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Abstract

The UK has highly ambitious targets for wind development, particularly offshore, where over

30GW of capacity is proposed for development. Integrating such a large amount of variable

generation presents enormous challenges. Answering key questions depends on a detailed

understanding of the wind resource and its temporal and spatial variability. However, sources

of wind speed data, particularly offshore, are relatively sparse: satellite data has low temporal

resolution; weather buoys and met stations have low spatialresolution; while the observations

from ships and platforms are affected by the structures themselves.

This work uses a state-of-the art mesoscale atmospheric model to produce a new high-resolution

wind speed dataset over the British Isles and surrounding waters. This covers the whole region

at a resolution of 3km for a period of eleven consecutive years, from 2000 to 2010 inclusive,

and is thought to be the first high resolution re-analysis to represent a true historic time series,

rather than a statistically averaged climatology. The results are validated against observations

from met stations, weather buoys, offshore platforms and satellite-derived wind speeds, and

model bias is reduced offshore using satellite derived windspeeds.

The ability of the dataset to predict power outputs from current wind farms is demonstrated,

and the expected patterns of power outputs from future onshore and offshore wind farms are

predicted. Patterns of wind production are compared to patterns of electricity demand to

provide the first conclusive combined assessment of the ability of future onshore and offshore

wind generation meet electricity demand and contribute to secure energy supplies.



Declaration of originality

I hereby declare that the research recorded in this thesis and the thesis itself was composed and

originated entirely by myself in the School of Engineering at The University of Edinburgh.

The analysis in§8.4.2 was done in collaboration with Dan Eager and has been published in

[Hawkins et al., 2011].

Sam Hawkins

iii



Acknowledgements

Many thanks to everyone who made this possible. Thanks to my supervisor Professor Gareth

Harrison for all of your support and guidance, helpful and sometimes even legible comments:

without your help this would not have been possible. Many thanks to the help desk team

at HECToR, who made my life a lot easier. Also thanks to everyone involved in designing,

building, maintaining and supporting WRF, it really is a fantastic community tool. Thanks to

Scottish Power Renewables, Community Windpower, Shell UK,the Irish Marine Institute, Met
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Chapter 1
Introduction

“You don’t need a weather man to know which way the wind blows”
Bob Dylan -Subterranean Homesick Blues

1.1 Background

Concern over climate change and security of energy supply has lead many countries to look

to renewable resources as a future source of energy. In March2007, a binding EU-wide

target was agreed to source 20% of the EU’s total energy demand from renewable sources

by 2020. Member states were required to set targets consistent with these; the UK has target of

supplying 15% of primary energy demand from renewables by 2020, which will require around

30% of electricity to be generated from renewable sources [DECC, 2009]. Furthermore, the

UK’s Climate Change Act [UKGOV, 2008] requires a mandatory cut of at least 80% in the

UK’s carbon emissions by 2050, which implies an increasing proportion of renewable or other

low-carbon electricity beyond 2020.

Wind is currently the fastest growing source of renewable electricity in the UK, and it is widely

expected to contribute most to the renewable energy targets[DECC, 2009]. In particular,

the UK has ambitious plans for offshore wind, with more than 30GW of potential projects

earmarked for development [National Grid, 2008]. Harnessing this amount of renewable energy

presents an enormous opportunity for society, but also an enormous engineering challenge.

Wind speeds are variable across a wide range of spatial and temporal time-scales, and relatively

small changes in wind speed lead to large changes in power generated. Since wind generation

is not dispatchable in the same way as conventional fossil fuel generation, harnessing wind

generation on a very large scale potentially requires fundamental aspects of the power system to

be redesigned. A great deal of research is ongoing to investigate how this can be best achieved,

this is perhaps one of the most important engineering questions faced today.
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Key to exploring and overcoming the challenges is a detailedunderstanding of the physical

resource, both the average conditions which determine how much energy is available, and also

the spatial and temporal variability which govern when and where it is available. Together these

dictate what kind of conventional and new approaches are needed to integrate wind generation

into a secure and reliable energy system.

Despite the extent of the challenge and the range of researchin this field, detailed data on the

wind resource is not readily available to researchers. Traditional meteorological observations

onshore are taken at 10m above ground level (agl), are strongly affected by local terrain, and

are not necessarily available in the areas of interest for wind generation. Offshore, observations

are relatively sparse and are often taken just a few metres above sea level. Data collected by

private developers is commercially sensitive, and is not made publicly available.

As a consequence, research, and policy making based on it, isoften hampered by a lack of

high quality data spanning a sufficiently long period. Research effort is frequently duplicated

trying to obtain data before any other important questions can be answered. There is a

long, and often heated, debate e.g. [Gross and Heptonstall,2008, Oswald et al., 2008] as

to whether the variability of wind is a ‘show stopper’, that is, too difficult or costly to be

harnessed by society. However, critical arguments are madeor dismissed on the basis of a

selective time period, or only using observed wind speeds onshore. Since much of the planned

development in the UK is offshore, there is an urgent need to examine this question using a

dataset which is robust, reliable, and long enough to give sufficient confidence in the results.

Within the wind industry, many stakeholders are independently pursuing their own, often very

costly assessments, involving modelling and measurement campaigns. However without any

framework for coordination, they have no incentive to sharethe results and consequently the

overall process is very inefficient.

This project attempts to address this issue by building a model of the UK’s onshore and offshore

wind resources with high spatial and temporal resolution, to be provided as publicly available

dataset to support future research in this area. It also attempts to answer some of the key

questions regarding variability in a robust way. The futureadequacy, security and reliability of

the energy system upon which we all depend demands that we have a openly accessible dataset

with which we can at least begin to address some of the key questions in more detail than is

currently possible.
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1.2 Objectives and scope

The main aim of the project is to model, in a scientifically robust way, the UK’s wind resource

with high spatial and temporal resolution. The objective isto produce a well-validated dataset

which can be used to answer key questions with a good degree ofconfidence. This dataset

must:

• be a realistic representation of the average onshore and offshore wind conditions;

• capture spatial and temporal variability across a range of scales; and

• be physically based, so that relations between wind speed, temperature and other

meteorological variables are preserved.

The hypothesis proposed is that using advanced meteorological model can deliver new insight

into the UK’s wind energy resource, and the potential to intrate this on a large scale.

1.3 Contribution to knowledge

This work represents the first publicly available high-resolution reanalysis of wind speeds

around the UK for a period longer than ten years. It is the firststudy to use a complete record of

satellite scatterometer winds to correct model bias over the whole offshore region. It contains

the first publicly available assessment of the wind speed distributions at hub height at all of the

UK’s proposed offshore wind farms, and is the first study to analyse the likely power production

at offshore wind farms based on a dataset longer than ten years. It also is the first study to match

the output from onshore and offshore wind farms to co-incident patterns of electricity demand,

and to assess the impact large scale wind integration will have on hourly patterns of electricity

demand.

1.4 Thesis outline

The thesis is split into chapters as follows:

Chapter 1 Is this introduction.
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Chapter 2 reviews some background material relevant to mesoscale atmospheric modelling to

provide context for the rest of the work.

Chapter 3 Gives a review of mesoscale models and their use in relation to wind energy, and

selects a model to used as the main tool for this work.

Chapter 4 Describes the available observations, selects a case studyperiod, compares a

number of model configurations over the case study period, and selects a final model

configuration to use for main modelling phase.

Chapter 5 Describes the main modelling phase and presents a detailed verification against

observations.

Chapter 6 Reviews satellite data sources, develops and applie a methodology for removing

model bias offshore.

Chapter 7 Describes and verifies the conversion of wind speeds into power outputs of

windfarms, and compares simulated results to published figures.

Chapter 8 Analyses the dataset in terms of the implications for wind energy integration,

predicting average outputs from future offshore farms, andshowing the spatio-temporal

patterns across the study domain.

Chapter 9 Summarises the results of the analysis and presents conclusions for wind

integration.

Appendix A Presents maps of the average wind resource, broken down by month of the year.

Appendix B Gives the full specification of the model configuration and output variables.

Appendix C Presents comparison plots against individual in-situ observation stations.

4



Chapter 2
Background

2.1 Introduction

Wind speeds measured close to the surface of the Earth show variation across a range of spatial

and temporal scales. Turbulent gusts cause fluctuations over the course of a few seconds, while

wind speeds change hour-to-hour and day-to-day as weather systems pass over the country, and

season-to-season as the global circulation changes.

Spatially, wind speeds show well defined global and regionalpatterns, with the UK among

the windiest places on Earth, and the highest regional wind speeds found in the northwest of

Scotland. Wind speeds also show spatial variations on smaller scales: wind flow is influenced

by terrain, local roughness changes, and local temperaturegradients.

The aim of this research is to produce a model of wind speeds over the UK which,

• covers the whole UK and offshore region;

• is spatially and temporally coherent;

• is temporally coherent with patterns of energy demand;

• covers a long enough period to capture important weather episodes; and

• has a spatial resolution high enough to give realistic wind speeds at wind farm sites.

These requirements strongly suggest a physical, rather than a statistical model. Although it is

possible to produce and summarise the wind climate via statistical models, it is more difficult

to produce a multivariate model that allows wind speeds to bematched to coincident variables

such as temperature or electricity demand. Furthermore, a physical model representing true

historic time periods is much easier to validate against independent observations.

Given a preference to use a physically-based model, this section now briefly reviews the

physical systems governing the atmosphere. A very basic description is given of the scales of
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the atmosphere and the modelling approaches used at each scale. This is to give a background

and context to the modelling approach used in this work, so that the strengths and limitations

can be discussed. It is not intended to be an overview of atmospheric dynamics. The

information is drawn from a number of textbooks and papers onthe subject namely [Dutton,

1976, Holton, 2004, Martin, 2006, Petersen et al., 1998, Stull, 1988, Warner, 2011], and those

facts which are generally regarded as common knowledge are not referenced.

2.2 The Atmosphere

The atmosphere is a thin layer of gases surrounding the Earth. It rapidly thins with height, and

although there is no clear boundary, beyond 100km is usuallyconsidered to be outer space.

The primary cause of all the weather we experience is the uneven heating of a fluid on a

rotating sphere. This gives rise to a vast array of features at every scale from dust devils a

few meters across, to high level jets which encircle the globe. Features of the atmosphere are

often categorised according to their scale, Table 2.1.

Scale Length scale Time scale Example features Modelling approach

Planetary 6000 km days to months Hadley cells General Circulation Model
Jet stream (GCM)
Rossby waves

Synoptic 2000 km days to weeks Pressure systems GCM &
Frontal systems Mesoscale

Meso 100 km hours to days Sea breezes Mesoscale
Low-level jets
Gap winds

Sub-meso 10 km minutes to hours Thunderstorms Mesoscale &
Dust devils Large Eddy Simulations (LES)

Micro 2m seconds Small eddies Computational Fluid Dynamics
Tip vortices (CFD)

Table 2.1: Scales of the atmosphere, adapted from [Donald Ahrens, 2008, Holton, 2004]

2.2.1 The troposphere

The lowest layer of the atmosphere, the troposphere, extends only to 10-20km above the surface

yet accounts for around 80% of the mass of the atmosphere [Pidwirny and Jones, 2010]. It is

this thin layer is most important for weather and climate, and it is a tiny fraction of the energy

contained in this layer which is harnessed for wind generation.
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The troposphere is largely transparent to incoming short wave solar radiation, and is mainly

heated by convection and radiation from the ground. Apart from the air immediately above

the surface, or where water vapour is condensing, processesin the troposphere are close to

adiabatic. Due to this convective heating, the troposphereis relatively well-mixed vertically,

with declining temperature with height. This is in marked contrast to the stratosphere above,

where increasing temperature with height inhibits vertical mixing, leading to the highly

stratified structure which gives it its name.

The boundary between the troposphere and the stratosphere is the tropopause. Stratospheric

processes and stratosphere-troposphere interaction are also important drivers of weather

systems and global circulation [Butchart et al., 2011], andmost atmospheric models place

their upper boundary somewhere in the stratosphere, typically at a pressure of 50hPa or less.

2.2.2 General circulation

The flow in the lower atmosphere shows distinct global patterns, referred to as the general

circulation, and described in any meteorology text e.g. [Holton, 2004, Martin, 2006]. A very

brief and simplified overview is that differential heating between the tropics and the polar

regions gives rise to large convective cells, which transport warm air poleward from the equator.

Areas where warm air rises in these cells lead to zones of generally low surface pressure with

frequent rainfall; areas where air is sinking correspond tozones of high pressure and low

rainfall. Since the Earth is a rotating reference frame, thepoleward moving air in these cells is

acted on by an apparent force, the Coriolis force, which gives rise to the bands of easterly and

westerly winds, shown in Figure 2.1. Additionally, the distribution of land and ocean produce

semi-permanent continental pressure systems such as the Siberian high, an area of cold, dense,

dry air which forms over much of northern Eurasia, and the Icelandic low, a region of low

pressure in the Atlantic ocean.

The UK lies roughly at the polar front, the boundary of two convection cells, where warm air

from the tropics meets colder polar air. The temperature difference between these air masses

causes a pressure gradient at height, which leads to the jet stream. The course of the jet stream

meanders and changes, perturbed by a succession of planetary-scale westward movingRossby

waves, and is influenced by continental and synoptic pressure systems. The position of the

polar front and the jet stream is a major influence of the weather at mid latitudes.
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Figure 2.1: General circulation. Public domain image fromhttp://rst.gsfc.nasa.
gov/Sect14/Sect14_1c.html

The dominant weather feature at these latitudes is the mid-latitude cyclone or depression.

Initial instabilities or waves in the polar front cause coldair to be pulled southward and warm

air northward around a deepening area of surface low pressure known as a depression. The

fronts circle the depression, and the system begins to dissipate when the cold front catches and

occludes the warm front. The location of the jet stream and the frequent passage of depressions

across the UK is the major reason for the high wind speeds.

Conversely, conditions which alter the usual position of the jet stream and the path of

depressions across the UK, such as ‘blocking high’ patterns, can lead to much lower wind

speeds than average. Thus, depending on the prevailing conditions, individual months, years,

and decades can show a significant amount of variation from the average.

2.2.3 Turbulence and the spectral gap

Observations of the surface wind field show aspectral gap, Figure 2.2. That is, a clear

separation is observed between slower synoptic scale processes and faster turbulent processes.

In the equations which describe atmospheric motion, this allows a convenient separation into

explicitly resolved mean fields and parameterised turbulent processes.Reynold’s averagingis

the technique of decomposing variables into slowly varyingaverage fields and rapidly varying,
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Figure 2.2: Schematic representation of the observed spectral gap in the surface wind. After
[Stull, 1988]

zero-mean turbulent fields:

φ = φ̄+ φ′ (2.1)

Whereφ is any of the atmospheric variables: wind speed, temperature etc. By definition, the

meanφ̄′ = 0. The over-bar on the average terms is usually omitted.

Turbulence is often quantified as aturbulence intensity, I. This is the standard deviation of

horizontal wind speed over a sampling window, normalised bythe mean wind speed over the

sampling window [Petersen et al., 1998]:

I =
σu

Ū
(2.2)

For neutral conditions over flat terrain, turbulence intensity might be around 8% over the

open sea, 13% over flat grassland, and 20% or more over complexor rough terrain [Petersen

et al., 1998]. Turbulence intensity is sensitive to the sample rate and averaging window used;

generally the aim is to ensure the mean wind speed corresponds to the left of the spectral gap,

while I gives a measure of the fluctuations on time scales to the rightof the spectral gap. Hence,

sampling every minute or less, and averaging over 10 minutesto one hour is common.
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2.3 Atmospheric modelling

Atmospheric modelling grew out of the desire to predict the weather. The idea that this could

be achieved by numerically integrating a set of equations dates back over one hundred years

[Lorenz, 2006], but was only made possible with advent of thecomputer. Since then the need

for more accurate weather forecasting as well as the desire to understand the global climate

has lead to an enormous development of numerical models withan enormous number of

applications. Lorenz [2006] gives a review of the history and development of atmospheric

models and numerical weather forecasting.

2.3.1 Primitive equations

The basis for all atmospheric models is a set ofprimitive equationsimposing conservation of

mass, momentum, and energy on the motion of the atmosphere, related by the equation of state.

The primitive equations are simplified through various assumptions, for example molecular

viscosity is neglected since this is negligible at large scales. In addition, since the transport

and transformation of water is so important to weather and climate, equations describing the

continuity of moisture are introduced. The development of the primitive equations is covered

in any fluid mechanics text e.g. [Douglas et al., 2005].

Although most climate and Numerical Weather Prediction (NWP) models are based on a very

similar set of primitive equations [Warner, 2011], they candiffer significantly in the simplifying

assumptions made e.g. whether or not they are coupled to an ocean model, how the equations

are cast, the vertical and horizontal coordinates used, andthe numerical schemes used to

integrate them.

The primitive equations are a set of non-linear partial differential equations which cannot be

solved analytically, and are integrated numerically instead. They govern atmospheric motion

at all scales from the global down to local turbulence. However, it is infeasible to resolve all

scales of turbulent motion in a global model and different classes of model have evolved to suit

each scale, which make different sets of simplifications to suit the scale of the domain.
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2.3.2 Global

General Circulation Models (GCMs), are the primary tool forunderstanding global weather

systems in the long term, and are used extensively in climatechange research. They recreate

many of the features of the global atmosphere very well, and are often coupled to models

of ocean circulation and biological systems to give a more complete understanding of the

biosphere. A large advantage of a global model is that since they represent the whole globe,

there is no need to specify lateral boundary conditions. This enables weather forecasts to be

run for several days or weeks, and climate forecasts to be runindefinitely.

However, GCMs are computationally intense due to their verylarge domain, and resolution is

limited even on the most powerful supercomputers. GCMs tendto be spectral models, with an

equivalent grid spacing of around0.5◦ or more, and are therefore unable to resolve many local

features of the wind climate. However, higher resolution GCMs are being deployed, including

mesoscale-resolving global models [Shen et al., 2006], andthere an increasing convergence

between GCMs and mesoscale models.

2.3.3 Mesoscale

Mesoscale models are a class of atmospheric model designed to study weather phenomena

smaller than synoptic scale but larger than microscale [Mass and Kuo, 1998]. Typically they

are used to study regions of the order of tens to hundreds of kilometers, and are used over a

much shorter timescale than GCMs: predicting weather conditions a few days ahead, rather than

climate forecasts over decades. They solve an expanded set of equations compared to GCMs,

and are usually non-hydrostatic since many of the features of interest, e.g. convective storms,

require vertical motion to be a prognostic variable. They usually have more detailed schemes

to represent cloud processes, surface exchanges, and turbulent fluxes in the the Planetary

Boundary Layer (PBL).

Although they have been an important part of weather forecasting for at least twenty years

[Mass and Kuo, 1998], it is only in the last decade that computing power and the availability of

global gridded datasets for boundary conditions has enabled their use outside of a few national

centres. A review of mesoscale models in relation to wind energy is given in Section 3.2.
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2.3.4 Sub-meso scale

Mesoscale models are run over a wide range of grid spacings, sometimes below 1km. However,

at scales much below this, the models begin to resolve some ofthe largest turbulent eddies, and

may need a different approach to separate resolved and unresolved turbulence.

Large Eddy Simulation (LES) models are the term given to thisclass or application of a model,

where the largest of the energy carrying turbulent eddies are resolved explicitly. LES models

may give a more realistic profile through the PBL since they explicitly model turbulent eddies,

rather than rely on semi-empirical parameterisation schemes. They also capture turbulent

fluctuations on short timescales. However, the resolution is too high to allow simulation of

large domains, and it is more difficult to cleanly separate resolved and unresolved turbulence.

2.3.5 Microscale

Microscale models of wind flow can be broadly split into two categories: linear and non-linear.

Non-linear microscale models fall in the domain of Computational Fluid Dynamics (CFD),

which are based on the full Navier-Stokes equations. The term Computational Fluid Dynamics

comes from engineering, and has come to mean models applicable at this particular scale, even

though all atmospheric modelling involves computation of fluid dynamics.

There are a large array of CFD models depending on what simplifications are made to the

primitive equations, how space and time are discretised, whether Reynold’s averaging is used,

and what numerical methods are applied to integrate the equations. Typically CFD models are

used to study the detailed interaction of fluid with other objects, e.g. the flow past a turbine

blade, or the wake caused by a single turbine, and have a grid mesh on the order of centimetres.

As a result, most CFD models are too computationally intenseto be used across large domains,

although there is an overlap between CFD and mesoscale models, and recently there have been

some models developed specifically with wind power analysisin mind see e.g. [Castro et al.,

2003, Undheim, 2005].

Linear flow models, such as the widely used Wind Atlas and Application Program (WAsP)

[Troen et al., 2008], largely developed out of a need to resolve the effects of microscale features

(small hills, obstacles, changes in roughness, etc) on the average flow, in a manner which did

not require the intense computation of a CFD model. Typically they model a steady state,
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incompressible flow using linearised equations to conservemass and momentum. The big

advantage is computational speed, which allows them to be run over much larger domains than

non-linear models. The disadvantage is the linearised equations are a simplification which

cannot represent complex flow, such as flow separation and re-circulation in the lee of steep

hills [Bowen and Mortensen, 1996, 2004].

2.4 Nesting and downscaling

Downscaling is the method of relating the output of large, coarse resolution models to smaller

scale, higher resolution ones. There are two main approaches: direct nesting and statistical

dynamical downscaling.

Statistical dynamical downscaling begins from the assumption that the large scale weather

system for a particular area can be characterised by a limited number of different weather

types or episodes. The first step is to define these episodes and to calculate how often they

occur. This is usually done by analysing multi-year time series output from a GCM. Higher

resolution regional models are then run to determine the local wind conditions during that type

of episode. Then, based on the frequency of each episode, theoverall wind conditions can be

derived statistically.

The first use of downscaling to assess wind conditions was published by Wippermann and

Gross [1981], while Heimann [1986] used the approach to derive a two dimensional array of

wind roses describing a region. Frey-Buness et al. [1995] was the first to use the method in

conjunction with the output of GCMs in order to study the effects of predicted warming in

the Alpine region. The method was also applied by Mengelkamp[1997], and further refined

by Fuentes [1998]. Fuentes and Heimann [2000] gives more details on the development and

application of this approach.

The advantage of statistical downscaling is that it reducesthe amount of modelling required to

arrive at long-term statistics describing the wind climate. The accuracy of such an approach

depends on the accuracy of both the larger model and the smaller regional model. Accuracy

is limited by the representation of weather by a finite numberof episodes which may miss the

tails of the wind speed distribution and miss extreme but important events e.g. very high winds

or exceptionally calm periods.
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The other approach, becoming more common with increasing computing power, is to directly

nest models within each other, for example, using a GCM to drive a mesoscale model, or using

a mesoscale model to drive a CFD model or microscale flow model.

2.5 Scale selection

Returning to the criteria listed in the introduction to thischapter, the aim is to produce a dataset

which can realistically represent wind speeds over the UK and offshore for a period of ten years

or more, but has high enough resolution to capture importantfeatures of the wind climate such

as the interaction with terrain and coastal processes.

Based on these criteria and the discussion above, the most relevant scales are the synoptic down

to the mesoscale. It would be unnecessary to run a global model simply to look at the UK, when

global reanalysis datasets already exist, and it would be infeasible to run a microscale model

over a domain this large. Therefore the most appropriate approach is to use a mesoscale model

on a regional domain covering the UK and surrounding waters.

This choice means that only the steady terms of Eq. 2.1 will beresolved, that is, wind

speed changes on the timescales of several minutes to hours,not higher frequency turbulent

fluctuations on timescales of seconds. Although higher frequency turbulent fluctuations are

important considerations for wind energy, impacting on power system stability, mechanical

loading, power quality and many other areas, they are outside the scope of this work.

However, the net effect of turbulence is very important on the wind speed profile close to the

surface. Since the hub-heights of wind turbines are up to 100m, boundary-layer processes are

very important for accurately modelling wind speeds at thisheight. To give some background

to later discussions, the following sections briefly introduce planetary boundary layer theories,

and how they are dealt with in atmospheric models.

2.6 Planetary boundary layer

The Planetary Boundary Layer (PBL) is defined by Stull [1988]as

“the part of the troposphere that is directly influenced by the presence of the
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Earth’s surface, and responds to surface forcings with a time scale of about an hour
or less.”

The defining characteristic of the PBL is the presence of turbulence. The no-slip condition at the

surface means that whenever the wind blows, a wind shear exists driving mechanical turbulence,

while the heating of the ground surface by solar radiation causes convective turbulence. The

result is a well-mixed layer where potential temperature and humidity are almost constant with

height.

By contrast, in thefree atmosphereabove, the flow is rarely turbulent, vertical mixing is much

less, and there is a clearly defined vertical profile of potential temperature and humidity.

In the PBL, turbulent eddies cause vertical mixing of momentum, temperature and other

variables. As discussed previously it is infeasible to resolve these turbulent eddies explicitly in

synoptic or mesoscale models. In the free atmosphere, the turbulent terms are small in relation

to mean flow and can be ignored. However in the PBL their influence on the mean flow must

approximated through a parameterisation scheme.

The vertical mixing of horizontal momentum, the momentum flux, can be described by an

equivalent shear stress known as theReynold’s stress, τr. The magnitude of Reynold’s stress

due to the vertical (z) transport of horizontal (x) momentum is given by Stull [1988]:

τxz = −ρ(u′w′) (2.3)

whereu′ andw′ are the horizontal and vertical fluctuations associated with turbulent motion,

andρ is air density. The total vertical flux of horizontal momentum is then given by:

|τr| =
[

τ2
xz + τ2

yz

]1/2
(2.4)

The magnitude of the Reynold’s stress is an important scaling variable for surface wind speeds,

and is usually expressed as a velocity scale, the friction velocity, u∗, defined by the size

Reynold’s stress vector [Stull, 1988].

u2
∗

=
|τr|

ρ
(2.5)
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Although it is usually assumed thatτr is parallel to the mean wind vector, this may not hold in

complex terrain [Weber, 1999]. The friction velocity can beexpressed as:

u2
∗

=

√

u′w′
2
+ v′w′

2
(2.6)

Boundary layer theories are usually based onmixing lengtharguments. Turbulent eddies are

treated as ‘units’ which travel an average mixing length,l, before imparting their momentum to

the mean flow, analogous to the mean free path in the kinetic theory of gases. The mean wind

profile for a homogeneous and stationary flow can then be related to the momentum flux by:

∂u

∂z
=
u∗
κl

(2.7)

whereκ is the Von Karmann constant, an empirical constant usually taken to be0.4 [Andreas

et al., 2006]. The challenge is to find expressions for a length scale, which may depend on the

depth of the boundary layer, height above the surface, atmospheric stability and other factors.

2.6.1 Closure schemes

Eq. 2.6 contains double correlation, or second moment, terms, u′w′ andv′w′. The inclusion

of turbulent terms means there are more variables than prognostic equations, and additional

relations are needed to close the equation set. If prognostic equations are developed for the

second moment terms, they are found to contain third moment terms e.g.u′u′w′, and so on.

This is theclosure problem[Stull, 1988, Warner, 2011]. Additional, diagnostic equations are

needed to close the set of equations, and the assumptions on which these are based are called

closure assumptions. Closure schemes are usually categorised by their order [Warner, 2011]: if

the second moment terms are parameterised in terms of the mean variables, the scheme is a first

order closure scheme. If the third moment terms are parameterised in terms of the second and

first, the scheme is second order. The order of a closure scheme is given by the highest-order

prognostic equations retained. However in some closure schemes, some of the higher order

terms may be parameterised and others predicted. In this case the order of the closure scheme

may be given a non-integer order e.g. 2.5 [Warner, 2011]. Forexample, the simplest simple

first-order closure is:
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u′w′ = −K
∂u

∂z
(2.8)

WhereK is known as the eddy viscosity coefficient, or the exchange coefficient, and this type

of closure is known asK-theory [Brown, 1981]. Higher order closure schemes will have a

more complex expression for Eq. 2.8.

The other aspect of a closure scheme is whether only adjacentgrid points in the vertical are

used, known aslocal closure, or whether grid points further away in the vertical are considered,

a non-local closure. Physically, a local closure scheme assumes that turbulenteddies have

a vertical length scale comparable to the models vertical spacing, so that mixing only occurs

between adjacent levels, while in non-local closure schemes, vertical mixing can occur between

non-adjacent vertical levels.

2.6.2 Atmospheric stability

Atmospheric stability describes whether an air parcel willcontinue to rise or return when

displaced vertically. This is governed by thelapse rate, the rate of change of temperature

with height.

The dry adiabatic lapse rate,Γd, is the rate of change of temperature that a dry air parcel would

experience if it rose adiabatically through an atmosphere in hydrostatic equilibrium [AMS,

2000]. The moist adiabatic lapse rate,Γw is the rate of change of temperature a saturated parcel

of air would experience, accounting for the latent heat of condensation [AMS, 2000]. The

actual lapse rate, or environmental lapse rate,Γe, is simply the observed temperature change

with height. This varies day to day around an average value of-6.5K/km [Martin, 2006].

A dry parcel of air displaced upward will experience a lower pressure, expand and cool. If

Γe < Γd, the parcel will be cooler and denser than its new surroundings and will sink. The

atmosphere is said to be absolutely stable, and vertical motion is damped. IfΓe = Γd, there

will be no net buoyancy force, the parcel will remain at its new height. The atmosphere is said

to be neutral: vertical mixing occurs, but free convection does not develop. IfΓe > Γd, a rising

parcel of air will be warmer than its surroundings and will continue to rise, and the atmosphere

is said to be absolutely unstable. Free convection will develop leading to rapid vertical mixing,

which tends to bring the atmosphere back towards neutral.
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If the air contains water vapour, andΓe > Γw, then the parcel will rise and cool at the rate

of Γd, until it reaches the dew point and clouds begin to form. In general, it will continue to

rise until all of the moisture has condensed, and its stability is thereafter determined by the

environmental lapse rate above this level.

In an unstable (convective) boundary layer, convection dominates turbulence creation, and the

PBL can grow to a depth of several kilometres. This is typicalin tropical and mid-latitudes

during the daytime, but can also occur when cold air advects over a warm surface, such as

offshore winds when the sea is warmer than the land.

In a stable boundary layer, vertical motions are damped and any turbulence is driven by the

wind shear between the free atmosphere and the surface. A stable boundary layer is typical at

night when the ground surface is cooling, or when warm air is advected over a cold surface. An

inversion often separates the stable layer from the atmosphere above, and the flow above the

stable layer can become decoupled-coupled from the surface, such as with the formation of low

level jets [Smedman et al., 1996].

Stability was first classified by Pasquill [1974] according to insolation and wind speed; Pasquill

stability classes are shown in Table 2.2.

Stability class Typical occurrence conditions

Stable Low wind speeds, nocturnal, or warm air advecting over colder surface
Slightly stable
Neutral High winds and overcast skies
Slightly unstable
Unstable High insolation, or cold air advecting over a warm surface

Table 2.2: Pasquill stability classes

There are variety of more objective approaches to determining stability, see e.g. Golder [1972].

A commonly used approach used the Obhukhov length,L, defined as [AMS, 2000]:

L = −
u3
∗
Tv

gκw′θ′v
(2.9)

where, Tv, is virtual temperature, andw′θ′v is the flux of virtual potential temperature at

the surface.L can be interpreted as a length scale describing the height below which shear

production dominates over buoyant production of turbulence [AMS, 2000]. It is often combined

with the height above the surfacez as adimensionless stability parameter:
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ζ =
z

L
(2.10)

A number of slightly different mappings betweenL or ζ and stability class exist in the literature

e.g. [Gryning et al., 2007, Hsu, 1992, Peña et al., 2008, Yague et al., 2006]. The approach used

here is taken from Gryning et al. [2007] and summarised in Table 2.3. Figure 2.3 shows a

schematic representation of these stability class boundaries in relation toζ andL.

Obukhov length interval (m) Stability class

10 ≤ L ≤ 50 Very stable
50 ≤ L ≤ 200 Stable
200 ≤ L ≤ 500 Near stable

|L| ≥ 500 Neutral
-500 ≤ L ≤ -200 Near unstable
-200 ≤ L ≤ -100 Unstable
-100 ≤ L ≤ -50 Very unstable

Table 2.3: Stability class boundaries from [Gryning et al.,2007]

Figure 2.3: Schematic representation of stability classesaccording to Obhukhov lengthL, and
ζ for z = 10m. x-axis is shown with a log scale

2.6.3 The surface layer profile

The lowest part of the PBL is known as thesurface layer, typically defined as the region where

fluxes vary by less than 10% of their magnitude with height [Stull, 1988], and is often assumed

to be about 10% of the PBL height. Surface drag means wind speeds in the surface layer are

typically much lower than geostrophic speed.
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Monin and Obukhov [1954] developed a theory describing the wind speed profile in the surface

layer, known now as Monin-Obhukov Similarity Theory (MOST). MOST is based on the

assumption that the momentum flux in the surface layer,u∗ is approximately constant with

height, so that local fluxes at a heightz can be taken as equal to the surface flux [Gryning et al.,

2007, Peña et al., 2008]:

u∗ = u∗0 (2.11)

The mixing length in the surface layer,lSL is assumed to be a function only of the height above

the surface,z, and the atmospheric stability:

lSL =
z

φm (ζ)
(2.12)

Whereφm is known as astability correction function. Various formulations ofφm exist based

on field experiments, see e.g. [Dyer, 1974, Garratt and Pielke, 1989, Hogstrom, 1988], though

most find a power-law dependence [Peña et al., 2008]:

φm =























(

1 − a z
L

)p
unstable

1 neutral
(

1 + b z
L

)

stable

(2.13)

For unstable conditions, there is reasonable consensus that p = −1/4 and a = 16, see

e.g. Garratt and Pielke [1989] for a review. For weakly stable conditions, a range of values

are reported forb, from 4.6 to 9.4 [Garratt and Pielke, 1989, Yague et al., 2006], and other

other functional forms or various extensions have been proposed to account for strongly stable

conditions [Beljaars and Holtslag, 1991, Hicks, 1976, Sharan, 2009].

Combining equations 2.7 and 2.12:

∂u

∂z
=
u∗φm

κz
(2.14)

The height at which the wind profile is equal to zero is known asthe roughness length,z0, and

is described further§2.6.4. Integrating fromz0 to a heightz, gives the surface wind profile:

20



Background

u =
u∗
κ

[

ln

(

z

z0

)

− Ψm

( z

L

)

]

(2.15)

whereΨm is the integrated stability correction function, which is related toΦm by [Garratt and

Pielke, 1989]:

Ψm =

∫

(1 − φm(ζ))d(ln(ζ)) (2.16)

In neutral conditionsψm = 0 and 2.15 reduces to:

u =
u∗
κ
ln

(

z

z0

)

(2.17)

This is often known as the adiabatic wind profile, or just the logarithmic wind profile, since the

wind speed varies with the natural log of height. It is widelyused within the wind industry,

as the atmosphere is neutral on average, and therefore it is often a good approximation to the

surface layer profile.

To account for atmospheric stability, Eq. 2.13 must be integrated. Under (weakly) stable

conditions, Eq. 2.13 can be integrated to [Panofsky and Dutton, 1984]:

ψm (ζ) = −bζ (2.18)

whereb has the same uncertainty described previously. In unstableconditions, the integrated

form of Eq. 2.13 depends on the value of the constants, but theform most often found in the

literature is [Paulson, 1970]:

ψm (ζ) = ln

[(

1 + x2

2

)(

(1 + x)2

2

)]

− 2tan−1x+
π

2
(2.19)

where

x = (1 − 16ζ)1/4

The particular forms of the stability correction functions(Eq 2.18-2.19) are often collectively
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Figure 2.4: Surface layer wind profiles under different stability classes.

known as the Businger-Dyer formulations after [Businger, 1988, Businger et al., 1971, Dyer,

1974, Skibin and Businger, 1985].

MOST is only valid at sufficient height that the surface can beregarded as homogeneous with

a single roughness length. As most atmospheric models have their lowest level around 20m or

so, and may diagnose wind speed at 10m, this is not a problem over relatively smooth surfaces

such as grassland or lows crops. However, over rough terrainsuch as forestry or cities, this

layer will be in theroughness sub-layer, where the effects of individual roughness elements are

significant, and MOST may not be valid Hsu et al. [2009].

2.6.4 Roughness length

The roughness length is the height at which the logarithmic profile observed in the surface layer

tends to zero. If observations are available at multiple heights in the surface layer, then the wind

profile can be determined and the local roughness length estimated directly. Alternatively it can

be estimated from observations at one height using gust information [Manwell et al., 2002a].

Roughness length is found to be related to the typical lengths of obstacles or vegetation.

Davenport [1960] first classified roughness lengths according to land use, and the classification

has been subsequently updated [Davenport et al., 2000, Wieringa, 1993, Wieringa et al., 2001].

Table 2.4 gives some typical values. However, over non-homogeneous or very rough surfaces,

there is large uncertainty when assigning a single roughness length.

Roughness length is the main determinant of momentum flux in the surface layer, and the sole

determinant in neutral conditions [Beljaars and Holtslag,1991]. It is source of inaccuracy
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Class Terrain Description z0

m

Sea Open sea or lake 0.0002
Smooth Featureless land surface i.e. sand, snow. 0.005
Open Level country with low vegetation i.e. grass 0.03
Roughly open Cultivated area with high crops 0.25
Rough Low, densely planted vegetation. Trees and occasional buildings 0.5
Very rough Forests, small towns and suburbs 1.0
Skimming City centres, large forests. > 2

Table 2.4: Davenport roughness categories [Wieringa et al., 2001].

for atmospheric models, as scaling theories assume a homogeneous surface. An effective

roughness length for an entire grid cell must be estimated, which in reality will cover

inhomogeneities in land use. In addition, and sub-grid scale terrain features exert form drag,

and this must also be accounted for in roughness length [Beljaars and Holtslag, 1991].

2.6.5 Offshore and coastal boundary layer

Much of boundary layer theory has been developed based on experiments over land. It is only

relatively recently, in particularl with interest in offshore wind generation, that more attention

has been paid to offshore and coastal boundary layers. At thecoast, the sharp change in

characteristics between the sea and land breaks any assumptions of horizontal homogeneity,

and the sharp change in roughness and temperature causes internal boundary layers to grow

[Mortensen et al., 1990, USNRC, 1992].

USNRC [1992] recommended a complete re-examination of boundary layer processes in the

coastal zone including “ surface and boundary layer scalingtheories, higher order moment

relationships throughout the PBL, and the relative importance of turbulent vs coherent

motions”, and Peña et al. [2008] states our understanding of the processes in the marine

boundary layer is “particularly immature”.

Most atmospheric models derive surface fluxes using empirical stability correction functions

developed over land. In addition, the sea surface roughnessis usually assumed only to depend

on the instantaneous surface momentum flux, and the effect ofhumidity flux on stability is

usually ignored, despite its significance offshore [Barthelmie et al., 2009].

However, Vickers and Mahrt [2006] note that despite many of these assumptions not holding

in the coastal layer, there is often no viable alternative, and mesoscale and other atmospheric
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models remain a useful tool, and are able to recreate many features of the marine and coastal

boundary layer. This is underscored by their growing use, e.g. for offshore wind resource

assessment.

Sea surface roughness

In general, the sea surface is much more aerodynamically smooth than land. However, the

surface roughness is not static, but depends on wave conditions. This must be represented in

atmospheric models, and is particularly important in coupled atmosphere-ocean models where

the momentum flux is a major driver of ocean currents, and hence a large influence on weather

and climate. Wind flow over the ocean is often modelled as two regimes: a ‘smooth’ regime

where the main driver of surface exchange is the viscous sub-layer, and a ‘rough’ regime where

the effect of waves dominate [Janjic, 1994].

Charnock [1955] first proposed that surface roughness due towaves depends on the surface

stress and the restoring force:

z0 =
αcu

2
∗

g
(2.20)

whereαc is an empirically derived constant.α is often taken to be0.018 in the open ocean

[Hersbach, 2011], however, it has long been known that a single value ofα cannot describe all

the experimental data [Drennan et al., 2005]. A wide range ofvalues between8 × 10−3 and

6 × 10−2 are found in the literature [Peña and Gryning, 2008].

This spread has been explained by various modifications to the basic Charnock equation to

account for wave fetch [Lange et al., 2001], wave age and steepness [Drennan et al., 2005,

Lange et al., 2004]. However, there is still no consensus, and several recent studies approaches

have proposed fundamental re-examinations of the basic relationships [Foreman and Emeis,

2010, Vickers and Mahrt, 2010]. For example, Vickers and Mahrt [2010] found roughness

lengths much smaller than formulations commonly used in atmospheric models, based on

several recent sets of observation from mid-latitude coastal regions. They found no evidence for

a smooth flow regime and proposed an empirical relation for surface roughness very different

to a Charnock formulation.

Without detailed information about the wave state, and without any consensus on the relation

between roughness and wave state, assuming a constantαc = 0.018 is currently the only
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Figure 2.5: Examples of Weibull distributions with different parameters

feasible approach for most models.

2.7 Wind speed distributions

The observed distribution of surface wind speeds at a particular location is often found to be

a two-parameter Weibull distribution [Manwell et al., 2002a]. The Weibull probability density

functionf(x) and cumulative distribution functionF (x) are given by:

f(x) =
k

c

(x

c

)k−1
exp

[

−
(x

c

)k
]

(2.21)

F (x) = 1 − exp

[

−
(x

c

)k
]

(2.22)

wherek is a dimensionless shape parameter andc is the location parameter with the same units

asx. k determines how ‘peaked’ the distribution is. For a given mean wind speed, a higher

value of k implies less distribution around the mean speed. Figure 2.5shows the effect of

different parameters on the distributions shape.

There are a number of different ways of fitting Weibull parameters to observed data [Manwell

et al., 2002a], with maximum likelihood generally thought to be the most robust [Chang, 2010].

The maximum likelihood method is used throughout this work.
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2.8 Chapter review

This chapter introduced some background material on the atmosphere, and the separation of

atmospheric process by scale. It briefly reviewed the classes of atmospheric model by their

target scale, and selected mesoscale modelling as the technique to use for this work. The

importance of boundary layer processes was highlighted, and a brief discussion of PBL theories

was presented to give some context to future discussions. Some of the inherent challenges

of the marine and coastal boundary layer were highlighted. Finally, the Weibull distribution

commonly used to describe wind speed distributions was presented.

The next chapter reviews available mesoscale models in moredetail, and will refer to the

theories outlined here.
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Chapter 3
Modelling approach

3.1 Introduction

The previous chapter gave some theoretical background, andjustified the use of a mesoscale

model as the primary tool for this work. This chapter presents a review of alternative mesoscale

models, to explain the choice of the Weather Research and Forecast (WRF) model for this work.

WRF is then explained in more detail, and the strengths and limitations are discussed.

3.2 Comparison of alternative models

There are a wide range of mesoscale atmospheric models used in operational forecasting,

research, and within industry. Many of them share similar features, though there are significant

differences between models. This section briefly reviews some of the available models, before

selecting one to be used in this research. A summary of some ofthese models is also given in

[Giebel et al., 2002].

3.2.1 WAsP

The Wind Analysis and Siting Programme (WAsP) is developed by Risø National Laboratory

[Troen et al., 2008]. While it is not a dynamic atmospheric model, it is so widely used within

industry it has become something of ade factostandard, and warrants a brief review here.

WAsP is primarily observation driven: it takes an observed wind speed distribution together

with a description of the orography, roughness and obstacles surrounding an observation point,

and derives a generalised ‘cleaned’ wind climate adjusted to a standard height and roughness.

This cleaned wind climate can then be used to downscale to a different site in the general

vicinity.

This approach can be accurate [Bowen and Mortensen, 1996], provided (i) the reference site

and prediction site are subject to the same overall weather regime, (ii) the prevailing weather
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Measurement Issues Insufficient masts to give good spatial resolution
Mast measurements typically at 10m agl, and strongly influenced by local orography,
roughness, and obstacles
No guarantee of data quality
Measurements may be effected by the mast configuration
Instrument configuration or surroundings may change
Sparse observations offshore

Model Issues Only produces statistical distributions
Requires detailed orography and roughness, but cannot handle large maps
Assumes a neutral boundary layer
Predictions only valid for locations subject to the same prevailing wind climate
Manually time consuming for large areas
Not well parallelised

Table 3.1: Difficulties using WAsP analysis over wide areas

conditions are close to being neutrally stable, (iii) the reference wind data are reliable, (iv) the

surrounding terrain of both sites is sufficiently gentle andsmooth to ensure mostly attached

flows and (v) the topographical model inputs are adequate andreliable [Bowen and Mortensen,

2004, Frank et al., 2001].

However, this type of approach faces a number of difficulties, summarised in Table 3.1. The

major limitation is that, since it is driven by observations, the predicted site must be subject to

the same weather conditions as the observations. This limits the distance over which WAsP can

be used, as there are a large number of features such as low-level jets, sea breezes, katabatic

winds, etc, which may be significantly different between theobserved and predicted site.

Furthermore, WAsP assumes a neutral boundary layer, which may be a reasonable assumption

when dealing with average distributions, but could lead to large errors during specific periods.

WAsP was designed to allow transformation of wind speed distributions: it is not a dynamical

model which can be used to produce time-series. In light of this, and the limitations described

above, it is clear it is not well suited to this type of study. That said, Boehme and Wallace

[2008] showed that WAsP can be used with surface observations to provide a reanalysis on a

national scale, using it to model hourly wind speeds across the whole of Scotland.

3.2.2 MC2

The Mesoscale Compressible Community (MC2) model [Benoit et al., 1997] is a fully

compressible, non-hydrostatic mesoscale model developedby a number of academic groups

in Canada. It uses a semi-langrangian, semi-implicit integration scheme with time splitting in
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order to efficiently integrate acoustic and meteorologicalmodes. The vertical coordinate is a

terrain-following pressure-based (σ) coordinate. It has been used for air-quality modelling in

complex terrain [Niewiadomski et al., 1999], and for weather forecasting over the entire Alps

region [Benoit et al., 2002], although this revealed a spurious sensitivity to orographic forcing,

traced to a numerical inconsistency, later fixed [Girard et al., 2005].

MC2 been used to study wind resources across Canada [Glazer and Yu, 2005] driven by

NCEP/NCAR reanalysis data and using statistical dynamicaldownscaling to derive wind

climate, with WAsP used to account for small scale terrain features. MC2 has also been used to

study offshore and coastal wind climates, with Beaucage et al. [2007] comparing the wind field

from MC2 to Synthetic Aperture Radar (SAR) and scatterometer wind speeds from satellites.

MC2 has been combined with the micro-scale model MS-Micro ina commercial package called

the Wind Energy Simulating Toolkit (WEST) [Pinard et al., 2005], which it is claimed gives

good results. However, the cost of a license is $ 10 000, and ongoing community support

appears to be limited. The most recent training programme listed is from 2005 [RPN, 2011].

3.2.3 Eta

The Eta model [Black, 1994, Janjic, 1994, 1996] was mainly developed by the National Center

for Environmental Prediction (NCEP). It has been running operationally since 1993, and still

runs today [NCAR, 2011]. It was the first model to use the ‘step-mountain’ vertical coordinate

[Mesinger et al., 1988], where mountains are represented ingrid-boxes with vertical sides.

This reduces errors in the calculation of the pressure-gradient force, and allows it to model well

orographic effects, such as blocking and channelling. It uses an explicit integration scheme in

the horizontal and an implicit scheme in the vertical.

Eta has been widely used for weather forecasting. It has alsorecently been used to model

the output from wind farms in complex terrain [Lazić et al.,2010]. However, the use of the

step-mountain coordinate can make it difficult to model PBL processes over elevated terrain,

and can lead to waves forming at step changes in height [Gallus, 2000].
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3.2.4 SKIRON

The SKIRON forecasting system was developed at the University of Athens [Kallos, 1997,

Kallos et al., 1998, Papadopoulos et al., 2001]. The dynamical core is based on the NCEP Eta

model, with modifications and improvements in the parameterisation of various processes such

as atmospheric radiation and surface processes. In particular, it is able to model the mobilisation

and transport of dust, and the subsequent impact on incomingand outgoing radiation [Kallos

and Nickovic, 2001].

It is run operationally at the University of Athens, and has been used to forecast wind energy

production using a Kalman filter to further improve the raw model output [Louka et al., 2008].

SKIRON is freely avalilable on request, and documentation is available from the Atmospheric

Modeling and Weather Forecasting Group, at the University of Athens.

3.2.5 KAMM

The Karlsruhe Atmospheric Mesoscale Model [Adrian and Fiedler, 1991] is a three

dimensional, non-hydrostatic atmospheric mesoscale model, which has been implemented

for parallel processing [Adrian, 1999]. It uses a terrain-following pressure-based vertical

coordinate.

KAMM was used widely for a time to produce wind atlases in combination with WAsP where

the output from KAMM at scales of a few km is used to drive WAsP using a statistical

dynamical downscaling approach. This technique has been used to derive wind atlases in

a number of countries including Denmark, Ireland, Portugal, and Chile [Frank et al., 2001,

Kalthoff et al., 2002]. However, it appears the model must berun as a steady-state model for

a range of geostrophic wind speeds and inflow directions [Giebel et al., 2002], rather than a

time-series model. Up-to-date documentation on the model is lacking, and it does not appear

to be under active development.

3.2.6 MM5

The Fifth Generation Mesoscale Model (MM5) is the most recent in the ‘MM’ series of NWP

models developed by Pennsylvania State University and NCA.It is a fully compressible

non-hydrostatic mesoscale model, which uses a terrain-following, pressure-based vertical
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coordinate.

Research began on these models in the early 1970s [Anthes andWarner, 1978], and they are

now widely used in academic research. MM5 has been used extensively in numerical weather

prediction, air quality, and hydrological studies e.g. [Mass and Kuo, 1998], both regionally

and locally. For example Yim et al. [2007] coupled MM5 with the mass-conserving microscale

CALMET model and high resolution terrain and land-use data to produce the hourly wind field

at 100m resolution. Jimenez and Tambke [2007] used MM5 to model offshore wind speeds,

comparing the predictions from offshore observations and WAsP simulations. However, the

development of MM5 is frozen, as it is largely being replacedby the Weather Research and

Forecasting Model (WRF).

3.2.7 WRF

The Weather Research and Forecasting modelling system is the most recently developed

mesoscale model, produced mainly by National Center for Atmospheric Research (NCAR)

with collaboration from the National Oceanic and Atmospheric Administration (NOAA), the

National Centers for Environmental Prediction (NCEP) and the Forecast Systems Laboratory

(FSL), the Air Force Weather Agency (AFWA), the Naval Research Laboratory (NRL),

Oklahoma University, and the Federal Aviation Administration (FAA).

At its core, WRF is a fully compressible non-hydrostatic mesoscale model, which uses an

explicit time-split integration scheme, with different time-steps for meteorological acoustic

modes. It actually support two dynamical solvers: the Advanced Research WRF (ARW)

[Klemp et al., 2008b] developed and maintained by NCAR, and the Non-hydrostatic

Mesoscale Model (NMM) [NCEP, 2008], developed by NCEP and mainly used for operational

forecasting. The model architecture is described in more detail in a further section. It owes

a significant amount to MM5, though WRF has been entirely re-written to be a flexible,

portable model, efficient in a massively parallel computingenvironment with advanced data

assimilation techniques.

The success of WRF has largely come from its design as a community model, with dedicated

support and training provided by NCAR, and the encouragement of user contribution to physics

and other parameterisation packages. It has been widely adopted among academic groups due

to its relative ease of use and flexibility, coupled with advanced data assimilation capabilities.
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It is also used in industry, forming the basis of a number of commercial modelling packages.

WRF is run operationally for North America at both NCAR and NCEP, and also at a wide

number of academic institutions (see [WRF, 2011]), including an operational run in the UK by

the National Centre for Atmospheric Science (NCAS).

It has been used in academic studies to numerous to cataloguehere; these include as a regional

climate model [Bukovsky and Karoly, 2009], combined with WAsP for wind energy assessment

[Berge and Bredesen, 2007], for modelling large scale grid integration [Brower, 2010, Ploski,

2007, Potter et al., 2008], as an LES model to examine the detailed flow around wind farms [Liu

et al., 2011], to study the impact of Low-Level Jets (LLJs) onwind power [Storm, 2008], to

study the marine boundary layer [Berge et al., 2009, Sood andSuselj, 2006]. A search on the

Science Direct database lists 240 papers using WRF in 2011 alone.

3.2.8 COAMPS

The Coupled Ocean/Atmosphere Mesoscale Prediction System(COAMPS) [NRL, 2003] is

used and developed by the US Navy for short term numerical weather prediction. As the name

suggests, it can be run in coupled mode with an ocean model, and the atmospheric model solves

the compressible, non-hydrostatic equations using an explicit time-split integration scheme.

The vertical coordinate is a terrain-following sigma coordinate. The model includes a 3D data

assimilation package, which allows the assimilation of ocean observations. As such, COAMPS

is well suited to ocean-atmosphere studies and long-range forecasts, and is reasonably widely

used in this field e.g. [Doyle et al., 2009, Kong, 2002]. Thereis support and training provided

for COAMPS, although the user base is smaller than WRF or MM5.However, for a reanalysis,

using a coupled ocean model may not be necessary when observed SST datasets can be used as

the lower boundary of a non-coupled model.

3.2.9 RAMS

The Regional Atmospheric Modeling System (RAMS) is a flexible mesoscale model

developed at Colorado State University [Cotton et al., 2003, Tremback and Walko, 2005],

largely by Dr. William Cotton and Roger Pielke. RAMS supports two-way and moveable

nests for the tracking features such as hurricanes [Tremback and Walko, 2005]. RAMS uses

a terrain-following sigma coordinate in the vertical, and uses time-split explicit integration
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scheme similar to WRF and MM5.

RAMS has been used in studies too numerous to list here. Theseinclude for operational NWP,

for example at the University of Athens [2011] for regional climate studies [Liston and Pielke,

2000], for air quality modelling [Chandrasekar et al., 2003, Pilinis et al., 1994], and to study

mesoscale features such as LLJs [Liu et al., 2006], and katabatic flow and mountain waves

[Poulos et al., 2007]. Since there is no lower limit to the domain size or the mesh cell size

of the grid, high resolution studies have used RAMS to study microscale phenomena such the

turbulent flow over buildings [Cermak et al., 1995], and the flow over vegetated hills [Paiva

et al., 2009].

The code is freely available and RAMS has a reasonable user base with an active forum.

However the most recent user workshop appears to have been in2006, and there are no regular

training courses.

3.2.10 HIRLAM/HARMONIE

The High Resolution Limited Area Model (HIRLAM) is a synoptic scale model developed

by a broad collaboration of European meteorological institutions. In began development in the

1980s and continues to undergo extensive development and improvement. A ‘reference system’

is maintained by the European Centre for Medium Range Weather Forecasting (ECMWF).

The reference model is hydrostatic, and uses a semi-implicit, semi-lagrangian integration

scheme, and a hybrid vertical coordinate based on the Eta model. It supports sophisticated

data assimilation [Driesnaar, 2011].

HIRLAM is used extensively for operational forecasting, including in Ireland [Hamilton, 2008]

and Denmark [Petersen et al., 2005]. It is used widely for academic studies - the web page

lists several hundred journal papers in recent years [MeteoFrance, 2012]. For example, it has

been used for air quality studies [Rantamaki et al., 2005], and was perhaps one of the first NWP

models to be used for power forecasting for wind farms [Landberg, 1999]. It has a wide and

active user base.

In recent years, the members of HIRLAM have focused on the development of a mesoscale

non-hydrostatic model in cooperation with the ALADIN consortium, leading to the

development of the Hirlam Aladin Research on Mesoscale Operational NWP In Europe

(HARMONIE).
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Global North Atlantic UK
Approximate
resolution

40 km 12 km 4 km

Grid points 640 x 481 600 x 360 288 x 360
Vertical levels 50 38 38
Forecast length 144 hrs 48 hrs 36 hrs

Table 3.2: Standard configurations of the Met Office Unified Model [UKMO, 2008]

The source codes are available for academic use, however support for users external to the

development consortium is very limited.

3.2.11 UK Met Office Unified Model

The suite of oceanic and atmospheric numerical models developed and operated by the UK

Met Office are known as the Unified Model (UM) [UKMO, 2008]. It can be configured

for different domains and resolutions, and can be run in atmosphere-only, ocean-only, or in

coupled mode, enabling it to be used both for weather forecasting and global climate modelling.

For forecasting, the models are usually run in one of the standard configurations outlined in

Table 3.2.

At its core, the UM is a fully-compressible, non-hydrostatic model, which uses a semi-implicit,

semi-lagrangian integration scheme. It has advanced data assimilation capabilities, and is well

parallelised. The source code is available for academic research, but only once a proposal

has been accepted by the UKMO. However the UM has limited support for external users.

In addition, the UKMO have a commercial product, the virtualmet mast, aimed at the wind

industry. This sells archived UM output at the cost of several thousand pounds per grid cell,

which conflicts with one of the aims of this work which is to make similar data freely available.

3.3 Choice of model

The previous sections have briefly reviews some of the main candidate mesoscale models

which could be used to create a high resolution wind speed reanalysis. The review is neither

particularly wide nor deep; to review every available modelin detail would be an enormous

task. The aim is to provide enough information to make a (semi) informed decision about

which model to take forward as the basis for this work.
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Many of the models have similar technical capabilities, solve similar equations, and have

been well validated over many years. In light of this, many ofthe important criteria relate

to the practicality of using a particular model, for examplewhether the code would be easy

to obtain, and whether support is available from other users. A set of criteria were drawn

up to allow comparison of the models available, this is shownin Table 3.3. Most criteria

are self-explanatory: ‘validation’ refers to whether the model has been validated by numerous

studies against observations; ‘documentation’ refers to whether online guides exist explaining

how to install and use the model; ‘maintained’ relates to whether the model appears to be

currently maintained; and ‘interfaces’ relates to whethertools exists to facilitate running the

model and working with the outputs.

The judgements were made entirely subjectively, on the basis of the available documentation,

the existence of user-forums and help desks, and the numbersof references to the model in

recent academic publications.

Model C
ap

ab
ili

tie
s

D
at

a
as

si
m

ila
tio

n

V
al

id
at

io
n

A
va

ila
bi

lit
y

P
ar

al
le

lis
at

io
n

D
oc

um
en

ta
tio

n

S
up

po
rt

U
se

r
co

m
m

un
ity

M
ai

nt
ai

ne
d

In
te

rf
ac

es

MC2 good good ok good good good ok ok ok ok
Eta good good good good good good ok ok good ok
SKIRON good good good good good good ok good good good
KAMM ok poor poor good good poor poor poor poor poor
MM5 good good good good good good good ok poor good
WRF good good good good good good good good good good
COAMPS good good good good good ok ok poor good ok
RAMS good good good good good good ok good good good
HIRLAM good good good good good ok poor good good good
UM good good good poor good ok poor ok good ok

Table 3.3: Comparison of mesoscale models

It can be seen that most of the models were deemed to have good,well validated capabilities.

The deciding factors were mainly how available the code was and the user support. On the

basis of these criteria, the final choice was between WRF and RAMS. Both are technically very

advanced, openly available and widely used.

The final decision was taken to use WRF, based on the better user support provided through a

dedicated helpdesk and forums, and regular (bi-annual at least) training courses. WRF is also

used with the University of Edinburgh to model pollutant transport [Vieno, 2005]. Given this

decision, the following section briefly describes the main features of WRF.
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Figure 3.1: Schematic overview of WRF-ARW model

3.4 Description of WRF

The WRF-ARW model has already been introduced and in§3.2.7 . This section describes the

architecture in slightly more detail, based mainly on Klempet al. [2008b] and NCAR [2008].

However, only a brief overview of the main features is given here. The dynamics and physics

are not presented in detail, as repeating them here would simply be a exercise in copying a

pasting. Some things are best left to the experts.

3.4.1 Model components

WRF consists of two main components, the dynamic model itself, and the WRF Pre-processing

System (WPS). These are shown conceptually in Figure 3.1.

The task of WPS is to interpolate static and dynamic data horizontally onto whatever projection

is chosen for the computational grid. Static data consists of topography and land-use, while

dynamic data consists of the meteorological data needed forinitial and boundary conditions.

Dynamic data is accepted in gridded binary (grib) format, which allows most global forecast

and reanalysis datasets to be used as input. Static data is accepted in a simple binary format. If

custom static data is used, this must be first converted to this binary format.
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3.4.2 Vertical coordinate

WRF uses a terrain-following coordinate based on hydrostatic pressure. It is given the symbol

η (although it is not the step-mountain coordinate used in theEta model), defined as:

ηz =
pz − pht

phs − pht
(3.1)

wherepz, pht, andphs are the hydrostatic pressures at heightz, at the model top, and at the

model surface respectively. Since the hydrostatic pressure is the dry mass of a column,ηz gives

the fraction of mass abovez compared to the total column mass. The upper boundary is a

gravity-wave absorbing layer using a technique by Klemp et al. [2008a].

3.4.3 Governing equations

WRF solves the Euler equations in flux form, which ensures they are mass-conservative with

an explicit integration scheme. The governing equations are listed in [Klemp et al., 2008b].

Variables are defined as perturbations from a hydrostaticlybalanced reference state to reduce

truncation errors. The prognostic variables are the velocity componentsu and v, vertical

velocityw, perturbation potential temperature, perturbation geopotential, and the perturbation

surface pressure of dry air [Klemp et al., 2008b]. There may be prognostic equations for

other variables such as turbulent kinetic energy (TKE), water vapour mixing ratio and others,

depending on the various physics and parameterisation schemes used.

3.4.4 Numerical integration scheme

An explicit integration scheme with a split timestep is used, with acoustic modes are integrated

over a smaller timestep to preserve model stability, allowing a longer timestep to be used

overall. The meteorological modes are integrated with a third order Runge-Kutta integration

scheme. This arrangement makes for an efficient model, as relatively long timesteps can be

used and remain numerically stable.
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3.4.5 Horizontal coordinate

Variables are defined on a C-staggered horizontal grid [Klemp et al., 2008b]. This means scalars

are defined at the centre of grid cells, while vectors defined at the boundaries of the cells.

Figure 3.2: C-staggering in the horizontal direction. Vertical velocities are similarly staggered,
and defined on the lower and upper faces of the grid cube.

3.4.6 PBL and surface schemes

PBL schemes exist to allow the effect of sub-grid scale boundary layer processes - turbulent

mixing - to be reflected in the model. It is worth noting that although the schemes are known

as PBL schemes, they actually handle vertical mixing throughout the atmosphere, including

above the PBL. It is also worth mentioning that, over water, the surface roughnessz0 and

friction velocityu∗ both depend on each other, and therefore must be solved iteratively.

The surface layer scheme computes the parameters needed to calculate fluxes of heat, moisture

and momentum between lowest model level and the surface. These fluxes then provide the

lower boundaries for the PBL scheme. The parameters passed from the surface scheme to

the PBL are the friction velocities and exchange coefficients for heat, moisture and momentum.

The ground surface scheme governs the exchange of moisture between soil layers and, provides

inputs into the surface scheme. Usually only certain combinations of surface, ground surface

and PBL schemes can be used together.

WRF supports a number of PBL and surface schemes. The two generally recommended

for use with WRF (Dudhia, personal communication), are the Mellor-Yamanda-Janjic (MYJ)

scheme [Janjic, 2002], and the Yonsei State University (YSU) [Hong et al., 2006].

The MYJ scheme is a local, 2.5 order Turbulent Kinetic Energy(TKE) scheme. A diagnostic

relationship is used to determine the mixing length. A prognostic equation for the production or
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dissipation of TKE is then used to update the TKE at each timestep. Since it is a local scheme,

the prognostic equation for TKE production is based only local gradients.

In WRF the MYJ PBL scheme must be coupled to a surface layer scheme inherited from the Eta

model [Janjic, 1996], which uses the Businger-Dyer forms ofthe stability correction functions

(see§2.6.3). Over water, exchange coefficients are calculated from the viscous sub-layer, except

for momentum in rough sea conditions which is prescribed by aCharnock relation.

The YSU PBL scheme [Hong et al., 2006] is a development of the Medium Range Forecast

(MRF) scheme which became widely used in MM5. YSU is a non-local scheme which first

diagnoses the PBL height, and then constraints the eddy diffusion coefficient,K, to a prescribed

profile through the PBL. It is non-local as it contains a correction to the local gradient which

incorporates the effect of large-scale eddies to the total flux [Hong et al., 2006].

In WRF, the YSU scheme must be coupled to the surface layer scheme inherited from MM5

(see [Bianco, 2008]). In this scheme there are four stability regimes and associated correction

functions following [Zhang and Anthes, 1982]. Over water, surface roughness is estimated by a

Charnock relation, and exchanges calculated using the samestability correction functions used

over land.

It is also worth noting that the surface and PBL schemes typically impose limits on some of the

variables to prevent spuriously high values. For example inthe YSU surface scheme, the bulk

Richardson number is constrained to be< 0.2 [Bianco, 2008]

3.4.7 Static data

Land use

By default WRF uses a land-use dataset referred to in the documentation as the US Geological

Survey (USGS) dataset. Land use categories from this are used to designate various parameters

such as surface roughness and leaf-area index for determining evapotranspiration rates. Despite

its importance, metadata on the exact source of this ‘USGS’ dataset is severely lacking. Sertel

and Robock [2010] indicates the source is the land cover dataset of the International Geosphere

Biosphere Programme (IGBG) [Loveland et al., 2000]. This was produced from unsupervised

classification of 1km resolution Advanced Very High Resolution Radiometer (AVHRR) images

dating from 1992 and 1993. As such, the USGS dataset is generally considered outdated [Sertel
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and Robock, 2010].

The alternative dataset which is readily available for use in WRF is the land-use derived from

Moderate Resolution Imaging Spectroradiometer (MODIS) images Justice et al. [2002]. This is

generally thought to be more up to date and more accurate, though not without problems [Giri

et al., 2005]. For this to be used in WRF requires the NOAH land-surface scheme [Ek et al.,

2003].

It is possible to use other land-use datasets in WRF. For example it may be beneficial to use

the CORINE dataset [European Environment Agency, 2000] forEuropean land use, which is

thought to be more accurate [Neumann et al., 2007] However, there is no consensus on how

land-use categories map to each other, and various assumptions would have to made on the

roughness lengths and leaf-area, on top of the practical difficulty of converting this into the

binary format required for WPS.

Terrain elevation

The default source of terrain elevation comes from the Shuttle Radar Topography Mission

(SRTM) data [Farr et al., 2007]. It is available by default inWRF at resolutions of up to

30 arc-second resolution, which equates to around 500m resolution at the latitude of the UK.

Since SRTM data is generally known to be very accurate, and since terrain input into models is

usually smoothed to reduce noise, the SRTM data is adequate,and there is no need for higher

resolution terrain data, unless modelling down to a very high resolution.

3.4.8 Analysis nudging

Nudging is a method of directing a model toward a a particularsolution. When a mesoscale

model is driven by a global reanalysis, it is possible for themesoscale model to diverge from

the larger global analysis. For example, a storm may follow adifferent track within the high

resolution model compared to the analysis. Analysis nudging is a way of keeping the mesoscale

model ‘on track’ with a larger set of global observations.

WRF implements analysis nudging through Newtonian relaxation [Klemp et al., 2008b]. Each

grid point is nudged toward a value which is time-interpolated from the analysis, by introducing

a nudging term for horizontal winds, potential temperatureand water vapour. The nudging
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terms are not physical and represent fake sources or sinks for conserved variables.

It is usually not recommended to use nudging within the PBL, particularly with temperature

[Dudhia, 2010, Zhang et al., 2001], as the PBL scheme within the model ought to give a more

realistic representation of the temperature profile than aninterpolation from an analysis.

3.4.9 Data assimilation

WRF supports a range of data assimilation options includingobservational (Newtonian)

nudging, three-dimensional and four-dimensional variational assimilation (3DVAR and

4DVAR), and also an Ensemble Kalman Filter (EnKF) through anexternal package.

However, doing additional data assimilation at a regional level is no mean feat. Any datasets of

sufficient quality and coverage will already have been assimilated into the global model, after

the application of sophisticated quality controls developed over several decades. Assimilating

data from specific point sources, of unknown quality, is verylikely to degrade the performance

overall.

Perhaps the only candidate data source which might be assimilated is sea-surface winds from

satellite scatterometers, described in more detail in Chapter 6. Although these are already

ingested into global models, there is some indication that they are under-utilised compared to

traditional in-situ measurements [Chelton et al., 2006]. However, the computational costs and

complexity of doing this well, coupled with the difficulty oftreating the coastal zone where

satellite winds become contaminated, meant this option wasdeemed too difficult to attempt.

3.4.10 Parallel environment

WRF supports MPI and OpenMP parallelism. The model domain isdecomposed into tiles,

which can be further decomposed into patches. Tiles are assigned to MPI tasks with their own

memory space which communicate via message passing; patches within a tile are assigned to

OpenMP threads. Domain decomposition provides a limit on scaling performance of WRF, as

at some point tiles within a domain become too small to fully utilise individual CPUs, and the

latency of message passing degrades performance.
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3.5 Chapter review

The previous chapter outlined the context for the work, and described the decision to use a

mesoscale atmospheric model to create a high resolution dataset of wind speeds of the UK and

surrounding waters.

This chapter briefly reviewed available mesoscale models interms of their capabilities and

ease of use. On the basis of this review, the WRF model was selected. This model was

then described in more detail, outlining the model structure, the datasets available, and the

parameterisation schemes supported. The capabilities fordata assimilation were also touched

on, and the decision not to use additional data assimilationexplained.

This chapter provides the definitions and background for thefollowing chapter, which describes

the use of a case study simulation to test different model configurations against observations.
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Chapter 4
Observations and Model

Configuration

4.1 Introduction

There are a large number of different options to consider when running an atmospheric model

such as WRF, for example, the layout and resolution of model domains, the number and spacing

of vertical levels, how observations are used to constrain the model, and how a variety of

sub-grid scale processes and land-model interactions are represented.

The model configuration has to be chosen carefully. However,computational expense makes

it impractical to evaluate all possible model permutations. Conversely, it would be unwise to

commit to a very large simulation without having done some testing and verification first; this

obviously requires a set of observations to verify against.

For these reasons, a week-long case study was simulated to allow different model configurations

to be tested and compared to observations. This chapter describes some practical constraints

encountered during this phase of work, the observations used for verification, the model options

which were held constant throughout the case study model runs, the model options which were

varied, the error statistics used for verification, the casestudy chosen, and the comparative

performance of different model configurations. The final model configuration is then selected

to be carried forward into the main simulation stage.

4.2 Computing platform and practical constraints

Producing a reanalysis dataset which covers ten years or more at a reasonable resolution is a

computationally demanding task only feasible using a parallel computing environment. Initial

testing revealed very quickly that the local computing cluster, which despite its 128 cores, was

insufficient for this task. This was mainly due to the use of standard shared ethernet as the

interconnect with relatively high-latency. Under these conditions, WRF cannot be effectively
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parallelised since the network latency quickly becomes a bottleneck, and performance actually

deteriorates when run on a large number of cores.

Therefore an application was made for an account on the High-End Computing Terascale

Resource (HECToR). HECToR is a world-class high performance computing facility to support

UK based research institutions [UKRC, 2011], which at the time had around 10 000 cores,

subsequently upgraded to around 90 000.

There is a defined process for securing an account, and a hierarchy of classes which allow for

different allocations. At this model configuration phase, an application was submitted under the

Class 2a mechanism, designed to support pump-priming and exploratory research, and to allow

new users access to a high-performance computing environment. Under this mechanism 200

000 Allocation Units (AU) were granted for the testing and configuration of WRF. One AU is

equivalent to a 1 GFlop (floating point operations per second) processor running for one hour.

For comparison, a typical modern desktop CPU might be rated at 30-40 GFlops, therefore 200

000 AU is roughly equivalent to5000 hours on a single CPU.

This allocation had to be used within a fixed timescale; in addition the configuration had to be

completed reasonably quickly in order to apply for a larger allocation. Therefore the number

of test cases and extent of configuration was limited by practical constraints on the time and

resource available. This meant that all permutations couldnot be tested, and also that some

observation were not available during this phase.

4.3 Parallel performance

With an account established on HECToR, a test domain covering the whole of the UK at

3km was established to test the parallel performance of WRF and estimate the computational

requirement of later stages. Performance was measured by the number of integration steps

performed per wallclock (i.e. real) hour..

WRF was compiled using the Portland Group Compilers (PGI), with only Message Passing

Interface (MPI) parallelisation. Testing showed no performance gains using hybrid (MPI +

OpenMP). The scaling performance is shown in Figure 4.1. Scaling is almost linear at core

counts below 150, and begins to diminish above two hundred, although reasonable scaling is

still seen up to 512 cores. A much larger model domain would beneeded to see continued
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performance gains beyond 512 cores, otherwise the individual tiles and patches become too

small to make efficient use of the processors.

Figure 4.1: Parallel performance on HECToR. Number of integration steps per wallclock hour
vs core count

4.4 Observations

This section details the observations which were used throughout the course of the study.

Some of the observations were not publicly available and required (in some cases lengthy)

negotiations before they could be used. Others were publicly available but required some effort

to obtain and process. This meant that not all datasets were available during the configuration

phase. They are described here for completeness and consistency, so that the descriptions are all

contained within one section. At the end of this section, Table 4.5 summarises which datasets

were available during the configuration phase.

4.4.1 Anemometers

Many of the observations come from cup anemometers. A typical modern cup anemometer

states an accuracy of±2% [Manwell et al., 2002a, p72]. However, when deployed the accuracy

depends on many factors including turbulence intensity andthe inclination of the mean flow

[Pedersen, 2003]. As turbulence increases, cup anemometers tend to record a higher signal due

to the inertia of the cups, termed ‘overspeeding’ [Kristensen, 1998]. Additionally there may

be flow distortion caused by the mast. Therefore it is difficult to specify the exact measurement

error of a deployed anemometer, and the stated accuracy is likely to be a lower bound on the
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actual error when deployed.

All cup anemometers have a minimum speed needed to overcome the inertia of the cup, which

for some older anemometers may be as high as six knots (3 ms−1). In addition, a malfunctioning

anemometer may report a zero wind speed, which may not be flagged as an error. This means

that calms are much more common in observed data than would beexpected.

4.4.2 Meteorological stations

The UK has a large network of meteorological stations (hereby referred to as met stations)

observing synoptic and climatic variables. A database of historic measurements is maintained

as the Met Office Integrated Data Archive System (MIDAS) [BADC, 2006]. This contains

surface observations as far back as the digital record extends, as well as radiosonde

measurements and some marine observations.

UK met stations are organised into networks to suit different end-users. The basic network

types are synoptic, climate, wind, and rainfall. One station can report observations to multiple

networks, and may have a different identifier within each network. Within MIDAS, stations

are identified uniquely by theirsrc id. Observations to a particular network take the form of a

standardmessage, reported using a standardmessage type.

The synoptic network is designed for real-time exchange of information to support weather

forecasting. There are 225 stations reporting to the synoptic network in the UK, with a

guaranteed spacing of less than 50 km [UKMO, 2010]. Observations reported to the synoptic

network are encoded in the international SYNOP message format. Wind speed is reported as a

10-minute average and the UK uses a non-standard observation period of HH-20 to HH-10 i.e.

a wind speed reported at 0500 GMT will represent the average between 0440-0450 GMT.

Most stations in the synoptic network, plus some additionalstations, also report hourly-average

wind speeds in the Hourly Climate Message (HCM) format1. Hourly averages cover the period

HH-70 to HH-10 [UKMO, 2010, Section 5.5]. Speed and direction are averaged separately,

and maximum gusts are calculated from 3-second averages of speed. Table 4.1 summarises the

variables and precision recorded.

Hourly-averaged wind speeds for the 11 years 2000-2010 weredownloaded and stored locally

1Automatic weather stations use the AWSHRLY format
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in a relational SQL database. MIDAS data is quality checked by the Met Office before being

archived and erroneous records are flagged; only records flagged as clean were used in this

study. Missing data averaged5% of the total number of observations.

Data from Irish met stations was obtained from MetÉireann. The data was very similar

in nature to the UK data: hourly averaged wind speeds and direction mainly from cup

anemometers at 10m agl.

Variable Units and precision

Mean hourly wind direction 10 degree bins
Mean hourly wind speed 1 knot bins
Direction of maximum gust 10 degree bins
Speed of maximum gust 1 knot bins
Time of maximum gust Nearest minute
10 cm soil temperature 0.1◦C
Global irradiation W hr/m2

Table 4.1: Variables reported in the HCM and AWSHRLY messagetype

Instrumentation

A met station is a collection of measuring instruments at a particular site. Wind speeds are

measured by an anemometer with a ‘standard exposure’ meant to be equivalent to 10m above

open terrain. The MIDAS user guide [UKMO, 2010] states:

“The standard exposure is over level, open terrain at a height of 10m above
the ground. Open terrain is defined as an area where the distance between the
anemometer and any obstruction is at least 10 times the height of that obstruction.
If standard exposure is unobtainable the anemometer may be installed at a height
greater than 10m. Whether or not such an adjustment is made, all anemometers
are allocated an ‘effective height’ which is defined as the height above open, level
terrain in the vicinity at which mean wind speeds would be thesame as those
actually recorded by the anemometer. Various methods have been devised for
the calculation of effective height. At stations where the effective height differs
substantially from the actual height, corrections are applied to the 10-minute wind
speed reported in the SYNOP message. No corrections are applied to any gusts
measurements or to any hourly mean wind speeds. ”
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Figure 4.2: Bealach na Ba met station: the anemometer mast ison the right. Picture taken by
the author.

Problems with met station observations

The main problem with met station observations is that they are taken at 10m agl, and are

therefore influenced by surrounding obstacles and local orography. Although masts are meant

to have a standard exposure, this is not exact and may vary with direction. Figure 4.2 shows

one particularly extreme example: the Bealach na Ba met station in mountainous terrain in

Scotland. The mast itself is clearly well below 10m agl and inthe lee of a building which will

distort the flow substantially. The surrounding terrain is very complex: the station is perched

above the steep headwall of a valley which leads from the sea.

Another issue is that instrumentation varies between stations and over time. Older and heavier

cup anemometers had slow response and high start-up speed. In particular the Munro MK4

had a start-up speed of 6 knots, and was in common usage. A programme to replace these

with lighter anemometers was started in the 1990s, but it is unclear from the record when this

occurred at a particular station, or whether any are still inuse today. A high start-up speed would

show up as a large frequency of zero speeds, which is found in many met station records. Wind

speeds are only recorded as an integer number of knots and histograms for some met stations

show regular spikes and troughs, suggesting a bias in binning method, Figure 4.3.

Another problem is inaccurate location information: Boehme [2006] found the latitude and

longitude recorded in the MIDAS database to be inaccurate, and corrected the locations for 21

selected stations in Scotland based on OS maps. The UK Met Office has since updated the
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Figure 4.3: Example of the binning problem: observed hourlywind speeds and fitted Weibull
parameters at Lerwick, 2005. Original one-knot bins (left)and two-knot bins (right)

coordinates of the met stations, and these updated locations were used in this study.

Boehme [2006] also rated the exposure of each met station in order to select only the exposed

stations. However, selecting met stations by this method for verification would risk excluding

stations in complex terrain, and could lead to an unrealistic assessment of model performance.

Therefore, no attempts were made to choose ‘better’ met stations, or weight some observations

over others.

Despite these problems, the density and historical record of surface met stations means they

offer a very comprehensive way of verifying onshore surfacewind speeds.

4.4.3 Wind farm masts

Wind farms typically require at least a year of observationsto secure finance, and typically will

continue to monitor wind speeds over their operation, although this data is usually commercially

sensitive. Scottish Power Renewables (SPR) kindly provided pre-construction data for three

sites, and Community Wind Power provided data for three sites, summarised in Table 4.2. This

data is covered under a non-discosure agreement and the mastlocations or raw time-series are

not revealed.

These masts are important for a number of reasons. First, they are at sites characteristic of actual

wind farms, which is not always the case with met stations. Second, they are independent and do
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Label Location Terrain Period Instrument heights Farm status at time

S1 England Flat Mar 2003 - Mar 2004 10m, 50m Pre-construction
S2 Scotland Moderate Nov 2003 - Dec 2004 20m, 30m, 40m Pre-construction
S3 Scotland Complex + Forestry Jun 2001 - Nov-2004 20m,30m,40m Pre-construction
C1 Scotland Moderate + Forestry Jan 2007 - Jan 2010 30m Operational
C2 Western Isles Moderate Jun 2005 - Mar 2007 30m, 40m, 50m Operational
C3 Scotland Moderate Jan 2010 - Jan 2011 80m Operational

Table 4.2: Windfarm met masts used for verification. ‘S’ mastdata provided by Scottish Power
Renewables Ltd, ‘C’ mast data provided by Community Wind.

not report to central meteorological organisations, and hence have not been assimilated into any

reanalysis datasets. Third, mast heights are significantlyhigher than met station observations,

up to 80m in the case of mast C3.

However, the measurements are still subject to flow distortions caused by the mast and the local

orography. In the case of the masts at operational farms, there may be major wake effects due to

the wind farm. Masts are usually located in the prevailing upwind direction, in order to sample

the free-flow, but will be in the park wake from some directions. Also, the wind speeds are

provided as raw-data, and extensive quality-control and data cleaning is usually applied to the

raw wind speeds before being used commercially (Scottish Power, personal communication).

4.4.4 Buoys

The Met Office has a series of buoys, and the Irish Marine Institute has a network of six buoys,

five of which were inside the model domain. Buoy locations areshown in Figure 4.5. The

deployment dates of the Irish buoys are summarised in Table 4.3. M4 was moved in May 2007,

so has been labelled M4a before the move, and M4b after.

Buoy Deployed

M1 Nov 2000
M2 April 2001
M3 July 2002
M4a April 2004
M4b May 2007
M5 Oct 2004

Table 4.3: Deployment dates of Irish Marine Institute Buoys

All of the buoys used here record wind speed primarily via a cup anemometer, with a typical

accuracy of around±2kn below 40kn and±1.5% above 40kn [Turton, 2009]. Some Met Office

buoys are being re-equipped with dual cup and sonic anemometers [Turton, 2009]. Out of the

50



Observations and Model Configuration

Figure 4.4: Raw buoy data showing frequent missing data and sharp spikes. The spikes were
removed with a simple quality control algorithm

water the buoys are 6m high, so for verification it was assumedthe anemometer was at 4m

when afloat.

Missing data is relatively common, both individual missinghours and longer periods. For

example, the K7 buoy was lost on 27th of October 2000 and replaced in September 2001.

Buoys need frequent maintenance, and the time to failure forthe anemometer may be as little

as six-months [Turton and Pethica, 2010]. Before failure, quality may degrade substantially

over time, and salt ingress into the oil slows the anemometer[Turton and Pethica, 2010].

Given the low height, in moderate seas they will be in the direct influence of roughness elements

(waves), and surface-law scaling may not necessarily apply[Large et al., 1995]. Also, buoys

are thought to be affected by wave sheltering [Gilhousen, 2006]. However, averaging over an

hour should reduce the effect of swell on the readings, although flow separation in very high

waves may still be a problem [Ingleby, 2010].

UK buoy data was supplied before any quality control had beenapplied, and showed occasional

spurious spikes of winds speeds> 40ms−1, Figure 4.4. These spikes were obvious as

single-hour spikes, not matched by neighbouring readings.For that reason, a simple quality

control algorithm was applied: any wind speeds which were above 30ms−1were cross-checked

against the nearest neighbouring buoy or met-station. If the wind speed there was less than

10ms−1, the spike was flagged as erroneous. This successfully eliminated the small number

< 300 of erroneous observations.

4.4.5 Lightships

The Met Office operate a number of lightships. These are smallmoored ships which act as

lighthouses and automatic weather stations; these are dedicated vessels, distinct from voluntary

observing ships. Ship winds are known to be higher than buoy winds, even after the height of
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the anemometer has been accounted for [Gilhousen, 2006], which may be due a combination

of the sheltering of buoys in high waves and acceleration of the flow by the ship. Yelland et al.

[2002] found significant de-acceleration or acceleration of the flow can occur depending on the

position of the anemometer on the ship and the wind direction.

4.4.6 Oil Platforms

Shell kindly provided data from the Auk Alpha, Lemana A, and Nelson A oil platforms,

Figure 4.5, for the month of January 2005. The exact instrumentation on the platforms

varies although they are all cup anemometers similar to those used at onshore met stations.

The instruments are at heights above mean sea level of 100m, 78m and 110m respectively.

Wind speeds are reported as 10-minute averages, and are further averaged to hourly values for

verification.

The largest problem with platform observations is the platform’s influence on the flow. The

platforms are large, bluff bodies in an otherwise open sea. The effects are complex, site and

direction specific, and would require detailed flow modelling to correct [Högström et al., 2008].

Therefore, oil platform winds are not used in the calculation of error statistics, but they are used

to check the time series of wind speeds and the timing of majorfeatures appears sensible.

4.4.7 Radar profilers

UKMO have a number of radar profilers which can measure wind speed at multiple heights

through the troposphere. The main purpose is to observe high-level wind speeds, and typically

the minimum observation height is 100m or more, which makes them less useful for surface

verification. Some of the profilers are mobile and occasionally move location; the locations,

heights, and time periods covered are summarised in Table 4.4.

4.4.8 Satellites

There are a number of satellite-derived sources of wind speed data over oceans, see e.g. [JPL,

2010, Nielsen et al., 2004], and satellite data have been used in a number of resource assessment

studies e.g. [Capps and Zender, 2010, Christiansen et al., 2006, Hasager et al., 2002, Kim et al.,

2010]. However, it is a relatively new discipline and the uncertainties in the methods are not
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Name Heights (km) Dates
Min Max Step (m) From Until

Cambourne 0.3 8.0 60 1998 Present
South Uist (915 MHz) 0.2 8.0 100 2003 2004
South Uist (64 MHz) 1.0 13.0 400 2004 Present
Dunkeswell 0.1 7.9 100 1999 Present
Wattisham 0.2 8.2 100 2001 Present
Isle of Man 0.3 8.0 60 2005 2008
Aberystwyth 0.3 8.0 60 1999 2002

Table 4.4: Summary of radar profiler data held by UKMO

fully quantified [Barthelmie and Pryor, 2003]. Although satellite data was not be obtained until

after the configuration phase, it is used extensively in later chapters, so is described here for

completeness.

The source which offers the longest contigous record of ocean winds comes from the remote

sensing of microwave backscatter from centimetre-scale capillary waves, which allows wind

speed and direction to be estimated. Dedicated active sensing scatterometers for wind speed

and direction have been carried on a number of satellites since the early 1990s, notably NSCAT,

QuickSCAT, and ASCAT [JPL, 2010]. Together, QuickSCAT and ASCAT provide an almost

continuous record over the study period, and for that reasonwere used for this study.

There are other satellite sources of wind speeds, such as theEuropean Remote Sensing satellites

(ERS-1 and ERS-2), TOPEX/Poseidon and others. JPL [2010] gives an excellent review of

satellite data sources. However, working with multiple satellite datasets at different spatial

and temporal resolutions, with different accuracies, masked at various distances from the

coast, presents significant practical difficulties, without necessarily adding extra detail. The

Cross-Calibrated Multi-Platform Ocean Surface Wind Velocity Product (CCMP) dataset [JPL,

2010] would have been ideal to use, except that it is masked very conservatively near the coast,

sometimes up to 100km from the coast, making it unsuitable inits current form.

Therefore, only scattermeter winds from QuickSCAT and ASCAT were used, as these offered

the best coverage, resolution, and proximity to the coast. Since scatterometer winds are used,

the equivalent neutral wind is now introduced, before the sources are described in more detail.
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Equivalent neutral wind

Scatterometers measure backscatter from capillary waves,which are assumed to be in

equilibrium with the surface stress,τ . The surface stress is then converted into an Equivalent

Neutral Wind (EQNW),Un, usually at 10m above the surface [Liu et al., 1996]. This

represents the wind speed which would exist at that height ifthe atmosphere were neutral.

Un < U in stable conditions, andUn > U in unstable conditions.

There are a number of algorithms to derive actual wind speed from EQNW [Liu et al., 1996,

Winterfeldt et al., 2010]. Generally these require air temperature, sea temperature and humidity,

although humidity can be assumed with minor consequence [Babin and Thompson, 2000].

However, many authors [Chelton et al., 2006, Kara, 2008, Sampe and Xie, 2007, Winterfeldt

et al., 2010] note that the difference between the neutral wind and the actual wind at 10m

is relatively small. For example, Kara [2008] found the difference between monthly-averaged

stability-dependent and neutral winds was 0.2ms−1, while the difference in hourly values was at

most 0.5ms−1. Sampe and Xie [2007] found that for high winds, the difference due to stability

was around 0.2ms−1.

It light of this, it was decided to use the EQNW directly, since attempting to correct it based on

air and sea temperature, which may themselves have errors, is just as likely degrade rather than

improve the quality of the wind speeds.

Quickscat

The SeaWinds scatterometer was launched on the QuickSAT mission satellite in 1999, as a

‘quick recovery’ following the early failure of the NSCAT satellite. It provided data from 1999

until until 2009 and is probably the longest and highest resolution single satellite record of

surface winds over the period in question.

In mid-latitudes it provides observations twice per day, onthe ascending and descending path.

Accuracy is estimated as 0.75 ms−1in the along- wind component and about 1.5 ms−1in the

crosswind component [Chelton et al., 2006], and it has been shown to have little or no bias when

compared to in-situ observations [Wallcraft et al., 2009, Winterfeldt et al., 2010]. QuickSCAT

retrievals are known to be contaminated by heavy rain (this is flagged), although accurate

assessment is still possible provided winds are relativelystrong, and Chelton et al. [2006]

suggests the extent of rain contamination has been over-estimated.
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Satellite data is available on a number of processing ‘levels’. Level 1 data represents the raw

data i.e. scatterometer returns. Level 2 represents one stage of post-processing: for QuickSCAT

this consists of wind speeds and directions on the original 12.5km swaths corresponding to the

ascents and descents of the satellite. Level 3 data represents globally gridded data on a regular

spatial grid.

Working with Level 2 data is difficult, since it is not on a regular spatial grid, and therefore

Level 3 data was used here. The Institut Français de recherche pour l’exploitation de la mer

(Ifremer) produce a globally gridded dataset on a 0.5◦grid [Ifremer, 2002]. Average wind fields

are derived from discrete observations by an objective kriging technique [Ifremer, 2002]. The

advantage of this dataset over others is that wind speeds arenot explicitly masked near the

coast, allowing users to define their own mask based on sensible values of the wind speeds

(scatterometer readings over land produce wind speeds of> 60 ms−1). This allows a much

closer mask to be used compared to other Level 3 datasets, which are typically masked within

20 or 30km of the coast. In March 2011 a coastal dataset from QuickSCAT winds was released

which gets within 5km of the coast [Vanhoff et al., 2009]; this is only available for the eastern

coast of the US.

ASCAT

The Advanced Scatterometer (ASCAT) is carried on board the European Space Agency’s

MetOp satellite, launched in 2007. It has lower horizontal resolution than QuickSCAT, with

an effective resolution of 25km rather than 12.5km grid. Thestated accuracy of the 10m

wind speed is 0.5ms−1bias, and 2ms−1Route-Mean-Square Difference (RMSD), and it has

been found to compare very well to buoy and QuickSCAT data, particularly within the range

3-20ms−1[Bentamy et al., 2008].

Ifremer provide a globally gridded dataset derived from ASCAT at 0.25◦resolution. This uses

ECMWF analysis data to derive the real ocean wind (rather than the EQNW), and also for

temporal interpolation so that so that a more accurate dailyaverage can be assessed from the

two passes of the satellite [Bentamy and Fillon, 2011].
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4.4.9 Summary of observations

This section has outlined all of the observational data usedin the course of this study. Many of

the observational datasets described were not available during the configuration phase of this

work, but are described here for completeness. Table 4.5 summarises the datasets used in each

stage, and the locations of all the in-situ observations areshown in Figure 4.5.

Class Type Source Number Period Available
during
configuration

In-situ UK met stations UK Met Office 200 11 years yes
Irish met stations Met́Eireann 22 11 years no
Wind farm masts Scottish Power Renewables 3 ∼ 2 years no
Wind farm masts Community Wind Scotland 3 ∼ 2 years no
UK buoys UK Met Office 4 11 years no
Irish buoys Irish Marine Institute 5 ∼ 4 years yes
Lightships UK Met Office 4 11 years no
Oil Platforms Shell UK 3 1 month yes

Remote sensing Radar profilers UK Met Office 6 ∼ 10 years no
QuickSCAT satellite Ifremer - 9 years no
ASCAT satellite Ifremer - 2 years no

Table 4.5: Summary of observations available during and after the configuration phase

Figure 4.5: Locations of in-situ observations
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4.5 Options held constant

Certain aspects of the model configuration were dictated by the available computational

resource, storage requirements, and other practicalities. This section describes the options

which were defined in advance and not varied between model runs.

4.5.1 Domain and horizontal resolution

One of the most influential choices is model resolution, since this determines the scale of

features which can be explicitly represented, and also influences the choice of parameterisation

schemes. An important aim is to ensure a clear separation of grid-scale processes, which are

modelled explicitly, and sub-grid process which must be parametrised.

For a given domain size, the number of grid points in the horizontal dimension increases with

1/(∆x)2, where∆x is the horizontal grid spacing. In addition, the time-step must be decreased

with ∆x to maintain numerical stability. Therefore the number of grid points per vertical level

increases as1/(∆x)3. If nv is the number of vertical levels, the total computational requirement

isO(nv/(∆x)
3), and hence the resolution quickly becomes a limiting factoreven on the most

powerful computers.

Additionally, to perform high-resolution simulations, itis generally recommended to use a

series of nested domains of increasing resolution. This ensures a smooth transition from the

relatively coarse boundary conditions to the high resolution inner domain, and limits the impact

of noise from the boundaries. The horizontal resolution of the child domain must be smaller

than the parent by an integer factor, and a nest factor of 3 or 5is often recommended [NCAR,

2008].

With a requirement for a dataset spanning the whole UK and surrounding waters for a period of

at least 10 years, initial simulations showed that 3km was the highest resolution feasible in the

inner domain. At this resolution, with a minimal set of output variables (listed in Appendix B),

each day of raw output required 30GB of storage space, and onemonth of simulations could be

completed in 12 hours using 512 processors.

The model domains used are shown in Figure 4.6. A Lambert conformal conic projection is

used, which is well suited to mid-latitudes [NCAR, 2008] andis also well supported by most

post-processing and visualisation tools. The projection is defined by a central meridian of 5◦W
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and one standard parallel at 54◦N.

A nest factor of 3 is used, with the outer domain at 27km which is approximately a factor of

three less than a resolution of 1◦ typically found in global reanalysis datasets.

Figure 4.6: The model domains at 27km, 9km and 3km resolution.

4.5.2 Vertical levels

The number of vertical levels was set at 28. Although this maybe on the low side, it has

worked well in previous studies [Vieno, 2005], and was a tradeoff to allow a higher horizontal

resolution. Although the total number of vertical levels was fixed, the spacing was varied to

position moreη levels close to the surface, as it was thought this may improve predictions of

the wind profile close to the ground, and also limit any errorsintroduced when interpolating

from η to height levels.

Figure 4.7: Typical heights above the surface ofη levels over one month.
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Figure 4.7 shows the typical height above mean sea level of the increased spacing. This is

illustrative for a point over the sea for one day in January; as described in§3.4.2, η levels

are pressure-based and terrain-following so vary with timeand terrain height. However the

variation in height of the lowest three levels is relativelysmall, and was< 1%.

4.5.3 Microphysics and cumulus schemes

Since the primary focus of this study is wind speeds rather than precipitation, different

microphysics and cumulus schemes were not compared. However, precipitation and cloud

fraction outputs may be useful for future work, such as for examining solar and hydro resource,

so it is still preferable to use sensible schemes for these. Additionally, the choice of scheme

may have implications for wind speed, for example by removing atmospheric instabilities

through enhanced convective mixing.

Following guidance in NCAR [2008], a Kain-Fritsch cumulus scheme [Kain, 2004] was used

in the outer two domains, though not in the inner 3km domain, which may be at (just) high

enough resolution not to require a scheme. A five-class microphysics scheme [Hong et al.,

2004] is used, a simple downward shortwave radiation scheme[Dudhia, 1989], and the Rapid

Radiative Transfer Model [Mlawer et al., 1997] for long-wave radiation were used throughout.

These and all other options are specified in Appendix B.

4.5.4 Time resolution of output

To maintain numerical stability, an integration time-step, ∆t, in seconds, of roughly6∆x, in

km, is recommended [NCAR, 2008]. With an inner resolution of3km, this means∆t ≈ 18s.

To ensure the output fits into a whole number of minutes, a timestep of 15s was used in the

inner domain, achieved using a timestep of 135s in the other domain.

It is infeasible to store the output every 15 seconds. First,writing so frequently to disk

would severely slow down the simulation; second it would require far too much storage (many

hundreds of Terabytes); third since WRF solves the Reynold’s averaged equations, even at high

frequency the output only represents the evolution of steady wind component, not turbulent

fluctuations, so storing output more frequently does not necessarily add more information.

Figure 4.8 shows a comparison between WRF output archived atten-minute and one-hour

intervals over the course of a meteorologically active day.Although the 10-minute output
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Figure 4.8: Output from WRF at 10m and 1h intervals over the course of one day. The 1h
output reveals little more detail than the 10m

shows some more variation, very little information is addedto the hourly output, while the

storage requirement is increased six-fold. Therefore the final output was stored at one-hour

resolution.

4.5.5 Boundary conditions

Boundary conditions are taken from the NCEP/NCAR Final Analysis (FNL) dataset [NCEP,

2010]. These are archived analyses at 00z, 06z, 12z and 18z from the NCEP Global Forecast

System (GFS) see e.g. Werth and Garrett [2010], on the operational grid ‘003’, at approximately

1◦ resolution.

This dataset is similar in nature to the NCEP/NCAR reanalysis [Kalnay et al., 1996], but at

higher resolution and more recent, although with no guarantee that the modelling system is

fixed throughout the analysis period. The GFS assimilates data from all validated sources

reporting to the Global Telecommunications System (GTS). This includes global radiosonde

data, surface observations and satellite data [Kalnay et al., 1996].

The advantage of using the operational analysis rather thana re-analysis is the increased

resolution, the more recent time coverage, and the most recent model configuration, using the

most assimilated data. The disadvantage is that the configuration is not fixed over the period,

so that the quality of data may change over time, with potential step-changes in variables as

configuration is changed. According to Werth and Garrett [2010], the most significant change

in the GFS over the period in question was the update in resolution, from T254 (around 50km) to

T382 (around 35km) on 30 May 2005. However, improvements areonly made after significant

testing and verification, and so small improvements are morelikely than large step changes.
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It was also hoped to use data from ECMWF, such as the ERA-Interim reanalysis [Uppala et al.,

2005] for comparison. However, there were several practical difficulties getting WRF to run

correctly with ECMWF data. Furthermore, at the time, the copyright agreement was much

more restrictive than GFS, making it questionable whether adataset heavily derived from the

ECMWF data could be made freely available. Since it was planned to make the outputs of this

study freely available, this provided the main reason to useNCEP GFS data.

4.6 Verification process

4.6.1 Interpolation to height

Model winds are given onη levels, and additionally the diagnostic 10m wind. For this analysis,

the 10m wind was regarded as if it were simply an extra model level below the firstη level. For

verification at surface met stations, the 10m wind can be useddirectly. For all other heights,

wind speeds were interpolated from the closest model level logarithmically in height. Given

the decreased spacing of modelη levels near the surface, the vertical interpolation distance was

typically very small, no more than a few metres.

4.6.2 Comparing grid cells to point measurements

Variables in WRF represent time-averaged and volume averaged flows - steady state

components of the Reynold’s averaged flow through a grid cell. The boundary of the lowest

grid cell is an area-average of terrain height. These factors present two sets of difficulties when

comparing model output against point measurements.

The first set are the intrinsic difficulties in comparing point-based measurements to

volume-averaged model solutions. Point measurements willinclude contributions from

turbulent eddies at a variety of spatial and temporal scales, and could be highly influenced by

local topography or obstacles.

The second set of difficulties relate to extrapolating from model levels to heights above the

surface. Model terrain height is averaged to the grid resolution, in this case 3km. This means

the actual met station will be above or below the modelled terrain, and may even be above the

first few model levels, Figure 4.9.
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Accounting for this is neither straightforward nor obvious. For example, for point X it may be

argued that the second or third model level may be more representative of the wind speed than

the lowest model level, which is ‘below’ the real terrain. However, the second or third level

still does not account for the shape of the hill and its influence on the low-level flow, nor the

proximity and roughness of the ground. Also, it implies thatthe wind speed at Y should be

reduced by some factor to represent the valley. Howard and Clark [2007] proposed a method

for correcting this based on the linear flow theories of Jackson and Hunt [1975], but their

approach is not yet well verified, and relies on being able to characterise features by a length

scale, an approach which is difficult to generalise across the whole model domain. Given this

uncertainty, for this analysis the observation stations are regarded as if they sit on the model

terrain, i.e. at X’ and Y’.

Y

X’

X

Y’

Actual terrain

Model terrain

.

Figure 4.9: Observation stations at X and Y having positionsin the model terrain at X’ and Y’.

4.6.3 Self verification

The GFS model assimilates observational data from multiplesources, including surface wind

speed from SYNOP stations [Kalnay et al., 1996]. There is therefore some degree of self

verification when comparing model output to met station observations. This is not a problem

in itself, after all, the purpose is to create a dataset whichmatches observations. The danger

is that the model performs wellonly near observation sites, and that any verification therefore

gives an overly optimistic picture of performance.

The standard approach of partitioning met stations into a training and verification set cannot

be used here, since the data assimilation has already been done. However, the main use of the

analysis is as initial conditions (on all domains), and boundary conditions every six hours (on

the outermost domain). If the model can recreate hourly windspeeds at observations points
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Figure 4.10: Observed wind speed at Sella Ness, an exposed station in Shetland. Zero wind
speeds in observed data appear as a large spike in the frequency distribution. The
size of the spike and the exposure of the met station suggeststhis is due to missing
data not properly flagged, rather than low wind speeds below the start-up speed of
the anemometer

across the whole domain (i.e. well away from the boundaries)over several days (i.e. well away

from the initial conditions), then this is a good indicator that the predictions are correct due to

a realistic representation of the physical flow, rather thansimply an effect of being constrained

by observations. Therefore, verification against met stations is still a useful exercise, and is an

approach commonly taken many similar studies.

4.6.4 Zero wind speeds

Zero-wind speeds are common in observational data, either because the wind speed is below

the start up speed of the anemometer, which might be considered a genuine calm, or because

the anemometer is malfunctioning or stuck and error is not flagged, which would be considered

a ‘spurious calm’. Spurious calms are easily visible in the wind speed distribution as a spike at

zero, as shown in Figure 4.10. Spurious calms affect error statistics, particularlyR2 which is

not robust to outliers. For that reason, all zero wind speedsare ignored in the calculation of the

error statistics.

4.6.5 Error statistics

Error statistics used here are the Mean Bias Error (MBE) alsocalled Bias (B), Root Mean

Square Difference (RMSD) and a coefficient of determinationR2. If ei is the difference
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between an individual prediction,pi, and observationoi:

ei = pi − oi (4.1)

then standard error statistics can be defined:

B =
1

n

n
∑

i=1

ei = p̄− ō (4.2)

RMSD =

√

√

√

√

1

n

n
∑

i=1

ei2 (4.3)

R =

∑n
i=1(oi − ō)(pi − p̄)

σoσp
(4.4)

whereσo andσp are the observed and predicted standard deviations.

Bias is a simple indicator of whether the simulation over or under-predicts wind speeds. RMSD

is a measure of the overall error, with the property that positive and negative errors do not

cancel. RMSD also depends on the distribution of errors, with larger errors contributing most. It

is possible for a forecast to have zero bias, but be wrong at every location. RMSD is therefore a

good complementary measure to B. The coefficient of determination,R2, is a measure of degree

of the linear relationship between the observed and predicted data.R2 is a useful statistic in the

presence of systematic errors since it indicates goodness of fit independent of systematic errors.

However,R2 not robust and is heavily influenced by outliers [Legates andMcCabe, 1999].

Zero wind speeds have been eliminated as a source of outliersin the observed data. However,

unrealistically low wind speeds can also be caused by stuck anemometers, or for other reasons

which are much more difficult to identify. Also, sinceR2 is not robust, it is heavily influenced

by phase errors. The following section briefly shows how the measures are affected by errors

of different types.

4.6.6 Types of error

In relation to modelling, there is often a distinction between systematic errors in the average

value of variables, often termed bias or level errors, and errors in the patterns of variables.
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Figure 4.11: Schematic error types and effects on error statistics. Systematic errors (top)
don’t affect correlation. Amplitude errors, 2nd and 3rd, may affect both bias
and correlation depending on whether they are symmetric. Phase errors (bottom)
primarily affect correlation. The x-axis can be interpreted as time or space

Different types of pattern error affect error statistic in different ways, shown schematically

in Figure 4.11. In relation to the wind speed dataset, different types of error have different

implications. A systematic error could lead to wrong conclusions about the overall energy

yield or profitability of a wind farm. However systematic errors are the easiest to correct using

post-processing.

Phase or timing errors of a few hours could affect conclusions about how wind speed and

electrical demand are related, but are not important from anoverall energy production point

of view. However, even small phase error can have very large impact on correlation statistics.

For example, Kok et al. [2008] notes that high resolution models are often double-penalised in

their assessment of performance, since although they may resolve smaller features than coarser

models and hence provide more information,they may misplace or mis-time these features,

leading to higher error statistics. This demonstrates the need for multiple statistics when

comparing model performance, as there is no single measure which can adequately describe

a model fit.
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Figure 4.12: Observed wind speeds at Blackford Hill, Edinburgh over the case study period

4.7 Description of case study

The week of 7th-15th January 2005 is used as a case study. This was an active week with

two very deep depressions crossing the north of the UK, causing some damage. Observed wind

speeds at Blackford Hill met station (Edinburgh) are shown in Figure 4.12. Detailed description

of the meteorological conditions associated with these events is described in [Hisscott, 2007],

and the evolution of synoptic conditions in the GFS model areshown in Figure 4.13. This week

shows a wide range of variability, from periods of relative calm, to periods where wind speeds

exceed the typical cut-out speeds of turbines; the ability to recreate such patterns accurately is

therefore very important.

It would have been preferable to also include a case study where synoptic forcing was not so

strong, and thermal effects were more significant. However,during this phase of the project,

time and computational constraints did not permit this.
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Figure 4.13: Evolution of synoptic conditions over the firstfew days of the case study period.
This was a week of generally westerly flow with frequent formation and passage
of depressions, with an occasional ridge of high pressure. Surface pressure and
10m wind speed are shown from GFS final analysis.
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4.8 Comparison of model configurations

4.8.1 Baseline

The baseline configuration is summarised in Table 4.6.

Domain

d01 d02 d03

Resolution (km) 27 9 3
Grid cells west-east 145 196 331
Grid cells south-north 115 181 391
Vertical levels 27 27 27
Timestep (s) 135 45 15
Feedback - Yes Yes
SST update No No No
Vegetation fraction update Yes Yes Yes
PBL scheme YSUa YSU YSU
Analyses nudging No No No
Nudging in PBL No No No
Cumulus scheme Kain-Fritschb Kain-Fritsch None

Boundary conditions NCEP GFS final analysis1◦ × 1◦

Land use dataset USGS
Surface layer physics Monin-Obhukov [Janjic, 1996]
Ground surface scheme Noah Land Surface Model [Chen and Dudhia, 2000]
Microphysics WSM 5 class [Hong et al., 2004]
LW physics Rapid Radiative Transfer Model [Mlawer et al., 1997]
SW Physics Simple downward [Dudhia, 1989]
Diffusion 2nd order on model levels
Eddy diffusion coefficient Smagorinksy first-order closure

a YSU [Hong et al., 2006]
b [Kain, 2004]

Table 4.6: Baseline configuration

4.8.2 Alternatives

Land use options tested were the default USGS and the MODIS dataset (see§3.4.7). PBL

options tested were the YSU and MYJ schemes, (see§3.4.6). Different permutations of

configurations of analysis nudging were tested, both in upper levels and within the PBL, and

default and increased spacing ofη levels were tested.

Table 4.7 describes the alternative configurations studiesand presents the overall error statistics

against the in-situ observations,, while Figure 4.14 presents the distribution of B between

observation sites.

The baseline configuration [1] gave relatively high bias andlow correlation. The distribution
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Label Land use Eta spacinga PBLb Analysis nudgingc Error statistics

d1 d2 d3 PBL B RMSD R
2

(ms−1) (ms−1)

[1] USGS d YSU — — — — 2.11 3.61 0.69
[2] USGS d YSU tqu tqu tqu — 2.35 3.56 0.76
[3] Modis d YSU tqu tqu tqu — 1.62 3.14 0.77
[4] Modis d MYJ tqu tqu tqu — 1.44 2.89 0.78
[5] Modis d MYJ tqu tqu — — 1.41 3.06 0.73
[6] Modis d MYJ tqu tqu tqu tqu 0.79 2.84 0.77
[7] Modis d MYJ tqu tqu tqu –u 1.34 2.84 0.73
[8] Modis i MYJ tqu tqu tqu tqu 0.63 3.01 0.74
[9] Modis i MYJ tqu tqu tqu –u 1.34 2.84 0.81

a d=default spacing, i=increased spacing close to the ground
b YSU=Yonsei state university, MYJ=Mellor Yamanda and Janjic
c t=temperature, q=water vapour mixing ratio, u=wind speeds.

Table 4.7: Comparison of error statistics for configurations tested

Figure 4.14: Error distributions at met stations for alternative model runs. Plot numbers refer
to labels in Table 4.7
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of errors can be seen to be skewed towards the high end, showing wind speeds are consistently

over-predicted at most sites.

Using analyses nudging, [2], substantially improves the correlation (R2=0.76) although does

not significantly change B or RMSD. An explanation might be that nudging helps to correct

phase errors, which can which have a large impact onR2.

Using the MODIS land use dataset [3] gives a small improvement in B and RMSD, with little

effectR2. A possible explanation is a more realistic roughness values around observation sites,

but a high wind-speed bias still exists.

Using the MYJ PBL scheme [4], instead of the YSU [3], appears to give a reasonable

improvement in B and RMSD, although the reasons for this werenot investigated in detail,

as no vertical profiles of wind speed, temperature or other variables were available at this stage.

The configurations [4-7] use different approaches for analysis nudging. Turning analysis

nudging off completely in the inner domain, [5] compared with [4], reducesR2 slightly, from

0.78 to 0.73. Nudging within the PBL, [6] compared with [4], significantly reduces B to 0.79

ms−1. Nudgingu, but nott andq within the PBL, [7], causes the B to increase again.

Increasing the vertical resolution close to the ground, [8]compared to [6], decreases the B from

0.79 ms−1 to 0.63 ms−1, although with a slight reduction in correlation. This alsogives a

reasonably symmetric distribution of errors.

Finally [9], using increased vertical resolution close to the ground, coupled with no-nudging of

t or q in the PBL gives the highest correlation of all configurations testedR2 = 0.81, although

with a reasonably high bias of1.34 ms−1.

From these comparisons, no single configuration appears a clear winner, although there are

significant improvements over the baseline. Given the end use is to assess the contribution that

wind energy may make, it is prudent to weight B more heavily than other statistics, to avoid

systematically over-stating the energy available from wind. For that reason, configuration [8]

was selected for the full simulation runs, as this gives the lowest overall bias, yet reasonable

correlation and RMSD.

One consistent result among the comparisons is a high wind speed seen at onshore surface

stations. It seems that analysis nudging corrects this systematic high bias somewhat. However,
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this may be by providing an artificial sink for momentum whichshould more properly get

removed by other processes.

A recent analysis [Mass and Ovens, 2011] suggests that WRF exhibits a high wind speed bias

over land due to the exclusion of sub-grid orographic drag inthe formulation of roughness

lengths. By formulating roughness length including these effects, they were able to significantly

reduce the high wind speed bias in low-level winds. However,their adapted PBL scheme is not

yet available in WRF. In the absence of this, it seems that analysis nudging may be providing

an artificial sink of momentum which should be removed by turbulent processes.

A number of recent studies have evaluated different PBL schemes and other options in WRF

[Hu et al., 2010, Jin et al., 2010], although these were not available at the time of this analysis.

However the findings are generally inconclusive, with different PBL schemes having different

strengths and weaknesses, and no single scheme found to be decidedly better. Furthermore,

results from different regions of the world may not be applicable, and each configuration may

have its own particular strengths and weaknesses dependingon the application.

4.9 Choice of configuration

Configuration [8] was used for the full simulations. This is summarised in Table 4.8, and the

complete set of options, as defined by thenamelist.inputfile is included in Appendix B.

4.10 Chapter summary

This chapter describes how WRF was configured and verified against observations, before

committing to a long reanalysis. The practical limitationsregarding the availability and timing

of the computing resource were described, which limited thenumber of permutations which

could be tested and the length of the case study used. All the observational datasets used for

verification, both in this chapter and in later chapters are described. The options which were

held constant during this and later stages were outlined.

The verification process was then described, including the technique for comparing model

output to point observations with a discussion of some of inherent challenges. A number of

error statistics were defined, and it was demonstrated how they are affected by different error
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Domain

d01 d02 d03

Resolution (km) 27 9 3
Grid cells west-east 145 196 331
Grid cells south-north 115 181 391
Vertical levels 27 27 27
Timestep (s) 135 45 15
Feedback - Yes Yes
SST update Yes Yes Yes
Vegetation fraction update Yes Yes Yes
PBL scheme MYJa MYJ MYJ
Analyses nudging tqub tqu tqu
Nudging in PBL tqu tqu tqu
Cumulus scheme Kain-Fritschc Kain-Fritsch None

Simulation block One month + 1 day spin up
Boundary conditions NCEP GFS final analysis1◦ × 1◦

Land use dataset MODISd

Surface layer physics Modified Monin-Obhukove

Ground surface scheme Noah Land Surface Modelf

Microphysics WSM 5 classg

LW physics Rapid Radiative Transfer Modelh

SW Physics Simple downardi

Diffusion 2nd order on model levels
Eddy diffusion coefficient Smagorinksy first-order closure

a [Janjic, 2002, Mellor and Yamada, 1982]
b t=temperature, q=water vapour mixing ratio, u=wind speeds
c [Kain, 2004]
d [Friedl, 2002]
e [Janjic, 1996]
f [Chen and Dudhia, 2000]
g [Hong et al., 2004]
h [Mlawer et al., 1997]
i [Dudhia, 1989]

Table 4.8: Final configuration of WRF used for all future simulation runs
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types. Then, a week-long case study represented a meteorologically active week was chosen

and outlined, and a series of model runs were made using different model configurations.

Aggregate error statistics were calculated for each of the model runs, and were used to compare

different configurations. On the basis of this comparison, the final configuration was chosen

and defined; this is now taken forward to the main simulation phase.
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Chapter 5
Simulation and Verification

5.1 Introduction

The previous chapter described a week long case study used totest different model

configurations and select a configuration to use during main simulation phase.

This chapter now describes the simulation process used to create the reanalysis. Then, the

complete reanalysis dataset is verified against available observations. Long-term averages and

spatial and temporal patterns are compared to observations, and the nature of model errors are

explored. A systematic low bias in offshore wind speeds is identified, which is then corrected

in the following chapter.

5.2 Simulation process

For the main simulation phase an application was made via theClass 1B ‘direct access’

mechanism for an extended allocation on HECToR. The application was successful, and 6M

AU were granted, roughly equivalent to 200 000 hours, or 23 years of processing time on a

single CPU, to be used within six months of the allocation.

Simulation was performed in blocks of one calendar month, allowing one day for model

spin-up. Using a simulation block of one month enables mesoscale features to develop and

persist in the model, and avoids frequent re-initialisation. However, it also runs the risk of

biases and errors compounding over time, for example, a low precipitation bias could lead to

soil levels becoming too dry, which would re-enforce this bias. For that reason one month

was deemed to be a good compromise to allow features to develop and persist, but prevents

long-term drift. Additionally, using 512 processors, one month could be simulated within a

single 12-hour job, which is the time-limit for single jobs on HECToR.

A reduced set of output variables were written to disk, detailed in Appendix B, and only the

inner domain output files were kept, resulting in a raw outputfile size of 30GB per day. Storage
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Figure 5.1: Schematic of the simulation process.

limitations meant that only one month at a time could be simulated. After completion, output

files were processed using the NetCDF operators1 (NCO) to remove all but the lowest fiveη

levels, reducing the file size to just over 1GB per day. This meant variables were only retained

in about the lowest 500m or so of the atmosphere, and a significant amount of information was

disregarded. However, this was the only way to ensure the final dataset was a manageable size.

Each month required around 12-hours to simulate, plus several hours pre-processing and

post-processing. The process was automated via a series of scripts, although manual

intervention was frequently required, for example, to restart runs which had been interrupted

by hardware failures. Additionally, during the six-month access window, the hardware on

HECToR was upgraded from quad-core to 12-core, meaning system closures were fairly

regular, and the system was split between two architectureswhich required re-compilation of

various codes. Ten years of simulations were completed within the 6-month allowance, and an

extension granted to compensate hardware disruption allowed another year to be simulated,

giving an 11-year reanalysis.

Figure 5.1 shows a schematic of the process. Detailed information on the software components

which collectively make up WRF are given in the user manual [NCAR, 2008], and are only

briefly described here. GFS final analyses are downloaded directly to HECToR in gridded

binary (GRIB) format one month at a time. These are unpacked (ungrib.exe) and interpolated

(metgrid.exe) to the model domain using the WRF pre-processing software. Static data e.g.

land-use and topography, are stored on HECToR and interpolated to the model domain only

once (geogrid.exe). The meteorological data and static data are combined and vertically

1http://nco.sourceforge.net/
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interpolated (real.exe) to produce initial conditions, boundary conditions and analysis nudging

files. Finally the WRF solver (wrf.exe) is run to produce the simulation and write the output. If

the simulation completed successfully, the the NCO tools are invoked to reduce the number of

vertical levels and the resulting files are then transferredto a machine in Edinburgh, and also

to the tape archive facility provided by HECToR. If simulation failed, the reason for the failure

is investigated (usually a hardware failure, or a storage quota exceedance) and the simulation

re-started from the nearest (weekly) restart point. Once a month of simulation files has been

transferred from the working filespace, the process begins again for the next months simulation.

Table B.2 in Appendix B gives details of the output variablesretained in the final output.

The final dataset consists of around 5 terabytes (TB) of NetCDF files, stored as one file per

simulated day. Working with this volume of raw data is very slow, and makes analysis difficult.

To facilitate analysis, time series are extracted at pointsof interest and stored in a relational

SQL database. The gridded files are retained and used for the production of resource maps and

for continuous spatial analysis; this dual data strategy isillustrated in Figure 5.2.

Eleven-year time series were extracted from the raw data fileat all points of interest, namely the

locations of observation stations and the locations of current and future wind farms. These time

series were then stored in a relational database which allowed for detailed validation against

observations, and for easy conversion to power output time series.

Figure 5.2: Data strategy involved the averaging of griddeddata and the extraction of time
series for analysis

5.3 Verification process

This section shows the results of verification of the whole dataset against observations

described earlier in§4.4. The figures and statistics presented here summarise theperformance

across multiple observation sites; verification against specific individual sites are presented in
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Appendix C.

In addition to the statistics described in§4.8.2, a number of visual tools were used to aid

verification, which allow for more detailed insight into thenature of model errors.

5.3.1 Taylor and target diagrams

Taylor diagrams [Taylor et al., 2000] are based on centered statistics and summarise how well a

model captures patterns in observations. Continuing the notation defined in§4.6.5, the centered

RMSD is defined as:

RMSD′ =

{

1

N

N
∑

i=1

[(pi − p̄) − (oi − ō)]2

}1/2

(5.1)

which can be decomposed into amplitude and correlation terms [Murphy, 1988]:

RMSD′2 = σp
2 + σo

2 − 2R · σpσo (5.2)

Eq. 5.2 has the same form as the cosine rule, and Taylor diagrams are plotted in polar

coordinates,(a, θ), where:

a = σ∗ =
σp

σo
(5.3)

θ = cos−1(R) (5.4)

This makes RMSD′ proportional to the distance from the reference point(1, 0). Points with

higher correlation lie closer to the x-axis, and points which capture the observed standard

deviating well lie closer to the contourσ∗ = 1. Since Taylor diagrams are based on centred

statistics, they do not say anything about absolute bias, and should be interpreted alongside an

indications of bias. To facilitate this, data on the Taylor diagrams presented here are shown

coloured byB. An example is shown in Figure 5.3.

Target diagrams [Jolliff et al., 2009] show centered statistics and bias on the same diagram. The
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(a) Taylor diagram (b) Target diagram

Figure 5.3: Example Taylor and target diagrams. Taylor diagrams show how well a model
captures patterns in observations; target diagrams show how much of the total
RMSD is due to bias. Points A and B have similar correlation, but A has a
systematic bias. Point A underestimatesσ, and B overestimatesσ.

total RMSD is related to RMSD′ and the bias by [Murphy, 1988]:

RMSD2 = B2 +RMSD′2 (5.5)

A target diagram plots RMSD′ on the x-axis and B on the y-axis: the x-axis indicates how

much of the RMSD explained by pattern error, and the y-axis indicates how much is explained

by systematic error. The distance to the origin gives the total RMSD. Furthermore, although

RMSD′ is, by definition, positive, the whole axis can be used by assigning it the sign ofσp−σo

[Jolliff et al., 2009]. Therefore, whether a point is left orright of the y-axis indicates whether

the model variance is larger or smaller than the observed. Since target diagrams contain no

information about correlation, points on the diagrams havebeen coloured according toR2. An

example is shown in Figure 5.3.

5.3.2 QQ plots

Quantile-quantile (QQ) plots are a way of comparing two distributions. Quantiles from an

observed set of data are plotted against quantiles of another, either observed or theoretical,

distribution. Figure 5.4 shows a comparison of two Weibull distributions. S2 is a linearly

scaled version ofS1, which manifests itself in the QQ plot as a steeper, but constant gradient.
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(a) (b)

Figure 5.4: (a) DistributionsS1 andS2, whereS2 = 1.2 × S1. (b) Resulting QQ plot.

5.4 General agreement

Table 5.1 presents overall error statistics by class of in-situ observation, computed by pooling

all observations within that category. It shows a small positive bias at met stations and

windfarm masts, and a reasonably large negative bias at offshore, particularly at lightships

where B=−1.35ms−1. WRF consistently under-predicts the observed standard deviation. This

is evident on the Taylor and target diagrams, Figure 5.5. Thecentered statistics show better

performance offshore, but systematic bias at buoys and lightships is evident.

category n obs mean wrf mean obsσ wrf σ B RMSD R2

ms−1 ms−1 ms−1 ms−1 ms−1 ms−1

Met station 222 5.00 5.15 3.34 2.85 0.15 2.03 0.64
Mast 6 7.66 7.93 4.14 3.81 0.27 2.27 0.71
Buoy 9 7.30 6.48 3.63 3.24 -0.82 2.02 0.74
Lightship 4 8.48 7.13 4.31 3.60 -1.35 2.30 0.82

Table 5.1: Summary of error statistics by in-situ observation type

The wind speed distributions and resulting QQ plots are shown in Figure 5.7. For onshore met

stations, the model output is very good, representing the observed distribution very well across

the range of wind speeds.

For onshore windfarm masts, the agreement is also very good,but begins to deviate towards the

tail of the distribution, showing that WRF does not represent peak wind speeds well. In terms of

the overall energy from wind this is not important, since wind speeds in this range will be in the

constant region of the power curve. However, it suggests against using the dataset to explicitly

investigate peak wind speeds e.g. when assessing the frequency of high-wind cut-outs or for

assessing structural design loads.
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(a) Taylor diagram (b) Target diagram

Figure 5.5: Taylor and target diagrams by observation category

For buoys and lightships the distributions confirm a systematic negative bias, evident in a

steeper gradient on the QQ plot, which is most evident at lightships. This also shows the bias

not entirely due to the failure to represent peak wind speeds, but is present across a wider range

of speeds. However, the linear nature of the QQ plot shows that, aside from the systematic

error, the underlying form of the distribution is very good.This is also confirmed by the

high correlation seen at buoys and lightships, which shows that the patterns of wind speed

are captured very well.

Finally, the error in the average hourly speed is calculatedacross all onshore and offshore

observations, and the distribution of this is shown in Figure 5.8. Again, onshore wind speeds

can be seen to be unbiased overall,with a almost zero-centered and symmetric distribution. The

offshore speeds are consistently too low, with a distribution shifted to the left, and symmetric

about the mean.

In each case, the errors are not quite Normally distributed.Given the large number of

observations, confidence intervals can be estimated directly from the percentiles, are

summarised in Table 5.2.

5.5 Spatial agreement

Figures 5.9 show the spatial distribution of error statistics against in-situ observations. There

are a range of values, though there is no noticeable geographic trend i.e. the performance does
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(a) Met station (b) Masts (c) Buoys (d) Lightships

Figure 5.6: Histograms of observed and simulated wind speedby category of observation

(a) Met station (b) Masts (c) Buoys (d) Lightships

Figure 5.7: QQ plots by observation category

(a) Onshore error distribution (b) Offshore error distribution

Figure 5.8: Distribution of hourly bias against all onshoreand offshore in-situ observations.

Onshore Offshore
ms−1 ms−1

B 0.11 -1.02

80% CI ±0.51 ±0.91
90% CI ±0.68 ±1.21
95% CI ±0.85 ±1.50

Table 5.2: Confidence intervals onB by comparison with in-situ observations
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Figure 5.9: Geographic distribution of B and RMSD

not depend on latitude or longitude.

Figure 5.10 shows the distribution ofB across in-situ observation points. It can be seen that

the vast majority of stations have−2.0 < B < 2.0, with a few outliers with very high error

statistics. These outliers in terms of error statistics areinvestigated later.

Figure 5.10: Distribution of average bias at individual metstations

5.6 Temporal agreement

This section examines the extent to which model winds recreate temporal patterns on a number

of temporal scales.
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5.6.1 Time series

(a)

(b)

Figure 5.11: Simulated and observed wind speed at for one month at (a) Nelson A oil platform
and (b) M3 buoy

Time series plots show the model wind match observed patterns very well: Figure 5.11 gives

an example of the typical match between observed and simulated wind speeds. The observed

wind speeds show some higher-frequency variation than model speeds, but the main patterns

are captured very well. There are too many such plots to include, so the following sections

examine the temporal match in average wind speeds across temporal scales.

5.6.2 Diurnal

Figure 5.12 shows observed and simulated wind speeds by hourof the day across all observation

types. Wind speeds are presented as anomalies from mean, so that systematic errors are

excluded.

At met stations the modelled diurnal pattern is very close tothe observed, and has the correct

amplitude and shape. It appears to lead the observed patternby around one hour, suggesting

the growth of the daytime boundary layer is slightly too fast, and its decay too rapid. At

wind farms masts, the diurnal amplitude is slightly underpredicted. It is worth noting that the

observed diurnal pattern seen at wind farms masts is much smaller than the pattern seen at met
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(a) Met station (b) Masts

(c) Buoys (d) Lightships

Figure 5.12: Observed and modelled average diurnal variation at in-situ observations.

stations, which are at 10m agl.

Offshore, diurnal variation would be expected to be less, and both the observations and

simulations reflect this, with any departures from the mean only around 0.1ms−1. At lightships,

both the observations and simulations show a pattern possibly characteristic of a weak sea

breeze, although the amplitude of this pattern is larger in the simulations. At buoys, the

simulated pattern has three distinct peaks, which may be a superposition of different diurnal

patterns seen in onshore and offshore flows. A three-peak pattern is faintly present in the

observation. The amplitude of all of these patterns is very small. It is worth noting that

Lapworth [2005] also found a diurnal pattern at lightships which was not characteristic of a

sea breeze or orographic induced jets.

Overall, this analysis suggests the model captures diurnalvariations very well, with only minor
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differences compared to observations. It would be interesting to look in more detail at coastal

thermal circulations, but this is left for future work.

5.6.3 Seasonal

(a) Met stations (b) Masts

(c) Buoys (d) Lightships

Figure 5.13: Observed and modelled variation in monthly wind speeds

Figure 5.13 shows observed and simulated wind speeds by month of the year. The seasonal

pattern matches observations very well in all cases, with highest wind speeds in January, and

lowest between June and August, and with seasonal variationslightly larger offshore.

5.6.4 Inter-annual

Figure 5.14 shows wind speed anomalies over 2000-2010 across all the in-situ observations

which had observations spanning the whole period. Separateplots per category are not

presented, since many sources do not span the whole period, or have periods of missing data

in certain years. The model capture the inter-annual variations well. There are only minor

differences, which may have a physical cause, but equally could relate to changes in the number
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Figure 5.14: Observed and simulated annual wind speed anomalies over the period 2000 - 2010.

of sources included in the observational record.

Of note is the unusually low wind speeds in 2010. These were caused by a strong blocking high

pattern over northern Europe, evident in a negative winter North Atlantic Oscillation (NAO)

index, perhaps the lowest on record. These variations in thelarge-scale circulation are very

significant in terms of power production [Brayshaw et al., 2011].
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5.7 Vertical profiles

(a) Isle of Man (b) South Uist (c) Wattisham

(d) Dunkeswell (e) Camborne (f) Capel Dewi

Figure 5.15: Comparison of vertical profiles from WRF and radar profilers. The agreement
in the overlapping region is reasonably good aside from the Isle of Man and
Capel Dewi, where the shape is reasonable but the profile shows a systematic
displacement

Substantial effort was made to obtain data from offshore masts with anemometers at multiple

heights. However, due to the very high cost of the masts and the commercial sensitivity of the

results, detailed observations of offshore profiles were not available. The only datasets available

with vertical profiles are the UKMO radar profilers describedin §4.4.7.

Most of the UKMO radar profilers begin reading at 200m agl or more. Since only the lowest

five η levels are retained in the WRF output, this gives limited overlap, and doesn’t allow

comparison at typical hub heights. The radar profilers are atleast 1km inland, with the

exception of the Isle of Man and South Uist. The Isle of Man profiler is on the east coast

with prevailing winds coming over land; only South Uist is likely to be representative of an

offshore profile.

Raw profiler data was obtained from the BADC, and then bin-averaged using 50m bins to derive

vertical profiles at each site. Figure 5.15 compares averagevertical profiles derived from radar

observations to WRF simulations over the same period.

A promising feature of the comparison is that, in the overlapping region, the profile shapes
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appear to agree very well. At the Isle of Mann and Capel Dewi there is a systematic

displacement of the profile. This suggests that any systematic errors detected at low levels

might be reasonably constant with height, and any corrections determined at surface level may

be applicable up to typical hub-heights.

5.8 Investigation of errors

The verification so far has shown that average wind speeds agree well onshore, although there

is a low bias offshore. It has also shown that the spatial and temporal patterns are captured very

well. This section investigates potential causes of errors, so that a better understanding of the

model performance can be gained, and so that some insight might be gained as to how to tackle

the systematic bias offshore.

5.8.1 Terrain

Figure 5.10 shows the majority of stations have -2ms−1< B <2ms−1, with a few outliers

with a large negative bias. On inspection, the stations withB < −3ms−1are those situated on

mountain tops, listed in Table 5.3.

Station Elevation B RMSD R
2

m ms−1 ms−1

Cairngorm Summit 1245 -6.24 7.68 0.68
Great Dun Fell 847 -4.68 5.57 0.74
Cairnwell 933 -3.94 5.10 0.72
Bealach na Ba 773 -3.63 5.15 0.63
Aonach Mor 1130 -3.02 4.28 0.58
Glen Ogle 564 -2.88 3.69 0.62

Table 5.3: Outlier met stations were those situated on mountain tops. Elevation given is the
station elevation, not the model terrain.

Terrain has the largest influence on local wind speed, and mesoscale model at 3km resolution

will not represent complex terrain very well. To explore this a measure of terrain complexity

was computed using higher resolution SRTM4 terrain data [Farr et al., 2007]. SRTM4 data at

approximately 90-metre resolution was used to compute∆h, the terrain height range within

each 3km model cell, based on the 90m DEM data. Figure 5.16 shows the range of B and R2 if

the stations are partitioned by∆h, using the definitions:
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• smooth:∆h ≤ 50m;

• complex:50 < ∆h ≤ 100m; and

• extreme:∆h > 100m

Figure 5.16: Distribution of B and R2 for met stations in smooth, complex and extreme terrain.
Whiskers denote 1.5 times the inter-quartile range.

It is evident that performance degrades in complex terrain.This is not surprising since five

grid points are needed to accurately capture a terrain feature, although simply shaped hills can

be represented with less. It may be possible to correct for terrain using one of the numerous

‘rules of thumb’ e.g. [Lemelin et al., 1988, Lubitz and White, 2007]. These are formulated

based on wind tunnel experiments and field trials, in particular the Askervein field trial [Castro

et al., 2003]. Typically terrain is classified as distinct features such as a ridge or a hill, which

can represented by a characteristic length and height, usedto determine a speed-up factor. For

example, Howard and Clark [2007] develop and apply a simple terrain correction for NWP

forecasts based on the linear flow theories of Jackson and Hunt [1975]. However, this approach

would be difficult to generalise across the whole country, and difficult to automate.

A better way to account for the local terrain would be to nest ahigher resolution linear or

non-linear flow model, see e.g. Ayotte [2008] for a review of these techniques. However, even

with a higher resolution model the flow in complex terrain is difficult to model, particularly

where there is flow detachment and recirculation and this remains a challenge for many models

e.g. [Bitsuamlak et al., 2004, Castro et al., 2003, Undheim,2005]. Since the purpose here

is a national-scale assessment, it was not thought necessary to adopt this kind of microscale

approach across the whole model domain for the purposes of improving point predictions. Such

an approach can be performed as necessary if the data is to be used for micro-siting.
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Additionally, the output from WRF is the steady flow through a3km grid cell, which in some

cases may be a better indicator of the average wind conditions across a whole wind farm site

than a highly-resolved prediction at a single point. Therefore it was not thought necessary to

apply considerable effort to resolve fine-scale features, at least not until the power outputs from

windfarms had been verified.

Furthermore, although wind farms are found in reasonably complex terrain, they are unlikely

to be sited in terrain classified here as extreme, partly due to physical reasons of increased

turbulence and construction difficulties, but mainly as these areas correspond to mountain

ranges which, in the UK, mostly have environmental designations that prevent windfarm

development.

5.8.2 Roughness length

Although performance against windfarm masts was generallyvery good, systematic biases were

found at a some of the windfarm masts sites. This can be seen ina raw time series plot for the

mast S1, shown in Figure 5.17.

Figure 5.17: Influence of roughness length on simulated windspeed mast S1. Top: wind speeds
are interpolated from the closest model level using the original roughness length.
Bottom: wind speeds are interpolated from a higher model level (≈ 100m) using
the revised roughness length. This can be seen to remove muchof the systematic
error.
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Mast Figures z0 B RMSD R2

C1 default 0.21 -2.52 3.50 0.77
C1 revised 0.05 -1.78 2.90 0.75
S1 default 0.50 -1.35 1.90 0.80
S1 revised 0.03 -0.07 1.68 0.74

Table 5.4: Default and revised roughness lengths at wind farm masts and consequent changes
in error statistics

A major source of systematic error is the parametrisation ofroughness length. For example,

the grid cell containing S1 has a roughness length in WRF of 0.50m, which represents very

rough terrain. The operators of the wind farm site suggest that this is too high (Personal

communication), and that a roughness length of 0.03m is moreappropriate. Figure 5.17 shows

the effect of changing the roughness length and scaling the wind speed from WRF from a higher

model level (≈ 100m) using a neutral logarithmic profile.

The roughness length parameterisation at all six of the masts was reviewed in consultation

with the site operators and by examining their location on Ordnance Survey maps. Two major

revisions to roughness length were made, at C1 and S1. S1 had been wrongly attributed to

forestry (there was some forestry nearby) and C1 had been wrongly attributed to an urban

land-use category (there was a small town nearby). Revisions to roughness lengths are listed

in Table 5.4, which also shows the revised error statistics.This can only improve systematic

errors and will not improve phase errors. In fact there is a slight deterioration observed in the

correlation as a result of taking the wind speed from a higherlevel. This may be a result of

ignoring features of the wind profile resolved in the lower levels e.g. nocturnal jets. However,

this was deemed to be less important than the significant reduction in model bias.

This confirms findings of Brower et al. [2004], who found the adequately characterising

roughness length was one of the major sources of error in mesoscale models, but also

demonstrates that it may be possible to improve the performance at particular locations

post-hoc, with the use of higher resolution terrain and land-use data.

However, this result should be interpreted with some caution, as an examination of mast profiles

reveals. Of the mast data obtained here, S2, S3, and C2 had anemometers at three individual

heights which allowed their profiles to be examined; wind profiles above homogeneous terrain

in neutral conditions should exhibit the logarithmic profile defined in§2.6.3. Figure 5.18 shows

a plot of ln(z) vs Ū for masts S2, S3 and C2. Since there was not enough information
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at the masts to correct for atmospheric stability, only observations likely to be from neutral

atmospheric conditions were used. The stability parameterζ from WRF was used to aid the

selection, and only daytime wind speeds (10:00 to 16:00) where |ζ| < 0.02 were used to derive

the profiles.

Figure 5.18: Observed vertical profiles at three windfarm masts and fitted logarithmic profiles.
Only daytime wind speeds where|ζ| < 0.02 are used in the averaging

Very low wind shear is seen at all masts: S3 actually shows lower wind speed at 40m than

30m. Plotting a least-squares line of best fit allows roughness length to be estimated, albeit

with considerable uncertainty [Schaudt, 1998, Wieringa, 1993]. From the line of best fit:

Ū = A · ln(z) +B (5.6)

z0 can be estimated at̄U = 0. This approach gives roughness lengths (shown on the legend)

many orders of magnitude smaller than would be expected based on the prevailing land-use.

Even S2, which shows the closest agreement to a logarithmic profile hasz0 = 0.001m which

is the roughness typically associated with a flat sea surface, considerably lower than expected

from the actual land use.

The conclusion is that the observations themselves do not exhibit a surface layer logarithmic

profile. This could be due to orographic effects, upwind roughness-length changes,

instrumentation error, or flow distortion around the instruments. It suggests that attempts to

improve predictions at individual sites would require moredetailed modelling, and highlights

the danger of using simple scaling laws to downscale from higher levels. It would be

interesting to perform some microscale simulations drivenby the 3km WRF outputs, but for a

national-wide assessment, it was not thought necessary to pursue this approach.
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Month obs mean wrf mean obs std wrf std B RMSD R2

1 9.89 8.92 4.52 3.82 -0.97 2.33 0.78
2 8.71 7.74 4.19 3.57 -0.97 2.39 0.73
3 8.26 7.15 4.06 3.36 -1.11 2.28 0.76
4 6.98 5.89 3.54 2.96 -1.09 2.05 0.76
5 6.91 5.75 3.44 2.82 -1.16 2.07 0.75
6 6.02 4.91 3.00 2.43 -1.11 2.02 0.69
7 6.41 5.29 3.19 2.60 -1.12 2.05 0.71
8 6.62 5.55 3.08 2.59 -1.07 1.99 0.70
9 7.38 6.31 3.43 3.00 -1.06 1.96 0.77
10 8.69 7.61 3.86 3.33 -1.08 2.09 0.78
11 9.49 8.35 4.15 3.51 -1.14 2.25 0.78
12 9.35 8.29 4.23 3.52 -1.06 2.25 0.78

Table 5.5: Offshore error statistics by month of the year. The performance drops slightly in
summer.

5.8.3 Coastal influence

The sharp roughness and temperature gradients at the coast pose fundamental challenges for

mesoscale models, as discussed in§2.6.5. PBL schemes are based on assumptions of horizontal

homogeneity which do not hold at the coast. Conditions may bestrongly stable or unstable as

air advects across the temperature boundary, while the change in roughness length leads to the

formation of an internal boundary layer. In some cases the influence of land can be seen tens

of kilometres offshore [Barthelmie, 1999].

To explore the effect of nearby land,R2 was plotted as a function of direction sector for each of

the in-situ offshore observations, shown in Figure 5.19. The locations of the in-situ observations

and their relation to the coast is shown in Figure 4.5. The influence of land does seem to be

visible at Aberporth and Pembroke buoys, which are closest to land. At Aberporth, which has

land to the east and southeast, R2 is markedly worse for offshore winds. Similarly at Pembroke,

which has land to the northeast, R2 is lower for offshore winds. However, K5 and K7 also

appear to show a directional influence on R2, despite being relatively far from land, so no firm

conclusions can be drawn from this.

5.8.4 Season

Figure 5.20 shows bias by months of the year, and Table 5.5 summarises the offshore statistics

by season. There is a reasonably clear indiction that performance is worse in the summer

months.
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Figure 5.19: R2 by wind direction for offshore observations. Direction determined by
observations. See Figure 4.5 for locations

Figure 5.20: B and R2 by month of the year for offshore observations

94



Simulation and Verification

5.8.5 Sea surface temperature

While investigating the seasonal effect on performance, itwas discovered that SST was not

updated in the inner domain during the simulation. Instead,SST was taken at the start of the

month and then remained constant. This was despite the fact that the option to update SST had

been specified, and was eventually traced to an error in the WRF documentation, a problem

which has since been encountered in another study [Bukovskyand Karoly, 2009].

Figure 5.21 shows observed and modelled monthly SST and average air temperature at two

sites, Aberporth buoy and the M3 buoy. Observed sea temperature is taken through the hull of

the buoy, and the true SST may be slightly cooler due to the cool skin effect. Air temperature

is measured at 3m above sea level. Two metre temperature (T2)and SST are taken from WRF

directly.

WRF has a too-cold sea in the months where the sea is heating up, and a too-warm sea in

the months when the sea is cooling down. The magnitude of thisbias is largest in June and

November when the observed SST is changing most rapidly.

Of more importance for stability is the air-sea temperaturedifference. WRF matches

the observed air temperatures closely, but predicts a larger difference between air and

sea temperature than observed in June, October and November, although in all cases the

temperature difference is in the same direction. In June theimpact would likely be the

prediction of more stable conditions than observed, with reduced convective mixing of

momentum and a generally reduced wind speed within the stable layer. In October the impact

would be the converse, unstable conditions and generally increased surface winds.

Since the discrepancy in SST will increase throughout the month simulation, bias was plotted

as a function of day of the month, Figure 5.22, to show whetherbias grows throughout a

simulation. No discernible trend is clear, and the SST issueis explored in further detail in

the following section which examines error by stability class.

5.8.6 Stability

A challenge for mesoscale models is determining near surface wind speeds in conditions which

strongly depart from neutral stability. In addition, sinceSST was not correctly updated, there

may be larger deviations from neutral than observed. Misdiagnosed stability would lead to a
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(a) Aperporth

(b) M3

Figure 5.21: Average monthly air temperature (*) and sea surface temperature (∆). Within each
month, buoy observations are on the left (in red) and model simulations on the
right (in blue). The largest discrepancy between model and observations occurs in
June and November when the rate of change of SST is highest
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Figure 5.22: Bias by day of the month

Stability class frequency obs mean wrf mean obs std wrf std B RMSD R2

% ms−1 ms−1 ms−1 ms−1 ms−1 % ms−1

very stable 32 6.29 5.33 3.04 2.49 -0.96 2.06 0.64
stable 11 9.50 8.47 3.48 2.74 -1.03 2.24 0.68
neutral 33 10.64 9.48 3.97 3.16 -1.16 2.47 0.70
unstable 10 7.30 6.05 2.86 1.92 -1.25 2.24 0.58
very unstable 15 4.72 3.59 2.38 1.63 -1.13 2.03 0.50

Table 5.6: Error statistics at offshore in-situ observations by WRF stability class. Stability class
is determined by the value ofζ from WRF.

bias in the surface fluxu∗, and hence a bias in the surface winds. In order to explore this,

statistics by stability class were computed according to the values ofζ and the classification in

§2.3. Table 5.6 shows the frequency of stability classes diagnosed by WRF across all offshore

in-situ observations. Neutral conditions predominate, though very stable conditions are almost

as common. The frequency of stability classes is similar to those found by Barthelmie [1999].

The error statistics within the stable class are similar to the errors in neutral conditions. Very

unstable conditions also quite frequently diagnosed, andR2 is markedly lower for very unstable

conditions. This could reflect a mis-diagnosis of unstable conditions caused by the SST

problem. In particular, the fact that WRF is diagnosing unstable conditions when the observed

average wind speed is over 7ms−1suggests this may be the case. However, it could also reflect

the difficulty inherent in predicting wind speeds when the synoptic forcing is not so strong, or

greater error in the observations seen in relatively low wind speeds.

The main finding is that the low bias seen offshore is seen in every stability class, which rules

out misdiagnosed stability class as a cause.

97



Simulation and Verification

5.9 Comparison with satellite data

The comparison with in-situ observations strongly suggests a low wind speed bias offshore.

Offshore wind speeds are now compared to QuickSCAT and ASCATwind speeds, as described

in §4.4.8. QuickSCAT winds are used for the period 2000-2009, and ASCAT thereafter. These

are referred to collectively here as ‘satellite winds’.

Daily average satellite wind speeds were interpolated ontothe higher resolution WRF grid using

bi-linear interpolation. More complex interpolation methods e.g. bi-cubic can lead to problems

near the coast by extending the influence of land further offshore.

Figure 5.23 shows a comparison of average wind speeds over the whole period, from 2000

to 2010 inclusive. Although the broad geographic pattern issimilar, WRF wind speeds are

consistently lower than satellite winds. For example, off the northwest of Scotland, satellite

winds show an average of 9.5ms−1, while WRF only shows 8.5ms−1.

    

Figure 5.23: Average satellite (left) and WRF winds (right)at 10m amsl

Also of note are some unusual features in the WRF wind field. There is a noticeable low wind

speed centre in the North Sea, and another smaller low wind speed centre near the northwest

corner of the domain. Figure 5.24 shows these anomalous areas correspond to the location of

the oil platforms in the North Sea, and the K5 buoy. Wind speeds from all of these sources are

assimilated by the GFS model and other global models. Since they are in areas of relatively

sparse of observations, a single observation will have a significant effect on the model solution.

Since analysis nudging was used throughout this study, any bias in the global model could

manifest itself in the mesoscale model. It was not feasible to obtain the full GFS dataset for

the period in question due to storage constraints, but it is hypothesised that a similar area will
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Figure 5.24: Influence of observations on WRF wind speed. Thetwo areas of unusually low
wind speed correspond to locations of in-situ observationsin an otherwise sparse
area. It is hypothesised that these observations are degrading the global and the
mesoscale model.

appear in the GFS wind speeds. Indeed, a similar feature is visible in the wind speed maps of the

DTI Marine Atlas, which noted “one unexpected feature to thenorth-west of Scotland” [DTI,

2004], which appears to coincide with the K5 buoy.

This is an important result in itself, as it highlights potential improvements in forecast models

from relatively simple changes. In particular, wind speed measurements from oil platforms,

which have long been known to be problematic due to the influence of the platform, should

either be improved, excluded, or at least given a higher uncertainty in data assimilation

programs, so that they are not overly weighted over satellite observations.

As a further illustration of the systematic nature of the bias, plots of average monthly wind

speed are shown in Figure 5.25 for January and May 2001, whichare typical of a high

wind speed and low wind speed month in the period studied. In January, the shape of the

wind two wind fields are in broad agreement. However, 10m speeds from WRF are still

systematically lower than QuickSCAT across much of the domain, with the highest wind speed

off the north-west of Scotland reaching 11ms−1in WRF compared to 13ms−1from satellite

observations. A similar low bias is seen in the North Sea. Thefact that these biases are seen in

the open ocean shows it is not simply coastal effect. In May, the two wind fields show similar

geographic features, particularly in the North Sea. However, QuickSCAT data shows higher

wind speeds off the northwest of the domain, with wind speedsaround 6 or 7 ms−1compared

to 4 or 5 ms−1in WRF.
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Figure 5.25: Comparison of WRF (left) and QuickSCAT (right)wind vectors for January and
May 2000. In January, WRF wind speeds reach a maximum of around 11 ms−1off
the northwest of Scotland, while QuickSCAT winds show a maximum of 13ms−1.
In May, wind speeds in the open sea in the northwest are significantly lower the
QSCAT winds.
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5.10 Comparison with other models

5.10.1 Marine Atlas

The Marine Atlas was developed by the DTI to provide data on the renewable resource

available offshore. Offshore wind speeds in the Marine Energy Atlas are derived from archived

output from the Met Office UM. The main dataset uses just over three years (1st June 2000

- 30th September 2003) of archived output UK Waters configuration, at approximately 11km

resolution [DTI, 2004], driven by the global configuration of the UM. In the Marine Atlas,

model winds were converted to 10m from the lowest pressure level (approximately 19.5m

amsl), using a simple scaling factor of 0.94 [DTI, 2004].

Wind speeds from the Marine Atlas are available as an ArcGIS shapefile, at approximately

12km resolution. For comparison with WRF, wind speeds over the same period were averaged

onto the lower resolution Marine Atlas grid, and subtractedfrom the speed. Figure 5.26 shows

the difference in 100m wind speed - comparisons at 10m and 80mshowed a similar picture. It

can be seen that WRF wind speeds are universally lower offshore by around 1ms−1, with larger

discrepancy of up to 2.5ms−1in semi-enclosed coastal areas. In the open ocean, the geographic

agreement is very good, with both showing very similar spatial variation in wind speeds.

It is worth noting that verification against in-situ observations performed for the Marine Atlas

showed errors in the region of 10-15% and as high as 30% at one site [DTI, 2004]. Table 5.7

shows comparisons for those buoys and lightships which overlap between studies. There is a

slight difference in the observed figures, suggesting theremay be a difference in the quality

control used between studies. Bias has been expressed as a percentage since that is quoted

in the Marine Atlas. The magnitude of the errors is comparable, however wind speeds from

WRF are consistently low, while the Marine Atlas errors varydepending on location. Given the

uncertainties involved, it is not desireable to correct onemodel on the basis of another model.

Also, since it only presents monthly averages, and is only derived from three-years of data, the

Marine Atlas it is not suitable for correcting the WRF output.

5.10.2 GFS

Finally, the raw output of the GFS was extracted and comparedto WRF output and in-situ

observations, to investigate whether this might be the source of the low bias. Storage and time
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Figure 5.26: Comparison with the DTI Marine Atlas. Difference is computed as [Marine Atlas]
- [WRF]
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Station Type Marine Atlas This study
Model Observed Bias Model Observed Bias
ms−1 ms−1 % ms−1 ms−1 %

K5 Buoy 9.33 7.99 17 7.70 7.95 -3.2
Aberporth Buoy 7.24 5.60 29 5.24 6.19 -15.3
Sevenstones Lightship 8.19 8.61 -5 7.64 8.62 -11.4
Greenwhich Lightship 7.98 8.43 -5 7.01 8.63 -18.7

Table 5.7: Comparison with DTI Marine Atlas validation. TheMarine Atlas was derived from
three years of output from the UK Waters configuration Met Office Unified Model,
and verified against in-situ observations.

constraints prevented the full global reanalysis being downloaded, so a limited comparison

across one month was performed. Figure 5.27 compares monthly average GFS 10m wind with

WRF 10m wind and in-situ observations for an exposed and coastal buoy. At the exposed

location of K5, the agreement between the three sources is reasonably close. As noted, if the

observations at K5 are low, this will constrain the GFS modeland subsequently WRF.

At a less exposed buoy, such as M2 buoy in the Irish Sea, the GFSwinds have a significant low

bias compared to the observations. This is very likely due tothe lower spatial resolution and

coarser land-sea boundary in the GFS 1◦data. Figure 5.28 shows the landmask at this resolution,

together with the locations of the in-situ observations. Many of observations, particularly on the

west coast, fall into land cells. In these cells the GFS wind is biased low compared to offshore

observations. Analysis nudging in these regions will tend to act as a sink of momentum.

5.11 Discussion

None of the investigations conclusively reveal the source of the offshore low wind speed bias in

WRF. Whatever the reason, this type of bias is common - if not universal - in mesoscale models

[Hart et al., 2004, Mass, 2003]. As Hart et al. [2004] states:

“considerable improvement is needed to existing models to accurately
simulate local boundary layer structure and evolution. As aresult, current models
exhibit systematic biases that limit their application toward detailed point-specific
forecasting ”

From the investigations here, the most likely cause appearsto be a combination of bias inherited

from the GFS model through the use of analysis nudging. Part of the bias in the GFS model
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(a) K5

(b) M2

Figure 5.27: Average monthly winds for 2005 from GFS, WRF andin-situ observations. GFS
agrees closely with in-situ observations for exposed locations like K5, but is biased
low for in-situ observations close to the coast which may fall into land points.

may be due to assimilation of problematic observations at oil platforms and the K5 buoy. Part

of the bias towards the coast might be explained by the coarselandmask at 1◦resolution.

Another reason for the low bias may be related to the resolution of the global model. Recent

studies have found both NCEP and ECWMF reanalysis surface winds to be biased low [Fangohr

et al., 2008, Reistad et al., 2011, Thomas et al., 2008]. For example, Reistad et al. [2011] found

ERA-40 10m wind to be biased low by about -0.86ms−1, while Kolstad [2008] found NCEP

reanalysis surface winds to be significantly (8%) lower thanQuickSCAT over the Nordic seas,

both in open water but particularly so near the coast.

One explanation of this low bias is an underestimation of peak winds associated with

depressions [Cardone et al., 1999, Chelton et al., 2006, Swail and Cox, 2000]. For example,

Chelton et al. [2006] found both NCEP and ECMWF models underestimated the intensity, and

over-estimated the spatial scale and smoothness of extra-tropical cyclones. This would explain

the underestimation of peak wind speeds found here.

As detailed in Chapter 4, the decision to use analysis nudging was to remove ahighbias seen at

onshore met stations. However, recent work [Mass and Ovens,2011] suggests that this onshore
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Figure 5.28: GFS landmask at 1◦resolution

high bias is due to the neglect of sub-grid scale orographic drag, a problem which will be

corrected in future implementations of WRF. It is probable that analysis nudging provides a

sink for momentum which should be removed through this mechanism. The use of analysis

nudging may remove some of the advantage of a higher resolution model. That said, the overall

error statistics and wind speed distributions are very good. Nudging terms are very small,

designed not to overwhelm the physical processes being simulated.

In most applications, a small bias may be acceptable, but given the sensitivity of power output

to wind speeds, a difference in an average wind between 6.5ms−1and 7.5ms−1could be the

difference between a project being commercially viable or not. For this reason it was decided

this offshore bias needed to be corrected, and this is the subject of the next chapter.

5.12 Chapter summary

In this chapter, the simulation process used to derive an eleven year reanalysis at 3km resolution

was described. Extensive verification against observations was performed, and it was shown

that the reanalysis recreates average wind speed distributions, and the spatial and temporal

variation in wind speeds across the whole of the British Isles, both onshore and offshore.

Hourly, diurnal, seasonal and spatial patterns are all realistic.

Onshore, performance compared to met stations is very good,apart from a few met stations

in very complex terrain. Limited comparisons to wind farm masts shows good performance,

and these are independent sites whose observations have notbeen assimilated into the driving

model. Systematic errors seen at some wind farm masts were found to be due to incorrect

roughness lengths, and could be removed once better information was available. Peak wind
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speeds are not represented well.

Offshore, the wind speeds patterns are captured well, but a systematic low bias of around

1-2 ms−1is a concern, particularly for coastal observations. The impact of wind direction

and atmospheric stability were explored as potential causes, but no conclusive factor emerged

which might offer a simple explanation. It was found that anomalous geographic features,

not supported by the satellite record, could be traced to theassimilation of observations from

platforms and buoys. It is proposed that further investigation of these has the potential to

improve the quality of global forecasts models.

The following chapter details a simple correction scheme toremove the low bias seen offshore.
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Chapter 6
Offshore Bias Correction

6.1 Introduction

The previous chapter has shown that the model wind speeds compare very well to observed

spatial and temporal patterns, although a systematic low bias exists offshore, which was deemed

to require further action. This chapter presents a simple correction for the bias based on a

complete satellite record over the corresponding period. Consistent with the previous chapter,

the term ‘satellite wind’ is used to collectively refer to QuickSCAT and ASCAT derived wind

speeds, described in§4.4.8.

6.2 Background

Post-processing of model output to remove bias has long beenapplied in weather

forecasting [Klein and Glahn, 1974], and is still regarded as a necessary step [Giebel, 2010].

The most common family of approaches are known as Model Output Statistics (MOS) see e.g.

[Giebel et al., 2003, Klein and Glahn, 1974, Nielsen et al., 2007, Termonia and Deckmyn, 2007,

Vannitsem and Nicolis, 2008]. The general technique is to develop statistical relations between

variables of the NWP model, the predictors, and the desired output, the predictand [AMS,

2000]. The predictand may be an error-corrected version of avariable already in the NWP

model, or it may be new diagnostic variable, for example the mass of ice on wind turbine

blades. A wide variety of techniques can be used to determinethe statistical relationship such

as simple linear regression, multiple linear regression, Bayesian models, and neural networks;

Gel and Raftery [2004] give a good review.

Most error-correction methods are local, restricted to grid points where previous observations

are available. It is more difficult to generalise to grid points away from observations. Gel and

Raftery [2004] developed a gridded approach by first relating model bias to spatial and temporal

variables, such as the latitude or day of the year. This relationship may then be applied to any
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grid point, regardless of whether observations exist for that point or not. However, this approach

still requires enough observation sites to adequately sample the spatial variables used in the

regression. Given the small number of in-situ offshore observations, this kind of approach was

not thought applicable.

The satellite scatterometer winds described in§4.4.8 offer the only obvious approach for

correcting bias across the whole offshore domain. As already noted, satellite winds are thought

to be under-utilised by global models and provide more detail and smaller biases compared to

raw GFS output [Chelton et al., 2006]. However, the main limitation of these is their daily time

resolution.

The desire was to develop an offshore bias correction which would preserve the temporal and

spatial resolution of WRF output. In addition, it was desireable to keep the method transparent,

so that the original model data could easily be recovered. The correction had to be derived from

the daily satellite data, but be applicable to the hourly WRFdata. Finally, a correction had to

be derived from, and applied to, each 3km offshore cell over the full eleven-year period.

There are many methods for post-processing, in particular methods based on the Kalman-Filter

(KF) can have very dramatic results [Crochet, 2004, Delle Monache et al., 2011, 2008, Libonati

et al., 2008, Louka et al., 2008]. Such an approach is adaptive: bias at timet partly determines

the bias at timet+ 1, which allows correction of non-stationary errors such as seasonal effects.

However, it was not thought feasible to apply this methodology across the whole reanalysis

dataset. Working with the raw data files is slow, each day of simulated wind speed is stored

in a single file, and the whole dataset is too large to fit in the memory of a single machine.

Implementing a KF per grid cell would require repeatedly reading through the dataset at each

point in the domain, applying a KF to calculate the correction to the daily wind speed, and then

applying this to the hourly wind speeds and writing the updated values to a new file. Storage

and time constraints meant this was not possible, although it will make an interesting area of

further work.

In any case, many simple bias correction schemes have been shown to be very effective [Hamill

et al., 2008]. It has been shown in Chapter 5 that the bias is reasonably stationary in time, in

which case a linear regression will minimise the RMSD between satellite speeds and model

data. Hamill [2010] advocates using the simplest possible effective approach, noting that

very often simple techniques are as effective as more complex ones. For these reasons a bias
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correction based on linear regression is used here; this hasthe large advantage of being simple,

transparent, and only requires the additional storage of gradient and intercept terms.

6.3 Processing satellite data

Background information about satellite scatterometer winds, and the sources used is given in

Chapter 4. Satellite winds are interpolated from the rectilinear latitude-longitude global grid

onto the higher resolution curvilinear WRF grid using bi-linear interpolation. This simple

interpolation scheme minimises some of the problems associated with interpolation near the

coast.

The EQNW from the satellite data is used directly: the aim is to create a simple correction

derived directly from the satellite data, without requiring additional estimates of surface fluxes

themselves introduce further uncertainties. At the level of monthly averages, the difference

between EQNW and real winds is small [Kara, 2008], and the EQNW was found to be unbiased

with respect to in-situ observations,§6.4.

The time resolution of the gridded satellite winds is daily.For QuickSCAT this is a direct

average of two overhead passes of the satellite, while for ASCAT these two overhead passes

are averaged with the aid of NWP model output to determine a true daily average. However,

the months where both are available shows the two datasets tobe in close agreement, e.g.

Figure 6.1.

    

Figure 6.1: Comparison of QuickSCAT and ASCAT winds, January 2009
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6.4 Verification of satellite data

In Chapter 5 it was shown that the magnitude of the offshore bias is around 1.0-1.5ms−1.

This is comparable in magnitude to the estimated error in scatterometer winds, thought to

be 1.5 ms−1[Winterfeldt et al., 2010]. Therefore it is first necessary to compare satellite

observations to in-situ observations, to assess whether the satellite winds are indeed less biased

than uncorrected WRF output.

Satellite wind speeds are extracted at the locations of all in-situ offshore observations. In-situ

observations are converted from the anemometer height to a height of 10m using a neutral

logarithmic profile; the adjustment due to height is small asbuoy anemometers are at 4m height,

and lightships anemometers at 19m.

Figure 6.2 shows daily average wind speeds from all three sources at Channel Lightship. Bias

is much lower in the satellite winds (0.08ms−1) than WRF (-0.9ms−1). ASCAT also shows less

bias than WRF, although over a much shorter period. However,WRF speeds have much higher

correlation,0.95 compared to0.88. This is due to the higher temporal resolution of WRF data

which enables a much better estimation of the daily average than two passes of a satellite. It

shows that WRF captures the temporal patterns very well, andshows that the model wind speed

will add significant detail to the daily satellite speed, once systematic bias is removed.

Figure 6.2: Daily average WRF, QuickSCAT and ASCAT data compared to in-situ observations
at Channel lightship. WRF data covers the period 2000-2010,QuickSCAT
2000-2009 and ASCAT 2009-2010
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Name Mean (ms−1) B (ms−1) RMSD (ms−1) R2

obs wrf sat wrf sat wrf sat wrf sat

Sevenstones lightship 8.40 7.46 8.35 -0.95 -0.06 1.49 1.36 0.90 0.86
Channel lightship 8.27 7.39 8.35 -0.87 0.08 1.29 1.21 0.93 0.88
Sandettie lightship 8.08 6.17 8.52 -1.90 0.44 2.25 1.56 0.880.81
Greenwich lightship 8.25 6.72 8.15 -1.50 -0.07 1.85 1.27 0.92 0.88
Aberporth buoy 6.53 5.73 8.07 -0.80 1.54 1.92 2.46 0.69 0.68
Pembroke buoy 7.33 6.56 8.25 -0.77 0.92 1.39 1.81 0.88 0.79
M2 8.70 6.76 8.08 -1.74 -0.52 2.02 1.23 0.90 0.90
M3 8.84 7.53 8.92 -1.22 0.13 1.55 1.17 0.91 0.89
M4a 8.56 7.50 9.21 -1.10 0.73 1.62 1.71 0.88 0.83
M4b 9.35 8.63 9.55 -1.29 -0.17 1.58 1.19 0.94 0.90
M5 8.67 7.12 8.27 -1.50 -0.47 1.88 1.19 0.88 0.89
K5 8.67 8.50 9.84 -0.11 1.29 1.70 2.41 0.79 0.73
K7 8.49 8.52 9.29 0.05 0.87 1.92 2.08 0.73 0.76

Table 6.1: Comparison of daily averaged 10m wind speed between observed, WRF and satellite
wind speeds. Satellite wind speeds are taken from QuickSCATuntil October 2009,
and ASCAT thereafter.

Table 6.1 compares error statistics between WRF and satellite speeds at all available offshore

in-situ observations. Satellite data is predominantly less biased than WRF, particularly at

lightships and Irish buoys. The satellite winds are much closer to the observed means at all

in-situ observations with the exception of Aberporth, Pembroke, K5 and K7, where satellite

wind speeds are higher than observed.

Aberporth and Pembroke are very close to the coast, 13km and 7km respectively. Here satellite

wind speeds may be contaminated by land, or by errors introduced by interpolation near the

coast. Newer versions of the QuickSCAT winds have been released which account for land

contamination and are valid much closer to the coast [Vanhoff et al., 2011]. However, these are

not yet available for the UK1.

There are also discrepancies at buoys K5 and K7, where satellite wind speeds are higher than

observed. These buoys are very exposed and are not near any significant land masses, so land

contamination of the satellite speeds is not the cause. BothK5 and K7 suffer long periods

of missing data, particularly over the winter. Before 2008,both buoys had cup anemometers

which would often fail or degrade within six-months [Turtonand Pethica, 2010]. Salt ingress

into anemometer bearings causes the anemometer to slow overtime, and is difficult to detect

(Turton, personal communication). In 2008, both were serviced and upgraded to dual cup and

sonic anemometers [Turton and Pethica, 2010] and since thenthe match with QuickSCAT data

1see http://podaac.jpl.nasa.gov/node/142
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Figure 6.3: Data quality at exposed buoys. Daily averaged QuickSCAT and observed wind
speeds at buoy K5. Top plot shows comparison for first 6 monthsof 2000, where
QuickSCAT speeds are significantly higher than observed. The lower plot shows
the same comparison for the first six months of 2009 after the anemometer was
upgraded. It is concluded that the high bias seen in QuickSCAT winds at K5 and
K7 is actually due to problems with the buoy anemometers before 2008.

is considerably closer, shown in Figure 6.3.

It is concluded that that the bias at bias at K5 and K7 is a problem with the anemometers before

2008, and the satellite wind speeds are a more accurate indicator of the long term wind speeds.

In fact poor-quality buoy data was the main reason for the anemometer upgrade [Turton and

Pethica, 2010]. This further supports the hypothesis developed in the previous chapter, that

areas of anomalously low wind speed relate to poor quality observations assimilated into global

models.

One concern is that, since satellite wind speeds have been spatially averaged to a 0.5◦ grid, any

correction derived from them may lose geographic detail. Figure 6.4 shows a comparison of

average satellite, WRF wind speeds and in situ observationsfor a region close to the coast. The

satellite wind speeds show a fairly universal average of around 8 ms−1, while WRF speeds show

much more spatial variation and a greater influence of land. However, the in-situ observations

themselves suggest little variation in average wind speeds, and agree much more closely with

the satellite speeds. The satellite winds show a average 8.0-8.5ms−1, while WRF shows the

highest wind speed in the area only 7.5ms−1. In-situ observations are centered around 8.5ms−1,
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with only Aberporth and Pembroke buoy showing significantlylower wind speeds from the rest.

This suggests that although WRF captures the reduction in wind speed very close to the coast, it

generally under-estimates the wind speeds elsewhere, and over-estimates the influence of land

relatively far from the coast.

    

Figure 6.4: Average 10m wind speed from satellite data (left), and average 10m wind speed
from WRF (right). Average wind speeds from in situ observations are shown as
labels on a white background. WRF shows much more spatial variation than the
lower-resolution gridded data, although this variation isnot confirmed by the in-situ
observations.

6.5 Bias correction method

Two bias correction methods based on linear regression weretried. A linear regression was

computed at each WRF grid cell between an 11-year time seriesof daily average WRF and

satellite wind. That is, the coefficientsmi andci were calculated for each grid celli:

U
sat
i = miU

wrf
i + ci (6.1)

whereŪsat
i is the daily average 10m satellite wind, andŪwrf

i is the daily average 10m model

wind in each grid cell. The advantage of this approach is, if the bias is stationary, this method

will return the optimum linear solution. The disadvantage is that, since it contains an intercept

term, it will shift wind speed distributions as well as scaling them. Given that the bias is most

obvious at higher wind speeds, this may over-correct at low wind speeds.
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Comparison of bias correction methods. Hourly average wind speed across all
offshore in-situ observations. (a) uncorrected WRF wind speeds (b) bias corrected
WRF wind speeds using linear regression, (c) bias correctedWRF wind speeds
using only multiplicative scaling. Plots (d), (e) and (f) show residuals against
observed wind speeds for the corresponding plot above.

Therefore a second approach was tested where the intercept,ci, was constrained to be zero, and

only a multiplicative correction remains. Eq 6.1 becomes simply:

U
sat
i = miU

wrf
i (6.2)

and the gradient,mi, is simply the ratio of average satellite wind speeds to model wind speeds.

In theory, the more general Eq. 6.1 should find this solution if it is indeed the best fit. However,

large errors at higher wind speeds can have a large impact on the intercept term.

Figure 6.5 shows QQ plots against offshore in-situ observations for uncorrected and bias

corrected wind speeds using both methods. From the top row ofFigure 6.5 it can be seen that

both bias correction methods do well at correcting the bias,but the linear regression method is

marginally better throughout a larger range of wind speeds.From the bottom row of Figure 6.5,
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it can be seen that the first bias correction method tends to over-compensate at low wind speeds,

probably due to the intercept term. In contrast, the second method tends to over-correct at higher

wind speeds, due to the larger size of the multiplicative term.

Figure 6.6 shows the geographic distribution of the least squares gradient (a) and intercept (b),

and also the value of the gradient when only multiplicative scaling is used (c). The intercept

terms in Figure 6.5 (b) appear quite large, with values of up to 2 ms−1. However, they are

difficult to interpret alone, since they may offset to some extent by a gradient of< 1. Figure 6.5

(c), which can be interpreted alone, shows but the corrections tend to be between1.0 to 1.2 for

the open sea, and between1.2 to 1.2 for coastal areas. It can also bee seen that the largest

corrections, which occur in the Irish Sea and the English Channel, correlate very closely with

areas of wind speed bias seen in comparison with the Marine Atlas, Figure 5.26. This gives

further support to the notion that the orrections are physically realistic. However, they should

be interpreted with caution, as current satellite datasetscannot be relied on close to the coast.

It could be that the satellite ‘correction’ is actually a reflection of poor quality near to the coast,

and this approach should be revisited once higher resolution coastal datasets become available

for the UK.

(a) gradient (b) intercept (c) multiplicative scale

Figure 6.6: Bias correction gradient (a), intercept (b), and scale factor alone (c) from linear
regression between 11 years of satellite and WRF wind speed

Finally, it should me noted that, although the regression isdeveloped between daily average

speeds, the correction is assumed to be applicable to hourlywind speeds. This is a reasonable

assumption since it is a linear operation, and therefore canbe applied to the hourly components

and have the same transformation on the daily averages. It isalso assumed that the same

correction applies at hub-height. This is supported by the vertical profiles investigated in§5.7,
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which show systematic displacement to the wind profile throughout the height range.

6.6 Results

Figure 6.7 shows the model winds corrected by the linear regression and the satellite wind

speeds. As intended, the adjustment brings the model data into much closer agreement

with satellite wind speeds. In particular it removes the anomalous features associated with

observations at oil platforms and buoys. Figure 6.7 also shows a detail close to the coast, also

showing averages from in-situ observations. The bias corrected wind speeds agree more closely

with the in-situ observations. Much of the spurious geographic variation has been removed, yet

the model winds still show a realistic decrease close to the coast, in agreement with in-situ

observations.

Table 6.2 summarises revised error statistics at in-situ observations. There is a dramatic

improvement inB at all sites, apart from K5 and K7, which are disccussed in§ 6.4. There is also

an improvement in RMSD at all sites apart from K5 and K7. Importantly, R2 remains the same

at all sites, confirming that the simple linear correction has not altered the temporal patterns.

The transformed QQ plots against all offshore observationshave already been presented as

Figure 6.5. The bias correction brings the distributions into much better agreement. Once

transformed, there is a slight positive bias against in-situ observations; however, this mainly

results from the lower than expected speeds at buoys K5 and K7, as discussed previously.

Finally, Figure 6.8 shows the error distribution in the average hourly windspeed against in

situ observations both before and after the satellite correction is applied. The bias correction

shifts the error distribution, with the new errors reasonably normally distributed about the mean

B = 0.26 ms−1. Again, this small positive bias mainly relates to the K5 andK7 buoys.

Estimating confidence intervals onB directly from the sample quantiles gives±0.91, ±1.20,

and±1.50 for the80%, 90% and95% confidence intervals respectively.

Taken together, these statistics give a very strong verification of the dataset, showing it to be

essentially unbiased and give a realistic representation of the spatial and temporal variations in

wind speed seen over the eleven year period.
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Figure 6.7: Average satellite wind speeds at 10m (left) and bias-corrected WRF winds at 10m
(right). Bottom plot shows a detail closer to the coast, withaverage speeds from
in-situ observations shown as labels on a white background.

6.7 Chapter summary

This chapter addresses a low wind speed bias in offshore simulated wind speeds, which would

have been of sufficient magnitude to affect conclusions. A complete record of daily average

wind speed from satellite records was established. Comparison with in-situ observations

showed the satellite wind speeds to be essentially unbiased, and also revealed a potential

low wind-speed problem at an exposed UK Met Office buoy before2007. Satellite winds

were then used to derive a simple bias correction, and two bias correction methods were tried

based on linear regression. This resulting correction was applied to the hourly wind speeds,

which significantly improves the representation of wind-speed distributions, and brought the

geographic pattern into much closer agreement with observed patterns.

The bias-corrected dataset represents a major output of thework. It is of use to researchers,

wind farm developers, grid operators, policy makers and others. It is used in future chapters
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Name Mean (ms−1) B (ms−1) RMSD (ms−1) R2

obs raw sca raw sca raw sca raw sca

Aberporth Buoy 6.19 5.25 6.78 -0.95 0.59 2.24 2.14 0.62 0.62
Channel Lightship 8.57 7.59 8.57 -0.98 0.00 1.92 1.69 0.85 0.85
Greenwich Lightship 8.63 7.02 8.49 -1.61 -0.14 2.4 1.81 0.840.84
K5 Buoy 7.95 7.70 9.03 -0.25 1.08 2.03 2.32 0.73 0.73
K7 7.82 7.69 8.51 -0.13 0.69 2.27 2.42 0.65 0.65
M2 7.84 6.29 7.77 -1.55 -0.07 2.18 1.54 0.81 0.81
M3 8.04 6.90 8.17 -1.14 0.12 1.76 1.37 0.84 0.84
M4a 7.88 6.83 8.54 -1.05 0.66 1.87 1.68 0.82 0.82
M4b 8.32 7.16 7.89 -1.16 -0.43 1.86 1.53 0.84 0.84
M5 7.83 6.44 7.68 -1.40 -0.15 1.97 1.39 0.84 0.84
Pembroke Buoy 6.80 5.96 7.23 -0.85 0.43 1.75 1.59 0.80 0.80
Sandettie Lightship 8.34 6.41 8.21 -1.93 -0.12 2.74 2.00 0.80 0.80
Sevenstones lightship 8.62 7.64 8.60 -0.98 -0.02 2.06 1.82 0.82 0.82

Table 6.2: Error statistics calculated for hourly WRF wind speeds against in-situ observations.
Table shows in-situ observations (obs), original WRF winds(raw), and bias corrected
WRF wind speeds (sca).

(a) Uncorrected (b) Bias corrected

Figure 6.8: Distribution of error before and after correction against satellite wind speeds.
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to examine the geographic and temporal patterns in power output from current and future wind

farms.
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Chapter 7
Conversion to power

7.1 Introduction

The previous chapters have described the creation and validation of an 11-year wind speed

dataset across the British Isles. This has been shown to capture very well the spatial and

temporal variations in wind speed over this period. Onshore, the wind speeds showed very

little systematic bias, although the performance dependedon the terrain complexity; offshore,

a systematic low bias was corrected using eleven years of satellite scatterometer derived wind

speeds.

This chapter now examines how this dataset may be used to estimate the outputs from current

onshore and offshore wind farms, and validates the approachagainst published data. This

provides support for the analysis chapters which follow later.

7.2 Power curves

7.2.1 Single turbines

The amount of electrical power which can be generated by a wind turbine is proportional to the

total kinetic power available [Burton et al., 2011]:

P = Cp
1

2
ρAU3 (7.1)

whereP is power,ρ the air density,A the rotor swept area,U the incident wind speed, and

the coefficient of proportionality,Cp, is known as the power coefficient. However the response

of a turbine is not simple -Cp is not constant - so the actual relation between wind speed and

power generated is not a straightforward cubic relationship, and is usually summarised by a

power curve. It is useful to define power curves in terms of the normalisedpower, orload
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factor (LF ):

LF =
P

Pmax
(7.2)

whereP is the instantaneous power, andPmax is the maximum rated power of the turbine. A

typical power curve is shown in Figure 7.1. It is characterised by:

1. a cut-in speed: the speed at which the turbine begins to generate;

2. a rated speed: the speed at which the the turbine reaches maximum output; and

3. a cut-out speed: the speed at which the turbine is shut downto prevent damage.

Cut in

Rated Cut−out
L

oa
d 

F
ac

to
r

Wind speed

Figure 7.1: Schematic of a typical turbine power curve

The primary use of power curves is to allow developers to predict the energy yield of a site

once the wind speed distribution is known. Power curves are determined by field measurements

according to strict standards [IEC, 2009], and are usually determined using themethod of bins,

where power is bin-averaged power over 0.5 or 1ms−1 bins [Burton et al., 2011].

The reason for using the method of bins is that the raw data typically shows large scatter related

to, for example, turbulent variations in wind speed and the dynamic response of the turbine

[Gottschall and Peinke, 2008, Kaiser et al., 2007]. The IEC standards define, as far as possible,

site characteristics for the testing of turbines. The actual performance of the turbine may be

significantly different when deployed in different conditions. In particular, turbulence intensity

at the site will have a large effect on the power curve.

The power curve gives theaveragepower output of a turbine within each wind speed bin, and a

time series of power output created from a power curve gives themost likelyoutput given those

wind speeds. In the long-term it should match the observed average, but it will not recreate the

large scatter seen in real observations.
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7.2.2 Wind farms

Estimating the aggregate output from a wind farm is more complex than simply scaling up from

a single turbine. The output is influence by a number of factors, mainly:

• variation in wind speed and turbulence across the site;

• wake losses;

• technical availability;

• storm control actions; and

• electrical losses within the wind farm.

Also, it should be noted that observations of whole-farm power curves show greater scatter than

single-turbine cases. Figure 7.2 shows the amount of scatter typical in field measurements [Wan

et al., 2010]. For a given wind speed, there is clearly a wide-range of observed power outputs,

and a number of different regimes can be noted, possibly corresponding to wind direction. The

ramp down region at high wind speeds can also be seen.

Figure 7.2: An example of the experimental scatter seen in measurements of power curves at
operational wind farms. From Wan et al. [2010]. Wind speed asmeasured at a
nearby met mast is on the x-axis, and power output of the wholefarm on the y-axis.
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Technical Availability

Technical availability of onshore turbines has been well studied and is known to be very high.

Harman et al. [2008] reviewed a technical database relatingto 14GW of installed capacity and

found availability to be 97%; this is typical of the level nowguaranteed by manufacturers.

Offshore technology is much less mature and the sites developed so far have been relatively

close to shore. Further offshore, access for repair becomesmore limited by weather windows.

Rather than assume a single number for technical availability, it is studied separately later in

the analysis as a sensitivity parameter. Furthermore, the effect of technical availability on load

factor is not straightforward. Many studies assume, for example, that a reduction in technical

availability of 10% will reduce output by 10%. While this maybe a valid assumption for

thermal generators, for wind generators it also matterswhenit occurs. If a turbine is unavailable

in the winter, it will have a larger reduction in output than if it were unavailable in the summer.

This is studied as a sensitivity parameter in Chapter 8.

Electrical losses

Resitive losses in cables, transformers and other balance of plant equipment cause a small loss

of energy production, which are of the order of 2% of annual energy production [Manwell et al.,

2002a].

Storm control

All wind turbines take action to prevent damage in very high winds. Most large modern

turbines are pitch-controlled and in very high winds, typically above 25ms−1, the blades are

fully pitched to stop production. Depending on the control strategy, this may be a fairly sudden

change to zero output, or a more gradual ramp-down, known as soft storm control. To reduce

fatigue loading associated with repeated shut-down events, some form of hysteresis is often

implemented where the turbine is not re-started until the wind speed reduces below a particular

level.
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Wake losses

The most significant losses for a wind farm, as opposed to a single turbine, are wake losses.

The energy extracted by a turbine generates a speed deficit downstream, until entrainment of

momentum from above causes the wind speed to recover [Burtonet al., 2011]. Wake losses are

thought to be lower in more complex terrain where turbulenceintensity is higher. The effect of

wake losses on average energy production for onshore farms is usually found to be in the range

4-12% [Manwell et al., 2002b]. In the cross-wind direction,wake losses can be as high as 40%,

and wind farms are generally laid out to minimise wake lossesin the prevailing wind direction,

although landscape and planning factors may affect the layout.

Most offshore turbines are not radically different from current large onshore turbines, and

the power curves have a similar form. However, much less datais available on the aggregate

performance of offshore farms. Wakes are generally thoughtto be more significant, since

they persist for longer due to the lower turbulence intensity offshore. However, real world

data is lacking, and in particular the effect of atmosphericstability on wake effects is not

understood [España et al., 2012]. Most studies predict wake losses of the order of 10-15%

[Barthelmie et al., 2007, Mclean and Hassan, 2008]. However, most studies are based on

existing wind farms relatively close to shore. Although wake effects are thought to be

more significant, for future offshore wind farms, larger losses at lower wind speeds may be

compensated by the longer time spent at higher wind speeds, above the steepest part of the

power curve.

7.3 Accounting for losses

There are three general ways to account for these losses. Thefirst is to use a single turbine

power curve - ignoring the losses - and then scale the final result down by a constant factor.

Assuming constant array losses of around 10% is typical [Burton et al., 2011]. An advantage of

this approach is it is very simple to apply and transparent. Further, the loss factor can be chosen

so that the outputs match long-term published averages. Thedrawback is that wake losses are

not distributed realistically across the wind speed range:using this approach the output of a

wind farm never reaches 100%.

The second approach is to use an aggregate power curve, whoseshape accounts for losses. The

advantage of this approach is that it is relatively simple toapply, yet it distributes wake losses
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more realistically through the range of wind speeds, and canalso account for the smoothing

of wind speeds seen across the whole farm. The drawbacks are that it may be impossible to

adequately characterise the farm by a single curve, as wakeslosses vary considerably with wind

direction [Manwell et al., 2002b]. In addition it may be difficult to make the curve generic and

applicable to multiple farms.

The third approach is to try to account for losses separatelybased on physical considerations,

for example, using a CFD model to determine wake losses by wind speed and direction e.g.

[Barthelmie et al., 2007, Costa et al., 2006, Li et al., 2011]. However, the physical effects are

complex and difficult to predict, and this approach introduces another uncertainty on top of any

underlying uncertainties in the wind speed.

The second approach, an aggregate power curve, is used here as it gives a good trade-off

between complexity and realism. The third approach of modelling each effect individually

using more complex models was not attempted, as it is infeasible to apply this across several

hundred wind farms. In any case, when estimating the power from future farms there are many

other uncertainties which are as, if not more, significant, such as changes in the future wind

speeds, assumptions about the number, size and height of turbines, and assumptions about the

layout of wind farms, and assumptions about the technical availability of offshore turbines.

7.3.1 Aggregate power curves

A number of approaches have been taken to produce aggregate power curves, based on

theoretical arguments e.g. [Kaiser et al., 2007, Nørgaard,2004], measured data e.g. [Hayes

et al., 2010, Tindal et al., 2008, Wan et al., 2010], or engineering experience and judgements

e.g. [Mclean and Hassan, 2008].

All the approaches cited above point to a similar modification to the shape of the curve, shown in

Figure 7.3. Power output at low wind speeds may be very slightly higher than expected, as some

turbines will be experiencing higher than average wind speeds. As speed increases, the first row

of turbines will reach rated power, but turbines in the wakesbehind will not. Maximum output

is not reached until the average wind speed is sufficiently high that turbines in the back row are

at rated wind speed. Finally, the farm output may begin to decline before the cut-out speed is

reached, due to wind speed variations across the site and turbulent gusts causing control actions

to be taken at individual turbines. The behaviour in the region approaching cut-out speed is not
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still generated

Figure 7.3: Shape of an aggregate power curve (dashed) in relation to a single-turbine curve
(solid).

well documented, partly due to the infrequent occurrence ofvery high winds, but also due to

differences in the control strategies between different turbines and site operators. Due to the

infrequent occurrence, the behaviour in this region is lessimportant for energy production.

Given the shape outlined in Figure 7.3, a generalised aggregate power curve may be

characterised by:

• cut-in speed: the speed at which the farm begins to produce power;

• rated speed: the speed at which the farm reaches rated power;

• ramp-down speed: the speed above which the power begins to decreases;

• cut-out: the speed above which the farm produces no power;

• fup: a function describing the ramp up; and

• fdown: a function describing the ramp down.

Hayes et al. [2010] used wind speeds measured at individual nacelles (corrected to represent

the free-stream flow) to derive aggregate power curves for two wind farms. Although the
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two sites studied had different terrain and geography, the aggregate power curves showed

similar features, with significantly reduced power output (compared to a single-turbine curve)

in the range 9-15ms−1. They proposed a simple per-unit adjustment based on wind speed, to

transform a turbine curve into an aggregate curve. These adjustments are given in Appendix B,

Table B.3.

The adjustments defined by Hayes et al. [2010] are derived from measurements at farms with

3MW turbines with fairly standard characteristics: a cut-in speed of 4ms−1and a rated speed

of 12ms−1. This is representative of many large turbines, although some very small or very

large turbines differ. In order to generalise these per-unit adjustments to all turbines, they were

re-defined in terms of a normalised variableI, where

I =
U − cut-in

cut-out− cut-in
(7.3)

so they could be applied to any power curve. The interval value is also given in Table B.3.

Adjustments at high wind speeds close to cut-out were not published in [Hayes et al., 2010]

due to the small number of observations, but the authors confirmed that the output was seen to

reduce as the average speed approached the cut-out speed (Hayes, personal communication).

With the adjustments applied, the resulting power curve, Figure 7.4, is shallower than a normal

turbine power curve, and can be very well approximated by a logistic function:

LF =
1

1 + e−
(U−a)

b

(7.4)

whereU is the wind speed anda andb are parameters relating to the centre and width of the

curve. This has the advantage of being easy to apply, requiring only two parameters, and does

not fluctuate or overshoot like higher-order fitted polynomials.

Figure 7.5 shows an example time series using single-turbine power curve and an aggregate

curve based on the per-unit adjustments described. The adjusted curve appears to give a realistic

estimate of wake losses in the correct wind speed region. Table 7.1 shows the estimated

reduction in energy yield using this approach at a high-windand low-wind site. Energy

reductions are of the order 10% to 13%, which agrees with the range of estimates found in

the literature. Moreover, energy losses are more realistically distributed across the range of
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Figure 7.4: Single turbine power curve, measured aggregatepower curve from Hayes et al.
[2010], and a two-parameter sigmoid approximation to it.

wind speeds, with the highest losses in moderate wind speedsaround the steepest part of the

power curve. This approach is therefore thought to be realistic for both onshore and offshore

sites.

Weibull parameters Energy yield Difference
k c Turbine Aggregate

ms−1 MWh MWh %

high wind 2.15 10.56 178 160 -10
low wind 1.88 8.55 130 113 -13

Table 7.1: Reduction in energy yield due to wake losses when modelled with an aggregate
power curve compared to a single-turbine curve.

7.3.2 Approach taken

Based on the discussion above, the following approach was taken to define aggregate wind

farm curves. Manufacturer’s power-curves for a large number of existing turbines ranging

from 500kW up to 5MW were taken from WAsP [Troen et al., 2008],and the cut-in speed,

rated-speed and cut-out speeds were obtained. Per-unit adjustment of Hayes et al. [2010] were

applied to transform the turbine shape into an aggregate shape which reflects array losses.

Two-parameter logistic functions (Eq.7.4) were then fittedto the ramp-up region.

In the absence of detailed information, the power curves were made to ramp down from 1 to 0

linearly across the interval [cut-out−0.5ms−1, cut-out+0.5ms−1]. That is, a relatively sharp
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Figure 7.5: Example time series of wind speed (top) and corresponding power output (bottom)
using a single-turbine curve, and an aggregate power curve.Wake losses are highest
in wind speeds around 5-15ms−1.

cut-off at the nominal cut-out speed was assumed. Electrical losses were assumed fixed at 2%.

No account is made technical availability was made at this stage, this is analysed separately as

a sensitivity parameter.

Existing wind farms were matched to the turbine power curve using information in the UK

Wind Energy Database [Renewable UK, 2011]. This contains the make, model and size of

turbine at all operational or under-construction wind farms. Offshore wind farms not yet under

construction were assumed to have turbines similar to a REPower 5MW turbine, which is

representative of the types of turbine which may be installed at Round 3 sites [Mclean and

Hassan, 2008]. The main difference of this power curve is a cut-out at 30ms−1, rather than

25ms−1.

The resulting procedure for predicting the output from eachwind farm is best illustrated by an

example. To predict the power from a wind farm with ten 3.6MW turbines the following steps

are followed:

1. the manufacturer’s power curve is selected for the closest available turbine;

2. the curve is transformed by applying adjustments over theramp-up region;

3. a two-parameter logistic function is then fitted to the ramp-up region;
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4. a linear ramp-down about the turbine cut-out speed is assumed;

5. wind speeds are applied to this power curve to give an aggregateLF ; and

6. theLF is scaled up by the total installed capacity (10× 3.6 MW) of the wind farm to

give the total power output.

7.4 Comparison to published data

7.4.1 Data sources

Detailed data on the outputs of existing wind farms is not readily available, as data owned by

wind farm operators is regarded as commercially sensitive.The main publicly available sources

of data are summarised in Table 7.2.

Data source Aggregation Time resolution Comments

BM Reports Individual wind farms Half-hourly Transmissionconnected only
Frequent missing data
Quality sometimes questionable

ROC Register Individual wind farms Monthly Comprehensive coverage
Early offshore data unreliable

Capital grants reports Individual wind farms Monthly Only offshore
Limited time coverage
Has technical availability

Table 7.2: Data sources on wind farm outputs

BM reports

The New Electricity Trading Arrangements (NETA) mandate that certain information must be

provided to support the balancing mechanism used by the National Grid use to ensure power

flows into and out of the transmission grid remain balanced. This data is currently provided

by Elexon [2011]. Information is provided in real-time on the output of individual generator

units connected to the transmission grid, and some data is also archived. However, archived

data is only available from 2010 onwards, and only data from transmission connected wind is

available. Hourly output is given to the nearest MWh. Large periods of missing (zero) data is

also common in the archives. Table 7.3 summarised the wind farms for which reliable hourly

wind data was available.
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Name Region Capacity (MW)

Black Law South Lanarkshire 97
Farr Windfarm Highland 92
Hadyard Hill, Barr South Ayrshire 130
Kilbraur Highland 48
Millennium Highland 40
Toddleburn Scottish Borders 28
Whitelee East Renfrewshire 322

Table 7.3: Onshore wind farms with hourly production data from BM Reports.

ROC Register

The primary mechanism in the UK for subsidising wind power are Renewable Obligation

Certificates (ROCs). Since April 2002, all UK electricity suppliers have been obliged to obtain

a proportion of their energy from renewable sources. This isachieved by issuing ROCs to

renewable generators, from whom suppliers can buy these certificates to fulfil their obligation.

One ROC is earned per MWh of electricity generated for onshore wind, and 2 ROCs per MWh

for offshore wind.

The ROC register is a comprehensive record of the number of ROCs issued to each generator

each month, and therefore allows the calculation of monthlyload factors at each wind farm.

At the time of downloading, the ROC register had data up to theend of February 2010. It was

found to be unreliable for offshore wind before 2009, as manyof the generators had ROCs

aggregated into a whole year e.g. 2007-2008, rather than by month. Data compiled in the

capital grants reports was found to be a better source for offshore farms for most of the period.

The ROC register does not contain the coordinates of renewable generators, only the name

and the region. The coordinates of wind farms are available in UKWED. However, the only

link between these two sources is the name of the wind farm, which is not standard and varies

between the two. Alternative names and different spellingsare common, for example “Red

House Wind Farm” appears in the ROC register while “Gedney Marsh (Red House)” appears

in UKWED.

The two datasets were linked using the following algorithm.The names were converted to

lower case and common nouns were removed: farm, hill, moor, etc. This ensured the remaining

tokens were mainly related to the place name. A fuzzy matching algorithm based on trigrams1

was applied to create a similarity score (from 0 to 1) betweeneach possible pair of names. Each

1http://www.postgresql.org/docs/current/static/pgtrgm.html
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name in the ROC register was then matched to the name in UKWED with the highest similarity

score, with any matches with a similarity score below 0.3 excluded as unreliable. Finally, the

resulting matching was examined manually and a few remaining false or inconclusive matches

were excluded.

There are 301 operational onshore wind generators in the ROCregister, and 307 in UKWED.

Applying the matching algorithm identified 192 definitive matches. Of those, 107 were

operational before 1st January 2007, so had at least three years of data; these are used for

verification.

Capital grants reports

Offshore wind farms which received UK Government support under the capital grants

programme [DTI, 2003] were required to submit annual performance reports for the first few

years of operation. This includes monthly load factors, monthly wind speed, and monthly

technical availability, and is the only source of offshore data with these figures. Unfortunately

it only covers a few farms for a relatively short period, summarised in Table 7.4. Tavner et al.

[2010] gives a good summary of the data available in the individual reports.

Windfarm name Period available

Barrow Jul 2006 - Jun 2007
Scroby Sands Jan 2001 - Dec 2007
Kentish Flats Jun 2006 - Dec 2007
North Hoyle Jul 2001 - Jun 2007

Table 7.4: Operational offshore wind farms with available capital grants reports.

7.4.2 Onshore

Hourly

Comparison of hourly time series for individual wind farms,Figure 7.6 (a,b), shows a fairly

large amount of scatter, typical of that seen when deriving apower curve (see§7.2.2). However,

the overall trend is still quite strong. When hourly time series are averaged across multiple

farms, the match is much stronger. Figure 7.7 shows the average hourly load factor computed

across the seven farms with hourly data available listed in Table 7.3. However, the simulated

time series are smoother than the observed time series, and there are periods of low load factors

which are not captured. This could be due technical outages,planned turbine maintenance,

132



Conversion to power

changes in wind direction causing additional losses, curtailment due to insufficient network

capacity or other factors not modelled.

(a) Single farm (b) Average

Figure 7.6: Comparison of hourly load factors at a single transmission connected wind farm,
and across seven transmission connected wind farms

The conclusion from the hourly comparison is that the simulated load factors capture the main

features of the observed load factors, but shows a large degree of scatter, demonstrating there are

many other determining factors than just the wind speeds andaverage power curve. However,

averaging over seven wind farms shows a much stronger relationship, and the hourly output

is very well correlated. There is a slight high bias overall against these seven wind farms,

B = 0.03, but this is before technical availability has been accounted for. Given that technical

availability is around 97% for onshore turbines, this suggests the results are unbiased overall.

Figure 7.7: Time series of average hourly load factors in January 2010 across the seven wind
farms listed in Table 7.3
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Figure 7.8: The good, the bad, and the ugly: examples of the monthly match at individual wind
farms

Monthly

The farms with hourly data are all large, transmission connected wind farms in Scotland. Most

of the onshore wind in the UK consists of smaller, distribution connected farms, more widely

distributed across the country. The only source of data for distribution connected wind is

monthly data from the ROC register.

Figure 7.8 shows the match against three individual farms inthe ROC register, distributed

around the country. The examples have been chosen to be representative of a good, reasonable,

and poor match. There are some systematic differences at individual wind farms as would be

expected since the terrain at 3km resolution will not adequately capture all sites.

Figure 7.9 shows the average load factor across 107 farms matched in the ROC register. The

match is reasonably good. Again, there is a slight over-prediction, withB = 0.03, but this is

before adjusting for technical availability.
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Figure 7.9: Comparison of simulated and observed average monthly load factor over 107 wind
farms in the ROC register for the period 2007-2010.

The conclusion from the comparison of monthly values is thatpatterns are captured very well,

simulated load factors may show systematic errors at individual wind farms, but when averaged

across a number of sites the agreement is very good, and unbiased once a reduction has been

made for technical availability.

7.4.3 Offshore

Hourly

No hourly data for offshore farms was available, therefore verification could only be done at

done at a monthly level.

Monthly

Offshore wind farms in the UK have been operational since North Hoyle began generating in

2003, but it is only since 2005 that three or more farms have been operational. Load factors for

operational farms are taken from the capital grants reportsbefore 2009, and the ROC register

thereafter. Technical availability is available in the capital grant reports, and observed outputs

have been adjusted to 100% technical availibility

Figure 7.11 (a-c) shows monthly time series plots for three operational wind farms around the

UK coast. The load factor derived from raw WRF speeds and bias-corrected speeds as described

in Chapter 6 are shown. It can be seen that load factors derived from the bias-corrected

wind speed are in closer agreement, and where there is a discrepancy, it is present in both
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Figure 7.10: Observed and simulated monthly load factors averaged across all operational
offshore wind farms.

the corrected and uncorrected wind speeds i.e. it is a not a result of applying the correction.

Figure 7.11 shows agreement at all offshore wind farms.

The conclusion from the comparison with offshore farms is that the simulated load factors

show a good match with published figures, both in terms of their average values and monthly

variation. Although no direct hourly comprisons could be performed, this still gives strong

evidence that the simulated hourly output will be realistic.
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(a)

(b)

(c)

Figure 7.11: Example of the match at three offshore wind farms

137



Conversion to power

7.5 Chapter summary

Factors affecting the simulation of power output from single turbines and whole wind farms

were discussed, and background material on wake and other losses was summarised. The large

amount of scatter seen in empirical measurements of power curves was noted, highlighting the

inherent difficulties of predicting power-output time series using a power curve. Nonetheless,

an aggregate power-curve approach was developed and applied to wind speed data from WRF

to simulate power outputs from existing wind farms. Numerous published sources of wind farm

data were collated to allow the validation of hourly and monthly time series at existing onshore

wind farms, and monthly time series at offshore wind farms.

At individual onshore wind farms, there was a large amount ofscatter between the simulated

and observed hourly values, though the time series capturedthe phase and variability of major

features very well. When averaged over several large transmission connected wind farms, the

scatter was much reduced and the match improved substantially, R2 = 0.84. There was a slight

positive bias,B = 0.03, which is desireable since no account has yet been made for technical

availability.

Comparsion to monthly load factors calculated from the ROC register, showed some systematic

bias at individual farms, though this tended to get averagedout across a large number (107) of

transmission and distribution connected wind farms. A similar small positive bias,B = 0.03

seen in the hourly comparisons, which again is desireable since this was before accounting for

technical availability.

Offshore, the agreement between monthly load factors was found to be very good, and the

satellite bias-correction derived in the previous chapterwas found to work well. Comparison of

average monthly load factors over all currently operational onshore wind farms showed good

agreement,R2 = 0.86, and a similar positive bias seen at onshore sites,B = 0.02, before

accounting for technical availability.

This chapter provides valuable evidence that the hourly wind speed data from WRF can be used

to create realistic hourly load factors for existing onshore and offshore wind farms. Chapter 5

has already shown that wind speeds are captured well over thewhole of the British Isles and

surrounding waters. On that basis, it can be assumed that load factors derived at the locations

of future wind farms are also realistic and representative.The remaining chapters the expected

power production from a future wind fleet and the implications of this.
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Analysis

8.1 Introduction

Previous chapters have described the creation and validation of a high-resolution wind speed

dataset spanning a period of eleven years. It has been shown that the dataset captures the

variability of wind speeds very well across a variety of spatial and temporal scales. The wind

speeds have been shown to match observed averages onshore across a very large number of

met stations and onshore masts. Offshore, the wind speeds have been bias-corrected using

wind speeds derived from satellite scatterometer measurements. The corrected speeds match

observed average values, and the spatial and temporal patterns very well.

It has also been shown that this dataset can be used to model the output of existing onshore and

offshore wind farms, and that the patterns of power production are realistic. On this basis, it

is proposed that this dataset can be used to provide information and insight about the spatial

and temporal patterns of power generation from future wind fleets. Although eleven years is not

long enough to be considered a true climatology, it is long enough to capture an extensive range

of weather types, and capture a large amount of inter-annualvariability, including an extremely

calm winter by historic standards.

A large advantage of this dataset is that it represents a truehistoric time-series, so can be

matched to other time-series, such as historic electricitydemand. Often studies looking at the

wind resources use statistical downscaling to produce an average climatology, which cannot be

linked to specific time periods.

This chapter presents an analysis of likely patterns of power and energy production from future

wind farms, with a focus on offshore generation. The approach adopted here is to use relatively

simple techniques and clear assumptions to demonstrate what can be achieved with the dataset.

By making the dataset publicly available, it is hoped these,and other key research questions

can be explored in more detail, and that the results are reproducible.

This chapter is divided into three sections: first, some background is reviewed regarding the

139



Analysis

possible size and extent of the UK’s future offshore wind fleet; second, the analysis approach

is presented; finally, the results of the analysis are presented and discussed.

The basic assumption which underpins this analysis is that the last eleven years of wind speed

are broadly representative of the expected future wind climate. Although it is known that the

climate is changing, the British Isles will continue to be governed by similar mid-latitude

synoptic systems seen today, perhaps with a shift in frequencies of weather types and the

position of storm tracks. Analysing the impacts of climate change are outside the scope of

this work, but are discussed in§ 9.4. Also, by providing a link between different weather

episodes and patterns of energy production and demand, thisdataset could provide a baseline

for future climate change studies.

8.2 Background

8.2.1 Growth of wind

Under the European Renewable Energy Directive, the UK has a target to supply 15% of primary

energy demand from renewables by 2020. The electricity sector is expected to make the largest

contribution, with renewable generation contributing over 30% of electricity generated in the

lead scenario [UK Government, 2009].

Wind has seen rapid and sustained growth in the UK over the past decade, and is widely

expected to contribute the most to the UK’s renewable energytargets. The UK currently has

around 4GW of operational onshore wind and around 1.5GW offshore [Renewable UK, 2011].

It is expected that much of the growth in renewables will comefrom offshore wind generation

[PWC, 2010, Toke, 2011]. The Crown Estate has already leasedsites which could be developed

to around 40GW of installed offshore capacity in a relatively short timescale. These sites have

been leased in a series of three rounds, Round 1, Round 2, and Round 3, plus an additional

Scottish Exclusivity (SE) round.

Most build-rate projections for the growth of wind energy inthe UK are based explicitly on the

2020 renewable energy targets. Various growth projectionshave been made by industry bodies,

with different motivations or purposes, for example to highlight the potential economic value

of wind generation for the UK [The Offshore Valuation Group,2011], to identify the size of the

supply chain needed to support growth [Renwewable UK, 2010], or to highlight the number of
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jobs which might be supported [Esteban et al., 2011].

However, it is increasingly recognised that the build-rates in these projections are optimistic.

For example, a recent report [Crown Estate, 2010] estimatedthat to develop the 32GW of

offshore wind identified in the Round 3 zones according to thedevelopers’ stated timetables

would require the manufacture and installation of around 1500 turbines per year in the period

2017-2019. Given that installation at many Round 3 sites would not be possible for much

of the winter, this would mean installation of tens of turbines per day during admissible

weather windows. As well as the obvious practical difficulties, the report concluded such high

installation rates could lead to an unwelcome increase in cost.

This highlights the difficulty associated with predicting the future growth rate, and the difficulty

with tying an analysis to a particular time-based scenario.A common approach is to develop

a number of parallel scenarios, e.g. low growth, high growthetc. However, for this analysis,

the key question is notwhena wind farm gets built, butwhere, and how that changes the

overall geographic distribution of capacity. The locations of wind farms will determine how

their outputs correlate to one another, and the distribution of capacity between regions will

determine how much geographic smoothing is achieved and thelikely size of the power flows

between regions.

Similarly, it may be diffcult to predict the exact installedcapacity at specified points in the

future. However, much of the analysis does not depend on the absolute capacities installed, but

depends on the relative distribution of capacity between regions. Therefore, for this analysis,

rather than invent several time-based scenarios describing the growth of wind out to 2020 or

2030, an approach is taken which highlights how the geographic distribution will change in

several stages as more onshore and offshore wind is developed. These are described by a series

of ‘snapshots’ defined in§8.3.

8.2.2 Location of future wind

Onshore

Onshore wind is relatively widespread across the whole UK, although it is concentrated in those

areas of high wind resource with good access to the transmission or distribution grid. When

assessing the locations of future wind, it would be possibleto allocate new wind to ‘optimal’

sites based on average wind speed and proximity to the grid, with certain areas excluded due to
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Status Num sites> 1MW Capacity (GW)

Operational 231 3.6
Under construction 36 1.3
Consented 155 3.6
Submitted to planning 202 6.0

Total 668 15.1

Table 8.1: Set of all onshore wind farm locations used in analysis

environmental or planing constraints; this was the approach taken by e.g. Boehme et al. [2006].

However, this approach is somewhat idealistic, as it assumes optimal sites are developed first.

In reality, many other factors such as landowner cooperation and the expectation of planning

consent, play a very important role; these criteria are difficult, if not impossible, to specify

in an automated way. In addition, future development will also come from the extension or

re-powering of existing sites with larger turbines.

For the analysis presented here, the exact locations of individual wind farms is not critical

provided they are geographically distributed in way broadly representative of the future. For

that purpose, the set of locations already developed or earmarked for development is likely to

be a reasonable representation of the future.

The Renewable UK ‘Wind Energy Database’ [Renewable UK, 2011], referred to hereafter

as UKWED, has over 700 sites listed as developed or submittedto planning. The number

and capacity of wind farms under different categories at thetime of downloading are given

in Table 8.1. Sites below 1MW are excluded from the analysis as these make a minimal

contribution overall, but increase the computational demand of the analysis. The UKWED has

information on the make, model and turbine size of all existing operational farms, which allows

the output to be assessed using a power curve tailored to eachsite, as described in Chapter 7.

Although many of the sites submitted to planning will not be approved for development,

they are still likely to be geographically representative of the spread of sites which will get

developed. The total set of 668 onshore locations which wereused in the analysis is shown in

Figure 8.1.
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Figure 8.1: Location of all onshore wind farms used in the analysis

Offshore

Determining the locations of future offshore wind farms is easier, as the Crown Estate have

leased specific areas of the seabed for offshore wind development. This has been done in

three main rounds: Round 1, Round 2 and Round 3, plus one additional ‘Scottish Exclusivity’

(SE) round. The rounds are designed to allow incremental development of offshore wind,

beginning with small shallow-water sites relatively closeto shore, before moving to larger and

more distant sites. The sites are summarised in Table 8.2 andthe locations are shown Figure 8.2.

It is not expected that all of the Round 3 zones will be developed up to the maximum permissible

capacity under the lease agreements. To do so would lead to 46GW of offshore wind capacity,

which when combined with onshore wind capacity, would be comparable to UK’s current peak

demand of around 60GW. In a connection study by National Grid[2008] provided indicative

connection capacities for the Round 3 zones, which totalled25GW compared to 32GW under

maximum leases, this is also indicated in Table 8.2.

Since Round 1 and Round 2 zones are relatively small, wind speeds were extracted from the

dataset at a single point at the centre of these zones. For Round 3 sites, wind speeds were

extracted at the centre point, plus four points at the ‘corners’ as defined by the maximum and
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Round Num.
sites

Max
capacitya

Indicative
capacityb

Comments

Round 1 12 1.2 1.2 Most operational
Round 2 17 7.8 7.8 Some operational, most planning or construction
Round 3 9 32 25 Early design and planning stages
Scottish Exclusivity 7 5.5 5.5 Very early design and planning stages

Total 45 46.5 39.5

a maximum available under the Crown Estate lease
b indicative capacity assumed by National Grid [2008]

Table 8.2: Summary of Crown Estate leasing rounds

Figure 8.2: Location of Crown Estate leasing rounds

minimum latitude and longitude.

8.2.3 Regional aggregation

It is useful to aggregate the output from individual wind farms into regions to present results

at a meaningful level. To do this, a set of regional boundaries were created. Onshore regions

were based on the Distribution Network Operator (DNO) boundaries [National Grid, 2011].

Offshore regions were based mainly on the named sea areas around Britain (for example as

used for the shipping forecast [UKMO, 2011]) with additional aggregation where appropriate.

The regions used for aggregation are shown in Figure 8.3, with a key in Table 8.3.
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Figure 8.3: Regions used in analysis

Onshore Offshore
Code Name Code Name

swe South West England ech English Channel
see South East England lun Lundy
se South England th Thames
ldn London hu Humber
swa South Wales irs Irish Sea
ea East Anglia td Tyne and Dogger
wm West Midlands mal Malin
em East Midlands frt Forth
nwa North Wales cro Cromarty
ee East England
nwe North West England
ni Northern Ireland
nee North East England
ss South Scotland
nes North East Scotland
nws North West Scotland

Table 8.3: Region codes and names
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8.2.4 Demand

A key question for wind energy integration is how the temporal pattern of wind generation

matches current electricity demand e.g. [Boehme et al., 2006, Oswald et al., 2008, Sinden,

2007], so a time-series of electricity demand is necessary to examine these questions in more

detail.

Electricity demand in the UK grew steadily up to the year 2000, but has declined slightly since

[DECC, 2010]. It is difficult to assess likely demand in 2020 and beyond, since there are

many influential factors, such as changes in the economic climate, changes in the cost of fossil

fuels, changes in the electricity pricing structure made possible by smart metering, changes in

the price structure due to the larger penetration of renewables, and changes in technology and

behaviour such as the adoption of electric vehicles.

Central projections [DECC, 2011c] are for demand to declinein the near-term as energy

efficiency improves, and to begin to rise slowly after 2020 aselectricity begins to make up

a larger share of transport. In some scenarios electric vehicles lead to a doubling of demand

by 2050 [DECC, 2011a]. However, the projected changes in demand up to 2030 are relatively

small, and for the purposes of this analysis, historic demand over the period 2000 to 2010 is

used without modification. The major benefit of this approachis it preserves all links between

weather and electricity demand.

Historic, aggregated, half-hourly demand data going back to April 2001 is available from

National Grid [2011]. The GB ‘IO14DEM’ dataset is used here since it is based on operational

generation metering and includes station load, but excludes interconnector exports and pumped

storage pumping. Figure 8.4 shows the average winter and summer diurnal demand pattern

over the study period.

8.2.5 Conventional generation

The conventional generation fleet will not remain fixed: manyof the UK’s nuclear and coal

stations are due to be decomissioned, and there is considerable uncertainty regarding the future

generation mix [Ofgem, 2010]. Current and previous UK Government policy indicates support

for new nuclear stations, provided they are not directly subsidised [BERR, 2008, DECC,

2011a]. Eight existing sites have been earmarked for potential development, with an indicative

timetable which sees new generators on-line by 2017. However, there remains considerable
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Figure 8.4: Average hourly electricity demand

uncertainty as to when, or whether, these will be delivered by the market [Ofgem, 2010].

The integration of large amounts of wind will put very different requirements on conventional

generation. For example there may be more requirement for generators which can respond

relatively quickly to provide short to medium-term reserve. However, in the near term wind

will continue to be installed against a relatively fixed conventional fleet, and it is useful to take

the existing fleet as a baseline against which to analyse how much wind generation might be

integrated before large-scale changes would be needed.

The output from the existing conventional fleet is used for part of the analysis. Hourly output

by fuel type is available via the Balancing Mechanism Reporting System [Elexon, 2011]. At

the time of this analysis data was only available for the period 2009-2010. Figure 8.5 shows

conventional generation by fuel type over the period, with only the major fuel types shown for

clarity.

Figure 8.5: Production by major categories of conventionalgeneration. Weekly averages over
period 2009-2010
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8.3 Analysis approach

The previous sections have described additional datasets used to support this analysis. This

section now defines some notation and definitions before the results are presented.

8.3.1 Notations and definitions

Throughout the analysis, variables range over a set of locations and a set of time periods. A

single location is an individual wind farm, and a single timeperiod is one hour. A subscript

is used to restrict variables to particular time periods, while a superscript restricts variables

to particular locations. A lower-case superscript or subscript denotes a single time period or

location, while an uppercase superscript or subscript denotes a subset of times or locations,

such as a geographic region or particular season. Where a subscript or superscript is omitted,

the variables ranges across the whole set. That is, for the wind speedU :

U j
i : wind speed in periodi, locationj

Ui : set of wind speeds in periodi across all locations

UR
i : set of wind speeds in periodi for all locations in regionR

U j
T : set of wind speeds across periodT at locationj

UR
T : set of wind speeds across periodT for locations inR

UR
i =

1

|R|

∑

j∈R

(U j
i ) : average wind speed in periodi across all locations inR

max(U j
T ) = max

i∈T
(U j

i ) : maximum wind speed at locationj across periodT

The following variables are defined:

Rated Capacity,Cj, of wind farmj is the maximum output when all turbines are operating at

full capacity

Power Generated,PGj
i , of a wind farmj, is the average power output in the one hour periodi

Power Demanded,PDi, is the average electrical power demand in the one hour periodi.

Energy Generated,EG, is defined as the total energy produced by collection of wind farms,
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assuming sufficient load and network capcity exists. If expressed in the units of[Power] ·

h, i.e. kWh, it is given by:

EGR
T =

∑

i∈T

∑

j∈R

PGj
i (8.1)

Load Factor,LF , over a set of wind farms and a time period is the energy generated over the

period, divided by the total which would have been generatedif the wind farms had

operated at rated capacity for the whole period:

LFR
T =

EGR
T

|T | ·
∑

j∈RC
j

(8.2)

When averaging the load factor over multiple wind farms, this definition ensuresLF

is properly weighted by the rated capacity of each individual wind farm, to ensure that

larger wind farms contribute more to the result.

Energy Demanded,EDT , is total amount of energy used over a period. If expressed in units

of [Power] · hours, i.e. MWh, it is given by:

EDT =
∑

i∈T

PDi (8.3)

Net demand,ND, is the simply difference between energy generated and energy demanded,

and may be negative:

NDT =
∑

i∈T

(PGi − PDi) (8.4)

Residual Demand,RDT , is the difference between energy demanded and energy generated, or

zero if generation exceeds demand:

RDT =
∑

i∈T

max(0, PGi − PDi) (8.5)
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Excess Generation,XGT is the difference between energy generated and energy demanded

where generation exceeds demand:

XGT =
∑

i∈T

max(0, PDi − PGi) (8.6)

Energy Contributed,EC, is the energy generated excluding any excess generation:

ECT =
∑

i∈T

min(PGi, PDi) (8.7)

it is useful to express the energy contributed as percentageof the energy demanded:

% contribution= 100 ·
EC

ED
(8.8)

The terms used are illustrated schematically in Figure 8.6.The definitions ofEC andED

assume that neither demand nor generation can be shifted in time: wind generation only

contributes if sufficient demand exists in each hour. As such, it is a slightly more pessimistic

metric than other measures, such as the total energy generated by wind divided by the total

energy demanded. However, it is also the most defensible since it contains no implicit

assumptions about the viability of large-scale storage, orthe extent to which electricity demand

can be shifted through behavioural change. These two aspects could be examined in detail with

this dataset, but are outside the scope of the current work. It represents the contribution wind

energy would make if the demand pattern remained completelyunchanged.

Figure 8.6: Illustration of terms used. Demand is shown constant for clarity. ED is the area
under the demand curve.EG is the area under the generation curve.EC is the
shaded area.XG andRD are annotated
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8.3.2 Analysis snapshots

Following the discussion in§8.2 a number of analysis ‘snapshots’ are defined. Each snapshot

represents a certain geographic distribution of wind generation which may be achieved at some

point in the future, broadly based on the consecutive development of the offshore rounds.

Analysis snapshots are summarised in Table 8.4 and Figure 8.7.

Snapshot A is representative of the current situation, withmost wind onshore and a small

amount offshore in Round 1 and Round 2 sites. Snapshot B represents the development of

all the Round 2 sites, coupled with the steady growth in onshore wind. Snapshot C represents

the development of all of the Round 3 sites, apart from the largest and most distant site, Dogger

Bank. Snapshot D represents the development of all Round 3 sites including Dogger Bank.

Finally Snapshot E also also includes the Scottish Exclusivity sites. Thus, each snapshot shows

a greater proportion of wind capacity offshore, and a progressive shift to sites further from the

coast. In absolute terms, there is a relatively large leap between Snapshot B and C - this is

to highlight changes which will occur when the balance of wind capacity shifts conclusively

offshore.

Under each snapshot, each individual wind farmj is assigned a nominal rated capacityCj. This

results in a total nominal capacity for each snapshot,C =
∑

j C
j, which is given in the second

column of Table 8.4, and is shown graphically in Figure 8.7. Although each snapshot has a

total nominal installed capacity, it is more useful to see a snapshot as describing a geographic

distribution of wind farms and their relative sizes. The main purpose of the nominal capacities

assigned to each wind farm is to determine a weighted averageload factor across any level of

geographic aggregation by Eq. 8.2. This enables a range of installed capacities to be analysed

for each snapshot.

This implicitly assumes that increasing or decreasing the total installed capacity has no impact

on the load factors at individual farms, i.e. that capacity can be added without any diminishing

returns due to increased intra or inter-park losses. Given the large space available in offshore

zones, this is a reasonable first approximation, although itmay not hold if the analysis were

extended to very large installed capacities.
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(a) Snapshot A (b) Snapshot B (c) Snapshot C

(d) Snapshot D (e) Snapshot E

Figure 8.7: Nominal capacities installled in each region and the relative distribution under each
analysis snapshot

Nominal
Installed
Capacity

Distribution (%)

Snapshot GW Onshore Round 1 Round 2 Round 3 SE

A 4 69 22 9 - -
B 14 53 9 38 - -
C 40 33 3 23 41 -
D 49 27 2 19 52 -
E 54 24 2 17 47 10

Table 8.4: Analysis snapshots
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8.4 Analysis Results

In this section the analysis results are presented, beginning with average statistics describing the

wind speeds, wind speed distributions, load factors and potential contribution of wind energy

to energy demand. Then, spatio-temporal patterns of variability are examined and some of the

implications are explored.

8.4.1 Average conditions

Wind speeds

Wind conditions have been discussed in Chapters 5 and 6. Average wind conditions but are

included again here here since they are integral to the analysis. Figure 8.8 shows average wind

speed at 80m above the surface across the period 2000 to 2010 inclusive, after bias correction

against satellite wind speeds. As has been previously discussed, these final results agree closely

with in-situ observations, and with the output of other modelling studies. Detailed resource

maps showing power density and average wind speed by month ofthe year are included as

Appendix A.

Onshore at a national level the major visible patterns relate to terrain height and coastal

exposure, with high-level terrain and western coasts having highest wind speeds, and the lowest

wind speeds in central England and urban areas. Offshore, the highest wind speeds are seen

off the western seaboard, particularly off the northwest coast of Scotland. Over the areas likely

to be developed for wind energy, the average wind speeds are reasonably uniform, between

8-10ms−1, decreasing closer to the coast. Of note are regions of slightly higher wind speed

either side of the Dover straight, which may be related to theDover jet [Capon, 2003] and

warrant further investigation.

Average wind conditions only reveal one part of the picture,and until now there has been no

publicly released assessment of the wind speeddistributionsat the future offshore wind sites

in the UK. Table 8.5 provides mean wind speed and Weibull parameters for each individual

offshore site in the UK. In addition, the probability that the wind speed is below 5, 10, 15, 20,

and 25 ms−1 is included in the table.

The range of average wind speeds and Weibull parameters is shown in Figure 8.9. Round 1

sites show the lowest wind speeds, and also the most variation between sites. This is likely
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Figure 8.8: Average wind speed at 80m above surface.
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(a) (b) (c)

Figure 8.9: Mean wind speeds and Weibull distributions at offshore wind sites. The whiskers
are drawn to the full range of the data

due to the proximity to the coast where the wind speed is sensitive to the distance to the shore

and to the onshore topography. The relatively high maximum for Round 1 is from the Beatrice

demonstration project: a turbine which was placed on an oil platform off the coast of northeast

Scotland.

Round 2 sites also show quite a spread in Weibull parameters,reflecting the range of distances

to the shore. The highest shape parameter,2.63, is associated with the London Array, which

shows the wind speeds are more dispersed about the mean. Thismay be due to differing wind

regimes with wind direction: from some directions winds will have blown over very rough

urban areas, but from other directions will have had a clean fetch from the North Sea or through

the English Channel. It also may relate speed up of wind speeds in the approach to the Dover

Straight known to occur in northerly and easterly winds during stable conditions [Capon, 2003].

This warrants further investigation but is outside the scope of this immediate work.

Round 3 sites show a relatively tight distribution of mean wind speeds and Weibull parameters

reflecting the more homogeneous wind speeds at this distancefrom the coast. Scottish

Exclusivity sites show a large spread, due to the fact that one site is in an coastal estuary, while

another is off the exposed northwest coast.

Load factors

Figure 8.10 shows the distribution of hourly load factors for all onshore, Round 1, Round 2,

Round 3 and SE rounds. These are shown before any reductions have been made to account

for technical availability. The average load factor for onshore wind is 28%, which agrees well

with published figure between 2006-2010 of 26% [DECC, 2010],a particularly good match
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Round Name Mean Weibull P (U j

i < x) (%)
ms−1 k c ms−1 5 10 15 20 25

1 Barrow 8.95 2.33 9.25 15 65 93 99 99.95
1 Beatrice 9.93 2.45 10.61 12 53 88 99 99.90
1 Burbo Bank 7.44 2.09 7.62 28 78 97 100 99.98
1 Gunfleet Sands I 9.05 2.47 9.50 14 63 94 100 99.98
1 Kentish Flats 8.69 2.31 9.22 17 66 94 100 99.98
1 Lynn & Inner Dowsing 8.33 2.31 8.86 19 69 96 100 99.99
1 North Hoyle 7.86 2.12 8.08 24 74 96 100 99.98
1 Ormonde 9.03 2.35 9.37 15 63 92 99 99.94
1 Rhyl Flats 7.86 2.11 8.06 25 74 95 100 99.98
1 Robin Rigg 7.92 2.10 8.04 25 74 95 99 99.97
1 Scroby Sands 8.71 2.40 9.39 17 65 95 100 99.99
1 Teesside 7.59 2.13 7.99 25 77 97 100 99.99
2 Docking Shoal 9.10 2.37 9.63 15 62 92 99 99.98
2 Dudgeon 9.39 2.43 9.97 13 59 91 99 99.98
2 Greater Gabbard - Galloper 9.89 2.61 10.39 10 54 90 99 99.97
2 Greater Gabbard - Inner 9.81 2.56 10.34 10 55 90 99 99.96
2 Gunfleet Sands II 9.05 2.47 9.50 14 63 94 100 99.98
2 Gwynt y Mor 8.31 2.18 8.54 21 70 94 99 99.98
2 Humber Gateway 9.00 2.33 9.62 16 62 93 99 99.99
2 Lincs 8.57 2.33 9.11 18 67 95 100 99.99
2 London Array 9.86 2.63 10.32 9 54 90 99 99.97
2 London Array I 9.83 2.63 10.29 9 55 90 99 99.97
2 London Array II 9.83 2.63 10.29 9 55 90 99 99.97
2 Race Bank 9.45 2.44 9.99 13 58 91 99 99.98
2 Sheringham Shoal 9.05 2.36 9.62 15 62 93 99 99.98
2 Solway Firth 8.42 2.23 8.57 19 70 94 99 99.97
2 Thanet 9.72 2.61 10.21 10 55 91 99 99.97
2 Triton Knoll 9.41 2.41 10.01 13 58 91 99 99.98
2 Walney I 9.37 2.41 9.75 13 60 91 99 99.94
2 Walney II 9.42 2.42 9.83 12 59 91 99 99.94
2 West Duddon 9.38 2.42 9.74 12 60 91 99 99.94
2 Westernmost Rough 8.98 2.32 9.65 16 62 93 99 99.98
2 West of Duddon Sands 9.35 2.42 9.68 13 61 91 99 99.93
3 Bristol Channel 9.31 2.32 9.68 14 60 91 99 99.94
3 Dogger Bank 9.83 2.30 10.60 14 54 87 98 99.93
3 Firth of Forth 9.90 2.33 10.54 13 54 88 98 99.86
3 Hastings 9.29 2.35 9.80 14 60 91 99 99.95
3 Hornsea 9.41 2.27 10.15 15 58 90 99 99.98
3 Irish Sea 9.69 2.34 10.30 13 56 89 99 99.94
3 Moray Firth 10.02 2.43 10.75 12 52 88 99 99.89
3 Norfolk 9.56 2.36 10.18 13 57 90 99 99.96
3 West Isle of Wight 9.63 2.40 10.20 13 57 89 99 99.95
SE Argyll Array 10.90 2.40 11.68 10 46 81 96 99.62
SE Beatrice 9.97 2.42 10.74 12 53 88 99 99.90
SE Forth Array 9.44 2.31 9.99 14 58 90 99 99.90
SE Inch Cape 9.40 2.28 9.87 15 59 90 99 99.83
SE Islay 10.67 2.43 11.40 10 47 83 97 99.69
SE Kintyre 10.01 2.39 10.56 12 53 87 98 99.83
SE Neart na Gaoithe 9.53 2.33 9.99 13 58 90 99 99.85

Table 8.5: Wind speed distributions at offshore sites
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Figure 8.10: Distribution of aggregateLF for onshore, Round 1, Round 2, Round 3 and SE
zones

considering technical availability for onshore is around 98% [Harman et al., 2008].

The predicted values for offshore load factors are considerably higher: 37%, 46%, 48% and

51% at Round 1, 2, 3, and SE sites respectively. Again, it should be stressed that this is before

any reductions due to technical availibility. These figuresagree with other assessments based

on more limited wind speed data, for example, Garrad Hassan [2003] predicted load factors of

47.5% for sites with an average wind speed of 9.5ms−1. The shape of the distributions is also

changed, with a progressive shift to the right, with offshore wind speeds being higher and more

consistent.

Finally, load factor distributions are presented by analysis snapshot in Figure 8.11. This shows

how the load factor will change as the distribution of capacity progressively shifts offshore.

This starts from an average of 34% for Snapshot A, rising to 42% for Snapshot E.
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(a) Snapshot A (b) Snapshot B

(c) Snapshot C (d) Snapshot D

(e) Snapshot E

Figure 8.11: Distribution of load factors by analysis snapshot
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Sensitivity analysis

So far, load factors have been presented without any sensitivities. There are a number of

sensitivities which will effect the prediction of load factors from future wind farms, these

include:

1. errors in the simulated wind speed over the period;

2. assumptions about wake losses experienced at future windfarms; and

3. assumptions about technical availability.

Curtailment losses due to network constraints are not examined here. To do so adequately

would require a reasonably sophisticated model of the network, as well as a range of

assumptions or scenarios about the future electricity network; this is outside the scope of this

work.

To assess the sensitivity to the simulated wind speed, an estimate of the wind speed error is

taken from comparison against in-situ observations, that is from Figure 5.8 for onshore and

Figure 6.8 for offshore. To simplify the sensitivity analysis, a single bound of±1.2 ms−1was

used to encompass the 90% confidence interval for both offshore and onshore wind speeds.

So far, array losses have been applied as described in§7.3.1. Wake losses depend on wind

speed, but amount to around a 10% reduction in energy yield (Table 7.1). To assess the

sensitivity to wake losses, the analysis was repeated without any wake losses, and with double

the adjustments made in the base case. Figure 8.12 shows these factors applied to a particular

power curve. Using the same test wind speeds as Table 7.1, thereduction in energy yield using

doubled wake losses is around 20%.

The difficulty of estimating technical availability for offshore sites is discussed in§7.2.2. In

most studies technical availability is usually assumed to be constant throughout the year e.g.

[Boehme et al., 2006, Poyry, 2008]. However, for offshore sites, technical availability may be

more sensitive to season, since higher winds and fewer weather windows may reduce technical

availability disproportionately in autumn and winter, which would disproportionately affect

energy production.

To examine whether this is significant, the impact of a seasonal variation in technical availability

is assessed on the load factors of Round 3 farms. This is shownin Table 8.6: it can be seen
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Figure 8.12: Power curves used to study sensitivity to arraylosses

Technical Availability Load Factor
% %

Spring - Summer Autumn - Winter
100 100 48.3
90 90 43.5
95 85 43.1
80 80 38.7
85 75 38.2

Table 8.6: Impact of seasonality on average load factor at Round 3 sites

that the impact of seasonal imbalances in technical availability is minor and is not pursued

further. Assuming a constant reduction due to technical availability seems reasonable. For the

sensitivity analysis, technical availability was assessed at 80%, 90% and 100%.

Figure 8.13 shows the sensitivities used, and the impact on average load factors at onshore and

offshore wind farms. As would be expected, load factors are very sensitive to changes in wind

speed. A change in the wind speed of 1.3ms−1changes the load factor by an absolute value of

0.10. Sensitivity to the shape of the aggregate power curve is also very significant. Doubling

the array loss factors changes the load factors by an absolute value of0.05. This highlights

the importance of properly understanding array losses, andillustrates the need to develop

aggregate power curves based on real offshore data, rather than to make simple assumptions

such as fixed array losses. It also highlights the important role that proper layout will play,

particularly at more remote Round 3 sites which are larger and where the aesthetic constraints

on layout may be more relaxed, allowing for layouts which explicitly aim to reduce array losses.

Finally, technical availability is also a significant sensitivity highlighting the need for ongoing
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Sensitivity lower mid upper

Wind speed -1.3ms−1 no change + 1.3ms−1

Array loss doubled (≈ 20%) baseline(≈ 10%) none
Technical availability 80% 90% 100%

Figure 8.13: Sensitivity of average load factor to wind speed, array losses, and technical
availability. Mid value is indicated by the ‘x’.
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monitoring and cataloguing of real data.

This section shows conclusively that the load factors from offshore wind farms will be

significantly higher than onshore sites, even if low technical availability and high array losses

are assumed. The main purpose is to highlight the relative importance of different sensitivities.

The high sensitivity to wind speed is shown, and some attemptto put confidence bounds on

this is made. Sensitivities to other assumptions are shown,but these are not combined with the

wind speed into a single ‘uncertainty’ as they are simply different assumptions, not empirical

estimates of the likely error. Without more data, it is impossible to know whether, for example,

a value of technical availability of 80% corresponds to a 90%, 95% or 99% confidence bound

on the true value, and it would be misleading to combine them.

For the following sections, the central case from the sensitivity analysis is used, that is, wind

speed is not perturbed, technical availability is assumed to be 90%, and baseline array loss

factors are used, so that array losses amount to around 10%.

Average energy contribution

This section now examines the overall contribution wind generation could make to meeting

existing electricity demand under each analysis snapshot.Energy match is calculated

hour-by-hour, but presented at a monthly-level, which smooths out daily and hourly variations.

In later sections, hourly variations are shown, and two week-long periods representing the

highest and lowest generation are shown.

Figure 8.14 shows the results from the analysis, presented as monthly averages for clarity; a

week of maximum and minimum output is shown later. Lines are also drawn corresponding to

the energy which would be generated by a constant power output of 10 and 20 GW. This is to

give a visual guide as to where the output of any inflexible future baseload generation may be,

for example if existing nuclear plants are renewed or new nuclear plants developed.

In Snapshot A, which is representative of the current situation with an installed capacity of

4GW, the wind contribution is 3.6%. This agrees very closelywith current figures [DECC,

2011b, p29], which show that wind contributed 2.8% to electricity supply in 2010, or 3.7%

when adjusted to average long-term wind conditions [DECC, 2010]. (The wind contribution

in Snapshot A for 2010 is 2.9%). The seasonal pattern is very evident, with wind contributing

more in the winter. However, at this relatively low penetration there is no significant change in
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(a) Snapshot A (b) Snapshot B

(c) Snapshot C (d) Snapshot D

(e) Snapshot E

Figure 8.14: ED, EC and RD by year and month. ED is the top line,EC is the grey shaded area
below, and RD is white area below. The energy which would be generated by a
constant power output of 10 and 20GW are shown as the two ‘baseline’ lines
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the underlying shape of residual demand.

In Snapshot B, which represents a total installed capacity of 14GW, the wind contribution is

12.3%. If electricity generation from other renewable sources such as hydro, biomass, wave

and tidal remained at today’s levels of around 4.6% of electricity demand [DECC, 2011b],

then under this snapshot the UK would produce 17% of electricity from renewable sources.

This is significantly higher than today, but still considerably short of the 30% target for 2020.

This indicates that developing Round 2 sites alone will not enable the UK to reach its current

targets. The seasonal pattern in Snapshot B is evident, withmuch more energy production in

the winter when demand is highest. At a monthly level the residual demand is considerably

smoother than the total demand, i.e., wind generation reduces the seasonal range of demand.

However, monthly averaging masks a large amount of variation, which is analysed in later

sections. In Snapshot B, at monthly average level, the residual demand does not approach the

baseload lines at 10GW or 20GW. This shows that the system will still need thermal generation

whose primary function will be to supply energy to meet demand, not only to provide reserve

or auxiliary functions.

Snapshot C represents a considerably leap in terms of capacity, with 40GW of installed wind.

The wind contribution is much higher, 37.5% of energy demand. In this snapshot, wind alone

would allow the UK to meet its 2020 renewable energy targets,assuming the network can

accomodate this. On a monthly average level, residual demand is little over the baseload line

at 20GW. This indicates that if there were an increase of nuclear or other inflexible plant to

this level, there would be relatively little energy remaining, on a monthly average level, to be

served by other thermal generation. This suggests that the revenue for such generators would

have to be found by exploiting much higher electricity pricedifferentials, or from payments for

providing other auxilliary services to support the network.

Snapshot D shows a further increase in capacity to 49GW, withwind contribution of 47.2%.

Monthly average residual demand approaches the baseload generation line at 10GW, suggesting

any inflexible baseload generation above this level may leadto significant curtailment, export,

or storage. Snapshot E shows a further increase, with capacity of 54GW giving a wind

contribution of 53%, with several winter months where the monthly production meets, or

exceeds, the baseload line at 10GW. This suggests that, if inflexible baseload of 10GW were

installed in this scenario, significant export or curtailment of wind may occur.
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Figure 8.15: Wind contribution as function of snapshot and installed capacity

As described in§8.3.2, the snapshots can be viewed as a describing a geographic distribution

of capacity, and can be scaled up or down to reflect different installed capacities. Figure 8.15

shows the wind contribution as percentage of demand, allocating increasing capacity to each

snapshot while maintaining the same relative distribution. Figure 8.15 clearly shows the benefit

in energy terms of developing offshore sites, with the snapshots with large amounts of offshore

wind producing significantly more energy for the same level of installed capacity. It can be seen

that to meet targets of 30% of electricity from wind generation alone would require between

30-36GW of installed capacity, depending on the geographicdistribution.

In Figure 8.15, the gradients eventually begin to level out at higher wind penetrations, due to

the increasing number of hours where wind generation would exceed total demand, with any

excess generation discounted as defined in Eq. 8.7. This is shown in Figure 8.16 for Snapshots

B, C and D. Net demand is shown (which can be negative), ratherthan residual demand (which

is defined to be positive), to show how much energy might be available for export, storage, or

be spilled. In Snapshot B, the distribution of net demand is shifted but not radically changed.

In Snapshot C, net demand is considerably reduced, and is negative around 2% of the time and

less than 20GW 40% of the time. In Snapshot D, net demand is negative around 18% of the

time, and less than 20GW 60% of the time. However, there is only a small reduction in peak

demand: even in Snapshot D peak demand is is still around 57GW, compared with 60GW.
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(a) Snapshot B (b) Snapshot C (c) Snapshot D

Figure 8.16: CDF of net demand for three analysis snapshots

Maximum and minimum week

“It was the best of times, it was the worst of times...”

Charles Dickens,A Tale of Two Cities.

So far, the energy contributed has been presented as monthlyaverages, which masks a large

amount of variability. As an illustration of this, two week-long periods with the lowest and

highest average load factor are selected, to illustrate the‘best’ and ‘worst’ weeks in terms of

energy production.

The week with the lowest aggregate load factor over the period studied was the 7-days

beginning 17th May 2010. This was a week which saw a high pressure building from the

17th, and only weakening after the 23rd, with daytime temperatures reaching a record for May

of 27◦, but nightime temperatures falling to just a few degrees[Brugge, 2011]. The synoptic

situation on 20th May is shown in Figure 8.17 (a), which showshigh pressure extending from

the south of the UK into Norway.

The week with the highest aggregate load factor over the period studied was the 7-days

beginning 3rd January 2005. This week saw the UK in a strong westerly flow, with a succession

of depressions crossing from the Atlantic [Brugge, 2011]. The synoptic situation on 6th January

is shown in Figure 8.17 (b), which shows two deep areas of low pressure to the north of the

UK, and a large area of high pressure over southern Europe.

Figure 8.18 shows energy contributed over both periods for each snapshot. Demand is relatively
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(a) 2010-05-20 00z (b) 2005-01-06 00z

Figure 8.17: Synoptic situations causing the lowest (a) andhighest (b) weekly average load
factors over whole period.

low in the week in May 2010, with a peak of around 40GW, and relatively high in January

2005, with a peak at 50GW. Of most interest are the snapshots with high penetrations of wind,

as the contrast between the two periods are more evident. In Snapshot D, the wind contribution

during the ‘worst’ week is around 6%, with a two-day period inthe middle with very little wind

contribution at all. In contrast, the contribution during the ‘best’ week is 95%, with several

days where wind meets 100% of electricity demand.

This analysis is important since it illustrates the radically different nature of the system with

high penetrations of wind, and the challenges associated with dealing with different extremes.

It will be shown in the following sections that the geographic distribution of wind provides a

very much smoother resource than single points, but the aggregate output is still very variable,

and any system has to be able to deal with periods where very little energy is generated,

as well as times where wind could provide all the current demand and more. It should be

stressed that wind generation is shown against current demand patternsas an illustration only.

The conventional generation and demand backdrop may be verydifferent by the time such

penetrations of wind are reached. The periods have been selected as the two extremes; analysis

in the following sections looks at how often similar periodsoccur.

It is worth noting that both synoptic systems shown in Figure8.17 indicate that much of

northern Europe would experience similar wind conditions.Although this should be confirmed

from observations or other model output, the lack of any significant pressure gradient in

Figure 8.17 (a), and the strong westerly flow in Figure 8.17 (b) suggest that in both cases that
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the UK, Denmark, Germany and southern Norway and Sweden would experience co-incident

low or high wind speeds. This confirms findings of Poyry [2011], which found that wind speed

variability across Northen Europe would not simply averageout. How often the positions of

different synoptic systems cause this to occur across the whole of northern Europe would be

interesting further work, and could be examined in broad terms from a global reanalysis dataset.
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(a) Snapshot A - low (b) Snapshot A - high

(c) Snapshot B - low (d) Snapshot B - high

(e) Snapshot C - low (f) Snapshot C - high

(g) Snapshot D - low (h) Snapshot D - high

(i) Snapshot E - low (j) Snapshot E - high

Figure 8.18: Energy production by snapshot for the highest and lowest wind speed week
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8.4.2 Spatio-temporal variability

As illustrated by the two extreme cases presented above, thespatio-temporal variability of wind

speeds are of crucial importance to the energy system. How wind speeds vary in time, and the

the number of co-incident calm periods will determine how much energy must be supplied by

alternatives, be that conventional generation, energy storage, imports from other countries, or

other sources of renewables.

The following sections examine spatial and temporal patterns seen in wind speeds and in the

subsequent outputs from wind farms. Diurnal, seasonal, andannual patterns are examined,

before cross correlation between regions, calm periods andramp events are looked at in more

detail.

Diurnal

It was shown in Chapter 5, Figure 5.12, that WRF captured the diurnal variation at typical

turbine hub heights relatively well, and that the amplitudeof variation was much less than seen

at met stations at 10m agl. WRF also showed a small but distinct diurnal pattern at coastal

in-situ observations, stronger than the pattern seen in observations.

Figure 8.19 shows whether these wind speed patterns translate into noticeable diurnal patterns

in load factor for onshore and offshore sites. For onshore farms, there is a diurnal variation in

LF of around 0.02, with a minimum around 0900, and a broad plateau from midday onwards.

The pattern is much less distinct than the diurnal pattern inwind speeds seen at 10m met

stations [Sinden, 2007], and suggests that prediction of diurnal variations based on met station

observations will significantly over-estimate the diurnalvariation in load factor.

This relatively low diurnal variation can be explained in part by typical hub height of 80m,

at which height diurnal variations in wind speed will be significantly less. From Figure 5.12

showed that the observed and simulated diurnal variaton from mean wind speed was around

0.8ms−1at met masts. However, only one of the masts was at 80m agl, therest were at 30-40m

agl. So the diurnal variation at turbine hub-height would beexpected to be less than 0.8ms−1. In

addition, diurnal variation will only effect power outputswhen it occurs against a background

wind speed over the steepest part of the power curve. Outsideof this range, diurnal variations

will not translate into variations in power output. This small diurnal variation is also seen in

studies of Nordic countries [Holttinen, 2005].
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Figure 8.19: AverageLF by hour

For Round 1 sites, which are near the coast, there are two weakpeaks at 1200 and 1900, which

might indicate the influence of a sea-breeze circulation. All the other rounds, which are further

from the coast, show a peak at 1900. It is not immediately clear what is causing this peak, and

it would be interesting to explore the flow patterns in more detail, perhaps splitting the analysis

into onshore and offshore flow e.g. [Lapworth, 2005], and looking at the potential contribution

of LLJs. However, this is beyond the scope of current work. Suffice to say, there are indications

of diurnal patterns in load factor even at offshore sites, although the magnitude of these are

relatively small when compared to typical inter-hourly changes, and are far less important than

the variations due to changing synoptic situations.

Seasonal

Seasonal patterns are very pronounced: Figure 8.20 shows the average load factor for each

month of the year over the whole period. Load factors are roughly twice as high in winter

as summer. This result is well known, and agrees with the findings of e.g. Sinden [2007]

who found monthly capacity values ranged from about 40% in the winter to about 20% in the

summer. This analysis extends that result by showing the seasonal patterns of offshore load

factors follow the same pattern.
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Figure 8.20: AverageLF by month

Inter-annual

Figure 8.21 show the inter-annual variation in load factor over the whole period. The variation

between most years is within a 5% band (i.e. an absolute change in load factor of 0.05).

However in 2010, load factors were exceptionally low, around 20% for onshore sites compared

with an average of 28%. The low load factors in 2010 were associated with a strongly negative

NAO and persistent blocking high pattern, forcing the jet stream and storm tracks much further

south.

This highlights the dangers of assessing wind resource against a short climatology. If the dataset

produced in this study had been only ten years, it would have missed the pattern in 2010. It also

demonstrates the great benefit that seasonal forecasting could bring [Brayshaw et al., 2011], as

being able to predict years of exceptionally low winds wouldallow contingency plans to be put

in place. Although seasonal forecasting has improved considerably in recent decades, overall

skill remains fairly moderate [Smith et al., 2011].

Cross-correlation

Of importance for wind energy is the degree of correlation between wind speeds in different

areas, since this will determine the extent to which the overall output is smoothed. This section

examines this first in the raw wind speeds, then in regional load factors. The extent to which

geographic smoothing removes absolute calms and ramp events is examined in a later section.

Wind speed correlation is known to decrease with distance [Hogrefe et al., 2001, Sinden, 2007].
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Figure 8.21: AverageLF by year

However, this was based on discrete observation at points, rather than a continuous field. By

computing the correlation coefficient,R, between wind speeds at each point in the domain

against a reference point,(xref , yref ), the variation ofR with distance can be seen. This is

shown in Figure 8.22, computed from a reference point in the centre of the domain (a), and a

reference point in the upper-left corner of the domain (b). In both cases the correlation can be

seen to fall rapidly with distance. The influence of complex terrain can also be seen to reduce

the correlation. It is also clear that reduction with distance is not symmetric, and the gradient is

steepest in the west-east direction.

Figure 8.22 (c) shows the variation ofR with distance. The northwest corner is used as a

reference since, of the four corners, it is most representative of the entry points of depressions

and is likely to lead any wind speed changes. The correlationcan be seen to decrease with

distance in both directions, falling to around 0.8 at 200km,and 0.4 at 600km. This broadly

agrees with Sinden [2007], who found that the correlation inpower output (rather than wind

speed) decreases from around 0.8 at 50km down to 0.4 at 400km,and 0.1 at 800km. This

analysis confirms that the trend continues offshore. Furthermore it also shows the decrease

is not symmetric, but is more rapid in the west-east plane, particularly at distances greater

than 200km, showing that wind speeds are correlated over longer distances in the north-south

direction. These values are also in line with Hogrefe et al. [2001], who found the correlation

decreased to around 0.1 at 800m, when considering the synoptic component of wind speed

time-series.

Figure 8.22 shows the maximum rate of change ofR is along a south-east bearing. Wind farms
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(a) (b)

(c)

Figure 8.22: Geographic correlation using (a)(nx/2, ny/2) and (b)(0, ny) as a reference. (c)
shows two cross-sections through (b)
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(a) (b)

Figure 8.23: Geographic cross correlation of wind speed against centre of the domain (a) shows
the lag in hours of the maximum value ofR, (b) shows the value ofR at that lag.

separated along this diagonal will tend to be less correlated: wind farms in the Irish Sea will

be relatively uncorrelated with wind farms in the Thames region. This highlights a flaw in the

analysis by Oswald et al. [2008], who looked at correlationsusing sites which were largely

aligned North-South.

However, this is based on instantaneous hourly values. It isunsurprising that instantaneous

correlation decreases rapidly with distance, since wind speeds are governed by synoptic systems

which themselves move across the country with a timescale ofseveral hours to days. To

examine this in more detail, the cross-correlation is recomputed at a lag of±n, wheren is

an integer number of hours.

Figure 8.23 shows (a) the lag at the maximum value ofR, and (b) the value ofR at that lag.

The west-east pattern is very clear showing a lag of around 17-hours across the whole domain.

This highlights the eastward-propagating nature of mid-latitude depressions which are the main

driver of wind speeds in the UK. By plotting a cross section through this, Figure 8.24, a clear

linear relationship is found. The reason for three or four points occurring on the same level is

due the timestep of one-hour, meaning only integer lags can be used.

Taking the speed as the inverse of the gradient, a phase speedof around 56 km/h (15.5ms−1) is

found, i.e. the average speed at which wind-speed changes propagate across the country. Such

a clear pattern highlights the dominant driver of wind speedchanges: mid-latitude depressions

from the Atlantic progressing eastward over the country on atimescale of days. Figure 8.23 (b)

shows that correlation remains high across large distanceswhen the temporal lag is taken into
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account, withR above 0.9 for most of the domain.

On a large-scale this is inherently positive for wind energyintegration, as it highlights the

forecastability of wind speed changes on timescales suitable for bringing conventional plant

online to provide reserve. It also is positive for the integration of wind energy over larger

geographic domains. From Figure 8.23 it can be reasonably assumed that there is a lag of

the order of around 0.5-1 day between the UK and other northern European countries such as

Germany or Denmark.

The phase speed is somewhat higher than the 8-10 ms−1typically estimated for synoptic scale

features [Canziani and Legnani, 2003]. However, it is stillmuch less than the mean flow speed

of the jet stream, and therefore is still consistent with being driven by synoptic scale Rossby

waves [Gerber and Vallis, 2009]. TO examine this in more detail, it would be preferable to

partition weather types according to large scale synoptic organisation, e.g. using GWL types,

and calculate the phase speed under each classification. Much more detailed studies have been

done along these line [Hoskins and Ambrizzi, 1993, Yang and Hoskins, 1996], and this type of

study is more suited to a global model.

An analysis on similar lines has been done in relation to photochemical pollutants over the

Eastern United States [Sistla et al., 1998], where phase shift was calculated by the time of

occurrence of maximum ozone concentration.

Finally, load factors at wind farm sites are examined to see how the power outputs relate to

one another. This is computed at discrete sites, rather thancontinuously over the domain.

Figure 8.25 shows the cross-correlation between average regional load factor,LFR
i, between

all offshore regions, taking the Irish Sea region as reference. Only offshore regions are shown

for clarity, as these geographically encompass all of the onshore regions. Load factor is less

correlated than raw wind speed over the same distance, as expected since the non-linear power

curve amplifies small changes. Nevertheless, the same spatio-temporal pattern remains with

the average lag between Irish Sea and Tyne-Dogger being around 7-hours.

These results are useful for the design and operation of future networks, as they provide a

simple way of relating the outputs of wind farms to one another, and could be used as the basis

of statistical forecast models.

This analysis could be taken further, by performing a spectral decomposition the time series,
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Figure 8.24: Lag with west-east distance from centre of the domain. The best-fit line gives an
average phase speed of 56km/hr, or 16 ms−1

e.g. [Hogrefe et al., 2001], which can provide insight beyond traditional time-series bases

analyses and verification statistics. However, this is leftas further work.

Calms

Meteorologically, calms are usually defined as wind speeds less than 1 knot, or 0.5ms−1.

However the typical cut-in speed of a turbine is 3-4ms−1and most turbines generate very little

power below 5ms−1, so here a ‘calm’ is defined as anything under 5ms−1. This would include

anything classified as a gentle breeze or less on the Beaufortscale.

When assessing a calm across a set of locations, there is a significant difference between using

the average wind speed and the maximum wind speed within a region, that is:

P
[

max(UR
i ) < x

]

≤ P
[

UR
i < x

]

(8.9)

since it is possible for the average wind speed to be low, while still being high at a number

component sites. Here anabsolute calmis used to mean that the maximum wind speed at all

locations is less than 5ms−1, and no individual wind farm is generating:
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.25: Cross correlation of hourly wind speeds between offshore regions, with Irish Sea
as the reference region
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Figure 8.26: Schematic showing the progressive enlargement of geographic subdomains used
to calculate the extent of calm conditions

P (absolute calm) = P (max(UR
i ) < 5) (8.10)

The geographic extent of calms is assessed using a square sub-domain centred at(nx/2, ny/2),

which is progressively enlarged around each edge by a singlecell: a few stages in the process

are shown in Figure 8.26. At each step the probability of an absolute calm within the

sub-domain is calculated from the full eleven-year dataset. The probability of an aboslute calm

versus the length length of one side of the domain in shown in Figure 8.27. In a single 3km cell,

the probability of a calm hour is around 25%, which agrees with previous analyses [Sinden,

2007]. As the domain is expanded, the chance of a total calm across the region drops very

rapidly. For a domain of size100 × 100 km, the probability of an absolute calm is only around

5%, and beyond400 × 400 km, an absolute calm did not occur in dataset.

This is a steeper drop than that reported by Sinden [2007]; however the analysis here uses a

continuous domain which extends offshore, rather than discrete onshore met stations. This

shows that widespread absolute calms are incredibly rare when the continuous wind field is

analysed. In short, the wind is always blowing somewhere. However it would be misleading

to use this continuous analysis to predict the probability of zero power production, since it

includes locations such as mountain tops, where there may well be winds above 5ms−1, but no

wind farms there. What matters more for wind energy is whether the wind is blowing at wind
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Figure 8.27: Probability of maximum wind speed less than 5ms−1as a function of the width of
a square sub-domain centred within the model domain

farms.

The probability of calms at individual offshore wind farms has already been given in Table 8.5,

and is around 20%. However, there will also be smoothing between wind farms within a region

and between regions. Also, the use of 5ms−1as a cut-off for calms is somewhat arbitrary. It is

much more informative to analyse the Cumulative Distribution Function (CDF) over the fulll

range of wind speeds aggregated across regions.

To show this, the distribution ofmax(UR
i ) was calculated for all geographic regions,

Figure 8.28. The very thin lines show the CDF for individual geographic regions, while the

thick lines show the CDF across all onshore or offshore regions. The probability of an absolute

calm within a single offshore region ranges between 5% in Thames to to 14% in Lundy, while

the probability of an absolute calm across individual onshore regions ranges from 4% in

Northwest Scotland to 51% in London (the next highest outside of London is 27% in the West

Midlands). The effect of geographic smoothing is very clear. The probability of an absolute

calm across all onshore or offshore regions is far lower thanany individual region. In fact,

an absolute calm across all onshore regions, or all offshoreregions, did not occur in the full

eleven year dataset (96360 hours).

On this evidence can be reasonably concluded that the probability of an absolute calm across

the entire country is less than once in eleven years,p < 1× 105. However, to accurately assess

the probability of such an extreme event, at the very tail of the distribution, would require a
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Figure 8.28: CDF for maximum wind speed within a region,max(UR
i ). The thin dotted lines

represent individual geographic regions; the thick lines are aggregated over all
onshore and offshore regions.

longer timeseries. It is evident though, that absolute calmperiods are very rare indeed.

Although absolute calms are very rare, they are only part of the picture. Windfarms still

produce relatively low output at speeds below 8ms−1. Rather than analyse wind speed, it is

more relevant to look at the CDF of aggregate load factor; this is shown in Figure 8.29. As

expected from the analysis of wind speeds, the probability of zero output across the whole

onshore or offshore fleet is zero, at least over these eleven years. There is always a wind farm

somewhere producing power.

However, the lines in Figure 8.29 rise relatively steeply from zero. The probability that the

aggregate load factor is less than 10% is about0.3 onshore and0.1 for the offshore fleet.

The most striking feature is the marked difference between onshore and offshore sites in this

low-output region. This shows that when average wind speedsare around the steepest part of

the power curve, the higher wind speeds offshore translate into a very large benefit in terms of

power output.

For a fully diversified offshore fleet, the CDF is quite close to a linear relationship, reflecting the

relatively uniform distribution of load factors for offshore sites in Figure 8.10. This provides a
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(a) (b)

Figure 8.29: CDF of average load factors. (a) shows average aggregated over onshore and
offshore farms. (b) shows average by analysis snapshot: thelines are too close
to differentiate by colour or symbols, but Snapshot A is the top line through to
Snapshot E at the bottom

convenient rule-of-thumb for assessing the output of offshore wind.

Finally, CDF of aggregate load factor is presented by analysis snapshots A to E in Figure 8.29

(b). The lines are much closer together since they show a progressive shift from onshore

generation offshore. The largest difference is in the middle part of the range. For example, the

probability of aggregate load factor of less than 0.4 is around 0.55 in Snapshot A and around

0.4 in Snapshot E.

This analysis has shown that absolute calms are very rare - there will almost always be a wind

farm generating power somewhere. It has also shown that having wind farms offshore gives

considerable benefit in terms of more consistent output and additional geographic smoothing.

It has also shown the importance of looking beyond a binary classification of ‘calm’ or ’not

calm’, as this reveals only part of the picture. It is much more instructive to look the aggregate

production or load factor, and how this is distributed. While zero production is rare, relatively

low production is not so rare, even when aggregated across all onshore and offshore wind farms,

and clearly the system must be designed around this.
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Low output

The previous section has shown that hour-long periods of lowoutput do occur, even when

aggregated across the country. A key question is how long these periods last for, since

this will determine what type of generation may be suitable for providing the balance.

Figure 8.30 shows the CDF for the average load factor across all regions, assuming that wind

is geographically dispersed as in Snapshot E. Aggregate load factor is calculated over different

averaging windows: hourly, weekly, and daily. This gives a quantification of how often

sustained periods of low output occur.

From Figure 8.30 it can be seen that the probability of havingan aggregate hourly or daily

load factor of< 0.10 is around 10%, while the probability of having a aggregate weekly load

factor is around 2%. This shows that calm conditions tend notto persist over periods of a week.

The most noticeable of Figure 8.30 feature is that the hourlyand daily lines are very close.

This demonstrates the link between the spatial and temporalscales: when averaged across all

geographic regions, hourly variations are smoothed out andthe dominant feature is day-to-day

changes related to synoptic conditions.

From a system-wide perspective this suggests that wind integration at an aggregate level is not

primarily a challenge of providing fast reserve to replace wind ‘outages’, but is more a question

of day-ahead scheduling of conventional plant, storage, orimports. It shows that sufficient

generation must be available to routinely cover periods of low output persisting for a day or

more, but low outputs persisting for more than a few days are very rare.

Ramp events

Rapid changes in the aggregate power output of a wind farm or collection of a wind farms are

termed ‘ramp events’. Ramp events are a challenge for the integration of wind power as they

may require the output of conventional generation or pumpedstorage to be adjusted rapidly, and

could lead to large and rapid changes in the power flows in the transmission network [Dragoon,

2010, Ela and Kemper, 2009]. If the system cannot accommodate these changes, it could lead

to a loss of load or network instabilities [Dragoon, 2010].

There are a number of ways in which ramp events can be defined [Kamath, 2010]. In this

analysis, ramp events are characterised by the gradient of the wind speed or load factor over a
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(a) (b)

Figure 8.30: CDF of aggregate load factor over different time widows. (a) shows the the whole
CDF while (b) shows the lower tail.

time-window∆t:

∆UR

∆t
=
UR

(t+∆t) − UR
t

∆t

∆LFR

∆t
=
LFR

(t+∆t) − LFR
t

∆t
(8.11)

Some further notation is introduced:∆UR
nh is used as shorthand to represent the change over

a period ofn hours. The units of∆U are expressed here inms−1hour−1, rather thanms−2,

since the former are more intuitive when discussing ramp events.

As discussed in Chapter 2, since the simulations use Reynold’s averaged equations, high

frequency turbulent fluctuations on timescales of seconds to minutes are unresolved, and the

smallest value of∆t is one hour. In relation to network operation, this means results are

relevant to inter-hourly balancing mechanisms, not sub-minute regulation currently provided

by the dynamic frequency response of conventional generation.

First, wind speed changes in each 3km cell are analysed, Figure 8.31. An obvious characteristic

is that the distribution is zero-centred: the wind changes very little between consecutive 1-hour

periods. This result is already well known in weather forecasting - persistence forecasting

shows considerable skill over a timescales of a few hours. Hourly wind speed changes range

between±2.5 ms−1, and the distribution is symmetric showing increases or decreases of the

same size are equally likely.
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(a) (b)

Figure 8.31: (a) Distribution of hourly wind speed changes within each 3km cell, (b) QQ plot
against Normal distribution

The changes are not normally distributed, as evident from the QQ plot, where the distribution

is leptokurtic with fatter tails. It suggest something closer to a Levy stationary distribution

[Chechkin et al., 2008], which is often found to describe volatile processes which show

self-similarity across scales and have ‘bursts’ of activity, such as some turbulent diffusion

processes [Chechkin et al., 2008] and as stock market volatility [Masoliver et al., 2000]. More

detailed statistical analysis of the wind speed changes would be interesting, but is left for future

work.

As shown in §8.4.2, the wind speed changes show a very clear dominant east-to-west

propagation. Therefore ramp events are expected to be smoothed when averaged over larger

geographic areas. To examine the relation between∆UR and the size of the regionR, a

number of square subdomains of increasing size were constructed, as shown in Figure 8.26.

The distribution of∆UR
1h for each of these sub-domains,R, is shown in Figure 8.32.

Figure 8.32 shows that ramp events are smoothed considerably when averaged over a wider

area. With a domain of width 15 km, the probability of a changein the average wind speed

of 1ms−1 is around0.01, or about 88 hours per year. For a domain of width 315 km, the

probability of the same event is around0.005, or 44 hours per year, and for a domain of width

615 km, the probability of the same event is under0.0001, or 8 hours per year. Moreover, the

trend continues as the area is expanded, and the smoothing effect is greater for larger ramps.

When averaging over a domain of width 915 km, changes in the hourly wind speed are limited

to±1.5 ms−1.
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Figure 8.32: Geographic smoothing of wind speed ramps. The distribution of∆UR
1h is shown

for a number of sub-domains. The legend shows the length of one side of the
domain.

Wind speed changes will have biggest impact when they occur on the steepest part of the power

curve. For wind energy, a ramp from an average speed of 2 to 3 ms−1 matters very little. Ramp

events are now examined in terms of the load factors from windfarms. For this part, it is

assumed that wind farms are distributed across all onshore and offsore regions, as per analysis

Snapshot E.

Figure 8.33 shows the probability of changes in load factor aggregated over individual

geographic regions, and over all regions. Again, the distributions are zero-centred and

symmetric. The effect of geographic smoothing is evident and striking: the probability of

a load factor change of−0.10 within an individual region ranges between1 × 10−3 and

5 × 10−3. When averaged across all regions, the probability is reduced tenfold to1 × 10−4.

Also of importance is the duration of a ramp event, since thiswill determine the total size of the

change between the start and finish. Figure 8.34 shows the probability of a ramp event across

all regions, calculated over time windows of 1h, 4h, 6h and 12h. Beyond a certain averaging

window, there is no clear distinction between a ‘ramp-event’ and the normal expected changes

in output due to the transition between weather patterns.

To compare averaging windows on the same scale, ramp events are expressed by their gradient

∆LFR/∆t. In other words gradients seen in the 6-hour averaging window were sustained for 6
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Figure 8.33: Geographic smoothing of ramp events

Figure 8.34: Aggregate ramp events by time window∆t

hours and lead to a larger overall change between the start and the end of the event. Figure 8.34

shows that as the averaging window is increased, the probability of a particular ramp gradient is

reduced. However, there is relatively little difference between the 1h and 6h lines until gradients

of ±0.05 / hr are reached. This shows that at a country-wide level, ramp events seen over 1 hour

tend to persist for 6 hours. This is consistent with changes being driven by transitions between

synoptic systems, which take place over timescales of several hours to days, rather than large

transient spikes at individual wind farms.

To investigate the distribution of the extreme ramp events in time, the 10 largest hourly ramp

events were selected from each of the the 26 geographic regions, and the largest 260 aggregate

(across all regions) ramp events were selected. Figure 8.35(a) shows ramp events in individual

regions, and Figure 8.35 (b) shows ramp events across all regions. In Figure 8.35 (a), ramps

of ±1.0 in one hour can be seen, related to high wind speed cut-out andsubsequent cut-in in

regions with very few wind farms. More common are events of±0.3. The largest ramp events
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(a) (b)

Figure 8.35: Timing and size of (a) the 10 largest ramp eventsin 26 individual regions, (b) the
260 largest ramp events aggregated across all regions

tend to be clustered in the winter, although they are by no means exclusive to winter. Ramp

events in the aggregate output, range between±0.15, demonstrating that geographic smoothing

limits overall ramp events to within well-defined bounds. However, even though the aggregate

ramp events are much smaller, they are still significant. With 30GW of installed wind capacity,

a ramp rate of 0.15 / hour equates to 4.5GW / hour.

This agrees with Wan and Bucaneg [2002], who analysed the real output over the course of one

year from two geographically separated sites, and concluded:

“... despite the stochastic nature of wind power fluctuations, the magnitudes
and rates of wind power changes caused by wind speed variations are seldom
extreme, nor are they totally random. Their values are bounded in narrow ranges.
... Large swings of wind power do occur, but those infrequentlarge changes
(caused by wind speed changes) are always related to well-defined weather events,
most of which can be accurately predicted in advance.”

Finally for this part, a preliminary investigation into thelargest ramp events occurring in the

dataset is made. The largest (simulated) negative ramp occurs in March 2008, and the largest

positive ramp occurred at end of June 2010, Figure 8.36. The synoptic picture relating to these

are shown in Figure 8.37. In the negative ramp event (top), the UK is in a strong northerly

airflow, which is then disrupted as a large area of high pressure edges in from the Atlantic.

Figure 8.36 shows the aggregateLF drops from around 0.9 to 0.3 in around 12 hours. The

progressive nature of the event can be seen, with individualregions dropping down as the
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(a) (b)

Figure 8.36: Largest negative and positive ramp events overthe entire period

system moves over the country. The largest positive ramp event occurs in June 2010, when a

system of weak highs and lows giving way to a fairly deep depression, Figure 8.37 (bottom).

Aggregate load factor rises from around 0.1 to 0.5 in 12 hours, with a particularly sharp rise

near the end of the period.

From a system operators perspective, what is most importantis the change in residual demand,

as this is ultimately what determines how much reserve is needed to balance any change in

generation. To explore this in more detail, Figure 8.38 compares hourly changes in demand and

residual demand, assuming a distribution of wind as in Snapshot D, that is just under 50GW of

wind distributed across all the country and through the Round 1, Round 2 and Round 3 offshore

zones. The shape of the distribution of changes in demand relate to the diurnal profile. The

largest ramps rate is an increase of around 7.5GW / hour seen during the early morning peak. A

very striking result is that the largest changes in residualdemand with around 50GW of wind on

the system are comparable in magnitude to this, with the largest ramp rate around 10 GW/hour.

This shows conclusively that, if wind is distributed aroundthe country, and provided network

capacity exists, the ramp rates in residual demand will not be significantly larger those managed

today. Viewed from a systems perspective, integration of wind is more a question of scheduling

and balancing energy on a timescale of several hours, ratherthan providing fast-acting reserve.

Relation to demand

The expected load factor at periods of high demand is important, as it determines the ability of

wind generation to contribute togeneration adequacy, that is the ability of the whole generation
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(a) 2008-03-22 00z (b) 2008-03-23 00z

(c) 2010-06-30 00z (d) 2010-07-01 00z

Figure 8.37: The synoptic systems causing the largest negative and positive change in aggregate
output. Top: a ridge of high pressure pushes into the UK from the west.
Bottom: a complex picture of highs and lows give way to depression over
the UK. Surface analyses archived athttp://www.wetterzentrale.de/
topkarten/tkfaxbraar.htm, Crown Copywright UK Met Office.
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Figure 8.38: Comparison of ramps events in demand and residual demand with 50GW of
installed wind capacity.

system to meet demand. Failure to meet demand leads to aloss of load, meaning customers

are disconnected. Determining the contribution of wind at times of high demand enables the

determination of the level of conventional generation required to maintain a desired level of

generation adequacy, usually expressed as a loss of load probability.. At times of high demand,

less spare conventional capacity is available to meet demand in the case of an outage of a

conventional plant. The loss of load expectation is dominated by a small number of these

high-demand, high-risk hours, so the behaviour of wind in these hours is of interest. However,

very high demand occurs infrequently, so the number of hoursincluded in the calculation of

LF falls, and the confidence in the result drops accordingly. The extreme case - the highest

absolute demand over the whole period - occurs by definition only once. Although what

actually happened in this extreme case is interesting in itself, nothing can be revealed about

the distribution ofLF .

To estimate the contribution of wind at times of peak demand,an approach following Keane

et al. [2011] is taken. Demand is grouped into two-percentile bands, and the aggregateLF

within those hours is taken. Figure 8.39 shows the results, with the number of included within

each band shown on the right-hand scale. The results confirm apattern seen onshore by e.g.

[Keane et al., 2011, Sinden, 2007], where load factor tends to increase in times of relatively high

demand, but declines as the highest demand hours are approached. This is usually attributed to

‘cold snap’, anticyclonic conditions leading to increaseddemand but relatively little wind, but

a more detailed meteorological investigation is given by Brayshaw et al. [2011].
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(a) Onshore

(b) Offshore

Figure 8.39: Average onshore and offshoreLF against electricity demand as a % of yearly
peak. Error bars show± 1 standard deviation. The number of hours within each
band is shown on right hand axis
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This analysis was pursued to produce the first credible estimate of thecapacity creditof offshore

wind [Hawkins et al., 2011]. Capacity credit is a measure of the level of firm generation which

can be relied on to meet demand, and has been previously used for onshore wind [Keane et al.,

2011].

However, capacity credit was developed with thermal generators in mind, where the probability

of a not being available to contribute to peak demand is dominated by the probability of

unplanned outages. Each generator is an independent unit, with a (generally small) probability

of an outage in each period. This can be modelled with a binomial distribution, and the

probabilities can be summed over many independent generators to give the aggregate

distribution. The resulting distribution approaches a Normal distribution, with a high

confidence of being relatively close to the mean value, and a very small probability of being at

one extreme.

With wind generation, the probability that generation may not be available to meet demand

is dominated by natural variation of wind speed, not technical outages. Furthermore, wind

farms are not independent, and are governed by the same synoptic systems. Although a

mean load factor can be calculated at periods of high demand,the variation about the mean

is very high. This is evident by the standard deviations shown on Figure 8.39, not shown in

previous studies [Keane et al., 2011]. This is further explored in Figure 8.40, which shows the

distribution ofLF when demand is within 10% of peak. Although the mean isLF is 55%, there

is a good chanceLF will be less than 20%. It becomes difficult, and perhaps misleading, to

characterise the load factor at peak entirely by a single statistic, the mean, when the distribution

has so much spread. This questions the whole approach of determining capacity credit for wind

generation, at least without putting confidence bounds on the figure.

8.5 Chapter summary

This chapter uses the WRF re-analysis to analyse the consequences for wind integration in the

UK. The chapter provides some background describing the recent growth of wind and future

targets. Existing demand patterns and conventional generation are described to provide context

to and support the analysis. An analysis method is presentedwhich is flexible enough to model

the future growth of wind without being tied to particular assumptions about the timing or

location of individual wind farms.
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Figure 8.40: LF of offshore wind in hours where demand within10% of peak

A detailed analysis is then presented, demonstrating the types of question which can be

answered using this dataset. The large contribution wind generation can make to satisfying

energy demand is shown, and the challenge of integration is highlighted by the selection of

highest and lowest production weeks, with an illustration of the synoptic conditions causing

this.

Spatial and temporal patterns are then looked at in more detail, including diurnal, seasonal and

inter-annual variations in wind speed and load factor. The correlation of wind speeds is shown

to decrease rapidly with distance. This traditional analysis is extended to include a temporal

axis, showing very clearly the dominant pattern of east-west wind speed changes across the

country.

The probability of absolute calms is shown to be very low indeed, although the probability of

relatively low aggregate output is not, and distributions of aggregate output are developed for

hourly, daily and weekly averaging periods. It is shown that, aggregated across the country,

changes happen on a timescale of days rather than hours. Rampevents are examined detail,

and probability distributions are developed for various levels of geographic aggregation. It is

shown that although large ramp events can occur within a region, when aggregated over all

regions, they are constrained within tight bounds.

Finally, the relation of wind output to current patterns electricity demand is shown, and it

is confirmed that wind generally has higher than average output in times of relatively high

demand, but tails off in the very extreme hours. However the variability of wind, and the

challenge of assigning it a capacity credit based on a singlevalue is highlighted. Throughout
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the analysis the focus is on deriving probability distributions, to show not just than an event

does occur, buthow oftenit occurs which is essential for the future design of networks.
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Chapter 9
Discussion and conclusion

9.1 Introduction

Providing a safe, secure and clean future energy supply is perhaps one of the most important

scientific, political and economic tasks facing society today. The potential to harness renewable

energy sources on a large scale offers an immense benefit to society, and also presents an

immense challenge.

In the UK, wind energy has enormous potential. In the introduction to this work, it argued that

a key step to exploring and overcoming the challenge of renewable integration is a detailed

understanding of the physical resource: both the average conditions which determine how

much energy is available, and also the spatial and temporal variability which govern when and

where it is available. Yet despite the importance of this issue, research, and policy making

based on it, is frequently hampered by a lack of reliable, accessible, and freely available

data. It is hypothesis that meteorological modelling can provide more insight into some of

the key challenges, and a major motivation for this work is tomake available a high-quality

dataset which can be used to help explore and address some of these challenges. In Chapter 1,

requirements were specified that such a dataset must:

• be a realistic representation of the average onshore and offshore wind conditions;

• capture spatial and temporal variability across a range of scales; and

• be physically based, so that relations between wind speed, temperature and other

meteorological variables are preserved.

This concluding chapter confirms these objectives have beenmet, and takes key results from the

analysis of Chapter 8 to draw conclusions regarding the integration of large amounts of wind

energy into the UK grid. First, a brief chapter summary is given; second, key conclusions are

outlined and discussed; finally, the limitations of the approach and options for futher work are

discussed.
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9.2 Thesis summary

Chapter 1presents the background and context to this work, sets out the aims and objectives,

describes the contribution to knowledge, and provides a summary of the chapters.

Chapter 2provides some theoretical background and context to the modelling work. A brief

‘Cook’s tour’ of the atmosphere and atmospheric modelling is given. The scales of the

atmosphere are discussed and the existence of a spectral gapseparating turbulent scales from

longer scales is highlighted. Planetary boundary layer processes and the challenges they present

to atmospheric models are described.

Chapter 3provides a review of alternative mesoscale models and concludes that a number

of models provide similar sophisticated capabilities, with the main differences being in their

ease of use, accessibility, and community support. A modern, open-source, and well-supported

mesoscale model, WRF, is chosen for the rest of the work. The main features and options

available in WRF are then summarised.

Chapter 4reviews the sources of observations available for model verification from both in-situ

and remote sources. A week-long case study is used to comparedifferent model configurations,

in an attempt to limit some of the systematic errors which canoccur using poorly chosen

options. Significant improvement of error statistics is seen over the baseline case, and a model

configuration is chosen to use in the full reanalysis.

Chapter 5describes the main simulation phase, in which an eleven-year reanalysis over the

UK and surrounding waters at 3km resolution is performed. The wind speed outputs are

compared to an extensive set of observations. Against onshore met stations, modelled wind

speeds are shown to capture observed distributions very well (B = 0.15 ms−1,RMSD = 2.03

ms−1), although with some large systematic errors seen at some stations in complex terrain.

Against offshore observations, a significant low bias of (B = −1.05ms−1) is found against

buoys and lightships, as well as against wind speeds derivedfrom satellite scatterometers. The

effect of various influences on model performance are explored, including terrain complexity,

stability and the influence of the coast. It is concluded thatit is most likely the low bias

offshore is inherited from the global model, due to the lowerspatial resolution causing the

spatial smoothing of depressions and subsequent under-prediction of peak winds, as well as the

assimilation of poorer quality observations at platforms and buoys.
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Chapter 6presents a simple method for removing model bias offshore bylinear regression

against daily average wind speeds from the QuickSCAT and ASCAT satellites. The satellite

datasets are first compared to in-situ observations, and found to be significantly less biased

than raw model output. This comparison also confirms that some remote buoys appear to have

instrument problems across some of the period studied. The bias-corrected model speeds have

significantly improved error statistics, with the bias muchreduced (B = 0.26ms−1RMSD =

1.88ms−1).

Chapter 7then develops a process for converting wind speeds into the power outputs from wind

farms based on a power curve which matches the size and type ofthe turbine expected to be in

use. A method of accounting for wake losses is developed and tested which distributes losses

over a range of wind speeds, rather than apply a constant reduction. Sources of published data

on wind farm outputs are reviewed, simulated outputs are then compared to published figures

for existing farms and shown to be realistic on hourly and monthly timescales.

Chapter 8presents a detailed analysis of the wind speed dataset and the implications for wind

energy integration. Supporting material regarding the projected future growth of wind, existing

electricity demand, and conventional generation is presented. An analysis method is then

developed which is flexible enough to model the future growthof wind without being tied

to particular assumptions about the timing or location of individual windfarms. Results of the

analysis are then presented, demonstrating the types of question which can be answered using

this dataset. The large contribution that wind generation can make to satisfying electricity

demand is shown, and the challenge of integration is quantified by showing the spatial and

temporal variability at a number of scales. Throughout the analysis the focus is on deriving

probability distributions, to show not just than a certain event occurs, buthow oftenit occurs

which is essential for the future design of networks.

In the analysis described above, results were presented ‘asis’ avoiding subjective judgements

on the implications for wind energy. In this concluding chapter, some of the key results from the

analysis are interpreted as to their implications for the large scale integration of wind energy.
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(a) onshore (b) offshore

Figure 9.1: Final QQ plots of observed and modelled hourly mean wind speed against all
onshore and offshore in-situ observations

9.3 Conclusions

9.3.1 Wind speed dataset

The main output from the work is a high-resolution reanalysis dataset of wind speeds and

other meteorological variables which is an accurate and realistic representation of the recent

(2000-2010) wind climate over the whole of the British Islesand surrounding waters. The final

error statistics against all available in-situ observations are shown in Table 9.1, and QQ plots

of observed and simulated average wind speeds, Figure 9.1 show that this objective has been

achieved.

However, the limitations of the dataset have been honestly presented. In particular it is shown

that large systematic biases may exists at individual locations, particularly in complex terrain,

and it would not be advised to use wind speeds for single pointpredictions in complex terrain,

without accounting for local terrain, or at least correlating with a short set of observations.

category n B RMSD R2

ms−1 ms−1

onshore 237 0.15 2.03 0.64
offshore 19 0.27 1.88 0.71

Table 9.1: Summary of error statistics against all in-situ observations
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The fact that such a dataset did not publicly exist previously is somewhat remarkable. Advances

in meteorology have long been driven by cooperation and the open and free sharing of data

across institutions and national borders for the public good. The commercial aspects of wind

energy have not encouraged a similar approach, and it is hoped that, by making this dataset

publicly and easily accessible, it will greatly support further research in a scientific tradition of

open data sharing.

9.3.2 Wind energy integration

Energy potential

(a) Snapshot B - 14GW (b) Snapshot C - 40GW (c) Snapshot E - 54GW

Figure 9.2: Summary of wind energy’s contribution to meeting existing demand. Top line is
electricity demand, shaded area is wind contribution, and the remaining area is
residual demand.

A major contribution is a detailed quantification of the contribution that wind generation, and

particularly offshore wind generation, can make to currentelectricity demand. Figure 9.2 shows

three snapshots, illustrating the fundamental change which would occur in the electricity system

with the large scale development of wind.

Figure 9.3 shows that 25% of electricity demand could be met by wind with the installation of

around 25-30GW of capacity, depending on its geographic distribution. Even if no increase in

other renewable sources are envisaged, and they continue tocontribute the 5% they supply

today [DECC, 2010], this will allow the UK to generate 30% of electricity demand from

renewables, consistent with EU targets for 2020. Whether this level of capacity can be achieved

in less than 8 years depends a great deal on the level of political and economic support.

Furthermore, the analysis shows that 50% of current electricity demand could be met with

50GW of capacity, provided it is distributed around all of the offshore zones.
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Figure 9.3: Contribution of wind energy to demand by installed capacity under different
geographic distributions of wind.

Variability

There has been a long, often heated, debate as to whether the variability of wind generation is

a ‘show stopper’. On one side, it is argued that the integration across a large area [Milborrow,

2000, Sinden, 2007] aids the integration of wind power and allows the challenges to become

manageable. On the other side of the debate [Oswald et al., 2008, Sharman et al., 2011] there

are claims that the variability of wind means it is either impossible, or undesirable, to use it

is an energy source. The somewhat entrenched positions in this debate were summarised by

Gross and Heptonstall [2008]: “East is east, and west is west, and never the twain shall meet”.

This work brings a large amount of quantitative evidence to this debate.

A major conclusion of this study is that geographic distribution considerably smooths the output

from a wind fleet, limiting the rate of change in the aggregateoutput to within well defined

bounds. Geographic smoothing removes mesoscale and sub-mesoscale fluctuations, leaving

only the changes associated with more slowly varying synoptic-scale processes on a timescale

of several hours to days. The cross-correlation in an east-to-west direction is highlighted, and

the characteristic speed of synoptic systems over the country is determined as 56 km / hr.

It is shown conclusively in Figure 9.4 that although wind generation changes the pattern of

demand substantially, the ramp rates seen in residual demand with 50GW of wind capacity

are comparable to the ramp rates seen, and managed, in diurnal demand patterns today. This

contradicts those [Oswald et al., 2008, Sharman et al., 2011], who argues that large amounts

of wind will cause larger and more frequent power swings, with negative implications for

conventional plant lifetimes and efficiency.
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Figure 9.4: Comparison of inter-hourly ramp events in demand and residual demand with 49
GW of wind capacity

On the other hand, it is shown that the variability associated with synoptic scale processes still

remains, and the argument used most frequently against wind, that periods of low aggregate

wind output and high demand occur, is confirmed and quantified. In these situations, it is

clear that conventional generation or significant imports from other countries must be relied on.

The findings of Sinden [2007] are confirmed, that periods of absolute calm across the whole

wind fleet are exceptionally rare, but it is also shown that times when the entire wind fleet is

producing relatively little are not unusual. Even with winddistributed around all offshore sites,

the output will be expected to be less than 10% of the maximum for 10% of the time.

However, the claim that conventional generation must be ‘onstandby’ [Sharman et al., 2011]

as spinning reserve, and therefore burning fossil fuels, isnot supported, since the ramp rates

in residual demand are comparable to ramp rates in demand today. ‘Warm’ units burn fossil

fuels in order to provide fast reserve within 20 minutes [Pearmine et al., 2006]. Wind speed

ramps governed by synoptic scales are forecastable on a timescales much longer than this, and

suitable for scheduling conventional plant in much the sameway as is done today.

It is also shown that with an increasing penetration of wind,the residual demand is decreased

substantially. This means a much lower utilisation of existing or new conventional plants,

requiring these generators to exploit much larger price differentials between windy and calm

days, as well as revenue from auxiliary services, to make an economic return.

With an increasing penetration of wind, not only does residual demand decrease, but frequently

202



Discussion and conclusion

becomes negative. With 49 GW of wind on the system, assuming current demand patterms, net

demand would be expected to be negative just under 20% of the time, and would be less than

10 GW around 35% of the time.

Traditionally, this might be thought of as energy which, if it could not be stored or exported,

is somehow ‘wasted’ and therefore represents an inefficiency and an argument against wind.

However, since the variable cost, the fuel, of wind is free, this is not necessarily an inefficiency.

At the very least this energy can be spilled without consequence. Moreover, it represents the

potential for wind generation to play a much more active partin the balancing of supply

and demand. Modern wind turbines can modulate their output very rapidly through blade

feathering, and therefore represent a source of balancing reserve [Ramtharan et al., 2007].

Since it has been shown that times of low residual demand, andhence low spot-price, will

be common, it may be more beneficial to operate wind turbines below full capacity and provide

balancing reserve to the system. This would also allow better integration with inflexible

baseload generation such as nuclear. However, ensuring market incentives are structured in

such a way to achieve this is essential. In particular, the current system of compensating wind

generators for ‘lost’ production if they face network or other constraints, would become highly

inefficient at high penetrations of wind and would increase the overall cost.

The main conclusion from this work is that many of the perceived challenges of wind

integration come from a failure to distinguish between variable and unpredictable. The

technical challenges, from a system wide perspective, become tractable provided wind

generation can be accurately forecast on a timescales of hours to days ahead, and forecasting is

increasingly playing a key role in energy systems [Dobschinski et al., 2007, Foley et al., 2012,

Giebel and Kariniotakis, 2003, Lei et al., 2009].

This is not to suggest there are not many other challenges. Anever-present assumption in this

work is an ideal electricity network, effortlessly transporting and smoothing generation over

any level of geographic aggregation. There are a whole host of questions regarding network

capacity, frequency regulation, voltage support, and system stability which are beyond the

scope of this work. Significant research, development and investment is being made to try and

equip future networks to handle variable generation, and itis hoped this work may contribute

to this process.
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9.4 Limitations

There are a number of limitations inherent in using any atmospheric model to recreate historic

weather patterns, as there are always simplifications and semi-empirical formulations used

to represent complex turbulent processes, and the observational record is only a sample of

continuous field. In particular in this work, turbulent scales are not explicitly resolved so the

dataset can not be used to study variability on very short timescales. Additionally peak wind

speeds were not well reproduced and so the impact of high-wind cut-outs is not explored in

detail. However these limitations are common to many similar approaches, and are not specific

to this work.

There are a number of more specific limitations to this study.Practical constraints limited the

time which could be spent configuring WRF. A high bias seen onshore, likely due to the neglect

of sub-grid scale orographic drag, lead to the use of analysis nudging which may have affected

the quality of the model output offshore. Additionally, a problem with sea surface temperature

remaining constant over one month may have affected the quality of model output in the coastal

region.

A major limitation onshore is the resolution of 3km, which cannot capture complex terrain

features. Work is ongoing within The University of Edinburgh to try various downscaling

approaches such as WAsP and more sophisticated CFD modelling to account for local terrain.

Other work is experimenting with neural networks to accountfor systematic and phase errors

in the output.

Another limitation is the length of the period simulated, which at eleven years is too short to

claim to be a climatology. One solution would be to extend thesimulation further back in

time. However, there may be more efficient ways of effectively extending the length, by using

existing datasets such as the NCEP/NCAR [Kalnay et al., 1996], or ERA-40 reanalysis [Uppala

et al., 2005]. A relatively simple approach would be to correlate average monthly wind speeds

between this study and a longer reanalysis. This would give an indication of whether the eleven

year period studied here is representative of the longer term climate in terms of the average

values and monthly variation captured.

A more sophisticated approach would be to classify the weather episodes within the dataset

e.g. using GWL types, and compare the frequency distributions between the shorter and longer

reanalysis. This may also help to address another limitation: the assumption that the last eleven
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years are representative of the future climate. This assumption might not be justified in the

face of human-induced climate change. There are a variety ofmechanisms by which climate

change could affect UK wind speeds. For example, changes in the frequency of negative NAO

episodes, changes in the jet stream position, and changes instorm tracks could have a direct

effect [Cradden, 2009]. Similarly, other changes could contribute, for example, changes in

frequency of Atlantic hurricanes, which often become extra-tropical storms and reach the UK,

may have an effect on the wind climate [Jiang and Perrie, 2007].

However, a recent review [Pryor and Barthelmie, 2010] foundthat most studies projected

relatively small changes in the wind climate of northern Europe, with natural variability a

much stronger signal than any human-induced climate change. For example, Cradden [2009]

examined output from regional climate models over the UK andfound very little change in

surface wind speeds. However, even representing current wind climates accurately within

a GCM is difficult [Brown et al., 2009, Höglund et al., 2009],and the difference between

alternative models is often larger than any climate signal.Analysis of observations have

generally found small trends in ocean surface wind speeds ofaround 0.08 ms−1 per decade

[Tokinaga and Xie, 2010, Wentz et al., 2007]. Young et al. [2011] found a much higher trend,

though the methodology was heavily criticised [Wentz and Ricciardulli, 2011].

The UK Climate Change Impacts Program 2009 (UKCIP09) [Murphy et al., 2009] did not

include probabilistic assessments of surface wind speed changes, due to the lack of comparable

surface variables between different climate models. Results from an 11-member ensemble of

the same model showed wind speed changes between±10%, but the ensemble mean showed

little change. More recently, probabilistic projections of UK wind speed have been released

[Sexton and Murphy, 2010], again showing generally small changes of< 0.2ms−1, with

natural climate variability contributing the most to uncertainty. However, some model runs with

a better representation of stratospheric processes showedgreater changes [Sexton and Murphy,

2010] related to changes in the general circulation.

Although current understanding is incomplete, it seems reasonably clear that climate change

signals in surface wind speed are much less clear than surface temperature, and on the basis of

current knowledge, changes in the wind speed are likely to besmall. It would be interesting

to classify the reanalysis dataset presented here into weather types, and explore the impact of

changes in frequency of certain weather patterns such as blocking highs, but this is an area for

future work.
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9.5 Future work

Some areas for future work have been mentioned above, for example the use of an objective

weather classification for the use in future climate impact studies. Other work is ongoing at

Edinburgh to use the dataset to accurately assess the reserve requirements in systems with high

penetrations of wind, as well as other work to estimate the contribution which embedded wind

generation already makes to the grid. Such generation is notmetered by the system operator,

and there is considerable uncertainty over its current contribution.

A major area of future work is to use the dataset to do detailedstudies of power flows in

potential future networks, assessing what level of networkcapacity, what level of auxiliary

support, and what technologies may allow the integration ofwind energy into the grid. Another

major area of work is to investigate the impact of large-scale storage and flexible demand.

In particular it is hoped that the amount of storage needed toachieve a certain level of

‘smoothness’ in wind output can be quantified and related to the size of physical schemes such

as pumped hydro or compressed air storage. This would allow an assessment as to whether

such schemes are technically feasible or not.

The most immediate area for further work is to provide an interface to the model data, which

allows public access to average statistics and time series.It is envisaged that this will be a

graphical front end o the netCDF files based on Google MapsTM or similar.

Finally, if time and computational resource allows, the reanalysis will be continued to the

present, and the existing data may be re-run and improved, for example using better PBL

parameterisation schemes, higher resolution land-use datasets, and a better treatment of SST.

9.6 Concluding remarks

In Chapter 1, a hypothesis was proposed that advanced meteorological model could deliver

new insight into the UK’s wind energy resource, and the potential to integrate this on a large

scale. On the basis of the arguments made in this chapter, this hypothesis is accepted. By

analysing over a sufficiently long period, the probability distribution of important events have

been found, rather than focusing on a single selected short time-period. It has been shown that

the integration of large-scale wind energy can provide a large part of current electricity demand,

displacing large amounts fossil fuel. It has also been shownthat such an energy system will have
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to cope with periods of very low output relatively frequently, which may mean conventional

generation in the medium term. However, it has been shown that the variability of wind is not

an insurmountable challenge, since the flexibility required is not so different from the system

operated today.

The integrating wind generation requires an approach akin to the approach adopted by sailors:

“Therefore we should not try to alter circumstances but to adapt ourselves to
them as they really are, just as sailors do. They don’t try to change the winds or
the sea but ensure that they are always ready to adapt themselves to conditions. In
a flat calm they use the oars; with a following breeze they hoist full sail; in a head
wind they shorten sail or heave to. Adapt yourself to circumstances in the same
way.”

Bion of Borysthenes, quoted in [Kindstrand and Blomqvist, 1979].
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Maps

Figure A.1: Average wind speed at 80m agl, 2000-2010
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(a) Jan (b) Feb

(c) Mar (d) Apr

Figure A.2: Wind speed at 80m agl by month
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(e) May (f) Jun

(g) Jul (h) Aug
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Maps

(i) Sep (j) Oct

(k) Nov (l) Dec
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Figure A.1: Average power density at 80m agl, 2000-2010
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Appendix B
WRF Options

&domains
time_step = 135,
time_step_fract_num = 0,
time_step_fract_den = 1,
max_dom = 3,
s_we = 1, 1, 1,
e_we = 145, 196, 331,
s_sn = 1, 1, 1,
e_sn = 115, 81, 391,
s_vert = 1, 1, 1,
e_vert = 27, 27, 27,
num_metgrid_levels = 27,
num_metgrid_soil_levels = 2,
dx = 27000, 9000, 3000,
dy = 27000, 9000, 3000,
grid_id = 1, 2, 3,
parent_id = 0, 1, 2,
i_parent_start = 1, 42, 50,
j_parent_start = 1, 28, 20,
parent_grid_ratio = 1, 3, 3,
parent_time_step_ratio = 1, 3, 3,
feedback = 1,
smooth_option = 0,
eta_levels = 1.0, 0.9950, 0.990, 0.985, 0.960,

0.93275, 0.908, 0.8547878,0.804364,
0.7539393, 0.7035151, 0.635023, 0.5527188,
0.4785737, 0.411915, 0.3521141,0.2985896,
0.250710, 0.2082415, 0.1704494,0.136992,
0.1074684, 0.08151028,0.0587756,0.03894893,
0.02173894,0.0/

&physics
mp_physics = 2, 2, 2,
ra_lw_physics = 1, 1, 1,
ra_sw_physics = 1, 1, 1,
radt = 30, 30, 30,
sf_sfclay_physics = 2, 2, 2,
sf_surface_physics = 2, 2, 2,
bl_pbl_physics = 2, 2, 2,
bldt = 0, 0, 0,
sst_update = 1,
cu_physics = 1, 1, 0,
cudt = 5, 5, 5,
isfflx = 1,
ifsnow = 0,
icloud = 1,
surface_input_source = 1,
num_soil_layers = 4,
num_land_cat = 20,
sf_urban_physics = 0,
mp_zero_out = 0,
maxiens = 1,
maxens = 3,
maxens2 = 3,

maxens3 = 16,
ensdim = 144,/

&fdda
grid_fdda = 1, 1, 1,
gfdda_inname = "wrffdda_d<domain>",
gfdda_end_h = 8760, 8760, 8760,
gfdda_interval_m = 360, 360, 360,
fgdt = 0, 0, 0,
if_no_pbl_nudging_uv = 0, 0, 0,
if_no_pbl_nudging_t = 0, 0, 0,
if_no_pbl_nudging_q = 0, 0, 0,
if_zfac_uv = 0, 0, 0,
k_zfac_uv = 10, 10, 10,
if_zfac_t = 0, 0, 0,
k_zfac_t = 10, 10, 10,
if_zfac_q = 0, 0, 0,
k_zfac_q = 10, 10, 10,
guv = 0.0003, 0.0003, 0.0003,
gt = 0.0003, 0.0003, 0.0003,
gq = 0.0003, 0.0003, 0.0003,
if_ramping = 1,
dtramp_min = 60.0,
io_form_gfdda = 2,/

&dynamics
w_damping = 0,
diff_opt = 1,
km_opt = 4,
diff_6th_opt = 0,
diff_6th_factor = 0.12,
damp_opt = 0,
base_temp = 290.
zdamp = 5000., 5000., 5000.,
dampcoef = 0.01, 0.01, 0.01
khdif = 0, 0, 0,
kvdif = 0, 0, 0,
non_hydrostatic = .true., .true., .true.,
moist_adv_opt = 1, 1, 1,
scalar_adv_opt = 1, 1, 1,
tke_adv_opt = 1, 1, 1,/

&bdy_control
spec_bdy_width = 5,
spec_zone = 1,
relax_zone = 4,
specified = .true., .false.,.false.,
nested = .false., .true., .true.,/

&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,/

Table B.1: Namelist.input file specifying configuration options
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Variable Description

BN2 brunt-vaisala frequency
COSALPHA Local cosine of map rotation
HGT Terrain Height
LANDMASK land mask (1 for land, 0 for water)
P perturbation pressure
PB base state pressure
PBLH pbl height
PH perturbation geopotential
PHB base-state geopotential
PSFC sfc pressure
Q2 QV at 2 M
QVAPOR Water vapor mixing ratio
RMOL 1./Monin Ob. Length
SINALPHA Local sine of map rotation
SST sea surface temperature
T perturbation potential temperature (theta-t0)
T2 2m temperature
TH2 2m potential temperature
TKE turbulence kinetic energy
TKE MYJ tke from mellor-yamada-janjic
TSK surface skin temperature
U x-wind component
U10 U at 10 M
UST u* in similarity theory
V y-wind component
V10 V at 10 M
W z-wind component
XLAT latitude, south is negative
XLONG longitude, west is negative
XTIME minutes since simulation start
Z0 background roughness length
ZNT time-varying roughness length

Table B.2: Variables retained in the output from WRF



Speed Interval Adjustment
U (ms−1) U−cut-in

cut-in−cut-out

1 - 1
2 - 1
3 - 1

cut-in 4 0.00 1
5 0.05 1
6 0.10 1
7 0.14 0.99
8 0.19 0.98
9 0.24 0.97

10 0.29 0.95
11 0.33 0.93
12 0.38 0.91
13 0.43 0.91
14 0.48 0.94
15 0.52 0.96
16 0.57 0.98
17 0.62 0.99
18 0.67 0.99
19 0.71 1
20 0.76 1
21 0.81 1
22 0.86 1
23 0.9 1
24 0.95 1

cut-out 25 1.00 1

Table B.3: Per-unit adjustments to a turbine power curve with a cut-in speed of 4 ms−1and rated
speed of 15ms−1



Appendix C
Station verification

216

















References

Adrian, G. (1999). Parallel processing in regional climatology: The parallel version of the
Karslruhe Atmospheric Mesoscale Model.Parallel Computing, 25(7):777–787.

Adrian, G. and Fiedler, F. (1991). Simulation of unstationary wind and temperature fields over
complex terrain and comparison with observations.Beiträge zur Physik der Atmosphäre,
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