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Abstract

The murine cytomegalovirus (MCMV) immediate early 1 (IE1) protein has been

described as a trans-activator of viral and host gene expression. However, the

precise role that IE1 plays in the viral life cycle, and in particular its effect on

the host immune response is not known. This thesis investigates the functional

relationship of the IE1 protein and the immune response induced after infec-

tion. By using an ie1-deletion mutant MCMV (MCMVdie1) it was demonstrated

that, early after infection, tumor necrosis factor (tnf ) gene activation and protein

production was significantly induced in infected-primary macrophages (Mθ) to

a much greater extent than its wild type counterpart. In addition, preliminary

studies on the signalling pathways activated upon infection were carried out in

order to gain information about the pathways that might be involved in MCMV-

induced modulation of tnf activation. Initial observations on the MAPK family

members Erk1/2, p38 and JNK did not revealed any differential activation in the

absence of IE1. However, due to a number of limitations, it was not possible to

draw any firm conclusions from this study.

Investigation of the role of IE1 in the in vivo production of TNF were also

performed in both susceptible (BALB/c) and resistant (C57Bl/6) mice. These ex-

periments confirmed the attenuated phenotype of MCMVdie1 in vivo, whereby

the mutant strain grew to much lower titers than wild type. When cytokine pro-

duction was assessed in relation to PFU levels a significant production of TNF

after infection is observed in different organs of both mice strains. This raises

the question whether IE1 contributes to MCMV modulation of TNF production

in the natural host. Although, because it is still unclear whether the phenotype

of MCMVdie1 in vivo is due to a defect in the virus or the result of a immune
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response, it was not possible to conclude unequivocally that IE1 is responsible

for dampening this cytokine response.

This thesis also tested whether the attenuated replication of MCMVdie1 in

vivo was due to the increased TNF production induced after infection. An initial

investigation in tnf depleted mice revealed that the MCMVdie1 growth pheno-

type is not due to TNF response.

Overall, this study has provided insight into a potential immune modulatory

function by MCMV associated with IE1 protein and the regulation of TNF in vivo

and in vitro.
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CHAPTER 1

Introduction

1.1 Herpesviruses: General overview

Herpesviridae are a large family of viruses highly disseminated in nature which

can cause disease in humans. All Herpesviruses share a common structure, they

all are DNA viruses and replicate in the nucleus of infected cells. Another com-

mon feature of this family is the capacity to establish latency after the initial

infection. The cells where the viruses establish latent infection varies from one

virus to another as well as the reactivation mechanism of the virus from latency.

The exact mechanisms by which this process takes place is still under study.

1.1.1 Structure and Classification of Herpesviruses

Initially, inclusion within the Herpesvirus family was based on the virion struc-

ture (see Figure 1.1). The Herpesvirus virion consists of a torus-shape core asso-

ciated with the viral double-stranded DNA of about 120 to 230 kilobase pairs, de-

pending on the Herpesvirus. The viral DNA is housed in an icosahedral capsid

composed by approximately 162 capsomers, or morphological units. Surround-

ing the capsid is the tegument which also contains virally expressed proteins.

These proteins are introduced in the host cell with the aim of modifying the cel-

lular environment for the successful initiation of the infection. Examples of this

include the shut down of the cellular protein synthesis, enhancement of viral

gene transcription or immune evasion strategies. Finally, the outer layer is called

envelope and is composed by altered host membranes and viral glycoproteins.

The envelope can also contain external glycoproteins spikes which play a key

role during the initial stages of viral infection.

1
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Figure 1.1: Typical Herpesvirus virion

In addition to the virion architecture, there are also four main characteristics

shared by all Herpesviruses [Pellett P. E., 2006]:

1. All viruses encode a number of enzymes involved in nucleotide metabolism,

DNA replication and protein synthesis.

2. Viral DNA replication and assembly of new virions occur in the nuclear

compartment of the cell.

3. Production of new progeny virions during lytic replication generally re-

sults in the destruction of the infected cell.

4. All Herpesviruses are able to remain in the host cell in a latent state. After

correct stimuli latent virus can be reactivated and cause disease.

Approximately 100 Herpesviruses have been isolated and to date 8 Herpesviruses

in this family infect and cause disease in humans. They are subdivided into three

subfamilies based on their biological properties (Table 1.1).

Inspite of the common characteristics of the members of the Herpesvirus fam-

ily, there are also specific features for each virus. For instance, the host cell range

is very wide for the alpha Herpesviruses whereas it is more restricted for beta

and gamma Herpesvirus. This restriction is related to the distribution of cellular
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Table 1.1: Classification of Herpesviruses

Type Name Subfamily
HHV-1 Herpes simplex virus-1 (HSV-1) Alphaherpesvirinae
HHV-2 Herpes simplex virus-2 (HSV-2) Alphaherpesvirinae
HHV-3 Varicella zoster virus (VZV) Alphaherpesvirinae
HHV-4 Epstein-Barr virus (EBV) Gammaherpesvirinae
HHV-5 Cytomegalovirus (CMV) Betaherpesvirinae
HHV-6 - Betaherpesvirinae
HHV-7 - Betaherpesvirinae
HHV-8 Kaposi’s sarcoma-associated herpesvirus (KSHV) Gammaherpesvirinae

receptors for the viral particle, making the cells more or less permissive for infec-

tion. There is also variation in the length of the replication cycle, HSV has a short

replicative cycle of approximately 18 hours while CMV requires up to 48 hours

to complete it.

1.1.2 Herpesvirus Replication Overview

The replication cycle of the Herpesviruses can be divided into several stages (see

Figures 1.2 and 1.3): (1) attachment of the virus to the host cell and penetration,

(2) transcription and (3) viral replication, both events happening in the nuclear

compartment of the host cell, (4) assembly of the new progeny of virions and

(5) egress from the cell to the exterior. A general introduction of these phases is

described below.

Attachment and entry

The initial step in the Herpesvirus life cycle is the attachment of the viral par-

ticle to cellular receptors, followed by the fusion of the viral envelope with the

cell plasma membrane. Once the virion has been attached both viral envelope

and cell plasma membrane fuse. Glycoproteins found in the virion envelope are

key players in the initiation of the cycle. Upon entry the viral nucleocapsid with

associated tegument proteins is transported by the cellular cytoskeleton to the

nuclear pores. It is believed that the presence of these tegument proteins dur-

ing these early stages of infection is essential to create the correct environment

for efficient replication of the virus. For example, along with HSV capsid the

tegumentary proteins VP16 and vhs are also introduced in the host cell. VP16
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Figure 1.2: Life cycle of Herpesviruses

is transported to the nucleus where acts as an inducer of immediate early gene

transcription [Campbell et al., 1984] whereas vhs remains in the cytoplasm where

it induces degradation of both cellular and viral mRNAs [Fenwick and Clark,

1982, Fenwick and McMenamin, 1984].

Transcription

Transcription of all Herpesviruses takes place in the nucleus and viral proteins

are synthesized in the cellular cytoplasm. In infected cells the cellular RNA poly-

merase II is responsible for the transcription of viral genes. In addition, this pro-

cess occurs in a regulated temporal cascade starting with the expression of the α
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or immediate early genes, followed by the β or early genes and γ or late genes.

The expression of immediate early genes does not require prior viral protein syn-

thesis, however sometimes the virus particle has some proteins which enhance

this initial process. Expression of the early genes requires the presence of some

immediate early proteins but not the onset of viral DNA replication. The early

genes encode for proteins required for viral replication, nucleotide metabolism

and expression of the last set of viral genes. The late gene expression is nor-

mally increased after viral DNA replication and they encode for virion structure

proteins.

Replication

Herpesviruses encode their own DNA-dependent DNA polymerase responsi-

ble for viral DNA replication. The replicated DNA is present as concatameric

molecules, that is a long DNA molecule containing multiple repeats of the vi-

ral genome, which is generate by the rolling-circle method of replication. The

concatemers are then cleaved to correct size of DNA to be packaged into new

progeny of virions.

Assembly

Assembly of new capsids takes place in the nucleus, therefore new capsid pro-

teins are transported from the cellular cytoplasm to the nucleus. Along with viral

scaffolding proteins the assembly of capsids occurs. These scaffolding proteins

will be later degraded by a viral protease. Finally, the viral DNA which is in the

form of concatemers is cleaved and packaged into the capsid.

Viral envelopment and egress.

Once the capsid has been formed the virion needs to obtain the tegument and

envelope. This complex procedure is not completely understood but it is known

to start by fusion of the capsid with the nuclear membrane obtaining an initial

envelop. There are two different pathway of envelopment: (1) the dual envel-

opment pathway and (2) the single nuclear envelopment pathway. In the dual

envelopment pathway the virus acquires the envelope from the nuclear inner

membrane and follows a progressive de-envelopment and re-envelopment as the
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virion moves from different cellular compartments [Jeffrey I. Cohen, 2001, Pellett

P. E., 2001]. On the other hand, in the single envelopment pathway the virus ac-

quires the envelop from the inner nuclear membrane after which enters a vesicle

at the outer nuclear membrane in which the virus is transported to the plasma

membrane. Finally, by fusion with the plasma membrane the virus is released

from the cell.

Figure 1.3: Possible egress pathways
The egress of the new virion from the infected cell can follow two pathways. One involves
the de-envelopment of the virion when it passes through the outer nuclear membrane and
re-envelopment from the trans-Golgi network, being released in secretory vesicles. The second
pathway does not involve the re-envelopment sequence and is transported in vesicles to the
plasma membrane. Adapted from [Roizman and Knipe, 2001]

1.2 Alpha Herpesviruses

The Alpha Herpesviruses exhibit a wide range of host cells, and are also charac-

terized by a short replicative cycle and rapid cell-to-cell spread in culture. Infec-

tion with Alpha Herpesviruses results in the effective destruction of the cells and

also the establishment of a latent infection in sensory ganglia. This subfamily

includes Herpes Simplex Virus 1 and 2 (HSV1 and HSV2) and Varicella Zoster

virus (VZV).
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Infection with HSV1 and HSV2 is distributed worldwide. Initial infection

with HSV1 appears to be very frequent at early age during childhood. However

geographic location and socioeconomic status seem to be factors affecting acqui-

sition of HSV. In fact, several studies have revealed the high seroprevalence of

HSV in the population [Roizman B., 2006]. In the case of pregnant women this

also increase the risk of reactivation of the virus and transmission of the virus

to the newborn. When infection is initiated viral replication takes place at the

site of infection. A key step in viral pathogenesis is the ability of the virus to

replicate and subsequently be transported to dorsal root ganglia where it can es-

tablishment of latency. The recurrence of HSV infection is also normal, resulting

in vesicular lesions of the skin in the lips or genitalia.

The capacity of HSV to infect the nervous system is an important viral prop-

erty for human pathogenesis. Animal models have been very useful to study

viral pathogenesis of HSV infection.

VZV infection is initiated by inoculation of the respiratory mucosa or close

contact with an infected individual. VZV causes varicella, also known as chicken

pox, a highly contagious infection, causing annual outbreaks. Unlike other mem-

bers of the alpha Herpesvirus subfamily, VZV has a tropism for T lymphocytes.

VZV can also establish latency after primary infection in cells of the dorsal root

ganglia. Reactivation of VZV from latency results in herpes zoster, commonly

known as shingles. VZV reactivation can also cause post-herpetic neuralgia.

1.3 Beta Herpesviruses

Beta Herpesviruses are characterized by a strict species specificity, relatively slow

replication cycle and the induction of the enlargement of infected cells, also

known as cytomegalia. Beta Herpesviruses can also establish latency in the host

as do other Hespesviruses. This subfamily contains Cytomegalovirus and Hu-

man Herpesvirus 6 and 7. Although HHV6 and 7 are relatively recently discov-

ered viruses, the murine virus (MCMV) has been extensively used as a model for
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studying human virus (HCMV)-induced pathogenesis, thanks to the biological

similarities between viruses and to the ease of handling the virus.

Like HCMV, infection with MCMV results normally in an asymptomatic in-

fection and establishment of latency. However, in immunocompromised hosts

the outcome of the infection could be fatal. The immune system controls the level

of reactivation from latency leading to a life-threatening disease in immunosup-

pressed patients. AIDs patients and transplant recipients are commonly vul-

nerable to reactivated viral infection. Congenital infection also occurs and is

associated with serious damage of the central nervous system, including malde-

velopment and deafness.

HHV6 and HHV7 compose the Roseolovirus within the beta Herpesvirus sub-

family, sharing some features with CMV. As seen for CMV infection HHV6 and 7

are ubiquitous with more than 90% of the population infected. Two HHV6 vari-

ants have been identified, HHV6A and HHV6B. With HHV7, infection of these

viruses cause the infant disease exanthem subitum (ES), also referred to as rose-

ola infantum. Infection with the variant B of HHV6 is more common than the A

variant, and so far no clear disease has been associated with HHV6A.

1.4 Gamma Herpesviruses

Gamma Herpesviruses have a more restricted host and host cell range. They are

lymphotropic viruses, specific to either T or B cells, where latency is also estab-

lished. This subfamily contains two genera: (γ-1) Lymphocryptovirus, which in-

cludes EBV, and (γ-2) Rhadinovirus, which includes KSHV, Herpesvirus Saimiri

(HVS), Rhesus monkey rhadinovirus (RRV), Equine Herpesvirus 2 and murine

gammaherpesvirus 68 (MHV68). An important feature of the gamma Herpesviruses

is the association with cancer.

The study of gamma Herpesviruses has not been easy due to the difficulty of

these viruses to replicate in vitro, as well as the tendency of establishing latency

instead of a lytic infection. On the other hand, ethical restrictions to study hu-

man gamma Herpesviruses in the natural host have also impeded to have a better
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information about the biology of these viruses. However of the interest in vet-

erinary medicine gamma Herpesviruses are now very valuable animal models,

providing important information regarding the infection in the natural host.

EBV was the first Herpesvirus to be sequenced and cloned [Baer et al., 1984]

and it has been extensively studied in contrast to the rest of gamma Herpesviruses.

There are two variants of EBV, subtype 1 or A and subtype 2 or B and they both

present antigenically differences. There are studies suggesting that EBV subtype

1 is more prevalent that subtype 2 but this last one is found prominently in Africa

[Gratama and Ernberg, 1995]. EBV is capable of infecting several cell types, T-

and B-cells, as well as epithelial cells. Transmission of EBV infection is mainly

through the saliva of infected individuals, however EBV has also been detected

in genital secretions. EBV is the agent of infectious mononucleosis and Burkitt’s

lymphoma and it has also been associated with Hodgkin’s lymphoma, nasopha-

rangeal carcinoma and some forms of gastric cancer [Rickinson A. B., 2006]. An

important characteristic of EBV infection is the different latency programs. In

addition, these programs are also characteristic of various EBV-associated malig-

nancies [Rowe et al., 1992]. Interestingly, the viral latent gene expression varies

according to the program.

The other member of the gamma Herpesvirus subfamily to infect humans is

the very recently discovered KSHV or HHV-8. It resembles EBV in its tropimsm

for B cells, in the establishment of latent state and difficulty of using the virus

in vitro. KSHV infection has been associated with Kaposi’s sarcoma, a tumour

of endothelial cells origin, Primary Effusion Lymphoma and Multicentric Castle-

man’s Disease, both of which are rare B-cell lymphoproliferative diseases.

1.5 Focus on Murine CMV

The ability to study a natural infection in the natural host makes MCMV a virus

worth studying. Due to the strict species specificity of CMV, studies on HCMV

have been restricted to in vitro systems. However the biological similarities to

MCMV (virion structure, life cycle, general biology) makes the murine virus an
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excellent model to study HCMV biology and pathogenesis. There are also a num-

ber of similarities in the immune response to control viral infection. For instance,

in both human and murine MCMV infection CD8+ T cells play an important

role for viral control [E. S. Mocarski, 1996]. In fact, the most important target

for both HCMV and MCMV-specific CD8+ T cells is the immediate early 1 (IE1)

protein [Kern et al., 1999, Reddehase et al., 1985]. Nevertheless, information ob-

tained from the MCMV model should be not extrapolated to the HCMV since

there are also a number of differences between these viruses [Rawlinson et al.,

1996], for instance both viruses have developed immune evasion strategies to

overcome host response against infection, however the molecular mechanisms

of such strategies are not identical.

1.5.1 Virion structure and Genetics of MCMV

CMVs are the principal members of the beta Herpesvirus subfamily. They also

share common characteristics with other Herpesviruses like virion structure and

establishment of latency. CMV virion structure consists on an icosahedral cap-

sid where the linear double-stranded DNA of 235 kb is housed. CMV has also

an envelope and between the capsid and envelope there is the tegument. Both

HCMV and MCMV genomes have been sequenced and it has been established

that approximately 80 of the 170 ORFs share homology with HCMV [Rawlinson

et al., 1996]. In contrast to HCMV genome organization, MCMV presents a single

unique sequence flanked by terminal repeats [Rawlinson et al., 1996].

As other Herpesviruses, MCMV gene expression is regulated as a 3-phase

temporal cascade: (1) the immediate early phase, independent on any previous

viral gene expression, (2) the early phase which relies on the IE proteins and (3)

the late phase dependent on viral DNA replication. During the late phase struc-

tural proteins are encoded. The genetic regions encoding for these 3 different

classes of genes were described by Keil and coworkers [Keil et al., 1984].

The IE genes of the MCMV are organized in a genomic region known as the

major immediate early (MIE) locus from where the IE proteins are expressed

under the strict control of the MIE enhancer/promoter. This enhancer region
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Figure 1.4: Genetic organization of the major immediate early (MIE) region of
the Murine Cytomegalovirus
The MIE consists in two transcriptional units: the ie1/ie3 and the ie2, both under the control
of specific promoters, at both sides of the enhancer region. The differential splicing from the
ie1/ie3 unit drive to the production of two proteins, the IE1 and IE3. The exon 3 from the ie2
transcriptional unit is responsible for encoding the IE2 protein. Adapted from [Reddehase, 2002]

is a large sequence containing a number of binding sites for different transcrip-

tion factors, including NFκB, retinoic acid receptor (RAR), AP1 and CREB. These

factors are shared within the different CMVs enhancers [Stinski and Isomura,

2008]. The enhancer region is necessary for viral replication, since it has been

shown that a mutant lacking the enhancer is deficient for replication in tissue

culture [Angulo et al., 1998]. Moreover, this study also showed that the enhancer

is not responsible for the species specificity of the virus since it was possible to

restore viral growth when the human virus enhancer region was introduced to

the enhancerless virus. In addition, the enhancer region of MCMV is absolutely

essential for viral pathogenesis in the natural host [Ghazal et al., 2003].

Two different transcription units can be differentiated at both sides of the en-

hancer region, the ie1/ie3 and ie2, each one driven by specific promoters (Figure

1.4). Differential splicing of the ie1/ie3 region results in the production of two

proteins: the IE1, encoded by exons 1-4, and IE3, encoded by exons 1-3 and 5.

The IE2 protein is encoded by the exon 3 of the ie2 gene. The structure of this

last protein was studied by [Messerle et al., 1991] and different investigations
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revealed no actual function for the MCMV IE2 protein, as well as complete unaf-

fected viral growth in the absence of this protein [Manning and Mocarski, 1988].

Therefore, the following sections will be focused on IE1 and IE3 proteins.

Immediate early 1 protein

Sequence and structural organization of the immediate early 1 gene was de-

scribed by Keil and coworkers [Keil et al., 1987b]. Years later, and thanks to

the bacterial artificial chromosome (BAC) technology, which allowed for cloning

of the viral genome, studies were designed in order to dissect the role that viral

genes might play in the context of a viral infection. Therefore, by using BAC

strategy, a MCMV genome carrying a mutation within the ie1 gene was con-

structed [Messerle et al., 1997]. The initial observation when studying the func-

tion of this gene was that, in the absence of ie1, the virus presented slightly lower

replication in tissue culture. Ghazal and coworkers generated a second mutant

virus where the ie1 exon 4 was deleted from the viral genome and showed that

the IE1 protein was not required for efficient replication in vitro [Ghazal et al.,

2005]. However, in the natural host the ie1-deletion mutant MCMV had an at-

tenuated phenotype, demonstrating a critical role of the viral protein for viral

replication in vivo. Moreover, the construction of a revertant virus, where the

exon 4 was reintroduced, further confirmed that these results were due to IE1,

since no differences were found between parental and revertant MCMV.

It has been shown that MCMV IE1 contributes to the transcriptional activa-

tion of the early genes, but in combination with the IE3 protein [Messerle et al.,

1992]. The IE1-induced activation of gene expression is not completely under-

stood, although the ability of IE1 to interact with chromatin through histones

[Munch et al., 1988, Munch et al., 1992] might be responsible for this regula-

tory function. The ability of the MCMV IE1 protein to activate gene expression

has also been demonstrated [Koszinowski et al., 1986], and it was later con-

firmed by showing that this viral protein induces the transcription of specific

genes such as NFκB [Gribaudo et al., 1996] and c-fos, both involved in the cellu-

lar cycle [Schickedanz et al., 1988], as well as genes involved in thymidylic acid

metabolism [Gribaudo et al., 2000], and ribonucleotide reductase [Lembo et al.,
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2000], which are required for viral DNA replication and cell cycle regulation.

This ability of IE1 to activate gene transcription is also shared with the HCMV

homolog IE1 protein [Wade et al., 1992, Hayhurst et al., 1995], although very lit-

tle homology exist between the nucleic acid and amino acidic sequence of both

proteins [Keil et al., 1987b].

Another functional characteristic of the IE1 protein is its interaction with Nu-

clear domain 10 (ND10), also known as promyelocytic leukemia (PML) onco-

genic domains (PODs). ND10s are nuclear structures comprising protein aggre-

gates including PML, Sp100 and Daxx. These aggregates have been shown to

be nuclear sites of viral initiation of replication, including herpesvirus and aden-

ovirus [Maul, 1998]. Components of ND10 are known transcriptional repressors,

such as PML and Daxx. In addition, they have been associated with antiviral ac-

tivities since their expression is induced by IFN [Grotzinger et al., 1996, Gongora

et al., 2001]. However, the role that these structures play in CMV infection is

not completely understood. Infection with HCMV results in the disruption of

ND10 nuclear bodies which seems to relieve the transcriptional repression in-

duced by proteins like Daxx. HCMV has been shown to induce degradation of

this protein by the tegument protein pp71 [Saffert and Kalejta, 2006], which will

subsequently allow expression of IE genes. This would be consistent with the en-

hancement of viral replication seen in the absence of PML or Daxx [Tavalai et al.,

2008]. HCMV IE1 protein has also been involved in ND10 disruption by the

modification of PML [Lee et al., 2004]. Like HCMV, MCMV IE1 disperses ND10

bodies soon after infection [Tang and Maul, 2003, Ghazal et al., 2005], an abil-

ity which is also shared by other herpesviruses [Everett, 2001], including HSV-1.

The HSV-1 ICP0 protein has been shown to disrupt ND10 nuclear bodies by in-

ducing the proteosomal degradation of PML [Everett et al., 1998]. In contrast,

MCMV IE1 does not induce the degradation of either PML or Daxx. Instead, it

has been suggested that it might induce changes in the phosphorylation status

of Daxx, which affects its repression abilities [Maul and Negorev, 2008].

Interestingly, HCMV and HSV-1 mutant viruses, failing to express IE1 and

ICP-0, respectively, exhibit a dose-dependent phenotype in cultured cells [Greaves
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and Mocarski, 1998, Everett et al., 2004]. This phenotype has been associated

with the failure of ND10 disruption, accompanied by the transcriptional repres-

sion induced by ND10 components [Gawn and Greaves, 2002, Everett et al., 2008]

which limit the expression of IE genes. However, in contrast to these mutants,

the MCMV ie1-deletion mutant showed comparable replication to wild type in

a number of permissive cells [Ghazal et al., 2005]. As expected, disruption of

ND10 at early times did not take place in ie1 mutant-infected cells, indicating

that ND10 bodies are not required for MCMV initiation of replication. How-

ever, later in MCMV ie1-deletion mutant infection, ND10 disruption was seen

in an IE1-independent manner, perhaps by other viral products which take over

this function for future replication cycles. It is also noteworthy that the ratio

particle to PFU in HCMV and HSV-1 IE1 mutants are high [Greaves and Mo-

carski, 1998, Everett, 1989]. This ratio measures the number of viral particles to

infectious particles of virus. However, Ghazal and coworkers showed an indis-

tinguishable growth kinetics of MCMV ie1-deletion mutant in a series of permis-

sive cell types and therefore so far it has been assumed that the absence of ie1

does not result in a defective new virion progeny. In any case, it would be very

informative to investigate what the particle to PFU ratio is in this mutant virus.

Immediate early 3 protein

MCMV IE3 is similar to its human homolog IE2, in both structural and functional

characteristics [Keil et al., 1987a]. This protein is encoded by exons 1, 2, 3 and 5

from the ie1/ie3 transcriptional unit. Characterization of the protein resulted in a

88 kDa protein, with similar kinetics as the IE1 protein [Messerle et al., 1992]. The

same study demonstrated that the switch from the immediate early phase to the

early phase requires IE3 protein which, at the same time, acts as a transcriptional

repressor of the ie1/ie3 promoter.

The role of the ie3 gene product has been studied by the construction of an ie3-

deletion MCMV mutant [Angulo et al., 2000]. In order to disrupt the ie3 gene and

prevent the production of the IE3 protein, the exon 5 of the ie1/ie3 transcriptional

unit was deleted. At the same time, and in order to study whether the resulting

phenotype was due to solely the ie3 gene, a revertant virus was also constructed.
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In this study, Angulo and coworkers demonstrated the absolute requirement of

ie3 for viral growth. The fact that only ie1 transcripts were found in infected

fibroblasts and neither early nor late proteins were expressed also confirmed the

role of the IE3 protein in the activation of viral gene expression. Indeed, IE3 has

been shown to negatively regulate the ie1/ie3 promoter, indicating the regulatory

role of this protein in the viral gene expression [Messerle et al., 1992].

Early and Late genes

IE gene products are required for expression of the early genes, which play a role

in viral DNA replication. Upon viral replication late genes are then expressed,

encoding for structural proteins which make up the viral capsid as well as pro-

teins involved in virion maturation and egress from the cell.

1.5.2 Pathogenesis

CMV is transmitted by bodily secretions (saliva, semen, blood). During preg-

nancy, transplacental transmission might occur, as well as during breastfeeding,

which is considered the most common source of transmission from mother to

child. Primary infection of immunocompetent hosts with HCMV is very com-

mon and frequently results in asymptomatic disease. However, the virus is never

completely cleared by the immune response and the virus establishes latency.

Furthermore, when the immune system of the host is undeveloped as in the case

of congenital infections, or compromised as in the case of transplant recipients or

patients with AIDS, the outcome of the infection could be fatal. Along with the

immune status of the host, there are several other factors affecting viral patho-

genesis, such as viral replication, evasion of the immune system and dissemina-

tion.

Congenital HCMV infection is characterized by damage to the central ner-

vous system (CNS). Maldevelopment of the CNS, deafness and impaired vi-

sion are very common in congenitally-infected newborns [Stagno et al., 1986].
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HCMV-related disease is very important for transplant recipients, where pneu-

monitis and gastrointestinal inflammation are very common. The source of vi-

ral infection in these patients could be as a result of reactivation of latent virus

or transmission from the organ donor. HCMV has also been associated with

atherogenesis. The mechanisms by which the disease is initiated are not known,

although injury to endothelial cells has been implicated as an important factor.

HCMV has tropism for endothelial cells and viral replication induces an inflam-

matory response. The activation of Mθs, a central player in inflammation, re-

sults in the production of cytokines and chemokines which also contribute to

the maintainance of inflammation and the evolution of atherogenesis. In fact,

there is evidence showing that MCMV infection of Mθs favor the differentiation

of these cells into an active pro-inflammatory Mθs, which will contribute to the

aggravation of atherosclerosis [Vliegen et al., 2004]. It is also known that HCMV

infects monocytes and disseminates throughout the host by using these cells as

vehicles. This dissemination process is also important for pathogenesis, as well

as cytokine production which has been implicated in reactivation of virus from

latency, as seen for TNF [Simon et al., 2005, Hummel et al., 2001]. HCMV infec-

tion of intestinal cells has been associated with inflammatory bowel disease by

induction of cytokine production [Rahbar et al., 2003].

Viral induction of adhesion molecules in the cell surface could also affect cel-

lular migration and subsequent tumor invasiveness [Soderberg-Naucler, 2006].

HCMV has also been suggested to play a role in immune evasion of tumor cells,

since it could help to avoid the immune response.

Because clinical abnormalities of HCMV infection are similar to that observed

in corresponding animal models, the use of these systems have helped to un-

derstand the pathologies associated with CMV infections. The murine model

have been extensively used in this regard. When studying MCMV pathogene-

sis several factors have to be taken into consideration regarding the outcome of

infection. For instance, the route of infection or the origin of the viral inoculum

and immune status of the host are key factors which could affect the infection
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[Krmpotic et al., 2003]. Infection of immunocompetent mice with salivary gland-

derived virus (SGV) results in high viral replication in several organs, including

the liver. In this tissue, viral replication induces an inflammatory response, char-

acterized by high levels of TNF [Trgovcich et al., 2000], which have been asso-

ciated with hepatitis. Cytokine-induced activation of bystander cells could also

aggravate damage to the tissue. As in HCMV, infection of immunocompromised

hosts could lead to life-threating disease.

1.5.3 Innate immunity against MCMV

Study of the control of MCMV infection has been the focus of many groups in

the last decade. This effort has made it possible to understand the specific mech-

anisms involved with controling virus infection. The studies have identified the

key immune cells that play an important role against MCMV infection, as well as

their molecular mediators. The establishment of the animal model for studying

the human virus has been crucial to determine what immune cells are important

in the control of viral infection. Several studies have identified the following cel-

lular populations as the main contributors for the immunity against MCMV as

well as targets for the immune evasion strategies developed by the virus.

Natural Killer Cells (NK)

The use of NK cell-depleted mice using either genetically strategies or specific

antibodies against this cellular population have demonstrated the key role of

NK cells in the innate immune response to MCMV [Orange et al., 1995, Krm-

potic et al., 2002]. The response has also been shown to be organ-specific [Tay

and Welsh, 1997]. An important feature of these cells is that they allowed the

identification of genetic MCMV susceptibility based on the ability of these cells

be activated after viral infection. This difference in susceptibility relies on the

level of NK cell activation, which is under control of the Cmv1 locus [Scalzo et al.,

1990] which lies within the NK gene complex [Scalzo et al., 1992]. Cmv1 encodes

the activated NK cell receptor Ly49H. NK cells from BALB/c mice lack this locus
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and consequently they do not induce the correct signals for NK cell activation

after MCMV infection. However, 50% of the NK cells of C57Bl/6 mice bear the

Cmv1 locus and express Ly49H. Therefore, the BALB/c mouse strain is consid-

ered as MCMV-susceptible while the C57Bl/6 are MCMV-resistant.

MCMV-infected cells express the viral protein M157, which has been shown

to be a strong ligand for Ly49H [Arase et al., 2002]. It is interesting that the

virus expresses a protein which will induce activation of NK cells and therefore

the innate immune response. However, despite this viral protein, MCMV has

also evolved immunevasive mechanisms to escape from NK cells. For instance,

Arase and coworkers also showed that M157 binds the inhibitory receptor Ly49I,

which association will block NK activation. A second receptor essential for NK

cell activation is NKG2D. This receptor is a potent activator of NK cells which

has also been shown to be targeted by both HCMV and MCMV (reviewed in

[Lenac et al., 2008].

Monocytes/Macrophages (Mθs)

Monocytes are produced in the bone marrow from haematopoietic precursors.

They circulate in the blood until they move to the tissues, where they mature

into Mθs. Monocytes and Mθs have been shown to be a replication site for

MCMV. Moreover, upon infection, MCMV disseminates to other organs aided

by blood monocytes, which act as vehicles. It has been reported that the dif-

ferentiation process defining the maturation of monocytes into Mθs favors viral

infection [Hanson et al., 1999]. Mθs also play a role during latency, since it has

been found that these cells are a major site of persistence of MCMV DNA in the

latent state. Moreover, the bone marrow has been defined as a ’source’ of latent

MCMV [Pollock et al., 1997, Mitchell et al., 1996].

Besides, Mθs represent the first line of defense along with NK and dendritic

cells. Upon activation, Mθs produce a number of mediators which will activate

and recruit other immune cells to the site of infection. Mθs also coordinate innate

and adaptive immunity. Therefore, it is not surprising that different viruses have

developed strategies to avoid Mθs activation or Mθ-induced immune responses.
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Indeed, MCMV has been demonstrated to reduce the expression of MHC-class

II on the surface of infected macrophages, by inducing the production of IL10

[Redpath et al., 1999].

Because Mθs also play a role in CMV-induced pathogenesis, there are several

studies trying to identify the viral genes responsible for Mθs tropism, and find

homologues for HCMV.

Dendritic Cells (DC)

DCs are professional antigen presenting cells (APC). Upon activation, DCs mi-

grate to lymphoid tissues where they present antigens to T cells. Several sub-

types of DCs have been described. They differ in Toll like receptors (TLRs), cos-

timulatory proteins and cytokines produced. Therefore, the type of immune re-

sponse induced by DCs depends on the subtype infected or activated. MCMV

can infect DCs. Moreover, there is evidence showing that MCMV induces changes

in the cytokine profile of the cells as well as their capacity to activate T cells [An-

drews et al., 2001].

Direct contact between DCs and NK cells is required for T lymphocyte ef-

fector cell expansion. Therefore, interfering with the expression of costimularoty

proteins on the surface of DCs might block this expansion and interfere with both

innate and adaptive cellular immune response. MCMV has been reported to in-

terfere with the expression of costimulatory proteins in APC. In fact, the m138

gene product has been reported to downmodulate B7.1 in DCs [Mintern et al.,

2006] and modB7-2 has been identified to downmodulate B7.2 in Mθs [Loewen-

dorf et al., 2004]. These proteins are important T cell stimulators and therefore

by modulating their expression the virus also interferes with T cell activation.

Activated DCs produce IL12 which is important for NK activation and sub-

sequent IFNγ production. DCs have been described as major producer of type I

IFN after MCMV infection [Dalod et al., 2002].

HCMV has been also reported to target DC function. Chang and coworkers

showed that HCMV induces an alteration in DC migration and IL12 production

which will then have an effect on NK and T cell activation. Interestingly, these
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effects were seen to be mediated by a IL10 viral homolog, known as cmvIL10

[Chang et al., 2004]. In addition to this strategy there are other studies showing

the ability of HCMV to manipulate the expression of several chemokines respon-

sible for DC migration to lymphoid organs [Varani et al., 2005].

A recent report has shown that HCMV infection of plasmacytoid DC results

in a differential regulation of B and T cells. Activation of pDC by HCMV resulted

in the release of several cytokines which favor B cell activation. However, in

contrast to this response, the ability of pDC to activate T cells were decreased

[Varani et al., 2007]. These studies highlight the importance of cross-talk amongst

cells of the immune response against viral infection.

Cytokines and chemokines

An important part of the immune response against MCMV is played by cy-

tokines and chemokines. These chemical mediators are crucial for recruiting

more immune cells to the site of infection and alerting non-infected bystander

cells to the presence of the pathogen. In the following section, several cytokines

known to mediate a key role during MCMV infection are briefly described, as

well as the immune evasion mechanisms known to be used by the virus, to coun-

teract these mediators.

Interferon (IFN) Type I IFN comprising members of the IFNαβ family induce an-

tiviral responses following binding to the receptors IFNAR1 and IFNAR2. Upon

ligand binding, Jak1 and Tyk2 are phosphorylated, leading to the phosphoryla-

tion of STAT1 and STAT2. Activation of these proteins drives to the formation of

a transcriptional complex known as IFN-stimulated gene factor 3 (ISGF3), which

is a trimolecular complex composed of STAT1, STAT2 and the transcription fac-

tor IRF9. This transcriptional complex will then bind to IFN-stimulated response

elements (ISRE) and induce gene expression.

Studies on IFNβ production have shown that full induction of the IFNβ gene

required the contribution of three transcription factors, c-Jun/ATF-2, NF-κB and

interferon regulatory factor 3 (IRF3). This first wave of IFN induces a positive
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feedback loop dependent on IRF7 which will contribute to a robust IFNαβ re-

sponse.

After MCMV infection, IFNαβ levels can be early detected in spleen and

liver of infected mice. Plasmacytoid (pDC) and non-plasmacytoid dentritic cells

(DC) are responsible for this first induction of IFNαβ [Orange and Biron, 1996,

Hokeness-Antonelli et al., 2007, Zucchini et al., 2007]. In addition, a very recent

report has demonstrated that stromal cells in the spleen of infected mice play a

key role in the production of IFNαβ [Schneider et al., 2008]. B cells-produced

lymphotoxin β (LTβ) which activate the splenic stromal cells through the LTβ-

LTβR signalling pathway, leading to the production of IFNαβ. In contrast, pDC-

induced IFNαβ which is dependent on the activation of the TLR9/MyD88 sig-

nalling pathway in the spleen, but it is TLR9-independent and MyD88-dependent

in the liver [Delale et al., 2005, Hokeness-Antonelli et al., 2007]. A second wave

of IFNαβ production has been observed in an IRF8-dependent fashion [Tailor

et al., 2007], which ensures the optimal cytokine antiviral response.

The role of IFNαβ in the control of MCMV infection in the natural host has

also been studied. It is now well established that IFNαβ activates natural killer

(NK) and CD8+ T cells which in turn are induced to produce IFNγ. Furthermore,

this cascade of events has to be under strict control since high levels of IFNαβ

could lead to autoimmune damage [Hahm et al., 2005]. A recent study has shown

that NK cells balance the pDC-induced IFNαβ by controlling viral replication

and avoiding overwhelming activation signals to CD8+ T cells [Robbins et al.,

2007].

CMV has evolved with the host by developing evasive strategies: the human

CMV IE1 protein prevents binding of the ISGF3 complex to IFN-induced promot-

ers by physically interacting with STAT1 and STAT2 [Paulus et al., 2006]. Unlike

HCMV, MCMV IE1 has not been shown to share the same function. Instead, a re-

cent investigation suggests that MCMV IE1 is required for an efficient induction

of IFN-induced genes [Busche et al., 2008]. Another recent report has revealed
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that MCMV inhibits IFNβ transcription by interfering with the transcription fac-

tor involved in the formation of the enhanceosome [Le et al., 2008]. Although

this report showed that MCMV gene expression is required for this immune eva-

sive strategy, the exact mechanisms of this process remain undetermined. Tyk2

has been shown to be crucial for the antiviral response against MCMV infection

both in vitro and in vivo [Strobl et al., 2005], however since the IFNαβ-induced re-

sponse was not impaired in the absence of Tyk2, the mechanisms by which this

kinase exerts its antiviral effects still remains unidentified.

Type II IFN refers to IFNγ. Following activation of NK and CD8+ T cells,

IFNγ is produced and binds to the IFNγ receptor (IFNGR), which is composed of

two subunits: IFNGR1 and IFNGR2, both of which are ubiquitously expressed.

IFNγ helps to activate bystander cells and is known by the induction of the an-

tiviral state by which the cells prepare to control viral infection. However, the

mechanism of IFNγ-induced inhibition of viral replication is not entirely under-

stood. Ligand binding to the receptor induces the phosphorylation of Jak1 and

Jak2. Activated Jak1 then phosphorylates STAT1 which associates with other

phosphorylated STAT1 to form homodimers. These complexes translocate to

the nucleus and bind to IFNγ-activation site elements (GAS) which will induce

the activation of IFNγ-induced gene expression. Although IFNγ-induced sig-

nalling pathways are STAT1-dependent, there are several studies showing that

also STAT1-independent pathways also exist which are important for antiviral

activity [Ramana et al., 2002].

The role of this cytokine in the control of MCMV infection has been exten-

sively studied both in vivo [Pomeroy et al., 1998, Heise and Virgin, 1995] and

in vitro [Lucin et al., 1994]. Considering the role that IFNγ plays in antiviral

immunity it is not surprising that MCMV has evolved strategies to evade IFNγ-

induced antiviral activity. Indeed, it has been demonstrated that MCMV inhibits

IFNγ-induced MHC class II expression on the cell surface by affecting expres-

sion of the MHC II components [Heise et al., 1998] and by inducing cellular IL10,

which is a known anti-inflammatory cytokine [Redpath et al., 1999]. It has been
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also reported strategies by which the virus affects both type I and II IFN path-

ways by targeting STAT2. In fact, the MCMV viral protein pM27 specifically

binds to STAT2 and leads to its degradation [Zimmermann et al., 2005]. This

mechanism would affect the crosstalk between both pathways during the an-

tiviral activity. This mechanism allows MCMV to escape from the activation of

CD4+ T cells. However, and despite the antiviral effect of IFNγ, its production

is maintained in spleen cells even after the resolution of the acute infection, sug-

gesting a role in the activation of latent virus [Shanley et al., 2001]. IFNγ is also

important for viral clearance from the salivary glands [Lucin et al., 1992].

Interleukins Different interleukins have been shown to play a role in the control

of MCMV infection. In this section some of them will be described in more detail

according to the relevance of their function in the context of MCMV infection.

IL10 is produced by a variety of immune cells including Mθs, DCs, and T

cells. The anti-inflammatory function of this cytokine is well established, its role

in limiting the production of proinflammatory cytokines, such as tumor necro-

sis factor (TNF), IL6 and IL12 has been throughly characterized. IL10 has also

been reported to have a role in MCMV infection in primary Mθs. Redpath and

coworkers demonstrated that MCMV-induced down-regulation of MHC class II

in infected cells was driven by the induction of IL10 in these cells [Redpath et al.,

1999]. Very recently IL10 has been described as an important regulator of the

immune response against infection, since it can control both pathogen invasion

and pathology [Couper et al., 2008]. This would be consistent with a recent study

showing that the depletion of IL10 resulted in more severe symptoms of MCMV

infection in the natural host, due to the uncontrolled production of inflammatory

cytokines such as IFNγ, IL6 and TNF [Oakley et al., 2008]. IL10 is also crucial

for the control of MCMV infection in salivary glands, where the virus can still

replicate even after clearance of the acute infection. Humphreys and cowork-

ers suggest that MCMV persists in this gland by manipulation of IL10-induced

blockade of IFNγ production [Humphreys et al., 2007]. Human CMV, but not the

murine virus, encodes a viral homolog of IL10 known as cmvIL10 [Kotenko et al.,
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2000]. This viral cytokine is also capable of engaging the IL10 receptor as well

as activating signalling molecules such as STAT3 [Spencer, 2007]. Other viruses,

such as Epstein Barr (EBV) and Orf virus, have also been reported to encode viral

homologues of IL10 (reviewed in [Alcami, 2003]).

The IL6 receptor is a heterotrimeric complex consisting of an α chain and a

signal transducing chain, also known as gp130. After ligand binding the conse-

quent association between the α chain and gp130 drives the activation of Jak1,

Jak2 and Tyk2 which leads to phosphorylation of STAT1 and STAT3. IL6 is pro-

duced by Mθs, T and B cells, endothelial cells and fibroblasts. It is induced by

a variety of stimuli, including TNF, IL1 and LPS. It was initially identified as a

factor required for B cell differentiation into plasma cells. In addition, IL6 has

been shown to be involved in T cell activation. IL6 also has a role in the inflam-

matory response by inducing the production of MCP1, which recruits other im-

mune cells [Rahbar et al., 2003]. However, there is evidence demonstrating that

IL6 might also act as an anti-inflammatory cytokine. For instance, IL6 induces

the release of glucocorticoids, which negatively regulate immune functions [Bar-

ton, 1997]. MCMV infection results in the production of IL6 [Ruzek et al., 1997].

In addition, IL6 production has been associated with MCMV-induced atheroge-

nesis [Rott et al., 2003]. In HCMV-infected patients IL6-induced inflammatory

response might have consequences in patients with inflammatory bowel disease

[Rahbar et al., 2003]. The human virus induces a transcriptional regulation of IL6

mRNA in Mθs by a mechanism involving the IE1 protein [Geist and Dai, 1996],

maybe through the activation of NFκB. NFκB has also been shown to be essential

for il6 expression [Libermann and Baltimore, 1990].

IL12 is also produced very early after infection and is required for the optimal

activation of NK cells and subsequent production of IFNγ in spleen and liver

after acute infection. The strength of IL12 signalling is related to the activation of

NK cells [Orange et al., 1995]. In addition, IL12 production is also under control

since it has been reported that IFNαβ inhibits IL12 production, which in turn
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affects the consequent NK-induced IFNγ. It has also been shown that MCMV

infection of DCs results in a significant reduction in IL12 production after 4 days

post infection [Andrews et al., 2001], resulting in a decrease in the activation of

NK and T cells. However, the mechanisms by which this reduction is regulated

have not been elucidated.

IL1 has also been shown to play a role in the control of CMV infection. This

pro-inflammatory cytokine is mainly produced by monocytes and Mθs, and it

has been reported that it induces the blockade of viral spread in different cell

types [Randolph-Habecker et al., 2002]. It is suggested in this study that IL1

might limit viral spread by induction of IFNβ production.

Tumor necrosis factor (TNF) and Lymphotoxin (LT) TNF, also known as tumor

necrosis factor-α, is mainly produced by Mθs, and also by NK, DC and activated

T cells. TNF exerts its biological activities via signalling through two receptors:

TNR receptor 1 (TNFR1, CD120a or p55) and TNR receptor 2 (TNFR2, CD120b

or p75), both of which belong to the TNF receptor superfamily. Members of

this family can be subdivided into different groups depending on their cytosolic

signalling domains: death domain (DD)-containing, also known as death recep-

tors, and TNFR-associated factor (TRAF) binding receptors [Benedict et al., 2003].

TNFR1 is a DD-containing receptor along with others such as Fas, TNF-related

apoptosis inducing ligand receptor 1 (TRAIL-R1) and TRAIL-R2. Engagement of

these receptors leads to the activation of apoptosis, via recruitment of signalling

molecules which induce caspase activation. The second group of receptors sig-

nal through the recruitment of TRAF molecules which results in the activation of

gene expression by activation of NF-κB as well as members of the mitogen acti-

vated protein kinases (MAPK). Despite these two opposite responses, cell death

or survival, these signalling cascades are also characterized by crosstalks which

ultimately will decide the final outcome of the TNF-induced response. There-

fore, it is understandable that TNF has been considered to be a ’double-edged

sword’ in the immune response, since it can induce processes both positive and

negative for the cell [Aggarwal, 2003].
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Although both receptors can be found in a wide range of cell types, TNFR2

appears to be restricted to immune cells. It has been proposed that TNFR1 me-

diates the majority of TNF-induced responses. TNF is important for lymphoid

tissue and hematopoietic proliferation and protection against pathogen invasion

but uncontrolled TNF production also leads to tissue destruction, as in rheuma-

toid arthritis and other diseases.

One of the main activities of TNF is to provide protection against pathogen

invasion. Therefore, and considering the role of this cytokine in the fate of cells,

TNF might be considered as the perfect target for pathogens, since both cell

death and gene expression could be modulated by controlling TNF-induced sig-

nalling pathways. Indeed, there are a number of pathogens which have devel-

oped several mechanisms to inhibit or modulate different stages of the TNF re-

sponse, from the blockage of TNF binding to the receptor to inhibition of specific

TNF-induced responses, such as gene expression or caspase activation [Herbein

and O’Brien, 2000, Benedict and Ware, 2001, Rahman and McFadden, 2006]. To

date both human and murine CMV have been reported to block TNF-induced

gene expression by interfering with TNF receptor expression [Popkin and Vir-

gin, 2003, Baillie et al., 2003, Montag et al., 2006]. Others have shown that HCMV

inhibits TNF-induced caspase-dependent apoptosis by encoding viral inhibitors

[Skaletskaya et al., 2001]. Very recently murine MCMV has been shown to block

caspase-independent apoptosis by direct binding and degradation of receptor-

interacting protein RIP1 by the viral protein M45 [Mack et al., 2008]. RIP1 degra-

dation occurs upstream of activation of NF-κB and MAPK during the TNF-induced

signalling pathway.

Despite the large amount of information detailing viral strategies to modu-

late TNF-induced responses, there are only a few examples in the literature of

viral proteins which interfere with tnf gene expression or protein production.

One of these examples is the African Swine fever virus (ASFV). It has been re-

ported that ASFV infection of Mθs results in the inhibition of TNF expression

by interfering with the activity of CBP/p300 [Granja et al., 2006]. Epstein Barr

(EBV) has also been shown to inhibit TNF production in cell culture [Gosselin
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et al., 1992], however the molecular mechanism of this regulation is not clearly

understood. By contrast, another study has shown that EBV gp350 induces TNF

[D’Addario et al., 2000]. In contrast to the TNF evasion measures that CMV has

evolved, work done by Geist and coworkers have indicated that the IE1 protein

of HCMV is involved in the induction of tnf gene expression in Mθs, probably

by interfering with the transcription factors involved in the activation of the pro-

moter [Geist et al., 1994, Geist et al., 1997]. However, the exact mechanism of this

regulation is not completely understood. So far there is no evidence showing the

same regulation by the murine virus.

In MCMV infection, there have been several studies trying to elucidate the

role of this cytokine in the control of viral infection in the natural host. How-

ever, results provide contradictory evidence. Shanley and colleagues showed

that after both lethal and sublethal infection of BALB/c mice TNF levels were

undetectable in serum. However, levels of this cytokine in serum were found

in MCMV-infected BALB/c [Trgovcich et al., 2000] and C57BL/6 [Lenzo et al.,

2001] and in all organs examined. It also appears that TNF was produced in

a viral dose-dependent manner. In addition, studies by Trgovcich showed that

the tnf gene was expressed during sublethal infection in spleen, liver and lung.

Tang-Feldman reported on the levels of expression of different cytokines after

MCMV infection in BALB/c mice, showing an induction in TNF expression at

day 5 p.i in spleen, liver, lungs and salivary glands [Tang-Feldman et al., 2006].

Thus, the production of TNF early after infection suggests a role in the control of

in vivo infection of different strains of mice in serum, spleen, liver and heart.

Although the use of specific antibodies to neutralize TNF activity in vivo did

not result in a significant increase of viral titers [Shanley et al., 1994, Heise and

Virgin, 1995], Lucin and coworkers demonstrated that TNF in combination with

IFNγ has a more effective anti-MCMV effect [Lucin et al., 1994]. Also TNF has

an autocrine/paracrine action. By its paracrine action it can help to activate by-

stander cells to respond to viral infection. In fact, TNF blockade has been shown

to affect Mθs activation and infiltration during MCMV and HSV infection [Heise

and Virgin, 1995].
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Within the TNF superfamily, another ligand has to be taken into considera-

tion in the context of MCMV infection, namely Lymphotoxin (LT). As with TNF,

LT also has a role in the development of lymphoid tissues and immune cells. LTα

binds to the same receptors as TNF (TNFR1 and TNFR2). LTα can also form with

LTβ the heterotrimer LTαβ which binds to the LTβ receptor (LTβR). This receptor

also binds a second ligand known as LIGHT, which also binds to the herpesvirus

entry mediator or HVEM [Aggarwal, 2003]. The role of the LTαβ-LTβR system in

the control of MCMV infection has been studied. Different investigations have

demonstrated that the LTβ signalling pathway plays an important role in hu-

man CMV infection by inducing IFNβ production. However, this response relies

on the presence of HCMV [Benedict et al., 2001]. They have also reported that

LTαβ-LTβR is pivotal for MCMV infection in vivo, since genetic depletion of LTα

resulted in a high susceptibility to MCMV infection. LTβ is also produced af-

ter infection and LTβ-LTβR signalling is crucial for the production of IFNαβ by

splenic stromal cells. Thus, it is not surprising that blocking LTβ- induced sig-

nalling results in high viral burden. The crosstalk between LTβ-LTβR signalling

and IFNβ was demonstrated when the antiviral activity was restored by admin-

istrating IFNβ [Banks et al., 2005].

Chemokines Chemokines are a small family of chemoattractant cytokines whose

main function is to induce trafficking and recruitment of other cells. Chemokines

are divided into different groups depending on the molecular structure. There

are four main groups: CC chemokines (or β-chemokines), CXC chemokines (or

α-chemokines), C chemokines (or γ-chemokines) and CX3C chemokine (or δ-

chemokines). Amongst the functions of these cytokines are: trafficking of leuko-

cytes and regulation and differentiation of cells of hematopoietic lineage and

inflammation [Schall and Bacon, 1994]. There are also several studies show-

ing the production of chemokines and their effect on viral infection (reviewed

in [Melchjorsen et al., 2003]). Moreover, the fact that an important number of

viruses encode their own chemokines and chemokine receptors reveals the key
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role that these mediators play during the immune response against viral infec-

tion. Both human and murine CMV encode viral chemokines. For instance,

HCMV UL146 product vCXC-1 has been reported to function as an agonist of

human IL18. It induces neutrophil chemotaxis to the site of infection favoring

viral dissemination [Penfold et al., 1999]. MCMV chemokines MCK-1 and MCK-

2 also control viral dissemination in the natural host by recruiting leukocytes to

the site of infection [Saederup et al., 1999]. HCMV encodes 4 chemokine recep-

tors, UL33, UL78, US27 and US28 [Chee et al., 1990]. US28 has been reported to

bind and sequester chemokines from the extracellular environment, which will

inhibit lymphocyte recruitment and activation [Bodaghi et al., 1998]. In addi-

tion, the ability of HCMV US28 to induce migration of smooth muscle cells has

implicated this viral chemokine receptor in the development of atherosclerosis

[Streblow et al., 1999]. The murine homolog of HCMV UL33, known as M33,

has been reported to be important for viral replication in vivo, particularly in the

salivary glands [Davis-Poynter et al., 1997].

In addition to several other herpesviruses which have been reported to en-

code viral chemokines, there are other viruses too which have evolved this eva-

sion strategy (reviewed in [Alcami, 2003], demonstrating the key role that these

proteins play in the regulation of the immune response.

1.5.4 Adaptive immunity

The adaptive immune response follows the initial innate response, and is char-

acterized by the activation of T and B cells. The protective role of T cell subsets

has been studied. CD8+ T cells become activated by the recognition of antigens

presented by MHC class I molecules, as well as the presence of several coestim-

ulatory proteins. Even though it is known that CD8+ T cells play an important

role in MCMV protection, different studies revealed that MCMV was also cleared

when this subset was absent [Jonjic et al., 1990]. Surprisingly, viral clearance ap-

peared to rely on CD4+ T cells. These results are also important since they re-

vealed the flexibility of the immune response to adapt to specific conditions and
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induce compensatory mechanisms keeping the organism protected. In fact, this

central role of CD4+ T cells is only apparent in the absence of CD8+ T cells.

Naive CD4+ T cells are activated following interaction between the T-cell

receptor (TCR) and antigens bound to MHC class II molecules, expressed on

the surface of APC. Activation of CD4+ T cells results in the expression of a

wide range of cytokines which will orchestrate the immune response. Jonjic and

coworkers also studied the role of CD4+ T cells during MCMV infection. In vivo

studies showed that these cells are key players in control of MCMV infection in

the salivary glands [Jonjic et al., 1989], where they mediate immunity through

the production of TNF and IFNγ. In the absence of CD4+ T cells, CD8+ T cells

are still central in MCMV clearance, although with slower kinetics.

In addition to viral evasion strategies for escaping the innate immune re-

sponse, there are also studies showing viral immunomodulatory strategies to

counteract adaptive immunity. These are generally based on the disruption of

antigen presenting pathways. These evasion strategies are also shared by other

viruses, including HSV, EBV and HIV, revealing the importance of this path-

way in the immune response (reviewed in [Alcami et al., 2005]). Both human

and murine CMV encode proteins which reduce the expression of MHC class I

molecules, either by inducing their degradation, like HCMV US2 and US11 pro-

teins, or MCMV gp34, gp48 and gp40 (reviewed in [Hengel et al., 1998]). Disrup-

tion of CD4+ T cell activation due to HCMV and MCMV has also been reported

by interference with expression of MHC class II molecules. HCMV infection re-

duces the expression of IFNγ-induced MHC class II by either interfering with

the IFNγ signalling pathway or by inducing the production of HCMV cmvIL10,

an inhibitor of MHC class II expression [Spencer et al., 2002]. MCMV however

induces cellular IL10 in order to inhibit IFNγ-induced MHC II expression in peri-

toneal Mθs [Redpath et al., 1999]. Also in Mθs it was seen that type I IFN might

also be involved in the inhibition of the expression of MHC class II [Heise et al.,

1998].
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Unlike T cells, the role of B cells in MCMV infection is not well defined. On

the one hand, it is very difficult to completely delete B cells, since antibody de-

pletion strategies do not inhibit plasma cells. On the other hand, the interaction

between B and T cells has to be taken into consideration when drawing any con-

clusions, since B cells are important for T cell expansion. However, it has been

shown that B cell-induced immunity is not required for viral clearance during

primary infection [Jonjic et al., 1994]. Later, by using an immunocompromised

mouse model, protection against MCMV after adoptive transfer of memory B

cells was demonstrated [Klenovsek et al., 2007]. This study also showed that the

antiviral protection was antibody-dependent. Understanding the role of these

cells in the immune response is crucial for bone marrow transplantation.

1.5.5 Latency

One of the hallmarks of herpesviruses is the ability to establish a long term in-

fection within the host, which might last for life, known as a latent infection.

The study of HCMV latency has been problematic due to the fact that, unlike

other viruses in which the establishment of latency is restricted to specific tis-

sues, HCMV can be found in a latent state in several tissues, including lungs,

kidney, liver and bone marrow [Koffron et al., 1997, Minton et al., 1994] and the

same situation has been described for MCMV as well [Koffron et al., 1998]. Al-

though the molecular mechanisms controlling establishment and maintenance of

CMV latency are not known, the role of the immune system has been extensively

studied. For instance, after primary infection cell-mediated immunity does not

completely clear the virus, even though viral replication is inhibited primarily

by NK and CD8 T cells. Instead, the virus persists for longer periods by the es-

tablishment of latency. The initiation of this process has also been suggested to

be part of the viral immune evasion strategy. Therefore, by shutting down viral

gene expression the virus limits the number of antigens which might be recog-

nized by CTLs.
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The role of Mθs in CMV latency has been extensively reported. Thus, it is

now known that DNA for human and murine CMV can be found in Mθs dur-

ing latent infection [Jarvis and Nelson, 2002, Mitchell et al., 1996, Pollock et al.,

1997]. Moreover, bone marrow cells have also been shown to harbor latent DNA,

suggesting that it might act as a source of latent virus. Mθs have also been im-

plicated as vehicles for dissemination not only during acute infection [Stoddart

et al., 1994] but also during latency [Pollock et al., 1997].

Although in some of the aforementioned studies no viral transcripts were

found, it is generally accepted that latency might involve a low basal transcrip-

tional activation in latently-infected cells. For instance, Kurz and coworkers

showed that during latency, the MCMV ie1/ie3 transcriptional unit remains ac-

tive in lungs [Kurz et al., 1999]. This transcriptional activity is restricted to ie1

but is not sufficient to induce reactivation of the virus. Since IE3 is responsible

for activation of the early phase of the viral cycle, the lack of IE3 explains why,

even though IE1 transcripts are detected, no reactivation can be seen. In fact,

CD8 memory T cells specific for IE1 are key players in this stage of latency, since

there is a continuous control for viral antigens and inhibit any attempt of reacti-

vation [Simon et al., 2006]. This study suggest an important role of the MIE locus

in dictating MCMV reactivation in this tissue.

Viral reactivation from latency has been suggested to occur though several

mechanisms, including inflammatory signals, cellular differentiation and allo-

geneic stimulation. Notably, the role of the immune system is common to all

mechanisms proposed. Under immunosuppressive conditions the monitoring of

viral antigens performed by memory T cells might be absent. Therefore, the basal

transcriptional activity which has been described in latent CMV infection might

continue towards the expression of viral genes leading to a replicative cycle and

complete reactivation. On the other hand, during transplantation and cellular

differentiation, cytokine production might occur. Within the cytokine pool, TNF

has been shown to play a role in viral reactivation. This proinflammatory cy-

tokine is known to induce activation of several transcription factors which bind

to the MCMV MIEP enhancer region, including NF-κB and AP1 [Hummel et al.,
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2001]. However, it has also been shown that this TNF-dependent viral gene ex-

pression reactivation might be organ-specific [Hummel et al., 2001, Hummel and

Abecassis, 2002] and would not explain the reactivation process in other organs.

In any case, it seems that the immune system is crucial during the whole la-

tency period, as described by Redpath and coworkers in their model for viral

latency [Redpath et al., 2001]. Latency might be described as a state of balance

between the virus and the immune system. This model suggests that the main-

tenance of latency depends on the activation threshold of immune cells, which

changes with the immune status of the host. In this model the associated risk to

both virus and host due to reactivation is also considered; injury to the host due

to virus-associated disease and inhibition of the virus due to immune control.

Importantly, this model is not only restricted to CMV but also to other viruses

which are capable of establishing latency.

1.5.6 Human Herpesvirus 6 and Human Herpesvirus 7

HHV6 and HHV7 also belongs to the beta Herpesvirus subfamily, and they com-

pose the Roseolovirus genus. They all share characteristics with the more exten-

sively studied CMV. These viruses are T lymphotropic but they also infect other

types of cells. HHV6 infects T and B cells, macrophages and NK cells. In contrast,

HHV7 has a more restricted cell tropism based on the finding that it utilises CD4

as a receptor [Lusso et al., 1994], infecting T cells. In vivo epithelial cells from

the salivary gland have also been identified as targets for HHV7. Because Rose-

oloviruses have been recently discovered the kinetics of gene expression have

not been studied in extent, however it seems to follow the typical temporal cas-

cade characteristic of other Herpesviruses. During the latent infection viral gene

expression is limited to those genes involved in maintenance of latency. HHV6

latent infection can be detected in monocytes-macrophages as well as in salivary

glands. A site for HHV7 latency is CD4 T cells, epithelial cells from the sali-

vary glands among others. Roseoloviruses share with VZV the re-envelopment

pathway for virion egress as previously explain in Section 1.1.2.
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After HHV6 and HHV7 infection cellular immunity seems to have a key role

in the control of viral infection, particularly T cells response [Yakushijin et al.,

1991, Yakushijin et al., 1992, Yasukawa et al., 1993]. Clinical data also indicate

the role for IFNα and NK cells [Takahashi et al., 1992]. Other cytokines like

TNF, IFNγ and IL1β have also been shown to be produced after HHV6 infection

[Flamand et al., 1991].

HHV6 and HHV7 infection occurs during infancy. Although the transmis-

sion mechanism is not clear yet it seems that saliva is the most common route

of infection. HHV6 has also been detected in the cervix of pregnant women,

suggesting a possible transmission to newborns. Breast-feeding has also been

suggested to help the transmission of HHV7. Other routes of infections have

also been suggested such as bone marrow or solid organ transplantation in the

case of HHV6.

As introduced before, HHV6 and HHV7 infection causes ES in infants char-

acterized by transient rash after following by sudden fever. In rare cases febrile

convulsion could happen as a result of the sudden high fever. In most cases ES

does not have any clinical complication. In adults infection could cause mononucleosis-

like disease. HHV6 can persist in the central nervous system and it might be as-

sociated with cases of HHV6-induce encephalitis. Like CMV infection, infection

of immunocompromised hosts could be fatal, as for those transplant recipients

or AIDS patients. Reactivation of HHV6 has been reported after bone marrow or

solid organ transplantation, as well as potential association with HCMV.

1.6 This Thesis: Rationale and Central Hypothesis

As has been discussed, the IE1 protein of MCMV plays a role in the regulation

of viral and host gene expression. In the virus, it trans-activates the expression

of early genes, in coordination with the IE3 protein, and in the host it seems that

the IE1-induced gene expression prepares the cellular environment to favor viral

replication. By using BAC technology an ie1-deletion mutant of MCMV, (referred

to as MCMVdie1 hereafter), was constructed in order to determine the exact role
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that this viral protein plays in the MCMV infection. In addition, the revertant

of this mutant, named MCMVrev, was also constructed in order to rule out any

second site mutations. So far, it has been demonstrated that, unlike the IE3 pro-

tein, IE1 is not required for efficient replication in different cell types. However,

in immunecompetent mice the mutant virus presents an attenuated phenotype.

Moreover, in SCID mice lacking B and T cells and relying on innate immunity to

control the infection, the mutant virus also showed a growth defect. These ob-

servations have led to the hypothesis that IE1 is involved in the regulation of the

host immune response. This would be consistent with the growth defect seen for

MCMVdie1 in vivo, most likely because the host immune response is not under

the control of the viral protein, leading to a stronger response which control viral

infection sooner. In other words, IE1 might act as a immunomodulator. To in-

vestigate this hypothesis the following questions were prompted and define the

different Chapters of this thesis:

1. How does the absence of IE1 affect viral replication in BMMθs?

BMMθs were used as a experimental system in this project, since they play

a crucial role not only for viral infection but also in the immune response

against MCMV. Moreover, MCMVdie1 replication has not been studied in

this cellular population. Therefore it was of interest to study MCMVdie1

infection in a cell type involved in the control of viral infection. In addition,

IE1 protein has been described as a trans-activator of cell and viral gene

expression. Therefore it was also of interest to study the effect that the

absence of this viral protein might have in the host gene expression. In

order to have an initial observation of the effect of MCMVdie1 infection in

BMMθs a pilot study was carried out between MCMVdie1 and MCMVrev

using microarray technology. The following objectives were set:

• To determine the effect of the absence of IE1 in viral replication in

BMMθs

• To determine to what extent host gene expression were affected by the

absence this viral protein
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• To make an initial observation of the biological processes and path-

ways most affected after infection with MCMVdie1 by performing

analysis based on Pathway biology.

2. What effect does MCMVdie1 infection have on cytokine production in-

duced by BMMθs?

Considering the key role that BMMθs play in the control of MCMV infec-

tion, the next step in this investigation was to study in more detail the cy-

tokine production in the context of MCMVdie1 infection. The following

objectives were set up:

• To study the effect of MCMVdie1 infection in the cytokine production

in BMMθ

• To study the transcript level of those cytokines of interest

3. What are the molecular mechanisms for MCMVdie1-induced cytokine

modulation?

As it has been introduced, TNF is a key player in the control of MCMV

infection. Several viruses have been shown to target different steps of the

TNF biology however only few have been reported to target TNF produc-

tion. Results also revealed a significant regulation of TNF response by

MCMV infection. Therefore the next objective was to study in more de-

tail the molecular mechanisms of TNF response in the context of MCMV

infection in the presence and absence of ie1. To fulfill this aim two different

approaches were taken:

• A literature review was performed in order to understand the mecha-

nisms of TNF production and create a model of the different transcrip-

tion factors that might be involved in the induction of tnf expression

after MCMV infection.

• Based on the review, a extensive study on the activation of signalling

molecules was performed in infected-BMMθ. This study was done

in collaboration with Upstate (Millipore, UK). Furthermore, in order
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to validate this study, conventional Western Blot approach was also

taken.

4. Is TNF response to MCMVdie1 infection also seen in vivo?

Experimental findings in tissue culture led to the final stage of this investi-

gation, where it was of interest to determine whether MCMVdie1-induced

TNF production was also seen in vivo. The essential role of IE1 for an effi-

cient replication of the virus in BALB/c and SCID mice has been reported

[Ghazal et al., 2005]. Therefore the following objectives were set:

• Study the role of the IE1 protein in the viral replication in MCMV-

resistant C57Bl/6 mice and confirm the attenuated phenotype in MCMV-

susceptible BALB/c.

• To establish whether MCMVdie1 infection induces a significant TNF

production in both BALB/c and C57Bl/6 mice.

5. Is TNF responsible for the growth defect of the ie1-deletion mutant MCMV?

The final question of this investigation was to study whether the replication

defect seen for the mutant virus was due to the regulation of TNF response.

In the first place the effect of TNF was studied in the viral replication in

BMMθs and later was expanded to an in vivo system where genetically de-

pleted TNF C57Bl/6 mice were used.



CHAPTER 2

Materials and Methods

2.1 General Chemicals and Solutions

For general solution recipes refer to Appendix I

2.2 General Methods in Tissue Culture

2.2.1 Culturing NIH 3T3

The murine fibroblast cell line NIH-3T3 cells (ATCC CRL1658) was obtained

from American Type Culture Collection (Manassas, VA.). Cells were grown in

Dulbecco’s modified essential medium (DMEM) supplemented with 10% calf

serum (CS), 2 mM glutamine (Invitrogen, UK) and 100 U of penicillin/streptomycin

(Invitrogen, UK) per ml. Cells were incubated at 37◦C and 5% CO2 in tissue

culture flasks (Corning, UK), until they reached 70-80% confluency. Cells were

expanded as described in Section 2.2.3.

2.2.2 Culturing Primary Murine Embryonic Fibroblasts (MEFs)

MEFs were prepared from embryos of pregnant BALB/c mice on day 16 of gesta-

tion. Cells were grown in DMEM supplemented with 10% fetal calf serum (FCS),

2 mM glutamine (Invitrogen, UK) and 100 U of penicillin/streptomycin (Invit-

rogen, UK) per ml. Cells were incubated at 37◦C and 5% CO2 in tissue culture

flasks (Corning, UK), until reached confluency, but never left to 100% confluency

to avoid overgrowth of the cells. Cells were expanded as described in Section

2.2.3.

38
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2.2.3 Handling cells for passaging

Cells were expanded when they reached 70-80% confluency. Medium was dis-

carded and cells were washed with PBS (Sigma, UK). PBS was discarded and

cells were detached from the flask by using Trypsin. The flask was gently rocked

for a couple of min and most of the Trypsin solution was discarded. Cells were

transferred to a 15 ml Falcon tube and spun at 1100 rpm for 5 min at room tem-

perature in 4 ml of DMEM supplemented with the specific serum. The cell pellet

was resuspended in culture media and transferred to a new tissue culture flask.

Table 2.1: Handling cells for passaging

Tissue Culture Flask PBS (ml) Trypsin (ml)
25 cm2 5 3
75 cm2 10 4

175 cm2 20 5

2.2.4 Freezing cells for long term storage

Cells were trypsinised as described previously in Section 2.2.3. Cells were trans-

ferred to a 15 ml Falcon tube and centrifuged at 1100 rpm for 5 min at room

temperature. The cell pellet was resuspended in 3 ml of freezing medium. 1 ml

aliquots were transferred to 1.8 ml cryovials (Corning, UK). The cryovials were

labelled and stored in liquid nitrogen until use.

2.2.5 Thawing cells from liquid nitrogen storage

Cryovials containing frozen cells were removed from liquid nitrogen and thawed

slowly at 37◦C. Cells were then tranferred to a 15 ml Falcon tube and 5 ml of

culture medium was added to wash out the DMSO contained in the freezing

medium. Cells were centrifuged at 1100 rpm for 5 min at room temperature.

Supernantant was discarded and cell pellet was resuspended in 1 ml of culturing

medium and transferred to a 25 cm2 tissue culture flask and grown as previously

described (Sections 2.2.1 and 2.2.2)

2.2.6 Bone Marrow Derived Macrophages (BMMθs)

1. Preparation and culture of BMMθs
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BMMθs were prepared from 10-12 week old male BALB/c mice. Animals

were killed by cervical dislocation. Fur was cleaned with ethanol, an in-

cision was made from the abdomen and the femurs exposed by remov-

ing muscles surrounding the bone. The hip and knee joints were cut and

any remaining tissue was removed using desinfectant wipes. The femur

was held with sterile forceps and the marrow cavitiy was flushed with

DMEM:F12 supplemented with 10% FCS and 10% L929 conditioned medium.

Cells were recovered in a 50 ml Falcon tube, centrifuged at 1100 rpm at

room temperature for 5 min and resuspended in DMEM:F12 medium. Cell

number was determined by microscopy using a haemocytometer (described

in Section 2.3). Cells were plated into either 24- or 6-well plates and cul-

tured for 7 days in DMEM:F12 containing 10% FCS and 10% L929 condi-

tioned medium to stimulate the differentiation of macrophages. Medium

was replaced every 2 days.

2. Characterization of BMMθs

(i) Cytospin followed by Diff-quik staining.

Morphology and maturation of BMMθs was examined on Cytospins

stained with Diff-quik, a commercial stain commonly used to differ-

entiate a variety of smears. 100-200 µl from a BMMθs suspension (ap-

proximately 1 x 106 cells/ml) was added to the well of a ’cytospin

holder’ and the cells were cytocentrifuged at 300 g for 3 min in a Shan-

don Cytospin II (Shandon, UK). The cells were then fixed with 100%

methanol for 2 min, followed by staining in the Diff-quik Red solution

for 1 min and Diff-quik Blue solution (both from Gamidor Ltd, UK)

for 1 min. All steps were performed at room temperature. The slides

were rinsed with distilled water, left to air-dry overnight and finally

coverslipped and mounted (Figure 2.1).

(ii) Flow Cytometry.

Maturation of BMMθs was also tested by flow-cytometric analysis of

surface markers. Thus, an analysis was performed for expression of

murine macrophage cell surface proteins F4/80 and CD11b. Double
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Figure 2.1: Phenotype of BMMθs after 7 days of culture
Maturation of day 7 BMMθs was determined by cytopsin followed by Diff Quik staining.
A. x100 magnification of mature BMMθs, without any contaminating cells and B. x1000
magnification indicating the features of BMMθs.

labelling allows the detection of mature BMMθs compared to mono-

cytes, which only express CD11b. At day 7, BMMθs were detached

from the culture plates using a cell scraper, transferred to polystyrene

FACS tubes (BD Falcon, UK) and centrifuged at 300 g for 5 min at 4◦C.

The supernatant was discarded and the cells were washed by adding

2 ml of cold PBS, followed by centrifugation at 300 g for 5 min at

4◦C. Cells were resuspended (2x105 cells/ml per FACS tube) in 100 µl

blocking solution (PBS containing 10% mouse serum) and incubated

for 30 min on ice. Allophycocyanin (APC) conjugated monoclonal
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rat-anti-mouse F4/80 (IgG2aκ, Caltag Laboratories, UK) and fluores-

cein isothiocyanate (FITC) conjugated rat-anti-mouse CD11b (IgG2bκ,

eBiosciences, UK), both diluted 1/100 in blocking solution, or their re-

spective isotype controls were then added. Cells were mixed gently

and incubated on ice for 30 min in the dark. Before undergoing flow

cytometric analysis, the cells were washed with cold PBS and resus-

pended in 200-300 µl of PBS. Analyses were performed using a FAC-

Scan instrument (Becton Dickinson, UK) and the results were analysed

with Cell Quest software (Becton Dickinson, UK) or FlowJo software

(Treestar, USA). A typical flow cytometric analysis of day 7 BMMθs

after staining for F4/80 and CD11b is shown in Figure 2.2.

Figure 2.2: Phenotype of BMMθs after 7 days of culture by Flow Cytometry Anal-
ysis
Maturation of day 7 BMMθs assessed by staining for the specific expression of murine Mθs cell
surface proteins F4/80 and CD11b. The level of expression was analysed by flow cytometry. A.
FACS dot blot showing the gating in forward scatter (FSC) and side scatter (SSC). B. A pure Mθs
population (93.1%) expressing both F4/80 and CD11b is seen in the upper right quadrant of the
FACS dot blot. Histograms for C. F4/80 and D. CD11b staining.
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2.2.7 TNF treatment of BMMθs

Recombinant mouse tumor necrosis factor α (Biosource International, USA) was

prepared in DMEM:F12 supplemented with 10% FCS and 10% L929 conditioned

medium as 1U/mL or 10U/mL (10 µg/mL corresponds to 105 U/mL). Cytokine

was added to the cells 24h prior infection. After infection, cytokine was added

to the medium.

2.2.8 Cell viability assay

To determine the number of viable cells after TNF treatment CellTiter-Blue Cell

Viability Assay (Promega, UK) was performed following manufacturer’s instruc-

tions. Briefly, BMMθs were plated out in a 96-well plate at a seeding density of

4 x 104 cells/well. Cells were either treated for 24h with 1U/mL or 10U/mL of

TNF or mocked treated by adding medium. All treatments were done in tripli-

cates. After the specified time 5µL of the reagent were added to each well leaving

the plate for 4h incubation at 37◦C. Viabiliy of cells was measured according to a

fluorescent signal, correponsing to the metabolic activity of viable cells. Fluores-

cence was measured in a POLARstar OPTIMA Multifunction Microplate Reader

(BMG LabTech, UK).

2.2.9 Testing cell culture for presence of Mycoplasma

Tests for the presence of the mycoplasma were carried out every 4 months by

Minerva Biolabs GmbH (Berlin, Germany), all found negative.

2.2.10 Testing cell culture for Lymphotoxin contamination

Tests for LPS contamination were carried out regularly by SNBTS (Edinburgh,

UK), all found negative.

2.3 Cell counting

Cell counts were determined by using a haemocytometer. Cells were harvested

and resuspended in 2 ml of the appropiate medium. The haemocytometer slide

and coverslip were washed with 70% ethanol prior to use. Carefully both cham-

bers of the haemocytometer were filled with an aliquot of the cell suspension by

capillary action using a pipette. Using the microscope viable cells were counted
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only in the centre square of the 9 squares on the main grid. Counting was re-

peated for the grid on the other side of the haemocytometer. To calculate the

number of viable cells per ml in the original cell suspension the following equa-

tion was used:

Cell/ml = Average count x 104 x Dilution Factor

2.4 General Methods in Virology

2.4.1 Preparation of viral stocks

All viruses used during this thesis were propagated in NIH 3T3 cells. Cells were

cultured as described in Section 2.2.1. and infected at a MOI 0.001 with the de-

sired virus. The viral inoculum was prepared in DMEM supplemented with 3%

FCS, 2mM Glutamine and 100 U of penicilin/streptomycin per ml. 10 days after

infection, viral stock was harvested. Cells were detached from the flask and spun

at room temperature at 1100 rpm for 5 min. Supernantant was then aliquoted and

kept at -70◦C until use.

2.4.2 Titration of viral stock: plaque assay

Viral titers were quantitated by standard plaque assay. Briefly, MEFs were grown

(Section 2.2.2) and plated out in a 24- well plate at a seeding density of 105

cells/well and left at 37◦C and 5% CO2 for 24 hours. Plates were gently agitated

vertically and horizontally to evenly distribute the cells. On the day of the assay,

a serial dilution of virus was made in DMEM supplemented with 3% FCS in a 96-

well plate. MEFs were then infected with 250 µl of the specific viral dilution, and

left for 1 hour adsorption gently shaking the plate every 10 min. After 1 hour the

viral inoculum was carefully aspirated and monolayer were washed with PBS.

Meanwhile DMEM supplemented with 3% FCS was mixed with melted 2.5%

agarose (1:10) and 1.5 ml were added to each well. Plates were placed at 37◦C

and 5% CO2. Lysis plaques were counted in each well after 3-4 days of culture

and viral titer was determined as plaque forming units per ml (PFU/ml).
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2.4.3 Viral infection of BMMθs

BMMθs were prepared (Section 2.2.6) and plated out at a seeding density of 5x105

cell/well for a 24-well plate or 8x105 cell/well for a 6- well plate, unless specified.

After 7 days culture cells were infected with virus at a MOI of 1. As described

for NIH 3T3 and MEFs, the viral inoculum was prepared in DMEM:F12 supple-

mented with 3% FCS and left for 1 hour adsorption with gently shaking of the

plate every 10 min. BMMθs were washed in PBS and fresh media was added.

Plates were placed at 37◦C and 5% CO2.

2.5 General Methods for RNA

2.5.1 Trizol/RNA extraction

RNA extraction was done using Invitrogen reagents and protocols. Briefly, 200

µl of chloroform were added per 1 ml of Trizol. The mixture was shaken vigor-

ously by hand and incubated at room temperature for 15-30 min. After incuba-

tion, samples were centrifuged at 12,000 xg for 15 min at 4◦C. The upper phase

was carefully removed and transferred to a fresh microcentrifuge tube. 500 µl

of isopropanol alcohol were added per 1 ml of Trizol and incubated for 10 min

at room temperature. After incubation samples were centrifuged once again at

12,000 xg for 10 min at 4◦C. Supernatant was then removed and the pellet was

washed with 75% ethanol, vortexed and centrifuged at 7,500 xg for 5 min at 4◦C.

The pellet was air dried and dissolved in RNAse free water. Extracted RNA was

kept at -80◦C.

2.5.2 Quantification of RNA concentration.

RNA concentration was determined by using a NanoDrop ND-1000 spectopho-

tometer (NanoDrop Technologies, USA).

2.5.3 qRT-PCR

For each sample, 2x Taqman R⃝ PCR mix (Applied Biosystems, USA) was mixed

with 40 u of Superscript III (Invitrogen, USA). 4 µL total RNA was then added



46

and each sample split into two reactions. A Taqman R⃝ primer/probe set (Ap-

plied Biosystems, USA) for tnf was then added to one reaction at the recom-

mended concentration while a Taqman R⃝ primer/probe set for gapdh was added

to the other reaction. Samples were then run on a MX1000P quantitative PCR

thermal cycler (Stratagene, USA). Samples were first heated to 50◦C for 30 min

then heated to 95◦C for 10 min. Samples were then subject to 40 cycles under

Taqman R⃝ standard conditions. Data was analysed by using Stratagene MXPro

software.

2.5.4 Microarray

RNA samples from MCMVdie1 or MCMVrev infeced-BMMθs were processed

using the Affymetrix Genechip Mouse 430A 2.0 protocol and the One Cycle

cDNA synthesis method with a starting amount of 2.5 µg of RNA. This was fol-

lowed by a cDNA clean-up step and an in vitro transcription step to synthesise

biotin-labelled cRNA. Biotin labelled cRNA was then processed through a clean-

up step prior to quantification (260/280nm) using a Nanodrop spectrophotome-

ter.

Samples were then run on an Agilent 2100 Bioanalyser to check the quality of

the cRNA produced. All samples produced the expected profile at this stage and

were therefore put forward for the fragmentation procedure. Following frag-

mentation, samples were again run on the Agilent Bioanalyser to check for the

correct fragmentation of the cRNA. Only high quality samples (MCMVdie1 n=4,

MCMVrev n=3) were put forward for the array hybridisations.

All samples passed the basic Affymetrix QC report file tests based mostly on

the spiked in Poly-A controls.

2.5.5 Data analysis

Data from the microarray were analyzed by using the Ingenuity Pathway Anal-

ysis (IPA) application (Ingenuity Systems R⃝ www.ingenuity.com).
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2.6 Protein Methods

2.6.1 Whole cell extract preparation.

Whole lysate was extracted from BMMθs using Beadlyte R⃝ Cell Signaling Ly-

sis Buffer (Millipore, UK), following manufacter’s instructions. BMMθs were

cultured for 7 days (Section 2.2.6) in 6- well plates at a seeding density of 106

cells/well. After treatment or infection cells were washed with ice-cold TBS

and 10 ml of 1X lysis buffer prepared. At this stage 1 tablet of Complete Mini-

proteinase inhibitor (Roche, UK) and 100 µl of Phosphatase Inhibitor cocktail I

and II (both from Sigma, UK) were also added to the lysis buffer. 100 µl of lysis

buffer was added to the cells. Cells were then scraped from the plate using a

plastic cell scraper and transferred to a 1.5 ml Eppendorf tube. The suspension

was then gently rocked for 15 min at 4◦C to lyse the cells. The lysate was clarified

by centrifugation at 14,000 g for 15 min at 4◦C. Supernatant was transferred to a

new 1.5 ml Eppendorf and the lysate was kept at -70◦C until use.

2.6.2 Measure of protein concentration

Total protein concentration was determined using the Micro BCA protein assay

(Pierce, UK), following manufacturer’s instructions. A set of protein standards

was prepared by diluting an Bovine Serum Albumin standard (BSA) ampule

(2000µg/ml) as follows:

Table 2.2: Preparation of Micro BCA protein assay standard

Vial Final Concentration Volume (Diluent + Stock)

A 2000 µg/ml 300µl of stock
B 1,500 µg/ml 375µl of stock
C 1,000 µg/ml 325µl of stock
D 750 µg/ml 175µl of vial B + 125 µl of diluent
E 500 µg/ml 325 µl of vial C + 325µl of diluent
F 250 µg/ml 325 µl of vial E + 325µl of diluent
G 125 µg/ml 325 µl of vial F + 325µl of diluent
H 25 µg/ml 100 µl of vial G
I 0 µg/ml 400µl of diluent
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Along with the standards, 20 µl of the sample was loaded onto a 96- well

plate. The samples were analysed in duplicates. Working reagents were pre-

pared in a 50:1 (Reagent A:B) ratio adding 200 µl of the mixture per well. The

plate was incubated for 30 min at 37◦C and protein concentration was deter-

mined from the measurement of the absorbance at 562 nm on a POLARstar OP-

TIMA Multifunction Microplate Reader (BMG LabTech, UK).

2.6.3 PathwayProfilerTM

PathwayprofilerTMis used to detect changes in the phosphorylated status of a

number of proteins in cell lysates by using the LuminexTMx-MAPTMsystem. This

assay has been developed as an alternative to Western Blotting and immunopre-

cipitation procedures. Cell lysates from infected- and non-infected-BMMθs was

extracted at the specified times and protein concentration was determined as de-

scribed in Sections 2.6.1 and 2.6.2, respectively. Lysates were then analysed in the

PathwayprofilerTMby the Upstate team based in Dundee, UK. Analysis of the as-

say was carried out by comparing the median fluorescent value (MFI) provided

by Upstate (Dundee, UK).

2.6.4 SDS-PAGE and Western Blotting

Equal amounts of proteins were mixed with 2X Laemmli Sample Buffer, con-

taining 10% of DTT and loaded onto 10% SDS-PAGE gels, along with 6 µl of

molecular weight markers (Prestained Protein Marker Broad Range, New Eng-

land Bioloabs, UK). The gel was run for 45 min approximately at 200 V constant

on a BioRad PowerPac 200 Power Supply. Filter papers (BioRad) were soaked in

transfer buffer along with fiber pads. Polyvinylidene difluoride (PVDF) mem-

branes were cut to the dimension of the gel (maximum size 7.5 cm x 10 cm) and

soaked in methanol for 10 seconds, washed in distilled water for 5 seconds and

soaked in transfer buffer for a couple of minutes. Once the electrophoresis was

finished the gel cassette was dissasembled and foot and wells were cut. With

the help of a filter paper, the gel was separated from the glass and placed on

the transfer sandwich, on the top of the PVDF membrane. The gel sandwich

was placed in the TransBlot module along with the cooling unit filled with cold
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water. The tank was then filled with transfer buffer and run for 1 hour at 100

V/constant. When transfer was finished, the cassette was carefully dissasem-

bled and the PVDF membranes were blocked with 20 ml of blocking buffer at

room temperature with gentle shaking on a Belly Dancer (Stovall Life Sciences,

USA). The membrane was then washed 3 times for 15 min with washing buffer.

The primary antibody was diluted into the primary antibody dilution buffer. The

membrane was incubated with the primary antibody overnight at 4◦C with gen-

tle rocking. After primary antibody incubation membranes were again washed

in washing buffer and then incubated with the secondary antibody, diluted in

blocking solution for 1 hour at room temperature. Membrane was washed again

and overlaid onto mix of detection reagents (ECL Plus Western Blotting Detec-

tion Reagents, Amersham Biosciences, UK) for 5 min. The membrane was then

exposed to the VersaDoc imaging system 4000. Densitometric analysis of the

blots was performed by Quantity One software 4.5.0.

Table 2.3: Primary Antibodies

Antibody Species Dilution Supplier

Phospho-Erk1/2 Mouse 1:1000 Sigma
Erk1/2 Rabbit 1:1000 Cell Signalling

Phospho-p38 Mouse 1:1000 Cell Signalling
p38 Rabbit 1:1000 Cell Signalling

Phospho-SAPK/JNK Rabbit 1:1000 Cell Signalling
SAPK/JNK Rabbit 1:1000 Cell Signalling
β-Actin Rabbit 1:1000 Cell Signalling

CROMA101 Mouse 1:1000 *
CROMA103 Mouse 1:1000 *

* CROMA101 and CROMA103 antibodies were kindly donated by Prof. Stipan Jonjinc (Riejka

University, Croatia)

Table 2.4: Secondary Antibodies

Conjugate Antibody Species Dilution Supplier

HRP-linked mouse IgG Horse 1:2000 Cell Signalling
HRP-linked rabbit IgG Goat 1:2000 Cell Signalling
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2.7 Cytokine measurement

2.7.1 Flow cytometry

Cytokine levels in cell culture supernantants were detected by Cytometric Bead

Array mouse inflammation kit (BD Biosciences, UK), and flow cytometry anal-

ysis. This kit allows quantification of Interleukin-6 (IL-6), Interleukin-10 (IL-

10), Monocyte Chemoattractant Protein-1 (MCP-1), Interferon-γ (IFNγ), Tumor

Necrosis Factor (TNF), and Interleukin-12p70 (IL-12p70) protein levels in a sin-

gle sample. Cytokines can be detected in a range of 20-5000 pg/ml. The pro-

cedure was performed following manufacter’s instruction. Briefly, protein stan-

dards were first prepared by serial dilution. 50µl of Capture Beads, standards

and samples were mixed into assay tubes along with the detection reagents. Af-

ter 2 h incubation at room temperature and avoiding direct light samples were

washed in the washing solution and centrifuged at 200 g for 5 min. Analysis was

performed using BD CBA Software.

2.7.2 ELISA

Murine TNF levels were also determined from cell culture supernatants using

a mouse TNF-α/TNFSF1A DuoSet ELISA Development kit (R&D Systems Eu-

rope LTd.) designed to detect TNF in the range of 32.5-2000 pg/ml. ELISA was

performed following manufacturer’s instruction. Briefly, an ELISA 96-well plate

was coated with the capture antibody and left overnight at room temperatuere.

The antibody was then washed and the plate was blocked for 1 h at room tem-

perature. A series of standards was prepared and after blocking 100 µl of each

standard along with 100 µl of sample was added to the plate. Standards and

samples were left for 1 h incubation at room temperature, after which the plate

was washed 3 times followed by 1 h incubation at room temperature with the de-

tection antibody. The washing step was repeated and Streptavidin- horseradish

peroxidase (HRP)-conjugated solution was added at the recommended working

concentration. The plate was incubated in the dark at room temperature for 20

min, washed and 100 µl of substrate solution was added. The plate was then

incubated in the dark for 20 min at room temperature. To stop the reaction, stop
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solution was added (50 µl). TNF concentration was determined by reading the

absorbance at 450 nm in a POLARstar OPTIMA Multifunction Microplate Reader

(BMG LabTech, UK).

2.8 General Methods for in vivo experiments

2.8.1 Mice and Infection

BALB/c (Charles Rivers, France), C57Bl/6 (B&K, UK) and TNF-/- C57Bl/6 (B&K,

UK) mice were housed in the animal facilities at the University of Barcelona or

the University of Edinburgh under specific-pathogen-free conditions. All exper-

iments were carried out under appropiate personal and project licenses in ac-

cordance with the Home Office and the University of Barcelona and University

of Edinburgh regulations. Mice were inoculated with the specified PFU by the

intraperitoneal route (i.p). During the course of the different experiments, mice

were monitored daily. At designated times mice were killed by cervical disloca-

tion.

2.8.2 Sample processing

Dissection instruments were sterilized before use and between mice. Fur was

cleaned with ethanol and an incision was made in the abdomen. Spleen, liver,

kidneys, lungs and hearts were removed and placed in 500 µl of PBS. Organs

were then weighed and processed as a 10% (wt/vol) tissue homogenate. Ho-

mogenates were sonicated (Fisher Scientific) for 10 seconds on ice . A small vol-

ume of the homogenate was not sonicated in order to measure cytokine levels.

Both samples were washed by centrifugation and kept at -70◦C until use. Viral

titers were determined by standard plaque assays (Section 2.4.2) and cytokine

levels by ELISA (Section 2.7.2).



CHAPTER 3

MCMVdie1 replication in BMMθ

3.1 Introduction

The β-herpesvirus human cytomegalovirus (HCMV) can establish both acute

and latent infection, remaining in the host for life. As a human pathogen, it is

highly relevant with more than 60% of the population worldwide infected. Clin-

ically HCMV infection varies according to the status of the patient’s immune sys-

tem; infection of immunocompetent individuals is usually asymptomatic whereas

a variety of severe pathologies are presented in immunocompromised patients

such as those with AIDS or organ transplant recipients. Also, CMV infection in

newborn children can result in birth defects such as nervous system maldevel-

opment, deafness and mortality [Jarvis and Nelson, 2002, Stagno et al., 1986].

The murine cytomegalovirus (MCMV) model provides a useful tool for study-

ing the human virus and its pathogenesis thanks to the ease of handling the virus

in vivo and its genotypic and biological similarities to HCMV. Similar to HCMV,

the murine virus has a dsDNA genome that is sequentially expressed in three

phases, immediate early (IE), early (E) and late (L) genes [Keil et al., 1984]. The

IE phase is independent on newly synthesized proteins, while the expression of

early genes requires control by IE proteins. The last phase of the transcription

cascade which starts after viral replication encodes late proteins responsible for

the structure of the viral particle. The MCMV IE1 protein has been described as a

52
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trans-activator for cellular and viral gene expression [Gribaudo et al., 1996, Grib-

audo et al., 2000, Koszinowski et al., 1986]. However, the role of IE1 in the reg-

ulation of gene expression and immune response has not been described. So far

the requirement of IE1 for efficient replication of the virus in the natural host has

been reported [Ghazal et al., 2005].

Macrophages (Mθs) play an important role in CMV infection as a major site

for viral replication and establishment of latency, as well as providing a vehicle

for viral dissemination throughout the host [Hanson et al., 1999, Stoddart et al.,

1994]. In addition, Mθs constitute one of the principal effectors of innate immu-

nity. Upon activation, Mθs produce a number of cytokines such as TNF, IL1, IL6,

IFNαβ, and IL12, which have been reported to be key mediators of the response

against MCMV [Orange and Biron, 1996, Orange et al., 1995, Randolph-Habecker

et al., 2002]. This cytokine response will recruit other immune cells, such as NK,

very well known to mount an antiviral activity by inducing IFNγ [Orange et al.,

1995]. These two faces that Mθs seem to have in MCMV infection has been con-

sidered as ’paradoxical’ [Hanson et al., 1999], since the same cellular population

is equally important for viral replication and for viral clearance. However and

regardless of this duality, it is clear that Mθs are crucial for MCMV infection.

3.2 Aim of the chapter

MCMV ie1-deletion mutant (MCMVdie1) replication in vitro in fibroblasts and

peritoneal Mθs is similar to the parental and revertant virus [Ghazal et al., 2005],

demonstrating that IE1 is dispensable for MCMV replication in these cells. How-

ever, the replication of MCMVdie1 in BMMθs has not been described. Consid-

ering the importance of Mθs in the immune response against viral infection, the

aim of this chapter was to study MCMVdie1’s growth kinetics in this cellular

population, as well as gain an insight in what the effect of the absence of IE1

would be on BMMθ gene expression upon infection.
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3.3 Results

3.3.1 Replication in bone marrow derived macrophages

BMMθs from 10-12 week old male BALB/c mice were cultured for 7 days as

described in Section 2.2.6. After one week and prior to infection, maturation of

the Mθs was characterized by flow cytometry (Section 2.2.6). Cells were then

infected at a multiplicity of infection (MOI) of 1 and 0.2. Previous experience in

the laboratory showed that infection of BMMθs with MOIs higher than 1 resulted

in high cell death. Therefore at MOI of 1 was used in all experiments of this thesis

unless specified. Intracellular and extracellular infectious infectious virus were

determined by standard plaque assays as described in Section 2.4.2. Figure 3.1

shows MCMV, MCMVdie1 and MCMVrev growth kinetics after infection at a

MOI of 1 and MOI of 0.2 of two independent experiments.

From the graph it can be seen that infection at a MOI of 1 did not result in no-

table differences in the replication of MCMVdie1 when compared to the parental

and revertant virus. However, a slight decrease, not statistically significant, in

MCMVdie1 yields was seen at late times of infection. Similar results were found

when infections were done at a lower MOI. All together, these results indicate

Figure 3.1: Growth curves in infected-bone marrow derived macrophages
Cells were infected with the different viruses at a (A) MOI 1 or (B) MOI 0.2. At indicated
times intracellular and extracellular virus were harvested and viral titers were determined by
standard plaque assay in MEFs. Each data point represents the average and SD of results of
different samples from 2 independent experiments (n=6).
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that MCMVdie1 establishes an infection in BMMθs and although the mutant

virus replication tended towards lower yields at later times of infection these dif-

ferences were not significant (t-test, p=0.15 and p=0.52 when comparing MCMV

and MCMVrev against MCMVdie1, respectively).

3.3.2 Microarray and data anlysis

Study of viral growth kinetics in BMMθs showed that MCMVdie1 replication

tends to be slightly lower than parental or revertant MCMV. Work done by Ghazal

and coworkers revealed that the IE1 protein is essential for viral growth in the

natural host [Ghazal et al., 2005]. The same study revealed that the absence of IE1

also resulted in an attenuation of MCMVdie1 replication in SCID mice, lacking T

and B cells and relying on the innate immune response to control the infection.

The fact that the trend towards lower viral yields is not seen in fibroblasts but in

BMMθs raised the possibility of that the absence of IE1 might have an effect on

cellular mechanisms involved in viral control, as seen in vivo. Therefore, to gain

an insight in the effect of MCMVdie1 infection of BMMθs a comparative study

on MCMVdie1- and MCMVrev-induced host gene expression was performed

using microarray technology. It is known that MCMV induces changes in host

gene expression when compared to mock-infected samples, therefore this pilot

study was only focused on MCMVdie1 and MCMVrev infection at early times

post infection, in order to test the effect of the absence of ie1. Considering the

limitations of the study, as well as the small numer of samples, the observations

from this experiment were not considered as conclusive. Instead they have been

used as a guide of what might be happening after infection, as well as to provide

an example of how microarray data could be analysed.

BMMθs from male BALB/c mice were infected with either MCMVdie1 (n=4)

or MCMVrev (n=3) at a MOI of 1 for 10 h. After the indicated time, total RNA was

isolated as described in Chapter 2. As indicated in Section 8.1.2, RNA quality was

confirmed on RNA 6000 Nanochips in the Agilent 2100 Bioanalyzer. Only high

quality RNA preparations, indicated by the RNA integrity number (RIN>7.5),

were considered for microarray screening in the the Affymetrix Mouse 430v2
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array. This work was done in collaboration with S. Burgess and P. Lacaze (Edin-

burgh University).

A total number of 22690 probesets from the Affymetrix Mouse 430v2 array

were imported into Partek R⃝ Genomic SuiteTMand normalized using the RMA

and quantile methods. An expression level filter was applied to the data for

probesets with absolute expression values of above 100 in two or more of the

seven arrays. 1455 filtered probesets were obtained and analyzed for differen-

tial expression between the MCMVdie1- and MCMVrev-infected samples using

ANOVA. 532 probesets were found to be differentially expressed to a statisti-

cally significant level using a p value (<0.05) and fold change (>1.2) cut off. In

general, significant p values are more important than the magnitude of the ef-

fect. However, in practice, a combination of statistically significant p value and

fold change are commonly used. Although this cut off is not very stringent it

was used in order to obtain a reasonable number of genes to work with in the

analysis. In any case, the results obtained from microarray always require in-

dependent validation. The differentially expressed probesets were then used to

identify genes whose expression was likely to be altered after MCMVdie1 infec-

tion. The complete list of these genes can be found in Appendix B.

From the data analysis, it was seen that, although the vast majority of the

genes were not affected in the absence of ie1, approximately 550 genes showed

differential expression. Strikingly, according to gene ontology analysis performed

with DAVID Bioinformatics Resources (http://david.abcc.ncifcrf.gov/home.jsp),

nearly 33% were relevant for the immune response triggered upon infection (see

Figure 3.2). In order to gain a better understanding of the biological processes

affected by these genes, a more extensive study was performed by pathway anal-

ysis.

3.3.3 Pathway Analysis

One of the obstacles of the microarray technology is the difficulty of analysing

the amount of data generated. However, there are several tools which help to un-

derstand microarray data. In this thesis, Ingenuity Pathway Analysis (IPA) (In-

genuity Systems R⃝, www.ingenuity.com) tool was used in order to identify the
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Figure 3.2: General description of microarray data analysis
BMMθs were infected with the MCMVdie1 and MCMVrev at a MOI 1 (n=4 and n=3,
respectively) for 10 hours. RNA was extracted and microarray was performed. Approximately
550 genes were differentially expressed, ∼65% of which were upregulated and 35% were
downregulated. An important percentage of those genes were involved in the immune response.

pathways and biological processes which were most affected after MCMVdie1

infection. Therefore, genes accession numbers from the 532 genes with differen-

tial expression along with the fold change were imported to IPA. This applica-

tion has also an extense manual-curated database, known as Ingenuity Pathways

Knowledge Base, derived from an important number of journals and text books,

which enables the identification of those genes of interest. The analysis of the

gene list was based on (1) the most relevant genetic networks identified and, (2)

the canonical pathways affected after infection.

Networks of gene interaction after viral infection

Those identified genes were overlaid onto a global molecular network developed

from information contained in the Ingenuity Pathways Knowledge Base and in-

terconnected algorithmically by using the Network Generation Algorithm [Cal-

vano et al., 2005]. Networks are also scored based on the number of molecules

included. Thus, the higher the score of a network the lower probability of find-

ing molecules by chance. This score is calculated with the right-tailed Fisher’s

Exact test. Furthermore, IPA also carries out a functional analysis of a network,
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identifying the biological functions and/or diseases that were most significant

to the genes in the network. Fisher’s exact test was also used to calculate a p-

value determining the probability that each biological function and/or disease

assigned to that network is due to chance alone.

The top 5 genetic networks identified by the Ingenuity Pathways Knowledge

Base are summarized in Table 3.1. The first 3 networks will be described in more

detail in this section, since they showed the highest scores and they have been

associated with functions relevant for viral infections, including cell death. It

has to be noticed that several genes appeared in more than one network which

indicates that they are associated with several biological processes.

CELL DEATH. As can be seen in Figure 3.3, this first genetic network repre-

sents genes affected after MCMVdie1 infection and mainly involved in the reg-

ulation of gene transcription and induction of apoptosis. Regarding the regula-

tion of DNA transcription different genes were found, including histone cluster

1 (HIST1H1C) and nucleosome assemble protein 1 (NAP1L1). The expression of

these genes was affected after MCMVdie1 infection, as well as MED21, which is

involved in the regulation of the RNA polymerase II, HSPA9, Daxx, known tran-

scriptional repressor, and p53. This last one seems so have a central role in this

network, since the vast majority of the genes interact with p53. Other genes in-

volved in the aminoacid metabolism are also represented in this network such as

histidine decarboxylase (HDC). All together, it can be seen that the expression of

genes involved in transcription are affected after MCMVdie1 infection. Indeed,

as has been already introduced IE1 protein acts as a trans-activation of cell gene

expression, so it is not surprising that these genes appear altered in the absence

of IE1.

Kinases like Death-associated protein kinase 1 (DAPK1) and Homeodomain

interacting protein kinase 3 (HIPK3) were also affected after MCMVdie1 infec-

tion. DAPK1 has also been reported to mediate IFNγ-induced apoptosis [In-

bal et al., 2000], whereas HIPK3 has been shown to phosphorylate the adaptor

protein FADD [Rochat-Steiner et al., 2000], modulating an alternative apopto-

sis pathway involving Fas ligand-induced JNK activation. These results might
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Figure 3.3: Genetic Network associated with Cell Death.

point to a regulation of the activation of apoptosis after MCMV infection, how-

ever qRT-PCR validation would be required to further investigate this potential

mechanism.

LIPID METABOLISM. Little is known about the role of lipids in infection of

MCMV, however there are some reports showing that Hepatitis C virus (HCV)

interacts with lipid aggregates known as ’lipid rafts’ in order to start the viral
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replication cycle [Aizaki et al., 2004]. Human CMV replication in endothelial

cells has also been shown to require the activity of Hydroxymethyl-Glutaryl

Coenzyme A (HGM-CoA) reductase, known to be part of the metabolic path-

way that produces cholesterol. When this enzyme was blocked by cholesterol

lowering drugs it was seen that the expression of viral immediate early and late

antigens was inhibited [Potena et al., 2004]. Interestingly, microarray analysis

pointed to an alteration of the expression of several genes involved in the cellu-

lar lipid metabolism after MCMVdie1 infection. These genes have been mapped

as shown in Figure 3.4. Within the genes differentially expressed it could be

found lipoprotein lipase (LPL), esterases (LIPA), binding proteins (FABP3) and

lipid transporters (ABCA1).

Intermediate compounds originated from the lipid metabolism are also known

to have an integral role in signalling pathways, such as Ras family of small GT-

Pases. Indeed, members of this family, including Rho and Ras, are localized in

the plasma membrane thanks to posttranslational lipid modification of the pro-

teins. Alteration of this lipid portion of the protein would result in a change in

cellular localization as well as biological activity [Wennerberg et al., 2005]. In

addition, these molecules are involved in the activation of the immune response

by leading to the activation of gene expression [Monick et al., 2003]. Moreover,

evidences on the anti-inflammatory role of LPL has been reported [Ziouzenkova

et al., 2003].

There are also experimental results showing a link between lipids and regu-

lation of apoptosis. It has been reported that LPL can induce apoptosis in human

cells by promoting caspase activation [Napoli et al., 2000]. Indeed, this genetic

network revealed an interaction between LDL and caspase-2. GOLGA3, also

known as Golgin 160, is a caspase-2 substrate which transduces pro-apoptotic

signals [Mancini et al., 2000].

Overall, this genetic network raises the possibility that MCMV targets lipid

metabolism by regulating the expression of several enzymes. The alteration of

this metabolism might also affect other cellular responses, including the immune

response. Therefore, it would be of interest to investigate further the interaction
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between MCMV and the lipid metabolism, and how that would affect either viral

infection and cellular responses to infection.

Figure 3.4: Genetic Network associated with Lipid metabolism.

VIRAL FUNCTION. This genetic network includes those genes which are in-

volved in biological process happening after viral infection, in particular with

viral replication and apoptosis. TNF appears to have a central role in this spe-

cific network (see Figure 3.5), as well as members of the canonical and alter-

native NFκB pathway, involved in the innate immune response and develop-

ment of lymphoid organs. Both human and murine CMV induce activation of
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NFκB. MCMV IE1 has been shown to induce the expression of NFκB subunits

p65 and p50/p105 [Gribaudo et al., 1996] and human IE1 induces expression of

relb [Wang and Sonenshein, 2005]. Another study has shown that human IE1

leads the activation of the MIE region by trans-activating NFκB sites in human

fibroblasts [Sambucetti et al., 1989]. However, work done by different groups

have also demonstrated that this factor is dispensable for HCMV and MCMV

replication [Benedict et al., 2004, Gustems et al., 2006]. In addition, inhibition of

NFκB activation in human cell cultures reduced the antiviral effect induced by

TNF and IFNγ [Eickhoff and Cotten, 2005], and very likely many other responses

mediated by this factor. However, microarray data could indicate a differential

expression of both relb and p100 in the absence of IE1. Results indicated that

TNFAIP3 interaction protein 1 (TNIP1), also known as NAF-1 or ABIN-1, is also

altered after MCMVdie1 infection. NAF-1 is induced by TNF in human cells

[Gallagher et al., 2003] and it negatively regulates NFκB-dependent gene expres-

sion, by interfering with IKK complex [Mauro et al., 2006]. Other groups have

revealed that this protein can also act as a attenuator of the Erk1/2 signalling

pathway [Zhang et al., 2002]. Therefore, it might be that NAF-1 could be acting

as a negative regulator of TNF-induced signalling, and the absence of IE1 affects

NAF-1 expression via TNF.

Several TNF family members are also part of this network, such as TNFSF10

(also known as TRAIL) and TNFAIP2, both of which induce apoptosis [Aggar-

wal, 2003]. The expression of the mitochondrial adenylate kinase 2 (AK2) also

appeared altered. This kinase initiates the activation of the FADD/caspase-10

pathway [Lee et al., 2007] and, consequently, the activation of caspase- 9 and -3.

These data may suggest that the absence of IE1 affects the expression of AK2,

raising a possible strategy to block the AK2/FADD/caspase-10 induced apopto-

sis.

Strikingly, in the genetic networks described above, expression of several

other genes has been shown to be affected in the absence of ie1, and these also
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play a role in the regulation of apoptosis, such as DAPK1 and HIPK3. There-

fore, this analysis might indicate that apoptosis is a key cellular response for the

control of MCMV infection which might involve the IE1 protein.

In this regard it is noteworthy that the presence of the homeodomain inter-

acting protein kinase 1 (HIPK1). TNF has been shown to induce translocation of

HIPK1 [Li et al., 2005]. When it is in the nucleus, HIPK1 interacts with Daxx and

regulates transcription. HIPK1 relocalized Daxx from ND10 to chromatin, where

Daxx acts as a repressor. However, HIPK1-induced phosphorylation of Daxx

also regulates Daxx repressor capacity [Ecsedy et al., 2003]. As has been intro-

duced, Daxx is part of the ND10 aggregates, along with PML and Sp100. The pre-

cise function of these bodies in MCMV infection has not been totally elucidated,

however it is known that both human and murine CMV disrupt these protein

complexes [Tang and Maul, 2003, Lee et al., 2004]. Unlike MCMV, HCMV in-

duces the degradation of Daxx [Saffert and Kalejta, 2006]. Therefore, it might be

possible that MCMV has evolved other mechanisms to counteract Daxx-induced

repression by interfering with its localization and activity, rather than induc-

ing its degradation. Although ie1-deletion mutant did not disrupt ND10 bodies

early after infection it did not affect viral replication, since MCMVdie1 repli-

cates as wild type in tissue culture [Ghazal et al., 2005]. However, this function

is not shared by other viruses such as HCMV and HSV because they show de-

fective replication in the absence of their respective IE1 proteins [Greaves and

Mocarski, 1998, Everett et al., 2004]. Nevertheless, this possible function of IE1

where it might regulate Daxx function by interfering with its phosphorylation

status might be the alternative to the degradation seen for human CMV. It has

been suggested the role of these molecules in antiviral defense, since they are

induced by IFN [Gongora et al., 2001, Grotzinger et al., 1996]. IFN-induced Daxx

is also known to act as a transcriptional repressor. Microarray analysis pointed

to the differential expression of Daxx and HIPK1. However, why these proteins

might be targeted by MCMV requires further investigation.

The interaction between TNF and cholesterol 25-hydroxylase (CH25H) is also

of great interest. Microarray data might indicate that TNF expression is altered
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in the absence of IE1. The previous section pointed to the alteration of several

genes involved in the regulation of the lipid metabolism. This enzyme is known

to transform cholesterol into 25-hydroxycholesterol, which has been reported to

negatively regulate the LPS-induced TNF production in Mθs [Englund et al.,

2001]. Moreover, it has been shown that cholesterol plays a role in the regula-

tion of TNF production. The mitogen activated protein kinase Erk1/2 plays a

role in the induction of tnf gene expression in Mθs [Shi et al., 2002]. As a pro-

tein kinase, Erk1/2 activity is regulated by a specific kinase and phosphatase.

It has been described that cholesterol is essential for the negative regulation of

the phosphatase complex [Wang et al., 2005], which ultimately might affect the

activation of gene expression, including tnf. Microarray data might indicate that

TNF expression is regulated after MCMVdie1 infection. One possible explana-

tion might be that the apparent regulation of tnf expression might be partially

cholesterol-dependent. However, further validation has to be done in order to

investigate these speculations.

Canonical pathways affected by MCMVdie1 infection

In the previous section it has been described how the genes differentially ex-

pressed after MCMVdie1 infection interact with each other in different genetic

networks, giving an initial idea of the biological processes which might be tar-

geted. The Ingenuity Pathway Analysis also includes the study of the different

canonical pathways which have been altered after MCMVdie1 infection. As for

the genetic networks, these pathways have also been curated and drawn from

information found in the literature. The significance of the association between

the data set and the canonical pathway was measured by Fischer’s exact test,

giving a p-value which determines the probability that the association between

the genes in the dataset and the canonical pathway is explained by chance alone.

Below, a number of pathways are described not only for their relevance on the

control of infection, but also for the significance with which they were scored in

the analysis.

IL10 AND IL6 SIGNALLING PATHWAYS. The production of IL10 after MCMV

infection of primary Mθs has been reported. This anti-inflammatory cytokine
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Figure 3.5: Genetic Network associated with Viral function.

appeared to be involved in the MCMV-induced inhibition of the MHC class II

molecules in infected cells [Redpath et al., 1999]. Moreover, it has been shown

that IL10 is responsible for the control of MCMV in the salivary glands, sug-

gesting a mechanism involving the balance between IL10 and IFNγ production

[Humphreys et al., 2007]. However, very recently it has also been demonstrated

that IL10 has a pivotal role during MCMV infection, since MCMV-infected mice

with severe disease were found in the absence of IL10 because of the abundant

and persistent production of other cytokines including TNF, IFNγ and IL6 [Oak-

ley et al., 2008]. Pathway analysis from the microarray data might indicate that

the absence of IE1 has a strong effect on IL10 expression early after infection
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of BMMθs, as well as other molecules involved in the IL10 signalling pathway

(Figure 3.6).

Another signalling pathway altered in the absence of IE1 was IL6 (Figure 3.7).

After MCMV infection IL6 levels can be detected in vitro and in vivo. Moreover,

Ruzek and coworkers also reported the association between IL6 and the produc-

tion of glucocorticoids in the natural host [Ruzek et al., 1997], which has been

shown to inhibit immune response [Kunicka et al., 1993]. IL6 can also induce

other immune cells by inducing MCP1 [Rott et al., 2003] as well as the activa-

tion and expansion of B cells [Barton, 1997]. There is evidence demonstrating

that human CMV induces il6 expression by its IE1 [Geist and Dai, 1996], but this

analysis pointed to a possible regulation of IL6 by MCMV. Figure 3.7 shows that

by interfering with the expression of il6 the signalling cascade induced by this

cytokine might also be altered, as well as the induced biological activities.

IFN SIGNALLING PATHWAYS. The role that IFN plays in the control of MCMV

infection has been extensively studied, as has been already introduced in this

thesis. Pathway analysis identified this as one of the most affected by MCMVdie1

infection. Microarray data showed that IFN-induced genes ifitm1, irf1 and mx1,

were up-regulated by the IE1 protein (see Figure 3.8). Besides, interferon induced

transmembrane protein 2 and 6 (ifitm2, ifitm6) expression also was altered by

MCMVdie1 infection (see complete gene list from Appendix B). Moreover, these

results are consistent with the work recently published by Busche and coworkers,

where they show that the induction of IFN response elements were decreased in

the absence of IE1 [Busche et al., 2008].

It has been reported that human IE1 protein targets type I IFN-induced gene

expression by interfering with the complex STAT1-STAT2-IRF9, preventing the

activation of transcription [Paulus et al., 2006]. However, this microarray study

along with the recently published work might indicate that, unlike the human

virus, MCMV IE1 induces this specific response rather than blocking it.
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Figure 3.6: IL10 signalling pathway
Analysis of the IL10 signalling pathway by IPA showed genes differentially expressed from
the microarray data. Green and red color denotes genes which expression is down- and
up-regulated, respectively.

3.4 Conclusions

MCMV IE1 has been shown to be dispensable for viral replication in different

types of cells in vitro, however, the role of this viral protein in viral replication

in primary Mθs has not been studied. Mθs are key players in both immune re-

sponse against viruses and other pathogens and MCMV infection. Therefore,

it was of interest to study viral infection in this particular cellular population.

BMMθs were infected at different MOIs with MCMVdie1, parental MCMV and

a revertant. Viral growth kinetics revealed that, there was a marginal decrease

in MCMV replication was seen in the absence of ie1, although not statistically
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Figure 3.7: IL6 signalling pathway
Analysis of the IL6 signalling pathway by IPA showed genes differentially expressed from
the microarray data. Green and red color denotes genes which expression is down- and
up-regulated, respectively.

significant. The reason of trend towards lower replication is not known, how-

ever there are several factors which could explain this difference. For instance,

the virus could have adapted to replicate in fibroblasts and does not take into

consideration factors to which the virus could be exposed in BMMθs. It is also

known that Mθs are semipermisive cells which could also affect viral replica-

tion. Considering that the phenotype of MCMVdie1 seen in vivo it might be that

BMMθs simulate the closest environment to in vivo conditions, including factors

involved in the immune response which are not present in fibroblasts, and all

together could explain the trend towards lower viral yields.

When gene expression was studied after infection of BMMθs it was seen that,

although the vast majority of genes had a similar expression after Mθs infection

with MCMVdie1 and MCMVrev, approximately 550 genes were differentially
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Figure 3.8: IFN signalling pathway
Analysis of the IFN signalling pathway by IPA showed genes differentially expressed from
the microarray data. Green and red color denotes genes which expression is down- and
up-regulated, respectively.

expressed in the absence of IE1. Of these, ∼33% are genes involved in the regula-

tion of the immune response, including cytokines. In order to gain an insight of

the biological processes in which those genes are involved, the Ingenuity Path-

way Analysis application was used. It has to be noticed that this tool is used

with the goal of obtaining a broad idea of the effect of the viral infection on cell

host expression and validation of the data is always required in order to make

firm conclusions. The use of the ie1-deletion mutant has shown that IE1 might to

be involved not only in the expression of genes required for viral replication, but
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also in the regulation of the immune response triggered by BMMθs upon infec-

tion. This study has helped to point to potential targets for viral regulation, and

further validation and work has to be done to completely elucidate the role that

IE1 might have in the regulation of immune pathways in the cell host.

IL10, IL6, TNF, IFN and NFκB signalling pathways are affected after viral

replication, and the absence of IE1 resulted in the differential expression of sev-

eral members of these pathways. Because all these signalling cascades interact

with each other, viral interference with a single gene might have an effect on

many others. For instance, by regulating the expression of IκBα, not only the ac-

tivation of the NFκB might be affected, but also the biological activity induced by

other cytokines which depend on the activation of this transcription factor. This

includes IL1, TNF and other members of the TNF superfamiliy, such as TWEAK

and TRAIL. IL1 has been shown to play a role in the control of CMV infection, by

blocking viral spread in different cell types [Randolph-Habecker et al., 2002]. By

targeting this cytokine, or IL1-induced responses, MCMV might control its own

dissemination.

TNF superfamily members TWEAK and TRAIL also appeared to be differen-

tially expressed after MCMVdie1 infection. Both proteins have been shown to

activate caspase 8-induced apoptosis [Aggarwal, 2003]. Modulation of the ex-

pression of these ligands suggests that MCMV might also regulate the induction

of apoptosis. Very recently, it has been reported that MCMV also targets other

members of the TNF signalling pathway in order to counteract the immune re-

sponse induced after receptor engagement [Mack et al., 2008]. Human CMV has

been reported to encode a viral protein that blocks caspase 8 activation [Skalet-

skaya et al., 2001]. In addition, the human virus has also been shown to induce

the activation of the caspase-inhibitor c-FLIP by its immediate early 2 protein

(correspondent to the IE3 MCMV) [Chiou et al., 2006]. The activation of c-FLIP is

NFκB-dependent. Microarray data pointed to the regulation of the IκBα gene ex-

pression in the absence of IE1, suggesting that MCMV might also block caspase

8/10-induced apoptosis. Moreover, it was seen that the AK2/FADD/caspase-10
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signalling pathway was also affected by MCMVdie1 infection, as well as DAPK1

and HIPK3. Considering the importance of apoptosis in the immune response

against viral infection, it is of interest to study further the interaction between

IE1 and the regulation of apoptosis.

Microarray analysis might also indicate that IE1 may be required for the ac-

tivation of IFN-induced genes, including irf1, ifitm1 and mx1. In fact, this re-

sult would be consistent with another report demonstrating that IE1 is required

for induction of IFN response elements [Busche et al., 2008]. However, another

study has shown that MCMV blocks IFNβ expression, although the molecular

mechanism is not known [Le et al., 2008]. Human CMV has been shown to

prevent binding of STAT1-STAT2-IRF9 to specific DNA sites in order to block

IFNαβ-induced gene expression.

The Ingenuity Pathway Analysis tool is able to represent the interaction of

different genes, giving a number of genetic networks which might reveal new

interactions. Table 3.1 summarizes the top 5 genetic networks found in this

analysis, along with the different genes involved. As can be seen, cell death,

lipid metabolism and biological processes involved with viral infections are in-

cluded. From these genetic networks it was seen that IE1 protein might also be

involved in regulation of lipid metabolism. The enzyme CH25H appeared to be

differentially expressed. This enzyme has a role in regulation of the cholesterol

metabolism. Moreover, it has been shown that cholesterol plays an important

role in activation of Erk1/2 phosphatase, by supporting the OSBP and specific

enzymes in an active complex.

Overall, microarray study and pathway analysis are useful tools to obtain in-

formation about the functional relationship between BMMθs and MCMV in the

abscense of IE1. Despite the need for further validation of the microarray data

this is the first study done trying to understand the impact of this viral protein

in the host cell. The results presented in this chapter gives an overview on how

MCMVdie1 might affect host cell gene expression. IE1 has been suggested to
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be a trans-activator of viral and host gene expression to favor viral replication,

however Pathway Analysis has pointed to a possible regulation of expression

of genes involved in the immune response in the absence of ie1. Moreover, mi-

croarray analysis could be very useful to identify potential targets for viral infec-

tions. For instance, in the context of MCMVdie1 infection: (1) lipid metabolism

which has not been described until now to be crucial for MCMV infection, but

might be important in the regulation of the immune response and (2) apoptosis

which is known to be part of the cellular response against viral infection and is

also exploited for some viruses to their own convenience. This study might in-

dicate a role for IE1 in the regulation of such a response. Cytokine production

also appeared to be regulated in the absence of IE1, as seen for TNF, IL10 and

IL6. Considering the relevance of these biological processes and molecules in the

control of cell survival and immune response further work has to be done in or-

der to validate the microarray data as well as make firm conclusions about these

possible immune evasion strategies.



CHAPTER 4

Modulation of TNF response by MCMV

4.1 Introduction

In the previous chapter the growth kinetics of the MCMVdie1 were described,

showing a trend towards a lower replication in BMMθ. Although this result was

not statistically significant, the difference in viral replication, which is not seen

in other cell types such as fibroblasts, might be due to the production of factors

involved in the control of viral replication such as cytokines. Moreover, cytokines

have been shown to play a crucial role in the control of MCMV infection in vivo

and in vitro, so it is not be surprising that MCMV has evolved mechanisms to

suppress or evade cytokine-induced responses in order to persist within the host.

IL10 has been reported to have a role in MCMV infection in primary Mθs.

Redpath and coworkers demonstrated that MCMV-induced down-regulation of

MHC class II in infected cells was driven by the induction of IL10 in these cells

[Redpath et al., 1999]. Very recently IL10 has been described as an important

regulator of the immune response against infection, since it can control both

pathogen invasion and pathology [Couper et al., 2008]. This would be consis-

tent with a recent study showing that depletion of IL10 resulted in dramatic

symptoms of MCMV infection in the natural host, related to uncontrolled pro-

duction of other pro-inflammatory cytokines such as IFNγ, IL6 and TNF [Oakley

et al., 2008]. Unlike MCMV, the human virus encodes a viral homolog of IL10,

cmvIL10, which is capable of engaging the IL10 receptor as well as activating

signalling molecules such as STAT3 [Spencer, 2007].

74
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IL6 has also been shown to be induced upon MCMV infection [Ruzek et al.,

1997]. Moreover, the human virus has been reported to induce a transcriptional

regulation of IL6 mRNA in Mθs by a mechanism involving the IE1 protein [Geist

and Dai, 1996].

Several viruses have been shown to induce TNF production [D’Addario et al.,

2000, Ameglio et al., 1994, Paludan and Mogensen, 2001], however very few ex-

amples can be found in the literature regarding viral regulation of TNF produc-

tion. One of these examples is the African swine fever virus (ASFV). It has been

reported that ASFV infection of Mθs results in inhibition of TNF expression by

interfering with the activity of CBP/p300 [Granja et al., 2006]. Epstein Barr virus

(EBV) has also been shown to inhibit TNF production in cell culture [Gosselin

et al., 1992], however the molecular mechanism of this regulation is not clearly

understood. Besides, another study has shown that EBV gp350 induces TNF

production [D’Addario et al., 2000], contrary to the previous report. To date both

human and murine CMV have been reported to block TNF-induced gene expres-

sion by interfering with TNF receptors expression [Popkin and Virgin, 2003, Bail-

lie et al., 2003, Montag et al., 2006], TNF-induced caspase-dependent apoptosis

[Skaletskaya et al., 2001] and very recently caspase-independent apoptosis by di-

rect binding and degradation of RIP1 by the viral protein M45 [Mack et al., 2008].

Other viruses, such as Dengue Virus and Hepatitis C virus,have been also shown

to overcome the TNF-induced response [Saito et al., 2006, Choi et al., 2006, Wati

et al., 2007].

4.2 Aim of the chapter

Mθs are essential for MCMV infection as well as the cytokine response triggered

upon infection. However, little is known about the role of IE1 protein in the infec-

tion of primary Mθs. There is evidence showing that IE1 activates transcription

of cellular genes in order to create the optimal environment for viral replication,

but there is not much information about the role that IE1 could be playing in

regulation of the immune response induced upon viral infection. Therefore, in

order to characterize the role of IE1 protein in regulation of the immune response
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against MCMV, the aim of this chapter was to study the effect of this viral protein

in BMMθs-induced cytokine production during early hours of infection.

4.3 Results

4.3.1 Cytokine production after infection

To investigate the role of IE1 protein in modulation of the immune response in

infected-BMMθs, cytokine secretion at early times after infection was studied.

Thus BMMθs were prepared as described before and after 7 days of culture were

either mock infected or infected with MCMVdie1 or MCMV at a MOI 1 (n=3).

Supernatants were harvested at 10 and 24 hpi and flow cytometry-based Cyto-

metric Bead Array (CBA) was performed for IL6, IL10, IFNγ, TNF and IL12p70.

Figure 4.1 shows that MCMV infection resulted in the induction of IL6 (75

pg/mL) at 10 hpi when compared to the mock-infected cells, which levels were

under limit of detection (p<0.05). At 24 hpi IL6 levels were reduced, just above

the limit of detection (55 pg/mL). MCMV is known to induce production of IL10

in macrophages [Redpath et al., 1999]. In this experimental system, MCMV also

induced IL10 production after 10 hours (118 pg/mL, p=0.03, when compared to

mock infection), with a moderate decrease by 24 hpi (58 pg/mL). IFNγ levels

were under limit of detection, as expected, but also the levels of IL12p70 at both

time points. The most significant response detected after MCMV infection was

TNF production, which reached 206 pg/mL (p=0.006) and 160 pg/mL at 10 and

24 hpi, respectively, although TNF levels found in the supernatants of mock-

infected cells were above the base line at 24 hpi.

When cytokine production was studied after MCMVdie1 infection it was seen

that, except for IFNγ and IL12p70, all cytokines were also found in the cellular

supernatant early after infection. Moreover, the TNF response was markedly

higher, when compared to the levels seen for wild type infection.

Considering the role that TNF plays in the control of viral infections, and the

significant production of the cytokine after infection with MCMVdie1, it was of
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Figure 4.1: Cytokine production after 10 and 24 hours post infection
Cytokine production was determined from supernatant of infected-BMMθs after A. 10 and B.
24 hours post infection (n=3). Mean values and SD are shown. Dash lines represent limit of
detection. Significance of the cytokine production is given by Student’s T-test p values (* p<0.05,
** p<0.01).

interest to confirm the TNF production in the absence of IE1. Therefore, a sec-

ond experiment was performed where BMMθs were infected with either MCMV

or MCMVdie1, or mock-infected and cytokine levels were measured by ELISA.

As a positive control for macrophage activation, cells were also treated with LPS
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and TNF levels were measured after 6 hours post stimulation. Figure 4.2 clearly

shows that MCMV infection induced TNF production. After 10 hpi MCMV in-

duced 50 pg/mL of TNF. When compared to the mutant virus however, the ab-

sence of IE1 protein resulted in a significant production of the cytokine, 3-fold

higher amount of TNF. At 24 hpi both MCMV and MCMVdie1-induced TNF

production slightly decreased, but there was still a significant difference between

viral infections. It is of note that there was a difference in the cytokine concen-

tration between the flow cytometry based-CBA and ELISA. The higher sensi-

tivity of the first assay is well known [Jimenez et al., 2005], in comparison to

conventional ELISA, which would explain the difference in protein concentra-

tion. However and despite the sensitivity difference of the technique used, these

independent experiments showed a significant production of TNF in the absence

of IE1. Therefore, these data suggest that MCMV modulates the production of

TNF in BMMθs at early times post infection, in a mechanism that involved the

presence of the IE1 protein.

Figure 4.2: Confirmation of TNF production in BMMθs by ELISA.
Mθs were either infected with MCMV or MCMVdie1 or mock-infected (n=3). Cytokine
production was determined from the supernatant of infected-BMMθs after A. 10 and B. 24 hours
post infection. Mean values and SE are shown. Significance of the cytokine production is given
by Student’s T-test p values (* p<0.05, ** p<0.01).

4.3.2 Role of MCMVdie1 in tnf expression in BMMθs.

To further investigate regulation of TNF production after infection by MCMV,

the activation of tnf gene expression in BMMθs was studied. Cells were infected
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Figure 4.3: Relative expression of tnf after infection
Relative fold expression of tnf gene in infected-BMMθs. Total RNA was extracted at 10 hours
post infection from BMMθs. Quantitative RT-PCR was performed for relative expression levels
of tnf in these cells. Shown are relative levels of gene expression which have been normalized
against gapdh gene and calibrated against MCMV induced-gene expression. SE bars also shown.
Significance of mRNA levels is given by Student’s T-test p values.

with MCMVdie1, MCMVrev or parental MCMV or mock infected (n=3) and total

RNA was extracted after 10 hpi. This time point was chosen since TNF produc-

tion was found to be higher (Figure 4.2). Quantitative (q)RT-PCR was performed

to detect tnf mRNA levels. Data was normalized against expression of gapdh

and calibrated against MCMV infection. Figure 4.3 shows relative levels of tnf

transcripts. When compared to the mock-infected samples, MCMV infection in-

duced expression of tnf (p<0.05). However, TNF mRNA levels in MCMVdie1-

infected BMMθs were 2.5- fold higher than those seen for the parental and rever-

tant MCMVs (p<0.01). MCMVrev induction of tnf expression was similar to that

induced by wild type virus. It has been reported that MCMV infection inhibits

expression of TNF receptors in macrophages [Popkin and Virgin, 2003], altering

the signalling cascade of cellular activation. However, this is the first time that tnf

gene expression has been shown to be regulated by MCMV. Therefore, the data
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suggest that MCMV modulates both tnf transcript levels and protein production

in BMMθs.

4.4 Conclusion

Mθs are a key cellular population for MCMV infection. MCMV disseminates

throughout the host by using blood monocytes derived from bone marrow pro-

genitors as vehicles [Hanson et al., 1999]. Differentiation from monocytes to Mθs

has been shown to favor the cellular environment for viral replication. Mθs also

play a role during latency, since it has been found that these cells are a major

site of persistence of MCMV DNA in latent state. Moreover, the bone marrow

has been defined as a ’source’ of latent MCMV [Pollock et al., 1997, Mitchell

et al., 1996]. Mθs are as important for MCMV infection as for the immune re-

sponse against MCMV. Mθs are part of the first line of defense, becoming active

and secreting cytokines, such as TNF, IL12, IL1 and IL6 and chemokines to alert

and recruit other cells to the site of infection. Together, cells in collaboration

with cytokines control pathogen invasion and kill infected cells to avoid further

spread of the virus. However, and despite all the efforts made by the immune

cell ’army’ to control MCMV infection, infectious virus can still be found in sali-

vary glands after resolution of acute infection. That indicates that MCMV has

evolved mechanisms to sabotage Mθs function. It is reported here the modula-

tion of TNF production by MCMV in the absence of IE1. TNF has a central role in

control of MCMV infection. In synergy with IFNγ MCMV replication is reduced

in MEFs [Lucin et al., 1994], confirming the antiviral activity of this cytokine.

TNF-induced immune effects in the cells are mediated through a signalling cas-

cade which involves both TNF receptors. For that reason, it is not surprising that

one of the CMV’s immune evasion strategies is to block the activation of such

a response. Indeed, it has been shown that both human and murine CMV tar-

gets expression of TNF receptor 1 (TNFR1) on the surface of Mθs [Baillie et al.,

2003, Popkin and Virgin, 2003], however the exact viral protein responsible for

this regulation is not known.
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Experiments described in this chapter show the modulation of BMMθs-induced

TNF production by MCMV in the absence of the ie1 gene. It is shown that

MCMV suppresses the tnf gene expression and protein production. By using an

ie1-deletion mutant MCMV it was seen that the induction of the cytokine early

after infection was significantly higher when compared to the cytokine produc-

tion induced by the wild type MCMV. Moreover, when tnf mRNA levels were

quantified it was seen that MCMVdie1-induced activation of tnf expression was

2.5-fold higher. Work done by Geist and coworkers showed that HCMV IE1 pro-

tein induced expression of the tnf gene in cultured cells [Geist et al., 1994, Geist

et al., 1997]. However, in contrast to the work described in this chapter which

was done in the context of viral infection, these studies were performed by using

transient transfection assays.

It could be argued that the dramatic TNF production is not due to a viral-

induced regulation but the result of a defect of the mutant virus instead. How-

ever, this investigation has been focused on early times post infection, prior to

viral replication. In addition, previous observations show that MCMVdie1 is

able to replicate as wild type in other cell types such as fibroblasts. Since the

trend towards lower yields was only found in BMMO it was hypothesized that

IE1 is involved in the regulation of the immune response, since this cellular pop-

ulation is known to have a role in the control of MCMV infection. Data presented

in this chapter show independent experiments where the modulation of TNF is

shown in the absence of IE1, suggesting that MCMV is regulating this cytokine

response. The mechanism by which this modulation takes place is not known

but it is clear that involves the presence of IE1. In any case, a comparative study

of the genome copies found in infected cells could be very informative to confirm

that cultures were equally infected. Therefore, the observations described here

were made under the assumption of that equal number of cells being infected

(see Figure 5.3 for controls). Hence, it can be concluded that MCMV regulates

the production of TNF in BMMθs at early times post infection, in a mechanism

that involved the presence of the IE1 protein.
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IL6 protein production presented a similar profile to TNF, although not as sig-

nificant as TNF. A possible explanation for this induction of IL6 after MCMVdie1

infection could be that IL6 is produced as secondary response to the dramatic

levels of TNF found in the cellular supernatant, since IL6 production is induced

by TNF.

Overall, data presented in the above sections indicates that MCMV modu-

lates TNF at both RNA transcripts and protein levels. The mechanisms of such

modulation are not known however data also indicates that IE1 plays a role. This

raises a potential strategy of evasion of the immune response by MCMV, particu-

larly the escape from the known TNF-induced response. These data, along with

previous work regarding the inhibition of TNF-induced signalling pathway by

blocking expression of TNF receptors, reinforce the key role that TNF plays in

control of MCMV infection.



CHAPTER 5

Molecular study of MCMV-induced TNF pro-

duction

5.1 Introduction

Nearly every step of TNF biosynthesis and the TNF-induced signalling pathway

has been shown to be targeted by different pathogens. For instance, members of

the Poxvirus family have been reported to directly interact with TNF by a viral

TNF receptor homolog [McFadden et al., 1997], avoiding TNF binding to the

receptor and induction of the immune response. Blocking of caspase activation

is another common mechanism used by pathogens. That is the case for Hepatitis

C virus (HCV) which suppresses TNF-induced caspase 8-dependent apoptosis

by sustaining expression of the caspase-8 inhibitor c-FLIP [Saito et al., 2006].

HCV also inhibits TNF-induced NFκB activation by interfering with TRAF2

and the inhibitory complex IKKα by the viral proteins NS5A and NS5B, respec-

tively [Choi et al., 2006]. It is more common for viruses to target either TNF

superfamliy ligands or TNF-induced signalling rather than production of the

protein. However, different bacteria and parasites such as Listeria monocyto-

genes, Staphylococcus aureus, Plasmodium falciparum, Toxoplasma gondii among oth-

ers, have been reported to interfere with the expression of the tnf gene, mainly

by targeting NFκB and members of the MAPK [Rahman and McFadden, 2006],

known to be crucial for tnf expression and which will be described in more detail

in different sections of this Chapter.

83
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HCMV has also been reported to block TNF-induced NFκB-dependent re-

sponses by targeting the TNFR1 [Baillie et al., 2003]. A similar mechanism has

been described by MCMV which inhibits TNF-induced ICAM-1 expression by

altering the levels of both TNFR1 and TNFR2 [Popkin and Virgin, 2003].

5.2 Aim of the Chapter.

Work presented in previous Chapters has shown that the absence of ie1 resulted

in a significant production of TNF at both transcript and protein levels in infected-

BMMθs. The aim of this Chapter was to explore the molecular mechanism of this

potential modulation of TNF production in primary Mθs.

5.3 Bibliographic characterization of tnf promoter activation.

In order to study at the molecular level the MCMVdie1-induced production of

TNF it was of interest to firstly understand the induction of this response. From

the literature it can be seen that tnf activation occurs by different mechanisms de-

pending on the stimuli, as well as the species under study, that is between human

and murine gene expression. Therefore, a literature review was performed in or-

der to characterize the molecular mechanisms by which murine tnf promoter is

activated, and to identify common transcription factors which might also be in-

volved in the activation of the gene, as well as the signalling pathways leading

to the activation of these molecules.

The first part of this study involved an extensive literature review in order to

characterize which factors are crucial for tnf activation. This study was done in

colaboration with Y. Naiyachit, as part of an MSc project done during the time

of this thesis. As it has been previously introduced, TNF is mainly produced

by macrophages, however other cells like T cells, B cells and NK cells also pro-

duce TNF. The cytokine response normally occurs after cellular activation by a

wide variety of stimuli, such as bacterial peptidoglycan, lypopolysacharide, viral

and bacterial infection, among others. Interestingly, all these stimuli induce the

activation of tnf expression by the recruitment and activation of different tran-

scription factors. Moreover, this response has also been reported to be cell type-

and stimuli-dependent [Falvo et al., 2000].
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LPS-induced TNF production has been extensively studied in both human

and murine monocytic cell line. For instance, comparative studies have shown

similarities in both promoters, but there are also several differences regarding

the contribution of transcription factor NFκB in the induction of tnf promoter

[Kuprash et al., 1999]. In contrast to this study, others have shown that NFκB

is not required for a full induction of the promoter, and the recruitment of tran-

scription factors such as Sp1, Egr-1, Ets and ATF2/Jun is sufficient for an optimal

activation of tnf expression in LPS-activated Mθs [Tsai et al., 2000]. However, a

recent study has shown that blocking NFκB activation resulted in a reduction in

the activation of tnf by LPS, suggesting that although NFκB might not be essen-

tial for the initial activation of the gene expression it is required for the stability

of the mRNA [Tsytsykova et al., 2007]. The coactivator proteins CREB binding

protein (CBP) and p300 seem to function to maintain the correct alignment of the

factors for the optimal induction of the promoter [Barthel et al., 2003].

The molecular mechanisms of TNF production by Mycobacteria has also been

studied in macrophages, showing a number of similaties with LPS [Barthel et al.,

2003] regarding the induction of the enhanceosome formation. This study also

compared the assembly of the enhanceosome in virus-infected cells or in re-

sponse to ionophore. The results are shown in Figure 5.1, where it can be seen

that, even though cell type and and stimili play a role in the formation of the ini-

tiation complex, there are a number of factors which are equally essential in all

three scenarios. They are ATF2/Jun, Sp1, Ets, Egr-1 and coactivators CBP/p300.

Taking all the information together, figure 5.2 shows the transcription factors

which have been shown to be involved in the activation of the murine tnf pro-

moter. The identification of these transcription factors along with the upstream

signals driving their activation might give the basis of the molecular mechanisms

underlying MCMV IE1-induced suppression of tnf expression in Mθs.
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5.4 Investigation of Mitogen Activated Protein Kinases.

Once the transcription factors involved in tnf promoter activation were deter-

mined, the second step in this investigation was to identify which signalling

pathways would drive the recruitment and activation of these factors, which also

might be targeted by MCMV IE1. It has been shown that the engagement of dif-

ferent TLRs results in activation of pro-inflammatory cytokines, including TNF.

In fact, M. tuberculosis and LPS activate TLR2- and TLR4- signalling pathways,

respectively. It is also known that viral infection is normally sensed by TLR3 or

TLR9, or both, inducing the signalling cascade. These receptors induce the acti-

vation of NFκB and mitogen activated protein kinases (MAPK), which cultimate

in the activation of an pro-inflammatory response.

MAPK is a family of signalling proteins expressed in all eukaryotic cells and

involved in many different cellular responses and functions, from cellular growth

and differentiation to cytokine responses. Three important groups of MAP ki-

nases have been characterized in mammalian cells; the extracellular signal reg-

ulated protein kinase 1 and 2 (Erk1/2), p38 MAPK, and c-Jun amino-terminal

kinase/stress-activated protein kinase (JNK/SAPK). All of these have been shown

to be activated in different macrophage cell lines [Rao, 2001]. Their effects on

the induction of TNF gene expression and protein release have been extensively

documented, as well as their involvement in the activation of cytokine responses

against different pathogens [Pazdrak et al., 2002, Nakamichi et al., 2004, Lee et al.,

2005, Zhang et al., 2005, Zhu et al., 2005], and immune evasion strategies [Prive

and Descoteaux, 2000]. Moreover, it has been shown that activation of at least

Erk1/2 and p38 is required for successful induction of the TNF gene [Rutault

et al., 2001]. This suggests a cooperative effect between the different MAP kinase

signalling pathways, which would regulate different stages of TNF production

[Zhu et al., 2000].

The activation of Erk1/2 has also been reported in LPS-stimulated bone mar-

row derived macrophages [Valledor et al., 2000], as well as its role in TNF pro-

duction. However, the precise role that these molecules, and the subsequent
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cascades triggered upon kinase activation, play in the processes responsible for

TNF production remains unclear. Both Elk-1 and Egr-1 are involved in Erk1/2

signalling pathway in different Mθs cell lines. It is known that there are binding

sites for both transcription factors in the tnf promoter (see Figure 5.2), and that

Elk-1 can activate Egr-1 expression [Shi et al., 2002, Xu et al., 2001]. MAPK also

phosphorylate CREB, shown to be involved in activation of the transcription of

tnf gene [Roach et al., 2005]. Very recently it has been reported that MNK ki-

nases, downstream Erk1/2 and p38, also play an essential role in regulation of

tnf expression, as well as balance the activation of a pro-inflammatory response

against anti-inflammatoy response [Rowlett et al., 2008].

TLR3 and TLR9 [Tabeta et al., 2004], and very recently TLR7 [Zucchini et al.,

2008], have been shown to play a role in innate immunity against MCMV in-

fection. These TLRs are also known to activate MAPK, however this has not

been described in the context of MCMV infection. Moreover, data presented in

Chapter 3 might indicate that MCMV regulates lipid metabolism of the infected

cell, including cholesterol. A recent study has shown that cholesterol is also im-

portant for the regulation of Erk1/2 kinase activity, by being an integral part of

the Erk1/2 specific phosphatase complex [Wang et al., 2003, Wang et al., 2005].

Nevertheless, since members of the MAPK family and NFκB are common targets

for different pathogens in the inhibition of TNF, it was of interest to investigate

whether MCMVdie1 infection resulted in a differential activation of any of these

molecules which could give an insight into the molecular mechanisms of TNF

production.

Hence, BMMθs from 10-12 week old male mice were cultured as described be-

fore and made quiescent by serum starvation for 24 hours prior infection. Infec-

tion was carried out at a MOI 1 with MCMVdie1, wild type MCMV or MCMVrev

for 10 hours. The length of infection used was determined according to the peak

of TNF shown in the results described in Chapter 4. This study was done in

collaboration with Upstate (Millipore, UK), using the PathwayProfilerTMservice.

This multiple bead-based array was used as an alternative to Western Blot for
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Table 5.1: Panel of target

Analyte Phophosyte Total protein Validation
Active β-Catenin

√

Akt/PKBα Phospho-Ser473
√

c-Jun Phospho-Ser73
√ √

c-Kit Phospho-Tyr
√

CREB Phospho-Ser133
√ √

EGF-Receptor Phospho-Tyr
√

Erk1/2 Phospho-Thr185/Tyr187
√ √

HSP27 Phospho-Ser78
√

IκBα Phospho-Ser32
√ √

IRS1 Phospho-Tyr
√

JNK/SAPK1 Phospho-Thr183/Tyr185
√ √

p38/SAPK Phospho-Thr180/Tyr182
√ √

STAT3 Phospho-Tyr705
√

STAT3 Phospho-Ser727
√

STAT5 A/B Phospho-Tyr694/699
STAT6 Phospho-Tyr641

√ √

Analytes that are targeted by the assay. Table shows the list of targets along with the specific
antibody, the total protein analysis and validation by Western Blot.

the study of the activation of members of the MAPK family, along with other

signalling molecules.

In order to validate this technology, Western Blot was also used on the pro-

teins indicated on the last columm of Table 5.1. Therefore, two of the biolog-

ical replicates were analysed using PathwayProfilerTM, and the third replicate

was used for validation in Western Blot. At the same time, a second experiment

was performed and activation of signalling molecules was analyzed by Western

Blot. After infection, the whole cellular lysate was extracted as described in Sec-

tion 2.6.1 and analysed by the PathwayProfilerTMassay and by Western blot for

the activated forms of the MAPK family members and several other signalling

molecules. In order to establish the intensity of activation, data was normalized

against β-Actin protein, followed by normalization against the mock infected

signal, and total amount of protein when applicable, showing fold activation

values. Values above 1 indicates that viral infection induces stronger activation

of the kinase than non-infected samples.
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As a control of infection, Western Blot was performed against IE1 and early 1

(E1) viral proteins. As it can be seen from the first panel in Figure 5.3 IE1 protein

was absent in both non-infected and MCMVdie1-infected samples. Comparable

levels of E1 protein were seen in all infected samples, but not in mock-infected.

The slight background found in the mock-infected line could be the result of

several washes and stripping of the blot. In any case, the analysis was done on

the basis of equal amounts of protein, as seen in the rest of the blots. Panel B

shows the positive control for BMMθs activation. Cells were stimulated with

LPS for 6 h and Western Blot was performed against IκBα. Degradation of the

protein after LPS stimulation demonstrated normal activation of the cells.

5.4.1 MAPK family

Figure 5.4 shows the activation of members of the MAPK family (A-C). The top

panels shows the PathwayProfilerTManalysis and with the Western Blot valida-

tion along with the densitometric analysis of each blot below. Panel A.1 de-

picts Erk1/2 activation and from the graph it can be seen that after infection

with MCMV kinase phosphorylation was similar to the mock-infected BMMθs.

However, when infection was carried out with the revertant virus a 3-fold ac-

tivation was detected. The phosphorylation of Erk1/2 after MCMVdie1 was 4-

fold higher than with mock-infection (p<0.05). Figures 5.4 A.2 and A.3 show

Western Blot and correspodent densitometric analysis, respectively. In contrast

to what was seen in A.1, MCMV infection resulted in a significant activation

of Erk1 (p=0.03) after 10 hours of infection, whereas Erk2 activation was only

modest when compared to mock-infected samples (p=0.5). A similar response

was seen after infection with revertant virus, however both proteins were signif-

icantly activated (p<0.05), with 4.8 and 3.6-fold higher phoshorylation of Erk1

and 2, respectively. Similar to what was seen from the Luminex analysis, Erk1/2

activation after MCMVdie1 was 5.5 and 4.2-fold higher than mock-infected sam-

ples (p=0.01).
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Other members of the MAPK family, p38 and JNK, were also analyzed. Lu-

minex based PathwayProfilerTManalysis shows in panel B1 that p38 was acti-

vated after infection, however median fluorescent intensity (MFI) values from

MCMVrev-infected cells were below base line. MCMVdie1-induced p38 phos-

phorylation seemed to be slightly higher than MCMV-induced activation, how-

ever Western Blot analysis did not reveal any difference between viruses. Anal-

ysis of JNK was not included since MFI values were under limit of detection.

However, Western Blot analysis showed (panel C.2) that MCMVdie1 infection

resulted in activation of the kinase, but no differences were found when activa-

tion was compared to MCMV and MCMVrev infection.

In summary, this analysis showed that PathwayProfilerTMwas not consistent

with the results obtained by Western Blot, indicating that it is not a reliable tech-

nology for the molecules tested. On the other hand, based on Western Bot results,

no differences were found in the activation of Erk1/2, p38 or JNK between the

different viral infections. Therefore, the significant production of TNF seen after

MCMVdie1 infection does not seem to be due to a stronger activation of these

pathways.

5.4.2 IκBα, CREB and STAT6 activation

Next, the activation of other molecules which have been shown to play a role

in the activation of tnf gene expression was studied. It is well documented that

the transcription factor NFκB participates in the activation of tnf gene expression

in macrophages, although there is some controversy regarding the contribution

of this factor in the initial steps of the promoter activation. The role of NFκB

has also been studied in MCMV replication. Although there are several bind-

ing sites of this transcription factor in both human and murine CMV enhancer

region [Stinski and Isomura, 2008], NFκB is not required for either HCMV or

MCMV replication in vitro [Benedict et al., 2004, Gustems et al., 2006]. Moreover,

mutation of the NFκB sites did not have any effect on the expression of the ie1

gene in both viruses. Human IE1 has been shown to induce the expression of

members of the NFκB, such as RelB [Wang et al., 2005] or the NFκB p105/p50
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promoter [Gribaudo et al., 1996]. The dispensable role of NFκB in HCMV repli-

cation has also been demonstrated by Eickhoff and coworkers. However, the

same study also showed that blockade at NFκB activation decreases both TNF

and IFNγ-induced inhibition of HCMV replication [Eickhoff and Cotten, 2005].

In contrast, Sambucetti and coworkers showed that the IE1 protein was leading

the activation of the MIE region by trans-activating NFκB sites [Sambucetti et al.,

1989]. Taken all together, it can be seen from the literature that the role that NFκB

plays in CMV infection is not completely understood, but it is clear that this fac-

tor acts as a mediator in the immune response. In fact, several NFκB sites have

been localized in the tnf promoter (Figure 5.2), therefore activation of NFκB was

also included to test the activation of TNF after MCMV infection.

In resting cells, NFκB is sequestered in the cytoplasm by association with

IκBα. Cell activation leads to the phosphorylation and ubiquitination of the

NFκB inhibitor IκBα. Once free from IκBα, the active form of NFκB translocates

to the nucleus and activates gene expression. The activation of NFκB was studied

in two different ways. Figure 5.5 D.1 shows the phosphorylation of IκBα, which

precedes its degradation. Below is Western Blot for IκBα the degradation of the

protein and therefore the activation of NFκB. Densitometric analysis of the blot

are also shown in Figure 5.5 D.3. Analysis from the PathwayProfilerTMshows that

IκBα phosphorylation was induced after MCMVdie1 infection, however both

MCMV-induced inhibitor phosphorylation was not as strong as in the mutant

virus. MCMVrev infection did not seem to activate phosphorylation. Western

Blot and densitometric analysis show the degradation of IκBα. Results did not

reveal any significant degradation between viral infections, and IκBα levels in

MCMVrev-infected samples were similar to mock-infected samples. From this

data it cannot be concluded that MCMV infection induced activation of NFκB

at the time point under study, and that IE1 did not seem to play a role in this

activation.

Along with IκBα, the activation of the transcription factor CREB was also

studied. As it has been introduced before, CREB is phosphorylated by members
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of the MAPK family, and takes part in the enhanceosome complex during tnf

induction after cellular activation with different stimuli. Once phosphorylated,

the active form of CREB binds to the cyclic AMP response elements (CRE) lo-

calized in the tnf promoter as part of the transcriptional machinery responsible

for activation of gene expression. The phosphorylation analysis can be seen in

Figure 5.5 E.1-E.3. Luminex-based PathwayProfilerTMrevealed that after 10hpi,

MCMV infection induced a modest phosphorylation of CREB, however both

MCMVdie1 and MCMVrev-induced phosphorylation was significantly higher

than the mock-infected sample (p<0.001 in both cases). As seen for Erk1/2

activation in the previous section, there were differences between MCMV and

MCMVrev, and CREB activation was higher after MCMVrev infection. However,

MCMVdie1 infection results in a stronger phosphorylation of CREB when com-

pared to both parental and revertant virus (p<0.001 in both cases). In contrast

to the PathwayProfilerTM, Western Blot showed strong phosphorylation of CREB

after viral infection and no difference was found in the phosphorylation in the

absence of IE1.

Finally, the activation of STAT6 was studied. STAT6 is reported to be in-

volved in the negative regulation of cytokines [Ohmori and Hamilton, 2000].

Analysis can be seen in Figure 5.5 F.1-F.3. PathwayProfilerTManalysis showed

that STAT6 activation was similar to the levels of mock-infected samples. West-

ern blot showed similar results, and no differences were found between either

mock-infection or between viruses.

Taking all the data together, the Luminex-based PathwayProfilerTMwas not

found to be a reliable technique for the purpose of this study since there was no

consistency with the data obtained by Western Blot. Nevertheless, initial obser-

vations might indicate that MCMVdie1 infection does not apparenlty result in a

stronger activation of members of the MAPK family Erk1/2, p38 and JNK, when

compared to MCMV and MCMVrev. Very similar results were found in the acti-

vation of NFκB where, by looking at the phosphorylation and degradation of its
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inhibitor IκB, Western blot analysis did not reveal differences between MCMV

and the mutant virus.

The rest of the proteins included in this study (see Table 5.1) were not val-

idated by Western Blot because an important variability were found between

samples. Nevertheless, results from PathwayProfilerTManalysis can be found in

Appendix C.

5.5 Conclusion

It was of interest to explore the potential regulation of tnf activation after MCMV

infection. Hence, a study on the activation of the tnf promoter was performed,

followed by the identification of different signalling molecules which might be

involved. An extensive literature review identified a number of transcription

factors which are commonly recruited to the tnf promoter after cellular activa-

tion with different stimuli such as LPS and Mycobacterium tuberculosis. These

transcription factors included ATF2/Jun, CREB, Ets, Elk, Egr-1 and Sp1, as well

as different κB sites in distal sequences of the promoter. It is known that af-

ter BMMθs infection, a number of signalling molecules are activated to start a

cascade of events which drive the activation of gene expression. Within this cas-

cade, and in the context of the activation of tnf expression, the MAPK family

has been shown to play a role. It has been reported that several stimuli lead to

phosphorylation of Erk1/2, p38 and JNK, after which they translocate to the nu-

cleus and activate different transcription factors and gene expression. The use

of specific inhibitors for Erk1/2 and p38 has shown that LPS-induced tnf gene

expression can be completely abrogated [Rutault et al., 2001]. Together with the

MAPK family, NFκB is also important for the activation of a number of immune

genes, including tnf. There are several IκB sites within the tnf promoter, mak-

ing NFκB another candidate for MCMV. This study was done as part of a col-

laboration with Upstate (Millipore, UK) in order to validate the Luminex-based

PathwayProfilerTM. This protein array is presented as an alternative to Western

Blot, since it allows testing of a number of different molecules simultaneusly.
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The validation by Western Blot was not consistent with the analysis and there-

fore no conclusions were drawn from this study. Initial observations indicate

that MCMVdie1-induced TNF production does not involve the differential acti-

vation of Erk1/2, p38, JNK and NFκB. However, further work has to be done to

elucidate the mechanisms of the TNF response.
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Figure 5.1: Proposed model for TNF promoter activation after different stimuli
in T cells and monocytes.
Schematic diagrams representing models for transcription factor recruitment and enhanceosome
formation on the tnf promoter in T cells (top and middle panel) and monocytes (bottom panel)
after different stimuli. Illustration taken from [Barthel et al., 2003] with the permission of the
American Society of Microbiology.
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Figure 5.2: Murine TNF promoter topography (adapted from Lee and Schorey
2005).

Figure 5.3: Western Blot for IE1 and E1 proteins and LPS positive control
BMMθs were infected at a MOI of 1 with MCMV, MCMVdie1 or MCMVrev or mock infected as
a negative control (n=2). Western blot was perfomed as a control of infection using anti-IE1 and
anti-E1 specific monoclonal antibodies. A. Viral proteins IE1 and E1 after M. mock infection or
infection with 1. MCMV, 2. MCMVdie1, 3. MCMVrev. B. Cells were also M. mock-stimulated or
treated for 6 h with LPS as a positive control. Western blot shows LPS-induced degradation of
IκBα.
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Figure 5.4: Activation of MAPK after infection of BMMθs
BMMθs were infected at a MOI of 1 with MCMV, MCMVdie1 or MCMVrev or mock infected
as a negative control. Samples were analyzed as n=4 using the PathwayProfilerTMservice by
Upstate (Millipore, UK) or Western Blot (n=3). 1. Fold activation of the kinases are shown. MFI
data have been normalized against total amount of protein and mock-infected samples. Blank
values were also extrated from the final values. Bars show media values and SD. 2. Western blot
for the activated forms of the kinases and total amount of protein (M mock-infected, 1 MCMV, 2
MCMVdie1, 3 MCMVrev). 3. Densitometric analysis of the blot. Fold activation of the kinases
are shown. Data have been normalized against β-Actin, mock-infected and total amount of
protein. Bars show media values and SD.
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Figure 5.5: Activation of IκBα, CREB and STAT6 after infection of BMMθs
BMMθs were infected at a MOI of 1 with MCMV, MCMVdie1 or MCMVrev or mock
infected as a negative control (n=3). Samples were analyzed in duplicate as n=2 using the
PathwayProfilerTMservice by Upstate (Millipore, UK) or Western Blot (n=2). 1. Fold activation
of the kinases are shown. MFI data have been normalized against total amount of protein
and mock-infected samples. Blank values were also extrated from the final values. Bars show
media values and SD. 2. Western blot for the activated forms of the kinases and total amount of
protein (M mock-infected, 1 MCMV, 2 MCMVdie1, 3 MCMVrev). 3. Densitometric analysis of
the blot. Fold activation of the kinases are shown. Data have been normalized against β-Actin,
mock-infected and total amount of protein. Bars show media values and SD.



CHAPTER 6

Investigation of MCMVdie1 regulation of TNF

levels in vivo

6.1 Introduction

In vitro systems allow scientists to easily examine the behavior of individual cel-

lular populations. However, this misses one of the most important factors for

the optimal activation of the cellular immune response upon infection, and that

is cell-to-cell interaction, within the context of intact multicellular tissues. To

date, this can only be modeled in intact organisms so that it is essential to have

animal models to study.

Studying MCMV infection in vivo is a well established model. Moreover, be-

cause of the strict species specificity of MCMV infection the mouse model is a

useful tool to study viral-induced pathogenesis in the natural host. The outcome

of any infection is both host and virus-dependent and there are a number of

factors which could affect the outcome of experimental infection, including the

origin of the viral preparation. Whether MCMV has been prepared in vivo from

salivary glands (SVG) or tissue culture is an important factor since SVG-derived

MCMV has been shown to be more virulent than MCMV generated in tissue cul-

ture. This observation has already been documented [Krmpotic et al., 2003] and

it might be due to factors in the salivary glands but the reasons remain unknown.

In addition, the passage of MCMV in culture results in a loss of viral infectivity,

maybe as a result of an adaptive response of the viral strain to tissue culture. The

route of inoculation has also to be taken into consideration. Although saliva is

99
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considered to be the most natural route of infection, intraperitoneal injection is

one of the common routes used in in vivo studies, after which spleen and liver

become infected. But other routes such as intravenous, intraglandular or nasal

aspiration are also used. The immune status of the mouse at the time of infec-

tion is crucial for in vivo studies, since infection of immunocompromised mice

results in high mortality, pneumonitis and myocarditis [Krmpotic et al., 2003].

Infection of neonatal mice differs from immunocompetent adult mice in the tis-

sue tropism seen. Neonatal infection is characterized by an early infection of the

Central Nervous System (CNS) which results in high mortality whereas adult

mice have asymptomatic infection which is normally controlled within days.

The genetic background of the mouse to be infected is also important. Infection

of various mouse strains has been reported but the MCMV-susceptible BALB/c

and MCMV-resistant C57Bl/6 are the most commonly used. This difference in

susceptibility relies on the level of NK cell activation, which is under control of

the Cmv1 locus [Scalzo et al., 1990] within the NK gene complex [Scalzo et al.,

1992]. Cmv1 encodes for the activated NK cell receptor Ly49H. NK cells from

BALB/c mice lack this locus and as a consequence they do not induce the cor-

rect signals for NK cell activation after MCMV infection. However, 50% of the

NK cells of the C57Bl/6 mice bear the Cmv1 locus and express Ly49H. MCMV-

infected cells express the viral protein M157 which is a strong ligand for Ly49H.

The interaction between Ly49H/M157 induces effective activation of NK cells.

This results in secretion of IFNγ, which is a very potent cytokine involved in the

control of viral infection.

Infection with MCMV results in a rapid cytokine and chemokine response to

recruit and activate immune cells to the site of infection and control viral repli-

cation and dissemination to other organs. Within this pool of cytokines, special

mention has to be made of type I and II IFN, IL12, LTβ and TNF. The interplay

between these cytokines and immune cell population determines the outcome of

the infection. However, the fact that MCMV successfully establishes latency in its
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host means that MCMV has evolved several mechanisms to evade the immune

response against the infection.

As early as 2 days post infection, production of IFNαβ is detectable in spleen

and liver of infected mice. This first wave of IFNαβ production comes from plas-

macytoid (pDC) and non-plasmacytoid dentritic cells (DC) [Orange and Biron,

1996, Hokeness-Antonelli et al., 2007, Zucchini et al., 2007]. pDCs have been con-

sidered to be a major source for this cytokine. However, the exclusivity of pDC

in the production of IFNαβ has been ousted by a very recent report showing

that stromal cells in the spleen of infected mice are also key in the production

of IFNαβ [Schneider et al., 2008]. Interestingly, both pDC and splenic stromal

cells induce IFNαβ response using different signalling pathways. Thus, spleen

stromal cells are activated through the crosstalk with B cells which produce lym-

photoxin β (LTβ). After production, LTβ binds to LTβ receptor (LTβR) on the

surface of the stromal cell, and LTβ-LTβR signalling pathway leads to the pro-

duction of IFNαβ. It has been also shown that pathways leading to IFNαβ pro-

duction depends on the tissue, for instance TLR9 and MyD88 are activated in

the spleen however IFNαβ production is TLR9-independent in the liver [Delale

et al., 2005, Hokeness-Antonelli et al., 2007]. The production of IFNαβ is also un-

der control; as documented by [Tailor et al., 2007] where IRF8 is involved in the

second wave of cytokine production, ensuring the optimal antiviral response.

Independently of the source and molecular mechanism by which IFNαβ is

produced, its role in the control of MCMV infection in the natural host has been

extensively studied. Activation of NK and CD8+ T cells depends in part to

IFNαβ. Upon activation, these cells produce IFNγ. However, the uncontrolled

production of this cytokine could cause damage on the host and therefore, IFNαβ

production requires to be under control [Hahm et al., 2005]. One example of this

cytokine control has been recently documented by [Robbins et al., 2007] where it

is shown that overactivation of CD8+ T cells could be avoided by the control of

pDC-induced IFNαβ.
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IFNγ is produced by activated-NK and CD8+ T cells. It has been well docu-

mented the effect of this cytokine in MCMV infection both in vivo [Pomeroy et al.,

1998] and in vitro [Lucin et al., 1994]. IFNγ is responsible for the establishment of

the antiviral state by inducing the transcription of a huge number of genes. The

IFNγ receptor is ubiquitously expressed, which helps to activate bystander cells

and prepare them to control viral infection. Although how IFNγ blocks viral

replication remains unknown. Nevertheless, MCMV has developed strategies to

circumvent the antiviral activity induced by IFNγ. One examples is the degrada-

tion of STAT2 by the viral protein pM27 [Zimmermann et al., 2005]. By blocking

STAT2 activation both type I and II IFN responses are affected, suggesting that

both pathways cross-talk during the antiviral activity. Another strategy to escape

from IFNγ-induced effects has been shown by [Heise et al., 1998]. In this study

it is shown how MCMV has evolved to inhibit the expression of MHC class II on

the cell surface induced by IFNγ. With this strategy MCMV also circumvents the

activation of CD4+ T cells.

IL12 is also produced very early after infection and is required for the optimal

activation of NK cells and subsequent production of IFNγ in spleen and liver af-

ter acute infection. The strength of IL12 signalling is related with the activation

of NK cells [Orange et al., 1995]. In addition, IL12 production is also under con-

trol since it has been reported that IFNαβ inhibits IL12 production, which in turn

affects the consequent NK-induced IFNγ. It has been shown that MCMV infec-

tion of DC results in significant reduction in IL12 production after 4 days post

infection [Andrews et al., 2001], resulting in a decrease in activation signals to

NK and T cells. However, the mechanisms by which this reduction is regulated

have not been elucidated.

Along with type I and II IFN and IL12, TNF is also produced. Macrophages

and activated NK and CD8+ T cells are the main producers of this cytokine. TNF

is involved with cellular differentiation, proliferation and apoptosis. Although
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the presence of TNF is sufficient to reduce viral replication in infected cells, it

has been shown that IFNγ in combination with TNF has a more effective antivi-

ral effect [Lucin et al., 1994]. Also TNF has a paracrine action, which will induce

the activation of bystander cells which will respond to viral infection. Consider-

ing the important role that TNF plays in the control of viral infection, there have

been several studies trying to elucidate its role in natural settings. However,

there is a lot of controversy in the results. Shanley et. al. showed that after both

lethal and sublethal infection of BALB/c mice TNF levels were undetectable in

serum. However, levels of this cytokine in serum were found in MCMV-infected

BALB/c [Trgovcich et al., 2000] and C57BL/6 [Lenzo et al., 2001] and in all or-

gans examined. It also appears that TNF was produced in a viral dose-dependent

manner. Trgovcich et. al. showed as well that the tnf gene was expressed during

sublethal infection in spleen, liver and lung. Tang-Feldman reported on the lev-

els of expression of different cytokines after MCMV infection in BALB/c mice,

showing an induction in TNF expression at day 5 p.i in spleen, liver, lungs and

salivary glands [Tang-Feldman et al., 2006]. Thus, the production of TNF early

after infection suggest a role in the control of in vivo infection of different strains

of mice in serum, spleen, liver and heart.

6.2 Aim of the chapter

Because in vitro conditions may not correspond to those of the natural host, it

is essential to study viral infection in vivo, where an important number of in-

teractions and crosstalk between cells take place, which may influence the out-

come of the infection. Work presented in Chapter 4 of this thesis suggests that

MCMV regulates the production of BMMθ-induced TNF production. Therefore,

the next question to be addressed was whether the modulation of TNF produc-

tion by MCMVdie1 also occurs in vivo. Two different mouse strains were used.

An attenuated phenotype for the ie1-deletion mutant MCMV was previously de-

scribed in immunocompetent MCMV-susceptible BALB/c mice [Ghazal et al.,

2005]. The work presented in the following sections confirms these results and
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describes viral growth in the MCMV-resistant C57Bl/6 mice. The production of

TNF is described for the first time in MCMVdie1-infected mice in vivo.

6.3 Results

6.3.1 MCMVdie1 induces higher levels of TNF in competent BALB/c mice.

In order to characterize the induction of TNF in MCMVdie1 infected mice, the

following experiment was designed. Groups of 8-weeks old, male BALB/c mice

were inoculated i.p. with 1.6 x 106 PFU of tissue culture-derived MCMVdie1 or

the revertant virus or mocked infected. At 4 and 7 days post infection, 4 mice

from the different infected-groups and 2 from the mock-infected group were

killed and selected organs were harvested to determine viral titers and TNF in-

duction. Wild type MCMV was not included in this experiment since there were

no significant differences between the replication of MCMV and MCMVrev in

infected BALB/c mice, as had been described in previous publications [Ghazal

et al., 2005]

Confirmation of the attenuated growth phenotype of MCMVdie1 in vivo.

Spleen, liver, kidney, lung and heart were removed from mice at specified time

points. As described in Section 2.8.2 from Material and Methods, samples were

weighed and homogenized as in 10% w/v. Tissue homogenate was then soni-

cated and after clearing by centrifugation, viral titers were determined by stan-

dard plaque assay (Section 2.4.2). Figure 6.1 depicts viral titers per gram of tissue

in selected organs. From the graph it can be seen that, as expected, MCMVdie1

shows an attenuation in its growth phenotype, when compared to MCMVrev

replication. At day 4 pi MCMVrev viral load was high in spleen and liver, as

normally occurs after an acute infection [Krmpotic et al., 2003], and 6-, and 12-

fold higher than MCMVdie1 replication, respectively (t-test, p<0.05). A very dra-

matic difference in viral titers was also seen in kidneys where MCMVdie1 titers

were more than 100-fold less (t-test, p=0.0094). MCMVdie1 replication in heart

and lung was 21- and 35-fold lower when compared to MCMVrev, respectively

(t-test, p<0.05).
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Figure 6.1: Growth of MCMVdie1 and MCMVrev in different organs from in-
fected BALB/c mice at day 4 and 7 post infection.
Groups of BALB/c mice (n=4 mice per group, except MCMVdie1-infected mice at 7 days was
n=5) were inoculated with 1.6 x 106 PFU of tissue-derived MCMVdie1 or MCMVrev. On day 4
and 7 post infection mice were sacrificed and the indicated organs were harvested, weighted,
and sonicated as a 10% (wt/vol) tissue homogenate in DMEM. Viral titers were determined by
standard plaque assay on MEFs. Red lines show median values and blue lines show limit of
detection. All titers were significantly different between MCMVdie1 and MCMVrev (t-test,
p<0.05).

At day 7 pi MCMVdie1 could not be detected in spleen, liver or heart. In or-

der to calculate median values of viral titers in these particular organs the limit

of detection was set for 2 x 102 PFU/g, which corresponds to one single PFU.

However, MCMVrev burden in these organs remained elevated (600-, 250- and

45-fold higher in spleen, liver and heart, respectively). MCMVdie1 titers in kid-

neys were 2-fold lower than at day 4 p.i. No changes in titers were found in lungs

of MCMVdie1-infected mice, whereas after 7 days of infection with MCMVrev

there was a 2.5-fold higher titers in this organ, suggesting that MCMVrev had

spread to the lungs in the period of a week of infection.
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Figure 6.2: TNF production in selected organs from BALB/c mice at day 4 and 7
post infection.
TNF levels were detected in tissue homogenate by ELISA at indicated times. Compared to
mock-infected mice, both MCMVdie1 and MCMVrev induced significant levels of TNF. No
differences were found in TNF levels induced by MCMVrev and MCMVdie1.

TNF production in infected-BALB/c mice.

In order to asses induction of TNF after MCMV infection, cytokine concentration

was measured in selected organs by ELISA as described in Material and Methods

(Section 2.7.2). It has been already shown that MCMV infection of immunocom-

petent mice induced TNF production at early times after infection [Trgovcich

et al., 2000, Lenzo et al., 2003, Tang-Feldman et al., 2006]. When compared to the

mock-infected mice, MCMVrev induced significant levels of TNF in all organs

after 4 days p.i. (Figure 6.2). Spleen and liver of infected-mice showed 10-fold

higher levels of TNF when compared to uninfected-mice and a difference of 5-

fold was found in kidneys. Although the levels of TNF found in heart and lung

were not statistically significant, it appears that viral infection also results in in-

duction of this cytokine in these organs. However, what was more surprising

about these results was that after infection with MCMVdie1 no significant differ-

ences were seen in the levels of TNF produced when compared to those seen for

the revertant virus (t-test, p>0.05) on day 4.
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After day 7 p.i (Figure 6.2) TNF was also detectable after both ie1-deletion

mutant and revertant MCMV infection. Data showed (Figure 6.2, right pannel)

that after a week of infection, MCMVrev-induced TNF levels remained elevated

in spleen and kidneys, whereas a slight drop in hepatic levels was seen when

compared to levels detected after 4 days of infection. A significant 3.5-fold in-

crease was detected in the heart at this time point. There was no difference in

TNF levels in the lungs. When TNF induction was compared between viral in-

fections there were no differences in splenic, hepatic or lung levels. However,

MCMVdie1-induced levels in kidneys and heart were significantly lower com-

pared to MCMVrev-induced TNF. These differences might be due to lower repli-

cation rate of the mutant virus in these organs. In order to establish a relation be-

tween viral replication and cytokine response a correlation study was performed,

which is been described in the following section.

Correlation between PFU and TNF levels in infected-BABL/c mice

It has been reported that levels of cytokine expression correlates with viral repli-

cation in different organs [Tang-Feldman et al., 2006]. An earlier study showed

contrary results regarding the expression of TNF after infection [Trgovcich et al.,

2000]. However, these differences might be explained due to the higher sensi-

tivity of the qRT-PCR used in the latter report. Nevertheless, in order to better

understand the results of the experiment described above, a correlation study

was carried out to test whether TNF levels corresponded to viral loads in the dif-

ferent organs. Figure 6.3 shows a significant positive correlation between TNF

levels and viral load in kidneys and heart after 4 days p.i. (Pearson correlation

coefficient, R2=0.89 and R2=0.85 in kidney and heart, respectively).

Since these two organs showed a significant correlation between viral titers

and TNF levels, it was assumed that the relation also existed in the rest of the

organs. The relation between PFU and TNF can be seen in Figure 6.4. The graph

shows that at day 4 p.i., MCMVdie1 induced similar levels of TNF in spleen and

liver than those detected for MCMVrev. Higher levels of TNF were found in

kidneys, heart and lungs, even though viral yields were more than 10-fold less

in these organs. At 7 days pi (Figure 6.4) the difference between MCMVdie1 and
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Figure 6.3: Correlation in heart and kidney after 4 days post infection.
Pearson’s correlation coefficient showed a significant relation between TNF levels and viral load
in kidneys and heart from MCMVrev-infected BABL/c mice after 4 days p.i.

Figure 6.4: Correlation between TNF levels and PFU per gram of tissue
Correlation between TNF levels and PFU in different organs at day 4 and 7 p.i.

MCMVrev induction of TNF was even more dramatic since the mutant viral load

was 25-1000-fold lower than the revertant virus.

Because of the different titers found in selected organs after MCMVdie1 and

MCMVrev infection, BALB/c mice were also infected with a dose of MCMV
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which resultant titers were similar to those seen for MCMVdie1. Thus, mice were

infected with 3 x 105 PFU of MCMV, and titers and TNF production were also de-

termined and compared to both mock-infected mice and MCMVdie1. Figure 6.5

shows viral titers (right panel) and TNF production (left panel) in selected or-

gans after 4 and 7 dpi. Viral titers show that MCMV and MCMVdie1 replication

was comparable in all organs examined, except in the kidney, where replication

of MCMV in the kidneys after 4 dpi was significantly higher than titers found

after MCMVdie1 infection (p=0.02), but in the rest of the organs at both times

post infection, it was shown comparable PFU per gram of tissue.

When TNF levels were determined by ELISA it was seen that MCMV infec-

tion induced the cytokine production after 4 dpi. Only in the heart TNF levels

were similar to those seen after mock-infection. Interestingly, when compared

to MCMVdie1 infection, the mutant virus-induced TNF production was signif-

icantly higher in all organs, except in the heart. After 7 days, TNF levels in-

duced by MCMV dropped to similar levels as mock-infected mice. However,

MCMVdie1-induced TNF production was significantly higher in all the organs

examined. It could be argued that the levels of TNF found after MCMVdie1

infection were due to the initial dose of virus, but it has to be noted that the

interpretation of the data has been based on the output levels of infection.

6.3.2 MCMVdie1 attenuation is not strain-dependent.

A second study was designed in a different mouse strain. In this way, the strain-

dependency on the cytokine response would also be ruled out. Thus, the murine

strain C57Bl/6 was used for the second part of these in vivo studies. Groups of 4,

8-week old, male C57Bl/6 mice were infected by the intraperitoneal route with

2x106 PFU. A higher dose of virus was used in this experiment since C57Bl/6

strain is considered as a MCMV-resistant strain, based on the optimal activation

of NK cell by the MCMV protein M157-Ly49H interaction [Scalzo et al., 1992]. In

this way, the viral dose would be high enough to induce a clinical infection in

C57Bl/6 and MCMVdie1 titers could be detectable.

From Figure 6.6 it can be seen that no statistical difference was found between

MCMV and MCMVrev replication (t-test, p>0.05 in lungs and p>0.5 in the rest
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of the organs), whereas MCMVdie1 titers were lower in all organs examined. In

more detail, a 20- and 12-fold reduction was seen in spleen and liver, respectively

when compared to the parental and revertant viral load (t-test, p<0.03). Repli-

cation in the heart was 11-fold lower (t-test, p=0.005) and 6-fold in lungs (t-test,

p=0.016). The attenuation was even more dramatic in kidneys with a difference

in viral load of 150-fold (t-test, p=0.0015). Therefore, it can be concluded that

MCMVdie1 attenuation in vivo and operates in both susceptible and resistant

strains.

TNF production in infected-C57Bl/6 mice

Again ELISA was performed to measure TNF levels in selected organs after

4 days of infection. In agreement with previous studies [Orange and Biron,

1996, Lenzo et al., 2003], MCMV infected-C57Bl/6 mice induced TNF produc-

tion. As seen in BALB/c (Figure 6.2), there were no significant differences in

the levels of TNF produced after MCMV, MCMVdie1 or MCMVrev infection of

C57Bl/6 mice. The highest cytokine production was found in spleen, where 2.5-

fold more levels were detected when compared to the uninfected-mice (t-test,

p=0.03), which showed a basal TNF production. Just a modest induction of TNF

was found in the liver, and 1.5-fold higher level in kidneys (t-test, p=0.013) and

lung (t-test, p<0.01) when compared to control samples. Although higher levels

were also seen in heart of infected mice, it was not statistically significant (Figure

6.7).

Correlation between PFU and TNF levels in infected-C57Bl/6 mice.

Following the same procedure as in BALB/c and assuming the correlation be-

tween TNF and PFU, Figure 6.8 represents the relation between these two factors.

From the graph it can be seen that the levels of TNF induced by MCMVdie1 are

significantly higher, considering equal input of PFU in all groups. MCMV and

MCMVrev however, showed a normal profile where TNF levels are high when

viral titers are also high.
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6.4 Conclusion

After MCMV infection, a number of cells are activated to control viral replica-

tion and spread throughout the host. This immune response involves production

of cytokines or even direct lysis of infected cells. tnf gene expression has been

demonstrated to be activated upon infection in different organs [Tang-Feldman

et al., 2006] as well as protein production, which is detected early after infec-

tion in the spleen, liver [Orange and Biron, 1996] and heart [Lenzo et al., 2003]

of infected mice. MCMV has evolved with its natural host in a way to escape

immunosurveillance and endure in a latent state.

Data presented in Chapter 4 suggest a potential modulation of TNF pro-

duction in infected-BMMθs, involving IE1. The experiments described in the

present chapter were undertaken in order to assess whether MCMV infection

had the same effect on cytokine production in the natural host. Thus, two differ-

ent mouse strains were used and infection was carried out with parental MCMV

and ie1-deletion mutant MCMV. A revertant virus was also included in the ex-

periment (MCMVrev).

In summary, the results presented in this study showed that MCMV IE1 pro-

tein is necessary for the growth of the virus in the natural host, since the ie1-

MCMV mutant failed to replicate as the parental and revertant virus. More-

over, the attenuation seen for MCMVdie1 is not strain-dependent, since in both

BALB/c (which has been confirmed with these experiments) and C57Bl/6 mice

MCMVdie1 showed the attenuated phenotype. When TNF levels were studied

it was found that cytokine levels in all organs examined were similar after infec-

tion with either the mutant or parental and revertant virus. Overall, these results

showed that MCMVdie1 induced TNF production in the natural host but does

not demonstrate that IE1 is responsible for TNF regulation. In fact, it could be

argued that the levels of TNF after MCMVdie1 infection might not be due to a

modulatory mechanism but due to a defect on MCMVdie1 instead, resulting in

lower yields and, therefore, the correlation led to high levels of TNF. Perhaps

an investigation in the number of infected cells would be helpful to determine

whether MCMVdie1-infected cells is similar to those infected by the parental and
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revertant virus. Finally, it would also be helpful to determine the source of TNF

to know whether bystander cells are also responsible for such cytokine response.

Therefore, the role of IE1 in the regulation of TNF remains open for further in-

vestigation.
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Figure 6.5: Titers and TNF production by MCMV.
Groups of BALB/c mice (n=4 mice per group, except MCMVdie1-infected mice at 7 days was
n=5) were inoculated with 3 x 105 PFU of tissue-derived MCMV and compared to MCMVdie1.
On day 4 and 7 post infection mice were killed and indicated organs were harvested, weighted,
and sonicated as a 10% (wt/vol) tissue homogenate in DMEM. Viral titers were determined by
standard plaque assay on MEFs (left panels). Red lines show median values and blue lines
show limit of detection. Right panels show TNF levels detected from tissue homogenate by
ELISA at indicated times. Significance in TNF levels is shown as p<0.05 (*) and p<0.01 (**).
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Figure 6.6: Growth of MCMV, MCMVdie1 and MCMVrev in different organs of
infected-C57Bl/6 mice at day 4 post infection.
Groups of C57Bl/6 mice (4 mice per group) were inoculated with 2 x 106 PFU of tissue-derived
parental MCMV, MCMVdie1 or MCMVrev. On day 4 post infection mice were sacrificed and the
indicated organs were harvested, weighted, and sonicated as a 10% (wt/vol) tissue homogenate
in DMEM. Viral titers were determined by standard plaque assay on MEFs cells. Red lines show
median values and blue lines show limit of detection. There was no significant differences in the
growth of MCMV and MCMVrev (t-test, p>0.05), but MCMVdie1 replication was significantly
lower when compared to the parental and revertant MCMV (t-test, p<0.05).
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Figure 6.7: TNF levels in C57Bl/6 mice at day 4 post infection.
Levels of TNF were determined by ELISA after 4 days post infection. All three infections
induced TNF productions in organs examined. No significant differences were found in the
cytokine levels induced by MCMVdie1 and parental or revertant virus.

Figure 6.8: TNF levels versus PFU in C57Bl/6 mice at day 4 post infection
Levels of TNF against PFU in different organs of infected C57Bl/6 mice. At indicated times
organs were harvested, weighted and homogenate as a 10% (wt/v). TNF levels were
determined by ELISA from the homogenate.



CHAPTER 7

Role of TNF in MCMV infection in vivo

7.1 Introduction

So far it has been shown that IE1 MCMV protein is necessary for optimal vi-

ral replication in vivo, since in both immunocompetent BALB/c and C57Bl/6,

MCMVdie1 presented an attenuated phenotype, incapable of reaching viral loads

as MCMV or the revertant virus did. When TNF levels were studied after infec-

tion, it was seen, despite of the growth defect seen with the mutant virus, it was

able to induce similar levels of TNF to those seen for the parental and revertant

virus. These results gave a hint towards a potential modulatory strategy where

MCMV by its IE1 protein reduces TNF levels not only in vitro, as seen from Chap-

ter 4, but also in vivo.

The use of neutralizing antibodies, as well as genetically modified mice, has

helped to evaluate in more depth the role that cytokines and immune cells play

in the immune response against viral infections. Thus, blocking IL12 activity

showed how important this cytokine is for an optimal activation of NK cells and

the subsequent production of IFNγ after MCMV infection [Orange et al., 1995].

Moreover, the effect of depleting IL12 is specific for MCMV, since the blockade

of IL12 activity does not have any effect on NK-induced IFNγ production af-

ter LCMV infection [Cousens et al., 1997]. MCMV infection of mice depleted of

NK cells by neutralizing antibodies resulted in an increased MCMV burden in

spleen, liver [Orange and Biron, 1996] and lungs [Krmpotic et al., 2002]. These

results established the relevance of this cellular subset for the early control of

116
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viral infection. Furthermore, it appeared that NK-induced antiviral activity to

MCMV infection is organ-specific, since neutralizing IFNγ in MCMV-infected

mice showed higher viral replication in the liver, but not in the spleen. The re-

sults shown in this study led to the conclusion that control of MCMV infection

was NK-induced IFNγ-dependent in the liver whereas in the spleen the antivi-

ral mechanism was IFN-independent but perforin-dependent [Tay and Welsh,

1997].

In agreement with the findings from Tay et. al., and regarding the role of

IFNγ, neutralizing IFNγ by specific antibodies [Orange et al., 1995] or genetic

depletion [Pomeroy et al., 1998] resulted in high susceptibility to MCMV infec-

tion and increased viral replication. In addition, CD4+ T cell-induced IFNγ has

been demonstrated to be critical for MCMV clearance from the salivary glands

[Lucin et al., 1992], whereas CD8+ T cells are necessary for the control of infec-

tion in the rest of the organs [Pavic et al., 1993]. Interestingly, there is evidence

showing that in the absence of the CD8+ T cells subset, CD4+ T cells alone are ca-

pable of controlling viral infection in tissues other than the salivary glands [Jonjic

et al., 1990]. This fact showed how flexible the immune system is in adapting the

response in specific situations. Besides the protective effects that IFNγ has in con-

trol of the MCMV acute infection, IFNγ is significantly produced after a second

infection [Shanley et al., 2001], suggesting a role in the control of viral replication

in a second exposure to the pathogen, and also in control of reactivation of virus

from latency.

Blocking IFNαβ by administration of specific antibodies considerably increased

MCMV titers in the liver of infected-mice [Orange and Biron, 1996]. The deple-

tion of IFNαβ has been shown to have other effects in the control of MCMV

replication. For instance, enhanced IL12 production and NK-induced IFNγ pro-

duction [Cousens et al., 1997], demonstrating that type I IFN also regulates the

production of these cytokines, maintaining the balance in the cytokines response.

CD8+ T cell expansion and activation are also impaired. Overall, by blocking the
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activity of a single cytokine such as IFNαβ the activation of the innate response

to control MCMV infection is affected. This demonstrates the key role that IFNαβ

plays in orchestrating the antiviral activity at early times upon infection. Nev-

ertheless, Krug et. al showed that in vivo depletion of cells responsible for inter-

feron production by neutralizing antibodies did not result in higher MCMV titers

in spleen. Moreover, it appeared that infected mice were able to counterbalance

the reduction of IFNαβ by increasing the production of other cytokines, such as

IL12 and IFNγ [Krug et al., 2004]. This example of compensatory mechanism is

very important when interpreting in vivo data.

Lymphotoxin has also been shown to be critical for controlling viral repli-

cation. In previous sections of this thesis it has been quoted that LTβ is pro-

duced after infection and that LTβ-LTβR signalling is crucial for the production

of IFNαβ by splenic stromal cells. Thus, it is not surprising that blocking LTβ-

induced signalling results in high viral burden. The crosstalk between LTβ-LTβR

signalling and IFNβ was demonstrated when the antiviral activity was restored

by administrating IFNβ [Banks et al., 2005]. Moreover, it has been reported that

LTβ signalling activates the production of IFNβ, but requires the presence of

MCMV [Benedict et al., 2001]. Hence, type I IFN is not only crucial for activation

of NK and CD8+ T cells, and subsequent cellular responses, but also affects LTβ-

induced antiviral activity which ultimately results in inhibition of viral replica-

tion.

7.2 Aim of the chapter

The aim of this Chapter is to further analyse the role of TNF in the antiviral re-

sponse against MCMV infection in vivo. From the data presented in previous

Chapters it was suggested that MCMV IE1 protein modulates the TNF response

induced after infection, since the ie1-deletion mutant MCMV led to a significant

cytokine production, in both primary Mθ and in the natural host. These results



119

led to study in more detail the role of TNF in the control of viral infection. There-

fore, work presented in this Chapter was designed to answer the following ques-

tions: (1) what would be the effect of TNF on MCMVdie1 replication in BMMθs,

considering the significant cytokine production registered after infection and (2)

is TNF responsible for the attenuated phenotype of MCMVdie1 in vivo. Taking

into account the levels of TNF produced in the different organs analyzed it was

expected that the growth defect seen for MCMVdie1 would be restored to nor-

mal levels in the absence of TNF response.

7.3 Results
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Figure 7.1: CellTiter-BlueR Cell Viability Assay
Viable cells were determined by fluorescent-based cell viability assay after treatment for
24 hours of BMMθs with different concentrations of TNF (1U and 10U/mL) along with a
non-treated control. Fluorescent units are shown along with standard deviation bars. No
differences were seen between treatments and non-treated cells.

7.3.1 Effect of TNF on viral replication.

Previous sections in this thesis have demonstrated that MCMVdie1 infection re-

sults in a significant production of TNF in BMMθs. It has been reported that TNF

pre-treatment of MEFs results in a reduction of MCMV replication [Lucin et al.,

1994]. So it was hypothesized that TNF-treated BMMθs control MCMVdie1 repli-

cation by cooperative antiviral effect exerted by both exogenous and endogenous

TNF. In order to ascertain if this hypothesis was true, BMMθs were cultured and

incubated with 1U/mL or 10U/mL of TNF 24 h, after which cells were infected



120

Figure 7.2: TNF effect on viral replication in BMMθs
Cells were treated with either 1 or 10U of TNF for 24h prior to infection. After 24h cells
were infected with the different viruses at MOI 1. Intracellular and extracellular titers were
determined by standard plaque assay. A. MCMV, B. MCMVdie1 and C. MCMVrev. Each data
point represents the average and standard deviation of results of three different samples. Dash
line represents limit of detection.

at a MOI 1 with MCMV, MCMVdie1 and correspondent revertant (n=3) and vi-

ral replication was compared to non- TNF treated and infected BMMθs. Prior

to infection, cell viability was tested to rule out that the dose of TNF was toxic

or induced apoptosis of the cells. Figure 7.1 shows that a 24 h treatment of the

cells with either 1U or 10U of TNF did not have any effect on the viability of the

cells. Cells were then pre-treated and infected and the antiviral effect of TNF was

determined by standard plaque assay.
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As described in MEFs, TNF has a weak but clear antiviral effect on MCMV

(Figure 7.2.A) since a reduction of 23% and 37% of MCMV titers was seen after

treatment with 1U and 10U of TNF, respectively. Replication of MCMVrev was

also impaired by TNF in a very similar way as observed for the wild type MCMV,

with a reduction of viral replication of 30% after 1U TNF treatment and 38% af-

ter 10U TNF (Figure 7.2.B). A reduction of 45% in MCMVdie1 titers was found in

1 U/mL pre-treated BMMθs. Moreover, the complete inhibition of MCMVdie1

replication after 10U TNF treatment was seen ( Figure 7.2.C). These results are

consistent with previous findings demonstrating the antiviral effect exerted by

TNF [Lucin et al., 1994]. The antiviral effect exerted by TNF alone in MEFs was

weaker than the effect reported here. This difference might be explain by the

fact that fibroblast do not produce TNF, and cytokine levels induced after in-

fection would synergyze with exogenous TNF resulting in a higher reduction

of viral titers. Considering the high levels of TNF induced by MCMVdie1 it is

not surprising that the higher reduction were seen in the mutant titers. It has to

be noted that the levels of TNF used for BMMθs treatment did not exceed from

virus-induced TNF levels.

It could be argued that suppression in MCMVdie1 replication might be due

to a defect in the virus, however MCMVdie1 does not have a phenotype in tissue

culture as shown by [Ghazal et al., 2005]. Results presented on Chapter 3 showed

that in BMMθs MCMVdie1 tended towards lower yields, although no statistical

difference was found. This observation might be explained by the fact that the

cytokine repertoire induced by fibroblasts do not include TNF which could be

the reason of such a high sensitivity of MCMVdie1. In addition, sensitivity of

MCMVdie1 to TNF could also be explained by the result of the engagement with

other cytokines that, when combined, successfully control viral replication. For

instance, IL6 is produced after infection (see Chapter 3) and the antiviral effect of

this cytokine on MCMV replication has been documented, therefore it is possible

that together, along with chemokines, suppress viral growth.
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7.3.2 Role of TNF in viral replication in vivo.

Work presented in Chapter 6 pointed to a potential role of IE1 in the modula-

tion of TNF production in the natural host. This result along with the attenuated

phenotype that the ie1-deletion mutant MCMV showed in vivo, and the high sen-

sitivity that MCMVdie1 presented to TNF treatment, led to pose the question of

whether TNF was responsible for such attenuation in vivo. To test this hypothe-

sis, genetically modified C57Bl/6 mice lacking tnf gene (TNF−/− C57Bl/6) were

infected with MCMVdie1 and MCMVrev in order to establish the role of TNF in

the immune response against MCMV infection in vivo. Wild type MCMV was not

included in these experiments since there were no significant differences in the

replication between MCMV and MCMVrev in infected C57Bl/6 mice. Therefore,

groups of 8 week old, male wild type C57Bl/6 and TNF−/− C57Bl/6 mice were

infected by the i.p. route with 2 x 106 PFU. After 4 days of infection mice were

killed and spleen, liver, kidneys, heart and lung were harvested and processed

as described before (section 2.8.2). The significance of the data presented in this

chapter was determined by Student’s T-test, after the normality of the population

was established, according to Lilliefors’ hypothesis test.

When MCMVrev replication was studied in TNF−/− C57Bl/6 mice, and in

agreement with previous data [Pavic et al., 1993], no significant differences were

seen in viral burden in the spleen when compared to infected-wild type C57Bl/6

mice. Viral replication in the kidneys of TNF-depleted and MCMVrev-infected

mice was not higher either in comparison to wild type mice. In the liver a slight

increase in viral replication was found, and in heart and lung the highest viral

load was observed, being statistically significant only in the heart (t-test, p<0.05).

Similar results have been already seen in the lungs [Pavic et al., 1993] and liver of

TNF-depleted and MCMV-infected mice [Orange and Biron, 1996]. However no

significant differences were observed in MCMVrev replication in these organs.

Surprisingly, when replication of the ie1-deletion mutant was studied in TNF−/−

mice it was seen that viral growth was not restored. Contrary to what was ex-

pected, there was just a slight improvement in the growth of MCMVdie1 in the

absence of TNF, similar to that seen for the revertant virus. Only in the heart of
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Figure 7.3: Growth of MCMVrev and MCMVdie1 in different organs in wild type
and TNF−/− C57Bl/6 mice after 4 days of infection.
Groups of 13 TNF−/− C57Bl/6 mice were inoculated i.p. with 2 x 106 PFU of tissue
culture-derived MCMVrev or MCMVdie1. On day 4 post infection mice were killed and
selected organs were removed, weighted and sonicated as a 10%w/v. Viral titers were
determined by standard plaque assays in MEFs. Viral growth in TNF−/− C57Bl/6 is compared
to titers found in wild type C57Bl/6 mice. Only viral replication in the heart was significantly
different for both MCMVdie1 and MCMVrev (t-test, ∗∗ p<0.05). Red lines show median values
and blue lines limit of detection.

infected mice the replication of MCMVdie1 was significantly higher when com-

pared to titers of virus in immunocompetent infected-mice (Figure 7.3). As in

MCMVrev-infected TNF−/− mice, viral titers in liver, kidneys and lungs were
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modestly higher than those seen in infected-wild type C57Bl/6, but not statis-

tically significant. Finally, the absence of TNF did not have any effect in viral

replication in the spleen.

From the data presented in this chapter it can be concluded that TNF is not

responsible for the attenuation of MCMVdie1 in vivo, since no significant changes

were seen in the replication of MCMVdie1 in the absence of TNF.

7.4 Conclusions

Infection with MCMV results in the activation of a network of cells and cytokines

which control viral replication. Within this pool of cytokines, TNF is produced

in spleen, liver, kidneys, lung and heart after viral challenge of both immuno-

compentent BALB/c and C57Bl/6 mice, as demonstrated in Chapter 6 of this

thesis. In vitro work has suggests that MCMV modulates the production of TNF

by its IE1 protein. MCMVdie1 replication in BMMθs cells resulted in a slight

decrease on viral yields at late time of the course of infection. When TNF effect

was studied on viral replication it was seen that, as seen previously in other cell

type, TNF exerted an antiviral activity and viral replication was reduced after

TNF treatments in a dose dependent manner. However, TNF-induced antiviral

effect was more dramatic in MCMVdie1-infected cells, resulting in the complete

inhibition of viral replication after 10U/mL TNF treatment. It can be concluded

that TNF antiviral effect in BMMθs is more effective than in MEFs probably be-

cause of the lack of synergy between exogenous and endogenous TNF, and that

MCMVdie1 presents high sensitivity to TNF since it was not able to overcome

the TNF-induced antiviral effect in vitro. It has to be taken in consideration the

activation of other pathways and cytokines leading to the control of the viral

infection.

Moreover, using ie1-deletion mutant MCMV it was seen that the absence of

this immediate early protein resulted in a growth defect in vivo. When TNF pro-

duction was studied after infection with MCMVdie1 it was seen that MCMV

might also modulates TNF induction in the natural host, since cytokine levels

induced by MCMVdie1 were similar to those seen for the parental and revertant
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virus. Considering the growth defect presented by MCMVdie1 and the signifi-

cant cytokine production, it was hypothesized that the attenuated phenotype of

MCMVdie1 was due, at least partially, to the strong TNF response induced in the

absence of IE1 protein. The results presented in this Chapter also showed that,

even though MCMV modulates the production of the proinflammatory cytokine

TNF in vitro (Chapter 4) and in vivo (Chapter 6), TNF is not responsible for the at-

tenuated phenotype that the ie1-deletion mutant MCMV presents in the natural

host. However, the slight increase in viral yields found in most organs analyzed

do not exclude TNF as a player in the control of MCMV infection. Moreover, it

cannot be ruled out that the presence of another cytokine such as IFNγ, which

has been shown to be essential for the complete control of MCMV infection in

vitro, blocks viral replication but requires the presence of TNF for the complete

viral clearance in vivo.

The initial hypothesis was based on the attenuated phenotype that MCMVdie1

presents in immunocompetent BALB/c mice, as well as in SCID mice, lacking T

and B cells [Ghazal et al., 2005]. These results led to question whether the at-

tenuation was due to a high susceptibility to the innate immune response. Since

data might indicate that MCMV suppresses TNF production throught an un-

kown mechanism which involves IE1 in vitro and in vivo, it was hypothezised

that TNF was responsible for the attenuation of the ie1-deletion mutant MCMV in

vivo. However, the results showed in the above sections of this Chapter showed

that TNF is not responsible for the attenuated phenotype of the mutant virus.

It has been reported that neutralization of TNF in vivo does not result in a

significant increase in viral titers [Shanley et al., 1994]. The lack of improvement

in viral replication might be explained by the fact that MCMV is not producing

the optimal amount of TNF, since it is expressing IE1, which is suppressing the

cytokine production. However, and assuming that this hypothesis was true, the

depletion of TNF would have an effect in the mutant virus replication. Contrary

to what was expected, the results presented in this Chapter showed that TNF

alone is not required for the control of viral infection in vivo.
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On the other hand, the fact that all mice survived MCMV infection, led to

the question whether the genetic depletion of the tnf gene could have induced

the development of compensatory mechanisms to counterbalance the lack of

TNF. For instance, overactivation of immune cells or overproduction of other

cytokines such as type I or II IFN has been previously described [Krug et al.,

2004]. Such compensation would help, at least, to control the infection and fore-

stall the death of the host. Thus, the fact that an organism is able to counteract the

lack of a specific cytokine or cellular subset does not mean that it is not impor-

tant for the control of infection. Perhaps, by forcing the overproduction of other

cytokines or overwhelming different cells with activation signals the success in

viral clearance is transient and may not be successful in a second exposure.



CHAPTER 8

Final Conclusions

8.1 Summary of results and discussion

The IE1 protein of murine CMV has been shown to be involved in the activa-

tion of the viral gene transcription in collaboration with the IE3 protein, and in

driving the switch from the immediate early to the early phase of the MCMV

transcription cascade [Angulo et al., 2000]. In addition, IE1 induces the activa-

tion of several cellular genes in order to create the optimal environment for viral

replication [Koszinowski et al., 1986, Gribaudo et al., 1996, Schickedanz et al.,

1988, Gribaudo et al., 2000, Lembo et al., 2000]. It has also been reported the dis-

pensable role of IE1 in viral replication in tissue culture [Ghazal et al., 2005] since

an ie1-deletion mutant MCMV (MCMVdie1), lacking the entire exon 4 of the ie1

gene, replicated as wild type in several cell lines. In contrast, IE1 is required

for optimal replication in the natural host [Ghazal et al., 2005]. The fact that

the ie1 mutant virus also presented a growth phenotype in SCID mice, which

exclusively relies on the innate immune response to control the infection raise

the possibility of an immunomodulatory role for IE1 protein. Hence, the initial

hypothesis of this investigation was that the IE1 protein is involved in the regu-

lation of the immune response triggered upon infection.

8.1.1 Effect of IE1 protein in viral replication in BMMθs.

It is now well established that after MCMV infection, innate immunity plays a

critical role in the initial control of the virus. This first defense is characterized by

the activation of macrophages, NK and dendritic cells. Upon activation a cascade

of cytokines and chemokines production is initiated in order to alert bystander

127
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cells of the invasion and recruit immune cells to the site of infection. This initial

response is triggered to inhibit viral replication and dissemination throughout

the host. However, as other viruses, MCMV has also developed strategies to

escape from immunosurveillance. The success of such an evolution can be seen

from the fact that MCMV can be found in organs such as the salivary glands after

resolving the acute infection.

Within the cells activated early after infection, macrophages have been de-

scribed as having ’two-faces’ in the context of MCMV infection. On one hand,

Mθs are essential for viral replication, dissemination and pathogenesis, and on

the other hand they are crucial for the control of viral infection. Therefore, it

was of interest to study the role of the IE1 protein in the control of the im-

mune response in this cellular population. In addition, it was possible to fur-

ther understand the interplay between MCMV and Mθs. Therefore, the first

step in this investigation was to characterize the role of the IE1 protein in vi-

ral replication in BMMθs. Contrary to other viruses, it has been shown that IE1

is not essential for viral replication in fibroblasts, endothelial cells and peritoneal

macrophages. However, replication in BMMθs has not been described. Results

from independent experiments revealed that the ie1-deletion mutant MCMV also

showed comparable replication in BMMθs (see Figure 3.1), however, a trend to-

wards lower viral yields is observed at late times of the infection at both MOIs

studied. These differences were not found to be statistically significant, reflect-

ing high level of variability between samples and the overall sensitivity of the

plaque assay. In addition, the fact that this cellular population is considered as

semi permissive for viral infection might also explain that titers were not sta-

tistically significant, which might indicate a similar replication of the mutant in

this cellular population. It could also be argued that the trend towards a lower

replication of MCMVdie1 could be due to a critical defect on the viral replication.

Time constraints prevented to explore this possibility and therefore this investi-

gation was carried out under the assumption of the MCMVdie1 is not defective.

Nevertheless, it would be very informative to investigate the PFU/viral genome

copies ratio, since it would elucidate whether or not the absence of IE1 results
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in a defective virus. In addition, in order to rule out any second site mutations

and ensure that the effect seen was solely due to IE1 protein a revertant virus

(MCMVrev) was also included in this investigation. As expected there was no

differences between replication of wild type and revertant virus. The trend to-

ward lower titers of MCMVdie1 is not completely understood. The effect of the

absence of the IE1 protein on viral gene expression has not been elucidated yet.

However, since MCMVdie1 does not present a phenotype in culture cells this re-

sponse might be due to factors produced by macrophages which might have an

effect on viral replication, such as cytokines.

8.1.2 Role of IE1 protein in the regulation of host cell gene expression after early hours

post infection.

As part of this project, an initial study was carried out in order to obtain infor-

mation about how IE1 might affect host cell gene expression. Due to the expen-

sive cost of microarrays, experiments were only performed for MCMVdie1 and

MCMVrev-infected BMMθs. While unequivocally conclusions cannot be drawn

from this experiment, the data has been used for informative purposes only, as

well as an example of how microarray data could be analysed. Considering the

role of the IE1 in the expression of cellular genes an investigation of the host gene

expression by the presence of IE1 was conducted, with particular interest in im-

mune genes. Hence, a comparative study between MCMVdie1 and MCMVrev-

induced gene expression was performed (see Section 8.1.2). Microarray tech-

nology was used in this investigation since it gives an important amount of in-

formation regarding the genes which expression is affected after viral infection.

From the microarray it was seen that, after 10 hpi, approximately 550 genes were

differentially expressed. Surprisingly nearly 30% of these genes were involved

in the immune response, including surface markers, receptors, cytokines and

transcription factors. To further understand how these genes interact and relate

to each other and what biological processes might be associated with the Inge-

nuity Pathway Analysis (IPA) application was used. The extensive database of

IPA enabled the generation of genetic networks showing the interaction between

those selected genes. Along with the interaction networks, IPA also identified
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the canonical pathways which were the most affected. Surprisingly, both net-

works and pathways also recognized processes such as apoptosis and cytokine

signalling pathways as relevantly affected by the viral protein. Therefore, this

initial study raises the possibility of a role of IE1 protein in the regulation of the

host cell gene expression. Moreover, IE1 might also be specifically targeting the

immune response triggered upon infection.

The use of IPA as a tool for analysing microarray data has been shown to

be useful regarding the identification of potential new candidates for regulation.

In this investigation, it was interesting the fact that the lipid metabolism was

one of the biological processes to appear as targeted after infection. There is no

much information in the literature regarding the interaction between viral infec-

tion and lipids. On the other hand, there are experimental data showing a link

between lipids and inflammatory response. One of this examples could also be

highlighted from the data. The enzyme CH25H appeared to be differentially ex-

pressed. This enzyme has a role in the regulation of the cholesterol metabolism.

Interestingly, it has been reported that cholesterol plays an important role in the

activation of the Erk1/2 phosphatase [Wang et al., 2003], by supporting the OSBP

and the specific enzymes in an active complex [Wang et al., 2005]. Furthermore,

this kinase has been involved in the regulation of the expression of proinflam-

matory cytokines, such as TNF, which also plays a role in the control of MCMV

replication. Therefore, pathway analysis could be useful to raise new hypothesis

such as IE1-induced modulation of the immune response throught the regulation

of the lipid metabolism.

All together, microarray and pathway analysis are useful tools to give an in-

sight into potential regulatory functions.

8.1.3 IE1 and modulation of TNF production in infected-BMMθs at the transcript

and protein level.

To further characterize the role of IE1 protein in infected-BMMθs, the cytokine

production was studied after early hours of infection. These experiments were

focused on the cytokine response based on the important role that they play in

the immune response against MCMV infection. Therefore, it was of interest to
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study the effect of IE1 protein in this response. Independent experiments were

carried out (see Section 4.3.1) and, markedly, when cytokine levels were mea-

sured from the supernatants of infected-BMMθs it was seen that MCMVdie1 in-

duced a very significant production of TNF but not other cyokine except IL6,

when compared to MCMV and MCMVrev. The IL6 response may be explained

by the fact that IL6 production has been shown to be activated by TNF and there-

fore, the concentration of cytokine after MCMVdie1 infection is just the result of

the significant TNF production.

Next, it was of interest to study whether the cytokine response was also reg-

ulated at the transcript level (see Section 4.3.2). Thus, tnf gene expression was

studied by determining the relative levels of tnf mRNA. Quantitative RT-PCR

revealed a similar regulation after infection with the mutant virus. MCMVdie1-

induced tnf expression was 2.5-fold higher than MCMV and the revertant virus.

Therefore, results pointed to a regulation of TNF involving the IE1 protein in

BMMθs.

One of the responses in which macrophages have a role is cytokine and chemokine

production. MCMV has also developed strategies to counteract cytokine pro-

duction and/or cytokine-induced responses. Within the pool of MCMV’s strate-

gies to modulate cytokine responses, TNF has been targeted in virtually every

step of its biology, although the regulation of TNF production is the less studied.

Different groups have shown that both human and murine CMV regulate TNF-

induced immune response by blocking the expression of TNF receptors [Pop-

kin and Virgin, 2003, Baillie et al., 2003, Montag et al., 2006]. Interfering with

TNF receptors is also shared with other viruses, such as Poxviruses which were

the first example of a virus encoding a TNF receptor homolog [McFadden et al.,

1997]. Along with the receptor, other molecules involved in the activation of

TNF-induced responses have been shown to be on the list of targets. For in-

stance, the viral protein M45 has been reported to block RIP1, in order to inhibit

the proinflammatory response induced by TNF [Mack et al., 2008]. However,

results from this investigation could indicate that MCMV modulates the produc-

tion of TNF by mechanisms which involve IE1 protein. The direct or indirect
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effect of this viral protein or whether other viral proteins are involved is yet to

be discovered.

It has been shown, by using transient expression assays, that HCMV IE1 ac-

tivates tnf expression [Geist et al., 1994] by modulation of transcription factors

involved in the regulation of TNF [Geist et al., 1997]. However, these studies

were based on expression plasmid experiments and outside the context of an

infection. Experiments described in this investigation were based on complete

viral genomes and respective deletion mutant revertants. Therefore, it is of in-

terest to study how TNF production is affected under similar experimental con-

ditions, considering the significance of HCMV as a human pathogen and TNF as

cytokine.

8.1.4 Signalling studies to unmask a potential mechanism for TNF modulation

The next step in this investigation was to explore a potential transcriptional regu-

lation of TNF production. An extensive literature review was done regarding the

regulatory mechanisms of TNF production in different cells and in the context of

several pathogens. From the literature, it was seen that several transcription fac-

tors were commonly involved in the activation of tnf by different stimuli, such

as viral and bacterial infection. Within the transcription factors identified it was

seen that some of them like Elk, CREB, are activated by members of the MAPK

family through a signalling cascade. Therefore, this study also included the char-

acterization of the activation of signalling molecules after viral infection in order

to study the effect of ie1 defective virus in the activation of these molecules, as

well as the downstream effect in the induction of the TNF promoter. This study

was carried out by two approaches. The first approach was a Luminex-based

highthroughput technology analyzing a number of signalling molecules simul-

taneously. This experiment was done as part of a collaboration with Upstate

(Millipore, UK). The second approach and in order to validate the first technol-

ogy, conventional Western Blot was also performed against activated forms of

the molecules of interest. Unfortunately, Luminex-based analysis was not con-

sistent and therefore was not reliable for this study. On the other hand, it was

also difficult to draw conclusions from the Western blot analysis since there was
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a large variability between the samples. Nevertheless, initial observations might

indicate that member of the MAPK family such as Erk1/2, p38 and JNK are not

differentially activated in the absence of IE1 and therefore the regulation of TNF

does not depend on the activation of these pathways. Clearly, further work has

to be done in order to clarify the molecular mechanism by which IE1 targets TNF

production.

8.1.5 TNF production after infection of the natural host.

It is possible that the observed in vitro phenotype of MCMVdie1 and TNF pro-

duction may be restricted to tissue culture conditions. Hence, the next step of this

investigation was to assess whether the absence of IE1 also resulted in the modu-

lation of TNF production in the natural host. Several studies have already shown

the activation of TNF production after MCMV infection in vivo. For instance, tnf

gene expression in different organs has been demonstrated [Tang-Feldman et al.,

2006] as well as protein production, which is detected early after infection in the

spleen, liver [Orange and Biron, 1996] and heart [Lenzo et al., 2003] of infected

mice.

The role of the IE1 protein in the production of TNF was studied by using

two different mouse strains and cytokine production was measured after 4 and

7 (only in BALB/c) dpi. First viral growth was studied in order to (1) confirm at-

tenuation of MCMVdie1 in BALB/c mice and (2) study viral growth in C57Bl/6

(see Section 6.3.2). Results confirmed that MCMV IE1 protein is necessary for

viral replication in vivo. As expected, the ie1-MCMV mutant failed to grow as

the parental and revertant virus in both competent BALB/c and C57Bl/6. TNF

production was also determined in spleen, liver, kidney, heart and lung of in-

fected mice, and compared to the cytokine production in non-infected control.

Remarkably, similar levels of cytokine between viral infections were found in

all organs examined. Since TNF production upon MCMV infection is positively

correlated with the output of infectious virus (PFU/g tissue), these results indi-

cate that IE1 also regulates the production of TNF in vivo. MCMVdie1-induced

TNF production reached similar levels to those seen after MCMV and MCMVrev

infection, regardless of the low viral titers detected. Taking into consideration
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the difference in viral titers and in order to rule out that the results were af-

fected by the non-equivalency of viral synthesis, a second study was carried out

where BALB/c mice were infected with a different dose of parental MCMV and

MCMVdie1 to obtain similar PFU and measure cytokine production under this

condition (see Figure 6.5). ELISA showed that TNF induction after MCMVdie1

infection was significantly higher than the levels observed after MCMV infection.

It could be argued that the levels of cytokine found in the different tissues is the

result of the higher dose of MCMVdie1 used for the infection. However TNF lev-

els were based on the output levels of infection it is also important to account for

the input. Perhaps an investigation on the actual number of cells infected and

the identification of the cells responsible for the cytokine response would help

to resolve this issue. Therefore further studies couild be need to determine the

contribution of input virus in the TNF response.

8.1.6 TNF is not responsible for the attenuated phenotype of MCMVdie1 in the

natural host.

The in vivo studies raised the final question of whether the significant TNF pro-

duction seen after MCMVdie1 infection was responsible, at least in part, for the

growth phenotype that the mutant virus presents in the natural host. It has been

demonstrated the antiviral role of TNF in tissue culture [Lucin et al., 1994], in

synergy with IFNγ. However, the effect of the cytokine in MCMVdie1 replication

has not been described. Therefore, TNF effect was studied in infected-BMMθs.

As expected, infection of TNF-primed BMMθs resulted in a reduction of viral

replication in a dose dependent fashion (see Figure 7.2). Moreover, TNF-induced

antiviral effect was more dramatic in MCMVdie1-infected cells, resulting in the

complete inhibition of viral replication after 10U/mL TNF treatment. This result

might be explained by the synergy between exogenous and endogenous TNF

in MCMVdie1-infected cells, however the activation of alternative pathways as

well as the production of other factors involved in the control of the virus have

also need to be taken into considerantion. On the other hand, as it has been stated

before, it is also possible that the susceptibility of MCMVdie1 could be due to the

fact that this is not a competent virus, which could explain these results.
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To go further in this investigation, the role of TNF in the attenuation of MCMVdie1

replication in vivo was also tested (see Section 7.3.2). Thus, genetically depleted

mice lacking tnf gene were infected with either MCMV or MCMVdie1 and viral

replication was compared in different organs. If the significant TNF response

seen after MCMVdie1 infection was responsible for the growth defect of the

mutant virus, the absence of TNF production should result in an increase in

MCMVdie1 burden. However, the results showed that TNF is not responsible

for the attenuated phenotype that the ie1-deletion mutant MCMV presents in the

natural host. Only a slight increase in viral yields found in most organs analyzed

was seen but it does not exclude TNF as a player in the control of MCMV in-

fection. Moreover, it cannot be ruled out that the presence of another cytokine

such as IFNγ, which has been shown to be essential for the complete control of

MCMV infection in vitro, blocks viral replication but requires the presence of TNF

for the complete viral clearance in vivo. However, the results of this experiment

clearly showed that TNF is not responsible for the attenuation of MCMVdie1 in

the natural host.

On the other hand, the fact that all mice survived MCMV infection, lead to

the question whether the genetic depletion of the tnf gene could have induced

the development of compensatory mechanisms to counterbalance the lack of

TNF. For instance, overactivation of immune cells or overproduction of other cy-

tokines such as type I or II IFN has been previously described [Krug et al., 2004].

Such compensation would help, at least, to control the infection and forestall the

death of the host.

8.2 Concluding remarks

This thesis has investigated the role of the MCMV IE1 protein in the regulation of

the immune response triggered upon infection in BMMθs and in the natural host

(BALB/c and C57Bl/6 mice). Previous studies have demonstrated that IE1 pro-

tein is required for viral replication in vivo, but not in vitro, where a mutant virus

lacking the entire exon 4 of the ie1 gene replicated as the parental virus. Since the

ie1 mutant virus showed an attenuated phenotype in competent BALB/c mice
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and SCID mice, it was hypothezied that IE1 protein acts as a immuno modulator.

The central hypothesis of the thesis was addressed by the following questions:

1. Does IE1 protein play a role in the gene expression of BMMθs?

2. Is it involved in the modulation of the cytokine response in BMMθs?

3. What are the molecular mechanisms underlying the cytokine production

regulation?

4. Does MCMV regulate the cytokine response in the natural host as in vitro?

5. Is TNF responsible for the attenuated phenotype of MCMVdie1 in vivo?

During the course of this investigation, a number of important limitations

were found and made not possible to draw any conclusions regarding the im-

munomodulatory function of IE1. Several issues should be addressed in order

to clarify and better explain the results presented in previous chapters. Taking

all the data together, it is not clear why MCMVdie1 does not show a replication

defect in cells like fibroblasts but shows a decrease, although not statistically sig-

nificant, in BMMθs. Initially it was assumed the competence of MCMVdie1 and

therefore the hypothesis of the immunomodulatory function of IE1 was inves-

tigated. However, after reviewing the data it is clear that a comparative study

on the MCMVdie1 genome copies could have been very useful to the interpre-

tation of the results. On the other hand, the study of the activation of signalling

molecules was unsuccessful to identify a possible pathway by which this mod-

ulation might be taking place. Same limitations were identified in studies done

in the natural host where it was difficult to descifrer whether the production of

TNF in different tissues were due to a regulatory function of the virus or just as a

result of a defective virus.Finally, TNF depleted mice experiment did not reveal

any significant change on MCMVdie1 replication in vivo, which means that this

cytokine is not responsible for the attenuation of the virus in vivo in the absence

of IE1.

Overall, work presented in this thesis has not proved the initial hypothesis

of that IE1 is an immunomodulator targeting TNF in vitro and in vivo. Instead

it has highlighted a number of limitations which have to be taken into account
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for future work and that will definetly clarify most of the problems presented in

previous chapters.

8.3 Future work

This thesis has demonstrated a novel function for the IE1 protein of MCMV and

therefore has expanded the existing knowledge regarding the role of this viral

protein in the host-pathogen interaction. However, the different findings ob-

tained from this investigation also has raised new questions:

Investigation on the PFU/genome copies ratio. This study will clarify MCMVdie1

phenotype being possible to determine whether the lower replication of the virus

is due to the immune control induced in the absence of IE1 or because the muta-

tion resulted in a defective virus.

Molecular mechanism of TNF production. The results presented in this

study has given an insight of a possible regulation of TNF production. Since

it is known the role that TNF plays in the control of viral infection, and the fact

that several pathogens have been shown to developed strategies to suppress this

cytokine production, it could be very interesting to investigate the molecular

mechanisms involved in this response in the context of MCMV infection.

Role of cytokines in the control of viral infection in vivo. Following find-

ings presented in previous sections of this thesis it was seen that regardless the

significant TNF production in vivo after infection with MCMVdie1, wild type

phenotype was not recovered when TNF was genetically depleted. However,

there are a number of other cytokines involved in the control of viral infections

in vivo, such as type I and II IFN. To study how MCMV infection is affected by

these factors could be also be very informative.

Production of TNF after HCMV infection. Human CMV is an important

pathogen for immunocompromised patients. HCMV-induced pathogenesis has
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been associated in part with the immune response triggered upon infection, there-

fore it would be of a great interest to determine whether the human virus has also

evolved a mechanism for TNF production modulation. So far, it has been shown

that the IE1 protein induces the activation of the TNF promoter, but no study has

been done in the context of the life virus.

Role of MCMV in the lipid metabolism and how this regulation affect

TNF production. Very few examples can be found in the literature regarding

the role of lipids in viral infection. Microarray analysis pointed out that sev-

eral enzymes involved in the metabolism of cholesterol were altered after viral

infection. Hence, it would be interesting to further study to what extent viral

infection, and in particular the IE1 protein, affects this metabolism and how the

lipids affect viral and cellular response against infection.



APPENDIX A

General solutions and buffers

A.1 General solutions

• 10% Ammonium persulphate (APS)

1 g of APS (Sigma, UK) in 10 ml of distilled water. Solution was stored at

4C covered in foil.

• 10% sodium dodecyl sulfate (SDS) (Invitrogen, UK)

• TEMED (Biorad, UK) Stored at 4◦C.

• Glycerol (BDH Ltd., UK)

• 2x Laemmli sample loading buffer

0.125M Tris-HCl (pH 6.8), 4% SDS, 20% glycerol, 0.01% bromophenol blue

and 100 mM DTT (Sigma, UK) (just added prior to use).

• TBS

6.05 g Tris base (Sigma, UK), 8.76 g NaCl (Sigma, UK). Add distillied water

up to 800 mL and adjust pH to 7.5 with HCl. Make up to 1 L with distilled

water.

• 1 M Tris buffer (pH 6.8)

12.1 g of Tris base (Sigma, UK) was dissolved in 80 ml of distilled water.

pH was adjusted with HCl and volume was adjusted to 100 ml. Solutions

was kept at RT after sterilization by autoclave.

• 1 M NaCl

5.84 g NaCl (Sigma, UK) into 80 mL distilled water Dissolved and made up

to 100 mL with distilled water

• Complete mini-Protease Inhibitor Solution

139



140

1 tablet of the inhibitor (Roche) was added to 10 ml of lysis buffer. Stored

at 4◦C.

• Phosphatase inhibitor Cocktail I

100 µL of phosphatase inhibitor cocktail (Sigma, UK) was added to lysis

buffer just prior to use.

• Phosphatase inhibitor Cocktail II

100 µL of phosphatase inhibitor cocktail (Sigma, UK) was added to lysis

buffer just prior to use.

• Beadlyte Cell Signaling Lysis Buffer (Millipore, UK)

• PBS (Sigma, UK) Dissolve 1 tablet in 200mL.

• 10% Acrylamide gel for SDS-PAGE

For 10 mL, 4 mL of distilled water, 3.3 mL of 30% Acrylamide (Sigma,UK),

2.5 mL of 1.5 M Tris (pH 8.8), 0.1 mL of 10% SDS (Invitrogen, UK), 0.1 mL

of 10% APS (Invitrogen, UK), 0.004 mL TEMED (Biorad, UK)

• Stacking gel for SDS-PAGE

For 5 mL, 3.4 mL of distilled water, 0.83 mL of 30% Acrylamide (Sigma,UK),

0.63 mL of 1 M Tris (pH 6.8), 0.05 mL of 10% SDS (Invitrogen, UK), 0.05 mL

of 10% APS (Invitrogen, UK), 0.005 mL TEMED (Biorad, UK)

A.2 Solutions for Tissue Culture

• Calf Serum (CS) (Lonza, UK)

500 mL heat inactivate CS (56◦CC for 35 min) were filtered in a StericupR

vacuum filtration unit (Millipore, UK). The filtered serum was then aliquoted

into 50 mL lots and store at - 20◦C until use.

• Fetal Calf Serum (FCS) (Lonza, UK)

500 mL heat inactivate FCS (56◦C for 35 min) were filtered in a StericupR

vacuum filtration unit (Millipore, UK). The filtered serum was then aliquoted

into 50 ml lots and store at - 20◦C until use.

• L929 conditioned medium

Grow cells in a 165 cm2 flask in DMEM:F12 growth medium. When conflu-

ent, trypsinise and re-suspend in 30 ml growth medium. Add 1 ml cells to
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49 mL growth medium and seed into several 165 cm2 flasks. Culture for 5

days, harvest medium, centrifuge at 1500 rpm for 10 min, filter, aliquot and

freeze at -20◦C.

• Freezing medium

30 mL DMEM, 1.5 mL FCS (Lonza, UK), 5 mL DMSO (Sigma, UK). Aliquoted

into 8 x 6 mL and stored at -20◦C.

• Trypsin/Versene (Lonza, UK)

200 mg/L Versene and 170000 U Trypsin/L

A.3 Solutions for SDS-polyacrylamide-gel electrophoresis

(SDS-PAGE)

• 10X SDS running buffer

303 g of Tris base (Sigma, UK), 1442 g of glycine (Sigma, UK), SDS were

dissolved in 8 L of distilled water. pH was adjusted to pH 8.3 and volume

was adjusted to 10 L. Solution was kept at room temperature and was used

as in 1X solution diluted in distilled water.

• Solutions for chemiluminescent blotting

ECL Plus Western Blotting Detection reagents (Amersham Biosciences, UK)

• Transfer buffer

25 mM Tris base, 0.2 M glycine, 20% methanol (pH 8.5). Buffer was pre-

pared fresh for every transfer.

• 10X Tris Buffered Saline (TBS)

To prepare 1 L of 10X TBS: 24.2 g Tris base, 80 g NaCl; pH to 7.5.

• Washing buffer

1X TBS, 0.1% Tween-20 (TBS/T)

• Blocking buffer

1X TBS, 0.1% Tween-20 with 5% w/v nonfat dry milk

• Primary Antibody Dilution Buffer

1X TBS, 0.1% Tween-20 with 5% w/v nonfat dry milk.

• Secondary Antibody Dilution Buffer

1X TBS, 0.1% Tween-20 with 5% w/v nonfat dry milk.



APPENDIX B

Microarray Data

Figure B.1: Box plots before and after normalization
Box plot showing log2 intensity values from Affymetrix Mouse 430v2 array individual .CEL
files. The bottom and top of the box represents the 25th and 75th percentile, and the band in the
middle of the box represents the median. The horizontal lines, also known as the ”whiskers”,
represent observed data below the first quartile and beyond the third quartile. In other words,
the whiskers represent all observed value outside the box. The left pannel shows spread of the
data before RMA and quantile normalization and right pannel shows data after normalization.
Little variation was observed prior normalization, which was then reduced to minimal after
normalization.
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Figure B.2: List of genes down-regulated after MCMV infection in the absence of
IE1 protein
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Figure B.3: List of genes down-regulated after MCMV infection in the absence of
IE1 protein (continuation)
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Figure B.4: List of genes down-regulated after MCMV infection in the absence of
IE1 protein (continuation)
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Figure B.5: List of genes down-regulated after MCMV infection in the absence of
IE1 protein (continuation)
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Figure B.6: List of genes down-regulated after MCMV infection in the absence of
IE1 protein (continuation)
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Figure B.7: List of genes down-regulated after MCMV infection in the absence of
IE1 protein (continuation)
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Figure B.8: List of genes up-regulated after MCMV infection in the absence of
IE1 protein (continuation)
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Figure B.9: List of genes up-regulated after MCMV infection in the absence of
IE1 protein (continuation)
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Figure B.10: List of genes up-regulated after MCMV infection in the absence of
IE1 protein (continuation)



APPENDIX C

Luminex-based PathwayProfilerTManalysis

Figure C.1: Analysis of the rest of the signalling proteins
BMMθ were infected at a MOI of 1 with MCMV, MCMVdie1 or MCMVrev or mock infected as a
negative control. Samples were analyzed as n=4 using the PathwayProfilerTMservice by Upstate
(Millipore, UK). Fold activation of the kinases are shown. MFI data have been normalized
against total amount of protein and mock-infected samples. Blank values were also extrated
from the final values. Bars show media values and SD.
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