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Abstract

This thesis describes a stochastic ship routing problem with inventory
management. The problem involves finding a set of least costs routes for
a fleet of ships transporting a single commodity when the demand for the
commodity is uncertain. Storage at consumption and supply ports is limited
and inventory levels are monitored in the model. Consumer demands are at
a constant rate within each time period in the deterministic problem, and in
the stochastic problem, the demand rate for a period is not known until the
beginning of that period. The demand situation in each time period can be
described by a scenario tree with corresponding probabilities.

Several possible solution approaches for solving the problem are studied in
the thesis. This problem can be formulated as a mixed integer programming
(MIP) model. However solving the problem this way is very time consuming
even for a deterministic problem with small problem size. In order to solve the
stochastic problem, we develop a decomposition formulation and solve it using
a Branch and Price framework. A master problem (set partitioning with extra
inventory constraints) is built, and the subproblems, one for each ship, involve
solving stochastic dynamic programming problems to generate columns for the
master problem. Each column corresponds to one possible tree of schedules
for one ship giving the schedule for the ship for all demand scenarios. In each
branch-and-bound node, the node problem is solved by iterating between the
master problem and the subproblems. Dual variables can be obtained solving
the master problem and are used in the subproblems to generate the most
promising columns for the master problem. Computational results are given
showing that medium sized problems can be solved successfully.

Several extensions to the original model are developed, including a variable
speed model, a diverting model, and a model which allows ships to do extra
tasks in return for a bonus. Possible solution approaches for solving the
variable speed and the diverting model are presented and computational
results are given.
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Chapter 1

Introduction

The marine shipping industry has experienced an unprecedented boom over
the past decade. Not only because of the rapid growth of the international
economy, which requires the transfer of more and more energy and commercial
commodities from one country to another, but also because the characteristics
of the ocean shipping industry, with its low transportation costs and huge
loading capacity, are suitable for cheaply transporting huge amounts of
products.

Transportation problems have been extensively discussed in literature.
The classical routing and scheduling problem for vehicles and ships is an
important part of the general transportation problem, and has received a
great deal of attention in academic research. A large number of possible
solution approaches have been presented in the literature, involving either
exact optimization methods or heuristic algorithms. Desrochers et al. 1992
were the first to propose a set partitioning model for the vehicle routing
problem with time windows solved by column generation, and this appears to
be an efficient way of finding the optimal solution. From heuristic perspective,
metaheuristics have been proven to be a good approach for quickly solving
large real world problems and obtaining high quality, near optimal, solutions.

The ship routing problem (SRP) and vehicle routing problem (VRP) are
two particular cases of the routing problems dealing with transportation. Both
of them are hard combinatorial problems and not easy to solve. In the vehicle
routing problem, a fleet of vehicles, starting and ending at a single depot, are
considered to cover a set of customers within a period so that the traveling
cost is minimized and all the customer demands are satisfied. In VRP, we
usually consider one type of commodity and inventory is not included in the
problem. However, in the ship routing problem, a fleet of ships are traveling
among ports to delivery commodities. There is no particular depot for each
ship. Inventory at each port is an important factor in the problem. Among
solution approaches for the ship routing problem, the set partitioning model
with columns generated heuristically and a priori plays an important role in
the literature. In this solution approach, different heuristics are developed

7



with the aim of producing good quality ship schedules which can be used in
the set partitioning models. Although mixed integer programming (MIP) is
another possible tool for the problem, because of the integrality requirement
of the model, it is time-consuming to solve the MIP model directly. For
this reason heuristic methods or dynamic programming algorithms are always
involved in the MIP solution approach in order to find a good solution more
efficiently. Dantig-Wolfe decomposition approach has been widely used for the
routing problem, since this provides a similar lower bound of the problem as
that found by the Lagrangian Relaxation, and this guarantees an efficient
search in branch-and-bound algorithm. Christiansen and Nygreen 1998a,
Christiansen and Nygreen 1998b, Christiansen 1999 and Christiansen 1996
have presented the Dantzig-Wolfe decomposition approach for deterministic
ship routing problem with inventory constraints, and a comprehensive survey
of solution approaches for the ship routing problem is provided by Christiansen
et al. 2004.

In the Dantzig-Wolfe decomposition approach, subproblems are usually
formulated as the shortest path problem with time windows (SPPTW), and
solving the subproblems quickly is very important for the solution approach.
Ioachim et al. 1994 present a dynamic programming algorithm for the SPPTW
with linear node costs, and Desrochers and Soumis 1988a give a generalized
permanent labeling algorithm for the SPPTW. The same authors also propose
a re-optimization algorithm for the same problem in Desrochers and Soumis
1988b. Add these methods are proven to be efficient ways to solve SPPTW.

More recently, ship routing problems with uncertainties have been
investigated. Since there are a big number of unpredictable factors involved
in the ocean shipping industry, a deterministic problem may not deal
appropriately with the uncertainties. Stochastic programming and robust
optimization have been used to tackle this type of problem. By considering
different future scenarios, stochastic programming models can provide better
solutions to handle future uncertainties well.

This thesis presents a stochastic ship routing problem with inventory
management under uncertain consumer demands. We consider a single
commodity distribution by a fleet of ships with limited storage at each source
and destination port. The problem involves finding the least cost schedule
for the fleet, and managing the inventory at each port. Different solution
approaches are studied in order to solve the problem. The problem is firstly
formulated as a straightforward MIP model. A set of integer variables are used
to control the ship’s routes and a group of continuous variables are used to
manage the inventory situations at each port, as well as the capacity on board
each ship. The MIP model is written in AMPL and solved directly by calling
CPLEX. In the model, the status of each ship including the ship’s position
information and sailing information are decided by two integer variables. The
storage level for each period is monitored by the inventory constraints. This
method can however solve small problem only.
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In order to solve larger problems within a reasonable time, the branch-and-
price algorithm is developed. This algorithm finds the integer solution using
branch-and-bound, and in each branch-and-bound node, it uses a column
generation process to solve a restricted master problem. The master problem
has the form of a set partitioning but with extra inventory constraints. Each
column in the master problem corresponds to a tree of schedules for one
ship, including the visit sequence, the start service time and the loading or
unloading quantity. The problem at each branch-and-bound node is solved by
the column generation method, which only requires a finite number of columns,
and the subproblem for each ship is formulated as a shortest tree problem
with time windows. The most promising columns for the master problem are
generated by a stochastic dynamic programming using a backward labeling
method. At each stage of the solution, the master problem is solved and the
dual variables of the constraints are used within the stochastic DP to find the
most negative reduced cost for each ship in the subproblem – there are the
most promising columns for the master. The process is stopped if no more
negative reduced cost columns can be generated, and a branch-and-bound
algorithm is used to find the optimal integer solution.

In real life situations, ships can change their speeds or divert to other
destinations during sailing. In order to implement these cases, extensions to
the original decomposition model are developed. In the original model each
ship is assumed to travel at a fixed speed. However, in practice a ship uses
less fuel if it slows down the speed and so we extend the original model to
allow for this. In the variable speed model, the edge cost structure has been
modified in the dynamic programming networks of the subproblems to allow
ships to choose different speeds during sailing. Because of the discretization of
traveling time used in the model, a local optimization model is then proposed
to determine the optimal schedules.

The case of diverting occurs in the real world because of a lack of future
information, and when it occurs it results in higher traveling costs. It is
often cheaper for the ship to sail to a central position in the sea and when
future information becomes available to decide its destination. In terms of
the stochastic ship routing problem, a divert model is built to capture this
situation. The difficulty involved in a divert model is to find the suitable
central position in the sea for diverting, and two ways are presented to find this
central position for diverting, namely, a grid network and a pre-optimization
method. The first method involves the use of a grid network and a set of
discretised points in the network to find possible central points in the ship
subproblems. A new type of sum-up node where position of central points
is the state parameter is introduced in the DP network of subproblems, but
there is no change made to the master problem, so the extension model can
be solved by the same decomposition approach which is used to solve the
original model. Each of these nodes has a fixed time and a cost function
over the different possible central points. The second method considers all of
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the possible situations which could occur when crossing the boundary of time
period, and a set of nonlinear programming problems are solved a priori to
generate the optimal central points for these situations. A list of central points
for diverting and the corresponding costs of each situation is generated before
solving the problem. When solving the DP, the cost function can be updated
at each node by simply referring to this list of central points and costs. This
way is compatible with the solution approach of the original model as well.

The thesis also presents an extension to the model allowing more general
and realistic situations to be modeled. The model extension allows for the
situation where a ship can take an extra work from an outside company and
so usefully use time when it would otherwise be idle. The more realistic
situations considered in the thesis are good complements to our original model.

The aims of this thesis are as follows:

• to describe the stochastic ship routing problem with inventory
management,

• to study several solution approaches, both MIP and decomposition
formulation, to solve this problem,

• to propose a range of extension models to the original model so as to
capture some features involved in the real world shipping operations.

And the main contribution of this thesis are:

• In this thesis, a new MIP model for the stochastic ship routing problem
is built. Balance equations and integer variables are used to control
ship position and traveling status. And continuous variables are used to
monitor the inventory level at each port.

• As far as we know, this is the first time that a Branch-and-Price
algorithm is used to solve the stochastic ship routing problem. There is
no paper where a similar method has been used to solve the stochastic
transportation problem. In our solution framework, we formulate the
ship schedule with scenario tree structure into a single column so that
a set partitioning model can be used as our mater problem in the
column generation method. Medium sized problems can be solved within
reasonable time by using this decomposition formulation.

• In the column generation method, a new labeling method is, first time,
introduced to solve the stochastic dynamic programming with time
windows.

• When solving the stochastic DP, we eliminate 2-cycles during the
labeling method. This is the first time that the details of 2-cycle
elimination during labeling method is fully described.
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• Two extension models, diverting and variable speed model, are
introduced in the thesis to capture more realistic situations in ship
operations. This is the first time that diverting and variable speed
case are considered in the stochastic ship routing problem, and efficient
solution methods with decomposition formulation are also presented.

The later chapters of the thesis have the following content, Chapter 2
gives a review of the existing literature in terms of the different routing
problems. Chapter 3 describes the basic concepts of the problem. Chapter 4
give a mixed integer programming model for the problem. Chapter 5 gives a
decomposition solution approach, together with a detailed solution framework,
mathematical formulations, solving methods, branch-and-bound algorithms
and computational results. Chapter 6 gives extension models, including
the variable speed and diverting model, and finally, Chapter 7 presents the
conclusion and a list of possible future work in this area.
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Chapter 2

Literature Review

2.1 Traveling Salesman Problem with Time

Windows

The traveling salesman problem (TSP) has received much attention
throughout the literature because it is easy to describe, widely be applied
to many transportation and distribution problems (such as vehicle routing,
ship routing, crew scheduling and production planning), and difficult to be
solved. In this section, we discuss different formulation of the TSP and
different solution approaches given in the literature.

Consider a complete directed or non-directed graph G = (N,A), where N
is a set of n vertices and A is a set of m arcs. Let cij be the cost of arc (i, j).
A Hamiltonian cycle of G is a circuit passing through every node of G once
and only once. TSP is the problem of finding the Hamiltonian cycle in graph
G with the least traveling cost. The mathematical formulations of the TSP
given by Christofields et al. 1979 can be presented as blew.

Let binary variable xij = 1 if arc (i, j) is in the optimal TSP tour
(Hamiltonian cycle), and 0 otherwise. The problem is then:

min
∑

i=1..n

∑
j=1..n

cijxij (2.1)

s.t.
∑

i=1..n

xij = 1, ∀j ∈ N (2.2)∑
j=1..n

xij = 1, ∀i ∈ N (2.3)∑
i∈K

∑
j∈K

xij ≤ |K| − 1, ∀K ⊂ N (2.4)

xij ∈ {0, 1}, ∀i, j ∈ N (2.5)
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In above formulation, K represents any nonempty subset of N and |K| gives
the size of set K. Constraints 2.4 ensure that xij (∀(i, j) ∈ A) must form a
tour.

A special case of TSP is the symmetric traveling salesman problem. In
the symmetric traveling salesman problem, graph G is a non-directed graph.
Let l be the index of arc set A and cl be the corresponding cost on the arc.
Variable xl = 1 if arc l is in the optimal TSP tour, and 0 otherwise. Let set
J(i) be the set of all non-directed edges linked with node i in G and A(K)
be the subset of A linking with the nodes in K (the nonempty subset of N).
The symmetric TSP can therefore be formulated as:

min
∑

i=1..n

∑
l∈J(i)

clxl (2.6)

s.t.
∑

l∈J(i)

xl = 2, ∀i ∈ N (2.7)

∑
l∈A(K)

xl ≤ |K| − 1, ∀K ⊂ N (2.8)

xl ∈ {0, 1}, ∀l ∈ A (2.9)

Another special case for TSP is the traveling salesman problem with time
windows (TSPTW). In TSPTW, again we have a graph G = (N,A). Each
node in G has a time window [Ai, Bi]. There is a depot in the network, and
each arc (i, j) of the graph associates a traveling cost cij and a traveling time
Tij. The problem is to find the least cost Hamiltonian cycle covering each
node (except the depot) exactly once within its time window. The tour starts
and ends at the depot node. The formulation of TSPTW is given below:

min
∑

(i,j)∈A

cijxij (2.10)

s.t.
∑
i∈N

xij = 1, ∀j ∈ N (2.11)∑
j∈N

xij = 1, ∀i ∈ N (2.12)

xij(ti + Tij − tj) ≤ 0 ∀(i, j) ∈ I (2.13)

Ai ≤ ti ≤ Bi ∀i ∈ N (2.14)

xij ∈ {0, 1}, ∀(i, j) ∈ A (2.15)

In the formulation, I is the set of arcs in the network except all the arcs
linked with the depot node. Interval [Ai, Bi] is the time window for node i.
Constraints 2.13 ensure the elimination of subtours.
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TSPTW is well-known to be an NP-hard problem. Even finding a feasible
solution for TSPTW is an NP-complete problem (see Savelsbergh 1985).

Baker 1983 has presented a time-constrained TSP which minimized the
total completion time and was solved by a branch-and-bound algorithm. The
absolute value constraints and the time window constraints in the model are
relaxed, and the dual of the relaxed problem is a longest path problem. In the
branch-and-bound node, absolute value constraints are added to the model
as the additional columns in the dual, which are the additional directed
arcs in the dual network. The paper reports that the algorithm performed
well on problems with up to 50 nodes with small percentage of the time
windows overlap. Pesant et al. 1996 presented a constraint logic programming
model for the TSPTW. Branch-and-bound algorithm is used in their paper
to solve the problem. In their solution approach, they relax the time window
constraints during the branch-and-bound. Langevin et al. 1993 have given a
two-commodity flow formulation of the problem and solved the problem by a
branch-and-cut algorithm.

Dumas et al. 1995 gave the new elimination tests to reduce the state space
and use the tests to minimize the total traveling costs for TSPTW. They
report that the new algorithm performs very well with dynamic programming
approach. By using the time windows of nodes in the network, their
three elimination tests eliminate states which cannot extend a partial path.
An exact algorithm based on dynamic programming has been described in
Mingozzi et al. 1997. Bounding functions are used in their paper to reduce the
state space and these functions are based on the technique of generalization of
the “State Space Relaxation” for dynamic programming which has also been
introduced by Christofields et al. 981a.

Because of the difficulties in solving TSPTW, a lot of effort has gone
on solving the problem heuristically. Gendreau et al. 1998 have described a
generalized insertion heuristic algorithm for TSPTW. They first insert vertex
into partial route to construct routes and then a post-optimization phase is
used to improve the quality of the solution. This is proved to be a very
successful way for large scale realistic problems. They reported the method
performs well on 375 instances. Calvo 2000 has presented another insertion
heuristic algorithm which includes two phases as well. For a relaxation of
original problem, Greedy insertion is first used based on the solution of
assignment problem. Then the solution is improved by the local search.

2.2 Vehicle Routing Problem

There are a set of customers and a depot in the vehicle routing problem (VRP).
The problem is to determine K vehicle routes, one for each vehicle so that
the total traveling cost is minimized. A route here is a tour that begins and
ends at the depot, and visits a subset of the customers. There is a demand
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for each customer in the problem, and each vehicle has a limited capacity on
board. Each customer must be covered by exactly one of the K vehicle routes
and total amount of demands for customers assigned to each vehicle must not
exceed the vehicle capacity.

There are two types of problems in the VRP, Capacitated VRP (CVRP)
and VRP with Time Windows (VRPTW). VRPTW is the extension of the
CVRP in which capacity constraints are imposed and each customer i is
associated with a time window [Ai, Bi], called a time window. The customer
has to be visited or serviced with the time window. VRPTW is regarded as
NP-hard problem.

2.2.1 Vehicle Routing Problem with Time Windows

In this section, we focus on the VRPTW. We first describe the mathematical
formulation of VRPTW, and then we review the different solving approaches
in the literature in later sections. Let G = (N,A) be a graph, where N =
{0, .., n} is the vertex set and A is the arc set. Here vertex 1, .., n correspond
to the customers and 0 corresponds the depot. Each customer has a demand
di which should be satisfied by vehicle visiting. There are a traveling cost, Cij,
and a traveling time, Tij, on each arc (i, j) ∈ A. In each customer i, a time
window [Ai, Bi] is associated with it and the service to the customer should
start within the time window. K vehicles are considered in the problem.
The VRPTW consists of finding exact K routes, one for each vehicle, with
minimum traveling cost and satisfying the following constraints:

• Each route must start and end at the depot;

• Each customer vertex must be covered by exactly one route;

• The sum of the demands of vertices visited by a vehicle can not exceed
the vehicle capacity, C;

• For each customer i, the service start time must be within the
corresponding time window.

Assume that flow variables xijk is 1 if arc (i, j) is used by vehicle k and
0 otherwise. Variable tik is the start of service at node i when serviced by
vehicle k. Then the formulation of the VRPTW can be presented as below.
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min
∑
k∈K

∑
(i,j)∈A

Cijxijk (2.16)

s.t.
∑
k∈K

∑
j∈N

xijk = 1 ∀i ∈ N \ {0} (2.17)∑
j∈N

x0jk = 1 ∀k ∈ K (2.18)∑
i∈N

xijk −
∑
iinN

xjik = 0 ∀k ∈ K, j ∈ N (2.19)∑
i∈N

xi0k = 1 ∀k ∈ K (2.20)

xijk(tik + si + Tij − tjk) ≤ 0 ∀k ∈ K, (i, j) ∈ A (2.21)

Ai

∑
j∈N

xijk ≤ tik ≤ Bi

∑
j∈N

xijk ∀k ∈ K, i ∈ N (2.22)∑
i∈N

di

∑
j∈N

xijk ≤ C ∀k ∈ K (2.23)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (2.24)

The objective function 2.16 is to minimize the total traveling cost.
Constraints 2.17 ensure that each customer is visited by one vehicle.
Constraints 2.18 and 2.20 describe that a vehicle route must start and end at
the depot node 0, while constraints 2.19 shows the flow balance equation
on the route followed by vehicle k. The nonlinear constraints 2.21 and
constraints 2.22 ensure each node in a vehicle route should be serviced within
the corresponding time window if an arc is included in the vehicle’s route.
Constraints 2.23 guarantee the total demand delivery does not exceed the
capacity of vehicle on the route of each vehicle. Finally, constraints 2.24 show
xijk are binary variables.

The formulation is a nonlinear programming problem. However, by using
the binary conditions of variable xijk and a large constant M , the constraints
2.21 can be linearized as:

tik + si + Tij − tjk ≤ (1 − xijk)M ∀k ∈ K, (i, j) ∈ A (2.25)

2.2.2 Decomposition Approaches – Column Generation

The column generation approach represents a generalization of the Dantzig-
Wolfe decomposition described in Dantzig and Wolfe 1960. In the approach,
the problem is divided into two parts: master problem and subproblems.
The master problem can be formulated as a set partitioning model, and

16



subproblems are usually formulated as a shortest path problem with time
windows (SPPTW) which is solved by dynamic programming. In the
formulation of VRPTW introduced above, the master problem contains the
objective 2.16, and constraints 2.17 and 2.24. All other constraints are
considered in the subproblems.

Let Ω be the set of paths, and path p ∈ Ω be a possible path generated
by subproblems. Each path p then can be described using integer flow value
x̂ijkp. Let index k be vehicle. For a given k ∈ K, we have:

xijk =
∑
p∈Ω

x̂ijkpθkp ∀(i, j) ∈ A (2.26)∑
p∈Ω

θkp = 1, θkp ≥ 0 p ∈ Ω (2.27)

Now the master problem can be formulated as a set partitioning model:

min
∑
k∈K

∑
p∈Ω

Ckpθkp (2.28)

s.t.
∑
k∈K

∑
p∈Ω

aikpθkp = 1 ∀i ∈ N (2.29)∑
p∈Ω

θkp = 1 ∀k ∈ K (2.30)

θkp ≥ 0 ∀k ∈ K, p ∈ Ω (2.31)

xijk =
∑
p∈Ω

x̂ijkpθkp ∀k ∈ K, (i, j) ∈ A (2.32)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (2.33)

From above formulation, we can see that each column in the set
partitioning model represent a route for a vehicle. In practice we cannot
a priori find all the possible routes for each vehicle to add into the set
partitioning model. Instead we repeatedly solve a subproblem to generate
promising columns. In the Dantzig-Wolfe decomposition approach, the master
problem is solved to provide the dual variable of constraints 2.29 and 2.30.
Subproblems then use this dual variable information to generate the least
reduced cost routes. The routes are added into the master problem as columns
if the corresponding reduced costs are negative. The process is stopped if no
more negative reduced cost route can be generated from the subproblems.

An early paper, Appelgren 1969, Dantzig-Wolfe decomposition is used for
a ship scheduling problem, which is a similar problem to VRPTW. They show
that the frequency of fractional solutions is about 1-2 percent for their test
examples. Problems with about 40 ships and 50 cargoes were solved in about
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2.5 minutes.
The Dantzig-Wolfe decomposition approach has been successfully applied

to solve the VRPTW in Desrochers et al. 1992. The LP relaxation of the
set partitioning formulation of the VRPTW is solved by a column generation
method in the paper. Their master problem is a set covering model and
the subproblems are formulated as dynamic programming problem. Three
dynamic programming models are discussed. One is able to price out
all feasible routes while the other two have the solution spaces containing
more than the feasible route set but having a pseudopolynomial worst case
complexity. Finally the branch-and-bound algorithm is discussed in their
paper.

Based on the same set partitioning model given in Desrochers et al. 1992,
Gelinas et al. 1995 have presented new branching strategies, branching on
resource variables rather than branching on flow variables. They do branching
on time windows to get more balanced branch-and-bound tree. The big
time window on a selected node of network is divided into two small time
intervals, one in each branch. The backhauling was permitted only after all
the shipments to clients have been made in the model. They report that the
new branching method is very effective, and they can optimally solve problems
with up to 100 customers.

When the VRPTW is solved by column generation, the optimal solution
value of the set covering problem is usually very close to its linear programming
relaxation, which makes the branch-and-bound algorithm very efficient.
Bramel and Simchi-Levi 1997 explained this behaviour. they show that for
any distribution of service times, time windows, customer loads and locations,
the gap between fractional and integer solutions of the set covering problem
becomes very small with the number of customers increased.

A multi-depot vehicle scheduling problems with time windows and waiting
costs is presented in Desaulniers et al. 1998. The problem with waiting costs
provides a more realistic cost structure. They formulate the problem as an
integer nonlinear multi-commodity network flow model and solve the problem
using a column generation approach and integer solution is searched by
branch-and-bound algorithm. They tested their model on randomly generated
examples and found that such a general solution methodology can efficiently
solve the case with exact waiting costs.

More recently, Chabrier 2006 proposes one theoretical and several practical
improvements to the algorithm which uses the elementary shortest path
subproblems to generate elementary paths for the master problem.
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2.2.3 Decomposition Approaches – Lagrangian
Relaxation

Another useful decomposition approach for solving the VRPTW is Lagrangian
relaxation. By relaxing the time and capacity constraints, 2.21 and 2.23
respectively, the relaxed problem becomes just a network flow problem.
However, integer solution is rarely to be found by doing so because that the
integrality gap is very large. Therefore, the time and capacity constraints
should be kept in the problem and instead some network flow constraints can
be relaxed. This improves the lower bound of the Lagrangian relaxation.

Kohl and Madsen 1997 presents an optimization algorithm for the VRPTW
based on Lagrangian relaxation. They relax the constraints 2.17 in the
formulation of VRPTW, which models the fact that each customer must be
served. Therefore, the objective for their Lagrangian relaxation problem has
the following formulation:

min
∑
k∈K

∑
(i,j)∈A

Cijxijk +
∑
k∈K

∑
i∈N

αi(1 −
∑
j∈N

xijk) (2.34)

They propose subgradient and bundle methods to find the optimal
multiplier values in the master problem, and their subproblem is a shortest
path problem with time windows and capacity constraints. Their algorithm
is shown to be very competitive compared to other algorithms after testing a
series of well-known benchmark problems of size up to 100 customers.

Fisher 1994 extends the 1-tree method to a K-tree method for the VRPTW.
The capacity constraints and the requirement that each customer be visited
exactly once are relaxed. In their method, it is assumed that a route
containing only one customer is not allowed. Feasible solutions are obtained
at each subgradient iteration using three alternative heuristics based on the
Lagrangian solution. They can optimally solve a number of difficult problems
and several real problems with 25–71 customers. A later paper, Fisher et al.
1997, describes two optimization methods for VRPTW, Lagrangian relaxation
and K-tree approach.

2.2.4 Heuristic Approaches

In the real world, the problem size is usually very big, so it is very important
to get a good qualty sub-optimal solution within a reasonable time rather than
take a long time to find the optimal solution. Therefore, heuristic approaches
for solving the VRPTW can play a very important role. There is a large
amount of literature solving VRP by heuristic methods. Meta-heuristics are
proved to be very efficient heuristic methods to get good quality solutions.
For VRPTW, solution is usually found by heuristically constructing feasible
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routes and improving the routes by local searches.
Solomon 1987 has considered a group of heuristic methods for route

construction. They insert node into a partial route based on the measure
of traveling time and cost. Their computational results focus on the insertion
heuristic. The method used two criteria at every iteration to insert an
un-routed customer into the current partial route between two adjacent
customers. They first found the best feasible insertion place for each un-routed
customer by computing the minimum additional distance or time required,
and then they found the best customer to be inserted into the place. Based
on the k-interchange concept, Savelsbergh 1985 has discussed a local search
approach in routing problems with time windows. A k-interchange finds the
feasible routes by swapping k links of a route with k other links. In their
work, they considered 2-interchange and 3-interchange. This paper showed
an alternative way of building routes from existing routes which is different
from the method of route construction given in Solomon 1987.

Unlike local search heuristics, meta-heuristics do not stop at the local
optimal solution. Tabu search heuristics are based on the local search which
requires the feasibility of solution all the time, and the recent changes will
be forbidden to be recovered within a certain steps. Potvin et al. 1996
have described a tabu search heuristic for the VRPTW. Both 2-opt* and
Or-opt neighborhoods were used to find good solutions. They introduced
distance restrictions so as to avoid to search the entire 2-opt* and Or-opt
neighborhoods. A number of examples were tested with different parameter
settings. Taillard et al. 1997 presented a tabu search heuristic for the vehicle
routing problem with soft time windows with a penalty if services to customers
are out of the time windows. In a neighborhood of the current solution, new
solutions were searched for using the CROSS exchange. The routes of the best
previously visited solutions were stored in memory, and new starting points
for the tabu search were produced by a combination of routes taken from
different solutions stored in the memory. According to Toth and Vigo 2002,
the CROSS exchange generalizes both the 2-opt* (Potvin and Rousseau 1995)
and Or-opt exchanges, but it is a special case of the k-interchanges (Osman
1993) since it has the restriction that the subsets of customers chosen in each
route must be consecutive.

Tabu search is also used to search for good solutions to different extensions
of the VRPTW. Cordeau et al. 1997 have presented a tabu search heuristic
for the periodic vehicle routing problem (PVRP) and the multi-depot vehicle
routing problem (MDVRP). Their tabu search algorithm was based on the
GENI heuristic. Semet and Taillard 1993 have described a real-life vehicle
routing problems, which is quite different from the academic problems in
terms of problem size and number of restrictions, solved by tabu search.
Therefore, the real-life problems are very hard to solve to optimality, and
heuristic methods play an important role in practice. In the paper, they
dealt with varieties of restrictions from real-life problems and built suitable
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heuristics to solve the problem efficiently.
There is as well a large amount of literature using other heuristic

approaches. Metastrategy simulated annealing algorithms were presented
in Osman 1993 and Chiang and Russell 1996. A revolutionary heuristic
algorithm, genetic search, was proposed in Potvin and Bengio 1996 as well
as Baker and Ayechew 2003. In Baker and Ayechew 2003, both a pure
genetic algorithm and a hybrid of the genetic algorithm with a neighborhood
search method were tested, and the later hybrid method was competitive
with tabu search and simulated annealing in terms of solution time and
quality. Russell 1995 has presented a hybrid heuristic algorithm which embeds
global tour improvement procedures within the route construction process
for the VRPTW. A location based heuristic has been introduced in Bramel
and Simche-LEVI 1995 for general routing problems including VRP. Another
paper dealing with the soft time windows on the VRP is Balakrishnan 1993.
They have described three simple heuristics for the problem.

2.2.5 Vehicle Routing Problem with Uncertainties

A variant of the VRP is the stochastic vehicle routing problem (SVRP).
The uncertainties involved in the VRP are the locations of customers and
the customer demands. These uncertainties can be dealt with by stochastic
programming and the robust optimization, and can be solved by both exact
optimization methods and heuristics. The objective of the SVRP is to
minimize the expected route failure, maximize the customer coverage, or
minimize the total expected traveling cost (or distance).

Recently, stochastic vehicle routing problem without inventory constraints
and with simple recourse actions have been discussed extensively in the
literature. A branch-and-price algorithm for vehicle routing problem with
stochastic demands is illustrated by Christiansen and Lysgaard 2007. In their
paper, the expected number of failures and the corresponding penalty cost are
considered in the objective function and a two stage stochastic program with
fixed recourse and capacity constraints is built.

Bent and Hentenryck 2004 have considered a dynamic VRPTW with
stochastic customers. The number of served customers was maximized. A
multiple scenario approach (MSA) that continuously generates routing plans
for scenarios including known and future requests was presented. They tested
their model on the Solomon benchmark problems with a degree of dynamism
varying between 30–80 percent.

A straight-forward modification of the Clark and Wright savings algorithm
for the SVRP was given in Dror and Trudeau 1986 based on a discussion of
route failure. In Hjorring and Holt 1999 and Gendreau et al. 1995, an integer
L-shaped method was used to solve SVRP to optimality. Bertsimas and
Simchi-Levi survey some new developments in SVRP in Bertsimas and Simchi-
Levi 1996. Bertsimas 1992 proposed a priori sequence among all customers of
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minimal expected total length, and a variety of theoretical approaches were
analyzed as well. In addition, several solution frameworks for the stochastic
vehicle routing with stochastic demands were discussed in Dror et al. 1989.

Heuristic approaches are also used for SVRP with stochastic demands and
customers. Gendreau et al. 1996 presented a tabu search heuristic for the
VRP with uncertain demands and customers. A genetic based algorithm was
proposed in Guo and Mak 2004. Soft time windows with a penalty for late
arrival were used in their paper. A mathematical programming formulation
was developed to study the effects of the stochastic demands and customers.

2.3 Ship Routing Problem

Ocean shipping is the major international transportation mode especially
for large bulk commodity transportation. Ocean transportation involves
shipping products among ports with very large distances from each other,
which is one of main characteristics of ocean shipping industry. An example
is the international oil shipping operations between continents. Another
characteristic of ocean shipping is the large volumes on board. Alternatively,
the sea shipping may be within a relatively small area, such as the ferryboat
service among the small Greek islands in the Aegean Sea.

The ship routing problem (SRP) is part of the fleet planning problem
for ocean shipping. Ship routing and scheduling problems are different from
those of other transportation problems. Ronen 2002 has pointed out some
significant differences:

• In ship routing problem, there may be different types of commodities
needed to be transported in a single vessel.

• Ship routing problem always consider the inventory at the sources and
customers.

• A voyage of a vessel usually has one or very few unloading locations
with the result that ships may travel frequently between sources ports
and consumer ports. In vehicle routing problem in contrast, a vehicle
may visit a long sequence of customers in a journey.

• Traveling times are usually much longer than other transportation
planning problems (days or weeks instead of hours).

• (Optional) backhauls may be available for the vessels.

• Vessels come in a large variety of sizes with different compartment sizes.

In addition to the differences mentioned above, there are some other
differences between SRP and others. Ships may stay at a port for a long time
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compared to the VRP because the large capacity on board results in longer
loading or unloading times. Diverting to a new location is not considered in
the VRP, but ships divert during sailing in real life. Christiansen et al. 2004
have also provided some additional differences.

There is an extensive literature on deterministic inventory routing in the
content of ship routing problem. A comprehensive review is provided in
Christiansen et al. 2004. This focuses on literature about ship routing and
scheduling published between year of 1990 and 2003. The survey is presented
in several different parts: strategy planning problem, tactical and operational
planning problems, naval problems and other related problems. A survey of
different solution methods in the literature is also presented in their paper.

Different solution methods are presented in the literature. A mixed
integer programming (MIP) model is described in Ronen 2002 for the problem
of transporting different bulk products from a set of origins to a set of
destinations by a fleet of ships. In their problem, a ship has separate
compartments for different products. A ship’s voyage goes from a single
loading port to a single discharging port. A cost-based heuristic algorithm
is also presented to obtain acceptable solution quickly. Sherali et al. 1999
have presented an MIP model for the Kuwait Petroleum Corporation (KPC)
problem. Because of the integrality conditions and large number of demand
contract scenarios, the problem cannot be solved to optimality by the MIP
model directly. Heuristic method then is used to solve this real industry
problem. In the ocean shipping industry, expert opinion is an important
factor. Crary et al. 2002 introduce a model integrating the expert opinion
and MIP model for the problem of sizing the US destroyer fleet. MIP models
for SRP are also built in Bendall and Stent 2001, Mehrez et al. 1995 and Shih
1997. Heuristics are developed in Gunnarsson et al. 2006 in order to obtain
an acceptable solution within reasonable time when solving the mixed integer
programming model.

The Dantzig-Wolfe decomposition approach has proved to be successful for
the vehicle routing problem with time windows. For the SRP, it is also a good
solution approach. There is much literature on solving SRP by Dantzig-Wolfe
decomposition. Early papers Appelgren 1969 and Appelgren 1971 describe
a typical tramp ship scheduling problem, which was the first work to use a
Dantzig-Wolfe decomposition approach for ship routing and scheduling. The
master problem is the linear relaxation of a set partitioning problem and
subproblems are shortest path problems. But the algorithm presented cannot
guarantee optimal integer solutions.

Christiansen 1999 describes a real world ship routing problem. The
MIP model is in their work. To decompose the MIP model, the model is
reformulated into a set partitioning model and solved by a Dantzig-Wolfe
decomposition approach. The same problem is also given in Christiansen and
Nygreen 1998a. They introduce a master problem with coupling constraints
as below:
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min
∑

v

∑
r

Cvrλvr (2.35)

s.t.
∑

v

∑
r

Aimvrλvr +
∑

s

Yimsθis = 1 ∀i,m (2.36)∑
v

∑
r

QV imvrλvr −
∑

s

QHimsθis = 0 ∀i ∈ SH ,m (2.37)∑
v

∑
r

TV imvrλvr −
∑

s

THimsθis = 0 ∀i ∈ SH ,m (2.38)∑
r

λvr = 1 ∀v (2.39)∑
s

θis = 1 ∀i ∈ SH (2.40)

λvr ≥ 0, θis ≥ 0 (2.41)

{r : λvr > 0}correspond to equal geographical routes ∀v(2.42)

Where variable λvr is 1 if ship v chooses route r and variable θis is 1 if port
i chooses visit sequence s. Objective function 2.35 minimizes the traveling
cost. Constraints 2.36 ensure that each port visit can occur at most once.
Constraints 2.37 and 2.38 are used to couple the load quantity and start
service time for the ship visit sequences and port visit sequences. Constraints
2.39 and 2.40 ensure that each ship must choose a visit sequence and each
port must choose a visit sequence as well respectively. Constraints 2.42 are
only implicitly given and represent the integer part of the model. Detail
explain of the master problem is given in Christiansen and Nygreen 1998a.
Columns were generated from ship and port subproblems, and depth first
branch-and-bound algorithm was used to search for the integer solution. In
Christiansen and Nygreen 1998b, the same authors focus on the formulation of
subproblems. Ship subproblems are formulated as the shortest path problem
with time windows and solved to generate the ship visit sequence including
start service times and load quantities, while port subproblems are used to
generate port visit sequences for the master problem. Both subproblems were
solved by dynamic programming. More details about the solution approach
have been given in Christiansen 1996.

Instead of generating columns iteratively, generating good columns for
set partitioning model a priori is another solution approach for ship routing
problem. A good heuristic or exact method for getting promising columns
before solving the set partitioning model is important for getting good quality
solutions within a short solving time. Bronmo et al. 2006 present a set
partitioning approach to solving the multi-ship routing with time windows
and flexible cargo sizes. The columns in the model are generated a priori
and the best ship schedules are chosen by solving the model. Fagerholt
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and Christiansen 2000a present a bulk ship scheduling problem that is a
combined multi-ship pickup and delivery problem with time windows and
multi-allocation problem. Each ship can be divided into several compartments
of different sizes by using bulkheads. A two-phase set partitioning approach is
presented to solve the problem. In Phase one, feasible schedules are generated
for each ship by a heuristic insertion method, and the optimal visiting
sequence based on the current obtained schedules are found by solving a
Traveling Salesman Problem with Allocation, Time Windows and Precedence
Constraints (TSP-ATWPC). Then in phase two, a set partitioning model is
solved to choose the best sequence from generated sequence candidates. The
method for solving TSP-ATWPC is described in Fagerholt and Christiansen
2000b.

Fagerholt 1999 describes a real liner shipping problem. A three-phase
solution approach is developed in their work. In phase 1, all feasible single
routes are generated for the largest ship available. The route generated in
phase is divided into multiple routes by smaller size ship. Then by solving a
set partitioning problem based on the routes generated in phases 1 and 2, the
optimal solution is found. A ship routing problem with soft time windows is
described in Fagerholt 2001. It is implemented by introducing penalty costs for
when the service is out of the customer time windows. A set partitioning model
is introduced to solve the problem. All the columns are generated a priori. The
physical routes are first enumerated and the detailed schedules with service
information based on the physical routes are found by solving an optimization
problem. Bausch et al. 1998 introduce a short-term marine transport of bulk
products problem. Their columns for the set partitioning model are generated
a priori by a highly detailed simulation inside a spreadsheet.

Many extensions of the ship routing problem and different solution
approaches are also discussed in literature. Xie et al. 2000 propose an integer
programming model combined with dynamic programming improvement
process for the fleet planning problem. In their model, a number of new
ships can be added to the fleet within the planning horizon. An improved
formulation of bulk cargo ship scheduling (stated in Ronen 1986) is given in
Cho and Perakis 2001. They linearize the nonlinear part of the original model
and reformulated the model as a linear integer programming model with fewer
number of integer variables. Fagerholt 2004 presents a total different approach
based on a optimization-based decision support systems (DSS).

There are few references to work on the stochastic inventory routing
problems concerning ships. Christiansen and Fagerholt 2002 is one paper
in the area. It presents robust ship scheduling with multiple time windows.
A more realistic situation of time windows is considered in their model. They
consider that ports are closed for service at night and during weekends, the
wide time windows can be split into multiple time windows. A set partitioning
approach with the columns found a priori is proposed. The method aims to
minimize the chances that ships stay idle in ports during the non-working days.
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A Markov decision process model of the stochastic inventory routing problem
is introduced in Kleywegt et al. 2004, and approximation methods are used to
find acceptable solutions. Azaron and Kianfar 2003 apply stochastic dynamic
programming to find the dynamic shortest path from the source node to the
sink node in stochastic dynamic networks. This is another work involved with
a continuous time Markov process.

2.4 Methods for Solving Shortest Path

Problem with Time Windows

As discussed above, in the column generation decomposition approach and
the Lagrangian relaxation decomposition approach for both vehicle routing
and ship routing problem, the subproblems are usually formulated as shortest
path problems with time windows. Therefore, finding efficient methods to
solve the SPPTW quickly has gained a lot of attention in literature.

The SPPTW consists of finding the least cost route between a source o
and a sink d in a network G = (N,A). Each node i ∈ N associated time
window [Ai, Bi], and the node has to be visited with its time window. There
is a cost C̄ij and a strictly positive duration (or traveling time) Tij for each
arc (i, j) ∈ A. Clearly, all arcs (i, j) respect the condition:

Ai + Tij ≤ Bj (2.43)

Suppose variable xij is a binary flow variable which is 1 if the arc (i, j) is
in the shortest path and 0 otherwise. ti is a time variable which represents
the start service time at node i. The SPPTW can be formulated as following
optimization model:
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min
∑

(i,j)∈A

C̄ijxij (2.44)

s.t.
∑

j∈N\{o,d}

xoj = 1 (2.45)

∑
i∈N\{o,d}

xid = 1 (2.46)

∑
j∈N\{o,d}

xij −
∑

j∈N\{o,d}

xji = 0 ∀i ∈ N \ {o, d} (2.47)

xij(ti + Tij − tj) ≤ 0 ∀(i, j) ∈ A (2.48)

Ai ≤ ti ≤ Bi ∀i ∈ {o, d} (2.49)

Ai(
∑

j:(i,j)∈A

xij) ≤ ti ≤ Bi(
∑

j:(i,j)∈A

xij) ∀i ∈ N \ {o, d} (2.50)

xij ∈ {0, 1} ∀(i, j) ∈ A (2.51)

According to Desrochers and Soumis 1988a, the positive duration and
time windows guarantee the finite number of feasible paths, but they do not
guarantee the feasible paths will be elementary. Then, with each path xoj

from the origin o to the node j satisfying time windows, is associated a (time,
cost) label corresponding to the arrival time at node j and the cost of the
path xoj, respectively. Denote (T k

i , Ck
i ) as the kth path from o to i. The labels

(T k
i , Ck

i ) can be calculated iteratively along the path xpj = (i(0), i(1), ..., i(L))
as follows:

Ti(0) = 0 (2.52)

Ci(0) = 0 (2.53)

Ti(l) = max{aa(i), Ti(l−1) + di(l−1)i(l)} (2.54)

Ci(l) = Ci(l−1) + C̄i(l−1)i(l) (2.55)

Based on the above concepts, Desrochers and Soumis 1988a have presented
an efficient generalized permanent labeling algorithm for the SPPTW. A new
definition of the concept of a generalized bucket was given, and a specific
way for ordering the labels in the set of untreated labels was proposed as
well. The specific order was then used to choose the next untreated labels
to be handled each time. The positive duration of the arcs ensure that it is
impossible to improve a label once it has been treated. With their generalized
permanent labeling algorithms (GPLA), problems with up to 2500 nodes and
250000 arcs have been solved and their algorithm runs in pseudo-polynomial
time. Desrochers and Soumis 1988b have presented a primal and dual re-
optimization algorithm for the SPPTW. The cost of repeatedly solving the
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SPPTW can be reduced by reusing part of the solution of the preceding
problem.

Ioachim et al. 1994 have proposed a dynamic programming algorithm for
the SPPTW with linear node costs. The node costs in their model are specified
as a function of arrival time at each node in the network. This cost function
of a path is piecewise linear and convex over a reduced time window and
contains only a finite number of linear pieces. When updating the node cost
function of each node in the network, suppose that q predecessors to the
node are considered and several piecewise linear cost functions are obtained.
These piecewise linear cost functions may partly dominate each other and
the resulting cost function of the node is a piecewise linear, convex, might
discontinuous and non-increasing function and contains at most q linear pieces.
The algorithm performs better than the approaches of discretization of time
windows, especially for the problems with wide time windows and many nodes
with negative costs.
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Chapter 3

Problem Description

There are four major transportation types in the current transport industry,
namely, inland transport, air transport, pipeline transport and ocean
transport. The inland transport industry is suitable for transporting cargo
within the local area or the mainland of a continent. In a relatively small
region, trucks or other vehicles can transport commodities efficiently and
flexibly, and this procedure is inexpensive. In the mainland of a continent,
trains can handle the transportation of a large amount of commodities cheaply,
although the cost of building a railway may cause increased fees. Air transport
is widely used for international business, and this is much more efficient than
railway or marine transport, although it is not suitable for transporting large
numbers of products because of the expensive charge. As its name suggests,
pipeline transport is commonly used to transport bulk products, such as oil
and liquefied natural gas, since this is suitable for ensuring a continuous supply
of these products. However, in most cases, the supply countries are far away
from the consumer countries. For example, it is not feasible to provide oil from
Middle East countries to the United State via a pipeline, since it would be
very expensive to build and maintain such a pipeline. Thus, in the operation
of transporting huge amounts of products between international destinations,
marine transport has a particular advantages compared to other transporting
methods, it is cheap, flexible and has a huge capacity, and it is especially
suitable for bulk commodities.

The model in this thesis is designed for the problem of transporting a single
commodity. A good example which is distributed in a dedicated transport
fleet is liquefied natural gas (LNG). Natural gas is liquefied in a continuously
operating refrigeration plant, and the resulting LNG is fed into storage tanks.
LNG is transported from these storage tanks by ship. The ships deliver the
LNG to storage tanks near the consumer, and the LNG from these tanks is
fed into a re-gassification plant to meet consumer demand for gas. This thesis
focuses on general single bulk commodity shipping and storage operations, but
not on any specified bulk product. However, after making necessary changes
or assumptions, our model and solution approach can also be used for the
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Figure 3.1: Transportation network

problem dealing with specified products.
The remainder of the chapter is devoted to giving some basic concepts

of the model to help to understand the background of the problem.
Transportation network is shown in Section 3.1, and Section 3.2 presents the
objects of the problem. Detailed information about ships, demand, supply,
schedule and storage are introduced in Section 3.3 – 3.6. The deterministic
and stochastic versions of the model are compared in Section 3.7. Section
3.8 introduces the planning period, how to deal with end-of-horizon of the
period, scenario tree, and the relationships among them, and the repeated
deterministic method based on scenario tree is described in Section 3.9.
Section 3.10 introduces the concept of the port visit.

3.1 Transportation Network

The ship routing problem normally contains a transportation network,
including a set of ports (denoted by N) and a set of edges linked with
different ports (denoted by E). There are two different types of ports in
the network, namely consumer ports and supplier ports, and there is a finite
storage capacity at each port. Each edge of the network is associated with a
traveling time and a traveling cost (primarily a function of distance).

Figure 3.1 illustrates an example of a transportation network. There are
four ports in the network, and ports A and C are suppliers, while ports B
and D are consumers. A fleet of ships are sailing between the ports, loading
at the supplier ports and discharging at the consumer ports. At each port,
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there is a limited capacity tank to store the bulk product.
In the real situation, ships may not sail in a straight line between two

ports. However in some later sections, we assume that ships sail in a straight
line to simplify the problem. But our model does not require that ships must
sail in a straight line. Without this assumption our model will still be valid.

3.2 Objects of the Problem

In the ship routing with inventory management problem, a heterogeneous
fleet of ships is given for the planning period. The problem is to find the least
cost schedules for the ships, which can also satisfy the supply and demand
constraints. There are two main aspects of the problem. One is the need to
manage the inventory levels at all times so as to keep the stock level within a
suitable interval, not exceeding the upper limit of each stock, or going below
the lowest allowed level at each port. The other aspect is the need to minimize
the total traveling cost.

Different models may have different objectives for different purposes.
Some models consider buying and selling products, as well as deciding ships’
schedules, and the objective is to maximize the total profits (income minus
operating costs). In other models, the schedule is designed for rolling periods,
and ships are required to finish their transport tasks as early as possible.
Hence the objective is to minimize the traveling cost as well as to minimize
the finishing service time. The models introduced in later chapters of the
thesis have the objective of minimizing the total traveling cost.

3.3 Ships

A fleet of ships is considered in the model, and each ship is allocated an optimal
schedule after solving the problem. In the ocean transportation industry,
each ship can be characterized by capacity, voyage cost and speed. In a
realistic operation, a shipping company may own many ships of different sizes
and speeds. Furthermore, the number of crew on each ship is also different
from one ship to another so that the operating costs are varied among ships.
However, it is assumed that each ship in this model has the same capacity,
speed and traveling costs so as to simplify the problem. However, this is not
a limitation of our model. In fact our model can handle the situation that the
vessels are different from each other by using specified data.

The ships used for specified purposes have their own special characteristics.
For example, LNG ships are normally special purpose vessels which are
designed to move natural gas between continents in its liquid state. The LNG
is stored in a special containment system within the inner hull, where it is kept
at atmospheric pressure and cryogenic temperature, so as to keep the natural
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gas in a liquid state. Keeping the pressure and temperature is expensive so
that LNG ships cannot be fully empty when they arrive in the consumer port.
A certain amount of LNG needs to be kept on board the ship otherwise it
needs to be cooled down again, which is very expensive. This thesis will not
deal with such specific LNG shipping issues, but only deals with the general
characterisitcs of bulk transporting ships. However, the special characteristics
for ships with specified purposes can be dealt with by giving extensions to the
model built in the thesis by some necessary changes to the model.

3.4 Demand and Supply

Two of the most important factors involved in the model are the demand and
supply rates. In the consumer port, the commodity is unloaded from ships
and injected into storage, and it is taken out of storage continuously according
to the demand. In the supplier port, the commodity is injected into storage
after production, and loaded onto ships during the service. These two factors
are very unpredictable in the real world. The rate of demand depends upon
selling prices, market requirements, the global economic situation, and so on,
while the rate of supply depends upon production rates, the market, and
even politics. In order to handle the uncertainties of the demand and supply
rate, the problem is needed to be built and solved by stochastic programming
models. In the stochastic model presented in this thesis, the supply rate is
assumed to be deterministic and the demand rate is the only uncertainty in
the problem.

3.5 Ship Schedules

A ship’s schedule will be specified by the route it follows, the ports it visits,
the loading or unloading quantity at each port, and the start time of loading
or unloading (which we refer to as service). Two schedules having the same
physical visiting sequence but different service times or loading quantities, are
regarded as being two different schedules. Only when they have the same
physical routes, service times and loading quantities, are the two schedules
regarded as being the same. Our model in the thesis is used to generate the
physical visiting route of each ship and to decide the start service time, and
the quantity loaded or discharged at each port of call. The structure of ship
schedules for deterministic and stochastic model are different, and we discuss
this later in Section 3.7.

32



T2T1Smin

Smax

Smax

Smin

Customer stock level

Ship 1 stock level

Ship 2 stock level

Supplier stock level

time

time

time

time

load

sail

unload

sail
load

sail

load

sail
unload

sail

Customer

Ship 1

Ship 2

Supplier

unload
ship2

load
ship 1 

load
ship 2

load
ship 1 

unload
ship 1

sail

sail

Figure 3.2: A small example of storage level

3.6 Storage

The inventories are considered at both consumer and supplier ports. The stock
level of the consumer port storage goes down over time because the commodity
is taken out of storage continuously as demand, unless a ship arrives and a
further amount of the product is injected into the storage from the ship. The
situation of the supplier port is just the opposite, and the stock level goes up
because of the production rate and goes down if an amount of the commodity
is loaded onto a ship.

The stock level needs to be recorded at the start and end of each service so
as to be monitored during the planning period. Since the capacity for storage
is finite, it has upper and lower bounds. The stock level of storage should
be between the upper bound and lower bound all the time. The lower bound
may not be 0. This is because that at a consumer port, it is usually a positive
value in order to keep a safety level in each storage facility and avoid running
out of stock.

The rates of change in storage levels are closely related to the demand or
supply rate, and the ship’s loading or unloading services. A simple example
of two ships traveling between two ports, a supplier and a consumer, is
shown in figure 3.2. This example illustrates the changes of stock level,
the relationship between storage levels and ship services, and the amount
of commodity changes on board the ships.
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In our model we assume that within a time period, the rate of production
and the rate of consumption are constant, and also the rate of transfer from
storage onto a ship at a supplier port and the rate of transfer from a ship to
storage at a consumer port are constant. But they can be different in different
scenario node of the scenario tree. Consequently all the changes of level occur
at a constant rate and so the level in the inventory is a continuous piecewise
linear function of time. This behaviour can be seen in the example in Figure
3.2. It follows that if the storage levels lie within their bounds at the start
and end of loading or unloading then they must be within their bounds at all
times.

In Figure 3.2 ship 1 sails to the supplier port at the beginning of the
planning period, and it loads a certain amount of product at time T1, so that
the storage level of the supplier goes down because of the loading service, while
the amount on board the ship goes up. Then ship 1 sails to the consumer port,
and arrives at time T2, before which time the stock level of the consumer port
has gone down continuously over time because of the demand. Then it goes up
because an amount of the product is unloaded from ship 1 during the service.
At the same time, ship 2 arrives at the supplier after the service made by
ship 1, and makes the second loading at the supplier port, after which it sails
to the consumer and unloads half of the amount on board before sailing to
another port. In larger examples, there are more ships and ports involved, so
that the stock situation at each port is more complex than that shown in this
example.

3.7 Deterministic and Stochastic Model

In realistic ocean shipping operations, much of the data needed for planning
is uncertain. Because of this, deterministic models for ship routing and
scheduling are sometimes inappropriate, and there is a need to develop
stochastic model to deal with the uncertainties involved in the problem.

Stochastic programming is a good way to model optimization problems
involving uncertainties. Whereas deterministic optimization problems
are formulated with known parameters, there are always some unknown
parameters in real world problems. Stochastic programming models take
advantage of the probability distributions of uncertain data, and the goal is
to find a policy which is feasible for the problem and optimize the expectation
of some function of the decisions and the random variables.

The model introduced in the thesis deals with the situation when the rate
of demand is the only uncertainty. A multi-period stochastic programming
model is formulated and solved using both mixed integer programming and a
decomposition approach. The case where demand varies between periods but
is constant within a scenario tree node is illustrated in the right hand side
of Figure 3.3 (This is the situation assumed), and the left-hand side of the
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figure describes the demand situation of the deterministic model. The model
manages the inventory levels at the ports and it must do this in such a way
that there is no forced interruption of production (due to storage being full)
and no interruption of supply to consumers (due to storage being empty).

As shown in Figure 3.3, a scenario tree is introduced for the stochastic
model to represent the demand situations in each period. In a period, there
are several demand situations with different probabilities. It is not known
what will happen in the future until the beginning of the period, while, in the
deterministic version, the demand information is known at the very beginning
and a decision can be made according to this known information. Therefore,
the solution of the deterministic version is a route for each ship, while the
solution of the stochastic version is a tree of routes for each ship, which has
the same structure as the scenario tree. Figure 3.4 provides examples of the
ship routes in both the deterministic and stochastic model. In the stochastic
problem, index k is used to denote the index of a node in the scenario tree
and this index is used in the models throughout the thesis.
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3.8 Planning period and scenario tree

In this section we introduce the planning period, how to deal with end-of-
horizon of the period, scenario tree, and the relationships among them.

In our model, a whole planning period is defined and there are several
small periods in the whole planning period. For example, the whole planning
period can be defined as three months, and there are three periods in the
planning period, one for each month. At the beginning of each small period,
the demand information is revealed. In our problem, we usually define the
length of a small period as a month, but we can use other length for the
period. If the length of a small period is long, then a ship may visit more
ports with the period. However, the ship does not need to keep sailing within
the period until the end of the period. It can visit several ports and wait at
some port until the next period, or it can sail to some port and arrive at the
port in next period. In our decomposition model, we leave these decisions to
the subproblems. We have a range of arcs in the DP network connected the
ports within a period and the ports in different periods. At the end of the
whole planning period, ships can be in any port. This means that ships can
stop their travel anytime before the end of the horizon of the whole period
and stay in the current port until the end.

In each period of the problem, there are several possible demand situations,
which can be obtained from different sources, such as the historical data, the
forecast from research organization and so on. Each of these situations in a
period is a branch in the scenario tree of the period. For the ship routing
problem, even the deterministic problem is a hard combinatorial problem, so
we cannot use big sized scenario tree with a big number of branches in one
period for the stochastic problem, otherwise the problem will not be solvable.
But our model can be used to solve medium sized problems with reasonable
scenario trees.

For the stochastic model, once new information arrives, we can rerun
the stochastic model to adjust our decisions according to the new arrival
information. Doing this can help us get solutions which can handle realistic
situations better by using the stochastic model. However, this does not mean
that the first decisions are not important since we can change our decisions
later, instead we want to find better first decisions by solving the stochastic
model so that we do not need to change the decisions a lot which may cause
more costs. Therefore, scenario tree used for the stochastic model here should
well predict the future situations. Therefore, in order to get better solutions
by the stochastic model, we can consider shorter planning period with more
branches in each small period and rerun the model from time to time to adjust
the schedules.
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3.9 Repeated Deterministic Method Based on

Scenario Tree

This section introduces a heuristic method which is called the repeated
deterministic method in this thesis. This method can be used to deal with
uncertainties by using deterministic models, and provides a way of comparing
the behavior of deterministic models and stochastic models. If the scenario
tree is a good description of the uncertain situations in a model, this method
gives a reasonable way to measure just how good the deterministic model is.

As stated in Kall and Wallace 1994, the method begins in the root node
of the scenario tree, and solves the deterministic model. Here the mean of
the uncertain parameter is used, and part of the deterministic solution which
corresponds with the first period of the stochastic model is taken. This part of
the solution is the solution of the repeated deterministic method at the start
node of the scenario tree, and after this, the same process is repeated at each
node at the second period of the scenario tree. By considering the decisions
made in the first period, the deterministic model from period 2 onwards is
solved, and part of solution for period 2 is used as the solution of the repeated
deterministic method for each node in the second period. This continues until
arrival at the leaf nodes of the tree.

This method gives a fair comparison between the stochastic model and
the deterministic model. What may be done is a calculation of the difference
between the optimal values of the two models. If this difference is close to
zero, the deterministic model can be used to solve the problem, because the
deterministic model has a smaller problem size and is easier to be solved
compared with the stochastic model. However, an obvious difference would
indicate that it would be better for us to use the stochastic model to solve the
problem.

3.10 Port Visit

In many literatures in the area of transportation research, the port is used
as the state of the model. Another concept, port visit, is used in some other
literature about vehicle or ship routing problems which uses decomposition
formulations. The port visit is a pair (i,m), where i is a port and m is the m-
th visit to port i. For example if a ship is assigned a route P to travel, where
P is A → B → A → C → A → B → C for example, then port A is visited
3 times and ports B and C are visited twice. So route P can be represented
by using a route of port visits, P̄ . P̄ is (A, 1) → (B, 1) → (A, 2) → (C, 1) →
(A, 3) → (B, 2) → (C, 2).

In the stochastic ship routing model, the port visit is defined by triple
(Port i, Visit m, Scenario tree node k). This is used as the major part of the
state of the model, and many objects in the model use the index combination
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Figure 3.5: Example of port visits

(i,m, k), which means the m-th visit to port i in the scenario tree node k. An
example of port visits of port A in a scenario tree is shown in Figure 3.5.

These port visits in each scenario tree node represent the possible visits
to each port, but not all of these port visits need to be made by the ships.
However if a port visit (i,m′, k) is made by a ship, all of the port visits (i,m, k),
where m < m′, also need to be made. Also if a port visit (i,m′, k) is not made
by any ship, then all of the port visits (i,m, k), where m > m′, cannot be
made by any ship either.

In this model, if there are two port visits which refer to the same port i and
in the same scenario tree node k: (i,m1, k) and (i,m2, k), where m1 ≤ m2, the
end service time for (i,m1, k), tEim1k should be no later than the start service
time for (i,m2, k), tSim2k. This corresponds to the fact that there is no overlap
of two consecutive port visits to the same port in the scenario tree node and
the later visit can only happen after the earlier service has finished.
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Chapter 4

Mixed Integer Programming
Model for Stochastic Ship
Routing Problem

This chapter introduces a mixed integer programming (MIP) model for the
stochastic ship routing problem. The only uncertainty involved in the model
is consumer demand. The model can be solved by calling CPLEX in AMPL.
Although the way of building the model is straightforward and easily to be
understood, it is time-consuming to solve the model and it can only deal with
discrete time periods. The model consists of two main parts, namely traveling
control and storage management. The traveling control part of the model
is introduced in Section 4.1 based on a deterministic situation. Section 4.2
gives the detail of the mathematical formulation of the stochastic MIP model
and the computational results are shown in Section 4.3. In the section we
introduce two objectives, one includes buying and selling product and the
other one only deals with traveling costs. Section 4.4 presents a summary and
further discussion.

4.1 Traveling Control Constraints

A key factor involved in the routing problem is finding the optimal traveling
routes, and thus, the traveling control (or called generation) part is contained
in almost all optimization models which deal with the routing problem.
Some models use the decomposition formulations and generate routes in the
subproblems, while other models use integer variables to decide the route for
each vehicle.

We introduce the traveling control constraints in this section, and discuss
all of the other constraints in later sections. In the MIP model, the integer
variables are used to control the traveling routes of each ship. The traveling
control constraints are introduced for the deterministic case here firstly,
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Figure 4.1: Traveling Control Balance Equation

because they may be easily understood, then the constraints are extended
to the stochastic version.

In order to build the constraints, two binary variables δijtv and pitv are
introduced as the ship routing control variables. δijtv, which is used as a
direction indicator in the model, is 1 if ship v, at the beginning of time period
t, sails along the link from port i to port j and 0 otherwise. And pitv, which is
used as the ship position indicator, is 1 if ship v in time period t stays in port
i and 0 otherwise. The value of these two variables indicates the traveling
status and position of a ship, either sailing between two ports or staying in a
port.

The basic idea of the traveling control constraints is that, given the initial
condition of each ship, the traveling balance equations are used to decide the
status of each ship in each period. A detailed formulation of the constraints
is given as follows:

pitv =
∑
j∈N

δj,i,t−Ljiv,v + pi,t−1,v −
∑
j∈N

δijtv i ∈ N, t ∈ T, v ∈ V (4.1)

pi0v = P initial
iv i ∈ N, v ∈ V (4.2)∑

(i,j)∈E

δijtv ≤ 1 t ∈ T, v ∈ V (4.3)

In above constraints, Ljiv is the traveling time between port j and i for ship
v. P initial

iv is the parameter showing the initial situation at port i for ship v.
If ship v stays at port i at the beginning of period 1, P initial

iv is 1, and for
any port j (j 6= i) P initial

jv is 0. Constraint 4.1 is the ship traveling balance
equation. The value of the ship position variable in time period t, pitv, equals
the value of the variable at the same port i in time period t − 1, pi,t−1,v, plus
all of the δ variables entering the port at the beginning of time period t−Ljiv
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and minus all of the δ variables out of the port at the beginning of time period
t. This constraint can also be represented in Figure 4.1. The constraint can
also be explained in a network flow way, which is the reason the constraint is
called traveling balance equation. Clearly shown in the figure, the amount of
flow staying at node A at time t equals the amount of flow at the same node
at time t−1 plus the amount of flow entering the node and minus the amount
of flow out of the node in the current time period.

Constraint 4.2 initialize the position of each ship at the beginning of period
1, and constraint 4.3 ensures that only one direction can be chosen when a
ship leaves a port. Furthermore,

∑
(i,j)∈E δijtv = 0 means that ship v will stay

at the same port in time period t.
In order to understand the constraints more clearly, a small example is

considered (See Figure 4.2). There are three time periods and three ports in
the example, and a ship route is considered to be: a → b → c as shown in
Figure 4.2. The ship initially stays at port a in period 0, and it sets out from
a to b at the beginning of period 1. It takes the ship a period to arrive at
port b, and it stays at port b during period 2, then it sails from b to c at the
beginning of period 3 and arrives at port c at the end of the period. The
values of variable pitv and δijtv at each time period are shown in Table 4.1 and
4.2 respectively.

Pitv i = a i = b i = c
t = 0 1 0 0
t = 1 0 0 0
t = 2 0 1 0
t = 3 0 0 0

Table 4.1: Example of variable pitv

δijtv a → b b → c
t = 0 0 0
t = 1 1 0
t = 2 0 0
t = 3 0 1

Table 4.2: Example of variable δitv

From the information in the tables, at time 0, ship v is at its initial position,
port a, so we have pa0v = 1 and other pi0v = 0 (i 6= a). In period 1, ship v is
sailing from port a to b, so δab1v = 1. Since ship v is sailing between two ports
in period 1, and it is not at any port, pi1v = 0. In period 2, the ship stays at
port b, so pb2v = 1 with all δij2v = 0. Now the constraint 4.1 can be shown as
following:
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Situation pitv =
∑

j∈N δj,i,t−Ljiv,v + pi,t−1,v −
∑

j∈N δijtv

t = 1, i = a 0 = 0 + 1 − 1
t = 2, i = b 1 = 1 + 0 − 0
t = 3, i = b 0 = 0 + 1 − 1

Table 4.3: Example of traveling balance equations

a b c

1

1 1

t=0 t=1 t=2 t=3

Figure 4.2: Traveling Control Equation Example

In Table 4.3, at the beginning of period 1, for example, ship v sets out from
port a and sails to b. Thus pa1v = 0 in the case that the ship spends the whole
period sailing. The item of

∑
j∈{a,b,c} δja0v is 0 because the ship does not visit

any port before port a. The initial position of the ship is at port a so that
we have pa0v = 1, and

∑
j∈N δaj1v = δab1v = 1 since the ship sails from

a to b in period 1. Similar results can be obtained for the other situations
in the above table and, in Section 4.2, these traveling control constraints are
extended to the stochastic version of the model.

4.2 Mathematical Formulation of the MIP

Model

This section describes the MIP formulation of the stochastic ship routing
problem. First we introduce the sets and indices used in the model in Section
4.2.1. Parameters and variables are given in Section 4.2.2 and 4.2.3. The
stochastic version of traveling control constraints and inventory management
constraints are shown in Section 4.2.4, and Section 4.2.5 presents the objective
function.

4.2.1 Sets and Indices

Let N be the set of physical ports indexed by i. There are three types of ports
in the network, the consumer ports NC , the supplier ports NS and the dummy
start port i0. Hence there is N = NC

∪
NS

∪
{i0}. At the beginning of
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Figure 4.3: Index of Scenario Tree

the planning period, a ship can be anywhere, either a port or somewhere at
sea. The information of the position of each ship is known before solving the
problem. If a ship starts from a position at sea rather than a physical port
i ∈ NC

∪
NS, it is supposed that the dummy port i0 is the start port of

the ship. Set E represents all of the possible links between the ports in the
network. (i, j) ∈ E refers to a link from port i to port j in the network. Let
V be the set of ships used in the problem indexed by v.

Since this is a stochastic problem, it is formulated based on a scenario
tree. And there are several scenario tree nodes in each time period. Let T ,
indexed by t be the set of time period and Kt be the set of scenario tree nodes
related to time period t. Each node in the tree can now be denoted by (t, a),
which means the a-th node in time period t. This is shown in the first figure
of Figure 4.3 as an example. Suppose that the number of possible events at
node (t, n) is the same for all events at period t and is equal to Z(t). Node
ā(t, n) is the parent node of node (t, n) in period t − 1. Then for node (t, n)
in the tree, the corresponding parent node can be found, as well as the child
node by using the following formulation:

ā(t, n) = d n

Z(t − 1)
e (4.4)

For the sake of simplicity, the above indices are not used in the model for the
scenario tree nodes. Rather K is the set of nodes in the scenario tree and
k ∈ K is used to denote the index of a node in the scenario tree, as mentioned
in Section 3.7. Furthermore, parameter a(k, t) is used to represent the parent
node of node k t time period ago in the tree. Taking the right-hand side figure
in 4.3 as an example, the values of a(k, t) are represented in table 4.4.
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k 1 2 3 4 5 6 7
a(k, 1) – 1 1 2 2 3 3
a(k, 2) – – – 1 1 1 1

Table 4.4: Example of a(k, t)

4.2.2 Parameters

Parameter P initial
iv indicates the initial position of ship v. If ship v stays at

port i at the beginning of planning period, P initial
iv = 1 and P initial

jv = 0 for
all j ∈ N and j 6= i. If ship v starts from a position in the sea, P initial

i0v = 1
and P initial

iv = 0 ∀i ∈ NC
∪

NS. The traveling cost for any ship along a link
(i, j) is given by the parameter Ctravel

ij . The parameter Lship
ijv represents the

traveling time for ship v sailing along arc (i, j). The capacity of each ship is
given by Gship

v .
When a ship arrives at a supplier port, it loads an amount of the product

from the storage of the port, and when it arrives at a consumer port, an
amount of the product is discharged from the ship. The loading limit in port
i is the parameter Eload

i . There is a storage space at each port with the upper
limit S̄i and lower limit Si.

In the supplier ports, an amount of the product is injected into the storage
as a supply in each time period, and the parameter Rsupply

i is taken as the
fixed rate of injection at supplier i. In the consumer port, an amount of
the product is taken out of storage as demand. Dik is used to denote the
demand at consumer port i at scenario tree node k. Once the demand for a
consumer port cannot be satisfied, an amount of gas would be bought from
other resource at a higher price. Here the parameter Cpenalty gives the unit
purchase price from other resources when there is no sufficient supply. Since
the price from other resources would be much higher, this cost can be regarded
as a penalty cost for failing to give enough supply. For each port storage, there
is an initial stock level, S0

i , at the beginning of the planning period.
As discussed in section 4.2.1, parameter a(k, t) is taken to represent the

parent node, t time periods ago, of node k in the tree. This parameter
gives the structure of the scenario tree. Parameter Pk denotes the cumulative
probability associated with scenario node k.

4.2.3 Variables

Three types of variables are used in the formulation, namely, the ship routing
control variables, the on board monitor variables and the storage monitor
variables.

The binary variable δijvk is 1 if ship v at the beginning of the period
which includes scenario tree node k sails along the link from port i to port
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j and 0 otherwise. The binary variable pikv, the ship position variable, is
1 if ship v in scenario tree node k stays at port i and 0 otherwise. These
two binary variables, named ship routing control variables, indicate the status
and position of a ship in each scenario tree node. Note that in the stochastic
problem, the index of time period t is substituted by scenario tree node k.

The amount of product loaded or discharged at port i from ship v at the
scenario tree node k is given by the variable qivk. The amount of the product
on board ship v at node k is monitored by the variable gvk. These two variables
give the information of the changes of the amount on board and the current
amount on board. This can ensure that the amount on board does not exceed
the ship’s capacity and that the loading or unloading amount does not exceed
the availability on board by using the variables, so called the on board monitor
variables.

The third type of variables is called storage monitor variables. The variable
hik represents the amount of the product in storage at port i in node k. The
amount of product taken out of storage as demand at consumer node i in
scenario tree node k is denoted by zik. This variable does not need to be
equal to the demand at each scenario tree node, because the product can be
obtained from other resources at a higher price. Moreover, the variable bik is
the amount of gas bought from other resources at port i in scenario tree node
k when there is an insufficient supply. This variable can keep the problem
feasible in each demand scenario node of the scenario tree.

4.2.4 Constraints

The traveling control constraints for the deterministic situation is discussed
in Section 4.1. Here the traveling control constraints are firstly presented for
the stochastic model as constraints 4.5 – 4.7.

pikv =
∑
j∈N

δj,i,a(k,Lship
jiv ),v + pia(k,1)v −

∑
j∈N

δijkv, i ∈ N, k ∈ K, v ∈ V(4.5)

pi0v = P initial
iv , i ∈ N, v ∈ V (4.6)∑

(i,j)∈E

δijkv ≤ 1, k ∈ K, v ∈ V (4.7)

In constraints 4.5 and 4.7, index k is taken as the scenario tree node, instead
of index t, the time period, in constraints 4.1 and 4.3. According to the tree
structure of the problem, the previous nodes of node k in the same scenario can
be found by parameter a(k, T ). Assuming that ship v sails from port j to port
i and arrives at port i in scenario tree node k. Because Lship

jiv is the traveling
time along link (j, i) by ship v, ship v has to set out from port j and sail to
port i Lship

jiv time periods ago so that it can arrive at port i at scenario node k,
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and the corresponding parent node of the scenario node k, Lship
jiv periods ago,

is node a(k, Lship
jiv ). Therefore, if ship v sets out from j and sails to i in node

a(k, Lship
jiv ), variable δj,i,v,a(k,Ljiv) is 1 and δj,i,v,a(k,t) (∀t = {1, 2, ..., Ljiv − 1})

is 0. Constraints 4.6 and 4.7 are almost the same as the constraints in the
deterministic situation except for the index k in constraint 4.7.

Now the storage management constraints are introduced. There are
two main things of interest in terms of storage management, namely the
monitoring of the stock level of the storage at each port and the monitoring of
the amount of product left on board the ships over time periods. The storage
balance equation and initial storage value at consumer ports are given below:

hik = hi,a(k,1) +
∑
v∈V

qivk − zik, i ∈ NC , k ∈ K (4.8)

hi,0 = S0
i , i ∈ NC (4.9)

Constraint 4.8 describes the stock situation at each consumer port. The stock
level at port i in node k is the stock level at the same port in the parent node
of k in the previous period, a(k, 1), plus the amount of commodity unloaded
from each ship,

∑
v qivk, and minus the amount of demand taken out of storage

in node k, zik. Constraint 4.9 gives the initial storage level at each consumer
port, and similar storage balance equations and initial condition constraints
for supplier ports are given in Constraint 4.10 and 4.11:

hik = hi,a(k,1) + Rsupply
i −

∑
v∈V

qivk, i ∈ NS, k ∈ K (4.10)

hi,0 = S0
i , i ∈ NS (4.11)

Constraint 4.10 is slightly different from constraint 4.8. The stock level at
supply port i in node k is the stock level at the same port in the parent
node k of the previous period, plus the amount of product injected into the
storage in current node, and minus the amount loaded onto the ships. Clearly,
the stock levels at any time for both consumer and supplier ports should not
exceed the maximum capacity of the storage or be below the lower bound of
the storage. This can be shown in the capacity constraints of storage:

Si ≤ hik ≤ S̄i i ∈ N, k ∈ K (4.12)

Then the amount of commodity taken out of storage at port i in node k,
zik, can be calculated by the demand constraint 4.13:
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zik + bik = Dik, i ∈ NC , k ∈ K (4.13)

Constraint 4.13 indicates that the consumer demand in the model can be
satisfied by two resources: from storage and from another resource at a higher
cost. Since it is possible, in some situations, that the consumer demand cannot
be satisfied by a ship transport operation, the stock level will then break the
lower bound of the storage. In this case, the product can be bought from
another resource so as to meet the demand requirement and keep the stock
level beyond the lower bound of the storage. However, a higher cost will be
incurred by doing this, since there will be a penalty price for insufficient supply
in the objective function.

Next, constraints to monitor the product level on board the ships are
introduced. The only way each ship can get products is loading them from
the supplier ports. The amount loaded by ship v from the supplier ports
in node k can easily be calculated by

∑
i∈NS qivk, and the amount on board

ship v is decreased when the ship arrives at a consumer port and discharges
an amount of the product in the port storage. The amount discharged at
consumer ports in node k can be calculated by

∑
i∈NC qivk. Therefore, the

balance equation of amount on board each ship is shown in 4.14

gvk = gv,a(k,1) +
∑
i∈NS

qivk −
∑
i∈NC

qivk v ∈ V, k ∈ K (4.14)

The other two constraints 4.15 and 4.16 of the model are given as follows:

gvk ≤ Gship
v v ∈ V, k ∈ K (4.15)

qivk ≤ Gship
v pivk v ∈ V, k ∈ K, i ∈ N (4.16)

Constraint 4.15 shows that, at any time, the amount on board a ship cannot
exceed the capacity of the ship, and constraint 4.16 indicates that a ship can
only be loaded or unloaded when the ship arrives at a port, and the loading
or unloading quantity cannot exceed the capacity of the ship.

4.2.5 Objective Function

The objective function of the MIP model used here is to minimize the total
traveling costs, shown as below.

min
∑
k∈K

Pk(
∑
v∈V

∑
(i,j)∈E

Ctravel
ij δijvk +

∑
i∈NC

Cpenaltybik) (4.17)
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Then constraints 4.5 – 4.16 and objective 4.17 together formulate the MIP
stochastic ship routing model, and by substituting the index k to index t, the
stochastic model can be transferred to the deterministic model.

4.3 Computational Results

In this chapter, the ship routing problem is formulated as an MIP model.
In order to test both deterministic and stochastic models built here, a set of
test examples are generated. The models were written in AMPL and solved
directly by calling the commercial optimization software package CPLEX 10.0.
The geographical positions of the ports were randomly generated and the
distances between the ports were calculated a priori. The traveling costs and
time are roughly in proportion to the distances, but only the integer value
is taken for these parameters. Since there are difficulties involved in solving
the integer programming problem, the problem can only be solved for smaller
sized examples in this thesis.

Ex. Ports Ships Periods CPU time B&B Nodes MIP iters
mipd1 5 3 11 1.3 932 12256
mipd2 5 4 11 25.7 26022 309591
mipd3 5 3 12 52.9 65016 606094
mipd4 5 4 12 6167.4 4372425 41778444
mipd5 6 4 11 1476.5 746557 7744434
mipd6 6 4 12 25278.5 18385655 163104917

Table 4.5: Deterministic Example Results (MIP)

Table 4.5 shows characteristics of the problem and the solutions for
the deterministic models. The ‘Ports’ column shows the number of ports
considered in each example, some of which are consumer ports, and others
are supply ports. The ‘Ships’ column shows the number of ships involved in
the examples, and the number of periods is shown in the ‘Periods’ column.
Since this MIP model can only handle the discrete time, these periods are
the smallest time unit in the model. For example, the traveling time between
two ports is two periods, and a ship stays in a port for a period, and so
on. The ‘CPU time’ column gives the solving seconds to obtain the optimal
solution, and the ‘B&B Nodes’ and ‘MIP iters’ columns show the number
of branch-and-bound nodes in the branch-and-bound tree for searching the
integer solution and the number of MIP simplex iterations used respectively.

Table 4.6 shows the examples used for the stochastic models. The numbers
given in the ‘Periods’ column are similar to those given in table 4.5. The ‘Scen.
nodes’ column shows the number of scenario tree nodes in each example, and
within each scenario tree node, small time slots are again used in the model
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Ex. Ports Ships Scen. nodes Periods CPU time B&B Nodes MIP iters
mips1 5 2 3 16 8 4184 115981
mips2 5 2 3 16 1251.2 351682 16517968
mips3a 5 2 3 16 248.7 125114 4451257
mips4 5 2 7 24 150000b 4291924 379366387
mips5 5 2 7 24 108086 4876345 353237817
mips6a 5 2 7 24 86708.9 3923915 2799088058
mips7 6 2 7 24 138260 3421307 387788785
mips8 6 2 7 24 95943.7 4344379 283635043
mips9a 6 2 7 24 122798 3217502 301691099
a

Ex mips1-3, mips4-6 and mips7-9 have the same network but different initial storage and demand rates
b Solving time reaches the upper limit, problem is not solved to optimal

Table 4.6: Stochastic Example Results (MIP)

so that a new scenario tree needs to be built for solving the stochastic model.
Both the number of scenario tree nodes and the number of periods are used
to build the structure of the scenario tree. An example of the scenario tree
for example mips5 is illustrated in Figure 4.4.

1 2 4 5 6 83 7

9 10 1411 12 15 1613

17 18 19 20 21 22 23 24

26

33 37 38

25 27 28 29 30 31 32

34 35 36 39 40

44

52

41 42 43 45 46 47 48

49 50 51 53 54 55 56

Period 1 Period 2 Period 3

Node 1

Node 2

Node 3

Node 7

Node 6

Node 5

Node 4

Figure 4.4: Index of Scenario Tree

The figure shows seven scenario tree nodes in the tree, which indicate
different demand situations. Within each scenario tree node, the time period
is divided into 8 small time slots, each of which is associated with a node in
the new scenario tree so that there are 8 nodes within a big scenario tree node.
Therefore, there are 7 big parts in the scenario tree and each part contains
8 nodes. In the example, there are 56 nodes in the tree in total. Based on
the scenario tree of the figure, the parameter a(k, T ) can be specified, which
describes the structure of the scenario tree for the example.

In table 4.6, examples mips1–mips3, mips4–mips6 and mips7–mips9 have
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the same physical ports layout and scenario tree structure, but different initial
inventory levels and demand rates at each port. It can be seen from the results
in both tables that it is very time-consuming to solve either deterministic or
stochastic ship routing problems by using the MIP formulation. For instance,
it takes 138260 seconds (about 38 hours) to solve example mips7 to optimal.
Example mips4 reaches the upper limit of the solving time, since it is not
solved to optimal. According to computational experience, the solving time
increases sharply when the number of ports, number of ships, and size of the
scenario tree is increased. Even if only the initial storage levels or demand
rates for the same problem were changed, the problem would become harder
and take much more time to be solved.

4.4 Summary and Discussions

This chapter introduced an MIP formulation for the stochastic ship routing
problem. The model is divided into two parts, traveling control part and
inventory monitoring. Two integer variables, pikv and δijkv are used in the
traveling control constraints to decide the ship’s position and status. A set of
continuous variables is used in the inventory monitoring constraints to record
the stock level at each port, the transfer amount either from supplier to ship
or from ship to consumer, and the amount of product on board each ship.

In order to test both deterministic and stochastic models, a group of
examples were created, and these differed from one another in terms of the
number of ports, the number of ships, scenario tree structures, initial stock
levels and demand rate situations. All of these examples were written in
AMPL and solved by calling CPLEX 10.0. CPU seconds are reported, as well
as the number of branch-and-bound nodes and the number of MIP simplex
iterations for solving these examples. The ship routing problem with inventory
management problem is a difficult combinatorial problem, and it is quite time-
consuming to solve the problem using the MIP formulation, although it is very
straightforward and easy to understand if the problem itself is built in the way
of MIP formulation. Thus the decomposition formulation will be built and a
solving algorithm for the stochastic ship routing problem will be presented in
Chapter 5 in order to solve a relatively large size problem within a reasonable
time.
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Chapter 5

Decomposition Formulation for
Stochastic Ship Routing
Problem

5.1 Introduction

This chapter introduces a decomposition formulation of the stochastic ship
routing problem, which is solved by column generation method, and the
optimal integer solution is found by branch-and-bound algorithm. Compared
with the MIP model introduced in Chapter 4, which is straightforward but
time consuming to solve, the model in this chapter is divided into a master
problem and several subproblems, and can be used to solve relatively big size
examples within reasonable time.

For the stochastic ship routing problem, a scenario tree is introduced
to represent the demand situation in each time period. The solution of
the problem is a tree of routes with start service time and quantity loaded
information at each visited port for each ship. In the rest of the chapter, index
k is used to indicate the scenario tree node. Each port i in a scenario tree
node k is divided into several visits, for example, (i,m, k) is the m-th visit to
port i in the scenario tree node k. So port visit (i,m, k) is used as the state
of the model instead of physical port i. Many variables and parameters in the
model use the index (i,m, k). The integer solution of the model is searched
along a branch-and-bound tree, and in each branch-and-bound tree node, a
relaxed LP problem is solved by solving a restricted master problem and a
set of subproblems iteratively, and this is called column generation method.
The master problem is solved to find the best ship schedules based on the
current set of generated schedules and provide dual variable information to
update the subproblems. The subproblems, one for each ship, are formulated
as Stochastic Dynamic Programming (SDP) problem with time windows to
generate the most promising tree of routes for the master problem.
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In later sections, some assumptions are made for the model in Section
5.2 and the overall solution framework is given, including branch-and-bound
algorithm and column generation process in Section 5.3. Details of master
problem is shown in Section 5.4 and reduced cost formulation is given in
Section 5.5. Section 5.6 and 5.7 present the DP formulation of the subproblem
and the corresponding DP network. Set labeling method for solving the
subproblem is introduced in Section 5.9. A discussion of cycle elimination is
in Section 5.10. Then the branch-and-bound strategy is presented in Section
5.11 and the computational results in Section 5.12. A brief conclusion and
remarks are given in Section 5.13.

5.2 Assumptions

The ocean transportation problem is so complex that it is impossible to
consider every factor in the real world when modeling the problem. To
simplify the problem, the following assumptions are made before introducing
the detailed model. Some of these assumptions are used here to simplify the
problem, but they are not the restrictions to our model. Our model is able to
deal with the situations without these assumptions. But other assumptions
may be necessary to build the model.

• At each consumer port, the rate of demand is constant within
a scenario tree node, but can change between nodes, although
the demand of each consumer port is uncertain. In this model,
there are several possible demand situations in each period, and this
is represented in the scenario tree as the branches in each period with
corresponding probabilities. In each demand branch, the demand rate
is a constant throughout the period, but would be different between
different branches.

• At each port, loading and unloading rates are constant. In
realistic operations, the loading or unloading rate may be varied for
different ships at the same port. However, we here assume that it is
fixed for a port throughout the whole planning period to simplify the
problem but these rates can be different in different ports.

• At most one ship can be loading or unloading in a port at any
given time. This assumption avoids the overlap of services at a port.
When a ship arrives at a port and another ship is loading or unloading
at the same port, the ship has to wait outside the port until the current
service is completed. We assume that there is no waiting cost for each
ship at any time.

• For each ship the travel time and cost between any two ports
are fixed. This is the assumption only for this chapter, and a variable
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speed model is introduced in Chapter 6. We also assume that ships sail
in a straight line between any two ports in the model, although in the
realistic situation ships may be not able to sail in a straight line.

• A service at a port must start and finish within a period.
However, this is not a limitation, since the service can continue without
a break in the following period.

5.3 Solution Framework

A branch-and-price algorithm is used to search for the optimal integer
solutions. In each branch-and-bound node, the node problem is decomposed
to a master problem and several subproblems, one for each ship. Each column
in the master problem corresponds to a tree of schedules for a ship. And the
node problem is solved by a column generation method which requires only a
finite number of columns.

At any stage in the solution of a master problem, a (finite) subset of the
columns will have been generated. This problem, called a restricted master
problem in Ahuja et al. 1993, is solved and the shadow prices of the constraints
are then used to determine the most negative reduced cost from among the
un-generated columns. This can be done without explicitly generating any
columns by solving a stochastic dynamic programming problem separately for
each ship. The solution gives the tree of routes for that ship. If this added as a
column to the master problem, it would have the smallest a negative reduced
cost. This procedure continues until no column with negative reduced cost can
be generated, at which stage the master problem for the Branch and Bound
node has been solved.

If found optimal solution at a branch-and-bound node is not integer, the
branching variable is chosen, and child nodes of the current branch-and-bound
node are generated. The search is stopped when there is no node in the branch-
and-bound tree, and the stored integer solution is the final solution.

5.4 Master Problem

The detail formulation of a master problem is introduced here. A port can
be visited several times within the time window of a scenario tree node, so
an index for visit number is needed. In the model, many objects are index
by the triple (Port, Visit, Scenario node) which is referred as a port visit as
mentioned before. For any ship, there are a set of trees of schedules for it.
The problem is to choose a tree of schedules for each ship. We introduce the
details of master problem as below.

Indices
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i – port
k – scenario tree node
a(k) – predecessor node of node k in scenario tree
m – m-th visit at port i in node k
v – ship
s – tree of schedule for one ship
(i,m, k) – a port visit

Sets

N – set of ports
V – set of ships
K – set of scenario tree nodes
KT – set of scenario tree nodes in final period
P – set of port visits
Rv – set of tree of schedules for ship v

Parameters

Asvimk – 1 if ship v makes port visit (i,m, k) in tree of schedules s, 0 otherwise
Csv – expected cost if ship v takes the tree of schedules s
Qsvimk – loaded/unloaded quantity by ship v in (i,m, k) if the ship

makes that port visit in schedule tree s, and 0 otherwise
Tsvimk – the start service time for ship v in (i,m, k) if the ship makes

that port visit in schedule tree s, and 0 otherwise
Bk – end of the time period which includes the node k
Wi – loading/unloading rate at port i
M – the maximum number of visits to any port in a scenario tree node
Dik – demand rate in port i in node k
S0

i – initial stock level in port i
S̄i – upper bound for storage in port i
Si – lower bound for storage in port i
Ii – 1 if i is customer port, -1 if i is supplier port

The values of parameters Asvimk, Qsvimk and Tsvimk are found by solving
subproblems. These three parameters represent the route information and
they are zeros or non-zeros at the same time. If port visit (i,m, k) is made
by ship v in schedule s, parameter Asvimk is 1. And parameters Qsvimk and
Tsvimk represent the quantity loaded and the start service time for this port
visit respectively. But Asvimk could be an integer value greater than 1 if there
are cycles involved in the solution.

Figure 5.1 shows an example of a tree of routes for 2 ships. The red tree is
made by ship 1, while ship 2 makes the blue one. For instance, ship 1 makes

54



(A,1,1)

(A,2,1)

(B,1,1)

(B,2,1)

(C,1,1)

(C,2,1)

(B,1,3)

(A,1,3)

(A,2,3)

(C,1,3)

(C,2,3)

(B,2,3)

(A,1,2)

(B,1,2)

(A,2,2)

(B,2,2)

(C,2,2)

(C,1,2)

K = 1

K = 2

K = 3

Figure 5.1: Example of tree of routes
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(A,1,1)     1     0         800   0         1.0   0.0
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(B,2,1)     0     1           0   800       0.0   4.0
(C,1,1)     0     1           0   800       0.0   6.0
(C,2,1)     1     0         800   0         6.5   0.0
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Figure 5.2: Parameter example
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the first visit to port A followed by a visit to port B and a visit to port C in
scenario node 1. Then it visits port A and B in scenario node 2, while it visits
port B and C in node 3. Figure 5.2 shows the detail values of parameters
Asvimk, Qsvimk and Tsvimk for both ships in the scenario node 1. For example,
ship 1 makes port visit (A, 1, 1), (B, 1, 1) and (C, 2, 1) in scenario node 1, so
the corresponding values of Asvimk for these port visits are 1 and all others
are 0.

The parameter M is the maximum number of visits to a port in a time
period, but a port does not need to be visited exactly M times in each
scenario node. In a scenario tree node, a port can be visited any number of
times up to M . We consider inventory at both supply and consumer port,
so parameter Ii here is used to separate these two different types of ports so
that we can use a single constraint for both types in the master problem.

Variables

xsv – 1 if ship v takes schedule tree s, and 0 otherwise
yimk – 1 if some ship makes port visit (i,m, k), and 0 otherwise
qimk – amount of commodity loaded/unloaded in port visit (i,m, k)
tSimk – the start of service time in port visit (i,m, k)
tEimk – the end of service time in port visit (i,m, k)
hS

imk – the stock level at time tSimk

hE
imk – the stock level at time tEimk

Variable yimk is a binary variables here. But when we solve the relaxed master
problem in a branch-and-bound node, the integrality requirement will be
relaxed. If variable xsv is 1, ship v chooses to take schedule tree s. However,
xsv do not need to be integer value in the model. Two xsv variables, xs1v

and xs2v, may represent the same physical tree of routes but have different
loading quantities and start service times at each port visit. If xs1v +xs2v = 1,
then the solution is still regarded as integer feasible. Ship v chooses to take
the physical tree of routes, and uses the average loading quantities and start
service times of schedule s1 and s2 as the loading quantity and start service
time at each port visit on the tree of routes. Variable qimk, tSimk and tEimk

provide the information for each port visit. hS
imk and hE

imk are used to record
the stock level at the beginning and end of a service. These two variables
should be bounded with the upper and lower limit of the corresponding
storage.

Formulation of Master Problem
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min
∑
v∈V

∑
s∈Rv

Csvxsv (5.1)∑
v∈V

∑
s∈Rv

Asvimkxsv = yimk ∀(i,m, k) ∈ P (5.2)∑
v∈V

∑
s∈Rv

Qsvimkxsv = qimk ∀(i,m, k) ∈ P (5.3)∑
v∈V

∑
s∈Rv

Tsvimkxsv + (1 − yimk)Bk = tSimk ∀(i,m, k) ∈ P (5.4)∑
s∈Rv

xsv = 1 ∀v ∈ V (5.5)

tEimk = tSimk + qimk/Wi ∀(i,m, k) ∈ P (5.6)

tEi,m−1,k ≤ tSimk ∀(i,m, k) ∈ P, m > 1 (5.7)

yimk ≥ yi,m+1,k ∀(i,m, k) ∈ P (5.8)

hE
imk = hS

imk − (tEimk − tSimk)IiDik + Iiqimk ∀(i,m, k) ∈ P (5.9)

hS
imk = S0

i − tSimkIiDik ∀i ∈ N, m = 1, k = 1 (5.10)

hS
imk = hE

i,M,a(k) − (Ba(k) − tEi,M,a(k))IiDi,a(k)

− (tSimk − Ba(k))IiDik ∀i ∈ N,m = 1, k > 1 (5.11)

hE
iMk − (Bk − tEiMk)Dik ≥ 0 i ∈ N, k ∈ KT (5.12)

hS
imk = hE

i,m−1,k − (tSimk − tEi,m−1,k)IiDik ∀(i,m, k) ∈ P m > 1 (5.13)

S i ≤ hS
imk, hE

imk ≤ S̄i ∀(i,m, k) ∈ P (5.14)

{xsv : xsv > 0,∀s}share same physical tree of routes, ∀v (5.15)

yimk ∈ {0, 1} ∀ (i, m, k) ∈ P (5.16)

In (5.1) we minimize the total expected costs. Constraints (5.5) and the
integrality of the xsv ensure that exactly one tree of schedules is selected for
each ship. Constraints (5.2) calculates number of occurrences of a port visit
and ensures that each port visit occurs at most once. The variable yimk is
0 if there are fewer than m ship visits at port i in scenario node k and is 1
otherwise. Constraint (5.3) calculates the loading or unloading quantity and
constraint (5.4) calculates the start of service time for each port visit. If port
visit (i,m, k) occurs, then the first term in (5.4) gives the start time for that
service and the second term is zero. If port visit (i,m, k) does not occur, then
the first term will be zero and the second term will be Bk, i.e. the end of
the period for node k. Constraint (5.6) calculates the end of service time and
constraint (5.7) guarantee that there is no overlap between two services i.e. a
later port visit can only be served after the service of previous visit has been
finished. Constraint (5.8) ensures that if a port is visited m + 1 times in a
scenario node, it must be visited m times in that scenario node. Constraints
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Figure 5.3: Storage level Ex

(5.9)-(5.14) are the inventory constraints. They ensure that the storage level
is between the upper and lower bound of the storage tank at the start and end
of each service. Since all flow rates are constant within a scenario node, the
inventory level will change linearly between the start and end service times.
So the constraints ensure that the inventory is within the bounds all the time
within the whole planning period.

An example of storage level for a consumer port i is shown in Figure 5.3.
We record the storage levels at start service time and end service time for each
service and these levels are bounded between the upper and lower bound of
the storage tank by storage constraints. For the planning period we need to
consider different time intervals to calculate the storage levels when we build
inventory constraints here. These situations are listed below:

• From the very beginning of the period 1 to the first visit in the
period In this situation, the stock level at the start service time tSi11
equals the initial storage level S0

i at port i minus the demand taken out
of the storage during time interval [0, tSi11]. Constraint 5.10 represents
this situation.

• During a service Constraint 5.9 shows the storage situation during a
service. At a consumer port, for instance, storage level at the end of a
service m equals the level at the start of the service plus the quantity
discharged from ship and minus the demand taken out of the storage
during the service. In constraint 5.9, parameter Ii is 1 or -1 as a sign to
tell consumer or supplier port, which allows us to use the same constraint
for both types of ports in the model. In the example, this shows the
situation between start service time and end service time.

• Between two consecutive services within a period In this
situation, the stock level at the start service time for the second service
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equals the stock level at the end service time for the first service minus
the demand taken out of the storage during the time interval, and this
is presented in Constraint 5.13.

• Between the last service in a period and the first service in next
period Constraint 5.11 presents the situation between the last service
in the scenario tree node a(k) and the first service in the scenario tree
node k, where a(k) is predecessor node of k. This shows the situation
of stock across the boundary of a period in the example.

• After the last service of overall planning period Constraint 5.12
calculates the storage level at the end of the last service in the last
period.

If only m (m < M) port visits occur for a port within a period, the loading
quantities at port visit m + 1..M are zero. We call such port visits ‘dummy
port visits’. According to the Constraint 5.4, the start service times for these
port visits are on the boundary of the period. Also the stock levels related to
these dummy visits are the same as the stock level at the end of the period,
which equals the stock level at the end service time of the m-th visit minus the
demand taken out of the storage from the end service time to the boundary
of the period. There is a special case in our model, when there is no visit to
a port in a period. In this case, all M visits are dummy visits within that
period and happens on the end boundary of the period. The corresponding
stock levels on these dummy port visits give the storage situation at the end
of the period.

From the formulation of the master problem we can see that the constraints
5.2–5.5 are similar to the constraints in set partitioning models. However there
are in addition a group of inventory constraints in the master problem. The
form of the matrix of the master problem is shown in Figure 5.4.

The blue block on the left upper corner is for the constraint 5.2 – 5.4.
The pink block is for all the inventory constraints. The purple block is the
initial columns with huge objective costs. These columns are used to give
an initial feasible solution for the column generation method and they will
never be chosen in the optimal solution. The columns generated from the
ship subproblems are added in the yellow area of the matrix. The rows in
the bottom of the yellow area are the constraint 5.5, which indicates the ship
related to each added column.

5.5 Reduced Cost

After a restricted master problem is solved, dual variables will be known.
These dual variables are denoted by dA

imk, dQ
imk, dT

imk and dS
v for constraints
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Figure 5.4: Matrix of master problem

(5.11)–(5.5) respectively. The reduced cost C̄sv can then be calculated as
following:

Ĉsv = Csv −
∑
i,m,k

(Asvimkd
A
imk + Qsvimkd

Q
imk + Tsvimkd

T
imk) − dS

v (5.17)

=
∑

(i,m,k)−(i′,m′,k′)∈Es

Pk′Cii′v −
∑

(i,m,k)∈Ns

(dA
imk − dQ

imkQsvimk + dT
imkTsvimk) − dS

v

(5.18)

where Pk is the cumulative probability from start to node k in the scenario
tree, Es the a set of edges included in tree of schedules s, Ns is a set of port
visits included in tree of schedules s and Cii′v is the traveling cost along the
edge i → i′ for ship v.

Here, we represent the reduced cost for each arc of the network in formula
5.18, then we can formulate the subproblem objective and update the edge
costs in the networks of subproblems according to formula 5.18.

5.6 Ship Subproblems

The parameters Qsvimk and Tsvimk as well as set Es and Ns in (5.18) represent
the route information generated by subproblems and is not given in advance.
So we can introduce two variables qsvimk and tSsvimk in the subproblems for
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loading quantity and start service time respectively. In subproblems we try to
find the values for these variables and the set of Es and Ns so as to minimize
the reduced cost. We denote r to be the physical tree of routes of schedule s.
Then the details about the tree of routes r can be described by Es and Ns.
For a ship v, the objective of the subproblem can be formulated as following:

C̄v = min
r

min
q

min
tS

[
∑

(i,m,k)→(i′,m′,k′)∈Es

Pk′Cii′v

−
∑

(i,m,k)∈Ns

(dA
imk + dQ

imkqsvimk + dT
imkt

S
svimk)] − dS

v (5.19)

In formulation 5.19, we try to find a physical visiting sequence and the
corresponding values of qsvimk and tSsvimk for each port visit in the sequence
so as to minimize the reduced cost presented in formula 5.18. dS

v in 5.18 does
not need to be considered in the subproblems. It can be subtracted from the
objectives after solving the subproblems.

The ship subproblems then can be formulated as a shortest tree problem
and solved by stochastic dynamic programming. The solution of the shortest
tree problems is a tree of schedules with the least reduced cost, which can
be added into the master problem as a column. The state in the DP is
(i,m, k, g, t), where i is port, m is the m-th visit, k is the node of scenario
tree, g is the amount of commodity on board the ship v when the ship
arrives the port visit (i,m, k), and t is the start service time for the port
visit (i,m, k). Both start service time and quantity on board the ship are
continuous quantities. In practice, we use discrete quantities for both g and t
so as to allow a discrete version of DP to be used. A regular grid is used for the
discrete start service time t. If a start service time is between two grid points,
it will be delayed to the next grid point. However, using discrete values for g
and t does not mean that our model can only generate the solution with these
discrete values. In fact, the master problem may choose several columns with
the same physical tree of routes but different time and loading quantities and
use the average of these columns as the solution, which may have the start
service times and loading quantities different from discrete values.

The DP network is described in Section 5.7 and the DP formulation is
given in Section 5.8.

5.7 Dynamic Programming Network

In this section, we describe the DP network for the ship subproblems. For
each port visit in the network, there is a start service node and an end service
node related to it. And we allocate the costs in the objective into different
edges in the network. The DP network for a ship subproblem is related to
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the scenario tree which describes the pattern of consumer demands. We
divide the network into several parts, each part, called demand scenario part,
represents a scenario node in the corresponding time period so that the DP
network has the same structure as the scenario tree. See Figure 5.5 as an
example.

In a DP network, a ship starts from the dummy start node, visits a set
of port visits in different demand scenario parts of the network, and finishes
the trip when it arrives at the dummy final node. Within a demand scenario
part, if the ship is on a start service node, it makes decisions about how much
to load or unload at the current port visit. And when the ship is on an end
service node, it has choices of three different actions: it can sail to another
port visit in the same demand scenario part and do another service to the
port visit, it can leave the current port visit immediately and sail to the port
visits in the demand scenario parts of the next period, or it can delay at the
current port visit until the future information is available. We will introduce
the nodes and arcs in the DP network which are associated with these ship
actions later in this section.

Figure 5.6 is a simple example of a DP network with two time periods.
There are three demand scenario parts in the network. The start node
corresponds to the initial status of the ship. Its status is defined by its position
(in some port or at a position at sea) and the amount of cargo on the ship. A
dummy final node is also necessary in the DP network for solving the problem
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Figure 5.6: DP network with maximum of one visit to each port in each
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along the network. We can put an increasing cost function of time on the final
dummy node so as to encourage ships to finish service as early as possible.
The different types of nodes in the network are listed in the table below:

Node Type Descriptionis decision node start service node: decision made on the node is to choose
how much to load or unload during the port visitie decision node end service node: decision made is to choose next port visit
or decision to delay until more information is available

i−j sum-up node sum-up node: expected value of sailing at current time from
port i in current period to port j in next period

•i sum-up node sum-up node: expected value of delaying sailing from port i
to the end of the current period

¦ decision node split node: decision at current time of which port visit of a
given port to visit first in the next period

¦• decision node split node: decision at end of current period of which port
to visit in the next period and which is the first port visit
for that port
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As shown in the table, node is and ie are both decision nodes in the DP
network. Each port visit (i,m, k) has a start service node is and an end service
node ie . For each boundary between two periods there is one i−j node for
every pair of ports i and j. This is associated with a journey from port i to
port j in a later period starting before the period boundary where the next
period demand information is revealed. Each i−j node is linked to a set of¦ decision nodes, one for each demand scenario node in the following period.
Each¦ is associated with one future demand scenario part and one port and
selects the first port visit for that port. For example, a ship can go from
end service node of port visit (A, 1, 1) to sum-up node A−B and sail to the
start service node related to physical port B in period 2 through the split
nodes. The horizontal line inside the node means that the time window of
this node is the whole period including the node. Another sum-up node on
the boundary between two periods is • i. This is associated with a journey
from port i to any port in a later period after the demand information for
next period is known. Again each •i node is linked to a set of¦• nodes, one
for each demand scenario part. The decisions made on these¦• nodes can be
different from each other according to the known demand situations. The dot
inside the node indicates that the arrival time to this node is fixed on the
period boundary. In the DP network both 3 and © nodes are decision nodes.
We use different symbols here to tell whether a decision is made to visit a
node within the current period or a node in future period. The details about
how these nodes relate to different ship actions in the problem are given in
the later.

Within a demand scenario part of the DP network, a ship arrives at a start
service node is , starts loading or unloading, finishes the service at node ie ,
and sails to other nodes. In Figure 5.6, each node relates different discrete
values for the quantities on board ship when it arrives at the node and a grid
of start service time points so that the cost function on each node has three
dimensions. An example of the cost function is given in Figure 5.7. When
we update the cost function of each node, different situations of different time
points and quantities need to be considered.

A more detailed DP network in a scenario part is given in Figure 5.8.
There are two ports in this example, each of them has two visits within the
period. By using this example, we can see the details about the nodes and
arcs involved in the DP network. As discussed before, there are two types
of nodes related to a port visit, a start service node is and an end service
node ie . In the example, an arc from start service node is to end service
node ie represents a loading or unloading service. Since there are a group of
discrete quantities and time points on each node, a service is decided by the
time points and quantities on both start and end service node. See Figure 5.9
for example. In the example, we have a point in the cost function of a start
service node is and it relates to the time t1 and quantity g1 on board a ship.
Then three different points in the cost function of an end service node ie give
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three different service situations. For instance, point (t4, g3) means a service
lasting t4 − t1 with a loading or unloading quantity |g3 − g1|.

Within a scenario part of the network, there are arcs from end service nodeie to start service node is . These arcs are the traveling arcs, and there are
traveling times and traveling costs related on these arcs. Each end service
node ie (related to physical port i) in Figure 5.8 is linked with several sum-up
nodes i−j and one sum-up node • i. The port visits of the same physical
port share the same sum-up nodes. For example, in the network both end
service nodes of port visit (A, 1, k) and (A, 2, k) are linked with sum-up node

A−B, A−A and •A. There is no transition time on the arcs from node ie to
node i−j so that the time grids on both nodes are the same. While sum-up
node • i is on the boundary of a period and there is only one time point in
the cost function. Hence the arcs from node ie to node •i may have nonzero
transition times on them. There are also a set of arcs linking the end service
node ie with the final dummy node in the network. These arcs are needed
when solving the DP along the network.

As we mentioned before, ships have three choices after a service in this
stochastic model: (1) sail to a start service node and do another service within
the same demand scenario part in the network; (2) leave the current node
immediately and sail to another start service node in the future time period
without any knowledge of future demand situation; (3) wait at the end service
node until the demand situation for the future period is revealed, then choose
destinations in the future period according to the known demand situation.
There are different nodes in Figure 5.8 for each of these actions. For instance if
a ship finishes the service for (A, 1, 1), it can go to start service node (B, 1, 1)
or (B, 2, 1) and make another service in period 1. This is the 1st action
mentioned above. Alternatively it can go to a node A−y immediately after
the service and go through the corresponding nodes¦ to a start service node
for port y in each of the demand scenario part in next period, which is action
(2). In this case, because of lack of demand information for the future period,
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the ship has to decide where to visit next without any information for the
future and has to sail to the same physical port in all the parts of future
period. It can however go to different port arrivals for the same physical port
in different demand scenario parts, because the decision how long to delay
before starting the service can be made after the new demand is known. In
the example network in Figure 5.8, there are two sum-up node ( A−y and

B−y, but they will be duplicated for each port y) related to this action.
As discussed before, if a ship enters node i−j, i indicates the physical port
where the ship sails from, while j gives the physical port where the ship will
sail to in the next period. However, if the ship chooses to wait at physical
port i until demand information for the future period is revealed, it goes to
• i node (the third action). Note that the sum-up node •i is on the boundary
of the corresponding period. In this case, it has the freedom to choose the
destinations in future parts according to the demand situations.

Once a ship arrives at the final dummy node, the ship finishes its delivery
service. The final position for the ship at the end of the planning period can
be a supplier or a consumer port. Of course, there is another decision that a
ship can make after a service: it can leave the current port visit immediately
after the service and sail to some possible central point in sea, and decide
where to go once the future demand information is revealed. We discuss this
case in Section 6.2 is a diverting model. From the example DP network, we
can also see that the end service node (B, 1, 1) is linked with sum-up node

B−B, which indicates that a ship can sail to a port visit of port B in next
period from the port visit of the same physical port in current period. This
means that a ship’s loading or unloading can continue in the following period.

The DP network shown in Figure 5.6 looks simple, but because each node
contains all the possible combination of discrete t and g, we may have to
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consider a large number of situations of t and g when updating the cost
function along an arc in the network. An alternative way to build the DP
network is to use different nodes for different discrete quantities on board
ship (g) instead of using a single node associated with a group of discrete
quantities on the node. Figure 5.10 shows how we expand our network using
different nodes for different quantities. In the figure, we show the nodes for
different quantities of g and the possible links between them above the dotted
line. And we show the corresponding arcs below the dotted line. In this
example there are three different quantities, and for any arc on the left, the
start node and end node should have the same quantity of g because there
is no service during a sailing. However, for an arc from is to ie , the is node
and ie node usually have different quantities because the quantity on board
a ship usually changes during a service. Figure 5.11 shows an example DP
network by using different nodes for different quantities g within a demand
scenario part of DP network. A start service node links to several different end
service nodes with different quantities, and each link between the start service
node to one of the end service nodes relates to a loading or unloading service.
For example, a ship starts a service at node (A, 1, 1, g1) with an amount g1

of commodity on board. It then can finish the service at end service node
(A, 1, 1, g2) having loaded or unloaded the quantity |g2 − g1|, or at end service
node (A, 1, 1, g3) having loaded or unloaded the quantity |g3 − g1|. Then it
can sail to other start service node for another service. It may then sail from
end service node (A, 1, 1, g2) to start service node (B, 1, 1, g2) in the network,
because the quantity g2 on board does not change during sailing. In this type
of DP network, the end service nodes related to the same physical port and
the same quantity on board the ship will share the same sum-up nodes. For
instance, we can see from Figure 5.11 that end service node of (B, 1, 1, g1)
and (B, 2, 1, g1) are linked with the same sum-up nodes B−B, B−A and •B.
This DP network is used when we solve the subproblems in practice, and all
later discussions in the thesis, including the DP recurrence formulation, are
based on this kind of network.

According to the objective function of the ship routing subproblem, the
edge costs in the DP network are given in the following table:

Edges Edge Costs Edge Timeis → ie −dQ
imk|gE − gS| − dT

imkt
S
imk − dA

imk |gE − gS|/W
3 → is PkCii′v travel timeie → is PkCii′v travel time

In the table, gS is the amount of commodity on board the ship when it arrives
at start service node (i,m, k), while gE is the amount of commodity on board
the ship at end service node (i,m, k). So the difference between them |gE−gS|
is the loading or unloading quantity in port visit (i,m, k). W is the loading
or unloading rate for the ship which is a constant. Pk is the cumulative
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Figure 5.11: Detailed DP network with different end service nodes within a
part

probability of reaching node k in the scenario tree. Cii′v is the traveling cost
from port i to port i′ by ship v. Other edges which are in the network but not
included in the above table have zero costs and are used to build the stochastic
structure of the network.

This is a stochastic DP problem with time windows, because each node in
the network has a time window for start of service. Initially, the time window
of a node is the full time period but it can be reduced by the Branch and
Bound method when solving the problem.

5.8 Dynamic Programming Formulation

In this and later sections we assume that there is a separate node for each
discrete value of g, and that each node contains the information for all the
possible times.

The direction of solving stochastic dynamic programming is from dummy
final node to the dummy start node. The solution can then be tracked from
the start dummy node. In the networks of our ship subproblems, there are
several different types of nodes: start service nodes is , end service nodes ie
, sum-up nodes i−j and •i, and split nodes 3. These nodes are indexed in
different ways, so in order to avoid having to write different DP recurrence
relation for each possible transition we shall introduce a single index for each
node in the network. If this is denoted by l and then the recursive formula
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flv(t) is the least expected cost from node l at time t to the final node in the
network. In our problem, there is a time window for the start service time for
each node (i.e. t ∈ [Ãlv, B̃lv]). The value on the final dummy node fLv(t) is
set to zero. However, if we want to give a reward for a ship finishing early,
then an increasing function can be used for fLv(t). The detail DP formulation
is given below.

For decision nodes ( is , ie and 3) the recurrence formulas for ship v are:

• For start service node is :

flv(t) = min
l′:l→l′

{fl′v(t + T̃ll′) + C̃ll′v}, t ∈ [Ãlv, B̃lv] (5.20)

• For split node 3:

flv(t) = min
l′:l→l′

min
max{Ãl′v ,t+T̃

ll
′ }≤τ≤B̃l′v

{fl′v(τ) + C̃ll′v}, t ∈ [Ãlv, B̃lv] (5.21)

• For end service node ie :

flv(t) = min{min
l′:l→l′

min
max{Ãl′v,t+T̃

ll
′ }≤τ≤B̃l′v

{fl′v(τ) + C̃ll′v},

min
l′:l→l′

{fl′v(t + T̃ll′) + C̃ll′v}}, t ∈ [Ãlv, B̃lv]

(5.22)

Ãlv and B̃lv are the lower and upper bounds of the time window at node l.
C̃ll′v is the cost of edge l → l′ for ship v, which is shown in the table in the
previous section. T̃ll

′ is the transition time from a is node l to a ie node l
′
,

and for other cases is the minimum time for the transition. In formula 5.22, if
l′ is a is node we use the first item, while if l′ is a ie node, we use the second
item.

When l is a sum-up node i−j or • i, the cost function is:

flv(t) =
∑

l′:l→l′

fl′v(t), t ∈ [Ãlv, B̃lv] (5.23)

We want to find the cost function at start dummy node fl0v(t), where l0 is
the dummy start node, according to above DP recurrence formulations.

5.9 Algorithm for Solving Subproblems

In literature, the algorithms for the shortest path problem with time windows
usually assign pairs of labels to each time in each node. Each node in the
network is associated a label, which consists of a label for the cost of the
path to the actual node and a label for the visit time at the node. The
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algorithms update these labels for each node through the network according
to the dominance rules iteratively until there is no improvement can be made
for any node. This is called a Labeling Algorithm in literature. Literature
Desrochers and Soumis 1988a, Desrochers and Soumis 1988b and Desrosiers
et al. 1995 give the details about these algorithms.

As a stochastic model is built here, we want to find the shortest tree
through the network from the dummy start node to the final node. Each time
within a node has a label which is the lowest expected cost known from that
node to the final dummy node. By deleting the final node and the edges into
it we can get a tree. This is the shortest “tree” problem with time windows.
The shortest tree problem with time windows, can be solved by stochastic
dynamic programming, and generalizes the shortest path problem with time
windows. Cost on each node is the minimum expected cost from the current
node to the final node as a function of the time of reaching the current node.
An example of a cost function is shown in Figure 5.12. The cost functions in
our problem are increasing functions. In our DP network, there is a known
start node and a known final node, so in the deterministic case we have the
choice of calculating costs from the initial node or costs from the final node.
In the stochastic case however we need to calculate the expected costs to the
final node. We therefore start the iteration by setting the value of the final
node to 0 and all other nodes to infinity, and update the cost function on each
node in the network from the nodes on its outgoing arcs.

When solving the DP problem, we need to update each node in the network
using the DP formulation given in last section. Because the graph contains
directed cycles, we may not be able to finish the updating by going through
the network only once. So we have to update the node costs iteratively and
prepare to update the cost for one node several times. Let f̃lv(t) be the least
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known expected cost from node l at time t to the final node at the start of
an iteration of updating. Then in the current iteration, we first use the DP
formulation to calculate a temporary cost function θ(t), and the cost on node l
in this iteration is then given by min{f̃lv(t), θ(t)}. The details of how to solve
the subproblem and the examples showing the updating for different types of
nodes are given below.

In an iteration of updating, we go through each node in the network, and
for each node we consider all the outgoing arcs from the node. If there has
been any updating in the end node of an outgoing arc in last iteration, we
will update the cost of the start node of the arc using the cost function of
the end node. For the sum-up nodes, if one of the corresponding split nodes
is updated in the previous iteration, the sum-up node will be updated in the
current iteration. Therefore, we use a flag for each node to indicate whether
or not the node is updated (for any time) in the last DP iteration. Let Ñ be
a set of nodes which have been updated in the previous iteration of updating.
Figure 5.13– 5.16 show several examples of how to update the cost function for
different types of nodes. Figure 5.13 shows how to update the cost function for
end service or split node l by start service node l′. The cost and traveling time
along the edge l → l′ is given by (Cll′ , Tll′). Since delaying before beginning
a service is allowed in the model, the cost at time t1 can be updated by
any time greater than the earliest possible start service time at node l′ (i.e.
max{Ãl′ , t1 + Tll′}), where Ãl′ is the lower bound of the time window. Then
the temporary cost of current iteration at time t, θ(t), can be calculated as
following:

θ(t) = min
l′:l→l′,l′∈Ñ

min
max{Ãl′ ,t+Tll′}≤τ≤B̃l

{f̃l′v(τ) + Cll′} (5.24)

Since function f̃l′v(t) is an increasing function, τ can be taken as max{Ãl′ , t+
Tll′} when solving the DP. (In chapter 6 we will consider the case where cost
of the journey depends on the journey time, and in this case a range of values
of τ must be considered.) Then the cost at time t on node l after current
iteration of updating can be found as follows:

f̃lv(t) := min{f̃lv(t), θ(t)} (5.25)

Figure 5.14 shows how to update the cost function of a start service node
l by an end service node l′. Because there is no delay allowed within a service,
the cost at a time at node l can only be updated by the corresponding time
point at node l′. Then the temporary cost at time t of node l can be shown
as follows:

θ(t) = min
l′:l→l′,l′∈Ñ

{f̃l′v(t + Tll′) + Cll′}, (5.26)

And the cost at time t on node l after current iteration of updating can be
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Figure 5.14: Update cost function for start service node

found as following:

f̃lv(t) := min{f̃lv(t), θ(t)} (5.27)

For sum-up nodes in the network, if any of corresponding split nodes is
updated in previous iteration, the cost function of the sum-up node needs to
be re-calculated in current iteration of updating. Figure 5.15 shows how to
calculate the cost function for sum-up node A−B l by split nodes l′1 and l′2.
Because these nodes have the same time windows, the cost at time t of node
l can be easily calculated by the cost of node l′1 and l′2 at the same time t:

f̃lv(t) := min{f̃lv(t), f̃l′1v(t) + f̃l′2v(t)} (5.28)

Figure 5.16 shows how to calculate cost function for sum-up node •A l by
split nodes l′1 and l′2. Because the time of these nodes are fixed on the period
boundary Bk, the cost at node l can be easily calculated as following:

f̃lv(Bk) := min{f̃lv(Bk), f̃l′1v(Bk) + f̃l′2v(Bk)} (5.29)
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Figure 5.15: Update cost function for sum-up node with the time window
before the boundary

We do the updating through the DP network for each node in order from
smaller index to bigger index. The number of iterations required during the
updating is highly depended on the order in which the nodes of the network
are updated. Before updating cost functions through network, we need to
first find an order for nodes in the network and we do this as follows. In our
network, the minimum number of steps from each node to the final dummy
node is first calculated and an order of nodes is decided by checking the
numbers: the node with a smaller minimum number of steps to the final will
get a smaller node index, which means it will be considered in an early order
during the updating. After the re-ordering, nodes in the network have the
following orders:

• A node in a later period has a smaller index than a node in an earlier
period.

• A start service node has a bigger index than the end service nodes linked
with it.

• A sum-up node has a smaller index than the end service nodes linked
with it.

• A split node has a smaller index than the sum-up node linked with it.

• Dummy final node has index 0.

• Dummy start node has the biggest index in the network.

Once we have updated cost function for all the nodes and there have been
no changes, then the optimal costs have been found and we choose the least
cost from the cost function of the start dummy node in the network and track
the shortest tree through the network.
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Figure 5.17: Cycles of type A and B

5.10 Cycle Elimination

Because there are several port visits for each port and the order of port visits to
different ports is not predetermined, there are a lot of cycles in each demand
scenario part of the network. This increases the chance of including illegal
cycles in the solution of ship subproblems. There are two types of cycles
considered in our problem. Cycle of type A means that a ship returns to some
port visit which occurred for that ship before, while cycle of type B means that
the ship route contains a port visit (i, m1, k) and a later port visit (i,m2, k)
where m2 ≤ m1. Such a path cannot logically occur. We show the examples
of these two situations in Figure 5.17. We shall refer to both of these cases as
cycles even thought the type B may not include a real cycle.

As mentioned in Section 5.4 when there is a cycle of Type A, a port visit
occurs more than once, and in this case the value of Asvimk will be greater
than 1 and equal to the number of times the port visit occurs. Also the Tsvimk

and Qsvimk quantities will be the total over all the times the port visit occurs.
Allowing cycles gives a relaxation of the true situation in our model,
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Figure 5.18: A type A cycle in our DP network

so bounds allowing them are still valid. However, a solution with cycles is
not logically feasible. Because allowing cycles gives a relaxation of the true
situation, we do not need to eliminate all the cycles when solving subproblems
and can add the tree of routes including cycles into the master problem. Then
we can eliminate cycles in the Branch-and-Bound algorithm by splitting a time
window.

A K-cycle is defined to be a cycle of length K and elimination of K-cycles is
well described in the literature, by Irnich and Villeneuve 2006 and Irnich and
Desaulniers 2004. However, it is not easy to avoid all the cycles with different
length when solving the subproblems, and doing that is time consuming. We
therefore only eliminate the 2-cycles.

In our DP network, we divide a port visit into two nodes, a start service
node and an end service node, so a 2-cycle in our problem is different from its
original definition. See Figure 5.18 for example.

In the example, the start service and end service nodes for a port visit
are regarded as a big node, and the definition of a 2-cycle is based on the
corresponding port visits rather than the real nodes of the network.

In our problem, cycles only occur in each scenario part of the DP network,
and there is no cycle crossing the period boundary. Hence we only need to
consider cycle elimination for start and end service nodes in the network.
To eliminate 2-cycles using the method introduced in Irnich and Villeneuve
2006, at each is and ie node and for every time, we store the next port visit
following the current one for the best and second best path for each time
point. If there is a cycle when using the best solution, we use the second
best solution instead. This usually allows us to avoid 2-cycles of type A and
B and we call paths satisfying this rule ‘allowed paths’. Note that all legal
paths are allowed paths. We need to keep updating the best and second best
solution on each node during the updating. The best path is the best among
all allowed paths, while the second best is the best among all allowed paths
where the next port visit is different from the best path. Let f̃

(1)
lv (t) and f̃

(2)
lv (t)

76



be, respectively, the current stored least and second least expected cost along
allowed paths from node l at time t to the final node in the network without
2-cycle. P̃

(1)
lvt and P̃

(2)
lvt are the stored partial path (the first port visit after

the current node l) on node l at time point t for the best and second best
solution respectively. Assume that PVl is the port visit associated with node
l. Let θ be the temporary cost calculated in the current iteration of updating
and P the corresponding partial path at time t. During the updating, if θ is
calculated, we will use this cost to update the current stored best and second
best list.

In an iteration of updating we check each node in the DP network, consider
the every outgoing arc from the node, and update the cost function of the
node by using the end node of the arc. Let l be the start node of an arc and l′

the end node. If node l is an end service node ie and node l′ is a start service
node is , we need to check, for every time point, whether the best solution or
second best solution on node l′ causes a 2-cycle. If the best solution of node
l′ at time τ causes a 2-cycle, then second best solution will be considered
to calculate the temporary cost θ. This is shown in the following Pseudo-code:

begin: ie → is
for (t ∈ [Ãlv, B̃lv]) do

θ = ∞, P = PVl′ ;
for (τ ∈ [Ãl′v, B̃l′v]) do

if (θ > f̃
(1)
l′v (τ) + Cll′) do

if (P
(1)
l′vτ not same or earlier than current port visit) do

θ = f̃
(1)
l′v (τ) + Cll′ ; (no 2-cycle with best)

else
if (θ > f̃

(2)
l′v (τ) + Cll′) do

if (P
(2)
l′vτ not same or earlier than current port visit)

do
θ = f̃

(2)
l′v (τ) + Cll′ ; (no 2-cycle with 2nd best)

end-if
end-if

end-if
end-if

end-for
checkUpdateList(θ, P, f̃

(1)
lv (t), P

(1)
lvt , f̃

(2)
lv (t), P

(2)
lvt ));

end-for
end

If node l is a start service node and node l′ is an end service node, we do
not need to check 2-cycles when updating the cost function. This is because
that 2-cycles will be avoided automatically for start service nodes if they are
eliminated already on the corresponding end service nodes. For updating cost
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functions of start service nodes, we need to use both best and second best to
calculate temporary costs at each time point. See the following Pseudo-code
for details:

begin: is → ie
for (t ∈ [Ãlv, B̃lv]) do

θ = f̃
(1)
l′v (t + T̃ll′) + Cll′ ; P = P

(1)

l′v,t+T̃ll′
;

checkUpdateList(θ, P, f̃
(1)
lv (t), P

(1)
lvt , f̃

(2)
lv (t), P

(2)
lvt );

θ = f̃
(2)
l′v (t + T̃ll′) + Cll′ ; P = P

(2)

l′v,t+T̃ll′
;

checkUpdateList(θ, P, f̃
(1)
lv (t), P

(1)
lvt , f̃

(2)
lv (t), P

(2)
lvt );

end-for
end

If node l is a 3 node and node l′ is a start service node. We need to
consider the possible delays of journey, but no cycles need to be checked since
there is no cycle cross the period boundaries. See the following Pseudo-code
for details:

begin: 3 → is
for (t ∈ [Ãlv, B̃lv]) do

θ = ∞;
for (τ ∈ [Ãl′v, B̃l′v]) do

if (θ > f̃
(1)
l′v (τ) + Cll′) do

θ = f̃
(1)
l′v (τ) + Cll′ ;

P = PVl′ ;
end-if

end-for
checkUpdateList(θ, P, f̃

(1)
lv (t), P

(1)
lvt , f̃

(2)
lv (t), P

(2)
lvt ));

end-for
end

If node l is an end service node and node l′ is sum-up node •i, we do not
need to check 2-cycles. Let B be the period boundary related to •i, and the
details about updating are given below:

begin: ie → •i

for (t ∈ [Ãlv, B̃lv]) do

θ = f̃
(1)
l′v (B);

P = P
(1)
l′vB;

checkUpdateList(θ, P, f̃
(1)
lv (t), P

(1)
lvt , f̃

(2)
lv (t), P

(2)
lvt ));

end-for
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end

For all other arcs the start nodes can be easily updated by end nodes as
following:

begin: ie → i−j, 2 → 3

for (t ∈ [Ãlv, B̃lv]) do

θ = f̃
(1)
l′v (t);

P = P
(1)
l′vt;

checkUpdateList(θ, P, f̃
(1)
lv (t), P

(1)
lvt , f̃

(2)
lv (t), P

(2)
lvt ));

end-for
end

In above Pseudo-codes, details of subroutine
checkUpdateList(θ, P, f̃

(1)
lv (t), P

(1)
lvt , f̃

(2)
lv (t), P

(2)
lvt ) to update the best and

second best solutions. The details of this subroutine are given below.
Assume that the port visit stored in P is (iT ,mT , k), the port visit stored
in P 1

lvt is (iB1,mB1, k) and the port visit stored in P 2
lvt is (iB2, mB2, k). If

(iT ,mT , k) = (iB1, mB1, k), we update the list as shown in the following table:

Situation Updates

1 θ < f̃
(1)
lv (t) f̃

(1)
lv (t) = θ, P̃ 1

lvt = P

2 f̃
(1)
lv (t) ≤ θ < f̃

(2)
lv (t) no update

3 θ > f̃
(2)
lv (t) no update

Table 5.1: Update best and 2nd best list 1

In table 5.1 situation 1 says that if the corresponding partial paths for
the temporary solution and the best solution are the same and temporary
cost is better than the best cost, we can only update the best solution by the
temporary one but nothing changed for the second best solution. In situation
2 and 3, nothing will be changed to the best and second best list. If iT 6= iB1,
we update the list as shown in the following table:

Situation Updates

1 θ < f̃
(1)
lv (t) f̃

(2)
lv (t) = f̃

(1)
lv (t), f̃

(1)
lv (t) = θ

P̃ 2
lvt = P̃ 1

lvt, P̃ 1
lvt = P

2 f̃
(1)
lv (t) ≤ θ < f̃

(2)
lv (t) f̃

(2)
lv (t) = θ, P̃ 2

lvt = P

3 θ > f̃
(2)
lv (t) no update

Table 5.2: Update best and 2nd best list 2
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In above table, situation 1 says that if the temporary cost is better the
current stored best cost and the corresponding partial paths are not the same,
we can update the second best cost by the current stored best cost and
update the best cost by the temporary cost. In situation 2, if the temporary
cost is better than the second best cost but worse that the best cost and
corresponding partial paths for the temporary solution and the best solution
are different, we update the second best solution. If iT = iB1, we need to
consider different situations about mT and mB1 when updating the list, which
is shown in the following table:

Situation mT > mB1 mT < mB1

1 θ < f̃
(1)
lv (t) f̃1

lv(t) = θ f̃
(2)
lv (t) = f̃

(1)
lv (t), f̃

(1)
lv (t) = θ

P 1
lvt = P P̃ 2

lvt = P̃ 1
lvt, P̃ 1

lvt = P

2 f̃
(1)
lv (t) ≤ θ < f̃

(2)
lv (t) f̃

(2)
lv (t) = θ no update
P̃ 2

lvt = P

3 θ > f̃
(2)
lv (t) no update no update

Table 5.3: Update best and 2nd best list 3

In order to avoid type B cycle, we need to keep m-value of P 1
lvt less than

the m-value of P 2
lvt. If iT = iB1 = iB2, we may get some complications when

mT > mB1 and θ < f̃
(1)
lv (t). In this case, if mT > mB2, then we eliminate the

second best from the list, and just leave the best. Then during the updating,
we choose the best path even though it results a cycle.

5.11 Branch and Bound Algorithm

The optimal solution of the stochastic ship routing problem must satisfy the
discrete restrictions relating to the relation of single routes for each ship.
Branch and Bound algorithm is used here to search for feasible discrete
solutions. At each node of Branch and Bound tree a problem with the discrete
requirements relaxed is solved using column generation method. If the solution
of the problem does not satisfy the discrete constraints or includes a cycle, we
branch so as to eliminate one of these infeasibilities. The columns generated
from subproblems are kept in the master problem for other Branch and Bound
nodes, only the infeasible column is deleted by setting the upper bound of the
column to zero. There are a lot of ways to decide branching strategies. In this
thesis, we do branching on the fractional variables in the following order.

If there are columns with positive weight in the solution that correspond to
a path with a cycle, then we first branch on a time window so as to eliminate a
cycle. Assume that port visit (i,m, k) is involved in a cycle. Let {tS1

imk, ..., t
SK
imk}

be discrete start service times associated with the port visit (i,m, k). Let

80



t̄imk = 1/K
∑

y=1..K

tSy
imk denote the average of these start service times. We do

branching by splitting the time window [a, b] for the start service time of port
visit (i,m, k). Since the width of the port visit time window is also reduced in
child nodes, there is less chance of getting other cycles later in the solution.

If there are no cycles in the solution but there are fractional port visit
variables, then a branch is made so as to either force a port visit to occur
or not to occur. For a port i and node k, the set of port visit variables yimk

satisfies yi1k ≥ yi2k ≥ yi3k ≥ ... ≥ yi,M−1,k ≥ yiMk and to be feasible all values
must be 0 or 1. We first calculate for each combination of (i, k) the difference
between consecutive pairs of variables and choose the maximum difference:

Yi,k = max
1≤m≤M−1

{yi,m+1,k − yi,m,k}

We then choose the minimum value for Yi,k, and choose the maximum value of
yimk which is less than 1 and branch on that variable. If the chosen yimk ≥ 0.5,
we branch first on yimk = 1 and the other branch is yimk = 0. If the value
of chosen yimk < 0.5, we branch first on yimk = 0 and the other branch is
yimk = 1.

When in a branch, where yim′k is set to 0, no port arrivals (i,m, k) can
occur for m ≥ m

′
. So we delete all the port arrival (i,m, k) (where m ≥ m

′
)

as well as all the edges linked with these port arrival from the network of each
ship. If yim

′
k is set to 1 in a branch, no update happens for the structure of

the ship networks. However, an artificial negative cost is added to each edge
from start service node of port visit (i,m

′
, k) to end service node of (i, m

′
, k),

which makes port visit (i,m
′
, k) more attractive and more likely be included

in the solution of the corresponding subproblem.
If there are no cycles or non-integer yimk, then we calculate the flow

ximkjnlv, where ximkjnlv =
∑

s∈Rv ;(i,m,k)→(j,n,l)∈Es
xsv. This quantity defines

whether or not ship v sails from port visit (i,m, k) to port visit (j, n, l).
For each (j, n, l), we find the maximum fractional value for ximkjnlv. Then
from these maximum values we choose the minimum value over (j, n, l). The
formulation for this process is shown as the follows:

min
j,n,l

max
i,m,k,v

{ximkjnlv}

If the value of the chosen variable is less than 0.5, we branch first on
ximkjnlv = 0 and ximkjnlv = 1 in the other branch. In the branch where
ximkjnlv is set equal to 0, the ship v does not sail from (i,m, k) to (j, n, l).
Hence all corresponding edges are deleted from the network of ship v. In the
branch where ximkjnlv set to 1, we delete all the arcs for ship v coming out
of (i,m, k) except those going into (j, n, l). For all other ships, the arcs from
(i,m, k) to (j, n, l) are deleted from the networks.

Depth first branch-and-bound algorithm is not the fastest strategy if
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we wish to prove optimality. However, because of the problem size of the
stochastic ship routing problem, we may fail to find the integer solution before
reach the memory or solving time limits. Hence when solving the problem,
we use Depth First branch-and-bound algorithm here so as to find a feasible
integer solution earlier. However, Best First branch-and-bound algorithm is
known as the fastest searching strategy. Therefore, we can combine these two
branch-and-bound strategies together, using the first Depth First Search to
find an early integer solution and then switch to the Best First Search so that
we can finish the searching earlier. This mixed strategy was tried on some
examples and was effective, however the results below are for the depth first
search case.

5.12 Computational Experiments

To test the models and solution methods developed in this thesis, a set of test
problems has been built. The implementation is written in C and CPLEX10.0
is used to solve the sequence of LPs in each Branch and Bound node of the
master problem. The ship subproblems are independent of each other and are
solved in parallel using OpenMP. The structure of networks of subproblems
are generated a priori and input as data.

5.12.1 Implementation

Before giving the test examples and computational results, we first give
the pseudo-code and major structure of the implementation here. We
first illustrate the branch-and-bound algorithm as below. The networks
are built before solving the problem and input as data. A Depth First
Branch-and-Bound algorithm is used to find an integer solution. At each
branch-and-bound node, we call the subroutine to solve the restricted master
problem by a column generation method.

Pseudo-code for B&B Algorithm:
begin

Input network structure and initial columns;
OPTval = ∞;
Build matrix for solving;
Create and store B&B node {1}, Tree = {1};
while Tree is not empty do

Get last stored B&B node {J}, Tree = Tree/{J};
Update networks;
Check matrix, delete infeasible columns;
Generate artificial columns for the node problem;
call nodeProblem();
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if (artificial column is chosen in solution) do
cutoff = True (Infeasible problem);

end-if;
if (integer solution found && cutoff is False) do

if (LPval < OPTval) do
OPTval = LPval;

end-if;
else if (cutoff is False) do

Choose branching variable and do branching;
Create child nodes and store B&B nodes in B&B tree;

end-if;
end-while;
if (OPTval < ∞) do

Report optimal integer solution;
end-if;

end;

The branch-and-bound algorithm is quite simple. We call subroutine
“nodeProblem()” at every branch-and-bound node. After solving the node
problem, boolean variable cutoff indicates whether the node is cutoff
or not. If not cutoff, we choose the branching variable and expand the
branch-and-bound tree. We report each feasible solution found and continue
until there is no node in the tree. The pseudo-code of the node problem is
shown below:

Pseudo-code for nodeProblem():
begin

cutoff = False; updated = True;
while (updated is True) do

updated = False;
Solve the master problem by calling CPLEX;
if (# of simplex iteration > 0) do

Get dual variables and update edge costs in the DP networks;
call shipSubProblem(), get reduced cost reducedCv, v ∈ V ;
if (LPval +

∑
v∈V reducedCv ≥ OPTval) do

cutoff = True;
else

for all ships do
if (reducedCv < 0) do

Add the column into master problem;
updated = True;

end-if;
end-for;

end-if;
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end-if;
end-while;

end;

In the node problem, we solve the master problem to get the dual variables.
Then the new edge costs of DP networks are updated by using these dual
variables. New columns with least reduced costs are generated by calling ship
subproblems. If the LP solution of the master problem plus the least reduced
costs is greater than the current optimal integer solution, then we cannot find
the better integer solution on this branch, and the branch-and-bound node
is cutoff. Otherwise, the negative least reduced cost columns are added into
the master problem, and the master problem is solved again. This process
continues iteratively until there is no negative reduced cost column can be
generated from the ship subproblems.

We solve the ship subproblems by labeling method. When we do
branching, some port visits or arcs in the DP network may be removed from
the network. We use the array variable nodelive[ ] and edgelive[ ] in the
subproblem to indicate whether a node or an edge has been removed or not.
Before updating a node cost function, we first check whether there is a 2-
cycle. We go through all the nodes in the network iteratively to update
the cost function of each node until no more updates can be done. Since
cycles are only exist within a demand scenario part of the network, we only
consider 2-cycle elimination for start and end service nodes when updating
the cost function through the network. Other nodes are updated without
considering the cycle elimination. The detailed algorithm about updating
costs by considering 2-cycle elimination has been given in Section 5.10.

In next section, we give the details of all test examples and corresponding
computational results.

5.12.2 Examples and Results

Computational results are reported in this section. Table 5.4 gives the
characteristics of each test problem.

In table 5.4, a1 is a very small problem. This example was built to
demonstrate the details of the solution, including the visit sequences, start
service time, quantity on board each ship, the storage levels, and so on. All
of these details are given as an example later in this section. The examples
named with the same first letter are problems with the same physical ports
layout and the same scenario tree structure, but different initial inventory
levels and demand rate situations at each port. The ‘Max Arrival’ column
gives the maximum number of possible arrivals for each port in each scenario
tree node, which is the parameter M in the formulation introduced in Section
5.4. ‘Scenario Nodes’, ‘Planning Periods’ and ‘Branches’ columns give the
structure of the scenario tree. For example, in example g1, there are 13
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EX Ports Max Arrival Scenario Nodes in tree Planning Periods Branches Ships

a1 3 2 3 2 2 2
b1 5 3 3 2 2 2
b2 5 3 3 2 2 2
b3 5 3 3 2 2 2
c1 5 3 7 3 2 2
c2 5 3 7 3 2 2
c3 5 3 7 3 2 2
d1 6 4 7 3 2 3
d2 6 4 7 3 2 3
d3 6 4 7 3 2 3
f1 5 3 13 3 3 2
f2 5 3 13 3 3 2
g1 6 3 13 3 3 3
g2 6 3 13 3 3 3
g3 6 3 13 3 3 3
h1 8 4 40 4 3 3
h2 8 4 40 4 3 3

Table 5.4: Example Information

scenario tree nodes, 3 time periods and 3 branches each period in the scenario
tree, which indicates a scenario tree as shown in Figure 5.19.

The transportation networks of these examples are shown in Figure 5.20.
There is a set of ports in each network, some of which are consumer ports
and others are supply ports. There are arcs between the supply ports and the
consumer ports, as well as between the two close consumer ports, but there is
no arc between any two supply ports.

In the stochastic ship routing problem, we use the combinations of (port,
arrival, scenario node) as the state of the problem. For each port visit (i,m, k),
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Figure 5.19: Scenario tree of Ex. g1
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Figure 5.20: Physical port layout of test problems
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the start service time of the port visit should be within a time window. In all
the examples here, we set the time window for each port visit (i,m, k) to the
time period including the scenario tree node k. In the dynamic programming
problem for ship subproblems, there are several nodes related to a port visit,
for instance start service node, end service node, two types of sum-up nodes
and splitting nodes, as discussed in Section 5.7. There are also a set of links
between two nodes in the DP network. We allow ships to travel between supply
port visit and consumer port visit, and travels between two close consumer
ports within the same scenario tree node. There are arcs linking the sum-up
nodes and the splitting nodes as well as linking the splitting nodes to the start
service nodes. This information is given in Table 5.5. The table also shows the
number of (i,m, k) combinations and the number of constraints in the master
problem.

EX nodes edges (i,m, k) combinations constraints
a1 56 82 18 152
b1 137 706 45 372
b2 137 706 45 372
b3 137 706 45 372
c1 347 1786 105 862
c2 347 1786 105 862
c3 347 1786 105 862
d1 416 2335 126 1033
d2 416 2335 126 1033
d3 416 2335 126 1033
f1 632 3421 195 1607
f2 632 3421 195 1607
g1 758 3421 234 1928
g2 758 4477 234 1928
g3 758 4477 234 1928
h1 3170 23481 960 7898
h2 3170 23481 960 7898

Table 5.5: DP and Master Problem Dimensions

It can be seen from Table 5.5 that there is a large number of nodes and
edges in each ship subproblem. When solving the DP for these subproblems,
we need to go through all of these nodes and edges repeatedly to update cost
functions on each node in the network. As a result the major solving time in
all of the examples is used to solve the ship subproblems. The computational
results are shown in Table 5.6.

Table 5.6 gives the number of branch-and-bound nodes used to find
the optimal discrete solution, the total number of columns generated from
the subproblems, the total solving time, the elapsed time for solving the
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EX B&B nodes Columns time total time sub Master iters
a1 6 56 0.8 0.6 24
b1 78 1251 13 11 497
b2 177 3079 31 25 1407
b3 219 4204 47 41 1973
c1 81 2435 20 18 879
c2 87 3948 26 21 1633
c3 237 4757 57 48 1978
d1 564 6206 120 103 2649
d2 63 1353 15 14 284
d3 750 6945 138 105 2954
f1 405 9034 439 379 3799
f2 138 3623 126 118 1181
g1 342 7241 403 352 2805
g2 624 11557 705 611 4731
g3 132 4109 181 161 1298
h1 3598 30753 3690 3112 43850
h2 2987 31983 3371 2958 40791

Table 5.6: Computational Results without Tolerance

subproblems and the total number of column generation iterations in the
master problem.

Examples a1 to c3 are relatively small and can be solved within a minute.
However, when the problem size is increased, the solving times for the later
examples increase sharply. Another factor which may effect the solving time is
the initial storage levels and demand situations. For instance, example f1 and
f2 have the same problem structure, but different initial storage levels and
demand situations, and f2 is solved much faster than f1. This is because the
initial storage levels and demand situations are related to the number of visits
to each port in each scenario tree node. If there is sufficient initial storage at
a port, fewer visits may be required, which reduces the length of the visiting
sequences for ships and makes the problem easier to solve.

As previously discussed, because of the size of the DP networks, the major
solving time in each example is used to solve the ship subproblems, and Table
5.6 indicates that around 75% – 93% of the total time is used solving the
subproblems. Here we solve subproblems in a parallel way so as to reduce the
total solving for the subproblems.

When we consider the tolerance of 5%, a possible improvement of solving
performance can be expected with possibly worse objective values. Here the
tolerance is defined as following:
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OPTval − LBmin

IPSol
≤ 5% (5.30)

This means that the branch-and-bound algorithm will be stopped if the
current minimum lower bound is within a 5% range of the current stored
IP solution. Table 5.7 shows the comparisons between the results with the
tolerance of 5% and the results without using tolerance. The figures shown in
the table give the percentage improvement on number of branch-and-bound
nodes and number of columns generated, as well as the percentage of how
much the objective values get worse by using the tolerance.

EX B&B nodes Columns Objectives
b1 0 % -0.8 % 0 %
b2 -6.78 % -9.03 % 3.03 %
b3 -19.18 % -21.79 % 0 %
c1 -7.41 % -12.65 % 0 %
c2 0 % 0 % 0 %
c3 0 % 0 % 0 %
d1 -26.8 % -19.1 % 0 %
d2 -39.3 % -22.1 % 1.3 %
d3 -20.8 % -16.5 % 0.5 %
f1 -30.9 % -33.2 % 0.7 %
f2 -45.65 % -34.67 % 0 %
g1 -15.9 % -17.9 % 1.0 %
g2 -34.13 % -40.21 % 3.86 %
g3 -38.73 % -31.39 % 0 %
h1 -19.07 % -12.54 % 4.3 %
h2 -20.1 % -30.17 % 4.7 %

Table 5.7: Comparison between the results with and without tolerance

Some detailed solutions are given based on two of the above examples. In
example c1, there are 5 ports, and ports A, B and C are customer ports and
ports D and E are supply ports. The left hand side of Figure 5.21 shows the
scenario tree of the example, and the demand trend changes in each scenario
tree node. The tree of routes on the right hand side of Figure 5.21 shows the
ship routes in the solution of c1. In the figure, ships choose different routes
according to the different demand situations in each period. For instance,
ship 1 visits the different ports in the upper and lower cases of period 2, since
in the upper case the demand for port A and B goes up while the demand
for port C goes down, and in the lower case the demand situations are just
the opposite. In period 3, ship 1 does nothing in the lower case, and this is
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Figure 5.21: Solution c1

because all of the demands are satisfied in the case so that there is no need
to travel any further.

Figure 5.22 shows the optimal solution for example b1. The physical
routes, inventory levels and quantities on board ships are shown. The changes
in the storage of each consumer port and on ships as a function of time can
be clearly seen. In period 1, ship 1 sails the route D → A → D. There is a
unloading service made by the ship at port A so that there is an increase in
the storage level at port A. There are also two visits made by ship 2 to port
C, so the storage level of port C goes up twice during the period. There is
no visit to port B for the whole period, and the stock level of port B goes
down throughout the period because of the constant demand rate. A similar
situation can be seen in period 2 from the same figure.

5.13 Summary and Discussion

This chapter presents the decomposition formulation model for the stochastic
ship routing problem, and the branch-and-price algorithm is used to solve the
problem. A column generation method is used to solve the node problem
on each branch-and-bound node. On each node, a master problem is built,
which has the similar format as the set partitioning formulation, but together
with a group of inventory constraints. The master problem is solved by linear
programming by calling CPLEX 10.0. A set of subproblems is also built, one
for each ship, to generate promising columns for the master problem. The
subproblems are formulated as a dynamic programming problem and solved
by labeling method introduced in Desrochers and Soumis 1988a, Desrochers
and Soumis 1988b and Desrosiers et al. 1995.

In order to test the model, a group of examples are generated and the
computational experience shows that the solving time increases rapidly with
problem size and is also influenced by initial storage levels. The major
solution time is used to solve the subproblems. Because the subproblems are
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Figure 5.22: Solution Example b1
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independent each other, they are solved in parallel using OpenMP. Because
of the large size of the stochastic model, the stochastic ship routing problem
is a very hard combinational problem, and problems of a very large size can
still not be solved, however the method developed in this chapter are much
more efficient than the MIP formulation given in Chapter 4.
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Chapter 6

Extension Models

In Chapter 5, the decomposition model of the stochastic ship routing problem
is presented and its solution by Branch-and-Price algorithm is described.
Based on this model, several extensions of the original model are described in
this chapter. These extended models deal with more realistic situations in the
real world shipping industry. Rest of the chapter has the following sections.
A variable speed model is given in Section 6.1. This model allows ships to
sail at different speeds on different legs of their routes. Section 6.2 presents
a divert model, which allows ships to divert during sailing. In the stochastic
model, demand information is not known until the beginning of a period, but
the traveling decisions may have already been made before the information is
revealed, so once the demand information is known, ships may need to change
their destinations. The divert model presented in this chapter allows ships to
sail into some central position between the possible destinations and decide
the direction of sailing after knowing the future demand. In Section 6.3, a
model with bonus for additional work during idle time is introduced. Some
ideas about building the model are discussed but not implemented.

6.1 Variable Speed Model

6.1.1 Introduction

In most of the literature about ship routing problems, the ship speed is
assumed to be constant and the corresponding traveling time between any
two ports in the transportation network is fixed. In the real shipping industry,
each ship is designed for a particular speed when it is built, but it is able to sail
at other speeds. In Chapter 5, ships always sailed at their speed, though they
were able to delay their arrival by an arbitrary amount. However the cost of
a journey was always the same and the minimum time for a journey was fixed
by the ship’s speed. However, if the ship speed can be varied the schedule
may be improved by sailing at different speeds between different ports. Hence
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the variable speed model is a more general case of the ship routing problem
and the fixed speed model is a special case of the variable speed model.

As a ship’s speed increases from its design speed the traveling time to cover
a fixed distance decreases but the cost of fuel increases. On the other hand, if
a ship’s speed decreases from its design speed the traveling time increases and
the cost of fuel decreases. The fuel cost to travel unit distance, C̃v, in time t̂v
is usually assumed to be of the following formula:

C̃v =
β

t̂3v
(6.1)

where β is a constant. The formula says that the traveling cost is inversely
proportional to the cube of the traveling time. For two ports a distance Lij,
the traveling time between the ports is tijv = Lij t̂v. Then the traveling cost
from port i to port j can be calculated as following:

C̃ijv = LijC̃v

= Lij
β

t̂3v

= Lij
β

(tijv/Lij)3

=
βL4

ij

t3ijv
(6.2)

In practise, we add an additional item into above formula to represent any
additional cost caused by operations.

C̃ijv = θ̃ +
βL4

ij

t3ijv
(6.3)

An example of the cost function over traveling time is illustrated in
Figure 6.1. This is a nonlinear decreasing function which makes the problem
nonlinear.

In the variable speed model, we again use a set of discrete small time
slots, which are much shorter compared with the whole planning period.
By using these small time slots we can handle the variable speed situations
well. Difference between two different speeds can be represented by the
traveling time between two ports covering different number of small time
slots. Furthermore, the master problem may take the average of more than
one columns as the solution, and the local optimization model can be used to
generate the optimal speed (or arriving time) in our problem. Therefore, our
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variable speed model (2)

solution of the variable speed model can be different from the discrete points
and mainly reflect the optimal speed.

In the rest of the section, Section 6.1.2 shows the changes made to the
original model to build the variable speed model. Section 6.1.3 gives details of
a mathematical formulation of a local optimization model. The computational
results are given in Section 6.1.4.

6.1.2 Changes to the Original Model

The original decomposition model consists of two main parts, the master
problem and a set of subproblems. To allow for the variable speed in the
model, some changes have to be made to the subproblems, but there is no
change to the master problem. The major difference between the original
DP and the DP for the variable speed model is that different traveling cost
functions are used on the traveling edges in the DP network. In the original
DP, the traveling cost is constant, while in the variable speed model the cost
function is a decreasing convex function (or a piece-wise linear function as an
approximation). See Figure 6.2 for example.

In Figure 6.2, curve 1 shows the edge costs in the original DP network.
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Because the traveling cost is fixed, the cost function is a horizontal line. In
this case, the minimum traveling time between port i and j for a ship is T̃ij

with fixed traveling cost C̃ij. Any transition time greater than T̃ij means that
the ship sails for T̃ij and then waits at port j without any waiting cost. Curve
2 shows the traveling cost function in the variable speed model. There are
lower and upper bound of traveling time which correspond to the highest and
lowest sailing speed of the ship. After the highest traveling time t̃u, the cost
function goes flat because ships can delay without any cost after sailing with
the corresponding lowest speed between two ports.

The computational experience of the original model showed that the major
solving time is spent on solving the ship subproblems. To prevent the solution
times increasing significantly we discretize the traveling times in the same way
as for the constant speed case. However there is still more work than in the
constant speed case because we can no longer use only the minimum travel
time but in the variable speed case all times between the slowest and highest
mush be examined.

When updating costs in the variable speed model, we consider each
possible traveling time between two nodes in the DP network and get the
corresponding traveling cost by checking the cost from the cost function.
Figure 6.3 illustrates the updating process.
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In the example, we calculate the cost of node l at time t0 using the cost
function of node l′. From Figure 6.3, the transition time between t0 to t1,
t0 to t2 and t0 to t3 are T1, T2 and T3 respectively. Then according to the
cost function on the edge l → l′, the traveling costs are C̃ll′(T1), C̃ll′(T2) and
C̃ll′(T3). Then the temporary cost at time t0 can be calculated as following:

θ(t0) = min{f̃l′(t1) + C̃ll′(T1), f̃l′(t2) + C̃ll′(T2), (6.4)

f̃l′(t3) + C̃ll′(T3), ...}

The use of discrete traveling times in a strictly convex cost function can
lead to discretization error. We may be not able to find the local optimal
solution when the cost function is nonlinear even when taking the average of
discrete values. This can be overcome by using a local optimization to find
the solution. This will be discussed in detail in Section 6.1.3.

As discussed in Chapter 5, there are two types of sum-up nodes ( i−j and
• i) in the DP network. Because the demand information is revealed when a
ship arrives at a • i node, decisions made on the corresponding 3 nodes linked
with • i are: (1) which physical port to visit in the next period and (2) when
to start the service at the destination port. In this case, ships can choose their
speeds along the outgoing arcs from¦• nodes. See the left part of Figure 6.4
for example.

However, in the example shown in the right part of Figure 6.4 since no
future information can be known when a ship arrives at i−A node, decisions
have been made on the corresponding¦ nodes without any knowledge of
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future demands. Therefore, the ship has to take the same action on both¦
nodes until the boundary of the period. The same action here means that the
ship has to choose the same destination port in all scenarios, and it has to sail
at the same speed before the end of current period. The ship has to choose
the same speed on the outgoing arcs from both¦ nodes to port A before the
period boundary, but after the boundary, the ship can choose different speeds
according to the known demand information in different scenario demand part.
This separates the journey from port i to A into two segments. Because we do
not allow ships to change their speeds during a single journey, this situation
does not fit with our model.

When we implement the variable speed model, we do not allow a choice
of speeds when a ship crosses a period boundary. We make an assumption
that every time a ship crosses the period boundary via a i−j node, the ship
can only sail at a single fixed speed, and cannot change its sailing speed at
the period boundary. Doing this makes the solutions of the variable speed
model sub-optimal instead of optimal. The computational results given in
later section are based on this assumption.

To avoid this sub-optimal behaviour we could introduce a set of dummy
points along the arcs from¦ nodes to port A in the right part of Figure 6.4.
See Figure 6.5 for example. When a ship leaves port i, it can choose one
speed to sail towards port A, and arrive at dummy point j at time Bk (the
end boundary of current period). Then along the journey from point j to port
A, the ship can change to another speed and sail to port A according to the
different demand information. By considering this situation we can find the
optimal solution from the variable speed model. This case with the dummy
points on the arcs crossing the time period boundary is a special case of the
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diverting model which will be introduced in Section 6.2 later.

6.1.3 Local Optimization

When we solve the variable speed model, we discretise the traveling time in
the cost function of each edge in the DP network. So the ship subproblem
can only generate the tree of routes with the discretised traveling time. This
however does not mean that we can only find solution with discrete value
of traveling time. The master problem can choose several columns with the
same physical route but different times and use average of these columns as
the solution. The linear combination of these columns gives a solution with
traveling times which may be not on the discrete grid. Then a question caused
by this is whether or not the average gives the optimal solution.

Obviously, if the cost function between the traveling times is a straight
line, the average of the columns with the traveling times gives the correct
cost. However, if the cost function is strictly convex between these times, the
average of the two columns has higher cost than the correct one. This is shown
in figure 6.6. We can clearly see that there is a gap between the average value
and the real value in the strictly convex case.

In order to avoid this error, we can do a local optimization in which given
a set of trees of routes for each ship, the optimal timing and load quantities
can be found by solving a NLP. Every time the master problem is solved,
we need to check the solution. We use this local optimization if there are
several columns sharing the same physical tree of routes. This technique
can be used in addition to DP to generate columns for the master. We
give the formulation of the local optimization below. By solving the local
optimization model, we try to find the optimal start service time, traveling
time along each edge and the loading quantity based on the physical routes
of the current solution found by the master problem.

Sets:

• Rv — set of routes associate with ship v

• Esv — set of edges included in route s for ship v
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• Nsv — set of port visit included in route s for ship v

Parameters:

• Xsv — 1 if ship v takes route s, 0 otherwise. But this value can be
fractional between 0 and 1.

• Yimk — 1 if port visit (i,m, k) is visited by a ship, 0 otherwise

• Bk — upper bound of the time period which includes scenario tree node
k

• Bk — lower bound of the time period which includes scenario tree node
k

• Kv — capacity of ship v

• S̄P imkjnlsv — sailing time for ship v at its lowest speed between (i,m, k)
to (j, n, l)

• SP imkjnlsv — sailing time for ship v at its highest speed between (i,m, k)
to (j, n, l)

Here, Xsv does not need to be integer value. The value of Xsv is the same
as the weight of schedule s in the solution of the master problem. It therefore
can be a fractional value between 0 and 1.

Variables:

• tsailing
imkjnlsv — traveling time for ship s from port visit (i,m, k) to (j, n, l)

along route s

• timksv — start service time for port visit (i,m, k) made by ship v in route
s

• tSimk — start service time for port visit (i,m, k)

• qimksv — loading quantity for port visit (i,m, k) made by ship v in route
s

• qH
imk — loading quantity for port visit (i,m, k)

• gimksv — quantity on board ship v when the ship arrives port visit
(i,m, k) in route s
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Formulations:

min
∑

v

∑
s∈Rv

∑
(i,m,k)→(j,n,l)∈Es

fij(t
sailing
imkjnlsv) (6.5)

∑
v

∑
s∈Rv

Xsvtimksv + (1 − Yimk)Bk = tSimk ∀(i, m, k) (6.6)∑
v

∑
s∈Rv

Xsvqimksv = qH
imk ∀(i,m, k) (6.7)

timksv + tsailing
imkjnlsv − tjnlsv ≤ 0 ∀v, s ∈ Rv, (i, m, k) → (j, n, l) ∈ Esv(6.8)

SP imkjnlsv ≤ tsailing
imkjnlsv ∀v, s ∈ Rv, (i,m, k) → (j, n, l) ∈ Esv (6.9)

tsailing
imkjnlsv ≤ S̄P imkjnlsv ∀v, s ∈ Rv, (i,m, k) → (j, n, l) ∈ Esv (6.10)

Bk ≤ timksv ≤ Bk ∀v, s ∈ Rv, (i,m, k) ∈ Nsv (6.11)

gimksv + qimksv − gjnlsv = 0 ∀v, s ∈ Rv, (i,m, k) − (j, n, l) ∈ Esv (6.12)

qimksv ≤ Kv ∀v, s ∈ Rv(i,m, k) ∈ Nsv (6.13)

0 ≤ gimksv ≤ Kv ∀v, s ∈ Rv, (i,m, k) ∈ Nsv (6.14)

Inventory Constraints (6.15)

In objective function 6.5, fij is the cost function over traveling time for
the ships. If fij is a strictly convex function as shown in formula 6.3, the local
optimization problem is an NLP problem. However we can keep the problem
linear by using a linear piece-wise approximation to fij. We calculate the start
service time and loading quantity for each port visit in constraints 6.6 and 6.7.
If a ship sails along a route, the start service time of a visit should be less
than those of the later visits. This is shown in constraint 6.8. Constraints
6.9 and 6.10 give the lower and upper bound of the traveling time. And the
bounds for the start service time at each port visits are given in constraint
6.11. Constraint 6.12 is the balance equation of amount of gas on board the
ship. Constraint 6.13 means that the quantity of a single loading or unloading
cannot exceed the capacity of the ship, and constraint 6.14 gives that the
quantity on board a ship cannot exceed the capacity of the ship either. There
are also a set of inventory constraints 6.15 involved in the model so as to
keep the storage level within the lower and upper bound all the time. These
inventory constraints are the same as the inventory constraints of the original
model shown in Section 5.4. We do not repeat the formulations for these
inventory constraints again here.
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6.1.4 Computational Results

In order to test the variable speed model, some examples presented in Chapter
5 are modified and solved for the variable speed model. The only changes
made to formulate the variable speed model for the examples in Chapter 5
are in subproblems. As discussed before, each traveling edge in the network
is related to a decreasing nonlinear function.

In the variable speed model, ships can vary their speed and this can save
traveling costs, since a situation where the fixed cost model sails then delays
at the end of the journey, while the variable speed model can sail more slowly
and complete the journey in the same time but at lower cost. Also the variable
speed model allows the ship to travel faster than in the fixed speed model,
which may be worthwhile because the ship can leave more time for the future
journey and may get more savings later.

To build the cost function for the examples given in this section, we use the
formula 6.3 to calculate the cost at each discrete time point. This is shown
in Figure 6.7. Let the traveling time and cost in the original model be Tij

and Cij, then we choose an arbitrary value of δ to get the traveling time with
highest and lowest speed as following:

T l
ij = Tij(1 − 0.5δ) (6.16)

T u
ij = Tij(1 + δ) (6.17)
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Then we discretise the traveling time and calculate the cost at each discrete
time point as shown in Figure 6.7. These costs will be used when solving the
DP in the ship subproblems.

Table 6.1 shows a comparison of computational results between the original
and the variable speed model. In this case we take δ = 1.

Fixed Speed Variable Speed
BB Node Col time Obj BB node Col time Obj

b1 78 1251 13 1296.0 81 1363 18 1276.0
b2 177 3079 31 3300.0 345 4694 74 3089.3
b3 219 4204 47 2459.0 270 4494 70 2420.6
c1 81 2435 20 2699.2 151 3620 39 2531.2
c2 87 3948 26 2256.0 90 3882 35 2214.0
c3 237 4756 57 3408.0 251 6583 71 3037.0
d1 564 6206 120 3064.0 996 10255 225 2727.2
d2 63 1353 15 2185.3 108 1830 22 2090.4
d3 750 6945 138 2864.0 543 6029 118 2548.9
f1 405 9034 439 3022.0 411 8219 379 2928.9
f2 138 3623 126 3422.0 165 4790 192 2922.0
g1 342 7241 403 3145.5 195 5250 250 3099.7
g2 624 11557 705 2319.0 576 11350 683 2093.2
g3 132 4109 181 2854.5 198 4810 224 2723.7
h1 3598 30753 3690 6738.3 — — — —
h2 2987 31983 3371 7020.0 — — — —

Table 6.1: Comparison between original and variable speed model

In Table 6.1 we give the number of branch-and-bound nodes, number of
columns generated, elapsed seconds and objective values for each example
solved as the original and the variable speed model. From the results we can
see that by using discrete traveling time in the cost function, the variable speed
model does not seem to be more difficult to solve than the original model. We
get lower objective values for the variable speed model as expected.

In Table 6.2 we give a comparison between the results with and without
using local optimization. The only difference is the number of columns
generated when solving the problem. The model with local optimization
generates less number of columns in these examples.
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Without local-opt With local-opt
column column

b1 1534 1363
b2 4871 4694
b3 4582 4494
c1 4200 3620
c2 3912 3882
c3 6778 6583
d1 12013 10255
d2 1913 1830
d3 6572 6029
f1 9855 8219
f2 4903 4790

Table 6.2: Comparison between results with and without local optimization

6.2 Divert model

6.2.1 Introduction

Another option for ships besides varying their speed is to change their
destinations during sailing. In this thesis we call this the ‘diverting case’.
Since we may not know the future demand information before starting
a journey, it may be advantageous to change the destination once the
demand information becomes known. Therefore, developing a model based on
stochastic optimization which can predict possible diverting cases and design
the corresponding traveling schedules has the potential to reduce the traveling
costs.

In the deterministic ship routing problem, the average of demands is
calculated according to the historical data and used to solve the problem. For
example, the scenario tree on the left hand side of Figure 6.8 could represent
the possible demand situations, while the figure on the right hand side gives
the average of these demands.

The solution of the deterministic problem with average demands might,
for example, require a ship to sail from port C in period 1 to port A in period
2. However if the demand information is revealed at the beginning of period
2, and the demand in port B may be very high, then the ship may have to
divert to visit port B to meet the demand. This situation is shown in Figure
6.9. We can see that the diverting case causes higher traveling costs than the
non-diverting case. Because the future uncertainties are not considered by
deterministic model, the expensive traveling cost caused by diversion cannot
be avoided if a divert case happens.

In the stochastic ship routing problem, we deal with the problem based
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Figure 6.10: Divert: central points

on scenario tree by solving a deterministic equivalent of the stochastic model.
This allows us to predict the possible diverting cases and find a suitable way
to reduce the expected traveling costs. Once there is a possible diverting case,
ships can first sail to some point at sea between the possible destinations at
the end of the current period and decide which destination to go to at the
beginning of the next period when the demand information for next period is
known. See the Figure 6.10 as a continued example of Figure 6.9.

In the figure, the ship first sails to central point D, which is between ports
A, B and C. Once the demand information is known, it sails from D to either
port A or B. The total expected traveling cost of this is less than the cost of
sailing towards A and sometimes having to divert to port B, which is the case
shown in Figure 6.9.

In the original model of the ship routing problem we discussed before,
when a ship finishes the service at a port in period T, there are 3 actions the
ship can take: (1) it can sail to another port within the same time period and
do another service there; (2) it can wait at the current port until the demand
information for next period is revealed and decide the next destination to visit
in the coming period; (3) it can leave the port immediately after the service
and sail to another port but arrive at the next port in next period. When
we allow ships to divert, the case (3) is replaced by the ship sailing toward a
central point and the decision of the destination is left until the beginning of
the next period. See Figure 6.11 and 6.12 for example of the non-divert and
divert cases.

In the examples, there are two demand situations in period 2. In scenario
node 2, demand at port A is high and the port needs to be visited shortly
after the beginning of period 2, while in scenario node 3 no visit is needed to
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port A but port B needs a visit within period 2. Therefore, after the journey
in period 1 a ship should sail to port A before the end boundary of period 1
so as to arrive at port A before the stock runs out. This is action 3 mentioned
above. So in Figure 6.11, the ship has to sail to port A in both scenario node
2 and 3, and sail to port B to meet the demand after the visit to port A in
scenario node 3. In this situation, extra traveling cost occurs because of the
additional visit to port A in scenario 3. However, in the divert model ships
are allowed to sail to central points in the sea when crossing the periods. So
in Figure 6.12 the ship can sail to a central point among the ports until the
future demand information is known. Then the ship can sail to port A in
scenario node 2 and directly sail to port B in scenario node 3, which results
in a cheaper expected traveling cost than the case given in Figure 6.11.

Among these possible actions, when crossing the period boundary action
(2) has the best expected cost. It is cheaper than sailing to a central point
and diverting to the destinations. For example, in Figure 6.10, a ship sets out
from port C and has probability of P1 to sail to port A in next period and has
chance of P2 to travel to port B. Suppose that the traveling cost is proportion
to the distance. The expected cost is P1|AC|+P2|BC| if the ship takes action
(2), while it costs P1(|DC|+ |AD|) + P2(|DC|+ |BD|) if it does not wait for
the future information but chooses to sail to a central point D (Obviously we
have P1(|DC| + |AD|) + P2(|DC| + |BD|) ≥ P1|AC| + P2|BC|). However,
when the expected cost of the whole route is considered the diverting case
may be cheaper and in some case may be feasible when the non-diverting case
is infeasible. For example, if the planning schedule is tight for a ship so that
it has to visit some ports shortly after the beginning of next period and does
not have enough time to wait for the future information in the current period.
In this situation, the ship sails to a central point, which is a better choice
than the case that sailing to one port and diverting to another according to
the new coming information. This is the reason that we discuss the diverting
model here. Note that action (3) above can be regarded as a particular case
of sailing to a central point and diverting to the destinations and so does not
have to be considered separately. In this case, the central point is the current
port where the ship is in, so no sailing is involved.

In the real world, the forecast of the demand for product, such as oil
and nature gas, is mainly in a regular basis, normally once a month. This
provides us the possibility of building a stochastic model for the diverting case
according to the prediction of the future demand. Because we use scenario
tree to represent the future demand situations, our solution of the diverting
model may be effected by the structure of the scenario tree. If a ship decides
to leave the current port near the end of the current period, sails to another
port and arrives at the port in next period, the chosen central point for the
ship to divert may be very close to the current port, according to the solution
of the model. In the realistic world, the ship may not choose the central points
very close to the current port because doing that may not help much reducing
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the expected traveling cost. But if the ship leaves the current port at the
time that is not near the end of the period, then it will have more freedom to
choose the central point for diverting and the chosen central point may be far
away from the current port. In this case, there may be a possible saving of the
expected traveling cost. Therefore, when we use the divert model introduced
in this section, we may set a time interval (the upper bound of the interval
is the period boundary) and do not allow ships to divert if the current time
is within the time interval. Furthermore, if the forecast is not coming in a
regular basis, we can rerun the diverting model once the new forecast arrives
so as to let ships to take better schedules according to the future demand
information.

The rest of the section is organized as follows: Section 6.2.2 presents the
divert model based on the decomposition approach and solved by column
generation method. And computational examples are shown in Section 6.2.3.
Finally in Section 6.2.4 we introduce an alternative method for generating the
central points a priori.

6.2.2 Divert Model with Decomposition Format

As discussed before, in the divert model instead of making its decision of which
port to sail to next before the next period demand information is known, a
ship can leave the current port immediately and sails to a central position in
the sea until the future information is known. Then it can make the decision of
the destination according to the known information. We introduce the divert
model with the decomposition formulation in this section.

In order to add the diverting action into the decomposition formulation,
we do some changes to the ship routing subproblems but nothing is changed
in the master problem. In the original subproblems, ships can cross from one
period to another by sailing to two types of sum-up nodes and then splitting
into the corresponding demand scenario parts in the network. Sum-up nodes

i−j refer to the action that a ship leaves the current port, i, immediately
after the service and sails to the destination port, j, in the future period
before the future demand (action 3 mentioned in Section 6.2.1), while sum-up
nodes •i refer to the action that the ship waits at the current served port, i,
for the future demand information, and then sails to the destinations in the
next period (action 2 mentioned in Section 6.2.1). In the divert model, there
is another action, central point action, which means a ship sails to a central
point immediately after the current service and diverts to the destinations
when the demand information is revealed. Since central point action is better
than action 3, a ship will no longer take the action 3 in the divert model.
Because action 2 can be regarded as a particular case of the central point
action, (in which the ship chooses the current port as the central point, sails
to it with 0 traveling time and waits for the future information in the position)
we can use a single node for the central point action instead of sum-up node
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i−j and • i in the network. This is illustrated in Figure 6.13.
A vertical line inside of means the central point sum-up node is fixed

on the period boundary but varied among different physical positions. Each
central point sum-up node refers to a group of positions in the sea where the
ship can arrive at the end of the current time period, and at which it gets the
future information and diverts to the destinations.

Again choosing the suitable central positions for a ship to cross the time
periods is important for the divert model and is not easy to do. It can increase
the size of ship routing subproblem a lot and so increase the solving time for
the subproblems. We cannot let ships choose any position in the sea as a
central point for diverting, so we introduce a grid network to the DP and
allow ships to choose suitable central points from a set of points on the grid.
A grid network is shown in figure 6.14 as an example. In the example, we
use the grid for the whole network space. The position in the network then
can be represented by grid points. When a ship chooses the central points in
DP, it can consider any possible grid point as candidate. The more detail grid
network we use, the better the solution will be. However, there is always a
trade-off between the quality of solution and problem size so that we have to
choose a suitable grid network for the problem.

Because there are several destinations a ship can choose at a central
point, the possible central points should be in between these destinations.
For example, suppose that there are five destinations considered, only the
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central points within the pentagon can be considered. This is shown in the
Figure 6.15. It is clearly that sailing to a central point F within the pentagon
ABCDE is better than sailing to a point G outside the pentagon. Note that
here we are assuming that there are no obstructions such as islands which
would prevent a straight line journey between any two ports. If this is not the
case a more general grid would be needed.

Associated with each possible central point in the grid network is a cost,
which is the expected cost to the final dummy node. An example of cost
function at the central point sum-up node in the divert model is given in
figure 6.16.

The cost functions at the central point sum-up node and at the
corresponding split nodes are the functions of the x and y coordinates of
the point, but do not depend on time as time is fixed at the period boundary.
The cost functions of other nodes except sum-up nodes and corresponding
split nodes in the diverting model are the same as those in the original model.
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When we update the cost function for the central point sum-up node from
the corresponding split nodes in DP, the cost of a grid point is calculated by
the sum of the cost at the same grid point on each split node linked with the
sum-up node. This is shown in Figure 6.17.

The cost at a split node is updated by considering start service nodes
linked with it. For each grid point at a split node, the cost is updated in the
same way as the original model. An example is illustrated in Figure 6.18.

Figure 6.19 shows the way of updating node costs from central point sum-
up nodes. For time T1 not all the grid points at central point sum-up node
can be used to update the cost, because some central points may be too far
away from the end service node for the a ship to arrive at the point before the
period boundary.

6.2.3 Examples and Discussion

In order to test the divert model using the decomposition formulation, several
test problems were built here. A different grid network is used for each of
these test problems. The information on these examples is listed in Table 6.3:

EX Ports Max Arrival Scenario Nodes in tree Planning Periods Branches Ships

B0-3 5 3 3 2 2 2
C0-3 6 4 7 3 2 3
D0-3 5 3 13 3 3 2

Table 6.3: Example Information

Here the examples with the same first letter are the same example but

112



Split node

Split node

sum−up node

Cost

Cost

y

y

Cost

x

x

x

y

Central point

Figure 6.17: Update cost function for central point sum-up node

Cost

x

y

A

Split node

time

time

Cost

Cost

T T1 2

T T3 4

node

node
Start service

Start service

s

s

Figure 6.18: Update cost function for split node

113



Cost

x

y

A

T1

B

time

Cost

Sum−up node
Central point

Figure 6.19: Update cost function for end service node from central point
sum-up node

with different size of grid network used in subproblems. ‘*0’ problems are
fixed speed and no divertion models. In table 6.4, we show the computational
results for these examples.

BB Nodes Columns Seconds Obj central points
B0 72 1663 61 1721.2 –
B1 150 2818 111 1654.2 12
B2 186 3517 191 1542.8 16
B3 207 3693 262 1398.6 30
C0 817 8178 419 3580.0 –
C1 1356 10657 603 3520.0 12
C2 1608 13871 760 3520.0 19
C3 2145 19020 965 3350.0 37
D0 1321 11681 805 5950.0 –
D1 1705 15887 1002 5780.0 16
D2 1728 16088 1027 5620.6 25
D3 2546 22350 1305 5550.0 47

Table 6.4: Diverting model examples

‘BB Nodes’, ‘Columns’ and ‘Seconds’ show the number of branch-and-
bound tree nodes used, number of columns generated for the master problem
and the elapsed solving time respectively. ‘central points’ gives the number
of central points considered in each example. The number of central points is
determined by the size of grid network used. Here we use three different sizes
of grid networks: the unit distances between two grid points are 1, 0.5 and 0.25
for problem 1, 2 and 3 respectively. From the computational results, we can
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see that a more detailed grid gives a better solution. From the table we can see
that the non-diverting case is easier to solve, but gives worse objective values.
The main reason for this is that in the non-diverting case, ships may sail to
a port without demand information so that when the demand information is
known, they have to visit additional ports to meet the demand requirements,
which results in more expensive traveling costs.

6.2.4 Finding Central Positions with a Pre-
Optimization Model

In the previous section, we discussed how to select central positions for the
divert case by introducing a discrete grid network. This way allows us to
keep the divert problems small enough to be solve, but we cannot ensure the
optimality of solutions because the optimal place to be at a period boundary
may not be one of the grid points. In this section, we introduce a method
to generate optimal central points for different situations of crossing period
boundaries by solving a group of nonlinear optimization problems a priori.
We first introduce the nonlinear optimization model based on an example,
and then the way of solving the subproblems is discussed.

Figure 6.20 is an example including two periods with three demand
secnario parts. There are four nodes in the network, node A, B and C refer
to ports and node D is the central point on the time period boundary.

Node A is in period k, and node B and C are in period k+1 but in different
scenario tree nodes. PAB and PAC are the corresponding probabilities related
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to the scenario tree nodes. A ship leaves node A after the service, sails to a
central point and diverts to node B or node C. Let TA be the time the ship
to be leaving port A, Bk the end of scenario node k and TB and TC the arrival
times at port B and C. For each possible value of Bk − TA, TB − Bk and
TC − Bk the problem is to find the position in node D which minimizes the
expected traveling cost.

As discussed, the sailing time between node A and D should be no more
than Bk−TA. But it does not mean that a ship has to use Bk−TA to sail, it can
arrive node D at any time before Bk and wait for the new demand information
unveiled. Similarly for edge (D,B) and (D,C), a ship can spend at most
TB − Bk and TC − Bk on sailing along edge (D,B) and (D,C) respectively.
Since ships can change their speeds during sailing in the divert model (suppose
the highest speed is V̄ ), they can arrive at any position at sea within a circle
of radius V̄ T within a time T . Back to the example, the biggest distance a
ship can sail from node A, B or C is V̄ (Bk −TA), V̄ (TB −Bk) and V̄ (TC −Bk)
respectively. Figure 6.21 illustrates the details. We can see that the possible
central points should be in the shaded area, the intersection of the area within
the circles.

The cost function of traveling was introduced in Section 6.1.1. We can use
the cost function when we build the pre-optimization model here.

Now we can introduce the model which is used to minimize the traveling
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Figure 6.22: Example of finding central positions with pre-optimization

cost. We assume that N̄ is the set of nodes which are not central points, in
the network and Ē is the set of edges in the network. Let a be the index
of a central point in the network. Pij is the probability associated with edge
(i, j). Let parameter (xi, yi) be the coordinates of port i, and let Ti be the
start service time at node i. Finally, let V be the lowest speed for ships and
V̄ be the highest speed for sailing a unit distance.

There are several variables involved in the model. Let (x, y) be the
coordinate of the central point, dij ((i, j) ∈ E) the length of edge (i, j) and tij
the traveling time on edge (i, j). Then we assume the traveling cost on edge
(i, j) is a function of distance dij and traveling time tij, hij(dij, tij). All these
parameters and variables are shown in Figure 6.22 for an example.

In the example, N̄ = {A,B,C} and Ē = {(A, a), (a,B), (a, C)}. The
formulation of the model for the example is:
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min
∑

(i,j)∈Ē

Pijhij(dij, tij) (6.18)

s.t. d2
Aa = (x − xA)2 + (y − yA)2 (6.19)

d2
aB = (xB − x)2 + (yB − y)2 (6.20)

d2
aC = (xC − x)2 + (yC − y)2 (6.21)

0 ≤ tAa ≤ Bk − TA (6.22)

0 ≤ taB ≤ TB − Bk (6.23)

0 ≤ taC ≤ TC − Bk (6.24)

tijV ≤ dij ≤ tijV̄ (i, j) ∈ Ē (6.25)

Objective 6.18 minimize the total expected traveling cost. Constraints
6.19 – 6.21 calculate the distance dij. Constraints 6.22 – 6.23 ensure that for
each node in the network, the arrival time should be no later than the start
service time. The lower and upper bounds for the variables dij are calculated
in Constraints 6.25. Figure 6.21 shows the situation of this constraint.

When solving a DP, each time we update node cost by crossing the
boundary of a time period, model 6.18–6.25 is solved to find the best central
point. Doing this requires us to solve a large number of nonlinear optimization
models during solving DP. Instead before we start solve a DP, we can consider
all the possible situations, including ports in different scenario nodes and start
service time at each node and solve the nonlinear model. The optimal central
points for all possible situations can be stored in a list. When updating
node costs, we can just simply refer to the pre-solved results to get the best
central points. So this solution method can fit well with our decomposition
approach. Generating central points by this method requires extra time for
solving a group of nonlinear optimization problems, but it can provide us
the optimal central points for different situations of crossing the time period
boundary. We do not implement this pre-optimization model in the thesis.
The implementation of this model will be part of the future work.

6.3 Model with Bonus for Additional Work

During Idle Time

In the original model we have introduced in Chapter 5, ships are allowed to
wait outside ports without additional costs. Section 6.1 gives an extension
model allowing ships to choose traveling speed during sailing. Because of
the lower traveling cost with lower traveling speed, ships will reduce their
speeds to save traveling cost instead of waiting outside ports. Another possible
extension to the original model is to allow ships to use the idle waiting time to
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do additional work (or tasks) to get extra income. This extension is introduced
in this section. In real shipping industry, it is a good way to take advantage
of waiting time to reduce costs or get additional reward. However, ships may
not be able to do additional work during any idle time. So there are some
limits for this activity:

• If the idle waiting time is short, it is impossible to do extra traveling to
other ports.

• If there is one type of bulk commodity on board a bulk ship already, it
is impossible for the ship to do the additional work transferring another
type of bulk commodity because two different bulk commodities are not
allowed to be mixed.

• For particular use ships, such as LNG tankers, it is not possible to do
the addition work carrying other commodity even a ship is empty on
board because the particular design of the ships is not suitable for these
commodities.

• For bulk ships, it may cost a lot to clean up a ship before and after
the additional work if the ship transfers a different bulk commodity.
Therefore, ships may not do some work because of the expensive costs.

A ship can sail to a port, use waiting time to do additional work and
return to the port to continue the scheduled travel. In the other case, a ship
can also do additional work after the service to the current port, but it will
sail to another destination port instead of going back to the port it was in
before doing the work. There are two corresponding ways for ships to get the
additional work information: (1) When a ship arrives a port, it can get local
information about additional tasks. (2) Some information is known for ships
anywhere, they can decide to take over some tasks anytime subject to the
availability of these additional tasks.

In rest of the section we discuss possible ways to implement this based on
our model. Several possible situations of the model including getting reward
by doing extra work in idle time is listed below.

(1) The first situation is currently what we are doing in our original model.
Giving a reward for completing their last service early encourages ships
finish the services as early as possible. This situation could be easily
extended to a model giving a reward at the end of every period. The
changes need to implement this are only in the subproblems. However
ships do not need to be empty to get this reward in the model, so this
situation does not fit well with ships going to do the tasks with some
commodity else.
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(2) Giving a reward proportion to non-sailing time (with no lower bound of
idle time) is the second possible way. The travel cost remains convex.
Ships do not need to be empty to get the reward, and reward is the same
for lots of small idle periods as for big idle periods of the same total time.
This situation fits well with doing something else in the idle time. For
implementation it is easy to be dealt with. No change is needed in the
master problem. Without the lower bound of idle time, there will be no
sudden jump-down in the cost function so that we do not need to do
extra branching in the branch and bound algorithm.

(3) As the situation 2, we still give a reward proportion to idle time, but
now with a threshold for idle time before a reward is given: i.e. there is
a lower bound of idle time such that there is no reward given if the idle
time is less than the lower limit. The reward is proportion to idle time
if the non-sailing time is long enough. The threshold idle time makes
the problem non-convex, there are jump-downs in the cost function.
The master problem may choose a solution which is an average of two
columns. And these two chosen columns have the same physical routes,
but one column is without reward while the other has reward. So it
may require more branching in the master problem to avoid this. It
will encourage idle time to come in bigger chunks which may give more
chances of finding alternative work.

(4) We can specify some non-inventory ports in the model, which are
different from the ports with inventory bounds. These non-inventory
ports can be visited between the inventory bounded ports. Then ships
can buy and sell arbitrary amounts of commodity at non-inventory ports
at given buying and selling prices and these ports can be visited any
number of times. There are two possible situations: (a) Ships are empty
at start and finish of visits to non-inventory ports. This gives the ship
freedom to do any type of work and get reward. We only consider
the time to finish the work when we try to decide which work to take.
(b) A Ship has some amount on board at start and finish of visits to
non-inventory ports. This requires the ship do the work transporting
a certain amount of the same commodity as the one already on board
between non-inventory ports. We need to consider both the time doing
the work and the amount of commodity to transfer.

Again changes only happen in the subproblems. However, costs could be
non-convex because of the sudden jump-down in costs, so it will require
more branching to ensure that different physical routes containing non-
inventory ports are not mixed. Mixing the same physical routes in the
master problem is valid so does not require branching.

(5) This situation is the most difficult situation, in which we consider the
time windows on non-inventory ports. There is a number of cargo
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transfers of buying and selling opportunities within time windows.
Because of the time windows, repeats of the same opportunities are not
possible, so they have to be monitored in the master problem with extra
constraints. If the extra opportunities are available throughout a period
(this means that we set the time windows for these opportunities to the
whole period) but with an overall upper bound on the total amount.
Then they can be dealt with by adding inventory constraints in the
master problem for each non-inventory port or each transport leg. Non-
inventory port cost would be similar to the inventory port case but there
would be no flow into or out of the port in the period except that ships
visit them and transfer amount of commodity.

All these five situations discussed above give possible ways to deal with the
case of extra reward for additional work during idle time in our decomposition
model. Implementation of these situations is not included in this thesis but
will be for future work.

121



Chapter 7

Summary and Conclusions

In this thesis, we have discussed a stochastic ship routing problem with
inventory management. This problem involves a fleet of ships transferring a
single commodity from a set of supplier ports to a set of consumer ports. The
demands at consumer ports are uncertain, and the objective of the problem is
to find the schedule for each ship so that the consumer demands are satisfied
and the total traveling cost is minimized. Different solution approaches for
the problem have been studied in the thesis. The computational results show
that the problem is a complex combinatorial problem and difficult to solve,
however by using a column generation method medium sized problems can be
solved to proven optimality.

The initial approach we took to the problem formulated as a mixed integer
programming model. In the model, two binary variables were used to control
the ship status in the traveling control constraints, one for ship positions
and the other for ship sailing information. A group of continuous variables
in the inventory constraints are used to monitor the stock level in the port
inventory as well as on board each ship. The MIP model was written in AMPL
and solved directly by calling the commercial optimization software package
CPLEX 10.0. Formulating the problem by MIP model is quite straightforward
and very easy to understand and implement. However, our computational
results show that it is very time-consuming to solve the problem using this
MIP formulation even for some small sized examples.

In order to solve bigger problems within a reasonable time, we have
proposed a Branch and Price algorithm. A master problem is formulated
as a set partitioning model with additional inventory constraints, while
subproblems, one for each ship, are solved by stochastic dynamic programming
to find the least reduced cost columns for the master problem. The optimal
discrete solution is found using Branch and Bound, and a column generation
method is used to solve the relaxed LP iteratively in each Branch and Bound
node.

As far as we know this is the first time the stochastic ship routing problem
with uncertain demands and inventory management has been studied. A
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similar deterministic problem has been studied before and our decomposition
approach when applied to deterministic problem is similar to that, the major
difference being that we include the inventory constraints in the master
problem instead of dealing with them in a separate subproblem. We do this
because that the relaxed LP can be solved very efficiently by CPLEX and even
including the inventory constraints, the time for solving the master problem
can still be negligible. In the deterministic problem the optimal solution is
a schedule for each ship and there is a column in the master problem for
each ship schedule that has been generated. In our stochastic formulation the
optimal solution is a tree of schedules for each ship and there is a column in
the master problem for each tree of schedules that has been generated.

To solve the ship routing subproblems, a backward set labeling algorithm
is used to solve the stochastic dynamic programming problem. The method
we use is analogous to the methods that have been used in the deterministic
case, but have had to be extended to deal with the scenario branching in the
stochastic case. The minimum expected costs from the start node to the final
dummy node is calculated. Because of the complicated DP network, there
are many possible cycles (which are not feasible in a solution). 2-cycles are
eliminated when solving the subproblems and other cycles with length greater
than 2 are eliminated during the Branch and Bound algorithm by splitting
the time windows. Because the ship subproblems are independent of each
other, OpenMP is used to solve these subproblems in parallel on a multi core
computer.

Our decomposition method is able to solve medium sized examples. A set
of test examples with different geographical port layouts, number of ships,
scenario tree and initial storage situations were built and were solved by the
decomposition method. Our computational experience shows that around
75% – 93% of the elapsed time to solve the problem is used to solve the
ship subproblems, even when examples are solved in parallel. The rest of the
elapsed time was used to do Branch and Bound administration and solve the
LPs. We cannot however solve large problems. Because of the need to model
on entire scenario tree, the stochastic problems become large, even for a small
transport network.

To capture more realistic situations in our problem, we have introduced
several extensions to the original model. A variable speed model allows ships
to use different speed for different legs of the journey and to change their
traveling speeds during a single leg of the journey. This flexibility gives a
fuel cost saving because the fuel cost depends significantly on the speed.
To implement the variable speed case, changes have be made to the ship
subproblems. Local optimization was used to find the solution with optimal
timing and quantities loaded. Compared to the original model, lower objective
costs are found using the variable speed model. The main reason for this is
that ships can slow down to save fuel instead of sailing in high speed and
waiting outside ports in the original model. Our current version of the variable
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speed model can only get a sub-optimal solution. This is because only a fixed
speed is allowed for the trips that cross the period boundaries. However, this
problem can be resolved by the divert model which we introduced.

In the divert model ships can change their destinations and speed during
sailing. This is advantageous on the leg of the journey where new demand
information becomes available during the leg. In this thesis we have given
examples to show why diverting case occurs. Three different possible solving
approaches are discussed. An MIP model was easy to formulate. This involves
first calculated the possible diverting points and added them into the model
as dummy ports without demand. Adding these dummy ports makes the
model very difficult to solve. However a much better approach is to extend
the decomposition formulation. We introduced a new type of sum-up node in
the DP network and used a discrete grid of points as possible central points
for diverting. Then we build a new form of cost function for these new sum-up
nodes based on the discrete grid network. Another possible way based on the
decomposition formulation was to find central positions with pre-optimization
model. A group of nonlinear optimization problems can be solved to find
optimal diverting position a priori by considering all the possible journey
times when crossing a period boundary.

Another extension model has been introduced in the thesis, but not
implemented. This is a model that gives a bonus for a ship doing additional
contract work during idle times of its schedule.

In future work, we will study a set of possible methods to speed up
the column generation process. Generating columns for the master problem
heuristically is one possible way to speed up the solution. This may be
specially useful for problems which are too large to solve to proven optimality.
If an IP model is built for generating the least reduced cost columns for the
master problem, it can avoid cycles in the solutions automatically. However,
when we tried this, the IPs took a very long time to solve. The methods which
let us solve the IP models more efficiently are worth studying in the future.

As for the diverting model, methods will be explored to speed up the
solution. Computational experiments will be done for the model with bonus
for additional work during idle time. One further possible area for future work
based on the models introduced in this thesis is to integrate these models
together so that we can capture larger and more realistic situations in the
shipping industry.
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