

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

A Computational Model of Learning

by

Timothy J. Radford

for the degree of

Master of Philosophy

University of Edinburgh

1979

Acknowledgements

My sincere thanks to all of the following:

For supervision and encouragement,

Dr. Gordon Plotkin
Dr. Jim Howe

For reading the draft, and more encouragement,

Dr. Ben du Boulay

For financial support,

The Scarbrow Bursary Trust

The South African Council for Scientific
and Industrial Research

For the use of "Diamond" word-processing equipment,

Data Recall Ltd

And to all of those at the Department of Artificial Intel-
ligence who helped create an exciting and stimulating

environment during the course of this research.

Contents

Page

Chapter 1 Introduction

1.1 Objectives 1

1.2 The Program in Action 4

1.3 Commentary 8

1.4 Thesis Outline 10

Chapter 2 Background

2.1 Learning 11

2.2 Models of Learning 15

2.3 Generalisation 19

2.4 GoMoku and Learning 21

Chapter 3 System overview

3.1 Model Requisites 26

3.2 Control Sequence 29

3.3 Size and Speed 32

Chapter 4 Representation

4.1 Records 34

4.2 Object-Definitions 36

4.3 Objects 37

4.4 Variables 39

4.5 Relationships 40

4.6 Structures 42

4.7 Action-Definitions 44

4.8 Actions 45

Chapter 5 Pattern Matching

5.1 Assignment to Variables 46

5.2 Commencing a Match 48

5.3 Continuing a Match 49

5.4 Suspending a Match 51

5.5 Matching Compound Structures 54

Chapter 6 Responses

6.1 Matched Patterns 56

6.2 Generalisation by Reduction 57

6.3 Responding to Patterns 59

6.4 Generalisation by Composition 59

Chapter 7 A Worked Example

7.1 Setting the Scene 62

7.2 Partial Matches 63

7.3 A Move and Reply 64

7.4 The Open-Four 66

Chapter 8 Conclusions

8.1 Objectives 69

8.2 Achievements 70

8.3 Limitations of Representation 73

8.4 Limitations of the Pattern-Matcher 76

8.5 Contributions 77

Appendix A GoMoku 79

Appendix B POP-2 84

References 87

Chapter 1

Introduction

1.1 Objectives

The program described learns to improve its performance in

the playing of a game, from experience. The main object-
ives of the project are that the system should observe the

following principles:

1) The program should not rely on any special evaluation

functions, which would embody domain-specific inform-

ation.

2) Initial knowledge of the domain should be minimal,

and further knowledge gained should be assimilated in

terms of prior knowledge

3) The system of representation employed should as far

as possible be independent of the domain, again

avoiding the incorporation of domain-specific inform-

ation.

In customary Artificial Intelligence terms, the program is

referred to as existing in a domain or environment. The

model has a goal within this domain and has available

certain actions which it may take in order to achieve its
goal. The goal is represented as a Structure. This term

will be used throughout to denote a set of objects from

the domain, constrained by various domain-pertinent

Page 1

relationships. The actions, goals and objects are the

initial known facts of the environment. The program has

an innate ability to plan simple sequences of actions to

achieve its goals. Inevitably, these plans do not take

into account enough of the nature of the domain and prove

inadequate. In such events the descriptive abilities of

the program are invoked to correct the deficiency, and the

program's model of its environment is enriched.

The chosen domain is that of a two-person game, namely

GoMoku (see Appendix A) . This is played on the vertices

of a 19 by 19 board. Each player has a set of uniform

playing pieces, called stones. One set is white and the

other black. Players alternately place single stones on

the board, the object being to form a line of five adja-

cent stones of one colour. The player to do so first

wins. Strictly, the line formed must contain no more than

five adjacent stones of one colour, but this rule has been

relaxed for present purposes.

The fundamental assumption underlying the model is that

anything that is learnt must always be assimilated in

terms of what is already known. The only knowledge

initially posessed by the program is the description of

its domain and of its goal. What the system learns can

only be related to the domain and the goals, and it is

therefore necessary that it should be possible to repre-

sent new information in an identical manner to that in

which the initial information is described. The model

Page 2

therefore hinges on a system of description which can be

employed to represent all the elements of the domain and

can be used by the program to create its own descriptions.
Two methods of forming new descriptions from old are used:

The first is by the modification of the constraints on the

variables of the old description, while the second in-
volves combining more than one old description to form a

compound description.

A secondary aspect of the work presented is an extension

of the notion of pattern directed invocation. Convention-

ally, a procedure which is to. be invoked in this manner

has an associated pattern, which consists of a string of

words or values and variables. A procedure is'invoked if
its pattern matches a target pattern, according to some

matching algorithm. Matching a value in the target string
to a variable assigns the value to the variable for the

duration of the invocation. The present program incorpor-

ates a logical extension of this process, whereby patterns

associated with procedures may be represented using the

full powers of the descriptive system.

The pattern of a procedure may either be a representation

of the outcome of the application of the procedure, or a

description of conditions under which it might be appro-

priate to apply the procedure. In goal directed languages

such as PLANNER [Hewitt, 1972], the term "procedure" is

usually reserved for the former of these alternatives, and

the term "demon" is used for the latter. The present

Page 3

model regards the pattern as a description of a position
to which the program may have to respond, i.e. in the

"demon" sense. The term "response" more obviously descr-

ibes this function, and is thus used hereafter.

The program is implemented in POP-2 (see Appendix B). The

main feature of this language that is employed is the

facility to describe and manipulate data-structures, and

the ease with which programs can be treated as objects and

associated with such structures.

Diagrams depicting GoMoku positions occur throughout this
text. In these figures, white stones are shown as "o" and

black stones as "x". The symbol "+" is used to highlight
unoccupied vertices that are significant in some other

way.

1.2 The Program in Action

The program's approach to the game is initially simple-

minded. It randomly selects a line of five vertices and

proceeds to place a stone on each. Figure 1.1 shows the

position arrived at after it has made four moves. The

program has just placed the fourth white stone and is

planning to place the fifth at position G8. The opponent

naturally places his fourth black stone at G8 and the

program finds its own plan thwarted. To avoid similar
events in the future, the program must be able to anti-
cipate them. By comparing the position arrived at in the

planned line with the description of its goal, and taking

Page 4

into account the previous move, it is able to describe the

situation immediately prior to the move.

1

A B C D E F G H J K L

Figure 1.1 - Learning about blocking

The goal description is independent of the actual posit-
ions of the vertices, the direction of the line and the

colour of the stones, save that they are of the same

colour. This is also true of the new description just
formed. The effect of "undoing" the last move is to

descibe the vertex at the end of the line as unoccupied.

The description is therefore of the form:

s s s s +

where the occupied vertices are represented by "s" and the

unoccupied vertex by "+". In forming this description,

the system employs the technique of modifying the constr-

aints within the original description.

The game continues and the newly-gained knowledge is soon

put to use. In figure 1.2, the program is constructing a

new line on row 10, in its simplistic manner. Its plan

necessitates playing next on vertex E10. It notices,

Page 5

however, that its opponent has constructed a configuration

that matches the description recently acquired, on column

B. As the number of moves required to complete the oppo-

nent's line is less than that required to complete its

own, it diverts from the plan and plays at position B5.

Without the initial experience the program would have

proceded with its own plan and made no attempt at block-

ing.

The system does assume the domain to be the same from the

point of view of either player. If this were not the

case, it could not generalise from being blocked to block-

ing.

Figure 1.2 - Blocking

Having been successful in blocking the opponent's line,

the program continues with its line on row 10. At the

position reached in figure 1.3 it is about to play on

vertex F10, when it is confronted by two simultaneous

instances of the familiar structure. One runs from B4 to

F8, and the other from E7 to A3. At this point the

Page 6

program finds that it is impossible to block both of the

lines at once and determines that it has lost.

Figure 1.3 - Learning "Open-fours"

The two instances of the structure are now treated in the

manner described above, in the light of the previous move.

Two new, distinct structures result, each having three

stones and two blanks. The line beginning at B4 results

in a structure of the form:

s s s + +

while that starting at E7 produces one of the form:

+ s s s +

The program employs the technique of combining the two

descriptions by pairing the description-variables which

represent the same objects. This results in a compound

structure which describes the overall configuration, thus:

+ s s s + +

This fully describes the line stretching from A3 to F8,

with the black stone on E7 "unplayed". The program is

able to recognise any occurrences of patterns which match

this structure. In any new game the program will now

Page 7

always try to prevent the opponent from creating an "open-

four". If this becomes impossible, it will learn to

anticipate the new conditions under which it became impos-

sible and to avoid them likewise.

1.3 Commentary

The program is a model of learning by trial and error.
The planning component proposes a sequence of actions

which is intended to produce an instance of the goal

structure. This plan is initially naive, but even when

the performer becomes more sophisticated it can always

fall back on the planner. In the example in the section

above, the model decides on a set of five vertices which

form a line as required, and proposes a sequence of act-

ions which will place five stones on the vertices, thus

forming an instance of the goal structure. Such a plan

naturally overlooks the interactive nature of the game and

will inevitably be defeated.

There are two ways in which the plan can fail. The first
is by interference: Some intended action may be prevented

by another event. In the current domain all other events

are perpetrated by an opponent. One of the actions may,

for instance, be prevented by an action of the opponent,

or in game-playing terms, may be "blocked". In the exam-

ple, the program's planned line of five is quite easily

blocked. A generalised description is formed of the

situation immediately prior to the blocking move, together

with a description of the blocking move and its outcome,

Page 8

namely the failure of the planned line. Only the objects

related to the goal description are considered, so that

the order of the opponent's moves and any other moves he

might have made are irrelevant at this point.

Because the game is symmetric, in that the goals and

possible actions of the opponent are the same as those of

the performer, such a description can be used as a block-

ing response. The second way in which a plan can fail is

by the instantiation of the counter-goal. In a game, this

usually means that the opponent has achieved his goal. In

the example, this happens when the opponent creates a line

of five first. In this case the performer needs to find a

way of anticipating and preventing thereoccurrence of such

an event.

Generalisation of the former of the situations above

results in descriptions of blocking responses, while the

latter situation leads to responses as long as it is

possible to see a way in which the event could have been

prevented. It is also sometimes possible to anticipate

the opponent's success, if it has actually become inevit-

able (or un-blockable), and such situations will also give

rise to responses. The GoMoku example in section 1.2 ends

in this way, when the black player forms an "open-four".

The description of the prelimenery state is given to the

pattern matcher as a standard situation to look out for.

If such a situation is later detected, the blocking

Page 9

response is recommended to the performer, who may then

decide whether or not it is to be applied.

1.4 Thesis Outline

The following chapter will give a brief background to the

computational modelling of learning and relate some

details of an earlier program which considered the game of

GoMoku. The third chapter describes the structure of the

present program and is followed by three chapters

detailing some aspects of the system, namely, Represent-

ation, Pattern Matching and the use of Responses.

Chapter 7 provides a "worked example", illustrating the

operation of these components of the system over the

period of a few moves, and is followed by a chapter sug-

gesting some general conclusions. Two appendices provide

a brief background to the game of GoMoku itself, and to

the POP-2 programming language.

Page 10

Chapter 2

Background

2.1 Learning

Early programs which were intended to learn, or improve

their performance with experience, were naturally based on

prevailing general problem solving techniques. The most

significant example of this is the adaption of graph-

traversing or tree-searching techniques to learning.

"Trees" arise in problems such as game-playing and puzzle-

solving, where each move or step gives rise to a branching

point. In all but the simplest of games and puzzles the

trees are too large to be searched exhaustively. It is

often possible to assign a "value" to any particular node

of a tree, in terms of the likelihood of the goal being

achieved from the node. Various techniques may then be

used to "prune" the tree, by considering only those paths

which lead to "good" nodes. A program using such an

evaluation function can be made adaptive by enabling it to

modify the evaluation function.

One of the best known examples of the use of this tech-

nique is a Draughts-playing program ['Samuel, 1959]. Here,

the evaluation function is divided into a set of funct-
ions, each sensitive to different aspects of positions in

the game. These functions are weighted to produce the

final evaluation. The weights may be adjusted after a

game depending on whether it was won or lost, and on how

the states which were traversed were evaluated. The

Page 11

general problem of adjusting the weights associated with

the component functions may be abstracted: In the topo-

logical space spanned by the functions, coefficients must

be determined to define a surface which optimally sep-

arates the "desirable" states from the "undesirable".

This general problem is pursued in the book, "Perceptrons"

[Minsky & Papert, 1969], which chiefly considers it in the

context of learning to recognise patterns.

The evaluation-function approach is avoided in the present

work, as the components of the evaluation function embody

domain-specific knowledge and at the same time inhibit the

acquisition of any concepts not thus embodied.

The use of production systems as a way of describing a

program is another technique that has lent itself to the

modelling of learning. Production rules were initially
used for the formal description of Grammers [Chomsky,

1965]. In its simplest form, a production is a pair of

strings of symbols. The interpretation is that the string
on the left hand side gives rise to the one on the right.
Production systems are now often used to describe formally

the syntax of programming languages. Examples are ALGOL

[Van Wijngaarden et al, 1976] and POP-2 [Burstall et al,
1971]. In heuristic programs employing a "state vector"

representation of the domain, each element of the state

vector will fall in a given range. The heuristics them-

selves can be represented as sets of productions by

Page 12

allowing the symbols used in the production rules to

denote subsets of these ranges.

Conventional programming languages have too complex a

syntax to make it feasible for a program to modify its own

behaviour by editing its own program text. The simple,

uniform syntax of production systems does, however, facil-

itate program self-modification. One method is to repre-

sent the heuristics as described above and permit the

addition of further productions and the modification of

the subranges specified in existing productions. This is

essentially the technique used in Waterman's poker-playing

program [Waterman, 1970], which has two main classes of

production. The first of these, his "action rules",

indicate what should be done in a situation of a specific

type. The second, the "backward form" rules, determine

what constitutes such a situation. The program learns

both by the acquisition of new productions and the modi-

fication of existing ones.

The "state-vector" representation of a domain is highly

specific to the domain. The composition of the state-

vector depends on the programmer's knowledge of the game.

One objective of the current system is to employ a scheme

of representation that is independent of the domain.

Learning can reasonably be defined as the acquisition of

information or skill. For the present purposes, informa-

tion and skill are superficially distinguished by their

Page 13

respective roles: Information is thought of as passive

and subdivides into facts and definitions, while skill is

active, dividing into procedures and responses. The term

"Knowledge" will be used to embrace all of these catag-

ories.

Facts are simple statements or assertions, generally

qualifying some object. For example:

"Roses are red."

Definitions are sets of descriptions which apply to all
instances of whatever it is being defined. For example:

"Rose: A beautiful and usually fragrant flower
which grows upon a shrub of the genus rosa,
usually of a red, white or yellow colour."
[Shorter Oxford English Dictionary]

Procedures embody how something may be accomplished:

"To ring alarm, break glass."

Responses are embodiments of how to behave in specific
situations:

"When in doubt, scream and shout."

These distinctions can become rather blurred, as they

depend on context. The statement of a procedure, for

example, might be regarded as a fact. Indeed, all four of

these divisions have the same structure, being associative

pairs. Facts associate an object with a qualification;
Definitions associate a label with a set of descriptions;

Page 14

Procedures associate a goal state with a set of actions,

and Responses associate a stimulus with a set of actions.

2.2 Models of Learning

The four categories of knowledge each have their analogue

in computational terms. Facts are the simplest. A file
containing a list of names and addresses is a collection
of facts, as is any simple data-base.

Definitions find their analogue in logical predicates.

These are a series of tests, on the basis of which an

object may qualify as a member of a set. Definitions may

take the form of "templates" which the object must fit to

qualify, and a routine to match objects to templates must

be provided.

Procedures correspond to subroutines. In the language

PLANNER and its derivatives, procedures may be invoked

according to an associated pattern.

Responses have their counterparts in these same languages,

in the form of antecedent theorems, or "demons". These

are subroutines which are invoked when an assertion is

made that matches their associated pattern. Programs have

been devised which make extensive use of demons. Their

use is described in a model of story comprehension [Char-

niak, 1972] where they are employed as "facts" waiting for
an occasion on which to be useful.

Page 15

It is suggested above that learning may be regarded as the

acquisition of facts, definitions, procedures and respon-

ses. The first of these is relatively trivial: The

addition of a fact to a data-base requires merely its

integration into whatever structure has been imposed on

the data-base. For instance, if a file of names and

addresses is ordered with respect to surnames, the addit-

ion of a new datum is accomplished by inserting it so that

the order is maintained. While fact acquisition is com-

monplace in computing applications, this cannot be said of

the remaining forms of learning.

Definitions are set-inclusion rules. The term "concept"

has sometimes been used in AI literature to describe the

principle of learning to determine whether an object fits

the description of elements of a set [e.g. Church, 1956].

An early attempt to model definition acquisition, or

concept formation, took the form of a program to simulate

the responses of human subjects of psychological experi-

ments, in which the subjects had to formulate rules to

describe sets of objects. The model included consider-

ation of whether the objects were presented one by one, or

all at once [Hunt and Hovland, 1963]. A more recent model

design, related to computer vision, derived structural

descriptions of such things as "arches" by generalising an

example and modifying the generalisation in the light of

further examples and counter-examples [Winston, 1970].

Page 16

The acquisition of procedures is the essence of the

dreamed-of self programming computer. While the reality

of such machines is still on the distant horizon, some

progress towards a model of this process has been made.

The Macro-operations (MACROPS) used in STRIPS [Fikes, Hart

and Nilsson, 1971 & 1972] are simple examples of such

programs. STRIPS is a problem solver which generates

robot plans to achieve goals specified as well formed

formulae in the predicate calculus. The STRIPS world is

similarly described in terms of well formed formulae.

Having solved a problem, the system saves the solution in

a generalised form for future use. Generalisation is

achieved by replacing constants in the plans with vari-

ables but ensuring that these variables coincide, where

this is necessary to the original plan. The

representation additionally permits each subplan in the

plan to be retrieved. If a plan is a subplan of one

developed later, then it is replaced by that plan and in

this way long plans tend to supercede shorter ones.

The LISP language [McCarthy et al, 1962] was intended to

facilitate programs which could manipulate programs. The

language basically manipulates lists, and programs them-

selves are represented by lists. However, it was not

until the advent of extensions to LISP such as PLANNER

[Hewitt, 1972] and CONNIVER [Sussman, McDermott, 1972]

that this became effective. These languages provided a

generalised procedure-calling mechanism, whereby proced-

ures could readily be added to or removed from the, set

Page 17

of procedures eligible for calling at a given point in a

program. This facility was combined with an associative

database. HACKER [Sussman, 1973] was probably the first
program to model the process of programming and debugging.

Programming was accomplished using knowledge of procedures

which could be called to achieve certain goals. The

debugger used specific information given by the domain on

what had gone wrong when the program was run, and the

programming component could then be invoked to correct the

program.

Limitations on the patterns used in these languages render

them unsuited to the description of the structures em-

ployed in the present program.

Waterman's poker program is essentially a model of re-

sponse acquisition. An action rule indicates exactly what

action is to be taken when the state vector matches its
left hand side. The program is able to create or modifiy

production rules, thereby modifying its responses

The present work concentrates on skill acquisition.

Procedures and responses are closely related in form. A

procedure may contain a statement of a precondition which

must hold if it is to be applied. It contains a set of

actions, the procedure body, and a statement of what it is

used for, its "pattern". Responses contain a description

of the conditions under which they should be applied.

This is their "pattern". Naturally they also have their

Page 18

sets of actions which are usually initiated when a match

is made to their pattern. Finally, they may contain a

description of their outcome. Thus, in their fullest
forms, procedures and responses are both of the following

composition:

STATE -> (ACTIONS) -> 'STATE

They differ, however, by being accessed through their
"goal-state" on the one hand and by their "stimulus-state"
on the other. It is conceivable that a system could be

devised that used the same objects in both senses.

2.3 Generalisation

The essence of skill learning is generalisation. A lesson

is learnt in a specific situation. To be useful in simi-

lar situations it must be assimilated in terms of what the

situations have in common. Generalisation of a specific

event may result in one of a whole spectrum of

descriptions, from the near-specific to the totally
abstract. In computational terms, generalisation can be

seen as the replacement of constants by constrained vari-
ables, and of constrained variables by less constrained

variables. A constant may belong to a whole sequence of

nested sets, each less constrained than its subsets and

therefore an abstraction of its subsets. For example, a

particular tree may be primarily a pine-tree, then a

conifer, a tree, and finally a vegetable. Naturally,
generalisation cannot take place if the successive cata-

gories are not known, or if the constraints are not expli-
cit. A frequent problem is to know how far to proceed

Page 19

with the process of generalising. If a concept is not

general enough, it may not be accessed in some situations

where it is pertinent. If it is too general, it may be

accessed too often, in situations where it is irrelevant.

To describe a tree as a "thing" (a member of the universal

set) is not often useful! This problem arises particu-

larly when a generalisation is made from a single example.

The approach in the program hypothesised by Winston,

mentioned above, is to generalise as little as possible

from single instances, and to modify such generalisations

in the light of successive examples and counterexamples.

Another approach is to have a "teacher" provide the prog-

ram with the correct generalisations. This technique is

employed in Waterman's poker playing program, which has a

facility for entering "training" information at any stage

of a game. The information consists of a good decision to

make in the situation, the elements of the "state vector"

which are relevant to the decision and the reason for the

decision in terms of these elements. The training inform-

ation amounts to a new production rule, although it may be

used to modify other productions rather than simply be

added to the production system. An advice-taking, chess

program [Zorbrist and Carlson, 1973] also permits an

"expert" to provide the program with generalised patterns

which represent aspects of the chess position, together

with "weights" to apply when incorporating the detection

of a pattern instance into the evaluation of a position.

Page 20

This evaluation is then used in a normal tree pruning

heuristic.

The present program does generalise from single examples.

However, the aspect of the state that it is describing

always relates to an instance of its goal, of which it

naturally has a generalised description. The level of

generalisation is "borrowed" from this description in a

manner which will be described later.

2.4 GoMoku and Learning

The game of GoMoku has been used in earlier experimental

learning programs. One example in particular can be

compared with the present work [Elcock and Murray, 1967].

The system centred around a technique referred to as

"Backtrack Analysis". An attempt was made to be inde-

pendent of the system of formal description employed,

except at the interfacing level. However, it was assumed

that the description would provide a ranking of the pos-

sible moves. The system accumulated a list of descript-

ions which it regarded as subgoals. These were assumed to

represent positions from which a win might always be

forced. The list was ordered according to the number of

moves required to reach a winning position, the Level of a

subgoal. When the program was to move, it considered all

possible moves, generating a description of each resultant

position. These were compared with the descriptions in

the subgoal list. The best move was that which matched

Page 21

one of the subgoals and had the least number of moves to

play to win.

The descriptions were acquired by the Backtrack Analysis

Component of the program. This was activated at the end

of a game which had been lost by the program. The moves

of the game were "unplayed" in reverse order, until the

point was reached where the opponent had created a

position which was not on the subgoal list. The

description of this position became a new subgoal. In

adding it to the subgoal list, the program took care to

remove any descriptions of the same level which included

the new subgoal, thereby ensuring a tendancy towards

"minimal" descriptions of subgoals.

An example of the form the descriptive language may take

is given.

A 7-Pattern is a number, N: Consider a line of seven

vertices. if it is not possible to construct a line
of five stones of the same colour on the line, then

the value of the 7-Pattern is 0. Otherwise the value

is the number of stones already in place in the line.

A Line-Pattern is a pair, (n,r): Consider a set of

colinear 7-Patterns going through a given vertex.

The first value, n, is the highest value in the set.

The second, r, is the number of elements in the set

with the value n.

Page 22

An Ordering is defined on Line-Patterns by ordering

first on n, and then on r.

A descriptive system which considers only the "best" Line-

Pattern through each vertex would be capable of describing

open-fours, which are essentially one-dimensional. To

describe two-dimensional patterns such as intersecting-
threes would require the inclusion of the two best Line-

Patterns through a vertex. It was acknowledged that the

descriptive language might be inadequate to describe

certain complex situations and some consideration was

given to the detection of inadequate descriptions.

An important difference between their system and the

present one is that the descriptions they derived were

used as subgoals. Their program considered all possible

moves to determine whether any generated an instance of a

description. As only a one move look-ahead was employed,

the effect is equivalent to the present scheme where the

description has the effect of a move "undone" and the

match is always to the current state of the domain, with

the look-ahead obviated. If it were not for the burden

that the present representation places on the pattern

matcher, its advantage over such a look-ahead system would

be conclusive. The major difference between the two

systems is the attitude towards descriptive language. The

philosophy behind the Elcock and Murray program is summer-

ised in their words:

Page 23

"If the formal language has been suitably de-
signed, then this description will automatically
generalise the abstract board situation."

Their descriptive language was designed in anticipation of

the concepts which emerge from the game, and was therefore

in terms of exactly those features which generalise any

particular position. Features such as the number of

stones of a colour in a line of seven vertices might be

primitive to the language! The philosophy behind the

descriptive medium of the present program is simply that

the goals and domain elements are represented in a uniform

and malleable way, and that it, is up to the program what

else is to be described. This approach shows itself to be

the more general by starting with a weak descriptive

language (relative to the specific domain) and still

arriving at the necessary concepts.

Elcock and Murray followed up their work with a program in

which the descriptive language was further refined to

broaden the scope of its representation and to improve its

powers of generalisation [Murray and Elcock, 19681. This

development moved away from the approach advocated in the

present work. They provided a catalogue of structures

with which their program was able to play "expertly". A

few of these are shown in Appendix A. In principle, all

of these can be represented in the more general structural

terms of the present system.

Page 24

The examples of learning programs mentioned above are but

a few of many. They serve to illustrate the main tech-

niques that have been employed, and some comparison has

been drawn between these techniques and those adopted in

the present system.

Page 25

Chapter 3

System overview

3.1 Model Requisites

It is usual in Artificial Intelligence to consider a model

as comprising two components. The first of these is the

domain, sometimes referred to as the environment, context

or world. The second part is the performer, often given a

name and personified, or else referred to as "the program"

or "the model". While the emphasis is usually on the

behavior of the performer, there are invariably assump-

tions made about the domain: If the domain is not a good

model of the relevant aspects of the real world it may not

be possible to draw any conclusions about the validity of

the performer model. The game of GoMoku, which forms the

domain of the present model, has already been introduced.

Typically, to describe a domain one needs to represent ob-

jects, the relationships which may pertain between ob-

jects, sets of objects, the state of the world, the

changes which can take place and the performer's goals.

The performer would comprise such components as a planning

mechanism, a pattern matcher and a description generator.

In the present model the domain contains objects and relat-
ionships. The changes which may take place are described

in terms of actions which may be taken. The goal is

described as a structure. A structure is a collection of

variables, each constrained to contain only specific types

Page 26

of object. The variables are further constrained by

relationships which must exist between objects assigned to

them.

In the GoMoku domain the objects are the stones and the

board. The latter may be regarded as a collection of

vertices. The relationships which may exist between these

objects are occupancy and adjacency. Occupancy pertains

between a stone and a vertex and is in fact described as

the complementary pair of relationships, "occupant" and

"location". Adjacency pertains between a pair of vertices

and a direction of adjacency has to be specified. This is

in order to describe the fact that the goal requires the

five stones to be in a straight line. These objects and

relationships allow the goals to be described as a set of

typed variables. Figure 3.1 is a diagram of such a

description.

adj [d] adj [d]
[v] [v] [v]

adJ d ; A adj

occ; ;loc occ; ;loc occ; ;loc
.I i i v/
[s] [s] [s]

[v] - variable of type vertex adj - Adjacent
[s] - variable of type stone occ - Occupant
[d] - variable of type direction loc - Location

Figure 3.1 - "Line-of-three" structure

Direction could, of course, have been a separate

relationship, but as it is only applicable to adjacent

Page 27

vertices, and essentially distinguishes between the

adjuncts to a vertex, it was combined with the adjacency

relationship. If the program had provision for more

general descriptions of sets, it might have been possible

simply to apply the colinearity requirement to the set of

stones or occupied vertices.

The performer models a learning process through which both

procedures and responses are acquired. The elements of

this model are an elementary planning mechanism, a des-

cription generator and a pattern matcher. The planning

mechanism is completely ad hoc,, as planning is not central

to the model. The planner is able to describe a hypoth-

etical instance of the goal structure and propose a sequ-

ence of actions which would lead to its achievement. The

description generator is able to form generalised descrip-

tions of situations which arise during the course of the

performer's activity. The pattern matcher is an extensive

mechanism which continually monitors the domain for in-
stances of certain structures, reporting if they arise.

The performer must attempt to manipulate objects until
valid, one-to-one assignments can be made to all the

goal
variables in theAstructure. Such an assignment will be

referred to as an Instance of the structure. There is a

similarly described counter-goal, of which an instance

must at no time exist.

Page 28

Actions are represented in terms of those relationships

which the program can alter. The only action in GoMoku is

the placement of stones. This can be described as chang-

ing the occupant of a vertex from being empty (undefined)

to being a stone. The location of the stone is simultan-

eously changed from being undefined to being the vertex.

Explicit in this representation are the preconditions that

the vertex may not have any other occupant, nor may the

stone be at any other location. If the performer tries to

act contrary to these conditions the action fails and the

performer can then see which of the preconditions was

violated, and perhaps learn something from the situation.

3.2 Control'Sequence

Figure 3.2 depicts the main processes within the system

and the data structures through which they communicate.

The arrows depict the direction of flow of information

between the processes and the data structures. The

remainder of this section will describe these functions.

The Action-Sequencer operates from the Action-List, which

contains scheduled actions, devised either to achieve its
own goal, or to thwart its opponent. Moves from this list
are alternated with moves by the opponent. If the list is
empty, the primitive Planning-Mechanism is invoked to

provide an appropriate set of actions. Usually this is

only necessary at the beginning of a game.

Page 29

+---------------------+
Action Sequencer

+---------------------+
r
T

+---------------------+
Action List

+---------------------+
r

Planning-
Mechanism

+-------------+

+----Goal-----+
Description

+-------------+

+-------------+
Response-
Evaluator

Attention-

List

Pattern-

11

Matcher

Feature-

List

Failure-
Analysis

+-------------+

Figure 3.2 Chief Processes and Associated Data

A side effect of making a move is to invoke the Pattern-

Matcher. This acts on the Feature-list, containing

structural descriptions which the program has previously

acquired. The objects involved in the most recent action

are regarded as candidates for assignment to variables in

these descriptions. There may also be suspended partial
matches associated with the objects by previous operations

of the Pattern-Matcher, and an attempt is made to resume

these. Any completed matches are placed in another list,
the Attention-List.

Page 30

After an attempted move by the Action-Sequencer,it con-

siders whether or not the move was completed. If it was,

the Move-Sequencer also checks further to determine

whether it has completed its goal, announcing its victory

if it has. If the action was in some way inhibited, by

being blocked, for example, the Failure-Analysis component

is invoked to try to establish what happened. The re-

maining actions associated with the plan are discarded, as

failure of the action implies failure of the plan. The

Failure-Analysis, in this case, determines why the move

could not be made and which event in the game brought

about the circumstances preventing the move. By reversing

the effect of that event in the context of the generalised

goal structure, a description of the unblocked position is

obtained. This is then included in the Feature-List for

the purposes of the Pattern-Matcher.

After a move by the opponent, the Attention-List is exam-

ined by the Response-Evaluator. If the opponent has won,

or if his victory may be anticipated, the Failure-Analysis

component is also invoked, this time to describe the

position immediately before the move just completed. The

result is also added to the Feature-List. On the other

hand, if a threat is present, this is considered in case

the current plan has to be suspended. Other constructive

moves may also be proposed, and if one of these is better

Page 31

than that scheduled, in terms of plan length, the, current

plan may be suspended anyway. Suspension of a current

plan entails placing the suggested actions ahead of it in

the Action-List. Failed plans are removed from the

Action-List, but suspended plans remain for the program to

fall back on.

3.3 Size and Speed

The size of the program is variable, due to the manner in

which records are created during a game and released

afterwards. The figures below describe this behaviour.

Estimated sizes are expressed in "K" (thousands of memory

words).

After initial compilation: - 9 K

At the end of a game, having created

new descriptions and including

information produced by the Pattern-

Matcher: - 90 K

Before another game, having abandoned

all information specific to the

previous game, but retaining the

descriptions gained: - 11 K

The program's speed is likewise variable, decreasing with

the increasing number of descriptions with which the

Pattern-Matcher has to deal. Speed was not an objective

Page 32

of the project: Even so, the results are disappointing!

Estimates are given of typical times taken before each of

its moves, at different stages of development.

No patterns

Line-of-Four

open-Four

2 sec

- 10 sec

2 min

Intersecting-Threes - 7 min

Page 33

Chapter 4

Representation

4.1 Records

The system employs a set of Records to represent the

various items that it manipulates. Although the records

used all have the same essential structure, they have

different functions, designated by their Use. The main

uses of the records are:

Object-Definitions - Used to associate information with

different types of object, and to

restrict the type of object that a

variable may represent.

Objects - The basic manipulatable entities of

the domain.

Variables - Used in structural descriptions to

stand for objects that are not

specifically determined.

Relationships - Used to impose constraints, other

than type, on variables.

Structures - Collections of related variables,

representing configurations of

objects.

Page 34

Action-Definitions - Descriptions of the changes that the

system may make within the domain

Actions - Proposed or implemented changes to

the domain.

POP-2 facilitates the definition of arbitrary compound

items with accessible component items. A single such

data-structure is defined in the program to permit the

consistent representation of all aspects of the present

model. The basic structure is a triple, comprising three

components. Two of these components form an associative

pair, while the third always contains another triple.
This allows the triples to be "chained" together. The

term "record" is used throughout to refer to such chains.

The first triple in a record is always the header, used to

identify the record use. The first component of a header

is a word, such as OBJ, DFN or ACT, designating an Object-

Record, a Definition-Record or an Action-Record respec-

tively. The second header component is simply a number,

unique to the record, with the sole purpose of identifying
the record in reports from the program. In all such

printing, the first two components of the header triplear.e

printed between double angle-brackets, thus:

<<OBJ 27>>

The triples following the header triple are name/value

pairs. The name component is always a word, for example

Page 35

OCCUPANT or RANGE. The value component may in general be

any POP-2 item, such as a word, list, record or function.

When records are printed in full, as in the figures below,

the names and associated values appear in two columns

below the record header.

4.2 Object-Definitions

It is useful to be able to associate information with

different types of object, and this is the function of the

Object-Definition records. The property names of these

records are used to access individual pieces of inform-

ation. An Object-Definition record has the folowing

properties:

Name This is not used by the system itself, but is

helpful when the program's reports are examined.

Props The properties of the object that are pertinent
to the various structure processing functions

are listed.

Genfn An object "generator" is also provided, for use

in planning and playing. A stone generator, for

example, would correspond to the pile of stones

at the player's disposal.

Acts A list of actions which may be used to manip-

ulate the objects is also provided.

Page 36

In the example in figure 4. 1, a VERTEX is "defined". The

pertinent property of a vertex is its OCCUPANT. A funct-

ion called GENVTX will "randomly" generate vertices, and

the only action involving vertices is that described by

the Action-Definition record, <<ACD 13>>.

<<DFN 1>>
NAME VERTEX
PROPS [OCCUPANT]
GENFN <function>GENVTX
ACTS [<<ACD 13>>]

Figure 4.1 - An Object-Definition Record

4.3 Objects

A distinct record represents each distinct object. Each

Object record has a property called TYPE. The value of

this property is an Object-Definition, denoting the object

type. Apart from the TYPE property, objects have a group

of properties which are important to the description of

structures. As has been seen, the definition record has a

list of these properties. For vertices this list has only

one property, namely OCCUPANT. However, stones have two

such properties, LOCATION and COLOUR. These properties

are used, for example, in planning and in pattern match-

ing. The property lists are also used as a generally

convenient place to hang an assortment of "system" inform

ation in the course of running the program. This can be

seen in figure 4.2 below, and also in the discussions of

some of the program components.

Page 37

<<OBJ 27>>
TYPE <<DFN 1>>
OCCUPANT UNDEF
XCO 17
YCO 9

Figure 4.2 - An Object-Record

The Object represented in the figure is a vertex, which is
indicated by the TYPE property. The OCCUPANT property

indicates that the vertex is unoccupied. The remaining

properties give the vertex coordinates, which are only

used indirectly through certain system functions.

Objects may be related to each other directly through

their property lists. For example, a particular stone may

be related to a given vertex through the OCCUPANT property

of the vertex. The vertex would likewise be related to

the stone through the LOCATION property of the stone.

Thus, when a stone has been placed on a vertex, the res-

pective records would refer to each other as shown in

figure 4.3.

<<OBJ 28>>
TYPE <<DFN 2>>
LOCATION <<OBJ 27>>
COLOUR <<OBJ 3>>

<<OBJ 27>>
TYPE
OCCUPANT

<<DFN 1>>
<<OBJ 28>>

XCO 17
YCO 9

Figure 4.3 - A Stone on a Vertex

Page 38

The second object-Definition record in the figure is that

of stones. Colours are also represented as objects, for

consistency in the pattern matching process.

4.4 Variables

To describe a structure in a general way, the use of

variables is required. In the present system, the funct-
ion of variable is filled by so-called "Ghost" records.

These too have property lists, including a TYPE property,

by which the Ghost record is constrained to represent a

particular type of Object. In a structural description,
Ghost records take the place of the actual objects which

might occur in an instance of the structure.

In an instance of the structure, various relationships

pertain between the Objects involved. It is necessary to

describe these relationships as existing between the

variables in the generalised structural descriptions. The

property lists of the Ghost records describe the relation-
ships which must exist between corresponding Objects in an

instance of the structure. Property-list relationships

between Objects are implied simply by the presence of a

property of the appropriate name in the Ghost record, the

associated value being the related Ghost.

Figure 4.4 is a general representation of a stone on a

vertex. The Ghost representing the vertex has the Ghost

representing the stone as its OCCUPANT value, and the

reciprocal LOCATION of the Ghost stone is similarly filled

Page 39

by the Ghost vertex. In the figure, <<DFN 0>> defines

colour Objects.

<<GHO 23>>
TYPE <<DFN 1>>
OCCUPANT <<GHO 24>>

<<GHO 24>>
TYPE <<DFN 2>>
LOCATION <<GHO 23>>
COLOUR <<GHO 20>>

<<GHO 20>>
TYPE <<DFN 0>>

Figure 4.4 - Abstraction of a Stone on a Vertex

4.5 Relationships

The relationships which may exist between two objects fall
into two categories. The first of these occurs when two

objects are related directly through their property lists,
and does not involve the use of any other records. This

relationship has been denoted "property" relationship, and

has been dealt with in the two previous sections. This

section deals with "functional" relationships.

Functional relationships relate two objects to each other

in such a way as to associate a value with the relation-
ship. For example, two vertices may be adjacent to each

other in one of eight directions. There are two ways in

which functional relationships are employed: In planning

it is desirable to be able to generate an object from

another object, given a relationship and an associated

value; In matching, it is necessary to be able to

Page 40

determine the value of the relationship between two

objects, sometimes simply for verification.

<<REL 12>>
RELFN <function>ADJFUN
RELGEN <function>ADJGEN
RANGE [- list of all eight

directions - J

Figure 4.5 - The Adjacency Relationship

The only example of a functional relationship in the

GoMoku domain is the adjacency relationship. Two adjacent

vertices have an associated direction. As this is an

unchanging property of the board on which the game is

played, it is unnecessary to mention it in the property

lists of the objects themselves. Instead, two functions

are provided: One determines whether two vertices are

adjacent, supplying the direction if they are. The other

generates a vertex adjacent to another, given vertex, in a

specified direction. These are held together in a relat-
ionship-record,. as in figure 4.5. The range of the funct-

ion is supplied for the use of the planner.

Functional relationships are associated with Ghosts

through CONSTRAINT properties. The value of this property

is a list of relationship/Ghost/value combinations. The

value referred to may itself be a Ghost. For example, two

adjacent vertices are represented in figure 4.6. Note

that <<REL 12>> is the adjacency relationship described

earlier. Ghosts 30 and 31 both represent directions,

Page 41

their opposition being a consequence of the relationship

functions.

<<GHO 23>>
TYPE
CONSTR

<<DFN 1>>
[[<<REL 12>> <<GHO 25>>

<<GHO 30>>] 1

<<GHO 25>>
TYPE
CONSTR

<<DFN 1>>
[[<<REL 12>> <<GHO 23>>

<<GHO 31>>]]

Figure 4.6 - Abstraction of Adjacent Vertices

4.6 Structures

The goals of the system are represented as structures.

There are three kinds of structure used: Basic-Structures

are sets of typed variables together with a set of relat-

ionships obtaining between the variables. A Reduced-

Structure is a basic structure together with a set of

additional constraints (relationships) on its variables.

A Compound-Structure is a set of reduced structures or

compound structures and a set of correspondences between

their variables.

A basic structure such as a line of five is represented by

a set of Ghosts, all interrelated by both property and

functional relationships. In the course of its experi-

ence, however, the program will need to describe certain

situations in terms of such structures. One of the ways

in which this is done results in a reduced structure.

Reduced structures use the same pairing representation as

the other records but instead of associating name with

Page 42

value, they associate the Ghosts of the basic structure

with new property lists, thereby imposing additional

constraints on the Ghosts. Any property appearing in this
new list is regarded as superceding the corresponding

property of the original Ghost. In this way the Ghosts

keep all their previous properties except for those ex-

plicitly overridden.

For example, the reduced structure describing a line of

four stones refers to the original basic structure repre-

senting a line of five stones. An additional property

list is associated with one of the Ghost vertices, speci-

fying that it is to have no occupant.

The second way of describing new structures in terms of

old is as compound structures. If two lines of four

intersect, at least one of the vertices in the first line
corresponds to a vertex in the second. There is a similar
correspondance between the occupants of the corresponding

vertices. A compound structure refers to two previously

defined structures and further specifies a correspondence

between their Ghosts. This means that any object assigned

to a Ghost in one structure must be assigned to the cor-

responding Ghost in the other.

In the example of two intersecting lines of four, at least

one of the Ghost vertices of the first line has a corres-

ponding Ghost vertex in the second. This correspondence

represents the point of intersection of the two lines. If

Page 43

the vertex is to be occupied, there will also be a pair of

corresponding Ghost stones.

Compound Structures have their own sets of Ghosts through

which the correspondences between the Ghosts belonging to

the sub-structures is established. A compound structure

is therefore represented as a list of structures. Assoc-

iated with each structure is a list which pairs the Ghosts

of the structure with those of the compound structure.

For example, if Sl and S2 are structures, the Ghosts Gl

belonging to Sl and G4 belonging to S2 are shown to corre-

spond in figure 4.7.

S1: [Gl:Gl' G2:G2']
S2: [G3:G3' G4:Gl'

Figure 4.7 - Correspondance in a Compound Structure

The Ghosts G1', G2' and G3' are those belonging to the

compound structure and imply the correspondences between

the Ghosts of the component structure.

4.7 Action Definitions
As with Objects, each kind of Action has a single defining

record to which all actual Actions of that kind point.
The Action-Definition contains a list of property names

effected by the Action and a description of the effect on

the properties. The example from the GoMoku domain is the

placement of a stone. The properties effected are

OCCUPANT and LOCATION. The Action changes the occupant of

Page 44

a vertex from being UNDEF (empty) to being a stone, and

the location of the stone from UNDEF to the vertex. The

Action refers to two Ghosts to represent the vertex and

the stone. Figure 4.8 shows the Action-Definition for the

PLACE action.

<<ACD 7>>
PROPS [OCCUPANT LOCATION]
OCCUPANT [<<GHO 12>> UNDEF <<GHO 13>>]
LOCATION [<<GHO 13>> UNDEF <<GHO 12>>]

Figure 4.8 - An Action-Definition Record

The second property line can be read as: "The occupant of

Ghost 12 (a vertex) is changed from UNDEF to Ghost 13 (a

stone) . The next line describes the reciprocal effect.

4.8 Actions

The Ghosts in the Action-Definition are again variables.
An actual Action is a record which has a TYPE, which

indicates the Action-Definition, and a binding list which

associates actual Objects with the Ghosts of the Action-

Definition. Such records enable reference to be made to

Actions both before and after they have been taken. A

plan is essentially a list of proposed Actions. When an

Action is successfully completed the specified changes are

actually made. The stone and vertex object-records, for

example, have their property lists amended so that the

stone becomes the OCCUPANT value of the vertex and the

vertex becomes the LOCATION value of the stone.

Page 45

Chapter 5

Pattern Matching

5.1 Assignment to Variables

The task of the Pattern-Matcher is to identify instances

of structures as they arise in the model domain. The

process of matching a structural description to a part of

the domain is equivalent to making assignments to each

variable in the description in such a way that none of the

specified relationships are violated. The structures in

question arise as a result of the occurrence of some

situation in which the program's current plan has been

thwarted, by being blocked or by being beaten. Thus, when

the pattern matcher actually detects a structure instance,

it signifies that a potentially dangerous situation has

arisen, and may provide information about the threat that

can be used to avoid the danger. The matcher must find

all possible matches after each action, as any given

position need not necessarily be completely described by a

single structure. Once all the matches have been made,

the position must be assessed in order to determine

whether or not to suspend the original plan in order to

deal with the situation. This function is the task of the

Response-Evaluator, to which the completed matches are

passed.

To complete a match to a structure, each ghost-record in

the description must be paired with an actual object in

the domain, which must be of the same type as the ghost.

Page 46

Futhermore, relationships described in the ghost-structure

must hold between the corresponding objects thus assigned.

For example, if an actual vertex is to be assigned to a

ghost vertex, and the ghost vertex has a ghost stone as

its OCCUPANT, then the assignment is only possible if the

vertex is itself occupied by a stone which can in turn be

assigned to the ghost stone. The same principle applies

to functional relationships between two ghost-records. In

this case, if the function value has already been deter-

mined, the objects assigned to the ghosts must both obey

the same functional relationships and have the same func-

tion value. The generator function associated with the

relationship may be used to derive the second object,

given the first object and the function value. For

instance, a structure might describe a ghost vertex with a

second ghost vertex adjacent and above it. If an actual

vertex is assigned to the first ghost, the vertex above it

can be determined. It must be possible to assign this

vertex to the second ghost. If the function value is not

already assigned, it is necessary to consider the entire

range of the relationship function. In the case of the

adjacency relationship, this would amount to examining all

adjuncts to a vertex.

<<MATCH 89>>
STR <<STR 32>>
BINDLST <ptriple>

Figure 5.1 - A Match-Record

Page 47

To record the progress of each application of the pattern

matcher, a Match-Record is created and maintained. The

structure of these records is shown in figure 5.1. The

value of the STR property is the structure-record to which

the matcher is being applied. The BINDLST value is a

chain of triples, pairing ghosts from the structure with

objects from the domain. This binding list gets extended

as each successful assignment is made.

5.2 Commencing a Match

It would be undesirable and impractical to have the

pattern matcher continually and arbitrarily processing the

domain, attempting to match up all of its target struc-

tures. Opportunity for complete matches can only arise

after some change has taken place, and any consequent

match must involve the objects which participated in the

change. The pattern matcher need only therefore be

concerned after every successful action taken, and only

the objects affected need be considered as "starting-

points" for the matching process. Moreover, only struc-

tures which refer to objects of the same type as those

affected need be regarded as candidates for the process.

When the pattern matcher attempts to find an instance of a

particular structure, it may assume that if it is success-

ful, some of the objects involved in the most recent

action will be included in the match. It therefore

commences its task with at least one candidate object for

assignment to a ghost in the structure. If there is more

Page 48

than one ghost of the same type as this object, however,

it cannot say which of these should be paired with the

object. To avoid an unneccessary expansion in the amount

of work the program has to do, it makes the assumption

that the first ghost it comes across which has the right
type and satisfies some preliminary checks, can be paired

with the object. If the assumption is incorrect, or if
there is more than one valid assignment, leading to dif-
ferent matches, then a seperate attempt at matching the

same structure, "starting" with a different object, will
contain the correct pairing of this object with a ghost.

Thus, when a stone is placed on a vertex, all structures

which include occupied vertices may be matched. Each

structure is likely to have more than one occupied vertex,

and therefore more than one way in which the stone and

vertex may be assigned within it. Instead of investigat-
ing all such possible assignments, the pattern matcher

examines only the first to arise. If, for example, the

structure describes two occupied ghost vertices, then the

actual vertex involved in the latest action may be

assigned to either the first or the second of these.

Assignment to the second implies some other particular
vertex assigned to the first. If a later event makes this
assignment, the Pattern-Matcher will derive the previously

ignored match.

5.3 Continuing a Match

The assignment of a given object to a particular ghost in

Page 49

a structure inevitably implies further assignments of

objects to ghosts. As an assignment only succeeds if
these implicit assignments succeed too, and so on, the

matching process is naturally multiply recursive. Because

the structures are by nature networks, a given assignment

may eventually depend on itself. As long as a set of

assignments remains self-consistent, it is regarded as

valid.

Different processes are involved in propagating the

matching activity through each of the two kinds of relat-
ionship. Confirming that the property relationships match

is relatively straightforward. For each pertinent
property of the object and ghost being paired, the asso-

ciated values are obtained from both the object and the

ghost. This should yield another object and ghost pair

which are in turn processed in the same way. However, to

confirm that the functional relationships match, there

may be further problems. These arise when the function

value is not yet determined, implying that the actual

object referred to in the relationship is likewise unde-

termined. For the match to continue, the entire range of

the relationship function has to be considered and the

matching process subdivides into as many branches as there

are objects obtained in this way. Most of these branches

would be expected to terminate quite soon by failing, but

if this is not the case, severe combinatorial problems

arise, particularly if there is more than one branching

point. In the present domain, this problem is not severe,

Page 50

but in another domain, the strategy may have to be

revised. If a match is completed, the system is informed

of the fact.

5.4 Suspending a Match

If, during the matching process, an object and a ghost

fail to match due to conflicting property constraints, two

alternatives arise: It may or may not be possible that,

,in some future state of the domain, the property of the

object may assume a value which does match. In the

context of the GoMoku domain, if a vertex is required to

have a white stone on it but it is in fact empty, it may

at some later time in fact have a white stone placed upon

it. If, however, it has a black stone occupying it, there

is no way that it can later support a white stone. In the

former case it is desirable to be able to "suspend" the

matcher so as to avoid repetition of the work already done

on that match. In fact the scheme of only starting one

match to each structure with a given object demands that

matches reaching this state should be later continuable,

as the particular match information would otherwise never

be recovered.

The program adopts a relatively simplistic approach to the

problem of deciding whether to suspend or terminate a

match. In a case where an object and a ghost would match

but for a property failing to match, all the actions

possible in the world that can affect the object concerned

are examined. The representation of actions is such that

it is easy to determine which properties of each object

type an action may affect, and the conditions under which

it may be taken. If the program can determine any action

which can alter the property value of the offending

object, it assumes that the match should be suspended.

Naturally it will sometimes suspend matches when they

should be terminated, as there may still not be any

sequence of actions which would cause the match to

eventually succeed, but it will never terminate a match

which it should have suspended. In the GoMoku domain

there is only one action, that of placing a stone, so it
is always correct in its assumption. Thus, when it comes

across an unoccupied vertex while looking for one with a

white stone, it finds that the PLACE action will change

the OCCUPANT of a stone from UNDEF, and suspends the

match. If however, the vertex had had a black stone on

it, the system would find no action capable of changing

the situation. Note that this would not be true in, say,

GO, where capture is permitted, although in this case it
would be far from straightforward to prove whether or not

a match should be suspended.

To be able to resume a suspended match to a structure, the

ability to describe the intermediate results is required.

The match-record mentioned above keeps a list of the

satisfactory pairings which have already been made, asso-

ciated with the structure being matched. Until all
assignments have been made it therefore represents a

Partial-Match. The matching process should be continued

Page 52

when an event occurs which involves one of the objects

already assigned in the structure, as this implies that

properties of the object may have changed. The suspended

matches are therefore associated directly with all such

objects which may yet be involved in actions. This allows

the pattern matcher immediate access to all the pertinent
partial matches after any particular action, and, more to

the point, only the pertinent ones.

There are two possible strategies for deciding when a

match should be suspended. The first is to suspend it
immediately a "temporary" failure is observed. The alter-
native is to continue to match as much of the structure as

possible before suspending. The former has the advantage

of being quicker in the short term, and while not reducing

the number of partial matches created, does imply that

they occupy slightly less space, both by containing less

information and by being referred to less often. The

advantage of the latter strategy is that, while reason to

suspend a match may be met at one point, evidence for
killing it may be found a little later and in this way

there may be less "dead wood" lying around in the form of

suspended partial matches which will never be completed

and may never be killed. In the event, this latter scheme

was adopted, although no practical comparison was made to

determine preference in terms of speed and memory require-

ments. In the present domain, the branching at functional

relationships is not severe, there being only eight

directions possible and essentially only one instance of

Page 53

the relationship in the goal structure. There are in fact

two different references to the relationship, but the

second instance is completely determined by the first. In

other domains where branching is more critical and

compounded, the strategy of immediate suspension is almost

certainly the better.

5.5 Matching Compound Structures

While compound structures arise under slightly different

circumstances to reduced structures, they serve the same

purpose and instances must be detected as soon as they

occur. One approach to making matches to compound struct-

ures would be to follow the same procedures as for reduced

structures, but treating the "points of intersection"

specially. This has a disadvantage arising from the

increased combinatorial problem associated with larger

structures, and ignores the underlying nature of the

compound structures.

The building blocks of compound structures are reduced

structures, just as the building blocks of reduced struct-

ures are the primitive objects (or their ghosts). The only

"relationship" pertaining between the component reduced

structures is the notion of "intersection", or the corres-

pondence between ghosts. The matching scheme used is in

some ways analogous to that used with the reduced struct-

ures. Whereas reduced structures are associated with the

definition-records of the objects they comprise, compound

structures are associated with the reduced structures of

Page 54

which they are composed. A simple event (action) involv-

ing an object will stimulate the reduced structure match-

ing process, while the compound structure matching process

is initiated when a successful match is made to a reduced

structure. Finally, partial matches to compound struct-
ures are recorded and associated with the component

structures which have not yet been matched, which is

analogous to partial matches to reduced structures being

associated with the objects which have held up the match.

As mentioned above, the compound structure matcher is

initiated by the reduced structure matcher. Before a

completed match to a reduced structure is reported to the

system, each compound structure associated with the

structure involved is examined for the purposes of

compound matching. This always results in the formation

of a partial match. Any other partial matches already

associated with the compound structure are examined to

attempt their continuation. Unlike the reduced structure

matches, there is no simple way of telling whether a

partial match to a compound structure may be killed,
except when all of its component matches have been killed.
This unfortunately implies that these may continue to be

examined in situations where they are no longer relevent.

The results of the Pattern-Matcher, the completed matches,

are entered into the Attention-List, through which it
communicates with the Response-Evaluator.

Page 55

Chapter 6

Responses

6.1 Matched Patterns

When the Pattern-Matcher sees any instances of structures,
the completed match-records are given to the executive

section of the program to be assessed in the light of the

current plan. The following alternatives are possible:

1) The structure may be an instance of the opponent's

goal, the program's counter-goal. The program must

learn to anticipate such events.

2) The structure may warn the program of impending

defeat. The program must decide whether it is
necessary to block the attack.

3) Simultaneous warnings of doom may imply that defence

is impossible. The program must again learn to

anticipate the event.

Cases (1) and (3) result in the acquisition of responses.

Reduced structures arise from (1) and Compound Structures

from (3). Case (2) allows the program to make use of what

it has learned. These aspects will now be treated in the

enumerated order, as each provides the context for the

next.

Page 56

6.2 Generalisation by Reduction

The system derives reduced structures from structure

instances. A structure instance is represented by a

Match-Record, which contains a pairing of ghosts from the

structure with objects from the domain. The nature of the

situation in which the generalisation is made is such that

it is not sufficient simply to recognise its reoccurrence.

It has to be possible to anticipate it. For example, the

present program may be thwarted when its opponent forms a

line of five. It is vital that the program should be able

to anticipate such an event before it happens again, and

respond to the anticipation by attempting to prevent its

repetition. It is therefore necessary to be able to

describe the situation- prior to whatever action created

the undesirable position. In the case of this example,

the structure matched is the line-of-five, with the stones

the "wrong" colour. The program needs to describe the

configuration immediately prior to the last action, which

completed the line. To do this it needs to be able to

take the generalised description of the line, which is

part of its original knowledge, and "reverse" the effect

of the last action on this description. The order of the

Opponent's moves and any other moves he may have made are

irrelevant at this point, as only the matched pattern is

considered.

The ability to achieve the required description relies on

the manner in which the system's actions are described.

Page 57

The representation of actions would make it quite easy to

reverse the effect of an action if this was desired. All

the information needed to determine the generalised effect

of undoing an action is available. The match-record

provides the binding between the objects and the

structure's ghosts, while the action-record describes the

effect the action had on the objects. The generalised

effect can be inferred through this correspondence.

Instead of copying the structure description and then

actually modifying the appropriate ghosts to arrive at the

desired result, a reduced structure record is created.

This refers to the original structure, but has additional

sets of property lists associated with some of the ghosts.

The new structure is interpreted as being identical to the

old except where a new property list exists to override

the old.

The GoMoku Line-of-Five is described as a set of ghosts,

each with a property list describing its relationships

with other ghosts. To "reduce" this description to that

of a line of four, with one end vertex unoccupied, all

that is needed is to associate a single property list with

the end ghost vertex, with the OCCUPANT property expli-

citly undefined. The associated ghost stone has also to

be marked as absent. In matching to this new description,

the ghosts would all be regarded as having their original

properties, except in the explicitly superceded cases.

Page 58

6.3 Responding to Patterns

The procedure described above also provides further
information. If the undesirable state is to be avoided it
is likely to be possible to do so by preventing the action

which created the state. By determining such a blocking

action and associating it with the reduced structure, an

appropriate response is represented. The program must be

able to "notice" when instances of such structures arise.

The reduced structure is entered into the Feature-List,

containing all the structures which have to be noticed,

and this list is used by the pattern matching component of

the system. When the pattern-matcher detects any of the

features with which it has been provided it supplies the

playing section with the match-records which it has com-

pleted. It may be recalled that the program is busy

trying to carry out a plan, and it must now compare the

response indicated by the detected feature with the act-

ions previously proposed.

The criterion used is simple. If the current plan can be

completed before the threat can be realised, then the

threat is disregarded. If the threat is real, however,

then the program must play to prevent its fulfilment. The

matched structure has a suitable action associated with it
and the program thus deviates from its plan to make this
blocking move.

6.4 Generalisation by Composition

The program may find itself confronted by two threats at

Page 59

the same time. The example of the open-four has been

mentioned, where two lines of four coincide, each requir-

ing just one more stone to be placed to complete a line of

five. If two or more different actions are needed at the

same time they cannot both be taken and the undesirable

outcome of one of the described situations is inevitable.

Once more it is necessary to be able to anticipate this

sort of occurrence. Again, to do so, the situation prior

to the action which created it must be described. There

may be several such positions, and each has to be learned

separately. The structures matched necessarily have

objects in common: For matches to be made to the two

structures at the same time they must clearly both- refer
to objects involved in the action which led to the

completion of the matches. The description of such

"intersecting" structures is accommodated by the compound

structure mechanism.

Anticipation of these compound events breaks down into two

more simple activities, namely the anticipation of the

component events and determination of their intersection.

The component events are easily foreseen by the technique

described above. The already generalised reduced struct-

ure which was matched is further reduced and added to the

feature list. To represent the compound structure, all

that remains is to describe the intersection between the

structures. The pattern matcher has provided a binding

list for each structure and together these imply the

Page 60

correspondence. Ghosts which have the same object

assigned to them must coincide. The required description
is easily obtained by copying these binding lists, but in

place of the actual objects, further ghosts are used. A

unique ghost replaces each individual object and the new

correspondence-lists thereby imply identity between ghosts

in the two new structures. The compound structure record

which is created associates a correspondence-list with

each component sub-structure. As the pattern-matcher need

only consider the possibility of a compound structure

arising once a relevant reduced structure has been

matched, the record is kept in the component structures.
As with reduced structures, the action which should be

taken in order to avoid the consequences is also repre-

sented so that whether an instance of a reduced structure

or of a compound structure is detected, the treatment is

uniform.

Page 61

Chapter 7

A Worked Example

7.1 Setting the Scene

Chapter 3 described the main components of the system and

how they relate to each other. The main communication

channels were also mentioned. This chapter is intended to

illustrate these functions by presenting an example of

their action over the course of a few moves of an actual

game.

To recapitulate, the Action-Sequencer alternates moves

from the Action-List with those of the opponent. The

Planning-Mechanism initialises the Action-List in accord-

ance with the Goal-Description. The Pattern-Matcher

constantly awaits the instantiation of positions described

in the Feature-List, entering any which do arise in the

Attention-List. Before any move by the program, the

Attention-List is examined by the Response-Evaluator,

which may choose to modify the Action-List. Any violation
of the program's expectation is considered by the Failure-

Analysis component, which places any new descriptions in

the Feature-List.

The example presented supposes that the program has al-
ready learned the "Line of Four" pattern, but has yet to

learn the "Open Four" pattern. The program is playing

black, shown as "x", and the opponent is white, shown as

"o". The program always operates from a plan, and in this

Page 62

example has planned to place stones successively on vert-

ices F7, G6, H5, 14 and J3. The commentary starts after

the players have each made two moves and the position is

as shown in figure 7.1. The opponent is about to play.

Figure 7.1 - Position after two turns

7.2 Partial Matches

The pieces already played will each have been considered

by the pattern matcher in relation to the Feature-List.

The assumption will be made that the only pattern in the

Feature-List is that of the Line-of-Four. This pattern

describes a line of five vertices, the first four of which

are occupied by stones of a colour. Clearly no matches to

this pattern can have been completed yet, but many matches

will have been attempted, for both the black and the white

stones on the board. To simplify, only the matches to the

white stones will be considered: The treatment of the

black stones is similar.

Partial matches become associated with the objects that

are assigned to their variables but do not completely

Page 63

satisfy the matcher. Thus the white stone placed on

vertex F6 will result in partial matches to the Line-of

Four pattern being associated with all the vertices marked

"+" in figure 7.2. The partial matches radiate out from

the white stone, except where a black stone causes the

match to fail entirely. The partial match passing through

the second stone will have two assignments made to its

ghost-stones, while the others will only have one. A

similar pattern may be derived for the other white stone.

Figure 7.2 - Partial-Match Associations

7.3 A Move and Reply

The Opponent places his stone on vertex E5. This action

results in a record representing the stone becoming the

"occupant" value of the record representing the vertex E5.

The vertex also becomes the "location" value of the stone.

Once these associations have been made, the Pattern-

Matcher is invoked.

The stone and the vertex involved in the move are matched

to a ghost stone and vertex in the description of a Line-

Page 64

of-Four. A Match-Record is created for each of the eight

directions in which the line may lie. In each case, all

of the vertices are matched, but only in the case of the

line passing through the other white stones are any more

stones matched. Each suspended partial match becomes

associated with the vertices that have been bound to its

ghost vertices.

The vertex E5 already has two partial matches associated

with it, originating when the other white stones were

placed. These matches are resumed and in each case the

stone just placed becomes bound to a ghost stone, before

the match is again suspended. No completed matches are

produced by this application of the Pattern-Matcher and so

the Attention-List remains empty.

As there is nothing in the Attention-List, the Response-

Evaluator remains idle. The Action-Sequencer therefore

continues with the planned move and places a black stone

on vertex H5. The pattern-Matcher goes about its task in

much the same way as before. The vertex H5 is one of

those with which a suspended match was associated on the

previous move. The Pattern-Matcher tries to resume this

match and finds that the stone now occupying the vertex

cannot be matched to the required ghost vertex because of

the colour difference. This particular partial match is

therefore terminated, and all references to the Match-

Record are removed from the relevant vertices. Again no

matches have been completed and the Feature-List remains

Page 65

empty. The Action-Sequencer is ready for the Opponent's

next move.

7.4 The Open-Four

As one might expect, the Opponent now plays on vertex D4.

The position reached is shown in figure 7.3. The Pattern-

Matcher is invoked as before and this time the line pass-

ing through the other white stones and terminating on the

empty vertex H8, matches the description in the Feature-

List fully. The completed Match-Record is placed in the

Attention-List. Next the suspended matches associated

with the vertex D4 are resumed, and this time one of them

is also fully matched. This time, the line is that start-

ing on vertex G7 and ending at C3. This Match-Record is

also placed in the Attention-List.

Figure 7.3 - The Open-Four

The Response-Evaluator is now applied to a no longer empty

Attention-List. The structures referred to by the Match-

Record both indicate that a single action is needed for

the Opponent to complete a Line-of-Five. On the other

Page 66

hand, two actions are required to complete the program's

planned line, and the blocking moves must therefore take

precedence. As two distinct blocking moves have to be

made, the Response-Evaluator concludes that the game is

lost.

The Failure-Analysis component is invoked to provide the

Pattern-Matcher with a new Feature. To allow the system

to anticipate the position, it describes the two matched

patterns as they were before the Opponent's last move.

This is done by taking each of the structures which were

matched to (both the same in this case) , and forming new

reduced-structure descriptions that impose additional

constraints on their variables.

The actual constraints to be imposed are determined by the

binding-list of the Match-Record and the action. The

action refers to two objects, a stone and a vertex. The

binding-list associates a variable with each of these

objects. The reverse of the action is applied to each of

these particular variables, which causes the ghost-stone

to cease to be the "occupant" of the ghost-vertex, and the

ghost-vertex to cease to be the "location" of the ghost-

stone. The ghost-stone is thereby "cast adrift" from the

structure representation. Although the structure was the

same in each instance, the two reduced-structures result

from different binding-lists, and therefore different

variables are affected. Figure 7.4 depicts: (a) the

Line-of-Four structure; (b) the result of reducing the

Page 67

D4-H8 match; and (c) the result of reducing the G7-C3

match. The stone on vertex D4 is the one "unplayed.

(a) s s s s .

(b) . s s s

(c) s s s . .

Figure 7.4 - Structure Reductions

The final stage in describing the position to anticipate
is to combine the two new reduced structures in a compound

structure. This is a matter of describing the correspond-

ences between their ghosts. Again the two binding-lists
are used. Variables which were bound to the same objects

have to correspond. The compound structure record is

formed, containing a reference to the two reduced struct-
ures and a Correspondence-List. The reduced structures

are placed in the Feature-List, each having the compound

structure associated with them. The system is now equip-

ped to recognise and respond to the threat of an Open-

Four.

Page 68

Chapter 8

Conclusions

8.1 Objectives

The main object of the project was to produce a learning

program which did not rely on any purpose-built evaluation

functions or move ranking scheme. The intention was that

knowledge should be assimilated in terms of what is al-
ready known and that the initial knowledge provided the

system should be kept to a minimum. In addition, it was

intended that the system of representation employed should

be as far as possible independent of the domain of the

model.

The first objective, that the program's means of evaluat-

ing a situation should not be based on built-in, domain

specific considerations, is in contrast with most previous

examples of learning programs. Programs based on tree

pruning techniques, such as Samuel's Draughts program,

were provided with evaluation functions which were devised

in the light of knowledge of the domain, which knowledge

was thus implicit in the functions. Other systems, such

as Waterman's poker program and Elcock and Murray's GoMoku

program, incorporated domain specific knowledge in their
descriptive language.

Assimilation of new knowledge in terms of old is not

really relevant to the tree pruning systems. Essentially,
these do not acquire any new concepts of their domains in

Page 69

the course of their experience. Instead the significance

attributed to any particular feature is modified. Prog-

rams such as ABSTRIPS, which plan to achieve their goals

and then retain generalised representations of their
plans, however, are acquiring knowledge and representing

it in terms of previous knowledge.

The central theme to the project is that of description
and detection. The nature of patterns is a limiting
factor in the PLANNER gamut of languages. It would be

possible to describe the sort of structures employed here

as the logical conjunction of numerous simple assertions,

but matching would always have to be from scratch as the

PLANNER matcher makes no provision for "partial" matches,

nor for any of the complexities inherent in compound

structure description. The pattern of a procedure or

demon is a description of some possible arrangement of

elements of the domain. As such, the representation of

the pattern has to relate to the representation of the

domain. While the PLANNER languages satisfy this require-

ment, the overall representation is too cumbersome for any

complex domain.

8.2 Achievements

The project has largely met with success in each of the

three main objectives. The system built does not rely on

evaluation functions and ranks plans on a simple criterion
of length. It initially has a minimum of knowledge of its

Page 70

domain, upon which it builds, and it employs a uniform,

non-specific representation scheme.

The system departs from the conventional use of position

evaluation and move ranking by employing a system of

expectation and response, instead of look-ahead. Moves

are usually made as part of a planned sequence, designed

by the program to instantiate its goal. While this plan

is adhered to, there is no need for the program to consi-

der other possible moves. Positions in which the program

may need to depart from its scheduled moves are recog-

nised. When this happens, the program need only consider

the moves that it has planned and those indicated by the

position. The comparison here is admittedly based on the

lengths of the respective sequences of actions, which is

decidedly a built-in criterion. However, this is a fairly

broad-based principle which is usually valid except in

domains where the program's moves do not bear a symmetric

relationship to the other events in the domain.

The program is initially provided with a representation of

its domain, its goals and the actions it may take. The

responses it acquires are all entirely in terms of these

primitives. New positions are described in terms of the

goals and then in terms of each other. This ability rests

on the structural nature of the descriptions and on tech-

niques for deriving generalised descriptions from inst-

ances of other generalised descriptions. The descriptive

system depends on the use of strongly typed variables, the

Page 71

ability to impose constraints on sets of variables and the

technique of combining descriptions into more complex

descriptions.

The objective of the representation scheme employed in the

current program is to represent everything explicitly as

items which can be manipulated by different parts of the

system. Items are permitted to be associated directly
with other items, so that anything that the system is

likely to require in connection with an item is immedi-

ately accessible. When the pattern matcher needs to know,

say, what actions may affect a given type of object, it
finds all such actions associated with the definition-
record for that object. The descriptive system provides

general facilities for the representation of a class of

domains. The primitive aspects of domain description

supported are objects, single- and multi-valued relation-
ships, and actions. Goals are represented in terms of

sets of related variables.

The program does behave as intended in most other

respects. The scenario in section 2.5 is a real example

of its behaviour. On being blocked or beaten, the program

learns to recognise and block Lines-of-Four. When this
strategy proves to be inadequate, it learns about Open-

Fours. From Open-Fours the program proceeds to describe

Intersecting-Threes. In principle, it can arrive at the

more complicated forcing patterns discussed by Elcock and

Murray, such as those depicted in Appendix A. Having

Page 72

described Intersecting-Threes, the Pattern-Matcher becomes

so prohibitively slow that the program has not been taken

beyond the point of their description and recognition.

The creation and matching of all structure types has been

tested by this point, however. The Line-of-Four is a

simple Reduced Structure, The Open-Four is a Compound

Structure composed of Reduced Structures, and the

Intersecting-Threes configuration is a Compound Structure

composed of Compound Structures. The VDU to which the

user-interface was tailored permitted a certain amount of

dynamic display, so that it was possible to monitor the

progress of the pattern matcher after each move, thereby

confirming its expected behaviour.

8.3 Limitations of Representation

The current scheme of representation is only adequate for

the task. The most fundamental limitation is the inabil-

ity to describe sets of arbitrary size. The GoMoku domain

is particularly simple in that the inherent structures can

have their components enumerated: A Line-of-Five can be

represented by five variables representing stones and

another five representing vertices, and their various

relationships. The game of Go, on the other hand, requ-

ires the representation of structures which are inherently

sets of unspecified size. The incorporation of such sets

would impose further complications on the Pattern-Matcher

and would necessitate a refinement of the notions of

reduction and composition.

Page 73

Another limitation is in the level of abstraction prov-

ided. Care is taken in the program that the structures

already known are not relearnt. Newly derived structures

are compared with existing structures and duplicates are

discarded. Reductions of the same structure, with the

same additional constraints are easily detected. Compound

structures composed of the same substructures, with

equivalent correspondences, are also similar.

Figure 8.1 Functionally Equivalent Structures

There is also an indirect form of equivalence between

structures,

employed.

which depends on the level of description
Figure 8.1 shows instances of two differing

compound structures. However, in Murray and Elcock, these

would both be described by:

"There exists a node which is a constituent of
two possible 5-patterns, with two pieces played,
on each of two lines through the node."

Although the two patterns are not structurally equivalent,

they are functionally equivalent, in that if a further

stone is played on the point of intersection of the two

lines, an unbeatable pattern is created. While the

present program will determine both of these patterns

Page 74

under appropriate circumstances, it is unable to discover

this equivalence, and would be unable to represent it even

if it did. This emphasises the shortcomings of the purely

structural approach employed. While it does not in prin-

ciple prevent the program from learning all that it needs

to know about the domain, the further generalisation has a

greater intuitive appeal. Apart from this, the more

compact representation would in practice reduce the number

of descriptions needed and thus reduce the load on the

pattern matcher.

The further generalisation represents quite a conceptual

jump from the simple similarity of structures, yet it is

an automatic feature of the Murray and Elcock system.

This is not to say that their system realises the equi-

valence of the two structures and describes it: Rather,

it would be unable to describe the two as different

structures. The description of the one automatically

incorporates the other. A more satisfactory model would

arrive at the two structures independently and determine

their functional equivalence in terms of their respective

paths towards the goal. It would then describe what the

two structures have in common, perhaps using the sort of

processes proposed in Winston's hypothesised structural

learning program. It may be that a different level of

representation would be needed for this description, but

this may imply as many descriptive techniques as levels of

generality. It would be preferable to devise a uniform

scheme of representation which could be employed

Page 75

throughout. Representation is as central to generalisat-
ion as generalisation is to learning, and learning is the

essence of intelligence.

8.4 Limitations of the Pattern-Matcher

It cannot be claimed that playing against the program is a

satisfactory experience. In its naive state its perform-

ance is trivial and as it improves it becomes signifi-
cantly slow. The more patterns of which it becomes aware,

the longer the Pattern-Matcher takes to examine the domain

for instances. The pattern matching procedures form the

single most complex component of the entire system. The

present scheme represents the third attempt at producing a

viable process and there is probably much room for refine-
ment. The current approach is satisfactory while only a

few structures are to be matched, but the response of the

system as a whole does degenerate once a useful number of

structures have been recorded. The amount of work for the

Pattern-Matcher compounds with the spawning of partial
matches and for the system's response to be satisfactory,
further reductions should be made to the workload.

There are several ways in which it might be possible to

speed up the matching process, but as these have not been

attempted it is not possible to comment on how significant
an improvement might be obtained. One possible scheme

would involve trying to match only the most reduced

structures. Less reduced structures would be considered

when one of these matches fails without actually

Page 76

contradicting the basic underlying structure. This

approach would reduce the workload to the examination of

the terminal nodes on the graph of possible reductions,

instead of all the nodes. The present system is able to

determine the equivalance of reductions, so the reductions

do form a graph rather than a tree.

8.5 Contributions

The present work, as an evaluation of a particular

technique, makes three contributions to the field of

Artificial Intelligence.

1) The nature of "pattern", in the context of pattern-

directed-invocation, is clarified and extended to

describe complex occurrences in the domain. This

technique is then used to enable a program to respond

to new situations.

2) A scheme of representation is presented that readily
facilitates the description of such occurrences and

permits initial descriptions to be modified or com-

bined to describe further, related situations.

3) Ideas about the recognition of positions described in

this manner are put forward in the form of a Pattern-

Matcher that retains information about incomplete

matches for later reassessment, employing a highly

associative data-structure.

Page 77

These points all stem from the initial objectives of the

project, defining the form that the program's learning

should take.

Page 78

Appendix A

GoMoku

GoMoku is a simple, two-player game, in some ways similar
to the familiar game of Noughts-and-Crosses. Each player

tries to build an uninterrupted, straight line of five
"stones" on a board comprising the vertices of a rectang-

ular grid. The line may be diagonal or orthogonal. While

the game is notionally played on an infinite board, in

practice a 19 by 19 board, as used for the game "Go", is

usually employed. Smaller boards can also be used, and

the examples throughout this work are all on an 11 by 11

board. Each player has a set of uniform pieces, the two

sets being distinguished by colour, usually black and

white. The symbols "x" and "o" are used in the examples.

The concepts of blocking and forcing are familiar to any

game player, and have their place in GoMoku. In figure

A.1, the placing of a black stone at vertex F5 constitutes

a block, as white is prevented from completing a Line-of-
Five by playing on the same vertex. The blocking move is

at the same time a forced move, as failure to block in

this instance leads to immediate defeat. This example

illustrates the most primitive of the concepts employed in

GoMoku.

Page 79

Figure A.1 - Blocking and Forcing

Figure A.2 shows an almost identical situation, except for

the position of the stones relative to the edge of the

board. This difference is vital, however. In this case

it is not possible to prevent white from completing a

line, as he may play at either Al or F6 to do so. This is

an example of an "Open-Four", comprising a line of four

stones of the same colour, with an empty vertex at each

end.

Figure A.2 - "Open-Four"

A player will not get far in the game without being able

to anticipate and prevent the formation of Open-Fours. An

Open-Four is an example of a position from which a Line-

Page 80

of-Five is inevitable. It is in fact a particular and

common case of the simultaneous occurrence of two lines of

four , where the two lines partially coincide.

shows the

11

10
9

either D8 or H4 to complete a Line-of-Five.

11...........
10

9
8 . . . + . .
7 . . . o x
6 . . . o .

4.. x o o o o+...
3 . . . x . . x
2 .
1

A B C D E F G H J K L

1 .

Figure A.3

may play at

Having realised the significance of Open-Fours, it becomes

imperative to prevent their formation by the opponent. In

figures A.4 (a) and (b) it can be seen that white may play

at positions D4 and E5 respectively,

the threatened Open-Four.

8
7

6
5
4
3
2

more general case. Here white

Figure A.3 - Simultaneous Fours

5 + x .

in order to prevent

11
10

9
8
7 x o . . .

6 o

4 . . . o
3

2

A B C D E F G H J K L
(b)

A B C D E F G H J K L
(a)

Figure A.4 - Threatened "Open-Fours"

Page 81

Just as an Open-Four is a configuration which inevitably

leads to a Line-of-Five, there are positions from which an

Open-Four can always be created. The position shown in

figure A.5 is usually referred to as "Intersecting-
Threes". A black stone must be played at, say, either F7

or G5 to prevent the formation of an Open-Four. In either
case white may play at the alternative vertex and an Open-

Four thus completed, followed by a Line-of-Five.

1

11
10

9
8

6 . . . x o x
5 . . . 0 0 0 +
4 . . o x x
3

2

7..

.

A B C D E F G H J K L

Figure A.5 - "Intersecting-Threes"

A further class of winning patterns has thus to be recog-

nised by the player. Furthermore, there are positions

which predestine Intersecting-Threes, and so on. However,

the more remote the forced position, in terms of the

number of pieces still to be played, the harder it is to

recognise. The experienced player will seldom think in
terms of the Line-of-Five as a goal, as it is too easy to

spot and prevent. Instead, the less obvious forcing

Page 82

positions are generally

[1968] give a large selection of

mined by their program, not all

forcing positions deter-

of which are obvious to

the human player. Some of these are shown below.

aimed at. 'Murray and Elcock

11

10

9

3
2
1

5 . . . o o
4

8
7 . . . o
6

1
A B C D E F G H J K L

(a)

3 .
2 .

5 . . . o o
4

8
7

6 . . . o .

11
10

9

A B C D E F G

(c)

H J K L

Figure A.6 -

8

11
10

9

3 .
2.

5 0 0
4

7
6 . . . o .

1
A B C D E F G H J K L

(b)

8
7

11

10

9

6 o . .

3
2

5 . . . o . o
4

A B C D E F G H J K L
(d)

1

Forcing Patterns

In each of the four examples in figure A.6, it is possible

for white to play a sequence of forcing moves until a

Line-of-Five is completed. These positions all require

most of the areas surrounding

empty, and consequently do not

the configuration to be

often arise. The reader

may like to determine some of the winning sequences.

Page 83

Appendix B

POP-2

The POP-2 programming language was designed by R. M.

Burstall and R. J. Popplestone [Burstall et al, 1971].

The language has three important attributes which make it
eminently suited to programming in the field of Artificial
Intelligence: It was designed with a view to handling

non-numeric information, it is conversational, and it is

extensible.

The non-numeric aspect of the language derives from the

facilities provided to define and manipulate arbitrary
data-structures, and from the primitive data-structures

inherent to the language. Amongst the primitive data-

structures are character-strings and lists, and the faci-
lities to create and manipulate them. Arbitrary data-

structures called Records can readily be defined, along

with the functions to utilise them. This feature is
extensively used by the program presented. Garbage col-
lection is automatic, that is to say that the memory-space

occupied by parts of the data-structures which are no

longer referenced is automatically retrieved by the sys-

tem.

The language strongly emphasises the notion of the Item as

the basic manipulatable entity. This is taken to the

extent that even a function, the basic unit of executable

program, is an Item, and thus able to be the object of an

Page 84

assignment, the argument to the application of another

function, and even the result of a function application.

In this way functions can be contained in lists or refer-

enced in any user-defined Record. This is a facility

particularly used in the present program.

The conversational aspect of the language makes it partic-

ularly easy to ascertain how a program is behaving. At

any stage during its execution, a program may be inter-

rupted and the data-structures it employs may be inspected

or modified. Other programs may be applied to manipulate

the data if this is desired and even the functions used

within the program may be modified. The interrupted

program may then be resumed in the modified environment.

Used carefully, these capabilities readily facilitate

program development and debugging.

The Macro facilities offered by the POP-2 system make the

language extensible, in that the user may provide himself

with new syntactic forms in order to make certain program

constructs less verbose and more legible. POP-2 Macros

are actually functions which are applied at compilation

time, and can access and modify the program source. The

current model, for example, prints its "ptriple" record-

chains between double angle-brackets. Figure 4.1 is

reproduced here as figure B.1. A similar syntax is used

within the program text to create the records. Figure B.2

shows the program text that results in the record depicted

in figure B.1.

Page 85

<<DFN 1>>
NAME VERTEX
PROPS [OCCUPANT]
GENFN <function>GENVTX
ACTS [<<ACD 13>>]

Figure B.1 - An Object-Definition Record

<<DFN
&NAME "VERTEX",
&PROPS [OCCUPANT],
&GENFN GENVTX,
&ACTS ACTLIST

Figure B.2 - Program Source

The differences between the two figures are largely due to

the fact that in the creation of the record, its compo-

nents are dynamically evaluated.

Page 86

References

BURSTALL, R.M., COLLINS, J.S., POPPLESTONE, R.J. (1971):
"Programming in POP-2." Edinburgh University Press.
Revised and republished, 1977. Edinburgh University.

CHARNIAC, E. (1972): "Towards a Model of Childrens Story

Comprehension." Ph.D. Thesis; Artificial

Intelligence Laboratory, M.I.T., Cambridge, Mass.

CHOMSKY, N. (1965): "Aspects of the Theory of Syntax."
M.I.T. Press: Cambridge, Mass.

CHURCH, A. (1956): "Introduction to Mathematical Logic
1."Princeton University Press, Princeton N.J.

ELCOCK, E.W. and MURRAY, A.M. (1967): "Experiments with

a learning component in a a GoMoku playing program."

Machine Intelligence 1, 87-103.

FIKES, R.E., HART, P.E. and NILSSON, N.J. (1972): "Learn-

ing and Executing Generalised Robot Plans." Arti-

ficial Intelligence 3, 251-288.

FIKES, R.E. and NILSSON, N.J. (1971): "STRIPS" A new

approach to the application of theorem proving to

problem solving." Artificial Intelligence 2, 189-

208.

HEWITT, C. (1972): "Description and theoretical analysis
(using schemata) of PLANNER: A language for proving
theorems and manipulating models in a robot." Ph.D.

Thesis; Dept. of Mathematics, M.I.T., Cambridge,
Mass.

Page 87

HUNT, E.B. and HOVLAND, C.I. (1963): "Programming a

Model of Human Concept Formation." Computers and

Thought (Eds Feigenbaum and Feldman) McGraw-Hill

McCARTHY, J., et al (1972): "LISP 1.5 Programmers

Manual." M.I.T., Cambridge, Mass.

MINSKY, M. and PAPERT, S. (1969): "Perceptrons." M.I.T.

Press: Cambridge, Mass.

MURRAY, A.M. and ELCOCK, E.W. (1968): "Automatic des-

criptions and recognition of board patterns in Go-

Moku." Machine intelligence 2, 75-88.

SACERDOTI, E.D. (1974): "Planning in a hierarchy of

abstraction spaces." Artificial Intelligence 5, 115-

135.

SAMUEL, A.L. (1959): "Some studies in machine learning

using the game of checkers." IBM J.3, 210-229.

SUSSMAN, G.J. (1973): "A computational model of skill
acquisition." Ph.D. Thesis, M.I.T., Cambridge, Mass.

SUSSMAN, G.J. and McDERMOTT, D. (1972): "Why Conniving

is better than planning." A.I. Memo 225A, M.I.T.,
Cambridge, Mass.

Page 88

VAN WIJNGAARDEN, A., et al (1976): "Revised Report on

the International Algorithmic Language - ALGOL 68."

Springer Verlag.

WATERMAN, D.A. (1970): "Generalising Learning Techniques

for Automating the Learning of Heuristics."

Artificial Intelligence 1 (1970) 121-170

WINSTON, P.H. (1970): "Learning Structural Descriptions

from Examples." Ph.D. Thesis, M.I.T., Cambridge,

Mass.

ZORBRIST, A.L. and CARLSON, F.H. (1973): "An Advice-

Taking Chess-Playing Computer." Scientific American,

June 1973, 92-105.

Page 89

	PhD coversheet April 2012.pdf
	EDI-INF-MPHIL-79-001

