
a 0

Application of parallel computers to particle physics

Thesis submitted by

Stephen Peter Booth

for the degree of
Doctor of Philosophy

The University of Edinburgh
June 1992

'C

To my parents and my brother.

Acknowledgements

I wish to thank Richard Kenway and Ken Bowler for their encouragement and
support throughout this project. I also wish to thank Brian Pendleton for advice
and helpful suggestions.

I am grateful to A.M.Thornton and B.J.N.Wylie for helping to get me started
with parallel computers and to M.W.Brown for keeping them running.

This work made use of the ECS facilities in the Edinburgh Parallel Computing
Centre, which is supported by major grants from the Computer Board, The De-
partment of Trade and Industry, the Science and Engineering Research Council,
and Industry. Extensive use was also made of the UKQCD computing facility
(Maxwell) at Edinburgh, which is supported by the UK Science and Engineering
Research Council through the grants CR/G 32779 and GR/H 01069, and by the
University of Edinburgh.

I am pleased to acknowledge financial support from Meiko Ltd.
Finally, I wish to thank K.A.Hawick, H.W.Yau and S.F.B.Tett for helping me

to enjoy my time in Edinburgh.

Declaration

The QED simulations in chapter three were performed in collaboration with Dr
K. C. Bowler, Dr R.D. Kenway and Dr B.J. Pendleton (Edinburgh). The fit-
ting of this data to the gap equation was also in collaboration with A. Horowitz
(Kaiserslautern). All other work is my own except where explicitly stated other-
wise.

Abstract

This thesis describes lattice gauge theories and discusses methods used to simu-

late them stochastically. The use of parallel computers for these simulations is

discussed in depth.

Various pseudo-random number generator algorithms are reviewed and the imple-

mentation of these algorithms on parallel systems is investigated.

The strong-coupling phase transition of non-compact lattice QED is investigated.

The phase diagram of strong-coupling non-compact lattice QED with an addi-

tional four-fermion interaction is deduced using a series of dynamical fermion

simulations. The mass dependence of the system is investigated for non-compact

QED and along the 0 = 2.0 axis, which is close to a system with only four-fermi

interactions. These results are compared with solutions to the gap equation in

order to determine if the data is consistent with a mean-field interpretation ; An

interpolation technique intended to improve the utilisation of the available datr

is investigated. The simulation program is also described in detail as a case study

of a parallel implementation of a lattice gauge theory

The implementation of QUD on an .i860 based parallel computer is described in

depth. This includes a description of how code is optimised for the i860, an

analysis of the time-critical portions of the code and a discussion of how these

routines were implemented. Timings for these routines are given. Some results

from these simulations are also presented.

Contents

1 Introduction
	

7

	

1.1 	Lattice gauge theories 7

1.1.1 	Path Integrals7

1.1.2 	Lattice field theories 9

1.1.3 	Renormalisation12

	

1.2 	Stochastic simulation14

1.2.1 	Fermions16

1.2.2 	The ferthion matrix17

1.2.3 	Hybrid Monte Carlo18

	

1.3 	Parallel computers 22

1.3.1 	Hardware 28

1.3.2 	Programming models35

1.4 Lattice gauge theories in parallel37

1

2 Random number Generators 	 42

2.1 What is random ? 43

2.2 Parallel random number generators45

2.3 Linear Congruential Generators47

2.4 Linear recurrence generators48

2.4.1 	Shift register generators51

2.5 Lagged-Fibonacci generators . 	52

3 QED and four-fermion interactions
	

[ff0

3.1 	QED 60

3.1.1 	The triviality of QED60

3.1.2 The Schwinger-Dyson equation63

3.1.3 	QED on the lattice66

3.2 The phase diagram of QED with an additional four-fermi interaction 70

3.2.1 	The gap equation83

3.3 The Swendsen Ferrenberg extrapolation86

3.4 	The simulation program96

3.4.1 	Optimising the program101

4 QCD on i860 based machines 	 105

2

4.1 The UKQCD collaboration 	 . 105

4.2 	The i860 microprocessor . 	106

4.3 Software development on the i860...................114

4.3.1 Assembly language programming on the i860118

4.3.2 The inner loop . 124

4.3.3 Pipelined loads and managing the cache 127

4.4 QCD simulation programs . 	128

4.4.1 	Conjugate Gradient129

4.4.2 	The scalar product135

4.4.3 	The saxpy operation 136

4.5 	Benchmarking the i860.........................136

5 Conclusion
	

142

5.1 The use of parallel computers in LGT142

5.2 	QED146

5.3 	QCD146

Bibliography
	

151

3

List of Figures

1.1 Renormalisation Group flow 	 . 	13

1.2 Decomposition of a program into parallel subprograms25

1.3 Dataflow in a SIMD architecture 	31

1.4 The Inmos T800 Transputer . 	33

1.5 Data collection on a single processor 	38

1.6 Data collection on a parallel processor 	40

2.1 	A shift register generator52

3.1 	Possible evolution of the 0 function62

3.2 Phase diagram predicted using the Schwinger-Dyson equation . . 65

3.3 Fermion-mass dependence of (x) at G = 0.071

3.4 (,c) against fi at C = 0.072

3.5 Suppression of the plaquette expectation value74

3.6 (xx) against trajectory at m = 0.0125, 0 = 0.1975

3.7 (x)3 against mass at C = 0.076

4

3.8 (x) at a fermion mass of 0.05 for different values of /3 and G. . . 	77

3.9 	(x) against C at 0 = 2.078

3.10 Fermion-mass dependence of (ix) at /3 = 2.079

3.11 () against C at 6 = 2.085

3.12 Extrapolated plot of (x) at m = 0.012592

3.13 Extrapolated plot of neff at m = 0.012594

3.14 Extrapolated plots of 1i at in = 0.012595

3.15 The Edinburgh Concurrent Supercomputer97

3.16 A binary hypercube of Transputers 98

3.17 Problem size scaling of the QED program104

4.1 	The i860 floating-point units108

4.2 	The i860 Internal datapaths115

4.3 	Code for single-stage pipelines .. 	118

4.4 	Code for three-stage pipelines . 119

4.5 A simple implementation of SU(2) multiplication121

4.6 An improved implementation of SU(2) multiplication122

5.1 	Edinburgh plots . 	. 	148

5.2 	inr - rn, versus150

5

List of Tables

3.1 Chiral condensate expectation value at G = 0............80

3.2 Plaquette expectation value at C = 0.................81

3.3 Chiral condensate expectation value at 3 = 2.0...........82

3.4 Plaquette expectation value at = 2.0................82

3.5 Timings for a CG iteration of the QED program103

4.1 Timings of i860 assembly language routines on an MK086. 139

4.2 Timings of i860 assembly language routines on an MK096.....140

4.3 Timings of i860 C language routines on an MK086.........141

Chapter 1

Introduction

1.1 Lattice gauge theories

1.1.1 Path Integrals

Quantum mechanics can be formulated in a variety of different ways. At first

sight each formulation seems completely different from the others yet under closer

examination they are all equivalent. One concept is common to all formulations,

this is the idea of a complex probability amplitude.

In a classical system, probabilities are used to quantify our ignorance about the

system. A classical probability is usually defined in terms of ratios of real numbers.

The probability of a certain type of event is the ratio of the number of events of

that type to the total number of events, in the limit where the number of events

becomes infinite. These are intrinsically real quantities. A classical system is

assumed to be in some specific though possibly unknown state. If we knew the

state of the system exactly at any time it would be possible to calculate exactly

all future states of the system. As we do not have complete information about a

system, we have to assign probabilities to each of the possible resulting states. Now

consider a system that passes through an intermediate state. If the probability

of going from state A to state B is P(A, B) then the probability of going from

A to B via an intermediate state S is P(A, 5, B) = P(A, S)P(S, B). If there are

7

a number of possible intermediate states then the total probability of going from

A to B is the sum over the probabilities of going via each possible intermediate

state,

P(A,B) = EP(A,S[i],B) = EF(A,S[i])F(S[i],B).

If the system passes through more than one intermediate state 51, 52,.. SN then

P(A, B) becomes;

P(A, B) = 	. . . 	P(A, Sj[ij])[H P(Scx[ia], 5cc +l[cx +l])]P(SN[iN] , B).
i1 	i2 	tJ(

(1.1)

That is, the probability P(A, B) is the sum of the probabilities for each of the

possible paths between A and B.

In a quantum mechanical system this kind of thinking breaks down. For example,

if we think of photons passing through a two-slit apparatus, the probability of

a photon arriving at a particular destination is no longer the simple sum of the

probabilities from each of the slits by themselves, but is the squared modulus of

the sum of the complex amplitudes from each of the slits. It is no longer reasonable

to think of the system passing through a particular intermediate state. The real

probabilities of the classical system must be replaced by complex amplitudes.

Because these have a phase, it is possible for different alternatives to interfere

with each other. The rules for combining complex amplitudes are the same as

those for combining real probabilities.

The path integral formulation of quantum mechanics [1, 2] is a quantum generali-

sation of the classical path integral shown in equation 1.1. The complex amplitude

going from an initial to a final state is given by the sum of the amplitudes of the

possible intermediate paths. The amplitude of a path is given by

Ppath =

where 5path is the classical action of the path. The factor ic is chosen so that the

sum of the probabilities over each of the possible outcomes is normalised to one.

Lattice gauge theories are usually formulated using this path integral formulation

of quantum mechanics.

['I
01

Quantum field theories

The physics of high energy particles is currently thought to be best described

using quantum field theories. As the name suggests these are quantum theories

where the variables used to represent a system of particles form a field with values

at all space-time points. This is in contrast to the original quantum mechanical

description of particles where a particle is parametrised by its position or its

momentum. The primary advantage of a field theory is that it is capable of

describing many-particle systems where particles may be created and destroyed.

It is also the only consistent way of constructing a relativistic quantum theory.

A field configuration is a possible state of the fields where the value of each

field in the theory is defined at every point in space-time. In the path integral

formulation, this is equivalent to a possible path of the system, so the integral

over all possible paths becomes an integral over all possible field configurations.

To calculate an observable quantity we must calculate the average of the observable

over all possible field configurations with a complex weighting factor dependent

on the action of the field configuration,

<o 	con fig °con fig C * 	01 1 9
>= i-s >: 	Ch config

conftg

The complex weighting factor plays a similar role to the Boltzmann factor in sta-

tistical physics; it is much less convenient to work with though. The Boltzmann

weight is a direct measure of how significant a particular configuration is. The

quantum weights for different configurations only differ by a phase, so their rela-

tive contribution is a result of interference between the configurations and cannot

be derived directly from the weighting factor. This causes several practical diffi-

culties, especially when the path integral is approximated by a sum over a subset

of configurations. The complex weight can be converted into the same decaying

exponential form as the Boltzmann factor by formulating the theory in Euclidean

space through performing the change of variables t' = it.
/

1.1.2 Lattice field theories

In practice, it is usually not possible analytically to average over all possible field

configurations. Because a field has an infinite number of degrees of freedom,

this average involves an infinite number of integrations. It is therefore necessary

to make a number of approximations. The first of these approximations is to

replace spacetime by a finite box and second to replace the continuous spacetime

with a lattice of discrete points. This reduces the problem to one with a finite

number of degrees of freedom so the path integral is also reduced to a finite

number of integrals. Any derivative of the fields that occurs in the action may be

approximated using the difference of the field value at two lattice sites.

Gauge theories

A gauge theory is a field theory that contains a particular type of internal sym-

metry. A gauge theory is invariant underindependent transformations of the fields

at each point in space-time. This is very similar to the invariance of general rela-

tivity under transformations of the local coordinate system. In general relativity

physics is independent of the choice of the local space-time coordinate system. In

a gauge theory physics is independent of the choice of the local symmetry space

coordinate system. This is very easy to arrange for local quantities but there

is a difficulty in constructing a spatial derivative with this property, because a

derivative is the limiting case of a difference between fields at different points in

space-time:
th,b(x) -
	

i/'(x+Sx)—b(x—Sx)

dx 	 28x
If we consider gauge symmetries that are Lie groups, the fields transform as

b'(x) =

where ta is a generator of the group. The simple derivative will transform as

__ - 	 +
ax - 	 ax 	ax

We can construct a covariant derivative that respects the symmetry by introducing

a gauge field A(x):

D. = - igt"A(x).

Provided that A(x) transforms as

A'(x) = A(x) + OwX(x)
-

gf1w(x)A(x),

where f are the structure constants for the gauge group; the deviation in the

simple derivative caused by a change in w is compensated by a change in the

values of the gauge field A.

10

This is particularly obvious in theories defined on the lattice where derivatives

remain as finite differences. On the lattice, a gauge field is represented by ele-

ments of the gauge group living on every link of the lattice. A link is a line that

connects two neighbouring lattice sites. The group element of a link represents

the transformation needed to convert between the parametrisations used at the

two lattice sites. The lattice covariant derivative becomes:

U(x)(x + a4) - U(x - a(x - aA)
DO(x) =
	 2a

where the U fields transform as;

U(x) = (el 9tUM (x)(e i9t0w 0 (t+dU/2))_ 1

The dynamics of the gauge field, U(x), must also reflect the local symmetry; this

can be achieved if the action for the gauge field is constructed out of quantities

that are invariant under the symmetry, such as the trace of the product of link

variables round a closed loop. Such an action was proposed by Wilson;

SCauge = > 	- (1/n)ReTrUp1aq 1,
plaq

where the sum is over all elementary squares of the lattice, 'plaquettes', and Upi q

is the product of the link variables round the plaquette.

The symmetries of a gauge theory are particularly obvious when formulated on the

lattice, but it is just as valid to formulate them as continuum field theories. The

importance of the lattice is as a calculational tool. One of the original motivations

for the development of lattice gauge theory was Quantum Chromo-Dynamics or

QCD. This is the currently the best candidate for a theory of the strong nuclear

force. It is a gauge theory based on the gauge group SU(3) that couples several

flavours of fermions called Quarks. One of the most interesting properties of QCD

is asymptotic freedom; at high energies (or short distances) the effective coupling is

very small. In this region it is possible to calculate observables using a power series

in the effective coupling. This is perturbation theory. Each term in the power

series refines the result. As the coupling constant is small in this region only a few

terms of the series need to be calculated. The effective interaction becomes strong

for low energy processes and an expansion in terms of the coupling constant is

no longer a good approximation to the physics; there is therefore a limit to what

11

can be calculated perturbatively. Lattice gauge theory was developed because it

approximates the physics in a way that does not directly depend on the value

of the coupling constant. It therefore stands a better chance of dealing with low

energy QOD processes than perturbative methods.

1.1.3 Renormalisation

Quantum field theories are very prone to mathematical instabilities. Not all vari-

ables and parameters of a quantum field theory correspond to observable quan-

tities. Observable quantities are constrained to remain finite by the physical

properties of the theory, but there is no equivalent constraint for non-observable

quantities. Treated naively, field theories will often produce divergent integrals.

Renormalisation is the generic name given to the procedures used to control these

mathematical instabilities. A renormalisation procedure starts by introducing a

regularisation scheme that explicitly controls the mathematical divergences. For

example, in perturbative expansions of QED the integral over the momenta of a

fermion loop is divergent. This can be regulated by introducing an explicit mo-

mentum cut-off. Observable quantities are calculated with this regulator in place.

The limit where the regulator is removed is then taken. In the case of the previous

example, this is the limit where the momentum cut-off goes to infinity. In this

limit, the intermediate non-physical quantities used in the calculation may be-

come divergent but the physically observable quantities will remain finite and well

defined. If this is not the case, then the theory is not renormalisable and cannot

be used to describe physical processes. While the regulator is in place, the physi-

cally observable quantities are functions of the parameters of the field theory (bare

couplings) and of the cut-off. If we hold the physical quantities fixed and vary the

value of the cut-off then the couplings must vary in order to compensate. We can

label each set of bare couplings using the corresponding set of observables at a

particular value of the cut-off. A change in the value of the cut-off will produce a

change in the position of these points in the space of the coupling constants. This

movement is a renormalisation group transformation and the path of a single point

in this space is a renormalisation trajectory. The values for the observables that

are of physical interest are those where the cut-off has been totally removed. This

occurs at the fixed points of the renormalisation group. A fixed point is a point in

12

Figure 1.1: Renormalisation Group flow

Renormalisation trajectories must end on a fixed point. The points A and C

represent ultra-violet stable fixed points, the point B and the line DPI represent

unstable fixed points.

the space of coupling constants that maps to itself as the cut-off is changed (see

figure 1.1).

In the lattice formulation, the regularisation is automatically provided by the

lattice. A finite lattice of variables is incapable of representing a wave with a

wavelength shorter than twice the spacing of the lattice. This introduces a mo-

mentum cut-off proportional to the inverse lattice spacing. In this case, there are

actually two limits that have to be taken; the first is the thermodynamic limit,

where the number of lattice points is taken to infinity and the second is the contin-

uum limit where the regulator is removed and the lattice spacing is taken to zero.

It is obviously not possible to perform a computer simulation in this limit so the

best that we can hope for is to perform a number of simulations in a regime suffi-

ciently close that we are able to extrapolate the results to the continuum limit. As

the lattice spacing becomes zero in the continuum limit any physical process that

13

propagates for a finite distance in the continuum must propagate for an infinite

number of lattice spacings on the lattice. This means that the correlation length

on the lattice must be infinite at the values of the bare coupling that correspond to

the continuum result. An infinite correlation length is the indication of a second

order phase transition. Therefore the fixed point corresponding to the continuum

limit of a lattice theory must also correspond to a second order phase transition.

1.2 Stochastic simulation

By restricting the system to a finite box and approximating the fields by a lattice

of points, a path integral is changed from an infinite to a finite but typically

large number of integrations. In general, these integrals have to be calculated

numerically. The number of integrals that need to be calculated is proportional

to the number of lattice sites. It is impractical to perform all of these integrals

for anything except a very small lattice. The alternative is to use some form

of stochastic simulation. The integrals are a weighted average over all possible

configurations of the system. A reasonable approximation to this average can be

obtained by averaging over a representative sample of the possible configurations.

When using this approximation the weighting factor for each configuration must be

modified to account for the distribution used to choose the sample configurations.

The most convenient and efficient approach is to choose configurations from a

distribution proportional to the Boltzmann weight of the configurations, all the

weighting factors become one and observables can be calculated as simple averages

over the sample.

This leaves us with the problem of efficiently generating configurations from this

particular probability distribution. One convenient method of doing this is a

Markov chain. A Markov chain is an algorithm that generates a sequence of

configurations by means of a transition probability from one configuration to the

next which depends only on the previous configuration. Any configuration in the

sequence is therefore correlated with the previous configuration. However, if the

algorithm is constructed correctly, and the number of configurations is sufficiently

large the sequence as a whole will have the statistics of the desired probability

14

distribution. The procedure used to generate the next configuration in the Markov

chain is called an update operation. Because of the correlations between successive

configurations in the Markov chain it is usual to average over sets of configurations

separated by a number of update steps. The desired probability distribution for

configurations is

P(C) = 	 (1.2)

where P(C) and S(C) are the probability and action of a particular configuration

C. The transition probability W(C, C') is the probability that the update step

will generate configuration C' from configuration C. The transition probability

must map the distribution P(C) onto itself:

P(C') = EP(C)W(C,C'), 	 (1.3)
C

for all configurations C'. If an update step satisfies equation 1.3 and it is guaran-

teed to eventually explore all possible configurations then it will generate config-

urations from the probability distribution P(C). Most stochastic update schemes

are based on the detailed balance condition:

P(C)W(C, C') = P(C')W(C', C). 	 (1.4)

This is a sufficient, though not necessary, condition for equation 1.3 to hold.

Because the update step always results in a valid configuration,

>1W(A,B)= 1.
S

If we sum equation 1.4 over all C we get,

E P(C')W(C', C) = P(C') = E P(C)W(C, C').
C 	 C

Therefore, providing the update procedure is capable of spanning the entire space

of configurations, equation 1.4 is a sufficient condition for W(C, C') to generate

configurations from P(C).

The detailed balance condition for equation 1.2 is;

W(C, C')e 5 = W(C', C)C 8 '

A good example of an update scheme based on this detailed balance condition is

the Metropolis algorithm [3]. In its most general form, this algorithm consists of

15

generating a trial configuration and then accepting or rejecting this change de-

pending on the relative values of the action for the original and trial configurations.

If the change is accepted the trial configuration becomes the next configuration

in the sequence. If it is rejected the next configuration is the same as the pre-

vious one. If the probability of generating a particular trial configuration Cfrj&A

from a starting configuration C is Ptrjai(C, Ctriai) and the acceptance probability is

Ctriai), then the detailed balance condition will be obeyed if the following

condition is enforced:

Ptriai(A,B) = Ftriai(B,A), 	 (1.5)

and the acceptance probability is

Paccept (A, B) = e5(A)_S(E) S(B) > 8(A)

Paccept (A, B) = 1 	8(B) < 8(A).

Schemes of this type are very easy to implement. The efficiency of such a scheme

is very dependent on the acceptance rate. If the trial solution is chosen completely

at random, equation 1.5 will be satisfied and the sequence of configurations will

eventually produce a good representative sample of the probability distribution.

Very few of the trial configurations will be accepted so it will take a large number

of update steps for this average to be achieved. It is important to use a selection

method for the trial configurations that gives a high acceptance probability. If

the trial configuration is only slightly different from the previous configuration, for

example a single link reset randomly, then the difference in the action will be small

and the probability of acceptance reasonably high. This will also mean that the

successive configurations are very highly correlated and a large number of updates

will be needed. An efficient stochastic algorithm will have to carefully balance the

acceptance rate and the degree of correlations between successive configurations

in order to maximise the rate at which the algorithm moves through the space of

all possible configurations.

1.2.1 Fermions

Most of the physically important models in lattice gauge theory consist of fermionic

fields interacting via gauge fields. The gauge fields are relatively straightforward

to simulate. The fermionic fields introduce a large number of special problems.

16

Fermions are best described using Grassmann variables. Grassmann variables

are similar to normal real or complex variables except that they anti-commute:

for any pair of Grassmann variables a and b, at = —ba. This anti-commuting

property automatically generates many of the properties of fermions such as the

Pauli exclusion principle and anti-symmetry. Computers are not capable of using

Grassmann variables directly, so it is necessary to use real variables and enforce

anti-symmetry explicitly. The anti-symmetry condition for fermions is a global

constraint on the fermion fields, so it is not generally possible to update part of

the fermion field in isolation. All fermionic algorithms therefore involve global

operations on the lattice variables. These usually take the form of inversions of

the fermion matrix.

1.2.2 The fermion matrix

The path integrals that occur in lattice gauge theory are often of Gaussian form:

f ie>t.te)M'4y) 	 (1.6)

For example the lattice action for naive fermions is

Snaive = a4 	(x) 	E(Sr~aAYU$(x) - 6z_a2 IvU(Y))7M + mSx v] (y).

This is a direct translation to the lattice of the action for the Dirac equation.

Naive fermions are rarely used in simulations because of fermion doubling. This is

an unwanted result of using discrete spacetime inside a finite box. The dispersion

relation for naive lattice fermions has more than one zero within the Brillouin

zone so a single naive fermion field behaves like 16 flavours of fermions. There

are other fermion lattice actions that reduce this problem, the staggered fermion

action[4] and the Wilson fermion action[5]. The staggered fermion action is

Sstaggered = a4 	x(x) 	E (x)(&+a,vUM(X) - 8V_a, y U(Y))) +

(1.8)

where x and j< are one component fermionic fields and,

=

17

Naive lattice fermions have additional symmetries that are not found in the contin-

uum. These additional symmetries allow the (free) action to be decoupled into 2*

parts. The staggered fermion action reduces the doubling problem by discarding

all but one of these parts. The Wilson fermion action is

SWilson = a4 	(x) {
	

[(- r)Sx+ayU(x) - (+
=31/

4r
+(+(M+ 	

•i

The Wilson action contains additional terms that increase the mass of the fermion

doubles. This removes the fermion doubles but breaks chiral symmetry. All of

these different actions have Gaussian form. If b is a complex variable then a

Gaussian integral (equation 1.6) is proportional to the determinant of the matrix

M', whereas if is a Grassmann variable the integral is proportional to the

determinant of M. It is therefore possible to simulate fermions using real variables

at the expense of calculating matrix inverses. Because the matrix is a function

of the gauge fields, this inversion must in principle be carried out every time the

gauge fields are updated.

1.2.3 Hybrid Monte Carlo

Hybrid Monte Carlo [6] is currently one of the most efficient algorithms for simulat-

ing dynamical fermions. Hybrid Monte Carlo is based on the Metropolis algorithm

described earlier in this chapter; its efficiency lies in the method used to generate

a new trial configuration. The field variables are treated as the coordinates of a

classical mechanics system, a new trial configuration is generated by evolving this

sytem in time; this is a new "computer" timer, completely unrelated to the time

dimension of the fields. A Hamiltonian is imposed on the system:

+ S'(),

where 0 represents the field variables and S' is an action for the field variables.

This action is usually chosen to be the same as the action being simulated. The

initial values of the momenta ir are chosen randomly from a Gaussian distribution,

PG (7r) cc exp[-7r 2 /2].

7

(1.9)

'U

This system is now evolved a distance in r to generate the trial configuration.

This new configuration is accepted with a probability

.Paccept = min(1, exp [5ff]),

where

H() = 1r2 + S(),

and S is the action being simulated. As H' is the energy of the system it should

be conserved if the time evolution is computed exactly. In the case where H' H,

this would give us 1. This is the hybrid algorithm. It is only possible

to integrate the equations of motion using discrete steps in r. This gives rise

to errors in the dynamics which means the hybrid algorithm is inexact. In the

Hybrid Monte Carlo algorithm these erroireduce the acceptance rate below 1 but

the calculation remains exact. Reducing the size of these steps always reduces the

discretisation errors and therefore increases the acceptance rate. For the detailed

balance condition to hold the integration must be done in a reversible fashion:

if the momenta ir are reversed at the end of the evolution the same evolution

procedure must return the system to its original state. A reversible integration of

the equations of motion can be achieved using the leapfrog algorithm.

If the equations are to be evolved for a distance Tmax, the leapfrog algorithm starts

with an initial half-step in the momenta:

Sr 	38(0) Sr

this is followed by it = rmax/Sr steps in 0 and it - 1 steps in ir, of the form

(r+Sr) =

Sr
=

Sr

Sr 	38(r)
Sr,

2 	ao

and finally a second half-step in ir:

Sr 	88(rmax)Sr
34 	2

This algorithm can easily be extended to include fermionic fields. In a dynamical

fermion simulation the probability distribution for the gauge fields becomes;

P() = 	f[d][$ 	()] exp[—S - bMb]

19

1
- - det(M)exp[—S(çb)]
— Z I

1
= 	f[dx][dx}exp[_S(cb)— x*(MtM)_lx].

The x fields are bosonic pseudo-fermions that only exist on the even sites of the

lattice. The Hamiltonian becomes

- 7r 2 + 5(4') + x*(MtM)_lx,

and the equations of motion are

as 	a(MtM) -1
= —— x X.

The fermion contribution to the momentum can be simplified using the identity

AA'=l

so that

= 0
ao 	(go

8A'
-

aA A-1 A54' - 54'
8A' =

84' oqi

The equations of motion can therefore be written as;

-- am
* = - + x*(MtM)_1[Mt+ amt

 ao

The x fields are held fixed during the integration and updated by an exact heat-

bath, x = M?] where 77 is Gaussian noise, before the first half-step. Because the

matrix M is a function of 4' a matrix inversion step is needed every time the mo-

menta are updated to calculate (MtM)'y. This procedure will remain reversible

even if the matrix inversion is not exact provided that the inversion algorithm

depends only on 4' and X. If the solution of the previous timestep is used as an

initial guess then the matrix inversion must be exact to preserve reversibility.

20

It remains to be shown that reversibility is a sufficient condition for the detailed

balance condition to hold. The probability distribution we wish to sample is

PS = exp[—S()].

The it evolution of the fields is deterministic and defines a mapping on the phase

space. This means that the probability Y of choosing the candidate phase space

"configuration" (', it ') is

Y((cb, it) F-* (', it ')) =, 45[(0', it') - ((rmax), ir(rmax))}.

The acceptance probability A is

A(jçb,ir) r-4 (' , it ')) = min(1,exp(H(O',ir') -

The transition probabilities for the 0 fields is given by

W(, ') = J[dit] [dit']Pc(it)Y, it) 	(0 , r'))A, it) 	(', it ')). 	(1.10)

The dynamics are reversible so

Y((, it) H-* (', it ')) = Y((', -it ') H-* (, -it)). 	 (1.11)

The form of P0 is such that Ps(4)Pc (it) x exp[H(q, it)] and H is invariant under

it p- -it. By using the identity

exp[—H(qS, it)] min(1, exp[—SH]) = min(exp[—H(cb, it)], exp[—H(q5' , it ')])

= exp[—H(cb,ir)] min(exp[SH], 1),

we get

Ps(qS)Pc (it)A((ch,ir) 	(' ,it ')) = Pg(cb')Pc (ir')A((cb',ir') i-* (0, 7r))

= P5 (cb')P0 (-7r')Acb', -it ') -* (, -it)).

Multiplying by Y, integrating over it and it ' and using equation 1.11 we get

f [dit] [dr']Ps()Pc (r)Y((, it) 	(', it'))A((, it) 	(, it ')) =

J[dit][dit']P(')P0(—it')Y((', -it') 	(, —it))A((', -it') 	(, -it)).

Using equation 1.10 and the invariance of the measure [dit] [dir'] = [d(-7r)] [d(-7r')]

this becomes

P5(çb)W(01 ') = P5(çh')W(çb' ,

which is the detailed balance condition.

21

1.3 Parallel computers

The main problem with lattice gauge theory is that it requires a great deal of com-

puting power to perform realistic calculations. Further, one of the main sources

of systematic error in these calculations is the lattice size. In order to control this

systematic error it is necessary to perform simulations using a variety of different

sized lattices and to compare the results. With current algorithms and computer

power it is not possible to have a large enough range of lattice sizes for simulations

involving dynamical fermions. Hence a further approximation is made known as

the quenched approximation. This is where the contribution of fermion loops is

ignored and is equivalent to making the fermions infinitely massive. The primary

reason for making this approximation is that there is a very large saving in the

requirement for computer time. Because the fermions have an infinite mass, the

fermionic fields need not be updated during the simulation. This saves on all of

the fermion matrix inversions except for those used to calculate observables.

Current calculations show little difference between the results of quenched and

dynamical QCD simulations. It is therefore quite common to exploit the available

computing power to simulate a larger lattice rather than to perform a dynamical

simulation. However, this approximation is hard to justify physically, so the corre-

spondence between quenched and dynamical simulations will need to be rechecked

as the quality of simulations improves. Even in the quenched approximation, the

majority of the available computer time is spent inverting the fermion matrix in

order to calculate observables that involve the fermion fields.

The path integral has been approximated using Monte Carlo techniques. This

has introduced a further source of error, the statistical error in the Monte Carlo

sampling. As before, this error can only be reduced at the cost of more computer

time, in this case to increase the sampling statistics.

The cost in computer time for a full dynamical simulation becomes quite stag-

gering. Even with the most powerful computers available lattice simulations are

nearly always limited by the available computer power. As computers become

faster the demand for computer power has also increased as it becomes possi-

ble to reduce the systematic errors in the calculation. The lattice gauge theory

22

community has therefore always had a vested interest in the progress of com-

puter technology. In short, the lattice gauge calculations of QCD form one of the

most computationally intensive problems currently being researched. The com-

putational power needed is far beyond that normally available. It is therefore

necessary to build very high performance computers dedicated to the problems of

lattice. gauge theory. Over the last few decades electronic computers have been

steadily increasing in performance. A large part of this increase has been due

to smaller and faster circuits that enable computers with faster cycle times to

be built. Unfortunately this approach is starting to run into some fundamental

physical limitations that will eventually place a lower limit on the cycle time of a

computer. The cycle time of a processor is limited by the speed of propagation

of electrical signals across the chip. This can only be reduced by shrinking the

physical size of the circuit. At some stage the size of the individual components

starts to approach the atomic scale. Currently chips are being constructed using

1 um technology. Assuming that structures '-S-' 10 nm across cannot behave like

a macroscopic crystal the speed of a single processor is unlikely to increase by

much more than a factor of 100.

Parallel computation provides a method of circumventing these physical limita-

tions and continuing to increase the available computer power. The basic approach

used in all parallel computers is to divide problems into independent subproblems

and to use separate hardware components to calculate a number of them simul-

taneously. The time taken to calculate each subproblem is still limited by the

speed of the hardware components, but the total throughput of the computer is

increased. An additional advantage of parallel computers is that they can be very

cost effective. In principle, a large number of processors with a modest individual

performance can be combined to produce a single computer with a very high total

performance. To a first approximation, the price of such a machine is dominated

by the cost of its component parts. These components can be mass-produced mi-

croprocessors using commonly available manufacturing techniques. On the other

hand, an equivalent single processor would be built in small numbers and would

have to use state-of-the-art techniques. Consider now how to double the power of

each machine. The parallel computer is doubled in size by doubling the number

of processors and approximately doubling the cost. The communication system is

likely to cost more than double the original, depending on how it is implemented;

23

many machines these days use some form of n log ii interconnect network and the

component cost of the -network should scale in a similar fashion. The single pro-

cessor would have to rely on more exotic technologies and extreme measures such

as 4upercooling. This will increase the cost by far more than a factor of two, -

especially as this will require further research and development. Ignoring fault

tolerance, a scaled-up parallel computer can be constructed simply by using a

larger number of the original components. Once the power of a computer starts

to strain the physical limitations on the speed of a single processor, equivalent

parallel computers can be expected to be consistently cheaper.

There are several very different ways that parallelism can be attempted, each ap-

proach has different strengths and weaknesses. Some of these approaches have

already achieved a wide degree of acceptance. For example, the vector supercom-

puter can be thought of as a type of parallel computer.

In order to implement a particular problem in parallel, it is first necessary to

identify some inherent parallelism in the problem. Once this has been done,

there are still various constraints on how this parallelism can be exploited. These

constraints arise from the nature of the problem and the nature of the parallel

hardware available. Some problems may only be able to run efficiently on partic-

ular types of parallel computer. The majority of parallel computer architectures

have local memory storage associated with each of the processors. In this case,

it can be expensive to move data from one processor to another. In general, a

program can be thought of as consisting of several sequentially executed stages,

each of which may have some inherent parallelism and can be divided into inde-

pendent subproblems. These subproblems can be distributed over the available

processors and calculated in parallel. The results from one sequential stage may

be used as input for some of the future sequential stages. In general, this requires

a communication stage to redistribute the data. A subprogram need only syn-

chronise itself with the rest of the program when it needs to communicate. If the

result of a subprogram is not needed in the next stage it can in principle continue

executing across a number of calculation stages; see figure 1.2. Some computers

are capable of overlapping data communication with calculation. This model of

parallel computation can still be applied though the communication stage is now

used to initiate communications or to wait for their completion.

24

Stage 1

? 	 Communication phase

rL©n Stage 2 E

Communication phase

Stage 3

Idle processor

Figure 1.2: Decomposition of a program into parallel subprograms

A program may be divided into sequentially executed stages each consisting of

a number of independent subprograms. Communications occur between these

stages.

When considering how to divide up a problem into parallel subproblems (a de-

composition scheme) there are two useful characterisations that can be made,

complexity and data-coupling.
7.

The complexity of the subprogram is whether the parallelism is at the level of

individual arithmetic operations, simple procedures or entire subprograms. This

is a measure of how often communication stages occur. A program that uses

a parallel bubble sort has a low complexity. The subproblems only consists of

swapping two numbers depending on their relative values. Other problems only

have high complexity parallelism. For example, a parallel chess program can

evaluate a number of possible board positions in parallel though there is little

parallelism at any lower level. The more complex the subproblem is, the longer it

will take to compute each subproblem and the less frequently the processors will

have to communicate.

Data-coupling is a measure of how much data has to be moved in the commu-

nication stages. If most of the results of one stage are required by most of the

subprograms in the next stage then the problem is strongly data-coupled. If most

of the intermediate data can be left on its processor of origin then the problem is

25

only loosely data-coupled. In shared memory machines, where all of the data is

available to all of the processors this seems not to be a problem. However, unless

some form of distributed memory system is used, a shared memory machine will be

limited by the speed of its single memory bank; in a shared memory machine with

multiple memory systems the problem of processor to processor communication

is replaced by a memory to processor communication problem.

A typical loosely-coupled problem is a task farm. In this case, the problem consists

of a number of completely independent problems; no data need be exchanged at

all. The processors only need to communicate with the outside world when loading

their initial data and when outputting their results. This is the simplest form of

parallelism, but it is also the most efficient. There are many applications that

can be successfully implemented as a task farm. One example is analysing the

events produced by a HEP experiment. The analysis of a single event has virtually

no inherent parallelism and cannot even be vectorised. However, because of the

large number of events that need analysing it is possible to use a task farm [7, 8].

In lattice gauge theory, a task farm approach can be used to explore the phase

diagram of a theory. Instead of attempting to implement the simulation code in

parallel, each processor runs an independent simulation with different coupling

values in order to span the phase diagram[91.

An example of a tightly coupled problem is a fast Fourier transform. In each of

the ii. stages of a 2 n point fast Fourier transform, two numbers from the previous

stage are combined to give a pair of numbers for the current stage. This has an

obvious n/2 parallelism. Unfortunately, the pairs of numbers combined are never

the same in two different stages, so at least half of the data has to be exchanged

in every stage. - - -

In lattice gauge theory, the complexity and the data coupling of the problem are

connected. The basic form of parallelism in lattice gauge theory is a geometric

parallelism. Most of the data is located at the points of the lattice; the operations

that modify this data in general only depend on the values of data at each point,

and at the neighbouring lattice points. There is an obvious way to implement

this in parallel; regions of the lattice are allocated to separate processors. If a

single lattice point is allocated to a single processor, then the complexity of the

Col

subproblem is quite low and the data coupling is quite quite high because all of the

results from each step will have to be communicated to neighbouring processors. If

a region containing a large number of lattice points is allocated to a processor then

the complexity is quite high (proportional to the volume of the region), but the

data coupling is increased by a much smaller amount (proportional to the surface

area of the region). This means that lattice gauge theory can be performed on a

wide variety of parallel machines provided the decomposition scheme is tuned to

match the computation/ communication abilities of the architecture.

There are two main limitations that must be considered. The first is a limitation

on the minimum size of the lattice. It is obvious that a given lattice cannot be

efficiently simulated on a parallel machine with more processors than the lattice

has sites. Once this limit is reached, the size of the lattice must be increased along

with the size of the machine otherwise efficiency will be lost. Unfortunately, the

computer power needed to perform the simulation increases faster than the power

of the machine. This is because the dominant mathematical operation is a matrix

inversion, the difficulty of which does not scale linearly with the size of the system.

Using the Hybrid Monte Carlo algorithm the number of floating point operations

needed to generate independent configurations N1 has been estimated to scale as

N1 V' °5 where V is the size of the system [10}. A parallel computer designed

for lattice gauge theory is therefore likely to need the individual processors to be

quite powerful. The second limitation comes from the ratio between the amount

of communication and calculation that is needed. This is a simple surface-area-to-

volume ratio that depends on the number of lattice sites assigned to each of the

processors. As the size of the local lattice is decreased, the fraction of time spent

performing communications increases. The maximum sustainable communication-

to-calculation ratio varies greatly between different designs of parallel machines.

On some machines there may be a minimum local lattice size such that additional

communications will make the calculation go slower if more processors are added to

the problem. On other machines it may be perfectly feasible to go all the way down

to a single lattice site per processor. This limit also depends on which theory is to

be simulated. QCD is based on SU(3) multiplication which requires 198 floating

point operations to multiply a single two-spinor by a gauge element. QED on

the other hand, is based on the U(1) gauge group and only requires 6 floating

point operations to perform a similar operation. On the other hand, the required

27

communication will only change by a factor of 3 going from QED to QOD. This

means that QOD can run efficiently on computers with a lower communication to

calculation ratio than is possible for QED. In general, the complexity and price of

the communication system increases with the number of processors the system is

able to support. So there are price benefits to making a machine with a smaller

number of high performance processors.

1.3.1 Hardware

In general, a parallel computer can be thought of as a communication system

connecting separate hardware components. Parallel computers have been con-

structed in an enormous variety of ways; any system invented to classify them will

inevitably end up grouping some very different architectures together. For the

purpose of this discussion, I intend to concentrate on few selected types of parallel

computer and how their hardware impacts on the software environment.

Vector processors

Vector computers take advantage of the fact that most programs will repeat

a set of simple operations on a large number of different pieces of data. They

exploit parallelism at the lowest possible level, that of individual arithmetic op-

erations (low complexity decomposition). A vector computer uses a number of

processing elements connected in a pipeline to perform these simple operations in

parallel. Though it exploits parallelism internally, a vector processor attempts to

behave as much as possible like a very fast single processor. The vector pipelines

can be thought of as a number of separate (though highly specialised) processing

elements. Most vector machines have special vector registers to hold interme-

diate results and reduce the need to access the external memory system. If a

vector machine is thought of as a parallel computer, the data pathways between

the vector pipelines and these vector registers form the communication system.

Because the parallelism is introduced at such a low level, a level that is already

under the control of the compiler, it is possible to automate most of the effort

involved in porting a program to a vector machine. Vector machines have the

advantage that they are relatively easy to program and vectorisable programs are

easily portable between different types of vector processor. In general, vector pro-

cessors are programmed in conventional sequential programming languages. The

compiler analyses this code and looks for loops where each iteration of the loop

is independent of the results of all the other loop iterations. Each of these loops

is suitable for vectorisation (vectorisable) and the compiler produces code to exe-

cute them in parallel. This means that the same programs that were written for

vector machines can be run without modification on a sequential processor. Even

though the same languages are used for sequential and vector computers, different

programming styles are needed to get the maximum performance out of the two

types of machine. In order to obtain the maximum performance from a vector

processor, a program must have been written, or re-written, to contain as many

vectorisable sections of code as possible. Otherwise the vector hardware will only

be used for a small fraction of the code. This is often done at the expense of intro-

ducing large vectors of temporary variables. On sequential machines, vectorisable

codes may run more slowly than a code written without vectorisation in mind.

This is because of the vectors of temporary variables. On a vector machine, these

variables can be easily implemented using the vector registers. On a sequential

machine the vectors have to live in the main memory. There are two ways this

can slow the program down. The first is that this may require more memory than

is available. In this case the computer will have to continually swap data from the

memory onto disk, a very wasteful and time consuming operation. The second

potential slowdown is that the vectors will prevent caching from working properly.

A cache is a region of particularly fast memory that automatically retains the val-

ues of recently accessed variables on the assumption that they are likely to be

required again in the near future. Where these variables are reused a short time

later the cache is able to provide the values much more rapidly than they could

be fetched from main memory. As the temporary vectors are very large and each

variable in them is only used in a single loop iteration, none of these values will be

reused before the cache replaces them with more recent data. If you consider disk

storage to just be a slower form of memory, excessive cache misses and excessive

swapping are much the same thing. At the moment, all parallel computers share

this problem in one form or another. Programs have to be modified in different

ways to take full advantage of the particular parallel hardware being used. Of

course, these disadvantages can be overcome by using a smarter compiler that is

capable of re-writing vectorisable code to run efficiently on the scalar machine.

29

Most types of parallel computer are usually more difficult to program than vector

processors.

Data coupling is not an issue for vector machines, because the vector pipeline is

thought of as a single fast processor and is attached to a single memory system.

By definition, there is never any data dependency between the parallel sections

of a vectorisable loop, so no communication is needed within a loop. At the end

of each loop all the resulting data is written out to the main memory so there

is never any danger of not having data accessible when needed. The price paid

for this simplicity is the need to use a fast, sophisticated and expensive memory

system. The maximum performance of a conventional vector processor is limited

by the maximum performance of this memory system, though it is possible to use

vector technology to construct high performance processing nodes for a distributed

memory parallel computer.

SJMD processing

SIMD stands for Single Instruction stream Multiple Data stream. A SIMD

computer consists of a large number of identical processing elements (PEs). All

of the elements are constrained to perform the same operations at the same time

as all of the other elements. Instructions are broadcast from a central controlling

processor. An individual processing element is only capable of performing oper-

ations on data stored in its local data store. The data structures for a problem

are distributed over the processing elements. If an operation requires data stored

on a different PE then a communication must take place. Because all of the PEs

perform the same operations at the same time, all of the PEs must simultaneously

perform input and output operations when data is moved between PEs. The basic

communication operation is therefore a shift, see figure 1.3.

SIMD computers have many similarities with vector processors. The main differ-

ence between vector processors and SIMD machines is that SIMD machines use

distributed memory. This overcomes the memory bandwidth limitation of vector

machines and enables SIMD machines to be scaled up to use very large num-

bers of processors. A good example of this is the Connection Machine [11]. The

SIMD model is a direct hardware implementation of the Data-parallel program-

30

ama
Figure 1.3: Dataflow in a SIMD architecture.

The communication pattern in a SIMD architecture is a data shift where every

processors outputs some data at the same time as receiving some

ming model'. Much of the success of this type of computer is a reflection of the

success of the data-parallel programming model.

MIMD processing

MIMD stands for Multiple Instruction stream Multiple Data stream. This is

a more flexible kind of parallel computer consisting of a number of independent

processors that are capable of communicating with each other in some fashion.

Each processor can be running different pieces of code, and even when there are

multiple copies of the same piece of code, separate processors may be executing

different sections of the code at any one time. Each processor has its own local

data store that can only be accessed directly by that processor. MIMD computers

can exploit parallelism at much higher level (more complex subproblems) than

vector or SIMD machines. MIMD computers are therefore much more flexible,

for example it is not possible to implement a simple task-farm on vector or SIMD

machines. The parallelism is at the program rather than the instruction level. A

MIMD computer can also be programmed using the data-parallel programming

'described in a later section

31

model. All that this requires a compiler that is capable of translating a single

data-parallel program into a set of communicating subprograms. There are also

computer languages such as OCCAM [12] that are specially designed for MTMD

processing. These languages have inter-processci communications built into the

language. It is also possible to program MIMD computers in conventional sequen-

tial languages. In this case the inter-processor communications must be invoked

as procedure calls. A separate program could be provided for each of the pro-

cessors. It is more usual to have have most of the processors running the same

code but having responsibility for different regions of the data. If this code is

written carefully, so that it is easy to change the number of processors, it is still

possible to run the code on a sequential machine. This is just the special case of

proCcSSOrS = 1.

The Transputer

Transputers are a family of microprocessors purpose built for MIMD parallel

processing applications. Each Transputer has four bi-directional communication

links that can be used to connect it to other Transputers (see figure 1.4). In

addition they are specially designed to support multi-tasking. They have very few

registers, so there is very little data to be saved/loaded when the processor switches

between different tasks (a context switch). When one process is suspended, for

example while it is waiting for a communication to finish, the decision about which

of the other currently active processes is to be run is made by hardware on the

chip. This is in contrast with multi-tasking systems on other microprocessors -

which usually have to run some supervisor program to make these decisions. This

means that it is very simple and efficient to have several very simple sub-programs

running on a single Transputer at the same time. On other microprocessors the

added delays of context switching makes multi-tsking very inefficient, especially

for small lightweight jobs. This is important for parallel processing because of the

inter-processor communications. Processors have to cooperate with each other

when moving data in order to ensure that the data is up to date and ready to

be sent. It is very desirable for the processors to be able to switch quickly from

their own calculations to handle data from other processors, so that the other

processors will not be delayed.

32

4-

1-

- 	 System services - 	 Floating-point

unit

32 bit CPU
4K static RAM

On-chip

memory

-

4co
mmunication link

Communication link

interface
.p 	

Memory

- Communication link

- Communication link

Figure 1.4: The Inmos T800 Transputer.

33

All of the work presented in this thesis has been performed on MIMD computers

constructed using T800 Transputers. Two different types of machine were used:

a purely Transputer based machine that uses T800 transputers to perform all

of the computation, and a combined i860/Transputer machine constructed out

of composite nodes, each containing two Transputers and a single i860. In the

1860 machine, all of the calculations are performed using the i860 processor and

the Transputers are only responsible for inter-processor communication. These

two machines are significantly different and need to be programmed in different

ways. The T800 Transputer has a sustained floating-point performance of ap-

proximately 1 Mflops. Using hand coded assembly language, the i860 can sustain

approximately 30 Mfiops. The composite processing node is therefore 30 times

faster than a single Transputer but has only twice the communication bandwidth.

A Transputer is capable of using its communication links at the same time as it is

performing calculations. The on-chip memory enables it to perform calculations

without using all of its available memory bandwidth. It is therefore possible to

perform a certain amount of inter-processor communications at the same time

as calculations, without affecting the performance of the processor. These two

operations use separate parts of the processor and only interfere when they both

attempt to access memory at the same time. It is therefore highly desirable to

attempt to overlap the communications with some other task that can usefully

use the processor. The i860 on the other hand, usually saturates memory band-

width only running calculations, so there are no memory cycles free for overlapped

communications. In both cases, it is desirable to reduce the amount of commu-

nication as much as possible. The main disadvantage of constructing a MIMD

computer out of T800 transputers is that the communication links are point to

point connections and there are only four of them. In order to send a message to

a processor that is not connected directly to the local processor the message must

be forwarded by the intermediate processors. This makes T800 code very complex

as it often has to include large amounts of code whose only purpose is to forward

messages. This can also have an impact on the performance of the intermediate

processors. The next generation of transputers is supposed to implement com-

munication using a separate routing chip. These routing chips can be connected

to processors and other routing chips, when a processor wishes to communicate

with another processor i,t passes the message to the nearest routing chip. The

routing chips then make all of the decisions about how to get the message to its

34

destination and the message is passed between routing chips without having to

pass through any processors other than the sender and receiver of the message.

1.3.2 Programming models

Sequential code

Most existing programs have been written in conventional sequential languages

without any thought to parallelism. It would be very nice if these programs could

be automatically ported to parallel computers using compiler technology. This

is the approach used for vector machines, even though a different programming

style is needed to get the most out of a vector processor. This is a very difficult

trick to achieve. The task is much easier for a vector machine than for other types

of parallel processor because at the end of a vectorised loop all the results are

written out to a single memory system so the compiler does not have to try and

match subprograms to the processors containing appropriate data, and each loop

can therefore be compiled completely separately.

Data parallel

Data parallel programming languages are usually extensions of conventional

programming languages. These extensions usually take the form of operations

that operate on entire arrays rather than individual variables. Similar extensions

have now been incorporated into the new Fortran-90 standard [13]. This makes

the parallelism in the code much more explicit and has the beneficial side effect

of making the programs clearer and easier to write. For example, the following

fragment of sequential code: -

DO I = 1,NX

DO J = 1,NY

DOK= 1,NZ

A(I,J,K) = (14.0 * B(I,J,K)) + c(I,J,K)

ENDDO

ENDDO

ENDO

35

can be replaced by the single statement:

A = (14.0 * B) + C

The compiler now has to allocate elements of these arrays to different processors

in such a way as to minimise the amount of communication needed. A reasonable

heuristic for achieving this is to make sure that equivalent elements from arrays

of the same shape are always allocated to the same processor. As with vector

processors, the compiler can only work well if the program is written in a particular

style. It is quite possible to automatically convert vectorisable programs into data

parallel programs, though the differences in programming style mean that the

results are liable to be less than perfect. Data parallel languages have usually

been implemented on SIMD machines. It is much easier to compile code where

the size of the arrays matches the number of processors exactly; there is then

no need to generate different code to take account of array elements at processor

boundaries. Some languages force the programmer to obey this restriction so

the problem must be manually decomposed into arrays of the correct size, for

example in DAP Fortran [14]. In other cases the computer emulates a computer

of the required size by implementing a number of "virtual processors" on each

real processor, for example CM Fortran[15]. Most existing data parallel compilers

therefore tend to produce a low complexity highly data-coupled decomposition

which requires a high performance communication system. In SIMD machines, it

is common to assume that the most frequent form of communication is a data shift

along array axes and to optimise the compiler and communication system for these

operations. A more efficient use of the communication system can probably be

achieved by allocating regions of the arrays to separate processors and treating the

boundary points separately. This would require much more complex compilers,

but may be necessary to implement data parallel languages on general purpose

MIMD machines where the communication system is less specialised. Most of the

complexity in designing a good data parallel compiler is due to the need to reduce

the amount of communication; on a hardware platform with a high performance

communication system the compilers can afford to be much simpler.

36

Explicit message passing

This is the programming environment most commonly found on distributed

memory MIMD computers. A separate program is written for each processor and

data is communicated between processors using explicit communication function

calls or language constructs. This is a highly flexible programming model, but it

can often be very difficult to port existing code to this kind of software environ-

ment. This difficulty can often be reduced by structuring the program, so that

it behaves like one of the simpler programming models such as a task farm or a

data parallel program.

1.4 Lattice gauge theories in parallel

Parallel computing can be used for lattice gauge theory. The parallelism in the

problem is a direct consequence of the physics being simulated. The local nature

of the interactions together with translational invariance means that any opera-

tions that acts on the lattice variables can be constructed out of local operations,

and these local operations will be the same for all points on the lattice. The data-

parallel programming model is therefore ideally suited to lattice gauge theory.

They can also be simulated in parallel using a geometric decomposition and ex-

plicit message passing. The lattice is divided up into space-time regions and each

region is assigned to a different processor. Apart from the lattice points on the

boundaries between regions, each processor will be able independently to update

its own part of the lattice. In order to update the boundary points, information

must be communicated between the processors that share a common boundary. In

an MIMD computer running an explicit message passing environment, the simula-

tion code that runs on each of the processors is almost identical to a conventional

sequential simulation of a smaller lattice. The only difference is in the boundary

conditions for the lattice.

Gather-scatter

In order to update a single lattice point, data is required from neighbouring

lattice sites. Lattice points on the boundary may have to request this data from

37

some other processor. It is possible to separate lattice sites into internal sites

and boundary sites and to write different code to handle each case. This makes

the code very complex and difficult to write. It also means that there is twice

as much code to optimise. It is much simpler to divide the data collection into

separate routines. Outside of these routines all of the sites can then be treated in

a similar fashion. On a single processor, data collection can be performed using

gather-scatter operations, see figure 1.5. A gather operation has the form:

result[i] = source[table[i]]

A scatter operation has the form:

result[table[i]] = source[i]

If we desire to copy data from one array to another, shifting the position of the

Figure 1.5: Data collection on a single processor.

On a single processor all of the data collection can be performed with a single

gather-scatter operation.

data by a single lattice site, four steps are needed.

K1]

. Internal data points must be copied between the arrays.

• Local points needed by other processors must be collected.

• Boundary points are exchanged between processors.

• The points imported from other processors are copied into the final array.

The first two stages both involve a scatter operation. It is possible to combine these

stages into a single operation at the expense of storage space. The destination

array must be made a little larger, large enough to hold the local data and an

additional set of boundary data. A single scatter operation can then be used

to copy the internal lattice points, and to collect the boundary points into the

extra "tail" at the end of the array; see figure 1.6. This "tail" can then be used

as a communication buffer to transfer the boundary points to the appropriate

processor. The use of gather-scatter operations in this manner simplifies the code

to a great degree. The disadvantage of this approach is the extra time taken to

copy the local data between the arrays. As the data was already accessible in

the original array this data shuffling seems like a waste of time. In most cases it

is possible to avoid this problem by combining the gather-scatter operation with

part of the calculation. Instead of just being moved from one array to another the

indirect addressing is inserted into one of the existing operations.

shift[i] = sourcel[table[i]]

result[i] = f(source2[i], shift[i])

becomes

result[.iJ = f(source2 [i], source [table [i]])

This removes all of the extra memory access cycles except those used to read the

table. If the gather-scatter table is implementing a shift by one lattice site, as

is usually the case for lattice gauge theory, it is possible to reduce these memory

cycles as well. In this case, the table will contain large sections where the indices

are in sequence. These sections need only be stored as a pair of numbers, the first

number in the sequence and its length. This form of table is only applicable if the

processor is capable of calculating the sequence faster than it can read a number

in from the table.

39

my 'tail'

Data is moved
between

processors

New data

is placed in

the array body

Figure 1.6: Data collection on a parallel processor.

On a parallel machine data collection requires two gather-scatter operations and

an inter-processor communication.

40

Specific examples of how lattice gauge theories can be implemented on distributed

memory parallel computers are given in later chapters. A dynamical fermion

simulation of QED using a T800 based MIMD computer is described in chapter

3. The implementation of QCD codes on a composite i860/T800 computer is

described in chapter 4.

41

Chapter 2

Random number Generators

All of computational particle physics, and especially lattice gauge theory, makes

heavy use of Monte-Carlo algorithms. By definition a Monte-Carlo algorithm

makes use of random numbers. Unfortunately true random numbers are hard to

produce. It is possible to produce random numbers using specialised hardware.

For example, amplifying the electronic noise of a reverse-biased diode. This is

not really a practical approach. This kind of random number hardware is hard

to build without any bias and true random numbers make programs very hard

to debug because it is impossible to repeat exactly any single program run. The

usual solution to this problem is to use a pseudo-random number generator. This

is an iterative algorithm that generates a sequence of numbers that shares enough

of the statistical properties of a true sequence of random numbers to be usable

in a Monte-Carlo algorithm. There are of course always some correlations in

the sequence, the iteratiye nature of the algorithm ensures this. However, if the

algorithm 'is carefully chosen, these correlations are unlikely to effect the results

of the simulation.

All pseudo-random number algorithms share a number of common features. The

state of a random number generator is defined by the value of the set of variables,

state variables, that are preserved between calls to the random number generator.

These variables are often referred to as the random number seeds. It is less

confusing if this term is reserved for the variables used to initialise the state of the

random number generator at the start of the program. In a lot of cases the seed

42

and the state variables will be the same. Each time the random number generator

is called, the state variables are transformed using an update transformation that

changes the state of the generator. The next number in the sequence is generated

from the new state variables using an output function. There is not necessarily a

one-to-one mapping between a number from the sequence and the corresponding

state of the generator. Because there is only a finite number of possible states the

sequence must eventually repeat itself. The number of iterations that make up one

such repeat is the period of the generator. If T is the update transformation, r =

IT', T 2 , T 3 ,. . . TN} forms a cyclic group, where N is the period of the generator,

and the state variables form a representation of the group.

2.1 What is random?

As was mentioned in the previous section a pseudo-random sequence is only an

approximation to a true random sequence. It is therefore essential to be able

to make some quantitative statements about how close to random a particular

sequence is. Any potential random number generator should have its output

tested using a series of statistical tests [16]. The choice of which statistical test

to use is rather arbitrary. However a large body of experience has been built up

in this area [16, 17]. In addition to empirical tests it is also possible to look at

the theoretical properties of the random number sequence [16]. This analysis is

usually done in terms of the frequency of occurrence of numbers, number-pairs,

triples etc. A number sequence is k-distributed if all possible sequences of k

numbers are equally likely in the number sequence.

For real numbers between 0 and 1 the definition of k-distribution is

for all choices of real numbers jui, v, with 0 < yj < vi < 1 for 1 <i C Ic.

For b-ary numbers, positive integers less than a maximum value b, the definition

of k-distribution is

Pr(XX+i . . . Xfl+k+1 = xis2... 5k)= 11b k,

43

for all b-ary numbers x 1 x2 . . . xj.

The distribution number of a sequence is the largest integer It for which the se-

quence is k-distributed. If a sequence of numbers is k-distributed then it will

also be n-distributed for all n: 0 < it < It. A reasonable definition of a truly

random sequence is a sequence that is co-distributed. Different applications will

require different statistical properties from a random number generator. However

it is reasonable to assume that the statistics of short sequences of numbers are

of particular importance. For example, pairs of numbers may be used to gener-

ate random numbers from a Gaussian distribution, or a series of numbers may be

used in generating a single random gauge element. The information content of the

state variables puts a limit on the distribution number of the generator. If N(k)

is the number of possible k-tuples, Itmax is the distribution number of the sequence

and M is the number of different states that map onto any given number then

M > N(kmax - 1). This is because there are N(k - 1) k-tuples beginning with the

particular number. As each state only occurs once in a single period there must be

N(k - 1) states that map onto that number for the sequence to be k-distributed.

The value of M is therefore important as a limit on the distribution number of a

generator. The output function is usually kept as simple as possible so that the

program will run quickly. In most commonly used generators the state variables

are either the same as the most recent number produced or are a history of the

last p numbers produced. In this last case p > L. If the value of M cannot

be directly calculated, an estimate of its value can be made using the period of

the generator. If P is the period of the generator and ji is the number of possible

output values, 232 for a 32 bit number, then by assuming that all such values are

equally likely, ie the generator is 1-distributed, we can show that M C P/ 1a.

Some algorithms, for example linear congruential generators, 1 have better statis-

tical properties in the higher order bits of the number sequence. If the low order

bits are discarded to produce numbers with a lower resolution the distribution

number can be increased. By discarding the low order bits, the output function of

the algorithm has been changed, which has increased the value of M and therefore

relaxed the limit on the distribution number.

'see later section

44

The lattice structure of a generator is one of the simplest empirical tests of a

random number generator. Successive k-tuples from the number sequence are

taken to be points in a k-dimensional space. A two dimensional cross section of

this space is plotted and examined to see how well the plane is covered. A plot

consisting of widely separated lines of points is an indication that the k-tuples are

not random. There is a strong connection between the distribution number of a

number sequence and its lattice structure. If k is less than the distribution number

of the sequence the lattice plot is guaranteed to be evenly covered, because each

of the possible k-tuples that make up the plot is equally likely.

2.2 Parallel random number generators

The problems associated with the design of good random number generators have

been known for some time and a body of useful algorithms has slowly been built

up. Most of this work has been for conventional single processors. The purpose of

this chapter is to investigate the use of these algorithms in a parallel computing

environment. Because of the difficulty of designing a high quality random number

generator, I will restrict the discussion to parallel versions of well known single

processor algorithms.

Parallel computation can introduce a number of complications to the design of

a random number generator. In a parallel computer consisting of a number of

separate processors, there will have to be a separate sequence of random numbers

generated on each processor. These sequences will all be used for the same simu-

lation. This means that correlations between different sequences will have to be

prevented as well as correlations within each sequence. There are a number of

approaches that can be used to get round this problem. In principle it is possible

to use a separate algorithm, or variations of a single algorithm for each of the pro-

cessors. The amount of work needed to test a new algorithm makes this option

rather difficult to achieve in practice. This approach is also intrinsically danger-

ous. A problem with the random numbers on a small fraction of the processors

in a simulation is enough to invalidate the results, but such a problem would be

much harder to find than one where all the processors shared the same problem.

45

Parallel random number generators are usually modified versions of a single pro-

cessor random number generator. This usually involves distributing the single

processor number sequence over the processors. This can be done in two ways.

The first method is to put each successive number from the sequence on a sepa-

rate processor, successive distribution. The potential problem in this case is that

the sequence produced on each of the individual processors is of a much poorer

quality than that produced by the original algorithm. If the original algorithm

had a distribution number of kmax the local sequence produced on a n processor

machine can only have a distribution number of k.,./n. This is only a problem

if the statistics of the local sequence are more important than the correlations

between the processors. As a rough rule of thumb, this depends on how fine

grained the parallelism is. On a coarse-grained system where separate processors

are responsible for relatively independent parts of the calculation then successive

distribution is obviously a bad idea. For a fine-grained system, such as a vector

processor or certain types of SIMD architecture, this is less of a problem. In these

cases the random numbers are likely to be used in much the same way as they

would have been in a single processor sequential machine. Even in this case it

would still be necessary to check the application for any code that explicitly uses

a set of random numbers at the same time, for example Gaussian random numbers

or random gauge elements.

The remaining option is to use the same conventional algorithm on all of the pro-

cessors and to select the starting state for each processor in such a way as to min-

imise the correlations between the processors, block distribution. On distributed

memory MIMD machines it seems reasonable to assume that the statistics of the

local sequence are far more important than the correlations between processors. If

the system being simulated has local interactions then short distance correlations,

between neighbouring points, are more important than long distance ones. This

kind of problem is usually implemented on distributed memory MIMD machines

using a geometric decomposition. In this case most neighbour-pairs will not cross

ptocessor boundaries, so correlations local to a processor are more important

than those between processors. A block distribution scheme is appropriate in this

case, because the local sequence has the same statistical properties as the original

sequential algorithm.

46

2.3 Linear Congruential Generators

Linear congruential generators are one of the most widely used forms of random

number generator. They generate a sequence of integers, x 0 , x 1 , x 2 , x3 ,... using

the transformation:

(ax + b) mod in, 0 < xi <in

Linear congruential generators have been around for a long time and are very

easy to implement. This means that their behaviour is well understood. Most

of the default generators provided with computer systems are of this type. The

quality of the number sequence is very dependent on the value of the constants

a, b and in. Luckily there is a large body of literature on this subject [16]. The

small number of state variables, a single integer, severely limits the quality of the

resulting number sequence. The integers x i cannot be greater than 1-distributed.

A good linear congruential generator is constructed by choosing the constants a, b

and in so that the high order bits of the output have a high distribution number.

Any element of the sequence can be generated using:

(Cx o + a
-

 1 b) mod in
a — i

The relation:
a7' - 1

x+7' (a7'x,.+ a_i mod m

shows that a parallel implementation using successive distribution is equivalent

to changing the values of a and b. This will almost always have disastrous conse-

quences for the number sequences produced by individual processors.

When using block distribution each copy of the generator must have a different

value for its starting seed. A parallel implementation needs to provide some

algorithm for selecting these starting seeds so as to reduce correlations between

the processors. If a pair of generators have starting seeds, x 0 and yo such that

Yo = x0 + K then the two sequences will be related by:

(x + aThK) mod in

47

I

This shows one potential problem that should be avoided in a multi-processor

calculation. The difference between the results of the two generators depends

only on the initial difference between their seeds, and on the iteration number.

Therefore if a set of generators have starting seeds with equal spaces between

them then the sequences will remain equally spaced modrn. This suggests that

in order to use a linear congruential generator in parallel it is necessary to ensure

that the starting seeds for each processor do not have equal spaces between them.

2.4 Linear recurrence generators

Linear recurrence sequences are a central part of many random number generators.

The general form of these sequences is:

= (ao + ajX_ 1 + ... + akX_k) mod p 	 (2.12)

The linear congruential generator described earlier is obviously a special case of

this algorithm. We can set the constant a0 = 0 without any loss of generality by

noting that:

X, 1 = (ao + a1 X + . .. + akX_(k_1)) mod p,

substitute for a0 using equation 2.12;

X, i = ((1+ ai)X +. _. + (ak - ak_1)X_(k_1) - akX_k) mod p,

X,,. = ((1 + ai)X_i + ... + (a - ak_1)X_k - akX_(k + l)) mod p.

The general form of a linear recurrence relation is therefore:

X, = (ajX_ i + . . . + 	mod p. 	 (2.13)

The theory of finite fields [18] shows that if p is prime it is possible to find values

for a 1 , a 2 . . . ak such that the period of the sequence is p - 1. If this is the case

the sequence Xn is going to be a very good source of random integers in the

range 10, p.j The state of the generator is equivalent to a k-tuple from the number

sequence. With the exception of the zero tuple that maps to itself under the

update transformation all possible k-tuples occur once during the period of the

generator. This means that as near as to make no difference the sequence is k-

distributed. The problem is that it is very difficult to find suitable values for the

constants a. The constants a must be the coefficients of a primitive polynomial

modp. The most efficient known test to see if a particular polynomial is primitive

involves finding the prime factors of (pk - l)/(p - 1). For large values of p and k

this becomes impractical [19]. When It is large and a large number of the constants

ai are non zero then this kind of generator will probably be too slow for Monte

Carlo simulations.

A number of the algorithms discussed in the following sections are special cases

of the one defined in equation 2.13, so it is worthwhile looking at some of the

properties of this kind of sequence.

The state of the generator. is most easily coded as a vector of It integers in the

range [O,p]that stores the last It numbers in the sequence X.- I

The zero tuple X_ 1 = ... = X,-_j, = 0 always maps onto itself regardless of the

values of p or the values of the constants {a o ,.. . , aj}. The maximum possible

period for the sequence is therefore p k - 1. The maximum possible distribution

number is It - 1, or It if we are prepared to ignore the non-occurrence of the zero

k-tuple.

The update transformation T can be written as a matrix acting on the state

vector. For example when It = 5.

o 	i 	o 	0 	0 X,_4

o 	0 	1 	0 	0 X,._ 3 X,_ 2

o 	o 	0 	1 	0 X,,._ 2 mod p= X,_ 1 (2.14)

o 	0 	0 	0 	1 X,_ 1 X,

as 	a4 	a3 	a 2 	a 1 X,, X. 1

The transformation T is represented by the matrix T raised to the power ii using

arithmetic mod p. Compared to the simple update rule given in equation 2.13,

performing the update using the matrix T is very expensive in terms of computer

time and memory. This matrix form has the advantage if a large number of

updates is to be performed in a single step, for example as a way of separating

a number of parallel generators in a block distributed scheme. The size of the

49

period for this kind of sequence can be so large that it can take years 2 for repeated

application of equation 2.13 to traverse even a small fraction of the sequence. Once

the number of iterations becomes large it is quicker to calculate the appropriate

transformation matrix. Transformation matrices can be combined using matrix

multiplication.

Tm XT =

This multiplication takes the same time regardless of the values of in and n . If x

is a number in the range [o,2+1 - 1) and

x = LsiT

se{O, 1}

then the matrix T can be calculated using.

Tx=
	 (2.15)

It takes q matrix multiplies to create the set of matrices T 2' by repeated squaring.

So the matrix for any value of x can be generated in at most 2q matrix operations.

For really large powers of T the same approach can be used but decomposing x

using a higher base than 2. This enables us to generate a matrix for any number

of iterations within a reasonable length of time.

The update transformation is a linear transformation. Any linear combination

of initial state vectors (seed vectors) will result in a state vector for the sequence

that is the same linear combination of the sequences generated by the original

state vectors. This gives us a constraint on the use of this kind of generator in

parallel when using a block distribution scheme. If the state vectors on a number

of processors are linearly dependent then the sequences produce will show the

same dependence. It is therefore advantageous to choose the initial state vectors

to be linearly independent. This can only be achieved if n7,,., 15 Ic where n,,70 is

the number of generators running in parallel and Ic is the number of values stored

in the state vector. This is another reason to choose a generator with a large state

vector. Though the ideal situation is to have all of the state vectors linearly inde-

pendent this is probably a far stronger condition than is needed for most types of

2 or multiples of the age of the universe

50

simulation. It will usually be sufficient to ensure that simple relations between two

or three sequences are avoided. There is another possible correlation that is much

harder to guard against. If we have to prevent correlations within short distances

along each individual sequence and between numbers generated simultaneously

by separate sequences we should also be concerned with correlations between the

numbers from two sequences generated at slightly different times.

Algorithms of this kind are not suited to successive distribution on distributed

memory parallel machines. Either the state of the generator will be distributed

over a number of processors, requiring a communication step to perform an update,

or the generator will have to generate the full sequence on all processors and select

the appropriate elements from this sequence; thus preventing the speed of the

generator from scaling with number of processors.

In order to use a block distribution we must find a way of reducing the correla-

tions between processors as much as possible. We have to avoid having any two

processors close together in the number sequence. In addition we have identified

linear dependence between state vectors as an undesirable correlation. Because

the space of valid state-vectors is very large, a set of randomly chosen state-vectors

has a very high probability of being a good starting place for the generators in a

parallel simulation. Ideally such a set of state-vectors should be checked to make

sure they are all linearly independent of each other. An alternative approach is

to generate a transformation matrix for a very large number of updates, choose

the initial state for the first processor at random and generate the initial states

for all the other processors by repeated applications of the transformation matrix.

The transformation matrix can be precalculated to reduce the startup time for

the generator. Any linear dependence between the processors is independent of

the choice for the initial state of the first processor, so this can be checked when

the matrix is calculated.

2.4.1 Shift register generators.

Linear recurrence generators with p = 2 are of particular interest. Primitive

polynomials mod 2 are relatively easy to find because the value to be factored into

51

primes is relatively small. In this case the algorithm becomes the shift register

algorithm used for generating a sequence of random bits. The name comes from

a simple method of implementing the algorithm in hardware using a shift register

and xor gates (see figure 2.1). Addition mod2 is the same as the exclusive-or

operation. The exclusive-or operation is also found in the instruction set of most

xn mjxn-i sjxr1_2 PILXn3
xn_4F__

Xn+1 = Xn-4 + Xn-2 mod 2

Figure 2.1: A shift register generator

The update transformation X, = X,._ 5 + X_3 mod 2 can be implemented with

a shift-register and an xor gate.

digital computers, so shift register generators are therefore also easy to implement

in software. Shift register generators are used to generate random bits. It is very

tempting to use the same algorithm to generate random words by using several

bits from the random bitstream of a shift register generator. However it is worth

noting that the distribution number of the resulting generator will be reduced by

a factor of the wordsize. This should therefore only be contemplated if the size of

the shift register is very much larger than the wordsize.

2.5 Lagged-Fibonacci generators.

Much recent work has been done on lagged-Fibonacci generators, much of it by

G. Marsaglia [20]. Used properly they can produce very high quality random

sequences with very long periods. Unlike the linear congruential generators each

element is not generated from the previous one but from a pair of elements at

fixed distances back in the sequence.

Xn 	f(xn_r,xn...q) : r < q

52

This means that the last q numbers produced by the generator must be preserved

in order to continue to produce new numbers. These q numbers form the state-

vector. There is often a strong relationship between lagged-Fibonacci generators

and linear recurrence generators. When the binary function f and the set of

possible values of x form a group isomorphic to modulo arithmetic then a lagged-

Fibonacci generator is equhtalent to a linear recurrence generator with q k and

aj = 0 i $ r, i q. As such a lagged-Fibonacci generator only requires a single

binary operation to generate the next number in the sequence it can be considered

the the optimal type of linear recurrence generator in terms of execution speed,

while retaining the advantages of a large number of state variables.

The simplest form of lagged Fibonacci generator that generates n bit integers is

one where:

f(x_, x_) = Xn_r 	Xn_q

Here e represents a bitwise exclusive-OR operation on the two it bit integers.

This is sometimes called the generalised feedback shift register algorithm [21]

These algorithms have been criticised for having poor statistical properties [20].

Part of the reason for this is that the different bits of each word are generated

completely independently of each other so the generator is in fact a number of shift

register generators operating in parallel, one for each bit of the output word. The

same kind of correlations that we have to avoid between generators operating on

separate processors now occur between the different bits of the output word, where

they will be a much greater problem. This algorithm will produce all possible it

bit integers provided that the state-vector is a nonsingular matrix of bits, i.e. the

it shift register state-vectors are linearly independent [221.

In the published literature the starting state-vectors are generated by choosing

a bit pattern for the lowest order bits of the state-vector and then iterating the

algorithm a large number of times in order to generate the bit values for the

higher order bits. Typically the delays are of the order of lOOq but may be as

high as 20,000q [23]. However these delays are probably far too small. The

matrix for a single iteration is very sparse and often very large, q = 0(100). If

the transformation for lOOq iterations is generated it remains a sparse matrix

with visible structure. This matrix completely defines the connection between

the different bits of the generator. A sparse matrix with obvious structure is an

53

A

indication of simple correlations between the bits. It is therefore more desirable

to use very long offsets where this obvious structure has disappeared.

I have implemented a parallel version of the gfsr generator using a block distribu-

tion. The update transformation was

X[n] =X[n.-32]eX[n-512],

giving a period of 2521 - 1. Each of the 32 bits in the output word is separated by

an offset of 2 401 — 1 and separate processors are separated by an offset of 2 488 — 1.

These offsets are generated by calculating the appropriate transformation matrix

from powers of the update matrix T (see equation 2.15). This matrix is a constant

transformation that connects the generators on each of the processors, but as it is

a dense matrix acting on the last 521 values produced by the generator it is not

expected to be a significant correlation for most applications.

The lagged Fibonacci generators are greatly improved when the e operator is

replaced with one that does not preserve the independence of the different bits

[20]. For example:

f(x n_r ,xn_ q) = (x_,. + x_) mod 2'

f(x_ 7 , xn_ q) = (x_ 7 — xn_ q) mod 2"

f(x n_r ,x n_ q) = (X.-->< xn_ q) mod 2" x j odd Vl

where n is the number of bits in the integer. The shorthand designations for these

generators are F(r, q, +) F(r, q, —) and F(r, q, x). The gfsr algorithm can be

designated as F(r, q, 6)) using the same system. Provided that the values of r and

q are chosen correctly these algorithms have a much larger period than the shift

register generators. The F(r, q, + mod 2") generators have a maximum period

of (2 — 1)2 1 and the F(r, q, x mod 2") generators have a maximum period of

(2Q —

A particularly elegant algorithm exists for generating real numbers uniformly dis-

tributed on [0, 1) using F(r, q, +), also due to G. Marsaglia [24]. In this algorithm

the state-vector is a vector of floating point numbers. Each element must be an

exact binary fraction.
ii

xi

54

where 1i is an integer 0 < Ij c 2" and n is an integer small enough for all such

fractions to be exactly represented by the floating-point format of the computer.

This is usually taken to be the number of bits in the mantissa of the floating point

representation. The generator is defined by:

Xn_r 	 ~ X n_ q 	if Xm_r Xn_q
f(xn_r, x_)

= { xn_r - xn_q + 1 otherwise

This is equivalent to a F(r, q, -) lagged Fibonacci generator acting on the integers

Ij with the results divided by 2". This algorithm generates high quality random

real numbers very quickly, and is therefore worth paying particular attention to.

The F(r, q, + mod 2") generators are actually an extension of the shift register

generators. The low-order bits of the result from a (+ mod 2") operation are

independent of the value of any of the higher-order bits in the operands. This

means that the lowest in bits of a F(r, q, ± mod 2") generator also form a generator

of the same type, except that arithmetic is performed mod 2'. The lowest-order

bit in = 1 therefore forms a shift register generator with maximum period 2 - 1.

The values of r and q must therefore be chosen using the same criterion as for

a shift register, that is, they must be the non-zero components of a primitive

polynomial mod 2. The higher-order bits have a very similar update rule except

that in addition to the recurrence relation, the carry bits from the lower-orders are

also added into the bitstream. The stream of carry bits feeding into the nth order

bit is periodic with the period of the generator mod 2n_ 1 . Because of the linear

nature of the recurrence relation, the resulting bitstream can be separated into a

shift register sequence and contributions from each period of the carry sequence.

The contributions from an even number of periods of the carry sequence will cancel

so the period mod 2" cannot be more than twice that mod 21. This argument

shows that the maximum possible period for this kind of generator is (2 - 1)2n_ 1 .

The transformation T for the F(r, q, + mod 2") algorithm is a linear recurrence

relation and can be represented as a matrix acting on the state-vector. It can be

proved that a necessary and sufficient condition for a F(r, q, + mod 2") generator

to have maximal period is that T must have order j = - I in the group of

nonsingular matrices for mod 2 order 2j for mod 4 and order 4j for mod 8.

let P, denote the period of the generator mod 2". If T has order j = 2k
- 1 in

the group of nonsingular matrices for mod 2 then the generator mod 2 is a shift

55

register generator with maximal period; P1 = 2c - 1. Let J be the matrix that

advances the sequence by Pi ;

j
=

J mod 2 = I.

Assume the generator has maximal period mod 2";

P,2 = 2"'P1
=

= 1+2 nXn.
	 (2.16)

As the period mod 2n+ 1 must be a multiple of the period mod 2', the generator

will also have maximal period mod 2"' provided that X,-, =A 0 mod 2. If we square

equation 2.16

= I+2" 1 (X+2"X,)

- I T + £. flfl+l Y

= X+2"X,.
	 (2.17)

So if Xn $ 0 mod 2 then X 1 	0 mod 2. It follows that if the generator has

maximal period for all ii provided that T must have order j = 2' - 1 in the group

of nonsingular matrices for mod 2 ,order 2j for mod 4 and order 4j for mod 8.

This is a variation of the proof given by Marsaglia[20].

We can see that only the highest-order bits of the F(p, q, * mod 2") generator can

have the full period and that each successively lower-order bit cycles in half the

time of the one above it. In principle we can consider consider F(p, q, ± mod r")

generators for any prime number r. These would have a maximum period of (r -

1)r" 1 . The practical disadvantages of not using a binary number representation

mean these algorithms are only of theoretical interest.

The F(p, q, x mod 2") generators can be reduced to F(p, q, + mod 2n1) genera-

tors by expressing the abelian group of residues as a direct product of cyclic groups

and considering the update transformation of the generator exponents [20].

The only restriction on the state-vector of a F(p, q, ± mod 2") generator is that

the elements of the state-vector cannot all be even. The number of valid state-

56

vectors is therefore (2 - 1)2*'- '). As the period of the generator is (2 - 1)2-- '

there are 2(9-1)(n-1) possible sequences that can be generated by the algorithm.

In a single-processor implementation of this kind of generator we are only con-

cerned with correlations within a single sequence. Once we consider running a

number of generators in parallel, the existence of separate number sequences is of

interest. To implement this algorithm in parallel we want to understand how the

independent cycles are related to each other. If there is a simple transformation

that maps one cycle into another, then this is a potential correlation between

processors that we have to avoid when initialising a set of parallel generators. We

already have an efficient method of moving a generator to any point within its

cycle. If we also have a method to transform cycles into each other we can consider

putting a separate cycle on each processor of a parallel program.

A partial understanding of how separate cycles are related can be gained by con-

sidering sequences related by multiplying the state vector by a constant. This

will only result in a valid state vector if the constant is an odd integer. It can

be shown that this will never map the generator into a different part of the same

sequence provided that

j = T' 31 mod 4. 	 (2.18)

The proof is as follows; assume there is no internal map mod 2",

	

$ /d mod 2", 	 (2.19)

for all i and all odd integers 1 c k < 2". Consider arithmetic mod 2"'. If there

exists an odd integer k such that

Ta = Id mod 2"', 	 (2.20)

with k < 2?1*1 and a < 2"(2 - 1) then it follows that

	

T' = /d mod 2". 	 (2.21)

To be consistent with equation 2.19, we must have k = 1 mod 2", as we know k

lies in the range 1 < k < 2" this gives us /c = 2" + 1. From equation 2.21

= I mod 2",

57

so a is a multiple of F; a = 2m-1 (22_ 1). Substituting the values of a and k into

equation 2.20

= (1 + 2')I mod 21

From equation 2.16 this gives us X,,. = I mod 2 as a necessary condition for an

internal map mod 2+1 If J 31 mod 4 then X1 54 I mod 2, from equation 2.17

X I mod 2Vi. Hence there are no internal maps for all ii.

This still does not take account of all of the separate cycles; there are 2"' odd

integers less than 2". So if we group together cycles that are connected by a

constant multiplier, we are still left with 2(2)(1) independent groups. If the

lowest it bits of 2 state vectors are from different groups of the generator mod

2" then the state vectors must also be in different groups mod 2' for all in > it.

Each time it is increased by 1 the number of groups increases by 222 = 2q /4.

This shows us a way of constructing state vectors that belong to different groups.

Start with a state vector 5, it - 1 bits wide, and generate a new state vector 5'

by setting the nth bits to random values,

= S + 2"'B

for all i < q where the Bs are chosen randomly from 0 and 1. There are only 3

other possible choices of B that come from the same group of cycles. One occurs

2,t-2(2q - 1) updates later in the same cycle as 5'; the other two occur in the

cycle obtained by multiplying 5' by 2" + 1. These values of B can be easily

calculated;

B' = B+Smod2

B" = B+X.Smod2

B"= B+X.S+Smod2

where X = Xo mod 2 from equation 2.16. This enables us to keep choosing new

values of B and easily reject state vectors that come from groups we have already

selected. To minimise the relation between the state vectors this procedure should

be carried out at it = 2 and the higher order bits filled in randomly. At this stage

all the sequences will still be the same mod 2 so transformation matrices will have

to be used to shift each sequence a different distance around its period.

This procedure seems unnecessarily complex; the one advantage it has over the

other methods discussed previously is that it guarantees that there will never be

a linear dependence between two of the sequences, including correlations between

elements offset by an arbitrary distance.

All simulations presented in this thesis have used this kind of random number

generator. In these cases the initial state for each processor was either chosen

randomly or the states were distributed at constant offsets around a single cycle

using a transformation matrix.

59

Chapter 3

QED and four-fermion interactions

3.1 QED

Quantum Electro- Dynamicsor QED is a gauge theory based on the U(1) gauge

group. It represents a system of charged fermions coupled by electromagnetic

interactions. The predictions made by QED are very accurate; perturbative cal-

culations and experimental observations agree with each other to an extremely

high accuracy. For example the experimental value and the theoretical predic-

tion of the anomalous magnetic moment of the electron agree to 8 decimal places.

QED is routinely used for a wide variety of calculations in atomic physics and

is therefore of immense practical importance; in addition the simplicity of QED

makes it an important test-bed for our understanding of field theories in general.

3.1.1 The triviality of QED

One of the oldest problems in four-dimensional quantum field theory is whether

or not QED is interacting in the limit in which the cut-off is removed. Suppose

the bare coupling is e 0 , the bare electron mass is rn0, and that the theory is

regularised with a momentum cut-off A. Assuming the theory does not confine

charge, a renormalised charge, CR, may be defined by the Thomson scattering

cross-section and a renormalised electron mass, MR, may be defined as the lowest

energy in the charge-one sector. The relationship between the bare charge and

the renormalised charge is

	

= Z3 eg 	 (3.22)

where, for most regularisation schemes, including the lattice [25, 261,

	

0 <_ Z3 < 1. 	 (3.23)

The renormalisability of QED guarantees that the results of renormalised per-

turbation theory (expressed in terms of en and MR) are indepeuident of A/mn

for sufficiently large A/mn, but it does not imply that the theory has a non-zero

renormalised charge in the infinite cut-off limit. Weak-coupling perturbation the-

ory seems to suggest that the renormalised charge vanishes in this limit. The /3

function is a measure of how the coupling changes with the cut-off,

The leading terms of a weak-coupling perturbative expansion for 0 give a positive

definite value. In the region where this expansion is valid an increase in the value.

of the cut-off will force a compensating increase in the value of the bare charge.

In renormalisation-group improved one-loop perturbation theory the bare charge

is given by 	
2 = 	en 	 (3.24)

1 - - log 6r

Keeping Ca fixed as the cut-off is removed, the bare charge has a pole at sufficiently

large A/mn, and becomes imaginary as A/mn is increased further. In the real

world, 4/4r = 1/137, and the cut-off can be made larger than the Planck scale,

the scale where quantum gravity effects should become significant, without the

bare coupling becoming large. If this weak-coupling picture is qualitatively correct

for all bare charges, then the cut-off cannot be completely removed at a fixed non-

zero renormalised coupling, but can be taken larger and larger as the value of

the renormalised charge is reduced. The physical process driving this behaviour

is vacuum polarisation. Virtual electron-positron pairs in the vacuum can be

separated by an electric field. The vacuum therefore behaves like a dielectric and

shields the electric charge. As the cut-off is removed this effect becomes stronger

and the bare electric charge must be increased to compensate. The exception to

61

this is when the renormalised electric charge is zero. In this case the bare charge

e0 is zero for all values of the cut-off. The cut-off can therefore only be completely

removed at zero renormalised charge, i.e. at the Gaussian fixed point. This would

be the triviality of QED. Triviality could be avoided if new physics enters at

large bare charge, where perturbation theory breaks down. The predictive power

of perturbative QED remains unchallenged because other physical processes will

have to be included in any real calculation long before the bare charge becomes

large. The question about what happens to QED as the cut-off is removed is still

an important one for our general understanding of field theories.

In terms of renormalisation group trajectories the perturbative picture is that all

the possible trajectories except for the one at e0 = 0 will travel out to eg = 00

before the cut-off has been totally removed, so the only point possibly corre-

sponding to a continuum theory is the infra-red stable fixed point (irsfp) at eo = 0

corresponding to non-interacting fermions. It is possible that some other physical

process becomes significant at large values of the bare coupling. If such a process

reduces the fi function then a second fixed point (fi = 0) could occur in the strong

coupling region, see figure 3.1.

Perturbative
result

Beta
function

strong
coupling
fixed point

Gaussian 	 Bare coupling
fixed point

Figure 3.1: Possible evolution of the 0 function

Perturbative calculations give a positive definite value to the fi function. A strong

coupling fixed point is therefore only possible if some non-perturbative process

reduces the value of the 3 function.

What is necessary for an interacting continuum limit is an ultra-violet stable fixed

point (uvsfp) at some non-zero value of the bare coupling, e© = eu,. Removal of

62

the cut-off at fixed CR would drive the bare coupling to the uvsfp. However, this

is not sufficient for the continuum theory to be interacting; it is still possible for

the renormalised charge to vanish. In contrast, it is now fairly clear that no such

uvsfp occurs in the 4-dimensional 0 theory, so that the continuum theory must

be built at the Gaussian fixed point and is free [27]. Apart from a calculation of

the renormalised charge itself, which would obviously settle the matter, non-mean-

field scaling exponents at the uvsfp would presumably indicate non-triviality. This

is because an interacting continuum theory defined at a second order phase tran-

sition exhibits fluctuations on all length scales and is therefore unlikely to be well

described using a mean field approximation.

A strong-coupling uvsfp also implies that a new phase of QED exists on the

far side of this critical value. Unfortunately, strong-coupling QED can only be

explored numerically using lattice gauge theory, or by means of ad hoc truncations

of the Schwinger-Dyson equations. Since the theory would be scale-invariant and

A/mn = oo at the fixed point, there must exist a second (or higher) order phase

transition at e 1,,. The first evidence for such a transition was obtained several

years ago [28, 29] by lattice Monte Carlo simulations using the non-compact form

of the pure gauge action.

3.1.2 The Schwinger-Dyson equation

The Schwinger-Dyson equations are integral equations obeyed by the Greens func-

tions of quantum field theories. The numerical lattice results have inspired a

revival of analytic work based on solutions to truncated Schwinger-Dyson equa-

tions [30, 31, 32]. In the ladder approximation, where fermion loops and vertex

corrections are ignored, there is indeed an uvsfp which separates the perturba-

tive phase of QED from a phase where ee pairs condense into the vacuum and

break chiral symmetry. The ladder approximation decouples the Schwinger-Dyson

equation for the fermion self-energy, which may then be replaced by an ordinary

differential equation and solved analytically at large momentum [30, 31, 32, 331.

A chiral-symmetry-breaking solution exists for a = e 2 /47r > a = 7r/3. The phase

transition is of infinite order (has an essential singularity in the order parameter)

in the ladder approximation. The physics driving the transition, sometimes called

63

'collapse of the wavefunction', can be seen in the simpler case of a Dirac particle in

an attractive a/r potential [31]. The wavefunction is singular for a > 1. The sin-

gularity may be regularised by cutting off the potential at short distances, r <a.

Then the requirement that the binding energy be independent of the cut-off, a,

imposes a cut-off dependence of a, such that

da
—>0, a>1; 	 (3.25)
da

a must be increased with a to compensate for the lost potential. This UV stability,

reminiscent of QOD, is the opposite of screening due to vacuum polarisation and

we must ask whether it survives the introduction of dynamical fermions?

In the ladder approximation only fermion mass renormalisation occurs and, no-

tably, this results in a large anomalous dimension for oo, corresponding to a scal-

ing dimension of 2 at a, [32]. As a consequence, four-fermi interactions acquire

a scaling dimension of 4 at a in this approximation, indicating that a consistent

treatment of QED at strong coupling should include them from the start.

In order to preserve the chiral symmetry of the action, the appropriate four-

fermi interaction to include is that of the Nambu-Jona-Lasinio model[34]. The

Lagrangian for the continuum theory is

£ = £QED + G[()2 - ()21 	 (3.26)

The solution of the ladder approximation for this model was obtained in [32].

An interesting phase diagram for this model was conjectured on (the basis of an

analysis of the solutions of the approximate Schwinger-Dyson equation as a func-

tion of the two couplings a and g = CA 2 /4ir 2 , where A is the momentum cut-off

[35, 36, 37]. This is shown in figure 3.2. For large enough four-fermi coupling

(g > (i + 	
- 	

for a < a) and g > 0 otherwise) a chiral-symmetry-

breaking solution exists for all values of a. Within the symmetric phase, the

anomalous dimension for & [38] is the same as for G = 0:

I 	a
eynt=1-4/1--, 	 (3.27)

whereas, in the broken phase, for a < a,

I 	a
7,fl =1+4I1. 	 (3.28)

a,,

64

This is remarkable in that it seems to suggest that, close to a = 0, for g > 1 the

scaling dimension of the four-fermi interaction is 2, i.e. it is super-renormalisable!

I 	I 	 I 	 I 	 I 	I

1.0

- 	 <> ~ 0 	-

0.5

- 	 -

I 	I 	 I 	I 	I 	 I

0.0 	 0.5 	 1.0

Figure 3.2: Phase diagram predicted using the Schwinger-Dyson equation

Possible phase diagram of the U(1)-gauge-invariant Nambu-Jona-Lasinio model

obtained using the ladder approximation to the Schwinger-Dyson equation for the

fermion self-energy.

65

Within the ladder approximation, the two phases are separated by a line of ultra-

violet stable fixed points, with renormalisation-group flow only in g for a < a

[37], i.e. there is no single ultra-violet fixed point about which a continuum limit

might be built. This is probably an artifact of the approximation.

Approximate Schwinger-Dyson calculations have been performed with a variable

number of fermion 'flavours', N1. The results indicate a conventional second-

order transition with critical exponents which depend on Nf, rapidly approaching

mean-field values for Nf > 1.

This hypothesis that there is an ultra-violet fixed point at strong coupling, which

may be used to define a non-trivial four-dimensional field theory, has been used

to construct technicolor models and also has intrinsic interest as a new type of

continuum field theory. However it is built on rather drastic approximations. In

particular, vacuum polarisation effects, which are responsible for the ultra-violet

instability of the e = 0 fixed point in ordinary QED, are excluded but might be

expected to be important.

For two reasons it is important to check the predictions of the truncated Schwinger-

Dyson equations against numerical simulations. Firstly, to see whether any of the

new strong-coupling dynamics persists in the full theory and secondly, to explore

whether truncated Schwinger-Dyson equations can be a reliable guide to non-

perturbative quantum field theory. The immediate questions to be asked of the

numerical simulations are:

• how do physical quantities scale near the phase transition?

• is 6R 54 0 possible?

• what is the dependence of the above on the number of fermion species?

3.1.3 QED on the lattice

There are two possible ways of formulating QED on the lattice, compact and

non-compact.

The compact form of lattice QED with massless staggered fermions, has the fol-

lowing lattice action:

S = 	(1 - cos(AM&)(x) -

+

D(0) =

= (_1)4_ 1 	 (3.29)

where 9 takes values in the range [0,27r), x, with integer-valued components,

labels the lattice sites, .t = 0,. .. , 3 labels the lattice directions and 2 is the

corresponding unit vector.

The non-compact form of lattice QED with massless staggered fermions, has a

very similar action

S = 	(AMOV(x) - &OAx))2

	

+ E >(x)D(9)x(y), 	 (3.30)
XIV

where 9 takes values on the real line.

Both of these actions are gauge invariant and in the limit where the lattice spacing

is taken to 0 they both reduce to the continuum QED action. On the lattice

however the two actions behave differently because of topological excitations. The

compact form of QED only has a first order transition so it cannot correspond to

an interacting theory [28, 29].

Non-compact QED appears to have a second order transition at strong cou-

pling [28, 291. The nature of this transition seems to depend on the number

of fermion flavours. At large N1, the transition appears to become first order [40].

For lower values of Nf the transition appears to be second order but non-mean-field

critical exponents have only been claimed for small numbers of fermion flavours

(less than about four) [28, 29, 411.

There is a certain practical difficulty in interpreting the data from this kind of

simulation. This arises because we are interested in the behaviour of systems

67

with zero fermion mass but we are only able to simulate systems with a non-

zero fermion mass. Much of the published data is therefore based on polynomial

extrapolation of the data for (xx) at non-zero fermion mass on a finite lattice

to zero fermion mass. Non mean-field behaviour has sometimes been claimed

because of deviations from mean-field behaviour of this extrapolated curve. This

procedure has obvious shortcomings,(here is no way to distinguish between non

mean-field behaviour and a breakdown in the extrapolation.

The Schwinger-Dyson equation calculations suggest that four fermion interac-

tions could be significant in understanding the renormalisation behaviour of strong

coupling QED . Consequently, we performed a numerical simulation of the fully-

interacting U(1)-gauge-invariant Nambu-Jona-Lasinio model. We formulated the

theory using staggered fermions, and x, [4] in order that the lattice theory

possesses a continuous chiral symmetry:

X(X) -4

(x)
	

(3.31)

e(x) =

where A is real. Then a gauge-invariant, chiral-invariant four-fermi interaction is

	

G> 	(x)x(x)(x+i2)x(x+P), 	 (3.32)
XIA

Our lattice action is that for noncompact QED plus the above four-fermi interac-

tion. In order to perform the exact integration over the Grassmann variables, an

auxiliary vector field is introduced, so that the lattice action is

S = 	E (A9fr(x) - AVO M(x)) 2 	 -
t,L, >th

	

+ 	(x)[D(&) + 2JdD(9') + m]tyx(y) 	(3.33)
t i ll

= 	iAx)[eiSt)St+a,y - e9M6 	1 	(3.34)

= (_1f0+M_1 	 (3.35)
1

p = -. 	 (3.36)

Here, O takes values in the real line, whereas the auxiliary vector field 	e [0, 27r).

The integration over 0,, can be done analytically and produces the chiral-invariant

1*1

four-fermi interaction:

i I ye'e 2'Jd
= 	

,(z)D(9')yx(y)

i I 	e z De' 	 M=)[=

where to V. =

I = J - J M e [(x),M 	+h)_HVMVIX(x)1 ='fl ± J Me A,

X'A
27r

Now expand the exponential as a power series, there are no A 3 and higher terms

because the Xs are Grassmann variables.

i=HJS[1+A+ç],

JdO'V = J de'Vt =

therefore

J dO'A =

2
I=H_f d0l+ A--}.

= flu / dO'[l - G(q. 	+ 	(x + f)x(x)VtV]
2r i

'=
- G(x)(x + i2):(x + i2)x(x)I

0.9

i = 	E,,. C(x)(z+)g(+ji)x()

The effective action is therefore

Seff = 	>i (A,9(x) - AUOM (x)) 2 + E (x)[D(8) + m]x(y)

— C> 	(x)x(x)(x + j2)x(x + ,à). 	 (3.37)

Note that a scalar auxiliary field produces the wrong sign of the four-fermi cou-

pling. Then the chiral condensate is defined as

() = urn lim thY 	 (3.38)
in -.0 V-. oo

ON

3.2 The phase diagram of QED with an additional

four-fermi interaction

We investigated the phase diagram of QED with additional four-fermion interac-

tions using a series of dynamical fermion simulations. Configurations on an 8

lattice were generated by the Hybrid Monte Carlo algorithm [6], with trajectories

of unit length in molecular-dynamics time. The number of molecular dynamics

steps used was chosen separately for each simulation in order to maximise the

simulation speed while retaining an acceptance rate of approximately 80%. Our

fermionic boundary conditions were periodic in space and anti-periodic in time.

Our aim was to obtain evidence for the phase diagram, in figure 3.2, and check

the results of [28, 291 for G = 0.

The results at G = 0 for (x) and So/13 = 	- A LJO42) for a range of j3

values, at fermion masses in = 0.0125, 0.025, 0.05 and 0.1, are in table 3.1 and

table 3.2. The results are averages over a minimum of 200 trajectories, having

discarded 100 trajectories for equilibration. The errors are estimates for the stan-

dard deviation in the mean obtained from binning the data. Our data is in good

agreement with the data in reference [28, 29], except for the lightest fermion mass

in the vicinity of the transition, in the broken phase, where our values for (x) are

systematically larger by several standard deviations. This may be attributed to

critical slowing down or, possibly, stepsize errors in the results of reference [28, 29],

since these errors are expected to be largest in the broken phase at low mass.

Our results extend those of reference [28, 29] to higher masses. Graphs of the

mass-dependence of (x) are shown in figure 3.3 Linear extrapolation to zero

mass, using the data at iii = 0.0125 and 0.025, is not supported by the higher-

mass data for 3 < 0.21. Because of our disagreement with reference [28, 291 on

some of the values of (x) at in = 0.0125 and the sensitivity of this extrapolation

procedure to such discrepancies, the values we would obtain by extrapolation do

not agree with [28, 29]. We deduce that current simulations of non-compact QED

are finite-mass affected and that extrapolation to zero mass is unreliable. On the

basis of figure 3.3, where there appears to be a qualitative difference between the

curves for j3 = 0.18 and 0 = 0. 19, in that the former seems more likely to support

70

extrapolation to non-zero (xx) on an infinite lattice, we conclude that the critical

point is in the range 0.18 </3 < 0.19. /3 = 0.19 is also roughly the location of the

points of inflexion in the plots of (xx) vs. /3, figure 3.4, which is sometimes taken

as an indication of criticality.

0.5

A

V

MIA

IM

0.2

/3=0.15

/3=0.16

/3=0.17

/3=0.18
(3=0.185
(3=0.19
(3=0.195
/3=0.2

9=0.21

(3=0.23

(3=0.26

0.1
	 /3=0.30

0.0 L

0.00
	

0.10
mass

Figure 3.3: Fermion-mass dependence of (x) at G = 0.0

The points are joined by straight lines to guide the eye.

71

0.5

A

V

0.3

0.2

0.1

0.0
0. 15 	0.20
	

0.25
	

0.30 	0.35

1

Figure 3.4: (x) against fi at & = 0.0

72

Our data for the plaquette expectation value, S0 /fl, at C = 0 exhibits the expected

suppression due to dynamical fermions, relative to the quenched value of 1/4/3

(see figure 3.5). There is a slight steepening of the plaquette expectation value

as a function of /3 and evidence of critical slowing down in the vicinity of the

transition, but the effects are too small to provide a reliable independent estimate

of the critical point.

In the region 0.18 < /3 < 0.215 at in = 0.0125, we looked carefully at runs of

400-700 trajectories from different starts, but saw no evidence of metastability

(see figure 3.6). This is in agreement with the conclusion of reference [28, 291 that

the transition is not strongly first order.

If we assume that the transition is second order, then for infinite volume

(x)ls=s. 	ink. 	 (3.39)

Mean-field theory gives the value S z 3. We. can compare this with our data

by plotting (x)3 against mass, see figure 3.7. This plot is approximately linear

in the region near the critical coupling. There is no compelling evidence for an

essential singularity in (x) vs. /3 [28, 29], or for an interacting continuum limit,

from such a crude analysis of our data.

We have attempted to map out the phase diagram for C > 0 at a fermion mass

of 0.05 on an s lattice [42]. The results for (x) at a fermion mass of 0.05 are

shown in figure 3.8. Here, we have fitted a smooth surface through the data points,

without taking account of the sizes of the errors. We discarded 100 trajectories for

equilibration, and then averaged over a minimum of a further 200 trajectories. The

data used to generate this surface is concentrated in the foreground of the figure

so the position of the surface in the high C low 0 region is suspect; -Figure 3.8

indicates that the chiral-symmetry-breaking transition persists for C > 0. A line

of transitions in the fl-C plane is observed to connect the 'on-axis' transitions

previously found in references [28, 291 and [43]. The signal for this transition in

the plaquette expectation value, already small for C = 0, diminishes for C > 0

and is almost unobservable in our data.

We have analysed in more detail the transition for C > 0 at j3 = 2.0, a much

larger value than for the data in figure 3.8. This corresponds to a very weak

73

r -0.1

Cr
CO

-0.2

-Q • 3

0.1 	 0.2 	 0.3

Figure 3.5: Suppression of the plaquette expectation value

74

[It!

0.3

0.2

0.1

ml
600 	800 	1000 1200 1400 1600 1800

trajectory

Figure 3.6: (ix) against trajectory at in = 0.0125, j3 = 0.19

w

I 	I 	 I 	I

j30.18
/1=0.185
/1=0.19
/1=0.195

1a 1

co
A

V
0.05

twITI

0.00 	 0.05
	

0.10
mass

Figure 3.7: (x)3 against mass at C = 0.0

Iry

Figure 3.8: (x) at a fermion mass of 0.05 for different values of /9 and C.

gauge coupling and should therefore approximate a pure four-fermi model and

can be compared with the pure QED data from the C = 0 line. Our results

for the chiral condensate and plaquette expectation values at four fermion mass

values are given in table 3.3 and table 3.4. In a plot of (x) vs. C, the transition

becomes sharper as the fermion mass is decreased, see figure 3.9.

The fermion-mass-dependence of (x) is plotted in figure 3.10. The data for

C < 0.16 appears to extrapolate linearly to zero at zero fermion mass, whereas

for C > 0.25 the data indicates the possibility of a non-zero extrapolated value on

an infinite lattice. We take this qualitative change in the mass-dependence of the

chiral condensate as evidence for a transition between these C values. Our data at

C = 0.2025 is, therefore, in the critical region. This conclusion is supported by the

location of the point of inflexion in the curves of (xx) vs. C. This critical value

for the four-fermion coupling is slightly less than the value C = 0.28 obtained at

/3 = co in reference [43].

In conclusion, we have obtained indications of phase transitions at zero fermion

77

0.3

A

0.2
V

0.1

0QL

0.0
	

0.1
	

Im- 	lB
tl

Figure 3.9: (x) against C at 3 = 2.0

The points are joined by straight lines to guide the eye.

iv

A

V

0.3

0.2

0.1

G=0.36

G=O.25

G=0.2256

G=0.2025

G=0, 1606

G=0. 16

G=0.09

G=0.04

G=O.01
G=O.0

WKII

0.00 	 0.05 	 0.10

mass

Figure 3.10: Fermion-mass dependence of (x) at fi = 2.0

The points are joined by straight lines to guide the eye.

79

/3 I 	(x)
m = 0.0125 tn= 0.025 in = 0.05 in = 0.1

0.06 0.622(6) 0.631(6)

0.10 0.580(6) 0.581(4)

0.15 0.428(7) 0.445(2) 0.480(1)

0.16 0.416(2) 0.454(1)

0.17 0.306(3) 0.344(4) 0.382(3) 0.426(1)

0.18 0.249(2) 0.292(5) 0.340(4) 0.400(1)

0.185 0.227(4) 0.267(3) 0.325(3) 0.386(1)

0.19 0.180(1) 0.242(3) 0.308(2) 0.373(1)

0.195 0.150(2) 0.219(3) 0.287(2) 0.360(1)

0.20 0.132(4) 0.196(3) 0.272(1) 0.350(1)

0.205 0.107(2)

0.21 0.093(3) 0.158(3) 0.238(1) 0.326(1)

0.215 0.080(2)

0.22 0.305(1)

0.23 0.058(1) 0.1082(7) 0.187(1) 0.283(2)

0.24 0.264(1)

0.26 0.0367(3) 0.0733(7) 0.138(2) 0.233(1)

0.265 0.2267(6)

0.30 0.0277(5) 0.0541(4) 0.107(1)

0.34 0.088(1)

0.38 0.0752(5)

0.42 0.0662(3)

0.46 0.0613(3)

Table 3.1: Chiral condensate expectation value at C = 0.

EgøJ

ía so/s_______

m=0.0125 m=0.025 m=0.05 tn=0.1

0.06 4.11(1) 4.11(1)

0.10 2.366(6) 2.366(6)

0.15 1.476(7) 1.485(2) 1.509(1)

0.16 1.381(3) 1.405(1)

0.17 1.261(1) 1.271(2) 1.288(4) 1.314(2)

0.18 1.177(2) 1.192(2) 1.208(1) 1.236(2)

0.185 1.146(1) 1.157(1) 1.1730(8) 1.1988(6)

0.19 1.1105(7) 1.123(1) 1.138(2) 1.165(1)

0.195 1.081(1) 1.092(1) 1.108(1) 1.1320(8)

0.20 1.055(1) 1.064(1) 1.0807(7) 1.103(1)

0.205 1.031(1)

0.21 1.007(1) 1.014(1) 1.026(1) 1.0502(8)

0.215 0.9862(7)

0.22 1.001(1)

0.23 0.929(1) 0.9315(9) 0.9400(7) 0.9573(7)

0.24 0.9178(9)

0.26 0.8341(7) 0.834(1) 0.839(1) 0.8510(6)

0.265 0.8358(6)

0.30 0.735(1) 0.735(1) 0.738(1)

0.34 0.6589(8)

0.38 0.5964(6)

0.42 0.5429(5)

0.46 0.5001(7)

Table 3.2: Plaquette expectation value at G = 0.

EI!

ci (xx)________

m=0.0125 m=0.025 m=0.05 m=Q.1

0.0 0.00865(2) 0.01731(5) 0.0346(l) 0.0688(l)

0.01 0.00910(2) 0.01825(6) 0.0363(1) 0.0718(2)

0.04 0.01049(3) 0.02111(8) 0.04177(9) 0.0828(2)

0.09 0.0143(1) 0.0283(1) 0.0554(3) 0.1088(6)

0.16 0.0259(3) 0.0509(4) 0.0959(8) 0.169(2)

0.1806 0.0345(3) 0.0642(8) 0.118(1) 0.190(l)

0.2025 0.049(2) 0.088(1) 0.148(2) 0.213(2)

0.2256 0.075(3) 0.135(1) 0.185(1) 0.239(2)

0.25 0.142(5) 0.181(2) 0.221(l) 0.264(2)

0.36 0.289(3) 0.304(3). 0.314(2)

Table 3.3: Chiral condensate expectation value at 3 = 2.0.

ci
m=0.0125 m=0.025 m0.05 m=0.1

0.0 0.1221(2) 0.1225(3) 0.1226(2) 0.1226(2)

0.01 0.1226(2) 0.1228(2) 0.1225(2) 0.1227(2)

0.04 0.1226(l) 0.1226(2) 0.1228(1) 0.1226(1)

0.09 0.1228(2) 0.1228(l) 0.1228(2) 0.1230(2)

0.16 0.1231 (2) 0.1226(2) 0.1229(3) 0.1233(2)

0.1806 0.1229(2) 0.1229(3) 0.1226(6) 0.1231(2)

0.2025 0.1230(2) 0.1229(3) 0.1229(2) 0.1233(2)

0.2256 0.1236(4) 0.1230(3) 0.1233(2) 0.1236(2)

0.25 0.1237(2) 0.1230(l) 0.1236(1) 0.1238(3)

0.36 0.1240(4) 0.1237(2) 0.1247(3)

Table 3.4: Plaquette expectation value at /3 = 2.0.

mass in the lattice U(1)-gauge-invariant Nambu-Jona-Lasinio model at 0 0.19,

G = 0 and at /3 = 2.0, C 0.2 and along a line in the j3-G plane connecting these

points. This is qualitatively in agreement with analytic predictions for the critical

line obtained from the ladder approximation to the Schwinger-Dyson equation

for the fermion self-energy. However, the fermion-mass-dependence of the chiral

condensate, for fermion masses 0.0125 < m < 0.1, does not support a linear

extrapolation to zero fermion mass in the broken phase; a crude analysis of our

data at the C = 0 critical point is consistent with mean-field behaviour.

3.2.1 The gap equation

We have tested the conjecture that there is evidence for non-mean-field critical

behaviour in our numerical data using data from two sections approximately trans-

verse to the critical line: one coincides with pure non-compact QED, the other

to a four-fermion theory with relatively weak gauge coupling (where large anoma-

lous dimensions are predicted by the approximate Schwinger-Dyson analysis [381).

Because our analysis is at fixed lattice size, it is necessarily crude and we cannot

reliably extract predictions for critical exponents. We reject any extrapolation of

the data and, instead, study the dependence of the chiral condensate on fermion

mass and couplings close to criticality.

We compare our results for (ix) with the solution of the gap equation for the

pure four-fermion system, with lattice action

S =

+rng (x)x(x)]

Cg E x(X)X(X)ZX + ,%) x(x + 12). 	 (3.40)
XIA

The gap equation is a mean field solution to this model. The four-fermion inter-

action term is replaced by

8Gg(x) E x(X)X(X)-
XIA

The partition function then becomes a Gaussian functional integral that can be

solved to give a self-consistency equation for (x). The gap equation for this

system on an L 4 lattice is [43, 44]

- XX 	
mg+8Cg(x)g 	

341
g - L 4 '' (m g + 8Gg (x) g) 2 + Esin2 p.

where pp = 	or
2ir(n..+) (it?.
	0,... ,L - 1), depending on whether the

fermionic boundary conditions in the i direction are periodic, or anti-periodic,

respectively.

The solution of the gap equation exhibits mean-field critical exponents [43, 44].

We regard agreement between the data and the gap equation as indicating that

the data contains no evidence of non-mean-field critical behaviour.

In fitting the solution of eq.(3.4l) to the numerical data we allow for the following

four free parameters:

(x)g = c(x) 	 (3.42)

= eGG + Co 	 (3.43)

M g = c,,1 mn. 	 (3.44)

The freedom to vary these parameters does not alter the mean-field nature of

eq.(3.41). What is at issue is how accurately eq.(3.41) fits the data in what

appears to be the critical region.

Both the C = 0.0 and the /3 = 2.0 data can be successfully fitted to the gap

equation [45, 461. Figure 3.11 shows the gap equation fit to our data at /3 =

2.0. Only three of the parameters are fitted, C. is fixed to be one as it seems

unnecessary to vary this parameter to obtain a good fit. The parameters used in

the figure are

CG = 	0.66 (3.45)

co = 	—0.06 (3.46)

cfcx = 	0.96 (3.47)

WMA

0.3

0.1

0.0 	0.1 	0.2 	0.3 	0.4
G

Figure 3.11: (x) against G at fi = 2.0

Mass values shown are rn = 0.1, 0.05, 0.025 and 0.0125 (from top to bottom).

Superimposed is our best 3-parameter fit to the gap equation of a pure four-

fermion model.

A

V

3.3 The Swendsen Ferrenberg extrapolation

A Monte-Carlo simulation of a lattice gauge theory is an approximation to the

full path-integral. A lattice path integral averages over all possible configurations

of the lattice fields weighting each configuration by the exponential of its action.

In contrast a Monte-Carlo simulation only averages over a representative subset

of the possible configurations. These configurations are usually chosen from a

distribution corresponding to the weighting factor of the path integral, so that

explicit exponential factors need not occur in the average over configurations.

Any configuration that occurs in a Monte-Carlo simulation is also likely to be

significant for other nearby parameter values. It is therefore possible to use the

configurations generated at a fixed. set of parameter values to explore a local

region of the phase diagram of the system. In particular, if the action is linear in

a coupling,

SS+I3Sb 	 (3.48)

and we generate configurations using one value of the coupling /3 = / 3o, the results

can be extrapolated to 0 = by weighting each configuration by an appropriate

exponential.

L A(u)e(fb_fh)sb(), 	 (3.49)

where U00 is the set of configurations generated by a simulation at /3 = /3 g . This

extrapolation is obviously limited by the region of configuration space visited by

the original simulation. As the extrapolation is taken further away from its start-

ing point, the fraction of configurations in U00 that contribute significantly will

inevitably be reduced. This can only be offset by increasing the statistics of the

simulation. This kind of extrapolation has been extensively studied by A. Fer-

renberg and R. Swendsen [47], who advocate a single high-statistics simulation at

or near a critical point. The advantage of this approach is that each region of

configuration space need only be explored once. If a series of separate simulations

with similar parameter values are employed, the regions of the configuration space

they explore will overlap. This produces redundant effort as each simulation has

to explore the overlapping region independently.

A single high-statistics simulation should be located near a critical point, because

the significant region of configuration space can be expected to influence the entire

scaling region. In addition, the fluctuations on all length scales that occur at a

second order phase transition may be an indication that the significant region is

larger here than at an arbitrarily chosen set of parameter values. If this is the

case then the high statistics needed because of critical slowing down is offset by

an increased range for the extrapolation procedure.

The work presented in this section is an attempt to apply this type of technique

to the dynamical fermion QED simulations described elsewhere in this chapter.

Because of the inherent difficulties of a dynamical fermion simulation, it is im-

practical to attempt a high-statistics simulation. In fact, in places it is difficult to

obtain even adequate statistics. This means that we will only be able to extrap-

olate short distances and we will still need a large number of simulations to span

the entire parameter range of interest. The aim of this work is therefore not to

extrapolate the phase diagram from a single simulation, but to improve the qual-

ity of the results by combining information from a number of nearby simulations.

This is applying the original idea in reverse. As the statistics of an individual

simulation are poor, it is no longer a disadvantage for a number of simulations to

explore overlapping regions of configuration space; simulations with such an over-

lap will effectively increase each other's statistics and we get the greatest possible

use out of each configuration we generate. If the previous conjecture about critical

points is correct, this improvement should be greatest near the critical point, as a

greater number of simulations are expected to make a significant contribution in

this region. Because of the parallel nature of our simulations, it is easier for us to

perform several independent simulations. than to run a single simulation for a large

number of updates. In principle, it would be possible to generate high statistics

at a single point in the phase diagram by performing several simulations with the

same parameters. This work was only started after the majority of our data had

already been collected, but even if that had not been the case, distributing the

simulations across the phase diagram saves us from having to rely totally on the

extrapolation.

We therefore have to perform an interpolation based on a number of simulations

at different points in the phase diagram. The technique for doing this is much

less straightforward than for a single simulation and is again due to Swendsen and

Ferrenberg [48]. We assume an action of the form

Stotaz(u) = So (u) + /38(u), 	 (3.50)

where u represents the gauge configuration and jI is the parameter we intend to

vary in the extrapolation. The lattice QED action is of this form, where 5(u) is

the gauge action and 5o is the fermionic contribution. The partition function can

be written as

	

Z(j3) = 	= E W(S)e, 	 (3.51)

	

1L 	. 	 $

where all necessary constants are absorbed into j3 and W(S) is the density of

states. Consider R simulations at 0 = /3i,.. . ,j3. Data from these simulations is

stored in histograms {N(X)} where N(X) is the number of configurations from

the simulation at j3 = #j with S = X. The total number of configurations in a

simulation is given by

=
	

(3.52)
$

An approximate partition function can be calculated for each of the simulations:

= E N(S)e. 	 (3.53)
S

The normalisation of ; is obviously not the same as that for Z because z 1 is

roughly proportional to ni We can relate this to the true partition function using

cc Z(j3), 	 (3.54)

where the bar represents an average over all possible simulations with 0 = #j and

72 = flj.

z(f3) = 	N(S)e 0 ' 9 , 	 (3.55)
$

rç- 8(5(u), X)e5o(t)+øiS(t)

	

P11 (X) = 	
/3) 	 (3.56)

Z(

that is N(X) is ni multiplied by the fraction of configurations with S = X. This

gives us a new expression for z()3),

	

n4 	E

	

z(f3) = Z(/3) 	8(5(u), X)eSo(t)9(1h), 	 (3.57)
ILX

ni = 	Z(18)z(/3) 	
Z(j3) 	 litZ(P). 	 (3.58)

[•X•1
[•1•1

We can use this to obtain an expression for W(S):

W(X) = 	S(S(u), X)é0(t , 	 (3.59)
1h

W(S)
=

N(S)Z(j3)
(3.60)

ni egis

W(S) = Ni(S)6f1_flS 	 (3.61)
lii

where fj = In Z(j3) is the free energy at /3,.

We wish to produce an estimate of W(S) using all B simulations:

	

W(S) w(S) = Ep(S) Nt e_ 	 (3.62)
i=1 nj

where w(S) is our estimate of W(S). The factor p(S) is a weighting factor given

to Ni(S). For proper normalisation

R

EMS) = 1. 	 (3.63)

This also gives us

u;—(S)
 R

	

 = Ep(S)W(S) = W(S). 	 (3.64)

We wish to choose the values of p(S) so as to minimise the error in w(s). The

error in Ni(S) is expected to go as

62 N1(S) = gN(S)
	

(3.65)

because Ni(S) has Poisson statistics. The constant 5j represents the correlations

between configurations in the simulations. The simulations may have different

correlations so gi is necessary to correctly weight data from different simulations.

This can be written as

62 N(S) = 	 (3.66)

from equation 3.61 The error in w(S) is therefore given by

R 	
Pi(s)2 52 w(s) = 	

(nie(ths_f))2SN(S) 	
(3.67)

R

(3.68) S2w(S) = W(S) > 	e(') i=1 g

This can be minimised subject to the normalisation constraint 3.63 using Lagrange

multipliers:
2p(S)

- A = 0 1 	 (3.69)
!lie(f3iS_fi)
St
Pi(S)

cc 	 (3.70)
gi

flse(Pt 5 f)

	

Pi(s)
Si 	 (3.71) (S)

=

	

ER
1 	

(PIs_f1r

If we now define

P(S,/3) W(S)e 05 	 (3.72)

then

eft = EP(S,I3). 	 (3.73)
S

Our best estimate for P(S,)9) is obtained by substituting w(S) for W(S)

P(S,j3)
ng;'e(fli5fi) (

3.74)

and we can estimate {f} by iterating the last two equations to a self consistent

solution. The expectation value of an operator as a function of 0 can now be

calculated using
Es A(S)P(S, j3)

Es P(5,13) 	
(3.75)

It is worth noting at this point that it is not actually necessary to place the

data in histograms: as the weighting factor F(S,)3) occurs inside a sum over 5,

we can consider each gauge configuration as belonging to a separate bin of the

histogram and sum over gauge configurations instead. The weighting factor for

each configuration now becomes

1
(3.76) P(u,/3) = E ?

Le3=1

where g, is the g factor from the simulation that generated the gauge configuration.

Apart from g, this weighting factor is independent of which simulation generated

the gauge configuration: all the values of /3 are treated equally in the expression.

This seems a little strange at first until we consider the relationship between

this extrapolation method and the lattice path integral. In the path integral

all possible configurations contribute at all values of /i: all of the physics comes

from the weighting factors. If the path integral is approximated using a finite

number of configurations chosen from an arbitrary distribution, the physics still

resides in the weighting factors, but the weights also have to compensate for

the distribution the configurations were chosen from. In a normal Monte-Carlo

simulation, the distribution is chosen so that the weighting factors are all equal.

In this extrapolation procedure, we can treat all of the configurations as if they

come from a single distribution that depends on the parameters {j3} {f} {g}

and {n1}.

It is important to calculate the error on the extrapolation. The variance can be

calculated directly:

	

c2 (A,)3) 	= ((A - (A))2) 	 (3.77)

The error in the mean can be calculated as follows

	

(A)
- 	P(u,f3)A (3.78)

	

E. - 	P(u,8)

	

62= 	(8(44))22 	 (379)

£ =or 	
(3.80)

rtejj(f3) - (>11. P(u, j3))2 (3.81)
-

neff is a measure of the effective statistics at each value of fi and is a good

measure of where the predictions are valid and of how much the predictions from

the original simulations have been improved. This calculation ignores any errors

in the calculation of {f}, ignores rounding errors and relies on the g factors

to account for any correlations between configurations. It will therefore tend to

slightly underestimate the true error.

This technique was applied to our data for pure noncompact QED to produce

extrapolated curves in 0. In these plots, the inverse of the Hybrid Monte-Carlo

acceptance rate was substituted for the g factor. As this procedure only depends

on the ratios of the g factors and as all the simulations used a molecular dynamics

trajectory of unit length, this was thought to be a reasonable estimate. In all cases,

300 sweeps were discarded for equilibration. The calculations were performed on

a Sun4 workstation using IEEE 64-bit arithmetic. An extrapolated curve for (x)
was plotted which proved to be consistent with the original data; see figure 3.12.

91

MAJ

<xx>

A
><

V

IM

0.1

0.0

0. 16 	0.17 	0.18 	0.19 	0.20 	0.21

Figure 3.12: Extrapolated plot of (x) at in = 0.0125

This plot shows the extrapolated curve for (xx) at in = 0.0125. The data and

naive errors from the original simulations are also shown.

A plot of neff see figure 3.13, showed that the resulting curve had approximately

one and a half to twice the effective statistics of the original simulation in the

range 0 = 0.18 to 0 = 0.205 but that the effective statistics are very low around

/3 = 0.175 so the procedure cannot be trusted in this region.

It is possible to calculate the relative importance of each of the simulations by

plotting the fraction of the total weight they provide at each value of 0 using

:€u P(u,)3) 	
(3.82)

FJUEUT P(u,/3)

where 14 is the set of configurations from the simulation at)3 = fij and UT is the

total set of configurations. These plots for our data are shown in figure 3.14.

Note that this is only a measure of the quality of the simulation relative to the

other simulations that contribute at that value of 0.

We can see that this method can improve our utilisation of data. The effective

statistics are increased above that obtained for each individual simulation and

observables can be calculated for any value of the coupling provided that the

simulations are spaced closely enough and have sufficient statistics. There are,

however, several practical difficulties to be overcome. The main difficulty is that

the technique requires a very high machine precision. The exponential form of

the weights means that they can become very large and unless steps are taken

to control them, they can overflow the floating-point format or introduce large

rounding errors. As the action occurs in the exponent and is proportional to the

lattice size, this problem would become greater if the lattice size is increased. The

values of {f} are not uniquely defined; it is possible to add a constant offset to

each fj and leave the results unchanged. This effectively rescales every P(u, 0) by

the log of the offset but, as (A) is normalised by the sum over P(u,/3), this does

not change the results. Once the separations between the values of {fJ have been

calculated, a separate offset can be chosen for each value of /3 so as to control the

exponential factors as much as possible. The optimal offset would be one that

properly normalised P(u, 0) so that L P(u, 0) = 1, f(/3) = In fl P(u,)3) = 0 at

the 0 being simulated. This could be achieved by first selecting an offset to control

the largest P(u,)3) factor (the configuration with the extreme value of the action,

that is the one closest to the classical solution) then iterating the calculation of the

free energy a number of times, subtracting the previous value each time until the

Es]

2000

H

'4-
C-

a)

I 	I 	I 	I I 	i 	I 	1 • 1

n eff

- 	 x

X

-

-

I 	I 	I 	 I 	I

0.16 	0.17 	0.18 	0.19 	0.20 	0.21

Figure 3.13: Extrapolated plot of neff at in = 0.0125

This plot shows the extrapolated curve for neff the effective number of configura-

tions for in = 0.0125. The number of configurations from the original simulations

are also shown.

94

1.0

Ii.

'I;'

x;I

0.2

0.16 	0.17 	0.18 	0.19 	0.20 	0.21

Figure 3.14: Extrapolated plots of L at rn = 0.0125

This plot shows the the relative importance of each of the simulations for different

values of P. Each curve has a peak at at the value of /3 where the corresponding

simulation was performed. The simulations were performed at j3 = 0.17 , 0.18

0.185 0.19 , 0.195 , 0.20 and 0.205

95

free energy becomes zero. A single iteration should be sufficient for all practical

purposes. For the work presented here, a set of heuristics was good enough to

calculate the offset except when calculating n,ff. This is because the heuristics

were unable to regulate the E. P(u, /3)2 term. The free energy was already known

at this point and it was used to calculate the correct normalisation for P(u, /3).

The remaining awkwardness is that P(u, /3) consists of the inverse of a sum of

exponentials. Potentially we can have configurations with P(u, 3) = 0 to machine

precision. The only way this can happen is for one of the exponentials to be

infinite, again to machine precision. As the Sun4 floating point implementation

produces NaN (Not a Number) when it calculates the reciprocal of Inf, the value

of the exponents must be explicitly checked and P(u,/3) set to zero if any are

greater than a cut-off value. This problem did not occur in our data provided the

offset in f was chosen sensibly.

3.4 The simulation program

This work was carried out using the Edinburgh Concurrent Supercomputer (ECS),

a large Meiko computing surface built out of T800 transputers. The ECS contains

over 400 T800s divided into a number of domains (see figure 3.15). The simulation

program used 17 processors to simulate an 8 4 lattice using the hybrid Monte-

Carlo algorithm This code was written in Occam [12] and was developed from

the program used to develop the hybrid Monte-Carlo algorithm [6]. A number of

optimisations were introduced into this code as part of this project. Sixteen of the

processors are wired as a four-dimensional binary hypercube see figure 3.16. Each

of these processors is responsible for a 44 sublattice. The remaining processor is

inserted into one of the links of this hypercube and acted as a controlling processor

for the program. On domains larger than seventeen processors, several of these

seventeen-processor building blocks are replicated to produce a program capable

of simulating several lattices at once.

Each copy of the program reads a separate parameter file. Interactive commands

such as those requesting program-shutdown, checkpoint, or a re-scan of the pa-

ff;1

Domain

Fileserver
	

Fileserver

E D

/ Domain

$1

Figure 3:15: The Edinburgh Concurrent Supercomputer

The ECS is divided into a number of domains. Domains are only used by a single

user at a time. System services are provided by the fileservers and a tree of system

processors.

yj

Figure 3.16: A binary hypercube of Transputers.

A binary hypercube can be constructed using 16 Transputers. This uses all four

links on all of the processors so an additional processor must be inserted into one

of the connections to provide free links to connect with the outside world.

iTi]

rameter files are broadcast to each copy of the program. The program therefore

exhibits two separate levels of parallelism. Each simulation is distributed over

seventeen processors using a geometric decomposition, and on larger domains sev-

eral lattices could be simulated as independent tasks. The program was designed

to simulate dynamical fermions where almost all of the time is spent inverting

the fermion matrix. The difficulty of this operation increases very rapidly with

the size of the lattice and had a major effect on the design of the program. The

parallelisátion scheme had to be as efficient as possible for small lattice sizes 8

but the efficiency for a large lattice was of little importance.

Because the transputer only has four bi-directional communication links, the 16

processor hypercube is the largest fully connected four-dimensional grid of trans-

puters that can be constructed. This represents a particularly good topology

for a lattice simulation. The surface area to volume ratio for each processor is

minimised so the ratio of communication to calculation is also minimised, and

all of the inter-processor communication takes place between directly connected

processors.

There are two basic approaches that could be used to increase the number of

processors per simulation above 16. The first is to use a two-dimensional array

of processors and to distribute only two of the lattice dimensions. This would

produce a much larger surface area to volume ratio for each processor, so the

relative communication requirement for the program will become much larger. For

a 8 lattice, even 16 processors wired as a 4 >< 4 processor array will have reached

the situation where every lattice site is a boundary site for the two directions

where communication takes place. In addition, the finite number of lattice sites

places an upper limit on the number of processors that can be used. If we are

only distributing two of the lattice dimensions, then we are limited by the number

of sites in a two-dimensional plane of the lattice, so this limit will be reached

much faster. The absolute maximum number of processors that could be used

to simulate a 8 4 lattice using this scheme would be 64, and the surface area to

volume effect would mean that such a program would run at much less than four

times the speed of the 16-processor hypercube.

The other approach that could be used to increase the number of processors is

to maintain a iS surface area to volume ratio by using a 3 or 4 dimensional

decomposition and relax the condition that processors controlling neighbouring

regions of the lattice must be • directly connected. The version of the Occam

language available at the time this work was carried out, did not provide automatic

message routing. Messages could only be communicated to directly connected

processors if explicit message passing code was introduced into the program. On

T800 Transputers this kind of message passing code always incurs some reduction

in performance. Processor cycles must be used to make decisions about message

routing and to copy transient messages to and from message buffers. The reduced

message size due to the improved surface area to volume ratio is offset by the

larger number of messages that would have to pass through each processor. If

a parallel processing system has a general purpose message passing system, it

is much easier to program, as the details of processor topology and connectivity

need not be addressed by the application programmer. When this project was

started, efficient message routing code was not widely available, so a message

passing approach would have been much harder to implement. This is no longer.

the-case, as efficient message routers such as UStools [49] and Tiny [50] have since

become available. Even if such software had been available at the time, a message

passing solution would have been less efficient, because the routing software would

have to run on the same processor as the application code and compete with it

for processor cycles. This would not be a problem on a hardware platform that

implements the message passing using separate hardware. For example, the Meiko

MK086 processing node uses an Intel i860 as the main processor with two T800

transputers dedicated to message routing.

Because we were investigating a phase diagram, it was necessary to perform a

large number of independent simulations at different parameter values. It was

therefore always possible to utilise large numbers of processors by replicating the

basic 17-processor unit. It would have been possible to simulate a separate lattice

on each processor. This would have been computationally efficient, but would not

have been very practical. The largest domain in the. ECS contains 131 processors;

this is sufficient to run 7 simulations in parallel. Even if we ignore all unused

and support processors this is equivalent to 7 * 16 = 112 processors. As the phase

diagram was not known when we started the simulations it was possible to use the

results from previous simulations to refine our original guess about which regions

100

of the phase diagram were of interest. It was therefore much more informative to

perform 7 relatively fast simulations than 112 or 131 relatively slow ones. The

fermion matrix inversion takes different numbers of iterations in different parts of

the phase diagram. This means that the simulations did not all run at the same

speed. With only a handful of simulations to look after, it was possible to re-

allocate processors as various simulations reached an acceptable level of statistics.

This would have been too time consuming a task if there had been a hundred

simulations running concurrently.

3.4.1 Optimising the program

Transputers were designed to implement the Occam language efficiently. There

is a very simple correspondence between an Occam program and the machine

instructions it compiles to. There is little reason to program the transputer in

assembly language; most optimisations can be implemented almost as efficiently in

Occam as in assembly language. The current compilers do not make any attempt

to optimise the code they produce. It is therefore possible to improve a program

manually by changing the Occam code. In the QED simulation program, all of

the inner loops of the low level routines were unrolled by a factor of 16. In a

normal program loop, it is quite common to use as many instructions to perform

the loop as are used to perform the calculation. By replicating the body of the

loop a number of times the fraction of useful instructions can be increased. This

is a very common form of code optimisation that is often performed automatically

by optimising compilers. The factor of 16 was chosen because of a peculiarity of

the Transputer instruction set. The basic Transputer instruction is only a byte

long. Four bits of the instruction encodes one of 16 basic operations and the other

four bits form an argument for the operation. One of these 16 basic operations

is used to change the meaning of the next instruction so that a wider variety of

operations becomes available. Another basic operation is the prefix operation.

The prefix operation is used to increase the number of data bits available to the

next instruction. If an instruction only needs 4 bits of data it can be encoded

as a single byte; for each additional 4 bits it requires it must be prefixed by an

additional prefix operation. The low level loops were unwound by a factor of

16 because any greater factor would have required prefix operations to perform

101

vector indexing inside the loop. It was not possible to avoid this vector indexing

because Occam does not have pointer data types. As can be seen from the first

two columns of table 3.5, code without this modification takes approximately one

and a half times as long to perform a CG iteration. The exception to this is for a

44 lattice size. In this case, unwinding the loops makes the code run slower. This

is because each processor is only updating 16 lattice sites; the modifications are

therefore introducing extra instructions for no useful purpose.

The Occam language provides intrinsic support for parallel execution. The PAR

construct allows the programmer to specify a number ot operations that are to

execute concurrently. In an ideal world, any set of mutually independent oper-

ations could be specified as happening in parallel and the compiler would make

the decision about the most efficient implementation. Unfortunately, the available

Occam compilers are far from optimal. They perform a direct transliteration from

Occam to Transputer instructions without making any modifications, so a pro-

gram written in such a way would result in a large number of processes running

on each processor. The transputer is designed to support large numbers of con-

current processes and will probably handle such a program better than any other

processor would, but there is always some overhead when the processor switches

between different tasks, so a single sequential piece of code is still much more

efficient. It is therefore important to reduce the number of concurrent processes

running on a single Transputer as much as possible. The multi-tasking capabil-

ity of the Transputer is still important as it provides a way of making sure that

the inter-processor communications are run efficiently. The Dslash procedure has

to calculate the covariant derivative in all four directions and then combine the

results. Each derivative is completely independent of the the others, so they can

be calculated in serial or in parallel. The program timings (see table 3.5 Serial

Dslash) show that there is a small improvement in performance (5 - 10%) if they

are calculated in parallel. If the directions were calculated sequentially, only a

single communication link would be in use at any one time. A Transputer mem-

ory cycle can be used directly by the current process, or it can be used by one of

the links. When all four links are run simultaneously each memory cycle is more

likely to be used usefully.

102

Size Standard code Un-optimised math Serial Dslash No on-chip mem

44 118.8 + 2.1 110.9 ± 2.1 126.4 ± 2.1 171.9 ± 2.2

807.4 + 2.3 1177.2 + 3.0 864.7 + 1.5 1028.8 ± 1.7

12 4 3747.3 ± 1.1 5548.3 ± 0.8 3937.4 ± 1.2 4759.2 + 1.5

16 4 1326.3 ± 0.6 17003.1 ± 1.3 11774.3 ± 0.5 14325.4 ± 1.9

21 11 27079.2 + 12.9 40728.7 + 16.7 27951.0 + 12.3 34251.09 + 16.9

Table 3.5: Timings for a CO iteration of the QED program

All timings are given in units of 64 microseconds, this is the clockrate of the

internal transputer timer. These are actually times for a full HMC update sweep

divided by the total number of CO iterations performed as the HMC algorithm

is totally dominated by the CO inversion this is a reasonable measure for a single

CO step.

We can model these timing figures using the following equation,

T=A1 4 +B13

where T is the time taken for a single CC iteration, and 1 is the linear dimension

of the lattice. A represents the time taken to perform the calculation and B

represents communication time. Lattice size independent overheads are assumed

to be negligible. If this model holds then we should obtain a straight line graph

if we plot T/l3 against 1, see figure 3.17.

Apart from the 44 lattice, this model seems to work quite well and gives values

of A 0.15 and B 0.4. It is not so surprising that the model breaks down for

the 44 lattice; as there are only 16 lattice sites per processor in this case, it is no

longer sensible to neglect the size-independent overheads. This suggests that the

8 4 lattice is running at approximately 75% efficiency compared to an equivalent

single processor program (assuming a single processor program has B = 0.0).

103

H

CO

3

1

[I]
0 	 10

	
20

Lattice width
(

I
)

Figure 3.17: Problem size scaling of the QED program

The time for a CC iteration T is plotted as T/1 3 against 1, the width of the lattice.

If the program behaves as expected This should give a straight line showing the

relative importance of communication and calculation.

104

Chapter 4

QCD on i860 based machines

4.1 The UKQCD collaboration

The computational needs of lattice gauge theory are now greater than can be

supplied by conventional academic computing facilities. A collaborative project

(UKQCD) has therefore been set up by six British universities centered round

a high performance parallel computer based in Edinburgh. The six collabo-

rating universities are Cambridge, Edinburgh, Glasgow, Liverpool, Oxford and

Southampton. The computer is a 64 node parallel machine buiF by Meiko of

Bristol. Each node consists of a 40MHz Intel i860 processor and two Inmos T800

transputers. The three processors on the node communicate by shared memory

and the nodes communicate using the transputer links. Each node has 16 Mbytes

of memory. The i860 is a commercially available microprocessor manufactured by

the Intel corporation. This microprocessor is capable of high floating-point per-

formance. The i860 has a peak performance of 80 Milops, the peak performance

of the machine is therefore 5.12 Gigaflops. Even though this peak speed will not

be sustainable for normal operations this computer is a very significant resource.

Even with such a powerful computer the computational requirements of lattice

gauge theory are such that every effort has to be made to utilise the computer as

effectively as possible. There are two types of basic optimisation that we can use

in this case. The first is to distribute the problem over a number of processors.

This kind of optimisation has been discussed in earlier chapters. The second type

105

of optimisation are those specific to the i860 microprocessor. This is the subject

of this chapter.

4.2 The i860 microprocessor.

The Intel i860 microprocessor is one of the new generation of high performance

microprocessors. It incorporates design features from a number of different types

of computer including vector supercomputers and reduced instruction set (RISC)

designs. It is currently one of the most complex microprocessors on the market,

incorporating over one million transistors in its design. It was designed to give

high performance in a number of common application areas including floating-

point numerical and graphical applications. The main features of the design are:

• Parallel execution of processor units

• Pipelined floating-point units

• Reduced instruction set core unit

• Large integer and floating-point register sets

• Data and instruction caches

• 64-bit external data path, 128-bit internal data path.

• Paged memory support

The processor has a number of separate processing units. The units of interest

for QCD calculations are the floating-point adder, floating-point multiplier and

the integer core unit. The core unit performs all integer arithmetic and logical

operations, control transfer operations, such as jumps and procedure calls, all

data transfers between memory and registers and also performs the system con-

trol functions such as cache flush operations. Floating-point arithmetic is handled

by the two floating-point units. Each of these units is capable of being run simul-

taneously. This means that the chip is capable of simultaneously performing a

106

floating-point multiplication, floating-point addition and an address calculation.

Instructions where both floating-point units are in operation at the same time

are called dual operations. When the core and floating-point units are operat-

ing together the chip is said to be operating in "Dual Instruction Mode" (DIM).

The maximum performance of the chip can only be obtained when using dual

operations in dual instruction mode.

Both of the floating-point units are pipelined. This means that floating-point op-

erations are divided into a number of simpler stages. Each stage is implemented

using separate hardware, the results from one stage being fed into the input of

the next stage. The pipelines on the i860 are carefully designed so that each stage

can complete a single-precision operation every clock cycle, even though a specific

operation may have taken a number of cycles to complete. The peak performance

of the i860 is therefore two floating-point operations per clock cycle, giving 80

Mflops peak performance for the commercially available 40 MHz chips. For single

precision calculations both of the floating-point units have three-stage pipelines;

so the result of any calculation emerges from the pipeline three instructions after

the operation was started. When operating in double precision the multiplica-

tion pipeline has only two stages; however it takes two cycles to advance the

multiplication pipeline when performing double precision calculations so the peak

performance drops to 60 Mflops. The pipelines in the i860 are very flexible. Unlike

some vector mainframes they are not restricted to repeating the same calculation

a large numbers of times. Instead it is quite possible to have very different op-

erations in the different stages of the pipeline. There are restrictions on how the

floating-point registers are used; it is not possible to read from more than two of

the main registers in a single cycle or to store more than one result per cycle. This

in turn restricts the wy that the floating-point pipelines can be used. In order

to use both floating-point units at the same time (dual operation instructions) it

is necessary to chain the units together, so that the output of one or both units

form one of the inputs of the other unit. A number of special-purpose registers

also exist to make dual operation instruction more flexible (see figure 4.1).

There are three special-purpose registers, which can store an operand from one

dual operation instruction and then supply this value as an operand for later

instructions. Registers Ki and Kr can be used as the first argument to the

107

Figure 4.1: The i860 floating-point units

This diagram shows the data paths that connect the two floating-point units and

shows the different ways in which they are capable of being chained together

RM

multiplier and the transfer register T can be used in a similar way as an argument

for the adder. For example, the multiplier unit can be used to generate the product

of two numbers and the result emerging from this pipeline can be fed into the

adder unit, where it is added to the result emerging from the adder pipeline. This

instruction is commonly used for the sum of a sequence of products and it forms

the most common type of instruction used in complex arithmetic. The majority

of the routines discussed later in this chapter use this configuration exclusively.

Other combinations of the two floating-point units are possible, for example, the

multiplier unit can be used to multiply a main register by the contents of one of

the K-registers. A second main register can then be added to the result of the

multiplier pipe and the result of the adder pipe is stored into a third register. This

is the saxpy operation.

In single precision it takes three cycles for an operation to progress through one

of the pipelines. It is usually convenient to evaluate three similar but separate

expressions at the same time. This allows machine instructions to be grouped into

sets of three, one from each of the expressions. This ensures that results from the

previous instruction of any expression reach the end of the pipeline at the same

time as the next instruction of the same expression is executed. The advantage

is that each of the expressions may be coded as if the pipelines only had a single

stage. A single-stage pipeline is easier to use because the pipeline can be thought

of as an extra register. For example, When calculating the sum of a large number

of terms the running total can be kept in the adder pipeline, each new term being

added to the result emerging from the pipeline.

Unlike the floating-point units, the core unit owes more to recent developments

in microprocessor technology than to conventional mainframes. The core unit is

a RISC tReduced InStruCtiOn set) processor. It only has 41 separate types of

instruction. The aim of the RISC style of architecture is to identify the handful

of simple instructions that make up over 90% of most programs and to implement

these instructions to execute as quickly as possible, at the expense of not imple-

menting any more powerful but less frequently-used instructions. Code written

for a RISC processor will in general be longer than that for a CISC (Complex In-

StruCtion set) processor but should execute more rapidly because each instruction

109

only takes a single clock cycle. In addition the simpler structure often makes it

easier for the chip to run at a higher clock speed. The other advantage of a RISC

processor is that it is much easier to write code or compilers for it. Some CISC

processors have instructions that are hardly ever used because most compilers

never recognise the situations where they could be used. Though this advantage

does not apply to floating-point-intensive application code it does mean that op-

erating systems and support routines can be easily and efficiently ported to, or

written for, the i860. In this respect the i860 is a rather strange hybrid. The

floating-point processors are definitely not RISC processors; there are a very large

number of floating-point instructions and it is very difficult to produce a compiler

that uses the floating-point units efficiently.

Another characteristically RISC feature of the i860 is the set of delayed control

transfer instructions. A delayed control transfer instruction is a kind of jump or

branch instruction, where, instead of performing a jump when the instruction is

executed, it causes a jump to occur a number of instructions later. The advantage

of delayed control transfer is that the processor always has advance warning about

the sequence of instructions it is going to have to execute later. It can therefore

always pre-fetch and decode the correct instructions in advance. Without this

delay the only option is to arbitrarily choose one of the possible branches to

pre-fetch. If this guess turns out to be wrong the processor will have to halt

execution until it has fetched and decoded the correct instruction. The i860 fetches

its instructions two cycles before it has to execute them and then decodes the

instruction in the cycle before execution. This is another example of pipelined

operations in the chip design.

In principle it is possible to extend the RISC concept to cover the floating-point

instructions as well. This would mean only implementing the simplest generic

floating-point instructions, for example addition and multiplication. Unfortu-

nately, floating-point operations are inherently complicated and cutting down the

number of instructions therefore produces a relatively smaller simplification of

the design and therefore a smaller increase in performance. Because of this, the

potential gains are much less than for the pipeline approach used by the i860.

The i860 also has scalar floating-point instructions that run a single calculation

110

through one of the pipelines as a single operation. These instructions take three

cycles to perform a single floating-point operation but at 40 MHz this still produces

a performance of 13 Mflops. These are the only floating-point instructions used by

most generic compilers that have been modified to produce code for the i860. The

i860 is still a fast floating-point chip even when only using these scalar instructions

but for highly floating-point intensive applications it is worth finding a way to use

the pipelines.

Both the floating-point and the integer units are capable of very high performance.

This performance can only be sustained if they can be kept supplied with data

at an equivalent rate. Unless a very expensive fast memory system is used, the

external memory system is unlikely to be able to keep up with the processor

when it is operating at maximum efficiency. This means that the register, cache

and memory management systems on the chip are of vital importance to the

performance of the processor.

On the i860 all data must be loaded into a register before it can be used and

any result must be stored in a register before it can be written to main memory.

This provides a simplification of the instruction set. This need not produce any

degradation of performance. Registers are loaded and saved by the core unit so

these operations may be overlapped with floating-point operations by using dual

instruction mode. The i860 has two types of general purpose registers, integer

registers and floating-point registers. Integer registers are used to store integer

values or memory addresses. The floating-point registers are used to store floating-

point data or data for the special graphics instructions. The graphics instructions

are not relevant to QCD so they will not be discussed further. The core instruction

unit is used to move data between main memory and both types of register.

There are 32 integer registers and 32 floating-point registers. All of these registers•

are 32 bits wide. The floating-point unit uses the IEEE floating-point standard.

It supports both single (32 bit) precision and double (64 bit) precision representa-

tions. Double precision numbers are stored in a consecutive pair of floating-point

registers. The first register of this pair must be an even-numbered register. The

first integer register rO and the first two floating-point registers f and f always

contain the value zero. This enables the number of instructions to be further

111

reduced; there are some instructions that can perform a number of different func-

tions provided that there is always a .register guaranteed to contain the value zero.

For example, the addition instructions can be used to set a register to a constant

value by adding a constant to the zero register. If the zero registers were not

present this operation would need a special load constant instruction, or extra

cycles would be needed at runtime to generate a zero by subtraction. In addition

some instructions, particularly the dual operation instructions, can generate in-

termediate results that are not always needed; the zero registers are a convenient

place to discard these values. Both fO and fl generate zero so that a double

precision zero can be generated from the register pair.

Further important features of the chip are the on-chip caches. A cache is an area

of faster-than-normal memory used to improve the performance of the memory

system. It does this by assuming that memory locations that have been accessed

recently are quite likely to be used again in the near future, so it keeps a record of

recently-accessed values. There are two caches on the i860, a 4 Kbyte instruction

cache and an 8 Kbyte data cache. When the processor attempts to read a memory

location it first checks to see if the required data is already in the appropriate

cache. If it is, the data will be read from the cache instead of the external memory.

A read from the cache only takes a single clock cycle. If the required data is not

in the cache the processor will load the appropriate 32 byte long "cache line" into

the cache and then continue operation. If the data being loaded is destined for an

integer register the core unit is capable of continuing with further instructions until

that register is actually used. This means that if there are sufficient instructions

between the register load instruction and the first instruction to use the value

there will be no delay due to the cache-miss. If the value is destined for a floating-

point register then the processor must halt until the desired value has been read

from external memory. These cache-misses can be the main reason that a routine

does not perform at the peak speed of the processor.

When all the data fits into the data cache the processor is capable of obtaining

close to peak performance. Unfortunately in many applications, including lattice

gauge theory, the data sets will be larger than the cache and delays due to cache

misses will be introduced. In lattice gauge theory calculations the data cache

will only be of limited use because the data sets are several times the size of the

112

data cache. By the time the program gets round to reusing the data it will have

been replaced by more recent values. The instruction cache on the other hand is

extremely useful. Even the code for very complex operations should fit inside the

instruction cache. Because of the large loop lengths the code for these operations

will be repeatedly called a large number of times. The instruction cache will

therefore be used very efficiently. If a floating-point value is only going to be used

once, or if it will be a long time before it is used again, then it is possible to

bypass the caching mechanism using a pipelined load operation. The pipelined

load operations load floating-point values without placing them in the cache. They

return the floating-point value that was asked for by the third previous pipelined

floating-point load. The load pipeline operates in parallel with the other units of

the processor. It performs the outstanding memory accesses during cycles when

the external bus is not being used by the other parts of the processor. Up to three

pipelined loads may be outstanding at any one time. If the requested values have

not been fetched from memory by the time a fourth pipelined load is requested

the processor must halt until the outstanding data has been read.

In most of the procedures that we have implemented for lattice gauge theory it

is not necessary to use the data cache. There are usually enough registers that

we do not need to re-load any element of data within a single procedure. This

would suggest that all of the data should be loaded using pipelined loads. This

makes things very difficult for the programmer. If a routine has to load data from

two separate regions, for example two arrays of numbers that must be multiplied

together, then the pipelining makes it very difficult to keep track of which value

should be requested at what time. It is much simpler if one set of numbers is loaded

using pipelined loads and the other set is loaded using caching loads. There may

be some advantage to using a combination of caching and pipelined loads. If a

series of memory locations have to be loaded in quick succession (enough to fill

the load pipeline) then the exclusive use of either type of load will introduce a

delay into the program. If some of these memory accesses are performed using

caching loads, the remaining pipelined loads will not fill the load pipeline and the

corresponding memory accesses can be widely spaced inside the loop and have a

better chance of finding free memory cycles to use.

The i860 has a large number of different functional units on the same piece of

113

silicon. One of the advantages of having everything on a single chip is that it allows

a much greater communication rate between the different parts of the processor.

There is a practical limit to the number of external connections that can be

conveniently supported by a microprocessor. This limits the width of the external

data bus. On the i860 the external data bus is 64 bits wide. There is less limitation

on internal data paths. The communication bus that connects the data cache to

the floating-point register set on the i860 is 128 bits wide (see figure 4.2).

The wide internal data bus enables the chip to load up to four registers in a single

instruction. This can be used for complex numbers, double precision numbers,

double precision complex numbers etc. The disadvantage of putting everything

on a single chip is that there is only room for relatively small caches. This is

less of a disadvantage for lattice gauge theory than for some other applications,

because it is unlikely to benefit significantly from any kind of data cache.

4.3 Software development on the i860.

The i860 is a very new design of processor. This means that software development

tools are still in the early stages of development. Of particular interest are the

compilers. A number of compilers already exist for the i860. However most of

these are general purpose compilers that have been modified to generate code for

the i860, for example the "Green Ti.iEI" compilers [51]. Because these are generic

compilers designed to produce code for a wide variety of processors they do not

support the unique features of the i860 such as the dual instruction mode and

the pipelined modes of the floating-point units. This is no problem for programs

that use few or no floating-point operations but is inadequate for floating-point-

intensive applications. A number of conventional vectorising compilers are also

being ported to the i860. Most vector machines implement very similar sets of

vector operations. These are usually low-level generic operations, for example,

adding two vectors element by element or multiplying all the elements of a vector

by a constant. Each of these simple operations is specially supported by the

vector hardware. A conventional vectorising compiler identifies those parts of a

program that are equivalent to these operations and replaces that part of the code

114

Figure 4.2: The i860 Internal datapaths

115

by the appropriate vector instruction. Strictly speaking the i860 is a pipelined

scalar processor rather than a vector processor. It implements scalar operations

using a pipeline rather than having single instructions that operate on vectors.

When a vectorising compiler is ported to the i860 these standard operations must

be implemented using hand-coded assembly language. The compiler then inserts

these optimised routines into appropriate places in a program. For example the

the code fragment

DO I = 1,N

X(I) = (A(I)*B(I))-(c(I)*D(I))+(E(I)*F(I))

ENDO

may be converted into

C 	 vector multiply

VVM(X,A,B,N)

C 	 vector multiply

VVM(TMP

C 	 vector subtract

V VS (x 	TMP , N)
c 	vector multiply

VVM(TMP,E,F,N)

C 	 vector add

VVA(X,X,TMP)

Such a compiler can never achieve a greater efficiency than that achieved by the

individual vector routines.

This kind of vectorising compiler will generate much more efficient code than the

currently available generic compilers. The i860 floating-point units are in some

ways more flexible than conventional vector architectures, being able to mix dif-

ferent operations in the pipeline. Vector mainframes are also usually connected

to a much more sophisticated memory system than is usually used with a micro-

processor, so the i860 will usually be limited by memory access speeds. This gives

116

rise to a number of drawbacks to using the traditional vector processing model for

the i860. When a program is decomposed into a large number of simple vector

operations many of these operations will only use one of the two floating point

units so the dual operation instructions will not be fully utilised. The program will

also loop through the data a large number of times. This increases the number of

memory accesses because intermediate results will be written back into memory

and then retrieved in a later loop. If the vector length is long enough for the

vectors to be larger than the size of the cache this will have a significant impact

on the performance.

In order to get the maximum performance out of an i860 it is preferable to use

a smaller number of loops that perform higher-level operations on the elements

of the vectors. A high-level operation containing several multiplications and ad-

ditions is preferable because it has a good chance of using both floating-point

units simultaneously. This will not prevent the pipelined floating-point instruc-

tions from being used because the type of instruction being started at the head

of a pipeline has no effect on the instructions that are already being processed.

Different floating-point instructions can therefore be mixed freely within the in-

ner loop of a vectorised procedure. There will also be a much lower demand on

the memory system. Any temporary variables needed by the high-level operation

can be implemented using registers or a few scratch variables that always remain

in the cache. If the same operation was implemented as a number of less com-

plex loops each temporary variable would have to be an entire vector in order to

store one value from each of the iterations, for example the TMP vector introduced

previously. If the vector length is large this can easily overflow the cache.

There is no reason why efficient compilers for the i860 cannot be developed. One

possible solution is for a vectorising compiler to process long loops using a number

of small sections, where each section is small enough for the vectors to remain in

the cache between the low-level vector operations. At the time of writing the

human assembly language programmer still has a significant advantage over the

available compilers for the i860. A hand-coded routine takes longer to produce

than a compiled one and cannot be ported to a different type of processor, but for

programs that are expected to run for several months or years, such as lattice QOD

simulations, this extra time is small compared to the time saved. The disadvantage

117

of assembly language programming is that great care must be taken to ensure the

routine does what is expected of it. Each routine must be thoughly debugged

before it is installed in a full program. This is especially important when the

program is intended to run for long periods of time. Only a limited number of key

routines need be hand coded in assembly language. In lattice gauge simulations

these will always be vector routines with a very long vector length. In the following

text this kind of optimisation is discussed. In this discussion I will use "iteration"

to refer to the operation applied to a single position of the input vectors, and

"loop pass" to refer to the instructions that make up the body of the inner loop of

the vectorised routine. More than one iteration may be contained in a loop pass.

4.3.1 Assembly language programming on the i860

The i860 has a very powerful assembly language [52]. The main difficulties when

writing assembly 'code are keeping track of the various pipelines and identifying

independent calculations that can be performed in parallel by the different units of

the processor. The second problem is usually solved in one of two ways. The first

way is to write the inner loop of a vectorised routine in such a way as to perform

more than one iteration at a time. Initially the code for a single iteration is written

assuming a single stage pipeline; this is relatively simple compared to code for a

longer pipeline, see figure 4.3. This is then converted into code that calculates

Multiplier 	 Adder

Ct 	 I 	-I 	- 	AB 	 0

A1*B1 	 I 	 A*B+C*D

I 	
APB1 	 I CPD1 	 I 	I

Figure 4.3: Code for single-stage pipelines.

The diagram shows how the function (A * B) + (C * 13) would be implemented

using single-stage pipelines.

118

three iterations simultaneously by replicating each instruction three times. Each

one of the three instructions belongs to a separate iteration. Because the number

of instructions has tripled, the code now corresponds to a pipeline of length three,

see figure 4.4. Because each iteration requires separate data, this approach may

	

Multiplier 	 Adder

I A2*B2 	Al*Bl 	AB I

	

'At 	 rn CT 	A2B2 	Al*Bl

' APB1 CVD1 	C*D 	A2*B2 I 	I 	A*B

1C2D2 	CID1 	CT 	 ' A2tB2 	A1*B1 	AB

A3*B3 C2*D2 	C1D1 I 	._4 r-"n 	A2B2 	Al

	

WI APB1 	AB A484 	A3B3 C2*D2 I 	.-4 n1'ni 	,rn 	A282

A5*135 	A4*B4 A3*B3 I 	r?2*B2 	At *B1

	

r,n, 	,err

Figure 4.4: Code for three-stage pipelines.

The diagram shows how the function (A * B) + (C D) would be implemented

using three-stage pipelines. Each set of three instructions corresponds to one of

the instructions from the single-stage solution.

require three times as many registers as an unpipelined implementation. If the

vector length cannot be guaranteed to be a multiple of three, a complicated section

of code will also be needed at the end of the main loop in order to finish off any

remaining iterations. This flushing phase can often be more complex than the

119

main loop. The second possible approach is to identify some inherent parallelism

in the iteration itself. The SU(3) gauge group of QCD is especially convenient in

this respect, because in matrix arithmetic the elements of the result are calculated

independently. It is therefore always possible to split an iteration into a multiple

of three independent parts, one for each row of the output. As these independent

calculations share operands, the number of registers required is not increased. For

less convenient routines it is still necessary to have several iterations performed

in a loop-pass. The large requirement for registers can be reduced at the expense

of clarity of code by overlapping sections from the same iteration where possible.

For example, an SU(2) routine has to perform three iterations for each loop pass.

There are four independent sections to each iteration, corresponding to the four

real parameters of an SU(2) matrix. The most obvious way to construct the loop

is to overlap the same calculation for three separate matrices; see Figure 4.5.

This will require at least enough registers to store three sets of SU(2) matrices

simultaneously. In this scheme three new sets of SU(2) matrices are required at

a single point in the loop. This would introduce a severe performance overhead

unless even more registers are used to allow the data for the next loop-pass to

be read in without overwriting the current data. The better way is to overlap as

much as possible from the same iteration; see figure 4.6. Because at most two

iterations are proceeding at any one time this only requires enough registers for

two sets of SU(2) matrices. The register reloads are also spread more evenly over

the loop-pass. Multiple iterations per loop-pass are still needed in order to make

the loop-pass finish in the same state that it started in.

An example of this from the QOD code is the psi2chi procedure that was written

to be part of a r = 1 Wilson fermion simulation. This procedure performs a

set of projections on a vector of four spinors in order to produce eight sets of

two spinors. The registers are divided into three blocks. At any one time, one

of the blocks contains the four spinor being used by the present iteration. The

next block is being loaded with the four spinor needed by the next iteration. The

remaining block is used to save the results. Each block of registers is used for each

of the different functions in turn. It therefore takes three iterations before the

registers return to their original functions. The loop pass must therefore consist

of a multiple of three iterations. It would have been possible to just swap the

function of the first two blocks and reduce the loop pass to a pair of iterations but

- 	 120

First iteration

(H B
C,D

Second iteration

(A

C,D

Third iteration

(

Fourth iteration

B(HB (

2 \\CD)\\CD

C, D

\\ (A , B \\ (A , B

) 	
, D)H

(A

C,D) (

_ A,H

(A B\(A B

Kc a) K\ ca
A, B

c,H

Figure 4.5: A simple implementation of SU(2) multiplication

This figure shows a simple implementation of a SU(2) multiplication. The shaded

regions shows which of the four independent sections are active at any time. If

the SU(2) multiplies are implemented in this fashion all three sets of matrices will

be required throughout the loop.

121

First Iteratiih

M1 D

SecondIlrlflU.i.

(A B\(A B

\\\ CD/\CD

(AB\jtB

C _ _

Third Iteration

) (

C D

(

A

C,D

Fourth Iteration

(

A,B

c,D

(A 	 H I B

,) 	

(

9 \ ,

2 K CD 2 H
Figure 4.6: An improved implementation of SU(2) multiplication

This figure shows an improved implementation of a SU(2) multiplication. The

shaded regions shows which of the four independent sections are active at any time.

This implementation of the SU(2) multiplication only requires enough registers

for two sets of matrices. It is also much easier to keep the register load instructions

spread out.

122

the vector length is guaranteed to be a multiple of three, because of the colour

index, so a three iteration loop removes the need for a final flushing phase.

The second problem, keeping track of the pipelines, is nothing more than a com-

plex book-keeping operation. When there is a natural three-way decomposition

of the problem this is very easy to do. All of the instructions come in multiples of

three and so a set of three results will emerge from the pipeline during the next

set of three instructions. In more complex procedures such as the psi2chi proce-

dure the book-keeping becomes very difficult. Luckily this is exactly the kind of

book-keeping that computers are very good at doing. The psi2chi procedure was

not written directly in assembly language. Instead a special program was written

to write the inner loop of the code. Each one of the iterations was written by a

single procedure that took a set of three parameters to tell it which register block

was to be used for which purpose. This procedure was made up of other proce-

dure calls each corresponding to a recognisable section of the iteration. At the

lowest level was the procedure responsible for writing a single assembly language

instruction. This procedure is passed the name of the register that is to receive

the result of the current calculation. Because of the pipelining this result will not

become available for a further three instructions so this procedure keeps a record

of these destination registers and substitutes the correct name three instructions

later. This approach is especially valuable because large sections of some proce-

dures can occur several times with slight modifications. If a bug is found in one

of these sections it usually exists in all of them and a large amount of editing is

needed to correct the problem. When a simple code-writing program is used, only

a single part of this program need be changed to correct the error. Even though

this section of code is generated automatically it is still valuable to make it as

readable as possible. The code writing program therefore also inserts appropriate

comments into its output.

There is no easy way to verify that any code is correct. This is more of a problem

with assembly language because there is much more detail in the code to hide

mistakes. Assembly-language routines are much easier to verify if thereis some

standard that the code can be compared against. It is therefore essential to main-

tain a library of high-level language equivalents for all of the assembly-language

routines. This high-level language implementation is essential in order to debug

123

the test programs that are going to be used to verify the assembly-language rou-

tines. They can also serve as additional documentation and provide an easy way

of porting the program to a different machine.

4.3.2 The inner loop.

All of the optimised routines considered here repeat their operations a large num-

ber of times, corresponding to the elements of the input vector. It is therefore

necessary to pay particular attention to the implementation of loops on the i860

processor.

The i860 has a special instruction called the bla instruction that can be used to

implement loops. It can only be used for the innermost loop of a set of nested

loops. The outer loops must be written using conditional branching. In the

case of the optimised routines considered here, short loops, such as the loop over

colours, are usually unwound as part of the pipelining. This usually means that

there are no nested loops and the bla instruction is used for the loop over sites.

All of the operations needed to implement a loop are contained in this single

instruction. This instruction is the most efficient way to implement a loop but it

is not the simplest intruction to understand. The pseudo-code definition of the

bla instruction is:

bla step, count, label

LCC_temp clear if count < comp2(step) (signed)

LCC_temp set if count > comp2(step) (signed)

count - step + count

Execute one more sequential instruction.

IF LCC

THEN LCC LCC..temp,

goto label

ELSE LCC - LCCtemp

Fl

LCC is a status flag that is only used by the bla instruction, its value is pre-

124

served between calls to this instruction. The function cornp2 denotes the "twos-

compliment" of a number, this is equivalent to multiplying the number by —1.

The source of a simple memory copy routine are shown here as an example of the

use of the bla instruction.

scopy(a,b,len) - copies len words from a to b.

string "$Id: scopy.s,v 1.3 1991/04/16 14:08:06 spb Exp $"

align 4

a = r16

b = nT

len = n18

step = n19

ftmp = f16

scopy:

adds -1, rO, step

adds -1, len, len

addu -4, a, a

bla step, len, LOOP

addu -4, b, b

LOOP:

fld.l 	4(b)++, ftmp

bla 	step, len, LOOP

fst.l - ftmp, 4(a)++

entry point

1/ step = -1

len = len-i

allow for auto-increment, aa-4

initialise bla state

allow for auto-increment, bb-.4

// b = b+4 and load word.

// a = a+4 and store word.

bni 	ni 	 /1 Return to calling procedure.

nop 	 // nop because of delayed branch.

The important points about this instruction are firstly that it uses a delayed

branch; the jump does not take place until the instruction following the bla in-

struction has been executed. The bla instruction is therefore the next to last

125

instruction in the loop. Secondly, the branch being taken or not is controlled

by previously executed Ha instructions. When a procedure first uses the bla

instruction it is not known if the branch will be taken or not. Before using the

Ha instruction in a loop each procedure must use the instruction once to set the

LCC flag to a known state. The jump address for this call must point the second

instruction following itself. This will make sure that the initial value of the LCC

flag makes no difference to the behaviour of the procedure.

The floating-point load instructions have an auto-incrementing mode. This is to

enable loops to be coded efficiently. An auto-incrementing load is written as:

fld.l offset(pointer) ++, destination

The variable in the memory location addressed by pointer + offset is loaded into

the floating point register "destination". The pointer register is then incremented

by the value offset. This enables a large vector of values to be stepped through

one at a time. Care must be taken to prevent the auto-increment instructions

from skipping the first element of the vector.

When writing vectorised procedures it is often convenient to have a dummy loop

pass immediately before the body of the main loop. The primary reason for this is

because the results have to be written back into memory during the next iteration.

The first iteration performed by a routine has no such values to store so it must

be performed by a separate piece of code that is missing these instructions. If we

have to have a dummy loop-pass, then a number of necessary initialisation steps

can be absorbed into this dummy loop in order to reduce the set up time for the

procedure. The bla instruction can be initialised by placing a Ha instruction in

the dummy loop. The first load instruction that uses each of the pointer registers

should not be auto-incrementing: this can also be done inside the dummy loop.

A similar problem exists for the final iteration. Some of the data needed by a

loop iteration should be loaded while the previous iteration is being executed.

This enables the iteration to start straightaway without waiting to load its data.

Unless the final iteration is also performed by a dummy loop this means that

extra values will be read from beyond the end of the input vectors. Because

this data is effectively discarded when the procedure finishes this can usually be

ignored. There are two potential problems that have to be avoided. The i860

supports paged memory management. This means that not all memory addresses

126

necessarily correspond to a valid piece of memory. If an invalid memory address

is read, an error is flagged. It is possible that the extra loads in the final loop pass

may cause an illegal memory access. In a parallel computer it is sometimes possible

to have communication happening simultaneously with numerical calculations.

These communications will only be able to progress normally if the i860 does not

attempt to access any of the memory locations being used in the communication.

It is therefore also necessary to ensure that the extra loads do not access any

communication buffers. The easiest way to get round both of these problems is

to add some padding space to the end of all the data arrays. The extra loads will

therefore always perform a safe read from this padding space.

4.3.3 Pipelined loads and managing the cache.

The main limitation to performance on an i860 is the memory system. Both

floating-point units are capable of producing a result every clock cycle unless

certain freeze conditions occur. Most of these conditions can be avoided by careful

design of the code. The most important of these freeze conditions are cache misses,

where a non-pipelined load attempts to read a value not stored in the cache, and

an overfull load pipeline, where more than three pipelined loads are outstanding.

For most lattice gauge simulations the data set can be expected to be much larger

than the cache. Non-pipelined loads can therefore be expected to produce a large

number of cache misses. When a floating-point load accesses outside of the cache,

the processor will start to load the new cache-line containing the missing data into

the cache. A cache line consists of 32 consecutive bytes of memory. The execution

of the program will be delayed for one clock cycle plus the time to load the first

value of the cache line. Providing that a reasonable number of clock cycles pass

before the next value is needed, the rest of the cache line will have been loaded and

further accesses can proceed without any delay. The alternative is to use pipelined

loads. This pipeline can be processing up to three memory fetches at a time. If

a fourth value is requested while there are still three outstanding accesses then

there will be a freeze for one cycle plus the time to read the first outstanding value.

There will also be a freeze if the value requested is actually in the cache. This will

take two cycles plus the time to finish all of the outstanding accesses. An added

complication is that many external memory systems use paged DRAM. In these

127

systems a sequence of memory accesses from the same 1 Kbyte page of memory is

more efficient than a sequence that hops from one region of memory to another.

With non-pipelined loads we are guaranteed that reads will occur in blocks of

32 bytes and come from the same memory page. It is therefore very difficult to

determine what mixture of cache and pipelined loads will be most efficient for a

particular routine. The only safe way of doing this is to time various versions of

procedures inside a real program. For example, a complex scalar product is about

10% faster if pipelined loads are used. However, if the source vector is already

stored in the cache pipelined loads are almost certainly going to be slower.

4.4 QCD simulation programs.

The Wilson fermion action is:

5Wi1s = 	- K 	- 	 + (rI +

where K is the hopping parameter defined by:

K = 8r +2ma

The fermion matrix can therefore be written as

4

A(m, it) = 6mn - K L (rI - 7ts) 1j,n,M8n,,n+i + (rI + 1M)Ut 	S rn—aM n.rn—M

Thus inverting the Dirac equation is replaced by solving

where 7?. is the source and K is the hopping parameter. This is equivalent to

inverting the fermion matrix.

Any simulation of dynamical fermions will be dominated by the inversion of the

fermion matrix. The fermion matrix is a function of the gauge fields and is there-

fore constantly changing throughout the simulation. This means that the matrix

inversion will also have to be repeated throughout the simulation. Even if dy-

namical fermions are not used in a simulation it is still necessary to invert the

128

fermion matrix in order to calculate propagators from the gauge configurations.

It is therefore fairly obvious that the fermion matrix inversion procedures need

optimising. Iterative algorithms such as conjugate gradient are used to invert the

matrix. The majority of time in these algorithms is spent multiplying vectors by

the matrix. So the greatest improvement can be obtained by optimising these

routines.

4.4.1 Conjugate Gradient

Conjugate gradient is an iterative matrix inversion algorithm, commonly used in

lattice gauge theory. It is a very robust algorithm and in exact arithmetic it is

guaranteed to converge to a solution in n iterations where n is the dimensionality

of the matrix. Unfortunately the algorithm is only applicable to positive definite

hermitian matrices. If the Hybrid Monte-Carlo (HMC) algorithm is used to sim-

ulate a theory with dynamical fermions the fermion matrix equations that must

be solved are all of the form

(MM)1,b = 1?.

The matrix to be inverted is always hermitian positive definite, so conjugate gra-

dient is ideal for use with HMC. Propagator calculation need to solve equations

of the form

M4'=R.

Conjugate gradient can still be used for this application by solving the equations

MMçb=R.

In this case there are alternative algorithms such as minimal residual [53] that

may be more appropriate. Minimal residual is sufficiently similar to conjugate

gradient for the same optimisations to be applicable to both algorithms.

When solving the equation

Aib=R

129

starting from an initial guess of Oo , the generic form of the conjugate gradient

matrix algorithm is:

P0 = r0 = 1Z. - Ai4' 0 ,

then repeat;

rn
12

an -
(pn ,Ap n)

1,bn+1 = On + ap,

= r - crAp
2

a______ -
Irn I 2

Pn+1 = 	rn+1 + I3nPn.

In the case that we are interested in, where A = MtM this can be reformulated

to be more efficient at the expense of creating an extra workspace s,,. Mpn. The

conjugate gradient algorithm now becomes:

PO = r0 = 7z - MM'çb c ,

then repeat;

= 	Mp,-.

irn 2

an -
isn I

= On + amp,

= rn - anMtSn

Irn+1I2 a - 	2

Pn+1 = 	rn+i + uinPn

The conjugate gradient algorithm can therefore be divided into a number of com-

ponent operations that can be optimised independently.

Scalar products
IX 12

130

• Saxby operations

• Action of the fermion matrix on a vector

X = My

The multiplication by the fermion matrix is dominated by the 47. operation that

can in turn be divided into three sub-steps.

• Construction of two-component spinors.

• SU(3) multiplication.

• Reconstruction of four-spinors.

The performance of each of these operations has a very significant effect on the

time taken to invert the fermion matrix and hence on the total performance of the

program. They are therefore the obvious candidates to be hand coded in assembly

language.

The Dslash operation

Construction of two-component spinors For r = 1 Wilson fermions the

action of the -y matrices on the spinors becomes a set of projection operators

This means that the SU(3) multiplications need only be applied to two of

the components of the resulting 4-component spinors; the missing two components

of the result can always be constructed from the two known components. In the

CG algorithm, P is applied to .s and p vectors. Here these vectors are generically

denoted by '. These are 4-component spinors (V) I, 02, 03, The 2-component

spinors obtained from (1 ± 74 are denoted by x and are defined as follows.

x1 4 =1+44 X1ji?P2+03

131

X 1 , 2 -02+3 	X 1 , 2 -41+04

X101+4 X23=02+03

42 = 02 - 03

= 01 + 43 Xi = W'l + 03

x32=02-44 x2=-42+04

= 201 4.1
+ - C,'

X4,2 - '"P2

= 203

= 204

The implementation of this procedure psi2chi has been discussed previously. It is

not possible to use dual operation instructions in this procedure. The maximum

possible performance will therefore only be half of the peak performance of the

processor because only one of the floating-point units, the adder, is being used.

This puts an upper bound of 40 Mfiops on the performance of this code. The

performance will be further reduced because of the the large number of memory

accesses needed by each iteration.

SU(3) multiplication The fermion matrix is

A(m, it) = mn - K 	(rI -) Um,sSn,m+ + (rI +

Evaluating this function requires two sets of SU(3) multiplications and a number

of data shifts. There are four steps involved in computing the two - terms:

• The Ut multiplication at site x - j with local operands,

• Shift result of first stage to site x;

• Shift (x + j%) to site x;

• The U multiplication at site x

132

In terms of the x fields this procedure becomes:

W,(x) = U)(x)x(x)

X (x) = W(x—A)

X M (x) = x(x+)

= U(x)X,(x)

The most straightforward way of doing this is to perform the Ut multiplication

while transferring the x needed for the U multiplication, and then perform the U

multiplication while transferring the result of the Ut multiplication. This is the

most time-critical portion of the entire program. Two very similar routines are

needed, one to perform the U multiplication and one to perform the Ut multipli-

cation. Because these two routines are so similar, the following comments apply

equally well to both of them. Matrix operations are well balanced between addi-

tion and multiplication operations, so there will be no difficulty in using both of

the floating point units effectively. The i860 has 30 general purpose registers. This

enables us to hold an entire SU(3) matrix in registers and still leave room for six

more complex variables to form the source and result of the matrix multiplication.

Each SU(3) matrix will be used twice before being discarded, once for each of the

two spin components.

These routines will always come paired with either a gather or scatter operation

that performs a shift in the +p direction. Normally any such operation will

be highly inefficient because there is a large number of memory accesses and

the floating-point units will remain idle throughout this process. One obvious

optimisation is to combine gather scatter operations with the U/Ut products.

This not only reduces the total number of memory accesses but also allows the

core unit to be doing useful work in parallel with the floating-point units. The

data shifts we wish to implement have a very regular pattern; variables that are

stored in adjacent memory locations are very likely to still be adjacent after the

data shift. This enables us to move large sections of the lattice together as a block.

The number of memory accesses needed by the gather/scatter can be drastically

reduced if the table used to control the operation specifies blocks of data to be

133

moved rather than individual variables. In our i860 assembly-language routines,

the gather/scatter tables are implemented as pairs of values. The first number

represents the start of a contiguous block of variables encoded as a byte offset

from the start of the array. The second number encodes the end of the block in

a similar fashion. At the start of a block of data the procedure converts these

numbers into absolute memory addresses and sets a data pointer to the beginning

of the block. The data pointer is incremented by a constant value each loop pass

until its value equals the finish address, at which point a new pair of numbers is

read from the gather/scatter table and the process is repeated. This requires a

conditional branch in the main body of the loop, one half of which increments

the input pointer and the other half starts a new data block. Only the core

unit plays any part in the gather/scatter process. As these routines operate in

dual-instruction we can hide the branch from the floating-point units by putting

identical floating-point instructions in each half of the branch. These routines are

part of a large family of SU(3) multiplication routines. These routines fall into

three main classes. Within each class there are several options that give rise to

separate routines

Two-spinor These reuse the SU(3) matrix twice, once for each spin component. Possible

options are: gather/scatter the source/result, multiply by the hermitian

conjugate of the matrix.

Matrix-matrix In these routines the left-matrix is reused three times, once for each col-

umn of the right-matrix. Possible options are: gather/scatter the right-

matrix/result-matrix, use hermitian conjugate of either/both source matri-

ces.

Four-spinor These reuse the SU(3) matrix four times, once for each spin component.

Possible options are: gather/scatter the source/result, multiply by the her-

mitian conjugate of the matrix.

The changes needed to implement the various options are reasonably simple. Each

class is implemented as a single source file with compile time definitions to select

the different options.

134

Reconstruction of 4-component spinors

Following the operation of SU(3) multiplication routines we have 8 2-component

spinors, x'• These must be used to reconstruct the 4-component spinors 0. This

is done by the procedure reconstruct. Generically, writing VY for the result of the

this operation is:

= t - 	- ix + - + - 	+ x}

72 = 2 - 	- 	+ 	+ x;Ti + 	+'X3' ,2+ x}
I,

1,2 = 	- K{Xn - 	+ xTi - + - 	+ xi}
I, = ;b4 - 	- 	+ 	+ 	+ 2 + 	+ xT2}

There are not enough registers to store all the components of the x spinors si-

multaneously. It is therefore necessary to use non-pipelined loads and rely on

the cache. Like the psi2chi function, this operation is dominated by addition

operations and needs a large number of memory accesses.

4.4.2 The scalar product

The scalar product is the simplest of the CG procedures to implement because it

only consists of a sum of products. This is easily achieved by chaining the adder

and multiplier units together. A generic scalar product has the form:

.5 = t xiY %

For conjugate gradient we only need the norm of a single vector rather than the

scalar product of a pair of vectors. It is worth implementing the vector norm

procedure explicitly because it requires only half the memory access of a general

scalar product. For maximum performance the pipelines require three summations

to be carried out simultaneously. When all three summations have finished, their

results are added together to give the final scalar product. Because of the colour

index the vector length can be guaranteed to be a multiple of three, so the scalar

product routine will not need a final flushing phase.

135

4.4.3 The saxpy operation

The saxpy operation

is also relatively straightforward to implement on the i860. The adder and mul-

tiplier pipelines can be chained together and the constant a can be stored in one

of the constant registers. The timings for this procedure are totally dominated

by the time taken to load and store the data. For every pair of floating-point

operations two operands must be loaded and a single result stored.

4.5 Benchmarking the i860.

All of the routines mentioned in the previous section have been implemented in

i860 assembly language and the performance measured. All of the timings in this

section are for a single i860. In each case the vector-length was chosen to be

representative of the real production code. In normal production the local lattice

size is 12 x 6; because we split the data into even and odd parity sites, this

corresponds to a vector length of 12 x 3 = 5184. In each case the input arrays

were initialised randomly and the time taken to execute the routine 500 times

was measured. In the SU(3) routines with built-in gather/scatter the gather-

scatter table was constructed to access the input vector as 8 separate blocks.

Timings are presented for one of the 16Mbyte MK086 boards (see table 4.1),

and for a prototype MK096 board with 4Mbytes of memory (see table 4.2). The

MK096 board is similar to the MK086 but is a much later design of board with

an imprdved memory system. A set of timings for equivalent routines written in

the C language are shown in table 4.3. These routines were compiled using the

"Greenhills" compiler. The C versions of the code were written as part of the

validation procedure for the assembly language routines and no attempt has been

made to optimise them, other than the optimisations provided by the compiler.

The values presented in the tables are as follows:

routine The name of the routine being benchmarked.

iicI.1

length The vector length used in the benchmark.

oper The number of floating-point operations per iteration.

mem The number of bytes of memory accessed in each iteration.

repeat The number of times the routine is called during the benchmark.

time The number of microseconds taken to execute the benchmark.

Mflops The average floating-point performance in units of 106 floating-point op-

erations per second.

Mbyte/sec The average memory bandwidth achieved during the benchmark.

The routines presented presented in the tables are as follows:

psi2chi Apply the gamma-matrix projection operators to a four-spinor to gener-

ate 8 sets of two-spinors. This forms the initial stage of the P operation.

reconstruct Reconstruct a four-spinor from 8 sets of two-spinors. This forms

the final stage of the . 	operation.

saxpy Scale a vector by a constant and add the result to a second vector. The

vector length has been chosen to match that for vectors of four-spinors with

a colour index.

sdot Calculate the norm of a complex vector. The vector length is the number

of complex numbers in the vector.

su3_xx Matrix-matrix multiply.

su3_xx_g Matrix-matrix multiply. Gathering source.

su3_xx_s Matrix-matrix multiply. Scattering result.

su3_mv4-xm_n Matrix-four-spinor multiply.

su3..mv4...xm_g Matrix-four-spinor multiply. Gathering source.

su3..mv4-xm_s Matrix-four-spinor multiply. Scattering result.

137

su3x Matrix-two-spinor multiply.

su3xg Matrix-two-spinor multiply. Gathering source.

su3xs Matrix-two-spinor multiply. Scattering result.

where the letter x stands for either h or in denoting if the hermitian conjugate of

the SU(3) matrix is used or not.

As can be seen from the timings for the different routines, the performance of

an individual routine is very strongly dependent on the way it accesses the ex-

ternal memory system. There is a consistent trend within the SU(3) routines;

four-spinor routines are faster than the matrix-matrix routines that are in turn

faster than the two-spinor routines. This corresponds to the different ratios of

floating-point operations to memory accesses. The improved memory system of

the MK096 board gives rise to a dramatic increase in performance. The sdot pro-

cedure has a very high performance compared to the other routines. This can be

explained by noting that it has a much simpler memory access pattern than the

other procedures; it only accesses a single vector.

138

routine length oper mem repeat time p.s Mfiops Mbyte/sec

psi2chi 5184 96 480 500 25784128 9.65 48.25

reconstruct 5184 144 480 500 27395584 13.62 45.41

saxpy 124416 2 12 500 12879936 9.66 57.96

sdot 62208 4 8 500 3214464 38.71 77.41

su3..hh 5184 198 216 500 13887488 36.96 40.31

su3_hh_g 5184 198 216 500 13895360 36.93 40.29

su3_hh_s 5184 198 216 500 13894848 36.94 40.29

su3_hm 5184 198 216 500 13895232 36.93 40.29

su3_hm4 5184 198 216 500 13900864 36.92 40.28

su3_hm.s 5184 198 216 500 13901632 36.92 40.27

su3_mh 5184 198 216 500 13720320 37.41 40.81

su3_mh_g 5184 198 216 500 13729472 37.38 40.78

su3_mh..s 5184 198 216 500 13728192 37.38 40.78

su3_mm 5184 198 216 500 13724608 37.39 40.79

su3_mm_g 5184 198 216 500 13732544 37.37 40.77

su3_mms 5184 198 216 500 13731264 37.38 40.77

su3_mv4_hm4 5184 264 264 500 17590208 38.90 38.90

su3..mv4jxmn 5184 264 264 500 17585408 38.91 38.91

su3nv4hm.s 5184 264 264 500 17590208 38.90 38.90

su3_mv4mm..g 5184 264 264 500 17398016 39.33 39.33

su3_mv4nmn 5184 264 264 500 17385664 39.36 39.36

su3..mv4mms 5184 264 264 500 17400128 39.33 39.33

su3h 5184 132 168 500 10216128 33.49 42.62

su3hg 5184 132 168 500 10219200 33.48 42.61

su3hs 5184 132 168 500 10220480 33.48 42.61

su3s 5184 132 168 500 10054656 34.03 43.31

su3sg 5184 132 168 500 10059648 34.01 43.29

su3ss 5184 132 168 500 10061568 34.01 43.28

Table 4.1: Timings of i860 assembly language routines on an MK086.

139

routine length oper mem repeat time ps Mflops Mbyte/sec

psi2chi 5184 96 480 500 16066752 15.49 77.44

reconstruct 5184 144 480 500 20126144 18.55 61.82

saxpy 124416 2 12 500 8721664 14.27 85.59

sdot 62208 4 8 500 1627776 76.43 152.87

su3Jih 5184 198 216 500 9113536 56.31 61.43

su3iih_g 5184 198 216 500 9203968 55.76 60.83

su3_hh.s 5184 198 216 500 9153728 56.07 61.16

su3_hm 5184 198 216 500 9113536 56.31 61.43

su3_hm_g 5184 198 216 500 9203968 55.76 60.83

su3_hm..s 5184 198 216 500 9163776 56.00 61.10

su3_mh 5184 198 216 500 9103488 56.38 61.50

su3_mh4 5184 198 216 500 9163776 56.00 61.10

su3_mh_s 5184 198 216 500 9133632 56.19 61.30

su3_mm 5184 198 216 500 9103488 56.38 61.50

su3_mm4 5184 198 216 500 9163776 56.00 61.10

su3_mms 5184 198 216 500 9143680 56.13 61.23

su3_mv4.hm4 5184 264 264 500 11675776 58.61 58.61

su3_mv4..hmn 5184 264 264 500 11766208 58.16 58.16

su3_mv4..hm..s 5184 264 264 500 11675776 58.61 58.61

su3_mv4nmg 5184 264 264 500 11635584 58.81 58.81

su3_mv4nmi 5184 264 264 500 11726016 58.36 58.36

su3_mv4nm..s 5184 264 264 500 11635584 58.81 58.81

su3h 5184 132 168 500 6752256 50.67 64.49

su3hg 5184 132 168 	- 500 6782400 50.45 64.20

su3hs 5184 132 168 500 6782400 50.45 64.20

su3s 5184 132 168 500 6712064 50.97 64.88

su3sg 5184 132 168 500 6742208 50.75 64.59

su3ss 5184 132 168 500 6742208 50.75 64.59

Table 4.2: Timings of i860 assembly language routines on an MK096.

140

routine length oper mem repeat time ps Mfiops Mbyte/sec

psi2chi 5184 96 480 500 64163136 3.88 19.39

reconstruct 5184 144 480 500 54897536 6.80 22.66

saxpy 124416 2 12 500 33473472 3.72 22.30

sdot 62208 4 8 500 12583680 9.89 19.77

su3_hh 5184 198 216 500 109559488 4.68 5.11

su3_hh_g 5184 198 216 500 111122624 4.62 5.04

su3_hh_s 5184 198 216 500 111028928 4.62 5.04

su3_hm 5184 198 216 500 101674304 5.05 5.51

su3_hm4 5184 198 216 500 103154816 4.98 5.43

su3..hm_s 5184 198 216 500 103181952 4.97 5.43

su3_mh 5184 198 216 500 102217600 5.02 5.48

su3_mh4 5184 198 216 500 103800320 4.94 5.39

su3..mhs 5184 198 216 500 103758656 4.95 5.40

su3.snm 5184 198 216 500 94416896 5.44 5.93

su3..inmg 5184 198 216 500 96060992 5.34 5.83

su3-mm..s 5184 198 216 500 96051136 5.34 5.83

su3_mv4jams 5184 264 264 500 80228736 8.53 8.53

su3..mv4.mmi 5184 264 264 500 79619648 8.59 8.59

su3h 5184 132 168 500 83012032 4.12 5.25

su3hg 5184 132 168 500 84539456 4.05 5.15

su3hs 5184 132 168 500 43795776 7.81 9.94

su3s 5184 132 168 500 83088896 4.12 5.24

su3sg 5184 132 168 500 43713216 7.83 9.96

su3ss 5184 132 168 500 84819904 4.03 5.13

Table 4.3: Timings of i860 C language routines on an MK086.

141

Chapter 5

Conclusion

5.1 The use of parallel computers in LGT

Immense computer resources are required to perform meaningful lattice gauge

theory simulations. All of the important data-sets are four dimensional so even

with modest lattice dimensions a large amount of memory and disk space is re-

quired. If any fermionic quantities are to be calculated the need to invert the

fermion matrix requires a prodigious amount of raw computer power. With cur-

rent computer technology any attempt to perform lattice gauge simulations are

always constrained by the available computer resources.

Much of this thesis is concerned with the attempts to reduce these limitations.

The primary method of doing this is by utilising parallel computers. As explained

in the introduction parallel computation offers a significant increase in available

- computational power at the cost of miaking prôgfám wfitihg more difficult. In

common with many physical systems lattice gauge theory calculations can be dis-

tributed over several processing elements using a spacial decomposition. This is

possible because of the local nature of the physical interactions. The difficulties

often arise because of features of the algorithm that do not share this local prop-

erty. The random number generators discussed in chapter 2 are an example of this.

Monte-Carlo algorithms require a source of effectively random numbers. This is

a feature of the algorithm rather than the physical processes so this part of the

142

algorithm does not exhibit locality and cannot be distributed using a geometric

decomposition. In this case the solution I adopt is to use a separate random num-

ber generator on each processor of the parallel machine and to attempt to reduce

the correlations between processors as much as possible. Provided the number of

lattice sites controlled by each processor is not too small the quality of the indi-

vidual random number generators is more important than the correlation between

processors. There is much more work that can be done in this field and I hope to

return to it at some later date.

It is not sufficient to just implement the simulation code in parallel. The current

generation of parallel computers provide a significant increase to the computer

power available to the individual researcher but the increase is not enough to

remove the constraints on lattice simulations. Further programming effort is re-

quired to extract the maximum possible performance out of the available hardware

and to match the simulation to the particular strengths and weaknesses of the par-

allel system being used. The form of these optimisations depend on the parallel

system and the problem being simulated. Two different cases have been discussed

in this thesis; the simulation of QED using a transputer based parallel computer

and the simulation of quenched QCD on a hybrid i860/transputer system. It is

possible to use this experience to make some general conclusions about lattice

gauge theory simulations on distributed memory MIMD computers.

Parallel computers have become more common over the last few years. Even

though they are not yet part of the computing mainstream they are now routinely

used in some fields, including lattice gauge theory. Parallel computers vary greatly

in the way they operate and in the way that they are programmed. This is be-

cause large scale parallel computing is still a relatively young subject and various

new ideas are still being tried out. All of the work presented in this thesis has

been performed on parallel computers constructed using T800 transputers. The

T800 communicates using point to point communication links. Before running a

program the processors must be configured (wired up) in a topology appropriate

to the application. A processor is then only capable of sending messages to the

processors it is directly connected to. Messages for remote processors must be

forwarded in software. This approach has serious drawbacks. It is impossible to

write general purpose code, the application is always strongly effected by this un-

143

denying hardware. The QED program only uses replicated sets of 16 processors

because of the T800 only has 4 links. The QCD machine represents an evolution

away from this approach. It is still uses T800s but these now play the role of ded-

icated communication chips. The application code runs on the i860 and messages

are passed to the T800s for delivery to any processor in the program. Message

routing is still performed in software but this is now system software running

on dedicated processors rather than being explicitly included into the application

code. Even so a dynamically reconfigurable network still leaves us with a non

trivial optimisation problem; how best to wire up the network. The wiring files

for the QED program took about half an hour each to generate. On the QCD ma-

chine wirings for small programs are automatically generated at run-time, but the

necessary placement for all 64 processors pushes the capabilities of the machine

to the limit and had to be generated by hand. As all of the programs use the

same wiring this only had to done once, but this process took several hours to do.

More recent parallel computers have dispensed with reconfigurable arrays entirely

and provide a fixed topology general purpose communication network where all

message routing is done in hardware[54].

Both of the simulation programs were written in a very similar style. Each pro-

cessor in the program runs the same piece of code, this code approximates a con-

ventional single processor program except for the boundary conditions. Instead of

implementing the usual periodic or anti-periodic boundary conditions, boundary

values are transferred to and from neighbouring processors. This is a relatively

small change to the program as a whole and it involves very little effort over that

needed for an equivalent single processor program. In both cases the main diffi-

culty encountered was parallel file access. As with the random number generators

these difficulties arose because this is a non-local operation. The QED program

was written in 000AM[12], which provided no intrinsic support for parallel file-

access. Only the processor directly connected to the host was able to read or write

files. All data needed to be sent to this processor before it could be written out to

a file. This process was simplified by using a file format that stored the data for

each processor in contiguous blocks. This made it very difficult for a sequential

program to use these files. The CSTools[49] environment used by the QOD pro-

gram does support a restricted form parallel file access, each processor is capable

of reading and writing its own files. As it is very important that we should be able

144

to access these data files using a variety of programs and machines, we needed to

write the data in a standard format that did not depend on a particular hardware

configuration. Again this requires a single processor to distribute/collect the data

and read/write the file. We need to access several different types of file in this

fashion so a library of low-level parallel file access routines have been developed

and the routines needed to read and write each type of file have been constructed

using this library. Hopefully similar libraries will be provided by the manufactures

of future parallel systems. As the QCD simulation utilised the quenched approx-

imation and a much larger lattice than the QED it produces a greater volume of

data. This gave rise to additional problems because the host processor is essen-

tially a workstation and has a limited 10 capability. Ideally a parallel computer

requires high-performance TO systems to match their computational speed. If this

performance is to scale with the size of the computer the system must be able

to support parallel data access to multiple storage devices. Unless the hardware

and system software is carefully designed this will conflict with our desire to store

data in a format that is independent of the hardware configuration.

The programming style described here makes no attempt to automate the distri-

bution of the problem. The decisions about how the arrays are distributed and

about how the boundary values are communicated are all made by the applica-

tions programmer. It would be perfectly possible to automate much of this work,

either at the compiler stage, for example by using the data-parallel programming

model, or by providing libraries of specialised routines to support regular domain

decomposition. Neither type of package is available at the moment on the ma-

chines that were used for this work. Even if such packages had been available it is

probable that they would require a greater amount of memory than the programs

we actually use. By using our knowledge of the application we are able to reduce

the requirement for communication buffers to a bare minimum. A compiler or

library package has to address a more general case and cannot make as many

savings. Nevertheless I expect future parallel lattice gauge simulations to pay this

price in exchange for much simpler program development.

145

5.2 QED

The phase diagram of strong-coupling non-compact lattice QED with an ad-

ditional four-fermion interaction has been deduced using a series of dynamical

fermion simulations. The mass dependence of the system has been investigated

for non-compact QED and along the /3 = 2.0 axis which is close to a system with

only four-fermi interactions. There seems to be a line of chiral-symmetry-breaking

transitions in the /3-C plane connecting, the strong-coupling QED transition the

four-fermi phase transition. There is no evidence that the strong-coupling phase

transition can be used to construct a continuum theory. Our analysis suggests

that the transition has mean-field scaling exponents. This is supported by fitting

the data to the gap-equation. The gap-equation is derived using a mean-fieldap-

proximation and the results of our calculations appear consistent with a solution

of the gap-equation.

The Swendsen Ferrenberg extrapolation technique has been applied to our data on

the C = 0 axis. This technique was originally developed for spin-models, where

a few high-statistics simulations can be used to generate results for a range of

coupling constant values. Because our simulation used dynamical fermions there

was difficulty obtaining high statistics. By utilising data from several simulations 2
we were able to calculate results with an effective statistics higher than from the

individual simulations taken in isolation. In addition results can be calculated for

any value of the coupling that lies between the simulated values. By calculating

the effective statistics as a function of the coupling we are also able to obtain a

quantitative understanding of how the spacing of our simulations across the phase

diagram effects our knowledge of the system. 	 - 	-

5.3 QCD

The QCD simulation discussed in chapter 4is the result of an ongoing collaborative

project (UKQCD). The work presented in this thesis is mostly concerned with the

implementation of the necessary programs as this reflects my own contribution

to the project. Most of this work has been the development of i860 assembly

146

language routines. It also includes the development of libraries of parallel file

access functions and inter-processor communication functions. These routines

have been used in the "pure gauge" simulation code, the quark propagator codes

and in an SU(2) simulation code that also forms part of the UKQCD program[55].

We have attempted to restrict all of the Meiko/cstools specific code to these

libraries so that these programs will be easy to port to other i860 based MIMD

computers such as the Intel ipsc/860 or the Intel "paragon".

This work has been directed towards an ongoing program of science, centered

around large lattice QCD simulations. This work is a collaborative effort involving

a large number of people. As my contribution to this work has mostly been

in developing and maintaining the enabling technology described in chapter 4,

only a brief overview of the results are given here. This work is presented in

more detail in the collaboration publications [55, 56, 57]. We simulate quenched

QCD on a 24 x 48 lattice, at a 0 = 6.2. The gauge fields are updated using

a cycle of three-subgroup Cabibbo-Marinari [58] heat-bath sweep followed by 5

over-relaxed sweeps. Configurations are sampled every 400 of these composite

update steps. For each of these sampled configurations, quark propagators are

calculated at a number different quark masses. Propagators are calculated using

both the standard Wilson fermion action and a nearest-neighbour 0(a) improved

or "clover" fermion action [59, 60], using the same set of gauge configurations for

both actions. The lattice-action for the gauge sector is correct up to 0(a2) terms.

The Wilson fermion action is only correct to 0(a). The "clover" action is similar

to the Wilson action but contains 0(a) corrections. By using this improved action

we hope to reduce the systematic errors due to the finite lattice spacing, without

having to increase the lattice size any further. Propagators are calculated for

r = 1 at ic = 0.1510, 0.1520, 0.1523, 0.1526 and 0.1529 for the Wilson action,

and at K = 0.14144, 0.14226, 0.14244, 0.14262 and 0.14280 for the clover action;

the latter values were chosen to match roughly the pion masses computed in the

Wilson case. We use an over-relaxed minimal residual algorithm with red-black

preconditioning for propagator calculations These quark propagators have been

used to calculate hadron masses. Edinburgh plots for the two actions are given in

fig. 5.1. This data was generated using 18 configurations. The plots are broadly

consistent, showing a trend towards the physical value for mN/inc with decreasing

pion mass.

147

p.

Wilson

1.8

1.6

z

1.4

1.2

_ftt

0

101 	I 	P 	I 	I 	I 	I 	I 	I 	I 	I 	 I 	I 	I

	

0.0 	0.2 	0.4 	0.6 	0.8 	1.0
m/m

2.0

1.8

1.8
Q.

z
E

1.4

1.2 0

clover

1. 0 	t 	I 	I 	I 	I 	I 	I 	I 	P 	I 	I 	I 	I 	I 	I 	I 	F 	I 	I

	

0.0 	0.2 	0.4 	0.6 	0.8 	1.0

Figure 5.1: Edinburgh plots.

148

We see no statistically significant difference between the two actions at light quark

masses, though there is some preliminary evidence for improvement in the heavy

quark regime. This comes from the splitting between the squares of the vector

and pseudoscalar meson masses; experimentally, this quantity is very nearly the

same for the p - iv system and for corresponding mesons containing a strange,

charm or bottom quark. This is a quantity which may be sensitive to the different

discretisation errors in the two formulations. Our lattice results are shown in

Figure 5.2. Neither result is in agreement with the experimental values for heavy

quark masses. The "clover" action seems to be better than the Wilson action

in this regime. This is to be expected; because heavy quarks have a shorter

wavelength, 0(a) effects will be more significant for heavy quarks.

This work is still in progress. In addition to increasing the statistics we are

also intending to calculate matrix-elements and to perform further heavy-quark

calculations using the "clover" action.

149

Wilson Action
0.10

0.08

[X$I.1

0.05
	

0.10

MP

0.10

0.08

c'J

r,zn.i

rita.

I 	 I 	 I 	 I

Improved Action

I 	 I 	 I

0.00
	

0.05
	

0.10

Mp

Figure 5.2: m - 	versus

The dashed lines correspond to the experimental range. The highest mass point

corresponds to the physical quark mass.

150

Bibliography

[1] R. Feynman and A. Hibbs

Quantum mechanics and path integrals

McGraw-Hill (New York 1965)

[2] D. Bailin and A. Love

Introduction to Gauge Field Theory

Adam Huger (Bristol and Boston 1986)

ISBN 0 - 85274 - 818 - 3.

[3] N. Metropolis, A. Rosenbiuth, M. Rosenbluth,

A. Teller and E. Teller

J. Chem Phys. 21(6):1087-1092, June 1953

[4] L. Susskind,

Phys. Rev. D16 (1977) 3031

[5] K. Wilson

Adv. Math. 16 (1975) 176

[6] S. Duane, A. Kennedy, B. Pendleton and D. Roweth

Phys. Lett. 195B (1987) 216.

[t] S. Booth R. Dobinson D. Jeffery W. Lu

K. Storr. and A. Thornton

Comput. Phys. Commun. 57 (1989) 486.

[8] S. Booth, K. Bowler, D. Candlin, R. Kenway,

B. Pendleton, A. Thornton and D. Wallace.

Comput. Phys. Commun. 57 (1989) 101.

151

D. Stephenson and A. Thornton

Phys. Lett. B 212 (1988) 479.

S. Gupta, A. Irbäck, F. Karsch and B. Petersson

Phys. Lett. B242 (1990) 437-443.

Thinking Machines Corporation

Connection Machine CM-200 series technical summary.

K. Bowler, R. Kenway, G. Pawley and D. Roweth

An introduction to Occam 2 programming,

Student-litterature. Chartwell-Bratt, 1987.

M. Metcalf and J. Reid

Fortran 90 explained

Oxford science publications (1990)

ISBN 0 - 19 - 853772 - 7.

AMT Ltd.

DAP Series FORTRAN PLUS Language, 1990

Thinking Machines Corporation

CM Fortran Reference Manual.

D. Knuth

The art of computer programming, Vol 2 Ch S

Addison Wesley (Reading, Mass 1973)

ISBN 0 - 201 - 03822 - 6

G. Marsaglia

Computer Science and Statistics 16th Symposium on the interface,

Atlanta, March 1984

R. McEliece

Finite fields for computer scientists and engineers

Kluwer (Boston 1987)

D. Knuth

The art of computer programming, Vol 2 Ch 4

152

Addison Wesley (Reading, Mass 1973)

ISBN 0 - 201 - 03822 - 6

G. Marsaglia and L. Tsay,

Linear Algebra and its applications, 67, 147-156, 1985.

T. Lewis and W. Payne,

J. Assoc. Comput. March. 20, 456-468 (1973).

B. Ripley

Stochastic simulation

Wiley (New York Chichester 1987)

M. Fushimi and S.Tezuka,

Comm. ACM 26, 516-523 (1983).

G. Marsaglia and A. Zaman

Towards a universal random number generator,

Florida State preprint, 1987.

J.D. Bjorken and S.D. Drell,

Relativistic Quantum Fields

(McGraw-Hill) 166-170

M. Lüscher,

Nucl. Phys. B341 (1990) 341-357

M. Lüscher and P. Weisz,

Nucl. Phys. B290[F520] (1987) 25

J.B. Kogut, B. Dagotto and A. Kocic,

Phys. Rev. Lett. 60 (1988) 772.

J.B. Kogut, E. Dagotto and A. Kocic,

Nucl. Phys. B317 (1989) 271

R. Fukuda and T. Kugo,

Nucl. Phys. B117 (1976) 250

V.A. Miransky,

Nuovo Cim. 90A (1985) 149

153

U.N. Leung, S.T. Love and W.A. Bardeen,

Nuci. Phys. B273 (1986) 649

A. Cohen and H. Georgi,

Nuci. Phys. B314 (1989) 7

Y. Nambu and G. Jona-Lasinio,

Phys. Rev. 122 (1961) 345

T. Appelquist, M. Soldate, T. Takeuchi and L.C.R. Wijewardhana,

Effective four-fermion interactions and chiral symmetry breaking,

Proceedings of the 12th Johns Hopkins Workshop on Current Problems

in Particle Theory, Baltimore 1988

K. Kondo, H. Mino and K. Yamawaki,

Phys. Rev. D39 (1989)

T. Nonoyama, T.B. Suzuki and K. Yamawaki,

Prog. Theor. Phys. 81 (1989) 1238

V.A. Miransky and K. Yamawaki,

Mod. Phys. Lett. A4 (1989) 129.

J. Oliensis and P.W. Johnson,

Dynamical chiral symmetry breaking in

strong coupling unquenched QED4

Argonne preprint ANL-HEP-PR-88-45 (Aug 1988)

E. Dagotto, A. Kocic and J.B. Kogut,

Phys. Lett. B232 (1989) 235.

E. Dagotto, A. Kocic and J.B. Kogut,

Finite Size, Fermion Mass and Nf Systematics in

Computer Simulations of Quantum Electrodynamics,

Illinois preprint ILL-(TR)-89-#34, July 1989.

S. Booth, R. Kenway and B. Pendleton

Phys. Lett. B228 (1989) 115

A.M. Horowitz,

Phys. Lett. 219B (1989) 329.

154

I-H. Lee and R.E. Shrock,

Phys. Rev. Lett. 59 (1987) 14.

A. Horowitz

Nuci. Phys. B(Proc. Suppi.) 17 (1990) 694-698.

S. Booth, R. Kenway, B. Pendleton and A. Horowitz

Nuci. Phys. B(Proc. Suppi.) 17 (1990) 691-693

A. Ferrenberg and R. Swendsen

Phys. Rev. Lett. 61 (1988) 2635

A. Ferrenberg and R. Swendsen

Optimized Monte-Carlo data analysis,
p4c4 O$ so t%, 6g.. 	?r icto Uj 	'

Meiko Ltd

CS Tools for SunOS

L. Clarke and G. Wilson

Tiny: An efficient routing harmess for the Inmos Transputer

Concurrency;practice and experience (1990)

Green 'ih&Software, Inc.

C-860 User's Guide; Fortran-BOO User's Guide.

Intel corporation

i800 64-bit microprocessor programmer's reference manual

[53]Y.Oyanagi -

Comp. Phys. Comm. 42 (1986) 333

Thinking Machines Corporation

Connection Machine CM-5 technical summary.

UKQCD collaboration

Phys. Lett. B275 (1992) 424-428.

UKQCD collaboration

Nucl. Phys. B (Proc. Suppl.) XXX (1992) 1-6.

155

UKQOD collaboration

Quenched Hadrons using Wilson and 0(a)-Improved Fermion Actions

at 0 = 6.2

Edinburgh Preprint: 92/506,

Southampton Preprint: SHEP 91/92-15

N. Cabibbo & E. Marinari,

Phys. Lett. 119B (1982) 387.

B. Sheikholeslami & R. Wohiert,

Nuci. Phys. B259 (1985) 572.

G. Heatlie et al.,

Nuci. Phys. B352 (1991) 266.

156

