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Abstract 

This thesis describes lattice gauge theories and discusses methods used to simu-

late them stochastically. The use of parallel computers for these simulations is 

discussed in depth. 

Various pseudo-random number generator algorithms are reviewed and the imple-

mentation of these algorithms on parallel systems is investigated. 

The strong-coupling phase transition of non-compact lattice QED is investigated. 

The phase diagram of strong-coupling non-compact lattice QED with an addi-

tional four-fermion interaction is deduced using a series of dynamical fermion 

simulations. The mass dependence of the system is investigated for non-compact 

QED and along the 0 = 2.0 axis, which is close to a system with only four-fermi 

interactions. These results are compared with solutions to the gap equation in 

order to determine if the data is consistent with a mean-field interpretation ;  An 

interpolation technique intended to improve the utilisation of the available datr 

is investigated. The simulation program is also described in detail as a case study 

of a parallel implementation of a lattice gauge theory 

The implementation of QUD on an .i860 based parallel computer is described in 

depth. This includes a description of how code is optimised for the i860, an 

analysis of the time-critical portions of the code and a discussion of how these 

routines were implemented. Timings for these routines are given. Some results 

from these simulations are also presented. 
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Chapter 1 

Introduction 

1.1 Lattice gauge theories 

1.1.1 Path Integrals 

Quantum mechanics can be formulated in a variety of different ways. At first 

sight each formulation seems completely different from the others yet under closer 

examination they are all equivalent. One concept is common to all formulations, 

this is the idea of a complex probability amplitude. 

In a classical system, probabilities are used to quantify our ignorance about the 

system. A classical probability is usually defined in terms of ratios of real numbers. 

The probability of a certain type of event is the ratio of the number of events of 

that type to the total number of events, in the limit where the number of events 

becomes infinite. These are intrinsically real quantities. A classical system is 

assumed to be in some specific though possibly unknown state. If we knew the 

state of the system exactly at any time it would be possible to calculate exactly 

all future states of the system. As we do not have complete information about a 

system, we have to assign probabilities to each of the possible resulting states. Now 

consider a system that passes through an intermediate state. If the probability 

of going from state A to state B is P(A, B) then the probability of going from 

A to B via an intermediate state S is P(A, 5, B) = P(A, S)P(S, B). If there are 

7 



a number of possible intermediate states then the total probability of going from 

A to B is the sum over the probabilities of going via each possible intermediate 

state, 

P(A,B) = EP(A,S[i],B) = EF(A,S[i])F(S[i],B). 

If the system passes through more than one intermediate state 51, 52,.. SN then 

P(A, B) becomes; 

P(A, B) = 	. . . 	P(A, Sj[ij])[ H P(Scx[ia], 5cc +l[ cx +l])]P(SN[iN] , B). 
i1 	i2 	tJ( 

(1.1) 

That is, the probability P(A, B) is the sum of the probabilities for each of the 

possible paths between A and B. 

In a quantum mechanical system this kind of thinking breaks down. For example, 

if we think of photons passing through a two-slit apparatus, the probability of 

a photon arriving at a particular destination is no longer the simple sum of the 

probabilities from each of the slits by themselves, but is the squared modulus of 

the sum of the complex amplitudes from each of the slits. It is no longer reasonable 

to think of the system passing through a particular intermediate state. The real 

probabilities of the classical system must be replaced by complex amplitudes. 

Because these have a phase, it is possible for different alternatives to interfere 

with each other. The rules for combining complex amplitudes are the same as 

those for combining real probabilities. 

The path integral formulation of quantum mechanics [1, 2] is a quantum generali-

sation of the classical path integral shown in equation 1.1. The complex amplitude 

going from an initial to a final state is given by the sum of the amplitudes of the 

possible intermediate paths. The amplitude of a path is given by 

Ppath = 

where 5path  is the classical action of the path. The factor ic is chosen so that the 

sum of the probabilities over each of the possible outcomes is normalised to one. 

Lattice gauge theories are usually formulated using this path integral formulation 

of quantum mechanics. 

['I
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Quantum field theories 

The physics of high energy particles is currently thought to be best described 

using quantum field theories. As the name suggests these are quantum theories 

where the variables used to represent a system of particles form a field with values 

at all space-time points. This is in contrast to the original quantum mechanical 

description of particles where a particle is parametrised by its position or its 

momentum. The primary advantage of a field theory is that it is capable of 

describing many-particle systems where particles may be created and destroyed. 

It is also the only consistent way of constructing a relativistic quantum theory. 

A field configuration is a possible state of the fields where the value of each 

field in the theory is defined at every point in space-time. In the path integral 

formulation, this is equivalent to a possible path of the system, so the integral 

over all possible paths becomes an integral over all possible field configurations. 

To calculate an observable quantity we must calculate the average of the observable 

over all possible field configurations with a complex weighting factor dependent 

on the action of the field configuration, 

<o 	con fig °con fig C * 	01 1 9  
>= i-s >: 	Ch config 

conftg 

The complex weighting factor plays a similar role to the Boltzmann factor in sta-

tistical physics; it is much less convenient to work with though. The Boltzmann 

weight is a direct measure of how significant a particular configuration is. The 

quantum weights for different configurations only differ by a phase, so their rela-

tive contribution is a result of interference between the configurations and cannot 

be derived directly from the weighting factor. This causes several practical diffi-

culties, especially when the path integral is approximated by a sum over a subset 

of configurations. The complex weight can be converted into the same decaying 

exponential form as the Boltzmann factor by formulating the theory in Euclidean 

space through performing the change of variables t' = it. 
/ 

1.1.2 Lattice field theories 

In practice, it is usually not possible analytically to average over all possible field 

configurations. Because a field has an infinite number of degrees of freedom, 



this average involves an infinite number of integrations. It is therefore necessary 

to make a number of approximations. The first of these approximations is to 

replace spacetime by a finite box and second to replace the continuous spacetime 

with a lattice of discrete points. This reduces the problem to one with a finite 

number of degrees of freedom so the path integral is also reduced to a finite 

number of integrals. Any derivative of the fields that occurs in the action may be 

approximated using the difference of the field value at two lattice sites. 

Gauge theories 

A gauge theory is a field theory that contains a particular type of internal sym-

metry. A gauge theory is invariant underindependent transformations of the fields 

at each point in space-time. This is very similar to the invariance of general rela-

tivity under transformations of the local coordinate system. In general relativity 

physics is independent of the choice of the local space-time coordinate system. In 

a gauge theory physics is independent of the choice of the local symmetry space 

coordinate system. This is very easy to arrange for local quantities but there 

is a difficulty in constructing a spatial derivative with this property, because a 

derivative is the limiting case of a difference between fields at different points in 

space-time: 
th,b(x) - 
	

i/'(x+Sx)—b(x—Sx) 

dx 	 28x 
If we consider gauge symmetries that are Lie groups, the fields transform as 

b'(x) = 

where ta  is a generator of the group. The simple derivative will transform as 

__ - 	 + 
ax - 	 ax 	ax 

We can construct a covariant derivative that respects the symmetry by introducing 

a gauge field A(x): 

D. = - igt"A(x). 

Provided that A(x) transforms as 

A'(x) = A(x) + OwX(x) 
- 

gf1w(x)A(x), 

where f are the structure constants for the gauge group; the deviation in the 

simple derivative caused by a change in w is compensated by a change in the 

values of the gauge field A. 
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This is particularly obvious in theories defined on the lattice where derivatives 

remain as finite differences. On the lattice, a gauge field is represented by ele-

ments of the gauge group living on every link of the lattice. A link is a line that 

connects two neighbouring lattice sites. The group element of a link represents 

the transformation needed to convert between the parametrisations used at the 

two lattice sites. The lattice covariant derivative becomes: 

U(x)(x + a4) - U(x - a(x - aA) 
DO(x) = 
	 2a 

where the U fields transform as; 

U(x) = (el  9tUM ( x )( e i9t0w 0 (t+dU/2))_ 1  

The dynamics of the gauge field, U(x), must also reflect the local symmetry; this 

can be achieved if the action for the gauge field is constructed out of quantities 

that are invariant under the symmetry, such as the trace of the product of link 

variables round a closed loop. Such an action was proposed by Wilson; 

SCauge = > 	- ( 1/n)ReTrUp1aq 1, 
plaq 

where the sum is over all elementary squares of the lattice, 'plaquettes', and Upi q  

is the product of the link variables round the plaquette. 

The symmetries of a gauge theory are particularly obvious when formulated on the 

lattice, but it is just as valid to formulate them as continuum field theories. The 

importance of the lattice is as a calculational tool. One of the original motivations 

for the development of lattice gauge theory was Quantum Chromo-Dynamics or 

QCD. This is the currently the best candidate for a theory of the strong nuclear 

force. It is a gauge theory based on the gauge group SU(3) that couples several 

flavours of fermions called Quarks. One of the most interesting properties of QCD 

is asymptotic freedom; at high energies (or short distances) the effective coupling is 

very small. In this region it is possible to calculate observables using a power series 

in the effective coupling. This is perturbation theory. Each term in the power 

series refines the result. As the coupling constant is small in this region only a few 

terms of the series need to be calculated. The effective interaction becomes strong 

for low energy processes and an expansion in terms of the coupling constant is 

no longer a good approximation to the physics; there is therefore a limit to what 
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can be calculated perturbatively. Lattice gauge theory was developed because it 

approximates the physics in a way that does not directly depend on the value 

of the coupling constant. It therefore stands a better chance of dealing with low 

energy QOD processes than perturbative methods. 

1.1.3 Renormalisation 

Quantum field theories are very prone to mathematical instabilities. Not all vari-

ables and parameters of a quantum field theory correspond to observable quan-

tities. Observable quantities are constrained to remain finite by the physical 

properties of the theory, but there is no equivalent constraint for non-observable 

quantities. Treated naively, field theories will often produce divergent integrals. 

Renormalisation is the generic name given to the procedures used to control these 

mathematical instabilities. A renormalisation procedure starts by introducing a 

regularisation scheme that explicitly controls the mathematical divergences. For 

example, in perturbative expansions of QED the integral over the momenta of a 

fermion loop is divergent. This can be regulated by introducing an explicit mo-

mentum cut-off. Observable quantities are calculated with this regulator in place. 

The limit where the regulator is removed is then taken. In the case of the previous 

example, this is the limit where the momentum cut-off goes to infinity. In this 

limit, the intermediate non-physical quantities used in the calculation may be-

come divergent but the physically observable quantities will remain finite and well 

defined. If this is not the case, then the theory is not renormalisable and cannot 

be used to describe physical processes. While the regulator is in place, the physi-

cally observable quantities are functions of the parameters of the field theory (bare 

couplings) and of the cut-off. If we hold the physical quantities fixed and vary the 

value of the cut-off then the couplings must vary in order to compensate. We can 

label each set of bare couplings using the corresponding set of observables at a 

particular value of the cut-off. A change in the value of the cut-off will produce a 

change in the position of these points in the space of the coupling constants. This 

movement is a renormalisation group transformation and the path of a single point 

in this space is a renormalisation trajectory. The values for the observables that 

are of physical interest are those where the cut-off has been totally removed. This 

occurs at the fixed points of the renormalisation group. A fixed point is a point in 
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Figure 1.1: Renormalisation Group flow 

Renormalisation trajectories must end on a fixed point. The points A and C 

represent ultra-violet stable fixed points, the point B and the line DPI represent 

unstable fixed points. 

the space of coupling constants that maps to itself as the cut-off is changed (see 

figure 1.1). 

In the lattice formulation, the regularisation is automatically provided by the 

lattice. A finite lattice of variables is incapable of representing a wave with a 

wavelength shorter than twice the spacing of the lattice. This introduces a mo-

mentum cut-off proportional to the inverse lattice spacing. In this case, there are 

actually two limits that have to be taken; the first is the thermodynamic limit, 

where the number of lattice points is taken to infinity and the second is the contin-

uum limit where the regulator is removed and the lattice spacing is taken to zero. 

It is obviously not possible to perform a computer simulation in this limit so the 

best that we can hope for is to perform a number of simulations in a regime suffi-

ciently close that we are able to extrapolate the results to the continuum limit. As 

the lattice spacing becomes zero in the continuum limit any physical process that 
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propagates for a finite distance in the continuum must propagate for an infinite 

number of lattice spacings on the lattice. This means that the correlation length 

on the lattice must be infinite at the values of the bare coupling that correspond to 

the continuum result. An infinite correlation length is the indication of a second 

order phase transition. Therefore the fixed point corresponding to the continuum 

limit of a lattice theory must also correspond to a second order phase transition. 

1.2 Stochastic simulation 

By restricting the system to a finite box and approximating the fields by a lattice 

of points, a path integral is changed from an infinite to a finite but typically 

large number of integrations. In general, these integrals have to be calculated 

numerically. The number of integrals that need to be calculated is proportional 

to the number of lattice sites. It is impractical to perform all of these integrals 

for anything except a very small lattice. The alternative is to use some form 

of stochastic simulation. The integrals are a weighted average over all possible 

configurations of the system. A reasonable approximation to this average can be 

obtained by averaging over a representative sample of the possible configurations. 

When using this approximation the weighting factor for each configuration must be 

modified to account for the distribution used to choose the sample configurations. 

The most convenient and efficient approach is to choose configurations from a 

distribution proportional to the Boltzmann weight of the configurations, all the 

weighting factors become one and observables can be calculated as simple averages 

over the sample. 

This leaves us with the problem of efficiently generating configurations from this 

particular probability distribution. One convenient method of doing this is a 

Markov chain. A Markov chain is an algorithm that generates a sequence of 

configurations by means of a transition probability from one configuration to the 

next which depends only on the previous configuration. Any configuration in the 

sequence is therefore correlated with the previous configuration. However, if the 

algorithm is constructed correctly, and the number of configurations is sufficiently 

large the sequence as a whole will have the statistics of the desired probability 
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distribution. The procedure used to generate the next configuration in the Markov 

chain is called an update operation. Because of the correlations between successive 

configurations in the Markov chain it is usual to average over sets of configurations 

separated by a number of update steps. The desired probability distribution for 

configurations is 

P(C) = 	 (1.2) 

where P(C) and S(C) are the probability and action of a particular configuration 

C. The transition probability W(C, C') is the probability that the update step 

will generate configuration C' from configuration C. The transition probability 

must map the distribution P(C) onto itself: 

P(C') = EP(C)W(C,C'), 	 (1.3) 
C 

for all configurations C'. If an update step satisfies equation 1.3 and it is guaran-

teed to eventually explore all possible configurations then it will generate config-

urations from the probability distribution P(C). Most stochastic update schemes 

are based on the detailed balance condition: 

P(C)W(C, C') = P(C')W(C', C). 	 (1.4) 

This is a sufficient, though not necessary, condition for equation 1.3 to hold. 

Because the update step always results in a valid configuration, 

>1W(A,B)= 1. 
S 

If we sum equation 1.4 over all C we get, 

E P(C')W(C', C) = P(C') = E P(C)W(C, C'). 
C 	 C 

Therefore, providing the update procedure is capable of spanning the entire space 

of configurations, equation 1.4 is a sufficient condition for W(C, C') to generate 

configurations from P(C). 

The detailed balance condition for equation 1.2 is; 

W(C, C')e 5  = W(C', C)C 8 ' 

A good example of an update scheme based on this detailed balance condition is 

the Metropolis algorithm [3]. In its most general form, this algorithm consists of 
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generating a trial configuration and then accepting or rejecting this change de-

pending on the relative values of the action for the original and trial configurations. 

If the change is accepted the trial configuration becomes the next configuration 

in the sequence. If it is rejected the next configuration is the same as the pre-

vious one. If the probability of generating a particular trial configuration Cfrj&A 

from a starting configuration C is Ptrjai(C, Ctriai) and the acceptance probability is 

Ctriai), then the detailed balance condition will be obeyed if the following 

condition is enforced: 

Ptriai(A,B) = Ftriai(B,A), 	 (1.5) 

and the acceptance probability is 

Paccept (A, B) = e5(A)_S(E) S(B) > 8(A) 

Paccept (A, B) = 1 	8(B) < 8(A). 

Schemes of this type are very easy to implement. The efficiency of such a scheme 

is very dependent on the acceptance rate. If the trial solution is chosen completely 

at random, equation 1.5 will be satisfied and the sequence of configurations will 

eventually produce a good representative sample of the probability distribution. 

Very few of the trial configurations will be accepted so it will take a large number 

of update steps for this average to be achieved. It is important to use a selection 

method for the trial configurations that gives a high acceptance probability. If 

the trial configuration is only slightly different from the previous configuration, for 

example a single link reset randomly, then the difference in the action will be small 

and the probability of acceptance reasonably high. This will also mean that the 

successive configurations are very highly correlated and a large number of updates 

will be needed. An efficient stochastic algorithm will have to carefully balance the 

acceptance rate and the degree of correlations between successive configurations 

in order to maximise the rate at which the algorithm moves through the space of 

all possible configurations. 

1.2.1 Fermions 

Most of the physically important models in lattice gauge theory consist of fermionic 

fields interacting via gauge fields. The gauge fields are relatively straightforward 

to simulate. The fermionic fields introduce a large number of special problems. 
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Fermions are best described using Grassmann variables. Grassmann variables 

are similar to normal real or complex variables except that they anti-commute: 

for any pair of Grassmann variables a and b, at = —ba. This anti-commuting 

property automatically generates many of the properties of fermions such as the 

Pauli exclusion principle and anti-symmetry. Computers are not capable of using 

Grassmann variables directly, so it is necessary to use real variables and enforce 

anti-symmetry explicitly. The anti-symmetry condition for fermions is a global 

constraint on the fermion fields, so it is not generally possible to update part of 

the fermion field in isolation. All fermionic algorithms therefore involve global 

operations on the lattice variables. These usually take the form of inversions of 

the fermion matrix. 

1.2.2 The fermion matrix 

The path integrals that occur in lattice gauge theory are often of Gaussian form: 

f ie>t.te 	)M'4y) 	 (1.6) 

For example the lattice action for naive fermions is 

Snaive = a4 	(x) 	E(Sr~aAYU$(x) - 6z_a2 IvU(Y))7M + mSx v ] (y). 

This is a direct translation to the lattice of the action for the Dirac equation. 

Naive fermions are rarely used in simulations because of fermion doubling. This is 

an unwanted result of using discrete spacetime inside a finite box. The dispersion 

relation for naive lattice fermions has more than one zero within the Brillouin 

zone so a single naive fermion field behaves like 16 flavours of fermions. There 

are other fermion lattice actions that reduce this problem, the staggered fermion 

action[4] and the Wilson fermion action[5]. The staggered fermion action is 

Sstaggered = a4 	x(x) 	E (x)(&+a,vUM(X) - 8V_a, y U(Y))) + 

(1.8) 

where x and j< are one component fermionic fields and, 

= 
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Naive lattice fermions have additional symmetries that are not found in the contin-

uum. These additional symmetries allow the (free) action to be decoupled into 2* 

parts. The staggered fermion action reduces the doubling problem by discarding 

all but one of these parts. The Wilson fermion action is 

SWilson = a4 	(x) { 
	

[( - r)Sx+ayU(x) - ( + 
=31/ 

4r 
+(+(M+ 	

•i 
 

The Wilson action contains additional terms that increase the mass of the fermion 

doubles. This removes the fermion doubles but breaks chiral symmetry. All of 

these different actions have Gaussian form. If b is a complex variable then a 

Gaussian integral (equation 1.6) is proportional to the determinant of the matrix 

M', whereas if is a Grassmann variable the integral is proportional to the 

determinant of M. It is therefore possible to simulate fermions using real variables 

at the expense of calculating matrix inverses. Because the matrix is a function 

of the gauge fields, this inversion must in principle be carried out every time the 

gauge fields are updated. 

1.2.3 Hybrid Monte Carlo 

Hybrid Monte Carlo [6] is currently one of the most efficient algorithms for simulat-

ing dynamical fermions. Hybrid Monte Carlo is based on the Metropolis algorithm 

described earlier in this chapter; its efficiency lies in the method used to generate 

a new trial configuration. The field variables are treated as the coordinates of a 

classical mechanics system, a new trial configuration is generated by evolving this 

sytem in time; this is a new "computer" timer, completely unrelated to the time 

dimension of the fields. A Hamiltonian is imposed on the system: 

+ S'(), 

where 0 represents the field variables and S' is an action for the field variables. 

This action is usually chosen to be the same as the action being simulated. The 

initial values of the momenta ir are chosen randomly from a Gaussian distribution, 

PG (7r) cc exp[-7r 2 /2]. 

7 

(1.9) 
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This system is now evolved a distance in r to generate the trial configuration. 

This new configuration is accepted with a probability 

.Paccept = min( 1, exp [5ff]), 

where 

H() = 1r2 + S(), 

and S is the action being simulated. As H' is the energy of the system it should 

be conserved if the time evolution is computed exactly. In the case where H' H, 

this would give us 1. This is the hybrid algorithm. It is only possible 

to integrate the equations of motion using discrete steps in r. This gives rise 

to errors in the dynamics which means the hybrid algorithm is inexact. In the 

Hybrid Monte Carlo algorithm these erroireduce the acceptance rate below 1 but 

the calculation remains exact. Reducing the size of these steps always reduces the 

discretisation errors and therefore increases the acceptance rate. For the detailed 

balance condition to hold the integration must be done in a reversible fashion: 

if the momenta ir are reversed at the end of the evolution the same evolution 

procedure must return the system to its original state. A reversible integration of 

the equations of motion can be achieved using the leapfrog algorithm. 

If the equations are to be evolved for a distance Tmax, the leapfrog algorithm starts 

with an initial half-step in the momenta: 

Sr 	38(0) Sr 

this is followed by it = rmax/Sr steps in 0 and it - 1 steps in ir, of the form 

(r+Sr) = 

Sr 
= 

Sr 

Sr 	38(r) 
Sr, 

2 	ao 

and finally a second half-step in ir: 

Sr 	88(rmax)Sr 
34 	2 

This algorithm can easily be extended to include fermionic fields. In a dynamical 

fermion simulation the probability distribution for the gauge fields becomes; 

P() = 	f[d][$ 	() ] exp[—S - bMb] 
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1 
- - det(M)exp[—S(çb)] 
— Z I  

1 
= 	f[dx][dx}exp[_S(cb)— x*(MtM)_lx]. 

The x fields are bosonic pseudo-fermions that only exist on the even sites of the 

lattice. The Hamiltonian becomes 

- 7r 2  + 5(4') + x*(MtM)_lx, 

and the equations of motion are 

as 	a(MtM) -1  
= —— x X. 

The fermion contribution to the momentum can be simplified using the identity 

AA'=l 

so that 

= 0 
ao 	(go 

8A' 
-

aA A-1 A54' - 54' 
8A' = 

84' oqi 

The equations of motion can therefore be written as; 

-- am 
* = - + x*(MtM)_1[Mt+ amt 

 ao 

The x fields are held fixed during the integration and updated by an exact heat-

bath, x = M?] where 77 is Gaussian noise, before the first half-step. Because the 

matrix M is a function of 4' a matrix inversion step is needed every time the mo-

menta are updated to calculate (MtM)'y.  This procedure will remain reversible 

even if the matrix inversion is not exact provided that the inversion algorithm 

depends only on 4' and X. If the solution of the previous timestep is used as an 

initial guess then the matrix inversion must be exact to preserve reversibility. 
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It remains to be shown that reversibility is a sufficient condition for the detailed 

balance condition to hold. The probability distribution we wish to sample is 

PS = exp[—S()]. 

The it evolution of the fields is deterministic and defines a mapping on the phase 

space. This means that the probability Y of choosing the candidate phase space 

"configuration" (', it ' ) is 

Y((cb, it) F-* (', it ' )) =, 45[(0', it') - ((rmax), ir(rmax))}. 

The acceptance probability A is 

A(jçb,ir) r-4 ( ' , it ' )) = min(1,exp(H(O',ir') - 

The transition probabilities for the 0 fields is given by 

W(, ') = J[dit] [dit']Pc(it)Y, it) 	(0 , r'))A, it) 	(', it ' )). 	( 1.10) 

The dynamics are reversible so 

Y((, it) H-* (', it ' )) = Y((', -it ' ) H-* (, -it)). 	 (1.11) 

The form of P0 is such that Ps(4)Pc (it) x exp[H(q, it)] and H is invariant under 

it p- -it. By using the identity 

exp[—H(qS, it)] min(1, exp[—SH]) = min(exp[—H(cb, it)], exp[—H(q5' , it ')]) 

= exp[—H(cb,ir)] min(exp[SH], 1), 

we get 

Ps(qS)Pc (it)A((ch,ir) 	( ' ,it ')) = Pg(cb')Pc (ir')A((cb',ir') i-* (0, 7r)) 

= P5 (cb')P0 (-7r')Acb', -it ' ) -* (, -it)). 

Multiplying by Y, integrating over it and it '  and using equation 1.11 we get 

f [dit] [dr']Ps()Pc (r)Y((, it) 	(', it'))A((, it) 	(, it ')) = 

J[dit][dit']P(')P0(—it')Y((', -it') 	(, —it))A((', -it') 	(, -it)). 

Using equation 1.10 and the invariance of the measure [dit] [dir'] = [d(-7r)] [d(-7r')] 

this becomes 

P5(çb)W(01 ') = P5(çh')W(çb' , 

which is the detailed balance condition. 
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1.3 Parallel computers 

The main problem with lattice gauge theory is that it requires a great deal of com-

puting power to perform realistic calculations. Further, one of the main sources 

of systematic error in these calculations is the lattice size. In order to control this 

systematic error it is necessary to perform simulations using a variety of different 

sized lattices and to compare the results. With current algorithms and computer 

power it is not possible to have a large enough range of lattice sizes for simulations 

involving dynamical fermions. Hence a further approximation is made known as 

the quenched approximation. This is where the contribution of fermion loops is 

ignored and is equivalent to making the fermions infinitely massive. The primary 

reason for making this approximation is that there is a very large saving in the 

requirement for computer time. Because the fermions have an infinite mass, the 

fermionic fields need not be updated during the simulation. This saves on all of 

the fermion matrix inversions except for those used to calculate observables. 

Current calculations show little difference between the results of quenched and 

dynamical QCD simulations. It is therefore quite common to exploit the available 

computing power to simulate a larger lattice rather than to perform a dynamical 

simulation. However, this approximation is hard to justify physically, so the corre-

spondence between quenched and dynamical simulations will need to be rechecked 

as the quality of simulations improves. Even in the quenched approximation, the 

majority of the available computer time is spent inverting the fermion matrix in 

order to calculate observables that involve the fermion fields. 

The path integral has been approximated using Monte Carlo techniques. This 

has introduced a further source of error, the statistical error in the Monte Carlo 

sampling. As before, this error can only be reduced at the cost of more computer 

time, in this case to increase the sampling statistics. 

The cost in computer time for a full dynamical simulation becomes quite stag-

gering. Even with the most powerful computers available lattice simulations are 

nearly always limited by the available computer power. As computers become 

faster the demand for computer power has also increased as it becomes possi-

ble to reduce the systematic errors in the calculation. The lattice gauge theory 
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community has therefore always had a vested interest in the progress of com-

puter technology. In short, the lattice gauge calculations of QCD form one of the 

most computationally intensive problems currently being researched. The com-

putational power needed is far beyond that normally available. It is therefore 

necessary to build very high performance computers dedicated to the problems of 

lattice. gauge theory. Over the last few decades electronic computers have been 

steadily increasing in performance. A large part of this increase has been due 

to smaller and faster circuits that enable computers with faster cycle times to 

be built. Unfortunately this approach is starting to run into some fundamental 

physical limitations that will eventually place a lower limit on the cycle time of a 

computer. The cycle time of a processor is limited by the speed of propagation 

of electrical signals across the chip. This can only be reduced by shrinking the 

physical size of the circuit. At some stage the size of the individual components 

starts to approach the atomic scale. Currently chips are being constructed using 

1 um technology. Assuming that structures '-S-'  10 nm across cannot behave like 

a macroscopic crystal the speed of a single processor is unlikely to increase by 

much more than a factor of 100. 

Parallel computation provides a method of circumventing these physical limita-

tions and continuing to increase the available computer power. The basic approach 

used in all parallel computers is to divide problems into independent subproblems 

and to use separate hardware components to calculate a number of them simul-

taneously. The time taken to calculate each subproblem is still limited by the 

speed of the hardware components, but the total throughput of the computer is 

increased. An additional advantage of parallel computers is that they can be very 

cost effective. In principle, a large number of processors with a modest individual 

performance can be combined to produce a single computer with a very high total 

performance. To a first approximation, the price of such a machine is dominated 

by the cost of its component parts. These components can be mass-produced mi-

croprocessors using commonly available manufacturing techniques. On the other 

hand, an equivalent single processor would be built in small numbers and would 

have to use state-of-the-art techniques. Consider now how to double the power of 

each machine. The parallel computer is doubled in size by doubling the number 

of processors and approximately doubling the cost. The communication system is 

likely to cost more than double the original, depending on how it is implemented; 
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many machines these days use some form of n log ii interconnect network and the 

component cost of the -network should scale in a similar fashion. The single pro-

cessor would have to rely on more exotic technologies and extreme measures such 

as 4upercooling. This will increase the cost by far more than a factor of two, - 

especially as this will require further research and development. Ignoring fault 

tolerance, a scaled-up parallel computer can be constructed simply by using a 

larger number of the original components. Once the power of a computer starts 

to strain the physical limitations on the speed of a single processor, equivalent 

parallel computers can be expected to be consistently cheaper. 

There are several very different ways that parallelism can be attempted, each ap-

proach has different strengths and weaknesses. Some of these approaches have 

already achieved a wide degree of acceptance. For example, the vector supercom-

puter can be thought of as a type of parallel computer. 

In order to implement a particular problem in parallel, it is first necessary to 

identify some inherent parallelism in the problem. Once this has been done, 

there are still various constraints on how this parallelism can be exploited. These 

constraints arise from the nature of the problem and the nature of the parallel 

hardware available. Some problems may only be able to run efficiently on partic-

ular types of parallel computer. The majority of parallel computer architectures 

have local memory storage associated with each of the processors. In this case, 

it can be expensive to move data from one processor to another. In general, a 

program can be thought of as consisting of several sequentially executed stages, 

each of which may have some inherent parallelism and can be divided into inde-

pendent subproblems. These subproblems can be distributed over the available 

processors and calculated in parallel. The results from one sequential stage may 

be used as input for some of the future sequential stages. In general, this requires 

a communication stage to redistribute the data. A subprogram need only syn-

chronise itself with the rest of the program when it needs to communicate. If the 

result of a subprogram is not needed in the next stage it can in principle continue 

executing across a number of calculation stages; see figure 1.2. Some computers 

are capable of overlapping data communication with calculation. This model of 

parallel computation can still be applied though the communication stage is now 

used to initiate communications or to wait for their completion. 
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Figure 1.2: Decomposition of a program into parallel subprograms 

A program may be divided into sequentially executed stages each consisting of 

a number of independent subprograms. Communications occur between these 

stages. 

When considering how to divide up a problem into parallel subproblems (a de-

composition scheme) there are two useful characterisations that can be made, 

complexity and data-coupling. 
7.  

The complexity of the subprogram is whether the parallelism is at the level of 

individual arithmetic operations, simple procedures or entire subprograms. This 

is a measure of how often communication stages occur. A program that uses 

a parallel bubble sort has a low complexity. The subproblems only consists of 

swapping two numbers depending on their relative values. Other problems only 

have high complexity parallelism. For example, a parallel chess program can 

evaluate a number of possible board positions in parallel though there is little 

parallelism at any lower level. The more complex the subproblem is, the longer it 

will take to compute each subproblem and the less frequently the processors will 

have to communicate. 

Data-coupling is a measure of how much data has to be moved in the commu-

nication stages. If most of the results of one stage are required by most of the 

subprograms in the next stage then the problem is strongly data-coupled. If most 

of the intermediate data can be left on its processor of origin then the problem is 
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only loosely data-coupled. In shared memory machines, where all of the data is 

available to all of the processors this seems not to be a problem. However, unless 

some form of distributed memory system is used, a shared memory machine will be 

limited by the speed of its single memory bank; in a shared memory machine with 

multiple memory systems the problem of processor to processor communication 

is replaced by a memory to processor communication problem. 

A typical loosely-coupled problem is a task farm. In this case, the problem consists 

of a number of completely independent problems; no data need be exchanged at 

all. The processors only need to communicate with the outside world when loading 

their initial data and when outputting their results. This is the simplest form of 

parallelism, but it is also the most efficient. There are many applications that 

can be successfully implemented as a task farm. One example is analysing the 

events produced by a HEP experiment. The analysis of a single event has virtually 

no inherent parallelism and cannot even be vectorised. However, because of the 

large number of events that need analysing it is possible to use a task farm [7, 8]. 

In lattice gauge theory, a task farm approach can be used to explore the phase 

diagram of a theory. Instead of attempting to implement the simulation code in 

parallel, each processor runs an independent simulation with different coupling 

values in order to span the phase diagram[91. 

An example of a tightly coupled problem is a fast Fourier transform. In each of 

the ii. stages of a 2 n  point fast Fourier transform, two numbers from the previous 

stage are combined to give a pair of numbers for the current stage. This has an 

obvious n/2 parallelism. Unfortunately, the pairs of numbers combined are never 

the same in two different stages, so at least half of the data has to be exchanged 

in every stage. - - - 

In lattice gauge theory, the complexity and the data coupling of the problem are 

connected. The basic form of parallelism in lattice gauge theory is a geometric 

parallelism. Most of the data is located at the points of the lattice; the operations 

that modify this data in general only depend on the values of data at each point, 

and at the neighbouring lattice points. There is an obvious way to implement 

this in parallel; regions of the lattice are allocated to separate processors. If a 

single lattice point is allocated to a single processor, then the complexity of the 
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subproblem is quite low and the data coupling is quite quite high because all of the 

results from each step will have to be communicated to neighbouring processors. If 

a region containing a large number of lattice points is allocated to a processor then 

the complexity is quite high (proportional to the volume of the region), but the 

data coupling is increased by a much smaller amount (proportional to the surface 

area of the region). This means that lattice gauge theory can be performed on a 

wide variety of parallel machines provided the decomposition scheme is tuned to 

match the computation/ communication abilities of the architecture. 

There are two main limitations that must be considered. The first is a limitation 

on the minimum size of the lattice. It is obvious that a given lattice cannot be 

efficiently simulated on a parallel machine with more processors than the lattice 

has sites. Once this limit is reached, the size of the lattice must be increased along 

with the size of the machine otherwise efficiency will be lost. Unfortunately, the 

computer power needed to perform the simulation increases faster than the power 

of the machine. This is because the dominant mathematical operation is a matrix 

inversion, the difficulty of which does not scale linearly with the size of the system. 

Using the Hybrid Monte Carlo algorithm the number of floating point operations 

needed to generate independent configurations N1 has been estimated to scale as 

N1 V' °5  where V is the size of the system [10}. A parallel computer designed 

for lattice gauge theory is therefore likely to need the individual processors to be 

quite powerful. The second limitation comes from the ratio between the amount 

of communication and calculation that is needed. This is a simple surface-area-to-

volume ratio that depends on the number of lattice sites assigned to each of the 

processors. As the size of the local lattice is decreased, the fraction of time spent 

performing communications increases. The maximum sustainable communication-

to-calculation ratio varies greatly between different designs of parallel machines. 

On some machines there may be a minimum local lattice size such that additional 

communications will make the calculation go slower if more processors are added to 

the problem. On other machines it may be perfectly feasible to go all the way down 

to a single lattice site per processor. This limit also depends on which theory is to 

be simulated. QCD is based on SU(3) multiplication which requires 198 floating 

point operations to multiply a single two-spinor by a gauge element. QED on 

the other hand, is based on the U(1) gauge group and only requires 6 floating 

point operations to perform a similar operation. On the other hand, the required 
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communication will only change by a factor of 3 going from QED to QOD. This 

means that QOD can run efficiently on computers with a lower communication to 

calculation ratio than is possible for QED. In general, the complexity and price of 

the communication system increases with the number of processors the system is 

able to support. So there are price benefits to making a machine with a smaller 

number of high performance processors. 

1.3.1 Hardware 

In general, a parallel computer can be thought of as a communication system 

connecting separate hardware components. Parallel computers have been con-

structed in an enormous variety of ways; any system invented to classify them will 

inevitably end up grouping some very different architectures together. For the 

purpose of this discussion, I intend to concentrate on few selected types of parallel 

computer and how their hardware impacts on the software environment. 

Vector processors 

Vector computers take advantage of the fact that most programs will repeat 

a set of simple operations on a large number of different pieces of data. They 

exploit parallelism at the lowest possible level, that of individual arithmetic op-

erations (low complexity decomposition). A vector computer uses a number of 

processing elements connected in a pipeline to perform these simple operations in 

parallel. Though it exploits parallelism internally, a vector processor attempts to 

behave as much as possible like a very fast single processor. The vector pipelines 

can be thought of as a number of separate (though highly specialised) processing 

elements. Most vector machines have special vector registers to hold interme-

diate results and reduce the need to access the external memory system. If a 

vector machine is thought of as a parallel computer, the data pathways between 

the vector pipelines and these vector registers form the communication system. 

Because the parallelism is introduced at such a low level, a level that is already 

under the control of the compiler, it is possible to automate most of the effort 

involved in porting a program to a vector machine. Vector machines have the 

advantage that they are relatively easy to program and vectorisable programs are 



easily portable between different types of vector processor. In general, vector pro-

cessors are programmed in conventional sequential programming languages. The 

compiler analyses this code and looks for loops where each iteration of the loop 

is independent of the results of all the other loop iterations. Each of these loops 

is suitable for vectorisation (vectorisable) and the compiler produces code to exe-

cute them in parallel. This means that the same programs that were written for 

vector machines can be run without modification on a sequential processor. Even 

though the same languages are used for sequential and vector computers, different 

programming styles are needed to get the maximum performance out of the two 

types of machine. In order to obtain the maximum performance from a vector 

processor, a program must have been written, or re-written, to contain as many 

vectorisable sections of code as possible. Otherwise the vector hardware will only 

be used for a small fraction of the code. This is often done at the expense of intro-

ducing large vectors of temporary variables. On sequential machines, vectorisable 

codes may run more slowly than a code written without vectorisation in mind. 

This is because of the vectors of temporary variables. On a vector machine, these 

variables can be easily implemented using the vector registers. On a sequential 

machine the vectors have to live in the main memory. There are two ways this 

can slow the program down. The first is that this may require more memory than 

is available. In this case the computer will have to continually swap data from the 

memory onto disk, a very wasteful and time consuming operation. The second 

potential slowdown is that the vectors will prevent caching from working properly. 

A cache is a region of particularly fast memory that automatically retains the val-

ues of recently accessed variables on the assumption that they are likely to be 

required again in the near future. Where these variables are reused a short time 

later the cache is able to provide the values much more rapidly than they could 

be fetched from main memory. As the temporary vectors are very large and each 

variable in them is only used in a single loop iteration, none of these values will be 

reused before the cache replaces them with more recent data. If you consider disk 

storage to just be a slower form of memory, excessive cache misses and excessive 

swapping are much the same thing. At the moment, all parallel computers share 

this problem in one form or another. Programs have to be modified in different 

ways to take full advantage of the particular parallel hardware being used. Of 

course, these disadvantages can be overcome by using a smarter compiler that is 

capable of re-writing vectorisable code to run efficiently on the scalar machine. 
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Most types of parallel computer are usually more difficult to program than vector 

processors. 

Data coupling is not an issue for vector machines, because the vector pipeline is 

thought of as a single fast processor and is attached to a single memory system. 

By definition, there is never any data dependency between the parallel sections 

of a vectorisable loop, so no communication is needed within a loop. At the end 

of each loop all the resulting data is written out to the main memory so there 

is never any danger of not having data accessible when needed. The price paid 

for this simplicity is the need to use a fast, sophisticated and expensive memory 

system. The maximum performance of a conventional vector processor is limited 

by the maximum performance of this memory system, though it is possible to use 

vector technology to construct high performance processing nodes for a distributed 

memory parallel computer. 

SJMD processing 

SIMD stands for Single Instruction stream Multiple Data stream. A SIMD 

computer consists of a large number of identical processing elements (PEs). All 

of the elements are constrained to perform the same operations at the same time 

as all of the other elements. Instructions are broadcast from a central controlling 

processor. An individual processing element is only capable of performing oper-

ations on data stored in its local data store. The data structures for a problem 

are distributed over the processing elements. If an operation requires data stored 

on a different PE then a communication must take place. Because all of the PEs 

perform the same operations at the same time, all of the PEs must simultaneously 

perform input and output operations when data is moved between PEs. The basic 

communication operation is therefore a shift, see figure 1.3. 

SIMD computers have many similarities with vector processors. The main differ-

ence between vector processors and SIMD machines is that SIMD machines use 

distributed memory. This overcomes the memory bandwidth limitation of vector 

machines and enables SIMD machines to be scaled up to use very large num-

bers of processors. A good example of this is the Connection Machine [11]. The 

SIMD model is a direct hardware implementation of the Data-parallel program- 
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ama 
Figure 1.3: Dataflow in a SIMD architecture. 

The communication pattern in a SIMD architecture is a data shift where every 

processors outputs some data at the same time as receiving some 

ming model'. Much of the success of this type of computer is a reflection of the 

success of the data-parallel programming model. 

MIMD processing 

MIMD stands for Multiple Instruction stream Multiple Data stream. This is 

a more flexible kind of parallel computer consisting of a number of independent 

processors that are capable of communicating with each other in some fashion. 

Each processor can be running different pieces of code, and even when there are 

multiple copies of the same piece of code, separate processors may be executing 

different sections of the code at any one time. Each processor has its own local 

data store that can only be accessed directly by that processor. MIMD computers 

can exploit parallelism at much higher level (more complex subproblems) than 

vector or SIMD machines. MIMD computers are therefore much more flexible, 

for example it is not possible to implement a simple task-farm on vector or SIMD 

machines. The parallelism is at the program rather than the instruction level. A 

MIMD computer can also be programmed using the data-parallel programming 

'described in a later section 
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model. All that this requires a compiler that is capable of translating a single 

data-parallel program into a set of communicating subprograms. There are also 

computer languages such as OCCAM [12] that are specially designed for MTMD 

processing. These languages have inter-processci communications built into the 

language. It is also possible to program MIMD computers in conventional sequen-

tial languages. In this case the inter-processor communications must be invoked 

as procedure calls. A separate program could be provided for each of the pro-

cessors. It is more usual to have have most of the processors running the same 

code but having responsibility for different regions of the data. If this code is 

written carefully, so that it is easy to change the number of processors, it is still 

possible to run the code on a sequential machine. This is just the special case of 

proCcSSOrS = 1. 

The Transputer 

Transputers are a family of microprocessors purpose built for MIMD parallel 

processing applications. Each Transputer has four bi-directional communication 

links that can be used to connect it to other Transputers (see figure 1.4). In 

addition they are specially designed to support multi-tasking. They have very few 

registers, so there is very little data to be saved/loaded when the processor switches 

between different tasks (a context switch). When one process is suspended, for 

example while it is waiting for a communication to finish, the decision about which 

of the other currently active processes is to be run is made by hardware on the 

chip. This is in contrast with multi-tasking systems on other microprocessors - 

which usually have to run some supervisor program to make these decisions. This 

means that it is very simple and efficient to have several very simple sub-programs 

running on a single Transputer at the same time. On other microprocessors the 

added delays of context switching makes multi-tsking very inefficient, especially 

for small lightweight jobs. This is important for parallel processing because of the 

inter-processor communications. Processors have to cooperate with each other 

when moving data in order to ensure that the data is up to date and ready to 

be sent. It is very desirable for the processors to be able to switch quickly from 

their own calculations to handle data from other processors, so that the other 

processors will not be delayed. 
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All of the work presented in this thesis has been performed on MIMD computers 

constructed using T800 Transputers. Two different types of machine were used: 

a purely Transputer based machine that uses T800 transputers to perform all 

of the computation, and a combined i860/Transputer machine constructed out 

of composite nodes, each containing two Transputers and a single i860. In the 

1860 machine, all of the calculations are performed using the i860 processor and 

the Transputers are only responsible for inter-processor communication. These 

two machines are significantly different and need to be programmed in different 

ways. The T800 Transputer has a sustained floating-point performance of ap-

proximately 1 Mflops. Using hand coded assembly language, the i860 can sustain 

approximately 30 Mfiops. The composite processing node is therefore 30 times 

faster than a single Transputer but has only twice the communication bandwidth. 

A Transputer is capable of using its communication links at the same time as it is 

performing calculations. The on-chip memory enables it to perform calculations 

without using all of its available memory bandwidth. It is therefore possible to 

perform a certain amount of inter-processor communications at the same time 

as calculations, without affecting the performance of the processor. These two 

operations use separate parts of the processor and only interfere when they both 

attempt to access memory at the same time. It is therefore highly desirable to 

attempt to overlap the communications with some other task that can usefully 

use the processor. The i860 on the other hand, usually saturates memory band-

width only running calculations, so there are no memory cycles free for overlapped 

communications. In both cases, it is desirable to reduce the amount of commu-

nication as much as possible. The main disadvantage of constructing a MIMD 

computer out of T800 transputers is that the communication links are point to 

point connections and there are only four of them. In order to send a message to 

a processor that is not connected directly to the local processor the message must 

be forwarded by the intermediate processors. This makes T800 code very complex 

as it often has to include large amounts of code whose only purpose is to forward 

messages. This can also have an impact on the performance of the intermediate 

processors. The next generation of transputers is supposed to implement com-

munication using a separate routing chip. These routing chips can be connected 

to processors and other routing chips, when a processor wishes to communicate 

with another processor i,t passes the message to the nearest routing chip. The 

routing chips then make all of the decisions about how to get the message to its 
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destination and the message is passed between routing chips without having to 

pass through any processors other than the sender and receiver of the message. 

1.3.2 Programming models 

Sequential code 

Most existing programs have been written in conventional sequential languages 

without any thought to parallelism. It would be very nice if these programs could 

be automatically ported to parallel computers using compiler technology. This 

is the approach used for vector machines, even though a different programming 

style is needed to get the most out of a vector processor. This is a very difficult 

trick to achieve. The task is much easier for a vector machine than for other types 

of parallel processor because at the end of a vectorised loop all the results are 

written out to a single memory system so the compiler does not have to try and 

match subprograms to the processors containing appropriate data, and each loop 

can therefore be compiled completely separately. 

Data parallel 

Data parallel programming languages are usually extensions of conventional 

programming languages. These extensions usually take the form of operations 

that operate on entire arrays rather than individual variables. Similar extensions 

have now been incorporated into the new Fortran-90 standard [13]. This makes 

the parallelism in the code much more explicit and has the beneficial side effect 

of making the programs clearer and easier to write. For example, the following 

fragment of sequential code: - 

DO I = 1,NX 

DO J = 1,NY 

DOK= 1,NZ 

A(I,J,K) = (14.0 * B(I,J,K)) + c(I,J,K) 

ENDDO 

ENDDO 

ENDO 
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can be replaced by the single statement: 

A = (14.0 * B) + C 

The compiler now has to allocate elements of these arrays to different processors 

in such a way as to minimise the amount of communication needed. A reasonable 

heuristic for achieving this is to make sure that equivalent elements from arrays 

of the same shape are always allocated to the same processor. As with vector 

processors, the compiler can only work well if the program is written in a particular 

style. It is quite possible to automatically convert vectorisable programs into data 

parallel programs, though the differences in programming style mean that the 

results are liable to be less than perfect. Data parallel languages have usually 

been implemented on SIMD machines. It is much easier to compile code where 

the size of the arrays matches the number of processors exactly; there is then 

no need to generate different code to take account of array elements at processor 

boundaries. Some languages force the programmer to obey this restriction so 

the problem must be manually decomposed into arrays of the correct size, for 

example in DAP Fortran [14]. In other cases the computer emulates a computer 

of the required size by implementing a number of "virtual processors" on each 

real processor, for example CM Fortran[15]. Most existing data parallel compilers 

therefore tend to produce a low complexity highly data-coupled decomposition 

which requires a high performance communication system. In SIMD machines, it 

is common to assume that the most frequent form of communication is a data shift 

along array axes and to optimise the compiler and communication system for these 

operations. A more efficient use of the communication system can probably be 

achieved by allocating regions of the arrays to separate processors and treating the 

boundary points separately. This would require much more complex compilers, 

but may be necessary to implement data parallel languages on general purpose 

MIMD machines where the communication system is less specialised. Most of the 

complexity in designing a good data parallel compiler is due to the need to reduce 

the amount of communication; on a hardware platform with a high performance 

communication system the compilers can afford to be much simpler. 
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Explicit message passing 

This is the programming environment most commonly found on distributed 

memory MIMD computers. A separate program is written for each processor and 

data is communicated between processors using explicit communication function 

calls or language constructs. This is a highly flexible programming model, but it 

can often be very difficult to port existing code to this kind of software environ-

ment. This difficulty can often be reduced by structuring the program, so that 

it behaves like one of the simpler programming models such as a task farm or a 

data parallel program. 

1.4 Lattice gauge theories in parallel 

Parallel computing can be used for lattice gauge theory. The parallelism in the 

problem is a direct consequence of the physics being simulated. The local nature 

of the interactions together with translational invariance means that any opera-

tions that acts on the lattice variables can be constructed out of local operations, 

and these local operations will be the same for all points on the lattice. The data-

parallel programming model is therefore ideally suited to lattice gauge theory. 

They can also be simulated in parallel using a geometric decomposition and ex-

plicit message passing. The lattice is divided up into space-time regions and each 

region is assigned to a different processor. Apart from the lattice points on the 

boundaries between regions, each processor will be able independently to update 

its own part of the lattice. In order to update the boundary points, information 

must be communicated between the processors that share a common boundary. In 

an MIMD computer running an explicit message passing environment, the simula-

tion code that runs on each of the processors is almost identical to a conventional 

sequential simulation of a smaller lattice. The only difference is in the boundary 

conditions for the lattice. 

Gather-scatter 

In order to update a single lattice point, data is required from neighbouring 

lattice sites. Lattice points on the boundary may have to request this data from 
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some other processor. It is possible to separate lattice sites into internal sites 

and boundary sites and to write different code to handle each case. This makes 

the code very complex and difficult to write. It also means that there is twice 

as much code to optimise. It is much simpler to divide the data collection into 

separate routines. Outside of these routines all of the sites can then be treated in 

a similar fashion. On a single processor, data collection can be performed using 

gather-scatter operations, see figure 1.5. A gather operation has the form: 

result[i] = source[table[i]] 

A scatter operation has the form: 

result[table[i]] = source[i] 

If we desire to copy data from one array to another, shifting the position of the 

Figure 1.5: Data collection on a single processor. 

On a single processor all of the data collection can be performed with a single 

gather-scatter operation. 

data by a single lattice site, four steps are needed. 
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. Internal data points must be copied between the arrays. 

• Local points needed by other processors must be collected. 

• Boundary points are exchanged between processors. 

• The points imported from other processors are copied into the final array. 

The first two stages both involve a scatter operation. It is possible to combine these 

stages into a single operation at the expense of storage space. The destination 

array must be made a little larger, large enough to hold the local data and an 

additional set of boundary data. A single scatter operation can then be used 

to copy the internal lattice points, and to collect the boundary points into the 

extra "tail" at the end of the array; see figure 1.6. This "tail" can then be used 

as a communication buffer to transfer the boundary points to the appropriate 

processor. The use of gather-scatter operations in this manner simplifies the code 

to a great degree. The disadvantage of this approach is the extra time taken to 

copy the local data between the arrays. As the data was already accessible in 

the original array this data shuffling seems like a waste of time. In most cases it 

is possible to avoid this problem by combining the gather-scatter operation with 

part of the calculation. Instead of just being moved from one array to another the 

indirect addressing is inserted into one of the existing operations. 

shift[i] = sourcel[table[i]] 

result[i] = f(source2[i], shift[i]) 

becomes 

result[.iJ = f(source2 [i], source  [table [i]]) 

This removes all of the extra memory access cycles except those used to read the 

table. If the gather-scatter table is implementing a shift by one lattice site, as 

is usually the case for lattice gauge theory, it is possible to reduce these memory 

cycles as well. In this case, the table will contain large sections where the indices 

are in sequence. These sections need only be stored as a pair of numbers, the first 

number in the sequence and its length. This form of table is only applicable if the 

processor is capable of calculating the sequence faster than it can read a number 

in from the table. 

39 



my 'tail' 

Data is moved 
between 

processors 

New data 

is placed in 

the array body 

Figure 1.6: Data collection on a parallel processor. 

On a parallel machine data collection requires two gather-scatter operations and 

an inter-processor communication. 
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Specific examples of how lattice gauge theories can be implemented on distributed 

memory parallel computers are given in later chapters. A dynamical fermion 

simulation of QED using a T800 based MIMD computer is described in chapter 

3. The implementation of QCD codes on a composite i860/T800 computer is 

described in chapter 4. 
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Chapter 2 

Random number Generators 

All of computational particle physics, and especially lattice gauge theory, makes 

heavy use of Monte-Carlo algorithms. By definition a Monte-Carlo algorithm 

makes use of random numbers. Unfortunately true random numbers are hard to 

produce. It is possible to produce random numbers using specialised hardware. 

For example, amplifying the electronic noise of a reverse-biased diode. This is 

not really a practical approach. This kind of random number hardware is hard 

to build without any bias and true random numbers make programs very hard 

to debug because it is impossible to repeat exactly any single program run. The 

usual solution to this problem is to use a pseudo-random number generator. This 

is an iterative algorithm that generates a sequence of numbers that shares enough 

of the statistical properties of a true sequence of random numbers to be usable 

in a Monte-Carlo algorithm. There are of course always some correlations in 

the sequence, the iteratiye nature of the algorithm ensures this. However, if the 

algorithm 'is carefully chosen, these correlations are unlikely to effect the results 

of the simulation. 

All pseudo-random number algorithms share a number of common features. The 

state of a random number generator is defined by the value of the set of variables, 

state variables, that are preserved between calls to the random number generator. 

These variables are often referred to as the random number seeds. It is less 

confusing if this term is reserved for the variables used to initialise the state of the 

random number generator at the start of the program. In a lot of cases the seed 
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and the state variables will be the same. Each time the random number generator 

is called, the state variables are transformed using an update transformation that 

changes the state of the generator. The next number in the sequence is generated 

from the new state variables using an output function. There is not necessarily a 

one-to-one mapping between a number from the sequence and the corresponding 

state of the generator. Because there is only a finite number of possible states the 

sequence must eventually repeat itself. The number of iterations that make up one 

such repeat is the period of the generator. If T is the update transformation, r = 

IT', T 2 , T 3 ,. . . TN} forms a cyclic group, where N is the period of the generator, 

and the state variables form a representation of the group. 

2.1 What is random? 

As was mentioned in the previous section a pseudo-random sequence is only an 

approximation to a true random sequence. It is therefore essential to be able 

to make some quantitative statements about how close to random a particular 

sequence is. Any potential random number generator should have its output 

tested using a series of statistical tests [16]. The choice of which statistical test 

to use is rather arbitrary. However a large body of experience has been built up 

in this area [16, 17]. In addition to empirical tests it is also possible to look at 

the theoretical properties of the random number sequence [16]. This analysis is 

usually done in terms of the frequency of occurrence of numbers, number-pairs, 

triples etc. A number sequence is k-distributed if all possible sequences of k 

numbers are equally likely in the number sequence. 

For real numbers between 0 and 1 the definition of k-distribution is 

for all choices of real numbers jui, v, with 0 < yj < vi < 1 for 1 <i C Ic. 

For b-ary numbers, positive integers less than a maximum value b, the definition 

of k-distribution is 

Pr(XX+i . . . Xfl+k+1 = xis2... 5k)= 11b k, 
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for all b-ary numbers x 1 x2  . . . xj. 

The distribution number of a sequence is the largest integer It for which the se-

quence is k-distributed. If a sequence of numbers is k-distributed then it will 

also be n-distributed for all n: 0 < it < It. A reasonable definition of a truly 

random sequence is a sequence that is co-distributed. Different applications will 

require different statistical properties from a random number generator. However 

it is reasonable to assume that the statistics of short sequences of numbers are 

of particular importance. For example, pairs of numbers may be used to gener-

ate random numbers from a Gaussian distribution, or a series of numbers may be 

used in generating a single random gauge element. The information content of the 

state variables puts a limit on the distribution number of the generator. If N(k) 

is the number of possible k-tuples, Itmax  is the distribution number of the sequence 

and M is the number of different states that map onto any given number then 

M > N(kmax - 1). This is because there are N(k - 1) k-tuples beginning with the 

particular number. As each state only occurs once in a single period there must be 

N(k - 1) states that map onto that number for the sequence to be k-distributed. 

The value of M is therefore important as a limit on the distribution number of a 

generator. The output function is usually kept as simple as possible so that the 

program will run quickly. In most commonly used generators the state variables 

are either the same as the most recent number produced or are a history of the 

last p numbers produced. In this last case p > L. If the value of M cannot 

be directly calculated, an estimate of its value can be made using the period of 

the generator. If P is the period of the generator and ji is the number of possible 

output values, 232  for a 32 bit number, then by assuming that all such values are 

equally likely, ie the generator is 1-distributed, we can show that M C P/ 1a. 

Some algorithms, for example linear congruential generators, 1  have better statis-

tical properties in the higher order bits of the number sequence. If the low order 

bits are discarded to produce numbers with a lower resolution the distribution 

number can be increased. By discarding the low order bits, the output function of 

the algorithm has been changed, which has increased the value of M and therefore 

relaxed the limit on the distribution number. 

'see later section 
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The lattice structure of a generator is one of the simplest empirical tests of a 

random number generator. Successive k-tuples from the number sequence are 

taken to be points in a k-dimensional space. A two dimensional cross section of 

this space is plotted and examined to see how well the plane is covered. A plot 

consisting of widely separated lines of points is an indication that the k-tuples are 

not random. There is a strong connection between the distribution number of a 

number sequence and its lattice structure. If k is less than the distribution number 

of the sequence the lattice plot is guaranteed to be evenly covered, because each 

of the possible k-tuples that make up the plot is equally likely. 

2.2 Parallel random number generators 

The problems associated with the design of good random number generators have 

been known for some time and a body of useful algorithms has slowly been built 

up. Most of this work has been for conventional single processors. The purpose of 

this chapter is to investigate the use of these algorithms in a parallel computing 

environment. Because of the difficulty of designing a high quality random number 

generator, I will restrict the discussion to parallel versions of well known single 

processor algorithms. 

Parallel computation can introduce a number of complications to the design of 

a random number generator. In a parallel computer consisting of a number of 

separate processors, there will have to be a separate sequence of random numbers 

generated on each processor. These sequences will all be used for the same simu-

lation. This means that correlations between different sequences will have to be 

prevented as well as correlations within each sequence. There are a number of 

approaches that can be used to get round this problem. In principle it is possible 

to use a separate algorithm, or variations of a single algorithm for each of the pro-

cessors. The amount of work needed to test a new algorithm makes this option 

rather difficult to achieve in practice. This approach is also intrinsically danger-

ous. A problem with the random numbers on a small fraction of the processors 

in a simulation is enough to invalidate the results, but such a problem would be 

much harder to find than one where all the processors shared the same problem. 
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Parallel random number generators are usually modified versions of a single pro-

cessor random number generator. This usually involves distributing the single 

processor number sequence over the processors. This can be done in two ways. 

The first method is to put each successive number from the sequence on a sepa-

rate processor, successive distribution. The potential problem in this case is that 

the sequence produced on each of the individual processors is of a much poorer 

quality than that produced by the original algorithm. If the original algorithm 

had a distribution number of kmax the local sequence produced on a n processor 

machine can only have a distribution number of k.,./n. This is only a problem 

if the statistics of the local sequence are more important than the correlations 

between the processors. As a rough rule of thumb, this depends on how fine 

grained the parallelism is. On a coarse-grained system where separate processors 

are responsible for relatively independent parts of the calculation then successive 

distribution is obviously a bad idea. For a fine-grained system, such as a vector 

processor or certain types of SIMD architecture, this is less of a problem. In these 

cases the random numbers are likely to be used in much the same way as they 

would have been in a single processor sequential machine. Even in this case it 

would still be necessary to check the application for any code that explicitly uses 

a set of random numbers at the same time, for example Gaussian random numbers 

or random gauge elements. 

The remaining option is to use the same conventional algorithm on all of the pro-

cessors and to select the starting state for each processor in such a way as to min-

imise the correlations between the processors, block distribution. On distributed 

memory MIMD machines it seems reasonable to assume that the statistics of the 

local sequence are far more important than the correlations between processors. If 

the system being simulated has local interactions then short distance correlations, 

between neighbouring points, are more important than long distance ones. This 

kind of problem is usually implemented on distributed memory MIMD machines 

using a geometric decomposition. In this case most neighbour-pairs will not cross 

ptocessor boundaries, so correlations local to a processor are more important 

than those between processors. A block distribution scheme is appropriate in this 

case, because the local sequence has the same statistical properties as the original 

sequential algorithm. 

46 



2.3 Linear Congruential Generators 

Linear congruential generators are one of the most widely used forms of random 

number generator. They generate a sequence of integers, x 0 , x 1 , x 2 , x3 ,... using 

the transformation: 

(ax + b) mod in, 0 < xi <in 

Linear congruential generators have been around for a long time and are very 

easy to implement. This means that their behaviour is well understood. Most 

of the default generators provided with computer systems are of this type. The 

quality of the number sequence is very dependent on the value of the constants 

a, b and in. Luckily there is a large body of literature on this subject [16]. The 

small number of state variables, a single integer, severely limits the quality of the 

resulting number sequence. The integers x i  cannot be greater than 1-distributed. 

A good linear congruential generator is constructed by choosing the constants a, b 

and in so that the high order bits of the output have a high distribution number. 

Any element of the sequence can be generated using: 

(Cx o  + a
- 

 1 b) mod in 
a — i 

The relation: 
a7' - 1 

x+7' (a7'x,.+ a_i mod m 

shows that a parallel implementation using successive distribution is equivalent 

to changing the values of a and b. This will almost always have disastrous conse-

quences for the number sequences produced by individual processors. 

When using block distribution each copy of the generator must have a different 

value for its starting seed. A parallel implementation needs to provide some 

algorithm for selecting these starting seeds so as to reduce correlations between 

the processors. If a pair of generators have starting seeds, x 0  and yo  such that 

Yo = x0  + K then the two sequences will be related by: 

(x + aThK) mod in 
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This shows one potential problem that should be avoided in a multi-processor 

calculation. The difference between the results of the two generators depends 

only on the initial difference between their seeds, and on the iteration number. 

Therefore if a set of generators have starting seeds with equal spaces between 

them then the sequences will remain equally spaced modrn. This suggests that 

in order to use a linear congruential generator in parallel it is necessary to ensure 

that the starting seeds for each processor do not have equal spaces between them. 

2.4 Linear recurrence generators 

Linear recurrence sequences are a central part of many random number generators. 

The general form of these sequences is: 

= (ao  + ajX_ 1  + ... + akX_k) mod p 	 (2.12) 

The linear congruential generator described earlier is obviously a special case of 

this algorithm. We can set the constant a0  = 0 without any loss of generality by 

noting that: 

X, 1  = (ao  + a1 X + . .. + akX_(k_1)) mod p, 

substitute for a0  using equation 2.12; 

X, i  = ((1+ ai )X +. _.  + ( ak - ak_1)X_(k_1) - akX_k) mod p, 

X,,. = ((1 + ai )X_i + ... + (a - ak_1)X_k - akX_(k + l)) mod p. 

The general form of a linear recurrence relation is therefore: 

X, = ( ajX_ i  + . . . + 	mod p. 	 (2.13) 

The theory of finite fields [18] shows that if p is prime it is possible to find values 

for a 1 , a 2  . . . ak such that the period of the sequence is p - 1. If this is the case 

the sequence Xn  is going to be a very good source of random integers in the 

range 10, p.j The state of the generator is equivalent to a k-tuple from the number 

sequence. With the exception of the zero tuple that maps to itself under the 

update transformation all possible k-tuples occur once during the period of the 

generator. This means that as near as to make no difference the sequence is k-

distributed. The problem is that it is very difficult to find suitable values for the 



constants a. The constants a must be the coefficients of a primitive polynomial 

modp. The most efficient known test to see if a particular polynomial is primitive 

involves finding the prime factors of (pk - l)/(p - 1). For large values of p and k 

this becomes impractical [19]. When It is large and a large number of the constants 

ai are non zero then this kind of generator will probably be too slow for Monte 

Carlo simulations. 

A number of the algorithms discussed in the following sections are special cases 

of the one defined in equation 2.13, so it is worthwhile looking at some of the 

properties of this kind of sequence. 

The state of the generator. is most easily coded as a vector of It integers in the 

range [O,p]that stores the last It numbers in the sequence X.- I ....  

The zero tuple X_ 1  = ... = X,-_j, = 0 always maps onto itself regardless of the 

values of p or the values of the constants {a o ,.. . , aj}. The maximum possible 

period for the sequence is therefore p k - 1. The maximum possible distribution 

number is It - 1, or It if we are prepared to ignore the non-occurrence of the zero 

k-tuple. 

The update transformation T can be written as a matrix acting on the state 

vector. For example when It = 5. 

o 	i 	o 	0 	0 X,_4  

o 	0 	1 	0 	0 X,._ 3  X,_ 2  

o 	o 	0 	1 	0 X,,._ 2  mod p= X,_ 1  (2.14) 

o 	0 	0 	0 	1 X,_ 1  X, 

as 	a4 	a3 	a 2 	a 1  X,, X. 1  

The transformation T is represented by the matrix T raised to the power ii using 

arithmetic mod p. Compared to the simple update rule given in equation 2.13, 

performing the update using the matrix T is very expensive in terms of computer 

time and memory. This matrix form has the advantage if a large number of 

updates is to be performed in a single step, for example as a way of separating 

a number of parallel generators in a block distributed scheme. The size of the 

49 



period for this kind of sequence can be so large that it can take years 2  for repeated 

application of equation 2.13 to traverse even a small fraction of the sequence. Once 

the number of iterations becomes large it is quicker to calculate the appropriate 

transformation matrix. Transformation matrices can be combined using matrix 

multiplication. 

Tm XT = 

This multiplication takes the same time regardless of the values of in and n . If x 

is a number in the range [o,2+1 - 1) and 

x = LsiT 

se{O, 1} 

then the matrix T can be calculated using. 

Tx= 
	 (2.15) 

It takes q matrix multiplies to create the set of matrices T 2' by repeated squaring. 

So the matrix for any value of x can be generated in at most 2q matrix operations. 

For really large powers of T the same approach can be used but decomposing x 

using a higher base than 2. This enables us to generate a matrix for any number 

of iterations within a reasonable length of time. 

The update transformation is a linear transformation. Any linear combination 

of initial state vectors (seed vectors) will result in a state vector for the sequence 

that is the same linear combination of the sequences generated by the original 

state vectors. This gives us a constraint on the use of this kind of generator in 

parallel when using a block distribution scheme. If the state vectors on a number 

of processors are linearly dependent then the sequences produce will show the 

same dependence. It is therefore advantageous to choose the initial state vectors 

to be linearly independent. This can only be achieved if n7,,., 15 Ic where n,,70  is 

the number of generators running in parallel and Ic is the number of values stored 

in the state vector. This is another reason to choose a generator with a large state 

vector. Though the ideal situation is to have all of the state vectors linearly inde-

pendent this is probably a far stronger condition than is needed for most types of 

2 or multiples of the age of the universe 
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simulation. It will usually be sufficient to ensure that simple relations between two 

or three sequences are avoided. There is another possible correlation that is much 

harder to guard against. If we have to prevent correlations within short distances 

along each individual sequence and between numbers generated simultaneously 

by separate sequences we should also be concerned with correlations between the 

numbers from two sequences generated at slightly different times. 

Algorithms of this kind are not suited to successive distribution on distributed 

memory parallel machines. Either the state of the generator will be distributed 

over a number of processors, requiring a communication step to perform an update, 

or the generator will have to generate the full sequence on all processors and select 

the appropriate elements from this sequence; thus preventing the speed of the 

generator from scaling with number of processors. 

In order to use a block distribution we must find a way of reducing the correla-

tions between processors as much as possible. We have to avoid having any two 

processors close together in the number sequence. In addition we have identified 

linear dependence between state vectors as an undesirable correlation. Because 

the space of valid state-vectors is very large, a set of randomly chosen state-vectors 

has a very high probability of being a good starting place for the generators in a 

parallel simulation. Ideally such a set of state-vectors should be checked to make 

sure they are all linearly independent of each other. An alternative approach is 

to generate a transformation matrix for a very large number of updates, choose 

the initial state for the first processor at random and generate the initial states 

for all the other processors by repeated applications of the transformation matrix. 

The transformation matrix can be precalculated to reduce the startup time for 

the generator. Any linear dependence between the processors is independent of 

the choice for the initial state of the first processor, so this can be checked when 

the matrix is calculated. 

2.4.1 Shift register generators. 

Linear recurrence generators with p = 2 are of particular interest. Primitive 

polynomials mod 2 are relatively easy to find because the value to be factored into 
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primes is relatively small. In this case the algorithm becomes the shift register 

algorithm used for generating a sequence of random bits. The name comes from 

a simple method of implementing the algorithm in hardware using a shift register 

and xor gates (see figure 2.1). Addition mod2 is the same as the exclusive-or 

operation. The exclusive-or operation is also found in the instruction set of most 

xn mjxn-i sjxr1_2 PILXn3 
xn_4F__ 

Xn+1 = Xn-4 + Xn-2 mod 2 

Figure 2.1: A shift register generator 

The update transformation X, = X,._ 5  + X_3  mod 2 can be implemented with 

a shift-register and an xor gate. 

digital computers, so shift register generators are therefore also easy to implement 

in software. Shift register generators are used to generate random bits. It is very 

tempting to use the same algorithm to generate random words by using several 

bits from the random bitstream of a shift register generator. However it is worth 

noting that the distribution number of the resulting generator will be reduced by 

a factor of the wordsize. This should therefore only be contemplated if the size of 

the shift register is very much larger than the wordsize. 

2.5 Lagged-Fibonacci generators. 

Much recent work has been done on lagged-Fibonacci generators, much of it by 

G. Marsaglia [20]. Used properly they can produce very high quality random 

sequences with very long periods. Unlike the linear congruential generators each 

element is not generated from the previous one but from a pair of elements at 

fixed distances back in the sequence. 

Xn 	f(xn_r,xn...q) : r < q 
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This means that the last q numbers produced by the generator must be preserved 

in order to continue to produce new numbers. These q numbers form the state-

vector. There is often a strong relationship between lagged-Fibonacci generators 

and linear recurrence generators. When the binary function f and the set of 

possible values of x form a group isomorphic to modulo arithmetic then a lagged-

Fibonacci generator is equhtalent to a linear recurrence generator with q k and 

aj  = 0 i $ r, i q. As such a lagged-Fibonacci generator only requires a single 

binary operation to generate the next number in the sequence it can be considered 

the the optimal type of linear recurrence generator in terms of execution speed, 

while retaining the advantages of a large number of state variables. 

The simplest form of lagged Fibonacci generator that generates n bit integers is 

one where: 

f(x_, x_) = Xn_r 	Xn_q 

Here e represents a bitwise exclusive-OR operation on the two it bit integers. 

This is sometimes called the generalised feedback shift register algorithm [21] 

These algorithms have been criticised for having poor statistical properties [20]. 

Part of the reason for this is that the different bits of each word are generated 

completely independently of each other so the generator is in fact a number of shift 

register generators operating in parallel, one for each bit of the output word. The 

same kind of correlations that we have to avoid between generators operating on 

separate processors now occur between the different bits of the output word, where 

they will be a much greater problem. This algorithm will produce all possible it 

bit integers provided that the state-vector is a nonsingular matrix of bits, i.e. the 

it shift register state-vectors are linearly independent [221. 

In the published literature the starting state-vectors are generated by choosing 

a bit pattern for the lowest order bits of the state-vector and then iterating the 

algorithm a large number of times in order to generate the bit values for the 

higher order bits. Typically the delays are of the order of lOOq but may be as 

high as 20,000q [23]. However these delays are probably far too small. The 

matrix for a single iteration is very sparse and often very large, q = 0(100). If 

the transformation for lOOq iterations is generated it remains a sparse matrix 

with visible structure. This matrix completely defines the connection between 

the different bits of the generator. A sparse matrix with obvious structure is an 

53 



A 

indication of simple correlations between the bits. It is therefore more desirable 

to use very long offsets where this obvious structure has disappeared. 

I have implemented a parallel version of the gfsr generator using a block distribu-

tion. The update transformation was 

X[n] =X[n.-32]eX[n-512], 

giving a period of 2521 - 1. Each of the 32 bits in the output word is separated by 

an offset of 2 401  — 1 and separate processors are separated by an offset of 2 488  — 1. 

These offsets are generated by calculating the appropriate transformation matrix 

from powers of the update matrix T (see equation 2.15). This matrix is a constant 

transformation that connects the generators on each of the processors, but as it is 

a dense matrix acting on the last 521 values produced by the generator it is not 

expected to be a significant correlation for most applications. 

The lagged Fibonacci generators are greatly improved when the e operator is 

replaced with one that does not preserve the independence of the different bits 

[20]. For example: 

f(x n_r ,xn_ q ) = (x_,. + x_) mod 2' 

f(x_ 7 , xn_ q ) = (x_ 7  — xn_ q ) mod 2" 

f(x n_r ,x n_ q ) = (X.-->< xn_ q ) mod 2" x j  odd Vl 

where n is the number of bits in the integer. The shorthand designations for these 

generators are F(r, q, +) F(r, q, —) and F(r, q, x). The gfsr algorithm can be 

designated as F(r, q, 6)) using the same system. Provided that the values of r and 

q are chosen correctly these algorithms have a much larger period than the shift 

register generators. The F(r, q, + mod 2") generators have a maximum period 

of (2 — 1)2 1  and the F(r, q, x mod 2") generators have a maximum period of 

(2Q — 

A particularly elegant algorithm exists for generating real numbers uniformly dis-

tributed on [0, 1) using F(r, q, +), also due to G. Marsaglia [24]. In this algorithm 

the state-vector is a vector of floating point numbers. Each element must be an 

exact binary fraction. 
ii 

xi 
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where 1i is an integer 0 < Ij  c 2" and n is an integer small enough for all such 

fractions to be exactly represented by the floating-point format of the computer. 

This is usually taken to be the number of bits in the mantissa of the floating point 

representation. The generator is defined by: 

Xn_r 	 ~ X n_ q 	if Xm_r Xn_q 
f(xn_r, x_) 

= { xn_r - xn_q + 1 otherwise 

This is equivalent to a F(r, q, -) lagged Fibonacci generator acting on the integers 

Ij  with the results divided by 2". This algorithm generates high quality random 

real numbers very quickly, and is therefore worth paying particular attention to. 

The F(r, q, + mod 2") generators are actually an extension of the shift register 

generators. The low-order bits of the result from a (+ mod 2") operation are 

independent of the value of any of the higher-order bits in the operands. This 

means that the lowest in bits of a F(r, q, ± mod 2") generator also form a generator 

of the same type, except that arithmetic is performed mod 2'. The lowest-order 

bit in = 1 therefore forms a shift register generator with maximum period 2 - 1. 

The values of r and q must therefore be chosen using the same criterion as for 

a shift register, that is, they must be the non-zero components of a primitive 

polynomial mod 2. The higher-order bits have a very similar update rule except 

that in addition to the recurrence relation, the carry bits from the lower-orders are 

also added into the bitstream. The stream of carry bits feeding into the nth order 

bit is periodic with the period of the generator mod 2n_ 1 .  Because of the linear 

nature of the recurrence relation, the resulting bitstream can be separated into a 

shift register sequence and contributions from each period of the carry sequence. 

The contributions from an even number of periods of the carry sequence will cancel 

so the period mod 2" cannot be more than twice that mod 21.  This argument 

shows that the maximum possible period for this kind of generator is (2 - 1)2n_ 1 .  

The transformation T for the F(r, q, + mod 2") algorithm is a linear recurrence 

relation and can be represented as a matrix acting on the state-vector. It can be 

proved that a necessary and sufficient condition for a F(r, q, + mod 2") generator 

to have maximal period is that T must have order j = - I in the group of 

nonsingular matrices for mod 2 order 2j for mod 4 and order 4j for mod 8. 

let P, denote the period of the generator mod 2". If T has order j = 2k 
- 1 in 

the group of nonsingular matrices for mod 2 then the generator mod 2 is a shift 
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register generator with maximal period; P1 = 2c - 1. Let J be the matrix that 

advances the sequence by Pi ; 

j
=  

J mod 2 = I. 

Assume the generator has maximal period mod 2"; 

P,2  = 2"'P1  
= 

= 1+2 nXn. 
	 (2.16) 

As the period mod 2n+ 1  must be a multiple of the period mod 2', the generator 

will also have maximal period mod 2"' provided that X,-, =A 0 mod 2. If we square 

equation 2.16 

= I+2" 1 (X+2"X,) 

- I T + £. flfl+l Y 

= X+2"X,. 
	 (2.17) 

So if Xn  $ 0 mod 2 then X 1 	0 mod 2. It follows that if the generator has 

maximal period for all ii provided that T must have order j = 2' - 1 in the group 

of nonsingular matrices for mod 2 ,order 2j for mod 4 and order 4j for mod 8. 

This is a variation of the proof given by Marsaglia[20]. 

We can see that only the highest-order bits of the F(p, q, * mod 2") generator can 

have the full period and that each successively lower-order bit cycles in half the 

time of the one above it. In principle we can consider consider F(p, q, ± mod r") 

generators for any prime number r. These would have a maximum period of (r - 

1)r" 1 . The practical disadvantages of not using a binary number representation 

mean these algorithms are only of theoretical interest. 

The F(p, q, x mod 2") generators can be reduced to F(p, q, + mod 2n1)  genera-

tors by expressing the abelian group of residues as a direct product of cyclic groups 

and considering the update transformation of the generator exponents [20]. 

The only restriction on the state-vector of a F(p, q, ± mod 2") generator is that 

the elements of the state-vector cannot all be even. The number of valid state- 
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vectors is therefore (2 - 1)2*'- '). As the period of the generator is (2 - 1)2-- ' 

there are 2(9-1)(n-1) possible sequences that can be generated by the algorithm. 

In a single-processor implementation of this kind of generator we are only con-

cerned with correlations within a single sequence. Once we consider running a 

number of generators in parallel, the existence of separate number sequences is of 

interest. To implement this algorithm in parallel we want to understand how the 

independent cycles are related to each other. If there is a simple transformation 

that maps one cycle into another, then this is a potential correlation between 

processors that we have to avoid when initialising a set of parallel generators. We 

already have an efficient method of moving a generator to any point within its 

cycle. If we also have a method to transform cycles into each other we can consider 

putting a separate cycle on each processor of a parallel program. 

A partial understanding of how separate cycles are related can be gained by con-

sidering sequences related by multiplying the state vector by a constant. This 

will only result in a valid state vector if the constant is an odd integer. It can 

be shown that this will never map the generator into a different part of the same 

sequence provided that 

j = T' 31 mod 4. 	 (2.18) 

The proof is as follows; assume there is no internal map mod 2", 

	

$ /d mod 2", 	 (2.19) 

for all i and all odd integers 1 c k < 2". Consider arithmetic mod 2"'. If there 

exists an odd integer k such that 

Ta = Id mod 2"', 	 (2.20) 

with k < 2?1*1  and a < 2"(2 - 1) then it follows that 

	

T' = /d mod 2". 	 (2.21) 

To be consistent with equation 2.19, we must have k = 1 mod 2", as we know k 

lies in the range 1 < k < 2" this gives us /c = 2" + 1. From equation 2.21 

= I mod 2", 
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so a is a multiple of F; a = 2m-1 (22_ 1). Substituting the values of a and k into 

equation 2.20 

= (1 + 2')I mod 21 

From equation 2.16 this gives us X,,. = I mod 2 as a necessary condition for an 

internal map mod 2+1  If J 31 mod 4 then X1  54 I mod 2, from equation 2.17 

X I mod 2Vi. Hence there are no internal maps for all ii. 

This still does not take account of all of the separate cycles; there are 2"' odd 

integers less than 2". So if we group together cycles that are connected by a 

constant multiplier, we are still left with 2( 2 )( 1 ) independent groups. If the 

lowest it bits of 2 state vectors are from different groups of the generator mod 

2" then the state vectors must also be in different groups mod 2' for all in > it. 

Each time it is increased by 1 the number of groups increases by 222 = 2q /4. 

This shows us a way of constructing state vectors that belong to different groups. 

Start with a state vector 5, it - 1 bits wide, and generate a new state vector 5' 

by setting the nth bits to random values, 

= S + 2"'B 

for all i < q where the Bs are chosen randomly from 0 and 1. There are only 3 

other possible choices of B that come from the same group of cycles. One occurs 

2,t-2(2q - 1) updates later in the same cycle as 5'; the other two occur in the 

cycle obtained by multiplying 5' by 2" + 1. These values of B can be easily 

calculated; 

B' = B+Smod2 

B" = B+X.Smod2 

B"= B+X.S+Smod2 

where X = Xo  mod 2 from equation 2.16. This enables us to keep choosing new 

values of B and easily reject state vectors that come from groups we have already 

selected. To minimise the relation between the state vectors this procedure should 

be carried out at it = 2 and the higher order bits filled in randomly. At this stage 

all the sequences will still be the same mod 2 so transformation matrices will have 

to be used to shift each sequence a different distance around its period. 



This procedure seems unnecessarily complex; the one advantage it has over the 

other methods discussed previously is that it guarantees that there will never be 

a linear dependence between two of the sequences, including correlations between 

elements offset by an arbitrary distance. 

All simulations presented in this thesis have used this kind of random number 

generator. In these cases the initial state for each processor was either chosen 

randomly or the states were distributed at constant offsets around a single cycle 

using a transformation matrix. 
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Chapter 3 

QED and four-fermion interactions 

3.1 QED 

Quantum Electro- Dynamicsor QED is a gauge theory based on the U(1) gauge 

group. It represents a system of charged fermions coupled by electromagnetic 

interactions. The predictions made by QED are very accurate; perturbative cal-

culations and experimental observations agree with each other to an extremely 

high accuracy. For example the experimental value and the theoretical predic-

tion of the anomalous magnetic moment of the electron agree to 8 decimal places. 

QED is routinely used for a wide variety of calculations in atomic physics and 

is therefore of immense practical importance; in addition the simplicity of QED 

makes it an important test-bed for our understanding of field theories in general. 

3.1.1 The triviality of QED 

One of the oldest problems in four-dimensional quantum field theory is whether 

or not QED is interacting in the limit in which the cut-off is removed. Suppose 

the bare coupling is e 0 , the bare electron mass is rn0, and that the theory is 

regularised with a momentum cut-off A. Assuming the theory does not confine 

charge, a renormalised charge, CR, may be defined by the Thomson scattering 

cross-section and a renormalised electron mass, MR,  may be defined as the lowest 



energy in the charge-one sector. The relationship between the bare charge and 

the renormalised charge is 

	

= Z3 eg 	 (3.22) 

where, for most regularisation schemes, including the lattice [25, 261, 

	

0 <_ Z3  < 1. 	 (3.23) 

The renormalisability of QED guarantees that the results of renormalised per-

turbation theory (expressed in terms of en and MR) are indepeuident of A/mn 

for sufficiently large A/mn, but it does not imply that the theory has a non-zero 

renormalised charge in the infinite cut-off limit. Weak-coupling perturbation the-

ory seems to suggest that the renormalised charge vanishes in this limit. The /3 

function is a measure of how the coupling changes with the cut-off, 

The leading terms of a weak-coupling perturbative expansion for 0 give a positive 

definite value. In the region where this expansion is valid an increase in the value. 

of the cut-off will force a compensating increase in the value of the bare charge. 

In renormalisation-group improved one-loop perturbation theory the bare charge 

is given by 	
2 = 	en 	 (3.24) 

1 - - log 6r  

Keeping Ca fixed as the cut-off is removed, the bare charge has a pole at sufficiently 

large A/mn, and becomes imaginary as A/mn is increased further. In the real 

world, 4/4r = 1/137, and the cut-off can be made larger than the Planck scale, 

the scale where quantum gravity effects should become significant, without the 

bare coupling becoming large. If this weak-coupling picture is qualitatively correct 

for all bare charges, then the cut-off cannot be completely removed at a fixed non-

zero renormalised coupling, but can be taken larger and larger as the value of 

the renormalised charge is reduced. The physical process driving this behaviour 

is vacuum polarisation. Virtual electron-positron pairs in the vacuum can be 

separated by an electric field. The vacuum therefore behaves like a dielectric and 

shields the electric charge. As the cut-off is removed this effect becomes stronger 

and the bare electric charge must be increased to compensate. The exception to 
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this is when the renormalised electric charge is zero. In this case the bare charge 

e0  is zero for all values of the cut-off. The cut-off can therefore only be completely 

removed at zero renormalised charge, i.e. at the Gaussian fixed point. This would 

be the triviality of QED. Triviality could be avoided if new physics enters at 

large bare charge, where perturbation theory breaks down. The predictive power 

of perturbative QED remains unchallenged because other physical processes will 

have to be included in any real calculation long before the bare charge becomes 

large. The question about what happens to QED as the cut-off is removed is still 

an important one for our general understanding of field theories. 

In terms of renormalisation group trajectories the perturbative picture is that all 

the possible trajectories except for the one at e0  = 0 will travel out to eg = 00 

before the cut-off has been totally removed, so the only point possibly corre-

sponding to a continuum theory is the infra-red stable fixed point (irsfp) at eo = 0 

corresponding to non-interacting fermions. It is possible that some other physical 

process becomes significant at large values of the bare coupling. If such a process 

reduces the fi function then a second fixed point (fi = 0) could occur in the strong 

coupling region, see figure 3.1. 

Perturbative 
result 

Beta 
function 

strong 
coupling 
fixed point 

Gaussian 	 Bare coupling 
fixed point 

Figure 3.1: Possible evolution of the 0 function 

Perturbative calculations give a positive definite value to the fi function. A strong 

coupling fixed point is therefore only possible if some non-perturbative process 

reduces the value of the 3 function. 

What is necessary for an interacting continuum limit is an ultra-violet stable fixed 

point (uvsfp) at some non-zero value of the bare coupling, e©  = eu,. Removal of 
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the cut-off at fixed CR would drive the bare coupling to the uvsfp. However, this 

is not sufficient for the continuum theory to be interacting; it is still possible for 

the renormalised charge to vanish. In contrast, it is now fairly clear that no such 

uvsfp occurs in the 4-dimensional 0 theory, so that the continuum theory must 

be built at the Gaussian fixed point and is free [27]. Apart from a calculation of 

the renormalised charge itself, which would obviously settle the matter, non-mean-

field scaling exponents at the uvsfp would presumably indicate non-triviality. This 

is because an interacting continuum theory defined at a second order phase tran-

sition exhibits fluctuations on all length scales and is therefore unlikely to be well 

described using a mean field approximation. 

A strong-coupling uvsfp also implies that a new phase of QED exists on the 

far side of this critical value. Unfortunately, strong-coupling QED can only be 

explored numerically using lattice gauge theory, or by means of ad hoc truncations 

of the Schwinger-Dyson equations. Since the theory would be scale-invariant and 

A/mn = oo at the fixed point, there must exist a second (or higher) order phase 

transition at e 1,,. The first evidence for such a transition was obtained several 

years ago [28, 29] by lattice Monte Carlo simulations using the non-compact form 

of the pure gauge action. 

3.1.2 The Schwinger-Dyson equation 

The Schwinger-Dyson equations are integral equations obeyed by the Greens func-

tions of quantum field theories. The numerical lattice results have inspired a 

revival of analytic work based on solutions to truncated Schwinger-Dyson equa-

tions [30, 31, 32]. In the ladder approximation, where fermion loops and vertex 

corrections are ignored, there is indeed an uvsfp which separates the perturba-

tive phase of QED from a phase where ee  pairs condense into the vacuum and 

break chiral symmetry. The ladder approximation decouples the Schwinger-Dyson 

equation for the fermion self-energy, which may then be replaced by an ordinary 

differential equation and solved analytically at large momentum [30, 31, 32, 331. 

A chiral-symmetry-breaking solution exists for a = e 2 /47r > a = 7r/3. The phase 

transition is of infinite order (has an essential singularity in the order parameter) 

in the ladder approximation. The physics driving the transition, sometimes called 
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'collapse of the wavefunction', can be seen in the simpler case of a Dirac particle in 

an attractive a/r potential [31]. The wavefunction is singular for a > 1. The sin-

gularity may be regularised by cutting off the potential at short distances, r <a. 

Then the requirement that the binding energy be independent of the cut-off, a, 

imposes a cut-off dependence of a, such that 

da 
—>0, a>1; 	 (3.25) 
da 

a must be increased with a to compensate for the lost potential. This UV stability, 

reminiscent of QOD, is the opposite of screening due to vacuum polarisation and 

we must ask whether it survives the introduction of dynamical fermions? 

In the ladder approximation only fermion mass renormalisation occurs and, no-

tably, this results in a large anomalous dimension for oo,  corresponding to a scal-

ing dimension of 2 at a, [32]. As a consequence, four-fermi interactions acquire 

a scaling dimension of 4 at a in this approximation, indicating that a consistent 

treatment of QED at strong coupling should include them from the start. 

In order to preserve the chiral symmetry of the action, the appropriate four-

fermi interaction to include is that of the Nambu-Jona-Lasinio model[34]. The 

Lagrangian for the continuum theory is 

£ = £QED + G[()2 - ()21 	 (3.26) 

The solution of the ladder approximation for this model was obtained in [32]. 

An interesting phase diagram for this model was conjectured on (the basis of an 

analysis of the solutions of the approximate Schwinger-Dyson equation as a func- 

tion of the two couplings a and g = CA 2 /4ir 2 , where A is the momentum cut-off 

[35, 36, 37]. This is shown in figure 3.2. For large enough four-fermi coupling 

( g > (i + 	
- 	

for a < a )  and g > 0 otherwise) a chiral-symmetry- 

breaking solution exists for all values of a. Within the symmetric phase, the 

anomalous dimension for & [38] is the same as for G = 0: 

I 	a 
eynt=1-4/1--, 	 (3.27) 

whereas, in the broken phase, for a < a, 

I 	a 
7,fl =1+4I1. 	 (3.28) 

a,, 
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This is remarkable in that it seems to suggest that, close to a = 0, for g > 1 the 

scaling dimension of the four-fermi interaction is 2, i.e. it is super-renormalisable! 

I 	I 	 I 	 I 	 I 	I 

1.0 

- 	 <> ~ 0 	- 

0.5 

- 	 - 

I 	I 	 I 	I 	I 	 I 

0.0 	 0.5 	 1.0 

Figure 3.2: Phase diagram predicted using the Schwinger-Dyson equation 

Possible phase diagram of the U(1)-gauge-invariant Nambu-Jona-Lasinio model 

obtained using the ladder approximation to the Schwinger-Dyson equation for the 

fermion self-energy. 

65 



Within the ladder approximation, the two phases are separated by a line of ultra-

violet stable fixed points, with renormalisation-group flow only in g for a < a 

[37], i.e. there is no single ultra-violet fixed point about which a continuum limit 

might be built. This is probably an artifact of the approximation. 

Approximate Schwinger-Dyson calculations have been performed with a variable 

number of fermion 'flavours', N1. The results indicate a conventional second-

order transition with critical exponents which depend on Nf, rapidly approaching 

mean-field values for Nf > 1. 

This hypothesis that there is an ultra-violet fixed point at strong coupling, which 

may be used to define a non-trivial four-dimensional field theory, has been used 

to construct technicolor models and also has intrinsic interest as a new type of 

continuum field theory. However it is built on rather drastic approximations. In 

particular, vacuum polarisation effects, which are responsible for the ultra-violet 

instability of the e = 0 fixed point in ordinary QED, are excluded but might be 

expected to be important. 

For two reasons it is important to check the predictions of the truncated Schwinger-

Dyson equations against numerical simulations. Firstly, to see whether any of the 

new strong-coupling dynamics persists in the full theory and secondly, to explore 

whether truncated Schwinger-Dyson equations can be a reliable guide to non-

perturbative quantum field theory. The immediate questions to be asked of the 

numerical simulations are: 

• how do physical quantities scale near the phase transition? 

• is 6R 54 0 possible? 

• what is the dependence of the above on the number of fermion species? 

3.1.3 QED on the lattice 

There are two possible ways of formulating QED on the lattice, compact and 

non-compact. 



The compact form of lattice QED with massless staggered fermions, has the fol-

lowing lattice action: 

S = 	(1 - cos(AM&)(x) - 

+ 

D(0) =  

= (_1)4_ 1 	 (3.29) 

where 9 takes values in the range [0,27r), x, with integer-valued components, 

labels the lattice sites, .t = 0,. .. , 3 labels the lattice directions and 2 is the 

corresponding unit vector. 

The non-compact form of lattice QED with massless staggered fermions, has a 

very similar action 

S = 	(AMOV(x) - &OAx))2 

	

+ E >(x)D(9)x(y), 	 (3.30) 
XIV 

where 9 takes values on the real line. 

Both of these actions are gauge invariant and in the limit where the lattice spacing 

is taken to 0 they both reduce to the continuum QED action. On the lattice 

however the two actions behave differently because of topological excitations. The 

compact form of QED only has a first order transition so it cannot correspond to 

an interacting theory [28, 29]. 

Non-compact QED appears to have a second order transition at strong cou-

pling [28, 291. The nature of this transition seems to depend on the number 

of fermion flavours. At large N1, the transition appears to become first order [40]. 

For lower values of Nf  the transition appears to be second order but non-mean-field 

critical exponents have only been claimed for small numbers of fermion flavours 

(less than about four) [28, 29, 411. 

There is a certain practical difficulty in interpreting the data from this kind of 

simulation. This arises because we are interested in the behaviour of systems 
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with zero fermion mass but we are only able to simulate systems with a non-

zero fermion mass. Much of the published data is therefore based on polynomial 

extrapolation of the data for (xx) at non-zero fermion mass on a finite lattice 

to zero fermion mass. Non mean-field behaviour has sometimes been claimed 

because of deviations from mean-field behaviour of this extrapolated curve. This 

procedure has obvious shortcomings,(here is no way to distinguish between non 

mean-field behaviour and a breakdown in the extrapolation. 

The Schwinger-Dyson equation calculations suggest that four fermion interac-

tions could be significant in understanding the renormalisation behaviour of strong 

coupling QED . Consequently, we performed a numerical simulation of the fully-

interacting U( 1)-gauge-invariant Nambu-Jona-Lasinio model. We formulated the 

theory using staggered fermions, and x, [4] in order that the lattice theory 

possesses a continuous chiral symmetry: 

X(X) -4 

(x) 
	

(3.31) 

e(x) = 

where A is real. Then a gauge-invariant, chiral-invariant four-fermi interaction is 

	

G> 	(x)x(x)(x+i2)x(x+P), 	 (3.32) 
XIA 

Our lattice action is that for noncompact QED plus the above four-fermi interac-

tion. In order to perform the exact integration over the Grassmann variables, an 

auxiliary vector field is introduced, so that the lattice action is 

S = 	E (A9fr(x) - AVO M(x)) 2 	 - 
t,L, >th 

	

+ 	(x)[D(&) + 2JdD(9') + m]tyx(y) 	(3.33) 
t i ll 

= 	iAx)[eiSt)St+a,y - e9M6 	1 	(3.34) 

= (_1f0+M_1 	 (3.35) 
1 

p = -. 	 (3.36) 

Here, O takes values in the real line, whereas the auxiliary vector field 	e [0, 27r). 

The integration over 0,, can be done analytically and produces the chiral-invariant 
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four-fermi interaction: 

i I ye'e 2'Jd 
= 	

,(z)D(9')yx(y) 

i I 	e z De' 	 M=)[ =  

where to V. = 

I = J - J  M e [(x),M 	+h)_HVMVIX(x)1 ='fl ± J Me A, 

X'A 
27r 

Now expand the exponential as a power series, there are no A 3  and higher terms 

because the Xs are Grassmann variables. 

i=HJS[1+A+ç], 

JdO'V = J de'Vt = 

therefore 

J dO'A = 

2  
I=H_f d0l+ A--}.  

= flu / dO'[l - G(q. 	+ 	(x + f)x(x)VtV] 
2r i 

'=
- G(x)(x + i2):(x + i2)x(x)I 

0.9 

i = 	E,,. C(x)(z+)g(+ji)x() 

The effective action is therefore 

Seff = 	>i (A,9(x) - AUOM (x)) 2  + E (x)[D(8) + m]x(y) 

— C> 	(x)x(x)(x + j2)x(x + ,à). 	 (3.37) 

Note that a scalar auxiliary field produces the wrong sign of the four-fermi cou-

pling. Then the chiral condensate is defined as 

() = urn lim thY 	 (3.38) 
in -.0 V-. oo 
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3.2 The phase diagram of QED with an additional 

four-fermi interaction 

We investigated the phase diagram of QED with additional four-fermion interac-

tions using a series of dynamical fermion simulations. Configurations on an 8 

lattice were generated by the Hybrid Monte Carlo algorithm [6], with trajectories 

of unit length in molecular-dynamics time. The number of molecular dynamics 

steps used was chosen separately for each simulation in order to maximise the 

simulation speed while retaining an acceptance rate of approximately 80%. Our 

fermionic boundary conditions were periodic in space and anti-periodic in time. 

Our aim was to obtain evidence for the phase diagram, in figure 3.2, and check 

the results of [28, 291 for G = 0. 

The results at G = 0 for (x) and  So/13 = 	- A LJO42 ) for a range of j3 

values, at fermion masses in = 0.0125, 0.025, 0.05 and 0.1, are in table 3.1 and 

table 3.2. The results are averages over a minimum of 200 trajectories, having 

discarded 100 trajectories for equilibration. The errors are estimates for the stan-

dard deviation in the mean obtained from binning the data. Our data is in good 

agreement with the data in reference [28, 29], except for the lightest fermion mass 

in the vicinity of the transition, in the broken phase, where our values for (x) are 

systematically larger by several standard deviations. This may be attributed to 

critical slowing down or, possibly, stepsize errors in the results of reference [28, 29], 

since these errors are expected to be largest in the broken phase at low mass. 

Our results extend those of reference [28, 29] to higher masses. Graphs of the 

mass-dependence of (x) are shown in figure 3.3 Linear extrapolation to zero 

mass, using the data at iii = 0.0125 and 0.025, is not supported by the higher-

mass data for 3 < 0.21. Because of our disagreement with reference [28, 291 on 

some of the values of (x) at in = 0.0125 and the sensitivity of this extrapolation 

procedure to such discrepancies, the values we would obtain by extrapolation do 

not agree with [28, 29]. We deduce that current simulations of non-compact QED 

are finite-mass affected and that extrapolation to zero mass is unreliable. On the 

basis of figure 3.3, where there appears to be a qualitative difference between the 

curves for j3 = 0.18 and 0 = 0. 19, in that the former seems more likely to support 
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extrapolation to non-zero (xx)  on an infinite lattice, we conclude that the critical 

point is in the range 0.18 </3 < 0.19. /3 = 0.19 is also roughly the location of the 

points of inflexion in the plots of (xx)  vs. /3, figure 3.4, which is sometimes taken 

as an indication of criticality. 
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Figure 3.3: Fermion-mass dependence of (x) at G = 0.0 

The points are joined by straight lines to guide the eye. 
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Figure 3.4: (x) against  fi at & = 0.0 
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Our data for the plaquette expectation value, S0 /fl, at C = 0 exhibits the expected 

suppression due to dynamical fermions, relative to the quenched value of 1/4/3 

(see figure 3.5). There is a slight steepening of the plaquette expectation value 

as a function of /3 and evidence of critical slowing down in the vicinity of the 

transition, but the effects are too small to provide a reliable independent estimate 

of the critical point. 

In the region 0.18 < /3 < 0.215 at in = 0.0125, we looked carefully at runs of 

400-700 trajectories from different starts, but saw no evidence of metastability 

(see figure 3.6). This is in agreement with the conclusion of reference [28, 291 that 

the transition is not strongly first order. 

If we assume that the transition is second order, then for infinite volume 

(x)ls=s. 	ink. 	 (3.39) 

Mean-field theory gives the value S z 3. We. can compare this with our data 

by plotting (x)3 against mass, see figure 3.7. This plot is approximately linear 

in the region near the critical coupling. There is no compelling evidence for an 

essential singularity in (x) vs. /3 [28, 29], or for an interacting continuum limit, 

from such a crude analysis of our data. 

We have attempted to map out the phase diagram for C > 0 at a fermion mass 

of 0.05 on an s lattice [42]. The results for (x) at a fermion mass of 0.05 are 

shown in figure 3.8. Here, we have fitted a smooth surface through the data points, 

without taking account of the sizes of the errors. We discarded 100 trajectories for 

equilibration, and then averaged over a minimum of a further 200 trajectories. The 

data used to generate this surface is concentrated in the foreground of the figure 

so the position of the surface in the high C low 0 region is suspect; -Figure 3.8 

indicates that the chiral-symmetry-breaking transition persists for C > 0. A line 

of transitions in the fl-C plane is observed to connect the 'on-axis' transitions 

previously found in references [28, 291 and [43]. The signal for this transition in 

the plaquette expectation value, already small for C = 0, diminishes for C > 0 

and is almost unobservable in our data. 

We have analysed in more detail the transition for C > 0 at j3 = 2.0, a much 

larger value than for the data in figure 3.8. This corresponds to a very weak 

73 



r -0.1 

Cr 
CO 

-0.2 

-Q • 3 

0.1 	 0.2 	 0.3 

Figure 3.5: Suppression of the plaquette expectation value 

74 



[It! 

0.3 

0.2 

0.1 

ml 
600 	800 	1000 1200 1400 1600 1800 

trajectory 

Figure 3.6: (ix)  against trajectory at in = 0.0125, j3 = 0.19 

w 



I 	I 	 I 	I 

j30.18 
/1=0.185  
/1=0.19 
/1=0.195 

1a 1  

co 
A 

V 
0.05 

twITI 

0.00 	 0.05 
	

0.10 
mass 

Figure 3.7: (x)3 against mass at C = 0.0 

Iry 



Figure 3.8: (x) at a fermion mass of 0.05 for different values of /9 and C. 

gauge coupling and should therefore approximate a pure four-fermi model and 

can be compared with the pure QED data from the C = 0 line. Our results 

for the chiral condensate and plaquette expectation values at four fermion mass 

values are given in table 3.3 and table 3.4. In a plot of (x) vs. C, the transition 

becomes sharper as the fermion mass is decreased, see figure 3.9. 

The fermion-mass-dependence of (x) is plotted in figure 3.10. The data for 

C < 0.16 appears to extrapolate linearly to zero at zero fermion mass, whereas 

for C > 0.25 the data indicates the possibility of a non-zero extrapolated value on 

an infinite lattice. We take this qualitative change in the mass-dependence of the 

chiral condensate as evidence for a transition between these C values. Our data at 

C = 0.2025 is, therefore, in the critical region. This conclusion is supported by the 

location of the point of inflexion in the curves of (xx) vs. C. This critical value 

for the four-fermion coupling is slightly less than the value C = 0.28 obtained at 

/3 = co in reference [43]. 

In conclusion, we have obtained indications of phase transitions at zero fermion 
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/3 I 	(x)  
m = 0.0125 tn= 0.025 in = 0.05 in = 0.1 

0.06 0.622(6) 0.631(6) 

0.10 0.580(6) 0.581(4) 

0.15 0.428(7) 0.445(2) 0.480(1) 

0.16 0.416(2) 0.454(1) 

0.17 0.306(3) 0.344(4) 0.382(3) 0.426(1) 

0.18 0.249(2) 0.292(5) 0.340(4) 0.400(1) 

0.185 0.227(4) 0.267(3) 0.325(3) 0.386(1) 

0.19 0.180(1) 0.242(3) 0.308(2) 0.373(1) 

0.195 0.150(2) 0.219(3) 0.287(2) 0.360(1) 

0.20 0.132(4) 0.196(3) 0.272(1) 0.350(1) 

0.205 0.107(2) 

0.21 0.093(3) 0.158(3) 0.238(1) 0.326(1) 

0.215 0.080(2) 

0.22 0.305(1) 

0.23 0.058(1) 0.1082(7) 0.187(1) 0.283(2) 

0.24 0.264(1) 

0.26 0.0367(3) 0.0733(7) 0.138(2) 0.233(1) 

0.265 0.2267(6) 

0.30 0.0277(5) 0.0541(4) 0.107(1) 

0.34 0.088(1) 

0.38 0.0752(5) 

0.42 0.0662(3) 

0.46  0.0613(3)  

Table 3.1: Chiral condensate expectation value at C = 0. 

EgøJ 



ía  so/s_______  

m=0.0125 m=0.025 m=0.05 tn=0.1 

0.06 4.11(1) 4.11(1) 

0.10 2.366(6) 2.366(6) 

0.15 1.476(7) 1.485(2) 1.509(1) 

0.16 1.381(3) 1.405(1) 

0.17 1.261(1) 1.271(2) 1.288(4) 1.314(2) 

0.18 1.177(2) 1.192(2) 1.208(1) 1.236(2) 

0.185 1.146(1) 1.157(1) 1.1730(8) 1.1988(6) 

0.19 1.1105(7) 1.123(1) 1.138(2) 1.165(1) 

0.195 1.081(1) 1.092(1) 1.108(1) 1.1320(8) 

0.20 1.055(1) 1.064(1) 1.0807(7) 1.103(1) 

0.205 1.031(1) 

0.21 1.007(1) 1.014(1) 1.026(1) 1.0502(8) 

0.215 0.9862(7) 

0.22 1.001(1) 

0.23 0.929(1) 0.9315(9) 0.9400(7) 0.9573(7) 

0.24 0.9178(9) 

0.26 0.8341(7) 0.834(1) 0.839(1) 0.8510(6) 

0.265 0.8358(6) 

0.30 0.735(1) 0.735(1) 0.738(1) 

0.34 0.6589(8) 

0.38 0.5964(6) 

0.42 0.5429(5) 

0.46  0.5001(7)  

Table 3.2: Plaquette expectation value at G = 0. 

EI! 



ci  (xx)________  

m=0.0125 m=0.025 m=0.05 m=Q.1 

0.0 0.00865(2) 0.01731(5) 0.0346(l) 0.0688(l) 

0.01 0.00910(2) 0.01825(6) 0.0363(1) 0.0718(2) 

0.04 0.01049(3) 0.02111(8) 0.04177(9) 0.0828(2) 

0.09 0.0143(1) 0.0283(1) 0.0554(3) 0.1088(6) 

0.16 0.0259(3) 0.0509(4) 0.0959(8) 0.169(2) 

0.1806 0.0345(3) 0.0642(8) 0.118(1) 0.190(l) 

0.2025 0.049(2) 0.088(1) 0.148(2) 0.213(2) 

0.2256 0.075(3) 0.135(1) 0.185(1) 0.239(2) 

0.25 0.142(5) 0.181(2) 0.221(l) 0.264(2) 

0.36  0.289(3) 0.304(3). 0.314(2) 

Table 3.3: Chiral condensate expectation value at 3 = 2.0. 

ci 
m=0.0125 m=0.025 m0.05 m=0.1 

0.0 0.1221(2) 0.1225(3) 0.1226(2) 0.1226(2) 

0.01 0.1226(2) 0.1228(2) 0.1225(2) 0.1227(2) 

0.04 0.1226(l) 0.1226(2) 0.1228(1) 0.1226(1) 

0.09 0.1228(2) 0.1228(l) 0.1228(2) 0.1230(2) 

0.16 0.1231 (2) 0.1226(2) 0.1229(3) 0.1233(2) 

0.1806 0.1229(2) 0.1229(3) 0.1226(6) 0.1231(2) 

0.2025 0.1230(2) 0.1229(3) 0.1229(2) 0.1233(2) 

0.2256 0.1236(4) 0.1230(3) 0.1233(2) 0.1236(2) 

0.25 0.1237(2) 0.1230(l) 0.1236(1) 0.1238(3) 

0.36 0.1240(4) 0.1237(2) 0.1247(3) 

Table 3.4: Plaquette expectation value at /3 = 2.0. 



mass in the lattice U(1)-gauge-invariant Nambu-Jona-Lasinio model at 0 0.19, 

G = 0 and at /3 = 2.0, C 0.2 and along a line in the j3-G plane connecting these 

points. This is qualitatively in agreement with analytic predictions for the critical 

line obtained from the ladder approximation to the Schwinger-Dyson equation 

for the fermion self-energy. However, the fermion-mass-dependence of the chiral 

condensate, for fermion masses 0.0125 < m < 0.1, does not support a linear 

extrapolation to zero fermion mass in the broken phase; a crude analysis of our 

data at the C = 0 critical point is consistent with mean-field behaviour. 

3.2.1 The gap equation 

We have tested the conjecture that there is evidence for non-mean-field critical 

behaviour in our numerical data using data from two sections approximately trans-

verse to the critical line: one coincides with pure non-compact QED, the other 

to a four-fermion theory with relatively weak gauge coupling (where large anoma-

lous dimensions are predicted by the approximate Schwinger-Dyson analysis [381). 

Because our analysis is at fixed lattice size, it is necessarily crude and we cannot 

reliably extract predictions for critical exponents. We reject any extrapolation of 

the data and, instead, study the dependence of the chiral condensate on fermion 

mass and couplings close to criticality. 

We compare our results for (ix) with the solution of the gap equation for the 

pure four-fermion system, with lattice action 

S = 

+rng (x)x(x)] 

Cg  E x(X)X(X)ZX + ,%) x(x + 12). 	 (3.40) 
XIA 

The gap equation is a mean field solution to this model. The four-fermion inter- 



action term is replaced by 

8Gg(x) E x(X)X(X)- 
XIA 

The partition function then becomes a Gaussian functional integral that can be 

solved to give a self-consistency equation for (x).  The gap equation for this 

system on an L 4  lattice is [43, 44] 

-  XX 	
mg+8Cg(x)g 	

341 
g - L 4  '' (m g  + 8Gg (x) g ) 2  + Esin2 p. 

where pp = 	or 
2ir(n..+) (it?. 
	0,... ,L - 1), depending on whether the 

fermionic boundary conditions in the i direction are periodic, or anti-periodic, 

respectively. 

The solution of the gap equation exhibits mean-field critical exponents [43, 44]. 

We regard agreement between the data and the gap equation as indicating that 

the data contains no evidence of non-mean-field critical behaviour. 

In fitting the solution of eq.(3.4l) to the numerical data we allow for the following 

four free parameters: 

(x)g = c(x) 	 (3.42) 

= eGG + Co 	 (3.43) 

M g  = c,,1 mn. 	 (3.44) 

The freedom to vary these parameters does not alter the mean-field nature of 

eq.(3.41). What is at issue is how accurately eq.(3.41) fits the data in what 

appears to be the critical region. 

Both the C = 0.0 and the /3 = 2.0 data can be successfully fitted to the gap 

equation [45, 461. Figure 3.11 shows the gap equation fit to our data at /3 = 

2.0. Only three of the parameters are fitted, C.  is fixed to be one as it seems 

unnecessary to vary this parameter to obtain a good fit. The parameters used in 

the figure are 

CG = 	0.66 (3.45) 

co = 	—0.06 (3.46) 

cfcx = 	0.96 (3.47) 
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Figure 3.11: (x) against G at fi = 2.0 

Mass values shown are rn = 0.1, 0.05, 0.025 and 0.0125 (from top to bottom). 

Superimposed is our best 3-parameter fit to the gap equation of a pure four-

fermion model. 
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3.3 The Swendsen Ferrenberg extrapolation 

A Monte-Carlo simulation of a lattice gauge theory is an approximation to the 

full path-integral. A lattice path integral averages over all possible configurations 

of the lattice fields weighting each configuration by the exponential of its action. 

In contrast a Monte-Carlo simulation only averages over a representative subset 

of the possible configurations. These configurations are usually chosen from a 

distribution corresponding to the weighting factor of the path integral, so that 

explicit exponential factors need not occur in the average over configurations. 

Any configuration that occurs in a Monte-Carlo simulation is also likely to be 

significant for other nearby parameter values. It is therefore possible to use the 

configurations generated at a fixed. set of parameter values to explore a local 

region of the phase diagram of the system. In particular, if the action is linear in 

a coupling, 

SS+I3Sb 	 (3.48) 

and we generate configurations using one value of the coupling /3 = / 3o, the results 

can be extrapolated to 0 = by weighting each configuration by an appropriate 

exponential. 

L A(u)e(fb_fh)sb(), 	 ( 3.49) 

where U00  is the set of configurations generated by a simulation at /3 = /3 g . This 

extrapolation is obviously limited by the region of configuration space visited by 

the original simulation. As the extrapolation is taken further away from its start-

ing point, the fraction of configurations in U00  that contribute significantly will 

inevitably be reduced. This can only be offset by increasing the statistics of the 

simulation. This kind of extrapolation has been extensively studied by A. Fer-

renberg and R. Swendsen [47], who advocate a single high-statistics simulation at 

or near a critical point. The advantage of this approach is that each region of 

configuration space need only be explored once. If a series of separate simulations 

with similar parameter values are employed, the regions of the configuration space 

they explore will overlap. This produces redundant effort as each simulation has 

to explore the overlapping region independently. 

A single high-statistics simulation should be located near a critical point, because 

the significant region of configuration space can be expected to influence the entire 



scaling region. In addition, the fluctuations on all length scales that occur at a 

second order phase transition may be an indication that the significant region is 

larger here than at an arbitrarily chosen set of parameter values. If this is the 

case then the high statistics needed because of critical slowing down is offset by 

an increased range for the extrapolation procedure. 

The work presented in this section is an attempt to apply this type of technique 

to the dynamical fermion QED simulations described elsewhere in this chapter. 

Because of the inherent difficulties of a dynamical fermion simulation, it is im-

practical to attempt a high-statistics simulation. In fact, in places it is difficult to 

obtain even adequate statistics. This means that we will only be able to extrap-

olate short distances and we will still need a large number of simulations to span 

the entire parameter range of interest. The aim of this work is therefore not to 

extrapolate the phase diagram from a single simulation, but to improve the qual-

ity of the results by combining information from a number of nearby simulations. 

This is applying the original idea in reverse. As the statistics of an individual 

simulation are poor, it is no longer a disadvantage for a number of simulations to 

explore overlapping regions of configuration space; simulations with such an over-

lap will effectively increase each other's statistics and we get the greatest possible 

use out of each configuration we generate. If the previous conjecture about critical 

points is correct, this improvement should be greatest near the critical point, as a 

greater number of simulations are expected to make a significant contribution in 

this region. Because of the parallel nature of our simulations, it is easier for us to 

perform several independent simulations. than to run a single simulation for a large 

number of updates. In principle, it would be possible to generate high statistics 

at a single point in the phase diagram by performing several simulations with the 

same parameters. This work was only started after the majority of our data had 

already been collected, but even if that had not been the case, distributing the 

simulations across the phase diagram saves us from having to rely totally on the 

extrapolation. 

We therefore have to perform an interpolation based on a number of simulations 

at different points in the phase diagram. The technique for doing this is much 

less straightforward than for a single simulation and is again due to Swendsen and 



Ferrenberg [48]. We assume an action of the form 

Stotaz(u) = So (u) + /38(u), 	 (3.50) 

where u represents the gauge configuration and jI is the parameter we intend to 

vary in the extrapolation. The lattice QED action is of this form, where 5(u) is 

the gauge action and 5o  is the fermionic contribution. The partition function can 

be written as 

	

Z(j3) = 	= E W(S)e, 	 (3.51) 

	

1L 	. 	 $ 

where all necessary constants are absorbed into j3 and W(S) is the density of 

states. Consider R simulations at 0 = /3i,.. . ,j3. Data from these simulations is 

stored in histograms {N(X)} where N(X) is the number of configurations from 

the simulation at j3 = #j  with S = X. The total number of configurations in a 

simulation is given by 

= 
	

(3.52) 
$ 

An approximate partition function can be calculated for each of the simulations: 

= E N(S)e. 	 (3.53) 
S 

The normalisation of ; is obviously not the same as that for Z because z 1  is 

roughly proportional to ni We can relate this to the true partition function using 

cc Z(j3), 	 (3.54) 

where the bar represents an average over all possible simulations with 0 = #j and 

72 = flj. 

z(f3) = 	N(S)e 0 ' 9 , 	 ( 3.55) 
$ 

rç- 8(5(u), X)e5o(t)+øiS(t) 

	

P11 (X) = 	
/3) 	 (3.56) 

Z(  

that is N(X) is ni  multiplied by the fraction of configurations with S = X. This 

gives us a new expression for z()3), 

	

n4 	E  

	

z(f3) = Z(/3) 	8(5(u), X)eSo(t)9(1h), 	 (3.57) 
ILX 

ni = 	Z(18)z(/3) 	
Z(j3) 	 litZ(P). 	 (3.58) 

[•X•1 
[•1•1 



We can use this to obtain an expression for W(S): 

W(X) = 	S(S(u), X)é0(t , 	 ( 3.59) 
1h 

W(S) 
= 

N(S)Z(j3) 
(3.60) 

ni egis 

W(S) = Ni(S)6f1_flS 	 (3.61) 
lii 

where fj  = In Z(j3) is the free energy at /3,. 

We wish to produce an estimate of W(S) using all B simulations: 

	

W(S) w(S) = Ep(S) Nt e_ 	 (3.62) 
i=1 nj 

where w(S) is our estimate of W(S). The factor p(S) is a weighting factor given 

to Ni(S). For proper normalisation 

R 

EMS) = 1. 	 (3.63) 

This also gives us 

u;—(S) 
  R 

	

 = Ep(S)W(S) = W(S). 	 (3.64) 

We wish to choose the values of p(S) so as to minimise the error in w(s). The 

error in Ni(S) is expected to go as 

62 N1(S) = gN(S) 
	

(3.65) 

because Ni(S) has Poisson statistics. The constant 5j  represents the correlations 

between configurations in the simulations. The simulations may have different 

correlations so gi  is necessary to correctly weight data from different simulations. 

This can be written as 

62 N(S) = 	 ( 3.66) 

from equation 3.61 The error in w(S) is therefore given by 

R 	
Pi(s)2 52 w(s) = 	

(nie(ths_f))2SN(S) 	
(3.67) 

R 

(3.68) S2w(S) = W(S) > 	e(') i=1 g 



This can be minimised subject to the normalisation constraint 3.63 using Lagrange 

multipliers: 
2p(S) 

- A = 0 1 	 (3.69) 
!lie(f3iS_fi) 
St 
Pi(S) 

cc 	 (3.70) 
gi 

flse(Pt 5 f) 

	

Pi(s)
Si 	 (3.71) (S) 

= 

	

ER 
1 	

(PIs_f1r 

If we now define 

P(S,/3) W(S)e 05 	 (3.72) 

then 

eft = EP(S,I3 ). 	 (3.73) 
S 

Our best estimate for P(S,)9) is obtained by substituting w(S) for W(S) 

P(S,j3) 
ng;'e(fli5fi) (

3.74) 

and we can estimate {f} by iterating the last two equations to a self consistent 

solution. The expectation value of an operator as a function of 0 can now be 

calculated using 
Es A(S)P(S, j3) 

Es P(5,13) 	
(3.75) 

It is worth noting at this point that it is not actually necessary to place the 

data in histograms: as the weighting factor F(S,)3) occurs inside a sum over 5, 

we can consider each gauge configuration as belonging to a separate bin of the 

histogram and sum over gauge configurations instead. The weighting factor for 

each configuration now becomes 

1 
(3.76) P(u,/3) = E ? 

Le3=1  

where g, is the g factor from the simulation that generated the gauge configuration. 

Apart from g, this weighting factor is independent of which simulation generated 

the gauge configuration: all the values of /3 are treated equally in the expression. 

This seems a little strange at first until we consider the relationship between 

this extrapolation method and the lattice path integral. In the path integral 

all possible configurations contribute at all values of /i: all of the physics comes 

from the weighting factors. If the path integral is approximated using a finite 



number of configurations chosen from an arbitrary distribution, the physics still 

resides in the weighting factors, but the weights also have to compensate for 

the distribution the configurations were chosen from. In a normal Monte-Carlo 

simulation, the distribution is chosen so that the weighting factors are all equal. 

In this extrapolation procedure, we can treat all of the configurations as if they 

come from a single distribution that depends on the parameters {j3} {f} {g} 

and {n1}. 

It is important to calculate the error on the extrapolation. The variance can be 

calculated directly: 

	

c2 (A,)3) 	= ((A - (A))2 ) 	 (3.77) 

The error in the mean can be calculated as follows 

	

(A)
- 	P(u,f3)A (3.78) 

	

E. - 	P(u,8) 

	

62= 	(8(44) )22 	 (379) 

£ =or 	
(3.80) 

rtejj(f3) - (>11. P(u, j3))2 (3.81) 
- 

neff is a measure of the effective statistics at each value of fi and is a good 

measure of where the predictions are valid and of how much the predictions from 

the original simulations have been improved. This calculation ignores any errors 

in the calculation of {f}, ignores rounding errors and relies on the g factors 

to account for any correlations between configurations. It will therefore tend to 

slightly underestimate the true error. 

This technique was applied to our data for pure noncompact QED to produce 

extrapolated curves in 0. In these plots, the inverse of the Hybrid Monte-Carlo 

acceptance rate was substituted for the g factor. As this procedure only depends 

on the ratios of the g factors and as all the simulations used a molecular dynamics 

trajectory of unit length, this was thought to be a reasonable estimate. In all cases, 

300 sweeps were discarded for equilibration. The calculations were performed on 

a Sun4 workstation using IEEE 64-bit arithmetic. An extrapolated curve for (x) 
was plotted which proved to be consistent with the original data; see figure 3.12. 
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Figure 3.12: Extrapolated plot of (x) at in = 0.0125 

This plot shows the extrapolated curve for (xx) at in = 0.0125. The data and 

naive errors from the original simulations are also shown. 



A plot of neff see figure 3.13, showed that the resulting curve had approximately 

one and a half to twice the effective statistics of the original simulation in the 

range 0 = 0.18 to 0 = 0.205 but that the effective statistics are very low around 

/3 = 0.175 so the procedure cannot be trusted in this region. 

It is possible to calculate the relative importance of each of the simulations by 

plotting the fraction of the total weight they provide at each value of 0 using 

:€u P(u,)3) 	
(3.82) 

FJUEUT P(u,/3) 

where 14 is the set of configurations from the simulation at )3 = fij  and UT is the 

total set of configurations. These plots for our data are shown in figure 3.14. 

Note that this is only a measure of the quality of the simulation relative to the 

other simulations that contribute at that value of 0. 

We can see that this method can improve our utilisation of data. The effective 

statistics are increased above that obtained for each individual simulation and 

observables can be calculated for any value of the coupling provided that the 

simulations are spaced closely enough and have sufficient statistics. There are, 

however, several practical difficulties to be overcome. The main difficulty is that 

the technique requires a very high machine precision. The exponential form of 

the weights means that they can become very large and unless steps are taken 

to control them, they can overflow the floating-point format or introduce large 

rounding errors. As the action occurs in the exponent and is proportional to the 

lattice size, this problem would become greater if the lattice size is increased. The 

values of {f} are not uniquely defined; it is possible to add a constant offset to 

each fj  and leave the results unchanged. This effectively rescales every P(u, 0) by 

the log of the offset but, as (A) is normalised by the sum over P(u,/3), this does 

not change the results. Once the separations between the values of {fJ have been 

calculated, a separate offset can be chosen for each value of /3 so as to control the 

exponential factors as much as possible. The optimal offset would be one that 

properly normalised P(u, 0) so that L P(u, 0) = 1, f(/3) = In fl P(u, )3) = 0 at 

the 0 being simulated. This could be achieved by first selecting an offset to control 

the largest P(u, )3) factor (the configuration with the extreme value of the action, 

that is the one closest to the classical solution) then iterating the calculation of the 

free energy a number of times, subtracting the previous value each time until the 
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Figure 3.13: Extrapolated plot of neff  at in = 0.0125 

This plot shows the extrapolated curve for neff  the effective number of configura-

tions for in = 0.0125. The number of configurations from the original simulations 

are also shown. 
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Figure 3.14: Extrapolated plots of L at rn = 0.0125 

This plot shows the the relative importance of each of the simulations for different 

values of P. Each curve has a peak at at the value of /3 where the corresponding 

simulation was performed. The simulations were performed at j3 = 0.17 , 0.18 

0.185 0.19 , 0.195 , 0.20 and 0.205 
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free energy becomes zero. A single iteration should be sufficient for all practical 

purposes. For the work presented here, a set of heuristics was good enough to 

calculate the offset except when calculating n,ff. This is because the heuristics 

were unable to regulate the E. P(u, /3)2  term. The free energy was already known 

at this point and it was used to calculate the correct normalisation for P(u, /3). 

The remaining awkwardness is that P(u, /3) consists of the inverse of a sum of 

exponentials. Potentially we can have configurations with P(u, 3) = 0 to machine 

precision. The only way this can happen is for one of the exponentials to be 

infinite, again to machine precision. As the Sun4 floating point implementation 

produces NaN (Not a Number) when it calculates the reciprocal of Inf, the value 

of the exponents must be explicitly checked and P(u,/3) set to zero if any are 

greater than a cut-off value. This problem did not occur in our data provided the 

offset in f was chosen sensibly. 

3.4 The simulation program 

This work was carried out using the Edinburgh Concurrent Supercomputer (ECS), 

a large Meiko computing surface built out of T800 transputers. The ECS contains 

over 400 T800s divided into a number of domains (see figure 3.15). The simulation 

program used 17 processors to simulate an 8 4  lattice using the hybrid Monte-

Carlo algorithm This code was written in Occam [12] and was developed from 

the program used to develop the hybrid Monte-Carlo algorithm [6]. A number of 

optimisations were introduced into this code as part of this project. Sixteen of the 

processors are wired as a four-dimensional binary hypercube see figure 3.16. Each 

of these processors is responsible for a 44  sublattice. The remaining processor is 

inserted into one of the links of this hypercube and acted as a controlling processor 

for the program. On domains larger than seventeen processors, several of these 

seventeen-processor building blocks are replicated to produce a program capable 

of simulating several lattices at once. 

Each copy of the program reads a separate parameter file. Interactive commands 

such as those requesting program-shutdown, checkpoint, or a re-scan of the pa- 
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Figure 3:15: The Edinburgh Concurrent Supercomputer 

The ECS is divided into a number of domains. Domains are only used by a single 

user at a time. System services are provided by the fileservers and a tree of system 

processors. 
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Figure 3.16: A binary hypercube of Transputers. 

A binary hypercube can be constructed using 16 Transputers. This uses all four 

links on all of the processors so an additional processor must be inserted into one 

of the connections to provide free links to connect with the outside world. 
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rameter files are broadcast to each copy of the program. The program therefore 

exhibits two separate levels of parallelism. Each simulation is distributed over 

seventeen processors using a geometric decomposition, and on larger domains sev-

eral lattices could be simulated as independent tasks. The program was designed 

to simulate dynamical fermions where almost all of the time is spent inverting 

the fermion matrix. The difficulty of this operation increases very rapidly with 

the size of the lattice and had a major effect on the design of the program. The 

parallelisátion scheme had to be as efficient as possible for small lattice sizes 8 

but the efficiency for a large lattice was of little importance. 

Because the transputer only has four bi-directional communication links, the 16 

processor hypercube is the largest fully connected four-dimensional grid of trans-

puters that can be constructed. This represents a particularly good topology 

for a lattice simulation. The surface area to volume ratio for each processor is 

minimised so the ratio of communication to calculation is also minimised, and 

all of the inter-processor communication takes place between directly connected 

processors. 

There are two basic approaches that could be used to increase the number of 

processors per simulation above 16. The first is to use a two-dimensional array 

of processors and to distribute only two of the lattice dimensions. This would 

produce a much larger surface area to volume ratio for each processor, so the 

relative communication requirement for the program will become much larger. For 

a 8 lattice, even 16 processors wired as a 4 >< 4 processor array will have reached 

the situation where every lattice site is a boundary site for the two directions 

where communication takes place. In addition, the finite number of lattice sites 

places an upper limit on the number of processors that can be used. If we are 

only distributing two of the lattice dimensions, then we are limited by the number 

of sites in a two-dimensional plane of the lattice, so this limit will be reached 

much faster. The absolute maximum number of processors that could be used 

to simulate a 8 4  lattice using this scheme would be 64, and the surface area to 

volume effect would mean that such a program would run at much less than four 

times the speed of the 16-processor hypercube. 

The other approach that could be used to increase the number of processors is 



to maintain a iS surface area to volume ratio by using a 3 or 4 dimensional 

decomposition and relax the condition that processors controlling neighbouring 

regions of the lattice must be •  directly connected. The version of the Occam 

language available at the time this work was carried out, did not provide automatic 

message routing. Messages could only be communicated to directly connected 

processors if explicit message passing code was introduced into the program. On 

T800 Transputers this kind of message passing code always incurs some reduction 

in performance. Processor cycles must be used to make decisions about message 

routing and to copy transient messages to and from message buffers. The reduced 

message size due to the improved surface area to volume ratio is offset by the 

larger number of messages that would have to pass through each processor. If 

a parallel processing system has a general purpose message passing system, it 

is much easier to program, as the details of processor topology and connectivity 

need not be addressed by the application programmer. When this project was 

started, efficient message routing code was not widely available, so a message 

passing approach would have been much harder to implement. This is no longer. 

the-case, as efficient message routers such as UStools [49] and Tiny [50] have since 

become available. Even if such software had been available at the time, a message 

passing solution would have been less efficient, because the routing software would 

have to run on the same processor as the application code and compete with it 

for processor cycles. This would not be a problem on a hardware platform that 

implements the message passing using separate hardware. For example, the Meiko 

MK086 processing node uses an Intel i860 as the main processor with two T800 

transputers dedicated to message routing. 

Because we were investigating a phase diagram, it was necessary to perform a 

large number of independent simulations at different parameter values. It was 

therefore always possible to utilise large numbers of processors by replicating the 

basic 17-processor unit. It would have been possible to simulate a separate lattice 

on each processor. This would have been computationally efficient, but would not 

have been very practical. The largest domain in the. ECS contains 131 processors; 

this is sufficient to run 7 simulations in parallel. Even if we ignore all unused 

and support processors this is equivalent to 7 * 16 = 112 processors. As the phase 

diagram was not known when we started the simulations it was possible to use the 

results from previous simulations to refine our original guess about which regions 
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of the phase diagram were of interest. It was therefore much more informative to 

perform 7 relatively fast simulations than 112 or 131 relatively slow ones. The 

fermion matrix inversion takes different numbers of iterations in different parts of 

the phase diagram. This means that the simulations did not all run at the same 

speed. With only a handful of simulations to look after, it was possible to re-

allocate processors as various simulations reached an acceptable level of statistics. 

This would have been too time consuming a task if there had been a hundred 

simulations running concurrently. 

3.4.1 Optimising the program 

Transputers were designed to implement the Occam language efficiently. There 

is a very simple correspondence between an Occam program and the machine 

instructions it compiles to. There is little reason to program the transputer in 

assembly language; most optimisations can be implemented almost as efficiently in 

Occam as in assembly language. The current compilers do not make any attempt 

to optimise the code they produce. It is therefore possible to improve a program 

manually by changing the Occam code. In the QED simulation program, all of 

the inner loops of the low level routines were unrolled by a factor of 16. In a 

normal program loop, it is quite common to use as many instructions to perform 

the loop as are used to perform the calculation. By replicating the body of the 

loop a number of times the fraction of useful instructions can be increased. This 

is a very common form of code optimisation that is often performed automatically 

by optimising compilers. The factor of 16 was chosen because of a peculiarity of 

the Transputer instruction set. The basic Transputer instruction is only a byte 

long. Four bits of the instruction encodes one of 16 basic operations and the other 

four bits form an argument for the operation. One of these 16 basic operations 

is used to change the meaning of the next instruction so that a wider variety of 

operations becomes available. Another basic operation is the prefix operation. 

The prefix operation is used to increase the number of data bits available to the 

next instruction. If an instruction only needs 4 bits of data it can be encoded 

as a single byte; for each additional 4 bits it requires it must be prefixed by an 

additional prefix operation. The low level loops were unwound by a factor of 

16 because any greater factor would have required prefix operations to perform 
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vector indexing inside the loop. It was not possible to avoid this vector indexing 

because Occam does not have pointer data types. As can be seen from the first 

two columns of table 3.5, code without this modification takes approximately one 

and a half times as long to perform a CG iteration. The exception to this is for a 

44 lattice size. In this case, unwinding the loops makes the code run slower. This 

is because each processor is only updating 16 lattice sites; the modifications are 

therefore introducing extra instructions for no useful purpose. 

The Occam language provides intrinsic support for parallel execution. The PAR 

construct allows the programmer to specify a number ot operations that are to 

execute concurrently. In an ideal world, any set of mutually independent oper-

ations could be specified as happening in parallel and the compiler would make 

the decision about the most efficient implementation. Unfortunately, the available 

Occam compilers are far from optimal. They perform a direct transliteration from 

Occam to Transputer instructions without making any modifications, so a pro-

gram written in such a way would result in a large number of processes running 

on each processor. The transputer is designed to support large numbers of con-

current processes and will probably handle such a program better than any other 

processor would, but there is always some overhead when the processor switches 

between different tasks, so a single sequential piece of code is still much more 

efficient. It is therefore important to reduce the number of concurrent processes 

running on a single Transputer as much as possible. The multi-tasking capabil-

ity of the Transputer is still important as it provides a way of making sure that 

the inter-processor communications are run efficiently. The Dslash procedure has 

to calculate the covariant derivative in all four directions and then combine the 

results. Each derivative is completely independent of the the others, so they can 

be calculated in serial or in parallel. The program timings (see table 3.5 Serial 

Dslash) show that there is a small improvement in performance (5 - 10%) if they 

are calculated in parallel. If the directions were calculated sequentially, only a 

single communication link would be in use at any one time. A Transputer mem-

ory cycle can be used directly by the current process, or it can be used by one of 

the links. When all four links are run simultaneously each memory cycle is more 

likely to be used usefully. 
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Size Standard code Un-optimised math Serial Dslash No on-chip mem 

44 118.8 + 2.1 110.9 ± 2.1 126.4 ± 2.1 171.9 ± 2.2 

807.4 + 2.3 1177.2 + 3.0 864.7 + 1.5 1028.8 ± 1.7 

12 4 3747.3 ± 1.1 5548.3 ± 0.8 3937.4 ± 1.2 4759.2 + 1.5 

16 4 1326.3 ± 0.6 17003.1 ± 1.3 11774.3 ± 0.5 14325.4 ± 1.9 

21 11  27079.2 + 12.9 40728.7 + 16.7 27951.0 + 12.3 34251.09 + 16.9 

Table 3.5: Timings for a CO iteration of the QED program 

All timings are given in units of 64 microseconds, this is the clockrate of the 

internal transputer timer. These are actually times for a full HMC update sweep 

divided by the total number of CO iterations performed as the HMC algorithm 

is totally dominated by the CO inversion this is a reasonable measure for a single 

CO step. 

We can model these timing figures using the following equation, 

T=A1 4 +B13  

where T is the time taken for a single CC iteration, and 1 is the linear dimension 

of the lattice. A represents the time taken to perform the calculation and B 

represents communication time. Lattice size independent overheads are assumed 

to be negligible. If this model holds then we should obtain a straight line graph 

if we plot T/l3  against 1, see figure 3.17. 

Apart from the 44  lattice, this model seems to work quite well and gives values 

of A 0.15 and B 0.4. It is not so surprising that the model breaks down for 

the 44  lattice; as there are only 16 lattice sites per processor in this case, it is no 

longer sensible to neglect the size-independent overheads. This suggests that the 

8 4  lattice is running at approximately 75% efficiency compared to an equivalent 

single processor program ( assuming a single processor program has B = 0.0 ). 
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Figure 3.17: Problem size scaling of the QED program 

The time for a CC iteration T is plotted as T/1 3  against 1, the width of the lattice. 

If the program behaves as expected This should give a straight line showing the 

relative importance of communication and calculation. 

104 



Chapter 4 

QCD on i860 based machines 

4.1 The UKQCD collaboration 

The computational needs of lattice gauge theory are now greater than can be 

supplied by conventional academic computing facilities. A collaborative project 

(UKQCD) has therefore been set up by six British universities centered round 

a high performance parallel computer based in Edinburgh. The six collabo-

rating universities are Cambridge, Edinburgh, Glasgow, Liverpool, Oxford and 

Southampton. The computer is a 64 node parallel machine buiF by Meiko of 

Bristol. Each node consists of a 40MHz Intel i860 processor and two Inmos T800 

transputers. The three processors on the node communicate by shared memory 

and the nodes communicate using the transputer links. Each node has 16 Mbytes 

of memory. The i860 is a commercially available microprocessor manufactured by 

the Intel corporation. This microprocessor is capable of high floating-point per-

formance. The i860 has a peak performance of 80 Milops, the peak performance 

of the machine is therefore 5.12 Gigaflops. Even though this peak speed will not 

be sustainable for normal operations this computer is a very significant resource. 

Even with such a powerful computer the computational requirements of lattice 

gauge theory are such that every effort has to be made to utilise the computer as 

effectively as possible. There are two types of basic optimisation that we can use 

in this case. The first is to distribute the problem over a number of processors. 

This kind of optimisation has been discussed in earlier chapters. The second type 
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of optimisation are those specific to the i860 microprocessor. This is the subject 

of this chapter. 

4.2 The i860 microprocessor. 

The Intel i860 microprocessor is one of the new generation of high performance 

microprocessors. It incorporates design features from a number of different types 

of computer including vector supercomputers and reduced instruction set (RISC) 

designs. It is currently one of the most complex microprocessors on the market, 

incorporating over one million transistors in its design. It was designed to give 

high performance in a number of common application areas including floating-

point numerical and graphical applications. The main features of the design are: 

• Parallel execution of processor units 

• Pipelined floating-point units 

• Reduced instruction set core unit 

• Large integer and floating-point register sets 

• Data and instruction caches 

• 64-bit external data path, 128-bit internal data path. 

• Paged memory support 

The processor has a number of separate processing units. The units of interest 

for QCD calculations are the floating-point adder, floating-point multiplier and 

the integer core unit. The core unit performs all integer arithmetic and logical 

operations, control transfer operations, such as jumps and procedure calls, all 

data transfers between memory and registers and also performs the system con-

trol functions such as cache flush operations. Floating-point arithmetic is handled 

by the two floating-point units. Each of these units is capable of being run simul-

taneously. This means that the chip is capable of simultaneously performing a 
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floating-point multiplication, floating-point addition and an address calculation. 

Instructions where both floating-point units are in operation at the same time 

are called dual operations. When the core and floating-point units are operat-

ing together the chip is said to be operating in "Dual Instruction Mode" (DIM). 

The maximum performance of the chip can only be obtained when using dual 

operations in dual instruction mode. 

Both of the floating-point units are pipelined. This means that floating-point op-

erations are divided into a number of simpler stages. Each stage is implemented 

using separate hardware, the results from one stage being fed into the input of 

the next stage. The pipelines on the i860 are carefully designed so that each stage 

can complete a single-precision operation every clock cycle, even though a specific 

operation may have taken a number of cycles to complete. The peak performance 

of the i860 is therefore two floating-point operations per clock cycle, giving 80 

Mflops peak performance for the commercially available 40 MHz chips. For single 

precision calculations both of the floating-point units have three-stage pipelines; 

so the result of any calculation emerges from the pipeline three instructions after 

the operation was started. When operating in double precision the multiplica-

tion pipeline has only two stages; however it takes two cycles to advance the 

multiplication pipeline when performing double precision calculations so the peak 

performance drops to 60 Mflops. The pipelines in the i860 are very flexible. Unlike 

some vector mainframes they are not restricted to repeating the same calculation 

a large numbers of times. Instead it is quite possible to have very different op-

erations in the different stages of the pipeline. There are restrictions on how the 

floating-point registers are used; it is not possible to read from more than two of 

the main registers in a single cycle or to store more than one result per cycle. This 

in turn restricts the wy that the floating-point pipelines can be used. In order 

to use both floating-point units at the same time (dual operation instructions) it 

is necessary to chain the units together, so that the output of one or both units 

form one of the inputs of the other unit. A number of special-purpose registers 

also exist to make dual operation instruction more flexible (see figure 4.1). 

There are three special-purpose registers, which can store an operand from one 

dual operation instruction and then supply this value as an operand for later 

instructions. Registers Ki and Kr can be used as the first argument to the 
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Figure 4.1: The i860 floating-point units 

This diagram shows the data paths that connect the two floating-point units and 

shows the different ways in which they are capable of being chained together 
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multiplier and the transfer register T can be used in a similar way as an argument 

for the adder. For example, the multiplier unit can be used to generate the product 

of two numbers and the result emerging from this pipeline can be fed into the 

adder unit, where it is added to the result emerging from the adder pipeline. This 

instruction is commonly used for the sum of a sequence of products and it forms 

the most common type of instruction used in complex arithmetic. The majority 

of the routines discussed later in this chapter use this configuration exclusively. 

Other combinations of the two floating-point units are possible, for example, the 

multiplier unit can be used to multiply a main register by the contents of one of 

the K-registers. A second main register can then be added to the result of the 

multiplier pipe and the result of the adder pipe is stored into a third register. This 

is the saxpy operation. 

In single precision it takes three cycles for an operation to progress through one 

of the pipelines. It is usually convenient to evaluate three similar but separate 

expressions at the same time. This allows machine instructions to be grouped into 

sets of three, one from each of the expressions. This ensures that results from the 

previous instruction of any expression reach the end of the pipeline at the same 

time as the next instruction of the same expression is executed. The advantage 

is that each of the expressions may be coded as if the pipelines only had a single 

stage. A single-stage pipeline is easier to use because the pipeline can be thought 

of as an extra register. For example, When calculating the sum of a large number 

of terms the running total can be kept in the adder pipeline, each new term being 

added to the result emerging from the pipeline. 

Unlike the floating-point units, the core unit owes more to recent developments 

in microprocessor technology than to conventional mainframes. The core unit is 

a RISC tReduced  InStruCtiOn set) processor. It only has 41 separate types of 

instruction. The aim of the RISC style of architecture is to identify the handful 

of simple instructions that make up over 90% of most programs and to implement 

these instructions to execute as quickly as possible, at the expense of not imple-

menting any more powerful but less frequently-used instructions. Code written 

for a RISC processor will in general be longer than that for a CISC (Complex In-

StruCtion set) processor but should execute more rapidly because each instruction 
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only takes a single clock cycle. In addition the simpler structure often makes it 

easier for the chip to run at a higher clock speed. The other advantage of a RISC 

processor is that it is much easier to write code or compilers for it. Some CISC 

processors have instructions that are hardly ever used because most compilers 

never recognise the situations where they could be used. Though this advantage 

does not apply to floating-point-intensive application code it does mean that op-

erating systems and support routines can be easily and efficiently ported to, or 

written for, the i860. In this respect the i860 is a rather strange hybrid. The 

floating-point processors are definitely not RISC processors; there are a very large 

number of floating-point instructions and it is very difficult to produce a compiler 

that uses the floating-point units efficiently. 

Another characteristically RISC feature of the i860 is the set of delayed control 

transfer instructions. A delayed control transfer instruction is a kind of jump or 

branch instruction, where, instead of performing a jump when the instruction is 

executed, it causes a jump to occur a number of instructions later. The advantage 

of delayed control transfer is that the processor always has advance warning about 

the sequence of instructions it is going to have to execute later. It can therefore 

always pre-fetch and decode the correct instructions in advance. Without this 

delay the only option is to arbitrarily choose one of the possible branches to 

pre-fetch. If this guess turns out to be wrong the processor will have to halt 

execution until it has fetched and decoded the correct instruction. The i860 fetches 

its instructions two cycles before it has to execute them and then decodes the 

instruction in the cycle before execution. This is another example of pipelined 

operations in the chip design. 

In principle it is possible to extend the RISC concept to cover the floating-point 

instructions as well. This would mean only implementing the simplest generic 

floating-point instructions, for example addition and multiplication. Unfortu-

nately, floating-point operations are inherently complicated and cutting down the 

number of instructions therefore produces a relatively smaller simplification of 

the design and therefore a smaller increase in performance. Because of this, the 

potential gains are much less than for the pipeline approach used by the i860. 

The i860 also has scalar floating-point instructions that run a single calculation 
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through one of the pipelines as a single operation. These instructions take three 

cycles to perform a single floating-point operation but at 40 MHz this still produces 

a performance of 13 Mflops. These are the only floating-point instructions used by 

most generic compilers that have been modified to produce code for the i860. The 

i860 is still a fast floating-point chip even when only using these scalar instructions 

but for highly floating-point intensive applications it is worth finding a way to use 

the pipelines. 

Both the floating-point and the integer units are capable of very high performance. 

This performance can only be sustained if they can be kept supplied with data 

at an equivalent rate. Unless a very expensive fast memory system is used, the 

external memory system is unlikely to be able to keep up with the processor 

when it is operating at maximum efficiency. This means that the register, cache 

and memory management systems on the chip are of vital importance to the 

performance of the processor. 

On the i860 all data must be loaded into a register before it can be used and 

any result must be stored in a register before it can be written to main memory. 

This provides a simplification of the instruction set. This need not produce any 

degradation of performance. Registers are loaded and saved by the core unit so 

these operations may be overlapped with floating-point operations by using dual 

instruction mode. The i860 has two types of general purpose registers, integer 

registers and floating-point registers. Integer registers are used to store integer 

values or memory addresses. The floating-point registers are used to store floating-

point data or data for the special graphics instructions. The graphics instructions 

are not relevant to QCD so they will not be discussed further. The core instruction 

unit is used to move data between main memory and both types of register. 

There are 32 integer registers and 32 floating-point registers. All of these registers• 

are 32 bits wide. The floating-point unit uses the IEEE floating-point standard. 

It supports both single (32 bit) precision and double (64 bit) precision representa-

tions. Double precision numbers are stored in a consecutive pair of floating-point 

registers. The first register of this pair must be an even-numbered register. The 

first integer register rO and the first two floating-point registers f  and f  always 

contain the value zero. This enables the number of instructions to be further 
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reduced; there are some instructions that can perform a number of different func-

tions provided that there is always a .register guaranteed to contain the value zero. 

For example, the addition instructions can be used to set a register to a constant 

value by adding a constant to the zero register. If the zero registers were not 

present this operation would need a special load constant instruction, or extra 

cycles would be needed at runtime to generate a zero by subtraction. In addition 

some instructions, particularly the dual operation instructions, can generate in-

termediate results that are not always needed; the zero registers are a convenient 

place to discard these values. Both fO and fl generate zero so that a double 

precision zero can be generated from the register pair. 

Further important features of the chip are the on-chip caches. A cache is an area 

of faster-than-normal memory used to improve the performance of the memory 

system. It does this by assuming that memory locations that have been accessed 

recently are quite likely to be used again in the near future, so it keeps a record of 

recently-accessed values. There are two caches on the i860, a 4 Kbyte instruction 

cache and an 8 Kbyte data cache. When the processor attempts to read a memory 

location it first checks to see if the required data is already in the appropriate 

cache. If it is, the data will be read from the cache instead of the external memory. 

A read from the cache only takes a single clock cycle. If the required data is not 

in the cache the processor will load the appropriate 32 byte long "cache line" into 

the cache and then continue operation. If the data being loaded is destined for an 

integer register the core unit is capable of continuing with further instructions until 

that register is actually used. This means that if there are sufficient instructions 

between the register load instruction and the first instruction to use the value 

there will be no delay due to the cache-miss. If the value is destined for a floating-

point register then the processor must halt until the desired value has been read 

from external memory. These cache-misses can be the main reason that a routine 

does not perform at the peak speed of the processor. 

When all the data fits into the data cache the processor is capable of obtaining 

close to peak performance. Unfortunately in many applications, including lattice 

gauge theory, the data sets will be larger than the cache and delays due to cache 

misses will be introduced. In lattice gauge theory calculations the data cache 

will only be of limited use because the data sets are several times the size of the 
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data cache. By the time the program gets round to reusing the data it will have 

been replaced by more recent values. The instruction cache on the other hand is 

extremely useful. Even the code for very complex operations should fit inside the 

instruction cache. Because of the large loop lengths the code for these operations 

will be repeatedly called a large number of times. The instruction cache will 

therefore be used very efficiently. If a floating-point value is only going to be used 

once, or if it will be a long time before it is used again, then it is possible to 

bypass the caching mechanism using a pipelined load operation. The pipelined 

load operations load floating-point values without placing them in the cache. They 

return the floating-point value that was asked for by the third previous pipelined 

floating-point load. The load pipeline operates in parallel with the other units of 

the processor. It performs the outstanding memory accesses during cycles when 

the external bus is not being used by the other parts of the processor. Up to three 

pipelined loads may be outstanding at any one time. If the requested values have 

not been fetched from memory by the time a fourth pipelined load is requested 

the processor must halt until the outstanding data has been read. 

In most of the procedures that we have implemented for lattice gauge theory it 

is not necessary to use the data cache. There are usually enough registers that 

we do not need to re-load any element of data within a single procedure. This 

would suggest that all of the data should be loaded using pipelined loads. This 

makes things very difficult for the programmer. If a routine has to load data from 

two separate regions, for example two arrays of numbers that must be multiplied 

together, then the pipelining makes it very difficult to keep track of which value 

should be requested at what time. It is much simpler if one set of numbers is loaded 

using pipelined loads and the other set is loaded using caching loads. There may 

be some advantage to using a combination of caching and pipelined loads. If a 

series of memory locations have to be loaded in quick succession (enough to fill 

the load pipeline) then the exclusive use of either type of load will introduce a 

delay into the program. If some of these memory accesses are performed using 

caching loads, the remaining pipelined loads will not fill the load pipeline and the 

corresponding memory accesses can be widely spaced inside the loop and have a 

better chance of finding free memory cycles to use. 

The i860 has a large number of different functional units on the same piece of 
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silicon. One of the advantages of having everything on a single chip is that it allows 

a much greater communication rate between the different parts of the processor. 

There is a practical limit to the number of external connections that can be 

conveniently supported by a microprocessor. This limits the width of the external 

data bus. On the i860 the external data bus is 64 bits wide. There is less limitation 

on internal data paths. The communication bus that connects the data cache to 

the floating-point register set on the i860 is 128 bits wide (see figure 4.2). 

The wide internal data bus enables the chip to load up to four registers in a single 

instruction. This can be used for complex numbers, double precision numbers, 

double precision complex numbers etc. The disadvantage of putting everything 

on a single chip is that there is only room for relatively small caches. This is 

less of a disadvantage for lattice gauge theory than for some other applications, 

because it is unlikely to benefit significantly from any kind of data cache. 

4.3 Software development on the i860. 

The i860 is a very new design of processor. This means that software development 

tools are still in the early stages of development. Of particular interest are the 

compilers. A number of compilers already exist for the i860. However most of 

these are general purpose compilers that have been modified to generate code for 

the i860, for example the "Green Ti.iEI" compilers [51]. Because these are generic 

compilers designed to produce code for a wide variety of processors they do not 

support the unique features of the i860 such as the dual instruction mode and 

the pipelined modes of the floating-point units. This is no problem for programs 

that use few or no floating-point operations but is inadequate for floating-point-

intensive applications. A number of conventional vectorising compilers are also 

being ported to the i860. Most vector machines implement very similar sets of 

vector operations. These are usually low-level generic operations, for example, 

adding two vectors element by element or multiplying all the elements of a vector 

by a constant. Each of these simple operations is specially supported by the 

vector hardware. A conventional vectorising compiler identifies those parts of a 

program that are equivalent to these operations and replaces that part of the code 
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Figure 4.2: The i860 Internal datapaths 
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by the appropriate vector instruction. Strictly speaking the i860 is a pipelined 

scalar processor rather than a vector processor. It implements scalar operations 

using a pipeline rather than having single instructions that operate on vectors. 

When a vectorising compiler is ported to the i860 these standard operations must 

be implemented using hand-coded assembly language. The compiler then inserts 

these optimised routines into appropriate places in a program. For example the 

the code fragment 

DO I = 1,N 

X(I) = (A(I)*B(I))-(c(I)*D(I))+(E(I)*F(I)) 

ENDO 

may be converted into 

C 	 vector multiply 

VVM(X,A,B,N) 

C 	 vector multiply 

VVM(TMP 

C 	 vector subtract 

V VS (x 	TMP , N) 
c 	vector multiply 

VVM(TMP,E,F,N) 

C 	 vector add 

VVA(X,X,TMP) 

Such a compiler can never achieve a greater efficiency than that achieved by the 

individual vector routines. 

This kind of vectorising compiler will generate much more efficient code than the 

currently available generic compilers. The i860 floating-point units are in some 

ways more flexible than conventional vector architectures, being able to mix dif-

ferent operations in the pipeline. Vector mainframes are also usually connected 

to a much more sophisticated memory system than is usually used with a micro-

processor, so the i860 will usually be limited by memory access speeds. This gives 
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rise to a number of drawbacks to using the traditional vector processing model for 

the i860. When a program is decomposed into a large number of simple vector 

operations many of these operations will only use one of the two floating point 

units so the dual operation instructions will not be fully utilised. The program will 

also loop through the data a large number of times. This increases the number of 

memory accesses because intermediate results will be written back into memory 

and then retrieved in a later loop. If the vector length is long enough for the 

vectors to be larger than the size of the cache this will have a significant impact 

on the performance. 

In order to get the maximum performance out of an i860 it is preferable to use 

a smaller number of loops that perform higher-level operations on the elements 

of the vectors. A high-level operation containing several multiplications and ad-

ditions is preferable because it has a good chance of using both floating-point 

units simultaneously. This will not prevent the pipelined floating-point instruc-

tions from being used because the type of instruction being started at the head 

of a pipeline has no effect on the instructions that are already being processed. 

Different floating-point instructions can therefore be mixed freely within the in-

ner loop of a vectorised procedure. There will also be a much lower demand on 

the memory system. Any temporary variables needed by the high-level operation 

can be implemented using registers or a few scratch variables that always remain 

in the cache. If the same operation was implemented as a number of less com-

plex loops each temporary variable would have to be an entire vector in order to 

store one value from each of the iterations, for example the TMP vector introduced 

previously. If the vector length is large this can easily overflow the cache. 

There is no reason why efficient compilers for the i860 cannot be developed. One 

possible solution is for a vectorising compiler to process long loops using a number 

of small sections, where each section is small enough for the vectors to remain in 

the cache between the low-level vector operations. At the time of writing the 

human assembly language programmer still has a significant advantage over the 

available compilers for the i860. A hand-coded routine takes longer to produce 

than a compiled one and cannot be ported to a different type of processor, but for 

programs that are expected to run for several months or years, such as lattice QOD 

simulations, this extra time is small compared to the time saved. The disadvantage 
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of assembly language programming is that great care must be taken to ensure the 

routine does what is expected of it. Each routine must be thoughly debugged 

before it is installed in a full program. This is especially important when the 

program is intended to run for long periods of time. Only a limited number of key 

routines need be hand coded in assembly language. In lattice gauge simulations 

these will always be vector routines with a very long vector length. In the following 

text this kind of optimisation is discussed. In this discussion I will use "iteration" 

to refer to the operation applied to a single position of the input vectors, and 

"loop pass" to refer to the instructions that make up the body of the inner loop of 

the vectorised routine. More than one iteration may be contained in a loop pass. 

4.3.1 Assembly language programming on the i860 

The i860 has a very powerful assembly language [52]. The main difficulties when 

writing assembly 'code are keeping track of the various pipelines and identifying 

independent calculations that can be performed in parallel by the different units of 

the processor. The second problem is usually solved in one of two ways. The first 

way is to write the inner loop of a vectorised routine in such a way as to perform 

more than one iteration at a time. Initially the code for a single iteration is written 

assuming a single stage pipeline; this is relatively simple compared to code for a 

longer pipeline, see figure 4.3. This is then converted into code that calculates 

Multiplier 	 Adder 

Ct 	 I 	-I 	- 	AB 	 0 

A1*B1 	 I 	 A*B+C*D 

I 	
APB1 	 I CPD1 	 I 	I 

Figure 4.3: Code for single-stage pipelines. 

The diagram shows how the function (A * B) + (C * 13) would be implemented 

using single-stage pipelines. 
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three iterations simultaneously by replicating each instruction three times. Each 

one of the three instructions belongs to a separate iteration. Because the number 

of instructions has tripled, the code now corresponds to a pipeline of length three, 

see figure 4.4. Because each iteration requires separate data, this approach may 

	

Multiplier 	 Adder 

I A2*B2 	Al*Bl 	AB I 

	

'At 	 rn CT 	A2B2 	Al*Bl 
 

' APB1 CVD1 	C*D 	A2*B2 I 	I 	A*B 
 

1C2D2 	CID1 	CT 	 ' A2tB2 	A1*B1 	AB 

A3*B3 C2*D2 	C1D1 I 	._4 r-"n 	A2B2 	Al 

	

WI APB1 	AB A484 	A3B3 C2*D2  I 	.-4 n1'ni 	,rn 	A282 

A5*135 	A4*B4 A3*B3 I 	r?2*B2 	At *B1 

	

r,n, 	,err 

Figure 4.4: Code for three-stage pipelines. 

The diagram shows how the function (A * B) + (C D) would be implemented 

using three-stage pipelines. Each set of three instructions corresponds to one of 

the instructions from the single-stage solution. 

require three times as many registers as an unpipelined implementation. If the 

vector length cannot be guaranteed to be a multiple of three, a complicated section 

of code will also be needed at the end of the main loop in order to finish off any 

remaining iterations. This flushing phase can often be more complex than the 
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main loop. The second possible approach is to identify some inherent parallelism 

in the iteration itself. The SU(3) gauge group of QCD is especially convenient in 

this respect, because in matrix arithmetic the elements of the result are calculated 

independently. It is therefore always possible to split an iteration into a multiple 

of three independent parts, one for each row of the output. As these independent 

calculations share operands, the number of registers required is not increased. For 

less convenient routines it is still necessary to have several iterations performed 

in a loop-pass. The large requirement for registers can be reduced at the expense 

of clarity of code by overlapping sections from the same iteration where possible. 

For example, an SU(2) routine has to perform three iterations for each loop pass. 

There are four independent sections to each iteration, corresponding to the four 

real parameters of an SU(2) matrix. The most obvious way to construct the loop 

is to overlap the same calculation for three separate matrices; see Figure 4.5. 

This will require at least enough registers to store three sets of SU(2) matrices 

simultaneously. In this scheme three new sets of SU(2) matrices are required at 

a single point in the loop. This would introduce a severe performance overhead 

unless even more registers are used to allow the data for the next loop-pass to 

be read in without overwriting the current data. The better way is to overlap as 

much as possible from the same iteration; see figure 4.6. Because at most two 

iterations are proceeding at any one time this only requires enough registers for 

two sets of SU(2) matrices. The register reloads are also spread more evenly over 

the loop-pass. Multiple iterations per loop-pass are still needed in order to make 

the loop-pass finish in the same state that it started in. 

An example of this from the QOD code is the psi2chi procedure that was written 

to be part of a r = 1 Wilson fermion simulation. This procedure performs a 

set of projections on a vector of four spinors in order to produce eight sets of 

two spinors. The registers are divided into three blocks. At any one time, one 

of the blocks contains the four spinor being used by the present iteration. The 

next block is being loaded with the four spinor needed by the next iteration. The 

remaining block is used to save the results. Each block of registers is used for each 

of the different functions in turn. It therefore takes three iterations before the 

registers return to their original functions. The loop pass must therefore consist 

of a multiple of three iterations. It would have been possible to just swap the 

function of the first two blocks and reduce the loop pass to a pair of iterations but 
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Figure 4.5: A simple implementation of SU(2) multiplication 

This figure shows a simple implementation of a SU(2) multiplication. The shaded 

regions shows which of the four independent sections are active at any time. If 

the SU(2) multiplies are implemented in this fashion all three sets of matrices will 

be required throughout the loop. 
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Figure 4.6: An improved implementation of SU(2) multiplication 

This figure shows an improved implementation of a SU(2) multiplication. The 

shaded regions shows which of the four independent sections are active at any time. 

This implementation of the SU(2) multiplication only requires enough registers 

for two sets of matrices. It is also much easier to keep the register load instructions 

spread out. 
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the vector length is guaranteed to be a multiple of three, because of the colour 

index, so a three iteration loop removes the need for a final flushing phase. 

The second problem, keeping track of the pipelines, is nothing more than a com-

plex book-keeping operation. When there is a natural three-way decomposition 

of the problem this is very easy to do. All of the instructions come in multiples of 

three and so a set of three results will emerge from the pipeline during the next 

set of three instructions. In more complex procedures such as the psi2chi proce-

dure the book-keeping becomes very difficult. Luckily this is exactly the kind of 

book-keeping that computers are very good at doing. The psi2chi procedure was 

not written directly in assembly language. Instead a special program was written 

to write the inner loop of the code. Each one of the iterations was written by a 

single procedure that took a set of three parameters to tell it which register block 

was to be used for which purpose. This procedure was made up of other proce-

dure calls each corresponding to a recognisable section of the iteration. At the 

lowest level was the procedure responsible for writing a single assembly language 

instruction. This procedure is passed the name of the register that is to receive 

the result of the current calculation. Because of the pipelining this result will not 

become available for a further three instructions so this procedure keeps a record 

of these destination registers and substitutes the correct name three instructions 

later. This approach is especially valuable because large sections of some proce-

dures can occur several times with slight modifications. If a bug is found in one 

of these sections it usually exists in all of them and a large amount of editing is 

needed to correct the problem. When a simple code-writing program is used, only 

a single part of this program need be changed to correct the error. Even though 

this section of code is generated automatically it is still valuable to make it as 

readable as possible. The code writing program therefore also inserts appropriate 

comments into its output. 

There is no easy way to verify that any code is correct. This is more of a problem 

with assembly language because there is much more detail in the code to hide 

mistakes. Assembly-language routines are much easier to verify if thereis some 

standard that the code can be compared against. It is therefore essential to main-

tain a library of high-level language equivalents for all of the assembly-language 

routines. This high-level language implementation is essential in order to debug 
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the test programs that are going to be used to verify the assembly-language rou-

tines. They can also serve as additional documentation and provide an easy way 

of porting the program to a different machine. 

4.3.2 The inner loop. 

All of the optimised routines considered here repeat their operations a large num-

ber of times, corresponding to the elements of the input vector. It is therefore 

necessary to pay particular attention to the implementation of loops on the i860 

processor. 

The i860 has a special instruction called the bla instruction that can be used to 

implement loops. It can only be used for the innermost loop of a set of nested 

loops. The outer loops must be written using conditional branching. In the 

case of the optimised routines considered here, short loops, such as the loop over 

colours, are usually unwound as part of the pipelining. This usually means that 

there are no nested loops and the bla instruction is used for the loop over sites. 

All of the operations needed to implement a loop are contained in this single 

instruction. This instruction is the most efficient way to implement a loop but it 

is not the simplest intruction to understand. The pseudo-code definition of the 

bla instruction is: 

bla step, count, label 

LCC_temp clear if count < comp2( step) (signed) 

LCC_temp set if count > comp2( step ) (signed) 

count - step + count 

Execute one more sequential instruction. 

IF LCC 

THEN LCC LCC..temp, 

goto label 

ELSE LCC - LCCtemp 

Fl 

LCC is a status flag that is only used by the bla instruction, its value is pre- 
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served between calls to this instruction. The function cornp2 denotes the "twos-

compliment" of a number, this is equivalent to multiplying the number by —1. 

The source of a simple memory copy routine are shown here as an example of the 

use of the bla instruction. 

scopy(a,b,len) - copies len words from a to b. 

string "$Id: scopy.s,v 1.3 1991/04/16 14:08:06 spb Exp $" 

align 4 

a = r16 

b = nT 

len = n18 

step = n19 

ftmp = f16 

scopy: 

adds -1, rO, step 

adds -1, len, len 

addu -4, a, a 

bla step, len, LOOP 

addu -4, b, b 

LOOP: 

fld.l 	4(b)++, ftmp 

bla 	step, len, LOOP 

fst.l - ftmp, 4(a)++ 

entry point 

1/ step = -1 

len = len-i 

allow for auto-increment, aa-4 

initialise bla state 

allow for auto-increment, bb-.4 

// b = b+4 and load word. 

// a = a+4 and store word. 

bni 	ni 	 /1 Return to calling procedure. 

nop 	 // nop because of delayed branch. 

The important points about this instruction are firstly that it uses a delayed 

branch; the jump does not take place until the instruction following the bla in- 

struction has been executed. The bla instruction is therefore the next to last 
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instruction in the loop. Secondly, the branch being taken or not is controlled 

by previously executed Ha instructions. When a procedure first uses the bla 

instruction it is not known if the branch will be taken or not. Before using the 

Ha instruction in a loop each procedure must use the instruction once to set the 

LCC flag to a known state. The jump address for this call must point the second 

instruction following itself. This will make sure that the initial value of the LCC 

flag makes no difference to the behaviour of the procedure. 

The floating-point load instructions have an auto-incrementing mode. This is to 

enable loops to be coded efficiently. An auto-incrementing load is written as: 

fld.l offset(pointer) ++, destination 

The variable in the memory location addressed by pointer + offset is loaded into 

the floating point register "destination". The pointer register is then incremented 

by the value offset. This enables a large vector of values to be stepped through 

one at a time. Care must be taken to prevent the auto-increment instructions 

from skipping the first element of the vector. 

When writing vectorised procedures it is often convenient to have a dummy loop 

pass immediately before the body of the main loop. The primary reason for this is 

because the results have to be written back into memory during the next iteration. 

The first iteration performed by a routine has no such values to store so it must 

be performed by a separate piece of code that is missing these instructions. If we 

have to have a dummy loop-pass, then a number of necessary initialisation steps 

can be absorbed into this dummy loop in order to reduce the set up time for the 

procedure. The bla instruction can be initialised by placing a Ha instruction in 

the dummy loop. The first load instruction that uses each of the pointer registers 

should not be auto-incrementing: this can also be done inside the dummy loop. 

A similar problem exists for the final iteration. Some of the data needed by a 

loop iteration should be loaded while the previous iteration is being executed. 

This enables the iteration to start straightaway without waiting to load its data. 

Unless the final iteration is also performed by a dummy loop this means that 

extra values will be read from beyond the end of the input vectors. Because 

this data is effectively discarded when the procedure finishes this can usually be 

ignored. There are two potential problems that have to be avoided. The i860 

supports paged memory management. This means that not all memory addresses 

126 



necessarily correspond to a valid piece of memory. If an invalid memory address 

is read, an error is flagged. It is possible that the extra loads in the final loop pass 

may cause an illegal memory access. In a parallel computer it is sometimes possible 

to have communication happening simultaneously with numerical calculations. 

These communications will only be able to progress normally if the i860 does not 

attempt to access any of the memory locations being used in the communication. 

It is therefore also necessary to ensure that the extra loads do not access any 

communication buffers. The easiest way to get round both of these problems is 

to add some padding space to the end of all the data arrays. The extra loads will 

therefore always perform a safe read from this padding space. 

4.3.3 Pipelined loads and managing the cache. 

The main limitation to performance on an i860 is the memory system. Both 

floating-point units are capable of producing a result every clock cycle unless 

certain freeze conditions occur. Most of these conditions can be avoided by careful 

design of the code. The most important of these freeze conditions are cache misses, 

where a non-pipelined load attempts to read a value not stored in the cache, and 

an overfull load pipeline, where more than three pipelined loads are outstanding. 

For most lattice gauge simulations the data set can be expected to be much larger 

than the cache. Non-pipelined loads can therefore be expected to produce a large 

number of cache misses. When a floating-point load accesses outside of the cache, 

the processor will start to load the new cache-line containing the missing data into 

the cache. A cache line consists of 32 consecutive bytes of memory. The execution 

of the program will be delayed for one clock cycle plus the time to load the first 

value of the cache line. Providing that a reasonable number of clock cycles pass 

before the next value is needed, the rest of the cache line will have been loaded and 

further accesses can proceed without any delay. The alternative is to use pipelined 

loads. This pipeline can be processing up to three memory fetches at a time. If 

a fourth value is requested while there are still three outstanding accesses then 

there will be a freeze for one cycle plus the time to read the first outstanding value. 

There will also be a freeze if the value requested is actually in the cache. This will 

take two cycles plus the time to finish all of the outstanding accesses. An added 

complication is that many external memory systems use paged DRAM. In these 
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systems a sequence of memory accesses from the same 1 Kbyte page of memory is 

more efficient than a sequence that hops from one region of memory to another. 

With non-pipelined loads we are guaranteed that reads will occur in blocks of 

32 bytes and come from the same memory page. It is therefore very difficult to 

determine what mixture of cache and pipelined loads will be most efficient for a 

particular routine. The only safe way of doing this is to time various versions of 

procedures inside a real program. For example, a complex scalar product is about 

10% faster if pipelined loads are used. However, if the source vector is already 

stored in the cache pipelined loads are almost certainly going to be slower. 

4.4 QCD simulation programs. 

The Wilson fermion action is: 

5Wi1s = 	- K 	- 	 + (rI + 

where K is the hopping parameter defined by: 

K = 8r +2ma 

The fermion matrix can therefore be written as 

4 

A(m, it) = 6mn - K L (rI - 7ts) 1j,n,M8n,,n+i + (rI + 1M )Ut 	S rn—aM n.rn—M 

Thus inverting the Dirac equation is replaced by solving 

where 7?. is the source and K is the hopping parameter. This is equivalent to 

inverting the fermion matrix. 

Any simulation of dynamical fermions will be dominated by the inversion of the 

fermion matrix. The fermion matrix is a function of the gauge fields and is there-

fore constantly changing throughout the simulation. This means that the matrix 

inversion will also have to be repeated throughout the simulation. Even if dy-

namical fermions are not used in a simulation it is still necessary to invert the 
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fermion matrix in order to calculate propagators from the gauge configurations. 

It is therefore fairly obvious that the fermion matrix inversion procedures need 

optimising. Iterative algorithms such as conjugate gradient are used to invert the 

matrix. The majority of time in these algorithms is spent multiplying vectors by 

the matrix. So the greatest improvement can be obtained by optimising these 

routines. 

4.4.1 Conjugate Gradient 

Conjugate gradient is an iterative matrix inversion algorithm, commonly used in 

lattice gauge theory. It is a very robust algorithm and in exact arithmetic it is 

guaranteed to converge to a solution in n iterations where n is the dimensionality 

of the matrix. Unfortunately the algorithm is only applicable to positive definite 

hermitian matrices. If the Hybrid Monte-Carlo (HMC) algorithm is used to sim-

ulate a theory with dynamical fermions the fermion matrix equations that must 

be solved are all of the form 

(MM)1,b = 1?. 

The matrix to be inverted is always hermitian positive definite, so conjugate gra-

dient is ideal for use with HMC. Propagator calculation need to solve equations 

of the form 

M4'=R. 

Conjugate gradient can still be used for this application by solving the equations 

MMçb=R. 

In this case there are alternative algorithms such as minimal residual [53] that 

may be more appropriate. Minimal residual is sufficiently similar to conjugate 

gradient for the same optimisations to be applicable to both algorithms. 

When solving the equation 

Aib=R 
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starting from an initial guess of Oo , the generic form of the conjugate gradient 

matrix algorithm is: 

P0 = r0  = 1Z. - Ai4' 0 , 

then repeat; 

rn  
12 
 

an  - 
(pn ,Ap n ) 

1,bn+1 = On + ap, 

= r - crAp 
2 

a______ -  
Irn I 2 

 

Pn+1 = 	rn+1 + I3nPn. 

In the case that we are interested in, where A = MtM this can be reformulated 

to be more efficient at the expense of creating an extra workspace s,,. Mpn. The 

conjugate gradient algorithm now becomes: 

PO = r0  = 7z - MM'çb c , 

then repeat; 

= 	Mp,-. 

irn  2 
 

an - 
isn I 

= On + amp, 

= rn - anMtSn 

Irn+1I2 a - 	2 

Pn+1 = 	rn+i + uinPn 

The conjugate gradient algorithm can therefore be divided into a number of com-

ponent operations that can be optimised independently. 

Scalar products 
IX 12 
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• Saxby operations 

• Action of the fermion matrix on a vector 

X = My 

The multiplication by the fermion matrix is dominated by the 47. operation that 

can in turn be divided into three sub-steps. 

• Construction of two-component spinors. 

• SU(3) multiplication. 

• Reconstruction of four-spinors. 

The performance of each of these operations has a very significant effect on the 

time taken to invert the fermion matrix and hence on the total performance of the 

program. They are therefore the obvious candidates to be hand coded in assembly 

language. 

The Dslash operation 

Construction of two-component spinors For r = 1 Wilson fermions the 

action of the -y  matrices on the spinors becomes a set of projection operators 

This means that the SU(3) multiplications need only be applied to two of 

the components of the resulting 4-component spinors; the missing two components 

of the result can always be constructed from the two known components. In the 

CG algorithm, P is applied to .s and p vectors. Here these vectors are generically 

denoted by '. These are 4-component spinors (V) I, 02, 03, The 2-component 

spinors obtained from (1 ± 74 are denoted by x and are defined as follows. 

x1 4 =1+44 X1ji?P2+03 
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X 1 , 2 -02+3 	X 1 , 2 -41+04 

X101+4 X23=02+03 

42 = 02 - 03 

= 01 + 43 Xi = W'l + 03 

x32=02-44 x2=-42+04 

= 201  4.1 
+ - C,' 

X4,2 - '"P2 

= 203 

= 204  

The implementation of this procedure psi2chi has been discussed previously. It is 

not possible to use dual operation instructions in this procedure. The maximum 

possible performance will therefore only be half of the peak performance of the 

processor because only one of the floating-point units, the adder, is being used. 

This puts an upper bound of 40 Mfiops on the performance of this code. The 

performance will be further reduced because of the the large number of memory 

accesses needed by each iteration. 

SU(3) multiplication The fermion matrix is 

A(m, it) = mn - K 	(rI - ) Um,sSn,m+ + (rI + 

Evaluating this function requires two sets of SU(3) multiplications and a number 

of data shifts. There are four steps involved in computing the two - terms: 

• The Ut multiplication at site x - j with local operands, 

• Shift result of first stage to site x; 

• Shift (x + j%) to site x; 

• The U multiplication at site x 
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In terms of the x fields this procedure becomes: 

W,(x) = U)(x)x(x) 

X (x) = W(x—A) 

X M (x) = x(x+) 

= U(x)X,(x) 

The most straightforward way of doing this is to perform the Ut  multiplication 

while transferring the x needed for the U multiplication, and then perform the U 

multiplication while transferring the result of the Ut  multiplication. This is the 

most time-critical portion of the entire program. Two very similar routines are 

needed, one to perform the U multiplication and one to perform the Ut  multipli-

cation. Because these two routines are so similar, the following comments apply 

equally well to both of them. Matrix operations are well balanced between addi-

tion and multiplication operations, so there will be no difficulty in using both of 

the floating point units effectively. The i860 has 30 general purpose registers. This 

enables us to hold an entire SU(3) matrix in registers and still leave room for six 

more complex variables to form the source and result of the matrix multiplication. 

Each SU(3) matrix will be used twice before being discarded, once for each of the 

two spin components. 

These routines will always come paired with either a gather or scatter operation 

that performs a shift in the +p direction. Normally any such operation will 

be highly inefficient because there is a large number of memory accesses and 

the floating-point units will remain idle throughout this process. One obvious 

optimisation is to combine gather scatter operations with the U/Ut  products. 

This not only reduces the total number of memory accesses but also allows the 

core unit to be doing useful work in parallel with the floating-point units. The 

data shifts we wish to implement have a very regular pattern; variables that are 

stored in adjacent memory locations are very likely to still be adjacent after the 

data shift. This enables us to move large sections of the lattice together as a block. 

The number of memory accesses needed by the gather/scatter can be drastically 

reduced if the table used to control the operation specifies blocks of data to be 
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moved rather than individual variables. In our i860 assembly-language routines, 

the gather/scatter tables are implemented as pairs of values. The first number 

represents the start of a contiguous block of variables encoded as a byte offset 

from the start of the array. The second number encodes the end of the block in 

a similar fashion. At the start of a block of data the procedure converts these 

numbers into absolute memory addresses and sets a data pointer to the beginning 

of the block. The data pointer is incremented by a constant value each loop pass 

until its value equals the finish address, at which point a new pair of numbers is 

read from the gather/scatter table and the process is repeated. This requires a 

conditional branch in the main body of the loop, one half of which increments 

the input pointer and the other half starts a new data block. Only the core 

unit plays any part in the gather/scatter process. As these routines operate in 

dual-instruction we can hide the branch from the floating-point units by putting 

identical floating-point instructions in each half of the branch. These routines are 

part of a large family of SU(3) multiplication routines. These routines fall into 

three main classes. Within each class there are several options that give rise to 

separate routines 

Two-spinor These reuse the SU(3) matrix twice, once for each spin component. Possible 

options are: gather/scatter the source/result, multiply by the hermitian 

conjugate of the matrix. 

Matrix-matrix In these routines the left-matrix is reused three times, once for each col-

umn of the right-matrix. Possible options are: gather/scatter the right-

matrix/result-matrix, use hermitian conjugate of either/both source matri-

ces. 

Four-spinor These reuse the SU(3) matrix four times, once for each spin component. 

Possible options are: gather/scatter the source/result, multiply by the her-

mitian conjugate of the matrix. 

The changes needed to implement the various options are reasonably simple. Each 

class is implemented as a single source file with compile time definitions to select 

the different options. 
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Reconstruction of 4-component spinors 

Following the operation of SU(3) multiplication routines we have 8 2-component 

spinors, x'• These must be used to reconstruct the 4-component spinors 0. This 

is done by the procedure reconstruct. Generically, writing VY for the result of the 

this operation is: 

= t - 	- ix + - + - 	+ x} 

72 = 2 - 	- 	+ 	+ x;Ti + 	+'X3' ,2+ x} 
I,

1,2 = 	- K{Xn - 	+ xTi - + - 	+ xi} 
I, = ;b4 - 	- 	+ 	+ 	+ 2 + 	+ xT2} 

There are not enough registers to store all the components of the x spinors si-

multaneously. It is therefore necessary to use non-pipelined loads and rely on 

the cache. Like the psi2chi function, this operation is dominated by addition 

operations and needs a large number of memory accesses. 

4.4.2 The scalar product 

The scalar product is the simplest of the CG procedures to implement because it 

only consists of a sum of products. This is easily achieved by chaining the adder 

and multiplier units together. A generic scalar product has the form: 

.5 = t xiY % 

For conjugate gradient we only need the norm of a single vector rather than the 

scalar product of a pair of vectors. It is worth implementing the vector norm 

procedure explicitly because it requires only half the memory access of a general 

scalar product. For maximum performance the pipelines require three summations 

to be carried out simultaneously. When all three summations have finished, their 

results are added together to give the final scalar product. Because of the colour 

index the vector length can be guaranteed to be a multiple of three, so the scalar 

product routine will not need a final flushing phase. 
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4.4.3 The saxpy operation 

The saxpy operation 

is also relatively straightforward to implement on the i860. The adder and mul-

tiplier pipelines can be chained together and the constant a can be stored in one 

of the constant registers. The timings for this procedure are totally dominated 

by the time taken to load and store the data. For every pair of floating-point 

operations two operands must be loaded and a single result stored. 

4.5 Benchmarking the i860. 

All of the routines mentioned in the previous section have been implemented in 

i860 assembly language and the performance measured. All of the timings in this 

section are for a single i860. In each case the vector-length was chosen to be 

representative of the real production code. In normal production the local lattice 

size is 12 x 6; because we split the data into even and odd parity sites, this 

corresponds to a vector length of 12 x 3 = 5184. In each case the input arrays 

were initialised randomly and the time taken to execute the routine 500 times 

was measured. In the SU(3) routines with built-in gather/scatter the gather-

scatter table was constructed to access the input vector as 8 separate blocks. 

Timings are presented for one of the 16Mbyte MK086 boards (see table 4.1), 

and for a prototype MK096 board with 4Mbytes of memory (see table 4.2). The 

MK096 board is similar to the MK086 but is a much later design of board with 

an imprdved memory system. A set of timings for equivalent routines written in 

the C language are shown in table 4.3. These routines were compiled using the 

"Greenhills" compiler. The C versions of the code were written as part of the 

validation procedure for the assembly language routines and no attempt has been 

made to optimise them, other than the optimisations provided by the compiler. 

The values presented in the tables are as follows: 

routine The name of the routine being benchmarked. 
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length The vector length used in the benchmark. 

oper The number of floating-point operations per iteration. 

mem The number of bytes of memory accessed in each iteration. 

repeat The number of times the routine is called during the benchmark. 

time The number of microseconds taken to execute the benchmark. 

Mflops The average floating-point performance in units of 106  floating-point op-

erations per second. 

Mbyte/sec The average memory bandwidth achieved during the benchmark. 

The routines presented presented in the tables are as follows: 

psi2chi Apply the gamma-matrix projection operators to a four-spinor to gener-

ate 8 sets of two-spinors. This forms the initial stage of the P operation. 

reconstruct Reconstruct a four-spinor from 8 sets of two-spinors. This forms 

the final stage of the . 	operation. 

saxpy Scale a vector by a constant and add the result to a second vector. The 

vector length has been chosen to match that for vectors of four-spinors with 

a colour index. 

sdot Calculate the norm of a complex vector. The vector length is the number 

of complex numbers in the vector. 

su3_xx Matrix-matrix multiply. 

su3_xx_g Matrix-matrix multiply. Gathering source. 

su3_xx_s Matrix-matrix multiply. Scattering result. 

su3_mv4-xm_n Matrix-four-spinor multiply. 

su3..mv4...xm_g Matrix-four-spinor multiply. Gathering source. 

su3..mv4-xm_s Matrix-four-spinor multiply. Scattering result. 
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su3x Matrix-two-spinor multiply. 

su3xg Matrix-two-spinor multiply. Gathering source. 

su3xs Matrix-two-spinor multiply. Scattering result. 

where the letter x stands for either h or in denoting if the hermitian conjugate of 

the SU(3) matrix is used or not. 

As can be seen from the timings for the different routines, the performance of 

an individual routine is very strongly dependent on the way it accesses the ex-

ternal memory system. There is a consistent trend within the SU(3) routines; 

four-spinor routines are faster than the matrix-matrix routines that are in turn 

faster than the two-spinor routines. This corresponds to the different ratios of 

floating-point operations to memory accesses. The improved memory system of 

the MK096 board gives rise to a dramatic increase in performance. The sdot pro-

cedure has a very high performance compared to the other routines. This can be 

explained by noting that it has a much simpler memory access pattern than the 

other procedures; it only accesses a single vector. 
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routine length oper mem repeat time p.s Mfiops Mbyte/sec 

psi2chi 5184 96 480 500 25784128 9.65 48.25 

reconstruct 5184 144 480 500 27395584 13.62 45.41 

saxpy 124416 2 12 500 12879936 9.66 57.96 

sdot 62208 4 8 500 3214464 38.71 77.41 

su3..hh 5184 198 216 500 13887488 36.96 40.31 

su3_hh_g 5184 198 216 500 13895360 36.93 40.29 

su3_hh_s 5184 198 216 500 13894848 36.94 40.29 

su3_hm 5184 198 216 500 13895232 36.93 40.29 

su3_hm4 5184 198 216 500 13900864 36.92 40.28 

su3_hm.s 5184 198 216 500 13901632 36.92 40.27 

su3_mh 5184 198 216 500 13720320 37.41 40.81 

su3_mh_g 5184 198 216 500 13729472 37.38 40.78 

su3_mh..s 5184 198 216 500 13728192 37.38 40.78 

su3_mm 5184 198 216 500 13724608 37.39 40.79 

su3_mm_g 5184 198 216 500 13732544 37.37 40.77 

su3_mms 5184 198 216 500 13731264 37.38 40.77 

su3_mv4_hm4 5184 264 264 500 17590208 38.90 38.90 

su3..mv4jxmn 5184 264 264 500 17585408 38.91 38.91 

su3nv4hm.s 5184 264 264 500 17590208 38.90 38.90 

su3_mv4mm..g 5184 264 264 500 17398016 39.33 39.33 

su3_mv4nmn 5184 264 264 500 17385664 39.36 39.36 

su3..mv4mms 5184 264 264 500 17400128 39.33 39.33 

su3h 5184 132 168 500 10216128 33.49 42.62 

su3hg 5184 132 168 500 10219200 33.48 42.61 

su3hs 5184 132 168 500 10220480 33.48 42.61 

su3s 5184 132 168 500 10054656 34.03 43.31 

su3sg 5184 132 168 500 10059648 34.01 43.29 

su3ss 5184 132 168 500 10061568 34.01 43.28 

Table 4.1: Timings of i860 assembly language routines on an MK086. 
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routine length oper mem repeat time ps Mflops Mbyte/sec 

psi2chi 5184 96 480 500 16066752 15.49 77.44 

reconstruct 5184 144 480 500 20126144 18.55 61.82 

saxpy 124416 2 12 500 8721664 14.27 85.59 

sdot 62208 4 8 500 1627776 76.43 152.87 

su3Jih 5184 198 216 500 9113536 56.31 61.43 

su3iih_g 5184 198 216 500 9203968 55.76 60.83 

su3_hh.s 5184 198 216 500 9153728 56.07 61.16 

su3_hm 5184 198 216 500 9113536 56.31 61.43 

su3_hm_g 5184 198 216 500 9203968 55.76 60.83 

su3_hm..s 5184 198 216 500 9163776 56.00 61.10 

su3_mh 5184 198 216 500 9103488 56.38 61.50 

su3_mh4 5184 198 216 500 9163776 56.00 61.10 

su3_mh_s 5184 198 216 500 9133632 56.19 61.30 

su3_mm 5184 198 216 500 9103488 56.38 61.50 

su3_mm4 5184 198 216 500 9163776 56.00 61.10 

su3_mms 5184 198 216 500 9143680 56.13 61.23 

su3_mv4.hm4 5184 264 264 500 11675776 58.61 58.61 

su3_mv4..hmn 5184 264 264 500 11766208 58.16 58.16 

su3_mv4..hm..s 5184 264 264 500 11675776 58.61 58.61 

su3_mv4nmg 5184 264 264 500 11635584 58.81 58.81 

su3_mv4nmi 5184 264 264 500 11726016 58.36 58.36 

su3_mv4nm..s 5184 264 264 500 11635584 58.81 58.81 

su3h 5184 132 168 500 6752256 50.67 64.49 

su3hg 5184 132 168 	- 500 6782400 50.45 64.20 

su3hs 5184 132 168 500 6782400 50.45 64.20 

su3s 5184 132 168 500 6712064 50.97 64.88 

su3sg 5184 132 168 500 6742208 50.75 64.59 

su3ss 5184 132 168 500 6742208 50.75 64.59 

Table 4.2: Timings of i860 assembly language routines on an MK096. 
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routine length oper mem repeat time ps Mfiops Mbyte/sec 

psi2chi 5184 96 480 500 64163136 3.88 19.39 

reconstruct 5184 144 480 500 54897536 6.80 22.66 

saxpy 124416 2 12 500 33473472 3.72 22.30 

sdot 62208 4 8 500 12583680 9.89 19.77 

su3_hh 5184 198 216 500 109559488 4.68 5.11 

su3_hh_g 5184 198 216 500 111122624 4.62 5.04 

su3_hh_s 5184 198 216 500 111028928 4.62 5.04 

su3_hm 5184 198 216 500 101674304 5.05 5.51 

su3_hm4 5184 198 216 500 103154816 4.98 5.43 

su3..hm_s 5184 198 216 500 103181952 4.97 5.43 

su3_mh 5184 198 216 500 102217600 5.02 5.48 

su3_mh4 5184 198 216 500 103800320 4.94 5.39 

su3..mhs 5184 198 216 500 103758656 4.95 5.40 

su3.snm 5184 198 216 500 94416896 5.44 5.93 

su3..inmg 5184 198 216 500 96060992 5.34 5.83 

su3-mm..s 5184 198 216 500 96051136 5.34 5.83 

su3_mv4jams 5184 264 264 500 80228736 8.53 8.53 

su3..mv4.mmi 5184 264 264 500 79619648 8.59 8.59 

su3h 5184 132 168 500 83012032 4.12 5.25 

su3hg 5184 132 168 500 84539456 4.05 5.15 

su3hs 5184 132 168 500 43795776 7.81 9.94 

su3s 5184 132 168 500 83088896 4.12 5.24 

su3sg 5184 132 168 500 43713216 7.83 9.96 

su3ss 5184 132 168 500 84819904 4.03 5.13 

Table 4.3: Timings of i860 C language routines on an MK086. 
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Chapter 5 

Conclusion 

5.1 The use of parallel computers in LGT 

Immense computer resources are required to perform meaningful lattice gauge 

theory simulations. All of the important data-sets are four dimensional so even 

with modest lattice dimensions a large amount of memory and disk space is re-

quired. If any fermionic quantities are to be calculated the need to invert the 

fermion matrix requires a prodigious amount of raw computer power. With cur-

rent computer technology any attempt to perform lattice gauge simulations are 

always constrained by the available computer resources. 

Much of this thesis is concerned with the attempts to reduce these limitations. 

The primary method of doing this is by utilising parallel computers. As explained 

in the introduction parallel computation offers a significant increase in available 

- computational power at the cost of miaking prôgfám wfitihg more difficult. In 

common with many physical systems lattice gauge theory calculations can be dis-

tributed over several processing elements using a spacial decomposition. This is 

possible because of the local nature of the physical interactions. The difficulties 

often arise because of features of the algorithm that do not share this local prop-

erty. The random number generators discussed in chapter 2 are an example of this. 

Monte-Carlo algorithms require a source of effectively random numbers. This is 

a feature of the algorithm rather than the physical processes so this part of the 
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algorithm does not exhibit locality and cannot be distributed using a geometric 

decomposition. In this case the solution I adopt is to use a separate random num-

ber generator on each processor of the parallel machine and to attempt to reduce 

the correlations between processors as much as possible. Provided the number of 

lattice sites controlled by each processor is not too small the quality of the indi-

vidual random number generators is more important than the correlation between 

processors. There is much more work that can be done in this field and I hope to 

return to it at some later date. 

It is not sufficient to just implement the simulation code in parallel. The current 

generation of parallel computers provide a significant increase to the computer 

power available to the individual researcher but the increase is not enough to 

remove the constraints on lattice simulations. Further programming effort is re-

quired to extract the maximum possible performance out of the available hardware 

and to match the simulation to the particular strengths and weaknesses of the par-

allel system being used. The form of these optimisations depend on the parallel 

system and the problem being simulated. Two different cases have been discussed 

in this thesis; the simulation of QED using a transputer based parallel computer 

and the simulation of quenched QCD on a hybrid i860/transputer system. It is 

possible to use this experience to make some general conclusions about lattice 

gauge theory simulations on distributed memory MIMD computers. 

Parallel computers have become more common over the last few years. Even 

though they are not yet part of the computing mainstream they are now routinely 

used in some fields, including lattice gauge theory. Parallel computers vary greatly 

in the way they operate and in the way that they are programmed. This is be-

cause large scale parallel computing is still a relatively young subject and various 

new ideas are still being tried out. All of the work presented in this thesis has 

been performed on parallel computers constructed using T800 transputers. The 

T800 communicates using point to point communication links. Before running a 

program the processors must be configured (wired up) in a topology appropriate 

to the application. A processor is then only capable of sending messages to the 

processors it is directly connected to. Messages for remote processors must be 

forwarded in software. This approach has serious drawbacks. It is impossible to 

write general purpose code, the application is always strongly effected by this un- 
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denying hardware. The QED program only uses replicated sets of 16 processors 

because of the T800 only has 4 links. The QCD machine represents an evolution 

away from this approach. It is still uses T800s but these now play the role of ded-

icated communication chips. The application code runs on the i860 and messages 

are passed to the T800s for delivery to any processor in the program. Message 

routing is still performed in software but this is now system software running 

on dedicated processors rather than being explicitly included into the application 

code. Even so a dynamically reconfigurable network still leaves us with a non 

trivial optimisation problem; how best to wire up the network. The wiring files 

for the QED program took about half an hour each to generate. On the QCD ma-

chine wirings for small programs are automatically generated at run-time, but the 

necessary placement for all 64 processors pushes the capabilities of the machine 

to the limit and had to be generated by hand. As all of the programs use the 

same wiring this only had to done once, but this process took several hours to do. 

More recent parallel computers have dispensed with reconfigurable arrays entirely 

and provide a fixed topology general purpose communication network where all 

message routing is done in hardware[54]. 

Both of the simulation programs were written in a very similar style. Each pro-

cessor in the program runs the same piece of code, this code approximates a con-

ventional single processor program except for the boundary conditions. Instead of 

implementing the usual periodic or anti-periodic boundary conditions, boundary 

values are transferred to and from neighbouring processors. This is a relatively 

small change to the program as a whole and it involves very little effort over that 

needed for an equivalent single processor program. In both cases the main diffi-

culty encountered was parallel file access. As with the random number generators 

these difficulties arose because this is a non-local operation. The QED program 

was written in 000AM[12], which provided no intrinsic support for parallel file-

access. Only the processor directly connected to the host was able to read or write 

files. All data needed to be sent to this processor before it could be written out to 

a file. This process was simplified by using a file format that stored the data for 

each processor in contiguous blocks. This made it very difficult for a sequential 

program to use these files. The CSTools[49] environment used by the QOD pro-

gram does support a restricted form parallel file access, each processor is capable 

of reading and writing its own files. As it is very important that we should be able 
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to access these data files using a variety of programs and machines, we needed to 

write the data in a standard format that did not depend on a particular hardware 

configuration. Again this requires a single processor to distribute/collect the data 

and read/write the file. We need to access several different types of file in this 

fashion so a library of low-level parallel file access routines have been developed 

and the routines needed to read and write each type of file have been constructed 

using this library. Hopefully similar libraries will be provided by the manufactures 

of future parallel systems. As the QCD simulation utilised the quenched approx-

imation and a much larger lattice than the QED it produces a greater volume of 

data. This gave rise to additional problems because the host processor is essen-

tially a workstation and has a limited 10 capability. Ideally a parallel computer 

requires high-performance TO systems to match their computational speed. If this 

performance is to scale with the size of the computer the system must be able 

to support parallel data access to multiple storage devices. Unless the hardware 

and system software is carefully designed this will conflict with our desire to store 

data in a format that is independent of the hardware configuration. 

The programming style described here makes no attempt to automate the distri-

bution of the problem. The decisions about how the arrays are distributed and 

about how the boundary values are communicated are all made by the applica-

tions programmer. It would be perfectly possible to automate much of this work, 

either at the compiler stage, for example by using the data-parallel programming 

model, or by providing libraries of specialised routines to support regular domain 

decomposition. Neither type of package is available at the moment on the ma-

chines that were used for this work. Even if such packages had been available it is 

probable that they would require a greater amount of memory than the programs 

we actually use. By using our knowledge of the application we are able to reduce 

the requirement for communication buffers to a bare minimum. A compiler or 

library package has to address a more general case and cannot make as many 

savings. Nevertheless I expect future parallel lattice gauge simulations to pay this 

price in exchange for much simpler program development. 
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5.2 QED 

The phase diagram of strong-coupling non-compact lattice QED with an ad-

ditional four-fermion interaction has been deduced using a series of dynamical 

fermion simulations. The mass dependence of the system has been investigated 

for non-compact QED and along the /3 = 2.0 axis which is close to a system with 

only four-fermi interactions. There seems to be a line of chiral-symmetry-breaking 

transitions in the /3-C plane connecting, the strong-coupling QED transition the 

four-fermi phase transition. There is no evidence that the strong-coupling phase 

transition can be used to construct a continuum theory. Our analysis suggests 

that the transition has mean-field scaling exponents. This is supported by fitting 

the data to the gap-equation. The gap-equation is derived using a mean-fieldap-

proximation and the results of our calculations appear consistent with a solution 

of the gap-equation. 

The Swendsen Ferrenberg extrapolation technique has been applied to our data on 

the C = 0 axis. This technique was originally developed for spin-models, where 

a few high-statistics simulations can be used to generate results for a range of 

coupling constant values. Because our simulation used dynamical fermions there 

was difficulty obtaining high statistics. By utilising data from several simulations 2 
we were able to calculate results with an effective statistics higher than from the 

individual simulations taken in isolation. In addition results can be calculated for 

any value of the coupling that lies between the simulated values. By calculating 

the effective statistics as a function of the coupling we are also able to obtain a 

quantitative understanding of how the spacing of our simulations across the phase 

diagram effects our knowledge of the system. 	 - 	- 

5.3 QCD 

The QCD simulation discussed in chapter 4is the result of an ongoing collaborative 

project (UKQCD). The work presented in this thesis is mostly concerned with the 

implementation of the necessary programs as this reflects my own contribution 

to the project. Most of this work has been the development of i860 assembly 
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language routines. It also includes the development of libraries of parallel file 

access functions and inter-processor communication functions. These routines 

have been used in the "pure gauge" simulation code, the quark propagator codes 

and in an SU(2) simulation code that also forms part of the UKQCD program[55]. 

We have attempted to restrict all of the Meiko/cstools specific code to these 

libraries so that these programs will be easy to port to other i860 based MIMD 

computers such as the Intel ipsc/860 or the Intel "paragon". 

This work has been directed towards an ongoing program of science, centered 

around large lattice QCD simulations. This work is a collaborative effort involving 

a large number of people. As my contribution to this work has mostly been 

in developing and maintaining the enabling technology described in chapter 4, 

only a brief overview of the results are given here. This work is presented in 

more detail in the collaboration publications [55, 56, 57]. We simulate quenched 

QCD on a 24 x 48 lattice, at a 0 = 6.2. The gauge fields are updated using 

a cycle of three-subgroup Cabibbo-Marinari [58] heat-bath sweep followed by 5 

over-relaxed sweeps. Configurations are sampled every 400 of these composite 

update steps. For each of these sampled configurations, quark propagators are 

calculated at a number different quark masses. Propagators are calculated using 

both the standard Wilson fermion action and a nearest-neighbour 0(a) improved 

or "clover" fermion action [59, 60], using the same set of gauge configurations for 

both actions. The lattice-action for the gauge sector is correct up to 0(a2 ) terms. 

The Wilson fermion action is only correct to 0(a). The "clover" action is similar 

to the Wilson action but contains 0(a) corrections. By using this improved action 

we hope to reduce the systematic errors due to the finite lattice spacing, without 

having to increase the lattice size any further. Propagators are calculated for 

r = 1 at ic = 0.1510, 0.1520, 0.1523, 0.1526 and 0.1529 for the Wilson action, 

and at K = 0.14144, 0.14226, 0.14244, 0.14262 and 0.14280 for the clover action; 

the latter values were chosen to match roughly the pion masses computed in the 

Wilson case. We use an over-relaxed minimal residual algorithm with red-black 

preconditioning for propagator calculations These quark propagators have been 

used to calculate hadron masses. Edinburgh plots for the two actions are given in 

fig. 5.1. This data was generated using 18 configurations. The plots are broadly 

consistent, showing a trend towards the physical value for mN/inc with decreasing 

pion mass. 
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Figure 5.1: Edinburgh plots. 
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We see no statistically significant difference between the two actions at light quark 

masses, though there is some preliminary evidence for improvement in the heavy 

quark regime. This comes from the splitting between the squares of the vector 

and pseudoscalar meson masses; experimentally, this quantity is very nearly the 

same for the p - iv system and for corresponding mesons containing a strange, 

charm or bottom quark. This is a quantity which may be sensitive to the different 

discretisation errors in the two formulations. Our lattice results are shown in 

Figure 5.2. Neither result is in agreement with the experimental values for heavy 

quark masses. The "clover" action seems to be better than the Wilson action 

in this regime. This is to be expected; because heavy quarks have a shorter 

wavelength, 0(a) effects will be more significant for heavy quarks. 

This work is still in progress. In addition to increasing the statistics we are 

also intending to calculate matrix-elements and to perform further heavy-quark 

calculations using the "clover" action. 
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The dashed lines correspond to the experimental range. The highest mass point 

corresponds to the physical quark mass. 
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