
A Layered AI Architecture for Team Based

First Person Shooter Video Games

Phil Mike Graham

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2011

Abstract

In this thesis an architecture, similar to subsumption architectures, is presented which

uses low level behaviour modules, based on combinations of machine learning tech-

niques, to create teams of autonomous agents cooperating via shared plans for interac-

tion. The purpose of this is to perform effective single plan execution within multiple

scenarios, using a modern team based first person shooter video game as the domain

and visualiser. The main focus is showing that through basic machine learning mech-

anisms, applied in a multi-agent setting on sparse data, plans can be executed on game

levels of varying size and shape without sacrificing team goals. It is also shown how

different team members can perform locally sub-optimal operations which contribute

to a globally better strategy by adding exploration data to the machine learning mech-

anisms. This contributes to the reinforcement learning problem of exploration versus

exploitation, from a multi-agent perspective.

iii

Acknowledgements

I would like to acknowledge first and foremost my supervisor Dave Robertson,

without whom I would not have had the opportunity to continue my studies in this

area. I would also like to thank my family and friends for their never ending support.

Lastly this work was performed with funding from ERPSC studentship: EP /P503795

/1 and for this I am deeply in gratitude.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Phil Mike Graham)

v

Table of Contents

I Introduction and Background 1

1 Introduction 3

1.1 Overview . 3

1.1.1 Hypothesis and Claims . 4

1.2 Thesis Guide . 4

1.2.1 Part 1: Introduction and Background 4

1.2.2 Part 2: Methodology . 5

1.2.3 Part 3: Evaluation and Testing 6

1.2.4 Part 4: Conclusions . 7

1.2.5 Chronology . 8

1.2.6 Experimentation . 9

1.2.7 Bots vs. Agents . 9

2 The Domain 11

2.1 Domain Instances . 12

2.1.1 Levels . 12

2.1.2 Pickups . 13

2.1.3 Game-Types . 14

2.1.4 Levels Guide . 16

3 Literature Review 21

3.1 Direct Previous Work . 21

3.2 Motivational Work: Laying the Foundations 23

3.3 Properties of Related Work . 25

3.3.1 Adaptation . 25

3.3.2 Symbolic Representations 26

3.3.3 Simplified Domains . 27

vii

3.3.4 Single Process Models . 28

3.3.5 Layered Architecture . 30

3.3.6 Modularity . 31

3.3.7 Off-line Learning . 31

3.3.8 Single Agent . 33

3.4 Summing Up . 34

4 Introduction Summary 35

4.1 The System . 35

4.2 Robustness . 36

4.3 Key Assumptions . 37

4.3.1 Within Trial Adaptivity . 37

4.3.2 A Fixed Plan . 38

4.4 Putting the Details into Place . 39

4.5 Generalisation . 39

II Methodology 41

5 System Architecture 43

5.1 Layers . 43

5.1.1 Architectural Motivations 45

5.1.2 Modularity . 49

5.2 Overall Plans and LCC . 49

5.3 Path Differentiation - A Motivational Example 52

5.3.1 Experimental Data . 58

6 Learning Mechanisms and Techniques: Introduction 63

6.1 Learnable Environmental Factors . 65

6.2 Learning Catagories . 66

6.3 Game Data . 66

6.4 Static versus Dynamic Learning and Heuristics 67

6.5 Evaluation . 68

6.6 Potential Problems . 69

6.7 Influence Maps . 70

6.7.1 A Note on density modelling 70

viii

7 Learning Mechanisms and Techniques 73
7.1 Learning the Level Size and Shape 74

7.1.1 Level Size . 75

7.1.2 Natural Level Clustering . 76

7.1.3 Preliminary Evaluation . 81

7.1.4 Game Level Tests . 85

7.1.5 Future Work . 96

7.2 Area Correlation Model . 97

7.2.1 Experiments and Evaluation 99

7.2.2 Team Deathmatch . 100

7.2.3 Capture the Flag . 102

7.2.4 Double Domination . 104

7.2.5 Overall Area Correlation Modelling Conclusions 106

7.3 Bot Social Utility . 106

7.4 Enemy Modelling . 107

7.4.1 Motivation . 108

7.4.2 The Single Gaussian Model 110

7.4.3 The Gaussian Mixture Model 112

7.4.4 A Gradual Update Procedure 113

7.4.5 Automatically Choosing the Number of Mixtures 114

7.4.6 Limiting Mean Drift . 114

7.4.7 One Mixture Per Bot . 117

7.4.8 One Mixture Per Opponent 117

7.4.9 A Kernel Model . 117

7.4.10 Basic Evaluation . 119

7.4.11 Discovering Known Movements 126

7.4.12 Overall Conclusions . 142

7.4.13 Gaussians as a Metaphor for Message Passing - An Alternative

Situated Evaluation . 144

7.5 Weapon Utility Estimation . 146

7.5.1 Previous Weapon Modelling Work 149

7.5.2 Belief Network Weapon Modelling 149

7.5.3 The Heuristic Function Model 151

7.5.4 Weapons for Team Death Match 152

7.5.5 Weapons for Capture The Flag 153

ix

7.5.6 Weapons for Double Domination 154

7.5.7 Weapon Modelling Evaluation Conclusions 155

7.5.8 Situated Trials . 157

7.5.9 A Further Extension . 159

7.6 To Fight or Not To Fight . 161

7.6.1 Game Theory . 162

7.6.2 Neural Net Estimation . 163

7.6.3 Improvements Using Heuristics 169

7.6.4 Nearest Neighbour Estimation 175

7.6.5 Nearest Neighbour Conclusions 180

7.6.6 Heuristics Conclusions . 189

7.6.7 Alternative Tie Conditions 189

7.6.8 Situated Evaluation . 190

7.6.9 Ensemble Networks . 193

7.6.10 Alternatives . 194

7.7 Game-Type Specific Route Modelling - CTF 194

7.7.1 Evaluation . 196

7.8 Game-Type Specific Route Modelling - DD 211

7.8.1 Results . 211

7.9 Flag Sighting Modelling . 215

7.9.1 Evaluation . 215

7.9.2 Conclusions . 223

7.10 Path Finding . 223

7.10.1 Current Approaches to Path-Finding 223

7.10.2 The UT Path-Finder . 225

7.10.3 Our Approach . 226

7.10.4 Intuitions Behind this Concept 226

7.10.5 Methodology . 226

7.10.6 Evaluation Data . 229

7.10.7 Level Based Situated Evaluation 234

7.10.8 Situated Evaluation . 246

7.10.9 Path Finding Conclusions 249

7.10.10 Further Adaptations . 250

7.11 Overall Conclusions from Modelling 251

7.11.1 Eventual Chosen Model Set 252

x

7.11.2 Alternatives . 254

8 Behaviour Modules 255
8.1 Exploitation vs. Exploration . 255

8.2 The Module Descriptions . 256

8.3 TDM . 256

8.3.1 TDM Weapon User V6 . 256

8.3.2 TDM Weapon User V6 Follower Learning 258

8.3.3 TDM Weapon User V5 Learning 259

8.3.4 Dedicated Weapon Fight Enemy Area Sampler 259

8.3.5 Dedicated Weapon Fight Enemy Area Sampler Last 260

8.4 CTF . 261

8.4.1 Flag Exploiter V1 Best . 261

8.4.2 Flag Explorer V2 . 263

8.4.3 Protector(Location) . 264

8.4.4 Retriever V1 Non-Learning 265

8.5 DD . 266

8.5.1 Dom A Exploiter . 266

8.5.2 Dom B Exploiter . 267

8.5.3 Dom A Weapon Approach Updater 268

8.5.4 Dom B Weapon Approach Updater 269

8.5.5 Dom A Dedicated Weapon Fight Sampler 270

8.5.6 Dom B Dedicated Weapon Fight Sampler 271

8.5.7 Dom V2 Weapon Approach Updater 271

8.5.8 Dom V2 Dedicated Weapon Fight Sampler 272

8.6 Adapting this Layer . 273

9 Team Strategies 275
9.1 Exploration vs. Exploitation Revisited 275

9.2 Reactive, Deliberative and Power Structures 276

9.3 Team Death Match . 276

9.3.1 Description . 276

9.3.2 The LCC . 277

9.3.3 The Starting Team . 278

9.4 Capture The Flag . 278

9.4.1 Description . 278

xi

9.4.2 The LCC . 280

9.4.3 The Starting Team . 280

9.5 Double Domination . 281

9.5.1 Description . 281

9.5.2 The LCC . 281

9.5.3 The Starting Team . 283

III Evaluation and Analysis 285

10 Testing 287
10.1 Different Enemy Skill Levels . 287

10.2 Methodology . 289

10.3 Results . 289

10.3.1 TDM . 290

10.3.2 Capture The Flag . 293

10.3.3 Double Domination . 295

10.3.4 Conclusions . 297

11 Component Testing 301
11.1 Methodology . 301

11.2 Layer 1 Testing . 302

11.2.1 TDM . 302

11.2.2 CTF . 305

11.2.3 DD . 309

11.3 Layer 2 testing . 312

11.3.1 TDM . 312

11.3.2 CTF . 316

11.3.3 DD . 318

11.4 Overall Conclusions . 325

11.4.1 Machine Learning Techniques 325

11.4.2 Strategy Components . 326

12 Efficiency Testing 327
12.1 Experimental Details . 327

12.2 Results . 328

12.3 Conclusions . 329

xii

13 Exploration Versus Exploitation 331
13.1 Background . 331

13.2 Reinforcement Learning and the Architecture 334

13.3 Formalising our approach . 335

13.4 Single Agent Reinforcement Learning 335

13.5 Testing . 336

13.6 Results . 336

13.6.1 Individual Level Analysis 336

13.6.2 Cross level Analysis . 338

13.7 Conclusions . 338

IV Conclusions 341

14 Alternatives 343
14.1 Knowledge Transfer . 343

14.2 Machine Learning of Full System Parameters 344

14.3 Plan Re-Organisation . 344

14.4 Genetic Programming for fixed constraint plans 345

15 Further Work 347
15.1 More Complex Techniques . 347

15.2 A Universal Module Script . 348

15.3 More Efficient Code . 348

15.4 LCC Enhancements - Code Repetition 348

15.5 Vehicles . 349

15.6 Manual Operators - The Human Touch (A fun aside) 349

16 Conclusions and Contributions 351
16.1 Main Contributions . 351

16.1.1 The Architecture . 352

16.1.2 The Reinforcement Learning Approach 353

16.1.3 Dynamic Plan Execution . 354

16.2 Narrower Contributions . 354

16.2.1 The Constrained Gaussian Model 354

16.2.2 Utility Weighted Dynamic Path-finding 355

16.2.3 Early Learning with Sparse Data 355

xiii

16.2.4 Adversarial Domains . 355

16.3 The Broader Context . 356

16.3.1 Biological Context . 356

16.3.2 Real World Conclusions . 357

Bibliography 359

A Appendix A 371
A.1 Level Modelling Extra Data . 371

A.1.1 Absolute Zero . 371

A.1.2 December . 376

A.1.3 Deck17 . 381

A.1.4 Face3 . 389

A.1.5 Face Classic . 396

A.1.6 Maul . 403

A.1.7 Moondragon . 408

A.1.8 Sulphur . 412

A.1.9 Sun Temple . 418

B Appendix B 423
B.1 Area Correlation Model Extra Data 423

B.1.1 TDM . 423

B.1.2 CTF . 424

B.1.3 DD . 426

C Appendix C 429
C.1 Flag Approach Route Modelling . 429

C.1.1 Evaluation 1 . 429

C.1.2 Evaluation 2 . 434

D Appendix D 441
D.1 Domination Point Approach Route Modelling 441

D.1.1 Outrigger . 441

xiv

Part I

Introduction and Background

1

Chapter 1

Introduction

1.1 Overview

This thesis presents an architecture for controlling teams of artificial game players

(“bots”) in a complex adversarial 3D environment. The architecture contains three

layers comprising machine learning, behaviour modules and team based planning. Al-

though our system is similar to others, for similar domains, it is novel in its utilisation

of on-line learning during games and multiple coordinated agents. It is these two fac-

tors which represent the most important attributes of our system.

We show that by allowing the behaviour modules to adapt, rather than changing

the strategy at the high level (The standard approach to similar problems in dynamic

planning [92]), a system is created for robust strategy execution across multiple differ-

ent instantiations of the domain which can alter its play during games. We also argue

that working in this way allows us to create strategies which can be considered for a

particular game type in the absence of specifics about the details of the match e.g. the

size of the environment.

The exploration versus exploitation problem [105] is presented both as an example

of the type of issue which can be tackled using our system in a way not before possible,

for our type of domain, and also as part of our approach to applying our architecture

to the given domain. The angle presented is that instead of varying the amount of ex-

ploration/exploitation at the individual bot level, the strategy type can be varied across

the team using different team members for the different types of activities. A direct

comparison is made to the ε-greedy technique[105] to determine baseline benchmark

performance.

3

4 Chapter 1. Introduction

1.1.1 Hypothesis and Claims

The following claims are made:

1. Stable cross match performance of a (statistically significantly) higher than base-

line standard, in a complex, real-time, adversarial domain can be achieved using

combinations of machine learning techniques, to learn about dynamic environ-

mental factors within the domain.

2. A layered heterogeneous architecture, based on behaviour modules, is an effec-

tive way to combine these machine learning techniques to increase performance.

3. Communication can be used to control the learning rates of a team of multiple

bots while they act in the domain environment.

4. Communication can be used to control the behaviours of a team of bots using a

simple, easily understandable, multi-agent plan.

5. It is more effective to have bots in multiple different, adaptive, roles with vary-

ing degrees of learning and exploitation than to have single homogeneous bots

learning locally.

1.2 Thesis Guide

The thesis is split into 14 chapters, clustered as 4 parts, which are described below.

1.2.1 Part 1: Introduction and Background

In part 1 we cover the basics of the system we developed as well as reviewing the

current state of the art in similar systems to determine the overall contribution to the

field.

Chapter 1: Introduction

Here we present a basic overview of the system constructed along with the thesis guide.

1.2. Thesis Guide 5

Chapter 2: The Domain

We present a description of the domain chosen and provide details of all the data-types.

This chapter covers areas such as level of abstraction of data, environmental guides and

descriptions of the operations possible within the domain.

Chapter 3: Literature Review

This contains a review of the current state-of-the-art in related systems. The focus

is on recent developments in the field of adaptive game AI and multi-agent machine

learning but some references to work from other fields, related in less direct ways, are

also presented.

Chapter 4: Introduction Summary

In this chapter we present a big picture viewpoint on the system as a whole and its

place within the general context of machine learning systems for video games. We

detail the assumptions that we make with our system and outline its usefullness for

both the general scientific community and specifically for games developers. This acts

as both a summary of the introductory chapter and as an anchor for the thesis before

we deal with the system details.

1.2.2 Part 2: Methodology

In part 2 we look at the system constructed in detail. This begins with a look at the

overall architecture and then deals with each layer in turn.

Chapter 5: System Architecture

The chapter begins with a set of motivational experiments performed to give a domain

specific motivation for the type of architecture constructed. It then proceeds to describe

the architecture in detail giving descriptions of each of the three layers.

Chapter 6: Learning Mechanisms and Techniques: Introduction

A motivational chapter providing some background information on the machine learn-

ing techniques used along with the general approach taken to modelling.

6 Chapter 1. Introduction

Chapter 7: Learning Mechanisms and Techniques

The Learning Mechanisms chapter contains discussion, implementation and evalua-

tion details for the various machine learning techniques that were considered for use

in the system. The different techniques are explained and, where possible, evaluated

separately in a modular fashion. We show how these could be used in the Unreal Tour-

nament (UT) domain. At the end of the chapter we draw the work together, showing

which models were used.

Chapter 8: Behaviour Modules

In this chapter we construct behaviour modules using the machine learning techniques

of chapter 3. The modules are presented as pseudo-code giving reference to which

machine learning models were used to construct them along with a brief description of

expected behaviour.

Chapter 9: Team Strategies

In this chapter we construct team strategies using the behaviour modules of chapter 4.

The strategies are presented as code, with a description and supplementary notes.

1.2.3 Part 3: Evaluation and Testing

In part 3 the system is evaluated and tested within the domain.

Chapter 10: Testing

The team strategies are tested to evaluate performance in the three game-types. The

aim of this chapter is to show that the system created can execute understandable ab-

stract strategies across multiple scenarios without large deviations in performance.

Chapter 11: Component Testing

A further stage of component testing was performed to determine which elements of

the system were responsible for performance. We present the results and discuss the

models used and their effectiveness.

1.2. Thesis Guide 7

Chapter 12: Efficiency Testing

In this chapter we perform an experiment to help suggest at what point the system

becomes stable during the reinforcement learning process. This helps to show the

effeciency level of the system.

Chapter 13: Exploration Versus Exploitation

One of the key themes throughout this work is the reinforcement learning problem,

exploitation versus exploration. Due to the novel approach taken some tests were per-

formed against a classical RL formulation to give a reference point and evaluate the

contribution to this area. This also represents a test of the architecture to deal with a

known problem in an effective way.

1.2.4 Part 4: Conclusions

In part 4 the work is brought together with conclusions and final remarks.

Chapter 14: Alternatives

In this chapter some possible alternative solutions are discussed. We present some

arguments as to why these solutions were not adopted.

Chapter 15: Further Work

The thesis is concluded with a discussion of possible avenues of future research. The

main concentration is on extending the work to yet further un-constrained domain areas

but also on some more minor avenues of research pointed to by the machine learning

section of the thesis along with changes which could be made to optimise the current

system.

Chapter 16: Conclusions and Contributions

Conclusions regarding the work are presented in this chapter along with discussion

showing how the work presented contributes to the fields of multi-agent machine learn-

ing, multi-agent architectures, game AI design, multi-agent planning and reinforce-

ment learning. This takes the form of results extrapolation and a summery of why the

work presented validates the claims made in part 1. Some analogies are drawn with

the non-virtual world and how the system may be adapted to facilitate implementation

8 Chapter 1. Introduction

in other domains. This chapter draws to a close all of the ideas presented and how they

interact.

1.2.5 Chronology

The work presented was performed in quite an unusual way (for work in this type of

domain). Having chosen a class of domain, and examined the problems this domain

presented, the system was largely prototyped bottom up. The machine learning layer

(1) was built before the behaviour modules layer (2) and then finally the team strate-

gies layer (3) was developed on top of both of them. This follows the typical type of

engineering which is carried out in the development of subsumption systems where

lower layers in the architecture are fixed before higher (typically more abstract) be-

havioural layers are constructed. Although common for subsumption types of system

the general approach presented here is well suited to any type of hierarchical system

which depends on lower levels for higher level performance.

Because we had an initial skeleton of the system to work with, before we began

(from [40]), it was possible to use some elements of layers 2 and 3 to test components in

layer 1 but in general this was kept to the bare minimum until higher layer development

was considered.

As such the methodology part of this thesis follows roughly the same time-line

as the development did, the machine learning techniques are examined, then the be-

haviour modules are created, and finally the full strategies are designed based around

these modules. As a consequence part 2 reads far more chronologically and offers an

insight into the type of prototypical development used when working with a system

such as ours.

The reason this process is worth mentioning is that part of the contribution of this

work is to show not only the benefits and disadvantages of a system such as ours but

also how to develop, design, debug, test and evaluate it in a meaningful and effective

manner:

“...few articles document the development processes used in obtaining
the results. Discussing project development processes can aid groups in
other universities to conduct applied artificial intelligence research projects
with video game test beds successfully”[39]

As such we have included a narrative device throughout this thesis which details

the thoughts, engineering challenges and general design decisions which were made at

points of interest. These are contained in the following type of box:

1.2. Thesis Guide 9

Engineering Box

An example narrative box

1.2.6 Experimentation

Our general strategy for evaluating the performance of any given technique was to test

it in a game scenario. As such there is a large amount of empirical testing data in this

thesis, particularly Chapter 2. The purpose of this is to provide a body of evidence to

suggest which elements of the system work and which do not.

1.2.7 Bots vs. Agents

Throughout this thesis the word bot is used to describe an artificial UT game player

controlled by a decision process. This term is generally used when talking about a

concrete example in the domain such as a description of where a bot might be running

to in a game scenario. When we discuss the abstraction of this away from UT the term

agent is used. We have tried to maintain this distinction between the two terms.

Chapter 2

The Domain

As the level of tasks being considered by modern AI systems increases, so too does the

need for realistic virtual domains and visualisation systems. Rather than developing

systems for visualisation for specified tasks, many researchers are now turning to video

games as reasonable approximations to complicated real world problems.

To test our system we chose the Unreal Tournament(UT)1 game. In principle any

domain with similar characteristics (which are discussed in a further section) could

have been used to test our system. We chose ours because of the ease of visualisation,

configuration and the availability of an interface with the requisite level of generality

(i.e. can be used with any TCP/IP socket enabled language). The decision was also

based on the fact that other researchers were using UT for their systems showing it as

a valid test domain in terms of complexity and realism.

UT is a chaotic, sophisticated, first person shooter (FPS) game for the PC. Game

matches are played in various different 3D arenas, which differ in size and shape,

using a variety of special “pickups” (which alter some property or characteristic of the

player) within the game environment.

There are 3 main game-types which we will consider, each one offering slightly

different characteristics and team goals. In all game-types teams of bots, situated in

the 3D world, play against each other with the goal of winning the match. The criteria

for winning the match is achieving a goal score (which is achieved in different ways

for each game-type). The game is adversarial as there are other bots in the environment

trying to win the game for their own team.

1The 2004 edition of the game was used, which differs significantly from the original version

11

12 Chapter 2. The Domain

2.1 Domain Instances

One of our main claims is that

Stable cross match performance of a (statistically significantly) higher
than baseline standard, in a complex, real-time, adversarial domain can
be achieved using combinations of machine learning techniques, to learn
about dynamic environmental factors within the domain.

With UT as our domain, single matches represent a domain instantiation. Therefore

the following sub-sections show the domain components which can change on a per

match basis and thus the environmental elements which it is viable to build models for.

2.1.1 Levels

The game levels differ along the following dimensions:-

Size of level Each level has a different size in terms of 3D spatial units. This effects

the distance which bots need to travel and the distance between pickups.

Shape of level Levels can often have many different compartments and areas which

are linked by smaller corridors or tunnels. In outdoor levels the areas are typi-

cally much larger. Abstracting away from the UT decoration these levels can be

thought of as basic polygonal environments.

Obstacles There are a large number of obstacles which are often artefacts of the level

design and structure. For instance in forest levels one might expect to find trees

which cannot be passed through, often obscuring bot vision, or areas of the level

which may be hazardous such as lava pits or water areas. We do not directly

model these obstacles, as they are not included in the level description, but they

effect play so our modelling will likely be affected by their presence.

Movement Devices On some levels there are jump spots, lifts and teleporters which

are used to navigate the level. These affect some of the path finding issues and

are dealt with in later sections.

Pickups The numerosity, placement and even existence of each pickup differs be-

tween levels. Pickups are described in more depth in a further sub-section.

2.1. Domain Instances 13

Navigation Points The representation of the level is a set of 3D navigation point po-

sitions. These are placed in the level, at the point of creation, to allow bots to

navigate. If they are used correctly in conjunction with the in-built game path-

finder they can allow bots to move around while avoiding obstacles.

Each level that we used in testing can be described in terms of these parameters

and as such we have listed these here.

2.1.2 Pickups

Throughout levels there are various pick-ups which fall into the following categories:-

Health Pickups These can either be small, which only give a boost of 1-5 health

points, or larger, which give a health boost of larger values, typically in the 50-

100 region. Bots have 100 health points as standard at the start of a match.

Having 0 health leads to a death.

Weapon Pickups These can either be weapons or ammunition (ammo) for weapons.

Weapons are the main method of fighting adversaries.

2.1.2.1 Weapons

Each weapon has a different characteristic. Because we deal with the modelling of

these in chapter 2 a guide to weapons is included below:

Shield Gun The shield gun is the default weapon which the player uses when they

have no ammunition for other weapons. It does not do the enemy damage but

offers the player a small amount of protective shield time.

Assault Rifle The assault rifle is the basic weapon that all players start each life with.

It has a medium rate of fire but low accuracy and damage ratings. Generally it is

always better to play with any other weapon using the assault as a default when

other weapons cannot be obtained.

Link Gun The link gun is basically a more damaging version of the assault rifle.

Bio Rifle The bio rifle spreads blobs of damaging fluid when fired. These sit around

until another player walks into them, causing health damage.

14 Chapter 2. The Domain

Rocket Launcher The rocket launcher fires rockets at a relatively slow rate. Rockets

are very powerful but have a low accuracy rating.

Minigun The minigun is a rapid fire weapon but with a lower accuracy then an as-

sault rifle. Once it begins firing the rate of fire is rapid but it takes a second

or so to begin firing while the gun warms up thus the rate of fire is classed as

medium/high.

Shock Rifle The shock rifle is like a rapid fire lightning gun but does less damage with

each shot.

Lightening Gun/Sniper Rifle These are single shot weapons with a high damage

rate. Both have slow firing rates because of the single shot nature and long

reload times.

Flak Cannon The flak cannon fires a barrel of shots and has a wide range spread and

medium firing rate. Shots can also be bounced off walls but the resulting angles

of reflection can be hard to predict.

The weapons can be categorised via rate of fire, accuracy and amount of damage

typically caused. Figure 2.1 shows how the weapons rate in each of these categories

against a scale of 0 to 5. The scale is not an exact measure but is a good indicator of

how the weapons compare relatively to each other.

2.1.3 Game-Types

The 3 game-types are team death-match (TDM), capture the flag (CTF) and double

domination (DD):-

Team Death-Match Each team of bots must kill members of the opposing team. Each

death results in the killer’s team gaining a point. When a pre-set number of points

is achieved by any team they win the match. If a team member kills themself

then their team loses a point. After dying team members respawn.

Capture the Flag Each team has a flag which is situated at their base. To score a

point a team must capture the other team’s flag, by picking it up, and then return

it to their own base. Should a flag carrier be killed the flag will then be dropped.

If another member of the attacking team picks up the flag they can continue the

2.1. Domain Instances 15

Figure 2.1: Weapon Categories

16 Chapter 2. The Domain

flag run and try to get it back to their base. Should the team who own the flag

pick it up it will be automatically returned to their base and no point scored.

Double Domination There are two pre-set domination points in the level which at

any one time can be controlled by either team. To score a point a team must

control both of these points for 10 seconds. Control over the points is achieved

by tagging them. Once a point is tagged it stays in that state until it is tagged by

another team.

The most importance distinction between the three game-types is that they each

present a different challenge.

TDM is purely about confrontation. Winning the match in the other two game

types is only indirectly linked to successfulness in confrontations but in this game-type

winning confrontations is the only way to win the match. As such decisions must be

made about when to fight enemies, where the enemies may be, what best to collect

when not engaging in fights to increase chances and the whereabouts of other team-

mates.

DD presents a different challenge as it involves guarding a set target area for a

specific length of time. Thus decisions must be made prior to approaching the target to

maximise the likelihood of success. This also involves decisions about the best way to

approach the target, and how many players to assign to each of the two targets. Thus

the most important goal becomes not the enemy but the target.

CTF is the most complex game-type. There is again a target which is not the

enemy but this time the target could be moving. The game involves attack to gain the

flag but also defence of the player carrying the flag while they try to return it to the

required base. This must be balanced with the goal of ensuring that no enemy obtains

the defending team’s flag and when they do attempts must then be made to regain it.

The factor which defines the order of difficulty of the game-types is the number of

goals which must be traded against each other to win the match. CTF has the most

goals, DD less and then TDM the least.

2.1.4 Levels Guide

The levels of the game can be roughly categorised by their characteristics. In the

following sub-sections the levels have been classified via size and weapons criteria.

Brief descriptions of the individual levels are included in the appendix.

2.1. Domain Instances 17

2.1.4.1 Weapons

Not all maps feature the same selection of weapons. Table 2.2 shows the available

weapons which are defined by the classes A to L.

Weapons Class

Assault, Link, Minigun, Shock, Flak, Bio, Lightning, Rockets A

Assault, Link, Minigun, Shock, Flak B

Assault, Link, Minigun, Shock, Flak, Rockets C

Assault, Link, Minigun, Shock, Flak, Lightning, Rockets D

Assault, Link, Minigun, Shock, Flak, Bio, Rockets E

Assault, Link, Shock, Flak, Bio, Lightning, Rockets F

Assault, Link, Shock, Flak, Lightning G

Assault, Lightning, Rockets H

Assault, Link, Minigun, Shock, Bio, Lightning, Rockets I

Assault, Link, Shock, Flak, Lightning, Rockets J

Assault, Minigun, Shock, Bio, Lightning, Rockets K

Assault, Minigun, Shock, Lightning, Rockets L

Figure 2.2: Weapon Classes

2.1.4.2 TDM

The TDM maps tend to have less directional focus than those for the other game-types.

They are also commonly smaller.

Levels Class Size

Training Day, Gael A Small

Gestalt, Oceanic, Spirit, Trite, Leviathan, Crash, Idoma B Small to Medium

Asbestos, Mixer, Sulphur, Ironic, Squader, Rragir C Medium

Corrugation, Phobos2, Desolation, Deck17

Junkyard, Kakori Forest D Medium to Large

Osiris2, Desert Isle E Large

Figure 2.3: TDM Level Size Classes

18 Chapter 2. The Domain

Map Weapon Class

Asbestos,Mixer,Osiris2,Ironic,Corrugation, A

Leviathan,Kakori Forest,Trite,Crash,Idoma,

Desert Isle

Training Day B

Junkyard, Desolation C

Gestalt D

Oceanic,Squader,Rragir,Spirit,Phobos2 E

Deck17 F

Sulphur G

Gael H

Figure 2.4: TDM Map Weapon Classes

2.1.4.3 CTF

Many of the CTF maps follow a similar design theme and as such differ mainly on the

axis of level size and weapon placement.

The general pattern is to have a flag base at either end of a largely symmetrical

level with a single or dual access pathway between the two bases.

Levels Class Size

Maul A Small

Orbital2, Geothermal B Small to Medium

Face Classic, Citadel, Lost Faith, Chrome C Medium

Absolute Zero, Face3, Magma D Medium to Large

Moon Dragon, December, Double Damage E Large

Twin Tombs, Smote, Grassy Knoll

Figure 2.5: CTF Level Size Classes

2.1.4.4 DD

The DD maps maps tend to be larger as is evident by the lack os a small maps class.

This is mainly to induce the use of strategies required to get from point A to point B.

If the points were too close together this could over simplify the game-play.

2.1. Domain Instances 19

Map Weapon Class

Absolute Zero, Double Damage, Lost Faith, Grassy Knoll, A

Chrome, Twin Tombs, Orbital2, Smote

Maul, Moon Dragon, Face3, Geothermal D

Magma E

December I

Face Classic J

Citadel K

Figure 2.6: CTF Map Weapon Classes

Levels Class Size

Scorched Earth B Small to Medium

Atlantis C Medium

Renascent, Outrigger, Sepukku Gorge D Medium to Large

Sun Temple, Ruination E Large

Figure 2.7: DD Level Size Classes

Map Weapon Class

Sun Temple, Ruination, Sepukku Gorge A

Scorched Earth, Outrigger C

Renascent D

Atlantis L

Figure 2.8: DD Map Weapon Classes

Chapter 3

Literature Review

In this chapter we deal with previous work related to our chosen area of research. Our

focus is on fully related systems and large scale properties of related architectures.

Obviously it is vital that we research each individual technique used in our learning

modules as-well but these are considered separate studies and can be found inside the

methodology part of this thesis alongside our studies and reports concerning their use.

3.1 Direct Previous Work

The starting point for this work is the system implemented in [40]. The project rep-

resented the first extensive system for UT which used a largely communication based

multi-agent system to control game-playing bots in teams.

In the system we created a framework to allow the formation of simple plans to

perform complicated game playing within the chaotic game environment. These plans

were created in Lightweight Co-ordination Calculus (LCC) [85] and made by hand

using only intuition about the game-type, no automatic plan generation was performed

and no machine learning or strategy adaptation was implemented. The system worked

in a reactive manner and deviated from the traditional approach to LCC parsing[2, 85].

At each game-step one clause was selected from the strategy, on the basis of agent role

and situation constraints, to serve as a rule telling the agent which action to perform.

This was repeated 4-5 times a second.

The problem was that the execution of these LCC plans was largely invariant of

level type, size and individual scenario such as location of enemy etc. The bots could

only react to circumstances which were encoded within the plans as constraints and as

such these had to be pre-empted during strategy creation. This led to strategies which

21

22 Chapter 3. Literature Review

were largely predictable and inflexible. The results showed that the system achieved

acceptable performance on certain levels of the game but cast doubt on their use outside

of the specific scenario for which they were designed.

The main reason for this was that often the areas of the game which did not provide

such consistent reactive information would lead to less useful/interesting play. For

instance, when the bot was in locality of the flag and domination point areas very

detailed control could be used to determine different roles and modes of behaviour.

However on the larger levels this control did not benefit the bots as much. This pointed

to a lack of control in the more open areas of the level where play is less goal orientated

and reactive due to there being less to react to, especially when direct enemy presence

is sparse. This is largely because the system adopted a reactive approach to LCC

which deviated from the notion of classic LCC interpretation in systems such as those

discussed in [2, 85]. In short, the system worked very well in areas where there was a

large amount of changing information to react to. In areas where little changes between

cycles the bots begin to falter in their play, becoming static. They always appear to

take the same paths and to a human observer this would allow an easy win via simple

counter planning formulation[87].

If the same types of simple high level plans could be formulated which were easily

created and understood, in the abstract, then some of the problems could be tackled by

improving individual bot’s abilities to deal with level specifics. Being able to show that

even with different low level, autonomous, play on different game levels and within

different scenarios the plan has still been maintained, with regard to its semantics, is

key to this.1 Variability within the bot’s actual play is what we are striving for but it is

of primary importance that this variable play still fits the original strategy. For instance

if a strategy, telling the bot to go to its own flag point, is created then it is not of concern

which particular direction it goes or exactly how it gets there, so long as it is verifiable

that the bot got to the flag point in all given successful executions.

One way to approach this task is to build knowledge into the system which is

based on observations made during the game-play. If the bots are to play a truly non-

deterministic game then they must be able to react to different styles and patterns of

play by the opposing team. These cannot always be pre-empted or observed in advance

and can be viewed as hidden variables within the game-state.

1It should be noted here that we take semantics as a general sense that the actions laid out in the plan
and the intuitive understanding of these actions is maintained with respect to the actions of the agents
concerned within the plan.

3.2. Motivational Work: Laying the Foundations 23

3.2 Motivational Work: Laying the Foundations

As-well as the specifics of the area it is important, prior to performing work in a field,

to gain an understanding of the general reasons one is performing work there. In our

case why use video games technology at all? What is the purpose when there are

already numerous real world domains that could be tackled?

“Video game technology can provide a rich platform for validating and
advancing theoretical AI research”[39]

The quote above from a review paper looking into AI and CI (Computational In-

telligence) gives the first clue as to why we use video games as our domain. The key

is that we are considering an AI idea in the abstract and then validating the concept

within a domain. We are not considering the domain as something critically important

in itself but merely something which is suitable for the purposes of testing our ideas.

So what is it that makes video games and in particular the type of video game which

we consider in this work (First Person Shooter) so applicable for this task?

“FPS games are vastly cheaper, simpler to handle and faster to run
than physical robots, but also more complex and demanding than the toy
problems traditionally used in CI research. We argue that such games are
good test-beds for research on learning or otherwise developing controllers
that perform complex tasks, in the sense of being composed of several
simpler tasks.”[114]

This sums up quite succinctly the main reasons. With this in mind we must also

examine the current systems in play for controlling AI within these systems. After

all there is no point trying to develop adaptive systems if those already implemented

commercially are effective learners. The same paper has this to say of the traditional

bots used in video games:

“...do not include any form of learning and do no play the game under
the same conditions as a human does...”[114]

What this means is that instead of performing machine learning from low level

information, bots in games traditionally provide annotated and scripted high level be-

haviours which can appear, superficially, intelligent. So why take this approach to the

problem? Surely a more considered approach would offer a more robust solution and

facilitate future developments and changes to the particular game chosen?

“...current commercial game AI has little to do with current academic
research in the AI and CI communities.”[114]

24 Chapter 3. Literature Review

The reason for this is largely to do with predictability. Scripted systems with pre-

scribed scenarios and responses to these scenarios can always be predicted in a way

not typically associated with learning systems found in AI research. Thus the biggest

challenge for our work is to provide a system which is practically applicable to similar

domains but which is more robust without sacrificing too much flexibility.

Burkey et al[22] suggest the following in the conclusions section of their paper

concerning work in the quake III domain:

“...by combining traditional AI techniques, a system can be developed
that enables choices made by a conventional AI layer to be altered in re-
sponse to feedback from the actions selected......The results showed in-
teresting trends that indicate that, with more development and testing to
determine optimum settings, the system developed could form the basis of
a usable adaptable AI system.”

Our system is in essence exactly this, but with multiple-agents, an explicit architec-

ture dealing with agent behaviour and a communication/cooperation mechanism. We

show how using these extra elements we can tackle the problems associated with the

chosen type of domain more effectively.

In [97] Spronck states as further work both the application of on-line machine

learning techniques during game play and also

“other machine learning techniques in combination with, for instance,
subsumption architectures.”

Given the hierarchical nature of the system presented in this thesis, along with its

similarity to subsumption architectures, a large part of this work is a response to this

idea.

The terminology used in this thesis borrows from the basic grounding presented

in [58]. In particular, reference is made to many of the issues described for a multi-

agent machine learning system. This work by Kazakov and Kudenko is more angled

towards showing the problems of adaptation in all kinds of agents and is aimed at

domains such as robotics, but still provides some notion of why and how work in UT

is useful (without directly referencing it). The thesis also deviates at the point where

[58] describes machine learning from a knowledge based perspective, via inductive

logic programming, and instead we employ more statistical based methods for learning

about the environment and game-play. In this way our system contains largely black-

box machine learning concepts where overall representation of the knowledge learned

is not easily (without sufficient mathematical translation) interpreted by humans. This

3.3. Properties of Related Work 25

is in contrast to white-box techniques such as inductive logic programming where the

eventual representation, in the form of rules, is more easily understood. We show how

some of the techniques presented can be altered in such a way that some intuitions

can be incorporated in a meaningful way which increases performance and facilitates

better understanding of how the techniques are working.

3.3 Properties of Related Work

To understand fully the contribution of this thesis to the relevant fields, we must first

consider similar architectures and their general characteristics. Some of these are posi-

tive aspects which can be considered good practice for building systems in this domain

while others are negative and it is our goal to show how these can be fixed using our

architecture design.

3.3.1 Adaptation

It is generally accepted that adaptability is a pre-requisite for any system to be con-

sidered intelligent. Almost all the papers which we have considered in this review are

in some sense adaptable as it is the issues arising from adaptability which concern us

most.

Many papers exist dealing with systems which are adaptable or can be in some

sense considered to learn but there are not so many which exist for domains such as

ours and consider a level of data which is similar. There are also none considering

the exact set of circumstances and tasks which we tackle. This could be interpreted

as implying that our area is too narrow and exclusive, but we argue that the general

concept of our architecture is both applicable to similar, but not identical, domains and

provides a set of general characteristics defining a profile for applicable domains.

Pieter Spronck’s work has provided methods of performing automatic strategy

adaptation and dynamic game AI which adapt their performance during a game in

many complex domains [98, 94, 95, 92]. Typically his work focuses on role playing

games such as Neverwinter Nights or Warcraft, but he has also performed some work in

Quake III (A First person shooter game similar to Unreal Tournament)[95]. His work

in Quake III used an adaptive team strategy method called TEAM2. Both TEAM and

TEAM2 are essentially adaptations of his dynamic scripting method with added com-

munication and evolutionary properties. A large amount of his work uses evolutionary

26 Chapter 3. Literature Review

methods alongside dynamic scripting to create intelligent teams of agents.

3.3.2 Symbolic Representations

A trait which is more prevalent amongst papers in the multi-agent learning domain,

although maybe less so in the video games learning domain, is the use of high level

symbolic representation learning systems.

The work presented here, re-interpreting the system from [40], is largely based

on the observations in [58] about how machine learning frameworks can interact in a

modular way within a multi-agent environment. In particular this thesis can be seen as

a response to the future work section of [58] which states the following as an interesting

avenue of research:

“More Complex applications: Most MAL (Multi-agent learning) ap-
plication domains are relatively simple. It would be interesting to see
MAL research for more complex real-world applications. Eventually, such
applications would encourage researchers to look beyond Q Learning”[58]

Although some work has been done since then many researchers are working with

largely symbolic world representations (A mirror of the more simple worlds being

tackled) focusing only on high level behaviours and properties of argumentation pro-

tocols and high level belief reasoning[103, 96, 58, 106, 3, 83]. In the domains typically

chosen for these types of agent work, symbolic manipulation of the semantics performs

well because there are few primitives to reason about which are mostly defined with

a rigidly specified notion of truth. For more complex domains this type of reasoning

becomes very difficult to work with as to reason only with things which were known

to be true becomes a.) largely infeasible and b.) unlikely to yield a strategy which is

either understandable or effective in the domain. In complex domains systems often

have to work with assumptions based on observations which may or may not be true,

or even may not be well grounded.

Spronck’s symbolic dynamic scripting paper[96] presents an AI which can react

to the opposing players for a sophisticated game environment (Neverwinter Nights)

showing that it is still possible to work with symbolic representation in more complex

environments provided the symbolics are probabilistically treated in a manner similar

to strength values for predicates in statical knowledge base reasoning systems. This

said the evaluation of Spronck’s system is performed against known scripted opponents

and largely in a simpler simulation rather than the full game. The paper presents a way

3.3. Properties of Related Work 27

of creating AI by integrating small reactive clauses into a dynamically created script

based on experience within the game using each low level behaviour. This appears

similar in overall idea to our solution except our overall script is static and allows the

low level behaviour modules themselves to be altered via experience.

3.3.2.1 Typical Symbolic Worlds

The UT environment is more complex than the basic scenarios which most of the

work in symbolic domains concentrates on, with the exception of [95]. In the sym-

bolic multi-agent systems field in particular the worlds used are traditionally very pre-

scribed, and more general approaches which allow for errors and things to go wrong

are not generally considered. Papers are traditionally much more concerned with prov-

ing certain properties of interaction[73]. For us concern shifts to verifying the overall

plan and that the learned techniques allow the plan to be executed satisfactorily with

less focus on more traditional interactions such as argumentation protocols and guar-

antees of convergence. No work is performed on the process of automatically learning

policies for the agents at the high level. Our point of view is that the issues surround-

ing problems hand-crafting plans for numerous different scenarios can be avoided by

tweaking the low level behaviour, via machine learning, enough to allow one pre-

defined plan to be used across multiple scenarios. Our assessment and evaluation, as

such, is based much more strongly on agent behaviour rather than the theoretical issues

and possibilities for problems within the interaction framework.

3.3.3 Simplified Domains

In general we have tried to deal with architectures which tackle similar domains to

ours but there are some exceptions to this where the system being considered tackles

domains which appear similar but are in fact simplified[6, 64].

In [108] Thomson and Levine present a neuro-evolution based system for control-

ling a single agent in a first person shooter game called “Bruce World” based on the

die hard films. On the face of it this seems highly similar in terms of architecture (hier-

archical planning layers building on trained lower level actuators) but examination of

the domain shows that are many simplifications in comparison to UT. The world is 2D,

movement is fixed in 4 basic directions at a pre-defined rate, obstacles within the world

are sparse and there are only two types of weaponry considered (knives and guns). It

is easy to write off these differences as merely articles of implementation, dealt with

28 Chapter 3. Literature Review

during prototyping, but as we show throughout this thesis, these minor issues are not

always that simply rectified.

3.3.3.1 Different Angles to the Same Domain

Another key difference with a lot of the work considered is that the same domain has

been used but has been approached from a different angle or at a different level of

abstraction.

Consider the work of Parker et al[74, 75] in the Quake II domain. Superficially

the domain looks similar as they consider a modern first-person shooter game with a

similar array of weapons and pickups to UT. Their paper however deals with a system

for finding and shooting an enemy within a small single room, essentially amounting

to a genetic algorithm (GA) applied to an automatic visual servoing task. The system

is working from a much lower level using actual pixel data and is concerned with the

visual recognition task.

Another example of this is the system presented in [114] for dealing with a single

agent for UT. Only a very small subset of the levels are considered (3), only a single

weapon is used and only single floors of the levels are considered with lifts and ramps

removed. The work also concerns itself with level discovery, assuming the agent has

no prior concept of a map or area and is trying to construct one from experience. While

this assumption is consistent with a single player in a video game, the assumption that

a team of players may have some terrain data prior to a game or some notion of how

not to run into walls is consistent with a different set of tasks placed on the learner.

That is not to say that our system could not be adapted to incorporate work on domains

such as these, in fact part of our argument is that the modularity in our system easily

allows this, but it is not our main concern to work at either of these higher or lower

levels of data abstraction.

3.3.4 Single Process Models

Most research in the machine learning for video games area utilises one particular

technique for the entire AI algorithm and decision procedure. Authors often present

systems which can be thought of as one main process or idea rather than being com-

posed of a number of interacting parts[23, 92, 17, 3, 96]. In many cases the limitations

of such systems are discussed but it is not common practice to try to compensate for

some of the limitations of one particular technique using another. Very often critical

3.3. Properties of Related Work 29

theoretical results regarding a technique are cited as major problems without consid-

ering that in practice a lot of these theoretical issues can be resolved using a differing

technique to mediate the first[57].

In [99] the following fact is stated:

“If agents are to adapt and change in real-time, a powerful and reliable
machine learning method is needed.”

This shows precisely the type of single process based thinking which is problematic

to advancement in this area.

We now move on to consider two of the most common single-process model types.

3.3.4.1 Neuro-evolution

Without doubt the most popular single process technique for games AI work is evolu-

tionary neural nets (Neuro-Evolution[6, 75, 109, 114, 82, 108]):

“Artificial Neural Networks (ANNs) combined with Evolutionary Al-
gorithms (EAs) is a popular approach to agent design.”[109]

In particular the NEAT system and variations of this are common [99, 93, 39, 69],

providing a general framework for neuro-evolutionary systems and a well supported

code-base.

One reason for the prevalence of neuro-evolution in the domain could be that in

any given genetic algorithm it is widely accepted that the most difficult part of the

process is that of problem representation. The weights and connectivity systems found

in artificial neural nets lend themself as an elegant solution to this problem due to

the ease of designing genetic operators around combinations of these. Because neural

networks can then be viewed as universal function approximators this gives a lot of

potential power for the GA to work with. The single direction decision surface of

the sigmoid activation function for each hidden unit also helps to deal with some of

the problems concerning the genetic process exploiting blind avenues in the search

process, a problem common to genetic programming.

3.3.4.2 Evolutionary Designs

In recent times the field of game AI design has also seen a relatively large amount

of research into other forms of evolutionary agent design[98, 94, 95, 92, 79, 17, 74].

30 Chapter 3. Literature Review

In general these approaches have been either adhoc GA designs with genetic opera-

tors for the particular domains or alterations of existing techniques to incorporate an

evolutionary process to allow adaptability.

Research has sometimes focused on applications where the problem has lent itself

to this type of solution or been part of the game. For instance the game Black and

White [1] allowed creatures in the game to evolve over time in response to actions of

the player, fitting the notion of the player being a god, a central theme in the plot of the

game.

3.3.5 Layered Architecture

In many papers the idea of an explicit architecture is not really considered or seen as

the work’s main contribution. Authors are generally concerned with an algorithm or a

method but it is arguable that the architecture which these fit into can be equally if not

more important. A good modular architectural concept can allow easy integration of

multiple complex components if it is carefully designed and well engineered.

Of the papers which do consider the architecture, layered systems are common[108,

114] with different layers controlling different types of tasks, often at different levels

of abstraction. Generally layers are considered to be feed-forward without compli-

cated back and forth interactions, keeping each layer separate. More complex layered

architectures involving are less common but do exist.

3.3.5.1 Homogeneity versus heterogeneity

When papers deal with multi-layered systems the layers themselves are either consid-

ered homogeneous [107, 114] or heterogeneous. Heterogeneous systems tend to fit

more with the modularity paradigm and multiple process models, where as homoge-

neous systems tend to fall into the single process category and are typically much less

modular.

3.3.5.2 Subsumption Architectures

One of the most popular layered architectural designs is the subsumption idea that

upper layers can be built upon lower layers and their behaviours. It is very common

[107, 114] to use a neural net and fix lower layers in the design while higher layers

are trained. Thus the lower layers behaviours and outputs are assumed to perform low

3.3. Properties of Related Work 31

level tasks well and the upper layers can then be trained to act upon these low level out-

puts, giving a higher level of abstracted performance. There are some arguments that

this type of training of neural nets actually offers no theoretical benefit over standard

training methods such as scaled conjugate gradients but in practice it seems to allow

this type of hierarchy to be achieved more easily.

The similarity of our architecture to subsumption architectures is along the same

lines as Gat’s Atlantis system[38] for controlling autonomous robots, which borrows

largely from the subsumption architecture paradigm. Gat’s system is designed for

adaptive planning and recovery from failure, with most of the concentration on main-

taining consistency between the different world representations at each of the three

layers. We share a similar view of higher levels dealing with a higher level of abstrac-

tion but introduce machine learning to the lowest layer and communication to the top

level.

3.3.6 Modularity

Coupled with a layered architecture, or any system involving multiple interacting parts,

is the notion of modularity[119]. In a system with multiple layers/models it becomes

key to understand how to deal with them effectively. One of the most effective methods

currently is to allow the system to be modular, affording the switching in and out of

different elements and parts for others in order to perform testing. This then forces the

design of the individual components to be more carefully considered.

Although no adaptation takes place, the system presented in [71] for controlling

cars in the TORCS racing engine shows a good example of the type of modularity

which we are striving for. Individual components control different parts of the car’s

behaviour with the overall behaviour being a combination of their combined perfor-

mance, mediated by a fuzzy logic system.

The system presented in [22] shows how multiple techniques can be combined, for

a modern FPS video game, without an explicit architecture, instead choosing to inte-

grate machine learning into an already functioning system at the individual component

level.

3.3.7 Off-line Learning

One of the strongest themes [15, 74, 37, 119, 64, 75, 114, 108, 93, 107] in work con-

cerning video game learning systems is the use of off-line learning from large banks of

32 Chapter 3. Literature Review

data (usually obtained from human players). Systems are then trained before matches

or games using this data in order to mimic what is considered intelligent human be-

haviour.

Although effective, off-line learning does pose a certain problem concerning adap-

tivity during a game. A system trained before a match begins, although possibly

exhibiting intelligent behaviour, is no less static during a match than one which is

scripted. The only change is the representation of the policy being put into action.

Ideally a system should be able to adapt at game time, during a match.

The following quote shows both the general attitude towards on-line learning for

video games AI and why our work in this area is so important to the field:

“We observe, however, that learning effective behaviour while the game
is in progress (i.e.e, ’on-line’), typically requires an inefficiently large
number of learning trials. It is not uncommon that a game has finished
before effective behaviour could be established, or that game characters in
a game do not live long enough to benefit from learning.” [113]

In contrast there are systems which allow on-line learning but they are definitely

the minority. The system presented in [99] allows on-line adaptivity of a team of agents

during a game match using a system known as rtNeat (Real-time evolution of neural

networks). The key component of their system is a collection of artificial robotic agents

who play in a manner resembling swarm technology. Each robot is controlled by a neu-

ral net representing a chromosome and the swarm represents the population. As the

match progresses certain agents are removed from the population if their fitness be-

comes low, replaced by new evolved members. The idea is that as the population itself

only changes gradually the effects are not drastic or notched, displaying a smoother

transition towards high performance.

The closest work, in terms of on-line learning, is found in Burkey et al’s work

within the Quake III domain[22]. Their system allowed the on-line adaptation of a

weapon selection policy - a task central to our work - for a domain very similar to

ours.

Our work shows that on-line learning in a complex domain is in fact both achiev-

able and effective even with only a relatively small adaptive dataset gained throughout

the proceedings of a single match. We show some of the changes to the standard type

of system which must be made to accommodate this and introduce ways of thinking

about different team members that facilitate this type of learning.

3.3. Properties of Related Work 33

3.3.7.1 Knowledge Transfer

When a system employs off-line learning this forces the issue of knowledge transfer

[90] between data runs.

“Transfer Learning is a widely researched topic. It can be defined as
using knowledge learned on a source task to improve learning on a target
task.”[6]

This is especially pertinent with systems which allow adaptation after the initial

learning has been performed. We give no concern to knowledge transfer between

matches as our goal is to provide robustness from only the learn-able data found during

a single match of the game. In chapter 10 we offer a brief discussion on why we didn’t

consider this as an option.

3.3.8 Single Agent

The single largest contribution which our architecture presents over others in similar

domains is the control of multiple agents with a single strategy. Although this is not

unique when considering the multi-agent machine learning community, in general it

is for the AI games community and the domains typically associated with research in

this area.

Generally papers concern the creation of a single, albeit very intelligent, agent

[71, 22, 74, 64, 75, 114, 108]. Issues to be resolved typically concern working with

as low level data as possible and relevance to real world human situations and what

would be available to a human approaching the same task.

Papers with multiple agents in these domains typically employ the technique of cre-

ating clever single agents and assuming that, with enough intelligence and autonomy,

effective team behaviours will emerge with little or no overall control [99]. Research

from the multi-agent learning community in simpler domains show that this type of

emergent autonomous team behaviour is difficult to achieve without some form of

centralised control or communicative policy. There is evidence from the following

quote from Dawson suggesting that there is some understanding of this in the machine

learning for games community as-well:

“Today, formations are expected for any type of cohesive group be-
haviour. From squad based first-person shooters to sport simulations to
real-time strategy games, any time that a group is moving or working to-
gether it is expected to do so in an orderly, intelligent fashion”[29]

34 Chapter 3. Literature Review

In [18] Bradley and Hayes try to show how multi-agent reinforcement learning can

tackle this problem but the formulation of the solution only allows for application to

domains where a state-action pairing and complimentary group utility function can be

applied, lowering its generality as a solution. We provide, with our system, a way of

tackling multi-agent reinforcement learning which is not tied to any particular repre-

sentation or machine learning mechanism.

3.4 Summing Up

From the research in this chapter we can see that there is a wealth of crossover between

the machine learning, computational intelligence, AI and games development commu-

nities. We have seen that there exists a field of work concerned with the testing of AI

techniques within video games due to a variety of properties which they posses as a

domain.

We have then examined some of the properties and shortcomings of current systems

as well as developing a picture of the common types of approach to a system within

the field and the given domain types. It is obvious that a system demonstrating on-line

adaptivity, multi-agent control, with a well abstracted modular architecture and operat-

ing within a complex modern FPS domain would represent a significant advancement

of current technologies in the field of games AI.

Chapter 4

Introduction Summary

Having introduced our chosen domain and given some of the basic details and an

overview of the system presented in this thesis, we now present a summary of this

information. The main purpose of this is to allow the details within the rest of this the-

sis to sit neatly into a big picture. It also allows the contributions of the work presented

to be correctly ascertained from the offset.

4.1 The System

The main scientific contribution of this thesis is an architecture for controlling multiple

agents in an adversarial 3D environment (In our case a first person shooter video game).

This architecture has 3 layers, each with a seperate function to perform.

The bottom layer in the architecture provides machine learning mechanisms which

model the environment. These adapt over the course of a game match based on experi-

ence within that match. It is at this layer that all of the statistical learning in our system

occurs.

The middle layer consists of sets of behaviour modules which can be switched on

and off. These modules are static but many of the low level decisions are informed by

the machine learning layer below.

The top layer consists of a team strategy. This informs all the agents within a team

of which particular behaviour module they should be running at any given time on the

basis of team performance, and a collection of roles within the strategy. Each agent

will be fulfilling a certain singular role at any given time.

35

36 Chapter 4. Introduction Summary

4.2 Robustness

Beyond the goal of simply performing in the domain our system is designed to fulfil

several other goals. The most important of these is robustness across game matches.

In any system dealing with video games there is a level of concern for single match

performance and being able to measure how the system deals with an optimum situa-

tion. A broader concern than this is the issue of how this performance deviates when

circumstances are changed. The general approach in video games AI is to craft indi-

vidual behaviours for each different circumstance. This means a lot of thought prior to

strategy creation and, very often, concern over details which are not really important to

the overall viewpoint of the behaviour designer. For instance take the goal of a player

trying to get an object from point A to point B. It might be that because of some overall

set of game goals we know that the player has to get the object from point A to point B.

What we dont really care about is the exact route taken, we only care that this route is

in some way good and that the end result is verifiable; the player got to the end point.

We care about the end result of high level strategic instructions, but not the particular

details.

The way our system meets this goal is to allow the creation of fixed high level

strategies which use fixed performance behaviour modules but allow the exact details

of how these modules perform their tasks to be fluid, based on learned information. To

learn this information we use a set of machine learning components at the lowest level

in the architecture. This idea is best illustrated by an example.

Lets say we want to control a team of 3 agents to deliver a package to one side of a

level. It might be that we specifically only want two agents to do this and the other to

decide when it is best to perform this action. We can encode this top level information

as roles in the strategic layer. Thus one of the agents will take a role of controller,

and the other two can be package carriers. The controller could send a message based

on team performance to say that it is time for the other two to begin the package run.

The strategy could also encode that they should take slightly different roles. One of

a package carrier and the other of a package carrier helper. Each of these roles could

then be attached to a slightly different behaviour module. The package carrier could

have a module which picks a path and runs across the level with the package. At the

strategic level the package carrier could also send messages to the carrier helper to tell

them where they are. The package carrier helper then feeds these messages into its

module and follows the first agent.

4.3. Key Assumptions 37

The flag carrier’s module then makes use of the path finder component which uses

information about likely enemy position and previous experience, to form the best

path.

The behaviour that would be exhibited here is that of two bots moving across the

level with a package while a third waits for them. The two bots would form a pairing

where one followed the other and they would pick the best path. This path could change

entirely from game to game but the overall goal of the strategy itself has still been met.

The system has used communication at the strategic level to allow coordinated team

performance. The behaviour modules have allowed the creation of complex individual

behaviours. It is the machine learning component layer which has added the tweaks to

this behaviour that make it adapt to changes across different games. By embedding the

adaptive components in the lower level of a hierarchically fixed architecture we create

a system which is robust by being adaptable to the details which change from match to

match but also verifiable in its behaviour owing to a fixed, hard coded strategy.

4.3 Key Assumptions

In building our system we make the following key assumptions. It is these assumptions

which differentiate our system from many others and it these which show why what

we have done is of interest to both the scientific community but also, importantly, the

game developers community.

4.3.1 Within Trial Adaptivity

The system only learns/adapts within trials. At no point do we consider learning be-

tween trials or treating multiple trials as a larger dataset. As such, we do not deal with

the issue of knowledge transfer in any practical capacity. There are two main reasons

for this decision.

4.3.1.1 The Industry Reason: Frequency of off-line learning systems

As discussed in the literature review section almost all systems for video games cur-

rently perform offline learning (otherwise known as between trial learning, or knowl-

edge transfer). This is partly due to an adherance to certain techniques which have this

as a pre-requisite but it is also largely to do with predictibility and stability of perfor-

mance using this method. Game developers in particular are known to favour systems

38 Chapter 4. Introduction Summary

which are inherantly stable due to the main motivating factor of video games devel-

opment being popularity and marketability. It is difficult to market a system in which

the behaviour cannot be predicted for certain circumstances. Many hours are put into

making sure that every facet of the game is behaving exactly as specified.

With this in mind we can see that a system for performing online adaptivity which

could be not only predicted but controlled and allow the creator to input what they

desired of the system at an abstract level would be of very high value.

4.3.1.2 The Scientific Reason: Interest

Coming from a scientific point of view, allowing knowledge transfer and offline learn-

ing simplifies the task of performing effectively in our type of domain. This makes

such systems less challenging problems.

4.3.2 A Fixed Plan

In our system we fix the high level plan that controls the agents. We also fix the be-

haviour modules and both are input manually by the system designer. In principle this

need not be true, we could in both cases allow these elements to adapt. This would

create a system with elements of low level statistical parameter estimation alongside

a more traditional automated planning system. The reason we make this assumption

is that one of the main criteria for systems such as ours to have, for the video games

type of domain, is a layer of controllability. In recognition of this practical considera-

tion, we allow control at the top level and adaptiveness at the bottom level to provide

stability and adaptiveness to change.

Allowing the entire system to adapt at every level is more powerful because it

lets the system change higher level components such as strategy but it means that the

actual performance in any given scenario no longer has any predictability. Although

a set of scripts could be setup such as those in Pieter Spronck’s dynamic scripting

system, it becomes extremely difficult to predict performance or even place any sort of

probabilistic estimation on what the team of agents may do.

By allowing only the lower level learning, which we have setup to perform very

specific parameter estimation learning tasks, to adapt we create a system which allows

the user to specify a particular strategy for a team of agents that can be observed in

action. The behaviour specified in the strategy can be verified but it can also be ob-

served that the lower level details are modified in response to the individual agent’s

4.4. Putting the Details into Place 39

experience.

For video games designers this is the ideal trade-off: a system that allows controlled

thought out strategies to be encoded while allowing details which can tweak individual

scenario performance to be adapted.

4.4 Putting the Details into Place

Because of this use of a fixed architecture design with a fixed plan, the actual details of

each individual component within the system are not important for assessing the actual

architecture itself. They are important for dealing with the architecture in an applied

setting. As such it is important to understand that at any given point in this thesis in

which we deal with a particular component or part of the system they are just this, a

component chosen for our domain, but not integral to the overall contribution of the

architecture. They could easily have been replaced with outher components, modules

or plans.

The purpose of testing the system with specific components, modules and plans is

to show that for a particular domain (representative of the type of domain which the

system can be used for) we can show that performance is acheived which meets the

goals of the system design.

4.5 Generalisation

One of the key components of any system for video games is the question of how well

does it generalise and most importantly what would be the cost in porting the system to

new environments. The ideal scenario is a system which can be ported unchanged from

one system to another with zero extra effort. Currently, this is largely impossible. This

is mainly due to the fact that there does not exist a single interface to all similar video

games. It is this lack of standardisation which leaves us in a less than ideal position.

This leaves two engineering options for porting the system to another similar en-

vironment. Re-write all the domain specific parts of the architecture for the new envi-

ronment or write a piece of middle-ware which sits between our system and the envi-

ronment, interpreting communications from each side. Of the two, the second option

gives a more portable system but the first option provides a more robust solution.

A further reason to consider the full re-write as opposed to the middle-ware solution

is that we argue part of the appeal of our system is the fact that strategies and behaviour

40 Chapter 4. Introduction Summary

can be carefully controlled with a hand-written plan but also allowed to adapt. As such

these plans are almost bound to be tied into the particular domain chosen, and the way

in which they are written will likely reflect this.

With regards to our system, there are certain elements which are portable. The top

layer strategies for instance could easily be ported, given matching behaviour modules

and a re-writing of predicates to take this into account. The middle layer of the archi-

tecture is portable if we have acceptable learning mechanisms at the low level. The

low level is not really portable because the particular learning mechanisms are tied,

strongly, into the environment itself. This said, if the afforementioned middle-ware

layer could be written for novel environments then I see no reason that these could not

also be ported without significant changes.

In general, it is not the specific layers here or the details that can be taken to a

new system, it is the architecture itself. The concept of 3 layers with the properties

described, of how to perform effective online learning, of how to control multiple

agents in a game environment through communication.

What follows is a description of how our system was built and the engineering

challenges that this created. What should be taken from this is how to go about building

your own version of the architecture for your own domain, along with the practical

performance benifits and stability that this will likely provide.

Part II

Methodology

41

Chapter 5

System Architecture

In this section we describe the main contribution of the thesis, the architecture of the

system, in more detail. We concentrate on generic features of it that apply across a

range of appropriate domains (although we use UT as a concrete example). We present

the motivations for this particular design and also draw attention to a few key concepts

associated with it.

5.1 Layers

The design is a heterogeneous layered architecture, as shown in Figure 5.1, with three

key layers. Each layer can be thought of as distinct in operation, but with information

transferred between layers to facilitate smooth operation.

The bottom layer of the architecture contains modular machine learning mecha-

nisms which model elements of the environment. These operate on raw data from the

game and are utilised by higher layers. The learning mechanisms are communal and

each bot has access to them.

The middle layer contains the behaviour modules. These use data from the machine

learning mechanisms in the bottom layer to make decisions which translate to bot

actions within the game. Each behaviour module defines a specific state that a bot may

adopt. No two modules can be operational within a bot at once and hybridisation of

behaviour modules is not supported.

The top layer contains the plan which turns behaviour modules on and off. This

controls the dynamic of the team and the roles which members are assigned to. Roles

do not directly correlate to behaviour modules but there are connections which could

be thought of as a functional mapping.

43

44 Chapter 5. System Architecture

Figure 5.1: Overall System Design

5.1. Layers 45

Altogether this can be thought of as a multi-agent machine learning subsumption

architecture but with heterogeneous layers and a fixed size. The link to subsumption

architectures is explained in section 5.1.1.

It is also convenient to think of the system as a multi-agent finite state machine with

message passing in the upper strategy defining transitions between states (behaviour

modules).

5.1.1 Architectural Motivations

Attempting to achieve robustness and stability in any situated, multi-agent, complex,

real-time domain requires adaptive agents that learn about the changing environment[105].

There are going to be differences between instances of the domain (levels) and we must

have a way of dealing with them. As motivation we can consider the following quote:

...complex tasks such as soccer comprise multiple overlapping behaviours,
whose diverse demands can only be met by combining the strengths of
qualitatively different learning approaches [57].

Soccer is a task which is complex and similar to game-playing in UT in the sense

of needing multiple different approaches to behaviour. It involves team work, commu-

nication and adaptation as does performing within the UT environment.

Although it may be possible to solve the problem of writing a non-adaptive mech-

anism to deal with multiple domain instances most research into this area seems to

suggest that some level of adaptation would be needed either at the script or lower

level[98, 92, 17, 96, 72, 103, 58, 102]. Complex domains tend to present large amounts

of observable data. The raw nature of the data generated suggests machine learning

and data mining techniques are likely to be most successful. The situated nature of the

bots determines that the issues associated with reinforcement learning, namely over-

reinforcement of conclusions and adherence to local maxima[105], will also apply as

actions in the environment affect the environmental state.

Having multiple bots presents the question of whether they should be homogeneous

or heterogeneous in respect to the frequency and goal driven nature of learning. If we

choose homogeneous then each bot must run an identical learning mechanism whereas

heterogeneous leaves more options.

We chose to have heterogeneous bots because of the extra flexibility this offers for

reinforcement learning. We also felt that communication could be best utilised if the

46 Chapter 5. System Architecture

bots could have different abilities. If they were all performing identical machine learn-

ing and running identical modules this would render the communicative element of the

system as a purely directive mechanism. A further motivation for the heterogeneous

bots is that we know that they will be performing activities other than machine learn-

ing. Having team members assigned to different roles in which they perform differing

amounts of exploration and exploitation allows this.

Furthermore if we wish these bots to organise themselves as a team, in a controlled

way, they must communicate.

These considerations suggest a system with multiple communicating heteroge-

neous bots in which adaptation takes place. Each bot must be able to take roles which

are more or less explorative and these roles must be able to change in response to in

game changes and the quality of data.

Brooks’ Subsumption architectures [20] are common in robotics and one of the key

features of these is a layered system with behaviour modules at each layer. These be-

haviour modules feature varying levels of abstraction with complex behaviours being

built upon lower level modules. Our system borrows heavily from this notion of lay-

ers building on top of data from each lower layer but ditches one of the assumptions.

The layers in our system are heterogeneous as not all layers have access to our virtual

sensors and actuators. Our layers are also not all behaviour modules. The layers in a

subsumption architecture are built on behaviour modules which combine smaller be-

haviour modules into more complex behaviours. In our system the only active layer,

in terms of actuation in the environment, is the middle layer which contains all the

behaviour modules. The other layers are machine learning and organisational/co-

coordinative layers.

Another departure from the standard subsumption architectural paradigm is that we

have integrated multiple bots into the system via the plans at the top level. Subsump-

tion architectures tend to be for a single agent[19, 70, 117, 25], typically a robot or

robotic insect, with multi-agent behaviour being achieved using emergent behavioural

designs such as swarm[79, 59] technology or clever solo design. These differences

are characterised in figures 5.2(a) and 5.2(b) In our system this is much more easily

controlled and mediated via a carefully designed team strategy.

By creating a system in this way team behaviour can be engineered across different

levels which is both uniform in gross effect but also unique to domain instance. It

also facilitates concentration on agent roles and how the multi-agent part of the system

allows communication. To create good plans, which can be executed, we must abstract

5.1. Layers 47

(a) A typical subsumption architecture design

(b) Our approach

Figure 5.2: Comparison to subsumption architectures

48 Chapter 5. System Architecture

away all of the instance specific data (Or at least the parts which are believed to change

between instances), pushing it down to a lower level mechanism which is more suited

to dealing with it, thus allowing the focus of the plan to shift to team dynamics and

agent interaction. Later in this chapter we present a motivational example to illustrate

this fact and then present the results in chapter 10 as evidence for this claim.

In summary for a domain to be well suited to a solution involving our architecture

it must have the following constraints:

Instances Differences Instances of the domain must be substantially different in some

way which can be modelled without knowing about other instances a priori.

Therefore the domain must be known to the extent that an abstract description

can be made

Machine Learning Techniques Effective machine learning techniques must be avail-

able for different elements of the environment

Team Based The agents acting in the environment must be team based

Complexity The domain must be complex enough as to generate enough data to learn

from but not enough data as to render the environment easily predictable without

adaptation

Bounds on Learning The agent’s actions must have enough effect on the domain en-

vironment, and their own performance, so that they cannot simply learn until

they have complete data as in [46]. This dictates that the either the environment

must be adversarial or there must some time limit on actions.

UT, as a domain, meets these requirements in the following ways:

Instances Differences Each level is of a different shape and size. Pick-ups are also in

different locations and enemies spawn in different areas.

Machine Learning Techniques In part 2 we deal with effective machine learning

techniques for UT.

Team Based All three games types dealt with are team based.

Complexity With the gamebots modification UT generates enough data to learn from

Bounds on Learning Enemy agents make UT adversarial. The game types also pe-

nalise explorative behaviour indirectly. Thus we cannot spend all our time learn-

ing until we obtain a complete domain description.

5.2. Overall Plans and LCC 49

5.1.2 Modularity

One of the key concepts of the architecture is modularity, the idea that individual be-

haviour modules can be recombined to create desirable behaviour. The concept of

modularity also carries through to the adaptation level which utilises a number of ma-

chine learning components to build the behaviour modules.

Thus the system can be viewed as having two specific types of modular compo-

nents, the machine learning techniques and the behaviour modules. These occur at

different layers within the system and have slight differences in their properties.

The machine modules take in environment data and compress this into conclusions

which are then fed to the behaviour modules. The behaviour modules can thus take

data from the environment as well as data from the learning modules and then execute

bot actions within the environment. This allows us to think of the learning modules as

having only sensors and the behaviour modules as having both sensors and actuators.

The modular nature of the system allows expansion by means of alternative ma-

chine learning techniques, than those used for our domain. Similar domains, which

have characteristics as described in sub-section 5.1.1, will have specialised learning

techniques and behaviour modules which can be slotted into the architecture.

Engineering Box

Adaptability Concerns The least adaptable part of the system is the behaviour mod-

ules. These send direct action commands to the game server and are implemented in

relatively low level script with many fiddly implementation details. Some suggestions

are made in the further work section for scripts which could be used to offer more re-

usable functionality but in any domain this kind of operation would require significant

middle-ware before the modularity desired can be achieved.

It is feasible that an adapter could be written rather than fully building new modules,

but this seems slightly counter-productive as it is likely that work in a new domain

would require custom behaviour modules anyway.

5.2 Overall Plans and LCC

The team plans for the bots are written in a logic based calculus called LCC (Lightweight

Cooperative Calculus)[85]. In principle any communicative calculus could be used but

the reactive version of LCC[40] fits with the motivations in sub-section 5.1.1. LCC

allows for agents to take multiple different roles and for messages to be sent between

50 Chapter 5. System Architecture

agents. Our implementation of LCC was adapted to allow the bots to perform cer-

tain actions in response to receiving messages or in response to satisfaction of certain

constraints. The following formulation of LCC[40] was used:

Framework := {Clause,...}

Clause := Agent :: Dn

Agent := agent(Type,Id)

Dn := Message | Dn then Dn | null <- C

Message := M => Agent | M => agent <- C | M <= Agent | C <- M <= Agent

C := Term | C and C | C or C

Type := Term

M := term

Agents are individual game bots which can take on specific roles. They can send

messages to other agents if constraints are satisfied. These are then checked against the

bot’s internal game state to either test for truth or to perform some task. The intuitive

reading of each connective is as follows:

Agent Each bot is considered as an agent with a role (Type) and a name (Id). These

two variables define a unique identity for the bot allowing messages to be passed

to the correct recipients.

then The then connective represents sequence, Dn elements are considered sequen-

tially, ordered left to right, when this connective is applied.

null This represents no messages passed, and is usually used to implement default

behaviours.

Send => is the syntax for sending messages with the message on the left and the

recipient name and constraints on the right.

Receive <= is the syntax for receiving messages with the message on the left, the

sending agent on the right and constraints to the left of the message.

Constrained <- is syntax for “constrained by”. When this connective is applied to

a received or sent message it is read as “Only accept or send messages if con-

straints are satisfied”

C This is the symbol for constraints

Message Messages are Prolog predicates sent to other bots. The type of message

sent is dictated by the Type and Role in the Agentpart of the send or receive

5.2. Overall Plans and LCC 51

connective. If the Id is unspecified the message will go to all bots in the role

Type. If the Type is unspecified and the Id is unspecified the message will go

to all bots. In all other cases the message goes to the bot in role Type and with

name Id.

Actions are also encoded as constraints, this might seem unusual but semantically

it is read as an agreement to perform a task and thus endeavour to make it true. For

instance in the following case constraints are used to control movement:

agent(a,player)::helloFrom(a) => a(A,player)<--movementAttempt(nearestHealth)

In the example above movementAttempt would act as the constraint upon sending

the helloFrom(a) message to another agent such that the message could not be sent

unless the bot was attempting to move as specified in the clause. The use of an unin-

stantiated variable means that all agents in the playerrole would receive this message.

The following example shows how this could then be responded to by another player

to enforce a desired behaviour:

agent(a,player)::helloFrom(a) => a(A,player)<--movementAttempt(nearestHealth)

agent(b,player)::movementAttempt(nearestAmmo) and ammo(X) and

prologConstraint(X < 10)

<- helloFrom(A) <= a(A,player)

agent(b,player)::movementAttempt(nearestHealth) <- helloFrom(A) <= a(A,player)

In this example agent b can respond in one of two different ways depending on

its current situation. If it has low ammo and receives the helloFrom message then

it will go to look for ammo, otherwise it will go to look for health. The predicate

prologConstraint treats the argument as a Prolog statement and attempts to satisfy

it using Sicstus Prolog semantics. Code after a % is a comment.

52 Chapter 5. System Architecture

5.3 Path Differentiation - A Motivational Example

Engineering Box

Why? The use of a motivational example here is because above and beyond the body

of work suggesting that the problem was a valid one to tackle and the literature sur-

rounding previous works in this area I still felt that there needed to be some concrete

example of why the proposed type of approach was likely to work. The example is not

such a good motivator of how the specific behaviour modules will be created or even

the type of team strategy that will be employed but it remains a good example of the

type of thinking which led to the idea of the 3 layers in the architecture.

Dynamic goal/path selection is when a bot within the game could have multiple

different goals, of equal importance, and that these could be differentiated between

based on some in-game information. In this section this is implemented by a very

simple “straw man”1 approach, differentiating between multiple goals based on the

length of the path to each goal point. This serves as a motivational example of why

this type of level based modelling is useful.

Multiple goal locations are given to the system and for each a path is returned.

These paths are then evaluated by counting the number of path nodes within each.

Next is the question of how to use this data to aid in playing the game. In playing

each of the three game types there are questions regarding whether shorter or longer

paths should be given higher priority and also what alternatives would be on offer to a

bot trying to use this information. The simplest example is a scenario mimicking the

human fight or flight response. In humans this reaction is an auto-nervous response

which occurs as a result of heightened levels of adrenaline within the body. Given

a predator, ready to attack, the human will automatically choose either to fight the

attacker or to flee from the area.

To model this the bot is given a strategy which says that in any situation the bot can

either go for ammo, health pick-ups or can fight a visible enemy. In the original system,

this would entail creating a strategy where movements to health, ammo or enemies

would be constrained by in-game conditions such as level of health or ammunition in

the gun. The problem with this is that it forces the strategy designer to know the level

specific details, such as, for instance, the distance of particular points in the level from

1We used the term “straw man” here because we do not expect this approach to work on its own.
This is to distance it from our actual techniques, as a motivational tool

5.3. Path Differentiation - A Motivational Example 53

the agent. Such a strategy is:-

Strategy 1.1

%% health is low

a(random,Id)::null<--movementAttempt(nearest_health) and health(H)

and prologConstraint(health<50)

%% ammo is low

a(random,Id)::null<--movementAttempt(current_weapon_ammo)

and ammo(A) and prologConstraint(ammo < 10)

%% we can see an enemy

a(random,Id)::null<--visiblePlayer(Location)

and strafeAttempt(Location,Location)

%% none of the above

a(random,Id)::null<--movementAttempt(random_play)

Decisions have been made about which goals take precedence within this strategy

(Strategies are parsed, when searching for applicable clauses, in standard Sicstus pro-

log ordering - From top to bottom). The very low level of abstraction away from the

game specifics chosen forces this type of strategy to be created. For instance to know

what would happen in a situation where ammo was low and health was low a clause

such as this would be needed:-

a(random,Id)::null<--movementAttempt(CHOICE) and ammo(A)

and prologConstraint(ammo < 10) and health(H)

and prologConstraint(health<50)

Here CHOICE would represent what to do in this particular situation. Again, this

involves coding a strategy for every possible situation, leading to impracticality of

plan creation, internalisation, and eventual combinatorial explosion. Even ignoring

large theoretical problems there is still an issue of having to make decisions about

what to do in these scenarios. Ideally these types of decisions should be handled by

the bot, allowing the LCC strategy to remain consistent and verifiable while still being

practically executable. This view is echoed in [58] where it is suggested that

... it is often infeasible to foresee all the potential situations an agent
may encounter and specify an agent behaviour optimally in advance

This issue arises because the strategies are parsed in a certain order, forcing the

need to check which goals will execute first and last in order to determine bot play. For

instance, if health is less than 50, ammo less then 10 and a visible enemy present then

54 Chapter 5. System Architecture

the bot would always go for health. But say for instance in many previous cases where

the bot had this amount of ammo they had won fights then maybe it would be better to

stay and fight with the enemy? Trying to make these kind of decisions by abstracting

away from the LCC plan is the main thrust of this thesis.

Thinking of this as a situation where the lengths of paths can be utilised, a strategy

like the following allows more dynamic and flexible play without pre-supposing as

many constraints on the bots behaviour:-

Strategy 1.2

%% can see a player and health is low and ammo is low

a(random,Id)::null<--movementAttempt(multi,[Location,current_weapon_ammo,

nearest_health])

and visiblePlayer(Location) and health(H)

and prologConstraint(H<50)

and ammo(A) and prologConstraint(A < 10)

%% can see a player and ammo is low

a(random,Id)::null<--movementAttempt(multi,[Location,current_weapon_ammo])

and visiblePlayer(Location) and ammo(A) and prologConstraint(A < 10)

%% can see a player and health is low

a(random,Id)::null<--movementAttempt(multi,[Location,nearest_health])

and visiblePlayer(Location) and and health(H) and prologConstraint(H<50)

%% can only see a player

a(random,Id)::null<--movementAttempt(Location) and visiblePlayer(Location)

%% health is low and ammo is low

a(random,Id)::null<--movementAttempt(multi,[current_weapon_ammo,nearest_health])

and health(H) and prologConstraint(H<50) and ammo(A)

and prologConstraint(A < 10)

%% only ammo is low

a(random,Id)::null<--movementAttempt(current_weapon_ammo) and ammo(A)

and prologConstraint(A < 10)

%% only health is low

a(random,Id)::null<--movementAttempt(nearest_health) and health(H)

and prologConstraint(H<50)

%% none of the above

a(random,Id)::null<--movementAttempt(random_play)

5.3. Path Differentiation - A Motivational Example 55

Engineering Box

Movement Attempt In this strategy the notion of a multi path movement attempt

is introduced. When this is executed the system will pick one of the three different

targets based on some measure of path utility. In this section this utility is based on

path length.

This strategy has sacrificed both determinism and simplicity (the strategy is still rel-

atively simple but not as easily understood as before) but the bots will play differently

based on their position within the level and thus the strategy is more level independent.

Using only this measure of goal importance based on path length to goal still creates a

strategy which has problems regarding the amount of constraints used. There are still

too many repeated constraints implying that we are still having to script what the bot

should do in all situations.

This is a straw man attempt, better approaches are discussed later, but it does offer

some insight into the power which this type of approach can offer. Eventually this

type of play is reduced to a simple constraint startModule(engage_enemy)which

would then take into account all of the play above at some lower level within the bot.

This allows the consideration of more complicated team interactions. Internalising the

behaviour within the bot is not unique but affords us the ability to then craft much

larger scale strategies without having to worry about the execution details.

Consider observing only the variables of bot health, ammunition count and whether

an enemy could be seen within the scope of the bot’s view. The old strategy could be

used to determine the bot’s next move in every case, using the new strategy a much

larger quantity of information is needed in order to make this decision. Namely, the

information regarding the distance from every point of concern within the 3D space

and the bot’s current position.

Even though the strategy is more complicated in the abstract, the level of infor-

mation and game data which it utilises, expressed as a ratio in relation to increase of

strategy complexity, is favourable. The strategy is abstract enough to be understood but

still covers a large range of different behaviours depending on the path discrimination

strategy implemented at the underlying level.

A strategy could be coded which did not use the information regarding path length

implicitly but instead made this data accessible to the LCC plan via state variables

which could then be checked as constraints. Even with this the size of the strategy and

56 Chapter 5. System Architecture

the amount of work involved in creating it is already becoming unwieldy with regards

to the expected utility of such a strategy. Take for example the demonstrative strategy

1.3 below:-

Strategy 1.3 (warning, this will not work with the system as some of

these constraints are not accessible, it serves only as an illustration

of why this particular technique is a bad idea)

%% can see a player and health is low and ammo is low and player is closest

a(random,Id)::null<--movementAttempt(Location) and visiblePlayer(Location)

and health(H) and prologConstraint(health<50) and ammo(A) and

prologConstraint(ammo < 10)

and distance(Location,D) and distance(nearest_health,He)

and distance(current_weapon_ammo,Cwa) and

prologConstraint(minimum(D,[D,He,Cwa]))

%% can see a player and health is low and ammo is low and health is closest

a(random,Id)::null<--movementAttempt(nearest_health) and

visiblePlayer(Location)

and health(H) and prologConstraint(health<50) and ammo(A)

and prologConstraint(ammo < 10) and distance(Location,D) and

distance(nearest_health,He)

and distance(current_weapon_ammo,Cwa) and

prologConstraint(minimum(He,[D,He,Cwa]))

%% can see a player and health is low and ammo is low and ammo is closest

a(random,Id)::null<--movementAttempt(current_weapon_ammo) and

visiblePlayer(Location)

and health(H) and prologConstraint(health<50) and ammo(A) and

prologConstraint(ammo < 10)

and distance(Location,D) and distance(nearest_health,He)

and distance(current_weapon_ammo,Cwa) and

prologConstraint(minimum(Cwa,[D,He,Cwa]))

%% can see a player and ammo is low and player is closest

a(random,Id)::null<--movementAttempt(Location) and visiblePlayer(Location)

and ammo(A) and prologConstraint(ammo < 10) and distance(Location,D)

and distance(current_weapon_ammo,Cwa) and prologConstraint(minimum(D,[D,Cwa]))

%% can see a player and ammo is low and ammo is closest

a(random,Id)::null<--movementAttempt(current_weapon_ammo)

and visiblePlayer(Location) and ammo(A) and prologConstraint(ammo < 10)

and distance(Location,D) and distance(current_weapon_ammo,Cwa)

and prologConstraint(minimum(cwa,[D,Cwa]))

%% can see a player and health is low and player is closest

a(random,Id)::null<--movementAttempt(Location) and visiblePlayer(Location)

and and health(H) and prologConstraint(health<50) and distance(Location,D)

and distance(nearest_health,He) and prologConstraint(minimum(D,[D,He]))

%% can see a player and health is low and player is closest

a(random,Id)::null<--movementAttempt(nearest_health) and

5.3. Path Differentiation - A Motivational Example 57

visiblePlayer(Location)

and health(H) and prologConstraint(health<50) and distance(Location,D)

and distance(nearest_health,He) and prologConstraint(minimum(He,[D,He]))

%% can only see a player

a(random,Id)::null<--movementAttempt(Location) and visiblePlayer(Location)

%% health is low and ammo is low and health is closest

a(random,Id)::null<--movementAttempt(nearest_health) and health(H)

and prologConstraint(health<50) and ammo(A) and prologConstraint(ammo < 10)

and distance(current_weapon_ammo,Cwa) and distance(nearest_health,He)

and prologConstraint(minimum(He,[Cwa,He]))

%% health is low and ammo is low and ammo is closest

a(random,Id)::null<--movementAttempt(current_weapon_ammo) and health(H)

and prologConstraint(health<50) and ammo(A) and prologConstraint(ammo < 10)

and distance(current_weapon_ammo,Cwa) and distance(nearest_health,He)

and prologConstraint(minimum(Cwa,[Cwa,He]))

%% only ammo is low

a(random,Id)::null<--movementAttempt(current_weapon_ammo) and ammo(A)

and prologConstraint(ammo < 10)

%% only health is low

a(random,Id)::null<--movementAttempt(nearest_health) and health(H)

and prologConstraint(health<50)

%% none of the above

a(random,Id)::null<--movementAttempt(random_play)

Clearly this is not advantageous in creating an abstract plan which can be easily

understood and put into action in a dynamic and flexible way. The only real flexibility

lies in how the distances are measured. Strategy 1.2 allows a different method of

differentiating between these alternative locations to be used in place of the path length

measure, without sacrificing the overall feel or intention of the LCC strategy.

With all this added complexity to the way in which the bots perform pathing and

choices, and the number of variables which the bot can access, at a level below the

strategy programmer’s awareness, is there any evidence that the system is working

better or differently? Does this extra information actually benefit the bot? To answer

these questions involves evaluating these strategies against each other to see how they

perform on different levels. Two levels of differing nature were chosen to determine

how the strategies affect play. The first is a very small level. The second is a much

larger level where it becomes more important to consider length of paths.

To show the importance of level independent plan execution we have included a

set of trials in which a further strategy is used which is much simpler as it disregards

58 Chapter 5. System Architecture

all data about current ammo and health, concentrating only on whether a player can

be seen. When a player can be seen the strategy picks whether to go to the location

of the player, the current nearest ammo or the current nearest health, based on path

length to each. This is to show two things. Firstly, that even with only a minimal

amount of flexibility we can still create system which does something of interest with

minimal pre-emptive planning and very situated reactive behaviour. Secondly, it shows

that there is still required some level of input into the strategy creation process and we

cannot leave all of the decision making to data which is learned at game time.

In further chapters it is demonstrated that a further level of abstraction can be ob-

tained, removing even the constraint about a visible player allowing all of this data to

be handled by modules which are turned and off by the main LCC strategy. These

modules still need to be created and the behaviour is largely fixed with only smaller

elements which vary. This example is meant only as motivation for the kind of things

which will vary within the modules. Even the simple abstraction used here, though, is

closer to the engage_enemy operation that was discussed earlier:-

Strategy 1.4

%% can see a player

a(random,Id)::null<--movementAttempt(multi,[Location,current_weapon_ammo,

nearest_health])

and visiblePlayer(Location)

%% cant see a player

a(random,Id)::null<--movementAttempt(random_play)

5.3.1 Experimental Data

5.3.1.1 Trial 1 - Level = Gael

This set of trials was played on a very small level called Gael. The purpose of using a

small level is to show that there is a difference in performance between the execution

of Strategy 1.1 across two levels which can be bridged by strategies 1.2 and 1.4. A

larger level is used in the next set of trials to demonstrate this. 5 trials were used for

each strategy and then averaged.

The main problem with this level is that there is only one health point in the centre

of the level on a platform but this health point is not always available, it takes time

to regenerate before the bot can pick it up again. This can lead to situations where

the bot has minimal health and is standing on this platform waiting for the pickup to

5.3. Path Differentiation - A Motivational Example 59

Gael Level Trials, 5 Trial Averages

Strategy Enemy Score Bot Score

1.1 30 14.2
1.2 30 16.8
1.4 30 9.8

Figure 5.3: Gael Trials - 3 Strategies

re-generate. Ideally the bot would have some way of inducing that the health pack is

not where it should be and this is probably a flaw in the way the system, for interaction

with UT, has been engineered. Although weak for demonstrating the argument, this

shows that even with a very small, well defined strategy, small details of the level can

drastically effect performance, altering behaviour. It is these types of plan implemen-

tation details which this thesis addresses.

Taking strategy 1.1 it is easy to understand the intention of the strategy and how

it should operate in the abstract, however in the environment this is not what happens

because of small level details. Occasionally the bot did stop to go get ammunition

before returning to a fight. This again worked well because the level is small and very

self-contained. On larger levels this could result in the bot having to move away from

the fight to go and get ammunition. If this was a significant distance away then there

could be problems with whether to go and get ammo or not.

The performance of strategy 1.4 is particularly bad. The bot never fights unless the

fight is very close. This leads to the play being invariant of the enemy. This points

to weighing ammo and health against the enemy in some way. It is clear that in some

situations the basic constraints are useful but setting these is very difficult in advance.

The trials also show that because the level is small, the bots often choose not to fight

because something else is closer. This is different on larger levels as ammo and health

pickups tend to be more spread out. Also the bot will often stand at a point when it

has got there because it has no way to tell that its need have been satisfied, leading to

it getting killed as it waits.

5.3.1.2 Trial 2 - Level = Deck17

Figure 5.3.1.2 shows the results for the trials on Deck17. Strategy 1.1 is much better

than for Gael, with the bot making use of the health points very often instead of en-

gaging in a fight. The problem is, sometimes it would be beneficial for the bot not to

60 Chapter 5. System Architecture

Deck17 Level Trials, 5 Trial Averages

Strategy Enemy Score Bot Score

1.1 30 4.4
1.2 30 9
1.4 30 1.4

Figure 5.4: Deck17 - 3 Strategies

do this and instead keep fighting. They could then pick up the health afterwards when

the fight was over. It would be nice to incorporate some more information about expe-

rience and the amount of time the bot has been engaged in a fight before considering

going for health or ammo.

A strange side effect, observed while watching the play for all these strategies, is

that the bots occasionally get stuck in a particular place. This is a side effect of the

random_play behaviour which is not completely fool-proof. The enemy often gives

up searching for the bot when this happens and camps on one of the higher areas in

the level waiting to be found. This shows that there are areas of the level in which the

enemy are less likely to go. Camping in this manner is quite a frequently observed

behaviour of humans playing on on-line servers [87]. This points to the idea that the

enemy play be modelled. This idea is detailed in section 7.4.

These trials exhibit some of the same problems as in the previous work [40] with

loosing sight of the enemy. This could be solved by adding an internal belief state

variable or alternatively using the enemy models which are discussed later in section

7.4. What is interesting is that on the previous levels this was not so much of an

issue because the bots were more likely to run into each other as the level was smaller,

echoing precisely the results of [40]. This again shows a need for level independent

plan execution.

Overall the experiment shows that, although some elements which are learned or

dynamic are likely to improve performance, we do need some elements to be set and

immutable. The problem is deciding which elements to learn/make dynamic and which

elements are specific to the UT domain/game-type rather than to each level.

A final point in this discussion consider table 5.5. Even though the performance

of the strategies are all relatively poor the ratios of decrease in performance show that

strategy 1.2 exhibits the lowest relative drop in performance with the transition from

small to larger level. This shows there is a possibility of creating strategies who’s per-

5.3. Path Differentiation - A Motivational Example 61

Strategy Score for Deck17 / Score for Gael

1.1 0.309859155

1.2 0.535714286

1.4 0.142857143

Figure 5.5: Ratio of Decrease in Performance

formance shows low variance over levels but that these mechanisms need to be created

carefully if this invariant performance is to be high rather than low. The strategies

created here are by no means good models for playing the game. Even with a simple

piece of modification to the strategy a slightly lower variance in performance across

two different levels can be achieved.

This method of using the path length information is not even particularly dynamic

as it is still essentially a decision based on static data about the level but this data

changes as the dynamic element, the bot, moves about within the static environment.

This represents a motivational starting point from which to progress with more com-

plex work.

63

64 Chapter 6. Learning Mechanisms and Techniques: Introduction

Chapter 6

Learning Mechanisms and

Techniques: Introduction

Engineering Box

Prototyping Approach Because the architectural layers were pyramidal we em-

ployed a bottom up engineering strategy, mainly because the higher layers were based

on those lower in the architecture.

Technique Motivations One of the key factors in creating the machine learning tech-

niques was to consider the different environmental factors which could reliably be mea-

sured. A lot of the decisions regarding these were based on thinking about what the

largest factors concerning performance in the domain were. Typically the biggest three

elements are the other bots, the weapons and movement within the domain. Removing

knowledge of any of these three results in poor performance.

Time Constraints Some consideration is also taken towards time constraints on

learning. This is largely not a problem as extra computational power can always be

acquired as long as the learning is within some upper bound, but it must be consid-

ered that the bots are acting in a real-time world. As such, sometimes batch learning

processes are performed at intervals, rather than when new information is obtained.

To deal with this a separate processing thread ran at all times which updated the mod-

els, performing calculations which would be time consuming to perform on individual

cycles of each bot.

Machine Learning (ML) and Reinforcement Learning (RL) Adaptation Some work

is also presented which shows how traditional ML and RL techniques can be adapted

to cope with large amounts of changing information which is being gathered in a real

time fashion. Many of the techniques presented are not state of the art but the way

in which they are being combined and utilised is unique and offers a good model for

creating systems of this type.

6.1. Learnable Environmental Factors 65

In this chapter we provide some background discussion concerning the modelling

used in the machine learning layer of the architecture. It is this layer of the architecture

which provides the adaptibility to changes that happen within a match.

In section 5.1.1 we discussed that one of the criteria for a domain to have, for our

architecture to be applicable, was available effective machine learning techniques for

modelling environmental factors. In this chapter, and that following it, we show some

environmental factors and corresponding learning techniques that can be used for the

UT domain, in order to meet this requirement. These chapters cover the development

of layer 1 (low-level learning) of the architecture.

As discussed we do not have any interest in these particular techniques themselves,

they only represent an application of our architecture to an example domain repre-

sentative of our applicable environments. As such this chapter, and that following it,

can be considered a description of the learning component prototyping process for our

domain.

6.1 Learnable Environmental Factors

The 3D environment of UT presents many options for machine learning. These are

generally split into two categories: Factors provided by the environment and factors

provided by the other bots in the environment. It is also perfectly valid to instead

consider the adversarial bots as part of the environment. We either have a neutral

environment with adversarial opponents or an altogether adversarial environment. In

practice, the distinction makes no difference as we are not considering any properties

of interaction such as argumentation.

In practice we should consider the following quote from a paper dealing with re-

search into AI for quake 3 (A similar type of domain viewed from a similar level) when

examining which factors are good for modelling:

“Very good candidates for applying AI learning techniques are the ba-
sic decision points of the NPC (Non-Player Character) where it has to
select a certain behaviour depending on the environment. Examples are
weapon selection, selecting which item to get, selecting a target, etc. The
advantage of these types of decision is that they are quite well isolated and
therefore the existing methods can easily be replaced by a different one
without having to change the rest of the NPC.”[119]

This fits with the observations made in [40] regarding where the strategies used

were most effective and the best type of approach to strategy design.

66 Chapter 6. Learning Mechanisms and Techniques: Introduction

Outside of weapon modelling, the most obvious factor provided by the environment

is the levels due to their different shapes and sizes. The levels are arranged into areas

such as indoor and outdoor sections as well as individual buildings and structures.

They also have different arrangements of the pickups including weapons and health

pickups.

The enemy bots in the level have specific areas in which they play. It is assumed

that this therefore changes the utility of these areas creating divisions within the level.

Fights with these enemy bots are also theoretically model-able. The outcome of

any given fight can be used to guide decisions for future fights.

6.2 Learning Catagories

The unique environment presented by games such as UT, along with the constraints

that acting within that environment puts on the learning agents, presents an opportunity

to explore avenues of active learning and closed loop machine learning[58]. This is

primarily because of the lack of well annotated and categorised data to learn from.

Feedback from the environment must be used as input to select data which is most

likely to be of use where no clear annotation exists.

6.3 Game Data

It is important to detail the types of data which the game gives us to work with:

Navigation Point Positions 3D Cartesian co-ordinate locations placed around the level

by the level designer to allow bots to navigate.

Agent positions 3D Cartesian co-ordinate locations of other bots in the game, for

opponents these are only accessible when they are in view, for our team members

the location of team members is available to all team members

Health Point Positions 3D Cartesian co-ordinate locations listing all the health point

pickups in the level

Weapon and Ammo Positions 3D Cartesian co-ordinate locations listing all the weapon

and ammo pickup points in the level

Agent Health Each bot has access to their health value and the rest of their team’s

health values , this is a number between 0 and 100

6.4. Static versus Dynamic Learning and Heuristics 67

Agent Weapon Each bot has access to which weapon it is currently holding and also

which weapons it has in its inventory

Length of fight When the bot is involved in a fight it has access to how long the fight

took, this is measured in game cycles which are the units of time in UT

Taking Damage The bot is informed whenever it is taking damage and of how much

damage is taken

Team Has Flag The bot is informed if its team are in possession of the opponent’s

flag

Opponent Has Flag The bot is informed if the opposing team are in possession of

their flag

Domination Point Status The bot is informed of which team controls the domination

points

Game Score The bot is informed of the game score

Kill Achieved The bot is informed if it achieves a kill and which bot it killed

In Game Cycles The bot has access to a timer so that it can parametrise changes in

data by a time step similar to the length of fight parameter

These are the raw data elements which the machine learning mechanisms must

work from and are the only elements assumed true. Everything else which could be

viewed as representational is assumed or learned based on the values of these parame-

ters.

6.4 Static versus Dynamic Learning and Heuristics

During this thesis learning methods are dealt with which are dynamic in the sense that

they adapt and learn information based on experience and observations made during

the playing of the games. Although online learning is the main focus, some ways are

presented of performing static learning based on information which is available before

the matches begin. It is also shown how to integrate heuristics and intuitions into the

learning process. Most of the time this static learning and heuristic information is used

to help the dynamic learning algorithms perform better rather than as a direct learning

mechanism. These concepts are defined as follows:-

68 Chapter 6. Learning Mechanisms and Techniques: Introduction

Static Learning Something which is learned offline prior to other learning or some-

thing which is learned from a static environment (Presented in [97] as off-line

learning).

Dynamic Learning Something which is learned over multiple occasions or in re-

sponse to something which changes throughout the life cycle of the domain

activity (Presented in [97] as on-line learning).

Heuristic[56, 65, 86] A rule of thumb based on intuition or prior knowledge about the

domain. Often used to guide learning processes.

6.5 Evaluation

In order to assess the effectiveness of the modelling techniques, interim strategies are

used to gain data from the level. Some of these temporary strategies build on earlier

ideas presented in [40] and some are purpose designed to allow the gathering of data

to assess how well the models work. A lot of these intermediate strategies are not in

keeping with the ideas expressed in section 5.3 but all the chosen modelling techniques

are eventually tied together into well abstracted modules in Chapter 3. In many cases

it is not the intention to show that a particular technique is the best for a purpose1,

that there isn’t a better formulation, or even that the strategy elected for testing is

performing something which is ultimately useful. The techniques are evaluated to see

in what way they perform and to motivate what they may eventually be useful for. In

some cases this amounts to setting a range of parameters to see which model fits the

requirement. In others it involves a more complex study of the model design.

Although the system contains many separate working parts and components care

has been taken to try to evaluate each of these, where possible, individually, in a mod-

ular fashion. In some cases this was not possible. For instance in the case of evaluating

the dynamic path-finding algorithm in section 7.10 the enemy model defined in section

7.4 had to be used to provide the data on which the path finder operated. In cases such

as this the technique being referenced (the enemy model in this case) had its particu-

lar form fixed and chosen from the relevant section. This allows the evaluation of the

objective technique (The path-finding algorithm in this example) without introducing

1There is no interest in having only the most state-of-the-art machine learning techniques for every
purpose. It is the system as a whole which is novel in this work rather than the techniques themselves.
This said the way in which some of the techniques have been modified for this domain can be considered
novel.

6.6. Potential Problems 69

a further variable. In Part 3 an analysis of the modules and strategies which make use

of the techniques developed in this section is performed. This is an indirect analysis of

the system as a whole and the effectiveness of the individual components. This is also

complimented by a basic component level analysis of the system.

This may seem like a strange strategy for assessing the machine learning element

of the system but in the deployment environment it is worth noting that there is little

actual sense of optimality. To assess the system involves observing the matches and

then combining numerical data with observations of the matches played. To assess the

individual learning techniques relies on visualisation techniques and subjective assess-

ment of the usefulness of the particular representations. In this way the techniques

presented here have elements of both supervised and unsupervised learning with envi-

ronmental feedback acting as the largest single mediator of the bot’s actions, decisions

and internal bias. Although not strictly couched in the reinforcement learning area (this

is because certain modules may contain elements of RL whereas others will contain

very little) there is an element of the bot reinforcing certain decisions based on the state

achieved after their execution.

In some cases it is possible to evaluate a technique by applying it to data gained

through a game execution, in an off-line manner. This can give good results about

how useful a particular technique will be on real-time data. It is also shown how these

techniques can then be evaluated in a real-time manner and how this reinforcement

learning element of the technique interacts with the machine learning process.

6.6 Potential Problems

It might seem the task of developing these techniques could be very daunting, as it

leaves much room for a huge range of different techniques to be used and different

manners in which to collect information. Many of the techniques used, and the data

which they are based on, dictates what particular style of learning will take place. This

limits the number of decisions regarding learning to be considered.

Another problem is sparseness of data. A simple solution to gaining more data for

use is to allow the bots to store information about certain levels and games to disk and

then read this afterwards to enable better play. Some way of differentiating this data

and some decision mechanisms about when to use are then needed. This thesis does

not cover this issue, known as knowledge transfer [90], in any depth, although there is

an option for furthering the work in this system and there is nothing inherent within the

70 Chapter 6. Learning Mechanisms and Techniques: Introduction

system stopping this approach from being taken. The problem of knowledge transfer is

also simpler with numerical statistical data than in more traditional symbolic domains

where the semantics can prove a stumbling block.

In terms of the classification of problem suggested in[58] our system has certain

constraints on the bot’s actions which have a real-time bound on the learning process

where the bots are acting as asynchronous processes (although technically they are

multi-threaded so they do take turns. This turn taking happens so quickly that the bots

are appear to act, to the observer, in real-time). The different techniques also vary

between parallel learning and recall at all times and cheap, on-the-fly, learning and

off-line, computationally expensive, learning, depending on the particular technique

and the complexity and frequency of the input data being used.

6.7 Influence Maps

Most of our modelling work is based on the influence map paradigm[49, 28, 51, 4].

This is the idea of taking a space, which could be an actual space or a theoretical

learning space, and then overlaying some form of utility map (occupancy/influence

map) to the areas within the space to allow them to be differentiated in some way.

Normally influence maps are used to guide other techniques to better solutions by

biassing learning in some way. In our case we utilise influence maps, heavily, directly

for online learning. The main reason is that basic influence maps are easy to learn

with little data and the results are interpretable quite easily. By heavily processing

these maps and exaggerating differences and differentiations in the map we can build

wholesale usable techniques based only on these, which are usable straight away.

Our main method for this integration is to feed the influence maps into a path-

finding mechanism which is adapted to use the dynamic information.

6.7.1 A Note on density modelling

The work presented in this section of the thesis makes extensive use of kernel based

modelling in the context of parzen density estimation, particularly along the lines of the

work presented in both [52, 68] and especially [89]. The reason for this is that kernels

can offer a good route into learning in areas of sparse data. It is entirely possible

to create modules which have more symbolic goals and operate from a more logic

based stand-point but the leaning in this document is geared towards a good balance of

6.7. Influence Maps 71

statistical learning at the low level combined with more symbolic/logic based reasoning

at higher levels. This fits with the literature showing that the type of goals of the

components of the system are best suited to this type of treatment. In most cases at

least two contrasting approaches to the problem are considered. These, however, still

tend to be in the same area of learning but often one is simpler, less grounded or more

customised for the situation. Again this demonstrates the lack of importance that the

individual modules themselves play in the system.

Large use is made of an ML technique known as K-Nearest Neighbours. This is

very basic but it is shown that with the particular data generated from the UT problem

domain this performs better than more powerful techniques as it begins to generate

conclusions from early in the learning process. The mahalanobis distance is presented

as an alternative distance measure. Gaussian or radial basis function kernels are not

considered as distance measures. This is because they offer no different conclusions

in a K-Nearest Neighbours situation. Consider the following diagram showing three

points X , Y and Z in two dimensions.

Figure 6.1: Ordinal Situation of Gaussian Kernel

Although the exact distance calculations of points from each other are affected by

the Gaussian shown, as opposed to a linear scale, the ordinal ranking is not. As such

the kernel model offers no advantage. In general, unless the output function is to be

used in a sense other than ordinal ranking, this is true of kernel modelling. With non-

smooth kernels which have discontinuous non-ordinal surfaces this fact need not be

true, take for instance the situation in figure 6.2.

Here the kernel ranks Z higher than X .

72 Chapter 6. Learning Mechanisms and Techniques: Introduction

Figure 6.2: Ordinal Situation of Non-Smooth Kernel

Chapter 7

Learning Mechanisms and Techniques

In this chapter we detail the actual mechanics of the techniques used and present our

initial analysis of their performance. We also present our final set of chosen techniques

and their respective configurations.

This chapter shows ways in which data and information can be abstracted from the

level and environment. The techniques utilise information from the bots as a group.

Communication is used both directly in the LCC strategies through messages, as in

[40], and indirectly, through dynamic model updating in conjunction with other bots.

The machine learning mechanisms presented here straddle the traditional definitions

of Multiplied Learning, Divided Learning and Interactive Learning [17].

In some of the sections we try to present a typical offline learning technique and

show firstly how it could possibly be adapted for online use and then show why it is not

particularly good to use it in this manner. This is mainly because the techniques used

for parameter estimation here are coming at the task from a different angle to what is

normally performed in this field. Our goals are not to find the best technique or the

most optimal technique. We are concerned with finding a working technique for our

domain, which can perform parameter estimation in an online manner. If we had any

optimality constraints they would be highly weighted by how well they handled online

learning and the challenges this presents.

73

74 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

A Personal Perspective My personal reaction to a lot of the offline machine learning

mechanisms initially postulated in these sections was that they were too complicated

to work in our domain. As the architecture is the main contribution it almost doesn’t

matter what the domain is as long as it fits certain key assumptions. The big problem

with many of these complicated mechanisms is that the actual target function underly-

ing learning is in many cases very simple but with lots of noise. We don’t care about

the nature of the noise and essentially a lot of these techniques are over-fitting small

amounts of very noisy data where as really we want a more general feeling of the data’s

core concept.

7.1 Learning the Level Size and Shape

One of the key challenges with building the system in this thesis was to pick out which

game elements were the best to model. Given that our remit was to deal with the prob-

lem of stable performance over a number of different game levels, it seemed pertinent

to have some model of these levels. This could then be used to help set other parame-

ters and base other assumptions on. If we knew the type of level we were dealing with,

this could possibly make other problems such as path finding and enemy modelling

easier to deal with. Therefore it made sense to deal with levels first as a space for other

concepts to slot into. We knew that we could only work from the navigation points

which we had been given from the gamebots connection layer and so had to extrapo-

late from these any useful information which we could. Clearly key to this were the

size and shape of the levels.

There is much information that can be gained from the size and shape of the levels

in the UT domain as they are represented by point clouds, which are similar to the 3D

laser scans used in both robotics[60] and city modelling[43]. In both fields a reverse

engineered structure is used to gain a better understanding or level of performance. In

[60, 115] the extra information is used to guide a robot and improve obstacle avoidance

while in [43] the 3D data is used to construct a footprint for buildings for automatic

map generation. Our problem domain is a mixture of the two cases. We have au-

tonomous agents whos performance we wish to increase but the nature of our data is

more in-line with the 3D laser scans of the city, albeit at a lower resolution, plus we

7.1. Learning the Level Size and Shape 75

aren’t dealing with obstacle avoidance in the environment model. A consequence of

the low resolution is that some of the techniques used in [43] are not directly applicable

as they rely on having data of a larger density and as such clustering methods are more

appropriate than line and curve following algorithms.

Another deviation we make from the city data case is that we are not only trying

to find a footprint of the data and are interested in the general structure. As such the

work presented in [91] is relevant, although we don’t perform classification of sections

into different urban features instead only seeking boundaries between them. This also

allows us to consider a more general class of algorithms and not have to limit our

modelling to specific feature sets.

Most of the data required to fit structure to the point clouds can be extrapolated

from the point clouds themselves automatically. This information can then be used to

select appropriate strategies and alter some of the machine learning techniques.

Pieter Spronck also provides some notable work into level and environment mod-

elling applied to the area of game AI. In [112] he proposes a system for taking in level

features and using these to guide the construction of a decision tree which is then used

for deciding agent actions in that particular environment. Again the focus of his work

is slightly different as he uses the environmental data to directly construct his strategy.

It also differs as [112] assumes that the data used from the level is given in a high level,

usable, form.

In the following sections we deal with automatically learning level size and shape

using Principal Components Analysis (PCA), Entropy Clouds and polygon fitting.

7.1.1 Level Size

The simplest assessment of a 3D space, relative to similar spaces, is its size. Gaining a

general sense of the deviations in size between environments can inform many choices

regarding actions and behaviour.

There are several ways in which the size of the level can be estimated from the path

node locations. The path nodes in the level are 3D locations which resemble a point

cloud, similar to what would be produced from a 3D range scanner [27]. One measure

of level size is to pick 3 gradients of direction which are orthogonal to each other and

project the level points onto these. The maximal points along the gradients can then be

used a measure of level size, biassed by variance of point cloud structure. A good way

to pick the gradients to project the level points onto is via PCA (Principle Components

76 Chapter 7. Learning Mechanisms and Techniques

Analysis)[78].

Here we term this method of measuring level size PCAMagnitude.

PCAMagnitude(setx) =

N

∑
i=1

D(X ,Closest(X))

N
This method focuses not just on distance but on distance seen from the perspective

of inter-node variance. Simply taking the distance between nodes in the level and

assessing the distance from the furthest point in one direction to the furthest point in

the other direction is just measuring the size of the level in terms of these maximal

points. But it is known, a priori, that the path nodes in the level are spaced in such a

way that they can be used to correctly navigate paths and avoid certain obstacles. As

such if there are many nodes near each other then it is advisable to factor this into the

equation for level size, as it gives a measure of number of compartments as well as

size. Projecting onto the axis of most variance factors in both of these ideas.

A simpler measurement of distance is to look at the average distance from every

node to its closest neighbour and then multiply this by the number of nodes in the level.

This gives a raw value on the size of the level which can be used to rank levels in terms

of size. This will be termed the Magnitude of the level henceforth.

Magnitude(setx) =
N

∑
i=1

D(X ,Closest(X))

7.1.2 Natural Level Clustering

Engineering Box

Difficulties Clustering was difficult because in some clustering applications the data

being used is expected to be clustered in a specific way so the strategy can be crafted

to take advantage of such assumptions. This is the not the case for us as the level data

is not clustered in any specific way that is common to all levels. This means that the

problem is less about setting the parameters of a known model and fitting it over the

data as much as it is about coming up with a model for the data from scratch. As such

the mechanism for clustering had to be both automatic and general enough to fit all

data in some meaningful way.

7.1.2.1 Background

If we make the assumption that the navigation points in the level are naturally clustered

in some way this allows us to perform some modelling on them on this basis.

7.1. Learning the Level Size and Shape 77

Because our underlying modelling strategy is to use influence mapping where pos-

sible it can be useful to be able to differentiate the objective map into different areas

and then model within these.

Although there are many available methods for clustering a point cloud our partic-

ular set of circumstances somewhat limits our choices. The biggest limiting factor is

the range of expected patterns and total lack of any assumptions regarding expected

formations. For instance in medical range scanning for tumours typical scans can offer

higher resolution in particular areas based on search priorities. Other factors limiting

choices include the lack of an objective evaluation technique and unknown number of

points in cloud.

There are many methods not just for fitting structure to point clouds but also for

performing automatic clustering. In [43] k-means clustering is used which is essen-

tially a simplified version of Renyi Entropy Clustering with no kernel. In many cases

surface growing and planar segmentation are used bot both of these are based on having

much more dense data [91, 77] and do not work so well when data is sparse.

There is also much work concerning classification of objects from scanner data,

particular if the objects are regular or non-general such as faces and bilateral objects

[24] but again these do not offer the required level of generality.

In our case Renyi’s Entropy Clustering[52, 35], from information theory, was used.

This gives a method of measuring the in-cluster entropy, the between cluster entropy

and also an algorithm showing how to use this information to decide the natural clus-

tering of the level. In [52] it is used to cluster unknown data into non-uniform distri-

butions using parzen density window estimators for the purposes of classification.

Extensions such as [36] exist for tasks such as FMRI image clustering but in our

domain the basic clustering algorithm performs as required.

7.1.2.2 Renyi Entropy Clustering

The algorithm for Renyi clustering is as follows; start with a much larger number

of clusters than expected in the data. Place some initial cluster seeds and then start

adding points via a method which minimises within cluster entropy increase in the

cluster which it is added to. Having done this, find the worst cluster by removing each

one in turn and seeing how this effects the between cluster entropy. Once the cluster is

found which, when removed, maximises the between cluster entropy of the remaining

clusters remove this cluster, re-assigning its points to the other remaining clusters, and

then begin the worst cluster removal process from this new cluster value. Finally look

78 Chapter 7. Learning Mechanisms and Techniques

at the differences between the between cluster entropy calculations for each step in the

cluster removal process. When a difference is found which creates a large decrease in

between cluster entropy, the correct clustering value is the value preceding this drop in

entropy.

In Summary:

1. Set max cluster value higher than the expected amount of clusters

2. Set cluster seeds

3. Assign all points to the cluster which minimises within cluster entropy increase

4. Remove cluster which maximises between cluster entropy when removed

5. Re-assign points to other clusters as in step 3.

6. Redo steps 4-5 until single cluster

7. Correct cluster number is the value before sudden drop in between cluster en-

tropy

This outline leaves the following decisions to be made regarding a variety of pa-

rameters for the model:-

7.1.2.2.1 The maximum number of clusters used The maximum number of clus-

ters to use is a function of the size of the cluster seeds we expect and the number of

data-points to be clustered. In experimentation this was empirically set to 20.

7.1.2.2.2 How to set the initial cluster seeds In [52] initial cluster seeds are set

by selecting xrandom points from the dataset, where x is the max number of clusters,

and then working through the dataset finding the nearest point to any given cluster. The

selected point is then assigned to that cluster and the process continues until all cluster

seeds have n_init number of points. This method is designed to reduce dependence

on the initial structure in the dataset. Our simpler version took the x random points as

the cluster seeds, as the results did not differ greatly from the experiments using the

method in [52].

7.1.2.2.3 How to pick the next point to be clustered A more involved method is

presented in [52] but for this system we decided to work through the points in order as

the relative bias this introduced was minimal.

7.1. Learning the Level Size and Shape 79

7.1.2.2.4 How to measure within cluster entropy The method of measuring within

cluster entropy is based on a parzen density estimation window[76] with a Gaussian

kernel.

WCEntropy(Clusterk) =−log(
1

N2
k

Nk

∑
i=1

Nk

∑
j=1

G(xi− x j,2σ
2I)) (7.1)

where G(x,H) is a Gaussian kernel defined as

G(x,H) =
1√
|2πH|

e−
1
2 (x)

T H−1(x) (7.2)

7.1.2.2.5 How to measure between cluster entropy Measuring between cluster

entropy is based on a parzen density estimation window with a Gaussian kernel, but

this time only assessed on points which belong to different clusters.

BCEntropy(Cluster1...k) =−log(
1

2∏
K
k=1 Nk

Nk

∑
i=1

Nk

∑
j=1

M(xi j)G(xi− x j,2σ
2I)) (7.3)

where

M(xi j) =

{
1 if xi and x j are in different clusters

0 otherwise
(7.4)

When we perform clustering using Renyi’s Entropy a large number of seeds is

initially used, more than are expected to be present in the data, and then bring this

down to the correct estimated level. This is because the initial placement is random

and likely to be sub-optimal. An optimised method, which could be considered, would

be to use K means clustering with a high value for K in order to get the initial random

seeds. This would possibly allow a smaller number of seeds to be used for the initial

placement and lead to a more efficient algorithm.

As the process used Gaussians, the input points were scaled down by a factor of

100 bringing them closer to O(10). O(1) is normally used [10] but O(10) proved more

stable for our application.

80 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Cleaning A process of cleaning was performed which involved finding any clusters

which were not of size greater than 4. If these were found they were re-distributed via

the same method as step 4 above. This was merely to allow the fitting of 3D polygons

in the next session. There is no fundamental reason that we could not have smaller

clusters but they break the quickhull algorithm by generating degenerate clusters.

7.1.2.3 Fitting 3D Polygons

One way to assign structure to the clusters in the level data is to fit a 3D polygon round

the points, containing them within it. This is a problem from graph theory of finding a

convex hull of points, and can be solved using the quickhull[9] algorithm.

Quickhull is a recursive, divide and conquer algorithm, that runs in O(NlogN) time.

In two dimensions the points are divided into two groups based on a ”mid” line cal-

culation which is a linear operation. The mid line is added to both groups and the

recursion is performed on both halves. The base case for recursion is when there are

only 2 points in a group. In 3D this is very similar except the mid line becomes a mid

plane.

Engineering Box

Visualisation Another, practical, reason for fitting polygons to the data is to allow vi-

sualisation of the reclaimed 3D structure. This can help us to evaluate the performance

of the clustering algorithm.

Figure 7.1: Visualising the convex hull

The idea of a convex hull is analogised in 2D by considering an elastic band which

is stretched to fit round all of the points , as in Figure 7.1. It will then snap back into

the shape of the convex hull. In higher dimensions visualisation becomes tricky but

the principle remains the same.

7.1. Learning the Level Size and Shape 81

Any clusters which fail to generate a convex hull are disregarded as degenerate1.

7.1.3 Preliminary Evaluation

The following are basic test cases to demonstrate how the technique works and some

of the artefacts that can occur with incorrect clusterings.

Engineering Box

Evaluation Our evaluation was two stage, firstly to test the algorithm on data which

we knew should be a very specific shape. This allowed us to determine things that

could go wrong even in perfect cases and thus allowed us to more easily evaluate per-

formance on the level data, already knowing some of the problems with our approach.

It also allowed us to debug the algorithm more carefully with simple cases rather than

trying to spot problems on full levels. This in general is a good idea with systems

dealing with this type of data.

7.1.3.1 One Cube

The first test used data points representing a single cube. With parameter settings of

variance 0.5 and a maximum of 5 clusters the result shown in figure 7.2 was achieved.

Figure 7.2: Level Model on 1 Cube

All this serves to show is that the algorithm is capable of correctly finding one

cluster and fitting a convex hull.

1This can happen if clusters contain co-linear or co-planar points

82 Chapter 7. Learning Mechanisms and Techniques

7.1.3.2 Two Cubes

With the same parameter settings the model sometimes gets the correct result on two

cubes as in figure 7.3(a) but also sometimes gets errors such as those shown in figures

7.3(b) and 7.3(c) where one or more nodes from one cluster have become enveloped

in the other. The reason for this is that, depending on initial clusterings, there is not

a large reason why a point should not be considered part of either cube if the kernel

distances are not enough to differentiate between the two. This leads to neither cluster

having sufficient entropy to draw the point to them.

(a) Correct Result

(b) Error 1

(c) Error 2

Figure 7.3: Examples involving 2 Cubes

7.1. Learning the Level Size and Shape 83

7.1.3.3 Three Cubes

With three cubes the model sometimes generates the perfect case such as in figure

7.4(a) but also sometimes gets errors ranging from those shown in figures 7.4(b) to

those in 7.4(c).

Engineering Box
Neither are drastically wrong, and indeed both are practically of use, but they show the

range and type of behaviours which can be exhibited by the modelling.

(a) Correct Result

(b) Error 1

(c) Error 2

Figure 7.4: Examples involving 3 Cubes

84 Chapter 7. Learning Mechanisms and Techniques

7.1.3.4 Three Diamonds

On three diamonds the model sometimes generates the perfect case such as in figure

7.5(a) but also sometimes gets errors ranging from those shown in figures 7.5(b) to

those in 7.5(c).

(a) Correct Result

(b) Error 1

(c) Error 2

Figure 7.5: Examples involving 3 Diamonds

7.1.3.5 Discussion

In most of the cases tested in this section the results were acceptable based on our

intuitions about what a diamond should look like. In many cases an argument could

even be made that the wrong results were actually not bad enough, theoretically, to be

7.1. Learning the Level Size and Shape 85

considered wrong as in the case of 2 and 3 cubes.

7.1.4 Game Level Tests

The model was run over some of the game levels. Each parameter setting of the model

was given 5 trials to determine performance and variance in the resulting models. In

each case a screen-shot of the level was taken and the number of degenerate clusters

was recorded along with the size of each cluster and the number of clusters generated.

These values were then averaged over the trials (a median was used as it was more

relevant than a mean for evaluation of this model). In every experiment the initial

clustering seed number was set2 to 20 and the variance of the Gaussian kernel was

tested at the values 80,40,20,10 and 5 (Note that these variance values are relative to

the scaling factor used in the level modelling). The results for four of the levels are

displayed below. Only the best variance result is shown for each level. The decision to

show only these levels was made in the interests of remaining concise. It is also true

that the levels shown offer a reasonable span of the size classes, discussed in part 1,

covering the categories of small, medium to large and large. The rest of the levels and

extra variance visualisations are included in appendix A.

In each case levels are considered in the abstract and the most obvious level fea-

tures, from the point of view of a human, are annotated. The modelling output is then

correlated to these features to determine modelling performance. Numerical measures

of performance, such as graphs of average cluster sizes and standard deviations of

cluster numbers, are presented.

Lines of differing colours have been used to represent the convex hull of each

cluster of points. The colours are not significant, they are simply a tool for showing

the different sections, and were generated randomly in the visualiser.

220 was used because any clustering size larger than 20 was both unlikely given our level intuitions
and also becoming computationally unwieldy

86 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Assumptions The biggest problem we had with evaluating this technique over

whole levels was that we had to make assumptions about the levels purely by eye-

balling them. Anything above and beyond this was difficult to scientifically justify. As

such the evaluation is based on seeing if our polygon fitting matches our intuitions.

It is not hard to make arguments against our conclusions drawn from this evaluation

method but it is difficult to suggest an alternative method which would be more suited

given the modelling requirements.

7.1.4.1 Absolute Zero

In AbsoluteZero, one of the larger levels, there are level features as per figure 7.6(a).

The main features are two very pronounced areas on either side of the level contained

inside large structures along with two bridge sections connecting them. Ideally a model

should be able to pick out these features.

7.1.4.1.1 Variance 5 Visualisation: For most cases the variance 5 model obtains

good results with good separation of compartments and definition of the relevant areas

of the level. In case 1 the two bridge sections have been considered as one whole but

this is still useful and well defined. Case 3 is the worst result obtained. In this case

both bridge sections have been absorbed into larger end sections mostly attached to the

left hand side of the main structure.

In almost all cases the modelling creates a large structure either side of the bridges

and often splits it up into smaller areas. This makes sense as it is expected that the

internal structure of these large indoor sections will have some intricate structure so

anything which applies structure, which is sensible, to these should give some mod-

elling power at a later stage.

7.1.4.1.2 Larger Variances With larger variances the model ends up accidentally

attaching nodes to incorrect polygons. This could be due to the effect of the parzen

Gaussian density estimators becoming too thin and not generating good enough infor-

mation at the more concentrated areas of the clusters. There is often a lot of overlap

between sections and bad definition of the bridge elements. The areas tend to bleed

into each other and there is a much higher level of granularity in the modelling of the

7.1. Learning the Level Size and Shape 87

(a) Expected Features

(b) Polygon Fitting - Variance 5

Figure 7.6: Absolute Zero Visualisations

88 Chapter 7. Learning Mechanisms and Techniques

left hand area than the right.

Figure 7.7: Statistics Graph for Absolute Zero

7.1.4.1.3 Conclusions from statistics: Figure 7.7 shows that for all variance val-

ues the average number of clusters generated is approximately the same. The stan-

dard deviation is relatively low across the board showing that each process generates

roughly the same number of clusters for this level with the main difference between

each variance value being the size and shape of clusters rather than number of clusters

generated, particularly the median size of clusters generated and the standard deviation

from this median. The lowest average median cluster size and lowest standard devia-

tion is generated from variance 40 showing a stability point there. Given that in some

cases this value obtained a perfect result these statistics may be indicative that this is

the best value for this level. Overall a variance of 5 seemed to visually suggest a better

modelling performance. In most cases very few degenerate clusters are generated from

the process showing that the algorithm is robust.

7.1.4.2 Maul

Maul is one of the smaller levels in the game, displaying the common characteristic

of having two well spaced out areas, one either side of the level, separated by a path

between them. The path narrows in the centre of the level and is relatively wide in all

other places. The level has a height gradient with the centre point of the path being the

highest point and the areas either end of the path being the lowest.

7.1. Learning the Level Size and Shape 89

(a) Expected Features

(b) Polygon Fitting - Variance 5

Figure 7.8: Maul Visualisations

90 Chapter 7. Learning Mechanisms and Techniques

7.1.4.2.1 Variance 5 Visualisation: The separation of different sections is accept-

able. In general the modelling of this level is not great, mainly because the 3D point

cloud does not reflect, very accurately, the features of the level. As an observer looking

at the point data, it is hard to pick out the key features without prior knowledge of the

level. The model still manages to form some sensible polygons which can be used to

segregate the model into portions. There are some artefacts contained in the modelling

such as certain polygons at one end of the level becoming connected to clusters at the

other end of the level creating a spanning structure of no modelling use.

7.1.4.2.2 Conclusions from visualisation: The visualisation suggests that values

5 and 10 are slightly better than the others. The variance value 5 seems to have less,

larger, overarching structures which span the whole level and in general the end points

of the level are better defined, as such this seems to be the optimal value.

In general the modelling splits the pathway into several smaller sections rather than

one large pathway. As long as these sections are separated this will be a useful model,

only creating problems in the areas between these sections which will have no direct

representation.

Engineering Box
This problem can be avoided by a careful treatment when assigning credit during the

section concerning area modelling.

The sections either side of the path are relatively well represented.

7.1.4.2.3 Conclusions from statistics: The statistics show that most of the models

are pretty similar in their performance with all displaying generally similar statistics.

There is a slight tailing off in the standard deviation of the median sizes in the variance

5 and 10 cases showing that these are the better values to chose.

7.1.4.3 Moon Dragon

Moon dragon is another of the largest levels in the game. It features two tower/temple

sections at either end of the level separated by a large number of paths between. It also

features an indoor cave section between the two but this is hard to discern from the

point data alone. This said the pathways between the sections are feasibly separated

and as such would be good candidates for expected level features.

7.1. Learning the Level Size and Shape 91

Figure 7.9: Maul - Statistics

7.1.4.3.1 Variance 40 Visualisation: Cases 3 and 5 are very well defined and the

cave section is even picked out in each case.

7.1.4.3.2 Conclusions from visualisation: The visualisation shows that 40 was

the optimal setting for this level. In most cases the level features were well represented.

The paths were mostly well separated.

On the negative side, the large cave section occasionally extends slightly too far

towards the temples at either end of the level. For the most part though the modelling

looks quite good.

7.1.4.3.3 Conclusions from statistics: The statistics show no real reason why 40

would be an optimal value for this level but they do show that the result for 40 is closer

to the result for 5 which seems to suggest that they are exhibiting similar performance.

It could be that the standard deviation is higher in these cases because they generate

roughly the same output as the other models but also generate a few much better cases

which make the deviation in performance larger.

Engineering Box

General SD Assessment This demonstrates a problem with direct analysis of stan-

dard deviation in this type of scenario where a population contains mainly low per-

forming individuals with a few strong members.

92 Chapter 7. Learning Mechanisms and Techniques

(a) Expected Features

(b) Polygon Fitting - Variance 40

Figure 7.10: Moon Dragon Visualisations

7.1. Learning the Level Size and Shape 93

Figure 7.11: Moon Dragon - Statistics

7.1.4.4 Sun Temple

Sun temple is one of the larger levels of the game consisting of 4 angular chambers on

the sides of a large middle section where play can occur. These form a compass shape

with points on north, east, south and west.

7.1.4.4.1 Variance 10: This setting leads to the best models. There is good defini-

tion around the edges and case 5 is close to a good representation of the level.

7.1.4.4.2 Conclusions from visualisation: The visualisations show a value of 10

or 5 as being optimal. The middle section is not as well represented as was expected,

and there is no defined star shape, but the compass point sections in the corners of the

level are generally sharp with little overlap. In some cases they are split into smaller

sections but this is not necessarily a bad thing as has already been touched on.

With higher variance values there tends to be more blurring between the sections

with much less definition.

7.1.4.4.3 Conclusions from statistics: The statistics graph suggests that a vari-

ance value of 10 generates clusters that have a slightly lower standard deviation from

their median pointing to 10 being the best variance value for this level.

94 Chapter 7. Learning Mechanisms and Techniques

(a) Expected Features

(b) Polygon Fitting - Variance 10

Figure 7.12: Sun Temple Visualisations

7.1. Learning the Level Size and Shape 95

Figure 7.13: Sun Temple - Statistics

7.1.4.5 General Level Modelling Conclusions

In most cases the modelling generates a 3D polygon map, usable as a representation of

the level. Key features are shown in the maps but in general the result is a more vague

description of the level.

Engineering Box

Stability In all cases the Renyi level modelling procedure generates very few degen-

erate clusters. This is good because it shows that the algorithm will rarely fail outright;

generating data which is unusable.

In a large majority of the cases a smaller setting for the variance value leads to

better models, in particular a setting of 10 works well. Scaling this up amounts to

a variance of approximately 1000 which ranges between a quarter and a tenth of the

level size. Examining the magnitude values alongside the actual values selected for

the optimal clustering exposes a pattern. The variance of the gaussians chosen must be

around the magnitude of the level. There is some flexibility either side but in general

taking the level magnitude as the variance value the results will be acceptable and the

modelling relatively stable.

The PCA magnitude value gives a stable measure of the level of variance in node

positions in the level. As these node positions are generated to give accurate level

navigation they reflect the level and as such can be used as a measure of the variance

within the level. Of the results generated in the previous section MoonDragon is the

96 Chapter 7. Learning Mechanisms and Techniques

most varied (A result which is backed up by observations of the level itself, showing

it to have a vast array of different layout features and variance in the spacing of the

path node as a result of this). A good comparison is between this and Gael, one of

the smaller levels not tested in this section. Gael is one room and has little variance in

the level shape or design. A PCA magnitude of 0.035030820732941476 confirms our

conclusions about PCA magnitude in relation to model variance settings.

Level Standard Magnitude PCA Magnitude

Absolute Zero 12.192 0.4234

December 20.1869 1.3945

Deck17 5.3382 0.1421

Face3 22.2771 0.1128

Face Classic 16.5066 0.1833

Maul 9.803 0.1068

Moon Dragon 30.6474 2.6968

Sulphur 4.6937 0.0112

Sun Temple 10.52231 0.0732

Figure 7.14: Table of Magnitudes

Figure 7.15 shows the correlation between the two measures of magnitude of the

level and the chosen variance value. The PCA magnitude better matches the overall

pattern of the chosen variance line, while the standard magnitude matches better the

changes in scale.

The algorithm for setting the variance of the model is as follows:

7.1.4.5.1 Level Model Initialisation Algorithm Begin at 0 with a variance of 5 add

5 to this for every 0.5 benchmark that the level sets on the PCA magnitude scale. For

instance if the PCA magnitude value is 1.7 then this has passed the benchmarks for

0.5,1 and 1.5 and thus should have a value of 20.

This method doesn’t explain all the data exactly but gives a good rough guide

which, given some of the flexibility in the chosen models, is good enough.

7.1.5 Future Work

One possibility for improving the level modelling algorithm is to artificially inflate

the polygons to make them less angular and encompass the surrounding area using

7.2. Area Correlation Model 97

Figure 7.15: Level Magnitude Variance Correlation Graph

bubbling with fixed variance gaussians.

Engineering Box
This helps to capture some of the points of the level space not covered by the polygon

fitting but has the disadvantage of possibly creating overlapping polygons. This makes

it difficult to attribute responsibility for level points to any polygonal area. One way to

deal with this is to treat the polygons as probability distributions and then assess the

probability of being in each of the overlapping polygons.

7.2 Area Correlation Model

The level model itself allowed us to gain information about how the level was shaped

and sized but this information is useless unless we can gain a performance increase in

some way from it. One way to do this is to correlate the number of kills and deaths,

within a match, to specific areas/polygons of the level. The game-types are all based

around shooting adversaries in order to score more points than them. Even though

only one game-type directly rewards kills and not dying, all three intrinsically involve

staying alive long enough to achieve certain goals.

The 3D position of kills and deaths can be checked to see if it falls within one of

98 Chapter 7. Learning Mechanisms and Techniques

the polygons defined in the level model. By correlating this data we can show which

areas are playing host to the most kills and deaths.

Engineering Box

Hierarchical Learning One of the major challenges this particular model posed was

that it changed slightly the way we thought about the system. Previously we had

conceptualised a very clean 3 layer architecture with lateral modularity between the

layers. But having techniques built on other techniques within layers suggested that

we were actually dealing with a more complex hierarchy in each layer. In practice

this was not a problem but did impose an ordering on the learning techniques which

was not ideal. For instance using the area correlation model without first performing

the cluster fitting would not work and these models were clearly dependent. Thus the

modularity obtained was not quite as clean as first expected.

Point Responsibility Probably the biggest engineering challenge involved with this

model was finding a quick way to assign responsibility of particular polygons for dif-

ferent observations. This in itself is not an interesting scientific problem but finding

the optimal method for working in a real-time environment made it slightly more in-

teresting. This became particularly interesting considering that we already had setup a

separate learning thread during execution offering two options. The first option was to

have a quick but sub-optimal measure of distance from each polygon and the second

was to have a more intensive option but run it on the delayed learning thread.

The most obvious mechanism for testing which cluster a point is in is to re-generate

each convex hull in the level model with and without the new point and see if the hull

changes. If it does then the point must not have been contained within the original hull

and thus must lie outside the polygon.

7.2. Area Correlation Model 99

Engineering Box

Outliers With this method, it is possible for points to land out-with all of the hulls

within the level. A fix would be to take one large convex hull for the entire level set

and have this as another cluster.

Efficiency A more efficient method was to associate a cluster number with each

navpoint in the level. This was performed at the level modelling stage before any

real-time calculations were performed. When an observation was made the cluster

number was assigned to that of its nearest nav point. Thus the problem of finding the

correct cluster does not involve any re clustering and is achieved in O(log(n)).

7.2.1 Experiments and Evaluation

To evaluate the area correlation model tests were run on some of the strategies found

to be most effective in [40]. In each case 5 trials were run with 3 bots versus 3 in-game

bots. Although not assessed, the scores of the games were recorded so that consistency

between trials could be considered. The average number of kills and deaths which

occurred in each polygon in the level model along with the standard deviation of these

values (For the sake of correlating results the same instance of the level model was

used in each of the 5 trials) are presented. The trials were repeated across 3 levels for

each of the 3 different game types, however the results are only presented for one level

in each game-type 3. The strategies used are presented for each example. In some

cases a brief description of the level is given. In other cases descriptions can be found

in section 7.1.2 or in the appendix.

3full results can be found in the appendix, along with the clustering diagrams

100 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Evaluation Strategy When it came to evaluating the model we decided the best strat-

egy was to run some trials and then just observe the results. The point of this was not

show that the model could be used for a specific purpose but more to evaluate what

kind of information it was telling us. We were trying to assess its typical behaviour

and then determine how this could be used. This fits with the general prototypical

nature of systems design for this type of architecture. The modular nature of the ma-

chine learning layer allows ideas to be tested and subsequently modified or used in an

alternative way to the initial design. This is not a failure, it is more of a natural tuning

process, the world is full of systems, objects and conceptual designs which are being

used for purposes other than their initial design. What tends to happens is that the

systems are created for one task, modified in light of working better for another and

then refined to the point where the task and solution seem like they were designed for

each in the first place. This process is just extending this idea back to the initial design

stage.

7.2.2 Team Deathmatch

For each trial a death match was set up with the goal score of 60 kills. The following

LCC strategy was used to control each bot.

Strategy 2.1

a(random,Id)::null<--visiblePlayer(Location) and

strafeAttempt(Location,Location)

a(random,Id)::null <-- movementAttempt(random_play)

This protocol tells each bot to either select a random health or ammo target unless

an enemy is visible. If an enemy is visible they will approach the enemy. The bots were

set on non-friendly, so they would fire on any visible enemy with whichever weapon

they currently held. The idea was to choose a strategy which had a good chance of

covering a decent portion of the level space, allowing us to populate the model.

As we know the average score of each game we can compare this with the average

kill and death counts to determine how many of the deaths and kills were not being

accounted for by the model.

7.2. Area Correlation Model 101

7.2.2.1 Deck17

Deck17 Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 60 40.6

Standard Deviation from Score 0 7.7

Figure 7.16: Deck17 Area Correlation Model Trials

Figure 7.17: Deck17 Area Correlation Model Statistics

Figure 7.17 shows that there is a pattern of play on the level Deck17 which is

central to clusters 1 and 11 (The level clustering for Deck17 is not shown but can be

found in the appendix). If the bots wished to avoid confrontation they could avoid

these clusters. For instance one example behaviour could be to avoid these clusters

while collecting health/weapon pickups and return to them once these items had been

acquired. Note that we could easily create this strategy without knowing which clusters

were selected and as such this model has learned a useful abstraction.

We might have hoped to observe certain clusters being better for kills and others

better for deaths because currently the model is just modelling which areas the most

play occurs in. This is useful but not of optimum use.

102 Chapter 7. Learning Mechanisms and Techniques

7.2.3 Capture the Flag

The goal for the capture the flag trials was to make 6 successful flag captures. The

following LCC strategy was used:

Strategy 2.2

%% base_defender , makes sure they don’t get our flag to begin with

a(base_defender,Id)::sawTheFlag(L) => a(base_defender,Id) <-- visibleOwnFlag(L)

and strafeAttempt(L,L) and enemyHasFlag(true)

a(base_defender,Id)::strafeAttempt(L,L) and enemyHasFlag(true) <--

sawTheFlag(L) <= a(base_defender,Id)

a(base_defender,Id)::null <-- visiblePlayer(Location)

and strafeAttempt(Location,Location) and enemyHasFlag(false)

a(base_defender,Id)::null <-- currentWeapon(W) and prologConstraint(W =

assault_rifle)

and movementAttempt(nearest_weapon_pickup) and enemyHasFlag(false)

a(base_defender,Id)::null <-- movementAttempt(localised_play(enemy_flag_point))

and enemyHasFlag(true)

a(base_defender,Id)::null <-- movementAttempt(localised_play(own_flag_point))

%% enemy defender , comes into play when they have our flag

a(enemy_defender,Id)::null <-- changeToRole(flag_hunter) and enemyHasFlag(false)

a(enemy_defender,Id)::null <-- changeToRole(flag_carrier) and hasFlag(true)

a(enemy_defender,Id)::sawTheFlag(L) => a(enemy_defender,D) <--

visibleOwnFlag(L)

and strafeAttempt(L,L)

a(enemy_defender,Id)::strafeAttempt(L,L) <-- sawTheFlag(L) <=

a(enemy_defender,D)

a(enemy_defender,Id)::null <-- visiblePlayer(L) and strafeAttempt(L,L)

a(enemy_defender,Id)::null <--

movementAttempt(localised_play(enemy_flag_point))

%% flag_hunter , goes after the flag

a(flag_hunter,Id)::null <-- changeToRole(flag_carrier) and hasFlag(true)

a(flag_hunter,Id)::null <-- changeToRole(enemy_defender) and enemyHasFlag(true)

a(flag_hunter,Id)::canSeeFlag(Location) => a(flag_hunter,F) <--

visibleEnemyFlag(Location)

and strafeAttempt(Location,Location)

a(flag_hunter,Id)::strafeAttempt(Location,Location)

<-- canSeeFlag(Location) <= a(flag_hunter,F)

a(flag_hunter,Id)::movementAttempt(otherBot(F)) <-- gotTheFlag <=

a(flag_carrier,F)

a(flag_hunter,Id)::null <-- movementAttempt(enemy_flag_point)

%% flag carrier , doesn’t care about defending

a(flag_carrier,Id)::null <-- changeToRole(flag_hunter) and hasFlag(false)

a(flag_carrier,Id)::gotTheFlag => a(flag_hunter,F)

<-- movementAttempt(own_flag_point) and enemyHasFlag(false)

7.2. Area Correlation Model 103

a(flag_carrier,Id)::gotTheFlag => a(flag_hunter,F) <--

movementAttempt(localised_play(own_flag_point))

and enemyHasFlag(true)

a(flag_carrier,Id)::gotTheFlag => a(flag_hunter,F)

<-- visiblePlayer(Location)

and strafeAttempt(Location,Location) and enemyHasFlag(true)

7.2.3.1 Face3

Face3 Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 6 0

Standard Deviation from Score 0 0

Figure 7.18: Face3 Area Correlation Model Trials

Figure 7.19: Face 3 Area Correlation Model Statistics

Face3 is a level which has two large towers at either end of the level. Each team’s

flag is contained within their tower area. The area of most deaths correlates to the

tower occupied by the enemy. This shows that the area modelling is developing an

understanding of the play within the level model. Cluster 7 is the tower occupied by

our team and it was no surprise that the largest kill count would occur in this area.

Although this fact could easily have been annotated or deduced, the model learned this

correlation with no annotation. This means that in levels with different characteristics

the model should be able to learn these correlations regardless of level nature. The

104 Chapter 7. Learning Mechanisms and Techniques

only threat to this usefulness is that the standard deviation value is relatively larger for

the larger averages. This only becomes a large problem if the deviation value becomes

larger than half the the average value or high enough that it brings the confidence

interval low enough to signal that there is no differentiation between clusters.

It is also interesting that outside of the tower areas there are very few other areas

that have any activity. This means there must be a large area of the level in which play

does not occur. This could be useful for constructing an avoidance strategy.

7.2.4 Double Domination

The goal for the double domination games was to score 6 points. The LCC strategy

used for double domination was as follows:

Strategy 2.3

a(extra_support,Id)::movementAttempt(domPoint(P)) and team(T) and

domPointControlledBy(P,T2)

and prologConstraint(\+ T = T2) <-- movingToPoint(P) <= a(extra_support,Id)

a(extra_support,Id)::movingToPoint(P) =>

a(extra_support,Id)<--movementAttempt(domPoint(P))

and team(T) and domPointControlledBy(P,T2) and prologConstraint(\+ T = T2)

a(extra_support,Id)::movementAttempt(localised_play(domPoint(b))) <--

goingWandering <= a(b,AID)

a(extra_support,Id)::movementAttempt(localised_play(domPoint(a))) <--

goingWandering <= a(a,AID)

a(extra_support,Id)::null<--movementAttempt(nearest_weapon_pickup) and

currentWeapon(W)

and prologConstraint(W = assault_rifle)

a(extra_support,Id)::sawThem(L) => a(extra_support,Id) <-- strafeAttempt(L,L)

and visiblePlayer(L)

a(extra_support,Id)::strafeAttempt(L,L) <-- sawThem(L) <= a(extra_support,Id)

a(a,Id)::movementAttempt(localised_play(domPoint(a))) and team(T) and

domPointControlledBy(a,T)

<-- goingWandering <= a(b,AID)

a(a,Id)::movementAttempt(domPoint(a)) <-- goingWandering <= a(b,AID)

a(a,Id)::goingWandering => a(b,BID)<--movementAttempt(nearest_weapon_pickup) and

currentWeapon(W)

and prologConstraint(W = assault_rifle) and team(T) and

domPointControlledBy(a,T)

then goingWandering => a(extra_support,ES)

a(a,Id)::goingWandering => a(b,BID)<--visiblePlayer(L) and strafeAttempt(L,L)

and team(T) and domPointControlledBy(a,T) then goingWandering =>

a(extra_support,ES)

a(a,Id)::null<--movementAttempt(localised_play(domPoint(a)))

and team(T) and domPointControlledBy(a,T)

a(a,Id)::null<--movementAttempt(domPoint(a))

7.2. Area Correlation Model 105

a(b,Id)::movementAttempt(localised_play(domPoint(b))) and team(T)

and domPointControlledBy(b,T) <-- goingWandering <= a(a,AID)

a(b,Id)::movementAttempt(domPoint(b)) <-- goingWandering <= a(a,AID)

a(b,Id)::goingWandering => a(a,AID)<--movementAttempt(nearest_weapon_pickup)

and currentWeapon(W) and prologConstraint(W = assault_rifle) and team(T)

and domPointControlledBy(b,T) then goingWandering => a(extra_support,ES)

a(b,Id)::goingWandering => a(a,AID)<--visiblePlayer(L) and strafeAttempt(L,L)

and team(T) and domPointControlledBy(b,T) then goingWandering =>

a(extra_support,ES)

a(b,Id)::null<--movementAttempt(localised_play(domPoint(b)))

and team(T) and domPointControlledBy(b,T)

a(b,Id)::null<--movementAttempt(domPoint(b))

7.2.4.1 Atlantis

Atlantis Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 0.6 6

Standard Deviation from Score 0.799 0

Figure 7.20: Atlantis Area Correlation Model Trials

Figure 7.21: Atlantis Area Correlation Model Statistics

Figure 7.21 shows that clusters 11 and 12 have the highest death counts. These cor-

relate to the area near where the enemy spawns and the closest domination point to that

area. This suggests that the enemy are employing a strategy based around proximity to

106 Chapter 7. Learning Mechanisms and Techniques

the points. Clusters 6 and 9 demonstrate the flip-side of this equation, representing the

closest domination point to where the our bots spawn and our spawning location.

The biggest problem with this result is that the standard deviation values are so high

that the confidence intervals of the most important clusters are insufficient to place trust

in the result. Although the result seems obvious and intuitive from the visualisations

we are still not sure whether it can be trusted.

7.2.5 Overall Area Correlation Modelling Conclusions

In almost all cases certain clusters witness significantly more of the action than others.

These correlations fit with our expectations regarding play in the level and as such

represent a good natural estimator of our target function. This information can be used

to guide decision making as discussed briefly above. These models can show which

areas of the level are most active, which areas are leading to the most deaths and which

the most kills. The models can guide activities such as path finding, allowing the bots

to navigate the level using criteria based on dynamic game play data.

In reference to the size of the decision boundary, the utilitarian distinction between

areas is often large, this is beneficial as it creates distinct areas and thus distinct deci-

sion boundaries.

The team death match trials show that on average the modelling looses 30% of the

kills and 38% of the deaths. These figures are not too destructive and relatively low

considering that only the navigation points were used to create the level models and

it is expected that these could be lowered further using bubbling. A more detailed

evaluation could be used to show the nature of these lost points but the expected extra

performance, from such an activity, is not large.

7.3 Bot Social Utility

One idea, which might help with machine learning, is to measure a social utility

[101, 62] for each bot. In traditional machine learning the information coming into

the learning mechanism, for whatever purpose, is often treated as being equal in im-

portance in the hope that the modelling procedure can then automatically pick out

which data is useful. Altering which data is taken into account is seen as introducing

bias into the model and is often referred to as credit assignment. In many standard ma-

chine learning cases it is not realistic to be able to sensibly define this bias, but in some

7.4. Enemy Modelling 107

cases there is potential to develop heuristics and methods which can help to improve

performance. It is also a useful way to help make some techniques robust with sparse

amounts of data.

Credit Assignment[45] Giving data some value which is its expected worth or im-

portance in describing the situation and guiding learning4.

In a normal single agent situation this can be a difficult activity as it requires hav-

ing prior knowledge about the distribution and generation procedure which the data

originated from. In the multi-agent case[45], however, there is often more of a no-

tion of how data was generated and specifically, the context in which it was generated.

More is known about the source due to the observer being an agent situated in some

environment with some internal state, affected by those around it. Discrepancies in the

knowledge common between agents can lead to information being of larger or lesser

importance and agent’s experience about each other, through argumentation and infor-

mation gathering, often gives light as to how to perform credit assignment.

The problem with applying it to this system is that there is no real grounding to

measure any kind of social utility amongst the bots given the tasks which they were

aiming to model.

In particular it is apparent that the any bot / any role, nature of the bots dictates

that measuring the performance of a particular bot does not offer any real advantage.

Due to the communal learning mechanisms all this data is already available and no

extra power is gained from separately modelling these social factors. In a later section

the performance of the strategy and bots in particular roles is used, to alter the explo-

ration/exploitation trade-off, which touches on this area, but represents a much better

approach to it via role utility rather than bot utility.

7.4 Enemy Modelling

In this section we present a model of the enemy bot’s movements and general position

within the level. We do this by placing a density model over the level. The databank

for this density model is based on observations of the enemy’s position. These obser-

vations are 3D coordinate positions within the level and as such this gives a full density

model over the 3D level. We use this density model to give a probability value to every

4This is a slight issue of contention as there as several different meanings of the term credit assign-
ment. This definition is the one which is taken as gospel throughout this thesis

108 Chapter 7. Learning Mechanisms and Techniques

navigation point within the level. These probabilities are then updated with each new

observation to give each navigation point a value representing how likely it is that the

enemy would be at these points.

Hladky and Bulitko provide, in their detailed evaluation of the field of enemy posi-

tional modelling in video games[49], a rich list of approaches to this type problem. Of

these our approach is most similar to Isla’s occupancy maps approach[50] except we

learn our maps online during each match rather than from a set of offline logs. This is

in-keeping with the online learning approach throughout our architecture.

7.4.1 Motivation

The most dynamic element of the UT environment is the enemy bots. Although

scripted, their play is one of the key elements in defining the outcome of matches

and as such represents a very rich avenue for learning. [49] shows this to be a valid

avenue for research and plausible modelling task to consider and also that the target

function can be modelled probabilistically.

The UT in-built bots often display patterns of play which are signature-like in na-

ture. When humans play the game for long enough they also begin to display particular

patterns of play5[87], to such an extent that experienced players can often pre-empt

where a player will be before they arrive, performing effective leading. Statically

scripted opponents are even more susceptible to this type of out-manoeuvring.

Modelling this enemy information can allow effective play across a number of

levels. Enemy play is a variable within the game which remains measurable, in that

it is always measurable in some form, but will change with each level. Therefore

modelling this play will give a feature invariant which can be used in order to alter the

way in which strategies are executed across different levels. This section deals with

some different models which give information about how the enemy play the game.

7.4.1.1 Changing Enemy Behavioural Patterns

Modelling any kind of enemy patterns will always be reliant on what we believe these

patterns to be before modelling them. As such the biggest challenge for any system is

how it deals with changes in enemy play.

We mentioned above that the in-built UT enemies have patterns of play oweing to

their scripted nature. But what if these patterns are sophisticated enough to change

5This is true for other first person shooter games as well

7.4. Enemy Modelling 109

during a match? In general any enemy which can change its play substantially at any

given point is going to be difficult to model. This said the use of density models does

allow for some basic alterations to deal with this scenario. Later observations can be

given more weight than earlier cases (discounting). Some form of measure could be

used to determine how different a new observation is from the given dataset and thus

establish whether this represents a new pattern or is just a statistical outlier.

In general, in our case, we assume the enemy has a basic play pattern which is

observable with a certain amount of noise. We also assume that this noise is not sub-

stantially large enough to cause us to be unable to model the target function accurately.

Later, in the results part of the enemy modelling section, we present a basic experi-

ment showing how our density models change with some basic changes in the enemy’s

play.

110 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Adversarial Elements Enemy modelling in UT is interesting because the enemy are

the only adversarial element in the game. Although there are other dangers within

the environment itself none of them are active or malicious. Enemies have guns so it

makes sense to model effective ways of dealing with weapons but it is almost trivially

obvious that we should model the enemy themselves in some way. So then the question

becomes what properties of the enemy should we model and how do we go about

achieving this.

Dimensions To determine this means thinking about what dimensions do the enemy

play, do they make certain movements, do they inhabit certain areas, do they travel in

packs? One could also think about modelling their choice of weapon but the interface

offers no way to determine the weapon that a bot was shot with.

Location The most obvious choice to make is to model the enemy’s location within

the map, owing to having observations of their location. This is interesting because we

are not really dealing so much with a full 3D space as a partial subspace within it. We

have a belief that the enemy will inhabit certain areas of the game maps habitually. It

could be that they have no patterns to their play but we would certainly hope this is not

the case as a fully random enemy will render any modelling pointless from the offset.

Alas we know the enemy are statically scripted and as such we believe they will have

patterns to their play.

Density Because we believe the enemy to move in patterns it seemed appropriate to

try to fit a density to this movement. Thinking ahead we knew that we were going to

have to use the data in this model to determine movement in the level. Thus ideally a

model which provided not just a single yes or no to particular areas but instead offered

a gradient of variation was required.

7.4.2 The Single Gaussian Model

When dealing with patterned observations in 3D space, density modelling is a common

practice used to generate probability distributions and create a probability landscape

over an area [13, 11, 68, 52, 10, 12, 76, 121]. It is strange then that there has been so

7.4. Enemy Modelling 111

little take-up of density modelling in the video games world. Probabilistic and stochas-

tic processes are prevalent so one might be inclined to assume a probabilistic density

treatment should be equally so. It is my belief that the reason for this is the often large

amounts of data needed to train such models combined with the complicated training

mechanisms involving mathematical optimisation is off-putting. Later in this section

we deal with a model which is similar to standard density models but who’s training is

far simpler.

Viewing the enemy presence as being based in one area of the level, it can be

modelled using a Gaussian density estimator based on the following formulation:-

P(X) =
1√
|2πΣ|

e−
1
2 (x−µ)Σ−1(x−µ) (7.5)

Where x is the new observation, µ is the mean of the data-points and Σ is the

covariance matrix of the data-points. The observations of the team, or individual,

of enemy sightings are then fed into the model to allow parameter estimation. The

parameters are set using Maximum Likelihood Estimation::

µ =
1
N

N

∑
i=1

xi (7.6)

Σ =
1

N−1

N

∑
i=1

(
X i−µ

)(
X i−µ

)T
(7.7)

The observations are based on 3D locations within a space where the values range

into the thousands. With this in mind the inputs were rescaled to O(10) in order that

the values of the covariance matrix be positive and greater than 1 but also not so large

that the covariance becomes extremely spread leading to small Gaussian bumps in

the probability landscape. As stated in David Barbers learning from data notes on

numerical machine learning techniques[10] it is always a good idea to scale data input

to roughly O(1) for statistical analysis. It was found during our initial testing that

scaling to O(10) gave better estimator performance.

This model allows the assignment, to each path node, of a value representing the

probability of enemy presence. This can then feasibly be used to rank complete paths

and areas of the level.

112 Chapter 7. Learning Mechanisms and Techniques

Engineering Box
A single Gaussian is often used to fit a density to a function within a space. In our case

we knew this was likely to not work as its too simple and we didn’t assume that our

enemy would play in patterns drawn (as a group) from a normal distribution. However

if they did then this model would be a reasonable approximation and should display

good performance.

There is a further issue of the number of data-points to store for training. For

instance choosing to only have a store of 100 data-points and straight replacing each

of these data-points with new ones, when full, places more importance on recency.

Alternatively ranking data-points by how long the bot managed to maintain a fight

with an enemy and how similar the points are could be considered. These issues are

not really explored here but should be considered by anyone looking to extend work

in this area via means of improving the individual machine learning techniques. This

falls into the realm of credit assignment and more intricate data mining issues.

7.4.3 The Gaussian Mixture Model

The Gaussian mixture model[10, 63] is based on the Gaussian density estimator but

instead of only using one Gaussian to model the data multiple Gaussians are combined.

This gives more power and tends to avoid some of the averaging effects which manifest

with only a single Gaussian. The combination is performed using mixing components

to represent how much of the distribution each Gaussian represents.

Engineering Box

If the assumption that a population would exhibit behaviour loosely Gaussian in

nature was too strict then it seemed more plausible that each member of said population

would exhibit Gaussian-like behaviour.

The overall model is then represented by the following set of equations:

P(X |Model) =
N

∑
I=1

P(Modeli)P(X |Modeli) (7.8)

Where N is the number of components of the model and each Modeli is modelled

by the Gaussian density estimator formula that was used in the single Gaussian model.

The mixture components P(Modeli) represent the responsibility of each model com-

ponent for the final probability and are all 0..1 subject to the constraint:

7.4. Enemy Modelling 113

N

∑
i=1

P(Modeli) = 1 (7.9)

In order to update the parameters of this model the standard ExpectationMaximisation

algorithm[11, 10] was used on the maximum likelihood parameter update rules:

µi
new =

∑
P
n=1 P(i|xn)xn

∑
P
n=1 P(i|xn)

(7.10)

Σ
i
new =

∑
P
n=1 P(i|xn)(xn−µ)(xn−µ)T

∑
P
n=1 P(i|xn)

(7.11)

P(i)new =
1
P

P

∑
n=1

P(i|xn) (7.12)

where

P(i|xn) =
P(xn|i)p(i)

∑
M
i=1 P(xn|i)

(7.13)

At every update the Gaussians were reset so that the means were placed on random

data-points in the set, the covariances were set to a small multiple of the identity matrix,

and the responsibility values were set to 1
N where N is the number of components. The

parameter update rules were then performed 50 times. This figure was chosen experi-

mentally using a validation set. Some other update procedures, with more specialised

stopping criteria, are presented later in this section.

7.4.4 A Gradual Update Procedure

In the standard Gaussian mixture model, training is performed in a batch manner after

a certain number of time steps. This provides adequate performance but, given the

dynamic nature of the data, it makes sense to train in an online manner. One option

for this is to run the EM update procedure for less amount of time but store the output

and use this as input to the next cycle of training. This facilitates a more gradual drift.

It also fits more naturally with the derivation of the EM rules as a system of insoluble

equations[11]. As a plus it allows information to be stored in the Gaussians, over

the course of the match, about previous data without explicitly storing this data in the

dataset. This process is analogous to an infinite impulse response filter (IIR) from the

digital signal processing domain.

114 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Limiting Covariance One thing that must be ensured is to limit the amount of shrink-

age the gaussians perform over the course of the training. Neglecting this means the

model can end up developing very narrow thin gaussians. One way to do this is to

stop training adapting the covariance once its determinant has reached a suitably small

level. The determinant of a matrix is a measure of the volume of the transformation

which that matrix represents (It is a measure of the difference in volume seen when

the matrix transformation is applied to a hypercube of unit volume). It is also worth

only estimating variance and then applying this to all directions of the covariance so as

to ensure that isotropic gaussians are used as this will also limit the convergence seen

during the training process[10].

7.4.5 Automatically Choosing the Number of Mixtures

A novel idea, which we propose as a contribution to the Gaussian modelling field, is

to automatically pick the number of Gaussian components in the mixture model based

on statistics regarding the natural clustering and/or shape and size of the level itself.

In the previous models it was arbitrarily chosen to use 3 Gaussian components based

on the 3 enemy players but there is nothing to say that this is a sensible thing to do. If

each enemy had four different modes of play then a better model for the data would be

12 mixture components with 4 for each enemy.

Using the natural clustering of the level to set this parameter is based on the as-

sumption that if the level has certain separated areas then it makes sense to model play

in each one of these areas with a single Gaussian component.

The use of level data to refine the number of mixture components is a novel way to

deal with the fact that performing automatic clustering of the data at later points in the

level is infeasible. It is not known, a priori, the number of clusters that will be present

in the observed actor data, but information about the level itself can be used to set this

parameter.

7.4.6 Limiting Mean Drift

The previous formulation looked at deciding how many mixture components to use

based on the suggested amount of natural clustering within the level. Having done this

7.4. Enemy Modelling 115

it also makes some sense to limit the means of these Gaussians to movement within

these 3D polygons defining areas of the level[13]. This ensures separation between the

Gaussians. It also helps to ensure consistency with the assumption that each Gaussian

is representing an area of the level.

This might seem like it will flood the level with Gaussians but it is important to re-

member that the EM update procedure also updates the mixture responsibilities, gain-

ing information about which areas of the level are most likely to contain enemy play

but also, within these areas, which parts of the areas are important.

This process yields a constrained Gaussian mixture model. This is similar to the

generative topographic mapping[13] where a mixture of Gaussians is constrained by

being placed on the surface of a non-linear manifold. In our case no dimensionality

alteration is being performed because the particular geometry being used to define the

constraints on the Gaussians is not so well defined as to facilitate this, although in

principle it could be feasible to us the PCA method from the level modelling section

or some non-linear derivative[89].

116 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Assumptions Our major assumption with the Gaussian mixture model was that the

team play was Gaussian in nature and that this could be modelled with some mixture of

Gaussians. The reason for this assumption was that we believe each enemy to follow

a script of play. This may include going for weapons in a certain order determined by

some condition. When the enemy bots see an opposing bot they are then having to

react to this and play around that area. This is element of the system which we believe

to be the Gaussian noise term and this is why scripted actions cannot be modelled

directly with modelling which does not take into account probability or uncertainty.

Level Data The idea to use the level maps and level model as the constraints for the

mixture model is indicative that we expect, at the very least, the enemy play will be

constrained to a manifold defined by the level map. Of course this assumption is only

as strong as the assumptions made by the level model. If our clustering and polygon

fitting aren’t good then then constraining data to these has no basis.

Limiting Mean Drift in Practice In order to limit the mean drift it is important to

make sure that the mean of each Gaussian does not leave the polygon areas defined in

the level modelling section. The following method was used:

1. Find the convex hull of the area clustered using quickhull

2. Insert the new Gaussian mean into the cluster

3. Re-computer the convex hull

4. If the same as the previous convex hull then the point is within cluster

5. Otherwise the point is out-with the cluster area and should be dis-allowed.

The main problem with this method is the inherent inefficiency it introduces due to the

complexity of the constant re-computation of convex hulls. This do not effect, directly,

the real time performance of the bots due to the afford-mentioned use of a separate

thread to run the machine learning calculations. The major effect it has is to change

the speed at which the model gets updated. The more work the ML thread has to do

the less it can get done at each step it gets on the processor. As such having a more

complicated procedure means the model is less likely to contain the most recent data.

7.4. Enemy Modelling 117

7.4.7 One Mixture Per Bot

All of the enemy modelling so far has been based around the assumption that it is

possible to model the enemy play with a particular number of Gaussians to represent

the points in 3 dimensional space. It was also shown how the system works if each

bot in the level has their own single Gaussian model. A particularly nice extension

of this is to build a model where each bot is responsible for updating one Gaussian

component in a team model. This is based on the assumption the level can be modelled

with the number of Gaussians equatable to the number of bots in a team, but given the

heuristic approach to setting the number of components in the modelling procedure

thus far, it is as likely to succeed as any other method suggested thus far. In the EM

update procedure the Gaussians are moved to represent the points for which they offer

the most responsibility. Treating the Gaussians as the observations of each individual

bot then these can be learned using maximum likelihood estimation as in the single

Gaussian case. We are then only required to update the mixing co-efficients to alter

the importance of each component in the model. The results presented used mixing

co-efficients based on the number of observations in each bot’s dataset.

7.4.8 One Mixture Per Opponent

Coupled with the idea of having one mixture component per bot is the idea of having

one mixture component per opponent. Of all of the techniques for modelling enemy

play, discussed in this section, this technique represents the most obvious in terms

of human intuition. Assuming that each enemy bot’s play can be modelled with a

Gaussian density estimator allows the assigning of one mixture component to each

enemy, integrating only observations of that enemy. The mixing co-efficients can then

be set by maximum likelihood estimation based on frequency of enemy observations.

7.4.9 A Kernel Model

In Section 7.1.2.2 a parzen density estimator was used as a robust estimator of cluster

entropy for modelling level data. This can also be used to perform non-linear non-

parametric density estimation over a set of data, with the result resembling a mixture

of gaussians, but based on individual samples rather than the entire dataset.

118 Chapter 7. Learning Mechanisms and Techniques

The idea remains the same, to place a Gaussian of fixed covariance on each point,

the difference lies in measuring the cumulative distance of a new point from those in

the training set using the Gaussian kernel instead of measuring the Gaussian distance

within the data, as we did for clustering. The density estimator is defined as follows:

P(xnew|Model) = (
1
N

N

∑
i=1

G(xnew− xi,2σ
2I)) (7.14)

where G(x,H) is a Gaussian Kernel defined as

G(x,H) =
1√
|2πH|

e−
1
2 (x)

T H−1(x) (7.15)

In the abstract this method is similar to a summative Nearest Neighbours model

but with a Gaussian kernel distance measure. The simplicity of this model is attractive

as is the inherent efficiency. The most attractive feature however is the ability to begin

generating density estimations with very little data and then incrementally improve

these estimations with more data. The modelling procedure is much more stable and

predictable. This is supported by the results presented in the situated evaluation.

It also has the advantage of being scalable and easy to understand and interpret.

This is the only method which does not have a set number of components and as such

requires the smallest amount of input intuition. It mimics the data most closely and

gives density functions which best fit the data while pre-supposing as little as possible

on the expected density of the data.

Engineering Box

Assumptions We mentioned that the conclusions made with the constrained mixture

model were only as strong as the assumptions made in the constraint conditions. With

this in mind we wanted to try a model which was more flexible but that also contained

the Gaussian noise modelling.

Continuing Assumptions The assumption that the actual play was Gaussian in na-

ture still seemed too strong, given our discussion of why we believed this to be the case.

What we were actually saying was that there was a non-linear, non-Gaussian manifold

within the map, along which the enemy bots were to be found. This suggested that

a parzen density estimator could be useful. The stability and ease of implementation

also appealed with this model.

7.4. Enemy Modelling 119

Density Diagrams In this section of the thesis, and those following it, we make large

use of density diagrams as a visualisation technique. These are diagrams showing some

utility value of each of the level nodes using colours. In general the diagrams show the

utility of nodes ranging from 0 to 1 on a scale of blue to red with blue being 0 and

1 being red. Occasionally a thresholding method is used, turning all nodes below a

certain utility value yellow, in order to highlight those with higher utility values more

clearly.

7.4.10 Basic Evaluation

Some trials were run to test the effect of differing Gaussian models on bot perfor-

mance. In all the trials in this section, unless otherwise stated, the level used was Trite.

This level is relatively large with numerous enclosed sections and rooms. At such it

represents a good test bed for enemy modelling.

Engineering Box

Two Perspectives In testing this model we thought it was important to test from two

perspectives. That of numerical stability but also from an intuitive aspect. The general

approach to these is to use statistics for numerical and visualisation for intuitive. As

such our two evaluation sections reflect this.

In order to test the value of the data extrapolated from the model a simple scenario

was set up. Two sets of trials were run. In each set of trials the game type was TDM

and the game was set up to run for 30 points. Our team was set on friendly meaning

that they would not fire upon the enemy. For the first trials the bots were set to spend

the first 15 deaths exploring the level by picking random points and moving there. This

allowed them time in the environment to update the model. For the second 15 deaths

they were set to try and hide from the enemy by picking the least likely point of enemy

occupation as suggested by the path node utility defined by the enemy model. For both

stages of the trial the amount of time between deaths was recorded for each bot. This

was achieved using the following LCC strategy:

Strategy 2.4

a(hider,ID)::null<--engageModule(hide) and theirTeamScore(S)

and prologConstraint(S > 14)

a(hider,ID)::null<--engageModule(explore)

120 Chapter 7. Learning Mechanisms and Techniques

For the second set of trials the set up was almost identical except that the bots spent

the second 15 deaths hunting the enemy instead of hiding. This was defined as picking

the most likely point for enemy occupation as suggested by the enemy model. It was

achieved using the following LCC strategy:

Strategy 2.5

a(hunter,ID)::null<--engageModule(hunt) and theirTeamScore(S) and

prologConstraint(S > 14)

a(hunter,ID)::null<--engageModule(explore)

Each scenario was ran 5 times so the results are averaged over 5 trials. In the first

case every bot had their own model and updated only it. In the second case every

bot updated a single communal model. This was designed to test whether information

from the entire team was of more use than each bot only using its own observations.

Because multiple bots were tested the average was taken across the all bots. This is

because it is possible that one bot died to make the enemy score 15 and then the others

did not die till much later so averaging this out helps to create more stable results.

The table in figure 7.22 describes the types of models tested in evaluation. Each

model was tested with two different sizes of dataset to try to show some of the differ-

ences this can introduce.

7.4.10.1 Discussion of Results

7.4.10.1.1 An Ideal Result The ideal result would be the time spent hunting being

substantially less than the time spent exploring and the time spent hiding being sub-

stantially more than either of the other two cases. This is because effective hunters will

find the enemy quicker and thus die quicker as they are set to not fire upon the enemy.

Successful hiders will not find the enemy as quickly and thus die less quickly.

7.4.10.1.2 The Single Gaussian Model There is a definite difference in play when

using the single Gaussian model of enemy play for the hiding and hunting purposes.

This difference is only present when using the communal model. When using 1000

data-points, a slightly larger difference between the values of hunting hiding and ex-

ploring is found when each bot has their own model. The effect of both types of model

is closer than when using a 100 point dataset.

With 1000 or more data-points the single Gaussian model tends to move towards

the centre of the level. It is expected that with a larger number of data-points the

7.4. Enemy Modelling 121

Model Types

Model Description Data Store Size

1 Single Gaussian 100

2 as 1 1000

3

Gaussian Mixture Model 100

3 Components

Standard EM Training Algorithm

4 as 3 1000

5

Gaussian Mixture Model 100

3 Components

Gradual EM Training Algorithm

Stopping Criteria of 40

6 as 5 1000

7

Gaussian Mixture Model 100

3 Components

Gradual EM Training Algorithm

Stopping Criteria of 400

8 as 7 1000

9

Gaussian Mixture Model 100

No. Components Set by Level

Standard EM Training Algorithm

Means Drift Limited by Level

Early Stopping Criteria of 40

10 as 9 1000

11

Gaussian Mixture Model 100

One Component Per Enemy

Owner Learn Update Rule

12 as 11 1000

13
Parzen Density Estimator 100

Variance 5

14 as 13 1000

15
Parzen Density Estimator 100

Variance 1

16 as 15 1000

1a

Gaussian Mixture Model 100

One Component Per Team Member

Owner Learn Update Rule

2a as 1a 1000

Figure 7.22: Model Types

122 Chapter 7. Learning Mechanisms and Techniques

(a) Basic

(b) Per Agent

Figure 7.23: Evaluation Results Graphs

7.4. Enemy Modelling 123

tendency of the model would be to represent the average enemy presence, particularly

with no level data about constrained areas to limit Gaussian movement.

With 100 points the Gaussian models the most recent observations of the enemy.

It averages the points but these do not tend to converge towards the centre of the level

due to there being less data-points.

The Gaussian density estimator offers some information which is of basic use in

modelling enemy play. However, there are better solutions from the other formulations.

7.4.10.1.3 The Basic Gaussian Mixture Model The performance with a communal

mixture model is roughly equatable to that of the single Gaussian model. In the non-

communal case the mixture model is, however, slightly better with more variation in

where the Gaussians are. The convergence towards the centre of the level is avoided

showing that this was an artefact of the modelling procedure and not an actual trait in

the enemy’s play. In the case of the mixture models the results for hunting, relative to

exploring, are better using 1000 points than 100 for the single model but slightly worse

for the communal model. Typically in machine learning and numerical modelling

techniques the number of parameters of the model is linked to the dataset size. Thus it

might be expected that with a larger dataset the model with more mixture components

is likely to increase performance more than the model with only a single component

due to there being more information to estimate the larger number of parameters with.

7.4.10.1.4 The Gradual Update Gaussian Mixture Model In general the gradual

update model performs the best of those tested with this evaluation method. In case 5

the model achieves a very high hiding time, however the dangers of reading too much

into hiding time are discussed in the overall conclusions. The hunting time for these

models is also relatively low showing a stability in the modelling. The communal

version of model 7 gives the lowest hunting time.

7.4.10.1.5 The Level Set Mixture Model This model performs better with 100 than

1000 data-points which seems to go against our intuitions based on complexity. The

model does not achieve astoundingly better performance than any of the other models

(with the exception of the single Gaussian) and as such, due to the complexity and com-

putational overhead, may not represent the best choice of model for use in estimating

enemy position.

124 Chapter 7. Learning Mechanisms and Techniques

7.4.10.1.6 The Enemy Component Mixture Model The 100 point model is reason-

able here but no better than the gradual update mixture model. Therefore there appears

to be no obvious advantage to using it.

7.4.10.1.7 The Team Member Component Mixture Model The team member mix-

ture models offer relatively good performance when using 1000 data-points. The per-

formance is approximately equal to that of model type 7 which so far represents the

best choice. This makes this a viable choice as the relative simplicity of the model is

quite appealing.

7.4.10.1.8 The Parzen Density Estimator Model The performance of the parzen

density estimator models, although reasonable, is not startling. The communal vari-

ance 1 model with 100 data-points gives the best performance and isn’t too far off

model type 7.

7.4.10.1.9 Overall Results Conclusions In general, in the cases of both single and

multiple gaussians the figures for hunting are better than those for hiding (signified

by the larger difference between the hunting and exploring figures than the hiding

and exploring figures). This is representative of the nature of Gaussian modelling as

a whole. The gaussians only have useful information about areas which they have

data about[10]. In areas outside 3 standard deviations from the Gaussian the data is

uniformly un-informative.

Examining the trials from this perspective, and ignoring the information regarding

hiding, it becomes clear that communal versions of models 7 and 12 model offer the

biggest decrease in time spent hunting to achieve the goal score in reference to distance

from the average exploring time. The difference is not particularly drastic and looking

beyond the, non-communal, single Gaussian model, the evaluation here doesn’t single

out a best model for this task as all perform comparatively similarly.

In general the pattern of the communal models is more stable with most of the

models giving slightly better play than in the non-communal model cases.

7.4.10.1.10 Further Work One particular problem with mixture models is that there

is no guarantee of the exact distance of the data-point from any one Gaussian, only its

probability of being generated from the model as a whole. This means that there is even

less information about the points which lie away from the model than in the case of the

7.4. Enemy Modelling 125

Figure 7.24: Marked Up Gaussian Distribution, image from http://www.stillhq.com

single Gaussian. This points to using multiple models for different purposes[34]. This

idea is not explored directly here but left as an interesting avenue for further research.

7.4.10.2 Larger Levels - best model performance

Some tests were set up to show how the best model, from the initial evaluation, per-

formed on some levels which were larger. The levels chosen were Kakori Forest,

Osiris, DesertIsle and Junkyard. All of these levels are significantly larger than Trite

and fit within the Medium to Large or Large size categories.

Figure 7.25: 100 points, Communal Mixture Model, Gradual Update Procedure, Early

Stopping Criteria of 400, Different Level Tests

126 Chapter 7. Learning Mechanisms and Techniques

Figure 7.25 shows that in all cases the time spent hunting is considerably less than

the time spent exploring. The results for hiding are not as clear cut or well defined,

sometimes being much more than exploring, others less. Even so it is always a higher

value than the hunting figure. The relative ratios between the three activities do not

change sharply. This shows that the proportion of the play spent on each activity

is stable for larger as well as smaller levels. It also shows the communal Gaussian

mixture model is useful for modelling enemy play across multiple different levels.

These tests are by no means exposing the exact model performance, and we are

having to add assumption and interpretation to these results to derive any meaning

from them. The problem mainly stems from having a large number of un-observable

variables in the level which can effect performance. It is true that these simple strategic

formulations are not optimal for hiding from and hunting the enemy. When the bot

gets to a location it just stands there waiting for the enemy to be in that area. If it

were hunting then it should probably try to move around slightly or sample other less

likely areas in the hope of finding the enemy. The point of this subsection is to find

out if there is any useful information held in these basic machine learning methods and

which are the best formulations to use.

7.4.11 Discovering Known Movements

The following section provides some more objective evaluation of the models. A static

bot was setup, which would run from one point in the level to another. A team of

bots was then be setup to learn this bot’s position using the enemy model. This could

then be evaluated, objectively via visualisation, because the movements of the bot were

known.

7.4. Enemy Modelling 127

Engineering Box

Significance In this section we discuss the notion of how the model reflects play

which we know a prior the nature of. This is probably the more important of the two

evaluations as it gives a good representation of what the model is actually doing and

where the density is concentrating over the course of a match and whether it actually

shows what happened in the match. Also our numbers of statistical evaluations weren’t

substantial enough really to draw any significance conclusions so we are really working

on intuition in either case anyway. The idea is to draw conclusions to guide further

work and then evaluate the system as a whole in depth later in the process.

Novel Evaluation Part of the engineering process in a system such as this where you

are using models in unusual circumstances with unusual constraints in learning and as

part of a larger system is that you have to come up with novel ways to evaluate target

functions and usability. This often leads to finding ways to modulate parameters while

keeping certain factors stable. In normal controlled circumstances this can be very

achievable and easily done but when a system is used which is complex in nature it

is perhaps not always possible to directly control these parameters directly. Even in

the following section where we control a player to move from one location to another

and then assess how well the model has represented this we still have some slight

issues surrounding the exact routes taken by the bot, fluctuations in their play due to

random errors in path finding or movement. This means that even a controlled variable

can suffer from random noise and as such it is difficult to be 100% objective in our

evaluation strategy. In the context of a system such as ours intuition and observation

can be a good guide as to how the rest of the system will fit together and the potential

benefits of the technique in a larger context.

7.4.11.1 Test 1 Evaluation

The first test was to have two bots in a level and have them run to two different points.

Two points were set as targets and at the beginning of each run a bot selected one of

the two points randomly and ran to it. Each bot updated a communal model between

the pair and they were set on friendly so they would not shoot at each other. The test

shows the power of the model to represent the features of play which are desirable to

a bot. Some models from the previous section (all models bar the single gaussians and

128 Chapter 7. Learning Mechanisms and Techniques

owner learn versions) were tested to see how well they represented the target concept.

This particular method of testing gave a good way to visually assess the chosen sample

of the parameter space and set the particular models to be used in later trials.

Figure 7.26: The point positions used in the level

Figure 7.26 shows the two starting points and eventual destinations of the bots in

the level. The starting points are in blue while the destination points are in red.

A collage of density images displayed in figure 7.27 shows how the Gaussian mix-

ture model performs on the grassyknoll level with 4 components, a data-store size of

100 and standard EM training algorithm with a stopping criteria of 40 iterations. The

initial spread is shown in case 1. It then begins to spread to case 2. Cases 3 and 4

show how this then spreads in response to the play across the centre of the level. The

problem here is that the model is assigning responsibility to components which take

in two areas of the model and is not representing what we want to happen, very well.

Case 4 shows more what was required but is not ideal. This model would give a rough

estimation of where the enemy are playing but ideally something more predictable in

response to play would be better suited to the needs of the system.

Figure 7.28 shows the model’s performance when 1000 data-points are used instead

of 100. The initial placement in case 1 is good but all other cases show a shrinking of

the model’s area of influence. This points to a combination of problems common with

Gaussian mixture models. The extra data-points mean more runs of the EM model are

required to set the parameters of the model. This in turn means there is scope for the

Gaussians becoming much thinner and specialised. Thus the early stopping criteria

should be higher to combat this.

In figure 7.29 the early stopping criteria is set to 400 to try to combat some of

7.4. Enemy Modelling 129

Figure 7.27: Gaussian Mixture Model Density, Standard EM training with stopping cri-

teria of 40 and 100 data-points

130 Chapter 7. Learning Mechanisms and Techniques

Figure 7.28: Gaussian Mixture Model Density, Standard EM training with stopping cri-

teria of 40 and 1000 data-points

7.4. Enemy Modelling 131

Figure 7.29: Gaussian Mixture Model Density, Standard EM training with stopping cri-

teria of 400 and 1000 data-points

132 Chapter 7. Learning Mechanisms and Techniques

the problems shown at the 40 value, 1000 data-points are again used. The results are

slightly better than those for the stopping criteria of 40 but there is still a slimming of

the Gaussians to create a narrow density function over the level in cases 3 and 4.

Figure 7.30: Gaussian Mixture Model Density, Gradual EM training with stopping criteria

of 400 and 1000 data-points

In figure 7.30 the parameter settings are the same but the gradual update procedure

is used. The model is less defined than the standard EM version but again these is

no clear definition of the paths taken, which would be be expected if the model was

performing as desired. Case 4 shows the eventual settled point of the model at the end

of the game only showing a slight movement towards the top of the level which, given

the conditions placed on the bots, is not good performance. The gradual update models

using stopping criteria of 40 and dataset size 100 showed the same traits as those in the

standard EM models.

The next model tested was the version which had the number of components set via

the level size and in which the means were limited to the clusters of the level model.

This model performed worse than most of the other models in the section. In particular,

attention should be drawn to the mixture models’ tendency to perform averaging which

leads to large areas of density in the middle of the level, a trait normally associated

7.4. Enemy Modelling 133

Figure 7.31: Gaussian Mixture Model Density, Standard EM training with component

numbers and stopping criteria set by the level, Mean Movement Limited, 100 Data-

points

134 Chapter 7. Learning Mechanisms and Techniques

Figure 7.32: Gaussian Mixture Model Density, Standard EM training with component

numbers and stopping criteria set by the level, Mean Movement Limited, 1000 Data-

points

7.4. Enemy Modelling 135

with single models. The version with 1000 data-points is slightly less symptomatic,

but a different problem is shown which is similar to previous problems regarding over-

converged Gaussians. This is more likely to happen in smaller clusters within the level

as there are less sampled points within these clusters.

Figure 7.33: Gaussian Mixture Model Density, Gradual EM training with component

numbers and stopping criteria set by the level, Mean Movement Limited, 1000 Data-

points

The same model was then tested but this time the gradual update procedure was

used. The 100 data-point model did not yield any real useful results but the 1000 point

model gave a few cases which were, if not useful, at least interesting. The results are

shown in figure 7.33. The interesting feature is the path which snakes its way from

one side of the level to the other. This path looks very well defined and gives a good

estimation of 2 of the possible 4 paths which could be taken by the bots were it not for

its gradual disappearance into case 4 throughout the trial.

The parzen density estimator used a Gaussian kernel with a fixed variance of 5. All

data-points were given equal weighting. Figure 7.34 shows the 100 data-point model.

The results are more predictable, mainly due to the lack of randomness in the training

procedure. Case 4 shows the best representation yet of the paths which the bots take.

136 Chapter 7. Learning Mechanisms and Techniques

Figure 7.34: Parzen Density Estimator, Gaussian Kernel, 100 Data-points

One of the bots is gaining a slight advantage for seeing the other throughout these

trials as the modelling is much more biassed to the left side of the level in nearly all

the trials. This model is the first time this feature has been fully visible in the results,

to the extent where the density shown can be linked to the bot’s behaviour.

Figure 7.35 shows the results for 1000 data-points. The model gives results which,

although not a clear indication of the target function are consistent with assumptions

about the bots. Case 4 represents all of the target routes with a moderate level of

strength.

Figure 7.36 shows the model with a data-store of 2000 data-points with discounting[105].

Discounting is the process whereby points earlier in the data store are given propor-

tionally less influence than those later in the dataset. As the dataset grows in size the

proportion of the modelling process afforded to earlier points gets smaller in relativity

to the size of the current dataset. So each observation has a multiplier which is defined

by the following formula:

Multiplier(X) =
Position(X)

Sizeo f Data− set
(7.16)

This result is the best yet. The four main areas of play that the bots were expected

7.4. Enemy Modelling 137

Figure 7.35: Parzen Density Estimator, Gaussian Kernel, 1000 Data-points

Figure 7.36: Parzen Density Estimator, Gaussian Kernel, 2000 Data-points, Discount-

ing

138 Chapter 7. Learning Mechanisms and Techniques

to be in are shown quite clearly. There is more separation between the areas than is

desirable but this is possibly down to the level itself. Considering the raised area in the

middle of the level it is easy to see how the paths in between these areas could feasibly

not appear in the model.

7.4.11.2 Test 2 Evaluation

The second test had one of the bots playing a game of capture the flag, on the level

Chrome, while another bot moved from point A in a level to point B. After a set number

of runs the bot changes its pattern to go from point A to a further point C instead. Both

bots were set on non-friendly so they would shoot at any visible enemy. Only the bot

playing capture the flag updated the model with observations.

This was designed to test how well the model coped with changes in an enemy’s

play. There is no concern about coping with a non-static or fully random bot, but it

is important to show robustness in the model so that if an enemy does change its play

during the game then the system will have a way of counter-acting this.

Because of the relative success of the parzen density estimator, in comparison to the

mixture model counterparts in the previous section, only the parzen estimator results

are presented.

Figure 7.37: The point positions used in the level

Figure 7.37 shows the points used. Point A is blue, B is red and C is green.

The parzen density estimator used a Gaussian kernel and had a variance of 5. All

7.4. Enemy Modelling 139

Figure 7.38: Parzen Density Estimator, Gaussian Kernel, 100 Data-points

data-points were given equal weighting. Figure 7.38 shows the 100 data-point version.

The model represents the path taken by the bot. It also tracks the changeover from

strategy 1 to strategy 2. This is because the dataset begins rewriting older points with

new ones as the match progresses. It is interesting that with only the observations made

from the bot playing capture the flag the model can still obtain a reasonable estimation

of the play of the opponent.

Figure 7.39 shows the results for 1000 data-points. This model doesn’t do as well

with either the representation of the path or the change of strategy. The model averages

the two into a density mass which is a representation of neither one or the other. This

is not ideal as, although it does give a logical averaging effect, it would be better to

have something more akin to picking one or the other.

Another problem is that there is a common section which occurs in both cases

towards the start of the path. This path then gets reinforcement from both strategies,

due to the large representation within the dataset, and thus takes the largest part of the

density estimator.

Figure 7.40 shows the model with a data-store of 2000 data-points and discounting.

The representative power is equally good but the drift is never fully represented, even

140 Chapter 7. Learning Mechanisms and Techniques

Figure 7.39: Parzen Density Estimator, Gaussian Kernel, 1000 Data-points

Figure 7.40: Parzen Density Estimator, Gaussian Kernel, 2000 Data-points, Discount-

ing

7.4. Enemy Modelling 141

at the end of the match. That said, this model does have the clearest path representation

for strategy 1.

7.4.11.3 Test 3 Evaluation

The third test used was the most robust. The enemy is using the same strategy as that

in test 2. Our learning bot was playing differently though. Instead of trying to capture

the flag, they followed the enemy bot. If the enemy was seen, the bot would move

towards it, other wise they would consult the model for the most likely point of enemy

occupancy and go there. Only the following bot updated the model and both bots

were set on friendly so no shooting occurred.

The point is to show how tracking can be performed using the model as a backup

for direct observations of the enemy. Because the paths are known the output of the

model can be traced to see if the bot’s internal concept of the enemy play matches their

known path.

Figure 7.41: Parzen Density Estimator, Gaussian Kernel, 100 Data-points

Figure 7.41 shows the 100 data-point model. This model performs better than in

test 2. The paths are clearly represented and the response to change is satisfactory. The

only problem is that the first path never reaches full length (by full length we mean

142 Chapter 7. Learning Mechanisms and Techniques

the full path taken by the enemy bot). This is mainly down to the sheer number of

observations made during a single following run creating a situation where the centre

of the path overpowers the end points. It was apparent during the match that the model

was doing a good job of directing the bot towards the general area of the opponent’s

play and aiding in tracking.

Figure 7.42: Parzen Density Estimator, Gaussian Kernel, 1000 Data-points

Figure 7.42 shows the results for 1000 data-points. This model represents the full

path better and also tracks the change. The change here is more of a smooth transition

rather than a sudden change showing conservatism in response to temporal changes.

Figure 7.43 shows the model with a data-store of 2000 data-points with discount-

ing. This is the best of the three models tested. It shows the paths in clarity and the

transition is smooth but slightly more focused than the 1000 data-point case. There is

response to change but the older data-points still have some influence on the density

estimation. This represents a good compromise between the two.

7.4.12 Overall Conclusions

From all of the tests performed in the enemy modelling section some observations can

be made.

7.4. Enemy Modelling 143

Figure 7.43: Parzen Density Estimator, Gaussian Kernel, 2000 Data-points, Discount-

ing

144 Chapter 7. Learning Mechanisms and Techniques

On the subject of mixture models there is a definite distinction in performance

between the standard EM trained versions and those gradually updated. The main

problem introduced by the standard trained versions is the inherent unpredictability

created by the random elements of the standard EM algorithm. As such the gradual

update procedures shown are more predictable, although not great in terms of situated

performance.

Overall the parzen density estimation angle presents the best option for modelling

the enemy position, based on the known movements trials. The predictability of the

model is a desirable quality and its stability and consistency also gives it an advantage

over standard mixture models. This model also showed a robustness to basic changes in

enemy behaviour which is, again, desirable. Although no results were presented show-

ing how the model dealt with more complicated or subtle changes in enemy behaviour

we do not invisage this being a drastic problem for similar video game adversaries.

This then raises the question of what other types of adversaries we may face. The most

likely in the video games world are humans. But do we expect humans to play with

more predictable patterns in their play than the bots used here as a benchmark, or less?

Research in [87] suggests strongly that humans actually have stronger patterns in

their play than we might expect. These are normally associated with levels of skill and

frequency with game playing and exposure to the particular game. This suggests that

drifts in human performance patterns would not be within a single match but over a

course of matches. Because our system performs only online learning this means that

we would not have a problem with these changing behaviour. Each match we would

start modelling again from fresh and model the new human pattern.

With respect to the learning algorithms used, an alternative training algorithm could

have been found that had more stability, by eliminating some of the random factors, but

the performance of the models does not suggest that this activity would be particularly

advantageous.

The chosen model was a parzen density estimator with a data-store of 2000 points

and temporal discounting.

7.4.13 Gaussians as a Metaphor for Message Passing - An Alter-

native Situated Evaluation

The idea of using Gaussians to co-ordinate a team of bots has been touched upon[40]

and also the idea that perhaps hiding and hunting are not the best evaluations for under-

7.4. Enemy Modelling 145

standing the Gaussian models was discussed earlier in this section. Thus, a third test

was set up to evaluate the chosen model. The bots were put into a team of 3. When they

could see the enemy they would run towards them shooting at them. In the absence of

visual enemy contact they would use the enemy model to pick the most likely point of

enemy occupation and run to that location. This was achieved with the following LCC

strategy:

Strategy 2.6

a(hunter,ID)::null<--visiblePlayer(Location) and

strafeAttempt(Location,Location)

a(hunter,ID)::null<--engageModule(hunt)

There is no explicit message passing in this strategy. All the inter-bot communica-

tion is performed in the updating up the communal enemy model.

Tests were performed on Sulphur, Idoma and Osiris2. These varied in both size

and shape.

A baseline strategy was setup to test any increase in performance due to model use.

The baseline would do the same as the above in the presence of enemy bots but would

move to random points in the level in the absence of such stimulus.

This was achieved with the following LCC strategy:

Strategy 2.7

a(hunter,ID)::null<--visiblePlayer(Location) and

strafeAttempt(Location,Location)

a(hunter,ID)::null<--engageModule(explore)

In addition to this the bots were only allowed to use the assault rifle with which

they spawned. This was to try to limit the effects of multiple weapons on the trials in

the interests of objective evaluation.

7.4.13.1 Results and Observations

In figure 7.44 the trials using the enemy model are labelled A and those without the

model are labelled B. This figure shows that, although not completely even across the 3

levels, and not winning every match, the play is a lot more stable in differing scenarios

and level types when using the model. This shows that even with this simple model

formulation some level of cross scenario independence can be exhibited. In [40] the

best results were almost always achieved on smaller levels. Here the best result is found

on the sulphur level which is not one of the smaller levels in the game. This points to

146 Chapter 7. Learning Mechanisms and Techniques

not always using the highest level of complexity in modelling if the game levels or

scenarios do not warrant this. This is in reference to the fact that a better result can

be obtained on smaller levels using a simpler strategy which did not use a model to

perform the hunting. This is also based on the assumption that on smaller levels there

are no places where the enemy can hide. This information could be obtained from the

level modelling procedure discussed in section 7.1.2.3.

Watching the trials allows observations about the enemy model and it use to be

made. Firstly, using the enemy model straight is not the best strategy for correctly

judging enemy position, due to the inherent problems associated with reinforcement

of conclusions. When the bots get to the position of most likely enemy occupancy they

will stay there until the enemy, arrive thus further reinforcing the conclusion that this is

the most likely enemy occupancy point . This said there is definitely an improvement

using the model and this is mainly down to the fact that with multiple bots in a close

vicinity they pack more fire power as a unit and as such have more chance of fending

off attackers. They steer the bots away from areas of the level which are less likely

to have enemy occupancy so in some sense the model does achieve a basic level of

performance. Using the model in a strategy, care must be taken to ensure that the

correct trade off between exploration and exploitation is achieved.

Figure 7.44: Situated Enemy Model Results

7.5 Weapon Utility Estimation

In UT, as in many first person shooter (FPS) type games, a large factor effecting the

play within levels is weapon selection. This holds not just for UT and FPS games

but also for any situated real-time adversarial environment containing methods, of dif-

ferent levels of effectiveness, for engaging adversaries. In real life military situations

weapons are evaluated prior to engagement for effectiveness but one can easily imag-

7.5. Weapon Utility Estimation 147

ine that the utility of weapons in combat would need to be tweaked should the enemy

display unexpected characteristics.

148 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Assumptions A better title for this section would have been “we need to do some-

thing about weapons as they play such a big part of the game”’ and that pretty much

typifies the motivation here. A lot of the machine learning mechanisms used are do-

main driven. We can retrospectively motivate these by scientific argumentation but the

driving force is simply working with the domain and examining what jumps out at us

as a good idea for prototyping. Modelling weapons seemed like a good way of boost-

ing performance. It also seemed almost trivially likely that a weapon’s effectiveness

would change from one level to another and this fits perfectly with our assumptions

about useful learn-able environmental factors.

Another factor effecting the decision to model weapons was that it is often the first

thing naive players do. With little or no skill one tends to gravitate towards the more

powerful weapons to compensate for this, but with a new game this takes time to deter-

mine which weapons are more powerful/useful to compensate for a player’s particular

deficiencies. This idea seemed to fit perfectly with our notion of having certain tech-

niques compensate for others where there were mis-matches in performance.

Interface Limits From the beginning of the project one of the most obvious facts was

that weapons were going to be important in the domain. The question then became

how do we go about modelling these. The main options were either to model the

enemy’s choices or how effective our choices were against the enemy. In the end the

domain interface made the decision for us as there was no access to the enemy’s current

weapon. Again this is another area where the actual system being engineered effects

our approach to modelling.

Problems Ideally the bots should be able to learn their own weapon preferences

based on their own experience. The main problem with doing this is abstracting the

information from the relatively sparse data throughout the course of the matches. Re-

gardless of the technique chosen care must be taken not to allow one particular weapon

to run away with all of the probability via self-reinforcement. For instance if the bot

uses a flak cannon to kill an enemy in a very quick fight then this weapon has a higher

probability of remaining selected. As such more data will be gathered for it. Using

simple probabilistic selection based entirely on frequency values gained from auto-

matic naive estimation of probability values, a reinforcement loop[105] could easily

be created. With this in mind, fights with negative results should result in negative

weighting within the selection mechanism. Therefore any parameter space must be

rescaled to O(1) but also to be in the range -1..1.

7.5. Weapon Utility Estimation 149

7.5.1 Previous Weapon Modelling Work

Although there is no work concerning weapon modelling for exactly our set of circum-

stance or situation there do exist papers dealing with the idea of weapon selection for

FPS games in general.

Galli et al [37] detail the creation of an automatic weapon selection policy which

learns to imitate certain styles of play from a bank of data. The learning is offline and

the primary purpose of the system is to aid a human player in a way similar to assisted

aiming but the paper presents an analysis of a range of weka techniques as applied to

the pre-processed dataset which is useful as a guide to aid our choice of technique.

Burkey et al [22] describe the use of a both a neural net and a fuzzy logic system

for online weapon selection in Quake 3. They then place this inside a larger hybrid

architecture in a way which is quite similar to ours ideologically if not in final execu-

tion. The most interesting thing about the work in this paper is that it suggests possible

factors which could be used as input features for a specific choice of machine learning

technique, the most pertinent of which are “distance to enemy” and “ammo”.

In the next subsection we discuss a well defined mathematical model and show

why for our domain it is not ideal. In doing so we demonstrate some of the problems

with online learning for weapon modelling.

7.5.2 Belief Network Weapon Modelling

One possible model for weapon selection is the Bayesian Belief Network(BBN)[12].

This type of model uses probabilistic dependencies based on observations which can

be used to perform inference in a constructive and probabilistically sound way. With a

fixed structure the conditional probabilities must be learned or estimated. The standard

method used is maximum likelihood estimation but unfortunately for this situation it

is not ideal. Simple counting based estimation requires discrete continuous variables.

This leads to several problems. Firstly it creates numerous problems with the condi-

tional independence assumptions in the model and secondly it offers no way to allow

for a gradient of probabilistic influence. For instance discretising a variable such as

health into 10 categories creates a need for data in each of these categories to get

meaningful data for any given weapon option. This is the problem of having sparse

data but needing to estimate a model with more parameters than the data supports.

150 Chapter 7. Learning Mechanisms and Techniques

A better option is to leave the variables as continuous and then try to estimate their

density parameters. This is along the same lines as the Gaussians used in the enemy

model play except that said Gaussians are combined in a conditionally probabilistic

manner by expressing children as linear transformations of their parents. Informally

any estimation function can be used as long as this is then normalised against the

other possible values 6. Therefore different estimators can be used for different types

of conditional independence calculations. Due to still having an overall probabilistic

treatment of the inference in the BBN the sensible option is a frequentest approach to

the parameter estimation.

An initial BBN was setup to reflect intuitions about how the various parameters

interact with each other.

Figure 7.45: Initial Bayesian Network

From initial informal testing it became obvious that this idea was not going to

work. There were several problems but mainly there were two critical points of failure

within the model. The first was the sparseness of the data. It is mentioned throughout

this thesis that this is a problem, due to ignoring knowledge transfer, but it proved to

be fatal for this particular model. Related to this problem was the more critical issue

of the nature of data. The system could only sample positive cases i.e. something

becomes more probable if it happens a lot. There was no way of negatively reinforcing

a conclusion so that it became much less likely. What was needed was something utility

based which tallied performance based on intuitions about weapon performance.

6with continuous variables the area underneath the density function integrates to 1

7.5. Weapon Utility Estimation 151

A further issue with this formulation was that the bots tended not to have very many

weapons in their possession at any time. This meant that the information gained was

not very useful or informative and rarely could the optimum weapon be selected.

The experimentation suggested that one option could be to estimate which weapon

was better overall and then use this, in the behaviour modules, to decide which weapons

to go for before engaging the enemy. It also suggested that there may not be enough

data collected during the match to estimate the parameters of something as complex as

a BBN (Which typically requires a larger amount of data to estimate parameters). The

system needed to get more from the sparse data with more initial human input.

7.5.3 The Heuristic Function Model

Our second model was a heuristic utility estimation function[86]. This approach is not

as well grounded as the BBN model but is more robust for this system 7.

A heuristic model allows both collection and refinement in light of new data and

also integration of naive prior bias. The system used the following heuristic:

initialise: previous utility = 0 (7.17)

f (weaponx) =

previous utility - 200 if death = 1

previous utility + 100 - health difference if kill = 1

previous utility otherwise

(7.18)

At each time-step this value was re-calculated based on taking utility over all dif-

ferent observations of fights in the dataset and the weapons are ranked in order based

on this value. The threshold points were also set so that when a weapon reaches a

certain level of utility the bots decide it is worth going for. For experimentation with

this function the bots were set to select the last weapon which they picked up. This

allowed for sampling of all the weapons without putting a bias on weapon selection.

In addition to the above model a discounting scheme was also tested. This rated

newer observations higher than older observations. This was performed by multiplying

the utility update by a multiplier which reflected the observation’s temporal positioning

in the trial in a similar way to that used in the discounted parzen density estimator in

the level modelling section.

7Even with a non-frequentest Bayesian treatment of the parameter estimation of the Gaussians there
still wasn’t anything that suggested the BBN was going to work in any particularly useful way

152 Chapter 7. Learning Mechanisms and Techniques

Two other models were set up alongside the weapon model described above. One

only considered observations where the distance from the enemy was over 1000 po-

sitional units away and the other where the distance was under this value. This gave

models which only dealt with close range and long range weapon utility estimation.

Discounted results are presented for each of these models.

The initial evaluation procedure was to run 5 trials and take the state of the model

at the end of each trial. These were then averaged to give a set of values. The standard

deviation of each set of 5 trials is also reported to show how the model was performing

with regards to stability.

The results graphs in this section display the average utilities of each weapon at the

end of the match. All weapons began the matches at a utility of 0.

7.5.4 Weapons for Team Death Match

In this section we deal with the results for the TDM game-type.

7.5.4.1 Idoma

The Idoma level results show that the assault rifle performs best in all categories for

this level. One of the main reasons that this result cannot be trusted is that the bots

are spawned automatically with the assault rifle and no other weapons. This leads to

a larger representative sample for this weapon than others because of the experimental

process. As such the result is not so much a representation of how well the assault

rifle does against other weapons on the level but is a reflection of how well the bots do

overall.

Looking beyond the assault rifle, the minigun performs best in the overall and near

categories. The only category in which it is beaten is far. At longer range the shock

rifle is the preferred choice from the non-assault rifle weapons. At close range the

minigun is best with the bio rifle or rocket launcher, as secondary options.

The standard deviation results show that of the weapons which performed best the

assault rifle has the highest standard deviation followed by the minigun and the shock

rifle. It seems to be a pattern that the more extreme the performance of a weapon the

larger its standard deviation. This shows that because of the small amount of samples

used in the training set, the modelling is working on a dataset which is not stable. This

said there are still patterns, even considering the small amount of data used.

7.5. Weapon Utility Estimation 153

Figure 7.46: Weapon Results Graphs for Idoma

7.5.4.2 Desert Isle

The Desert Isle level results show that the shock rifle is performing much better than

the other weapons in the basic and far categories. At close range the rocket launcher is

deemed most useful. Again the standard deviation graph shows that the weapons with

the most extreme values have higher rates of standard deviation. In the assault rifle’s

case the utility deviation runs above 1000 showing a huge swing in the typical utility

values.

Figure 7.47: Weapon Results Graph for Desert Isle

7.5.5 Weapons for Capture The Flag

In this section we deal with the results for the CTF game-type.

154 Chapter 7. Learning Mechanisms and Techniques

7.5.5.1 Orbital2

The shock rifle, again, dominates the weapon utilities with an accompanying high

standard deviation value.

Figure 7.48: Weapon Results Graph for Orbital2

7.5.5.2 Twin Tombs

All the weapons perform markedly badly on this level. The minigun, shock rifle and

rocket launcher achieve small positive utility values in some categories but overall no

weapon is the best choice in this situation. This is a reflection of the fact that the bots

don’t perform well. The model does still give a slight gradient which, with proper

sampling, could be useful for exploring weapon preferences.

Figure 7.49: Weapon Results Graph for Twin Tombs

7.5.6 Weapons for Double Domination

In this section we deal with the results for the DD game-type.

7.5. Weapon Utility Estimation 155

7.5.6.1 Sun Temple

Figure 7.50 shows a bias towards long range weapons. This is because leading up to

each domination point there is a long tunnel, which the attacking bot must run along.

As such long range weapons are likely to lead to a lot of kills in this area for either the

defending or attacking bot.

Engineering Box

Caution When sampling play for weapon modelling it must be ensured, firstly, that

models are not used in a greedy fashion, i.e. instance always getting the best weapon

and overly reinforcing it. On top of this it must be ensured that the sampling is rep-

resentative of the play within the level. Thus the bot who is making the modelling

observations must engage in activities representative of the play which is likely to oc-

cur by a bot using the model to better its play.

Figure 7.50: Weapon Results Graph for Sun Temple

7.5.6.2 Conduit

The graph shows that the minigun has the highest utility in all categories. The minigun

and the bio-rifle are the only weapons with a positive utility for any categories. The

standard deviation values do not reflect this fact but its worth noting that the difference

in utilities between these and any of the other weapons modelled is minimal.

7.5.7 Weapon Modelling Evaluation Conclusions

There are trends on each level which can be used to model factors which vary between

levels. There is discrimination between each weapon such that a hierarchy can be

156 Chapter 7. Learning Mechanisms and Techniques

Figure 7.51: Weapon Results Graph for Conduit

established for individual game instances. On many levels the best weapon comes out

as the shock rifle because it is as accurate at short distance as long distance, therefore

the bots can kill the enemy when they enter line of sight regardless of distance (within

reason). The sniper rifle also has this characteristic but takes a longer time to reload and

as such is not as effective. On some levels the shock rifle is no better than others, with

weapons such as the flak cannon and minigun performing much better, particularly at

close range. This can be down to factors such as the position of the weapon pickups

in the level and also the chosen paths of the bots and level design. In general the

environment can override objective differences in acquired resource effectiveness.

These models contain a feedback loop. The bot’s choice of active weapon can

severely effect modelling. If the bot always sticks with the default assault rifle then

no other weapon will get reinforced. This is why it is important to perform two tasks

when using this model:

• This model must not be used in a greedy manner as this could lead to adherence

to bad local minima within the learned selection policy. This point is dealt with

much more deeply at the strategy level when the exploitation versus exploration

trade-off is considered.

• The model must be able to go into the negative range as well as the positive.

This is to prevent the scenario where one weapon is always selected, even if it

performs badly.

Individual results can be explained using intuitions about the weapon and level.

These intuitions could be used to create static weapon selection policies. The benefit

of the model approach is that it allows the bot to smooth out some of the level details

regarding which weapons are best based on its own experience. For example at long

7.5. Weapon Utility Estimation 157

range the shock rifle performs well overall but there may be situations where the bot

does not posses a shock rifle, at a large distance from the enemy. The model still

gives a way to discriminate between the other weapons, without having to pre-empt all

situations.

Engineering Box

Biassing Assumptions can be encoded into the model to prevent some basic situa-

tions known to be bad. One example is placing all weapons which are not the assault

rifle at a slightly higher utility initially. This encourages exploration as the bot always

spawns with an assault rifle. Our biassing must counter-act the natural bias for this

weapon.

A possible adaptation In many of the trials the model ends up giving an average

representation of the bot performance rather than a measure of particular weapons. It

might be a good plan to normalise the model’s conclusions against bot performance

for the purposes of system integration. This is left as further work for anyone wishing

to extend the system.

7.5.8 Situated Trials

Some situated tests were performed to show how the model worked in a semi-realistic

scenario. The issue of strategy design in relation to model use is touched upon.

Engineering Box

Situated Evaluation Purpose In most of our modelling the point of situated evalua-

tion is to provide rigour to the process. In some cases it is used, instead, to allow more

a intuition based evaluation about how a particular technique’s use might change when

applied to actual realistic data from expected domain use. Here it is used to highlight

one of the pitfalls of using the model in a greedy fashion.

Two of the models were tested and the following two modules were set up:

7.5.8.0.1 The baseline module The baseline module instructed the bot to move

towards any visible enemies whilst shooting at them. The weapon chosen was decided

by the game’s in built static metric. If no enemy was visible the bot would go on a

weapon tour, choosing any weapon at random and going to pick it up.

158 Chapter 7. Learning Mechanisms and Techniques

7.5.8.0.2 The Weapon Hunter Module The second module was similar, except the

weapon chosen in enemy presence was decided using the weapon model. In the

absence of enemy presence the bot would choose the best weapon according to the

weapon model and go to pick it up.

Figure 7.52: Situated Weapon Model Results

The results shown in figure 7.52 show the performance of 4 types of overall strat-

egy. Strategy A is 4 baseline players, B is 2 baseline players and 2 weapon hunters.

Strategy C is 1 baseline player and 3 weapon hunters. Strategy D is 4 weapon hunters.

In strategy D the weapon hunters were allowed to update the model with observations

but in B and C they were not. This is to highlight the importance of exploitation versus

exploration issues surrounding modelling in multi-agent domains. Strategies E, F and

G are the same as D, C and D except that they use the version of the weapon model

which uses the information regarding near and far data to determine the best weapon

given enemy presence.

The results for the bot’s average team score aren’t particularly different for each

model but the difference lies in the enemy’s average score. Strategy C offers the best

result in most categories, limiting the enemy’s score (Although the raw result for ironic

is only slightly lower than D the standard deviation is lower to the extent that strategy

C can be judged to be performing better).

Applying the model straight with all bots, as in strategy D, the results are favourable

7.5. Weapon Utility Estimation 159

to that of strategy A where no model was used but not to case C where a mixture of

modelling bots and baseliners was used. Case D has a slightly lower average enemy

score on ironic pointing to the idea that a combination of the two strategies could be

useful. This is dealt with in much further depth in the full strategies section regarding

automatic adaptation of the exploitation versus exploration trade-off.

The results show that care must be taken as to how the models are used. They

illustrate the importance of tackling the exploration/exploitation problem, from a sit-

uated reactive multi-agent perspective. A mixture of explorer bots and exploiters is

beneficial to the team play as a whole over both the static and naive learning stances.

7.5.9 A Further Extension

An extension to the weapon model is to tie it into the regions found in the level mod-

elling section. This is a combination of the weapon model with the area correlation

model to evaluate the utility for each weapon in each cluster of the level. The evalu-

ation performed was the same as the initial non-situated testing of the weapon model,

but only over 3 levels and standard deviation values are not presented. The point of

this activity was to show that the weapon utility values can be correlated to clusters to

give a weapon hierarchy for each area of the level. Only the discounted models were

tested.

7.5.9.1 Further Evaluation

In each section only the weapons and clusters which registered a utility, positive or

negative, are shown.

The results present weapon hierarchies for the areas of each level. The problem

is that the sparseness of data and average 30% loss of data over levels means that

important data is being lost about certain weapons falling out-with clusters. This issue

may be less problematic with the use of the alternative level modelling cluster selection

methods suggested in the level modelling section to deal with these issues but there is

no certainty of this without further testing. Another argument against this type of

model is the inherent inefficiency introduced to the weapon utility estimation process.

A trade-off must be setup between power and real-time use, and given the down-sides

to the model compared with the simpler formulations, this model is not a good choice.

It is an interesting avenue of research but may not have too much to offer for this

particular system.

160 Chapter 7. Learning Mechanisms and Techniques

Figure 7.53: Region Weapon Model Results Graphs for Conduit

Figure 7.54: Region Weapon Model Results Graphs for Desert Isle

7.6. To Fight or Not To Fight 161

Figure 7.55: Region Weapon Model Results Graphs for Orbital2

Engineering Box

Engineering Issues This was an idea which was easy enough to conceptualise and

also easy to defend as a viable performance booster but in practice it just didn’t quite

pan out as it was just a little too complicated to work with the dataset. One can eas-

ily imagine target functions for which this type of approach would be more effective

though.

7.6 To Fight or Not To Fight

When dealing with adversaries in a situated environment the question of when to en-

gage is important. For some environments we could imagine that never engaging un-

less absolutely needed could be an optimal strategy, e.g. infiltrating some form of high

security building. In others this balance is tipped much more towards always engaging,

such as in a crowded battlefield. In general though, for the wider range of adversarial

environments, it makes sense to consider situation modelling in order to decide on a per

example basis. Each confrontation should be treat differently, dependent on circum-

162 Chapter 7. Learning Mechanisms and Techniques

stances. Always engaging visual enemies is not an optimal, or effective, way to behave

in our domain primarily because our bots have multiple goals to decide between. As

such a fight model was developed to inform bots of when to engage a visible enemy.

Because the fight model makes a decision regarding the bots overall goals it is

important that this decision be well grounded and that some level of confidence can be

afforded to it. It should also be noted that at this stage the fight model does not directly

consider other goals which the agent may have. This is achieved at the behaviour

modules layer of the architecture.

Engineering Box

Prototyping One of the nice things about building a system over which you have

total control is that you can explore any activity which you feel might bear fruit. This

is precisely what happened when it occurred that we had defaulted to the idea of always

confronting and attacking a visible enemy. I cannot think of a single predatory animal

which always attacks any given opponent in exactly the same manner so why should

an artificial agent be any different.

7.6.1 Game Theory

There is much literature surrounding the field of game theory which at first looks ap-

plicable to our problem but on further consideration is not really suited to the particular

type of problem being dealt with [41, 81, 5]. Most of the game theoretic approaches

concentrate on forming complete models of the game in question to then allow prob-

abilistic rules and models to be applied allowing the prediction of further outcomes.

These are often based on finding some form of equilibrium into which the game settles

at a given point. In our case confrontations between engaging bots have too many in-

dependent variables to allow such a conclusive and thorough model to be constructed.

The variables which we know will be present are the choice of weapon, bot health, dis-

tance from enemy and ammo. On top of this we then have all the level specific factors.

It is these level specific factors which determine that we must learn on a per level basis

and add credence to our arguments against the use of knowledge transfer. Where we

to try to correlate data about fights over several levels the knowledge transfer becomes

less trivial as the exact correlations are not known. Even though our conclusions from

our fight model in the following sections are only based on health, ammo, distance

and weapon choice we also indirectly model the level nuances. For instance having

7.6. To Fight or Not To Fight 163

health of less than 50 with an assault rifle on one level may have been learned as a

viable situation in which to enter into confrontation but a change of level may alter this

drastically as the level design dictates that such confrontations are likely to end badly.

7.6.2 Neural Net Estimation

In order to model fight outcomes we must have some way of adapting from experi-

ences. Data must be integrated about the current weapon and issues such health and

ammo. Our original plan was to use the belief network constructed for weapon selec-

tion with a different inference pattern to gain a probability of death and of killing the

enemy. Based on observations from the section on weapon utility estimation concern-

ing the problems of embedded belief networks for our purpose, we decided to try a

technique typically used for offline learning, a feed forward neural net[48, 10, 12].

It is assumed that there is some correlation between the bot’s experience of situa-

tions and the outcome of said situations. e.g. certain weapons are better if you are a

certain distance away from the enemy, others at better at other distances. Construct-

ing a belief network with assumptions about what the connections were puts too much

bias into the problem and focuses parameter estimation on the wrong area. Instead of

estimating the probability of assumed connections we should be trying to find out what

the connections are.

Viewing the neural network as being a set of fully connected nodes the weights

of the connections between these nodes can then be estimated. Thus learning in the

neural net is approximately equatable to learning in the belief network if the number

of perceptron units is large enough to allow fully connected belief networks to be

estimated.

Engineering Box

Prototyping Speed Because of their nature as general function approximators, neu-

ral nets will always be considered for prediction and classification tasks. They are also

generally well understood and training algorithms are readily available so this speeded

up the task of prototyping.

This comparison to belief networks and the proposed graphical model from section

7.5 suggested the model needed at least as many nodes as were in the belief net (6).

Hence a net architecture as in figure 7.56 was chosen.

The experimentation procedure was to collect a large amount of data from various

164 Chapter 7. Learning Mechanisms and Techniques

Figure 7.56: Neural net based on Bayesian network

levels of the game. TDM was initially used because this offered an easy entry point

into a simple scenario which is well understood.

The data was then split into training data and test data for each level/trial and this

was then run through all of the net models tested in a 2-fold trial (first the net was

trained with the training data and assessed on the test data, then it was retrained from

scratch using the test data and tested on the training data). A variety of different models

were tested over the data to see which achieved the best overall performance across

multiple levels and on each individual level across 5 different trials. The results were

then averaged over these 5 trials to give an average ratio for each level of correct

predictions over total number of data points. Each net took in fight data which was

collected from the levels. The fight data stored information about each of the following:

• Distance of enemy

• Health at beginning of fight

• Weapon at beginning of fight

• Ammo at beginning of fight

The data was also scaled in the following way in order to ensure that the input to

the network and the network weights were O(10).

• Distance = Distance / 1000

• Health = Health / 100

• Ammo = Ammo / 100

7.6. To Fight or Not To Fight 165

The weapon item was encoded using 1-of-M encoding to ensure that there were no

interdependencies introduced to the data. Each weapon had its own input to the net

which was either on or off. The input and output of the net is shown in figure 7.57.

Different numbers of variably sized hidden layers were used. The net was then

trained using the scaled conjugate gradients algorithm [67] as this offered the fastest

way to get reliably trained nets. The nets were assessed on how many instances they

got correct. Because each net predicted two different outputs the prediction rates were

assessed for the cases where both outputs were correct. The predictions for death and

kill were assessed using the following function:

prediction(out put) =

{
1 if out put > 0.5

0 otherwise
(7.19)

This prediction was then assessed against the real outcome of the trial to deter-

mine if the prediction was correct or not. The following function expresses this more

succinctly:

utility(out put) =

{
1 if prediction(out put) = actualoutcome

0 otherwise
(7.20)

Trying to predict the outcome of two binomial random variables yields an expecta-

tion of getting either of the variables correct 50% of the time and an expectation to get

both the variables correct 25 % of the time guessing randomly.

Some more trials were conducted where, instead of allowing the data to be tempo-

rally ordered as in the previous case, all the data of one bot was taken then all the data

of another and so on, adding each to the dataset thus destroying any temporal ordering.

This meant that the training data was all the data of one bot mixed in with some of

the data of another bot. The same 2-fold trials were performed with this data, but only

used the communal model (This is because if the bot only took its own data then there

would be no point as this is exactly the same setup as before). The same trials were

than run to determine whether this effected performance.

For the next set of trials the condition of being correct was changed slightly. Instead

of looking at when the net was correctly predicting given all the data the results only

took into account the cases in which the net was certain of its prediction, i.e. only

consider cases where the output was greater than 0.95 or less than 0.05. This tested

how the net was performing in the area of the test cases in which it generated strong

conclusions.

166 Chapter 7. Learning Mechanisms and Techniques

Figure 7.57: Neural Net Structure Diagram

7.6. To Fight or Not To Fight 167

To further investigate this effect another set of trials was run where each bot was

trained on only its own dataset. These trained nets were then tested using the datasets

of the other bots to see how effectively prediction of outcomes could be performed on

other bot’s data from one’s own. The experimental procedure was slightly different as

the whole training set was used to train the net and the whole training sets of the other

bots was used to test the trained net. All other experimental details remained the same.

The nets used had the following parameter settings:

Neural Net Parameter Settings

No. Hidden Layers Layer Size Training Threshold Training Tolerance

1 4 4 0.08 0.5

2 4 10 0.1 0.5

3 4 10 0.25 0.5

4 4 12 0.02 0.5

5 1 10 0.9 1

6 4 10 0.25 0.5

7 4 10 0.2 0.45

8 1 10 0.25 0.5

9 1 10 0.2 0.45

Figure 7.58: Neural Net Parameter Settings

Figure 7.59(a) shows that the performance of the neural net for predictions of both

death or kill variables is not particularly good. In some cases there is improvement on

the expected 25% accuracy for predicting both variables but this is not significant. It

is important, however, to remember that the domain is very noisy and that there is no

intention to use this information as the sole decision procedure. The post processing

on the neural net outputs will allow these outputs to be placed in the context of a larger

strategy for behaviour. There is useful information in the cases where the net only

correctly predicts one of the two outputs.

All of the previous trials were run again but this time the acceptance condition was

changed to define a correct prediction as getting either the death or the kill prediction

outputs correct. This then meant that the condition became a logical or rather than

a logical and. Therefore this is expected to yield a correct result 75% of the time,

randomly guessing.

168 Chapter 7. Learning Mechanisms and Techniques

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.59: Neural Net Trials

7.6. To Fight or Not To Fight 169

7.6.2.1 Discussion

In the case of predicting both outputs the model achieves performance which is negli-

gibly better than guessing at random. In general using the single model is better than

using multiple models but the difference in performance is, again, virtually negligible.

Trying to predict one output from the two it is shown that the single model is

almost always better than the multiple model, achieving 5% over the random average.

When the net is 95% sure of its prediction it is possible to get the correct prediction

approximately 60% of the time.

One interesting result is that most of the bots can predict the other bot’s fight results

to the same level of accuracy as they can predict their own if they have a single model.

This is dependent on them having similar capabilities, however the fact that, for similar

bots, the situations they encounter are similar to each other is encouraging for us being

able to model these situations.

In Summary:

• The overall performance, although not brilliant, does point to the neural net be-

ing useful for making predictions about one of the inputs.

• It is possible for one bot to predict other similar bot’s data from only their own,

showing that data may be useful to other bots for increasing performance. This

suggests that the use of communal models will be advantageous

• The exact performance increase gained from the model will be largely dependent

on how the outputs of the net are processed

7.6.3 Improvements Using Heuristics

In our naive model we have chosen to select all data as admissible for modelling pur-

poses. This is not ideal as we only have minimal amounts of data for training purposes,

and are using some data which may or may not be good for understanding the under-

lying generator function. One possible improvement of this model is to use heuristics

based on some of our intuitions. The idea is that we want the modelling to tweak its

performance in certain areas, while not learning much about areas in which we are al-

ready fairly certain of what outputs should be. The general idea of heuristics for neural

nets is not new. The research presented in [30] concerning the use of neural nets with

output heuristics for forecasting loads on an energy company shows this.

170 Chapter 7. Learning Mechanisms and Techniques

With the neural net model in our system there are two contrasting ways to use

heuristics:

Data Tampering Altering the data which goes into the training set for the model.

Output Tampering Editing the output of the net in response to known inputs.

Engineering Box

Heuristics The nature of the heuristics chosen is guided by the fact that neural nets

are traditionally described as being input, output and hidden layered devices as such

this really only gives two conceptual areas to alter. The hidden layer units don’t really

lend themselves massively to focussed adaptation so this only really leaves the other

two options.

7.6.3.1 Data Tampering

In order to tamper with the data we must have a notion of what type of heuristic would

be useful and how to represent it.

One viewpoint is that we could add items to the dataset, biassing it towards certain

conclusions. This is very similar to the ideas expressed by Denzinger et al[32] con-

cerning the use of a human skeleton of manually set state-action pairs to improve the

performance of a genetic process. Neither the skeleton nor the genetic process alone

can solve the problem being tackled but when combined they yield a high performance

solution. The process could also be compared to the case based reasoning presented

by Miles et al[66] albeit in a much simpler form and without the dynamic case base.

One option for achieving this first type of data tampering is to insert, proportional

to the dataset size, idealised cases which reflected our beliefs about heuristic rules

which should be correct in a game situation. This means the output of the net is still

a continuous value which is biassed towards certain conclusions. Cases which are not

similar to these fall into the area of learned correlations.

This option also gives useful data about modelling in areas where we may not have

any data about a certain weapon. If there are no data-points in the training set with

settings for these parameters the net is likely to learn that these parameters do not

effect the outcome of fights. This is not ideal and we would like to inject defaults

about these parameters into the modelling process.

7.6. To Fight or Not To Fight 171

7.6.3.2 Evaluation

The same trials as before were performed but this time a data injection of ideal cases

was used which represented our beliefs and prior knowledge about the domain:

1. If the bot has a flak cannon or minigun with large health, and the enemy is close,

then they should be safe

2. At a distance the bot should be safe with a shock cannon and high health

3. With low health the bot should have a high probability of dying

4. With low ammo the bot should have a high probability of dying

Further to this a set of trials were run where the injected data was used but no data

was added to training set from the matches. This was to asses the effect of the injected

data on the model in the absence of other data.

From the strong acceptance condition results shown in Figure 7.60(a) we can see

the data tampered model achieves better performance in general. Nets 6-9 are all higher

than those in the non-injected case. This said, the best result for any net in any individ-

ual category is not significantly better than that of the non-injected case. The injected

case is better at predicting other bot’s data from ones own model and performs rela-

tively well in the non-temporal case. The best single model and multiple model cases,

however, belong to the non-injected set.

The weaker acceptance condition trials present the same story as the strong. The

injected data models perform better in general but the best cases are roughly equatable

to those in the non-injected model. In the injected case nets 3 and 5 give the best results

but in the non-injected case the best results are obtained from model 6.

Another factor to consider is how important the general better performance actually

is. Each of these neural nets has a different set of parameters, if they all achieve

similar performance this tells us that the initial parameter space is not affecting, to

a large extent, the performance of the net. This could mean the target concept is so

strong that any parameter setting of the model is capable of finding it. It looks more

likely, though, that the model is actually only able to learn to a certain extent with the

given data and that adding the ideal data to the set has simply pushed it towards that

limitation. The key factor here is that the limitation level appears to be roughly 5%

over the expected rate when guessing, for the best model, and we have simply made

sure that the parameter settings for the net achieve that level.

172 Chapter 7. Learning Mechanisms and Techniques

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.60: Neural Net Trials, with Data Tampering

7.6. To Fight or Not To Fight 173

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.61: Neural Net Trials, with Data Tampering and No Learned Data

174 Chapter 7. Learning Mechanisms and Techniques

Interestingly the models which do not use the dynamic data do better than those

which do in some cases (primarily the strong acceptance condition cases, the weaker

acceptance condition cases are almost identical). There are two possible explanations

for this. The first is that our predicted data is much better than that which we observe

for predicting future data. This seems highly unlikely and it is more plausible that

the neural net model is not performing very well for this domain and this data. The

model is theoretically well grounded but the patterns in the data may not be pronounced

enough for it to be a good predictor.

In the case of the weaker acceptance condition models, with no dynamic data, the

similar performance may be caused by the perfect data being very similar to the actual

data in the level. It also fits with the assumption of a bound on the learning of the net

being a limiting factor on performance.

7.6.3.2.1 An Alternative Viewpoint on data tampering An alternative viewpoint

is that we could attempt to clean the dataset by examining each data-point with respect

to our heuristic and then changing values which we feel are strongly wrong. This ap-

proach is nice in cases where we do not wish to add extra data to our set but can also

lead to problems if it is performed religiously. With small datasets this can lead to

re-ordained perfect outcomes which is not what we are looking for. The first viewpoint

also allows the dataset to take over when we get more data about the situation and ob-

tain a clearer picture of situation which is being dealt with. In some sense the influence

of the heuristic ideal cases gets minimalised as we add more data.

7.6.3.3 Output Tampering

Although we have not presented any results for output tampering here, as it was felt

that the neural net performance was not sufficiently high enough to warrant such tests,

it is still worth discussing how this would be achieved.

There are two different viewpoints on output tampering. The first viewpoint is that

we could apply a set of heuristic cases to input data which we knew to be correct and

thus pre-define outputs for these cases.

A second, more considered approach, is to use the heuristic rules in conjunction

with the output of the net to bias the predictions for certain cases into line with what

should be happening. This allows the net’s prediction to have baring on the result but

allows us to specify that the net must be certain that we are wrong in our heuristic

estimation before an over-rule of the decision can occur.

7.6. To Fight or Not To Fight 175

A simple example of this behaviour could be as follows:

Out put(inputx,d,w) =

{
(net output + 1)/2 if d < 0.2 and w = flak cannon

net output otherwise
(7.21)

Where d is a decisiveness factor.

Additions to this could allow the prediction strength of the net output to be consid-

ered to allow weighting between net outputs and heuristics to be used.

7.6.4 Nearest Neighbour Estimation

Having tried a relatively complex, although not outlandish, technique we decided to

try working from the opposite end of the complexity spectrum with probably the sim-

plest known pattern recognition technique. This was largely based on the fact that the

general data pattern didn’t seem to support a complex conclusion.

The simplest modelling framework given the situation is a nearest neighbour model[10].

The nearest neighbours model is based on the assumption that the data space which we

are trying to model is inherently smooth and that points in this space, which are similar

in location, should be similar in classification.

7.6.4.1 Single Nearest Neighbour

In the single nearest neighbour framework novel examples are given the classifica-

tion of the nearest training set data-point. There are a number of different distance

measures. In our case we scaled the data as in section 7.6.2 and then used Squared

Euclidean Distance calculation:

SquaredEuclideanDistance(X ,Y) = (X−Y)T (X−Y) (7.22)

Because we have two different outputs, we consider all examples which have the

same classification on both outputs as having the same classification.

Engineering Box
An alternative method could be to consider each separately with entirely different mod-

els but given that we hold a prior belief that they are linked together, and are not inde-

pendent, this would not be the best choice.

176 Chapter 7. Learning Mechanisms and Techniques

7.6.4.2 K Nearest Neighbours

K-Nearest Neighbours [10, 26, 7] is an adaptation of the Nearest Neighbours algorithm

which, instead of selecting only the nearest neighbour in the dataset, selects the K

nearest Neighbours and then picks the majority classification from this group. This

change is designed to avoid outliers in the dataset.

Engineering Box
In our case we took the K nearest neighbours and summed their output values for each

output. We then divided this by K and took this is our output classification:

Out put(X i) =
∑

K
n=1 X i

n
K

(7.23)

This has the same effect as standard K-Nearest Neighbours if we apply a step function

to the output but gives a continuous output value.

A key part of the nearest neighbours algorithm is how to decide what to do in situations

of ties. In our case a tie is defined as:-

Out put(X i) = 0.5 (7.24)

Our initial condition for dealing with ties was to take the cumulative distance for each

output of the K nearest neighbours and then assign the output as the lesser of the

two distances. This was biassed strongly towards a negative rather than a positive

prediction by adding 1 to the cumulative distance of the positive summation. It was

considered less committal to make a negative prediction. Less commitment is good

because we are in a situation where the standard method has lead to a tie with a value

of 0.5 showing that there is enough insecurity to justify not jumping to a positive

conclusion.

7.6.4.3 The Mahalanobis Distance

An alternative distance measure is the Mahalanobis distance[10, 80]. This distance

takes into account the covariance within the particular class of data in the dataset in

order to further avoid outliers. The distance measure is altered to the following:

MahalanobisDistance(X ,Y) = (X−Y)T
Σ
−1
class=classy

(X−Y) (7.25)

Where Σclass is the covariance matrix of all examples having the same classification

as Y.

7.6. To Fight or Not To Fight 177

This helps to obtain correct classifications in situations such as those shown in

figure 7.62 where the nearest neighbours may lie on some hyper-plane within the data

such that there is no real variance beyond this hyper-plane. Thus as a class they are

distant from the data-point despite being individually close.

Figure 7.62: Mahalanobis Example

Engineering Box
The problem with this was that we did not have enough data in our dataset for any

given trial to have estimations for the weapon input parameters for any given class.

This led to always having a singular covariance matrix due to the determinant being

0, hence for the trials performed in this section we only performed the mahalanobis

distance calculations over the ammo, health, and distance parameters.

7.6.4.4 Results

For ease of comparison we have tried to make the results presentation as consistent

with those in the neural net section as possible. We have also treated standard nearest

neighbours as a special case of K-nearest neighbours where k = 1. For higher K values

we applied a step function to each output as in the neural net case.

From the strong acceptance conditions there are three important points to be made.

Firstly the results are more even across the model selections than in the neural net case.

The model is more stable, predictable and reliable. This is a trait of the nearest neigh-

bours algorithm in comparison to neural nets in general and is strongly emphasised

in our domain. The performance is also more stable across the individual categories

tested. The single model usually slightly out-performs the multiple model case.

The second point is that the performance for any given model is not significantly

higher than the best results for the neural net case. The difference is that the categories

such as non-temporal data and predicting other bot’s data from our own match up with

178 Chapter 7. Learning Mechanisms and Techniques

Figure 7.63: Nearest Neighbour Trials, Strong Acceptance Condition, Euclidean Dis-

tance

the single model evaluation showing that the model is less susceptible to changes in

the temporal nature of the data source.

The final point is that there is an alternating pattern in the evaluation data corre-

sponding to odd and even K values. Odd K values are much higher than lower k-values

in general. This is due to the tie condition.

Figure 7.64: Nearest Neighbour Trials, Weak Acceptance Condition, Euclidean Dis-

tance

The weak acceptance condition shows a reversal of the pattern observed in the

strong acceptance condition case. This occurs due to a combination of the tie condi-

tion chosen and patterns within the data. In the strong acceptance condition case the

7.6. To Fight or Not To Fight 179

sceptical approach to prediction values led to lower performance but here it does better

as the even cases perform better due to this sceptical approach.

Figure 7.65: Nearest Neighbour Trials, Strong Acceptance Condition, Mahalanobis Dis-

tance

With the strong acceptance condition the mahalanobis distance model does worse

than the standard euclidean distance model in all categories of evaluation.

Figure 7.66: Nearest Neighbour Trials, Weak Acceptance Condition, Mahalanobis Dis-

tance

In the weak acceptance condition the mahalanobis model is considerably better

than the euclidean model showing that it has better qualities for single output optimi-

sation.

180 Chapter 7. Learning Mechanisms and Techniques

7.6.5 Nearest Neighbour Conclusions

The neural nets do better than the nearest neighbour models at predicting both outputs

jointly. This is primarily because they are wired to optimise over both outputs and are

disadvantaged at predicting individual outputs as a result. This said, the outputs have

interpretable meaning and as such, if they are prioritised, can be used in a decision

procedure.

The best model was the Mahalanobis distance version of the K-Nearest Neighbours

formulation which only used data regarding distance of enemy, current health and cur-

rent ammo levels. This shows that there is a correlation between these factors and the

fight outcome which is clouded by the current weapon selection. This does not mean

that the weapons do not effect the actual outcome but rather they effect it in such a

way which is difficult to observe from the data and particular type of model considered

here. Therefore the decision to model weapons separately seems to be pertinent.

7.6.5.1 Improvements Via Heuristics

Although the performance of K-Nearest Neighbours is better than neural nets we still

seek to improve it using a heuristic. For nearest neighbours the easiest way to do this

is to alter the way in which we rescale the data. Instead of scaling all data parameters

to be within the same range we can alter the scaling on certain variables to be larger

than on others. Because the scale of these variables will have much more affect on the

distance calculations this will place more importance on these factors. For instance

if we believed that health was a larger factor than ammo we might use the following

scaling factors rather than those defined in section 7.6.2 :

• Distance = Distance / 1000

• Health = Health / 50

• Ammo = Ammo / 150

This should bias the modelling to consider the health before the ammo. We can

choose any rescaling but it should reflect our intuitions about the game and leave

enough room for the model to adapt to the data in areas where our intuitions are not

strong.

We can also try to perform the same type of data tampering and output tampering

as in section 7.6.3 in order to compare the effect that this has. The approach presented

7.6. To Fight or Not To Fight 181

in section 7.6.3 will be termed injection while the type of tampering presented in this

section is termed rescaling.

The following rescaling factors were used :

Rescaling 1

• Distance = Distance / 1000

• Health = Health / 50

• Ammo = Ammo / 150

Rescaling 2

• Distance = Distance / 2000

• Health = Health / 10

• Ammo = Ammo / 50

Rescaling 3

• Distance = Distance / 100

• Health = Health / 200

• Ammo = Ammo / 100

We also tested a second injection set which represented the same set of conclusions

as injection set 1 but with slightly less sure numerical values. This was to test the

sensitivity of the system to initial injection set specifics.

7.6.5.2 Results

The results presented follow the same format as those in the rest of this section. For all

trials the mahalanobis distance nearest neighbour model was used as this gave the best

results from the previous trials.

The figure for the weaker trials of injection set 1 shows that the single model case

outperforms the non-injected version. The single model also outperforms the multiple

model version. This shows two things, that the injected data is making a difference

and that this difference is more severe for a single model. The explanation is most

likely that the extra data is complementing the learned data in the single model case

182 Chapter 7. Learning Mechanisms and Techniques

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.67: Rescaling 1

7.6. To Fight or Not To Fight 183

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.68: Rescaling 2

184 Chapter 7. Learning Mechanisms and Techniques

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.69: Rescaling 3

7.6. To Fight or Not To Fight 185

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.70: Injection 1

186 Chapter 7. Learning Mechanisms and Techniques

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.71: Injection Set 1 and No Dynamic Data

7.6. To Fight or Not To Fight 187

but is overwhelming it for the multiple models case, with each single model not having

enough data to form a beneficial data set.

In Figures 7.71(a) and 7.71(b) the results are shown for the model with only the

injection data and no data learned from the level. The purpose of this is to judge the

effects of the injection data. Here we see that the model performs much worse with

only the injection data. It also performed worse with only the learned dynamic data

yet the combination of the pair creates a model which performed better. This shows

that the learned data can alter supplementary intuitions in a meaningful way leading to

better modelling.

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.72: Injection Set 2

188 Chapter 7. Learning Mechanisms and Techniques

The results for injection set 2 are not as good as for injection set 1 and the pat-

tern across K values is different showing that the performance increase seen can be

dependent on the initial injection data set. The whole process of data tampering with

injection sets seems to be hinged quite strongly on the particular data used and how

well grounded the intuitions are. One of the benefits of working with a domain where

some expert knowledge is present is that this type of model alteration is possible but

it would a dangerous result to generalise to domains where such knowledge was not

readily available.

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.73: Injection Set 2 and No Dynamic Data

Even though the second injection set is not as good, the effect of removing the

7.6. To Fight or Not To Fight 189

dynamic data remained roughly the same showing that the performance increase is

due to the way in which the supplementary data interacts with the learned data and is

not simply in the data itself.

7.6.6 Heuristics Conclusions

Heuristics, if used in a subtle and careful manner, can increase model performance

but even slight changes can turn this in the opposite direction. Of the two heuristics

rescaling was outperformed by data injection. This reflects the fact that with smaller

data sets adding more data is likely to improve performance if the added data is sensible

and representative of the target concept.

There is room for further work in this area, in particular a more careful and thor-

ough analysis of injection sets and how these effect performance in a variety of do-

mains towards developing a framework or algorithm for the automatic creation of such

sets for given domains.

Engineering Box
Care must be taken not to bias the training set to the specific test set being used by

involving it in the training process. This is, however, true for all machine learning and

is good practice.

7.6.7 Alternative Tie Conditions

In the previous section we presented results using a biassed condition for cases of

ties. In this section we present a few simple alternatives and show how they effect our

optimal result from the previous section. This is to show two things. Firstly it helps

to motivate our choice of tie condition. Secondly it highlights some of the effects that

the effect of the tie condition can have on the model and why it should be carefully

considered.

The first alternative tie condition tested was to look at the total distance of all the

examples for each output value and then take that with the smallest distance as the

output from the set of K. Figures 7.74(b) and 7.74(a) show how the model performs.

The results are not an improvement on the normal tie condition and both are worse.

The second alternative condition was to always predict 1 for outputs in tie con-

ditions. Figure 7.74(a) shows that this was not an improvement on the standard tie

condition.

190 Chapter 7. Learning Mechanisms and Techniques

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.74: Prediction Scores for Alternative Tie Condition 1

The explanation for this lies in conservatism of prediction. A death and a kill are

both events which can happen or not. In situations where the model is not sure then the

best option is to hedge bets and not predict either rather than jumping into one court

without sufficient evidence.

In both cases the step result, with either the odd or the even result being higher

than the other is not present. In the case of taking both outputs and looking at the

distance this is obvious as we are not introducing any particular disjointed behaviour.

In alternative tie condition 2 we still do this though and this is more down to the bad

choice of always committing to a positive outcome despite the evidence.

7.6.8 Situated Evaluation

As with the enemy and weapon models a situated evaluation was performed. The trials

were set up on the game level Idoma. Strategy A was a baseline, the same as that used

in the enemy modelling section. The bots in Strategy A were limited to assault rifles.

This was a valid thing to do because the mahalanobis distance model used did not take

into account weapon preferences.

7.6. To Fight or Not To Fight 191

(a) Strong Acceptance Condition

(b) Weak Acceptance Condition

Figure 7.75: Prediction Scores for Alternative Tie Condition 2

192 Chapter 7. Learning Mechanisms and Techniques

Strategy B was the first attempt to use the model in a naive way. In the event of

a visible enemy player the bots would query the fight model regarding whether they

should shoot at the enemy or not. If the model predicted a kill they would shoot at the

enemy and approach them, otherwise they would continue to play randomly as in the

case of no visible enemy. The weapons were limited to assault rifles.

Strategy C was a slightly better attempt to use the model. In the presence of a

visible enemy the bots would query the model and only approach the player if a kill

was predicted. If the model predicted a death then the bot would execute an evasive

manoeuvre.

Engineering Box
The evasive manoeuvre was performed by calculating the parametric equation of the

line between the bot and the enemy and then using this to project to a point roughly

20 times this distance behind the bot in the opposite direction of the line. The nearest

navpoint in the level to this point was then calculated and set as the destination for the

bot. Although not the optimal avoidance strategy (alternatives include ideas such as

artificial potential fields[21, 42]), it generated acceptable behaviour.

The bots would always shoot at the enemy even if not approaching them.

Strategy D was almost identical to the baseline strategy except the bots were al-

lowed to use all the weapons. Thus when a player was visible the bot would choose

the best weapon based on the built in static weapon selection strategy.

Strategy E was identical to strategy C except all weapons were allowed. A different

model was also used to take advantage of the extra information offered by the weapons.

Even though the model achieved slightly worse results in the clinical evaluation, the

extra data offered by situated use could mean it still proves better in testing. The model

used was the euclidean distance model with K = 2 and injection set 1.

Strategy F was a mixture of exploitative players and exploring players. There were

2 bots using strategy E and 1 using strategy D. Only the strategy D player was updating

the model.

Figure 7.76 shows that using the strategy in a naive way is not optimal. It offers the

worst level of performance possible as it did not achieve a single kill. The problem is

that even if you choose not to approach an enemy in the game, shooting them should

always be performed as a defence mechanism. With better situation modelling it may

be possible to determine more about the scenario and whether a stealth retreat could

be made but in our case it is better to shoot.

7.6. To Fight or Not To Fight 193

Figure 7.76: Situated Fight Modelling Results

This is exemplified by strategy C which gives performance which, although still

worse than the baseline, is at least offering some form of resistance.

When we move to strategies involving weapons there is a very interesting situation.

Having all the members of the team using the model and updating it leads to a worse

result than the baseline. Having one member of the team updating the model while

exploring leads to a drastic improvement in performance giving the only model set

which achieves 5 wins in 5 matches.

7.6.8.0.1 Conclusions Just using the model naively is bad and doesn’t give good

performance. Also having the entire team using the model at once while updating it

and using the information in a greedy manner does not give good performance.

The best approach is to balance the team with some exploring agents and some ex-

ploiting agents. The performance of this is considerably better than either the baseline

or the naive use of the model. This gives the best motivation for our proposed solution

to the exploration versus exploitation problem. This is discussed further in chapter 13.

7.6.9 Ensemble Networks

From the above results we can see that even a simple modelling technique such as

the nearest neighbour model can offer some acceptable level of performance. This

194 Chapter 7. Learning Mechanisms and Techniques

then begs the question of which examples the nearest neighbour network gets correct

and which the neural network framework gets correct. If these differ drastically a

combination of the two might exhibit better performance by specialising certain cases

to each model. This concept of combining multiple models into one with expected

better performance is sometimes termed an ensemble model[34].

Experimentation with an ensemble model showed that there was no statistically

differing pattern to show that the either the neural net or the nearest neighbours model

got particular examples correct where the other didn’t. As such there was no viable

way to combine the two into one model based on any scientific assumptions or heuris-

tic intuitions. The same can be said of a combination of models from either of the two

sections internally (for instance combining a model with a mahalanobis distance mea-

sure and no injection with a euclidean model with rescaling and injection), as again, no

pattern was displayed to suggest that any increase in performance could be achieved.

7.6.10 Alternatives

When dealing with decision boundaries there is an almost endless list of alternative

machine learning techniques which could be considered. The most notable are support

vector machines (SVM) and Bayesian methods. Of the two SVM’s[88], when applied

with the correct kernel, are generally seen as the more powerful technique. The main

problem is that they can take a large amount of time to train and again are often difficult

to use with small datasets. There is also more work in deciding on the appropriate

kernel to use.

Engineering Box
If these could be trained in an online manner which was comparable computationally

with heuristic models then these might be a more viable alternative.

7.7 Game-Type Specific Route Modelling - CTF

In any adversarial environment situated agents with goals are going to have to move

around in a way which enables them to deal with said adversaries. If certain routes

are good for achieving goals then we would like the agent to be able to learn to take

these more often and conversely avoid bad routes. If the environment changes between

instances and no knowledge transfer is possible we would like the agent to learn these

routes quickly during trial execution.

7.7. Game-Type Specific Route Modelling - CTF 195

In the enemy modelling section it was shown how a density model could be used

to rank path nodes, by giving them a utility which reflects the probability of enemy

presence. In this section we show how a density model can be used to rank nodes for

approaching and returning a flag in CTF. We also present a more specialised model of

flag return play.

Engineering Box

Parzen Density Window Flexibility Having already established the relative good

performance of the density model approach to node ranking it seemed efficient to use

this for problems having a similar set of parameters and potential modelling target

functions. This flexibility is largely a product of the overall versatility of parzen density

window estimation techniques.

The mechanism for applying the standard density estimator is as follows:

1. When a bot is spawned they begin storing nodes on the path they take.

2. When they reach the flag (go to 3) or die (return to 1) they update the approach

model with the path they took.

3. They begin storing the nodes on the path taken.

4. When they reach the home base with the flag or die they update the return model

with the path they took (return 1).

In order for the mechanism to perform modelling updates, nodes in the level are

given a flag approach utility value. This is then updated in the event of an update from

a bot. In our case we used a parzen density estimator based on Gaussian distance from

the path as a whole.

P(x|Model) = (
1
N

N

∑
i=1

G(x− xi,2σ
2I)) (7.26)

where G(x,H) is a Gaussian Kernel defined as

G(x,H) =
1√
|2πH|

e−
1
2 (x)

T H−1(x) (7.27)

and each xi is a node in the path.

196 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Updates With each update the utility of any given node was augmented with the

point’s cumulative probability of having been on the path (as calculated above) and

normalised so that all node probabilities were between 0 and 1.

A separate model was used for the capture and the return portions of the flag run.

7.7.1 Evaluation

To evaluate this model several tests were run and the resulting updates were performed

upon flag capture and return. The effect on the nodes in the level was then graphed in

the same format as in the enemy modelling section. The approach and return models

are shown separately.

Each model was tested on the levels Citadel, Grassy Knoll, Absolute Zero and Lost

Faith over the variance values 250, 500 and 1000.

Only two of the levels are shown. The other two can be found in the appendix as

the results were similar to those shown.

For the first set of tests one bot was set to run to the enemy flag and then return to

base again.

Engineering Box

This was a simple test to evaluate the power of the model to represent a known

path and how these representations reflected what happened. This doesn’t test the

element of the model which handled path failures, which is dealt with in the next set

of evaluations.

It was also a basic test to determine if the model would work similarly as it did in the

enemy modelling section for a different target function with different parameter type.

In the diagrams in this section, the numbers represent different time points within

the match.

7.7.1.1 Citadel

Figure 7.77(a) shows the main path the bot takes to and from the enemy flag back to

base. Figure 7.77(b) shows an alternative path that is sometimes taken based on the

bot’s starting position (The internal path finder is optimised for distance so this can

7.7. Game-Type Specific Route Modelling - CTF 197

alter the path taken if the bot’s starting position is nearer the goal via the alternative

path). Both paths are shown as sometimes both are reflected in the model.

(a) Main

(b) Alternative

Figure 7.77: Citadel Approach and Return Paths

7.7.1.1.1 Variance: 250 From figure 7.78 we can see that the model with variance

250 creates very narrow density influences why only effect very specific areas. This is

good for a basic representation of the path taken but lacks power in terms of influencing

the nodes around the path. For path finding, this can be visualised as walking along a

ridge on a mountain. If the ridge is not particularly steep then you can use alternative

routes around you by walking down the edges of the ridge and continuing along these

paths. However if the ridge is ridiculously steep then there is no hope of getting off it

and you must slavishly follow it or risk taking paths of unknown origin. This model

is just memorising the path taken and offers little extra power over simply storing all

the nodes taken and only reinforcing their utility by some set amount. The use of this

model would lead to steep ridges like those in our analogy.

In one case we see the model representing two different paths but both are ex-

tremely tight to the paths taken rather than being a smooth influence throughout the

198 Chapter 7. Learning Mechanisms and Techniques

level nodes which surround the paths.

(a) Approach

(b) Return

Figure 7.78: Flag Route Density Models for Citadel with variance 250

7.7.1.1.2 Variance: 500 The variance 500 model in figure 7.79 has much more den-

sity spread than the variance 250 version. Both paths taken are represented but the left

hand path is more strongly shown. This is what we would expect as this path is more

prevalent in the bot’s play. There is an even distribution of utility of reinforcement

across the nodes without reducing the density to being non-descriptive and uniform.

A uniform density would provide the opposite problem whereby all the nodes in

the level would be equally reinforced and no evaluation of potential paths could be

performed.

7.7.1.1.3 Variance: 1000 The spread in figure 7.80 here is too uniform across the

level. It was discussed that the model should not create too steep a ridge but we also

want a definite gradient of utility throughout the level to guide any path finding mech-

anism. Reinforcement of one path in this level is influencing both paths too heavily.

7.7. Game-Type Specific Route Modelling - CTF 199

(a) Approach

(b) Return

Figure 7.79: Flag Route Density Models for Citadel with variance 500

200 Chapter 7. Learning Mechanisms and Techniques

This is likely to lead to the false conclusion that the middle section of the level is

equally probable to the left hand path. In this case the middle path should have less

utility.

(a) Approach

(b) Return

Figure 7.80: Flag Route Density Models for Citadel with variance 1000

7.7.1.2 AbsoluteZero

Figure 7.81(a) shows the main path the bot takes to the enemy flag. Figure 7.81(b)

shows the route back from the enemy flag to home base.

7.7.1.2.1 Variance: 250 As shown in figure 7.82 In the approach case both paths

are strongly represented but the ridges are, again, steep with too low a variance value

in the directions perpendicular to the path.

7.7.1.2.2 Variance: 500 Figure 7.83 shows that there is a smooth density gradient

throughout both the return and approach stages but the path is clearly picked out at

7.7. Game-Type Specific Route Modelling - CTF 201

(a) Main

(b) Alternative

Figure 7.81: Absolute Zero Approach and Return Paths

202 Chapter 7. Learning Mechanisms and Techniques

(a) Approach

(b) Return

Figure 7.82: Flag Route Density Models for Absolute Zero with variance 250

7.7. Game-Type Specific Route Modelling - CTF 203

high threshold levels. The influence of the reinforcement is also well represented as

it does not extend over the bridge section to the other pathway. This is partly due to

the correct variance value and is also a feature of parzen density estimation in general

; being able to generate density functions which are, in some sense, non Gaussian.

(a) Approach

(b) Return

Figure 7.83: Flag Route Density Models for Absolute Zero with variance 250

7.7.1.2.3 Variance: 1000 All of the results presented in figure 7.84 are at high

threshold levels as at low threshold levels the whole level was being swamped by the

density function. The paths are well represented but note there is little change in the

gradient, or shade of red, in the nodes signifying a lack of usable gradient of influence

throughout the level.

This is showing too much uniformity in the way the model is effecting the nodes

throughout the level.

204 Chapter 7. Learning Mechanisms and Techniques

(a) Approach

(b) Return

Figure 7.84: Flag Route Density Models for Absolute Zero with variance 500

7.7. Game-Type Specific Route Modelling - CTF 205

7.7.1.3 Conclusions from evaluation

The modelling procedure shows that the path nodes taken can be used to reinforce a set

of node utilities over the level which generate a continuous surface or influence map.

The model with variance 500 performs best (of those which we tested. It was beyond

the scope of this thesis to perform a full scale variance test.) and does not suffer from

the artefacts of the other two variance values tested in these trials. This section only

tested the positive reinforcement element of the model but showed that it worked as

expected with our specifications for a useful model.

7.7.1.3.1 Further Evaluation 1 In the following section the experimental setup was

the same as before except that an enemy bot would now be present playing against our

single bot. Based on the results presented in the basic evaluation only the model with

variance 500 was tested as this showed the best performance.

(a) Approach

(b) Return

Figure 7.85: Further Models for Citadel

206 Chapter 7. Learning Mechanisms and Techniques

(a) Approach

(b) Return

Figure 7.86: Further Models for Absolute Zero

7.7. Game-Type Specific Route Modelling - CTF 207

In both the Citadel (Figure 7.85) and AbsoluteZero (Figure 7.86) cases we see that

for the most part the approach route is well picked out. The return route is sometimes

represented but generally speaking the other bot’s influence is forcing negative rein-

forcement of the main path. The visualisation displays the nodes not affected by the

density estimator as being more likely, which would fit with expectations regarding

how this should work. In the section on weapon modelling we touched upon the idea

that having a negative reinforcement element of the model helped to encourage explo-

ration in response to negative data and this would appear to be the case here. All nodes

becomes more likely than those on the failed attempted path.

7.7.1.3.2 Further Evaluation 2 In the following section the experimental setup was

the same as before except that there were 3 enemy bots trying to stop our 3 bots.

7.7.1.4 Citadel

In figure 7.87 we begin to see a pattern developing. The approach model becomes

dominated by the negative reinforcement. This is because the enemy bots are getting

more kills so we are generating more failed capture attempts. The return model still

picks out the paths taken but is much less defined. The general areas which the model

ranks as good are easily picked out but they have little discrimination within them.

This is also a reflection that the matches had less successful return runs. If the same

route is taken several times, sometimes generating a good result and others a bad, then

we don’t expect strong reinforcement of this route. We also see that the middle route

is taken with more frequency.

7.7.1.5 AbsoluteZero

In figure 7.88 both the approach and return models show similar characteristics and

pick out similar paths in the level. One of the most interesting points about this is that

the model can pick out which of the two bridges were used to cross over to the enemy

side. This is preserved in the scenario where there are 3 enemy bots present. This kind

of feature of the route modelling is important. If we are to use this model to guide

us through the level then negative reinforcement of a path taken could lead to negative

reinforcement of a bridge within this level allowing the bot to decide, sensibly, to avoid

the bridge on the next run. This represents emergent behaviour at a low level of data

analysis and it is not a big step to envisage how a decision procedure could be based

208 Chapter 7. Learning Mechanisms and Techniques

(a) Approach

(b) Return

Figure 7.87: Further Models 2 for Citadel

7.7. Game-Type Specific Route Modelling - CTF 209

(a) Approach

(b) Return

Figure 7.88: Further Models 2 for Absolute Zero

210 Chapter 7. Learning Mechanisms and Techniques

on such a system.

Engineering Box

Discounting During very early testing a model was used which had discounting to

place more importance on points in the path based on intuitions about path nodes and

levels of importance. For the approach model the tapering placed more importance

on nodes towards the capture end of the path. For the return case it placed more

importance on node towards both the capture and return ends of the path.

The discounted models didn’t perform very well, generating paths which were quite

non-descript. In most cases they generated an area of density over each flag point

without reinforcing the particular path taken.

One possible explanation is that there was nothing to say that the tapering method

chosen was correct based on the intuitions we had about path nodes. Why should

nodes near the flag points be more important than those in the middle of the path?

There is still the possibility of improving the model, via biassing the update rules to

certain areas of the path, but more study would need to be put into the biassing function

used for this to be effective.

An Alternative Kernel The Gaussian kernel function used is not the only possi-

bility for this type of work. Other common options include triangle, quartic and

Epanechnikov[61]. On top of these customised kernel designs could also be included.

Probably the biggest problem is that there is no negative drop-off as you leave the area

of a Gaussian kernel function. One approach to dealing with this and getting more

out of the reinforcements could be to use a kernel which, after you leave the area of

the Gaussian, begins to have a negative influence on nodes. This would then lead to

a greater influence of each update on every node within the level. One suggestion for

the kernel (in the same basic format as the standard kernel) could be:

f (X ,Y,σ) =

{
G(X−Y,2σ2I) if

√
X−Y 2 > 2

√
σ

−
√

X−Y 2 otherwise
(7.28)

where G(x,H) is a Gaussian Kernel defined as

G(x,H) =
1√
|2πH|

e−
1
2 (x)

T H−1(x) (7.29)

We have not tested this and so this remains future work for anyone extending this

thesis.

7.8. Game-Type Specific Route Modelling - DD 211

7.8 Game-Type Specific Route Modelling - DD

The domination point model was identical to the flag approach route model with a few

small changes. Firstly there is only one phase of the model as once the bot gets to the

domination point there is no returning to base. There are also two different domination

points so the point which was to be updated was only decided when a bot got to that

point.

Engineering Box

Repeated Nodes One interesting engineering problem was how to deal with re-

peated nodes. Our eventual solution was to have the model only reset the path and

take fresh nodes when a bot died. This was to stop the situation where a bot gets

to the domination point and simply moves backwards and forwards by a node, thus

reinforcing that node drastically over all other nodes.

Some other alternatives were pondered but never implemented such as strongly nega-

tively reinforcing the areas surrounding the domination points or creating areas of no

reinforcement at these points. Neither solution was particularly elegant but the chosen

solution was not exactly optimal either.

This problem mirrors a general problem with this type of route modelling, that of deal-

ing with path updates when the goals and intentions of a bot are not known in advance.

A process of pre-empting has to be undertaken concerning the eventual bot’s move-

ments and specifically their likely use of the model within a larger decision process.

This can be easier if the same designer is responsible for all the parts of the system but

in general this is not the case with full multi-layered behavioural systems. This kind of

bisector of the layers in the hierarchical architecture is also not good for the modularity

of the system, creating problems for further revisions and adaptation.

7.8.1 Results

Only the results for variance 500 are presented here. This is in accordance with the

results in the section on flag approach route modelling. The target function and model

formulation are almost identical so we expect that the same variance setting should be

equally useful for domination point approach modelling.

212 Chapter 7. Learning Mechanisms and Techniques

The model was tested over 3 levels, Sepukku Gorge, Ruination and Outrigger

(spanning medium to large and large) but only the first two results are presented8.

Two bots were used against two in-built bots. The bots used a strategy which said that

one bot should go to domination point A while the other went to domination point B.

When they got there they would play randomly around the area of the point.

7.8.1.1 Sepukku Gorge

The collage shown in figure 7.89(a) does not show a bias for any part of the level out-

side of the area around the domination point. This is largely useless for any meaningful

purpose.

The collage for point B is much more interesting. To begin with a path from the top

left hand corner extends down to the flag point A in response to an arrival of the bot

at the domination point from a spawning position near point A. The largest influence

throughout the level appears to be the negative reinforcement.

This model generates densities which are slightly too generic. This would hope-

fully change in response to more situated active data but this assumption cannot be

guaranteed.

7.8.1.2 Ruination

Ruination is a larger level then Sepukku Gorge and as such there is much more possi-

bility to be specific about the actual routes. Figure 7.90(a) shows stronger definition of

the paths. There are less problems with negative reinforcement of the entire level and

the level of granularity of the paths is acceptable.

The routes of domination point B take a slightly longer time to develop. They

develop no go areas of the level, which had low success rates for bot performance.

7.8.1.3 Overall Dom Approach Route Conclusions

The evaluation in this section shows little more than we already knew about the model,

from the flag route modelling section, other than it working for the domination routes

as well. A better evaluation of both the flag and domination approach models requires

generating paths from these models to test if they improve bot performance or not.

In a later section we construct a custom path finder and show how it can be used in

8Outrigger is in the appendix

7.8. Game-Type Specific Route Modelling - DD 213

(a) Point A

(b) Point B

Figure 7.89: Domination Point Approach Routes, Sepukku Gorge

214 Chapter 7. Learning Mechanisms and Techniques

(a) Point A

(b) Point B

Figure 7.90: Domination Point Approach Routes, Ruination

7.9. Flag Sighting Modelling 215

conjunction with the models. The situated evaluation of these models is contained

within that section as it requires the path finder.

7.9 Flag Sighting Modelling

The bots are aware of flags in their field of view. Often when a flag is in play and not

situated at home it can be difficult to determine where is the best place to look for it.

Our intuition is that by incorporating our observations of the flag into a model we can

use this to give better areas to begin looking for the flag. This is more important for

retrieving our flag than it is for the finding the enemy flag. Generally when the enemy

flag is dropped it is picked up almost immediately by an opponent and returned to the

enemy base.

The model we have chosen is a parzen density estimator, with a Gaussian kernel,

based on flag data observations. The model has two different estimators, one for each

flag. No observations of the flag in its home state are incorporated, to avoid the biassing

of modelling to the flag points. The point of the model is to give information about the

flag in transit.

Engineering Box

Motivations The flag sight model’s development is fairly typical of a lot of the ideas

in this thesis in such much as it was born from observing game matches and spotting

common patterns and possible avenues of modelling. It was obvious that when our

bot’s flag was taken they were struggling to retrieve it. This was mainly because they

had no concept of the paths which the enemy might be inclined to take when taking the

flag back to their own base. This lead to them just following the same paths regardless

of how the enemy were playing.

7.9.1 Evaluation

To test this model a team of 3 bots were played against the in-built bots on three

different levels. The visualisations of the densities generated were then examined in

reference to the game-play in order to determine model performance.

Variance settings of 5 and 10 were used9 over three levels. These settings were

chosen because in previous sections, using the parzen density estimator to measure

9with rescaling these equate to 500 and 1000 in terms of the estimator used for the flag path route

216 Chapter 7. Learning Mechanisms and Techniques

game based observations, they proved most effective.

7.9.1.1 Citadel

In the own flag test, of the variance 5 model, what is being developed is a model of

the enemy escape route from our base after a flag capture. The strategy used to play

the game sees our flag defender attempt to follow the flag capturer while they remain

in vision, keeping track of the last known sighting. Therefore they chase any visible

enemy holding the flag. The results are reasonable but the densities are slightly too

thin, narrow and focused. Once again this comes down to not creating too high peaks

in the space of the density function. The information gained in this example is not

doing much more than memorising the points along the path taken.

The enemy flag model displays similar traits to the own flag model but it is inter-

esting to note that the observations of the enemy flag are made by members of our

team other than the flag carrier. Thus the model will be very much determined by the

movements of the supporting team members.

The variance 10 models are better and give a more spread influence map. The

paths are not as obviously defined but the influence does not extend beyond sensible

boundaries, which would be detrimental.

7.9.1.2 Geothermal

Geothermal is a slightly larger level but follows the CTF format of having two large

base areas with a section linking them.

Both the own and enemy models in the variance 5 section have problems with

narrow influence maps. The problem is less exaggerated than in the Citadel level but

it is still visible. The enemy model develops a path which cuts through the level and

clearly shows an enemy attack route bias via a half figure of 8 pattern.

The variance 10 visualisations display this path much more accurately with a wider

spread of influence. The path taken is more succinctly picked out in red while areas

around it are given a gradient of red which is useful. Steep ridges in the decision

surface are avoided.

7.9.1.3 MoonDragon

The bigger level highlights the problems with the variance 5 model. Islands of in-

fluence are very common as the effect of sightings has not setup a large enough bias

7.9. Flag Sighting Modelling 217

(a) Own Flag

(b) Enemy Flag

Figure 7.91: Flag Sighting Models, Citadel, Variance 5

218 Chapter 7. Learning Mechanisms and Techniques

(a) Own Flag

(b) Enemy Flag

Figure 7.92: Flag Sighting Models, Citadel, Variance 10

7.9. Flag Sighting Modelling 219

(a) Own Flag

(b) Enemy Flag

Figure 7.93: Flag Sighting Models, Geothermal, Variance 5

220 Chapter 7. Learning Mechanisms and Techniques

(a) Own Flag

(b) Enemy Flag

Figure 7.94: Flag Sighting Models, Geothermal, Variance 10

7.9. Flag Sighting Modelling 221

(a) Own Flag

(b) Enemy Flag

Figure 7.95: Flag Sighting Models, Moon Dragon, Variance 5

222 Chapter 7. Learning Mechanisms and Techniques

to give a solid path or surface throughout the level. The larger variability of node

placement on Moon Dragon, as shown via the PCA magnitude calculations in the level

modelling section, means a larger modelling variance is needed to correctly model the

flag sightings within the level.

(a) Own Flag

(b) Enemy Flag

Figure 7.96: Flag Sighting Models, Moon Dragon, Variance 10

Interestingly the enemy flag model has no real pathway of any length, mimicking

the fact that the bots don’t manage to carry the enemy flag very far, and thus reflecting

the bot’s poor performance on this level.

7.10. Path Finding 223

In contrast to the islands of the variance 5 models, the variance 10 models show a

path through the bulk of the level in the own flag case. The main concentration is on

the central portion of the level but there are signs of this extending further out.

7.9.2 Conclusions

From the results we can see that the performance of variance 10 model is much better

than that of variance 5. The area of influence is much greater and there is less chance of

creating small areas of high density, which is good, as these create peaks in the density

surface which are not very informative for the surrounding area.

The most interesting observation about the model is its ability to suggest the oppo-

nent’s escape path from our base when they have the flag. This is useful as it allows us

to counter-act this behaviour in advance with the whole team converging on the area.

Engineering Box

An Alternative Model One alternative to the parzen density estimator in this situation

is a model similar to the area correlation model. Observations of the flag presence

could be tallied for each cluster in the level and then used to give a utility value to

points in these clusters. The reason this wasn’t explored is that the density estimation

method gives a generative angle into the problem which can be used to give a smoother

surface for a range of decision procedures to manoeuvre in. This said, it is still a viable

alternative method.

7.10 Path Finding

In this section we examine the idea of path-finding. This may seem strange in a chap-

ter concerning modelling and machine learning mechanisms but we show how the

dynamic data from the models discussed in this chapter can be integrated to create an

intelligent reactive path-finder. In this way it represents not only a path-finder but a

continuous decision mechanism for controlling conclusions based on dynamic data.

7.10.1 Current Approaches to Path-Finding

Path-finding in general is a well established practice and is central to NPC performance

in any environment driven video game. The ability to negotiate levels and obstacles is

224 Chapter 7. Learning Mechanisms and Techniques

one of the most basic of skills required for an intelligent situated agent.

“Undoubtedly, the way units move is important for winning a game,
because an intelligent moving behaviour might reduce casualties of own
units”[28]

Current approaches to path-finding tend to fall into one of two categories, static

and dynamic, as detailed below.

7.10.1.1 Static Path-Finding

Static path-finding (by our definition) is path-finding which does not base its algorithm

any real time data from the game other than the agent’s current location. Thus methods

for performing static path-finding are mostly optimised for path length only.

The most common method for path finding is the A* algorithm[31]. This is a well

known path-finding algorithm for game AI and is a good starting point for any work in

this type of area.

“ A* and IDA* (and their variants) are the algorithms of choice for
single-agent optimisation search problems[14]”

The main steps in A* are as follows:

1. Initialise Open and Closed list of nodes to be empty lists

2. Define a start and goal position

3. Find all nodes directly reachable from the start position and add them to the open

list

4. Maintain open list

5. Maintain closed list

6. Assign these nodes a G-Score, H-Score and F-Score10

7. Pick the node with lowest F-Score as new target node

8. Add parent node to closed list

9. repeat process from new node

10Where F = G + H

7.10. Path Finding 225

7.10.1.2 Dynamic Path-Finding

In contrast to static path-finding, dynamic path finding utilises in-game data, of a dy-

namic nature, to optimise paths over selective goal criteria. This is typically more

powerful for scenarios where the dynamic data is rich, but also trades off against the

optimality of path length.

It is also true that less work has been performed on dynamic path-finding in com-

parison to static path-finding as the following quote summarises:

“Less attention has been paid to the problem of incorporating rich
global conditions that require more than simply reaching a specific location.”[118]

One solution to achieving dynamic path-finding is to retrofit a dynamic mechanism

to the existing A* algorithm by modifying certain parameters within the mechanism[4].

This is sometimes called annoted A* or AA*[44]. The main idea is to create influence

maps which we believe to represent desirable target parameters. We then use these

maps to change the utility of any given node in the search space so that calculations

are not based purely on distance but rather a combination of distance and the influence

maps.

Modifying A* is a nice solution because it is very clean and simple. Other more

complex solutions do exist which offer more performance but they are typically much

more prescribed and domain specific. One example is Wang et al’s system [118] for

performing multi-unit tactical path planning. Rather than being a path-finder it is more

an integrated planner with path-finding execution capabilities. The problem with it is

that the specific actions available are very domain specific and the exact domain used

is not widely similar to ours.

7.10.2 The UT Path-Finder

The current UT engine provides us with paths to any location, generated on a static

basis. The engine does not use any in-game information to create these paths, per-

forming path-finding based on bot skill11 while optimising for length of path. It is a

clear example of a static path-finder.

11bot skill is a parameter set at level startup

226 Chapter 7. Learning Mechanisms and Techniques

7.10.3 Our Approach

Our approach was to adopt a dynamic method based on the aforementioned modifica-

tion of the A* algorithm to optimise over dynamic data as well as path length.

In section 5.3 we stated that rich information may be contained within the dynamic

modelling data which can be obtained from some simple machine learning methods.

To test this idea a system was designed which allowed paths to be generated which

optimised length, as per those from the unreal engine, but also took into account some

of the data from modelling. We also show that all of the information detailed in this

section can be used to create paths which are optimised for certain sets of goals which

the bot may have.

Engineering Box

Current State This functionality is not at the present time available within the Unreal

engine or the Gamebots modification. This is because the path finding call is something

which EPIC implemented in native-C and as such there is no source for this part of the

game engine which is publicly available. The path finding presented in this section has

been implemented within the Java/Prolog part of the system.

7.10.4 Intuitions Behind this Concept

Our key assumption is that the modelling conclusions are rich enough to allow it to be

of more importance for finding better paths than the information regarding path length.

They needs to be better rather than just good because the path finding algorithm in

UT is likely to be better optimised over length than our vanilla version. Thus it will be

the dynamic data which will tip the scales in our favour.

Play on larger levels is likely to be more effected by this technique than on smaller

levels, where the level is too small to avoid confrontation on any paths.

7.10.5 Methodology

Our starting point for path-finding was the A* algorithm as discussed in the existing

approaches to static path-finding.

In our case the G-Score was the distance from the start node, the H-Score was the

distance to the target node and the F-Score is the sum of the two. Maintaining the open

and closed lists involves removing duplicates from the lists and also changing adjacent

7.10. Path Finding 227

nodes to be the version in the open list with the smallest G-Score. This is to ensure

that we always pick the shortest path.

Engineering Box

Adjacency To use this we first had to define adjacency within our 3-dimensional

node structure. Adjacency was defined as being within a certain distance from the

current node. This meant that we were not limiting ourselves to one particular direction

of movement.

It became apparent that due to not having any information about the structure of

the level this simple path finder was not going to generate directly executable paths.

The problem, as illustrated in figure 7.97(a), is that without knowing which elements

of the level are reachable from any location it is impossible to generate paths which

factored this into the act of path finding. Many times there would be obstacles in the

way of the path generated which meant it could not be executed. This is obvious when

you consider that, without any other information about obstacles, the paths generated

would be as close as possible to a straight line to the goal location.

The solution to the obstacle problem of figure 7.97(a) was to create a hierarchical

path finding system using the A* path finder to generate overall paths which were

not executable. We then passed these to the UT path finder so that a new path was

generated for getting from every point on the overall path to the next point.

twoLevelPlan(Location,Goal){

HighLevelPath = aStar(Location,Goal)

for each move in HighLevelPath {

LowLevelPath[MoveNumber] =

StandardPathFind(HighLevelPath[MoveNumber])

}

return LowLevelPath}

This idea is similar in concept to both HPA* and PRA* [16] in which graphs of

searchable nodes are separated into abstracted areas which are searched through by a

high level path-finder.

The diagrams in figure 7.97 represent how the path-finder is expected to perform

on well behaved data. The paths generated from this system resembled those in figure

7.97(b). We already stated that this is not much use because it is going to generate

straight line paths which are worse than those generated by the in-game path finding

system.

228 Chapter 7. Learning Mechanisms and Techniques

(a) Raw Path (b) Hierarchical Raw Path

(c) Raw Dynamic Path Generated by Dynamic

A* in Order to Avoid Enemy Hotspot

(d) Hierarchical Dynamic Path Generated by

Dynamic A* in Order to Avoid Enemy Hotspot

Figure 7.97: Theoretical Path Finder Diagrams

7.10. Path Finding 229

To make this system dynamic we altered the algorithm slightly to take into account

a node utility value. This could be pre-determined based on any relevant data. When

considering the F-Score nodes for selection the algorithm would be set to either add

or subtract the node utility value from the F-Score. The result is that the algorithm

no longer optimised solely for length of path, instead optimising over path length and

either positive or negative node utility.

A scaling factor allowed careful tapering of the importance that the path finding

placed on the node utility values by altering the scale of the utility in comparison to the

scale of the path node values. We have called this scaling multiplier the fear/attraction

factor.

Because the algorithm is no longer optimising for distance the theoretical results of

A* path-finding no longer apply. In our case though, if we base the node utility values

on our models from in game play, optimality takes a new meaning as our optimisation

target is the survival and successfulness of the bot.

This parameter was tested over a variety of different values. The G-Score value for

the A* path finding was then set to be the distance travelled so far in the paths and the

HScore was set to be the euclidean distance from the goal location plus the additional

node utility. In this way nodes which have a higher likelihood of enemy presence were

given a higher F-score and thus were less likely to be selected for paths. The easiest

way to visualise this situation is by considering the input as a 4 dimensional vector

rather than 3.

Engineering Box

Scaling Factor The scaling factor is important here because if the node utility is on

the same scale as the other 3 components then it will be considered as important as one

of them. If the node utility grows larger it dominates the euclidean co-ordinates in the

F-Score generation procedure.

Figure 7.97(c) shows how the path would then be generated to avoid the enemy

hotspot in the central area of the environment. Figure 7.97(d) shows how this would

be further refined by the hierarchical path finding system to give an executable path.

7.10.6 Evaluation Data

The first diagram shows the path finder working on an implementation of the theoret-

ical problem shown in figure 7.97(d). It shows the path for different values of the fear

230 Chapter 7. Learning Mechanisms and Techniques

factor. For the sake of demonstrating how the scaling relates to the actual distance be-

tween the nodes we also include here a list of the nodes used in this example alongside

their positions (Co-ordinates are standard euclidean):

Figure 7.98: Path Generated by Dynamic A* in Order to Avoid Enemy Hotspot

The start of the path is marked in yellow and the end in pink. A Gaussian of

variance 1 was placed over the hotspot and each node was given a utility value in

accordance with the probability density of the Gaussian. In the first experiment shown

in Figure 7.98 the fear factor was set to 1000. The max distance parameter was set to 5.

This parameter controls the distance which the path finder uses to define its adjacency

condition. If nodes were within a distance of 5 then the path finder would deem them

adjacent to the current node. The average distance of any node to its nearest neighbour

in this example is 1.416 .

The diagram shows that our high level path finder performs as expected. The ap-

proach and avoid diagrams show the path when set to favour nodes of higher utility

or lower utility. The neutral result is the path finder applied without the node utilities.

Interestingly when we lower the fear factor to 100 the path generated by the avoid

case remains unchanged. We do, however, generate different paths if we lower the

maximum distance value from 5 to 3.

7.10. Path Finding 231

Figure 7.99: Path Generated by Dynamic A* in Order to Avoid Enemy Hotspot, Lower

Adjacency Condition

Test Points

Point X Y Z

A 2.5 3.5 1

B 2.5 4.5 1

C 2.5 5.5 1

D 2.5 7 1

E 2.5 9.7 1

F 4.5 5.5 1

G 4.5 9.7 1

H 6.5 3.5 1

I 6.5 4.5 1

J 6.5 5.5 1

K 6.5 7 1

L 6.5 9.7 1

Figure 7.100: Neural Net Parameter Settings

232 Chapter 7. Learning Mechanisms and Techniques

In Figure 7.99 the neutral path has to take a few extra steps to get to its destination

due to the diagonal from the hotspot to the goal being unavailable with the smaller

adjacency condition. We also see that changing the fear factor has a larger effect in

this case. For instance when we set the value to 100 as in Avoid A the path goes

straight through the hotspot. If we set the value to 1000 as in Avoid B it veers more

strongly away from the hotspot. The explanation for this is simple, in the case where a

short cut across the top right hand corner was available the algorithm could find a short

path going both through the hotspot and around it. As such both paths were virtually

equal length and the node utility was the main factor affecting the choice between the

two. Removing this branch, with lower max distance condition, effectively increases

the length of the path that is needed to be taken to avoid the hotspot, so in turn we

needed to increase the fear factor to compensate for this.

Figure 7.101: Path Generated by A* in Order to Navigate a Cube

Engineering Box

Small Scale Changes The example in figure 7.99 is affected by these small changes

as there is no other pathways around the hotspot and as such this example is slightly un-

realistic. This said, it highlights the considerations which must be taken when setting

up the path finder and taking into account the scale of the input data.

7.10. Path Finding 233

Figure 7.102: Path Generated by Dynamic A* in Order to Navigate Gaussians in a Cube

We now show how the path finder performed on a larger example involving a cube.

The first cube was size 5 meaning that the cube had 125 nodes. The average distance

to the nearest node was 1. Three 3D gaussians were placed in the cube area, each of

variance 1, to create the node utility values. The maximum distance was set to 2 and

the fear factor was 1000.

In Figure 7.101 we show two views on the normal path generated by vanilla A*

through the cube, to show the colouration of the Gaussians. Figure 7.102 shows the

paths taken by the avoid and approach modes. Both reflect what we might expect

with the avoid path veering to the left to avoid the rightmost Gaussian mass and the

approach doing the opposite. It is interesting that the dual optimisation of distance and

avoidance is more obvious in this example as both paths have traded off the two goals

against each other.

234 Chapter 7. Learning Mechanisms and Techniques

Engineering Box

Efficiency considerations As we are replacing the in-built path finder, which runs

in almost real-time, we most consider the run-time of our path finder. In some larger

cases, e.g. a cube of 1000 points, we found that the path finder took several seconds

to run. In order to improve performance the option to only use a fraction of the level

nodes was added. The nodes removed were randomly chosen but with partial ordering

to ensure that the removal process was at least well separated.

The result was that, in general, paths could be generated, which were not substantially

different from the paths generated with all the nodes, if the node count was between

100 and 300. This means that for levels of about 1000 nodes usually taking approx-

imately 1/3 is acceptable. In these cases, however, the acceptable maximum distance

also had to be set slightly higher to compensate for the fact that less nodes were being

considered, thus increasing the average distance between nodes.

The idea of not searching all the nodes in a graph is not a new one as the following

quote demonstrates:

“A very effective method for the efficient computation of path planning
solutions is to make the original problem more tractable by creating and
searching within a smaller approximate abstract space”[44]

7.10.7 Level Based Situated Evaluation

We now show how the path finder performs on some real examples taken from levels

in the game. Various different node utility calculations are presented to show how the

paths generated can be altered to reflect the particular type of bias we wish the bot to

have.

7.10. Path Finding 235

Engineering Box

Normalisation In order to get the path finder to consider data from all of of our

models we needed to find a viable way to combine their outputs into a single value

which could be used to give the nodes an overall utility. The idea was to take every

model which could rate individual nodes and then use this raw value as a starting point.

The outputs from each of the models was likely to be in a different range as they all

used slightly different numerical methods. Therefore if we wished the models to be of

equal importance we had to normalise these values to a common scale. Even if we do

wish to bias towards a particular model this is easier if the starting point is normalised.

The following ratio was used to normalise the values before they were combined:

Normalise(X) =
X−Min

Max−Min
(7.30)

Lift and Jump Spots On top of this we also had the opportunity to deal with some

issues, which have been present throughout our work with UT and particularly the

gamebots protocol, regarding the use of lifts and jump spots. The protocol doesn’t

relay any information regarding when the lifts reach their destination. Therefore any

attempt to get the bots to deal with the lifts so far has been to use a timer within the

bot which handles the amount of time spent on lifts. A better solution is give nodes

around lift nodes a very negative utility. This discourages the high level path finder

from taking these routes but still allows the low level path finder to take them if no

other routes are available. The approach is to place a parzen density estimator over the

level, with the lift and jump spot nodes as its data store. Every other node in the level

is then given a utility based on the output of this parzen density estimator.

One might be inclined to ask why the weapon model outputs were not given a similar

system. The reason is that we want the lift nodes to be avoided but we know that

because we are using a high level path finder the likeliness is that if we simply gave the

lift and jump spots a very high bad utility this would lead to the path finder narrowly

avoiding them. When this is passed to the low level path finder this is likely to still

result in paths which use the lifts. Conversely when we use the weapon nodes we want

them to be given a utility which will either steer the path finder through them or not

depending on the weapon model. Therefore reinforcing the area around them would

not give good performance because there is no reason that a path moving just past a

rocket launcher is any better than one which avoids it entirely.

236 Chapter 7. Learning Mechanisms and Techniques

7.10.7.1 Citadel

The first level chosen was citadel. The data was taken from a capture the flag game of

3 versus 3 with our bots using the following LCC strategy[40]:-

Strategy 2.8

%% base_defender , makes sure they don’t get our flag to begin with

a(base_defender,Id)::sawTheFlag(L) => a(base_defender,Id)

<-- visibleOwnFlag(L) and strafeAttempt(L,L) and enemyHasFlag(true)

a(base_defender,Id)::strafeAttempt(L,L) and enemyHasFlag(true)

<-- sawTheFlag(L) <= a(base_defender,Id)

a(base_defender,Id)::null <-- visiblePlayer(Location) and

strafeAttempt(Location,Location) and enemyHasFlag(false)

a(base_defender,Id)::null <-- currentWeapon(W) and

prologConstraint(W = assault_rifle) and movementAttempt(nearest_weapon_pickup)

and enemyHasFlag(false)

a(base_defender,Id)::null <-- movementAttempt(localised_play(enemy_flag_point))

and enemyHasFlag(true)

a(base_defender,Id)::null <-- movementAttempt(localised_play(own_flag_point))

%% enemy defender , comes into play when they have our flag

a(enemy_defender,Id)::null <-- changeToRole(flag_hunter) and enemyHasFlag(false)

a(enemy_defender,Id)::null <-- changeToRole(flag_carrier) and hasFlag(true)

a(enemy_defender,Id)::sawTheFlag(L) => a(enemy_defender,D)

<-- visibleOwnFlag(L) and strafeAttempt(L,L)

a(enemy_defender,Id)::strafeAttempt(L,L) <-- sawTheFlag(L) <=

a(enemy_defender,D)

a(enemy_defender,Id)::null <-- visiblePlayer(L) and strafeAttempt(L,L)

a(enemy_defender,Id)::null <--

movementAttempt(localised_play(enemy_flag_point))

%% flag_hunter , goes after the flag

a(flag_hunter,Id)::null <-- changeToRole(flag_carrier) and hasFlag(true)

a(flag_hunter,Id)::null <-- changeToRole(enemy_defender)

and enemyHasFlag(true)

7.10. Path Finding 237

a(flag_hunter,Id)::canSeeFlag(Location) => a(flag_hunter,F)

<-- visibleEnemyFlag(Location) and strafeAttempt(Location,Location)

a(flag_hunter,Id)::strafeAttempt(Location,Location)

<-- canSeeFlag(Location) <= a(flag_hunter,F)

a(flag_hunter,Id)::movementAttempt(otherBot(F)) <-- gotTheFlag

<= a(flag_carrier,F) a(flag_hunter,Id)::null

<-- movementAttempt(enemy_flag_point)

%% flag carrier , doesn’t care about defending

a(flag_carrier,Id)::null <-- changeToRole(flag_hunter) and hasFlag(false)

a(flag_carrier,Id)::gotTheFlag => a(flag_hunter,F)

<-- movementAttempt(own_flag_point) and enemyHasFlag(false)

a(flag_carrier,Id)::gotTheFlag => a(flag_hunter,F) <--

movementAttempt(localised_play(own_flag_point)) and enemyHasFlag(true)

a(flag_carrier,Id)::gotTheFlag => a(flag_hunter,F) <-- visiblePlayer(Location)

and strafeAttempt(Location,Location) and enemyHasFlag(true)

The strategy has 4 roles, base_defender, enemy_defender, flag_hunter and

flag_carrier.

The base_defender defends our base against attackers. They get the nearest

weapon and then patrol the base area responding only to calls from other team mem-

bers who have seen the flag.

The enemy_defender’s main role is to move to the enemy flag point when they

have out flag. The idea behind this is that if we can defend their flag base then they

cannot return our flag to it. These players change back to a flag_hunter when the

flag is returned or dropped.

The flag_hunter bots try to obtain he flag from the enemy’s flag base. When they

get it they become flag_carrier bots.

The flag_carrier bots try to bring the flag back to our base to score a point.

Figure 7.103 shows the path finder generating a path from our base to the enemy

base set to optimise for nodes of high utility. The only model factored into the node

utility is the flag approach route model. Here the fear factor is set at 1000, maximum

distance is 2 and 1/2 of the level nodes were used.

Figure 7.104 shows the paths generated for both the avoid and approach modes.

The avoid path is shown in yellow while the approach path is shown in purple. It is

238 Chapter 7. Learning Mechanisms and Techniques

Figure 7.103: Citadel Path generated using only the flag route model

clear that the avoid path is significantly different to the approach path showing how the

generated path is responsive to the modelling.

In figure 7.106 the maximum distance is reduced to 1.5 and the generated path no

longer contains the large jumps. These artefacts are a result, mainly, of the level design

in combination with the excessive distance allowed for the path to move at any point.

Engineering Box

Setting This Value It is quite a difficult challenge to know how large to make this

value and this is one of the goals of testing and validation. The lower the value for

the maximum distance the faster the path finder runs, as it has to consider less nodes.

If the value is too high then paths through the level will be missed, even though they

contain valid moves.

The interesting thing about Citadel is that it has three main bridge sections between

the two ends of the level. This leads to the path finder selecting a bridge as the play

tends to be across each of the bridges. As such anything above and beyond this is

merely tweaking small details of the path. This said it should be obvious that this type

of level will still benefit from this choice of bridge section under the assumption that

one of the bridges will be better for approach or return play.

7.10. Path Finding 239

Figure 7.104: Citadel Path generated using only the enemy model for both approach

and avoid modes

Figure 7.105: Citadel Path Generated with all models contributing

240 Chapter 7. Learning Mechanisms and Techniques

Figure 7.106: Citadel Path Generated with all models contributing but maximum dis-

tance of 1.5

Figure 7.107: Citadel Path Generated with all models contributing and the flag approach

utility doubled

7.10. Path Finding 241

Figure 7.108: Citadel Path Generated with all models contributing for return

Figure 7.109: Citadel Path Generated with all models contributing for return and the

flag return utility doubled

242 Chapter 7. Learning Mechanisms and Techniques

7.10.7.2 Ruination

Ruination is one of the DD levels, as such some results regarding the domination point

route models can be presented in conjunction with the path finder. In response to the

previous section the initial value for the maximum distance was set at 1.5 to try to

avoid some of the artefacts shown to be prevalent in larger maximum value cases.

Again only half the nodes were used as this gave the best results. When we moved

up-to 1/3 of the nodes problems began to seep into the paths generated which could

only be solved by increasing the maximum distance allowed. This caused a degenera-

tion in the quality of the paths.

Figure 7.110: Ruination Path Generated with all models contributing for dom point A

7.10.7.3 Trite

Trite is a TDM map. The TDM results show how the enemy model can be factored

into the equation but in general are not as interesting as those for CTF and DD. This is

because the game of TDM does not lend itself as well to the idea of routes to points as

there are less defined goals.

The diagrams here show a variety of different routes. Some approaching areas of

high density and others low. There are also a variety of maximum values shown to

illustrate how this can effect the paths taken. The situated evaluation in the following

7.10. Path Finding 243

Figure 7.111: Ruination Path Generated with all models contributing for dom point B

section is better for showing the actual effect of the path finder but it is beneficial to

motivate why the results are as they are.

Figure 7.114 shows the avoid and approach paths on one visualisation. The paths

are different and we can imagine how a bot playing the game would go a different route

in each case.

Figure 7.112: Trite Approach, Adjacency 1.5

244 Chapter 7. Learning Mechanisms and Techniques

Figure 7.113: Trite Approach, Adjacency 1.5 1

Figure 7.114: Trite Approach and Avoid, Adjacency 1.5

Figure 7.115: Trite Approach, Adjacency 2-1

7.10. Path Finding 245

Figure 7.116: Trite Avoid, Adjacency 1.5

Figure 7.117: Trite Avoid, Adjacency 1

Figure 7.118: Trite Avoid 2, Adjacency 1.5

246 Chapter 7. Learning Mechanisms and Techniques

7.10.8 Situated Evaluation

In the situated evaluation we plugged the path finder into the system and ran it in some

games to show the difference to team scores with or without the path finder.

The first thing that we discovered was that although the theory of having the hier-

archical path finding system was well grounded, in practice it needed some tweaking.

If any of the following conditions occurred the next node in the top level path was

removed from the path:

1. If the path to the next node in the overall path was more than twice the length to

the goal destination or the overall path.

2. If the next node in the overall path was behind the player.

3. If over 50% of the path to the next overall path node was behind the player.

4. If the time taken to get to the next overall node had exceeded the reasonable

threshold.

5. If we were within 1250 game units of the next overall path node

By behind here we refer to the point being located behind a plane which is gener-

ated by taking the vector from the bot’s location the goal location as a normal to the

plane.

The reasonable threshold was set to be the distance to the next overall path node

divided by the bot’s acceleration (approximately 150 game units per game cycle).

Engineering Box

Motivation These modifications helped to avoid some of the problems introduced by

non-accessible nodes and other problems such as walls in the way of the path. They

also left the important parts of the path intact and gave good results.

7.10.8.1 TDM

For the TDM section the path finder was used to show how the enemy model could be

factored into a module presented earlier. In a previous section the weapon model was

used to allow the bots to gain an improved performance by retrieving the best weapon,

as gauged by the weapon model, and then engaging the enemy. In the following trials

this strategy was used as a baseline against a dynamic strategy which used the path

7.10. Path Finding 247

Figure 7.119: Definition of behind

finder to give a path to these weapons. The path finder was set to avoid the enemy by

giving a negative value to the level points via the enemy model. Three bots used the

weapon model while a 4th updated it and performed explorative duties as per the level

modelling section.

From figure 7.120 it is clear the model using the dynamic path finder performs

worse. This is primarily down to the smaller size of the level (ironic) and the similarity

of the paths generated to those generated by the in-built path finder. Following the

in-built path finder is more efficient than using the custom built one so if the paths

generated are not significantly better no real advantage is gained. Even so the result is

not significantly worse.

7.10.8.2 Double Domination

The double domination trials were played on Scorched Earth and Sun Temple. The

strategy used was for one bot to run to dom point A and the other to dom point B. The

baseline was for the bots to use the in-built path finder while the dynamic model used

the dynamic path finder. The models used were the dom approach route model, the

enemy model and the lift and jump node avoidance models. On Scorched Earth all of

the level nodes were used with a max distance of 1 and on sun temple the max distance

248 Chapter 7. Learning Mechanisms and Techniques

Figure 7.120: Situated Team Death Match Custom Path Finder Results

was 1.5 using only half of the nodes.

Figure 7.121: Situated Double Domination Custom Path Finder Results

Figure 7.121 shows that a substantial increase in performance is gained from using

the dynamic model. In particular the sun temple trials were very interesting to watch.

Surrounding one of the domination points is a three tunnel entrance to the point. One

entrance is very exposed to anyone standing at the domination point while the other

two, located either side of this, are less exposed and offer a safer approach. During

play the bot approaching this point would often begin by going the obvious route down

the central tunnel. After a few failed approaches it would then begin trying the side

tunnels, which often fared better. This is an interesting emergent behaviour which is a

consequence of the dynamic path finder in conjunction with the approach route model.

7.10.8.3 Capture the Flag

For the capture the flag trials two levels were used, Citadel and Magma. Citadel is the

smaller of the two levels. The strategy had the bots run to the enemy flag point when

7.10. Path Finding 249

they didn’t have the flag and run back to home base if they did. They also selected the

best weapon via the in-built game metric.

Two types of strategy were used, one which used the in-built path finder and one

which used the dynamic. The dynamic was set to follow the best flag approach route

nodes from the flag approach route model, on the way to the flag, and similarly from

the return route models on the way back. It also avoided high enemy presence nodes

and avoided the lift and jump nodes in the level.

For Citadel all of the level nodes were used and the max distance was set to 1. For

Magma 1
3 rd of the nodes were used and the maximum distance was set to 2.5.

The trials performed had the bots used a strategy analogous to the last strategy from

[40] which would select the last weapon picked up as the current weapon of choice.

Figure 7.122: Situated Capture the Flag Custom Path Finder Results, Last Weapon

Selection

We can see that the custom path finder performs better than the standard version.

As per the double domination models, this shows that both the path finder and the

models used are giving the bot improved performance. The performance is not even

across the two levels but that is a goal of the entire system. One small part which gives

a slight increase is moving in the right direction.

7.10.9 Path Finding Conclusions

One of the most important things shown in this section is that with only a 3rd of the

path nodes in a level, considering only nodes which are on the direction towards our

goal, we can generate paths which reflect closely the optimal paths generated by full

dynamic A*. Because the underlying hierarchical path system will pass these paths

onto the in-built path finder then, as long as these paths are relatively similar, the

system will not fail.

In a way it is almost advantageous for the top level paths to not take into account

250 Chapter 7. Learning Mechanisms and Techniques

all the nodes in the level. We wish to be able to see that the paths generated correctly

reflect our intuitions about avoiding certain nodes in the level. Generating a higher

level path which picks out hotspot points in the level, of higher utility, gives the bot a

more general path which moves around areas rather than meeting specific point targets.

Another interesting observation is that the fear/attraction factor can be used to bal-

ance the trade off between distance from the goal of the paths and the node utilities.

This is important because it gives a lot of control over the bot’s movement.

When the path finder is working it is important that an attraction landscape is cre-

ated which the path finder can follow to its goal. The path finder works best when all

the nodes in the level have a utility forming a gradient which can be used to guide the

generation of a decent path.

We also saw that there was good information in both the domination point and flag

approach point models which could be used to guide play in these game types. We ex-

pect that a more careful treatment of these models in terms of exploration/exploitation

will yield more consistent results.

In conclusion the path finder does give improved performance but only when the

models used are good. It is only as strong as the modelling utility information which

is fed into it. Feed in bad, or non-relevant, information and it will under-perform. This

is true to the point that even standard paths which are virtually the same as those in the

game will under-perform due to inefficiencies in the path following mechanism.

7.10.10 Further Adaptations

An interesting further adaptation of this path finder is to use the polygons in the level

model as general navigation points for the path finder. The start and end points are set

in certain polygons. These polygons are then rated via the cumulative node utilities of

all the points in them, giving a polygon utility value. These polygons are then fed into

the path finder as nodes which give a very high level path. This is not perfect because

in some levels there are minimal amounts of polygons.

Engineering Box

General Conclusion In general with path finding in a situation where an efficient

low level path finder is available it is best to keep high level paths fairly abstract.

Activities such as identifying level zones and communal areas can give good results.

7.11. Overall Conclusions from Modelling 251

7.11 Overall Conclusions from Modelling

Having presented the results regarding the modelling portion of the system we now

draw some conclusions.

A lot of the time the more mathematically grounded, and complex, models generate

results which are not particularly beneficial. This ranged from not much better than

guessing to cases where the model output generated was completely useless. Very

often this was to do with sparseness of data, which negates the benifits to our system

of using techniques with such a high level of mathematical rigour. A good example is

in estimating the parameters of a Gaussian mixture model. If the number of data items

is not greater than N2, where N is the number of items in the covariance matrix, then

this yields poor models [12, 11].

There is an analogy to big-OH notation where the constants within calculations are

often overlooked. In our low numerical data set cases the constants can make all the

difference as the constants are what contain the information.12.

In comparison to mixture models the simpler parzen density estimator, which is

non-parametric, can begin generating useful density models from a smaller amount of

input data as it is designed to work with samples of a distribution. The same can be

said of the k-nearest neighbours algorithm. For instance if we only have one example

of a positive and negative case then this may be sufficient if they were significantly

good representations of the input/output function and were well separated.

We also saw that it was possible to use a probability density function over a space to

assign utility to static nodes using samples of a dynamic target concept. This allowed

us to map out an area to define a probability space which could be used to guide

movements within the area.

We saw that in most cases we could successfully model the concepts which we felt

were desirable to the bots and performed some form of evaluation of these techniques

to suggest that they would be useful at a later point. The purpose of the evaluation was

to show that these models offered something to the bot and to what extent a decision

procedure could be based on them. The evaluation also offered a chance to test and

set a variety of parameters for each model and to examine how the models worked

with respect to the domain and data types. We showed how some models could be

altered to perform better with augmented data sets and also drew attention to the bias

12This is not to say we are concerned with run-times, in our situation the constants are related to the
low numbers of data-points

252 Chapter 7. Learning Mechanisms and Techniques

this introduced.

Having created a set of models and tested them we then tied the more geometric

of these together with a modification of the classic A* algorithm for path finding and

showed how this could be used to generate high level paths which could be passed to

a low level path finder to implement.

This path finder also showed that while no individual model result was particularly

startling, when they were put together they created a situation which was advantageous

to the bot. The key is not in finding one model which immediately makes performance

perfect, but in showing that each model can give a small improvement. We can then

integrate these to gain an overall performance stability increase.

Engineering Box

Caution One very strong message from this chapter was that no matter how good a

model we have, the way in which we use it can severely alter the performance of the

bot. Naive use can lead to situations which are worse then not using the model at all.

7.11.1 Eventual Chosen Model Set

The following table summarises which models were chosen from the chapter :

All models chosen were used in a communal mode with one model which all bots

in learning roles updated.

Engineering Box

Other Models Originally there were two further models in the tested model set, flag

and domination point decision models. These resembled the fight decision model. Nei-

ther of these models were used beyond initial testing. This was because early tests with

these models in practice suggested that, although they generated good performance on

off-line data, the game-type characteristics were such that always approaching either

the flag or domination point always lead to better performance. This is because the

game-types are time limited. The fight model works better because not choosing to

fight does not mean loosing a fight where as not approaching a currently occupied

domination point often will lead to loosing a point.

7.11. Overall Conclusions from Modelling 253

Model Name Chosen Model Parameter Settings

Enemy Model Parzen Window Density Variance 500,

Estimator No Discounting

Fight Model K-Nearest Neighbours Mahalanobis Distance,

Injection Set 1

Level Model Renyi Entropy Quickhull Polygon Fitting

Clustering

Area Correlation Model Kill and Death

Counts Over Polygons

Flag Approach Parzen Window Density Variance 500,

Route Model Estimator No Discounting

Domination Point Parzen Window Density Variance 500,

Approach Route Estimator No Discounting

Model

Flag Sighting Parzen Window Density Variance 10,

Model Estimator No Discounting

Dynamic Path Dynamic A*

Finding

Figure 7.123: Chosen Models

254 Chapter 7. Learning Mechanisms and Techniques

7.11.2 Alternatives

Throughout each section in this chapter we have presented alternatives for the methods

chosen and tried to discuss in brief the applicability of these to the domain. The ma-

chine learning techniques presented here are by no means the most powerful or the best

but they show performance which is largely acceptable and as such are good enough

for our purposes.

Chapter 8

Behaviour Modules

In the previous chapter a number of modelling techniques were used to gather dynamic

data about the levels used in the game. These formed layer 1 of the overall system

architecture which we present in this thesis. In this chapter we construct behaviour

modules based on layer 1, forming layer 2 of the architecture. These perform the role

of combining the various modelling techniques of section 7 and are then combined

themselves into larger strategies in layer 3, as per Figure 5.1. These modules can be

considered as separate.

The modules in this section do not perform adaptation and are fixed and hard coded.

They are simply switched on or off at any given time by a top level strategy. Their

purpose is to provide stable building blocks of behaviour of which the exact details,

for any given decision, are controlled by the machine learning modules in the lower

layer.

In this chapter we will deal with only the modules which are used in the larger scale

strategies described in chapter 9.

8.1 Exploitation vs. Exploration

As discussed earlier an important issue from reinforcement learning is the notion of ex-

ploration vs. exploitation. This is the idea that for a lot of adaptive entities, which must

act in their environment, there is a trade-off between acting on what has been learned

and selecting a different action which may lead to another option not considered. Al-

though most of the machine learning mechanisms which we use are not reinforcement

learning based the way in which we use them, situated in a real-time environment,

forces us to consider many of the same considerations and constraints.

255

256 Chapter 8. Behaviour Modules

One of the concentrations of chapter 7 was how the machine learning mechanisms

should be used in practice. Much care was taken to point out that naive use of the

machine learning techniques was not a good idea. Different roles which were more

or less explorative and exploitative were used to show how this kind of issue could be

dealt with. This idea is expanded in this chapter by showing which modules are more

or less exploitative and concluded in the next chapter with LCC strategies containing

the eventual trade-off dynamics. There is also a chapter exploring the benefits of this

approach to the problem.

8.2 The Module Descriptions

Because the modules were written in Java code it does not serve us best to simply

include the code. Instead for each module a list is given of the models which it uses

and those which it updates. A brief description is then given of the behaviour of the

module along with pseudo-code and notes explaining anything extra.

8.3 TDM

In this section we present the TDM game-type modules.

8.3.1 TDM Weapon User V6

Module A

Models Used Weapon,Fight,Enemy,Area Correlation

Models Updated None

Figure 8.1: TDM Weapon User V6

8.3.1.1 Description

This module is the main TDM exploiter. It uses all available models and dynamic path

finding to guide play. The idea is to obtain the best weapon via the distance/utility

metric and then engage enemies only when the fight model stipulates. In other cases,

move to the most likely area of enemy occupancy.

8.3. TDM 257

8.3.1.1.1 Pseudo-code

1.Switch to current best weapon held using weapon model

2.IF Enemy Visible and fight model predicts a kill and no death{

3. Move towards enemy shooting at them

4.}

5.ELSE{

6. use distance/utility correlation to assess most attractive weapon

7. IF most attractive weapon not held and no higher utility weapon held {

8. Use dynamic path finding, with enemy avoid and area avoid flags,

to move to most attractive weapon pickup location

9. }

10. ELSE{

11. Use dynamic path finding, with enemy approach and area approach

flags,

to move to sampled likely enemy location

12. }

13.}

8.3.1.2 Notes

8.3.1.2.1 Distance Correlation The distance/utility correlation is a method of de-

termining the attractiveness of different weapons based on the criteria of weapon model

utility and distance from current location.

Attractiveness(Weaponx) =
utilityx

50 − Distance from current location
1000

8.3.1.2.2 Enemy Engagement Engaging the enemy consists of moving towards

them shooting. If the enemy are seen but not engaged then they will still be shot at but

not moved towards.

8.3.1.2.3 Enemy Location Sampling The method of sampling the enemy model

for the most likely location was to use roulette wheel selection [8], over the navigation

points, with roulette wheel proportions based on enemy model probability values.

8.3.1.2.4 Path Finding Flags The path finding flags used in the dynamic path find-

ing were as follows :

Enemy Avoid Use the enemy model to bias paths towards avoiding enemy location

Area Avoid Use the area correlation model to bias paths towards avoiding areas of

high death probability

258 Chapter 8. Behaviour Modules

Area Approach Use the area correlation model to bias paths towards area of high kill

probability

8.3.2 TDM Weapon User V6 Follower Learning

Module A

Models Used Weapon,Fight,Enemy,Area Correlation

Models Updated Weapon

Figure 8.2: TDM Weapon User V6 Follower Learning

8.3.2.1 Description

This module is roughly the same as TDM Weapon User V6 except that in the cases

where the fight model says not to fight the bot will move to the the input bot’s location

rather than sampling the enemy model for the most likely enemy position. The purpose

of this is to allow the bots to group together to increase their fire-power. This module

also updates the weapon model with fight outcomes, allowing the weapon model to

collect data about which weapons are most effective for follower bots.

8.3.2.1.1 Pseudo-code

Input(Other Bot’s Name)

1.Switch to current best weapon held using weapon model

2.IF Enemy Visible and fight model predicts a kill and no death{

3. Move towards enemy shooting at them

4. Update Weapon Model with result

5.}

6.ELSE{

7. use distance/utility correlation to assess most attractive weapon

8. IF most attractive weapon not held and no higher utility weapon held {

9. Use dynamic path finding, with enemy avoid and area avoid flags,

to move to most attractive weapon pickup location

10. }

11. ELSE{

12. Use dynamic path finding, with enemy approach and area approach

flags,

to move to other bot’s location

13. }

14.}

8.3. TDM 259

8.3.3 TDM Weapon User V5 Learning

Module A

Models Used Weapon,Fight,Enemy,Area Correlation

Models Updated Weapon

Figure 8.3: TDM Weapon User V5 Learning

8.3.3.1 Description

This is the default module for this game-type as it sits between exploiting and explor-

ing. It is similar to TDM Weapon User V6 but it also updates the weapon model.

8.3.3.1.1 Pseudo-code

1.Switch to current best weapon held using weapon model

2.IF Enemy Visible and fight model predicts a kill and no death{

3. Move towards enemy shooting at them

4. Update Weapon Model with result

5.}

6.ELSE{

7. use distance/utility correlation to assess most attractive weapon

8. IF most attractive weapon not held and no higher utility weapon held {

9. Use dynamic path finding, with enemy avoid and area avoid flags,

to move to most attractive weapon pickup location

10. }

11. ELSE{

12. Use dynamic path finding, with enemy approach and area approach

flags,

to move to most likely enemy location

13. }

14.}

8.3.4 Dedicated Weapon Fight Enemy Area Sampler

Module A

Models Used Weapon

Models Updated Weapon,Fight,Enemy,Area Correlation

Figure 8.4: Dedicated Weapon Fight Enemy Area Sampler

260 Chapter 8. Behaviour Modules

8.3.4.1 Description

This module is the main exploring module for TDM. Its purpose it to explore the level

sampling the weapons and routes and determining which of these are most beneficial

to play.

8.3.4.1.1 Pseudo-code

1.Select weapon with least magnitude of utility

2.IF Weapon not held {

3. Use dynamic path finding, with random flag, to run to weapon pickup

4. Select It

5.}

6.ELSE{

7. IF visible enemy {

8. Engage Enemy

9. update weapon, fight, area correlation and enemy models

10. }

11. ELSE{

12. play randomly

13. }

14.}

8.3.4.2 Notes

8.3.4.2.1 Magnitude of Utility The magnitude of utility is the absolute value of the

weapon utility

8.3.4.2.2 Path Finding Flags The path finding flags used in the dynamic path find-

ing were as follows :

Random All nodes have a random utility

8.3.4.2.3 Random Play Random plays consists of picking a random health or ammo

pickup and running there

8.3.5 Dedicated Weapon Fight Enemy Area Sampler Last

8.3.5.1 Description

This is similar to the first explorer module except that it uses the last weapon that

was picked up. This is designed to sample which weapons are most often found on

throughout the level. Thus if routes are common we wont the most sampling data

8.4. CTF 261

Module A

Models Used Weapon

Models Updated Weapon,Fight,Enemy,Area Correlation

Figure 8.5: Dedicated Weapon Fight Enemy Area Sampler Last

about the weapons on those routes are the bots are likely to posses said weapons most

often.

8.3.5.1.1 Pseudo-code

1.Select weapon with least magnitude of utility

2.IF Weapon not held {

3. Use dynamic path finding, with random flag, to run to weapon pickup

4.}

5.Select Last Weapon Picked Up

6.ELSE{

7. IF visible enemy {

8. Engage Enemy

9. update weapon, fight, area correlation and enemy models

10. }

11. ELSE{

12. play randomly

13. }

14.}

8.4 CTF

In this section we present the CTF game-type modules.

8.4.1 Flag Exploiter V1 Best

Module A

Models Used Weapon, Fight, Flag approach route, Enemy

Models Updated Flag approach route, Flag sighting

Figure 8.6: Flag Exploiter V1 Best

262 Chapter 8. Behaviour Modules

8.4.1.1 Description

This is the main exploiter module for CTF. Because CTF is a more complicated game

type with more opportunities for adaptation there are now fully exploitative modules

used. The main goals of the module are to make assaults on the enemy flag and return

it to base using the weapon model to select the best model and the fight model to

determine when best to engage enemies. The dynamic path finder is used with a variety

of learning flags to select the best paths to make assaults on the enemy flag.

8.4.1.1.1 Pseudo-code

1.Select weapon held according to weapon model

2.IF Got flag {

3. IF at own flag base {

4. Play randomly around own flag point

5. Update Flag Route Model

6. }

7. ELSE{

8. Use dynamic path-finding, with flag return route, enemy avoid,

9. death area avoid and kill area approach flags, to run to own

10. flag point

11. }

12.}

13.ELSE{

14. IF Can see own flag and its not at home base {

15. Use basic path-finding to run to flag

16. Update flag- sighting model

17. }

18. ELSE{

19. IF Visible enemy and fight model predicts kill {

20. Run at enemy shooting

21. }

22. ELSE{

23. assess best weapon with distance utility measure

24. IF Weapon not held and no higher utility weapon held {

25. use dynamic path-finding, with death area avoid and

enemy hide

26. flags, to run to weapon pickup location

27. }

28. ELSE {

29. IF Can see enemy flag and its not at enemy base {

30. Use basic path-finding to run to it

31. }

32. ELSE {

33. IF At enemy flag base {

34. play randomly around enemy flag point

35. Update Flag Route Model

36. }

37. ELSE {

38. Use dynamic path-finding, with flag

8.4. CTF 263

approach route,

39. enemy avoid, death area avoid and kill

area approach

40. flags, to run to enemy flag point

41. }

42. }

43. }

44. }

45. }

46.}

8.4.2 Flag Explorer V2

Module A

Models Used Weapon,Flag approach route, Enemy

Models Updated Flag approach route, Weapon, Enemy, Fight, Flag sighting

Figure 8.7: Flag Explorer V2 Best

8.4.2.1 Description

This is the main explorative module for CTF. Its purpose is to make random flag runs

to determine effective flag routes. In the course of this it will also sample the weapons

by confronting enemies to judge weapon effectiveness.

8.4.2.1.1 Pseudo-code

1.Select the last weapon picked up

2.Determine weapon of least magnitude

3.IF Visible Enemy and holding weapon of least magnitude {

4. Run at enemy shooting them

5. Update weapon and fight models

6.}

7.ELSE {

8. IF not got weapon of least magnitude {

9. Use basic path-finding to run to weapon pickup location

10. }

11. ELSE {

12. IF got flag {

13. IF at own flag point {

14. Play randomly around own flag point

15. Update flag route model

16. }

17. ELSE {

264 Chapter 8. Behaviour Modules

18. Use dynamic path-finding, with random flag,

to run to own flag point

19. }

20. }

21. ELSE {

22. IF Visible enemy flag not at enemy base {

23. Use basic path-finding to run to flag

24. }

25. ELSE {

26. IF at enemy flag point {

27. play randomly around enemy flag point

28. Update flag route model

29. }

30. ELSE {

31. Use dynamic path finding, with random flag,

to run to enemy flag point

32. }

33. }

34. }

35. }

36.}

8.4.3 Protector(Location)

Module A

Models Used Weapon

Models Updated Flag sighting

Figure 8.8: Protector(Location)

8.4.3.1 Description

The protector module offers support to bots in certain locations by movoing there to

add extra fire power. Should it see our flag on route then it will return this before

continuing.

8.4.3.1.1 Pseudo-code

1.Select best weapon according to weapon model

2.IF can see own flag, not at own base {

3. Use basic path-finding to run to it

4. Update flag-sighting model

5.}

8.4. CTF 265

6.ELSE {

7. IF can see enemy flag not at enemy base {

8. Use basic path-finding to run to it

9. }

10. ELSE {

11. Use basic path-finding to run to Location

12. }

13.}

8.4.3.2 Notes

8.4.3.2.1 Location Location is a 3D location passed into the module from the

LCC strategy. This module then operates a following function.

8.4.4 Retriever V1 Non-Learning

Module A

Models Used Flag sighting, Weapon

Models Updated Flag sighting

Figure 8.9: Retriever V1 Non-Learning

8.4.4.1 Description

The retriever module’s sole purpose to get back our flag when the enemy steal it. The

flag sighting module is used to guide a route to the enemy base to stop them returning

it.

8.4.4.1.1 Pseudo-code

1.Select best weapon according to weapon model

2.IF can see own flag not at own base {

3. Use basic path-finding to run to it

4. Update flag sighting model

5.{

6.ELSE {

7. Use dynamic path-finding, with flag sighting flag,

to run to enemy base

8.}

266 Chapter 8. Behaviour Modules

8.5 DD

In this section we present the DD game-type modules.

8.5.1 Dom A Exploiter

Module A

Models Used Weapon,Fight,Dom Approach Route

Models Updated Dom Approach Route

Figure 8.10: Dom A Exploiter

8.5.1.1 Description

The domination point modules are generally split into two categories, those for point A

and those for point B. These normally mirror each other in functionality only differing

in the use of the correct models for the point in question.

This module is the main exploiter module for DD. Its purpose is to get to dom point

A and defend it. To do this it uses the weapon and fight models in conjunction with the

domination point model and updates the dom route as it plays.

8.5.1.1.1 Pseudo-code

1.Switch to current best weapon held using weapon model

2.IF Enemy Visible and fight model predicts a kill and defending{

3. Move towards enemy shooting a them

4.}

5.ELSE{

6. use distance/utility correlation to assess most attractive weapon

7. IF most attractive weapon not held and no higher utility weapon held {

8. Use dynamic path finding, with dom route A flags

to move to most attractive weapon pickup location

9. }

10. ELSE{

11. IF not defending{

12. IF not reached dom point A{

13. Use dynamic path finding, with dom route A flag,

14. to run to dom point A

15. }

16. ELSE{

17. defending = true

18. update dom approach route model

19. }

8.5. DD 267

20. }

22. ELSE{

22. Play randomly around dom point A

23. }

24. }

25.}

8.5.1.2 Notes

8.5.1.2.1 Distance Correlation Instead of using the current location to correlation

the distance utility value, the distance from the target point is used.

8.5.1.2.2 Localised Random Play Line 22 uses the concept of localised random

play. This is where the bot picks random navigation points within a small radius of a

location and runs to them and back.

8.5.1.2.3 Path Finding Flags The dom approach route A flag provides data to the

path finder about the best domination point approach route, using the dom approach

route model.

8.5.2 Dom B Exploiter

Module A

Models Used Weapon,Fight,Dom Approach Route

Models Updated Dom Approach Route

Figure 8.11: Dom B Exploiter

8.5.2.1 Description

This is the mirror of Dom A Exploiter but for point B.

8.5.2.1.1 Pseudo-code

1.Switch to current best weapon held using weapon model

2.IF Enemy Visible and fight model predicts a kill and defending{

3. Move towards enemy shooting a them

4.}

5.ELSE{

268 Chapter 8. Behaviour Modules

6. use distance/utility correlation to assess most attractive weapon

7. IF most attractive weapon not held and no higher utility weapon held {

8. Use dynamic path finding, with dom route B flags

to move to most attractive weapon pickup location

9. }

10. ELSE{

11. IF not defending{

12. IF not reached dom point B{

13. Use dynamic path finding, with dom route B flag,

14. to run to dom point B

15. }

16. ELSE{

17. defending = true

18. update dom approach route model

19. }

20. }

22. ELSE{

22. Play randomly around dom point B

23. }

24. }

25.}

8.5.3 Dom A Weapon Approach Updater

Module A

Models Used none

Models Updated Weapon, Dom Approach Route

Figure 8.12: Dom A Weapon Approach Updater

8.5.3.1 Description

This module is designed to test random approach routes to domination point A using

the last picked up weapon.

8.5.3.1.1 Pseudo-code

1.Switch to last weapon picked up

2. IF not defending{

2. IF not reached dom point A{

2. Use dynamic path finding, with random flag,

5. to run to dom point A

6. }

7. ELSE{

8.5. DD 269

8. defending = true

9. update dom approach route model

10. }

11. }

12. ELSE{

13. Play randomly around dom point A

14. }

15. }

16.}

8.5.4 Dom B Weapon Approach Updater

Module A

Models Used none

Models Updated Weapon, Dom Approach Route

Figure 8.13: Dom B Weapon Approach Updater

8.5.4.1 Description

This is the mirror of Dom A Weapon Approach Updater but for point B.

8.5.4.1.1 Pseudo-code

1.Switch to last weapon picked up

2. IF not defending{

2. IF not reached dom point B{

2. Use dynamic path finding, with random flag,

5. to run to dom point B

6. }

7. ELSE{

8. defending = true

9. update dom approach route model

10. }

11. }

12. ELSE{

13. Play randomly around dom point B

14. }

15. }

16.}

270 Chapter 8. Behaviour Modules

8.5.5 Dom A Dedicated Weapon Fight Sampler

Module A

Models Used Weapon, Dom Approach Route

Models Updated Weapon, Fight

Figure 8.14: Dom A Dedicated Weapon Fight Sampler

8.5.5.1 Description

This module samples the weapons and then makes an assault on dom point A to test

their effectiveness.

8.5.5.1.1 Pseudo-code

1.Select weapon with least magnitude of utility

2.IF Enemy Visible and selected weapon held{

3. Move towards enemy shooting a them

4.}

5.ELSE{

6. IF selected weapon not held {

7. Use basic path finding to move to

most attractive weapon pickup location

8. }

9. ELSE{

10. IF not defending{

11. IF not reached dom point A{

12. Use dynamic path finding, with dom route A flag,

13. to run to dom point A

14. }

15. ELSE{

16. defending = true

17. update dom approach route model

18. }

19. }

20. ELSE{

21. Play randomly around dom point A

22. }

23. }

24.}

8.5. DD 271

Module A

Models Used Weapon, Dom Approach Route

Models Updated Weapon, Fight

Figure 8.15: Dom B Dedicated Weapon Fight Sampler

8.5.6 Dom B Dedicated Weapon Fight Sampler

8.5.6.1 Description

This is the mirror of Dom A Dedicate Weapon Fight Sampler but for point B

8.5.6.1.1 Pseudo-code

1.Select weapon with least magnitude of utility

2.IF Enemy Visible and selected weapon held{

3. Move towards enemy shooting a them

4.}

5.ELSE{

6. IF selected weapon not held {

7. Use basic path finding to move to

most attractive weapon pickup location

8. }

9. ELSE{

10. IF not defending{

11. IF not reached dom point B{

12. Use dynamic path finding, with dom route B flag,

13. to run to dom point B

14. }

15. ELSE{

16. defending = true

17. update dom approach route model

18. }

19. }

20. ELSE{

21. Play randomly around dom point B

22. }

23. }

24.}

8.5.7 Dom V2 Weapon Approach Updater

8.5.7.1 Description

This is the same as the Dom A and Dom B Exploiter modules except that it picks the

point which it is closest to and then plays as per that point’s corresponding module.

272 Chapter 8. Behaviour Modules

Module A

Models Used none

Models Updated Weapon, Dom Approach Route

Figure 8.16: Dom V2 Weapon Approach Updater

8.5.7.1.1 Pseudo-code

1.Switch to last weapon picked up

2. IF not defending{

2. IF not reached nearest dom point{

2. Use dynamic path finding, with random flag,

5. to run to nearest dom point

6. }

7. ELSE{

8. defending = true

9. update dom approach route model

10. }

11. }

12. ELSE{

13. Play randomly around nearest dom point

14. }

15. }

16.}

8.5.8 Dom V2 Dedicated Weapon Fight Sampler

Module A

Models Used Weapon, Dom Approach Route

Models Updated Weapon, Fight

Figure 8.17: Dom V2 Dedicated Weapon Fight Sampler

8.5.8.1 Description

This is the same as the dedicated samplers for points A and B but will pick the nearest

point and choose that as its target.

8.5.8.1.1 Pseudo-code

8.6. Adapting this Layer 273

1.Select weapon with least magnitude of utility

2.IF Enemy Visible and selected weapon held{

3. Move towards enemy shooting at them

4.}

5.ELSE{

6. IF selected weapon not held {

7. Use basic path finding to move to

most attractive weapon pickup location

8. }

9. ELSE{

10. IF not defending{

11. IF not reached nearest dom point{

12. Use dynamic path finding, with dom route A and B

flags,

13. to run to nearest dom point

14. }

15. ELSE{

16. defending = true

17. update dom approach route model

18. }

19. }

20. ELSE{

21. Play randomly around nearest dom point

22. }

23. }

24.}

8.6 Adapting this Layer

Although we chose not to adapt this layer of the architecture during the course of a

match it is not particularly difficult to imagine a situation where this could be allowed.

One example could be to take each module as not a single module but a collection of

scripting elements and then apply a method such as Spronck’s dynamic scripting [96]

to this script set in an on-line manner.

Our argument is that although this might provide more power and adaptability it

does not yield the same level of controllability or stability. Our goal is to be able to

verify that the overall desired behaviour of our team strategy has been met. The use of

an adaptable behaviour module layer makes this difficult unless the exact scripts used

are very tightly regimented. This regimentation is likely to lead to a similar situation to

that which we are already in: known scripts with slight details adapted with machine

learning.

Chapter 9

Team Strategies

In this chapter we detail the team strategies that make up layer 3 in the architecture.

These are used to control the behaviour modules, of layer 2, designed in the previous

chapter. They do this by turning particular behaviour modules on and off. Again no

adaptation is performed in this layer but it is plausible to again imagine that dynamic

scripting could be used to allow a reformulation of the strategies at real-time. Our

reasons for not performing this are the same as in the behaviour modules case.

Agents in the team strategies are given particular roles. These roles correspond to

behaviour modules in a 1 role to many behaviour modules relationship. The idea is to

allow particular roles to be given certain sets of behaviours which constitute a desired,

stable behaviour set. Each agent’s particular role, and the current mode of behaviour

within that role, are changed during matches in response to changes in performance or

communications from other agents.

The strategies are presented in LCC along with a description and the starting roles

of the bots used in the trials.

9.1 Exploration vs. Exploitation Revisited

One of the most interesting parts of the system is the way in which explorations and

exploitation are dealt with. In particular an unusual stance is presented showing that

multiple bots in the environment can be given specific behaviours which have more

or less of an explorative or exploitative feel. Bots can even be sacrificed fully to the

task of exploration while others exploit. The strategy can then be assessed and utilities

assigned to roles over a certain time-scale.

275

276 Chapter 9. Team Strategies

Engineering Box

Meta LCC This concept opens up the notion of Meta level LCC in much the same

way that an interpreter such as Sicstus opens up control possibilities in Prolog using

predicates such as var(X). In the testing chapters we show that the LCC strategy can

be used to control and monitor the bots and allow them to adjust their performance in

response to changes in role utility.

9.2 Reactive, Deliberative and Power Structures

One of the most hotly debated topics in agent design is the issue of reactive versus

deliberative and how this choice effects the notion of a plan. In [33] Devigne et al have

the following to say of reactive systems:

“This approach has limitations as soon as complex behaviours are de-
sired.”

In short they feel that complex planned behaviour is difficult to achieve with a

reactive system. They also argue that it is difficult to allow the individual agents in

a deliberative system any level of autonomy. This attitude of associating reactivity

with chaos and deliberation with complex planning ability and no autonomy seems

prevalent throughout the field of intelligent agent design and goes hand in hand with

previous discussions of multi-agent control.

Our argument is that by having a coherent multi-agent plan and allowing single

agents to carry out their particular section of that plan with autonomy these issues can

be dealt with quite simply. Planning need not follow the deliberative path to afford the

dealing with changes in the details of the plan using our system and the advantages

associated with a reactive system are not lost.

9.3 Team Death Match

This is our main strategy for the TDM game-type.

9.3.1 Description

This strategy has explorers and exploiters. The balance of numbers of each is changed

in response to a performance increase or decrease in the exploiter role. This realises

9.3. Team Death Match 277

a performance centric approach to the team exploitation versus exploration trade-off,

allowing tapering of the team learning rate based on an estimation of the value of the

current state.

There are 4 abstract roles with 2 LCC roles, the hunter and the base.Within each

role is the concept of a stuck player, denoted by the names sh and sb for stuck hunter

and stuck base respectively. They are referred to as stuck because their roles do not

change throughout the game.

The stuck hunter’s primary purpose is to perform exploitative duties. As a second

purpose they assign roles to the auxiliary players based on hunter performance. The

auxiliary players start out as base players. In this role they perform exploratively.

When they kill an opponent they send a message to the stuck hunter player requesting

a role change. The stuck hunter then assesses the last five encounters of the hunters.

If over 50% of these were a kill , they send back a role change message to the aux

player who in turn becomes a hunter1. The stuck hunter also sends out messages

to other hunters telling them to follow and support. They in return follow the stuck

hunter while updating weapon data.

The stuck baseline player performs explorative duties such as sampling weapons,

sampling the arena area, and engaging enemies to judge effectiveness of weapons, and

expected fight outcomes.

As the game progresses, the models accumulate more information and the perfor-

mance of the hunterbots increases, forcing the aux players to focusing on exploitative

rather than explorative play. This achieves convergence of the machine learning tech-

niques at a team level.

9.3.2 The LCC

Strategy 4.1

%%The stuck hunter, reassigns members to the hunter module based on performance

a(hunter,sh)::engageModule(tdm_weapon_user) <-- gotAKill <= a(base,ID)

then change => a(base,ID) <-- performance(hunter,kill)

a(hunter,sh)::followMe(sh) => a(hunter,_) <-- engageModule(tdm_weapon_user)

a(hunter,sh)::null<--engageModule(tdm_weapon_user)

%%The standard hunter

a(hunter,Id)::engageModule(tdm_weapon_user_follower_learning(ID)) <--

1Upon death the aux players return to a base role

278 Chapter 9. Team Strategies

followMe(ID) <= a(hunter,sh)

a(hunter,Id)::null<--engageModule(tdm_weapon_user_learning)

%%The stuck baseliner module

a(base,sb)::null<-- engageModule(dedicated_weapon_fight_enemy_area_sampler)

%%The baseliner module

a(base,Id)::engageModule(dedicated_weapon_fight_enemy_area_sampler_last) and

changeToRole(hunter) <-- change <= a(hunter,ID)

a(base,Id)::gotAKill => a(hunter,sh) <--

engageModule(dedicated_weapon_fight_enemy_area_sampler_last) and kill(true)

a(base,Id)::null <--

engageModule(dedicated_weapon_fight_enemy_area_sampler_last)

9.3.3 The Starting Team

Team Member Starting Role

sb base

aux1 base

aux2 base

sh hunter

Figure 9.1: Starting TDM team

9.4 Capture The Flag

This is our main strategy for the CTF game-type.

9.4.1 Description

The strategy features two main roles, the explorer and the exploiter. The two roles

are almost identical in their operation with the exception that one uses an exploiter

module while the other uses an explorer module.

If a bot receives a protection request it must move to the location specified in the

request and follow the bot making the request. Requests are generated from bots when

they have the enemy flag.

9.4. Capture The Flag 279

When the enemy have our flag we run the flag retriever module to try to regain it.

There is also a rule which states that explorers can become attackers when the

performance of the exploiters is rated as kill.

280 Chapter 9. Team Strategies

9.4.2 The LCC

Strategy 4.2

% This changes the roles of explorers in response to positive exploiter play

a(attacker_explore_v2,Id)::null<--changeToRole(attacker_exploit) and

performance(attacker_exploit,kill)

%% The weapon fight sampling attacker module

a(attacker_explore_v2,Id)::engageModule(protector(Location)) <--

protect(Location) <= a(_,_)

a(attacker_explore_v2,Id)::protect(Location) => a(attacker_exploit,_)

<-- engageModule(flag_explorer_v2) and hasFlag(true) and selfLocation(Location)

then protect(Location) => a(attacker_explore_v2,_)

a(attacker_explore_v2,Id)::null<--engageModule(retriever_v1_non_learning) and

enemyHasFlag(true)

a(attacker_explore_v2,Id)::null <-- engageModule(flag_explorer_v2)

%% The fully dynamic attacker module

a(attacker_exploit,Id)::engageModule(protector(Location)) <-- protect(Location)

<= a(_,_)

a(attacker_exploit,Id)::protect(Location) => a(attacker_exploit,_)

<-- engageModule(flag_exploiter_v1_best) and hasFlag(true) and

selfLocation(Location)

then protect(Location) => a(attacker_explore_v2,_)

a(attacker_exploit,Id)::null<--engageModule(retriever_v1_non_learning) and

enemyHasFlag(true)

a(attacker_exploit,Id)::null<--engageModule(flag_exploiter_v1_best)

9.4.3 The Starting Team

Team Member Starting Role

exploit1 attacker-exploit

explore1 attacker-explore-v2

explore2 attacker-explore-v2

explore3 attacker-explore-v2

Figure 9.2: Starting CTF team

9.5. Double Domination 281

9.5 Double Domination

9.5.1 Description

The strategy consists of two main roles, the exploiter and the explorer. The

exploiter role is centred around sending messages to other bots in the exploiter roles

detailing your current distance from the domination points. Upon receiving these mes-

sages the other bots test whether their current distance from either point is closer or

further than that of the message sender. They engage the exploiter module for the

point which they are relatively closer to.

The explorer role is split into 4 main phases. Each phase (except phase 1) has the

same method as the exploiter role for determining which point to approach.

Phase 1 states that if the exploiter role has a performance rating of kill and we

were the last team to score a domination point then we should play as an exploiter

for the appropriate point.

Phase 2 states that if we were the last team to score but the exploiterrole is not at

a kill rating then we should play as a focus explorer role (using the weapon approach

updater). This module explores the weapons on route to the domination point.

Phase 3 states that if the exploiter is not at a kill rating and we were not the

last team to score we should play using a weapon fight sampler module. This module

explores all the weapons in the level.

In all the cases above a message is received from other bots with the distance to

each of the domination points and another in turn send out. In the initial cases these

messages are not present and so Phase 4 consists of the sending these messages out

and playing as point independent explorative modules.

9.5.2 The LCC

Strategy 4.3

%There must always be two exploiters and two explorers for this to work.

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y])

and engageModule(dom_a_exploiter) <-- domDetails(A,B) <= a(exploiter,_)

then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y]) and

engageModule(dom_b_exploiter)

282 Chapter 9. Team Strategies

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::domDetails(Da,Db) => a(exploiter,_)<--squaredDistance(a,Da) and

squaredDistance(b,Db)

%Phase 1

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_exploiter)

and performance(exploiter,kill) and lastTeamToScore(T) and team(T)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y])

and engageModule(dom_b_exploiter) and performance(exploiter,kill)

and lastTeamToScore(T) and team(T) <-- domDetails(A,B) <= a(_,_)

then domDetails(Da,Db) => a(explorer,_)

%Phase 2

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_weapon_approach_updater)

and performance(exploiter,kill) <-- domDetails(A,B) <= a(_,_)

then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y])

and engageModule(dom_b_weapon_approach_updater)

and performance(exploiter,kill)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

%Phase 3

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y])

and engageModule(dom_a_dedicated_weapon_fight_sampler)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y])

and engageModule(dom_b_dedicated_weapon_fight_sampler)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

%Phase 4

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)<--squaredDistance(a,Da)

and squaredDistance(b,Db) and performance(exploiter,kill)

and lastTeamToScore(T) and team(T)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)<--squaredDistance(a,Da)

and squaredDistance(b,Db) and performance(exploiter,kill)

9.5. Double Domination 283

and engageModule(dom_v2_weapon_approach_updater)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)<--squaredDistance(a,Da)

and squaredDistance(b,Db)

and engageModule(dom_v2_dedicated_weapon_fight_sampler)

9.5.3 The Starting Team

Team Member Starting Role

explore1 explorer

exploit1 exploiter

explore2 explorer

exploit2 exploiter

Figure 9.3: Starting DD team

Engineering Box

Lack of Stability in Numbers Because of the nature of the message sending and

distance calculations this strategy becomes largely unpredictable with different starting

numbers of players in each of the two roles. An ideal number is 2 and 2. The reason

this doesn’t work with larger numbers is best explained with an example as in figure

9.4. Consider a team of 3 bots trying to assign roles. Bot 1 sends their current position

and bot 2 receives this. They choose the point which they are closer to and begin

moving towards it. Bot 3 then sends their co-ordinates to bot 1 and they are actually

closer to the point so they change their target. This then continues and the situation

becomes cyclic.

284 Chapter 9. Team Strategies

Figure 9.4: Three Bot Situation

Part III

Evaluation and Analysis

285

Chapter 10

Testing

In this chapter we present the results from testing the architecture. This is our main

evaluation of the system and is our main evidence to support the claims made in Chap-

ter 1. We tested over the three game-types with the strategies described in chapter

9.

10.1 Different Enemy Skill Levels

As performance is a mediating factor in our learning rate, enemy skill has an effect on

our score. The enemy skill ratings determine factors such as the enemy’s speed and

shooting accuracy and speed of evasive manouvering. They do not mark any changes

in reasoning, thinking or intelligent behaviour. The following figures show the space

of enemy skill versus performance increase and show the level of non-linearity of the

correlation for the three different game types. The result was obtained by taking an

average score over 5 trials on one level in each case. This is not a robust method of

showing the exact space but it can be used as a guide to show which areas of the space

are likely to give the best results.

Figure 10.1(a) shows that the largest positive gap between the learning strategy

and baseline (The baseline strategy is one in which all the models are turned off. Both

strategies are played against the in-built bots and the difference in scores is measured.

This is our general evaluation strategy in this chapter and is better explained in the

proceeding pages) for TDM occurs when the skilled skill level is tested. Although

the degradation in the baseline strategy is largely linear, in response to enemy skill

changes, the learning strategy has an optimal zone for performance increase and sub-

optimal zones elsewhere.

287

288 Chapter 10. Testing

(a) TDM

(b) CTF

(c) DD

Figure 10.1: Skill Levels Charts

10.2. Methodology 289

Figure 10.1(b) shows that for CTF there is no skill level where there is a positive

gap between learning and baseline strategies. This suggests that potentially there isn’t

any performance increase at any skill level. The best testing option is the skilled skill

level.

Figure 10.1(c) shows that the largest positive gap between the learning strategy and

baseline for DD occurs when the masterful skill level is tested.

In all game-types there is non-linearity in the learning strategy’s increased perfor-

mance in response to changes in enemy skill.

10.2 Methodology

Our evaluation method was to play 5 matches against the in-built bots and measure the

difference in scores. We then did the same for a baseline. The baseline was identical

to the main strategy except that is did not use any of the learning mechanisms. This

was performed over several levels for each game type and the results were assessed

both on a per level and cross-levels basis to give an overall performance measure. We

also performed these tests over two enemy skill levels. This was to show the highest

possible performance achievable and also to highlight how drastically the nature of the

enemy can effect learning rate which is mediated by a performance rating. The skill

levels were chosen in accordance with the results of section 10.1.

10.3 Results

The figures in this section display the results of the trials. The level based results have

three graphs showing the average baseline and learning strategy scores for each

level, the standard deviations in these scores and the P-values of the T-tests between

the strategies. The data obtained in the level based trials passed a KS normality test

and welch’s un-paired T-Test variant was used to compensate for un-equal variances.

Thoughout this section line graphs are used when perhaps bar graphs would be

more conventional. This is because we wish to show how stable the play is across

levels. Therefore, it makes more sense to consider this as being as close to a straight

line as possible.

290 Chapter 10. Testing

10.3.1 TDM

10.3.1.1 Level Based Results - Inhuman Skill Level

Figure 10.2: TDM Level Based Results - Inhuman

Figure 10.2 shows the results of the level based analysis. The first graph shows

the average differences in the score for both the learning strategy and the baseline

strategy. It shows that the learning strategy is ahead in most levels and maintains

a more stable line of average scores. In the cases where the baseline performance

drops substantially the learning strategy does not drop as substantially. Observing the

graph of standard deviations we can see that neither the learningnor the baseline

strategy are particularly stable. Standard deviation values are high in both cases and

show much fluctuation. The final graph shows the inverse P-values for the T-tests for

each level. In the cases where the performance of the baseline and the learning

strategy are not drastically different there is no statistically significant increase. In

the cases where the baseline drops severely in performance the learningstrategy

is statistically higher in performance and closer to the cross-level average. There are

no cases where the baseline is statistically significantly higher in average than the

learning strategy. This is a desirable result.

10.3.1.2 Cross-Level Based Results - Inhuman Skill Level

The cross level analysis took the individual difference scores for each match and then

assessed them as one 95 trial dataset. In some cases the data in this section did not

pass a normality test as such we have reported the conclusions of the Gaussianility

tests used as well as the results of a wilcoxon paired median test. Because each set

10.3. Results 291

of 5 trials represents a separated section a paired T-Test was used. Fig 10.3 shows the

analysis.

Analysis

Baseline Learning

Average Score 2.98 8.95

Median Score 3 12

KS Normality Test Pass Fail

D’Agostino And Pearson Omnibus Normality Test Pass Fail

Shapiro-Wilk Normality Test Pass Fail

Standard Deviation 13.444 12.419

Size of set 95 95

99% Confidence Interval 2.4799 2.2909

Paired T-Value 4.289
Paired P-Value <0.0001
Wilcoxon P-Value 0.0002

Figure 10.3: Cross Level Results Analysis - Inhuman

Figure 10.3 shows that the average score for the learning strategy is significantly

higher than that of the baselinein both the T-Test and Wilcoxon cases (Median dif-

ference is larger than average difference here). The probability of this difference in av-

erages being down to chance is less than 1%. The standard deviation of the learning

strategy is slightly lower although not as much as we would have hoped. This said, the

average score is significantly higher.

10.3.1.3 Level Based Results - Skilled Skill Level

Both the baseline and learning strategies are more stable at this skill level but this

is to be expected as the enemies are posing less of a threat. The learning strategy av-

erage scores are slightly higher and the standard deviation values are much more stable

and lower. In the Junkyard and DesertIsle cases the baseline strategy’s standard devi-

ation value peaks sharply while the learning strategy’s does not. This shows a more

stable performance across these levels which is more in line with performance on other

levels. The T-test scores show that the learning strategy is significantly better in more

levels than in the inhuman case, signifying a gap in performance.

292 Chapter 10. Testing

Figure 10.4: TDM Level Based Results - Skilled

10.3.1.4 Cross-Level Based Results - Skilled Skill Level

The cross level analysis took the individual difference scores for each match and then

assessed them as one 95 trial dataset. Fig 10.3 shows the analysis.

Analysis

Baseline Learning

Average Score 43.41 45.16

Median Score 43 45.00

KS Normality Test Pass Pass

D’Agostino And Pearson Omnibus Normality Test Pass Pass

Shapiro-Wilk Normality Test Pass Pass

Standard Deviation 5.16 4.35

Size of set 95 95

99% Confidence Interval 1.4874 1.2544

Paired T-Value 2.674
Paired P-Value 0.0091
Wilcoxon P-Value 0.0130

Figure 10.5: Cross Level Results Analysis - Skilled

Although the learning strategy is significantly better, over all the level data, the

margin of this significance is less than for the inhuman case. The difference between

the averages and medians is also less than it was in the inhuman case.

10.3. Results 293

10.3.2 Capture The Flag

10.3.2.1 Level Based Results - Inhuman Skill Level

Figure 10.6: CTF Level Based Results - Inhuman

Fig 10.6 shows the level based results for the CTF game type. These are not as

good as the TDM type results because there is less stability. In most levels the standard

deviation of the learning strategy is higher than that of the baseline which is largely

undesirable. The T-tests hold some hope as the cases where the baseline is above the

learning have very low inverse P-values and the cases where the learning strategy

score is higher than the baseline have much higher inverse P-values. This shows that

in cases where the learning strategy is ahead it is significantly ahead but in cases

where the baseline is ahead the result is not significant.

One of the more interesting elements of the results here is that the standard devi-

ation value fluctuates with level choice in a way which was not observed in the TDM

trials. As average score increases so does standard deviation. This makes it difficult to

achieve a positive T-Test result as T-Tests factor in standard deviation. It points towards

an inherent instability in the learning mechanisms for CTF used as they are achieving

very varied results depending on the particular trial.

10.3.2.2 Cross-Level Based Results - Inhuman Skill Level

The cross level analysis took the individual difference scores for each match and then

assessed them as one 50 trial dataset. Fig 10.7 shows the analysis.

The table shows that using the paired T-Test there is no significant improvement in

the average scores, cross levels, from using the learning based strategies for CTF. The

294 Chapter 10. Testing

Analysis

Baseline Learning

Average Score -8.1 -7.28

Median Score -9 -8

KS Normality Test Fail Fail

D’Agostino And Pearson Omnibus Normality Test Fail Fail

Shapiro-Wilk Normality Test Fail Fail

Standard Deviation 3.4796 3.5458

Size of set 50 50

99% Confidence Interval 1.2675 1.2916

Paired T-Value 1.645
Paired P-Value 0.1063
Wilcoxon P-Value 0.0227

Figure 10.7: Cross Level Results Analysis - Inhuman

standard deviation is higher and even with a dataset size of 50 there is roughly a 90%

probability that the average difference in scores is explained by chance.

This said we can see that the data fails all Gaussianility tests and as such the as-

sumption of the T-Test no longer applies. The difference in the medians of 1, however,

is significant via the paired Wilcoxon test.

10.3.2.3 Level Based Results - Skilled Skill Level

Figure 10.8: CTF Level Based Results - Skilled

The figure 10.8 results are quite different from those in the inhuman case. The

levels in which the learningperforms better than the baseline are not the same and

10.3. Results 295

the T-test results are completely different. The averages for the learning case are

almost identical to the baseline cases showing no drastic increase. The learning

standard deviation values are much more stable than the baseline but the T-tests show

that there are only two levels where a statistically significant result was achieved.

10.3.2.4 Cross-Level Based Results - Skilled Skill Level

The cross level analysis took the individual difference scores for each match and then

assessed them as a 50 trial dataset. Fig 10.9 shows the analysis.

Analysis

Baseline Learning

Average Score 4.52 5.08

Median Score 6.5 7.5

KS Normality Test Fail Fail

D’Agostino And Pearson Omnibus Normality Test Fail Fail

Shapiro-Wilk Normality Test Fail Fail

Standard Deviation 5.5924 5.6994

Size of set 50 50

99% Confidence Interval 2.0372 2.0761

Paired T-Value 2.082
Paired P-Value 0.0426
Wilcoxon P-Value 0.0578

Figure 10.9: Cross Level Results Analysis - Skilled

The cross-level results show no significant improvement in the medians using the

learning strategy at the skilled skill level via the Wilcoxon test. The T-Test P-Value

is significant but both datasets fail all three Gaussianality tests so no conclusions about

the averages can be drawn from this.

10.3.3 Double Domination

10.3.3.1 Level Based Results - Inhuman Skill Level

Fig 10.10 shows the level based results for the DD game type. They are worse than

those for CTF. The standard deviation is higher for the learning strategies in com-

parison with the baseline and the average scores are generally worse. The only case

296 Chapter 10. Testing

which passed a T-Test was the case where the baseline was significantly higher than

the learning strategy which is the polar opposite of our intention.

Figure 10.10: DD Level Based Results - Inhuman

10.3.3.2 Cross-Level Based Results - Inhuman Skill Level

The cross level analysis took the individual difference scores for each match and then

assessed them as a 30 trial dataset. Fig 10.11 shows the analysis.

Analysis

Baseline Learning

Average Score 3.133 3.1

Median Score 6 5

KS Normality Test Fail Fail

D’Agostino And Pearson Omnibus Normality Test Pass Pass

Shapiro-Wilk Normality Test Fail Fail

Standard Deviation 7.0746 5.9384

Size of set 30 30

99% Confidence Interval 3.327 2.7927

Paired T-Value 0.03436
Paired P-Value 0.9728
Wilcoxon P-Value 0.8282

Figure 10.11: Cross Level Results Analysis - Inhuman

10.3.3.2.1 Figure 10.11 shows that no significant improvement is gained from us-

ing learning strategies for the DD game type at inhuman skill level. The learning

10.3. Results 297

strategies achieve a slightly lower standard deviation over the levels, showing slightly

more stability, but they are not averaging any better than the baseline.

10.3.3.3 Level Based Results - Masterful Skill Level

Figure 10.12: DD Level Based Results - Skilled

The average scores are better for the skilled case then the inhuman case. They

match the pattern closely of the baseline but are better overall. The standard deviation

of the learning strategy is much lower than the baseline and the T-tests show that in

all levels bar Outrigger the learning strategy is significantly better than the baseline.

These results all show that the learning strategy is working as expected for the skilled

case.

10.3.3.4 Cross-Level Based Results - Masterful Skill Level

The cross level analysis took the individual difference scores for each match and then

assessed them as a 30 trial dataset. Fig 10.13 shows the analysis.

The cross level analysis backs up the level based results showing a higher aver-

age score and lower standard deviation for the learning strategy at the masterful skill

level. The data fails the Gaussianality tests but the median values, which have a greater

difference than the averages, are backed up by the Wilcoxon result.

10.3.4 Conclusions

10.3.4.1 Inhuman Skill Level

The TDM (T-Test) and CTF (Wilcoxon) game-types yielded positive results while DD

did not. To understand this, an ideal result, such as that shown in fig 10.14, must be

298 Chapter 10. Testing

Analysis

Baseline Learning

Average Score 3.433 6.16666

Median Score 6 9

KS Normality Test Fail Fail

D’Agostino And Pearson Omnibus Normality Test Fail Fail

Shapiro-Wilk Normality Test Fail Fail

Standard Deviation 5.066 4.9763

Size of set 30 30

99% Confidence Interval 2.5896 2.3402

Paired T-Value 7.836
Paired P-Value <0.0001
Wilcoxon P-Value <0.0001

Figure 10.13: Cross Level Results Analysis - Masterful

considered. It shows the graph of the learning strategy performing evenly across the

levels (lower cross level standard deviation). Even though the baseline is occasionally

higher the even performance of the learning strategy is preferable as its performance

could be more reliably predicted. The TDM result isn’t as good as this because it

deviates at roughly the same times as the baseline model showing that is suffering

from some of the same issues as the baseline model regarding weapon placement and

level specific problems. This said it is relatively close to the ideal in comparison to

the other game types and the statistics show that it is performing better and showing a

greater stability.

Figure 10.14: Ideal Model Results

10.3. Results 299

10.3.4.2 Skilled/Masterful Skill Level

The skilled results are not better for CTF or DD but the masterful results are much

better for DD showing a stability in the learning strategies that fits with what we wanted

and is closer to the ideal result in fig 10.14.

10.3.4.3 Overall System Results

The results show that the system works as expected in the three game-types but that

there are factors which can drastically affect performance, particularly in the CTF

and DD cases. The learning strategies are more stable across the levels than the

baseline but are not perfect. The unstable performance shows that there are elements

of the system which do not work as expected but overall the results are positive and sig-

nificant showing the validity of the architecture and its ability to facilitate multi-agent

machine learning in an effective way.

Engineering Box

Skills Level Abstraction from UT If we treat enemy skill as a measure of adversar-

ialness of the environment then it is possible to abstract some guidelines for systems

using current performance as a mediator of learning rate.

• The space of performance increase to adversarial value is likely to be non-linear

for all systems of this type

• Performing a basic analysis of the different levels of adversarialness can be used

as a guide if the chosen instances are representative of the full testing domain

Chapter 11

Component Testing

In this chapter we detail some further experimentation on the system to try to find out

which elements were most responsible for overall performance. This takes the form of

several knock-out experiments where each model or strategic component is removed

from the system alongside some experiments where they are tested in isolation.

Although interesting, this is by no means a conclusive analysis and the results are

largely inconclusive. Ideally a full scale sensitivity analysis should be performed to

show the changes in performance on a continuous basis rather than the simple experi-

mental setup performed here but this was outwith the scale of this thesis oweing to the

time taken to perform individual experiments.

Engineering Box

Attributing Performance To properly determine the merit of a system or architecture

we cannot simply just present results and then claim that the architecture as a whole is

responsible for the success. This is particularly prevalent in architectures involving a

large number of modular interacting components which are capable of adaptivity. As

such we need a way of separating components into what they contribute to the overall

performance.

11.1 Methodology

The methodology used had two distinct parts. Part 1 was to remove each machine

learning component in turn and assess fluctuations in system’s performance. Part 2

was to test each component in the absence of all other components. This allowed the

measurement of both the detrimental effects of the removal of a component and the

301

302 Chapter 11. Component Testing

singular effect it was giving to the whole. This allowed performance to be attributed

to either single components or a combination of components. It also allowed cumula-

tive assessment of whether the multiple components were combining in a useful way.

Because of time constraints this could only be performed on one game level. The level

chosen was that which produced a difference between the baseline and the learning

strategy. For TDM matches this meant choosing a level with a large positive result

and for the other game types this meant taking levels which had negative results as

we were trying to assess what the failing components were. This was in line with the

fact that we wanted to assess both failures and successes and that TDM gave a better

performance than CTF and DD.

The components were tested at two layers of the architecture. The first layer was

the module/machine learning level. This involved testing certain machine learning

elements and key parts of of the basic movement architecture.

The second layer was the strategy level. At this level certain modules were tested

along with strategy and protocol components such as message passing and roles. It was

not possible to test components at strategy level on their own and so only component

removal testing was performed there.

The CTF game-type was tested over two levels to show a level where we the system

performed well and one where it did not to try to determine the cause of the failure.

The graphs presented are relative to the performance difference between the base-

line strategy and the fully learning strategy.

11.2 Layer 1 Testing

11.2.1 TDM

For TDM strategies the following components were tested separately in the module

layer analysis:

1. Weapon Model

2. Fight Model

3. Enemy Model

4. Area Correlation Model

5. Dynamic Path Finder

11.2. Layer 1 Testing 303

6. Distance/Utility Weapon Correlation

The Pseudo-code for the new modules, in the same format as the modules chapter,

is available in the document appendix but in the interests of readability is not included

here.

11.2.1.1 Inhuman Skill

Figure 11.1 shows the performance changes when removing certain modelling compo-

nents at the inhuman skill level.

Figure 11.1: Layer 1, Models Off, Component Analysis Results, Inhuman

Figure 11.1 shows that removal of the distance correlation and dynamic path finder

elements did not drastically negatively effect model performance. They lowered the

standard deviation although the value was less than 2.5 % which is not significant. Re-

moval of the area model lowers performance and increases standard deviation. As the

path finder module is based on information from the enemy model and area models,

and removal of the enemy model does not create a significant decrease in performance,

we can conclude that any increase in performance gained from the path finder is based

on information from the area model. The model which gives the largest performance

decrease when removed is the weapon model. This makes sense as we would expect

that, given the nature of the game type, having the correct weapon would be an impor-

tant performance factor.

Figure 11.2 shows the performance changes when using only single models in iso-

lation.

The results here are interesting because they show that working with any model

on its own provides an increase in performance over no modelling, which is roughly

equatable to using all the models, with the exception of the area model which has a

304 Chapter 11. Component Testing

Figure 11.2: Layer 1, Single Models On, Component Analysis Results, Inhuman

slightly lower performance level than the others. This shows that modelling areas in

this context is less important then knowing when to fight, which weapon to have and

some structured notion of where the enemy are likely to be. This result also points to

the actual combination part of the system not performing quite as expected.

11.2.1.2 Skilled Skill

Figure 11.3 shows the performance changes when removing certain modelling compo-

nents at the skilled skill level.

Figure 11.3: Layer 1, Models Off, Component Analysis Results, Skilled

Figure 11.3 shows the results are almost the same for the skilled case as the in-

human case. The area model removal has less of an effect but the weapon and fight

models are still the most important.

Figure 11.4 shows the performance changes when using only single models in iso-

lation for the skilled skill level.

The results show that in the skilled case the weapon and fight models are the only

single models which lead to a large increase in performance. This reinforces the con-

11.2. Layer 1 Testing 305

Figure 11.4: Layer 1, Single Models On, Component Analysis Results, Skilled

clusions from the models off case which is something which was not so obvious for

the inhuman skill level.

11.2.1.3 TDM Layer 1 Results Conclusions

The results from the layer 1 analysis show that no particular model is of principle

importance to the modelling. We saw that removal of the weapon and fight models

resulted in a decrease in performance but also that the other models on their own could

gain acceptable levels of performance for the inhuman case. As such we conclude that

certain models must have a detrimental effect on each others.

Using the path finder dictates using the area model but not necessarily the enemy

model.

It was also shown that in general having multiple models tends to result in a lower

standard deviation for inhuman if not the absolute optimum (In all cases the full learn-

ing strategy was within a difference of score value of 1 of the highest performing single

model, or single removed model version). The resulting interaction can therefore be

described as complex and not easily observed or explained. We could draw the con-

clusion that the weapon model is responsible for the largest part of the performance of

the system but it is more likely that the removal of this component altered the trade-off

of the other components against each other, decreasing their overall performance.

11.2.2 CTF

For CTF strategies the following components were tested separately in the top level

analysis:

1. Weapon Model

306 Chapter 11. Component Testing

2. Fight Model

3. Enemy Model

4. Area Correlation Model

5. Dynamic Path Finder

6. Distance/Utility Weapon Correlation

7. Flag Approach Route Model

8. Flag Sighting Model

11.2.2.1 Inhuman Skill Level

Figure 11.5 shows the performance changes when removing certain modelling compo-

nents at the inhuman skill level.

Figure 11.5: Layer 1, Models Off, Component Analysis Results, Inhuman

The most interesting fact about the results shown in figure 11.5 is that removal of

certain models causes an increase in performance on each of the two levels. On magma

(A level representing a failure in testing) the removal of the path-finder component

causes an increase in performance and a lowering of the standard deviation. On lost

faith removal of the enemy and fight models caused an increase in performance but

with less of a decrease in standard deviation values. This suggests that the path finder

was the critical failure point within the system for this game-type. It is also worth

noting that removal of the components upon which the path-finder was based did not

11.2. Layer 1 Testing 307

lead to a reduction in performance, suggesting that the path-finder itself was causing

the problem and not its data input.

The conclusion to be drawn from this is that using the path-finder causes a decrease

in performance but having made the decision to use it, the models chosen are good

enough to base it on.

One possible explanation for the decrease in performance is that CTF is a largely

time-critical game. When the flag is being returned it is essential that paths back to base

are as efficient for length as possible. The enemy bots have a larger skill at moving on a

set path and the benefits obtained from the custom path-finder are not outweighing this

ability to move quicker and more efficiently across a given path. As such it is better to

optimise for length rather than other goals when carrying the flag.

Figure 11.6 shows the performance changes when using only single models in iso-

lation.

Figure 11.6: Layer 1, Single Models On, Component Analysis Results, Inhuman

The highest average performing single models are the flag route modelling and the

weapon modelling mirroring the two mains goals in the game-type, capture flags and

kill the enemy.

Overall singular models lead to a decreased standard deviation value. This suggests

that it is the combination of multiple models which causes problems for CTF. The fact

that the flag approach route modelling is one of the higher single models shows that

the path-finder is not behaving satisfactorally when combined with other models as the

flag approach route model uses it.

308 Chapter 11. Component Testing

11.2.2.2 Skilled Skill Level

Figure 11.7 shows the performance changes when removing certain modelling compo-

nents at the ’skilled’ skill level.

Figure 11.7: Layer 1, Models Off, Component Analysis Results, Skilled

Removal of the path-finder and the flag approach route model both offer an increase

in average performance and decreased standard deviations showing these models to be

the weak points at this skill rating. This adds further credence to our conclusion that

these are the overall weak points for CTF.

Removal of the distance correlation element created the largest drop in performance

accompanied with the largest increase in standard deviation pointing to this being one

of the stronger elements alongside the weapon model.

Figure 11.8 shows the performance changes when using only single models in iso-

lation.

In single mode the weapon model achieves slightly better performance than the

full learning strategy with a slight decrease in standard deviation. The area and flag

approach route models are both seen to be the weak points in this section and again

both rely on the path-finder suggesting it is weak also.

11.2.2.3 CTF Layer 1 Results Conclusions

The CTF results show that the path-finder and associated models are the weakest points

in the system. When we remove these components this causes an increase in perfor-

mance. When the stronger components such as the weapon model, fight model, enemy

model and flag sighting model are isolated they do not achieve the expected level of

performance suggesting that, even when removing the path-finder from the system,

11.2. Layer 1 Testing 309

Figure 11.8: Layer 1, Single Models On, Component Analysis Results, Skilled

their relationship is one of complex interaction. The weapon model is the strongest

component but seems to require the other strong components to obtain a high perfor-

mance level.

Trials without the path-finding elements would be interesting for further study.

11.2.3 DD

For DD strategies the following components were tested separately in the top level

analysis:

1. Weapon Model

2. Fight Model

3. Dynamic Path Finder

4. Distance/Utility Weapon Correlation

5. Dom Point Approach Route Model

11.2.3.1 Inhuman Skill Level

Figure 11.9 shows the performance changes when removing certain modelling compo-

nents at the inhuman skill level.

At inhuman skill the removal of the path-finder, fight model and domination point

approach route model leads to both an increase in average performance and a decrease

310 Chapter 11. Component Testing

Figure 11.9: Layer 1, Models Off, Component Analysis Results, Inhuman

in standard deviation. This points heavily to the weapon model being the strongest

component of the system.

Figure 11.10 shows the performance changes when using only single models in

isolation.

Figure 11.10: Layer 1, Single Models On, Component Analysis Results, Inhuman

The single model results back up the conclusion that the weapon model is the

strongest component with the fight model and dom approach models being weak points.

11.2.3.2 Masterful Skill Level

Figure 11.11 shows the performance changes when removing certain modelling com-

ponents at the masterful skill level.

At masterful skill removal of any given model leads to a decrease in average perfor-

mance. In particular removal of the distance correlation component causes an increase

11.2. Layer 1 Testing 311

Figure 11.11: Layer 1, Models Off, Component Analysis Results, Masterful

in standard deviation showing that the weapon model is important but must be accom-

panied by a correct usage policy.

Figure 11.12 shows the performance changes when using only single models in

isolation.

Figure 11.12: Layer 1, Single Models On, Component Analysis Results, Masterful

In isolation the weapon model is the best performer but in all cases a decrease in

performance and increase in standard deviation is observed.

11.2.3.3 DD Layer 1 Results Conclusions

DD provides the best result for the arguing that the architecture allows the compo-

nents to be combined in a modular fashion effectively. When singular components

are removed performance decreases and components in isolation do not achieve good

performance.

312 Chapter 11. Component Testing

Another interesting result from this game-type is that the change of skill level re-

sults in different models being more or less effective. At masterful all models are

useful but at skilled certain models are ineffective. This shows that not only is full

system performance mediated by how well the bots do in general but single model

performance is also affected.

11.3 Layer 2 testing

Level two of the analysis involved the removal of components from the LCC strategy.

11.3.1 TDM

11.3.1.1 Removal of the dynamic trade-off element

One of the main components of the LCC strategy is the dynamic trade-off of the num-

bers of exploiting and exploring agents. The best way to test the removal of this is to

evaluate the performance of static approaches to the trade-off value. Fig 11.16 shows

the numbers of these roles.

Strategy Explorative Exploitative

4 Base 4 0

3 Base 1 Hunt 3 1

2 Base 2 Hunt 2 2

1 Base 3 Hunt 1 3

4 Hunt 0 4

Figure 11.13: Static Trade-Off Values

11.3.1.2 Removal of the request change components

In this strategy we removed the element of the LCC which forces the baseplayers to

request a role change to hunter players and had them change whenever they obtained

a kill.

%%The stuck hunter module, reassigns members to the hunter module

a(hunter,sh)::followMe(sh) => a(hunter,_) <-- engageModule(tdm_weapon_user_v6)

11.3. Layer 2 testing 313

a(hunter,sh)::null<--engageModule(tdm_weapon_user_v6)

a(hunter,Id)::engageModule(tdm_weapon_user_v6_follower_learning(ID))

<-- followMe(ID) <= a(hunter,sh)

a(hunter,Id)::null<--engageModule(tdm_weapon_user_v5_learning)

%% The baseliner module

a(base,sb)::null<-- engageModule(dedicated_weapon_fight_enemy_area_sampler)

a(base,Id)::null <--

engageModule(dedicated_weapon_fight_enemy_area_sampler_last)

and kill(true) and changeToRole(hunter)

a(base,Id)::null <--

engageModule(dedicated_weapon_fight_enemy_area_sampler_last)

11.3.1.3 Removal of the stuck baseline player

Here we removed the stuck baseline player and reassigned their role to a further

auxiliary player.

%%The stuck hunter module, reassigns members to the hunter module based on

performance

a(hunter,sh)::engageModule(tdm_weapon_user_v6) <-- gotAKill

<= a(base,ID) then change => a(base,ID) <-- performance(hunter,kill)

a(hunter,sh)::followMe(sh) => a(hunter,_) <-- engageModule(tdm_weapon_user_v6)

a(hunter,sh)::null<--engageModule(tdm_weapon_user_v6)

a(hunter,Id)::engageModule(tdm_weapon_user_v6_follower_learning(ID))

<-- followMe(ID) <= a(hunter,sh)

a(hunter,Id)::null<--engageModule(tdm_weapon_user_v5_learning)

%% The baseliner module

a(base,Id)::engageModule(dedicated_weapon_fight_enemy_area_sampler_last)

and changeToRole(hunter) <-- change <= a(hunter,ID)

a(base,Id)::gotAKill => a(hunter,sh)

<-- engageModule(dedicated_weapon_fight_enemy_area_sampler_last) and kill(true)

a(base,Id)::null <--

engageModule(dedicated_weapon_fight_enemy_area_sampler_last)

314 Chapter 11. Component Testing

11.3.1.4 Removal of the follower component

For the final test we removed the component of the strategy which made the hunters

follow the stuck hunter in response to followMe(sh) messages.

%%The stuck hunter module, reassigns members to the hunter module based on

performance

a(hunter,sh)::engageModule(tdm_weapon_user_v6) <-- gotAKill

<= a(base,ID) then change => a(base,ID) <-- performance(hunter,kill)

a(hunter,sh)::null<--engageModule(tdm_weapon_user_v6)

a(hunter,Id)::null<--engageModule(tdm_weapon_user_v6)

a(hunter,Id)::null<--engageModule(tdm_weapon_user_v5_learning)

%% The baseliner module

a(base,sb)::null<-- engageModule(dedicated_weapon_fight_enemy_area_sampler)

a(base,Id)::engageModule(dedicated_weapon_fight_enemy_area_sampler_last)

and changeToRole(hunter) <-- change <= a(hunter,ID)

a(base,Id)::gotAKill => a(hunter,sh)

<-- engageModule(dedicated_weapon_fight_enemy_area_sampler_last) and kill(true)

a(base,Id)::null <--

engageModule(dedicated_weapon_fight_enemy_area_sampler_last)

11.3.1.5 Results

The graphs below shows the results of the removal of strategic elements.

11.3.1.6 Inhuman Skill Level

Figure 11.14: Layer 2 Component Analysis Results, Inhuman

11.3. Layer 2 testing 315

We can see from figure 11.14 that strategies with static numbers of different mem-

bers have varying performance for this level. The 3 base 1 hunt strategy actually

achieves higher performance than the standard strategy used but the standard devia-

tion is higher showing a greater level of instability. Having either all explorers or all

exploiters does not work. This result is trivial as all exploiters don’t learn anything and

all explorers is equal to the baseline strategy.

One counter intuitive result is that the no followingstrategy gains a slightly better

result than the standard version, though the standard deviation is higher meaning that

the strategy is less stable.

In conclusion there is no strategy which obtains a higher positive average difference

in score while also obtaining a lower standard deviation, than the standard strategy, via

removal of protocol elements.

11.3.1.7 Skilled Skill Level

Figure 11.15: Layer 2 Component Analysis Results, Skilled

Most of the patterns from the inhuman case remain but none of the static strate-

gies achieve better performance than the all modelson strategy. The stuck baseline

player is shown to be largely important but this is expected as they are the solitary fully

explorative element. The results also show that removal of either the following com-

ponent or the environmental feedback mechanism for changing roles leads to increases

in standard deviation, supporting our decision to use them.

316 Chapter 11. Component Testing

11.3.2 CTF

11.3.2.1 Removal of the dynamic trade-off element

As for the TDM case, it was possible to alter the balance of the exploitation exploration

trade-off and employ some static strategies. Fig 11.16 shows the numbers of these

roles.

Strategy Explorative Exploitative

4 Base 4 0

3 Base 1 Hunt 3 1

2 Base 2 Hunt 2 2

1 Base 3 Hunt 1 3

4 Hunt 0 4

Figure 11.16: Static Trade-Off Values

11.3.2.2 Removal of the protection component

For the second test we removed the component of the strategy which allowed bots to

call for protection when they had the flag.

a(attacker_explore_v2,Id)::null<--changeToRole(attacker_exploit)

and performance(attacker_exploit,kill)

%% The weapon fight sampling attacker module

a(attacker_explore_v2,Id)::null<--engageModule(retriever_v1_non_learning)

and enemyHasFlag(true)

a(attacker_explore_v2,Id)::null <-- engageModule(flag_explorer_v2)

%% The fully dynamic attacker module

a(attacker_exploit,Id)::null<--engageModule(retriever_v1_non_learning)

and enemyHasFlag(true)

a(attacker_exploit,Id)::null<--engageModule(flag_exploiter_v1_best)

11.3.2.3 Removal of the retriever element

For the final test we removed the strategy component responsible for retrieving the flag

when it was taken by the enemy.

11.3. Layer 2 testing 317

a(attacker_explore_v2,Id)::null<--changeToRole(attacker_exploit)

and performance(attacker_exploit,kill)

%% The weapon fight sampling attacker module

a(attacker_explore_v2,Id)::engageModule(protector(Location))

<-- protect(Location) <= a(_,_)

a(attacker_explore_v2,Id)::protect(Location) => a(attacker_exploit,_)

<-- engageModule(flag_explorer_v2) and selfLocation(Location)

then protect(Location) => a(attacker_explore_v2,_)<--hasFlag(true)

a(attacker_explore_v2,Id)::null <-- engageModule(flag_explorer_v2)

%% The fully dynamic attacker module

a(attacker_exploit,Id)::engageModule(protector(Location))

<-- protect(Location) <= a(_,_)

a(attacker_exploit,Id)::protect(Location) => a(attacker_exploit,_)

<-- engageModule(flag_exploiter_v1_best) and selfLocation(Location)

then protect(Location) => a(attacker_explore_v2,_) <-- hasFlag(true)

a(attacker_exploit,Id)::null<--engageModule(flag_exploiter_v1_best)

11.3.2.4 Results

The graphs below show the results of the removal of strategic elements.

11.3.2.5 Inhuman Skill Level

Figure 11.17: Layer 2 Component Analysis Results, Inhuman

The results for inhuman are similar to those observed for the TDM. There are static

strategies which achieve higher performance for single levels but not for both our tested

cases. Removal of the protection and flag retriever components leads to a decrease in

performance and increase in standard deviation.

318 Chapter 11. Component Testing

11.3.2.6 Skilled Skill Level

Figure 11.18: Layer 2 Component Analysis Results, Skilled

At skilled the standard deviation values are much more stable over the two levels

but the average performance results are roughly the same, if again more stable across

the two levels. Thus we can conclude that even though the performance is not substan-

tially better using the lower skill level, the performance is more stable.

11.3.3 DD

11.3.3.1 Removal of the distance messaging

One of the key elements of the strategy was the ability to assign roles to bots based on

not just their proximity to the domination points but of their team-mates. For the first

test we removed this and assigned them static roles regardless of position.

a(exploiter,exploit_a)::null <-- engageModule(dom_a_exploiter)

a(exploiter,exploit_b)::null <-- and engageModule(dom_b_exploiter)

a(explorer,explore_a)::null <-- engageModule(dom_a_exploiter)

a(explorer,explore_b)::null <-- engageModule(dom_b_exploiter)

a(explorer,explore_a)::null <-- engageModule(dom_a_weapon_approach_updater)

a(explorer,explore_b)::null <-- engageModule(dom_b_weapon_approach_updater)

a(explorer,explore_a)::null <--

engageModule(dom_a_dedicated_weapon_fight_sampler)

a(explorer,explore_b)::null <--

engageModule(dom_b_dedicated_weapon_fight_sampler)

11.3. Layer 2 testing 319

11.3.3.2 Removal of the relative movement

Instead of having the bots assign their role based on messages from others, in this test

they used only their own distance to each point as the decision mechanism.

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([Da < Db]) and engageModule(dom_a_exploiter)

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([Da > Db]) and engageModule(dom_b_exploiter)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([Da < Db]) and engageModule(dom_a_exploiter)

and performance(exploiter,kill) and lastTeamToScore(T) and team(T)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([Da > Db]) and engageModule(dom_b_exploiter)

and performance(exploiter,kill) and lastTeamToScore(T) and team(T)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([Da < Db])

and engageModule(dom_a_weapon_approach_updater)

and performance(exploiter,kill)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([Da > Db])

and engageModule(dom_b_weapon_approach_updater)

and performance(exploiter,kill)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([Da < Db])

and engageModule(dom_a_dedicated_weapon_fight_sampler)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([Da > Db])

and engageModule(dom_b_dedicated_weapon_fight_sampler)

11.3.3.3 All exploit

In this test the dynamic trade-off element of the strategy was removed. All bots were

set to exploit.

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_exploiter)

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

320 Chapter 11. Component Testing

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y]) and

engageModule(dom_b_exploiter)

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::domDetails(Da,Db) => a(exploiter,_)<--squaredDistance(a,Da)

and squaredDistance(b,Db)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_exploiter)

and team(T) <-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) =>

a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y]) and

engageModule(dom_b_exploiter)

and team(T) <-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) =>

a(explorer,_)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)<--squaredDistance(a,Da)

and squaredDistance(b,Db)

11.3.3.4 No Dynamic Change

In this test the dynamic trade-off element of the strategy was removed. The explorers

could not migrate to exploiters.

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_exploiter)

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y]) and

engageModule(dom_b_exploiter)

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::domDetails(Da,Db) => a(exploiter,_)

<--squaredDistance(a,Da) and squaredDistance(b,Db)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_weapon_approach_updater)

and performance(exploiter,kill) <-- domDetails(A,B) <= a(_,_)

then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y])

and engageModule(dom_b_weapon_approach_updater) and performance(exploiter,kill)

11.3. Layer 2 testing 321

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y])

and engageModule(dom_a_dedicated_weapon_fight_sampler)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y])

and engageModule(dom_b_dedicated_weapon_fight_sampler)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)

<--squaredDistance(a,Da) and squaredDistance(b,Db)

and performance(exploiter,kill) and lastTeamToScore(T) and team(T)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)

<--squaredDistance(a,Da) and squaredDistance(b,Db) and

performance(exploiter,kill)

and engageModule(dom_v2_weapon_approach_updater)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)

<--squaredDistance(a,Da) and squaredDistance(b,Db)

and engageModule(dom_v2_dedicated_weapon_fight_sampler)

11.3.3.5 All explore

In this test the dynamic trade-off element of the strategy was removed. All bots were

set to explore.

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y])

and engageModule(dom_a_weapon_approach_updater)

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y])

and engageModule(dom_b_weapon_approach_updater)

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::domDetails(Da,Db) => a(exploiter,_)<--squaredDistance(a,Da)

and squaredDistance(b,Db)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_weapon_approach_updater)

and performance(exploiter,kill) <-- domDetails(A,B) <= a(_,_)

then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

322 Chapter 11. Component Testing

and prologConstraint([X is A-Da,Y is B-Db, X < Y]) and

engageModule(dom_b_weapon_approach_updater)

and performance(exploiter,kill) <-- domDetails(A,B) <= a(_,_)

then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y])

and engageModule(dom_a_dedicated_weapon_fight_sampler)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y])

and engageModule(dom_b_dedicated_weapon_fight_sampler)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)

<--squaredDistance(a,Da) and squaredDistance(b,Db) and

performance(exploiter,kill)

and lastTeamToScore(T) and team(T)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)<--squaredDistance(a,Da) and

squaredDistance(b,Db)

and performance(exploiter,kill) and engageModule(dom_v2_weapon_approach_updater)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_)<--squaredDistance(a,Da)

and squaredDistance(b,Db) and

engageModule(dom_v2_dedicated_weapon_fight_sampler)

11.3.3.6 Removal of the staggered layers

In the exploration role there are 3 staggered stages ranging from fully explorative to

exploiter. For this test we removed the middle layer.

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_exploiter)

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y]) and

engageModule(dom_b_exploiter)

<-- domDetails(A,B) <= a(exploiter,_) then domDetails(Da,Db) => a(exploiter,_)

a(exploiter,_)::domDetails(Da,Db) => a(exploiter,_)<--squaredDistance(a,Da) and

squaredDistance(b,Db)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_exploiter)

11.3. Layer 2 testing 323

and performance(exploiter,kill) and lastTeamToScore(T) and team(T)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y]) and

engageModule(dom_b_exploiter)

and performance(exploiter,kill) and lastTeamToScore(T) and team(T)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X > Y])

and engageModule(dom_a_dedicated_weapon_fight_sampler)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db)

and prologConstraint([X is A-Da,Y is B-Db, X < Y])

and engageModule(dom_b_dedicated_weapon_fight_sampler)

<-- domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_) <--squaredDistance(a,Da)

and squaredDistance(b,Db) and performance(exploiter,kill) and

lastTeamToScore(T)

and team(T)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_) <--squaredDistance(a,Da)

and squaredDistance(b,Db) and performance(exploiter,kill)

and engageModule(dom_v2_weapon_approach_updater)

a(explorer,_)::domDetails(Da,Db) => a(explorer,_) <--squaredDistance(a,Da)

and squaredDistance(b,Db) and

engageModule(dom_v2_dedicated_weapon_fight_sampler)

11.3.3.7 Results

The graphs below shows the results of the removal of strategic elements.

11.3.3.8 Inhuman Skill Level

At inhuman the only significant results were those which were trivially expected to be

so. Removal of the elements concerning the decision about which point to go to did

lead to a higher standard deviation but no change in the actual performance showing

that they were responsible somewhat for stability of performance rather than actual

performance.

324 Chapter 11. Component Testing

Figure 11.19: Layer 2 Component Analysis Results, Inhuman

Figure 11.20: Layer 2 Component Analysis Results, Masterful

11.4. Overall Conclusions 325

11.3.3.9 Masterful Skill Level

At masterful removal of any single strategic component led to a decrease in perfor-

mance showing that all were working well at this skill point and all were partly re-

sponsible for performance. This is good as this was exactly what we were aiming

for.

Removal of the ability of the agents to change from explorers to exploiters led to a

decrease in standard deviation but this was negated by the decreased performance. This

shows that although we gain a performance increase from this adaptive mechanism

there is a cost in stability.

11.4 Overall Conclusions

The following is a brief summary discussion of the two layers of analysis.

11.4.1 Machine Learning Techniques

One of the most startling conclusions from the analysis is that the models which are

the most general and contribute to performance across all three games types perform

consistently highest. The weapon model in particular seems strongest. These stronger

elements also seem to combine best in the architecture but the combination is complex

and not easily evaluated.

We also saw that certain models are more or less effective at different skill settings.

This is expected as certain models have different prerequisite amounts of learning re-

quired to function and mediating rates of learning with performance will change the

amount of learning that is performed. Running a model with bad information is likely

to have a negative effect even if the overall performance is satisfactory.

We saw that for CTF the cost of taking an inefficient route with regards to path

length is not acceptable to achieve successful performance and that removing these

non-optimal routes increased performance.

Overall we can conclude that in general elements concerned with path finding con-

tributed least to performance and elements concerned with confrontation (fight,enemy,weapon)

contributed most showing that our decision making models were of higher standard

than our geometric approaches.

326 Chapter 11. Component Testing

11.4.2 Strategy Components

The strategic component results are slightly different from those tested in layer 1. The

more general components such as the reinforcement learning control elements seem to

be responsible for play stability rather than specific performance, which fits with our

intuitions about what they should be doing.

The more specific game-type components are responsible for increase or decrease

in average score.

Again all components are mediated by enemy skill level.

Chapter 12

Efficiency Testing

In this chapter we present an experiment to show the efficiency of the system. This

is to suppliment the results we have already presented, allowing some insight into the

time taken for useful adaptivity to occur rather than simply whether it occurs or not.

Our notion of effeciency is based on how fast the system converges upon a state

where the maximum amount of exploitation is occuring. Because this exploitative state

is mediated by performance, this gives a measure of when the system’s performance

has reached its most effective level.

This also allows us to determine how effective and stable the online learning pro-

cess is. This adds credence to our claims that the system straddles the competing goals

of stability across game matches and adaptability to different conditions.

12.1 Experimental Details

The experiment we perform is to run the system over 10 trials on 5 levels and measure,

on average, at what point the fully exploitative state (3 exploiting bots, 1 explorer)

is reached and the average percentage of the trial which was spent in this state. We

also present the average difference in scores (as per the full evaluation trials) in or-

der to show some comparison measures with the results presented in the full system

evaluation. The enemy used were the standard in-built bots set at the “skilled” skill

level. The game-type chosen was TDM and all of the models were enabled. The levels

chosen were, Ironic, Leviathon, Squader and Desolation. These were chosen because

they were the levels in which a significant increase in performance was observed, in

the full system evaluation, using the learning strategy over the baseline. This decision

was made because these are the most likely to show convergence, oweing to our con-

327

328 Chapter 12. Efficiency Testing

vergence criteria being performance mediated. We also present a result for the level

Sulphur because this was a level in which we performed significantly below the base-

line in the full system evaluation. As such this gives us an insight into what happens

to system efficiency when we fail to perform effective learning. The strategy used

was our chosen strategy from the full scale evaluation. Only the learning strategy was

tested because the baseline did not give any information about convergence and also,

we already have the baseline results from the full system testing, as a control.

This is not designed to be an exhaustive experiment but instead to show roughly

how efficient the system is on average.

12.2 Results

Figure 12.1: Effeciency Results

Figure 12.1 shows the initial score, in the match, at which the fully convergent state

was reached (on average) in our trials alongside the difference in scores between our

learning bots and the in-built bots. It also shows, in the right hand graph, the percentage

of the match time spent in this exploiting state.

The results show that in most cases convergence is not realised until late in the

match (the goal score in these matches was 60 and the overall average across the levels

is between 45 and 50). Generalising we can conclude that the initial threshold point is

normally over half the winning score for this skill level. This said, it is the percentage

result which is most interesting.

In cases where our learning strategy performed statistically higher than the base-

line strategy, in the full system evaluation (Ironic,Leviathon, Squader, Desolation), we

12.3. Conclusions 329

observe that the system spent roughly 20-25% of the match in a fully exploitative state.

Correlating this with the initial thresholding points, this means that once the fully ex-

ploitative state is acheived, it tends to be stable for the remainder of the match.

In the case where the learning stategy was statically worse than the baseline strategy

(Sulphur), this value drops to 5% . This is indicative of the fact that our system is very

reliant on convergence. If we spend roughly 20-25% of the match in an exploitative

state then we are likely to win the match.

12.3 Conclusions

The results show that although our system is not the most effecient in terms of time

spent getting to an exploitative state, it is stable when it gets to that point. They also

show that being in the exploitative state is a position powerful enough advantage to

win the match and that not being in this state for at least 20% signifies that the learning

is not likely to be effective.

Our system is reliant on convergence, if the majority of our team do not conver-

gence on an exploitative state then this leads to bad performance. This is no real

surprise as the convergence triggers in our strategy are based on performance. Conver-

gence leads to good performance; if we converge on a steady exploiting state then we

win the match. Again this is nothing profound due to the nature of our system conver-

gence criteria but it gives a bi-implication showing a useful indicator for reference.

Combining these results with those from the component analysis would be an in-

teresting future experiment to show the interaction between individual models and the

initial thresholds, but this is beyond the scope of this thesis.

Chapter 13

Exploration Versus Exploitation

Above and beyond simply having a respectable performance in a complex domain

we also wanted to show that the architecture could tackle a more concrete task in an

interesting way. Because our system was inherantly multi-agent in nature we could

tackle the reinforcement learning problem of exploration versus exploitation from a

multi-agent perspective. Our approach was to allow the roles of individual members

of the team to be more or less exploitative or explorative. This meant that we did not

have to split the time spent performing actions within any single agent.

13.1 Background

Reinforcement learning[105] is the study of learning systems in which an agent is sit-

uated in an environment, allowing for feedback from its actions to guide its further

learning. Often this notion of feedback can be utilised for better learning if its effects

are both informed and controlled. One particular concern for reinforcement learning

is the idea of exploration versus exploitation. Exploration is time spent performing ac-

tions, mainly at random, to judge their effect and introduce randomness and variation

to the learning. Exploitation is time spent performing actions as set out in a learned

policy. Typically this process is performed during large numbers of off-line prior tri-

als. Different trials are either exploration or exploitation trials. In some cases off-line

learning is not a possibility, typically where the domain is time or resource limited in

some way or large numbers of trials are infeasible.

Traditional numeric approaches to reinforcement learning[105, 12] include options

such as Q-learning and temporal difference learning with ε-greedy being a typical basic

approach to exploitation versus exploration. These usually revolve around predicting

331

332 Chapter 13. Exploration Versus Exploitation

the utility of certain state-action pairs and as such are applicable only to problems

where the domain lends itself to such a representation.

13.1.0.1 Multi-Agent Reinforcement Learning

The reinforcement learning idea becomes even more interesting when we consider

multi-agent domains. Sadly there is not much concentration on this issue within the

machine learning for video games world.

“Multi-agent reinforcement learning has not often been used for com-
puter game non-player character development”[18]

Bradley and Hayes’ paper on group utility functions[18] provides some idea of the

types of approaches to multi-agent reinforcement learning but even then this focuses on

game theoretic notions and the traditional reinforcement learning notion of state-action

pairings.

In general the approach to multi-agent reinforcement learning is to have multi-

ple agents provide separate observance points for a policy learning algorithm such as

Q-learning. The idea is that with multiple agents learning is faster, but the general

approach of off-line learning remains the same. Because our system deals with on-line

learning we take a different stance on the issue of exploration versus exploitation. Our

idea is that instead of having many trials and setting all the agents to be explorative

or exploitative for any given trial, we split the team to be more or less exploitative

in nature at the individual’s level. Each agent has their own role and as such perfor-

mances a different task. This allows for more or less explorative strategies for each

agent and also allows the strategy designer to pick which models to exploit or explore

with in each bot. This then presents a real-time trade-off between exploration and

exploitation[105, 54, 110] which we show can be altered in real-time and tapered in

response to current performance to provide better performance.

The idea of multi-agent reinforcement learning as found in our work is similar to

the way in which reinforcement learning ideas of exploration verses exploitation are

performed at real-time, during a match, found in [82]. In this paper they are used to

taper an evolutionary strategy towards better performance, instead we use them to deal

with the problems found with on-line learning in general for unspecified ML tech-

niques.

Some key work in this area has been performed by Peter Stone. Stone’s work is

largely from the perspective of ways of combining reinforcement learning techniques

13.1. Background 333

with machine learning to create more robust algorithms [53]. In his review paper he

details a number of learning techniques and how he feels that these could be combined

into a system for controlling multiple agents.

“Such agents will need to be able to learn, both in order to correct and cir-
cumvent their imperfections, and to keep up with a dynamically changing
world.”[53]

He states that systems dealing with complex problems will need to provide algo-

rithms which are applicable to alternative domains. The work presented here provides

not an algorithm but an architecture with this adaptability in mind.

Stone’s work also draws on the importance of learning quickly in domains where

time is critical when considering sample efficiency [46]. His, single-agent, approach is

to build a model of the domain early in the life cycle of the instance and then simulate

runs in this model to increase the quality of the RL policy, beginning exploiting only

when the policy is of sufficient quality. This is interesting mostly because it involves

building a model of the environment and then applying reinforcement learning over

that. The difference between this and our work is in two areas, number of agents

and then what the model is used for. Our multiple models are assumed to each be

incomplete and we continue to tweak them and use them directly. Stone uses his

model for simulation purposes assuming it to be an accurate model of the complete

environment sufficient for creating an RL policy from.

We mirror Stone with our approach to exploitation versus exploration but instead

adapt this idea to a team situation and show how measurement of policy effectiveness

can be achieved using heterogeneous agents with more or less exploitative roles.

13.1.0.2 Reinforcement Learning for FPS Games

The following quote sums up the rough state of play regarding reinforcement learning

for domains such as ours:

“To our knowledge only Vasta et al[116] has investigated RL in FPS
game”[64].

The reason for this is that people are still largely concerned with reinforcement

learning formulations explicetly based on state-action pair representations, and policy

learning. Our argument is that by considering the learning process as a black box and

334 Chapter 13. Exploration Versus Exploitation

only modulating the on-line trade-off of team roles in the abstract, the need for a state-

action pair representation can be avoided. We show how our architecture can help to

achieve this.

In chapter 1 we made the following two claims:

• Communication can be used to control the learning rates of a team of multiple

bots while they act in the domain environment

• It is more effective to have bots in multiple different, adaptive, roles with vary-

ing degrees of learning and exploitation then to have single homogeneous bots

learning locally using a strategy such as ε-greedy

We have presented a system which which meets the first claim but to what extent

does it deal with the second? The following is an analysis of the approach to exploita-

tion versus exploration used which aims to determine to what extent claim 1 was met

and also whether claim 2 is met.

The exploration versus exploitation trade-off [105, 23] is tested against a single ap-

proach to the problem. This consisted of testing this approach against the in-built bots

and comparing this with results from our learning strategy. TDM was used because

this offered the highest positive significance margin from testing. Observations from

the trials during testing also suggested that it was offering the best environment for the

basic learning techniques to operate with the largest number of confrontations to work

from. We also saw from the component analysis that the weapon model proved the

most detrimental to performance when removed. As such these trials used strategies

involving only that model to try to test how effective our approach was versus a simple

classical approach with only the one, albeit simple, model. The tests were performed

over 5 levels.

13.2 Reinforcement Learning and the Architecture

Although it is necessary to deal with the issue of reinforcement learning, with any

learning agent situated in an environment, it also serves as a good test of the architec-

ture’s ability to deal with a problem that is likely to occur in similar domains. As such

it is an example of how the architecture not only allows us to produce a novel solution

to a known problem, but also how we can also produce an effective one.

13.3. Formalising our approach 335

13.3 Formalising our approach

Our approach was two-fold. Firstly to allow certain team members to be more exploita-

tive or explorative in relation to their role and secondly to allow these roles to change

in response to the performance of the exploitation agents. Note that this necessitates

that performance is also mediated by the enemy skill, indirectly.

Our approach can be categorised as a bootstrapping[105] approach as the current

state’s value is often assessed based on the estimated value of neighbouring/future

states. It is not a backup strategy as no information about eventual end state values

between trials was used to reinforce current state value.

13.4 Single Agent Reinforcement Learning

The classical approach to reinforcement learning is to have a single agent spending a

certain percentage of their time exploiting and the rest exploring. In our case, because

our bots were formulated as reactive agents, we had to work on a per death basis. The

way we achieved this was to assign the agent an exploitative or explorative role after

each death, based on maintaining a ratio of game lives spent in either pursuit.

Because we only used one model in this section it was easier to design a homoge-

neous module for all the bots which performed a single agent policy.

13.4.0.2.1 Description

1.IF died on previous cycle{

2. Set A to random between 1 and 100

3.}

4.IF A < 26 {

5. Select weapon with least magnitude of utility

6. IF Weapon not held {

7. Use standard path finding to run to weapon pickup

8. Select It

9. }

10. ELSE{

11. IF visible enemy {

12. Engage Enemy

13. update weapon model

14. }

15. ELSE{

16. play randomly

17. }

18. }

19.}

20.ELSE{

336 Chapter 13. Exploration Versus Exploitation

21. Switch to current best weapon held using weapon model

22. IF Enemy Visible{

23. Move towards enemy shooting a them

24. }

25. ELSE{

26. use distance/utility correlation to assess most attractive weapon

27. IF most attractive weapon not held{

28. Use standard path finding

to move to most attractive weapon pickup location

29. }

30. ELSE{

31. play randomly

32. }

33. }

34.}

13.5 Testing

To test the overall effectiveness of our approach we tested it against our single agent

strategy, not only because it was the simplest of the reinforcement learning approaches,

and easiest to explain and therefore analyse, but also because other approaches such

as temporal-difference learning and q-learning did not lend themselves easily to the

game environment chosen. Most rely on offline learning of parameters over multiple

runs which, as has already been discussed, was not our intention. We could have

performed a similar change as in the single agent case and performed the updates in

an online fashion treating a single run as one life but this did not yield enough runs for

q-learning to be effective in this domain.

13.6 Results

13.6.1 Individual Level Analysis

At an inhuman skill level there is no significant difference between the two methods.

The single agent case is slightly higher on average but the P-values show this is likely

due to chance.

The skilled results show our strategy performing significantly better than the single

agent case. In 3 of 5 levels there is a statistically significant increase in performance.

The overall pattern of P-values is similar to the inhuman skill level but this time they

are relatively higher.

13.6. Results 337

Figure 13.1: Inhuman Skill Individual Level Comparisons

Figure 13.2: Skilled Individual Level Comparisons

338 Chapter 13. Exploration Versus Exploitation

13.6.2 Cross level Analysis

Analysis

Single Agent Ours

Average Difference in Score 16.04 12.8

Standard Deviation 14.54 14.47

Size of set 25 25

99% Confidence Interval 7.494 7.455

T-Value 0.789
P-Value 0.4337

Figure 13.3: Inhuman Skill Cross Level Results Analysis

The cross level analysis tables back up the conclusions from the individual level

sections that at inhuman skill level there is no significant increase in performance using

our method but at the skilled skill level there is. In general the standard deviation

values are much less in the skilled case, for both methods, suggesting that convergence

is occurring more readily.

Analysis

Single Agent Ours

Average Difference in Score 44.12 46.56

Standard Deviation 3.23 4.99

Size of set 25 25

99% Confidence Interval 1.66 2.57

T-Value 2.051
P-Value 0.046

Figure 13.4: Skilled Skill Cross Level Results Analysis

13.7 Conclusions

The results show that in the skilled case our learning approach is significantly better

than that of a basic single agent model. The results also add further evidence that our

approach has a narrow enemy skill level setting at which it performs highest.

13.7. Conclusions 339

We have shown that a team of heterogeneous bots can perform adequately the learn-

ing functions of a team of homogeneous single bots without the need to split every bot’s

time between exploring or exploiting.

It is viable that this approach could be extended to other video game domains where

the machine learning techniques for those domains are similarly located at the lowest

layer in the architecture. It is possible that in other domains with a longer life-span

for agents that q-learning or other offline approaches could also be tested against our

approach.

Part IV

Conclusions

341

Chapter 14

Alternatives

Our approach to the problem is not the only method available. To show this we discuss

here a few alternatives. We did not implement any of these methods but they are viable

alternatives and some of the potential advantages and disadvantages are discussed.

14.1 Knowledge Transfer

As discussed early in the thesis a common way of dealing with machine learning

in a situated complex multi-agent environment is to employ the use of knowledge

transfer[90] and use information learned from trials to influence further trials. This

increases the likelihood that the problem would end up being formulated as a classic

reinforcement learning problem.

It could possibly allow a larger learned map of the levels and their particular quirks,

to be obtained by comparing issues such as level design and weapon placement. This

could be used, for instance, to tweak our level model to better refine the expected

polygons. It could also be used to discover known walls and improve the path finding

model so that the two-level hierarchy was less important.

This cumulative learned data could also be used to construct a model of the domain

on which further trials could be simulated in much the same way as in [46]. The

improvement would be that we wouldn’t have to rely on the model and could instead

build it in the background over time and trials, gradually improving performance with

the hope of hitting an exponential peak performance level.

It may even be the case that the levels as a whole would form a hyper-dimensional

space for exploration of a better generic strategy which takes into account all of the

levels rather than allowing environmentally mediated learning elements at each part of

343

344 Chapter 14. Alternatives

the strategy. I believe this is unlikely as it would have reduced the problem to a search

space over strategies and the complexity of the domain does not seem to suggest this

kind of observability.

14.2 Machine Learning of Full System Parameters

One particularly nice way to deal with the problems of removing additional constraints,

and further abstracting plan formation to lower levels, is take all of the system param-

eters such as health, ammunition levels, etc and plug these into a neural net or other

such machine learning mechanism. We then use the level of attainment of the goals of

the bots as a feedback mechanism for training within the game environment and try to

learn a mapping directly from scenario to decisions and movement commands.

This idea is extremely unlikely to work unless there exists some simple scripted

behaviour which would be obvious from the outset as being acceptable play, unless the

net were very complicated but also simple to train. Even the in-built game bots, who’s

play is largely static, require a very large amount of UTScript to achieve performance

which is regarded as acceptable to the player (most people still prefer to play against

other players if possible[87]).

This idea of a single machine learning mechanism for the entire decisions process

fits with a lot of the literature on multi-agent machine learning and adaptations to

reinforcement learning techniques for complex domains but authors are now beginning

to focus on more multi-technique approaches [57].

14.3 Plan Re-Organisation

Early in the thesis we showed some of the problems that result from trying to spec-

ify all possible scenarios within a logical strategy with an inflexible resolution based

inference procedure. One possible way to tackle this problem could be to re-organise

the LCC clause order to work better for individual levels based on dynamically learned

information. We might then hope to be able to read off the strategy back out from the

end of the level to see what the eventual outcome was, gaining a better understanding

of the priorities for that scenario. A simple formulation would amount to nothing more

than plan re-ordering which would of course make it very easy to read the result. The

main problem with this is that any plan would be dictated by the original input plan

14.4. Genetic Programming for fixed constraint plans 345

and would be highly constrained by this. The work in [98] gives a detailed example of

how this can be achieved with small pieces of modular script.

14.4 Genetic Programming for fixed constraint plans

Another option is to have a more constrained lexicon and run a genetic programming

process over it. There is always an upper bound on what can be achieved with genetic

programming when the lexicon becomes big enough to write things which make sense

syntactically but not semantically (This is also comparable to the point at which tree

based GP yields solutions which break the key properties of parent unity and respect).

The reactive LCC presented is small enough that it may be possible to formulate this

in such a way that rules could be built into the genetic process to ensure coherence and

usefulness. This would require a large amount of constraints on the way in which the

LCC is organised and what is a valid strategy. It is possible this reorganisation and

constraint tagging could be achieved automatically by intelligent parsing.

Chapter 15

Further Work

In this chapter we close by discussing a few possible further work avenues generated

by the work presented in this thesis.

15.1 More Complex Techniques

It would be interesting to see how the over-arching reinforcement learning issues ap-

ply when using more complicated machine learning techniques such as support vector

machines and more focused Gaussian modelling procedures. It would also help to

provide some evidence of what level of architecture modularity is present within the

system and how flexible our paradigm is for other domains.

Further to this, the results presented in this thesis were not optimal. The exact level

of improvement which could be attained via more powerful modelling techniques is

not suggested from the conclusions drawn as the results only pertain to the included

models. As such it would be advantageous to gain an understanding of how much

system improvement could be gained from techniques which were significantly better

than those used.

One option for performing this could be to incorporate the bank of techniques used

in a system such as WEKA[120]. Our intention in using simple techniques was to

allow a system to be prototyped and evaluate the architecture and show that it was

effective. Having done this we can then add these more complex techniques to improve

performance and a system such as WEKA should not be overly difficult to integrate as

it is written in Java.

347

348 Chapter 15. Further Work

15.2 A Universal Module Script

One of the weakest elements of the architecture, in terms of modularity, was the be-

haviour modules, due to their lack of portability to other domains outside of UT. One

option to deal with this is the development of a universal module script. As discussed

previously this would require some middle-ware to work correctly in other domains

but with a careful script specification this is achievable. One option is something akin

to the notion of code snippets used in Ken Kahn’s work on educational systems[55].

It may be beneficial to consider typical scripting languages used in subsumption

architectures given the comparisons to them which our work draws[47].

In relation to self defining middle-ware an adapted ontology matching strategy

might allow matching to other domains but this would made easier if a universal mod-

ule script was developed which was domain independent while having latching predi-

cates. Latching predicates are key elements of the code, resembling pseudo-code key-

words, which have to be defined in order for a universal script to become instantiated

to a particular domain. At present we have shown one approach to the problem but it

would be more useful if a generalised framework could have been created and shown

to have plug and play characteristics. This would definitely have made the claims of

modularity and the abstract contribution of the architecture more compelling.

15.3 More Efficient Code

The tested system code wasn’t optimised (with the exception of a few problem in-

stances where un-optimised code was a large bottle-neck). This meant that performing

larger numbers of tests was infeasible as a respectably powerful computational system

was needed to run the bots and UT in their current state. It would be advantageous to

have an implementation which was portable to smaller scale platforms, and also dis-

tributed, allowing multiple platforms and machines to be utilised to perform more in

depth testing.

15.4 LCC Enhancements - Code Repetition

In most modern programming and scripting languages there are methods of packag-

ing large parts of code, where used frequently, into methods, procedures or predicates

which are called instead of repeating local code in our case. This is made slightly more

15.5. Vehicles 349

difficult because of the particular method of interpretation used in the LCC implemen-

tation, along with the unificative nature of the of the reactive system engine, but there

should be a way to package code up as per the following example:

a(explorer,_)::squaredDistance(a,Da) and squaredDistance(b,Db) and

prologConstraint([X is A-Da,Y is B-Db, X > Y]) and

engageModule(dom_a_dedicated_weapon_fight_sampler) <--

domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

Would be repackaged as :

a(explorer,_)::dist(Da,Db) and

engageModule(dom_a_dedicated_weapon_fight_sampler) <--

domDetails(A,B) <= a(_,_) then domDetails(Da,Db) => a(explorer,_)

dist(Da,Db):-

squaredDistance(a,Da),

squaredDistance(b,Db),

prologConstraint([X is A-Da,Y is B-Db, X > Y]).

This could be achieved in principle by passing any commands not found in the

gamestate to the Prolog LCC file and including code definitions. This does assume

that Prolog is used as an interpretation engine but this assumption is made with the

prologConstaint constraint anyway.

15.5 Vehicles

At present none of the standard gamebots game-types have vehicles in them. The

assault levels in the single player mode do. Our hope is that the bots could determine

how they can perform better using these vehicles during game matches. This is difficult

but seems viable giving some of the results obtained with simple models for other

environment centric concepts.

15.6 Manual Operators - The Human Touch (A fun aside)

It is theoretically possible to include a human operator in a number of simple roles in

a team of bots. These external agents can then engage in team activities if their inputs

can be formatted in a bot readable way. This shows a branching of this work into ex-

perimental human-computer interaction, which was not dealt with within this thesis.

350 Chapter 15. Further Work

The easiest way to implement this is to have the human operator take a command-

ing role, issuing commands to the bots such as target locations and localised weapon

preferences.

And alternative method could be something similar to that presented in [32] whereby

a human operator presents a skeleton policy or strategy for an adaptive agent who then

flesh out the details of this with their chosen learning method. In [32] the method

chosen is a genetic evolutionary process but this need not be the case. We saw in our

section dealing with fight modelling that even simple rules can provide an effective

compliment for a well defined learning process. Our rules there were general cases

that we felt should influence the learning but it is not difficult to visualise that a human

operator with detailed knowledge on a particular scenario or situation, in which the

bots are likely to play, could input this data as a policy as an injection case for the

learning mechanism.

Chapter 16

Conclusions and Contributions

In Chapter 1 we made the following claims:

1. Stable cross instance performance of a (statistically significantly) higher than

baseline standard, in a complex, real-time, adversarial domain can be achieved

using combinations of machine learning techniques, to learn about dynamic en-

vironmental factors within the domain.

2. A layered heterogeneous architecture, based on behaviour modules, is an effec-

tive way to combine these learning techniques to increase performance

3. Communication can be used to control the learning rates of a team of multiple

agents while they act in the domain environment

4. Communication can be used to control the behaviours of a team of agents using

a simple, easily understandable, fixed LCC plan

5. It is more effective to have agents in multiple different, adaptive, roles with

varying degrees of learning and exploitation then to have single homogeneous

agents learning locally

This chapter draws to a close all of the results in this thesis and ties together the

evidence for these claims. It also draws to attention any contributions which have been

made along with the wider context for these.

16.1 Main Contributions

The following are the two largest contributions:

351

352 Chapter 16. Conclusions and Contributions

The Architecture A layered architecture for integrating multiple machine learning

methods into a system for controlling teams of agents with communication and

adaptive behaviour in a complex virtual environment

The Reinforcement Learning Approach A method for performing exploration ver-

sus exploitation on a team level, directly considering the environment and envi-

ronmental feedback, without time-sharing the activities of any individual team

member

16.1.1 The Architecture

Evidence for claims 1 through 4 is in the form of a functioning architecture and the

performance which it achieves. The architecture presented integrated machine learn-

ing techniques with multi-agent strategies in such a way that certain fundamental rein-

forcement learning problems could be approached without the need to sacrifice control

and predictability at an agent level. This was achieved using a layered heterogeneous

subsumption based fixed architecture based on behaviour modules. It was shown how

this architecture could be used over multiple game-types, with multiple interacting

machine learning techniques and how it could be adapted to other domains. The archi-

tecture presented acheived online learning with an observable predictability due to its

fixed plan/architecture.

The modularity within the system permitted the use of multiple different learning

techniques and behaviour modules which could be switched on and off easily. These

could also be replaced with alternative domain specific techniques if required.

The co-ordination side of the system gave an effective way of assigning roles to

individual bots and a direct approach to the reinforcement learning issues dealt with. It

also permitted configuration of the behavioural modules to create teams of bots which

adapted. In the DD scenario it was used to give a team of un-assigned bots a set of

roles and responsibilities based only on their relative location and the communication

of this information.

The weak points in the system were the particular machine learning techniques

used and the strategy/protocol design used rather than a failing at any point in the

architecture. Both of these issues could be dealt with by a larger scale development

team alongside better knowledge of the specific target domain. A more worrying is-

sue is that the machine learning techniques did not complement each other as well as

expected. The building block effect of steady increase with added machine learning

16.1. Main Contributions 353

techniques did not occur in all game-types and as such this does point to a failing of

the architecture.

Because the machine learning techniques were geared towards certain goals which

were, in some cases, counter-balanced against each other, making decisions about

which goals to prioritise had a drastic effect on the overall performance. The choice of

learning elements could have benefited from much better decision procedures and goal

selection mechanisms. This could possibly be achieved using an automatic design pro-

duced within the behaviour module script but this sacrifices some of the predictability

that was sought with the architecture.

On top of the architecture itself we showed how to go about performing basic

component analysis on it to analyse failings and weaknesses yielding the following

strategy:

• Isolate machine learning components and assess the effects of them, both in

isolation, and the effects of their removal;

• Isolate strategy components and assess the effects of their removal.

16.1.2 The Reinforcement Learning Approach

Claim 5 is met by our approach to the reinforcement learning problem and the results

obtained using it. Having multiple-team members offers more flexibility to the prob-

lem of reinforcement learning. Team based adaptive reinforcement learning can be

used to bypass some of the issues that normally dictate a formalised machine learning

treatment of complex domains. This approach can also be used in an on-line man-

ner during game execution, without the need for multiple trials, to achieve acceptable

results.

Treating the team as a single entity and giving each role a more or less exploitation

nature is novel for first person shooter video games. The traditional approaches to

this problem usually have a split within a single agent and there is no sense of the

wider roles of a team of players learning in a way as structured or explicit as we have

presented. The dynamic trade-off of this ratio of exploiters to explorers is also a new

way of dealing with this problem and a powerful extension to the split team concept.

We showed that that this way of treating the problem is amenable to a well known

technique and also demonstrated the ease with which our approach allows intuitions

about the domain to be integrated into the team learning dynamic.

354 Chapter 16. Conclusions and Contributions

This also demonstrated the use of the architecture to provide a more meaningful,

performance mediated, solution to a known problem in a specific environment.

16.1.3 Dynamic Plan Execution

It has been shown that dynamic plan execution can be approached not only from the

traditional avenues such as replanning and plan refinement as presented in the planning

world but also from the angle of allowing flexible execution at the individual agent level

while maintaining a fixed plan. Treating the system as a heterogeneous subsumption

architecture where the plan is only the top level allows the lower levels to use machine

learning to alter plan execution on a local agent based scale.

This approach allows differences between multiple instances within a domain to be

smoothed over with simple machine learning techniques.

16.2 Narrower Contributions

On top of those above we also make the following, less significant, contributions to

narrower fields.

The Constrained Gaussian Model A method of constraining a Gaussian mixture model

to specific areas using an adaptation to the EM learning algorithm

Utility Weighted Dynamic Path-finding An adaptation to the standard A* path find-

ing algorithm which allows it to take into account the utility of specific areas of

3D terrain.

16.2.1 The Constrained Gaussian Model

The constrained Gaussian mixture model gives an intuitive way to force means and co-

variances to be, not only within certain bounds, but within specific areas of the space

assumed to be useful. Although not entirely novel, this idea is novel in its application

to the domain of levels and multi-agent learning.

Engineering Box
Ultimately it proved too complicated to be useful in our domain. This was mainly

down to our desire to learn on a single trial basis rather than facilitating knowledge

transfer between trials. With this it is feasible that the model could be more useful.

16.2. Narrower Contributions 355

16.2.2 Utility Weighted Dynamic Path-finding

Although the path finding algorithm presented was not one of the more important ele-

ments of the system the individual results presented in the modelling section suggested

it could be used to advantage in other systems. Admittedly this argument would be

more compelling if we could have presented a more detailed analysis of how changing

the optimisation criteria for A* altered its optimality but the results are still suggestive

of a useful idea.

16.2.3 Early Learning with Sparse Data

We dealt with the issue of sparse data, and how to learn from it early in the game

cycle, in chapter 2 and discovered that many of the more grounded machine learning

techniques were of no use as these required large amounts of training data and learning

time. We presented simple techniques which could generate results from very small

sample amounts of data and showed that for our particular situation these performed

better. By doing this comparison and describing the properties of the type of data used

we allow these conclusions to be used to guide learning from similar data types in time

constrained domains where early learning from sparse data is vital to performance.

16.2.4 Adversarial Domains

In the UT domain we found that at different skill levels there were differing levels of

performance increase achieved using our system and architecture. This was largely

because of our use of tapered learning in response to the measured “goodness” of the

current information. We allowed the learning rate (expressed as number of learning

units within a team) to change if the exploiting performance was believed to be good.

This, almost by definition, leads to differing performance as the enemy have different

levels of skill.

This result can be applied in general to adversarial domains where performance

mediated learning is used to tackle reinforcement learning trade-offs. It will not be the

case that the space of performance increase versus severity of the adversarial nature is

always the same but the non-linear nature of the space is believed to be a general result

with this architecture.

356 Chapter 16. Conclusions and Contributions

16.3 The Broader Context

16.3.1 Biological Context

Above and beyond the specifics of the previous work there are less obvious reasons

for this research. There is a theme of combining methods from machine learning with

those of a more structured logical approach to Artificial Intelligence in order to try to

bridge a gap between the two. Many authors are concerned with trying to prove that ei-

ther sub-symbolic or symbolic methods provide the best, more biologically grounded,

approach to creating a system which could be described as in some way intelligent.

The ideas proposed within this thesis provide a basic starting point for how to straddle

this gap using a layered architecture as proposed.

Some research[111, 104], within the machine learning and neural computation

communities, suggests that a successful sub-symbolic/connectionist approach to AI

would have to eventually develop some form of symbolic representation, via evolution

or otherwise, in order to deal with the vast amount of symbolic systems present in ev-

ery day life. From the contrasting perspective there is research into finding a biological

basis for claims that we should work backwards from the symbolic angle[100]. This

argues that the reason sub-symbolic engineering has made so little progress is that it

doesn’t have an over-riding vantage point or framework for the system to fit into.

My personal viewpoint is that learning mechanisms are important but that these

must fit into some overall structure, which may or may not be learned. The work of

Bednar et al[84] on the visual processing systems of the human brain shows that there

are clearly areas of the brain which offer plasticity towards how they are organised and

how they represent each individual part of the input space. Even so, these systems are

embedded within an overall structure of the brain about which more is known due to its

more obvious gross anatomical structure. This parallels (albeit in a complex manner)

the work presented here where the modelling of enemy behaviour is handled through

traditional machine learning methods and models, while the overall plan structure is

fixed. This is not to say that our system is any way applicable to models of any of

the audio or visual processing systems contained within the brain. We merely draw an

analogy to this, as an example of a system where adaptation of low level behaviours is

allowed within a rigid overall structure, as a means of highlighting this property of our

system.

16.3. The Broader Context 357

16.3.2 Real World Conclusions

As well as showing that this particular architecture is useful in the UT domain it is

important to discuss how this work could apply to other areas. Probably the most

obvious area of use for this type of work is in the military domain where there is

a direct analogy with weapons and health points for units. In this domain typically

a larger number of units is used but in this case we can make simple analogies to

health as number of units and single viewpoints as squad leaders. The idea of pushing

down implementation details to lower architectural levels would translate to allowing

the squad leaders to organise their squads at a local level and implement movement

details. In this sense the learning mechanisms would be the squads themselves and the

behaviour modules would amount to the squad leader’s commands. As such the most

portable element of the system would be the LCC Strategic element and the approach

to the reinforcement learning.

The work presented here also ties in to the real world OpenKnowledge (OK) project[2].

In OK project plans are formulated in LCC to allow multiple different agents to per-

form in scenarios such as search and rescue. The main problem with these plans is

that when they are used the multiple agents often fail to execute their own part of the

plan or execute it in such a way that the goals do not actually get satisfied or are left

in a state where no verification of such properties is possible. By showing how to ap-

proach this problem in UT this work makes a contribution towards this problem and

how, by carefully considering the possible environments and the level of abstraction

which the plan contains, this issue could be resolved. The solutions and plans here are

of a lower complexity than those for real world scenarios such as search and rescue but

the mechanisms used are still of relevance.

A further connection concerns the issue of global optimality over local optimal-

ity. In real world scenarios agents are expected to act in a way which maximises the

global utility of the team but which is not considered maximal in regards to the agent’s

local measure of performance. This is very apparent in the chosen approach to the

exploration versus exploitation problem, where the central theme is global optimality

with sub-optimal local bot strategies. Maybe the only way to tackle such real world

problems is to consider having certain real world elements or agents act in a known

sub-optimal manner.

A nice side effect of the abstraction of the LCC strategies is that what we are

left with as LCC plans are simple enough that they may more easily lend themselves

358 Chapter 16. Conclusions and Contributions

to auto-generation via standard planning techniques and understanding to human el-

ements. If humans are to work in some way with robotic agents, or pieces of au-

tonomous software controlling certain elements of a large scale operational equation,

then this must somehow be factored in. If we can give each element a certain level of

autonomy whilst making the overall multi-agent plan human readable, this is likely to

help us achieve this goal.

Bibliography

[1] Black and White Official Website - http://www.lionhead.com/bw/.

[2] The Open Knowledge Project official website - http://www.okfn.org/.

[3] Andrade, G. and Ramalho, G. and Santana, H. and Corruble, V. Automatic

Computer Game Balancing: A Reinforcement Learning Approach. AAMAS,

pages 25–29, 2005.

[4] P. Avery, S. Louis, and B. Avery. Evolving Coordinated Spatial Tactics for Au-

tonomous Entities using Influence Maps. In IEEE Symposium on Computational

Intelligence and Games, 2009.

[5] Avinash,D. and Skeath,S. Games of Strategy. W.W. Norton And Company,

2004.

[6] Bahceci, E. and Miikkulainen, R. Transfer of Evolved Pattern-Based Heuris-

tics in Games. In IEEE Symposium on Computational Intelligence and Games,

2008.

[7] Bailey, T. and Jain, A. A Note on Distance-Weighted K-Nearest Neighbor Rules.

IEEE Trans. Systems, Man, Cybernetics, 8:311–313, 1978.

[8] Baker, J.E. Reducing Bias and Inefficiency in the Selection Algorithm. In

Proceedings of the Second International Conference on Genetic Algorithms and

their Application, pages 14–21. Hillsdale, 1987.

[9] Barber, C. Bradford and Dobkin, David P. and Huhdanpaa, Hannu. The Quick-

hull Algorithm for Convex Hulls. ACM Trans. Math. Softw., 22(4):469–483,

1996.

[10] Barber, D. Learning From Data. 2006.

359

360 Bibliography

[11] Bilmes , J.A. A Gentle Tutorial of the EM Algorithm and its Application to

Parameter Estimation for Gaussian Mexture and Hidden Markov Models. In-

ternational Computer Science Institute, U.C. Berkeley, April 1998.

[12] Bishop, C.M. Pattern Recognition and Machine Learning. Springer, 2006.

[13] Bishop, C.M. and Svensen, M. and Williams, C.K.I. The Generative Topo-

graphic Mapping. Technical report, Neural Computing Research Group, Aston

University, Birmingham, April 1997.

[14] Y. Bjornsson, M. Enzenberger, R.C. Holte, and J. Schaeffer. Fringe Search:

Beating A* at Pathfinding on Game Maps. In IEEE Symposium on Computa-

tional Intelligence and Games, 2008.

[15] Blackburn, P. and O’Sullican, B. Building Reactive Characters for Dynamic

Gaming Environments. In IEEE Symposium on Computational Intelligence and

Games, 2009.

[16] A. Botea, M. Muller, and J. Schaeffer. Near Optimal Hierarchical Path-Finding.

Journal of Game Development, 1(1):7–28, 2004.

[17] Bowling, M. and Furnkranz , J. and Graepel, T. and Musick, R. Machine Learn-

ing and Games. Machine Learning, 63:211–215, 2006.

[18] Bradley, J. and Hayes, G. Adapting Reinforcement Learning for Computer

Games: Using Group Utility Functions. In IEEE Symposium on Computational

Intelligence and Games, 2009.

[19] Brooks, A.R. Elephants Dont Play Chess. Designing Autonomous Agents: The-

ory and Practice from Biology to Engineering and Back, 1990.

[20] Brooks, R.A. Intelligence Without Representation. Artificial Intelligence,

47:139–159, 1991.

[21] Bum Hee Lee. An Analytic Approach to Moving Abstacle Avoidance Using an

Artificial Potential Field. In IROS ’95: Proceedings of the International Confer-

ence on Intelligent Robots and Systems-Volume 2, page 2482, Washington, DC,

USA, 1995. IEEE Computer Society.

Bibliography 361

[22] Burkey, M. and El Rhalibi, A. A Hybrid AI System for Agent Adaptation in a

First Person Shooter. In IEEE Symposium on Computational Intelligence and

Games, 2009.

[23] Champandard, A.J. AI Game Development. New Riders, 2003.

[24] Combes, C. and Hennessy, R. and Waddington, J. and Roberts, N. and Prima, S.

. An Algorithm To Map Asymmetries of Bilateral Point Clouds.

[25] Connell, Jonathan H. Creature Design With the Subsumption Architecture. In

IJCAI’87: Proceedings of the 10th international joint conference on Artificial

intelligence, pages 1124–1126, San Francisco, CA, USA, 1987. Morgan Kauf-

mann Publishers Inc.

[26] Cover, T.M. and Hart, P. Nearest Neighbour Pattern Classification. IEEE Trans-

actions on Information Theory, 13(1):21–27, 1967.

[27] Curless, B. From Range Scans to 3D Models. ACM SIGGRAPH Computer

Graphics, 33(4):38–41, 2000.

[28] Danielsiek, H. and Stuer, R. and Thom, A. and Deume, N. and Naujoks, B. and

Preuss, M. Intelligent Moving of Groups in Real-Time Strategy Games. In

IEEE Symposium on Computational Intelligence and Games, 2008.

[29] Dawson, C. AI Game Programming Wisdom, chapter Formations, pages 272–

281. Charles River Media, 2002.

[30] de Aquino, R.R.B. and Ferreira, A.A. and Carvalho Jr, M.A and Lira, M.M.S.

and Silva, G.B and Neto, O.N. . Combining Artificial Neural Networks and

Heuristic Rules in a Hybrid Intelligent Load Forecast System. In Artificial Neu-

ral Networks ICANN 2006, volume 4132/2006 of Lecture Notes in Computer

Science, pages 757–766. Springer Berlin / Heidelberg, September 2006.

[31] Dechter, D. and Pearl, J. Generalized Best-First Search Strategies and the Opti-

mality of A*. Journal of the ACM, 32:505–536, 1985.

[32] Denzinger, J. and Winder, C. Combining Coaching and Learning to Create

Cooperative Character Behaviour. In IEEE Symposium on Computational Intel-

ligence and Games, 2007.

362 Bibliography

[33] D. Devigne, P. Mathieu, and J.C. Routier. Teams of Cognitive Agents with

Leader: How To Let Them Some Autonomy. In IEEE Symposium on Computa-

tional Intelligence and Games, 2009.

[34] Dietterich, T.G. Multiple Classified Systems, First International Workshop,

MCS 2000 Cagliari, Italy, chapter Ensemble Methods in Machine Learning,

pages 1–15. Springer Berlin / Heidelberg, June 200.

[35] E. Gokcay and J.C. Principe. A New Clustering Evaluation Function Using

Renyi’s Information Potential. Acoustics, Speech, and Signal Processing, IEEE

International Conference on, 6:3490–3493, 2000.

[36] Erhan Gokcay and Jose C. Principe. Information Theoretic Clustering. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(2):158–171,

2002.

[37] Galli, L. and Loiacono, D. and Lanzi, P.L. Learning a Context-Aware Weapon

Selection Policy for Unreal Tournament III. In IEEE Symposium on Computa-

tional Intelligence and Games, 2009.

[38] Gat, E. Integrating Planning and Reacting in a Heterogeneous Asynchronous

Architecture for Mobile Robots. In SIGART Bulletin 2, pages 70–74, 1991.

[39] Gold, A. Academic AI and Video Games: A Case Study of Incorperating Inno-

vative Academic Research into a Video Game Prototype. In IEEE Symposium

on Computational Intelligence and Games, 2008.

[40] Graham, P. Using LCC with Unreal Tournament. Undergraduate Dissertation,

May 2007.

[41] Green, K.C. Forecasting Decisions in Conflict Situations: a Comparison of

Game Theory, Role-Playing, and Unaided Judgement. .

[42] J. Hagelback and S.J. Johansson. Dealing with Fog of War in a Real Time Strat-

egy Game Environment. In IEEE Symposium on Computational Intelligence

and Games, 2008.

[43] Hammoudi, K. and Dornaika, F. and Paparoditis, N. Extracting Building Foot-

prints Fom 3D Point Clouds Using Terrestrial Laser Scanning At Street Level.

In Stilla U and Rottensteiner F and Paparoditis N, editor, CMRT09, volume

XXXVIII, 2009.

Bibliography 363

[44] D. Harabor and A. Botea. Hierarchical Path Plannig for Multi-Size Agents in

Heterogeneous Environments. In IEEE Symposium on Computational Intelli-

gence and Games, 2008.

[45] Harati, A. and Ahmadabadi, M.N. and Araabi, B.N. Knowledge-Based Multia-

gent Credit Assignment: A Study on Task Type and Critic Information. Systems

Journal, IEEE, 1(1):55–67, Sept 2007.

[46] Hester, T. and Stone, P. Generalized Model Learning for Reinforcement Learn-

ing in Factored Domains. In The Eighth International Conference on Au-

tonomous Agents and Multiagent Systems, 2007.

[47] Heudin, J.C. Virtual Systems and Multimedia, volume 4820/2008, chapter Evo-

lutionary Virtual Agent at an Exhibition, pages 154–165. Springer Berlin / Hei-

delberg, March 2008.

[48] Hill, T. and Marquez, L. and Remus, W. Artificial Neural Network Models for

Forecasting and Decision Making . , Sept.

[49] Hladky, S. and Bulitko, V. An Evaluation of Models for Predicting Opponent

Positions in First-Person Shooter Video Games. In IEEE Symposium on Com-

putational Intelligence and Games, 2008.

[50] Isla, D. AI Game Programming Wisdom 3, chapter Probabilistic Target Track-

ing and Search Using Occupancy Maps, pages 379–387. Charles River Media,

2006.

[51] S. Jang and S. Cho. Evolving Neural NPCs with Layered Influence Map in the

Real-time Simulation Game ’Conqueror’. In IEEE Symposium on Computa-

tional Intelligence and Games, 2008.

[52] Jenssen, R. and Hild II, K.E. and Erdogmus, D. and Principe, J.C. and Eltoft, T.

. Clustering Using Renyi’s Entropy. IEEE, 2003.

[53] Jong, N.K. and Stone, P. Compositional Models for Reinforcement Learning.

In The European Conference on Machine Learning, 2009.

[54] Kaelbling, L.P. and Littman, M.L. and Moore, A.W. Reinforcement Learning:

A Survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

364 Bibliography

[55] Kahn, K. Comparing Multi-Agent Models Composed from Micro-Behaviours.

In Third International Model-to-Model Workshop, 2007.

[56] Kahneman, D. and Tversky, A. and Slovic, P. Judgment under Uncertainty,

Heuristics And Biases. Cambridge University Press, 1982.

[57] Kalyanakrishnan, S. and Stone, P. Learning Complementary Multiagent Behav-

iors:A Case Study. In Proceedings of the RoboCup International Symposium,

2009.

[58] Kasakov, D. and Kudenko, D. Machine Learning and Inductive Logic Program-

ming for Multi-agent Systems . ACAI ,LNAI 2086, pp. 246270, 2001.

[59] Kennedy, J. and Eberhart, R.C. Swarm Intelligence. Morgan Kaufmann, 2001.

[60] Lalond, J.F. and Vandapel, N. and Huber, D. and Hebert, M. Natural Terrain

Classification Using 3-D Ladar Data for Ground Robot Mobility. Journal of

Field Robotics, Volume 23(10), 2006.

[61] Li, Q.; Racine, J.S. Nonparametric Econometrics: Theory and Practice. Prince-

ton University Press, 2007.

[62] Mao, W. and Gratch, J. The Social Assignment Problem. In the 4th Interna-

tional Working Conference on Intelligent Virtual Agents, Kloster Irsee , Ger-

many 2003.

[63] McLachlan, G.J. and Basford, K.E. Mixture Models: Inference and Applica-

tions to Clustering, 1988.

[64] McPartland, M. and Gallagher, M. Creating a Multi-Purpose First Person

Shooter Bot with Reinforcement Learning. In IEEE Symposium on Compu-

tational Intelligence and Games, 2008.

[65] Michalewicz, Z. and Fogel, D.B. How To Solve It: Modern Heuristics. Springer

Verlag, 2000.

[66] C. Miles and S.J. Louis. Case-Injection Improves Response Time for a Real-

Time Strategy Game. In IEEE Symposium on Computational Intelligence and

Games, 2009.

Bibliography 365

[67] Miller, M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learn-

ing. November 13 1990.

[68] Negio, Y., Vincent, P. . Locally Weighted Full Covariance Gaussian Density

Estimation. Technical report, Cirano, University of Montreal, 2004.

[69] Nicolai, G. and Hilderman, R.J. No-Limit Texas Hold’em Poker Agents Created

with Evolutionary Neural Networks. In IEEE Symposium on Computational

Intelligence and Games, 2009.

[70] Noel J. Rode and Andrew P. Paplinski and Andrew P. Papli’nski. Simulation of

a Subsumption Architecture Robot: Genghis, .

[71] Onieva, E. and Pelta, D.A. and Alonso, J. and Milanes, V. and Perez, J. A Modu-

lar Parametric Architecture for the TORCS Racing Engine. In IEEE Symposium

on Computational Intelligence and Games, 2009.

[72] Panait, L. Learning Team Behaviours with Adaptive Heterogeneity. AAMAS,

pages 25–29, July 2005.

[73] Panait, L. and Luke, Sean. Cooperative Multi-Agent Learning: The State of the

Art. Autonomous Agents and Multi-Agent Systems, 11(2):387–434, 2005.

[74] Parker, M. and Bryant, B.D. Visual Control in Quake II with a Cyclic Controller.

In IEEE Symposium on Computational Intelligence and Games, 2008.

[75] Parker, M. and Bryant, B.D. Backpropagation without Human Supervision for

Visual Control in Quake II. In IEEE Symposium on Computational Intelligence

and Games, 2009.

[76] Parzen, E. On the Estimation of a Probability Density Function and the Mode.

Annals of Math. Stats., 33:1065–1076, 1962.

[77] Paul, G. and Liu, D.K. and Kirchner, N. . Robotic Welding, Intelligence and

Automation, volume Volume 362, chapter An Algorithm for Surface Growing

from Laser Scan Generated Point Clouds, pages 481–491. Springer Berlin /

Heidelberg, 2007.

[78] Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space.

1901.

366 Bibliography

[79] Pugh, J. and Martinoli, A. Multi-Robot Learning with Particle Swarm Opti-

mization. AAMAS, May 2006.

[80] R. De Maesschalck, D. Jouan-Rimbaud and D. L. Massart*. The Mahalanobis

distance. ChemoAC, Pharmaceutical Institute, Department of Pharmacology

and Biomedical Analysis, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090

Brussels, Belgium, January 200.

[81] Rasmusen, E. Game and Information: an Introduction to Game Theory. Wiley-

Blackwell, 1989.

[82] Reeder, J. and Miguez, R. and Sparks, J. and Georgiopoulos, M. and Anagnos-

topoulos, G. Interactively Evolved Neural Networks for Game Agent Control.

In IEEE Symposium on Computational Intelligence and Games, 2008.

[83] Riemsdijk, M.B.V. and Dastani, M. and Meyer, J-J.Ch and de Boer, F.S. Goal-

Orientated Modularity in Agent Programming. AAMAS, pages 8–12, 2006.

[84] Risto Miikkulainen and James A. Bednar and Yoonsuck Choe and Joseph

Sirosh. Self-Organization, Plasticity, and Low-Level Visual Phenomena in a

Laterally Connected Map Model of the Primary Visual Cortex. 1997.

[85] Robertson, D. Lightweight Co-ordination Calculus. In Proceedings of the In-

ternational Conference on Logic Programming, Sant-Malo, 2004.

[86] Russel, J.S. and Norvig, P. Artificial Intelligence: A Modern Approach, pages

97–104. Prentice Hall, 2003.

[87] Schaeffer, J. A Gamut of Games. Artificial Intelligence Magazine, 22(3):29–46,

2001.

[88] Scholkopf, B. and Smola, A.J. Learning With Kernels. The MIT Press, 2002.

[89] Schlkopf, B. and Smola, Am and Muller, K.R. Advances in Kernel Methods-

Support Vector Learning, chapter Kernel Principal Component Analysis, pages

327–352. MIT Press Cambridge, 1999.

[90] Sharma, M. and Holmes, M. and Santamaria, J. and Irani, A. and Isbell, C.

and Ram, A. Transfer Learning in Real-Time Strategy Games Using Hybrid

CBR/RL. IJCAI, 2007.

Bibliography 367

[91] Sithole, G. and Vosselman, G. Automatic Structure Detection in a Point-Cloud

of an Urban Landscape .

[92] Spronck, P. Adaptive Game AI. PhD thesis, Maastricht University, 2005.

[93] Spronck, P. and Bakkes, S. Symbiotic Learning in Commercial Computer

Games. 7th International Conference on Computer Games, pages 116–120,

2005.

[94] Spronck, P. and Bakkes, S. and Postma, E. TEAM: The Team-oriented Evo-

lutionary Adaptability Mechanism. Entertainment Computing - ICEC, pages

273–282, 2004.

[95] Spronck, P. and Bakkes, S. and Postma, E. Best-Response Learning of Team

Behaviour in Quake III. Workshop on Reasoning, Representation, and Learning

in Computer Games, pages 13–18, 2005.

[96] Spronck, P. and Ponsen, M. and Sprinkhuizen-Kuyper, I. and Postma, E. Adap-

tive Game AI with Dynamic Scripting. Machine Learning, 63:217–248, 2006.

[97] Spronck, P. and Sprinkhuizen-Kuyper, I. and Postma, E. . Improving Opponent

Intelligence through Machine Learning. Proceedings of the Fourteenth Belgium-

Netherlands Conference on Artificial Intelligence, pages 299–306, 2002.

[98] Spronck, P. and Sprinkhuizen-Kuyper, I. and Postma, E. Online Adaptation of

Computer Game Opponent AI. Proceedings of the 15th Belgium-Netherlands

Conference on Artificial Intelligence, pages 291–298, 2003.

[99] Stanley, K.O. and Bryant, B.D. and Miikkulainen, R. Evolving Neural Net-

work Agents in the NERO Video Game. In IEEE Symposium on Computational

Intelligence and Games, 2009.

[100] Stenning, K. and Lambalgen, M.V. Human Reasoning and Cognitive Science.

MIT Press, 2008.

[101] Stirling, W.C. Social utility Functions-part I: theory. Systems, Man, and Cyber-

netics, Part C: Applications and Reviews, IEEE Transactions, 35(4):522–532,

Nov 2005.

368 Bibliography

[102] Stone, P. Learning and Multiagent Reasoning for Autonomous Agents. In Pro-

ceedings of the 20th International Joint Conference on Artificial Intelligence,

2007.

[103] Stone, P. and Veloso, M. Multiagent Systems: A Survey from a Machine Learn-

ing Perspective. Autonomous Robots, 8:345–383, 2000.

[104] Su, Mu-Chun and Chen, Hsin-Hua and Cheng, Wan-Chi. A Neural-Network-

Based Approach to Optical Symbol Recognition. Neural Process. Lett.,

15(2):117–135, 2002.

[105] Sutton, R. and Barto, A. Reinforcement Learning: An Introduction. MIT Press,

1998.

[106] Thangarajah, J. and Padgham, L. and Sardina, S. Modelling Situations in Intel-

ligent Agents. AAMAS, pages 8–12, May 2006.

[107] Thompson, T. and Levine J. Scaling-up Behaviours in EvoTanks: Applying

Subsumption Principles to Artificial Neural Networks. In IEEE Symposium on

Computational Intelligence and Games, 2008.

[108] Thompson, T. and Levine, J. Realtime Execution of Automated Plans using

Evolutionary Robotics. In IEEE Symposium on Computational Intelligence and

Games, 2009.

[109] Thompson, T. and Milne, F. and Andrew, A. and Levine, J. Improving Con-

trol Through Subsumption in the EvoTanks Domain. In IEEE Symposium on

Computational Intelligence and Games, 2009.

[110] Touzet, C. and Santos, J.F. Q-learning and Robotics. In IJCNN’99. European

Simulation Symposium, Marseille.

[111] Ultsch, A. Emergence in Self-Organizing Feature Maps. In Proceedings Work-

shop on Self-Organizing Maps (WSOM ’07).

[112] van der Blom Spronck, L. and P. and Bakkes, S. Map-Adaptive Artificial In-

telligence for Video Games. 8th International Conference on Intelligent Games

and Simulation, pages 53–60, 2007.

Bibliography 369

[113] van der Heijden, M. and Bakkes, S. and Spronck, P. Dynamic Formations in

Real-Time Strategy Games. In IEEE Symposium on Computational Intelligence

and Games, 2008.

[114] van Hoorn, N. and Togelius, J. and Schmidhuber, J. Hierarchical Controller

Learning in a First-Person Shooter. In IEEE Symposium on Computational In-

telligence and Games, 2009.

[115] Vandapel, N. and Huber, D. and Kapuria, A. and Hebert, M. Natural Terrain

Classification using 3-D Ladar Data. In Proc. IEEE Int’l Conf. on Robotics and

Automation (ICRA), 2004.

[116] Vasta, M. and Lee-Urban, S. and Munoz-Avila, H. RETALIATE: Learning Win-

ning Policies in First-Person Shooter Games. In Proceedings of the Seventeenth

Innovative Applications of Artificial Intelligence Conference (IAAI-07), 2007.

[117] Vastianos G. SCROB - Subsumption Controlled Robotic Bug, 2001.

[118] H. Wang, O.N. Malik, and A. Nareyel. Multi-Unit Tactical Pathplanning. In

IEEE Symposium on Computational Intelligence and Games, 2009.

[119] Westra, J. and Dignum, F. Evolutionary Neural Networks for Non-Player Char-

acters in Quake III. In IEEE Symposium on Computational Intelligence and

Games, 2009.

[120] Witten, I.H. And Frank, E. Data Mining: Practical Machine Learning Tools

and Techniques (Second Edition) . Morgan Kaufmann, June 2005.

[121] Zelen, M. and Severo, N.C. Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables, chapter 26. National Bureau of Stan-

dards, 1964.

Appendix A

Appendix A

A.1 Level Modelling Extra Data

A.1.1 Absolute Zero

A.1.1.0.2 Variance 80: When using variance 80 as in figure A.1 we see that in

cases 1, 3 and 5 the model picks out 1 or both of the bridge sections quite well. The

problem is that sometimes it also adds points from one of the large sections either side

of the bridges to the opposite side creating a large protruding polygonal element. This

is not ideal as given that this creates a shape where a large area of it is not actually

contained within an accessible portion of the level we don’t expect to able to gain

much information from modelling it. The worst cases of this occur in cases 2 and 3.

In all cases the modelling creates a large structure either side of the bridges but often

spits it up into smaller areas. This makes sense as we expect that the internal structure

of this large indoor sections will have some intricate structure so really anything which

applies structure which is sensible to these should give us some modelling power.

A.1.1.0.3 Variance 40: When switching to variance 40, figure A.2, we see that in

some cases the model delivers very good results ,particularly case 4 which is pretty

much exactly what we would look for. In other cases however the results are very

bad. Case 5 in particular has a lot of overlap between sections and not definition of the

bridge elements. There is still some level of separation of the two large areas either

side of the level but for the most part this result is not great.

371

372 Appendix A. Appendix A

Figure A.1: Absolute Zero polygon fitting - Variance 80

A.1. Level Modelling Extra Data 373

Figure A.2: Absolute Zero polygon fitting - Variance 40

374 Appendix A. Appendix A

A.1.1.0.4 Variance 20: The variance 20 model resembles the variance 40 model in

a lot of ways, with cases 3 and 5 again being very good. This said however again cases

1, 2 and 4 are not great with a lack of separation and some modelling of sections which

are mostly inaccessible. The modelling is probably slightly better here though as in

two cases rather than 1 a “Perfect”1 result is achieved.

Figure A.3: Absolute Zero polygon fitting - Variance 20

A.1.1.0.5 Variance 10: When we move to variance 10 the bridge sections are rela-

tively well defined in 3 of the cases (in case 1 the bridge has become part of the end

area however it is still relatively well defined. In case 2 the two end sections are still

well separated but in case 5 this is not so good. The areas bleed into each other and

there is a much higher level of granularity in the modelling of the left hand area than

the right.

A.1. Level Modelling Extra Data 375

Figure A.4: Absolute Zero polygon fitting - Variance 10

Figure A.5: December - 3D Point Data

376 Appendix A. Appendix A

A.1.2 December

December has two main sections either side of a large area in the middle of the level

which contains a boat. The boat is not accessible but it can be used as a platform to

link the two main sections.

Magnitude = 20.1869 PCA Magnitude of level = 1.3945869990510722

Figure A.6: December - Expected Polygons

A.1.2.0.6 Variance 80: In some cases the large middle section is at least obvious

but it seems to span a lot more area than would be expected meaning that the two

sections on either side of it are not very well defined.

A.1.2.0.7 Variance 40: This has some of the same problems as the previous setting.

Occasionally the middle section is also split into two but this as more acceptable than

when it is simply far too large

A.1.2.0.8 Variance 20: Once again this has similar problems. If we view the mid-

dle section from the view in case 3 we can see that the nodes making up the ’roof’ of

this middle section do actually expand out quite far into the other sections so our initial

assumption that it is small may be quite difficult to ground on the basis purely of the

3D points which the algorithm is working from.

A.1.2.0.9 Variance 10:
1By perfect here we simply refer to the result as the being acceptable to a human observer with some

knowledge of the level layout.

A.1. Level Modelling Extra Data 377

Figure A.7: December polygon fitting - Variance 80

378 Appendix A. Appendix A

Figure A.8: December polygon fitting - Variance 40

A.1. Level Modelling Extra Data 379

Figure A.9: December polygon fitting - Variance 20

380 Appendix A. Appendix A

Figure A.10: December polygon fitting - Variance 10

A.1. Level Modelling Extra Data 381

A.1.2.0.10 Variance 5: This is not particularly good. It suffers from the same

problem as the previous variances.

Figure A.11: December polygon fitting - Variance 5

A.1.2.0.11 Conclusions from visualisation: The visualisations offer no clear cut

winner here. Variance 10 had one acceptable case but on the basis that the nodes

expand out quite far into the other sections anyway. It may be acceptable to choose

either 20 or 40 as an acceptable setting on the basis of visualisation.

In some cases the large middle section is at least obvious but it seems to span a lot

more area than would be expected meaning that the two sections on either side of it are

not very well defined. Occasionally the middle section is also split into two but this is

more acceptable than when it is simply too large.

A.1.2.0.12 Conclusions from statistics: The statistics show that variance 10 has

the lowest median cluster size and the second lowest standard deviation. Given that

this was the only variance setting which generated a visually acceptable case and the

fact that we were trying to make the section in the middle smaller it seems that this

might be a good choice.

Observing figure 7.7

A.1.3 Deck17

Deck 17 is a largely indoor level with the main feature being in the middle section of

the level where there is a large bridge going from one side of the level to the other with

smaller bridge going over the top of the central bridge. This area should show up in

the modelling, I don’t expect the modelling of the bridges to be very good but I do

382 Appendix A. Appendix A

Figure A.12: Statistics Graph for December

Figure A.13: Deck 17 - 3D Point Data

A.1. Level Modelling Extra Data 383

expect this area to at least be separated form the rest of the level which is essentially

just tunnels. The rest of the level is not terribly well defined in the point cloud so I

expect this just to generate random areas which are at least semi-sensible.

Magnitude = 5.33824

PCA Magnitude of level = 0.1421278849668724

Figure A.14: Deck 17 - Expected Polygons

A.1.3.0.13 Variance 80: There is no clear definition of the central area but the

actual polygons generated all seem well separated and give a concise representation of

the 3D point cloud.

A.1.3.0.14 Variance 40: Here there is less separation between the sections but in

cases 3, 4 and 5 the middle section is represented and well defined.

A.1.3.0.15 Variance 20: The results here are variable , in some cases the middle

section is well represented but in others it is not and a large amount of overlap is seen.

A.1.3.0.16 Variance 10 Visualisation: In all cases the middle section is well rep-

resented. There is still overlap but it is less severe and makes more sense with reference

to the level.

A.1.3.0.17 Variance 5: The middle section is relatively well represented here and

there is little overlapping as in variance 10.

384 Appendix A. Appendix A

Figure A.15: Deck17 polygon fitting - Variance 80

A.1. Level Modelling Extra Data 385

Figure A.16: Deck17 polygon fitting - Variance 40

386 Appendix A. Appendix A

Figure A.17: Deck17 polygon fitting - Variance 20

A.1. Level Modelling Extra Data 387

Figure A.18: Deck17 polygon fitting - Variance 10

388 Appendix A. Appendix A

Figure A.19: Deck17 polygon fitting - Variance 5

A.1. Level Modelling Extra Data 389

A.1.3.0.18 Conclusions from statistics: The statistics show that variance 10 has

the lowest standard deviation in the median cluster size but also that variance 5 gener-

ates a lower number of clusters. This suggests that if we wish larger clusters then we

should probably use variance 10 but if we wished larger numbers of clusters then vari-

ance 5 would be a better idea. I personally feel that with reference to the visualisations

the results in variance 10 are slightly better than those of 5.

Figure A.20: Statistics Graph for Deck17

A.1.4 Face3

Figure A.21: Face 3 - raw 3D point data

Face 3 is a map similar in style to Absolute Zero. It has two large towers at either

end of the level which are connected by a dual pathway between them. Again these

390 Appendix A. Appendix A

represent the features that we wish to work with. It also worth noting that each tower

has a small section towards the top which appears, in the navigation point set, to be

separated from the lower section but in actual fact is an internal area within the upper

region of the towers.

Magnitude = 22.27714 PCA Magnitude = 0.11281022398279406

Figure A.22: Face 3 - Expected Polygons

A.1.4.0.19 Variance 80: We can see from figure A.23 that at variance 80 the path-

ways are not particularly well defined. The model does usually reflect relatively well

the two tower areas but in general they tend to to envelope the paths in them aswell

which reduces the level of granularity of the modelling in these two areas. In some

cases one of the floating areas above the towers are seen and in cases 4 and 5 the

modelling of one tower is much better than the other.

A.1.4.0.20 Variance 40: The modelling is pretty similar to the variance 80 model

except in case 2 where the two path ways are represented much better and the floating

sections above the towers are both reasonably well defined. These floating sections are

also relatively well represented in case 1.

A.1.4.0.21 Variance 20: At variance 20 the paths are more defined and the separa-

tion of the two towers in general better. In cases 4 and 5 there is still a point from one

tower getting caught in the other’s hull which isn’t so good.

A.1. Level Modelling Extra Data 391

Figure A.23: Face 3 polygon fitting - Variance 80

392 Appendix A. Appendix A

Figure A.24: Face 3 polygon fitting - Variance 40

A.1. Level Modelling Extra Data 393

Figure A.25: Face 3 polygon fitting - Variance 20

394 Appendix A. Appendix A

A.1.4.0.22 Variance 10: This is similar to the 20 case but there is only one case

where there is a significant overlap between the two towers sections. The two floating

sections above the towers are slightly less well defined in this model.

Figure A.26: Face 3 polygon fitting - Variance 10

A.1.4.0.23 Variance 5 Visualisation: This model seems to be the most stable.

The separation of the two towers is well preserved and in most cases the two floating

sections above the towers are quite well represented. Case 4 has the best representation

of the paths of any of the variance values. We are still seeing the phenomenon however

that usually one tower is better represented than the other. This is probably a product

of the random placement of the initial seeds. It is difficult to think of a way of placing

these initial seeds which would reduce dependency on where they were placed without

prior knowledge of the level arrangement.

A.1.4.0.24 Conclusions from visualisation: If we take the results into considera-

tion then the modelling using variance 5 seems to be the best selection for this level.

Larger values don’t seem to have the level of granularity of modelling needed to

differentiate the path sections. In these cases the paths become enveloped within the

A.1. Level Modelling Extra Data 395

Figure A.27: Face 3 polygon fitting - Variance 5

396 Appendix A. Appendix A

tower sections whole level begins to look like to blobs and not much else. Occasionally

a particular artefact also occurs where one point within a tower gets caught in the

other’s hull. These causes a large bridge section across the level. In actual fact this

will not cause too many real problems in practice for us but it symbolises a small

inadequacy in the modelling procedure at these variance values that is not ideal.

A.1.4.0.25 Conclusions from statistics: Observing figure 7.7 we see that for all

variance values the average number of clusters generated is roughly the same. The

standard deviation is also relatively low across the board so we can conclude that each

process does in fact generate roughly the same number of clusters for this level with the

main difference between each variance value being the size and shape of clusters rather

than number of clusers generated We also see that in most cases very few degenerate

clusters are generated from the process showing that our algorithm is relatively stable

in the sense of not failing. The standard deviation lulls as we go down the variances

from 40 but peaks again at 5 so this may suggest that 10 or 20 are better values as they

appear more stable. The visualisations, do not, however seem to bare this out. Variance

5 definitely seems to be the best value for this level.

Figure A.28: Face 3 - Statistics

A.1.5 Face Classic

Face classic is very similar to face 3 except that it has many less path nodes and is

slightly simpler. It was the original version of face contained in the original Unreal

A.1. Level Modelling Extra Data 397

Figure A.29: Face Classic - 3D point data

Tournament game. As such it is interesting to see how our algorithm works on this

version of the same level.

Magnitude = 16.5066 PCA Magnitude = 0.18334338164360908

Figure A.30: Face Classic - Expected Polygons

A.1.5.0.26 Variance 80: The separation of the different sections here is much bet-

ter than for face3. The path ways are better defined. The main problem that is still

apparent is one of the towers having a point in the other leading to modelling of parts

of the level which cannot have play in them.

A.1.5.0.27 Variance 40: This is better than for the 80 variance as the separation

of the towers is again better. The path modelling is also better here than for 80. The

floating sections above the towers are also more consistently picked up upon.

A.1.5.0.28 Variance 20: These are again showing more improvement with cases 4

and 5 in particular being very well defined and representing all the key features very

sharply.

398 Appendix A. Appendix A

Figure A.31: Face Classic polygon fitting - Variance 80

A.1. Level Modelling Extra Data 399

Figure A.32: Face Classic polygon fitting - Variance 40

400 Appendix A. Appendix A

Figure A.33: Face Classic polygon fitting - Variance 20

A.1. Level Modelling Extra Data 401

Figure A.34: Face Classic polygon fitting - Variance 10

402 Appendix A. Appendix A

A.1.5.0.29 Variance 10:

A.1.5.0.30 Variance 5: There is less separation here than in the previous variance

value. There is also more evidence of the rogue point in one of the towers being

connected to the other tower, which we are trying to avoid.

Figure A.35: Face Classic polygon fitting - Variance 5

A.1.5.0.31 Conclusions from visualisation: From the visualisation it is relatively

obvious that the best value for the variance is 10. This has the best set of feature

representations. Overall the separation of the key sections is much better than for

face3. The pathways are better defined.

When we move down to a variance value of 5 some of the less desirable charac-

teristics of the modelling procedure begin leaking back into the visualisations. Most

notably one of the points in one tower becoming attached to the cluster for the other

tower.

A.1.5.0.32 Conclusions from statistics: The statistics graph seems to suggest that

there is very little to choose between any of the variance values. With this in mind

A.1. Level Modelling Extra Data 403

it seems best to go with a variance value of 10 to match the conclusions from the

visualisation data. Again there are very few degenerate clusters generated.

Figure A.36: Face Classic - Statistics

A.1.6 Maul

A.1.6.0.33 Variance 80: The model here tends to separate the path into several

smaller sections. The end sections are at least quite well separated from each other.

Occasionally the usual modelling artefact occurs with one point from one end section

becoming absorbed into the other end’s polygon.

A.1.6.0.34 Variance 40: The results here look pretty much the same as for the

variance 80 section and the same modelling artefacts present themselves regularly.

Case 3 is a good example of what might be an acceptable modelling output for this

level. This is also the only case so far which has captured correctly the narrowing of

the path in the centre area.

A.1.6.0.35 Variance 20: Apart from case 1 these results look worse as a whole.

The sections are beginning to develop a large amount of overlap and ill-defined sepa-

ration.

A.1.6.0.36 Variance 10: In this model the artefact is present in most cases but the

actual separation of the polygons is generally pretty good. Case 1 also manages to

represent the narrowing of the path.

404 Appendix A. Appendix A

Figure A.37: Maul polygon fitting - Variance 80

A.1. Level Modelling Extra Data 405

Figure A.38: Maul polygon fitting - Variance 40

406 Appendix A. Appendix A

Figure A.39: Maul polygon fitting - Variance 20

A.1. Level Modelling Extra Data 407

Figure A.40: Maul polygon fitting - Variance 10

408 Appendix A. Appendix A

A.1.7 Moondragon

A.1.7.0.37 Variance 80: Overall the modelling here isn’t too bad. Some sections

are ill defined but the temples at either end of the level are relatively well defined. The

path sections often overlap or are badly defined but in general the models here don’t

look too bad.

Figure A.41: Moon Dragon polygon fitting - Variance 80

A.1.7.0.38 Variance 20: This variance settings it noticeably worse than the 40

setting. The sections generated are much less well defined and very often are very

large and over-reaching with little representation of the key features.

A.1.7.0.39 Variance 10: Again this not so good, this setting is very similar to that

of 20.

A.1.7.0.40 Variance 5: This section gives slightly better results than for 10 and 20

but still not as good the 40 setting. The sections are better separated here but there are

more artefacts of the modelling than for variance 40.

A.1. Level Modelling Extra Data 409

Figure A.42: Moon Dragon polygon fitting - Variance 20

410 Appendix A. Appendix A

Figure A.43: Moon Dragon polygon fitting - Variance 10

A.1. Level Modelling Extra Data 411

Figure A.44: Moon Dragon polygon fitting - Variance 5

412 Appendix A. Appendix A

A.1.8 Sulphur

Figure A.45: Sulphur - 3D Navigation Point Data

Sulphur is a level set on an off-shore oil rig with 4 levels. The final and highest

level floats above the main platform and is only accessible from jump pads on the level.

Magnitude = 4.69375 PCA Magnitude = 0.01128480057741909

Figure A.46: Sulphur - Expected Polygons

A.1.8.0.41 Variance 80: In general the modelling here is not great. The problem is

that, form a modelling perspective, there is more deviation between the nav points on

a lateral level than there is between the different levels. This leads to polygons which

span various levels. In some cases the section which floats above the level has been

separated form the rest of the level. There is then a large amount of polygons which

A.1. Level Modelling Extra Data 413

are separated from each other but which span the other 3 areas of level. These do seem

relatively well space though to represent the actual level so these may still be useful.

Figure A.47: Sulphur polygon fitting - Variance 80

A.1.8.0.42 Variance 40: The section above the level is slightly better separated

form the level but in general the polygonal modelling in the actual main part of the

level is pretty much the same.

A.1.8.0.43 Variance 20: this is the same as the variance 40 section except that

the polygons in the level look slightly less well separated with one larger polygon

representing most of the rest of the level.

A.1.8.0.44 Variance 10 Visualisation: This model is probably the best as the float-

ing section is present in most cases and the polygons in the lower part of the level are

spaced out well and representative of the level with very few points belonging to de-

generate clusters.

414 Appendix A. Appendix A

Figure A.48: Sulphur polygon fitting - Variance 40

A.1. Level Modelling Extra Data 415

Figure A.49: Sulphur polygon fitting - Variance 20

416 Appendix A. Appendix A

Figure A.50: Sulphur polygon fitting - Variance 10

A.1. Level Modelling Extra Data 417

A.1.8.0.45 Variance 5: This model is worse than the others as here is no real

separation between the the top section and the rest of the level and the lower areas of

the level area not well separated from each other.

Figure A.51: Sulphur polygon fitting - Variance 5

A.1.8.0.46 Conclusions from visualisation: Again the visualisations seem to show

a value of 10 as being optimal for modelling purposes. Although not perfect with re-

gards to the difference sections of the level this variance still yields some polygons

which seem to be sensibly separated enough to aid modelling.

The variance 10 model does slightly better at picking out section 4 than the others,

this suggests it is best as section 4 is probably the most notable feature of the level.

A.1.8.0.47 Conclusions from statistics: The statistics graph also suggests that

variance of 10 generates the smallest average number of clusters which may be in-

dicative of a stable point in the modelling process.

418 Appendix A. Appendix A

Figure A.52: Sulphur - Statistics

A.1.9 Sun Temple

A.1.9.0.48 Variance 80: The end two sections are very well picked up but the

whole area in the middle is not terribly well defined and tends to become a bit messy

with no distinct pattern to the actual sections and a lot of overlapping.

A.1.9.0.49 Variance 40: Again the middle sections are not perfect but the blurring

is less severe and the generated areas seem more useful. In case 5 the end section has

become attached to the polar opposite section which is not so good.

A.1.9.0.50 Variance 20: This variance setting leads to models which are roughly

similar to those in the variance 40 section

A.1.9.0.51 Variance 5: This is very similar to the variance 10 models but the sep-

aration is probably slightly more so this model probably represents the best choice so

far.

A.1. Level Modelling Extra Data 419

Figure A.53: Sun Temple polygon fitting - Variance 80

420 Appendix A. Appendix A

Figure A.54: Sun Temple polygon fitting - Variance 40

A.1. Level Modelling Extra Data 421

Figure A.55: Sun Temple polygon fitting - Variance 20

422 Appendix A. Appendix A

Figure A.56: Sun Temple polygon fitting - Variance 5

Appendix B

Appendix B

B.1 Area Correlation Model Extra Data

B.1.1 TDM

B.1.1.1 Sulphur

Sulphur Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 60 43.8

Standard Deviation from Score 0 5.03

Figure B.1: Sulphur Area Correlation Model Trials

Figure B.2: Sulphur Area Correlation Model Statistics

423

424 Appendix B. Appendix B

B.1.1.2 Antalus

Antalus Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 60 17.6

Standard Deviation from Score 0 4.27

Figure B.3: Antalus Area Correlation Model Trials

Figure B.4: Antalus Area Correlation Model Statistics

B.1.2 CTF

B.1.2.1 MoonDragon

Moon Dragon Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 6 0

Standard Deviation from Score 0 0

Figure B.5: Moon Dragon Area Correlation Model Trials

B.1. Area Correlation Model Extra Data 425

Figure B.6: Moon Dragon Area Correlation Model Statistics

Grassy Knoll Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 6 0.2

Standard Deviation from Score 0 0.4

Figure B.7: Grassy Knoll Area Correlation Model Trials

Figure B.8: Grassy Knoll Area Correlation Model Statistics

426 Appendix B. Appendix B

B.1.2.2 GrassyKnoll

B.1.3 DD

B.1.3.1 SunTemple

Sun Temple Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 0.4 6

Standard Deviation from Score 0.48 0

Figure B.9: Sun Temple Area Correlation Model Trials

Figure B.10: Sun Temple Area Correlation Model Statistics

B.1.3.2 ScortchedEarth

Scortched Earth Area Correlation Trials, 5 Trial Averages

Enemy Value Our Value

Average Score 2.2 6

Standard Deviation from Score 1.72 0

Figure B.11: Scortched Earth Area Correlation Model Trials

B.1. Area Correlation Model Extra Data 427

Figure B.12: Scortched Earth Area Correlation Model Statistics

Appendix C

Appendix C

C.1 Flag Approach Route Modelling

C.1.1 Evaluation 1

C.1.1.1 GrassyKnoll

Figure C.1: Approach Path For Grassyknoll

Figure C.2: Return Path For Grassyknoll

429

430 Appendix C. Appendix C

C.1.1.1.1 Figure C.1 shows the main path the bot takes to the enemy flag. Figure

C.2 shows the route back from the enemy flag to home base.

C.1.1.1.2 Variance: 250 In both the approach and return cases the path actually

starts out relatively well defined but as more reinforcements occur the path begins to

get very narrow and a steep ridge develops. This is bad as we would like the smooth

influence to be shown as in the case of the 500 model for citadel.

Figure C.3: Approach Density Model, with Variance 250, For Grassyknoll

Figure C.4: Return Density Model, with Variance 250, For Grassyknoll

C.1.1.1.3 Variance: 500 Again the variance 500 model is much better with a smoother

influence over the whole level. The return path is possibly slightly narrower than would

be liked as the level progresses but there is still some level of influence. It should also

be noted that the threshold has been put to a higher level for the right hand visualisa-

tion in both the 250 and 500 cases showing that the 500 model maintains its spread at

a higher level of threshold.

C.1. Flag Approach Route Modelling 431

Figure C.5: Approach Density Model, with Variance 500, For Grassyknoll

Figure C.6: Return Density Model, with Variance 500, For Grassyknoll

432 Appendix C. Appendix C

C.1.1.1.4 Variance: 1000 The model does give very good smooth influence over

the nodes in both the low and high threshold cases but in the approach model it does

seem to loose a portion of the path at one point. This is again down to the path re-

inforcing too much the nodes around the path. As such if the path curves round a

corner it can strongly reinforce the nodes which are close to both edges of the middle

of the curve. The rescaling for visualisation purposes then ends up possibly loosing

the section of the path which was on the actual path.

Figure C.7: Approach Density Model, with Variance 1000, For Grassyknoll

Figure C.8: Return Density Model, with Variance 1000, For grassyknoll

C.1.1.2 LostFaith

C.1.1.2.1 Figure C.9 shows the main path the bot takes to the enemy flag and back.

C.1.1.2.2 Variance: 250 The model here is suffering from the most severe case of

the steep ridge syndrome discussed throughout this section. At high thresholds almost

no reinforcement bar a few specific nodes is seen and any gradient is very narrow.

C.1. Flag Approach Route Modelling 433

Figure C.9: Approach Path For LostFaith

Figure C.10: Approach Density Model, with Variance 250, For LostFaith

Figure C.11: Return Density Model, with Variance 250, For LostFaith

434 Appendix C. Appendix C

C.1.1.2.3 Variance: 500 This case is much better as the influence is still biassed to

one side of the section in the middle of the level but not so biassed that it doesn’t pass

over some influence to the nodes around the area.

Figure C.12: Approach Density Model, with Variance 500, For LostFaith

Figure C.13: Return Density Model, with Variance 500, For LostFaith

C.1.1.2.4 Variance: 1000 In the variance 1000 case all of the threshold levels had

to be set very high in order to see any influence or spread across the level. Even when

the influence was visible it is, again, to non-discriminative. The path either side of the

middle section is highly reinforced when in fact only one side should be as this is the

path taken.

C.1.2 Evaluation 2

C.1.2.1 GrassyKnoll

The GrassyKnoll results are particularly interesting. In both of the models the path

taken is initially picked out as bad via negative reinforcement but then reverses at a

C.1. Flag Approach Route Modelling 435

Figure C.14: Approach Density Model, with Variance 1000, For LostFaith

Figure C.15: Return Density Model, with Variance 1000, For LostFaith

Figure C.16: Approach Route Model For GrassyKnoll

436 Appendix C. Appendix C

Figure C.17: Return Route Model For GrassyKnoll

Figure C.18: Approach Route Model For LostFaith

Figure C.19: Return Route Model For LostFaith

C.1. Flag Approach Route Modelling 437

Figure C.20: Approach Route Model For GrassyKnoll

Figure C.21: Return Route Model For GrassyKnoll

438 Appendix C. Appendix C

later point in the match to reflect a successful capture. Towards the end of the match the

approach model becomes very general and has little deviation across the level except

a notable bad point within the enemy base. This makes sense as we would expect the

most deaths to occur round the enemy flag point. This effect is somewhat mirrored in

the return model as the home flag base is picked out as bad due to the most number of

deaths occurring there. Even so his model eventually settles down into a solid model

of the path taken.

C.1.2.2 LostFaith

Figure C.22: Approach Route Model For LostFaith

Figure C.23: Return Route Model For LostFaith

The approach model for Lost Faith is not the best. In particular no route through

the central area is strongly reinforced. The side of the enemy base is slightly favoured

on one side but the bias is not that strong. The home base is strongly reinforced but

with the starting point of almost all paths beginning in that area this does not surprise.

The return model fairs slightly better. It start out quite general but quickly settles

more into the situation shown in case 2. This picks out a side of the route through

C.1. Flag Approach Route Modelling 439

the central area of the level as being better. This is important because the central

area of this level is an underground cave section separated by walls. Taking the most

reinforced side of this cave is very important to navigating this level.

Appendix D

Appendix D

D.1 Domination Point Approach Route Modelling

D.1.1 Outrigger

Figure D.1: Domination Point Approach Route for Point A, Outrigger Level

D.1.1.0.1 It is much harder to discern any real information regarding performance

on this level. The route is reinforced but the nodes are so tight together that determining

any particular routes is quite difficult. Situated results for this level would tell a much

more interesting story as the bot’s response to negative reinforcement would allow the

other areas of the level to be explored.

441

442 Appendix D. Appendix D

Figure D.2: Domination Point Approach Route for Point B, Outrigger Level

