ATOM	1495	HG	SER	164	14.353	-2.905	-5.409	1.00	0.00

ATOM	1496	H	SER	164	13.131	-2.941	-2.592	1.00	0.00
ATOM	1497	N	SER	165	15.402	-4.552	-0.717	1.00	0.00
ATOM	1498	CA	SER	165	16.092	-5.207	0.330	1.00	0.00
ATOM	1499	C	SER	165	15.586	-6.593	0.782	1.00	0.00
ATOM	1500	\bigcirc	SER	165	16.336	-7.542	0.908	1.00	0.00
ATOM	1501	CB	SER	165	16.154	-4.285	1.506	1.00	0.00
ATOM	1502	OG	SER	165	16.859	-3.013	1.322	1.00	0.00
ATOM	1503	HG	SER	165	16.397	-2.497	0.670	1.00	0.00
ATOM	1504	H	SER	165	15.009	-3.650	-0.564	1.00	0.00
ATOM	1505	N	LEU	166	14.275	-6.828	0.803	1.00	0.00
ATOM	1506	$C A$	LEU	166	13.717	-8.099	1.247	1.00	0.00
ATOM	1507	C	LEU	166	13.733	-9.106	0.186	1.00	0.00
ATOM	1508	0	LEU	166	14.217	-10.229	0.260	1.00	0.00
ATOM	1509	CB	LEU	166	12.243	-7.823	1.796	1.00	0.00
ATOM	1510	CG	LEU	166	12.060	-7.075	3.114	1.00	0.00
ATOM	1511	CD1	LEU	166	10.593	-6.894	3.499	1.00	0.00
ATOM	1512	CD2	LEU	166	12.717	-7.894	4.219	1.00	0.00
ATOM	1513	H	LEU	166	13.647	-6.095	0.639	1.00	0.00
ATOM	1514	N	ALA	167	13.409	-8.630	-1.022	1.00	0.00
ATOM	1515	CA	ALA	167	13.179	-9.432	-2.232	1.00	0.00
ATOM	1516	C	ALA	167	14.235	-10.357	-2.725	1.00	0.00
ATOM	1517	0	ALA	167	13.972	-11.294	-3.475	1.00	0.00
ATOM	1518	CB	ALA	167	12.829	-8.408	-3.341	1.00	0.00
ATOM	1519	H	ALA	167	13.154	-7.647	-1.100	1.00	0.00
ATOM	1520	N	LYS	168	15.495	-10.101	-2.290	1.00	0.00
ATOM	1521	CA	LYS	168	16.639	-11.045	-2.510	1.00	0.00
ATOM	1522	C	LYS	168	16.385	-12.455	-1.965	1.00	0.00
ATOM	1523	\bigcirc	LYS	168	16.416	-13.405	-2.741	1.00	0.00
ATOM	1524	CB	LYS	168	17.973	-10.568	-1.930	1.00	0.00
ATOM	1525	CG	LYS	168	18.461	-9.461	-2.792	1.00	0.00
ATOM	1526	CD	LYS	168	19.835	-9.039	-2.291	1.00	0.00
ATOM	1527	CE	LYS	168	20.281	-7.730	-2.851	1.00	0.00
ATOM	1528	NZ	LYS	168	21.690	-7.581	-2.652	1.00	0.00
ATOM	1529	HZ1	LYS	168	22.107	-8.226	-3.371	1.00	0.00
ATOM	1530	HZ2	LYS	168	21.993	-7.954	-1.704	1.00	0.00
ATOM	1531	Hz3	LYS	168	22.046	-6.633	-2.791	1.00	0.00
ATOM	1532	H	LYS	168	15.670	-9.205	-1.851	1.00	0.00
ATOM	1533	N	LEU	169	16.271	-12.612	-0.678	1.00	0.00
ATOM	1534	CA	LEU	169	16.024	-13.898	-0.221	1.00	0.00
ATOM	1535	C	LEU	169	14.538	-14.115	-0.153	1.00	0.00
ATOM	1536	\bigcirc	LEU	169	14.092	-14.492	0.916	1.00	0.00
ATOM	1537	CB	LEU	169	16.780	-13.968	1.086	1.00	0.00
ATOM	1538	CG	LEU	169	18.251	-14.324	1.132	1.00	0.00
ATOM	1539	CD1	LEU	169	18.867	-13.916	2.515	1.00	0.00
ATOM	1540	CD2	LEU	169	18.372	-15.855	0.927	1.00	0.00
ATOM	1541	H	LEU	169	16.165	-11.853	-0.074	1.00	0.00
ATOM	1542	N	ALA	170	13.768	-13.913	-1.234	1.00	0.00
ATOM	1543	CA	ALA	170	12.324	-14.024	-1.167	1.00	0.00
ATOM	1544	C	ALA	170	11.832	-15.185	-2.001	1.00	0.00
ATOM	1545	0	ALA	170	12.140	-15.321	-3.188	1.00	0.00
ATOM	1546	CB	ALA	170	11.691	-12.779	-1.654	1.00	0.00
ATOM	1547	H	ALA	170	14.137	-13.630	-2.126	1.00	0.00
ATOM	1548	N	PRO	171	11.011	-16.109	-1.423	1.00	0.00
ATOM	1549	CA	PRO	171	10.376	-17.237	-2.082	1.00	0.00
ATOM	1550	C	PRO	171	9.398	-16.740	-3.202	1.00	0.00
ATOM	1551	\bigcirc	PRO	171	8.220	-16.750	-3.050	1.00	0.00
ATOM	1552	CB	PRO	171	9.624	-17.934	-0.992	1.00	0.00
ATOM	1553	CG	PRO	171	10.485	-17.703	0.182	1.00	0.00
ATOM	1554	CD	PRO	171	10.861	-16.221	-0.001	1.00	0.00
ATOM	1555	N	ILE	172	9.852	-16.263	-4.359	1.00	0.00
ATOM	1556	CA	ILE	172	9.015	-15.762	-5.462	1.00	0.00
ATOM	1557	C	ILE	172	8.089	-16.726	-6.156	1.00	0.00
ATOM	1558	0	ILE	172	7.810	-16.731	-7.368	1.00	0.00
ATOM	1559	CB	ILE	172	9.881	-15.100	-6.538	1.00	0.00
ATOM	1560	CG1	ILE	172	11.080	-15.928	-6.946	1.00	0.00
ATOM	1561	CG2	ILE	172	10.302	-13.734	-6.016	1.00	0.00

ATOM	1562	CD1	ILE	172	11.700	-15.559	-8.281	1.00	0.00
ATOM	1563	H	ILE	172	10.845	-16.121	-4.385	1.00	0.00
ATOM	1564	N	THR	173	7.453	-17.590	-5.415	1.00	0.00
ATOM	1565	CA	THR	173	6.359	-18.420	-5.791	1.00	0.00
ATOM	1566	C	THR	173	5.135	-17.562	-5.805	1.00	0.00
ATOM	1567	0	THR	173	4.270	-17.634	-6.682	1.00	0.00
ATOM	1568	CB	THR	173	6.292	-19.600	-4.779	1.00	0.00
ATOM	1569	OG1	THR	173	7.665	-20.138	-4.627	1.00	0.00
ATOM	1570	CG2	THR	173	5.444	-20.737	-5.339	1.00	0.00
ATOM	1571	HG1	THR	173	7.687	-20.720	-3.913	1.00	0.00
ATOM	1572	H	THR	173	7.829	-17.870	-4.576	1.00	0.00
ATOM	1573	N	GLY	174	4.958	-16.681	-4.875	1.00	0.00
ATOM	1574	CA	GLY	174	3.768	-15.821	-4.792	1.00	0.00
ATOM	1575	C	GLY	174	4.057	-14.609	-3.829	1.00	0.00
ATOM	1576	0	GLY	174	3.677	-13.454	-4.046	1.00	0.00
ATOM	1577	H	GLY	174	5.783	-16.498	-4.374	1.00	0.00
ATOM	1578	N	VAL	175	4.906	-14.908	-2.922	1.00	0.00
ATOM	1579	CA	VAL	175	5.464	-13.946	-1.963	1.00	0.00
ATOM	1580	C	VAL	175	6.097	-12.802	-2.827	1.00	0.00
ATOM	1581	\bigcirc	VAL	175	6.984	-13.140	-3.697	1.00	0.00
ATOM	1582	CB	VAL	175	6.614	-14.493	-1.078	1.00	0.00
ATOM	1583	CG1	VAL	175	7.072	-13.455	-0.056	1.00	0.00
ATOM	1584	CG2	VAL	175	6.165	-15.886	-0.405	1.00	0.00
ATOM	1585	H	VAL	175	5.137	-15.855	-2.839	1.00	0.00
ATOM	1586	N	THR	176	5.603	-11.584	-2.614	1.00	0.00
ATOM	1587	CA	THR	176	5.907	-10.395	-3.337	1.00	0.00
ATOM	1588	C	THR	176	5.594	-9.145	-2.484	1.00	0.00
ATOM	1589	0	THR	176	4.764	-9.195	-1.654	1.00	0.00
ATOM	1590	CB	THR	176	5.009	-10.360	-4.632	1.00	0.00
ATOM	1591	OG1	THR	176	5.416	-11.414	-5.441	1.00	0.00
ATOM	1592	CG2	THR	176	5.085	-9.069	-5.428	1.00	0.00
ATOM	1593	HG1	THR	176	4.918	-12.173	-5.059	1.00	0.00
ATOM	1594	H	THR	176	4.928	-11.583	-1.872	1.00	0.00
ATOM	1595	N	ALA	177	6.218	-7.940	-2.838	1.00	0.00
ATOM	1596	CA	ALA	177	6.006	-6.686	-2.125	1.00	0.00
ATOM	1597	C	ALA	177	6.044	-5.536	-3.164	1.00	0.00
ATOM	1598	0	ALA	177	6.606	-5.832	-4.182	1.00	0.00
ATOM	1599	CB	ALA	177	7.072	-6.366	-1.061	1.00	0.00
ATOM	1600	H	ALA	177	6.754	-7.908	-3.708	1.00	0.00
ATOM	1601	N	TYR	178	5.528	-4.357	-2.999	1.00	0.00
ATOM	1602	CA	TYR	178	5.578	-3.277	-3.988	1.00	0.00
ATOM	1603	C	TYR	178	5.360	-1.994	-3.248	1.00	0.00
ATOM	1604	\bigcirc	TYR	178	4.784	-1.969	-2.113	1.00	0.00
ATOM	1605	CB	TYR	178	4.534	-3.305	-5.029	1.00	0.00
ATOM	1606	CG	TYR	178	5.252	-3.343	-6.340	1.00	0.00
ATOM	1607	CD1	TYR	178	5.897	-2.230	-6.803	1.00	0.00
ATOM	1608	CD2	TYR	178	5.186	-4.494	-7.104	1.00	0.00
ATOM	1609	CE1	TYR	178	6.491	-2.135	-8.044	1.00	0.00
ATOM	1610	CE2	TYR	178	5.819	-4.387	-8.346	1.00	0.00
ATOM	1611	CZ	TYR	178	6.443	-3.261	-8.832	1.00	0.00
ATOM	1612	OH	TYR	178	7.079	-3.305	-10.040	1.00	0.00
ATOM	1613	HH	TYR	178	7.628	-2.505	-10.220	1.00	0.00
ATOM	1614	H	TYR	178	5.126	-4.162	-2.118	1.00	0.00
ATOM	1615	N	THR	179	5.935	-0.952	-3.875	1.00	0.00
ATOM	1616	CA	THR	179	5.656	0.436	-3.479	1.00	0.00
ATOM	1617	C	THR	179	4.925	1.240	-4.581	1.00	0.00
ATOM	1618	0	THR	179	5.332	1.197	-5.740	1.00	0.00
ATOM	1619	CB	THR	179	7.076	1.016	-3.071	1.00	0.00
ATOM	1620	OG1	THR	179	7.807	0.004	-2.379	1.00	0.00
ATOM	1621	CG2	THR	179	6.941	2.251	-2.203	1.00	0.00
ATOM	1622	HG1	THR	179	8.077	0.374	-1.460	1.00	0.00
ATOM	1623	H	THR	179	6.513	-1.096	-4.632	1.00	0.00
ATOM	1624	N	VAL	180	3.864	1.953	-4.190	1.00	0.00
ATOM	1625	CA	VAL	180	3.117	2.779	-5.198	1.00	0.00
ATOM	1626	C	VAL	180	3.712	4.179	-4.826	1.00	0.00
ATOM	1627	0	VAL	180	3.674	4.511	-3.601	1.00	0.00

ATOM	1628	CB	VAL	180	1.560	2.663	-4.827	1.00	0.00
ATOM	1629	CG1	VAL	180	0.749	3.025	-6.026	1.00	0.00
ATOM	1630	CG2	VAL	180	1.143	1.259	-4.366	1.00	0.00
ATOM	1631	H	VAL	180	3.798	2.167	-3.288	1.00	0.00
ATOM	1632	N	ASN	181	4.258	5.027	-5.710	1.00	0.00
ATOM	1633	CA	ASN	181	4.808	6.365	-5.258	1.00	0.00
ATOM	1634	C	ASN	181	3.769	7.477	-5.322	1.00	0.00
ATOM	1635	0	ASN	181	3.225	7.872	-4.285	1.00	0.00
ATOM	1636	CB	ASN	181	6.049	6.827	-6.054	1.00	0.00
ATOM	1637	CG	ASN	181	6.599	8.215	-5.584	1.00	0.00
ATOM	1638	OD1	ASN	181	7.199	8.391	-4.559	1.00	0.00
ATOM	1639	ND2	ASN	181	6.398	9.172	-6.462	1.00	0.00
ATOM	1640	HD22	2ASN	181	6.452	10.080	-6.065	1.00	0.00
ATOM	1641	HD21	1ASN	181	6.067	9.041	-7.409	1.00	0.00
ATOM	1642	H	ASN	181	4.107	4.808	-6.655	1.00	0.00
ATOM	1643	N	PRO	182	3.470	8.120	-6.479	1.00	0.00
ATOM	1644	CA	PRO	182	3.311	9.616	-6.619	1.00	0.00
ATOM	1645	C	PRO	182	3.104	10.586	-5.425	1.00	0.00
ATOM	1646	0	PRO	182	4.113	11.143	-4.934	1.00	0.00
ATOM	1647	CB	PRO	182	2.246	9.744	-7.695	1.00	0.00
ATOM	1648	CG	PRO	182	2.744	8.626	-8.656	1.00	0.00
ATOM	1649	CD	PRO	182	3.064	7.503	-7.712	1.00	0.00
ATOM	1650	N	GLY	183	1.896	10.643	-4.894	1.00	0.00
ATOM	1651	CA	GLY	183	1.661	11.491	-3.801	1.00	0.00
ATOM	1652	C	GLY	183	0.637	12.463	-4.331	1.00	0.00
ATOM	1653	0	GLY	183	-0.112	12.212	-5.255	1.00	0.00
ATOM	1654	H	GLY	183	1.085	10.196	-5.244	1.00	0.00
ATOM	1655	N	ILE	184	0.542	13.628	-3.649	1.00	0.00
ATOM	1656	CA	ILE	184	-0.455	14.636	-4.006	1.00	0.00
ATOM	1657	C	ILE	184	-1.884	14.132	-3.999	1.00	0.00
ATOM	1658	0	ILE	184	-2.507	14.082	-5.050	1.00	0.00
ATOM	1659	CB	ILE	184	-0.053	15.354	-5.314	1.00	0.00
ATOM	1660	CG1	ILE	184	1.414	15.825	-5.243	1.00	0.00
ATOM	1661	CG2	ILE	184	-0.970	16.567	-5.570	1.00	0.00
ATOM	1662	CD1	ILE	184	1.629	16.772	-4.045	1.00	0.00
ATOM	1663	H	ILE	184	1.147	13.833	-2.877	1.00	0.00
ATOM	1664	N	THR	185	-2.428	13.745	-2.825	1.00	0.00
ATOM	1665	CA	THR	185	-3.739	13.119	-2.822	1.00	0.00
ATOM	1666	C	THR	185	-4.933	14.068	-2.905	1.00	0.00
ATOM	1667	0	THR	185	-5.285	14.883	-2.029	1.00	0.00
ATOM	1668	CB	THR	185	-3.870	12.253	-1.538	1.00	0.00
ATOM	1669	OG1	THR	185	-2.589	11.706	-1.255	1.00	0.00
ATOM	1670	CG2	THR	185	-4.751	11.097	-1.812	1.00	0.00
ATOM	1671	HG1	THR	185	-2.748	11.087	-0.550	1.00	0.00
ATOM	1672	H	THR	185	-1.899	13.743	-1.994	1.00	0.00
ATOM	1673	N	ARG	186	-5.490	14.009	-4.116	1.00	0.00
ATOM	1674	CA	ARG	186	-6.692	14.767	-4.391	1.00	0.00
ATOM	1675	C	ARG	186	-7.842	13.986	-3.747	1.00	0.00
ATOM	1676	0	ARG	186	-8.188	12.910	-4.244	1.00	0.00
ATOM	1677	CB	ARG	186	-6.860	14.860	-5.865	1.00	0.00
ATOM	1678	CG	ARG	186	-6.240	16.034	-6.605	1.00	0.00
ATOM	1679	CD	ARG	186	-4.716	15.929	-6.617	1.00	0.00
ATOM	1680	NE	ARG	186	-3.969	17.159	-6.687	1.00	0.00
ATOM	1681	CZ	ARG	186	-3.617	17.764	-7.847	1.00	0.00
ATOM	1682	NH1	ARG	186	-2.957	18.970	-7.795	1.00	0.00
ATOM	1683	NH2	ARG	186	-3.712	17.168	-9.039	1.00	0.00
ATOM	1684	HE	ARG	186	-3.595	17.586	-5.886	1.00	0.00
ATOM	1685	HH12	2ARG	186	-2.584	19.292	-8.664	1.00	0.00
ATOM	1686	HH11	1ARG	186	-2.767	19.460	-6.880	1.00	0.00
ATOM	1687	HH22	2ARG	186	-3.503	17.726	-9.845	1.00	0.00
ATOM	1688	HH21	1ARG	186	-3.936	16.169	-9.143	1.00	0.00
ATOM	1689	H	ARG	186	-5.028	13.328	-4.726	1.00	0.00
ATOM	1690	N	THR	187	-8.453	14.535	-2.710	1.00	0.00
ATOM	1691	CA	THR	187	-9.637	13.988	-2.069	1.00	0.00
ATOM	1692	C	THR	187	-10.788	13.697	-3.102	1.00	0.00
ATOM	1693	0	THR	187	-11.029	14.507	-4.009	1.00	0.00

ATOM	1694	CB	THR	187	-9.995	15.076	-1.002	1.00	0.00
ATOM	1695	OG1	THR	187	-8.893	15.378	-0.176	1.00	0.00
ATOM	1696	CG2	THR	187	-11.145	14.589	-0.145	1.00	0.00
ATOM	1697	HG1	THR	187	-8.570	14.608	0.105	1.00	0.00
ATOM	1698	H	THR	187	-8.168	15.394	-2.335	1.00	0.00
ATOM	1699	N	THR	188	-11.304	12.472	-2.917	1.00	0.00
ATOM	1700	$C A$	THR	188	-12.422	11.918	-3.597	1.00	0.00
ATOM	1701	C	THR	188	-11.962	11.454	-4.985	1.00	0.00
ATOM	1702	0	THR	188	-12.283	10.344	-5.340	1.00	0.00
ATOM	1703	CB	THR	188	-13.639	12.913	-3.752	1.00	0.00
ATOM	1704	OG1	THR	188	-13.675	13.621	-2.492	1.00	0.00
ATOM	1705	CG2	THR	188	-15.016	12.259	-3.977	1.00	0.00
ATOM	1706	HG1	THR	188	-14.421	14.193	-2.474	1.00	0.00
ATOM	1707	H	THR	188	-11.054	11.969	-2.134	1.00	0.00
ATOM	1708	N	LEU	189	-11.228	12.270	-5.756	1.00	0.00
ATOM	1709	CA	LEU	189	-10.859	12.034	-7.113	1.00	0.00
ATOM	1710	C	LEU	189	-9.613	11.143	-7.244	1.00	0.00
ATOM	1711	0	LEU	189	-9.256	10.689	-8.373	1.00	0.00
ATOM	1712	CB	LEU	189	-10.684	13.479	-7.664	1.00	0.00
ATOM	1713	CG	LEU	189	-11.771	14.239	-8.398	1.00	0.00
ATOM	1714	CD1	LEU	189	-13.145	14.048	-7.878	1.00	0.00
ATOM	1715	CD2	LEU	189	-11.280	15.705	-8.359	1.00	0.00
ATOM	1716	H	LEU	189	-10.903	13.088	-5.343	1.00	0.00
ATOM	1717	N	VAL	190	-8.914	10.866	-6.182	1.00	0.00
ATOM	1718	CA	VAL	190	-7.744	9.998	-6.169	1.00	0.00
ATOM	1719	C	VAL	190	-8.089	8.663	-6.757	1.00	0.00
ATOM	1720	0	VAL	190	-7.122	7.969	-7.018	1.00	0.00
ATOM	1721	CB	VAL	190	-7.261	9.989	-4.662	1.00	0.00
ATOM	1722	CG1	VAL	190	-8.423	9.352	-3.817	1.00	0.00
ATOM	1723	CG2	VAL	190	-5.976	9.183	-4.492	1.00	0.00
ATOM	1724	H	VAL	190	-9.204	11.292	-5.357	1.00	0.00
ATOM	1725	N	HIS	191	-9.305	8.222	-7.093	1.00	0.00
ATOM	1726	CA	HIS	191	-9.526	7.012	-7.848	1.00	0.00
ATOM	1727	C	HIS	191	-8.610	6.854	-9.038	1.00	0.00
ATOM	1728	0	HIS	191	-7.999	5.798	-9.145	1.00	0.00
ATOM	1729	CB	HIS	191	-10.980	6.960	-8.287	1.00	0.00
ATOM	1730	CG	HIS	191	-11.977	6.731	-7.146	1.00	0.00
ATOM	1731	ND1	HIS	191	-12.004	5.684	-6.337	1.00	0.00
ATOM	1732	CD2	HIS	191	-12.933	7.587	-6.754	1.00	0.00
ATOM	1733	CE1	HIS	191	-12.976	5.900	-5.404	1.00	0.00
ATOM	1734	NE2	HIS	191	-13.540	7.082	-5.659	1.00	0.00
ATOM	1735	HE2	HIS	191	-14.310	7.533	-5.269	1.00	0.00
ATOM	1736	HD1	HIS	191	-11.350	4.937	-6.416	1.00	0.00
ATOM	1737	H	HIS	191	-10.053	8.757	-6.783	1.00	0.00
ATOM	1738	N	LYS	192	-8.285	7.990	-9.696	1.00	0.00
ATOM	1739	CA	LYS	192	-7.350	8.123	-10.790	1.00	0.00
ATOM	1740	C	LYS	192	-5.996	7.415	-10.456	1.00	0.00
ATOM	1741	0	LYS	192	-5.709	6.402	-11.087	1.00	0.00
ATOM	1742	CB	LYS	192	-7.209	9.589	-11.100	1.00	0.00
ATOM	1743	CG	LYS	192	-8.492	9.999	-11.844	1.00	0.00
ATOM	1744	CD	LYS	192	-8.685	11.537	-11.903	1.00	0.00
ATOM	1745	CE	LYS	192	-7.580	12.425	-12.540	1.00	0.00
ATOM	1746	NZ	LYS	192	-7.915	13.837	-12.577	1.00	0.00
ATOM	1747	HZ1	LYS	192	-8.912	13.925	-12.889	1.00	0.00
ATOM	1748	HZ2	LYS	192	-7.198	14.279	-13.190	1.00	0.00
ATOM	1749	HZ3	LYS	192	-7.784	14.248	-11.614	1.00	0.00
ATOM	1750	H	LYS	192	-8.665	8.789	-9.263	1.00	0.00
ATOM	1751	N	PHE	193	-5.392	7.732	-9.294	1.00	0.00
ATOM	1752	CA	PHE	193	-4.078	7.185	-9.053	1.00	0.00
ATOM	1753	C	PHE	193	-4.194	5.835	-8.347	1.00	0.00
ATOM	1754	0	PHE	193	-3.428	4.865	-8.591	1.00	0.00
ATOM	1755	CB	PHE	193	-3.183	8.038	-8.191	1.00	0.00
ATOM	1756	CG	PHE	193	-3.062	9.562	-8.467	1.00	0.00
ATOM	1757	CD1	PHE	193	-2.725	10.084	-9.676	1.00	0.00
ATOM	1758	CD2	PHE	193	-3.248	10.446	-7.419	1.00	0.00
ATOM	1759	CE1	PHE	193	-2.560	11.446	-9.815	1.00	0.00

ATOM	1760	CE2	PHE	193	-3.085	11.827	-7.566	1.00	0.00
ATOM	1761	CZ	PHE	193	-2.724	12.345	-8.783	1.00	0.00
ATOM	1762	H	PHE	193	-5.958	8.167	-8.688	1.00	0.00
ATOM	1763	N	ASN	194	-5.202	5.708	-7.541	1.00	0.00
ATOM	1764	CA	ASN	194	-5.401	4.508	-6.705	1.00	0.00
ATOM	1765	C	ASN	194	-5.861	3.270	-7.528	1.00	0.00
ATOM	1766	\bigcirc	ASN	194	-5.787	2.114	-7.119	1.00	0.00
ATOM	1767	CB	ASN	194	-6.427	4.873	-5.573	1.00	0.00
ATOM	1768	CG	ASN	194	-5.835	5.546	-4.390	1.00	0.00
ATOM	1769	OD1	ASN	194	-4.777	6.184	-4.414	1.00	0.00
ATOM	1770	ND2	ASN	194	-6.374	5.275	-3.258	1.00	0.00
ATOM	1771	HD22	2ASN	194	-5.924	5.860	-2.578	1.00	0.00
ATOM	1772	HD2	1ASN	194	-7.147	4.675	-3.157	1.00	0.00
ATOM	1773	H	ASN	194	-5.787	6.490	-7.436	1.00	0.00
ATOM	1774	N	SER	195	-6.248	3.572	-8.789	1.00	0.00
ATOM	1775	CA	SER	195	-6.462	2.462	-9.697	1.00	0.00
ATOM	1776	C	SER	195	-5.175	1.689	-9.811	1.00	0.00
ATOM	1777	0	SER	195	-5.273	0.484	-9.981	1.00	0.00
ATOM	1778	CB	SER	195	-6.867	3.058	-11.032	1.00	0.00
ATOM	1779	OG	SER	195	-8.164	3.573	-10.982	1.00	0.00
ATOM	1780	HG	SER	195	-7.958	4.496	-10.637	1.00	0.00
ATOM	1781	H	SER	195	-6.299	4.516	-9.054	1.00	0.00
ATOM	1782	N	TRP	196	-3.926	2.182	-9.657	1.00	0.00
ATOM	1783	CA	TRP	196	-2.692	1.371	-9.719	1.00	0.00
ATOM	1784	C	TRP	196	-2.672	0.280	-8.701	1.00	0.00
ATOM	1785	0	TRP	196	-2.084	-0.794	-9.019	1.00	0.00
ATOM	1786	CB	TRP	196	-1.572	2.356	-9.629	1.00	0.00
ATOM	1787	CG	TRP	196	-0.650	2.637	-10.855	1.00	0.00
ATOM	1788	CD1	TRP	196	0.681	3.036	-10.629	1.00	0.00
ATOM	1789	CD2	TRP	196	-1.048	2.563	-12.206	1.00	0.00
ATOM	1790	NE1	TRP	196	1.171	3.191	-11.799	1.00	0.00
ATOM	1791	CE2	TRP	196	0.193	2.963	-12.707	1.00	0.00
ATOM	1792	CE3	TRP	196	-2.092	2.264	-13.092	1.00	0.00
ATOM	1793	CZ2	TRP	196	0.415	3.057	-14.039	1.00	0.00
ATOM	1794	Cz3	TRP	196	-1.846	2.377	-14.400	1.00	0.00
ATOM	1795	CH2	TRP	196	-0.572	2.797	-14.896	1.00	0.00
ATOM	1796	HE1	TRP	196	2.062	3.492	-11.943	1.00	0.00
ATOM	1797	H	TRP	196	-3.785	3.123	-9.433	1.00	0.00
ATOM	1798	N	LEU	197	-3.361	0.381	-7.507	1.00	0.00
ATOM	1799	CA	LEU	197	-3.384	-0.718	-6.561	1.00	0.00
ATOM	1800	C	LEU	197	-4.185	-1.940	-7.109	1.00	0.00
ATOM	1801	\bigcirc	LEU	197	-3.893	-3.128	-6.841	1.00	0.00
ATOM	1802	CB	LEU	197	-4.099	-0.278	-5.353	1.00	0.00
ATOM	1803	CG	LEU	197	-3.248	0.282	-4.144	1.00	0.00
ATOM	1804	CD1	LEU	197	-4.009	1.422	-3.541	1.00	0.00
ATOM	1805	CD2	LEU	197	-3.084	-0.769	-3.041	1.00	0.00
ATOM	1806	H	LEU	197	-3.852	1.164	-7.221	1.00	0.00
ATOM	1807	N	ASP	198	-5.177	-1.676	-7.891	1.00	0.00
ATOM	1808	CA	ASP	198	-5.977	-2.771	-8.470	1.00	0.00
ATOM	1809	C	ASP	198	-5.215	-3.582	-9.561	1.00	0.00
ATOM	1810	0	ASP	198	-5.738	-4.590	-10.053	1.00	0.00
ATOM	1811	CB	ASP	198	-7.254	-2.141	-8.987	1.00	0.00
ATOM	1812	CG	ASP	198	-8.056	-1.424	-7.893	1.00	0.00
ATOM	1813	OD1	ASP	198	-7.684	-0.359	-7.409	1.00	0.00
ATOM	1814	OD2	ASP	198	-9.070	-1.975	-7.451	1.00	0.00
ATOM	1815	H	ASP	198	-5.354	-0.767	-8.185	1.00	0.00
ATOM	1816	N	VAL	199	-4.010	-3.153	-9.947	1.00	0.00
ATOM	1817	CA	VAL	199	-3.245	-3.862	-10.918	1.00	0.00
ATOM	1818	C	VAL	199	-1.957	-4.428	-10.319	1.00	0.00
ATOM	1819	0	VAL	199	-1.148	-5.106	-10.989	1.00	0.00
ATOM	1820	CB	VAL	199	-2.786	-2.998	-12.177	1.00	0.00
ATOM	1821	CG1	VAL	199	-3.696	-3.493	-13.307	1.00	0.00
ATOM	1822	CG2	VAL	199	-2.856	-1.476	-11.985	1.00	0.00
ATOM	1823	H	VAL	199	-3.589	-2.490	-9.333	1.00	0.00
ATOM	1824	N	GLU	200	-1.708	-4.247	-9.020	1.00	0.00
ATOM	1825	CA	GLU	200	-0.434	-4.671	-8.532	1.00	0.00

ATOM	1826	C	GLU	200	-0.498	-6.171	-8.180	1.00	0.00
ATOM	1827	0	GLU	200	-1.557	-6.767	-7.898	1.00	0.00
ATOM	1828	CB	GLU	200	-0.077	-3.936	-7.234	1.00	0.00
ATOM	1829	CG	GLU	200	0.386	-2.467	-7.518	1.00	0.00
ATOM	1830	CD	GLU	200	0.693	-1.674	-6.295	1.00	0.00
ATOM	1831	OE1	GLU	200	1.762	-1.185	-6.157	1.00	0.00
ATOM	1832	OE2	GLU	200	-0.233	-1.655	-5.501	1.00	0.00
ATOM	1833	H	GLU	200	-2.427	-3.917	-8.398	1.00	0.00
ATOM	1834	N	PRO	201	0.615	-6.935	-8.389	1.00	0.00
ATOM	1835	CA	PRO	201	1.425	-6.862	-9.609	1.00	0.00
ATOM	1836	C	PRO	201	0.930	-7.952	-10.573	1.00	0.00
ATOM	1837	0	PRO	201	1.691	-8.726	-11.047	1.00	0.00
ATOM	1838	CB	PRO	201	2.797	-7.032	-9.086	1.00	0.00
ATOM	1839	CG	PRO	201	2.719	-6.945	-7.598	1.00	0.00
ATOM	1840	CD	PRO	201	1.381	-7.609	-7.395	1.00	0.00
ATOM	1841	N	GLN	202	-0.352	-7.935	-10.966	1.00	0.00
ATOM	1842	CA	GLN	202	-0.944	-8.937	-11.765	1.00	0.00
ATOM	1843	C	GLN	202	-0.542	-8.757	-13.208	1.00	0.00
ATOM	1844	0	GLN	202	-0.453	-9.714	-13.970	1.00	0.00
ATOM	1845	CB	GLN	202	-2.492	-9.056	-11.864	1.00	0.00
ATOM	1846	CG	GLN	202	-3.414	-8.897	-10.675	1.00	0.00
ATOM	1847	CD	GLN	202	-4.169	-7.637	-10.724	1.00	0.00
ATOM	1848	OE1	GLN	202	-4.803	-7.246	-11.737	1.00	0.00
ATOM	1849	NE2	GLN	202	-4.039	-6.843	-9.685	1.00	0.00
ATOM	1850	HE22	GLN	202	-4.583	-6.042	-9.724	1.00	0.00
ATOM	1851	HE2	1GLN	202	-3.481	-7.148	-8.923	1.00	0.00
ATOM	1852	H	GLN	202	-0.931	-7.129	-10.773	1.00	0.00
ATOM	1853	N	VAL	203	-0.350	-7.492	-13.605	1.00	0.00
ATOM	1854	CA	VAL	203	0.103	-6.999	-14.921	1.00	0.00
ATOM	1855	C	VAL	203	-0.738	-7.536	-16.078	1.00	0.00
ATOM	1856	0	VAL	203	-1.678	-8.313	-15.960	1.00	0.00
ATOM	1857	CB	VAL	203	1.690	-7.266	-15.270	1.00	0.00
ATOM	1858	CG1	VAL	203	2.497	-6.600	-14.136	1.00	0.00
ATOM	1859	CG2	VAL	203	2.050	-8.673	-15.456	1.00	0.00
ATOM	1860	H	VAL	203	-0.307	-6.766	-12.915	1.00	0.00
ATOM	1861	N	ALA	204	-0.550	-6.942	-17.204	1.00	0.00
ATOM	1862	CA	ALA	204	-1.387	-7.187	-18.385	1.00	0.00
ATOM	1863	C	ALA	204	-1.025	-8.518	-18.998	1.00	0.00
ATOM	1864	0	ALA	204	-0.001	-9.238	-18.693	1.00	0.00
ATOM	1865	CB	ALA	204	-1.128	-6.048	-19.416	1.00	0.00
ATOM	1866	H	ALA	204	0.219	-6.318	-17.250	1.00	0.00
ATOM	1867	N	GLU	205	-2.009	-9.070	-19.729	1.00	0.00
ATOM	1868	CA	GLU	205	-1.799	-10.287	-20.528	1.00	0.00
ATOM	1869	C	GLU	205	-0.792	-10.021	-21.646	1.00	0.00
ATOM	1870	\bigcirc	GLU	205	0.096	-10.828	-22.018	1.00	0.00
ATOM	1871	CB	GLU	205	-3.108	-10.736	-21.100	1.00	0.00
ATOM	1872	CG	GLU	205	-3.958	-11.413	-20.074	1.00	0.00
ATOM	1873	CD	GLU	205	-3.762	-12.897	-20.015	1.00	0.00
ATOM	1874	OE1	GLU	205	-4.493	-13.606	-20.712	1.00	0.00
ATOM	1875	OE2	GLU	205	-2.879	-13.349	-19.212	1.00	0.00
ATOM	1876	H	GLU	205	-2.889	-8.779	-19.603	1.00	0.00
ATOM	1877	N	LYS	206	-0.822	-8.753	-22.114	1.00	0.00
ATOM	1878	CA	LYS	206	0.089	-8.445	-23.204	1.00	0.00
ATOM	1879	C	LYS	206	1.351	-7.941	-22.461	1.00	0.00
ATOM	1880	0	LYS	206	1.479	-6.823	-22.019	1.00	0.00
ATOM	1881	CB	LYS	206	-0.346	-7.253	-23.987	1.00	0.00
ATOM	1882	CG	LYS	206	-1.270	-7.737	-24.995	1.00	0.00
ATOM	1883	CD	LYS	206	-1.553	-6.709	-26.079	1.00	0.00
ATOM	1884	CE	LYS	206	-2.548	-7.422	-26.863	1.00	0.00
ATOM	1885	NZ	LYS	206	-3.218	-6.457	-27.725	1.00	0.00
ATOM	1886	HZ1	LYS	206	-2.756	-6.174	-28.589	1.00	0.00
ATOM	1887	HZ2	LYS	206	-3.362	-5.581	-27.160	1.00	0.00
ATOM	1888	Hz3	LYS	206	-4.137	-6.824	-27.979	1.00	0.00
ATOM	1889	H	LYS	206	-1.479	-8.126	-21.765	1.00	0.00
ATOM	1890	N	LEU	207	2.364	-8.829	-22.359	1.00	0.00
ATOM	1891	CA	LEU	207	3.701	-8.880	-21.751	1.00	0.00

ATOM	1892	C	LEU	207	3.898	-10.389	-21.838	1.00	0.00
ATOM	1893	0	LEU	207	3.769	-10.853	-23.006	1.00	0.00
ATOM	1894	CB	LEU	207	3.667	-8.430	-20.284	1.00	0.00
ATOM	1895	CG	LEU	207	3.620	-6.922	-19.938	1.00	0.00
ATOM	1896	CD1	LEU	207	2.615	-6.762	-18.794	1.00	0.00
ATOM	1897	CD2	LEU	207	5.016	-6.332	-19.674	1.00	0.00
ATOM	1898	H	LEU	207	2.148	-9.663	-22.899	1.00	0.00
ATOM	1899	N	LEU	208	4.195	-11.206	-20.846	1.00	0.00
ATOM	1900	CA	LEU	208	4.442	-12.675	-21.068	1.00	0.00
ATOM	1901	C	LEU	208	3.301	-13.451	-20.307	1.00	0.00
ATOM	1902	0	LEU	208	3.445	-14.545	-19.786	1.00	0.00
ATOM	1903	CB	LEU	208	5.904	-12.979	-20.512	1.00	0.00
ATOM	1904	CG	LEU	208	6.690	-14.206	-20.846	1.00	0.00
ATOM	1905	CD1	LEU	208	6.580	-14.688	-22.348	1.00	0.00
ATOM	1906	CD2	LEU	208	8.060	-13.899	-20.408	1.00	0.00
ATOM	1907	H	LEU	208	4.315	-10.878	-19.974	1.00	0.00
ATOM	1908	N	ALA	209	2.178	-12.721	-20.325	1.00	0.00
ATOM	1909	CA	ALA	209	0.874	-13.150	-19.764	1.00	0.00
ATOM	1910	C	ALA	209	0.960	-13.881	-18.445	1.00	0.00
ATOM	1911	0	ALA	209	0.813	-15.103	-18.340	1.00	0.00
ATOM	1912	CB	ALA	209	0.113	-14.066	-20.868	1.00	0.00
ATOM	1913	H	ALA	209	2.082	-11.914	-20.812	1.00	0.00
ATOM	1914	N	HIS	210	1.315	-13.053	-17.517	1.00	0.00
ATOM	1915	CA	HIS	210	1.565	-13.307	-16.107	1.00	0.00
ATOM	1916	C	HIS	210	2.136	-14.675	-15.689	1.00	0.00
ATOM	1917	0	HIS	210	3.380	-14.668	-15.581	1.00	0.00
ATOM	1918	CB	HIS	210	0.347	-13.142	-15.187	1.00	0.00
ATOM	1919	CG	HIS	210	-0.945	-12.493	-15.635	1.00	0.00
ATOM	1920	ND1	HIS	210	-1.178	-11.382	-16.356	1.00	0.00
ATOM	1921	CD2	HIS	210	-2.175	-12.978	-15.220	1.00	0.00
ATOM	1922	CE1	HIS	210	-2.486	-11.179	-16.397	1.00	0.00
ATOM	1923	NE2	HIS	210	-3.061	-12.127	-15.723	1.00	0.00
ATOM	1924	HE2	HIS	210	-3.984	-11.981	-15.385	1.00	0.00
ATOM	1925	HD1	HIS	210	-0.525	-10.637	-16.523	1.00	0.00
ATOM	1926	H	HIS	210	1.550	-12.192	-17.763	1.00	0.00
ATOM	1927	N	PRO	211	1.513	-15.815	-15.312	1.00	0.00
ATOM	1928	CA	PRO	211	2.197	-16.963	-14.864	1.00	0.00
ATOM	1929	C	PRO	211	3.532	-17.376	-15.570	1.00	0.00
ATOM	1930	0	PRO	211	4.494	-17.794	-14.963	1.00	0.00
ATOM	1931	CB	PRO	211	1.206	-18.096	-14.890	1.00	0.00
ATOM	1932	CG	PRO	211	-0.096	-17.359	-14.946	1.00	0.00
ATOM	1933	CD	PRO	211	0.255	-16.215	-15.810	1.00	0.00
ATOM	1934	N	THR	212	3.512	-17.276	-16.879	1.00	0.00
ATOM	1935	CA	THR	212	4.596	-17.650	-17.780	1.00	0.00
ATOM	1936	C	THR	212	5.930	-17.046	-17.376	1.00	0.00
ATOM	1937	0	THR	212	7.031	-17.599	-17.610	1.00	0.00
ATOM	1938	CB	THR	212	4.263	-17.149	-19.225	1.00	0.00
ATOM	1939	OG1	THR	212	2.813	-17.274	-19.391	1.00	0.00
ATOM	1940	CG2	THR	212	5.018	-18.005	-20.231	1.00	0.00
ATOM	1941	HG1	THR	212	2.428	-16.400	-19.173	1.00	0.00
ATOM	1942	H	THR	212	2.755	-16.837	-17.335	1.00	0.00
ATOM	1943	N	GLN	213	5.995	-15.865	-16.638	1.00	0.00
ATOM	1944	CA	GLN	213	7.193	-15.245	-16.150	1.00	0.00
ATOM	1945	C	GLN	213	7.642	-15.808	-14.819	1.00	0.00
ATOM	1946	0	GLN	213	8.857	-16.168	-14.839	1.00	0.00
ATOM	1947	CB	GLN	213	7.061	-13.694	-15.939	1.00	0.00
ATOM	1948	CG	GLN	213	6.783	-12.937	-17.186	1.00	0.00
ATOM	1949	CD	GLN	213	5.700	-11.807	-17.113	1.00	0.00
ATOM	1950	OE1	GLN	213	4.507	-11.916	-16.734	1.00	0.00
ATOM	1951	NE2	GLN	213	6.173	-10.600	-17.417	1.00	0.00
ATOM	1952	HE22	GLN	213	5.471	-9.889	-17.252	1.00	0.00
ATOM	1953	HE21	1GLN	213	7.103	-10.499	-17.681	1.00	0.00
ATOM	1954	H	GLN	213	5.182	-15.383	-16.412	1.00	0.00
ATOM	1955	N	PRO	214	6.850	-15.993	-13.758	1.00	0.00
ATOM	1956	CA	PRO	214	7.163	-16.957	-12.677	1.00	0.00
ATOM	1957	C	PRO	214	7.923	-18.240	-13.106	1.00	0.00

ATOM	1958	\bigcirc	PRO	214	9.057	-18.525	-12.796	1.00	0.00
ATOM	1959	CB	PRO	214	5.805	-17.158	-12.005	1.00	0.00
ATOM	1960	CG	PRO	214	5.180	-15.841	-12.120	1.00	0.00
ATOM	1961	CD	PRO	214	5.565	-15.367	-13.494	1.00	0.00
ATOM	1962	N	SER	215	7.173	-18.979	-13.941	1.00	0.00
ATOM	1963	CA	SER	215	7.665	-20.270	-14.417	1.00	0.00
ATOM	1964	C	SER	215	9.061	-20.307	-14.976	1.00	0.00
ATOM	1965	0	SER	215	9.948	-21.062	-14.609	1.00	0.00
ATOM	1966	CB	SER	215	6.673	-20.829	-15.458	1.00	0.00
ATOM	1967	OG	SER	215	5.316	-20.628	-15.253	1.00	0.00
ATOM	1968	HG	SER	215	5.261	-19.967	-14.563	1.00	0.00
ATOM	1969	H	SER	215	6.253	-18.693	-14.178	1.00	0.00
ATOM	1970	N	LEU	216	9.385	-19.410	-15.968	1.00	0.00
ATOM	1971	$C A$	LEU	216	10.677	-19.537	-16.595	1.00	0.00
ATOM	1972	c	LEU	216	11.825	-18.824	-15.997	1.00	0.00
ATOM	1973	0	LEU	216	12.991	-19.321	-15.895	1.00	0.00
ATOM	1974	CB	LEU	216	10.545	-19.158	-18.053	1.00	0.00
ATOM	1975	CG	LEU	216	9.794	-20.201	-18.889	1.00	0.00
ATOM	1976	CD1	LEU	216	9.365	-19.478	-20.075	1.00	0.00
ATOM	1977	CD2	LEU	216	10.672	-21.398	-19.304	1.00	0.00
ATOM	1978	H	LEU	216	8.783	-18.731	-16.336	1.00	0.00
ATOM	1979	N	ALA	217	11.493	-17.675	-15.324	1.00	0.00
ATOM	1980	CA	ALA	217	12.523	-16.801	-14.692	1.00	0.00
ATOM	1981	C	ALA	217	13.558	-17.432	-13.779	1.00	0.00
ATOM	1982	0	ALA	217	14.739	-17.542	-14.185	1.00	0.00
ATOM	1983	CB	ALA	217	11.942	-15.687	-13.813	1.00	0.00
ATOM	1984	H	ALA	217	10.598	-17.322	-15.215	1.00	0.00
ATOM	1985	N	CYS	218	13.184	-17.825	-12.536	1.00	0.00
ATOM	1986	CA	CYS	218	14.120	-18.246	-11.487	1.00	0.00
ATOM	1987	C	CYS	218	15.193	-19.226	-11.907	1.00	0.00
ATOM	1988	0	CYS	218	16.386	-19.003	-11.571	1.00	0.00
ATOM	1989	CB	CYS	218	13.225	-18.826	-10.295	1.00	0.00
ATOM	1990	SG	CYS	218	13.805	-18.295	-8.641	1.00	0.00
ATOM	1991	H	CYS	218	12.256	-17.658	-12.280	1.00	0.00
ATOM	1992	N	ALA	219	14.958	-20.320	-12.628	1.00	0.00
ATOM	1993	CA	ALA	219	16.051	-21.247	-13.017	1.00	0.00
ATOM	1994	C	ALA	219	16.821	-20.879	-14.250	1.00	0.00
ATOM	1995	0	ALA	219	18.083	-20.932	-14.322	1.00	0.00
ATOM	1996	CB	ALA	219	15.538	-22.640	-13.158	1.00	0.00
ATOM	1997	H	ALA	219	14.056	-20.337	-12.969	1.00	0.00
ATOM	1998	N	GLU	220	16.137	-20.447	-15.317	1.00	0.00
ATOM	1999	CA	GLU	220	16.785	-20.100	-16.550	1.00	0.00
ATOM	2000	C	GLU	220	17.538	-18.696	-16.441	1.00	0.00
ATOM	2001	0	GLU	220	18.535	-18.489	-17.123	1.00	0.00
ATOM	2002	CB	GLU	220	15.676	-20.114	-17.617	1.00	0.00
ATOM	2003	CG	GLU	220	16.189	-20.326	-19.035	1.00	0.00
ATOM	2004	CD	GLU	220	15.115	-20.621	-20.074	1.00	0.00
ATOM	2005	OE1	GLU	220	14.330	-19.751	-20.321	1.00	0.00
ATOM	2006	OE2	GLU	220	15.145	-21.730	-20.701	1.00	0.00
ATOM	2007	H	GLU	220	15.183	-20.244	-15.227	1.00	0.00
ATOM	2008	N	ASN	221	17.030	-17.764	-15.651	1.00	0.00
ATOM	2009	CA	ASN	221	17.620	-16.486	-15.499	1.00	0.00
ATOM	2010	C	ASN	221	17.856	-16.395	-13.998	1.00	0.00
ATOM	2011	0	ASN	221	17.150	-15.767	-13.185	1.00	0.00
ATOM	2012	CB	ASN	221	16.691	-15.413	-16.027	1.00	0.00
ATOM	2013	CG	ASN	221	17.401	-14.095	-16.088	1.00	0.00
ATOM	2014	OD1	ASN	221	18.110	-13.747	-15.139	1.00	0.00
ATOM	2015	ND2	ASN	221	17.146	-13.379	-17.167	1.00	0.00
ATOM	2016	HD2	2ASN	221	17.540	-12.520	-17.365	1.00	0.00
ATOM	2017	HD21	1ASN	221	16.450	-13.789	-17.757	1.00	0.00
ATOM	2018	H	ASN	221	16.277	-18.055	-15.046	1.00	0.00
ATOM	2019	N	PHE	222	18.950	-17.081	-13.576	1.00	0.00
ATOM	2020	CA	PHE	222	19.303	-17.100	-12.168	1.00	0.00
ATOM	2021	C	PHE	222	20.223	-15.896	-11.976	1.00	0.00
ATOM	2022	0	PHE	222	21.411	-16.029	-11.643	1.00	0.00
ATOM	2023	CB	PHE	222	20.052	-18.391	-11.742	1.00	0.00

ATOM	2024	CG	PHE	222	19.986	-18.832	-10.276	1.00	0.00
ATOM	2025	CD1	PHE	222	20.213	-20.138	-10.007	1.00	0.00
ATOM	2026	CD2	PHE	222	19.718	-17.996	-9.220	1.00	0.00
ATOM	2027	CE1	PHE	222	20.209	-20.667	-8.727	1.00	0.00
ATOM	2028	CE2	PHE	222	19.729	-18.485	-7.927	1.00	0.00
ATOM	2029	CZ	PHE	222	19.967	-19.814	-7.677	1.00	0.00
ATOM	2030	H	PHE	222	19.624	-17.502	-14.133	1.00	0.00
ATOM	2031	N	VAL	223	19.688	-14.718	-12.222	1.00	0.00
ATOM	2032	CA	VAL	223	20.324	-13.448	-11.990	1.00	0.00
ATOM	2033	C	VAL	223	19.206	-12.404	-11.884	1.00	0.00
ATOM	2034	0	VAL	223	19.374	-11.234	-11.431	1.00	0.00
ATOM	2035	CB	VAL	223	21.281	-12.977	-13.157	1.00	0.00
ATOM	2036	CG1	VAL	223	22.675	-13.578	-12.935	1.00	0.00
ATOM	2037	CG2	VAL	223	20.922	-13.501	-14.479	1.00	0.00
ATOM	2038	H	VAL	223	18.813	-14.743	-12.611	1.00	0.00
ATOM	2039	N	LYS	224	17.987	-12.847	-12.237	1.00	0.00
ATOM	2040	CA	LYS	224	16.700	-12.179	-12.070	1.00	0.00
ATOM	2041	C	LYS	224	16.763	-10.736	-12.561	1.00	0.00
ATOM	2042	0	LYS	224	17.172	-10.665	-13.703	1.00	0.00
ATOM	2043	CB	LYS	224	16.327	-12.323	-10.623	1.00	0.00
ATOM	2044	CG	LYS	224	15.871	-13.767	-10.512	1.00	0.00
ATOM	2045	CD	LYS	224	15.825	-14.284	-9.067	1.00	0.00
ATOM	2046	CE	LYS	224	17.157	-14.854	-8.811	1.00	0.00
ATOM	2047	NZ	LYS	224	17.244	-15.878	-7.802	1.00	0.00
ATOM	2048	HZ1	LYS	224	16.533	-16.576	-8.083	1.00	0.00
ATOM	2049	HZ2	LYS	224	16.996	-15.430	-6.868	1.00	0.00
ATOM	2050	H23	LYS	224	18.166	-16.281	-7.772	1.00	0.00
ATOM	2051	H	LYS	224	17.978	-13.601	-12.839	1.00	0.00
ATOM	2052	N	ALA	225	16.641	-9.669	-11.694	1.00	0.00
ATOM	2053	CA	ALA	225	16.852	-8.238	-12.001	1.00	0.00
ATOM	2054	C	ALA	225	17.970	-7.929	-12.972	1.00	0.00
ATOM	2055	\bigcirc	ALA	225	17.656	-7.231	-13.917	1.00	0.00
ATOM	2056	CB	ALA	225	17.201	-7.451	-10.764	1.00	0.00
ATOM	2057	H	ALA	225	16.418	-9.916	-10.808	1.00	0.00
ATOM	2058	N	ILE	226	19.192	-8.480	-12.873	1.00	0.00
ATOM	2059	CA	ILE	226	20.323	-8.175	-13.713	1.00	0.00
ATOM	2060	C	ILE	226	19.980	-8.416	-15.155	1.00	0.00
ATOM	2061	\bigcirc	ILE	226	20.305	-7.557	-15.985	1.00	0.00
ATOM	2062	CB	ILE	226	21.644	-9.041	-13.279	1.00	0.00
ATOM	2063	CG1	ILE	226	21.992	-8.632	-11.823	1.00	0.00
ATOM	2064	CG2	ILE	226	22.783	-8.883	-14.355	1.00	0.00
ATOM	2065	CD1	ILE	226	22.374	-7.135	-11.834	1.00	0.00
ATOM	2066	H	ILE	226	19.258	-9.157	-12.105	1.00	0.00
ATOM	2067	N	GLU	227	19.402	-9.575	-15.525	1.00	0.00
ATOM	2068	CA	GLU	227	19.179	-9.815	-16.927	1.00	0.00
ATOM	2069	C	GLU	227	17.762	-9.696	-17.439	1.00	0.00
ATOM	2070	0	GLU	227	17.552	-9.042	-18.493	1.00	0.00
ATOM	2071	CB	GLU	227	19.783	-11.195	-17.237	1.00	0.00
ATOM	2072	CG	GLU	227	19.801	-11.517	-18.742	1.00	0.00
ATOM	2073	CD	GLU	227	20.131	-12.916	-19.163	1.00	0.00
ATOM	2074	OE1	GLU	227	19.295	-13.532	-19.811	1.00	0.00
ATOM	2075	OE2	GLU	227	21.150	-13.422	-18.776	1.00	0.00
ATOM	2076	H	GLU	227	19.127	-10.207	-14.868	1.00	0.00
ATOM	2077	N	LEU	228	16.761	-10.183	-16.761	1.00	0.00
ATOM	2078	CA	LEU	228	15.312	-10.138	-17.195	1.00	0.00
ATOM	2079	C	LEU	228	15.014	-8.624	-17.472	1.00	0.00
ATOM	2080	0	LEU	228	14.200	-8.394	-18.366	1.00	0.00
ATOM	2081	CB	LEU	228	14.342	-10.617	-16.092	1.00	0.00
ATOM	2082	CG	LEU	228	14.310	-12.066	-15.661	1.00	0.00
ATOM	2083	CD1	LEU	228	13.451	-12.074	-14.385	1.00	0.00
ATOM	2084	CD2	LEU	228	13.700	-12.954	-16.731	1.00	0.00
ATOM	2085	H	LEU	228	16.941	-10.526	-15.866	1.00	0.00
ATOM	2086	N	ASN	229	15.640	-7.793	-16.697	1.00	0.00
ATOM	2087	CA	ASN	229	15.531	-6.330	-16.666	1.00	0.00
ATOM	2088	C	ASN	229	14.092	-5.745	-16.992	1.00	0.00
ATOM	2089	0	ASN	229	13.503	-5.201	-16.058	1.00	0.00

ATOM	2090	CB	ASN	229	16.488	-5.734	-17.595	1.00	0.00
ATOM	2091	CG	ASN	229	16.465	-4.208	-17.428	1.00	0.00
ATOM	2092	OD1	ASN	229	15.733	-3.525	-18.116	1.00	0.00
ATOM	2093	ND2	ASN	229	17.217	-3.551	-16.549	1.00	0.00
ATOM	2094	HD2	ASN	229	16.988	-2.593	-16.555	1.00	0.00
ATOM	2095	HD2	1ASN	229	17.890	-4.042	-16.024	1.00	0.00
ATOM	2096	H	ASN	229	16.365	-8.171	-16.147	1.00	0.00
ATOM	2097	N	GLN	230	13.589	-5.821	-18.253	1.00	0.00
ATOM	2098	CA	GLN	230	12.250	-5.388	-18.542	1.00	0.00
ATOM	2099	C	GLN	230	11.189	-6.461	-18.244	1.00	0.00
ATOM	2100	0	GLN	230	10.111	-6.167	-17.666	1.00	0.00
ATOM	2101	CB	GLN	230	12.015	-4.974	-19.979	1.00	0.00
ATOM	2102	CG	GLN	230	12.541	-3.608	-20.465	1.00	0.00
ATOM	2103	CD	GLN	230	11.971	-3.186	-21.812	1.00	0.00
ATOM	2104	OE1	GLN	230	11.595	-2.028	-22.008	1.00	0.00
ATOM	2105	NE2	GLN	230	11.903	-3.930	-22.952	1.00	0.00
ATOM	2106	HE22	GLN	230	11.639	-3.363	-23.635	1.00	0.00
ATOM	2107	HE2	1GLN	230	12.204	-4.835	-23.100	1.00	0.00
ATOM	2108	H	GLN	230	14.156	-6.357	-18.903	1.00	0.00
ATOM	2109	N	ASN	231	11.526	-7.646	-18.665	1.00	0.00
ATOM	2110	CA	ASN	231	10.654	-8.800	-18.530	1.00	0.00
ATOM	2111	C	ASN	231	10.580	-9.460	-17.157	1.00	0.00
ATOM	2112	0	ASN	231	10.931	-10.612	-16.805	1.00	0.00
ATOM	2113	CB	ASN	231	11.030	-9.876	-19.527	1.00	0.00
ATOM	2114	CG	ASN	231	9.928	-10.218	-20.521	1.00	0.00
ATOM	2115	OD1	ASN	231	8.729	-10.406	-20.215	1.00	0.00
ATOM	2116	ND2	ASN	231	10.261	-10.046	-21.810	1.00	0.00
ATOM	2117	HD22	ASN	231	9.500	-10.058	-22.504	1.00	0.00
ATOM	2118	HD21	1ASN	231	11.192	-9.777	-21.984	1.00	0.00
ATOM	2119	H	ASN	231	12.454	-7.849	-18.886	1.00	0.00
ATOM	2120	N	GLY	232	10.060	-8.628	-16.278	1.00	0.00
ATOM	2121	CA	GLY	232	9.867	-9.000	-14.919	1.00	0.00
ATOM	2122	C	GLY	232	8.913	-7.955	-14.395	1.00	0.00
ATOM	2123	0	GLY	232	7.900	-7.552	-14.998	1.00	0.00
ATOM	2124	H	GLY	232	9.612	-7.768	-16.521	1.00	0.00
ATOM	2125	N	ALA	233	9.316	-7.507	-13.214	1.00	0.00
ATOM	2126	CA	ALA	233	8.580	-6.539	-12.366	1.00	0.00
ATOM	2127	C	ALA	233	9.302	-6.405	-11.074	1.00	0.00
ATOM	2128	0	ALA	233	10.370	-7.028	-10.947	1.00	0.00
ATOM	2129	CB	ALA	233	7.233	-7.099	-12.042	1.00	0.00
ATOM	2130	H	ALA	233	10.224	-7.799	-12.875	1.00	0.00
ATOM	2131	N	ILE	234	8.852	-5.607	-10.138	1.00	0.00
ATOM	2132	CA	ILE	234	9.347	-5.526	-8.803	1.00	0.00
ATOM	2133	C	ILE	234	10.826	-5.198	-8.755	1.00	0.00
ATOM	2134	0	ILE	234	11.069	-3.962	-8.860	1.00	0.00
ATOM	2135	CB	Ile	234	9.176	-6.803	-8.057	1.00	0.00
ATOM	2136	CG1	ILE	234	7.784	-7.504	-8.287	1.00	0.00
ATOM	2137	CG2	ILE	234	9.143	-6.388	-6.595	1.00	0.00
ATOM	2138	CD1	Ile	234	7.768	-9.029	-8.017	1.00	0.00
ATOM	2139	H	ILE	234	8.285	-4.920	-10.390	1.00	0.00
ATOM	2140	N	TRP	235	11.886	-6.010	-8.519	1.00	0.00
ATOM	2141	CA	TRP	235	13.311	-5.640	-8.651	1.00	0.00
ATOM	2142	C	TRP	235	13.748	-4.387	-8.007	1.00	0.00
ATOM	2143	0	TRP	235	13.940	-4.316	-6.822	1.00	0.00
ATOM	2144	CB	TRP	235	13.569	-5.772	-10.197	1.00	0.00
ATOM	2145	CG	TRP	235	13.459	-7.123	-10.746	1.00	0.00
ATOM	2146	CD1	TRP	235	13.226	-7.185	-12.088	1.00	0.00
ATOM	2147	CD2	TRP	235	13.394	-8.427	-10.138	1.00	0.00
ATOM	2148	NE1	TRP	235	12.994	-8.488	-12.297	1.00	0.00
ATOM	2149	CE2	TRP	235	13.084	-9.220	-11.193	1.00	0.00
ATOM	2150	CE3	TRP	235	13.524	-9.148	-8.948	1.00	0.00
ATOM	2151	CZ2	TRP	235	12.911	-10.575	-11.114	1.00	0.00
ATOM	2152	C23	TRP	235	13.366	-10.517	-8.791	1.00	0.00
ATOM	2153	CH2	TRP	235	13.050	-11.232	-9.879	1.00	0.00
ATOM	2154	HE1	TRP	235	12.915	-8.836	-13.185	1.00	0.00
ATOM	2155	H	TRP	235	11.693	-6.949	-8.367	1.00	0.00

ATOM	2156	N	LYS	236	13.897	-3.384	-8.768	1.00	0.00
ATOM	2157	CA	LYS	236	14.306	-2.065	-8.392	1.00	0.00
ATOM	2158	C	LYS	236	13.399	-1.070	-9.138	1.00	0.00
ATOM	2159	0	LYS	236	13.854	0.081	-9.320	1.00	0.00
ATOM	2160	CB	LYS	236	15.787	-1.798	-8.774	1.00	0.00
ATOM	2161	CG	LYS	236	16.741	-2.106	-7.698	1.00	0.00
ATOM	2162	CD	LYS	236	18.058	-2.081	-8.352	1.00	0.00
ATOM	2163	CE	LYS	236	18.704	-0.688	-8.556	1.00	0.00
ATOM	2164	NZ	LYS	236	18.290	-0.147	-9.892	1.00	0.00
ATOM	2165	HZ1	LYS	236	17.218	0.033	-9.903	1.00	0.00
ATOM	2166	Hz2	LYS	236	18.546	-0.812	-10.624	1.00	0.00
ATOM	2167	H23	LYS	236	18.826	0.721	-10.104	1.00	0.00
ATOM	2168	H	LYS	236	13.837	-3.528	-9.731	1.00	0.00
ATOM	2169	N	LEU	237	12.157	-1.515	-9.273	1.00	0.00
ATOM	2170	$C A$	LEU	237	11.171	-0.763	-10.039	1.00	0.00
ATOM	2171	C	LEU	237	10.049	-0.438	-9.053	1.00	0.00
ATOM	2172	0	LEU	237	9.457	-1.313	-8.431	1.00	0.00
ATOM	2173	CB	LEU	237	10.552	-1.624	-11.062	1.00	0.00
ATOM	2174	CG	LEU	237	11.588	-2.384	-12.010	1.00	0.00
ATOM	2175	CD1	LEU	237	11.038	-3.515	-12.834	1.00	0.00
ATOM	2176	CD2	LEU	237	12.026	-1.286	-13.034	1.00	0.00
ATOM	2177	H	LEU	237	11.801	-2.188	-8.691	1.00	0.00
ATOM	2178	N	ASP	238	9.790	0.848	-8.864	1.00	0.00
ATOM	2179	CA	ASP	238	8.736	1.229	-8.005	1.00	0.00
ATOM	2180	C	ASP	238	7.715	1.769	-8.955	1.00	0.00
ATOM	2181	0	ASP	238	8.074	2.219	-10.037	1.00	0.00
ATOM	2182	CB	ASP	238	9.163	2.387	-6.973	1.00	0.00
ATOM	2183	CG	ASP	238	9.824	3.625	-7.638	1.00	0.00
ATOM	2184	OD1	ASP	238	9.158	4.633	-7.666	1.00	0.00
ATOM	2185	OD2	ASP	238	10.954	3.522	-8.139	1.00	0.00
ATOM	2186	H	ASP	238	10.346	1.490	-9.318	1.00	0.00
ATOM	2187	N	LEU	239	6.420	1.769	-8.571	1.00	0.00
ATOM	2188	CA	LEU	239	5.463	2.432	-9.460	1.00	0.00
ATOM	2189	C	LEU	239	5.393	3.948	-9.180	1.00	0.00
ATOM	2190	\bigcirc	LEU	239	4.703	4.515	-8.311	1.00	0.00
ATOM	2191	CB	LEU	239	4.069	1.886	-9.259	1.00	0.00
ATOM	2192	CG	LEU	239	3.864	0.372	-9.579	1.00	0.00
ATOM	2193	CD1	LEU	239	2.500	-0.061	-9.039	1.00	0.00
ATOM	2194	CD2	LEU	239	4.097	0.146	-11.109	1.00	0.00
ATOM	2195	H	LEU	239	6.081	1.186	-7.885	1.00	0.00
ATOM	2196	N	GLY	240	6.181	4.718	-9.954	1.00	0.00
ATOM	2197	CA	GLY	240	6.071	6.183	-9.875	1.00	0.00
ATOM	2198	C	GLY	240	6.077	6.762	-11.266	1.00	0.00
ATOM	2199	0	GLY	240	7.127	6.643	-11.889	1.00	0.00
ATOM	2200	H	GLY	240	6.695	4.293	-10.721	1.00	0.00
ATOM	2201	N	THR	241	4.857	7.142	-11.727	1.00	0.00
ATOM	2202	CA	THR	241	4.706	7.929	-12.878	1.00	0.00
ATOM	2203	C	THR	241	4.887	9.391	-12.500	1.00	0.00
ATOM	2204	0	THR	241	5.758	10.083	-13.043	1.00	0.00
ATOM	2205	CB	THR	241	3.344	7.758	-13.480	1.00	0.00
ATOM	2206	OG1	THR	241	2.455	7.681	-12.320	1.00	0.00
ATOM	2207	CG2	THR	241	3.115	6.651	-14.383	1.00	0.00
ATOM	2208	HG1	THR	241	1.517	7.654	-12.592	1.00	0.00
ATOM	2209	H	THR	241	4.076	6.971	-11.184	1.00	0.00
ATOM	2210	N	LEU	242	4.020	9.936	-11.654	1.00	0.00
ATOM	2211	CA	LEU	242	4.288	11.273	-11.217	1.00	0.00
ATOM	2212	C	LEU	242	5.271	11.103	-10.061	1.00	0.00
ATOM	2213	0	LEU	242	5.052	10.570	-8.970	1.00	0.00
ATOM	2214	CB	LEU	242	3.010	11.851	-10.714	1.00	0.00
ATOM	2215	CG	LEU	242	2.492	13.313	-11.036	1.00	0.00
ATOM	2216	CD1	LEU	242	1.882	13.995	-9.825	1.00	0.00
ATOM	2217	CD2	LEU	242	3.697	14.156	-11.483	1.00	0.00
ATOM	2218	H	LEU	242	3.314	9.393	-11.127	1.00	0.00
ATOM	2219	N	GLU	243	6.474	11.640	-10.361	1.00	0.00
ATOM	2220	CA	GLU	243	7.524	11.709	-9.353	1.00	0.00
ATOM	2221	C	GLU	243	8.380	12.934	-9.571	1.00	0.00

ATOM	2222	\bigcirc	GLU	243	8.354	13.821	-8.732	1.00	0.00
ATOM	2223	CB	GLU	243	8.340	10.408	-9.204	1.00	0.00
ATOM	2224	CG	GLU	243	8.505	9.677	-10.552	1.00	0.00
ATOM	2225	CD	GLU	243	9.951	9.716	-10.971	1.00	0.00
ATOM	2226	OE1	GLU	243	10.308	10.499	-11.837	1.00	0.00
ATOM	2227	OE2	GLU	243	10.758	8.963	-10.458	1.00	0.00
ATOM	2228	H	GLU	243	6.660	12.027	-11.267	1.00	0.00
ATOM	2229	N	ALA	244	9.116	13.006	-10.702	1.00	0.00
ATOM	2230	CA	ALA	244	9.876	14.210	-11.002	1.00	0.00
ATOM	2231	c	ALA	244	9.858	14.417	-12.494	1.00	0.00
Атом	2232	\bigcirc	ALA	244	10.648	13.806	-13.198	1.00	0.00
Атом	2233	CB	ALA	244	11.317	14.033	-10.489	1.00	0.00
ATOM	2234	H	ALA	244	9.154	12.249	-11.358	1.00	0.00
Атом	2235	N	ILE	245	8.942	15.270	-12.998	1.00	0.00
ATOM	2236	CA	ILE	245	8.784	15.352	-14.441	1.00	0.00
ATOM	2237	C	ILE	245	9.144	16.695	-15.027	1.00	0.00
Атом	2238	\bigcirc	ILE	245	8.259	17.413	-15.464	1.00	0.00
ATOM	2239	CB	ILE	245	7.380	14.860	-14.852	1.00	0.00
ATOM	2240	CG1	ILE	245	7.135	13.458	-14.256	1.00	0.00
Атом	2241	CG2	ILE	245	7.276	14.790	-16.389	1.00	0.00
Атом	2242	CD1	ILE	245	5.669	13.037	-14.472	1.00	0.00
Атом	2243	H	ILE	245	8.323	15.799	-12.414	1.00	0.00
Атом	2244	N	GLN	246	10.454	17.020	-15.077	1.00	0.00
Атом	2245	CA	GLN	246	10.907	18.171	-15.845	1.00	0.00
Атом	2246	C	GLN	246	10.460	19.544	-15.412	1.00	0.00
Атом	2247	\bigcirc	GLN	246	11.289	20.289	-14.915	1.00	0.00
Атом	2248	CB	GLN	246	10.655	17.971	-17.354	1.00	0.00
ATOM	2249	CG	GLN	246	11.754	17.077	-17.962	1.00	0.00
Атом	2250	CD	GLN	246	11.359	15.624	-18.013	1.00	0.00
ATOM	2251	OE1	GLN	246	10.376	15.237	-17.401	1.00	0.00
ATOM	2252	NE2	GLN	246	12.127	14.799	-18.756	1.00	0.00
Атом	2253	HE22	2GLN	246	11.901	13.825	-18.818	1.00	0.00
ATOM	2254	HE21	1 GLN	246	12.925	15.148	-19.250	1.00	0.00
ATOM	2255	H	GLN	246	11.158	16.426	-14.685	1.00	0.00
ATOM	2256	N	TRP	247	9.182	19.917	-15.630	1.00	0.00
Атом	2257	CA	TRP	247	8.796	21.311	-15.453	1.00	0.00
ATOM	2258	C	TRP	247	8.098	21.616	-14.155	1.00	0.00
ATOM	2259	\bigcirc	TRP	247	7.769	20.707	-13.408	1.00	0.00
Атом	2260	CB	TRP	247	7.785	21.683	-16.558	1.00	0.00
ATOM	2261	CG	TRP	247	8.437	22.398	-17.702	1.00	0.00
Атом	2262	CD1	TRP	247	9.007	21.838	-18.780	1.00	0.00
Атом	2263	CD2	TRP	247	8.548	23.894	-17.845	1.00	0.00
Атом	2264	NE1	TRP	247	9.439	22.793	-19.563	1.00	0.00
Атом	2265	CE2	TRP	247	9.191	24.019	-19.062	1.00	0.00
Атом	2266	CE3	TRP	247	8.163	24.990	-17.074	1.00	0.00
Атом	2267	Cz2	TRP	247	9.493	25.264	-19.611	1.00	0.00
ATOM	2268	Cz3	TRP	247	8.462	26.246	-17.617	1.00	0.00
ATOM	2269	CH2	TRP	247	9.108	26.379	-18.855	1.00	0.00
ATOM	2270	HE1	TRP	247	9.911	22.624	-20.464	1.00	0.00
Атом	2271	H	TRP	247	8.501	19.272	-15.982	1.00	0.00
ATOM	2272	N	THR	248	7.849	22.925	-13.917	1.00	0.00
Атом	2273	CA	THR	248	6.981	23.338	-12.823	1.00	0.00
Атом	2274	c	THR	248	7.673	23.877	-11.601	1.00	0.00
Атом	2275	-	THR	248	7.675	25.086	-11.429	1.00	0.00
ATOM	2276	CB	THR	248	5.674	22.537	-12.674	1.00	0.00
ATOM	2277	OG1	THR	248	5.106	22.407	-13.984	1.00	0.00
Атом	2278	CG2	THR	248	4.707	23.299	-11.748	1.00	0.00
Атом	2279	HG1	THR	248	4.315	21.879	-13.968	1.00	0.00
ATOM	2280	H	THR	248	8.189	23.649	-14.518	1.00	0.00
ATOM	2281	N	LYS	249	8.286	23.032	-10.747	1.00	0.00
Атом	2282	CA	LYS	249	9.073	23.618	-9.673	1.00	0.00
Атом	2283	C	LYS	249	8.417	23.949	-8.353	1.00	0.00
ATOM	2284	0	LYS	249	9.160	24.260	-7.435	1.00	0.00
ATOM	2285	CB	LYS	249	10.526	23.109	-9.594	1.00	0.00
Атом	2286	CG	LYS	249	11.420	24.041	-10.432	1.00	0.00
ATOM	2287	CD	LYS	249	11.048	23.946	-11.925	1.00	0.00

ATOM	2288	CE	LYS	249	12.064	24.759	-12.754	1.00	0.00
ATOM	2289	NZ	LYS	249	11.724	26.191	-12.811	1.00	0.00
ATOM	2290	HZ1	LYS	249	12.552	26.726	-13.253	1.00	0.00
ATOM	2291	HZ2	LYS	249	11.547	26.603	-11.828	1.00	0.00
ATOM	2292	H23	LYS	249	10.851	26.342	-13.428	1.00	0.00
ATOM	2293	H	LYS	249	8.273	22.035	-10.856	1.00	0.00
ATOM	2294	N	HIS	250	7.068	23.904	-8.230	1.00	0.00
ATOM	2295	CA	HIS	250	6.429	24.252	-6.966	1.00	0.00
ATOM	2296	C	HIS	250	6.357	25.736	-6.718	1.00	0.00
ATOM	2297	0	HIS	250	7.389	26.388	-6.765	1.00	0.00
ATOM	2298	CB	HIS	250	7.065	23.538	-5.756	1.00	0.00
ATOM	2299	CG	HIS	250	6.562	22.127	-5.704	1.00	0.00
ATOM	2300	ND1	HIS	250	5.604	21.741	-4.895	1.00	0.00
ATOM	2301	CD2	HIS	250	7.019	21.108	-6.461	1.00	0.00
ATOM	2302	CE1	HIS	250	5.380	20.480	-5.070	1.00	0.00
ATOM	2303	NE2	HIS	250	6.162	20.067	-5.959	1.00	0.00
ATOM	2304	HE2	HIS	250	6.183	19.115	-6.291	1.00	0.00
ATOM	2305	HD1	HIS	250	5.103	22.346	-4.227	1.00	0.00
ATOM	2306	H	HIS	250	6.466	23.636	-8.983	1.00	0.00
ATOM	2307	N	TRP	251	5.147	26.277	-6.446	1.00	0.00
ATOM	2308	CA	TRP	251	5.054	27.702	-6.154	1.00	0.00
ATOM	2309	C	TRP	251	5.453	27.993	-4.730	1.00	0.00
ATOM	2310	\bigcirc	TRP	251	6.595	28.379	-4.543	1.00	0.00
ATOM	2311	CB	TRP	251	3.741	28.424	-6.531	1.00	0.00
ATOM	2312	CG	TRP	251	3.054	27.845	-7.730	1.00	0.00
ATOM	2313	CD1	TRP	251	1.900	27.160	-7.732	1.00	0.00
ATOM	2314	CD2	TRP	251	3.532	27.948	-9.155	1.00	0.00
ATOM	2315	NE1	TRP	251	1.608	26.844	-8.967	1.00	0.00
ATOM	2316	CE2	TRP	251	2.531	27.287	-9.842	1.00	0.00
ATOM	2317	CE3	TRP	251	4.639	28.517	-9.786	1.00	0.00
ATOM	2318	CZ2	TRP	251	2.557	27.152	-11.229	1.00	0.00
ATOM	2319	CZ3	TRP	251	4.672	28.388	-11.180	1.00	0.00
ATOM	2320	CH2	TRP	251	3.658	27.720	-11.883	1.00	0.00
ATOM	2321	HE1	TRP	251	0.758	26.326	-9.239	1.00	0.00
ATOM	2322	H	TRP	251	4.316	25.719	-6.403	1.00	0.00
ATOM	2323	N	ASP	252	4.570	27.823	-3.717	1.00	0.00
ATOM	2324	CA	ASP	252	3.226	27.349	-3.997	1.00	0.00
ATOM	2325	C	ASP	252	2.150	28.326	-3.590	1.00	0.00
ATOM	2326	0	ASP	252	1.151	27.912	-3.024	1.00	0.00
ATOM	2327	CB	ASP	252	2.970	25.897	-3.541	1.00	0.00
ATOM	2328	CG	ASP	252	3.594	25.613	-2.205	1.00	0.00
ATOM	2329	OD1	ASP	252	3.344	26.322	-1.246	1.00	0.00
ATOM	2330	OD2	ASP	252	4.363	24.673	-2.087	1.00	0.00
ATOM	2331	H	ASP	252	4.817	28.024	-2.766	1.00	0.00
ATOM	2332	N	SER	253	2.340	29.632	-3.890	1.00	0.00
ATOM	2333	CA	SER	253	1.286	30.606	-3.647	1.00	0.00
ATOM	2334	C	SER	253	0.793	30.657	-2.222	1.00	0.00
ATOM	2335	0	SER	253	-0.405	30.777	-2.013	1.00	0.00
ATOM	2336	CB	SER	253	0.131	30.416	-4.654	1.00	0.00
ATOM	2337	OG	SER	253	0.625	30.147	-5.972	1.00	0.00
ATOM	2338	HG	SER	253	1.077	30.908	-6.320	1.00	0.00
ATOM	2339	H	SER	253	3.171	29.968	-4.334	1.00	0.00
ATOM	2340	N	GLY	254	1.692	30.569	-1.219	1.00	0.00
ATOM	2341	CA	GLY	254	1.209	30.613	0.153	1.00	0.00
ATOM	2342	C	GLY	254	2.297	30.892	1.156	1.00	0.00
ATOM	2343	0	GLY	254	3.247	31.586	0.833	1.00	0.00
ATOM	2344	H	GLY	254	2.673	30.463	-1.391	1.00	0.00
ATOM	2345	N	ILE	255	2.163	30.345	2.382	1.00	0.00
ATOM	2346	CA	ILE	255	3.208	30.561	3.369	1.00	0.00
ATOM	2347	C	ILE	255	4.003	29.297	3.540	1.00	0.00
ATOM	2348	CB	ILE	255	2.687	31.046	4.739	1.00	0.00
ATOM	2349	CG1	ILE	255	1.559	32.084	4.579	1.00	0.00
ATOM	2350	CG2	ILE	255	3.852	31.690	5.514	1.00	0.00
ATOM	2351	CD1	ILE	255	0.194	31.369	4.588	1.00	0.00
ATOM	2352	01	ILE	255	5.214	29.319	3.410	1.00	0.00
ATOM	2353	02	ILE	255	3.434	28.249	3.798	1.00	0.00

ATOM	2354	H	ILE	255		1.380	29.769	2.624	1.00	0.00
TER	2355		ILE	255						
HETATM	2356	P	NDP	1		-3.035	11.304	7.405	1.00	0.00
HETATM	2357	01	NDP	1		-2.521	12.425	8.240	1.00	0.00
HETATM	2358	02	NDP	1		-2.093	10.680	6.435	1.00	0.00
HETATM	2359	05	NDP	1		-3.743	10.109	8.202	1.00	0.00
HETATM	2360	C5	NDP	1		-4.711	10.331	9.231	1.00	0.00
HETATM	2361	C4	NDP	1		-4.823	9.018	10.028	1.00	0.00
HETATM	2362	04	NDP	1		-3.821	9.204	10.859	1.00	0.00
HETATM	2363	C1	NDP	1		-4.086	8.637	12.203	1.00	0.00
HETATM	2364	N9	NDP	1		-3.924	9.721	13.183	1.00	0.00
HETATM	2365	C8	NDP	1		-4.036	11.065	13.084	1.00	0.00
HETATM	2366	N7	NDP	1		-3.627	11.824	14.009	1.00	0.00
HETATM	2367	C5	NDP	1		-3.419	10.855	15.046	1.00	0.00
HETATM	2368	C6	NDP	1		-2.819	11.029	16.493	1.00	0.00
HETATM	2369	N1	NDP	1		-2.559	9.888	16.967	1.00	0.00
HETATM	2370	C2	NDP	1		-2.723	8.698	16.253	1.00	0.00
HETATM	2371	N3	NDP	1		-3.298	8.378	15.066	1.00	0.00
HETATM	2372	C4	NDP	1		-3.445	9.633	14.433	1.00	0.00
HETATM	2373	C2	NDP	1		-5.511	8.211	12.025	1.00	0.00
HETATM	2374	C3	NDP	1		-6.101	9.232	10.950	1.00	0.00
HETATM	2375	03	NDP	1		-4.290	11.743	6.515	1.00	0.00
HETATM	2376	P	NDP	1		-4.908	13.137	6.027	1.00	0.00
HETATM	2377	01	NDP	1		-4.696	14.277	6.962	1.00	0.00
HETATM	2378	02	NDP	1		-6.118	12.742	5.253	1.00	0.00
HETATM	2379	05	NDP	1		-3.908	13.295	4.788	1.00	0.00
HETATM	2380	C5	NDP	1		-3.520	12.357	3.437	1.00	0.00
HETATM	2381	C4	NDP	1		-3.660	13.252	2.192	1.00	0.00
HETATM	2382	04	NDP	1		-2.381	14.014	2.120	1.00	0.00
HETATM	2383	C1	NDP	1		-1.639	13.659	0.971	1.00	0.00
HETATM	2384	N1	NDP	1		-0.323	13.798	1.096	1.00	0.00
HETATM	2385	C2	NDP	1		0.496	13.367	2.047	1.00	0.00
HETATM	2386	C3	NDP	1		1.764	13.178	1.939	1.00	0.00
HETATM	2387	NC7	NDP	1		2.203	12.727	3.042	1.00	0.00
HETATM	2388	07	NDP	1		3.407	12.674	2.849	1.00	0.00
HETATM	2389	C4	NDP	1		2.433	13.984	0.873	1.00	0.00
HETATM	2390	C5	NDP	1		1.588	14.640	-0.084	1.00	0.00
HETATM	2391	C6	NDP	1		0.200	14.566	-0.022	1.00	0.00
HETATM	2392	C2	NDP	1		-2.154	12.318	0.655	1.00	0.00
HETATM	2393	C3	NDP	1		-3.668	12.406	0.989	1.00	0.00
HETATM	2394	C2	C	2		4.840	14.545	-1.744	1.00	0.00
HETATM	2395	01	C	2		5.434	14.219	-0.485	1.00	0.00
HETATM	2396	H5	C	2		6.371	14.370	-0.528	1.00	0.00
HETATM	2397	C3	C	2		5.485	15.827	-2.301	1.00	0.00
HETATM	2398	H9	C	2		6.378	15.564	-2.887	1.00	0.00
HETATM	2399	H10	C	2		5.775	16.483	-1.466	1.00	0.00
HETATM	2400	H11	C	2		4.763	16.350	-2.945	1.00	0.00
HETATM	2401	C4	C	2		5.034	13.393	-2.748	1.00	0.00
HETATM	2402	H12	C	2		4.440	13.591	-3.652	1.00	0.00
HETATM	2403	H13	C	2		4.705	12.449	-2.291	1.00	0.00
HETATM	2404	H14	C	2		6.098	13.319	-3.017	1.00	0.00
HETATM	2405	H8	C	2		3.769	14.657	-1.517	1.00	0.00
CONECT	894	892	893	895						
CONECT	895	894								
CONECT	1734	1732	1733	1735						
CONECT	1735	1734								
CONECT	1923	1921	1922	1924						
CONECT	1924	1923								
CONECT	2303	2301	2302	2304						
CONECT	2304	2303								
CONECT	2347	2346	2352	2353						
CONECT	2352	2347								
CONECT	2353	2347								
CONECT	2356	2357	2358	2359	2375					
CONECT	2357	2356								
CONECT	2358	2356								

```
CONECT 2359 2356 2360
CONECT 2360 2359 2361
CONECT 2361 2360 2362 2374
CONECT 2362 2361 2363
CONECT 2363 2362 2364 2373
CONECT 2364 2363 2365 2372
CONECT 2365 2364 2366
CONECT 2366 2365 2367
CONECT 2367 2366 2368 2372
CONECT 2368 2367 2369
CONECT 2369 2368 2370
CONECT 2370 2369 2371
CONECT 2371 2370 2372
CONECT 2372 2364 2367 2371
CONECT 2373 2363 2374
CONECT 2374 2361 2373
CONECT 2375 2356 2376
CONECT 2376 2375 2377 2378 2379
CONECT 2377 2376
CONECT 2378 2376
CONECT 2379 2376 2380
CONECT 2380 2379 2381
CONECT 2381 2380 2382 2393
CONECT 2382 2381 2383
CONECT 2383 2382 2384 2392
CONECT 2384 2383 2385 2391
CONECT 2385 2384 2386
CONECT 2386 2385 2387 2389
CONECT 2387 2386 2388
CONECT 2388 2387
CONECT 2389 2386 2390
CONECT 2390 23892391
CONECT 2391 2384 2390
CONECT 2392 2383 2393
CONECT 2393 2381 2392
CONECT 2394 2395 2397 2401 2405
CONECT 2395 2394 2396
CONECT 2396 2395
CONECT 2397 2394 2398 2399 2400
CONECT 2398 2397
CONECT 23992397
CONECT 2400 2397
CONECT 2401 2394 2402 2403 2404
CONECT 2402 2401
CONECT 2403 2401
CONECT 2404 2401
CONECT 2405 2394
MASTER 
END
```

