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Chapter 1 

Introduction 

1.1 Objectives 

The program described learns to improve its performance in 

the playing of a game, from experience. The main object- 
ives of the project are that the system should observe the 

following principles: 

1) The program should not rely on any special evaluation 

functions, which would embody domain-specific inform- 

ation. 

2) Initial knowledge of the domain should be minimal, 

and further knowledge gained should be assimilated in 

terms of prior knowledge 

3) The system of representation employed should as far 

as possible be independent of the domain, again 

avoiding the incorporation of domain-specific inform- 

ation. 

In customary Artificial Intelligence terms, the program is 

referred to as existing in a domain or environment. The 

model has a goal within this domain and has available 

certain actions which it may take in order to achieve its 
goal. The goal is represented as a Structure. This term 

will be used throughout to denote a set of objects from 

the domain, constrained by various domain-pertinent 
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relationships. The actions, goals and objects are the 

initial known facts of the environment. The program has 

an innate ability to plan simple sequences of actions to 

achieve its goals. Inevitably, these plans do not take 

into account enough of the nature of the domain and prove 

inadequate. In such events the descriptive abilities of 

the program are invoked to correct the deficiency, and the 

program's model of its environment is enriched. 

The chosen domain is that of a two-person game, namely 

GoMoku (see Appendix A) . This is played on the vertices 

of a 19 by 19 board. Each player has a set of uniform 

playing pieces, called stones. One set is white and the 

other black. Players alternately place single stones on 

the board, the object being to form a line of five adja- 

cent stones of one colour. The player to do so first 

wins. Strictly, the line formed must contain no more than 

five adjacent stones of one colour, but this rule has been 

relaxed for present purposes. 

The fundamental assumption underlying the model is that 

anything that is learnt must always be assimilated in 

terms of what is already known. The only knowledge 

initially posessed by the program is the description of 

its domain and of its goal. What the system learns can 

only be related to the domain and the goals, and it is 

therefore necessary that it should be possible to repre- 

sent new information in an identical manner to that in 

which the initial information is described. The model 
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therefore hinges on a system of description which can be 

employed to represent all the elements of the domain and 

can be used by the program to create its own descriptions. 
Two methods of forming new descriptions from old are used: 

The first is by the modification of the constraints on the 

variables of the old description, while the second in- 
volves combining more than one old description to form a 

compound description. 

A secondary aspect of the work presented is an extension 

of the notion of pattern directed invocation. Convention- 

ally, a procedure which is to. be invoked in this manner 

has an associated pattern, which consists of a string of 

words or values and variables. A procedure is'invoked if 
its pattern matches a target pattern, according to some 

matching algorithm. Matching a value in the target string 
to a variable assigns the value to the variable for the 

duration of the invocation. The present program incorpor- 

ates a logical extension of this process, whereby patterns 

associated with procedures may be represented using the 

full powers of the descriptive system. 

The pattern of a procedure may either be a representation 

of the outcome of the application of the procedure, or a 

description of conditions under which it might be appro- 

priate to apply the procedure. In goal directed languages 

such as PLANNER [Hewitt, 1972], the term "procedure" is 

usually reserved for the former of these alternatives, and 

the term "demon" is used for the latter. The present 
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model regards the pattern as a description of a position 
to which the program may have to respond, i.e. in the 

"demon" sense. The term "response" more obviously descr- 

ibes this function, and is thus used hereafter. 

The program is implemented in POP-2 (see Appendix B). The 

main feature of this language that is employed is the 

facility to describe and manipulate data-structures, and 

the ease with which programs can be treated as objects and 

associated with such structures. 

Diagrams depicting GoMoku positions occur throughout this 
text. In these figures, white stones are shown as "o" and 

black stones as "x". The symbol "+" is used to highlight 
unoccupied vertices that are significant in some other 

way. 

1.2 The Program in Action 

The program's approach to the game is initially simple- 

minded. It randomly selects a line of five vertices and 

proceeds to place a stone on each. Figure 1.1 shows the 

position arrived at after it has made four moves. The 

program has just placed the fourth white stone and is 

planning to place the fifth at position G8. The opponent 

naturally places his fourth black stone at G8 and the 

program finds its own plan thwarted. To avoid similar 
events in the future, the program must be able to anti- 
cipate them. By comparing the position arrived at in the 

planned line with the description of its goal, and taking 
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into account the previous move, it is able to describe the 

situation immediately prior to the move. 

1 . . . . . . . . . . . 

A B C D E F G H J K L 

Figure 1.1 - Learning about blocking 

The goal description is independent of the actual posit- 
ions of the vertices, the direction of the line and the 

colour of the stones, save that they are of the same 

colour. This is also true of the new description just 
formed. The effect of "undoing" the last move is to 

descibe the vertex at the end of the line as unoccupied. 

The description is therefore of the form: 

s s s s + 

where the occupied vertices are represented by "s" and the 

unoccupied vertex by "+". In forming this description, 

the system employs the technique of modifying the constr- 

aints within the original description. 

The game continues and the newly-gained knowledge is soon 

put to use. In figure 1.2, the program is constructing a 

new line on row 10, in its simplistic manner. Its plan 

necessitates playing next on vertex E10. It notices, 
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however, that its opponent has constructed a configuration 

that matches the description recently acquired, on column 

B. As the number of moves required to complete the oppo- 

nent's line is less than that required to complete its 

own, it diverts from the plan and plays at position B5. 

Without the initial experience the program would have 

proceded with its own plan and made no attempt at block- 

ing. 

The system does assume the domain to be the same from the 

point of view of either player. If this were not the 

case, it could not generalise from being blocked to block- 

ing. 

Figure 1.2 - Blocking 

Having been successful in blocking the opponent's line, 

the program continues with its line on row 10. At the 

position reached in figure 1.3 it is about to play on 

vertex F10, when it is confronted by two simultaneous 

instances of the familiar structure. One runs from B4 to 

F8, and the other from E7 to A3. At this point the 
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program finds that it is impossible to block both of the 

lines at once and determines that it has lost. 

Figure 1.3 - Learning "Open-fours" 

The two instances of the structure are now treated in the 

manner described above, in the light of the previous move. 

Two new, distinct structures result, each having three 

stones and two blanks. The line beginning at B4 results 

in a structure of the form: 

s s s + + 

while that starting at E7 produces one of the form: 

+ s s s + 

The program employs the technique of combining the two 

descriptions by pairing the description-variables which 

represent the same objects. This results in a compound 

structure which describes the overall configuration, thus: 

+ s s s + + 

This fully describes the line stretching from A3 to F8, 

with the black stone on E7 "unplayed". The program is 

able to recognise any occurrences of patterns which match 

this structure. In any new game the program will now 
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always try to prevent the opponent from creating an "open- 

four". If this becomes impossible, it will learn to 

anticipate the new conditions under which it became impos- 

sible and to avoid them likewise. 

1.3 Commentary 

The program is a model of learning by trial and error. 
The planning component proposes a sequence of actions 

which is intended to produce an instance of the goal 

structure. This plan is initially naive, but even when 

the performer becomes more sophisticated it can always 

fall back on the planner. In the example in the section 

above, the model decides on a set of five vertices which 

form a line as required, and proposes a sequence of act- 

ions which will place five stones on the vertices, thus 

forming an instance of the goal structure. Such a plan 

naturally overlooks the interactive nature of the game and 

will inevitably be defeated. 

There are two ways in which the plan can fail. The first 
is by interference: Some intended action may be prevented 

by another event. In the current domain all other events 

are perpetrated by an opponent. One of the actions may, 

for instance, be prevented by an action of the opponent, 

or in game-playing terms, may be "blocked". In the exam- 

ple, the program's planned line of five is quite easily 

blocked. A generalised description is formed of the 

situation immediately prior to the blocking move, together 

with a description of the blocking move and its outcome, 
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namely the failure of the planned line. Only the objects 

related to the goal description are considered, so that 

the order of the opponent's moves and any other moves he 

might have made are irrelevant at this point. 

Because the game is symmetric, in that the goals and 

possible actions of the opponent are the same as those of 

the performer, such a description can be used as a block- 

ing response. The second way in which a plan can fail is 

by the instantiation of the counter-goal. In a game, this 

usually means that the opponent has achieved his goal. In 

the example, this happens when the opponent creates a line 

of five first. In this case the performer needs to find a 

way of anticipating and preventing thereoccurrence of such 

an event. 

Generalisation of the former of the situations above 

results in descriptions of blocking responses, while the 

latter situation leads to responses as long as it is 

possible to see a way in which the event could have been 

prevented. It is also sometimes possible to anticipate 

the opponent's success, if it has actually become inevit- 

able (or un-blockable), and such situations will also give 

rise to responses. The GoMoku example in section 1.2 ends 

in this way, when the black player forms an "open-four". 

The description of the prelimenery state is given to the 

pattern matcher as a standard situation to look out for. 

If such a situation is later detected, the blocking 
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response is recommended to the performer, who may then 

decide whether or not it is to be applied. 

1.4 Thesis Outline 

The following chapter will give a brief background to the 

computational modelling of learning and relate some 

details of an earlier program which considered the game of 

GoMoku. The third chapter describes the structure of the 

present program and is followed by three chapters 

detailing some aspects of the system, namely, Represent- 

ation, Pattern Matching and the use of Responses. 

Chapter 7 provides a "worked example", illustrating the 

operation of these components of the system over the 

period of a few moves, and is followed by a chapter sug- 

gesting some general conclusions. Two appendices provide 

a brief background to the game of GoMoku itself, and to 

the POP-2 programming language. 
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Chapter 2 

Background 

2.1 Learning 

Early programs which were intended to learn, or improve 

their performance with experience, were naturally based on 

prevailing general problem solving techniques. The most 

significant example of this is the adaption of graph- 

traversing or tree-searching techniques to learning. 

"Trees" arise in problems such as game-playing and puzzle- 

solving, where each move or step gives rise to a branching 

point. In all but the simplest of games and puzzles the 

trees are too large to be searched exhaustively. It is 

often possible to assign a "value" to any particular node 

of a tree, in terms of the likelihood of the goal being 

achieved from the node. Various techniques may then be 

used to "prune" the tree, by considering only those paths 

which lead to "good" nodes. A program using such an 

evaluation function can be made adaptive by enabling it to 

modify the evaluation function. 

One of the best known examples of the use of this tech- 

nique is a Draughts-playing program ['Samuel, 1959]. Here, 

the evaluation function is divided into a set of funct- 
ions, each sensitive to different aspects of positions in 

the game. These functions are weighted to produce the 

final evaluation. The weights may be adjusted after a 

game depending on whether it was won or lost, and on how 

the states which were traversed were evaluated. The 
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general problem of adjusting the weights associated with 

the component functions may be abstracted: In the topo- 

logical space spanned by the functions, coefficients must 

be determined to define a surface which optimally sep- 

arates the "desirable" states from the "undesirable". 

This general problem is pursued in the book, "Perceptrons" 

[Minsky & Papert, 1969], which chiefly considers it in the 

context of learning to recognise patterns. 

The evaluation-function approach is avoided in the present 

work, as the components of the evaluation function embody 

domain-specific knowledge and at the same time inhibit the 

acquisition of any concepts not thus embodied. 

The use of production systems as a way of describing a 

program is another technique that has lent itself to the 

modelling of learning. Production rules were initially 
used for the formal description of Grammers [Chomsky, 

1965]. In its simplest form, a production is a pair of 

strings of symbols. The interpretation is that the string 
on the left hand side gives rise to the one on the right. 
Production systems are now often used to describe formally 

the syntax of programming languages. Examples are ALGOL 

[Van Wijngaarden et al, 1976] and POP-2 [Burstall et al, 
1971]. In heuristic programs employing a "state vector" 

representation of the domain, each element of the state 

vector will fall in a given range. The heuristics them- 

selves can be represented as sets of productions by 
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allowing the symbols used in the production rules to 

denote subsets of these ranges. 

Conventional programming languages have too complex a 

syntax to make it feasible for a program to modify its own 

behaviour by editing its own program text. The simple, 

uniform syntax of production systems does, however, facil- 

itate program self-modification. One method is to repre- 

sent the heuristics as described above and permit the 

addition of further productions and the modification of 

the subranges specified in existing productions. This is 

essentially the technique used in Waterman's poker-playing 

program [Waterman, 1970], which has two main classes of 

production. The first of these, his "action rules", 

indicate what should be done in a situation of a specific 

type. The second, the "backward form" rules, determine 

what constitutes such a situation. The program learns 

both by the acquisition of new productions and the modi- 

fication of existing ones. 

The "state-vector" representation of a domain is highly 

specific to the domain. The composition of the state- 

vector depends on the programmer's knowledge of the game. 

One objective of the current system is to employ a scheme 

of representation that is independent of the domain. 

Learning can reasonably be defined as the acquisition of 

information or skill. For the present purposes, informa- 

tion and skill are superficially distinguished by their 
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respective roles: Information is thought of as passive 

and subdivides into facts and definitions, while skill is 

active, dividing into procedures and responses. The term 

"Knowledge" will be used to embrace all of these catag- 

ories. 

Facts are simple statements or assertions, generally 

qualifying some object. For example: 

"Roses are red." 

Definitions are sets of descriptions which apply to all 
instances of whatever it is being defined. For example: 

"Rose: A beautiful and usually fragrant flower 
which grows upon a shrub of the genus rosa, 
usually of a red, white or yellow colour." 
[Shorter Oxford English Dictionary] 

Procedures embody how something may be accomplished: 

"To ring alarm, break glass." 

Responses are embodiments of how to behave in specific 
situations: 

"When in doubt, scream and shout." 

These distinctions can become rather blurred, as they 

depend on context. The statement of a procedure, for 

example, might be regarded as a fact. Indeed, all four of 

these divisions have the same structure, being associative 

pairs. Facts associate an object with a qualification; 
Definitions associate a label with a set of descriptions; 
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Procedures associate a goal state with a set of actions, 

and Responses associate a stimulus with a set of actions. 

2.2 Models of Learning 

The four categories of knowledge each have their analogue 

in computational terms. Facts are the simplest. A file 
containing a list of names and addresses is a collection 
of facts, as is any simple data-base. 

Definitions find their analogue in logical predicates. 

These are a series of tests, on the basis of which an 

object may qualify as a member of a set. Definitions may 

take the form of "templates" which the object must fit to 

qualify, and a routine to match objects to templates must 

be provided. 

Procedures correspond to subroutines. In the language 

PLANNER and its derivatives, procedures may be invoked 

according to an associated pattern. 

Responses have their counterparts in these same languages, 

in the form of antecedent theorems, or "demons". These 

are subroutines which are invoked when an assertion is 

made that matches their associated pattern. Programs have 

been devised which make extensive use of demons. Their 

use is described in a model of story comprehension [Char- 

niak, 1972] where they are employed as "facts" waiting for 
an occasion on which to be useful. 
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It is suggested above that learning may be regarded as the 

acquisition of facts, definitions, procedures and respon- 

ses. The first of these is relatively trivial: The 

addition of a fact to a data-base requires merely its 

integration into whatever structure has been imposed on 

the data-base. For instance, if a file of names and 

addresses is ordered with respect to surnames, the addit- 

ion of a new datum is accomplished by inserting it so that 

the order is maintained. While fact acquisition is com- 

monplace in computing applications, this cannot be said of 

the remaining forms of learning. 

Definitions are set-inclusion rules. The term "concept" 

has sometimes been used in AI literature to describe the 

principle of learning to determine whether an object fits 

the description of elements of a set [e.g. Church, 1956]. 

An early attempt to model definition acquisition, or 

concept formation, took the form of a program to simulate 

the responses of human subjects of psychological experi- 

ments, in which the subjects had to formulate rules to 

describe sets of objects. The model included consider- 

ation of whether the objects were presented one by one, or 

all at once [Hunt and Hovland, 1963]. A more recent model 

design, related to computer vision, derived structural 

descriptions of such things as "arches" by generalising an 

example and modifying the generalisation in the light of 

further examples and counter-examples [Winston, 1970]. 

Page 16 



The acquisition of procedures is the essence of the 

dreamed-of self programming computer. While the reality 

of such machines is still on the distant horizon, some 

progress towards a model of this process has been made. 

The Macro-operations (MACROPS) used in STRIPS [Fikes, Hart 

and Nilsson, 1971 & 1972] are simple examples of such 

programs. STRIPS is a problem solver which generates 

robot plans to achieve goals specified as well formed 

formulae in the predicate calculus. The STRIPS world is 

similarly described in terms of well formed formulae. 

Having solved a problem, the system saves the solution in 

a generalised form for future use. Generalisation is 

achieved by replacing constants in the plans with vari- 

ables but ensuring that these variables coincide, where 

this is necessary to the original plan. The 

representation additionally permits each subplan in the 

plan to be retrieved. If a plan is a subplan of one 

developed later, then it is replaced by that plan and in 

this way long plans tend to supercede shorter ones. 

The LISP language [McCarthy et al, 1962] was intended to 

facilitate programs which could manipulate programs. The 

language basically manipulates lists, and programs them- 

selves are represented by lists. However, it was not 

until the advent of extensions to LISP such as PLANNER 

[Hewitt, 1972] and CONNIVER [Sussman, McDermott, 1972] 

that this became effective. These languages provided a 

generalised procedure-calling mechanism, whereby proced- 

ures could readily be added to or removed from the, set 
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of procedures eligible for calling at a given point in a 

program. This facility was combined with an associative 

database. HACKER [Sussman, 1973] was probably the first 
program to model the process of programming and debugging. 

Programming was accomplished using knowledge of procedures 

which could be called to achieve certain goals. The 

debugger used specific information given by the domain on 

what had gone wrong when the program was run, and the 

programming component could then be invoked to correct the 

program. 

Limitations on the patterns used in these languages render 

them unsuited to the description of the structures em- 

ployed in the present program. 

Waterman's poker program is essentially a model of re- 

sponse acquisition. An action rule indicates exactly what 

action is to be taken when the state vector matches its 
left hand side. The program is able to create or modifiy 

production rules, thereby modifying its responses 

The present work concentrates on skill acquisition. 

Procedures and responses are closely related in form. A 

procedure may contain a statement of a precondition which 

must hold if it is to be applied. It contains a set of 

actions, the procedure body, and a statement of what it is 

used for, its "pattern". Responses contain a description 

of the conditions under which they should be applied. 

This is their "pattern". Naturally they also have their 
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sets of actions which are usually initiated when a match 

is made to their pattern. Finally, they may contain a 

description of their outcome. Thus, in their fullest 
forms, procedures and responses are both of the following 

composition: 

STATE -> (ACTIONS) -> 'STATE 

They differ, however, by being accessed through their 
"goal-state" on the one hand and by their "stimulus-state" 
on the other. It is conceivable that a system could be 

devised that used the same objects in both senses. 

2.3 Generalisation 

The essence of skill learning is generalisation. A lesson 

is learnt in a specific situation. To be useful in simi- 

lar situations it must be assimilated in terms of what the 

situations have in common. Generalisation of a specific 

event may result in one of a whole spectrum of 

descriptions, from the near-specific to the totally 
abstract. In computational terms, generalisation can be 

seen as the replacement of constants by constrained vari- 
ables, and of constrained variables by less constrained 

variables. A constant may belong to a whole sequence of 

nested sets, each less constrained than its subsets and 

therefore an abstraction of its subsets. For example, a 

particular tree may be primarily a pine-tree, then a 

conifer, a tree, and finally a vegetable. Naturally, 
generalisation cannot take place if the successive cata- 

gories are not known, or if the constraints are not expli- 
cit. A frequent problem is to know how far to proceed 
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with the process of generalising. If a concept is not 

general enough, it may not be accessed in some situations 

where it is pertinent. If it is too general, it may be 

accessed too often, in situations where it is irrelevant. 

To describe a tree as a "thing" (a member of the universal 

set) is not often useful! This problem arises particu- 

larly when a generalisation is made from a single example. 

The approach in the program hypothesised by Winston, 

mentioned above, is to generalise as little as possible 

from single instances, and to modify such generalisations 

in the light of successive examples and counterexamples. 

Another approach is to have a "teacher" provide the prog- 

ram with the correct generalisations. This technique is 

employed in Waterman's poker playing program, which has a 

facility for entering "training" information at any stage 

of a game. The information consists of a good decision to 

make in the situation, the elements of the "state vector" 

which are relevant to the decision and the reason for the 

decision in terms of these elements. The training inform- 

ation amounts to a new production rule, although it may be 

used to modify other productions rather than simply be 

added to the production system. An advice-taking, chess 

program [Zorbrist and Carlson, 1973] also permits an 

"expert" to provide the program with generalised patterns 

which represent aspects of the chess position, together 

with "weights" to apply when incorporating the detection 

of a pattern instance into the evaluation of a position. 
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This evaluation is then used in a normal tree pruning 

heuristic. 

The present program does generalise from single examples. 

However, the aspect of the state that it is describing 

always relates to an instance of its goal, of which it 

naturally has a generalised description. The level of 

generalisation is "borrowed" from this description in a 

manner which will be described later. 

2.4 GoMoku and Learning 

The game of GoMoku has been used in earlier experimental 

learning programs. One example in particular can be 

compared with the present work [Elcock and Murray, 1967]. 

The system centred around a technique referred to as 

"Backtrack Analysis". An attempt was made to be inde- 

pendent of the system of formal description employed, 

except at the interfacing level. However, it was assumed 

that the description would provide a ranking of the pos- 

sible moves. The system accumulated a list of descript- 

ions which it regarded as subgoals. These were assumed to 

represent positions from which a win might always be 

forced. The list was ordered according to the number of 

moves required to reach a winning position, the Level of a 

subgoal. When the program was to move, it considered all 

possible moves, generating a description of each resultant 

position. These were compared with the descriptions in 

the subgoal list. The best move was that which matched 
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one of the subgoals and had the least number of moves to 

play to win. 

The descriptions were acquired by the Backtrack Analysis 

Component of the program. This was activated at the end 

of a game which had been lost by the program. The moves 

of the game were "unplayed" in reverse order, until the 

point was reached where the opponent had created a 

position which was not on the subgoal list. The 

description of this position became a new subgoal. In 

adding it to the subgoal list, the program took care to 

remove any descriptions of the same level which included 

the new subgoal, thereby ensuring a tendancy towards 

"minimal" descriptions of subgoals. 

An example of the form the descriptive language may take 

is given. 

A 7-Pattern is a number, N: Consider a line of seven 

vertices. if it is not possible to construct a line 
of five stones of the same colour on the line, then 

the value of the 7-Pattern is 0. Otherwise the value 

is the number of stones already in place in the line. 

A Line-Pattern is a pair, (n,r): Consider a set of 

colinear 7-Patterns going through a given vertex. 

The first value, n, is the highest value in the set. 

The second, r, is the number of elements in the set 

with the value n. 
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An Ordering is defined on Line-Patterns by ordering 

first on n, and then on r. 

A descriptive system which considers only the "best" Line- 

Pattern through each vertex would be capable of describing 

open-fours, which are essentially one-dimensional. To 

describe two-dimensional patterns such as intersecting- 
threes would require the inclusion of the two best Line- 

Patterns through a vertex. It was acknowledged that the 

descriptive language might be inadequate to describe 

certain complex situations and some consideration was 

given to the detection of inadequate descriptions. 

An important difference between their system and the 

present one is that the descriptions they derived were 

used as subgoals. Their program considered all possible 

moves to determine whether any generated an instance of a 

description. As only a one move look-ahead was employed, 

the effect is equivalent to the present scheme where the 

description has the effect of a move "undone" and the 

match is always to the current state of the domain, with 

the look-ahead obviated. If it were not for the burden 

that the present representation places on the pattern 

matcher, its advantage over such a look-ahead system would 

be conclusive. The major difference between the two 

systems is the attitude towards descriptive language. The 

philosophy behind the Elcock and Murray program is summer- 

ised in their words: 
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"If the formal language has been suitably de- 
signed, then this description will automatically 
generalise the abstract board situation." 

Their descriptive language was designed in anticipation of 

the concepts which emerge from the game, and was therefore 

in terms of exactly those features which generalise any 

particular position. Features such as the number of 

stones of a colour in a line of seven vertices might be 

primitive to the language! The philosophy behind the 

descriptive medium of the present program is simply that 

the goals and domain elements are represented in a uniform 

and malleable way, and that it, is up to the program what 

else is to be described. This approach shows itself to be 

the more general by starting with a weak descriptive 

language (relative to the specific domain) and still 

arriving at the necessary concepts. 

Elcock and Murray followed up their work with a program in 

which the descriptive language was further refined to 

broaden the scope of its representation and to improve its 

powers of generalisation [Murray and Elcock, 19681. This 

development moved away from the approach advocated in the 

present work. They provided a catalogue of structures 

with which their program was able to play "expertly". A 

few of these are shown in Appendix A. In principle, all 

of these can be represented in the more general structural 

terms of the present system. 
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The examples of learning programs mentioned above are but 

a few of many. They serve to illustrate the main tech- 

niques that have been employed, and some comparison has 

been drawn between these techniques and those adopted in 

the present system. 
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Chapter 3 

System overview 

3.1 Model Requisites 

It is usual in Artificial Intelligence to consider a model 

as comprising two components. The first of these is the 

domain, sometimes referred to as the environment, context 

or world. The second part is the performer, often given a 

name and personified, or else referred to as "the program" 

or "the model". While the emphasis is usually on the 

behavior of the performer, there are invariably assump- 

tions made about the domain: If the domain is not a good 

model of the relevant aspects of the real world it may not 

be possible to draw any conclusions about the validity of 

the performer model. The game of GoMoku, which forms the 

domain of the present model, has already been introduced. 

Typically, to describe a domain one needs to represent ob- 

jects, the relationships which may pertain between ob- 

jects, sets of objects, the state of the world, the 

changes which can take place and the performer's goals. 

The performer would comprise such components as a planning 

mechanism, a pattern matcher and a description generator. 

In the present model the domain contains objects and relat- 
ionships. The changes which may take place are described 

in terms of actions which may be taken. The goal is 

described as a structure. A structure is a collection of 

variables, each constrained to contain only specific types 
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of object. The variables are further constrained by 

relationships which must exist between objects assigned to 

them. 

In the GoMoku domain the objects are the stones and the 

board. The latter may be regarded as a collection of 

vertices. The relationships which may exist between these 

objects are occupancy and adjacency. Occupancy pertains 

between a stone and a vertex and is in fact described as 

the complementary pair of relationships, "occupant" and 

"location". Adjacency pertains between a pair of vertices 

and a direction of adjacency has to be specified. This is 

in order to describe the fact that the goal requires the 

five stones to be in a straight line. These objects and 

relationships allow the goals to be described as a set of 

typed variables. Figure 3.1 is a diagram of such a 

description. 

adj [d] adj [d] 
[v] [v] [v] 

adJ d ; A adj 

occ; ;loc occ; ;loc occ; ;loc 
.I i i v/ 
[s] [s] [s] 

[v] - variable of type vertex adj - Adjacent 
[s] - variable of type stone occ - Occupant 
[d] - variable of type direction loc - Location 

Figure 3.1 - "Line-of-three" structure 

Direction could, of course, have been a separate 

relationship, but as it is only applicable to adjacent 
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vertices, and essentially distinguishes between the 

adjuncts to a vertex, it was combined with the adjacency 

relationship. If the program had provision for more 

general descriptions of sets, it might have been possible 

simply to apply the colinearity requirement to the set of 

stones or occupied vertices. 

The performer models a learning process through which both 

procedures and responses are acquired. The elements of 

this model are an elementary planning mechanism, a des- 

cription generator and a pattern matcher. The planning 

mechanism is completely ad hoc,, as planning is not central 

to the model. The planner is able to describe a hypoth- 

etical instance of the goal structure and propose a sequ- 

ence of actions which would lead to its achievement. The 

description generator is able to form generalised descrip- 

tions of situations which arise during the course of the 

performer's activity. The pattern matcher is an extensive 

mechanism which continually monitors the domain for in- 
stances of certain structures, reporting if they arise. 

The performer must attempt to manipulate objects until 
valid, one-to-one assignments can be made to all the 

goal 
variables in theAstructure. Such an assignment will be 

referred to as an Instance of the structure. There is a 

similarly described counter-goal, of which an instance 

must at no time exist. 
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Actions are represented in terms of those relationships 

which the program can alter. The only action in GoMoku is 

the placement of stones. This can be described as chang- 

ing the occupant of a vertex from being empty (undefined) 

to being a stone. The location of the stone is simultan- 

eously changed from being undefined to being the vertex. 

Explicit in this representation are the preconditions that 

the vertex may not have any other occupant, nor may the 

stone be at any other location. If the performer tries to 

act contrary to these conditions the action fails and the 

performer can then see which of the preconditions was 

violated, and perhaps learn something from the situation. 

3.2 Control'Sequence 

Figure 3.2 depicts the main processes within the system 

and the data structures through which they communicate. 

The arrows depict the direction of flow of information 

between the processes and the data structures. The 

remainder of this section will describe these functions. 

The Action-Sequencer operates from the Action-List, which 

contains scheduled actions, devised either to achieve its 
own goal, or to thwart its opponent. Moves from this list 
are alternated with moves by the opponent. If the list is 
empty, the primitive Planning-Mechanism is invoked to 

provide an appropriate set of actions. Usually this is 

only necessary at the beginning of a game. 
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+---------------------+ 
Action Sequencer 

+---------------------+ 
r 
T 

+---------------------+ 
Action List 

+---------------------+ 
r 

--------------- 
Planning- 
Mechanism 

+-------------+ 

+----Goal-----+ 
Description 

+-------------+ 

+-------------+ 
Response- 
Evaluator 

--------------- 

--------------- 
Attention- 

List 
--------------- 

--------------- 
Pattern- 

11 

Matcher 
--------------- 

--------------- 
Feature- 

List 
--------------- 

--------------- 
Failure- 
Analysis 

+-------------+ 

Figure 3.2 Chief Processes and Associated Data 

A side effect of making a move is to invoke the Pattern- 

Matcher. This acts on the Feature-list, containing 

structural descriptions which the program has previously 

acquired. The objects involved in the most recent action 

are regarded as candidates for assignment to variables in 

these descriptions. There may also be suspended partial 
matches associated with the objects by previous operations 

of the Pattern-Matcher, and an attempt is made to resume 

these. Any completed matches are placed in another list, 
the Attention-List. 
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After an attempted move by the Action-Sequencer,it con- 

siders whether or not the move was completed. If it was, 

the Move-Sequencer also checks further to determine 

whether it has completed its goal, announcing its victory 

if it has. If the action was in some way inhibited, by 

being blocked, for example, the Failure-Analysis component 

is invoked to try to establish what happened. The re- 

maining actions associated with the plan are discarded, as 

failure of the action implies failure of the plan. The 

Failure-Analysis, in this case, determines why the move 

could not be made and which event in the game brought 

about the circumstances preventing the move. By reversing 

the effect of that event in the context of the generalised 

goal structure, a description of the unblocked position is 

obtained. This is then included in the Feature-List for 

the purposes of the Pattern-Matcher. 

After a move by the opponent, the Attention-List is exam- 

ined by the Response-Evaluator. If the opponent has won, 

or if his victory may be anticipated, the Failure-Analysis 

component is also invoked, this time to describe the 

position immediately before the move just completed. The 

result is also added to the Feature-List. On the other 

hand, if a threat is present, this is considered in case 

the current plan has to be suspended. Other constructive 

moves may also be proposed, and if one of these is better 
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than that scheduled, in terms of plan length, the, current 

plan may be suspended anyway. Suspension of a current 

plan entails placing the suggested actions ahead of it in 

the Action-List. Failed plans are removed from the 

Action-List, but suspended plans remain for the program to 

fall back on. 

3.3 Size and Speed 

The size of the program is variable, due to the manner in 

which records are created during a game and released 

afterwards. The figures below describe this behaviour. 

Estimated sizes are expressed in "K" (thousands of memory 

words). 

After initial compilation: - 9 K 

At the end of a game, having created 

new descriptions and including 

information produced by the Pattern- 

Matcher: - 90 K 

Before another game, having abandoned 

all information specific to the 

previous game, but retaining the 

descriptions gained: - 11 K 

The program's speed is likewise variable, decreasing with 

the increasing number of descriptions with which the 

Pattern-Matcher has to deal. Speed was not an objective 
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of the project: Even so, the results are disappointing! 

Estimates are given of typical times taken before each of 

its moves, at different stages of development. 

No patterns 

Line-of-Four 

open-Four 

2 sec 

- 10 sec 

2 min 

Intersecting-Threes - 7 min 
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Chapter 4 

Representation 

4.1 Records 

The system employs a set of Records to represent the 

various items that it manipulates. Although the records 

used all have the same essential structure, they have 

different functions, designated by their Use. The main 

uses of the records are: 

Object-Definitions - Used to associate information with 

different types of object, and to 

restrict the type of object that a 

variable may represent. 

Objects - The basic manipulatable entities of 

the domain. 

Variables - Used in structural descriptions to 

stand for objects that are not 

specifically determined. 

Relationships - Used to impose constraints, other 

than type, on variables. 

Structures - Collections of related variables, 

representing configurations of 

objects. 
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Action-Definitions - Descriptions of the changes that the 

system may make within the domain 

Actions - Proposed or implemented changes to 

the domain. 

POP-2 facilitates the definition of arbitrary compound 

items with accessible component items. A single such 

data-structure is defined in the program to permit the 

consistent representation of all aspects of the present 

model. The basic structure is a triple, comprising three 

components. Two of these components form an associative 

pair, while the third always contains another triple. 
This allows the triples to be "chained" together. The 

term "record" is used throughout to refer to such chains. 

The first triple in a record is always the header, used to 

identify the record use. The first component of a header 

is a word, such as OBJ, DFN or ACT, designating an Object- 

Record, a Definition-Record or an Action-Record respec- 

tively. The second header component is simply a number, 

unique to the record, with the sole purpose of identifying 
the record in reports from the program. In all such 

printing, the first two components of the header triplear.e 

printed between double angle-brackets, thus: 

<<OBJ 27>> 

The triples following the header triple are name/value 

pairs. The name component is always a word, for example 
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OCCUPANT or RANGE. The value component may in general be 

any POP-2 item, such as a word, list, record or function. 

When records are printed in full, as in the figures below, 

the names and associated values appear in two columns 

below the record header. 

4.2 Object-Definitions 

It is useful to be able to associate information with 

different types of object, and this is the function of the 

Object-Definition records. The property names of these 

records are used to access individual pieces of inform- 

ation. An Object-Definition record has the folowing 

properties: 

Name This is not used by the system itself, but is 

helpful when the program's reports are examined. 

Props The properties of the object that are pertinent 
to the various structure processing functions 

are listed. 

Genfn An object "generator" is also provided, for use 

in planning and playing. A stone generator, for 

example, would correspond to the pile of stones 

at the player's disposal. 

Acts A list of actions which may be used to manip- 

ulate the objects is also provided. 
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In the example in figure 4. 1, a VERTEX is "defined". The 

pertinent property of a vertex is its OCCUPANT. A funct- 

ion called GENVTX will "randomly" generate vertices, and 

the only action involving vertices is that described by 

the Action-Definition record, <<ACD 13>>. 

<<DFN 1>> 
NAME VERTEX 
PROPS [OCCUPANT] 
GENFN <function>GENVTX 
ACTS [<<ACD 13>>] 

Figure 4.1 - An Object-Definition Record 

4.3 Objects 

A distinct record represents each distinct object. Each 

Object record has a property called TYPE. The value of 

this property is an Object-Definition, denoting the object 

type. Apart from the TYPE property, objects have a group 

of properties which are important to the description of 

structures. As has been seen, the definition record has a 

list of these properties. For vertices this list has only 

one property, namely OCCUPANT. However, stones have two 

such properties, LOCATION and COLOUR. These properties 

are used, for example, in planning and in pattern match- 

ing. The property lists are also used as a generally 

convenient place to hang an assortment of "system" inform 

ation in the course of running the program. This can be 

seen in figure 4.2 below, and also in the discussions of 

some of the program components. 
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<<OBJ 27>> 
TYPE <<DFN 1>> 
OCCUPANT UNDEF 
XCO 17 
YCO 9 

Figure 4.2 - An Object-Record 

The Object represented in the figure is a vertex, which is 
indicated by the TYPE property. The OCCUPANT property 

indicates that the vertex is unoccupied. The remaining 

properties give the vertex coordinates, which are only 

used indirectly through certain system functions. 

Objects may be related to each other directly through 

their property lists. For example, a particular stone may 

be related to a given vertex through the OCCUPANT property 

of the vertex. The vertex would likewise be related to 

the stone through the LOCATION property of the stone. 

Thus, when a stone has been placed on a vertex, the res- 

pective records would refer to each other as shown in 

figure 4.3. 

<<OBJ 28>> 
TYPE <<DFN 2>> 
LOCATION <<OBJ 27>> 
COLOUR <<OBJ 3>> 

<<OBJ 27>> 
TYPE 
OCCUPANT 

<<DFN 1>> 
<<OBJ 28>> 

XCO 17 
YCO 9 

Figure 4.3 - A Stone on a Vertex 
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The second object-Definition record in the figure is that 

of stones. Colours are also represented as objects, for 

consistency in the pattern matching process. 

4.4 Variables 

To describe a structure in a general way, the use of 

variables is required. In the present system, the funct- 
ion of variable is filled by so-called "Ghost" records. 

These too have property lists, including a TYPE property, 

by which the Ghost record is constrained to represent a 

particular type of Object. In a structural description, 
Ghost records take the place of the actual objects which 

might occur in an instance of the structure. 

In an instance of the structure, various relationships 

pertain between the Objects involved. It is necessary to 

describe these relationships as existing between the 

variables in the generalised structural descriptions. The 

property lists of the Ghost records describe the relation- 
ships which must exist between corresponding Objects in an 

instance of the structure. Property-list relationships 

between Objects are implied simply by the presence of a 

property of the appropriate name in the Ghost record, the 

associated value being the related Ghost. 

Figure 4.4 is a general representation of a stone on a 

vertex. The Ghost representing the vertex has the Ghost 

representing the stone as its OCCUPANT value, and the 

reciprocal LOCATION of the Ghost stone is similarly filled 
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by the Ghost vertex. In the figure, <<DFN 0>> defines 

colour Objects. 

<<GHO 23>> 
TYPE <<DFN 1>> 
OCCUPANT <<GHO 24>> 

<<GHO 24>> 
TYPE <<DFN 2>> 
LOCATION <<GHO 23>> 
COLOUR <<GHO 20>> 

<<GHO 20>> 
TYPE <<DFN 0>> 

Figure 4.4 - Abstraction of a Stone on a Vertex 

4.5 Relationships 

The relationships which may exist between two objects fall 
into two categories. The first of these occurs when two 

objects are related directly through their property lists, 
and does not involve the use of any other records. This 

relationship has been denoted "property" relationship, and 

has been dealt with in the two previous sections. This 

section deals with "functional" relationships. 

Functional relationships relate two objects to each other 

in such a way as to associate a value with the relation- 
ship. For example, two vertices may be adjacent to each 

other in one of eight directions. There are two ways in 

which functional relationships are employed: In planning 

it is desirable to be able to generate an object from 

another object, given a relationship and an associated 

value; In matching, it is necessary to be able to 
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determine the value of the relationship between two 

objects, sometimes simply for verification. 

<<REL 12>> 
RELFN <function>ADJFUN 
RELGEN <function>ADJGEN 
RANGE [ - list of all eight 

directions - J 

Figure 4.5 - The Adjacency Relationship 

The only example of a functional relationship in the 

GoMoku domain is the adjacency relationship. Two adjacent 

vertices have an associated direction. As this is an 

unchanging property of the board on which the game is 

played, it is unnecessary to mention it in the property 

lists of the objects themselves. Instead, two functions 

are provided: One determines whether two vertices are 

adjacent, supplying the direction if they are. The other 

generates a vertex adjacent to another, given vertex, in a 

specified direction. These are held together in a relat- 
ionship-record,. as in figure 4.5. The range of the funct- 

ion is supplied for the use of the planner. 

Functional relationships are associated with Ghosts 

through CONSTRAINT properties. The value of this property 

is a list of relationship/Ghost/value combinations. The 

value referred to may itself be a Ghost. For example, two 

adjacent vertices are represented in figure 4.6. Note 

that <<REL 12>> is the adjacency relationship described 

earlier. Ghosts 30 and 31 both represent directions, 
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their opposition being a consequence of the relationship 

functions. 

<<GHO 23>> 
TYPE 
CONSTR 

<<DFN 1>> 
[ [<<REL 12>> <<GHO 25>> 

<<GHO 30>>] 1 

<<GHO 25>> 
TYPE 
CONSTR 

<<DFN 1>> 
[ [<<REL 12>> <<GHO 23>> 

<<GHO 31>>] ] 

Figure 4.6 - Abstraction of Adjacent Vertices 

4.6 Structures 

The goals of the system are represented as structures. 

There are three kinds of structure used: Basic-Structures 

are sets of typed variables together with a set of relat- 

ionships obtaining between the variables. A Reduced- 

Structure is a basic structure together with a set of 

additional constraints (relationships) on its variables. 

A Compound-Structure is a set of reduced structures or 

compound structures and a set of correspondences between 

their variables. 

A basic structure such as a line of five is represented by 

a set of Ghosts, all interrelated by both property and 

functional relationships. In the course of its experi- 

ence, however, the program will need to describe certain 

situations in terms of such structures. One of the ways 

in which this is done results in a reduced structure. 

Reduced structures use the same pairing representation as 

the other records but instead of associating name with 
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value, they associate the Ghosts of the basic structure 

with new property lists, thereby imposing additional 

constraints on the Ghosts. Any property appearing in this 
new list is regarded as superceding the corresponding 

property of the original Ghost. In this way the Ghosts 

keep all their previous properties except for those ex- 

plicitly overridden. 

For example, the reduced structure describing a line of 

four stones refers to the original basic structure repre- 

senting a line of five stones. An additional property 

list is associated with one of the Ghost vertices, speci- 

fying that it is to have no occupant. 

The second way of describing new structures in terms of 

old is as compound structures. If two lines of four 

intersect, at least one of the vertices in the first line 
corresponds to a vertex in the second. There is a similar 
correspondance between the occupants of the corresponding 

vertices. A compound structure refers to two previously 

defined structures and further specifies a correspondence 

between their Ghosts. This means that any object assigned 

to a Ghost in one structure must be assigned to the cor- 

responding Ghost in the other. 

In the example of two intersecting lines of four, at least 

one of the Ghost vertices of the first line has a corres- 

ponding Ghost vertex in the second. This correspondence 

represents the point of intersection of the two lines. If 
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the vertex is to be occupied, there will also be a pair of 

corresponding Ghost stones. 

Compound Structures have their own sets of Ghosts through 

which the correspondences between the Ghosts belonging to 

the sub-structures is established. A compound structure 

is therefore represented as a list of structures. Assoc- 

iated with each structure is a list which pairs the Ghosts 

of the structure with those of the compound structure. 

For example, if Sl and S2 are structures, the Ghosts Gl 

belonging to Sl and G4 belonging to S2 are shown to corre- 

spond in figure 4.7. 

S1: [ Gl:Gl' G2:G2' ] 
S2: [ G3:G3' G4:Gl' 

Figure 4.7 - Correspondance in a Compound Structure 

The Ghosts G1', G2' and G3' are those belonging to the 

compound structure and imply the correspondences between 

the Ghosts of the component structure. 

4.7 Action Definitions 
As with Objects, each kind of Action has a single defining 

record to which all actual Actions of that kind point. 
The Action-Definition contains a list of property names 

effected by the Action and a description of the effect on 

the properties. The example from the GoMoku domain is the 

placement of a stone. The properties effected are 

OCCUPANT and LOCATION. The Action changes the occupant of 
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a vertex from being UNDEF (empty) to being a stone, and 

the location of the stone from UNDEF to the vertex. The 

Action refers to two Ghosts to represent the vertex and 

the stone. Figure 4.8 shows the Action-Definition for the 

PLACE action. 

<<ACD 7>> 
PROPS [OCCUPANT LOCATION] 
OCCUPANT [<<GHO 12>> UNDEF <<GHO 13>> ] 
LOCATION [<<GHO 13>> UNDEF <<GHO 12>> ] 

Figure 4.8 - An Action-Definition Record 

The second property line can be read as: "The occupant of 

Ghost 12 (a vertex) is changed from UNDEF to Ghost 13 (a 

stone) . The next line describes the reciprocal effect. 

4.8 Actions 

The Ghosts in the Action-Definition are again variables. 
An actual Action is a record which has a TYPE, which 

indicates the Action-Definition, and a binding list which 

associates actual Objects with the Ghosts of the Action- 

Definition. Such records enable reference to be made to 

Actions both before and after they have been taken. A 

plan is essentially a list of proposed Actions. When an 

Action is successfully completed the specified changes are 

actually made. The stone and vertex object-records, for 

example, have their property lists amended so that the 

stone becomes the OCCUPANT value of the vertex and the 

vertex becomes the LOCATION value of the stone. 
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Chapter 5 

Pattern Matching 

5.1 Assignment to Variables 

The task of the Pattern-Matcher is to identify instances 

of structures as they arise in the model domain. The 

process of matching a structural description to a part of 

the domain is equivalent to making assignments to each 

variable in the description in such a way that none of the 

specified relationships are violated. The structures in 

question arise as a result of the occurrence of some 

situation in which the program's current plan has been 

thwarted, by being blocked or by being beaten. Thus, when 

the pattern matcher actually detects a structure instance, 

it signifies that a potentially dangerous situation has 

arisen, and may provide information about the threat that 

can be used to avoid the danger. The matcher must find 

all possible matches after each action, as any given 

position need not necessarily be completely described by a 

single structure. Once all the matches have been made, 

the position must be assessed in order to determine 

whether or not to suspend the original plan in order to 

deal with the situation. This function is the task of the 

Response-Evaluator, to which the completed matches are 

passed. 

To complete a match to a structure, each ghost-record in 

the description must be paired with an actual object in 

the domain, which must be of the same type as the ghost. 
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Futhermore, relationships described in the ghost-structure 

must hold between the corresponding objects thus assigned. 

For example, if an actual vertex is to be assigned to a 

ghost vertex, and the ghost vertex has a ghost stone as 

its OCCUPANT, then the assignment is only possible if the 

vertex is itself occupied by a stone which can in turn be 

assigned to the ghost stone. The same principle applies 

to functional relationships between two ghost-records. In 

this case, if the function value has already been deter- 

mined, the objects assigned to the ghosts must both obey 

the same functional relationships and have the same func- 

tion value. The generator function associated with the 

relationship may be used to derive the second object, 

given the first object and the function value. For 

instance, a structure might describe a ghost vertex with a 

second ghost vertex adjacent and above it. If an actual 

vertex is assigned to the first ghost, the vertex above it 

can be determined. It must be possible to assign this 

vertex to the second ghost. If the function value is not 

already assigned, it is necessary to consider the entire 

range of the relationship function. In the case of the 

adjacency relationship, this would amount to examining all 

adjuncts to a vertex. 

<<MATCH 89>> 
STR <<STR 32>> 
BINDLST <ptriple> 

Figure 5.1 - A Match-Record 
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To record the progress of each application of the pattern 

matcher, a Match-Record is created and maintained. The 

structure of these records is shown in figure 5.1. The 

value of the STR property is the structure-record to which 

the matcher is being applied. The BINDLST value is a 

chain of triples, pairing ghosts from the structure with 

objects from the domain. This binding list gets extended 

as each successful assignment is made. 

5.2 Commencing a Match 

It would be undesirable and impractical to have the 

pattern matcher continually and arbitrarily processing the 

domain, attempting to match up all of its target struc- 

tures. Opportunity for complete matches can only arise 

after some change has taken place, and any consequent 

match must involve the objects which participated in the 

change. The pattern matcher need only therefore be 

concerned after every successful action taken, and only 

the objects affected need be considered as "starting- 

points" for the matching process. Moreover, only struc- 

tures which refer to objects of the same type as those 

affected need be regarded as candidates for the process. 

When the pattern matcher attempts to find an instance of a 

particular structure, it may assume that if it is success- 

ful, some of the objects involved in the most recent 

action will be included in the match. It therefore 

commences its task with at least one candidate object for 

assignment to a ghost in the structure. If there is more 
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than one ghost of the same type as this object, however, 

it cannot say which of these should be paired with the 

object. To avoid an unneccessary expansion in the amount 

of work the program has to do, it makes the assumption 

that the first ghost it comes across which has the right 
type and satisfies some preliminary checks, can be paired 

with the object. If the assumption is incorrect, or if 
there is more than one valid assignment, leading to dif- 
ferent matches, then a seperate attempt at matching the 

same structure, "starting" with a different object, will 
contain the correct pairing of this object with a ghost. 

Thus, when a stone is placed on a vertex, all structures 

which include occupied vertices may be matched. Each 

structure is likely to have more than one occupied vertex, 

and therefore more than one way in which the stone and 

vertex may be assigned within it. Instead of investigat- 
ing all such possible assignments, the pattern matcher 

examines only the first to arise. If, for example, the 

structure describes two occupied ghost vertices, then the 

actual vertex involved in the latest action may be 

assigned to either the first or the second of these. 

Assignment to the second implies some other particular 
vertex assigned to the first. If a later event makes this 
assignment, the Pattern-Matcher will derive the previously 

ignored match. 

5.3 Continuing a Match 

The assignment of a given object to a particular ghost in 
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a structure inevitably implies further assignments of 

objects to ghosts. As an assignment only succeeds if 
these implicit assignments succeed too, and so on, the 

matching process is naturally multiply recursive. Because 

the structures are by nature networks, a given assignment 

may eventually depend on itself. As long as a set of 

assignments remains self-consistent, it is regarded as 

valid. 

Different processes are involved in propagating the 

matching activity through each of the two kinds of relat- 
ionship. Confirming that the property relationships match 

is relatively straightforward. For each pertinent 
property of the object and ghost being paired, the asso- 

ciated values are obtained from both the object and the 

ghost. This should yield another object and ghost pair 

which are in turn processed in the same way. However, to 

confirm that the functional relationships match, there 

may be further problems. These arise when the function 

value is not yet determined, implying that the actual 

object referred to in the relationship is likewise unde- 

termined. For the match to continue, the entire range of 

the relationship function has to be considered and the 

matching process subdivides into as many branches as there 

are objects obtained in this way. Most of these branches 

would be expected to terminate quite soon by failing, but 

if this is not the case, severe combinatorial problems 

arise, particularly if there is more than one branching 

point. In the present domain, this problem is not severe, 
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but in another domain, the strategy may have to be 

revised. If a match is completed, the system is informed 

of the fact. 

5.4 Suspending a Match 

If, during the matching process, an object and a ghost 

fail to match due to conflicting property constraints, two 

alternatives arise: It may or may not be possible that, 

,in some future state of the domain, the property of the 

object may assume a value which does match. In the 

context of the GoMoku domain, if a vertex is required to 

have a white stone on it but it is in fact empty, it may 

at some later time in fact have a white stone placed upon 

it. If, however, it has a black stone occupying it, there 

is no way that it can later support a white stone. In the 

former case it is desirable to be able to "suspend" the 

matcher so as to avoid repetition of the work already done 

on that match. In fact the scheme of only starting one 

match to each structure with a given object demands that 

matches reaching this state should be later continuable, 

as the particular match information would otherwise never 

be recovered. 

The program adopts a relatively simplistic approach to the 

problem of deciding whether to suspend or terminate a 

match. In a case where an object and a ghost would match 

but for a property failing to match, all the actions 

possible in the world that can affect the object concerned 

are examined. The representation of actions is such that 



it is easy to determine which properties of each object 

type an action may affect, and the conditions under which 

it may be taken. If the program can determine any action 

which can alter the property value of the offending 

object, it assumes that the match should be suspended. 

Naturally it will sometimes suspend matches when they 

should be terminated, as there may still not be any 

sequence of actions which would cause the match to 

eventually succeed, but it will never terminate a match 

which it should have suspended. In the GoMoku domain 

there is only one action, that of placing a stone, so it 
is always correct in its assumption. Thus, when it comes 

across an unoccupied vertex while looking for one with a 

white stone, it finds that the PLACE action will change 

the OCCUPANT of a stone from UNDEF, and suspends the 

match. If however, the vertex had had a black stone on 

it, the system would find no action capable of changing 

the situation. Note that this would not be true in, say, 

GO, where capture is permitted, although in this case it 
would be far from straightforward to prove whether or not 

a match should be suspended. 

To be able to resume a suspended match to a structure, the 

ability to describe the intermediate results is required. 

The match-record mentioned above keeps a list of the 

satisfactory pairings which have already been made, asso- 

ciated with the structure being matched. Until all 
assignments have been made it therefore represents a 

Partial-Match. The matching process should be continued 
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when an event occurs which involves one of the objects 

already assigned in the structure, as this implies that 

properties of the object may have changed. The suspended 

matches are therefore associated directly with all such 

objects which may yet be involved in actions. This allows 

the pattern matcher immediate access to all the pertinent 
partial matches after any particular action, and, more to 

the point, only the pertinent ones. 

There are two possible strategies for deciding when a 

match should be suspended. The first is to suspend it 
immediately a "temporary" failure is observed. The alter- 
native is to continue to match as much of the structure as 

possible before suspending. The former has the advantage 

of being quicker in the short term, and while not reducing 

the number of partial matches created, does imply that 

they occupy slightly less space, both by containing less 

information and by being referred to less often. The 

advantage of the latter strategy is that, while reason to 

suspend a match may be met at one point, evidence for 
killing it may be found a little later and in this way 

there may be less "dead wood" lying around in the form of 

suspended partial matches which will never be completed 

and may never be killed. In the event, this latter scheme 

was adopted, although no practical comparison was made to 

determine preference in terms of speed and memory require- 

ments. In the present domain, the branching at functional 

relationships is not severe, there being only eight 

directions possible and essentially only one instance of 
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the relationship in the goal structure. There are in fact 

two different references to the relationship, but the 

second instance is completely determined by the first. In 

other domains where branching is more critical and 

compounded, the strategy of immediate suspension is almost 

certainly the better. 

5.5 Matching Compound Structures 

While compound structures arise under slightly different 

circumstances to reduced structures, they serve the same 

purpose and instances must be detected as soon as they 

occur. One approach to making matches to compound struct- 

ures would be to follow the same procedures as for reduced 

structures, but treating the "points of intersection" 

specially. This has a disadvantage arising from the 

increased combinatorial problem associated with larger 

structures, and ignores the underlying nature of the 

compound structures. 

The building blocks of compound structures are reduced 

structures, just as the building blocks of reduced struct- 

ures are the primitive objects (or their ghosts). The only 

"relationship" pertaining between the component reduced 

structures is the notion of "intersection", or the corres- 

pondence between ghosts. The matching scheme used is in 

some ways analogous to that used with the reduced struct- 

ures. Whereas reduced structures are associated with the 

definition-records of the objects they comprise, compound 

structures are associated with the reduced structures of 
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which they are composed. A simple event (action) involv- 

ing an object will stimulate the reduced structure match- 

ing process, while the compound structure matching process 

is initiated when a successful match is made to a reduced 

structure. Finally, partial matches to compound struct- 
ures are recorded and associated with the component 

structures which have not yet been matched, which is 

analogous to partial matches to reduced structures being 

associated with the objects which have held up the match. 

As mentioned above, the compound structure matcher is 

initiated by the reduced structure matcher. Before a 

completed match to a reduced structure is reported to the 

system, each compound structure associated with the 

structure involved is examined for the purposes of 

compound matching. This always results in the formation 

of a partial match. Any other partial matches already 

associated with the compound structure are examined to 

attempt their continuation. Unlike the reduced structure 

matches, there is no simple way of telling whether a 

partial match to a compound structure may be killed, 
except when all of its component matches have been killed. 
This unfortunately implies that these may continue to be 

examined in situations where they are no longer relevent. 

The results of the Pattern-Matcher, the completed matches, 

are entered into the Attention-List, through which it 
communicates with the Response-Evaluator. 
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Chapter 6 

Responses 

6.1 Matched Patterns 

When the Pattern-Matcher sees any instances of structures, 
the completed match-records are given to the executive 

section of the program to be assessed in the light of the 

current plan. The following alternatives are possible: 

1) The structure may be an instance of the opponent's 

goal, the program's counter-goal. The program must 

learn to anticipate such events. 

2) The structure may warn the program of impending 

defeat. The program must decide whether it is 
necessary to block the attack. 

3) Simultaneous warnings of doom may imply that defence 

is impossible. The program must again learn to 

anticipate the event. 

Cases (1) and (3) result in the acquisition of responses. 

Reduced structures arise from (1) and Compound Structures 

from (3). Case (2) allows the program to make use of what 

it has learned. These aspects will now be treated in the 

enumerated order, as each provides the context for the 

next. 
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6.2 Generalisation by Reduction 

The system derives reduced structures from structure 

instances. A structure instance is represented by a 

Match-Record, which contains a pairing of ghosts from the 

structure with objects from the domain. The nature of the 

situation in which the generalisation is made is such that 

it is not sufficient simply to recognise its reoccurrence. 

It has to be possible to anticipate it. For example, the 

present program may be thwarted when its opponent forms a 

line of five. It is vital that the program should be able 

to anticipate such an event before it happens again, and 

respond to the anticipation by attempting to prevent its 

repetition. It is therefore necessary to be able to 

describe the situation- prior to whatever action created 

the undesirable position. In the case of this example, 

the structure matched is the line-of-five, with the stones 

the "wrong" colour. The program needs to describe the 

configuration immediately prior to the last action, which 

completed the line. To do this it needs to be able to 

take the generalised description of the line, which is 

part of its original knowledge, and "reverse" the effect 

of the last action on this description. The order of the 

Opponent's moves and any other moves he may have made are 

irrelevant at this point, as only the matched pattern is 

considered. 

The ability to achieve the required description relies on 

the manner in which the system's actions are described. 
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The representation of actions would make it quite easy to 

reverse the effect of an action if this was desired. All 

the information needed to determine the generalised effect 

of undoing an action is available. The match-record 

provides the binding between the objects and the 

structure's ghosts, while the action-record describes the 

effect the action had on the objects. The generalised 

effect can be inferred through this correspondence. 

Instead of copying the structure description and then 

actually modifying the appropriate ghosts to arrive at the 

desired result, a reduced structure record is created. 

This refers to the original structure, but has additional 

sets of property lists associated with some of the ghosts. 

The new structure is interpreted as being identical to the 

old except where a new property list exists to override 

the old. 

The GoMoku Line-of-Five is described as a set of ghosts, 

each with a property list describing its relationships 

with other ghosts. To "reduce" this description to that 

of a line of four, with one end vertex unoccupied, all 

that is needed is to associate a single property list with 

the end ghost vertex, with the OCCUPANT property expli- 

citly undefined. The associated ghost stone has also to 

be marked as absent. In matching to this new description, 

the ghosts would all be regarded as having their original 

properties, except in the explicitly superceded cases. 
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6.3 Responding to Patterns 

The procedure described above also provides further 
information. If the undesirable state is to be avoided it 
is likely to be possible to do so by preventing the action 

which created the state. By determining such a blocking 

action and associating it with the reduced structure, an 

appropriate response is represented. The program must be 

able to "notice" when instances of such structures arise. 

The reduced structure is entered into the Feature-List, 

containing all the structures which have to be noticed, 

and this list is used by the pattern matching component of 

the system. When the pattern-matcher detects any of the 

features with which it has been provided it supplies the 

playing section with the match-records which it has com- 

pleted. It may be recalled that the program is busy 

trying to carry out a plan, and it must now compare the 

response indicated by the detected feature with the act- 

ions previously proposed. 

The criterion used is simple. If the current plan can be 

completed before the threat can be realised, then the 

threat is disregarded. If the threat is real, however, 

then the program must play to prevent its fulfilment. The 

matched structure has a suitable action associated with it 
and the program thus deviates from its plan to make this 
blocking move. 

6.4 Generalisation by Composition 

The program may find itself confronted by two threats at 
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the same time. The example of the open-four has been 

mentioned, where two lines of four coincide, each requir- 

ing just one more stone to be placed to complete a line of 

five. If two or more different actions are needed at the 

same time they cannot both be taken and the undesirable 

outcome of one of the described situations is inevitable. 

Once more it is necessary to be able to anticipate this 

sort of occurrence. Again, to do so, the situation prior 

to the action which created it must be described. There 

may be several such positions, and each has to be learned 

separately. The structures matched necessarily have 

objects in common: For matches to be made to the two 

structures at the same time they must clearly both- refer 
to objects involved in the action which led to the 

completion of the matches. The description of such 

"intersecting" structures is accommodated by the compound 

structure mechanism. 

Anticipation of these compound events breaks down into two 

more simple activities, namely the anticipation of the 

component events and determination of their intersection. 

The component events are easily foreseen by the technique 

described above. The already generalised reduced struct- 

ure which was matched is further reduced and added to the 

feature list. To represent the compound structure, all 

that remains is to describe the intersection between the 

structures. The pattern matcher has provided a binding 

list for each structure and together these imply the 
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correspondence. Ghosts which have the same object 

assigned to them must coincide. The required description 
is easily obtained by copying these binding lists, but in 

place of the actual objects, further ghosts are used. A 

unique ghost replaces each individual object and the new 

correspondence-lists thereby imply identity between ghosts 

in the two new structures. The compound structure record 

which is created associates a correspondence-list with 

each component sub-structure. As the pattern-matcher need 

only consider the possibility of a compound structure 

arising once a relevant reduced structure has been 

matched, the record is kept in the component structures. 
As with reduced structures, the action which should be 

taken in order to avoid the consequences is also repre- 

sented so that whether an instance of a reduced structure 

or of a compound structure is detected, the treatment is 

uniform. 
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Chapter 7 

A Worked Example 

7.1 Setting the Scene 

Chapter 3 described the main components of the system and 

how they relate to each other. The main communication 

channels were also mentioned. This chapter is intended to 

illustrate these functions by presenting an example of 

their action over the course of a few moves of an actual 

game. 

To recapitulate, the Action-Sequencer alternates moves 

from the Action-List with those of the opponent. The 

Planning-Mechanism initialises the Action-List in accord- 

ance with the Goal-Description. The Pattern-Matcher 

constantly awaits the instantiation of positions described 

in the Feature-List, entering any which do arise in the 

Attention-List. Before any move by the program, the 

Attention-List is examined by the Response-Evaluator, 

which may choose to modify the Action-List. Any violation 
of the program's expectation is considered by the Failure- 

Analysis component, which places any new descriptions in 

the Feature-List. 

The example presented supposes that the program has al- 
ready learned the "Line of Four" pattern, but has yet to 

learn the "Open Four" pattern. The program is playing 

black, shown as "x", and the opponent is white, shown as 

"o". The program always operates from a plan, and in this 
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example has planned to place stones successively on vert- 

ices F7, G6, H5, 14 and J3. The commentary starts after 

the players have each made two moves and the position is 

as shown in figure 7.1. The opponent is about to play. 

Figure 7.1 - Position after two turns 

7.2 Partial Matches 

The pieces already played will each have been considered 

by the pattern matcher in relation to the Feature-List. 

The assumption will be made that the only pattern in the 

Feature-List is that of the Line-of-Four. This pattern 

describes a line of five vertices, the first four of which 

are occupied by stones of a colour. Clearly no matches to 

this pattern can have been completed yet, but many matches 

will have been attempted, for both the black and the white 

stones on the board. To simplify, only the matches to the 

white stones will be considered: The treatment of the 

black stones is similar. 

Partial matches become associated with the objects that 

are assigned to their variables but do not completely 
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satisfy the matcher. Thus the white stone placed on 

vertex F6 will result in partial matches to the Line-of 

Four pattern being associated with all the vertices marked 

"+" in figure 7.2. The partial matches radiate out from 

the white stone, except where a black stone causes the 

match to fail entirely. The partial match passing through 

the second stone will have two assignments made to its 

ghost-stones, while the others will only have one. A 

similar pattern may be derived for the other white stone. 

Figure 7.2 - Partial-Match Associations 

7.3 A Move and Reply 

The Opponent places his stone on vertex E5. This action 

results in a record representing the stone becoming the 

"occupant" value of the record representing the vertex E5. 

The vertex also becomes the "location" value of the stone. 

Once these associations have been made, the Pattern- 

Matcher is invoked. 

The stone and the vertex involved in the move are matched 

to a ghost stone and vertex in the description of a Line- 
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of-Four. A Match-Record is created for each of the eight 

directions in which the line may lie. In each case, all 

of the vertices are matched, but only in the case of the 

line passing through the other white stones are any more 

stones matched. Each suspended partial match becomes 

associated with the vertices that have been bound to its 

ghost vertices. 

The vertex E5 already has two partial matches associated 

with it, originating when the other white stones were 

placed. These matches are resumed and in each case the 

stone just placed becomes bound to a ghost stone, before 

the match is again suspended. No completed matches are 

produced by this application of the Pattern-Matcher and so 

the Attention-List remains empty. 

As there is nothing in the Attention-List, the Response- 

Evaluator remains idle. The Action-Sequencer therefore 

continues with the planned move and places a black stone 

on vertex H5. The pattern-Matcher goes about its task in 

much the same way as before. The vertex H5 is one of 

those with which a suspended match was associated on the 

previous move. The Pattern-Matcher tries to resume this 

match and finds that the stone now occupying the vertex 

cannot be matched to the required ghost vertex because of 

the colour difference. This particular partial match is 

therefore terminated, and all references to the Match- 

Record are removed from the relevant vertices. Again no 

matches have been completed and the Feature-List remains 
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empty. The Action-Sequencer is ready for the Opponent's 

next move. 

7.4 The Open-Four 

As one might expect, the Opponent now plays on vertex D4. 

The position reached is shown in figure 7.3. The Pattern- 

Matcher is invoked as before and this time the line pass- 

ing through the other white stones and terminating on the 

empty vertex H8, matches the description in the Feature- 

List fully. The completed Match-Record is placed in the 

Attention-List. Next the suspended matches associated 

with the vertex D4 are resumed, and this time one of them 

is also fully matched. This time, the line is that start- 

ing on vertex G7 and ending at C3. This Match-Record is 

also placed in the Attention-List. 

Figure 7.3 - The Open-Four 

The Response-Evaluator is now applied to a no longer empty 

Attention-List. The structures referred to by the Match- 

Record both indicate that a single action is needed for 

the Opponent to complete a Line-of-Five. On the other 
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hand, two actions are required to complete the program's 

planned line, and the blocking moves must therefore take 

precedence. As two distinct blocking moves have to be 

made, the Response-Evaluator concludes that the game is 

lost. 

The Failure-Analysis component is invoked to provide the 

Pattern-Matcher with a new Feature. To allow the system 

to anticipate the position, it describes the two matched 

patterns as they were before the Opponent's last move. 

This is done by taking each of the structures which were 

matched to (both the same in this case) , and forming new 

reduced-structure descriptions that impose additional 

constraints on their variables. 

The actual constraints to be imposed are determined by the 

binding-list of the Match-Record and the action. The 

action refers to two objects, a stone and a vertex. The 

binding-list associates a variable with each of these 

objects. The reverse of the action is applied to each of 

these particular variables, which causes the ghost-stone 

to cease to be the "occupant" of the ghost-vertex, and the 

ghost-vertex to cease to be the "location" of the ghost- 

stone. The ghost-stone is thereby "cast adrift" from the 

structure representation. Although the structure was the 

same in each instance, the two reduced-structures result 

from different binding-lists, and therefore different 

variables are affected. Figure 7.4 depicts: (a) the 

Line-of-Four structure; (b) the result of reducing the 
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D4-H8 match; and (c) the result of reducing the G7-C3 

match. The stone on vertex D4 is the one "unplayed. 

(a) s s s s . 

(b) . s s s 

(c) s s s . . 

Figure 7.4 - Structure Reductions 

The final stage in describing the position to anticipate 
is to combine the two new reduced structures in a compound 

structure. This is a matter of describing the correspond- 

ences between their ghosts. Again the two binding-lists 
are used. Variables which were bound to the same objects 

have to correspond. The compound structure record is 

formed, containing a reference to the two reduced struct- 
ures and a Correspondence-List. The reduced structures 

are placed in the Feature-List, each having the compound 

structure associated with them. The system is now equip- 

ped to recognise and respond to the threat of an Open- 

Four. 
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Chapter 8 

Conclusions 

8.1 Objectives 

The main object of the project was to produce a learning 

program which did not rely on any purpose-built evaluation 

functions or move ranking scheme. The intention was that 

knowledge should be assimilated in terms of what is al- 
ready known and that the initial knowledge provided the 

system should be kept to a minimum. In addition, it was 

intended that the system of representation employed should 

be as far as possible independent of the domain of the 

model. 

The first objective, that the program's means of evaluat- 

ing a situation should not be based on built-in, domain 

specific considerations, is in contrast with most previous 

examples of learning programs. Programs based on tree 

pruning techniques, such as Samuel's Draughts program, 

were provided with evaluation functions which were devised 

in the light of knowledge of the domain, which knowledge 

was thus implicit in the functions. Other systems, such 

as Waterman's poker program and Elcock and Murray's GoMoku 

program, incorporated domain specific knowledge in their 
descriptive language. 

Assimilation of new knowledge in terms of old is not 

really relevant to the tree pruning systems. Essentially, 
these do not acquire any new concepts of their domains in 
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the course of their experience. Instead the significance 

attributed to any particular feature is modified. Prog- 

rams such as ABSTRIPS, which plan to achieve their goals 

and then retain generalised representations of their 
plans, however, are acquiring knowledge and representing 

it in terms of previous knowledge. 

The central theme to the project is that of description 
and detection. The nature of patterns is a limiting 
factor in the PLANNER gamut of languages. It would be 

possible to describe the sort of structures employed here 

as the logical conjunction of numerous simple assertions, 

but matching would always have to be from scratch as the 

PLANNER matcher makes no provision for "partial" matches, 

nor for any of the complexities inherent in compound 

structure description. The pattern of a procedure or 

demon is a description of some possible arrangement of 

elements of the domain. As such, the representation of 

the pattern has to relate to the representation of the 

domain. While the PLANNER languages satisfy this require- 

ment, the overall representation is too cumbersome for any 

complex domain. 

8.2 Achievements 

The project has largely met with success in each of the 

three main objectives. The system built does not rely on 

evaluation functions and ranks plans on a simple criterion 
of length. It initially has a minimum of knowledge of its 
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domain, upon which it builds, and it employs a uniform, 

non-specific representation scheme. 

The system departs from the conventional use of position 

evaluation and move ranking by employing a system of 

expectation and response, instead of look-ahead. Moves 

are usually made as part of a planned sequence, designed 

by the program to instantiate its goal. While this plan 

is adhered to, there is no need for the program to consi- 

der other possible moves. Positions in which the program 

may need to depart from its scheduled moves are recog- 

nised. When this happens, the program need only consider 

the moves that it has planned and those indicated by the 

position. The comparison here is admittedly based on the 

lengths of the respective sequences of actions, which is 

decidedly a built-in criterion. However, this is a fairly 

broad-based principle which is usually valid except in 

domains where the program's moves do not bear a symmetric 

relationship to the other events in the domain. 

The program is initially provided with a representation of 

its domain, its goals and the actions it may take. The 

responses it acquires are all entirely in terms of these 

primitives. New positions are described in terms of the 

goals and then in terms of each other. This ability rests 

on the structural nature of the descriptions and on tech- 

niques for deriving generalised descriptions from inst- 

ances of other generalised descriptions. The descriptive 

system depends on the use of strongly typed variables, the 
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ability to impose constraints on sets of variables and the 

technique of combining descriptions into more complex 

descriptions. 

The objective of the representation scheme employed in the 

current program is to represent everything explicitly as 

items which can be manipulated by different parts of the 

system. Items are permitted to be associated directly 
with other items, so that anything that the system is 

likely to require in connection with an item is immedi- 

ately accessible. When the pattern matcher needs to know, 

say, what actions may affect a given type of object, it 
finds all such actions associated with the definition- 
record for that object. The descriptive system provides 

general facilities for the representation of a class of 

domains. The primitive aspects of domain description 

supported are objects, single- and multi-valued relation- 
ships, and actions. Goals are represented in terms of 

sets of related variables. 

The program does behave as intended in most other 

respects. The scenario in section 2.5 is a real example 

of its behaviour. On being blocked or beaten, the program 

learns to recognise and block Lines-of-Four. When this 
strategy proves to be inadequate, it learns about Open- 

Fours. From Open-Fours the program proceeds to describe 

Intersecting-Threes. In principle, it can arrive at the 

more complicated forcing patterns discussed by Elcock and 

Murray, such as those depicted in Appendix A. Having 
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described Intersecting-Threes, the Pattern-Matcher becomes 

so prohibitively slow that the program has not been taken 

beyond the point of their description and recognition. 

The creation and matching of all structure types has been 

tested by this point, however. The Line-of-Four is a 

simple Reduced Structure, The Open-Four is a Compound 

Structure composed of Reduced Structures, and the 

Intersecting-Threes configuration is a Compound Structure 

composed of Compound Structures. The VDU to which the 

user-interface was tailored permitted a certain amount of 

dynamic display, so that it was possible to monitor the 

progress of the pattern matcher after each move, thereby 

confirming its expected behaviour. 

8.3 Limitations of Representation 

The current scheme of representation is only adequate for 

the task. The most fundamental limitation is the inabil- 

ity to describe sets of arbitrary size. The GoMoku domain 

is particularly simple in that the inherent structures can 

have their components enumerated: A Line-of-Five can be 

represented by five variables representing stones and 

another five representing vertices, and their various 

relationships. The game of Go, on the other hand, requ- 

ires the representation of structures which are inherently 

sets of unspecified size. The incorporation of such sets 

would impose further complications on the Pattern-Matcher 

and would necessitate a refinement of the notions of 

reduction and composition. 
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Another limitation is in the level of abstraction prov- 

ided. Care is taken in the program that the structures 

already known are not relearnt. Newly derived structures 

are compared with existing structures and duplicates are 

discarded. Reductions of the same structure, with the 

same additional constraints are easily detected. Compound 

structures composed of the same substructures, with 

equivalent correspondences, are also similar. 

Figure 8.1 Functionally Equivalent Structures 

There is also an indirect form of equivalence between 

structures, 

employed. 

which depends on the level of description 
Figure 8.1 shows instances of two differing 

compound structures. However, in Murray and Elcock, these 

would both be described by: 

"There exists a node which is a constituent of 
two possible 5-patterns, with two pieces played, 
on each of two lines through the node." 

Although the two patterns are not structurally equivalent, 

they are functionally equivalent, in that if a further 

stone is played on the point of intersection of the two 

lines, an unbeatable pattern is created. While the 

present program will determine both of these patterns 
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under appropriate circumstances, it is unable to discover 

this equivalence, and would be unable to represent it even 

if it did. This emphasises the shortcomings of the purely 

structural approach employed. While it does not in prin- 

ciple prevent the program from learning all that it needs 

to know about the domain, the further generalisation has a 

greater intuitive appeal. Apart from this, the more 

compact representation would in practice reduce the number 

of descriptions needed and thus reduce the load on the 

pattern matcher. 

The further generalisation represents quite a conceptual 

jump from the simple similarity of structures, yet it is 

an automatic feature of the Murray and Elcock system. 

This is not to say that their system realises the equi- 

valence of the two structures and describes it: Rather, 

it would be unable to describe the two as different 

structures. The description of the one automatically 

incorporates the other. A more satisfactory model would 

arrive at the two structures independently and determine 

their functional equivalence in terms of their respective 

paths towards the goal. It would then describe what the 

two structures have in common, perhaps using the sort of 

processes proposed in Winston's hypothesised structural 

learning program. It may be that a different level of 

representation would be needed for this description, but 

this may imply as many descriptive techniques as levels of 

generality. It would be preferable to devise a uniform 

scheme of representation which could be employed 
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throughout. Representation is as central to generalisat- 
ion as generalisation is to learning, and learning is the 

essence of intelligence. 

8.4 Limitations of the Pattern-Matcher 

It cannot be claimed that playing against the program is a 

satisfactory experience. In its naive state its perform- 

ance is trivial and as it improves it becomes signifi- 
cantly slow. The more patterns of which it becomes aware, 

the longer the Pattern-Matcher takes to examine the domain 

for instances. The pattern matching procedures form the 

single most complex component of the entire system. The 

present scheme represents the third attempt at producing a 

viable process and there is probably much room for refine- 
ment. The current approach is satisfactory while only a 

few structures are to be matched, but the response of the 

system as a whole does degenerate once a useful number of 

structures have been recorded. The amount of work for the 

Pattern-Matcher compounds with the spawning of partial 
matches and for the system's response to be satisfactory, 
further reductions should be made to the workload. 

There are several ways in which it might be possible to 

speed up the matching process, but as these have not been 

attempted it is not possible to comment on how significant 
an improvement might be obtained. One possible scheme 

would involve trying to match only the most reduced 

structures. Less reduced structures would be considered 

when one of these matches fails without actually 

Page 76 



contradicting the basic underlying structure. This 

approach would reduce the workload to the examination of 

the terminal nodes on the graph of possible reductions, 

instead of all the nodes. The present system is able to 

determine the equivalance of reductions, so the reductions 

do form a graph rather than a tree. 

8.5 Contributions 

The present work, as an evaluation of a particular 

technique, makes three contributions to the field of 

Artificial Intelligence. 

1) The nature of "pattern", in the context of pattern- 

directed-invocation, is clarified and extended to 

describe complex occurrences in the domain. This 

technique is then used to enable a program to respond 

to new situations. 

2) A scheme of representation is presented that readily 
facilitates the description of such occurrences and 

permits initial descriptions to be modified or com- 

bined to describe further, related situations. 

3) Ideas about the recognition of positions described in 

this manner are put forward in the form of a Pattern- 

Matcher that retains information about incomplete 

matches for later reassessment, employing a highly 

associative data-structure. 
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These points all stem from the initial objectives of the 

project, defining the form that the program's learning 

should take. 
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Appendix A 

GoMoku 

GoMoku is a simple, two-player game, in some ways similar 
to the familiar game of Noughts-and-Crosses. Each player 

tries to build an uninterrupted, straight line of five 
"stones" on a board comprising the vertices of a rectang- 

ular grid. The line may be diagonal or orthogonal. While 

the game is notionally played on an infinite board, in 

practice a 19 by 19 board, as used for the game "Go", is 

usually employed. Smaller boards can also be used, and 

the examples throughout this work are all on an 11 by 11 

board. Each player has a set of uniform pieces, the two 

sets being distinguished by colour, usually black and 

white. The symbols "x" and "o" are used in the examples. 

The concepts of blocking and forcing are familiar to any 

game player, and have their place in GoMoku. In figure 

A.1, the placing of a black stone at vertex F5 constitutes 

a block, as white is prevented from completing a Line-of- 
Five by playing on the same vertex. The blocking move is 

at the same time a forced move, as failure to block in 

this instance leads to immediate defeat. This example 

illustrates the most primitive of the concepts employed in 

GoMoku. 
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Figure A.1 - Blocking and Forcing 

Figure A.2 shows an almost identical situation, except for 

the position of the stones relative to the edge of the 

board. This difference is vital, however. In this case 

it is not possible to prevent white from completing a 

line, as he may play at either Al or F6 to do so. This is 

an example of an "Open-Four", comprising a line of four 

stones of the same colour, with an empty vertex at each 

end. 

Figure A.2 - "Open-Four" 

A player will not get far in the game without being able 

to anticipate and prevent the formation of Open-Fours. An 

Open-Four is an example of a position from which a Line- 
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of-Five is inevitable. It is in fact a particular and 

common case of the simultaneous occurrence of two lines of 

four , where the two lines partially coincide. 

shows the 

11 . . . . . . . . . . . 

10 . . . . . . . . . . . 
9 . . . . . . . . . . . 

either D8 or H4 to complete a Line-of-Five. 

11........... 
10 . . . . . . . . . . . 

9 . . . . . . . . . . . 
8 . . . + . . 
7 . . . o x 
6 . . . o . 

4.. x o o o o+... 
3 . . . x . . x . . . . 
2 . 
1 . . . ... . . 

A B C D E F G H J K L 

1 . 

Figure A.3 

may play at 

Having realised the significance of Open-Fours, it becomes 

imperative to prevent their formation by the opponent. In 

figures A.4 (a) and (b) it can be seen that white may play 

at positions D4 and E5 respectively, 

the threatened Open-Four. 

8 
7 

6 
5 
4 
3 
2 

more general case. Here white 

Figure A.3 - Simultaneous Fours 

5 . . . . + x . 

in order to prevent 

11 . . . . . . . . . . . 
10 . . . . . . . . . . . 

9 . . . . . . . . . . . 
8 . . . . . . . . . . . 
7 . . . . . x o . . . 

6 . . . . . o . . . . . 

4 . . . o . . . . . . . 
3 . . . . . . . . . . . 

2 . . . . . . . . . . . 

A B C D E F G H J K L 
(b) 

A B C D E F G H J K L 
(a) 

Figure A.4 - Threatened "Open-Fours" 
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Just as an Open-Four is a configuration which inevitably 

leads to a Line-of-Five, there are positions from which an 

Open-Four can always be created. The position shown in 

figure A.5 is usually referred to as "Intersecting- 
Threes". A black stone must be played at, say, either F7 

or G5 to prevent the formation of an Open-Four. In either 
case white may play at the alternative vertex and an Open- 

Four thus completed, followed by a Line-of-Five. 

1 

11 . . . . . . . . . . . 
10 . . . . . . . . . . . 

9 . . . . . . . . . . . 
8 . . . . . . . . . . . 

6 . . . x o x . . . . . 
5 . . . 0 0 0 + . . . . 
4 . . o x x . . . . . . 
3 . . . . . . . . . . . 

2 . . . . . . . . . . . 

7.. 

. . . . . . . . . . 

A B C D E F G H J K L 

Figure A.5 - "Intersecting-Threes" 

A further class of winning patterns has thus to be recog- 

nised by the player. Furthermore, there are positions 

which predestine Intersecting-Threes, and so on. However, 

the more remote the forced position, in terms of the 

number of pieces still to be played, the harder it is to 

recognise. The experienced player will seldom think in 
terms of the Line-of-Five as a goal, as it is too easy to 

spot and prevent. Instead, the less obvious forcing 
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positions are generally 

[1968] give a large selection of 

mined by their program, not all 

forcing positions deter- 

of which are obvious to 

the human player. Some of these are shown below. 

aimed at. 'Murray and Elcock 

11 . . . . . . . . . . . 

10 . . . . . . . . . . . 

9 . . . . . . . . . . . 

3 
2 
1 

5 . . . o o 
4 . . . . . 

8 . . . . 
7 . . . o 
6 . . . . 

1 . . . . . . . . . . . 
A B C D E F G H J K L 

(a) 

3 . 
2 . 

5 . . . o o . . . . . . 
4 . . . . . . . . . . . 

8 . . . . . 
7 . . . . . 

6 . . . o . 

11 . . . . . . . . . . . 
10 . . . . . . . . . . . 

9 . . . . . . . . . . . 

A B C D E F G 

(c) 

H J K L 

Figure A.6 - 

8 

11 . . . . . . . . . . . 
10 . . . . . . . . . . . 

9 . . . . . . . . . . . 

3 . 
2. 

5 . . . . 0 0 
4 . . . . . . 

7 . . . . . 
6 . . . o . 

1 . . . . . . . . . . . 
A B C D E F G H J K L 

(b) 

8 
7 

11 . . . . . . . . . . . 

10 . . . . . . . . . . 

9 . . . . . . . . . . 

6 . . . . o . . 

3 
2 

5 . . . o . o . . . . . 
4 . . . . . . . . . . . 

A B C D E F G H J K L 
(d) 

1 

Forcing Patterns 

In each of the four examples in figure A.6, it is possible 

for white to play a sequence of forcing moves until a 

Line-of-Five is completed. These positions all require 

most of the areas surrounding 

empty, and consequently do not 

the configuration to be 

often arise. The reader 

may like to determine some of the winning sequences. 
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Appendix B 

POP-2 

The POP-2 programming language was designed by R. M. 

Burstall and R. J. Popplestone [Burstall et al, 1971]. 

The language has three important attributes which make it 
eminently suited to programming in the field of Artificial 
Intelligence: It was designed with a view to handling 

non-numeric information, it is conversational, and it is 

extensible. 

The non-numeric aspect of the language derives from the 

facilities provided to define and manipulate arbitrary 
data-structures, and from the primitive data-structures 

inherent to the language. Amongst the primitive data- 

structures are character-strings and lists, and the faci- 
lities to create and manipulate them. Arbitrary data- 

structures called Records can readily be defined, along 

with the functions to utilise them. This feature is 
extensively used by the program presented. Garbage col- 
lection is automatic, that is to say that the memory-space 

occupied by parts of the data-structures which are no 

longer referenced is automatically retrieved by the sys- 

tem. 

The language strongly emphasises the notion of the Item as 

the basic manipulatable entity. This is taken to the 

extent that even a function, the basic unit of executable 

program, is an Item, and thus able to be the object of an 
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assignment, the argument to the application of another 

function, and even the result of a function application. 

In this way functions can be contained in lists or refer- 

enced in any user-defined Record. This is a facility 

particularly used in the present program. 

The conversational aspect of the language makes it partic- 

ularly easy to ascertain how a program is behaving. At 

any stage during its execution, a program may be inter- 

rupted and the data-structures it employs may be inspected 

or modified. Other programs may be applied to manipulate 

the data if this is desired and even the functions used 

within the program may be modified. The interrupted 

program may then be resumed in the modified environment. 

Used carefully, these capabilities readily facilitate 

program development and debugging. 

The Macro facilities offered by the POP-2 system make the 

language extensible, in that the user may provide himself 

with new syntactic forms in order to make certain program 

constructs less verbose and more legible. POP-2 Macros 

are actually functions which are applied at compilation 

time, and can access and modify the program source. The 

current model, for example, prints its "ptriple" record- 

chains between double angle-brackets. Figure 4.1 is 

reproduced here as figure B.1. A similar syntax is used 

within the program text to create the records. Figure B.2 

shows the program text that results in the record depicted 

in figure B.1. 
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<<DFN 1>> 
NAME VERTEX 
PROPS [OCCUPANT] 
GENFN <function>GENVTX 
ACTS [<<ACD 13>>] 

Figure B.1 - An Object-Definition Record 

<<DFN 
&NAME "VERTEX", 
&PROPS [OCCUPANT], 
&GENFN GENVTX, 
&ACTS ACTLIST 

Figure B.2 - Program Source 

The differences between the two figures are largely due to 

the fact that in the creation of the record, its compo- 

nents are dynamically evaluated. 
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