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Abstract

Porous media and transport within them play important roles across industries and

beyond, including in water and pollutant transport in soils, flow in petroleum and

geothermal reservoirs, and water treatment in deep bed filtration to list just a few key

examples. The study of such flows has traditionally been dominated by experiment.
Simulation is, however, playing an increasing role in this field both because of the
advent of X-ray microtomography (XRMT), which now permits the mapping of pore
structures down to sub-micrometer resolution, and the ubiquitous availability of

powerful compute clusters built on cheap commodity machines. Simulation in this
context involves solving for the flow field in a model of a porous solid derived from
XRMT - in this sense, the simulations mimic reality and are hence termed by us as

explicit numerical simulation (ENS). The particular challenge in doing ENS is

correctly solving the flow problem in extremely complex geometries. This challenge
has led to the use of various methods such as lattice-gas automata (LGA) and the
related lattice-Boltzmann method (LBM), which are particularly suited to resolving
flows in complex geometries. All of this work to date has been restricted to low

velocity flows termed Darcy flows because of limitations associated with LGA,
LBM and other methods. There is, however, a range of applications where higher

speed flows are of relevance and hence extension of the ENS approach to higher

speed flows in porous media is important. This has been done here using an LGA
model that does not include the deficiency of more standard LGA models that
restricts them to slow flows. The thesis first details this little-known and used LGA

model before demonstrating it on a range of benchmark problems. The model is then
used to predict ab initio the hydrodynamic properties of a random packing from the

Darcy to the turbulent regime. Comparison with experiment is excellent. The

approach is then used to study, for the first time to our knowledge, the interstitial
flow patterns from the Darcy to turbulent regimes.

Keywords: Lattice-Gas Automata (LGA), Galilean-invariant LGA, single-phase

flow, random sphere packing, porous media
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NOMENCLATURE
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P dynamic viscosity of the fluid
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Chapter 1

Introduction

The phenomena of flow through porous medium occur in diverse environments in

nature as well as in science and engineering applications. The process of fluid flow in

porous media influence almost all fields of science and engineering such as

agricultural, biomedical, ceramic and soil sciences, chemical and petroleum

engineering, nuclear reactors and waste effluent management. The examples of

relevant technological applications include packed bed and membrane reactors,

filtration, high efficiency heat exchangers and porous bearings. Dullien (1992) and

Sahimi (1995) presented extensive examples for these applications. The study of

flow in porous media plays a crucial role in the design and construction of many

state-of-art, high end technological applications like biomedical (e.g. artificial organ

systems), alternate energy sources (underground geothermal wells) and nuclear

technology (reactors and treatment ofwaste nuclear effluents).

1.1 Background

A porous medium is a material that consists of solid matrix with an interconnected

void. The flow behaviour in porous media is very complex due to interactions

between fluid and particles, particles and column wall and fluid and column wall.

Flow hydrodynamic parameters, many of which have not yet been completely

described, can play a crucial role in determining the design and performance ofmany

1



industrial applications. Consequently they gain great importance in the field of

research.

1.1.1 Historical developments

In the end of 19th century, engineers and scientists were working to understand the

complex interactions between the porous medium and the fluids (Darcy 1856 and

Slichter 1899). Darcy's experiments in creeping flow defined the permeability as

conductivity to fluid flow in porous material and it is given by the coefficient of

linear response of the fluid to a non-zero pressure gradient in terms of the flux

induced. This is one of the most important laws governing the flow properties in

porous media.

Numerous theoretical and experimental studies have attempted to investigate the

performance of fluid flow in porous media. Theoretical estimates of macroscopic

rock properties often resulted in error (Bear 1972 and van Genabeek et al. 1996). The

lack of success of these models may be due to the result of faulty flow models,

inadequate representation of pore space or both. Another hurdle in this model is the

difficult task of defining the interface between a porous solid and surrounding bulk

fluid (Nield 1991).

It is extremely challenging to set up experiments to determine the parameters

associated with these models (Vafai et al. 1990, Nield 1991, Vafai 1995). They are

very expensive and time consuming, and these experiments do not allow us to

observe the flow hydrodynamics at microscopic level.
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Modelling the porous media and simulating the flow with the use of computers is an

alternative means to study the phenomena. They are being increasingly employed

now, mainly owing to the rapid advances in the computer technology. They are more

economical and faster with the added advantage of flexibility to change the

characteristics of the media, fluid or flow.

1.2 Motivation

Flow in porous media is often modelled by Darcy's Law in which the porous

medium is characterised by a single transport property, the permeability. This

characteristic has long been determined directly using experiments or estimated by

solving the Stokes fluid flow problem on structural representations of the media. The

advent of relatively inexpensive bench-top microtomography systems in the past

decade means the permeability of porous media can now be predicted using the latter

approach (Humby et al. 2002). The same cannot be said for the multiple transport

properties that characterise flows beyond Darcy regime - the Forchheimer and

turbulent regimes. Determination of these characteristics and the related problems of

identifying the Reynolds Numbers associated with the transitions between the

different flow regimes and the heat and mass transfer characteristics are still

dominated by experiment.

Many different models of fluid transport in porous media have been described in the

literature (Dullien 1992 and Sahimi 1995). These models may be broadly grouped

into two categories; continuum and discrete approaches which are described in more

detail in the next chapter.

3



One of the techniques in discrete modelling is Lattice Gas Automata (LGA) which

has been used to simulate many different flow situations (Wolfram 1986, Frisch et al.

1987, Chen et al. 1995, Biggs et al. 1998). The LGA model has several advantages.

It permits

• fundamental studies not possible via experiment

• identification of engineering closure models

• calculation of associated parameters without extensive experimentation

These greatly enhance the scope for low cost and rapid design of novel and

innovative technologies. Biggs et al described the LGA as Explicit Numerical

Simulation (ENS) as it models all the important phenomena explicitly rather than in a

mean field or average way.

We have searched the literature for the application of LGA for flows beyond Darcy

regime. Existing literature of LGA based simulation for non-creeping flow through

porous medium provides limited information. There were only very few studies that

could be identified in this area of research. However, they are rudimentary or simple

with very limited details. One of the most advanced studies in this area is LGA

model of Tiexeira (1992). Unfortunately the details surrounding the implementation

of this model are not available in open literature.

The main aim of this research is to develop a LGA model which could characterise

the fluid dynamics of non-Darcy flow region and extend it to study the interstitial

flow phenomena. We decided to implement the LGA model of Tiexeira which gains

the Galilean invariance with our own coding. The implementation of this Galilean
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invariant lattice gas automata (GI-LGA) model of Tiexeira and validation with a

variety of benchmark problems is described in the first part of the research. The

second part is aimed at ab initio predictions of hydrodynamic properties of flow in

random packing from Darcy to turbulent regime. The approach is then used to study,

for the first time to our knowledge, the interstitial flow patterns from Darcy to

turbulent regimes.

1.3 Objectives

The main objectives of the research are as follows:

• To examine the existing single speed two-dimension (2D) and three-dimension

(3D) lattice gas automata models for creeping flow simulation and assess their

suitability for non-creeping flows.

• Implement the multi speed GI-LGA model of Teixeria for single-phase non-

creeping flows.

• Use GI-LGA model to predict ab initio hydrodynamic properties of porous

media and compare the simulation with existing experimental results.

• Use GI-LGA to characterize non-creeping single-phase flow in porous media.

1.4 Outline of the Thesis

Models of porous media are reviewed in chapter 2. It outlines the development of

various modelling approaches for single phase flows in porous materials.

Chapter 3 describes the various types of lattice gas automata methods in detail. It

covers the implementation and validation of LGA simulations. The strength of LGA
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models is discussed and it also outlines the significant disadvantage of this model;

they are restricted to relatively slow flows due to non-Galilean invariance. The

method to overcome this issue is also discussed.

Chapter 4 covers the detailed description of Galilean invariant LGA model and its

implementation. Validation of GI-LGA simulation is presented. This model is

applied to fluid dynamics experiments such as flow between parallel plates and flow

past a circular cylinder to validate the system. The results are analysed and compared

with literature.

In chapter 5, the GI-LGA model is applied for simulation of single-phase flow in

random packing of spheres. Correlations between macroscopic parameters of

transport phenomena in porous media are determined. Comparisons of the simulation

results with existing literature are presented.

We have attempted to characterize the interstitial flow field for the above

simulations (flow in a random packing of spheres) in chapter 6. The study focuses on

Darcy, Forchhemier, and turbulent regimes. The effect of averaging and sub-volume

size is analyzed.

Chapter 7 summarises all the findings from the above chapters and the conclusions

based on the findings of this research is discussed. The areas of improvements and

potential extensions of this study is also identified and discussed.
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Summary

LGA based explicit numerical simulations (ENS) has been developed substantially

and used in the study of fluid flow in porous media. They are often very useful for

the fundamental study of systems. It may eliminate the need for extensive

experimentation; this will be replaced by ENS simulation and a small targeted

experimentation for the purposes of model validation. It will also help to establish

the performance of the system at the process level. This ENS method shows a

promising future for use in simulation systems with a great potential capability to

predict the performance.
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Chapter 2

Literature Review

Introduction

The complexity of porous media and the varying properties of fluids flowing

through them make it challenging to model such systems and arrive at an

analytical solution. Modelling of solid-fluid flows requires methods that

adequately define the discrete nature of the solid phase and the interaction

between solids and fluids. Numerous models of fluid flow in porous media can

be developed from either microscopic or macroscopic properties. This chapter

begins with a synopsis of hydrodynamic parameters and brief review of

continuum and discrete approaches followed by a review of various models in

flow through porous media.

2.1 Hydrodynamic parameters

Properties such as porosity and permeability constitute fundamental

macroscopic parameters by which a porous media can be quantitatively

described. Other properties and concepts can be developed from these

fundamental parameters. Porosity is defined as the ratio of the void space to the

bulk volume of the rock multiplied by 100 to express in percent (Craft et al.

1997) and it is written as

Where Vp is the volume of pores, Vs is the volume of solids and Vb is the bulk

volume.
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Permeability is more complex to define. An understanding of fluid flow through

porous medium will help to define this property. The motion of fluid can take a

variety of forms ranging from simple flows such as laminar flow in a pipe to

more complex flows and turbulence. It is described by the basic hydrodynamic

formula, the continuity equation

^ + V.(pM) = 0 (2.2)ot

and the Navier-Stokes equation

+ V.(puu) = -Vp + ju572u + pg (2.3)
dt

where p is the dynamic viscosity of the fluid, velocity u , density p, pressure p and

g is the acceleration due to gravity. In the case of stationary flow with very low

inertial forces, the left-hand side of equation (2.3) is negligible, and it can be

simplified as follows

Vp- pg = juV2u (2.4)

This relation has great value in theoretical and experimental work related to

fluid flows in porous media, where fluid velocities are low.

In the flow systems described by the Stokes equation, the pressure drop is

directly proportional to the fluid velocity. The fluid motion is also smooth and

regular, i.e. the flow is laminar. In 1856, Darcy first demonstrated the

characteristics of fluid conductivity of porous media. The following equation

which defines permeability in terms of measurable quantities is called Darcy's

law (Dullien et al., 1989; Craft et al. 1997, Ramaswamy et al. 2004)

k
q = Vp (2.5)
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where q is the volumetric fluid flow through the medium and k is the

permeability coefficient. This permeability is a measure of the capacity of the

media to transmit fluids.

The importance of Darcy's law (equation 2.5) is that it governs the Stokesian

flow through a porous material and the permeability coefficient, k, contains all

the material dependencies. The drag is linearly proportional to the velocity.

By increasing the flow velocity, the flow begins to have instabilities and enters

the 'transition' regime. Further increase in flow velocity finally turns the flow

into turbulent, in which case it is dominated by inertial forces that produce

eddies, vortices and other dynamical fluctuations.

At higher flow velocities, the ratio of pressure drop to velocity gradually

deviates from Darcy's law. Any deviation from the Darcy flow is termed non-

Darcy flow. To account for the nonlinear behaviour of the flow in porous media,

Forchheimer (1901) hypothesized that the pressure drop for flow in a packed

bed is a direct result from the viscous (linear in origin) and the inertial

(quadratic) effects. The total pressure drop is thus given by Forchheimer empirical

flow model is described as

V p = au + bu 2 (2-6)

where a and b are constants. Forchheimer's hypothesis has been generally

accepted as an extension to Darcy's law for high flow rates (Liu et al. 1996).
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2.2 Modelling approaches

Continuum modelling is a macroscopic approach. All complexities and fine

details of the microscopic pore structure are absorbed into bulk terms like

permeability that reflect the average properties of the medium. Sahimi (1990)

describes the continuum approach as a model of solving classical equations of

transport and reaction, supplemented with constitutive equations describing the

effect of structural changes on reaction and transport parameters.

Continuum models are convenient to use and provide a relatively simple way of

modelling macroscopic domains and are typically used in the applied analysis

and design capabilities. However, accurate solutions to the differential equations

only exist for very simplistic systems such as array of spheres (Sangani et al.

1982, Schwartz et al. 1993), capillary networks (Adler et al. 1985) and array of

square rods (Alshare et al. 2010). This limits the ability of continuum models to

accurately study the transport properties of complex porous media.

Discrete models do not have these limitations. The continuum fluid is replaced

by discrete fluid elements and the transport behaviour of the continuum fluid is

applied to each fluid element. They model the pore space explicitly to a greater

or lesser extent. The best known examples include pore network models in 2D

(Dadvar et al. 2001) and 3D (Dadvar et al. 2002), full simulation flow on

digitised or reconstructed pore space (Ferreol et al. 1995, Okabe et al. 2004,

Dong et al. 2009) and explicit numerical simulation ( Biggs et al. 2003) .



2.3 Models of porous media

2.3.1 Capillary models

This model defines pore space as collection of tubes. It can be in a series manner

or a parallel-flow bundle of capillary tubes. This is the first model to explicitly

capture geometric features of the pore space (Spielman et al. 1970 and Yao et

al. 1971). The radius of the tubes can be the same for all or selected from a pore

size distribution. The capillaries may be polygonal (Constantinides et al. 2000)

or chamber-and-throat type segments (Avraam et al. 1995). In order to develop

relations between permeability and some gross parameters ofmedium geometry,

enormous effort has gone into assigning the pore size distributions of real

samples to the capillaries (Indakm et al. 1991).

Capillary models are popular because fluid transport within them is easily

modelled using classic continuum equations such as the Hagen-Poiseuille

equation (Bryant et al. 1993). These models are being increasingly employed in

wide variety of situations. Holm et al. (2010) developed a pore-scale model

comprising of a bundle of cylindrical capillary tubes in a three phase system.

They have used two different approaches to simulate the fluid flow. On the

pore-scale they studied the fluid displacement and relative permeability whereas

the capillary pressure functions were derived by continuum scale.

In general, capillary models have limitations in addressing the important

parameters of porous media like interconnectivity of the pores, the existence of

pore loops of various extents, etc. As a result, these models are not widely used

to simulate complex fluid flow in porous media.
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2.3.2 Spatially-periodic models

In these models, the pore space is represented by a periodic structure which is

repeatedly transposed onto a lattice.

Periodic structures that have been used include spheres (Zick et al. 1982,

Nitsche et al. 1989 and Ogata et al. 2010), cylinders (Sangani et al. 1982,

Graham et al. 2002 and Krish, 2006), elliptic rods (Saito et al. 2006) and other

more sophisticated structures such as Menger sponges and grooved channels

(Bekri et al. 1995 and Chen et al. 2004). These models attempt to mimic the

properties of the system in some average way and the transport properties are

analysed.

Spatially-periodic models were extensively reviewed by Nitsche et al. (1989)

and Sahimi (1993). They have two major disadvantages. The first is the fact that

they model flow around objects rather than through pores. The second is that

regular arrays of spheres are limited to achieve relatively low solid fractions;

hence, they have difficulty in representing consolidated media.

2.3.3 Bethe lattice models

These are branching network models. Bethe lattices have been used routinely in

the statistical mechanics literature for investigating critical phenomena in the

mean-field approximation. Bethe lattices for modelling transport in porous

media were first used by Liao et al. (1969) and Torelli et al. (1972). Others have

also used it to model transport and reactions in porous catalysts (Sahimi et al.

1990), transport properties of porous polymer membranes (Quartarone et al.



2002) and phase equilibrium of fluids in porous media (Sokolovskii et al. 2003).

Even though Bethe lattice models contain interconnected branching network

spaces that can mimic pore space, they have a few shortcomings in terms of

modelling flow in porous media.

Firstly, they lack closed loops of spaces. The distribution of pores and

connectivity are not truly random, both of which are very important element in

the topology of porous media. Secondly, the void space appears to increase from

the centre to the external surface. This sometimes leads to anomalous

phenomena such as those discussed by Flughes et al. (1982) who investigated

diffusion processes on a Bethe lattice.

2.3.4 Network models

In network models, fluid paths in porous medium may branch and later, join one

another. These paths, which represent either pore bodies or pore constrictions,

connect pore spaces of negligible volume. Different kinds of network have been

implemented including regular polyhedron (Ameri et al. 1993), irregular,

random networks such as Voronoi network (Jerauld et al. 1984), random

percolation lattices (Adler et al. 2000), cubic net work (Lock et al. 2002) and

sphere (0ren et al. 2002).

The network models are used in computer simulations of flow phenomena in

porous media. Transport in network models is usually solved analytically, for

example, the etched glass network model to study displacement processes in
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porous media (Davis et al. 1968) and effective medium approximation (Sahimi

1992, Andrade et al. 1995 and Beyne et al. 2001).

Various techniques of 2D and 3D network models of porous media were

reviewed in detail by Dullien (1992). Indakm et al. (1991) and Burganos et al.

(1992) have solved transport in network models numerically by resolving the

motion of individual fluid particles. These network models are very good tools

for prediction of percolation properties of macroscopic systems, for example

solute transport in porous media (Goldsztein, 2007). However, they offer little

physical information regarding interactions at a microscopic level.

2.3.5 Computational fluid dynamics (CFD)
CFD has been developed mainly around using numerical techniques to solve the

Navier-Stokes equation. These equations do not directly describe the actual real

gas of particles but rather the mean dynamics of the mass, momentum and

energy densities.

Finite difference and finite element methods have been extensively used for

simulating single-phase and two-phase flow in porous media. In the standard

CFD technique, given a set of suitable boundary conditions it is possible to

solve the Navier-Stokes equations on a grid. This approach starts from

governing partial differential equations (PDE's) discretizing them by finite

difference, finite volume or finite element methods.

Once the finite difference equations are set up, they are usually solved by an

iterative method and all iterative techniques have to solve a large set of linear
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equations. Finding an adequate approximation to the Navier-Stokes equations

has proved to be an extremely difficult one (Roache, 1976). This leads to a

diverse array of numerical instabilities and artefacts which often make it

difficult to assess the accuracy of the simulation results.

These methods use floating point numbers to describe the properties and hence,

the required computer memory for a realistic simulation will be large. Therefore,

most applications of the finite difference method to flow through microscopic

porous media have been limited to solving time-independent Stokes equation in

single-phase systems (van Genabeek et al. 1996).

V.u - 0

VP = /uV2u

where u is the local velocity of the fluid at any particular point within the pore space

and P is the pressure.

Manwart et al. (2002) studied flow through three-dimensional porous medium on a

microscopic level for slow laminar flow. Stokes equation for straight tubes and cubic

arrays were used and the Reynolds numbers were smaller than unity in their analysis.

Time-dependent Stokes problem using an iterative pressure-correction algorithm was

used. Calculated transport parameters were compared with the experimental results

that are obtained from computerized tomographic imaging and found to be in good

agreement with the experimental value.

Saenger et al. (2007) used the finite difference method for pore-scale simulation of

elastic wave propagation in digital rock samples. Digital rock methodology is used to
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combine the modern microscopic imaging and numerical simulation of the physical

properties of rocks. Slow wave propagation in a porous medium saturated with a

viscous fluid is analyzed and demonstrated as an alternating solid and viscous fluid

layers.

Kim et al. (2009) investigated the momentum transfer parameters in laminar

pulsating flow through porous media. The porous media were made of periodic

arrays of squares and cylinders. Two-dimensional velocity and pressure variations

were obtained by solving the Navier-Stokes using the computational fluid dynamics

tool, CFD code FLUENT 6.3

2.3.6 Molecular dynamic simulations (MD)

At the molecular scale, the discrete atoms or molecules make up a fluid and this is

one of the obvious ways to simulate a small-scale fluid system on a computer. Then,

with correct descriptions of the inter-molecular interactions, the system should

behave as a fluid (Dupuy et al. 1978). This approach is called molecular dynamics

and is often used in many research areas like material science (Herzyk et al. 1991,

Rapaport, 1997, Rapaport, 2003); biological processes(investigation of the physical

mechanisms at atomic level, Grayson et al. 2003); and in nanotechnology( biological

activities such as transportation of water across the nanochannels, Fang et al. 2008).

The significant advantage ofMD simulation is that different situations can be handled

by changing the average energy of the molecules and their separation.

The MD approach obviously requires extremely large computer resources. At every

time-step, the new position and velocity of all particles is calculated from the
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knowledge of previous position and velocity, taking into account any external forces

which are acting on them. In order to calculate the particles new trajectories, any

particles which are collided during the previous time-step have to be identified first.

The complexity of this interactions in MD can be restrictively time consuming even

for a very small volume of fluid. Therefore, the MD approach to macro scale porous

medium flow is prohibitive. Even ifwe consider gas, which contains fewer molecules

than fluid, with larger time-step, still the number of molecules for simulation and the

required memory in computer makes this model too restrictive to employ it in a large

scale.

2.3.7. Lattice gas and lattice Boltzmann methods

Cellular Automaton initially developed by Ulam and Neumann (Schrandt et al. 1970)

at Los Alamos National Laboratory, was first successfully used to simulate fluid

dynamics by Hardy et al. in 1976. Lattice gas automata models consists of a lattice

whose sites, the intersection points of the lattice can take a finite number of states

(Wolfram 1986, Wolf-Gladrow 2000). The lattice is populated by particles. The

presence or absence of particles is described by Boolean variables (its value is 1 if

there is a particle and 0 if not). The evolution of the particles consists of two steps: (1)

set of collision rules, the particles collide and the total number of particles and the

momentum do not change (2) a propagation step, each particle hops to a neighbouring

site in the direction of its velocity.

Lattice gas methods solve microscopic equations for moving and interacting fluid

particles on a discrete lattice. Microscopic model with the appropriate choices of
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parameters can recover the desired macroscopic PDE's by using multi-scale analysis

(Frisch et al. 1986).

Initial lattice gas methods suffer two important disadvantages in the simulation of

fluid flow: statistical noise due to Boolean operations and lack of Galilean invariance.

Galilean invariance, in general terms, is a principle which states that the fundamental

laws of physics are the same in all inertial frames of reference. For fluids it means

that a frame of reference moving at a constant velocity u is equivalent to inducing a

uniform flow of -v in the observed flow filed u. In practice, the lack of Galilean

invariance results in vorticity moving in opposite direction to the bulk movement of

fluid. The problem ofGalilean invariance is discussed in section 3.4

Fattice Boltzmann methods (FBM) were developed to overcome the disadvantages of

FGA. McNamara et al. (1988) introduced FBM for simulating complex flow

problems. This model is updated in the same manner as the lattice gas model except

that, instead ofworking with individual particles, it works with its mean value which

is no longer a Boolean variable.

Due to the following remarkable characteristics of the FGA (Rothman et al. 1997;

Biggs et al. 1998) and FBM (Chen et al. 1998), they are suited for more complex

problems.

• The algorithm is completely stable, a feature derived from the absence of

round-off. If a semi-detailed balance is satisfied in some sense, a free system

initially not in equilibrium will always relax towards equilibrium in a

monotonic manner and remains steady (Frisch et al. 1987).

• Unlike most continuum approaches, FGA naturally includes spontaneous

mesoscopic fluctuations which are known to be important in many processes
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including turbulence (Frisch et al. 1990), phase change (Karapiperis, 1995)

and reaction (Boon et al. 1996).

• Initial LGA models were restricted to slow flows. However, advances in LGA

models overcome this problem by gaining Galilean invariance and therefore

can be used to explore the inertia and turbulent regimes.

• The implementation of the solid-fluid boundary conditions is particularly

straightforward and it does not increase the computation cost significantly.

Hence these models are much more suitable for simulation of flow in porous

media than conventional CFD methods.

• They can run faster on a computer than a MD simulation due to the local

nature of the collision rules. The state of the fluid needs to be known only at

the lattice sites and only at discrete times. They have another advantage over

MD that these methods are highly parallel (Buick, 1997).

• They can be easily extended to multiphase flow simulations (Rothman et al.

1988, 1994; Appert et al. 1990). A second or more fluid component can be

added to the model by the addition of fluid particles that posses different fluid

properties.

LGA has been applied to a wide range of problems including single and multiphase

flow (Rothman et al. 1994), within complex geometries such as porous media (van

Genabeek et al. 1996), chemically reacting flows (Boon et al. 1996 and Chen et al.

1995) and heat transfer (Chen et al. 1989).

Frisch, Hasslacher and Pomeau (1986) developed the LGA model using the

hexagonal lattice (FHP model). This was soon followed by 3D LGA model
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(d'Humieres et al. 1986) and several studies confirming LGA's ability to reproduce

the correct hydrodynamic behaviour both qualitatively and quantitatively

(d'Humieres et al. 1986a, 1987 and Shimomura et al. 1987).

2.4 Application of LGA to flow through porous media

Flow through porous media is one of the most popular classes of problem to which

LGA has been applied. This is primarily because Lattice gas methods can easily

handle very complicated geometry and boundary conditions. Furthermore, unlike

many other methods it solves the full Navier-Stokes equations rather than some

potentially restrictive subset such as Stokes law (Adler et al. 1990) or Hagen-

Poiseuille flow (Bryant et al. 1993). The majority of studies have concentrated on the

development of LGA as a tool for permeability prediction. These studies were

motivated by the fact that experimental determination of permeability can be

extremely time consuming and limited to relatively small samples compared to the

real-world applications (van Genabeek et al. 1996).

Advances in fluid mechanics and computer technology made it possible for accurate

calculations of microscopic flow to be practicable in arbitrarily complex pore-space

geometry. This heralded the application of LGA techniques to flow through porous

media (Rothman 1988 and Margolus et al. 1986).

The potential application of LGA to model flow through porous media were first

examined by Balasubramanian et al. (1987), obtaining Darcy's law from flow in a 2-

D channel in the presence of randomly-distributed point scatterers. Rothman (1988)

studied single-phase flow in what could be truly termed 2-D porous media,
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comprising distributions of rectangular blocks of solid. The complex geometry of the

porous media was simulated by placing solid obstacles of specific shapes in the fluid

and imposing a no-slip boundary condition on all nodes within this boundary. He

confirmed that Darcy's equation can be applied and verified on a more realistic two

dimensional porous media and visualisation of his simulations showed excellent

qualitative flow characteristics.

Following Rothman's findings, several works focused attention on demonstrating

LGA's suitability for single-phase flow in 2-D porous media, using a variety of

representations of porous media: arrays of cylinders (Brosa et al. 1991 and Sahimi et

al. 1991), constricted channels (Kohring,1991a-b), arrays of rhomboids

(Kohring, 1992) and arrays of cruciforms (McCarthy, 1994). Gao et al. (1994)

manipulated the location and density of point scatterers (similar to the technique used

by Balasubramanian et al. 1987) to simulate flow through 2-D heterogeneous porous

media.

The first 3-D studies of flow through porous media were carried out by Chen et al.

(1991). They applied a basic Face centered hypercubic (FCHC) model to simulate

flow through randomly-generated porous media having a fractal distribution of small

to intermediate scale features (less than ~ 100 pm) and a log-normal distribution of

larger features. They reported only qualitative findings that both the pressure and

velocity distributions within the media were typical of real systems. Later, Knackstedt

et al. (1994) studied the effect of the pore structure on the flow properties of 3-D

porous media using LGA.
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Chen et al. (1991) combined LGA simulations with an accurate representation of a

porous medium and compare permeability with experimental results to provide a

realistic measure of the LGA technique's performance. They simulated flow through

2-D porous media generated from digitized photographs of 2-D sections of

sandstones. The LGA results were within 5% of the experimental data which itself

had associated with a 10% uncertainty.

Chen et al. (1991b) used the 2-D LGA model for hydrodynamic calculations. This

method employed interactions of discrete fluids on a regular lattice analogous to

microscopic molecular dynamics. It demonstrated that a complex system can be

simulated by simple rules of particle interactions at a lattice. By averaging over a

spatial and temporal space, macroscopic variables are recovered.

Chen et al. (1991c) studied the variation of the Forchheimer equation parameters as a

function ofReynolds number using the 2-D LGA model.
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Summary

This chapter provides an overview of the development of various models of fluid

flow in porous media. The most popular models reported in the literature are

summarised. The reviews highlight the advantages and disadvantages of current

models of porous media and fluid transport within them. Numerical simulations are

increasingly used in the study of fluid flow in porous media. They demonstrate that

the models selected for use in this study, namely the LGA simulation techniques for

fluid transport, offer several advantages over the other methods discussed here.

Advantages of the LGA technique:

• "Costly" floating-point calculations may be replaced by fewer Boolean

and/or table-lookup operations.

• Each point in space demands significantly less memory than traditional

numerical techniques.

• Boundary conditions are easily and simply applied even for complex

geometries such as those found within porous solids.

• Provided physical laws are correctly modelled, LGA resolves and

tracks interfaces between different phases without any special or extra

effort.

• The algorithm is completely stable.

• Spontaneous mesoscopic fluctuations are naturally included.

Further description of these LGA models and their implementation is discussed in

the following chapter.
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Chapter 3

Lattice Gas Automata models

Introduction

Lattice gas automata (LGA) are a class of cellular automata that have been applied to

a wide range of problems in materials science and physics. The first LGA based fluid

flow simulation was developed by Hardy et cil (1976) which used square lattice. The

fundamental principle governing the LGA model is that the particles are restricted to

move on the nodes of a regular lattice and the automaton updates the state of particles

in discrete time-steps. Zanetti (1989) defined lattice gas automata as the state of

particles of gas that occupy a node in a regular lattice; the state of each node at any

time is determined by its own state and the state of a set of neighbouring nodes at

previous time step.

In this chapter the first section describes the details of standard LGA which covers

the evolution of particles on the lattice gas models and various types of lattice gas

models. The next section details the implementation of LGA and the advantages of

LGA based explicit numerical simulation (ENS) modelling of flow in porous media.

The third section provides discussion of a significant restriction of LGA model and

how to overcome this issue by extending the LGA to gain Galilean invariance.

3.1 Description of the LGA model

In modern hydrodynamic lattice gas models, mesoscopic particles of unit mass and

velocity move between the nodes of a regular lattice in discrete time-steps. As all the

particles move with unit speed, mass and energy conservation are therefore
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synonymous. The basic automaton evolves in two stages, the collision and

propagation, each of which is implemented at each time-step.

During the collision stage, the lattice particles arriving at each node collide and

exchange momentum according to pre-set rules in which the total mass and

momentum of the lattice particles at each node are conserved. These collisions occur

simultaneously at all nodes on the lattice. The local nature of the rules means that a

node needs to "know" its own state prior to collision to update. In the propagation

stage, the particles move with their new post-collision momentums to neighbouring

nodes on the lattice in preparation for the next time step.

The collision phase of each time step is the process of transformation between the

input and output states of the lattice nodes under a set of collision rules (Frisch et al.

1987). The collision rules are expressed by the Boolean variable. They define the

relationship between the input and output states of a node and satisfy the

requirements of collision rules, i.e.

• conserve mass and momentum

• avoid spurious conservation ofmass and momentum

• be invariant under all transformations that preserve the velocity set

• conserve the probability of collisions; the probabilistic collision procedure

obey semi-detailed balance, with each outgoing state allowed by the
conservation laws sampled with equal probability.

The basic collision rules and its implementation can be better explained by a 2D FHP

(Frisch, Hasslacher and Pomeau) model of lattice gas automata (described in detail

below). This model is made up of hexagonal lattice. Each node has 6 non-zero
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momentum directions and each link of the hexagonal lattice may at most carry one

particle (of a given mass/momentum/energy state) at any one time. This is called the

exclusion principle. An exclusion principle is usually imposed; insisting only one

particle is allowed to travel in each direction along a link. As a consequence, each

direction of the node on the lattice can be described by a single bit (0 for no particle,

1 for a particle) giving 26 =64 possible input configurations per node of lattice. It

helps in reducing the memory requirements. The particles of fluid on a hexagonal

lattice are shown in Figure 3.1

Before
Collision

Collision

Propagation

Figure 3.1. One time-step in FHP model (based on Frisch et at. 1987).
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In the above figure, each arrow represents a particle of unit mass moving in the

direction of the arrow. In collision stage, the particles arriving at a node collide

according to collision rules (illustrated by figure 3.1). Next is the propagation stage

in which the particles emerging from collision move along their momentum

directions to neighbouring nodes of the lattice, in preparation for the next time-step.

3.2 Types of Lattice Gas Models

In the bulk phase of a simple fluid, the particles in the fluid are free to move in any

direction with equal probability at the microscopic level (Biggs et al. 1998). In order

to recover similar behaviour in simulations, the lattice must be a regular and must

have sufficient rotational symmetry. There are only two types of lattices used in a

two dimensional model; regular square and hexagonal lattice.

Lattice gas models are characterized by the structure of the lattice, particle velocities

and collision rules. The following are the examples of the 2D models, most of them

are named after their developers, the HPP model (Hardy, de Pazzis and Pomeau), the

FHP models (Frisch, Hasslacher and Pomeau) which consists of FHP-I, FHP-II and

FHP -III, and Face-Centred hypercubic (FCHC) model.

3.2.1 HPP Model

The first lattice gas model was introduced by Hardy, De Pazzis and Pomeau (HPP,

1976).This model is built on a square lattice. The exclusion principle is applied so

that no more than one particle is allowed to travel in each direction along a link. This

means that a maximum four particles per node can arrive at any time step which is

shown in the following figure
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Figure 3.2. Velocity vectors in HPP model (Hardy et al. 1976).

The particles are restricted to travel on the links,cni = 1,....4, as shown in Figure 3.2,

which are represented numerically as follows

c, = sin[y (i -1)]/ + costf (i -1)]j
The particles entering a node collide according to the collision rules as shown in

figure 3.3. It may be noted that all the incoming configurations are shown on the left

hand side of the figure, the particles then collide and their velocity vectors are

rearranged in such a way to conserve mass and momentum to give the outgoing

configuration as shown in the right hand side of the figure. This means the sum of the

momentum within any row or column of the square lattice is conserved.
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Figure 3.3. HPP model: Collision rules.

For any other configuration, the particles retain their incoming velocities and continue

travelling in a straight line. Hence only two out of the sixteen (24) pre-collisional

state results in different post-collisional state and this is not very effective from the

point ofmomentum transfer. They also yield anisotropic hydrodynamic equations that

are not invariant under global spatial rotation (Rivet et al. 2001).

This HPP model does not possess sufficient symmetry for the fluid dynamical

equations to be isotropic. The number of particles parallel and orthogonal to a lattice

axis does not change by collisions or propagation. This creates additional artefact by
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spuriously conserving momentum along each row and column of the lattice which

limits its usefulness in the study of real fluids (Frisch et al. 1987). This anisotropy is

unacceptable for a model of fluid dynamics and it necessitates the use of different

lattice for simulation of fluid flow in most circumstances.

3.2.2 FHP models

In 1986, Frisch Hasslacher and Pomeau (FHP) introduced a variant of the HPP

model using a regular hexagonal lattice. The main innovation of this FHP model was

the change of underlying lattice to a 2D triangular lattice which has sufficient

symmetry. The fundamental principle of FHP is six possible non-zero particle

momentums at each node in a hexagonal lattice and governing collision rules.

Another great advantage in this model is introduction of 'rest particles'; a zero

velocity particle can be added in the hexagon and this is able to take part in a

collision with the particles arriving at the node. The basic FHP models are classified

as FHP-1, FHP-II and FHP-III depends on the number of rest particles.

The non-zero momenta corresponds to the six link directions ci, i = 1,—6, shown in

figure 3.4 which are represented as

r 7T..7T
C, = [cos—z,sin—y]

As with the HPP model each of the particles travels with unit speed and the exclusion

principle is applied to allow each link to carry only one particle at any one time step.
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Q ^5

Figure 3.4. Velocity vectors in FHP model (Frisch et al. 1986).

A set of collision rules on a hexagonal lattice is shown in figure 3.5 and 3.6, where

small filled circles represent the non-zero momentum particle and large empty circles

represent a rest particle at the node. The collision rule conserves both particle

number and momentum at each node.

FHP-I model

The simplest of the FHP models is FHP-I (Frisch et al. 1986) in which each node

have six possible moving particles. The collision rules for this model are illustrated

in figure 3.5 (a) and (b). This gives a total of 5 collisions among the 26 = 64possible

in-states.

Two particles coming from opposite directions in figure 3.5(a) undergo a binary

collision with outgoing configurations rotated by ± 60°.
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a)

OR

b)

noi >

Figure 3.5. Collision rules for FHP-I model.

This is similar in the case of symmetric three-body collisions which are shown in

figure 3.5(b) and also it should be noted that there are two possible outcomes of the

binary head-on collisions, each selected with equal probability. If the selection

process is done using a random number generator, then the collision rules are called

non-deterministic.
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Although the FHP-I model had been used in the past (Frisch et al. 1986), variations

on this model with an additional rest particle have proved far more popular models

(d'FIumieres et al. 1986, 1987).

FHP-II Model

The FHP-II model is a variant of the FHP-I model in which a rest particle is

introduced in addition to six moving particles of FHP-I. The additional collisions are

explained in the following figure.
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e)

Figure 3.6. Additional collision rules for FHP-II model.

The collision rules for this model result in the following possible collisions; five

FHP-I collisions (figure 3.5 a & b); six rest particle creation collisions (figure 3.6c),

six rest particle destruction collisions (figure 3.6d) and the five FHP-I rules with

spectator rest particle (figure 3.6e). This gives 22 possible interactions out of a

possible total of 128.

FHP-III Model

A further variant in this class is FHP-III model (Frisch et al. 1986, D.d'Humieres et

al. 1987) which allows as many collisions as possible under the constraint of mass

and momentum conservation at each node. This model has all the FHP-II collisions
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with additional collisions that are shown in Figure 3.7. This gives 76 possible

collisions out of 128 possible states.

3.2.3 Three-Dimensional Models

Many phenomena of fluid dynamics are not amenable to a two dimensional

description (e.g the onset of three-dimensional turbulent flow) which created the

need for lattice gas models with higher dimensionality (Rivet et al. 2001). In three-

dimensional models there are three regular lattices named simple cubic, body-centred

cubic and face-centred cubic. Flowever, none of these models have enough rotational

Figure 3.7. Additional collision rules for the FHP-III model.
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symmetry to ensure macroscopic isotropy (Frisch et al. 1986). This problem was

overcome by d'Humieres et al (1986) who modelled 3D fluid dynamics on a 4D

face-centred hyper cubic (FCHC) lattice, projected into 3D space.

FCHC Model

The FCHC model resides on an ordinary 3D cubic lattice with the velocity structure

is maintained with unit periodicity in the fourth direction. Such a lattice is shown in

figure 3.8. Each node is connected to its 24 nearest neighbours by the set of vectors

c(., i e {0,1,.., 23} and this can be represented as

(±1,±1,0,0), (±1,0,±1,0), (±1,0,0,±1), (0,±1,±1,0), (0,±1,0,±1), (0,0,±1,±1).

This model gives two groups of eight totalling 16 vectors for regular four-

dimensional hypercube and the third group 8 vectors in the direction of the centres of

the faces of that hypercube (hence, it is called FCHC).

The larger number of possible states for each site (224 = 16xl06 configurations)

leads to much smoother (less noisy) hydrodynamics than the 2D models.

Unfortunately this also makes the generation of the collision rules much harder. This

is the only available hypercube for LGA simulations which posses good rotational

symmetry and yields microscopic isotropy.
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Figure 3.8. Connectivity of pseudo-4 dimensional FCHC lattice (after
Frisch et al. 1987).

3.3 Implementation of the LGA algorithm

Our LGA algorithm is coded using C++ and it is written in an object-oriented

manner. Both the 2D and 3D LGA algorithms were implemented. The 2D

simulations were carried out using the FHP-II and FHP-III models. In 3D, the 24bit

FCHC model was used. The code produced is easily reusable and some part of the

code written for the FHP models has been reused in the FCHC code.

The following section discusses the key issues surrounding the implementation of 2D

and 3D LGA model.
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3.3.1 Storage of information

There are two strategies which may be adopted for storing the state of each node;

site-per-word and bit-per-word storage.

The site-per-word strategy (Brosa et al. 1989 and Stauffer, 1991) uses one complete

integer variable (or "word") to store the information for each node, so a FCHC lattice

of side L will require L3 words to store the states of all the nodes. The collision stage

for site-per-word strategy uses look-up collision tables; each possible configuration

for a node will have a unique integer word to describe it. As all the information for

one node is stored as one integer, deterministic collision rules may be implemented

by the use of a simple array containing pre-generated post-collision states for every

possible node configuration. The collision stage is implemented by simply "looking-

up" the post-collision state for each node. The propagation stage however

necessitates large numbers of bit shifting and masking operations to extract bits

relating to particle momentum states and pass them to neighbouring nodes, thus

increasing the time required for simulation.

This means of storage is also inefficient in terms of the memory required to store the

whole lattice. For the single phase FHP-III implementation 11 bits (7 particle

momentum states, 3 kohring algorithm bits, and 1 bit for the solid state) are required

to completely store the information for a node and this is stored as a C++ short

integer variable which is 16 bits long. For every 11 bits required to store node

information, 5 bits are unused and are therefore wasted. For FCF1C model, 25 bits are

required (24 particle momentum states, and 1 for the solid state), and this is stored as
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a long integer variable which is 32 bits long, wasting 7 bits of storage for every node

on the lattice.

The alternative strategy is bit-per-word storage where the complete description for

each node is spread bit-wise across a number of words, with each word being part of

an array designed to hold only one particular momentum state or piece of

information. This utilises every bit of every word and is therefore far more efficient

in terms of total memory required to store the lattice. In addition the propagation

stage simply becomes a matter of shifting the addresses in each array which is faster

than the operations required for the same stage using site-per-word storage.

However, the collision stage may not be implemented by simple collision tables;

Boolean operations are required to generate the post-collision states. This has been

shown to be very fast and efficient for simple 2D lattice gases (Kohring, 1991 a-b,

1992), but a prohibitively large number of Boolean operations are required to

calculate collisions outcome in 3D models (Biggs et al. 1998).

This leaves site-per-word storage as the only realistic method of storing the lattice

with the FCHC models. The computational advances in recent years have provided

massively larger amounts of memory; hence inefficient memory usage is not as

important problem as it was a few years ago. To ensure homogeneity between the 2D

and 3D models, site-per-word storage method is used in all our simulations.

3.3.2 Initialisation of the lattice

The macroscopic density p of the lattice fluid with b momentum states at each node

is related to the local mean particle populations Ni with corresponding velocity ci by
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P = bdP=TJNi (3.1)
/

where dp reduced particle density.

The macroscopic momentum of the lattice fluid is related to the following:

pu = ubdp=YJNici (3.2)
/

The distribution of these N, at equilibrium is described by the Fermi-Dirac

distribution (d'Humieres et al. 1987 and Frisch et al. 1987):

Ni =77 7T7 T (3-3)l + exp(h + q-cij

where h and q are non-linear functions of u and p . If we take the case with rest particles,

br and moving particles, bm such that

b = b +b , p = d b , p = d b , p = p + p .r m ' r m p m ' r r p r " r r y r m

A first order expansion of (equation 3.1 and 3.2) for small value of u yields:

Neqi = d\ D P1 +— c; • u
c P,„ j

(3.4)

Where D is the dimension and c is the macroscopic velocity and Cj is the velocity at

microscopic level. From this result, the equilibrium distributions of particles in a

FCHC and FHP LGA are described as follows

for zero velocity rest particles AT9 = dp (3.5)
r \

(3.6)1 + 2 -P— c, • ufor unit velocity moving particles Neqi = d
p

For a given initial velocity distribution (e.g. a Poiseuille profile for laminar flow),

these equations are used to initialise the configuration of lattice particles at each of

the nodes on the lattice based on the calculated mean velocity of the fluid at the

coordinate of that node.
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3.3.3 Addition of solid surfaces

Certain lattice sites are labelled as a solid surface in the model. To assign a node as a

solid state an additional bit is used to store the corresponding node information. It

denotes whether the node is part of a solid surface or not.

Depending on the level of shear stresses experienced between the LGA fluid and the

solid surface, a slip or no-slip boundary condition is assigned to the solid surface

(Thompson et al. 1990). This is done by using specular reflection or bounce-back

collision rules respectively implemented at solid nodes or a mixture of the two

(Lavallee et al. 1989 and 1991, Hayot et al. 1989, Gao et al. 1994). These are shown

in Figure 3.9a and Figure 3.9b.

Figure 3.9a. Bounce-back collision at a solid node.
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For simulations of fluid flow in porous media, a no-slip boundary condition would be

normal and use of bounce-back collisions provides the best means of representing

this. Lavallee et al. (1989) has shown that use of a mixture of bounce-back and

specular reflection rules will also produce a no-slip boundary condition, but will

require greater computation time for the flow field to reach equilibrium. Bounce-back

reflections are used in our implementation and these collisions are generated before

the execution of the simulation and stored in the collision table.

3.3.4 Periodic boundaries

Simulation domains have been coded with default periodic boundary conditions, i.e.

any particles leaving one side of the simulation domain will re-enter on the opposite

side. To encode this into the current models, an additional plane of lattice nodes

outside of the simulation domain is included on each side of the lattice

(corresponding to columns 0 and x-1 in figure 3.10). These nodes contain the same

information as the plane of nodes on the opposite side of the lattice (corresponding to

columns x-2 and 1, see figure 3.10). This information is copied across once in each

time-step before the propagation stage, to allow the propagation of particles to nodes

on the edge of the lattice (1 and x-2).
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COLUMN NUMBER

0, 1 ,x-2, x-1

Figure 3.10. Periodic boundaries.

3.3.5 Applying force

There are three different ways that have been used to drive flows through simulation

domains in LGA: applying a body force to the fluid (Kadanoff et al. 1987, Rothman

1988, Rybka 1993), using a pressure difference to drive the flow (Gao et al. 1994,

Chen 1991) or by overwriting the planes of nodes at the inlet and outlet sites of the

simulation domain with a pre generated velocity distribution (d'Humieres 1986a,

1987, Stauffer 1991).

Of these, the use of a pressure difference is unsuitable for simulations of quasi-

infinite length using periodic boundaries, like single-phase flow in a pipe, as it

produces unphysical walls of fluid (Gao et al. 1994). Overwriting the inlet and outlet

sites may not be suitable for flow around objects (Eissler et al. 1992) as an outflow
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flux might cause a non-physical suction and also the system will tend to achieve

lower equilibration ( Jeulin, 1992) over the course of a simulation.

Body force is applied in LGA by introducing an additional "forcing" stage to the

automaton's updating algorithm. A force may be thought of as a rate of change of

momentum. Hence a force is applied by changing the momentum states of a set

number of lattice particles at each time state. In this process, known as "flipping", a

random site is chosen from the region in which the force is being applied and a check

performed to see if this site is a potential candidate. This will require a particle be

present in a momentum state from which it may be moved and a corresponding

"hole" to move it into. If these conditions are met, the particle is moved into its new

momentum state. Another node is then chosen and this operation repeated until the

required force has been applied. An example of some of the x-direction forcing rules

for the FHP-II and FHP-III models are shown in figure 3.11.

45



Before After

O

O

Figure 3.11. Forcing rules (Kadanoff et a/. 1987).
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3.3.6 The Navier-Stokes Equation of Lattice Gas Automata

Frisch et al. (1987) showed that with suitable collision rules and other moderating

conditions such as density in place, the collective motion of the particles should yield

behaviour similar to that predicted by the incompressible Navier-Stokes equations

with the presence of density dependent factor. The complete derivation has been

discussed by various authors (Frisch et al. 1987 and Rothman et al. 1994).
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In summary, they used the principles of kinetic theory to derive a Boltzmann-like

equation for the LGA particle dynamics and solved it using a Chapman-Enskog

approach to yield the following hydrodynamic equations (equations 3.7, 3.8) and

equation of state (equation 3.9) for the LGA fluid.

(p and u are the macroscopic density and velocity, g(p) is the Galilean invariance

term, cs and v(p) are the speed of sound and kinematic viscosity)

The above are calculated from a property of the lattice dp (reduced particle density)

which is defined as the mean probability of finding a lattice particle in any

momentum state on the lattice. The momentum equation 3.8 is almost identical to the

incompressible Navier-Stokes equations, save for the presence of g(p), the Galilean

invariance factor. This g(p) is defined in the equations from 3.10 to 3.12 for 2D and

3D LGA models. It can be seen from the equations that this g factor is dependent on

the density p which reflects the lack of Galilean invariance in LGA models. This is

caused by the discretisation of the particle velocities and the limited number of

directions in which particles may travel. The problem of Galilean invariance in LGA

will be discussed in detail later in this chapter.

The transport coefficients for the FHP-I model are

f+v-M=o
+ V • \pg{p)uu\ = -Vp + y(p)V2 (pu)

(3.7)

(3.8)

P = c]p^-g{p) u2) (3.9)

P - 6dp, Cj _ ^2 '
(3.10)
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And for the FHP-II and FHP-III models

P = ldp, cs =S> g(p)
7 (7-2p)
12 (7-p)

(3.11)

And for the FCHC model

P = 24dp (3.12)

3.3.7 Units in Lattice Gas Model

The following are the standard units in the lattice gas simulations:

The basic unit of time is one time-step, the basic unit of length is lattice unit (lu)

which is the distance between two neighbouring nodes on the grid. The basic unit of

mass is the mass of a particle which is taken to be unity. Other quantities, such as

velocity, are measured in units derived from these basic units. Velocity is expressed

as lattice unit per time-step.

3.3.8 Validation of LGA model

This section reports the results of various tests that were applied to the LGA

programming code to ensure that they were conceptually correct and properly

written. The 2D and 3D LGA fluid transport codes were applied to the well known

engineering problem; flow in a duct.
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Figure 3.12. Geometry of 2D flow in a channel.

The LGA fluid transport model was first applied to simple flow in a 2D channel. The

no-slip boundary condition at the solid walls should impose ffictional drag upon the

fluid resulting in the development of the well-known parabolic Poiseuille flow

distribution across the channel. This is due to the nature of fluid flowing faster in the

centre of the channel and approaching zero at the walls (Henon 1987). The analytical

solution to the Poiseuille distribution of flow is given by

u„ =-
AP

2p

f T\2D

vT"y, (3.13)

where ux is the fluid velocity parallel to flow at a distance y from the channel

centerline, AP is the pressure drop across the system, p is the fluid dynamic viscosity

and D is the channel width or distance between plates; the corresponding system

geometry is shown in figure 3.12.
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The flow is forced by adding momentum in the positive x direction of the system at a

constant rate. After each time step, we randomly select a number of lattice nodes and

apply one of the microscopic forcing rules (Kadanoff et al. 1987). Each successful

application of a forcing rule adds one unit of momentum to the system. The forcing

process is repeated until the desired amount ofmomentum has been transferred to the

fluid. The overall effect of this process results in a constant body force applied to the

fluid uniformly across the width and length of the channel.

The force imparted to the system is dissipated due to the pressure gradient and from

there the pressure drop down the length of the channel was calculated.

A number of simulations as described above were carried out to test the ability of the

2D and 3D codes to reproduce the analytical distribution described in the above

equation. Fluid velocities (max) of 0.20 to 0.30 lattice units per update (l.u./t) were

simulated and the results are shown below for FHP-II and FHP-III and FCHC

models in Figure 3.13 -3.15.

Simulation of the channel flow gives the expected parabolic profile to a good degree

of accuracy. The results confirm that the program codes are implemented properly

and EGA model is correctly represented in the coding.

50



0.35

CO

X
=5

0.3

0.25
Q.
0
-t—»

0
0

E
:= 0.2
0

'c
0
0
o

0.15

0.1

0.05

♦ V

\

♦
j
J

♦
J
♦

,

♦
.

;
f

10 20 30

y (lattice units)

\

t

\

40

♦ Simulation Theoretical

Figure 3.13. Flow distribution across a channel: Comparison of simulation with
theoretical Poiseuille flow profile for FHP-II model.

51



0.3

0.25

0.2

0.15

0.1

0.05

♦
j
r
t
r

v

10 20 30

y (lattice units)

\

♦
v.

\
t.
\
\
\
1

40

♦ Simulation • Theoretical

Figure 3.14. Flow distribution across a channel: Comparison of
simulation with theoretical Poiseuille flow profile for FHP-III model.



0.35

0.3

0.25

~ 0.2

0.15

0.1

0.05

♦

//
♦

♦
i

t
/

♦
i

10 20 30

y (lattice units)

♦

\
V
♦

\
♦
v

\
40 50

Simulation -Theoretical

Figure 3.15 Flow distribution across a channel. Comparison of
simulation with theoretical Poiseuille flow profile for FCHC model.

53



3.4 The problem of Galilean invariance

Lattice gas automata methods have been used to simulate many different flow

situations (Wolfram 1986, Frisch et al. 1986 and 1987, Chen et al. 1995, Biggs et al.

1998). One of the advantages of LGA is that they model the pore space explicitly to a

greater or lesser extent. However they are restricted to relatively slow flows due to

non-Galilean invariance.

The Galilean invariance factor present in the hydrodynamic equations (equation 3.8)

is an artefact introduced by the limited number of particle momentums and the

discrete lattice used. If this Galilean invariance factor is not 1 (i.e. the lattice fluid is

non-Galilean invariant), this manifests as the vorticity advecting with a different

velocity to the bulk movement of the fluid (d'Humeieres et al. 1987). This factor is a

density dependent term (the density in turn depending only on dp). A quick

consideration of equations 3.10, 3.11 and 3.12 will show that this factor will be zero

for dp = 0.5 and negative for dp > 0.5. Physically this would be seen as the vorticity

moving in the opposite direction to the bulk movement of the fluid. This has been

demonstrated through simulation of the motion of a shear wave through the lattice gas

fluid (Rothman et al. 1994).

This lack of Galilean invariance is one of the well-documented problems with LGA

but it is possible to reduce or control its effects. In a single-phase LGA it is possible

to remove the g(p) term from the Navier-Stokes equations by rescaling the velocity
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by a factor g(p) (u' = g(p)u). This does not remove it from the equation of state,

but its effect may be considered negligible as long as u «cs.

In order to exactly recover the Navier-Stokes equations in immiscible lattice gas

automata (ILGA), it is possible to modify the model to ensure that g(p)=l. This may

be done by adding a large number of possible rest particles at every node. For

example with an FHP LGA, it may be noted that the Galilean-invariance term

depends on the number of rest particles. The relationship can be described in the

following equation (Rothman et al. 1994).

This may then be solved for the M required to give g(p) = 1 for any given value of

p and the model recovers the Navier-Stokes equations exactly. Flowever, the closer

theg(yo) = 1, the greater the error in the equation of state. This leads to problems for

instance at higher velocity, the pressure would be abnormally low, which would lead

to spurious flows and compressibility effects.

There is a class of LGA models known as multi-speed LGA which use multiple

lattice particle speeds and controls the rate for the direct and inverse collision process

(Tiexera, 1992). The more elaborate of these models remove all the artefacts of the

lattice from the hydrodynamic equations and recover continuum hydrodynamics

exactly. In this multi-speed model particles with several speeds are included so that

energy becomes an independent variable. The structure of the underlying 4D FCHC

lattice allows these particles of different speeds to exist independently on sufficiently

~P
V y

(where is M is the number of rest particles)
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symmetric sub lattices while also allowing particles of different speeds to interact via

energy exchange collisions. These energy exchange collisions force the lattice

artefacts to have the continuum values necessary for correct hydrodynamic

behaviour. Full details of this model will be discussed in the following chapter.
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Summary

Details of the fundamental theory of the lattice gas automata (LGA) are described in

this chapter. LGA is an alternative numerical description of flow dynamics where the

physical state of the particles are represented in terms of Boolean variables, particles

move and interact in a lockstep manner on a regular lattice and obtaining

macroscopic variables of the particles motion. The results reported in this chapter

demonstrate that the 2D and 3D LGA fluid transport codes written for this study are

capable of reproducing correct hydrodynamic behaviour of fluids.

LGA is ideal for the fundamental study of the systems involving fluid flow and

transport within porous media. However this single speed LGA models are restricted

to relatively slow flows due to non-Galilean invariance. The next chapter discusses

the implementation of Galilean-invariant LGA (GI-LGA) model and this new model

will address this problem directly.
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Chapter 4

The Galilean-invariant LGA model of Teixeira

Introduction

As outlined earlier, a variety of methods have been proposed to remove the various

non-hydrodynamic artefacts from LGA (d'Humieres 1986, Frisch et al. 1987,

Rothman et al. 1994, Teixeira 1992). Perhaps the most advanced is Teixeira model

(1992) which recovers Galilean invariance in three-dimensions by allowing particles

to take on one of a small number (e.g. three) speeds and then controlling the density

of each over small sub-volumes (e.g. 5x5*5 lattice units). Unfortunately, the details

of the method have not been published in the open literature; the few papers that

have discussed this issue (Molvig,K et al. 1990, Mujica, 1991), reported only the

results with very few details. The thesis of Teixeira (1992) has not covered many

details surrounding its implementation. This chapter, therefore, provides a

comprehensive summary of the method and its implementation, including the

influence of the various control parameters for which Teixeira provides virtually no

details, and results for a variety of benchmark problems to demonstrate that the

model produces correct results whilst recovering Galilean invariance.

The method of Teixeira is first described in detail followed by its implementation.

The results of studies aimed at elucidating the influence of the various control

parameters of the method on its accuracy are then discussed. To my knowledge the

results presented here are unique. This is finally followed by detailed comparison of
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our implementation of the Teixeira method against several standard benchmark

problems.

4.1. Summary of Teixeira model

In Teixeira's thesis a three-speed model that removes the discreteness artefact is

implemented using the FCHC lattice. This is the only regular lattice available with

properties required to remove the artefact. This lattice permits all the integral

energies and allows interaction among them.

Teixeira, using a super computer, developed a three speed model; two types of

particles with different energies and momenta along with rest particle were used.

Total of 54 particles in which 24 belong to energyl, other 24 belong to energy2 and 6

energyO particles were used in this model. There was no explicit explanation

available in the thesis for this particular particle number and distribution. We think

this is the model with probably minimum number of particles that was necessary to

remove artefacts. The exclusion principle is imposed during the simulation as

described previously.

Momentum contributions for these two energy levels are tabulated in Table 4.1 and

the particle projection of each energy level is illustrated in figures 4.1 and 4.2.

Modelling of temperature equilibrium and particle interactions producing energy

exchange are constructed in this model. The Galilean invariance factor 'g' is directly

affected by the rate of energy exchange collisions. By regulating the number of

energy transfer collisions the model is forced to exhibit Galilean invariance. The full

detail of the implementation is discussed in the following section.
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Momentum contributions for energy
level one particles

Momentum contributions for energy
level two particles

{1,0,0,1} { 2, 0, 0, 0 }

{1,0, 0,-1} { 0, 2, 0, 0 }

{-1,0, 0,1} { 0, -2, 0, 0 }

{-1,0,0,-1 } { -2, 0, 0, 0 }

{0,1,1,0} {0,0,2,0}

{0,1,-1,0} { 0, 0, 0, 2 }

{0,-1,1,0} { 0, 0, 0, -2 }

{0,-1,-1,0} { 0, 0, -2, 0 }

{0,1,0,1} {1,1,1,1}

{0,1,0,-1 } {-1,1,1,1 }

{0,-1,0,1} { 1,-1,-1,-1 }

{0,-1,0,-1 } {-1,-1,-1,-1 }

{1,0,1,0} {1,-1,1,1}

{ 1,0,-1,0} {1,1,-1,1}

{-1,0,1,0} {-1,-1,1,-1}

{-1,0,-1,0} {-1,1,-1,-1}

{0,0, 1,1 } {1,1,1,-1}

{0,0,1,-1} {-1,-1,1,1}

{0,0,-1,1} {1, 1,-1,-1}

{0, 0,-1,-1 } {-1,-1,-1,1 }

{1,1,0,0} {-1, 1,-1,1}

{ 1,-1,0,0} {-1, 1,1,-1}

{-1,1,0,0} {1, -1,-1,1}

{-1,-1,0,0} {1, -1,1,-1}

Table 4.1. FCHC particle momentum contributions for energy level 1 and 2.
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(1,0,0,1) (0,0,-1,-1)
(1.0,0,-1)

Figure 4.1. FCHC particle momentums-energy level 1(Molvi#g,1994).
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Figure 4.2. FCHC particle momentums-energy level 2(Molvi#g, 1994).
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4.2 Implementation

The flow of LGA code is grouped into three sections; initialization, updating the

lattice from time-step to time-step which has two steps - collision and the

propagation stage and the final output routine.

The initialization part sets up the geometry on the entire lattice according to a user-

defined function. The particles are then seeded in the lattice with the probabilities

equal to the equilibrium (Fermi-Dirac distribution function) which is derived from

the following section.

4.2.1 Equilibrium distribution

The following equilibrium derivation is based on the thesis (Continuum limit of

Lattice gas fluid dynamics) of Teixeria

When simulating a lattice gas model, we like to specify the density and temperature

of the equilibrium fluid. This means that we will treat density, p , and a temperature

related variable, z, as input parameters while, the fugacity, y, is a variable that must

be tuned to give the desired density. The equilibrium distribution is done by seeding

the particles with the probabilities equal to the equilibrium Fermi-Dirac distribution

function. This ensures not only the conserved quantities of mass, momentum and

energy, but also allows the Galilean invariant factor g' to be set at 1, i.e. g=l as

well. The relation for g is in terms of moments of the equilibrium distribution

function as

yr,
Nj =— —j (4.1)

yrj + zJ
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Where y and z are quantities related to density and temperature. Using equation 4.1,

the equilibrium distributions for this model could be calculated as following:

yr

yr +1

Nt = (4.2)
y + z

JV, = y2 2
y + z

The equations defining the density and energy together with the Galilean invariance

condition (g =1) form three equations which in principle allow determination of the

Lagrange multipliers, aO, (30, as well as the rate coefficient V.

The density and energy relations for the three speed model are

f -~N0 + N] + N2 - f{y,r,z) (4.3)

U=24(N,+2N2) (4.4)

Using the above equations, the Galilean invariance condition can be written in the

following equation for this model

2,N,(l-N,Xl-2N, ) + 4A>2(l-iV2)(l-2iV2)12. ,

g
3 (iV,(l-A'l) + 2iV2(l-W2))1

The above may be rewritten as a function ofgcond (y ,z,f) = 0

0 = f[N{ (1 - N\ ((1 -2N,) + 4N2 (1 - N2)(l - 2N2)]-^[N, (1 -Nx) + 2N2(1 - A^2)]2
(4.6)
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Equation 4.6 allows us to solve for y as a function of the input parameters / and z .

Knowing y(f,z) will allow us to find r(f,z) from equation 4.3.

The expansion is established by developing the fugacity (y) in a power series

y = yj+y2f2+yj'+yj'+ (4.7)

Plugging this relation into equation 4.5 and setting the result equal to zero order by

order in /, the coefficients y} (z) may be calculated as rational polynomials. If the

corresponding power series for the rate coefficient ' r' is developed from equation

4.3, it can be solved exactly for r as a rational function of the / and z and the

accurate series for y through fourth order in / may be substituted.

r = ~4(-2y2 + fy2 - yz + fyz-yz2 + fyz1 + /z3)
y(-9y2 + 4fy2 -5yz + 4fyz-5yz2 + 4fyz2 - z3 + 4fz3)

This will provide an accurate expression for the rate coefficient for all usable

densities. To maintain an even temperature within the flow r can not be too large or

too small and allowed values should be in the range 0.1 < r <10 when/ is less than

0.56 with the number of rest particles we used in the system. This gives a positive

solution for r over the range of z which is 0.5 < z < 10 (Teixeira, 1992).

One way of assuring r remains at the appropriate value is to create a feedback system

that can sense the local density and temperature related variable (z) and then alter the

collisions accordingly.
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The equilibrium temperature T is determined by the fluid variables, density and

energy and the g =1 condition; z can be calculated from the expressions for N] and

N2 in equations 4.2

N,
z=^r~ (4.9)

AT' 2

N,Where N. = — and z is defined as
y 1 -N,j

2(2-37)
z = — (4.10)

37-1 v '

T is calculated by inverting equation 4.10

7= Z + 4 (4.11)
3(z + 2) V y

To determine the equilibrium temperature of the system, optimization studies has

been carried out. This is the necessary foundation for simulating a thermal process.

The entire lattice is divided into small sub-volumes and the temperature is defined

with an upper and lower temperature range. We have looked at the effect they have

on performance and the details of this study are presented in the next section.

4.2.2 Collision Types

Each collision is a binary collision occurring between two sets of paired particles.

The collisions are classified into two groups of collisions:

• self collisions

• energy exchange collisions
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In the self collisions there are two possibilities: self collisions between energyl

particles and self collisions between energy2 particles.

energy1+ energyl <=> energy1+energyl

energy2 + energy 2 <=> energy2 +energy2

These self collisions are grouped into three equivalence classes:

For the pairs whose net velocity vectors have a magnitude of zero is classified as first

equivalence. There are 12 pairs of particles that belong to this group and out of these

a few of them are shown here as an example.

.£(0,1,0,1) £ (0,1,1,0) £(1,0,0,1)
(0,-1,0,-1) (0,-1,-1,0) (-1,0,0,-1)

The second eqidvalence class can be produced by 3 pairs of particles, two sets of

three pairings that may produce the net velocity vectors of (2,0,0,0) and (1,1,1,1).

There are 72 pairings in this group and an example for the net velocity vector (2, 0,

0, 0) is shown here.

'(1,1,0,0)

(1,-1,0,0)

I

p(l, 0,1,0)

(1,0,-1,0)

I

^1,0, 0,1)
(1,0, 0,-1)

1

T
(2, 0, 0, 0)
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The third equivalence class is made of those pairs of particles which produce a net

velocity vector having the same magnitude as each of the velocity vectors of the

particles. There are 96 particle pairs in this group. An example for the net velocity

vector (1,0, 1, 0) is shown below.

(1,1,0, 0)

(0,-1,1,0)

1

(1,0,0, 1)

(0,0,1,-1)

1

, (1,-1,0,0) ^ (1,0,0,-1)
(0,1,1,0) (0,0,1,1)

I I
T
(1,0,1,0)

These three equivalence classes give 180 pairings in which self-collisions are

possible.

Apart from the above collisions, other types of collisions are also possible in this

model. These are energy exchange collisions. There are 72 possible pairings that

bring about such a collision when the particles are present. This is shown as an

example here

energy 1 + energy 1 <=> energy2 + energyO

Energy exchange collisions occur when two energy 1 particles collide to form an

energy2 particle and an energyO particle as illustrated in figure 4.3 below along with

its inverse process.
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Figure 4.3. Example of energy exchanging interactions among particles: energyl

particle—* , energy 2 particle z=> , energy 0 particleo

The inclusion of energy exchange collisions adds an additional degree of freedom to

the system in order to simulate the true fluid behaviour.

4.2.3 Collision Mechanism

During the collision stage, the collisions are performed by cycling through each of

the possible particle pairings. It begins with the first equivalence class of particle

pairings. The system looks at the first pairing in the first equivalence class to check

to see whether both of the particles for the pairing are present or not. If both particles

are present then the system proceeds to check for the hole pair. If this hole pair is

present then the collision is performed. Once the collision process is completed for
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the first equivalence class the subsequent equivalence classes are examined in a

similar manner. Once the self collisions are completed, the energy exchange collision

(or the inverse energy exchange collision) is performed.

The energy exchange collision happens in forward direction from the energy 1

particles and a backward direction from the energy2 and energyO particles. These

collisions rates are dependent on the temperature of the system. A feed back system

is created to sense the local density and temperature and then alter the collisions

accordingly. This feedback technique was used successfully to maintain the removal

of the 'g' artefact in simulations where local values of the density and temperature

changed significantly.

The only other type of collision which may occur is when a particle collides with a

solid boundary. We require that the boundary does not create or destroy particles and

that particles can not propagate through the boundary, 'bounce-back' rule is applied

at the boundary to ensure that particles arrive at a node that are marked as a solid

simply reverse their direction.

The final step in the entire algorithm is the calculation of macroscopic properties of

the flow for all 54 particles. At any node the local value of fluid density, momentum

or any other macroscopic flow variable is calculated by taking appropriate bits of the

microscopic distribution. For instance

p(x) = YJnKx) (4-12)
/=1
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54

pu(x) = YJcini(x) (4.13)
/=1

calculates the local values of density and momentum respectively accumulated over a

sub-volume. It is divided by the size of sub-volume to get an average quantity per

lattice node. This sub-volume size is one of the controlling parameters apart from

temperature difference in the simulation and the detail of this study is discussed in

further below.

4.3 Effect of model control parameters on performance

As outlined earlier the simulations were designed to find out the influence of sub

volume size and temperature difference (deltaT). Poiseuille flow experiments were

used in this study. One of the aims of this experiment is to find the optimum

conditions for further simulations. The effects of sub-volume size and temperature

difference were examined and the results are discussed in this section. Both factors

are very important in deciding the outcome of the process.

4.3.1 Effect of sub-volume size

It is important to predict the sub-volume size which is independent of viscosity for

further simulations. The resolution of the lattice is selected based on the viscosity of

the flow. Sub-volumes are grouped as micro blocks in to various volume size. The

following for sub-volume sizes, (4,4,4), (6,4,4), (12,4,4) and (29,4,4), were used in

the simulations. The nodes in the sub-volume is defined as Ni(n), where n

represents the relative position of the lattice node within the sub-volume and

n e {0,1,2, 63} for the sub-volume of dimensions X=4, Y=4, Z=4 as grouped as

(4, 4, 4). Simulations were carried out by varying the sub-volume sizes for constant
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temperature difference (deltaT) range. Viscosity fluctuation as a function of sub-

volume size (in terms of total number of nodes) is plotted in figure 4.4.
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Figure 4.4. Viscosity fluctuation as a function of sub-voiume size.
■ deltaT 0.015, ★ deltaT 0.0165, T deltaT 0.0175, • deltaT 0.0185.
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Keeping the deltaT at 0.015, 0.0165, 0.0175 and 0.0185, various sub-volume sizes

were analysed. The results showed a trend of initial increase in viscosity before it

become constant with increasing sub-volume size. Increasing the sub-volume size

beyond (12, 4, 4) did not influence the viscosity. This is probably because the system

gets saturated with regard to the collisions rules as it is pre defined in the model.

4.3.2 Effect of temperature difference range

Further simulations were carried out for various temperature differences while

keeping the sub-volume size constant to see the viscosity changes. This will also

enable us to verify the accuracy of previous simulation results. For each of the sub-

volume size (4,4,4), (6,4,4), (12,4,4), (29,4,4) simulations were carried out with

different deltaT values. Viscosity fluctuation as a function of temperature difference

(deltaT) range is plotted in figure 4.5. The change in viscosity pattern was similar with

initial increase before it become constant at 0.0175. As before the predetermined

model parameters make the system saturated with maximum number of collisions.
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Figure 4.5. Viscosity fluctuation as a function of temperature difference (deltaT)

■ sub-volume size 4,4,4, ▲ sub-volume size 6,4,4, ★ sub-volume size 12,4,4,
sub-volume size 29,4,4

The viscosity constant regions in the above studies were selected for bench mark

studies and further experiments.
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4.4. Validation of Galilean invariance artefact removal

The removal of Galilean invariance artefact, g, from the momentum equation can be

demonstrated by examining the relaxation of a shear wave with transverse velocity in

an open system (Salem et al. 1986). The lattice is initialized with a particular density

and temperature and an initial velocity field is given by

u0(x,t = 0) = uTey +uL sin(ky)ex (4.14)

where k is the wave number of the perturbation. Having a non-zero streaming speed

in the direction of the perturbation will allow g to be measured directly from the

evolution of the perturbation. There is no flow velocity in the z-direction. The

evolution of this perturbation in time is given by the lattice Navier-Stokes equation

for incompressible constant density and temperature flows

3U
w rv2

Hgu.vu = rv u
dt (4.15)

Substituting equation 4.14 for u in the above equation, it can be calculated

analytically. The following solution can be derived.

u(x,t) = uTey + uLe~lkUTgt~yk' sin( ky)ex (4.16)

Where, we could see the time evolution of the phase and modulus of u(t) directly

measure the g-factor and the kinematic viscosity y. The presence of viscosity in the

flow causes the shear to be destroyed. Eventually only the transverse flow remains.
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Simulations were run on a 64 x 64 x 64 lattice with various values of density and

temperature. Validation runs were done with uT =uL =0.1 and a wave number of k

= 2 n 16A which corresponds to one wavelength of the perturbation exactly fitting into

the lattice volume. All macroscopic flow velocities are in units of number of lattice

nodes travelled per time step where a time step is the time required to update the

entire state-space volume. The component of momentum in the x-direction was

measured at every time step and this signal was then Fourier transformed and the

component with wave number k was extracted, all other Fourier components being

noise. Phase and modulus of the remainder was calculated. Representative plots of

the phase and modulus are shown in Figure 4.6 and 4.7.

time

Figure 4.6.Phase of the shear perturbation as a function of time.
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time

Figure 4.7. Modulus of the shear perturbation as a function of time.

The slope of the phase evolution is equal to gkuT in figure 4.6 and the slope of the

modulus as function of time is equal to y k2 in figure 4.7. Since k and uT are input

parameters it was possible to calculate g and y from these slopes. The slope in figure

4.6 yield g = 1.028 ± 0.02. It is evident from this result that this model achieves

macroscopic Galilean invariance. Measured value of the Galilean invariance factor,

g, and kinematic viscosity y are shown in the below table 4.2.
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density( p) z kinematic viscosity g

10 8 0.269 ± 0.003 1.102 ± 0.02

12 8 0.256 ± 0.002 1.028 ± 0.03

Table 4.2. Simulation results for Galilean invariance factor.

4.5 Benchmarks

As this model is developed as new, it is planned to carry out further simulations to

validate this model and check consistency. We examine some fluid dynamics

experiments with the goal of further demonstrating the accuracy of the current

implementation of the model of Teixeira. By simulating certain standard fluid

dynamics experiments such as flow between parallel plates and flow past a circular

cylinder, quantitative comparison of various flow properties with experimental

results are possible. This provides further validation of the algorithm.

4.5.1 Poiseuille Flow

The work described in this section is to use the multi speed lattice gas method for a

well-known flow: flow between two parallel plates known as Poiseuille flow and this

type of flow is used for the experimental determination of the viscosity.
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A lattice was formed of dimensions X= 354, Z =58, Y=6 and the nodes are linked

between nearest neighbours according to a regular FCHC lattice. The longest side is

considered as the flow direction. The lattice is initialized with particles of density p

=5 and temperature related variable z = 8. Periodic boundary conditions are applied

to the channel walls. The selection of bounce back conditions ensures that the

average speed at each point of the channel walls is zero. With the x-direction being

aligned to the length of the channel, the Navier-Stokes equation for this flow

simplifies to

d 15 d2
U — p + V rMt (4.17)

dt x pdx dy2

In a steady state condition, the flow is zero at the walls and reaches a maximum in

the centre. The solution is

a

Where a is the half-height of the channel centred around y = 0. At equilibrium the

velocity should attain a parabolic profile throughout the channel. From this result, a

viscosity measurement can be obtained.
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The simulation was started with the fluid at rest. Once the equilibrium was reached

the data was accumulated for another 2000 time steps to assure the clean profile and

measurements. A sample velocity distribution is shown in Fig 4.8. In the figure we

show both the theoretical and simulation result and the channel flow gives the

expected parabolic profile to a good degree of accuracy.

y(lattice units)
♦ Simulation Theoretical

Figure 4.8. Flow distribution across a channel:Comparison of simulation with
theoretical Poiseuille flow profile for three speed model.
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A number of experiments for various densities p and temperatures z for the

viscosity measurement are shown in Table 4.3.

density z kinematic viscosity

2 0.503

5 5 0.442

8 0.429

2 0.361

8 5 0.343

8 0.330

2 0.328

10 5 0.286

8 0.272

2 0.311

12 5 0.264

8 0.266

Table 4.3. Simulation results for viscosity measurements.

We see that as the temperature is increased (z is decreased) the kinematic viscosity

also increases. This is the same trend observed for gases such as air. Furthermore the

density dependence of the viscosity measurements is illustrated graphically in Figure
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4.9. This also demonstrates the correct behaviour for gases with kinematic viscosity

decreasing monotonically as the density is increased.

GO
o
a
GO

6 8 10

no ofparticles/lattice site

Figure 4.9. Simulation results of kinematic viscosity as a function of density.

z=8 (A), z=5 (•), z=2 (■)

If the density becomes too large then collisions are actually inhibited because hole

sites are needed for a collision to occur. We see evidence of this in Figure 4.9 for the

high z (low temperature) flow where the viscosity has started to flatten out at high
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densities. At low temperatures most of the particles reside in the low speed sites

which inhibit energy exchange collisions into or out of these energies.

Calculations of the flow kinematic viscosity are compared with shear wave

experiment and Teixeira results are shown in figure 4.10. The results are similar to

what the Teixeira model described even though the exact method employed in his

study is not known. We see that the viscosity measurements agree with each other.

This is further strong evidence that the algorithm exhibits correct hydrodynamic

behaviour as expected.
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no ofparticles/lattice site

Figure 4.10. Kinematic viscosity as a function of density for z=8.

Simulation results (■), Teixeira results (•), data from shear wave measurement (T)
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4.5.2 Flow past a circular cylinder

Our GI-LGA model is used to investigate a most popular fluid dynamic experiment

of the flow past circular cylinder to validate the system further. Cylinder was created

in the LGA coding by assigning the nodes corresponding to the cylinder dimensions

as a solid boundary. By setting the initial density and temperatures as constants, flow

velocity is varied to obtain different Reynolds numbers.

Reynolds number is one of the important concepts in the fluid dynamics. It is a

dimensionless number and it is defined as the ratio of inertial to viscous force. It

quantifies the contribution of these forces in particular flow regime. Since viscous

forces are dominant in laminar flow, the Reynolds number is small. Turbulent flow

occurs at high Reynolds numbers. The Reynolds number can be calculated by the

following

V

where d is the diameter of the cylinder in lattice unit, u is the fluid velocity and v

is the kinematic viscosity of the fluid.

Random simulations were carried out with different lattice size. The lattice sizes

were chosen from those lattice sizes reported in the literature and the GI-LGA model

of Teixeira to facilitate the comparison of the results. The main flow property that

was varied to get different Reynolds numbers was the flow velocity. The cylinder

diameter also changed slightly in some cases.
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A summary of the flow parameters for cylinder runs and system geometry for each

case is given in Table 4.4. The system geometry is given as lattice units. The x

direction is the length of the simulation volume which is the flow direction. The z

and y directions represent the height and the width of the lattice size respectively.

Lattice Size Diameter Blockage ratio (%) Re Cd

x z y d d /z

384 256 8 40 LL6 16 T68

384 256 8 40 15.6 19.4 2.44

384 344 8 40 11.6 27.77 1.96

1280 512 8 44 8.6 29.45 1.88

384 256 8 40 15.6 31.52 1.80

1280 512 8 42 8.2 35.44 1.71

1280 512 8 48 9.4 41.79 1.61

Table 4.4. Summary of flow parameters (lattice units) for cylinder runs with Re < 45.

Distances are measured in lattice units.

Simulations were run. Once the steady state had been reached, the drag on the

cylinder was calculated to determine the drag coefficient

Cd=—f (4.19)
Acs • 2" Pli
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Where Fcyl the total is force on the cylinder and Acs is the frontal cross-section of the

cylinder which is equal to twice the radius multiplied by the cylinder length.

The force deposited to the wall by one particle is the amount ofmomentum imparted

to the wall by the particle over the duration of the collision. To find the total force on

the wall, we take twice the value of the component of momentum directed into the

wall for particles that collide with the wall since the particles interact with solid

boundaries by bouncing back from them.

3-

2-

Cd

1 -

0-

10 20 30 40 50

Re

Figure 4.11. Cd Vs Re .simulation results (■), experimental results (T),
Teixeira results (□), CFD result (•) .The line connects the simulation
results for clarity

The drag coefficient as a function of the Reynolds number is plotted in figure 4.11

along with the comparison of the literature results. Our results are comparable with
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the experimental results of Tritton 1959 and CFD results of Karniadakis 1988 and

with numerical simulations by Teixeira 1992. Quantitative agreement between our

data and the literature results is satisfactory for Re > 25. There is a small discrepancy

between our results and the literature results for low Reynolds number. One

possibility for the disagreement at lower Re could be the influence of surface

roughness for smaller radius cylinder and this issue concerns the degree to which we

can delineate a continuously curving cylinder in a discrete lattice.

It might appear that the surface of a simulation cylinder of relatively small diameter

is significantly rougher than a true cylindrical surface, since it is restricted to be

defined by the lattice nodes. This was the smallest radius that was used in the

cylinder experiments and so it represents the case with the largest surface roughness

effect.

The second key geometrical consideration which is also of vital importance in wind

tunnel experiments is the "blockage" or the ratio of the frontal projection area of the

object to the total cross section area of the tunnel. The only effective way to reduce

blockage is to actually simulate a larger physical volume. In this respect the result for

Re=41.79 was carried out with the lowest blockage ratio and shows very good

agreement with the experiment.
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Summary

A three-speed GI-LGA model has been successfully implemented to accurately

describe the hydrodynamic behaviour by removing the Galilean invariance artefact g.

It is validated through a shear wave experiment. We have investigated the influence

of sub-volume size and temperature difference on viscosity to choose the optimum

parameters for the simulations.

An application of this model to the flow between two flat plates demonstrated the

expected fluid dynamic behaviour. Flow around a cylinder compared well with

literature results in measurement of the drag coefficient.

This GI-LGA model is applied to non-creeping single phase flow as flow at

significant Reynolds number can now be studied correctly.
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Chapter 5
New LGA model of non-creeping flow

Introduction

Even though the basic LGA models suffer some inherent shortcomings in non-

creeping flow simulations, they are very good simulation tools for fluid flows in

complex geometries. They have been used by many researchers in variety of

problems in fluid mechanics. Stauffer et al (1991) summarized some of the basic

fluid mechanics problems as well as flow through porous media applications. Apart

from describing macroscopic phenomena, LGA methods also give microscopic

detail. This property is very helpful to understand the volume-averaged parameters

which are used in large-scale simulations of flow through porous media.

Existing literature on LGA methods for fluid flow through porous packed beds gives

very limited information in marking the applicability of different flow regimes.

There are no studies in literature, to our knowledge, on non creeping flows through

random sphere packing using LGA methods. In this study we have attempted our

single phase LGA model, which was validated and demonstrated to show gaining

Galilean invariance, to simulate flow through a bed of non-overlapping randomly

packed spherical particles. In this chapter, we start with a synopsis of different flow

regimes and the details of implementation of GI-LGA for flow through random

packing of spheres. This is then followed by results of our study and analysing the

flow regimes that is characterised by the simulation results which are compared with

the literature.
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5.1 Review of flow regimes

Different types of flow patterns or regimes occur in porous media. Different types of

forces that act on the particles and column wall contribute to the formation of

different flow patterns. A comprehensive review on fluid flow regimes in porous

media was published by Dybbs et al. 1975. The resistance to the flow of fluids

through porous media was studied experimentally by Fand et al. 1987. In general, the

flow regimes that are identified in fluid mechanics are termed as Darcy,

Forchheimer, and turbulent flows. The predominant force which characterise each of

these regimes will fall into one of the following category: viscous, inertial or

turbulent forces. The following regimes can be defined based on the above forces:

(1) In the Darcy regime, the flow is dominated by viscous forces. Here, the

pressure gradient is proportional to the flow rate.

(2) The viscous-inertial flow regime in which the relationship between the

pressure gradient and the flow rate becomes non-linear. This is characterized by the

laminar wake oscillations followed by the formation of vortices. This is termed as

Forchheimer flow.

(3) A highly unsteady and chaotic regime that qualitatively resembles

turbulent flow.

In addition to the flow regimes described above, another flow behaviour pattern was

described based on Reynolds number values. Bear (1972) identified that Darcy's law

does not hold true below a particular value of Reynolds number. The flow in this

regime is referred as pre-Darcy flow. A considerable amount of research has been
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conducted to obtain information on the flow resistance in both Darcy and

Forchheimer regimes.

5.1.1 Darcy flow

Henry Darcy, in 1856, derived the following empirical relationship for relatively

low-velocity one dimensional flow through porous media

P' =—w (5.1)
K

Where P is the pressure gradient, /j, the dynamic viscosity, u is the fluid velocity

and K is a constant called permeability.

Darcy's equation, also known as the Darcy's law, is applicable only to a restricted

interval of the Reynolds number. The lower and upper bounds of the Darcy regime is

shown in figure 5.1.

5.1.2 Forchheimer flow

Forchheimer (1901) suggested a non-linear relationship between the pressure

gradient and fluid bulk velocity when viscous and inertia forces coexist and his

proposed equation is

P'=au + bu2 (5.2)

Where a and b are constants and u is the fluid velocity. It is governed by the sum

of two terms; one proportional to u and the other to u2 that takes into account both

the viscous and inertial effects of the flow.
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Ergun (1952) expanded the above equation by relating the above terms to other

elements influencing the flow like properties of the fluid, fractional void volume,

orientation, size, shape of the porous matrix and dependence upon the flow rate. He

concluded that the pressure gradient in a fixed bed can be equated to the sum of the

following two terms; one related to the dissipation of viscous energy and the other

related to the dissipation of kinetic energy. His proposed equation is

p- = AVzit!i±+B<kd!LeS (5.3)
f d2 f d

Where A and B are dimensionless constants, p is the dynamic viscosity of the

fluid, p is the fluid density, d is the mean equivalent diameter of the porous matrix

and (f> is the porosity.

Irmay (1965) averaged the Navier-Stokes hydrodynamic viscous flow equation by

using statistical methods to derive a non-linear equation applicable to Forchheimer

regime and the derived expression is

p- =A(j^tw+B<}z^pul+pdv (54)
<f d <f> d (j) dt

The last term in the above equation accounts for unsteady flow and its value become

0 when the flow achieved steady state. So Ergun's and Irmay's equation are identical

for steady state flows.
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5.1.3 Dimensionless Expressions

In order to determine and define the transitions of flow to different regime in the

simulation data, we need appropriate parameters. Ergun's expression for resistance to

flow through packed columns is shown in equation 5.3. It can be derived in the

following form which makes it a dimensionless parameter.

,-£..A£z£L+BQ=.f>-
JUO (j) (j)

P— =A±—+ Re (5.5)

The equation 5.3 can also be non-dimensionalized by appropriately inserting the

actual flow Reynolds number based on the interstitial fluid velocity in the formula.

IY

P'— = l + -jL--^- = l + -jLRek (5.6)
JUU y/A(f>jU VA

It may be noted from the above expressions that the relevant non-dimensional group

that governs the resistance to fluid flow through packed columns is either the Darcian

Reynolds number based on particle diameter, Re, or the actual flow Reynolds

number, Re^, based on the interstitial fluid velocity which is vf =^ . Though
both Reynolds numbers have been in use for fluid dynamic calculations, some would

prefer the actual flow Reynolds number because of its weaker dependence on the

porosity of the medium^ (Ifiyenia et al. 1994). From the above expression the

dimensionless pressure drop = (P 7—) and the actual flow Reynolds number,
fJLV (p

nr
Re a _ P v ^ °f can be calculated. Here (j) and P represent porosity and pressure

a

drop respectively.
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The dimensionless pressure drop as a function of Reynolds number for different flow

regimes is shown in figure 5.1. Both Forchheimer and turbulent flows should have

the same functional dependence on the Reynolds number. But the slope of the curve

should be different for both flow regimes.
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Figure 5.1. Flow regimes for fluid flow through porous media (after Ifiyenia et al.

1994).

In the Darcy regime, lower and upper bounds of Reynolds number will be designated

by ReDL and ReD//. The lower and upper bounds of Re of Forchheimer flow is

represented in the graph asReFi and ReFH . The region between Re0// and ReFL is

a transition region where the flow changes from Darcy to Forchheimer regime.
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Beyond ReF// there is another transition region which leads to the beginning of

turbulent flow, designated herein as the "post- Forchheimer regime".

5.2 GI-LGA model of fluid flow in random sphere packing

In this part of the study, we experimented our GI-LGA model to simulate fluid flow

in a bed of non-overlapping spheres. This non-overlapping sphere bed consists of

uniform spheres and represents the model for porous media. The details of design

and implementation are described in the next section.

5.2.1 Lattice configuration

We have coded a program for generating random packing of spheres using C++. It is

based the algorithm of Nolan et al (1992) who created a program for random packing

of hard spheres. His algorithm has features common with compressed gas model

(Finney, 1976) and sequential dropping and rolling of spheres (Tory et al. 1968).

This simulation can randomly pack hard spheres in a cylinder for gravitationally

stable lattices ranging from random loose packing to random close packing. This

model predicts the packing densities ranged from a minimum of 0.509 to a maximum

of 0.638 and we have achieved the packing density of 0.57. A three dimensional

view of the granular bed is illustrated in Figure 5.2.
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Figure 5.2. A three dimensional geometric view of a granular bed.

Example of the cross sectional view of this random packing is shown in figure 5.3.

The empty circles represent the packing of spheres as regions with zero velocity

(This figure also contains interstitial fluid flow).
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Figure 5.3. Cross sectional view of packed sphere bed.

The programs used in simulations are generally of those developed for the initial

multi-speed GI-LGA model and the implementation details were similar as discussed

in previous chapter. Additional coding was added to accommodate the sphere

packing where it is necessary.
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5.2.2 Implementation

In this simulation, a lattice with dimension of x =200, y=120, z =200 and a sphere

diameter of 20 lattice units were used. The simulation is started with one level of

flipping and the flow rate is calculated from an average over 100 time steps. Once it

reached steady state, the sampling was done.

Flow rate as a function of time step is plotted in figure 5.4. This plot demonstrates

how the simulation starts from the initial condition until it reaches the steady state for

a single flipping. Multiple simulations were carried out by increasing the force of

flipping to obtain a higher flow rate. This is explained in detail in section 3.3.5. With

increasing level of flipping there is a change in momentum states of a set of number

of lattice particles at each time step. In the following figure 5.4 the steady state is

achieved after about 400 time steps where the sampling was done. During the

sampling 10 blocks of data each over 100 time steps were accumulated to get an

average value.

The pressure gradient is also calculated in the same manner for each level of flipping

during the above simulations. Pressure gradient, AP was calculated during the

simulation by accumulating the z-component of the momentum transfer to the solid

surfaces. It is described by the following expression (Humby et al.2002)

A P
1
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Here the summation is the overall particles impinging upon the solid surfaces. czi and

czj, are the z component of the velocities before and after collision with the solid

surface. wAyis the simulation domain normal to the direction of flow.

time step

—a— sphere diameter=20

Figure 5.4. Volumetric flow rate as a function of time step.

5.2.3 Simulation results for various sphere packing

Several random spheres packing were tested to check the results are independent of

the configuration of randomly packed spheres.
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The following three different randomly packed beds of spheres have been generated

and simulations were done for each packing as described above:

1) 42 spheres with lattice size x = 32, y= 80 ,z = 80

2) 83 spheres with lattice size x = 80, y= 48 ,z = 80

3) 200 spheres with lattice size x = 112, y= 80, z = 80.

All the above measurements are given in lattice units. A sphere diameter of 16 lattice

units was used in all the packing. A plot of pressure gradient versus velocity is

presented in figure 5.5.

There was no significant variation in the results for these three packing

configurations. The results appear to be independent of the size of the domain

relative to the number of spheres. The sphere packing contains 83 spheres was

selected as a representative model for all further studies in this chapter.
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Figure 5.5, deltaP versus velocity for various sphere packing configurations.

5.2.4 Simulation results for various sphere diameters

Uniform sphere packing with various diameters were tested to achieve suitable level

of discretization. The simulations were started with the volume size of x = 80, y= 48,
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z - 80 with sphere diameter of 16 lattice units. Then the sphere diameter is varied

from 16 lattice units up to 60 lattice units.

The sizes of the simulation domains for the various sphere diameters are listed

below:

X y z sphere diameter

80 48 80 16

100 60 100 20

130 78 130 26

180 108 180 36

200 120 200 40

300 180 300 60

Each point in the plot was an average of five to six simulation results to reduce the

error margin. The velocity and AP were calculated in each simulation. A total of

more than 100 simulations were carried out in this study. The results of AP versus

velocity are presented in figure 5.6. When we increased the sphere diameter from 40

lattice units up to 60 lattice units, we could observe that there is no significant

variation in the results. Therefore, we have used the lattice size with the sphere

diameter of 40 lattice unit as a standard simulation for all the results analysis and

discussion.
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Figure 5.6. deltaP versus velocity for various sphere size (lattice unit) -
from 16 to 60.



5.3 Flow regime analysis

To analyse the flow regime, further simulations were carried out with lattice domain

size of x=200, y=120, z=200 which contains 83 spheres of 40 lattice units sphere

diameter. Dimensionless pressure drop and the actual flow Reynolds number were

calculated and plotted in figure 5.7.
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Figure 5.7. dimensionless pressure drop versus actual flow Reynolds number for
entire regime.

The above plot is split into different flow regime to facilitate the analysis.

Darcy regime is presented in figure 5.8. In this regime, a range of Reynolds numbers

for which the dimensionless pressure drop is proportional to Re. From this part the

porous medium permeability was determined. Darcy flow was observed with the

lower bound of ReDi is 0.23 and the upper bound of ReDH is 1.43. These limits

were determined by the changes occurring in the slope of the plot.
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Figure 5.8. dimensionless pressure drop Vs actual flow Reynolds number for Darcy regime.
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Figure 5.9. dimensionless pressure drop Vs actual flow Reynolds number for transition from
Darcy to Forchheimer regime.
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Figure 5.10. dimensionless pressure drop Vs actual flow Reynolds number for transition
from Forchheimerto turbulent regime.

The region between Re0// and Refi shown, in figure 5.1, is a transition region from

Darcy to Forchheimer. The corresponding flow regime obtained from our study is

demonstrated in figure 5.9. It occurs between the Rek of 1.43 and 1.79. As the flow

continues, there is appreciable change is seen in the slope of the plot.

The regime corresponds to Forchheimer flow is shown in figure 5.17. The lower

bound of Refi is > 1.79 and the upper bound of Reffl < 4.5 is identified. In post-

Forchheimer flow there is another transition regime and it shown in figure 5.10. As

the flow continues in this regime it becomes turbulent flow. It is not as well

demarcated and described as the previous transition regime from Darcy to
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Forchheimer. We have identified the turbulent flow regime for which Rek > 5.04 and

it is shown in figure 5.18.

5.4 Discussion

There are no results found in the literature which used GI-LGA methods for the

simulation of flow in a random sphere pack which restrict the scope for direct

comparison of our results. However, there are few results found in the literature from

studies of flow through random sphere packing by experimental work and numerical

simulation based on volume-of-fluid method.

Ergun (1952) summarized the important factors that influence the flow of fluids

through packed columns. From his experimental studies he concluded that there was

no evidence of variance of the coefficient of the viscous and kinetic energy term with

porosity in equation. Macdonald et al (1919) reviewed the experimental study results

of Gupte (Rumpf and Gupte, 1971) which measured the dependence of the

permeability on the porosity using spherical glass beads packed in a uniformly

random manner. In the above experimental data was analysed with Ergun's equation

in his review paper and concluded that Ergun equation appears to be accurate and

also in order to get a better fit to the data points, he used ^3 6 instead of <j)Z in the

equation. Fand et al (1987), in two different studies, examined the resistance of fluid

flow through random packing experiments. One of his studies was using uniform

sphere diameter packing with porosity of -0.36. He used particle based Reynolds

number for the pressure drop calculations.
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Ifiyenia et al (1994) summarized the recalculated correlations of Fand et al (1987),

Macdonald et al (1979) and Ergun (1952). The details are presented in table 5.1.

Mousavi et al (2006) studied fluid flow through random packing of non-overlapping

spheres by CFD approach using volume-of-fluid method. He has given plots for the

dimensionless pressure drop versus Reynolds number for two-post Darcy regimes in

his study. We have calculated the correlation coefficients based on these plots and

included in the table 5.1 for comparison.

We have plotted our simulation results along with the results from the above studies

in figure 5.11 and compared.
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Mousaw et al (2006)
Fand et al (1987)

Rek

■ Ergun (1952)
• present study

10

Macdonald et al (1979)

Figure 5.11. dimensionless pressure drop Vs actual flow Reynolds
number.

For clarity, individual regimes are plotted separately along with literature results and

discussed below.
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Plots for Darcy regime is shown in figure 5.12. From the figure, our results are in

good agreement with other results. It may be noted that our results are in very good

agreement with Ergun (1952) results. Simulation results of Mousavi et al (2006) are

closer to Macdonald et al (1979). We don't have enough data to plot the full flow

regime from the Fand et al (1987) results. So comparison can not be made.
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Figure 5.12. dimensionless pressure drop as a function of actual flow
Reynolds number for Darcy Regime.

The plots transition from Darcy to Forchheimer regime is given in figure 5.13. It is

noted from the figure, though there is a slight separation of plots, still our simulation

results are close to the experimental result of Ergun (1952). As with previous regime,

the simulations ofMousavi et al (2006) are closer to Macdonald et al (1979).
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0.9 1.4 1.9 2.4

Rek
—•— Mousavi et al (2006) -0— present study
—a— Ergun (1952) -34- Macdonald et al (1979)

Figure 5.13. Plot of dimensionless pressure drop as a function of actual flow
Reynolds number for transition from Laminar to Forchheimer regime.

The plot for the Forchheimer regime is shown in figure 5.14. The results are closer to

the range of experimental results of Ergun (1952) and Fand et al (1987).
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Figure 5.14. Plot of dimensionless pressure drop as a function of actual flow
Reynolds number for Forchheimer flow.

Figure 5.15 shows plots for the transition from Forchheimer to turbulent regime. Our

results comparable and are closer to the experimental results of Ergun (1952). An

anomalous jump is noted in Mousavi et al (2006) simulation results for which there

is no obvious explanation. There is no data available for Fand et a/(1987).
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Figure 5.15. Plot of dimensionless pressure drop as a function of actual flow

Reynolds number for transition from Forchheimer to turbulent regime.

The results for the turbulent regime are shown in figure 5.16. In this regime, the

same trend continues with good agreement between Ergun (1952) and our simulation

results. Mousavi et al (2006) reports a higher pressure drop in the turbulent region

than Macdonald et al (1979).
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Figure 5.16. Plot of dimensionless pressure drop as a function of
actual flow Reynolds number for turbulent regime.

5.4.1 Pressure drop equations

As we have seen earlier, the pressure drop may be expressed as a non-

dimensionalised function of the Reynolds number (Ifiyenia et al. 1994 and Mousavi
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et al 2006). The pressure drop coefficients calculated from our studies are

summarised below in table 5.1.

The results are presented separately for the Forchhemier regime, the turbulent regime

and then over the whole set of data for comparison with other authors. For the

individual regimes, only the measurements of Fand and the simulations of Mousavi

are available for comparison.

Figure 5.17 shows the best fit for the Forchheimer regime.

0.9 -| 1 1 1 1 1 1

1.7 2.2 2.7 3.2 3.7 4.2 4.7

Rek

Figure 5.17. Plot of dimensionless pressure drop as a function of actual flow
Reynolds number for Forchheimer regime.

The equation given for this regime is then,
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— = 0.826 + 0.176Ret
fJ.V

The R" value for this fit is 0.9999. The slope is 20% higher than the experimental

work of Fand et al (1987) and 7% higher than the numerical study of Mousavi et al

(2006). The intercept is 10-20% lower than from their results as this would be

expected from the previous plots.

The turbulent regime (Figure 5.18) also achieves a high correlation of R2 = 0.9997.

4.2 5.2 6.2 7.2 8.2 9.2

Rek

Figure 5.18. Plot of dimensionless pressure drop as a function of
actual flow Reynolds number for Turbulent regime.
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The equation for this regime is given by

~ = 0.653 + 0.2102Re,
jUU

The slope of the equation is 25% - 40% higher than those of either Fand et al (1987)

or Mousavi et al (2006) and the intercept is 40- 50% lower than with their results.

Over the complete range of results (figure 5.19) the following equation is obtained

with a correlation of R2= 0.9979.

— = 0.756 + 0.196Re,
JUU
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Figure 5.19. Plot of dimensionless pressure drop as a function of
actual flow Reynolds number for entire regime.
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The slope is in excellent agreement with the experimental results of both Ergun

(1952) and Macdonald et al (1979) and the intercept agrees well with that of Ergun

but is 25% lower than that of Macdonald. This suggests that there is some zero

pressure anomaly between the Macdonald results and the Ergun results. It is not clear

why the experiments of Fand et al (1987) result in such a low increase in pressure

drop with increasing Reynolds number.
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Table5.1CorrelationsfordimensionlesspressuredropversusReynoldsnumberforflowthroughporousmedia Typeofstudy

Forchheimerflow

Turbulentflow

completerange

(i)Presentstudy

PK JUV

=0.826+0.176Ret
1.79<Re.<4.5

(ii)Experimentalworkby Ergunetal.(1952)dataonlyforcompleterange: (iii)Numericalworkby Mousavietal(2006)

=1.0316+0.164Re*;
PK juv 1.64<Re,<4.59

(iv)Experimentalworkby Macdonaldetal.(\919)dataonlyforcompleterange:
PK juv

=0.6523+0.2103Rei.
PK juo

=0.756+0.196Ret

Re*>5.04

=0.83+0.19Re
PK lav

0.08<Re,<196
k'

PK juv

=1.31+0.156Re,
Re*>5.07

PK fUV

=1.00+0.19Re,
0.003<Re.<32.7

(v)Experimentalworkby Fandetal.(1987)

PK jiv

-0.93+0.14Re
k'

0.57<Re*<9.00

PK

=1.14+0.12Re
/uv

k'

Re*>13.5
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Summary

Study of flow through random packing of non-overlapping sphere packing was

investigated. In this chapter we have successfully studied flow through porous media

using the GI-LGA method. The pressure drop of flow through the granular bed at

various Reynolds number was investigated. The results were comparable with

literature and found to be in good agreement with those reported in Ergun et al. This

method appears most promising for simulating flow through porous media.
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Chapter 6
Ab initio Prediction of Interstitial Flow

Introduction

The flow of fluid in porous media at the pore level has long been of interest for a

variety of reasons. The nature of the macroscale flow models such as the

Forchheimer equation is implicitly linked to the interstitial fluid flow. Similarly mass

and heat transfer between porous media is intimately linked to the interstitial fluid

flow. Another example is dispersion in porous media. It is for this reason that many

have sought to understand the nature of fluid flow in porous media at the pore level

using a wide variety of experimental methods as outlined in Chapter 2.

Unfortunately, these methods cannot be applied to any porous medium - most are

restricted to transparent media whilst those that can be applied to non-transparent

media such as NMR are restricted in terms of their resolution and flow velocities, not

to mention the need for sophisticated apparatus. Provided some representation of the

porous medium is available, however, mesoscale simulation such as being developed

here can be applied to any porous medium. I have, therefore, chosen as the second

demonstration of the new model to study the interstitial flow within a model porous

medium.

The porous medium considered here is a packed bed of equisized spheres. This has

been considered as there is considerable experimental understanding of the

interstitial flow in such media which can be used to validate at least qualitatively the

predictions obtained here. It also offers the prospect that if there are any new findings
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from this work, they can be tested, albeit by others, in the future. The chapter is laid

out as follows.

6.1 Model and simulation details
The study reported here is concerned with elucidating the interstitial flow in the

same random packing of spheres considered in the previous chapter. The size of the

domain is 200 by 120 by 200 lattice units and the diameter of the solid particles is

40 lattice units. Flow was allowed to achieve steady state in the system and then the

samples were taken. The sampling of velocity measurements and the illustration of

how the steady state is achieved are discussed in the previous chapter. The

snapshots define values of velocity using a colour coded vector map: regions of high

velocity are seen as red and regions of low velocity as dark blue. The snapshots

show spherical particles as circular areas of zero velocity because they do not

contain LGA fluid particles. By averaging over a small number of sites, smooth

results are obtained and the details are presented in the following section.

Because of computational resource limitations, consideration was restricted to five

Reynolds Numbers - Rek = 1.12, Re^. =2.1, Re^. =3.45, Rej. =4.8 and

Rek =6.1- one in each of the main flow regimes identified in Chapter 5.

As in the previous chapter, the simulations were initially run until the pressure drop

across the medium reached a steady state at which point data sampling was begun

and these data were then treated as described in the following section.

123



6.2 Visualisation of Interstitial flow field

Visualisation of the interstitial flow field is the most basic approach to elucidating in

a qualitative way how the flow field varies with Reynolds Number. As will be

outlined below, knowledge of this flow field also provides the basis for more

quantitative analysis of the variation of the flow field with Reynolds Number. The

interstitial flow field has, therefore, been determined for the five Reynolds numbers

considered here.

6.2.1 Effect of time-step and sub-volume averaging
By the very nature of LGA, averaging of the results from a simulation over time

and/or space is required to obtain meaningful velocity fields. The most appropriate

size of the spatial sub-volume and time period used in this averaging is not known a

priori but must, instead, be estimated by establishing the combination of the two that

leads to velocity field invariance (i.e. no change in the velocity field with further

increase in either parameter) whilst allowing the resolution of the flow field features

of interest. The most appropriate averaging parameters will vary with the flow

conditions. For example, under creeping flow conditions where the flow is steady

and laminar, the temporal averaging period can be longer at the expense of a larger

averaging sub-domain to increase the level of spatial resolution for a fixed

computational effort. At Reynolds Numbers where the interstitial flow field is

unsteady, on the other hand, the temporal period will necessarily need to be short,

allowing a reduction in the spatial sub-domain size. This will necessitate a high

density lattice for the same level of spatial resolution as in the creeping flow

situation.
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As an example of the analysis undertaken to determine the most appropriate

averaging parameters, Figure 6.1 to 6.3 shows the computed velocity field in a plane

through the packing at Re^ =2.12 which is the transition regime from laminar to

Forchheimer. These figures are for the average of 10 timestep and three different

sizes of the spatial averaging sub-volume. They have been plotted by importing the

data into the Star-CCM+ visualisation package (CD-Adapco).

This figure shows that the interstitial velocity field obtained using the smallest spatial

averaging sub-domain size is not well represented compared to the two larger sub-

domain sizes considered. The most appropriate averaging sub-volume size for the

averaging time period used can be selected by identifying the minimum value of the

sub-volume size (4x4x4) beyond which, for example, the maximum velocity in the

domain ceases to change significantly.

Figure 6.4 suggests that the sub-volume size (4 x 4x 4) is the most appropriate for the

case where the averaging time step =10. The same process is repeated for various

averaging time steps to estimate the most appropriate averaging parameters for a

given Reynolds Number. Using this approach, the most appropriate averaging

parameters estimated here for the various flow regimes are given in Table 6.1.
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Figure 6.1. Interstitial flow field in a plane of a sub-volume of the packed bed as

determined by averaging the GI-LGA results over an average of 10 time steps and

spatial sub-volumes of 2 x 2 x 2. The white regions in which no arrows appear are

occupied by solid
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Velocity
0.0000 0.016112 0.032223 0.048335 0.064446 0.080558

Figure 6.2. Interstitial flow field in a plane of a sub-volume of the packed bed as

determined by averaging the GI-LGA results over an average of 10 time steps and

spatial sub-volumes of 4 x 4 x 4. The white regions in which no arrows appear are

occupied by solid
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Velocity
0.0000 0.016168 0.032336 0.048504 0.064672 0.080840

■ JS 1 ■k-i
1 H -■ Am

Figure 6.3. Interstitial flow field in a plane of a sub-volume of the packed bed as

determined by averaging the GI-LGA results over an average of 10 time steps and

spatial sub-volumes of 5 x 5 x 5. The white regions in which no arrows appear are

occupied by solid

128



7

6.5

</>

>

CO 5.5
E
>

* 5
o
o
(D
>

4.5

3.5 1 1 1 1 1 1

0 20 40 60 80 100 120 140

sub-volume size

•averageing timestep=2 —averaging timestep=5 —a— averagingtimestep=10

Figure 6.4. Velocity versus sub-volume size for various time step averaging. The
sub-volume size is (2x2x2, 4x4x4, 5x5x5) and the time step averaging is 2,5,10.
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Regimes sub-volume size time step

(a) Laminar 5 10

(b)Transition from Laminar
to Forchheimer 4 10

(c)Forchheimer 2 5

(d) Transition from Forchheimer
to Turbulent 2 5

(e)Turbulent 2 5

Table 6.1. Averaging parameters for various flow regimes.

6.3 Backflows

Recirculation 'behind' particles in the packing due to boundary layer separation is

one example of where the local velocity is in a direction opposite to that of the

superficial velocity (i.e. backflow).

Stationary backflows are thought to be associated with the approach of the upper end

or exit from the Forchheimer regime (Hlushkoua et al. 2006). In the turbulent

regime, backflows will exist because of the presence of coherent structures such as

non-stationary vortices.
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The identification of individual vortices within the interstitial flow field is

challenging in general (Jeong et al. 1995), and even more so within the complex pore

spaces being considered here. A commonly used method for identifying vortices is to

determine the vorticity field (Hussain et al. 1987; Jeong et al. 1995) where the

vorticity is defined by

to = Vxv (6.1)

This approach has been used here as part of the effort to elucidate the nature of the

vortices in the upper reaches of the Forchheimer regime and beyond.

6.4 Flow regimes as a function of Reynolds number

The nature of the flow around spheres changes as the Reynolds number of the flow

increases. In general, the higher the Reynolds number, the more complex is the flow.

In this section we describe the nature of the flow for different Reynolds numbers in a

range between Laminar to Turbulent flow.

In the velocity vector plots the colour scale is fixed to the largest Reynolds number

for the comparison. For the vorticity plots colour scale that ranges from 0 to the

maximum for each Reynolds number. This will allow a clearer identification the

vortices in each regime.

6.4.1 Darcy Regime

Snapshots of the velocity field for various time steps and the corresponding vorticity

plots are shown in this section. Figures 6.5 and 6.6 show the snapshot of the velocity

field in the Darcy regime. From these plots we can see the vectors are always same

and it is an evidence of steady flow in a stationary system.
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Velocity
0.0000 0.0066200 0.013256 O.O19084 0.026512 0.033140

Figure 6.5. Vector plot of interstitial flow field in Darcy regime by averaging the
GI-LGA results over an average of 500 -510 time steps and the spatial sub-volume
is 5 x 5 x 5. The white regions in which no arrows appear are occupied by solid.
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Velocity
0.0000 0.0063490 0.013CK6 0.01 <*47 0.0361 96 0.032743

Figure 6.6. Vector plot of interstitial flow field in Darcy regime by averaging the
GI-LGA results over an average of 600 -610 time steps and the spatial sub-volume
is 5 x 5 x 5. The white regions in which no arrows appear are occupied by solid.
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In figure 6.7 and 6.8, the vorticity values are plotted. Vorticity here is attached to the

surfaces and the values are identical to within 1% (Max ~ 0.0031448). This

demonstrates a steady state of flow which corresponds to Darcy regime.

-0.0024359 -0.0013233
Vorticity(k)

-0.00021061 0.00090205 0.0020147 0.0031274

Figure 6.7. Vorticity plot in Darcy regime; an average of 500 -510 time steps.
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Vorticity(k)
-0.0028667 -0.0016644 -0.000462U 0.00074018 0.0019425 0.0031448

Figure 6.8. Vorticity plot in Darcy regime; an average of 600 -610 time steps.
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6.4.2 Transition from Laminar to Forchheimer

Figures 6.9 and 6.10 show the snapshots of the velocity field and the corresponding

vorticity plot in the transition from the Laminar to the Forchheimer regime. In this

transition regime we can see that the vorticity magnitude is higher than before (max

~ 0.0066423) and there is evidence of recirculation zones beginning to form.

Velocity
0.0000 0.039496 O.Q78S92 O.I 1849 0.15798 0.19748

Figure 6.9. Vector plot of interstitial flow field in transition from Laminar to
Forchheimer regime by averaging the GI-LGA results over an average of 400 -

405 time steps and the spatial sub-volume is 4 x 4 x 4. The white regions in which
no arrows appear are occupied by solid.
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■0.0060275 -0.0034935
Vorticity(k)

-0.00095955 0.0015744 0.0041084 0.0066423

Figure 6.10. Vorticity plot in Transition from Laminar to Forchheimer regime;
an average of 400 -405 time steps
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6.4.3 Forchheimer regime

Figures 6.11 and 6.12 show the snapshots of the velocity field and the corresponding

vorticity plot in the Forchheimer regime. In this regime, vorticity magnitude is higher

than the above transition regime (max -0.015746) and the flow remains attached.

The nature of the flow in this regime has recirculation zones. In order to see the

stationary vortices, one further image is taken at a later time is shown in Figure 6.13,

to demonstrate that all of the vortices are of the same magnitude and in the same

place. In figures 6.12 and 6.13, arrows are represented to show examples of the

stationary vertices.

Figure 6.11. Vector plot of interstitial flow field in Forchheimer regime
by averaging the GI-LGA results over an average of 400 -405 time
steps and the spatial sub-volume is 2 x 2 x 2. The white regions in
which no arrows appear are occupied by solid
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Vorficity(k)
-0.015308 -0.0091287 -0.0029497 0.0032293 0.0094084 0.015587

Figure 6.12. Vorticity plot in Forchheimer regime; an average of 400-
405 time steps.

Vorticityfk)
-0.018155 -O.OH375 -0.0045949 0.0021854 0.0089656 0.015746

P

Figure 6.13. Vorticity plot in Forchheimer regime; an average of 600
605 time steps.
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6.4.4 Transition from Forchheimer to Turbulent regime

Figures 6.14 and 6.15 show the snapshots of the velocity field and the corresponding

vorticity plot in the Forchheimer regime. In this regime, vorticity magnitude is higher

than the above regime (max ~ 0.025968). We found that the flow became unsteady

and there is evidence of stronger recirculation zones. Also the flow consisted of a

series of interconnected vortex loops (recirculation zones) which were shed from the

spheres can be seen in figure 6.16 and it is represented by arrows.

o.oooo 0.030406
Velocity
O.O709O2 O.l 1840 0.1 5706 0.10748

Figure 6.14. Vector plot of interstitial flow field in Transition from Forchheimer to
Turbulent regime by averaging the GI-LGA results over an average of 400 -405
time steps and the spatial sub-volume is 2 x 2 x 2. The white regions in which no

arrows appear are occupied by solid.
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Vorticity(k)
-0.022123 0.012985 -0.0032466 0.0064916 0.016230 0.025968

Figure 6.15. Vorticity plot in Transition from Forchheimer to Turbulent

regime; an average of 400 -405 time steps.

-0.018337 -0.0J0208
Vorficity(k)

-0.0020792 0.0060499 0.014179 0.022308

Figure 6.16. Vorticity plot in Transition from Forchheimer to Turbulent

regime; an average of 600 -605 time steps.
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6.4.5 Turbulent region

Figures 6.17 and 6.18 show the snapshots of the velocity field and the corresponding

vorticity plot in the turbulent regime. In this regime, the vorticity magnitude is again

higher than the previous regime. Some of the vortices have become non-stationary

and exhibit vortex shedding. This can be seen in figure 6.19. This changing vortex

field is highlighted by arrows and demonstrates that the flow is no longer stationary.

Velocity
0.0000 0.039496 0.078992 0.11849 0.15798 0.19748

Figure 6.17. Vector plot of interstitial flow field in Turbulent regime by averaging
the GI-LGA results over an average of 400 -405 time steps and the spatial sub-
volume is 2 x 2 x 2. The white regions in which no arrows appear are occupied by
solid.
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Figure 6.19. Vorticity plot in Turbulent regime; an average of
600 -605 time steps. Arrows represent vortex shedding.

-i0.024303 -0.013434
Vorticity(k)

-0.0025657 0.0083028 0.019171 0.030040

Figure 6.18. Vorticity plot in Turbulent regime; an average of 400 -405 time steps.
Arrows represent vortex shedding.

■0.011199
Vorticity(k)

-0.0012441 0.0087109
WM I

0.018666 0.02862i
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Summary

Flow visualisation through the plane allows a detailed picture of the flow to be

analysed and related to the structure of the void space of the packed bed and it gives

insight into how the transport of fluid through the bed occurs. A range of flow

behaviours is observed. In the Darcy regime, steady flow with no recirculation is

observed. Trapped vortices appeared in the transition from Darcy to Forchheimer

regime. The increased resistance to flow in the Forchheimer regime was due to the

formation of the fixed vortices blocking the flow and this can be seen in the

visualisations. Non-stationary vortices appeared in greater numbers during transition

from Forchheimer to turbulent flow. The formation of these vortices and their

subsequent frictional dissipation result in increased ratio of pressure drop with

Reynolds numbers shown in Chapter5.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

Multiple speed lattice gas methods can be made to accurately and efficiently model a

true continuum fluid. LGA models are good for the fundamental study of fluid flow

problems in porous media. As we have seen earlier they suffer a significant

disadvantage of lacking Galilean Invariance (GI) for non Darcy flows. Though LBM

was developed as an extension of LGA to overcome some of its disadvantages, it has

been postulated that further work on LGA methods could produce models to simulate

a true continuum fluid very accurately and efficiently.

The main advantage of LGA is its unconditional stability with no necessity to use an

approximation scheme to replicate the actual flow. Also another advantage of this

model is the ease with which it can be parallel programmed; this reduces the

simulation time and also makes large scale simulation possible.

We have identified several studies in the literature using LGA for single phase flows;

all of them restricted to creeping flows. To our knowledge there are no previously

published papers which extend LGA to the study of non-Darcy single phase flows.

So the main aim of the present study was to develop a multiple speed LGA model for

simulating single phase flow in porous media where previously only single speed

models existed. The following problems have been addressed.

1] Examination of the existing single speed LGA models and assessment of their

suitability for non-Darcy flows.
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2] Development of a model which gains GI invariance in simulations.

3] Extending this model to simulate flow through random sphere packing

4] Visualisation of the interstitial flow patterns from the Darcy to turbulent regimes.

The results reported in chapter 3 demonstrate that the 2D and 3D LGA fluid transport

codes written for this study are capable of reproducing correct hydrodynamic
behaviour of fluids. These single speed LGA models are restricted to relatively slow

flows due to non-Galilean invariance.

The LGA model of Tiexeira is one of the most advanced in demonstrating Galilean

invariance LGA (GI-LGA). But the details of implementation are not available in

open literature, so I have implemented this model using C++. Galilean invariance

artefact removal is demonstrated through a shear wave experiment. Application of

this model is validated through various benchmark problems. Llow between two flat

plates demonstrated the correct laminar parabolic profile. Llow around a cylinder

compares well with literature results in measurement of the drag coefficient.

This GI-LGA model was extended to flow through porous media. The resistance of

fluid flow through a porous medium composed of randomly packed spheres was

investigated. The pressure drop of flow through the granular bed at interstitial

Reynolds numbers between 0 - 9.5 was investigated. The simulation results are

compared with literature results and show excellent agreement with the experimental

measurements of Ergun et al. The agreement is superior to that of previous numerical

studies.
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Finally the data was used to elucidate the flow pattern within the pores. A range of

flow behaviours is observed. In the Darcy regime, the flow is demonstrated to be

stationary: steady flow with no recirculation is observed. Trapped vortices appear in

the transition from Darcy to Forchheimer regime and these are demonstrated to be

stationary. Non-stationary vortices are shown to appear during the transition from

Forchheimer to turbulent flow.

7.2 Future work

A number of potential extensions of this study were identified throughout the thesis

and are summarized below.

The GI-LGA model presented here has proved stable and robust in simulating the

non-creeping single phase fluid flow in porous media. With less concerns nowadays

for issues of the large computer memory required for LGA, the current work opens

up potential for the LGA model as a method of modelling real fluids more accurately

and efficiently. This study has a great scope for further works in the short and long

term.

1] The current code can be executed in parallel programming to involve large scale

simulations.

2] The current simulation tool could be extended to flow through random multi-sized

spheres.

3] Tests against 'real' porous media would be a very good test of the method and a

practical application. Reconstruction of the pore-space could be obtained with the aid

of x-ray tomography or MRI experiments and the simulation of single/multiphase
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flow through this complex pore space morphology could be done using this GI-LGA

model. This will lead to the development of advanced numerical methods for the

calculation of the transport coefficients.

4] Current study can be extended to multiphase fluid flow in porous media.
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