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Abstract

The UK has highly ambitious targets for wind developmenttipalarly offshore, where over
30GW of capacity is proposed for development. Integratinchsa large amount of variable
generation presents enormous challenges. Answering kestiqns depends on a detailed
understanding of the wind resource and its temporal andaspatiability. However, sources
of wind speed data, particularly offshore, are relativgigrse: satellite data has low temporal
resolution; weather buoys and met stations have low spasalution; while the observations

from ships and platforms are affected by the structures sedres.

This work uses a state-of-the art mesoscale atmospherielrttoproduce a new high-resolution
wind speed dataset over the British Isles and surroundirigraiarl his covers the whole region
at a resolution of 3km for a period of eleven consecutive gielaom 2000 to 2010 inclusive,

and is thought to be the first high resolution re-analysiefesent a true historic time series,
rather than a statistically averaged climatology. Theltesue validated against observations
from met stations, weather buoys, offshore platforms anellgéa-derived wind speeds, and

model bias is reduced offshore using satellite derived \sjpekds.

The ability of the dataset to predict power outputs from entriwind farms is demonstrated,
and the expected patterns of power outputs from future oastwad offshore wind farms are
predicted. Patterns of wind production are compared tcepwattof electricity demand to
provide the first conclusive combined assessment of théyabilfuture onshore and offshore

wind generation meet electricity demand and contributeetwue energy supplies.
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Chapter 1
Introduction

“You don’t need a weather man to know which way the wind blows”
Bob Dylan -Subterranean Homesick Blues

1.1 Background

Concern over climate change and security of energy suppyidad many countries to look
to renewable resources as a future source of energy. In M206M, a binding EU-wide
target was agreed to source 20% of the EU’s total energy deérfram renewable sources
by 2020. Member states were required to set targets comisigiin these; the UK has target of
supplying 15% of primary energy demand from renewables 20 2@hich will require around
30% of electricity to be generated from renewable sourcdsJO, 2009]. Furthermore, the
UK'’s Climate Change Act [UKGOV, 2008] requires a mandatouy of at least 80% in the
UK'’s carbon emissions by 2050, which implies an increasirgpertion of renewable or other

low-carbon electricity beyond 2020.

Wind is currently the fastest growing source of renewaldetekity in the UK, and it is widely
expected to contribute most to the renewable energy tafpEE€C, 2009]. In particular,
the UK has ambitious plans for offshore wind, with more th&G8V of potential projects
earmarked for development [National Grid, 2008]. Harmes#his amount of renewable energy

presents an enormous opportunity for society, but also amsrus engineering challenge.

Wind speeds are variable across a wide range of spatial empbtal time-scales, and relatively
small changes in wind speed lead to large changes in poweraed. Since wind generation
is not dispatchable in the same way as conventional fossil ganeration, harnessing wind
generation on a very large scale potentially requires fomedal aspects of the power system to
be redesigned. A great deal of research is ongoing to igasthow this can be best achieved,

this is perhaps one of the most important engineering qurestaced today.
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Key to exploring and overcoming the challenges is a detailederstanding of the physical
resource, both the average conditions which determine hoehranergy is available, and also
the spatial and temporal variability which govern when ameke it is available. Together these
dictate what kind of conventional and new approaches aréauk® integrate wind generation

into a secure and reliable energy system.

Despite the extent of the challenge and the range of res@atbils field, detailed data on the
wind resource is not readily available to researchers. ifioadl meteorological observations
onshore are taken at 10m above ground level (agl), are $yraffgcted by local terrain, and
are not necessarily available in the areas of interest fodgeneration. Offshore, observations
are relatively sparse and are often taken just a few metregeadea level. Data collected by

private developers is commercially sensitive, and is naderaublicly available.

As a consequence, research, and policy making based onoiteis hampered by a lack of
high quality data spanning a sufficiently long period. Reseaffort is frequently duplicated
trying to obtain data before any other important questioas be answered. There is a
long, and often heated, debate e.g. [Gross and Hepton2@l8, Oswald et al., 2008] as
to whether the variability of wind is a ‘show stopper’, that too difficult or costly to be
harnessed by society. However, critical arguments are roadiésmissed on the basis of a
selective time period, or only using observed wind speegbane. Since much of the planned
development in the UK is offshore, there is an urgent needk&onine this question using a
dataset which is robust, reliable, and long enough to giWiécint confidence in the results.
Within the wind industry, many stakeholders are indepetiggrursuing their own, often very
costly assessments, involving modelling and measurenanpaigns. However without any
framework for coordination, they have no incentive to shtheeresults and consequently the

overall process is very inefficient.

This project attempts to address this issue by building aainafdhe UK'’s onshore and offshore
wind resources with high spatial and temporal resolutiorhe provided as publicly available
dataset to support future research in this area. It alsonptteto answer some of the key
questions regarding variability in a robust way. The futadequacy, security and reliability of
the energy system upon which we all depend demands that veeahapenly accessible dataset
with which we can at least begin to address some of the keytiguesn more detail than is

currently possible.
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1.2 Objectives and scope

The main aim of the project is to model, in a scientificallyusbway, the UK’s wind resource
with high spatial and temporal resolution. The objectiviproduce a well-validated dataset
which can be used to answer key questions with a good degreenfiience. This dataset

must:

e be arealistic representation of the average onshore asidooéf wind conditions;
e capture spatial and temporal variability across a rangealés; and

e be physically based, so that relations between wind spemdpdrature and other

meteorological variables are preserved.

The hypothesis proposed is that using advanced meteatalagodel can deliver new insight

into the UK’s wind energy resource, and the potential taaitgtithis on a large scale.

1.3 Contribution to knowledge

This work represents the first publicly available high-tegon reanalysis of wind speeds
around the UK for a period longer than ten years. It is the $ingdly to use a complete record of
satellite scatterometer winds to correct model bias ovemthole offshore region. It contains
the first publicly available assessment of the wind speddlalisions at hub height at all of the
UK'’s proposed offshore wind farms, and is the first study t@algse the likely power production
at offshore wind farms based on a dataset longer than tes.yiéatso is the first study to match
the output from onshore and offshore wind farms to co-intigmtterns of electricity demand,
and to assess the impact large scale wind integration witt loa hourly patterns of electricity

demand.

1.4 Thesis outline

The thesis is split into chapters as follows:

Chapter 1 Is this introduction.
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Chapter 2 reviews some background material relevant to mesoscalesatmeric modelling to

provide context for the rest of the work.

Chapter 3 Gives a review of mesoscale models and their use in relatiavirid energy, and

selects a model to used as the main tool for this work.

Chapter 4 Describes the available observations, selects a case perilyd, compares a
number of model configurations over the case study period,safects a final model

configuration to use for main modelling phase.

Chapter 5 Describes the main modelling phase and presents a detal#tcation against

observations.

Chapter 6 Reviews satellite data sources, develops and applie a dadtgy for removing

model bias offshore.

Chapter 7 Describes and verifies the conversion of wind speeds intoepawtputs of

windfarms, and compares simulated results to publishedefsyu

Chapter 8 Analyses the dataset in terms of the implications for winérgy integration,
predicting average outputs from future offshore farms, stmalving the spatio-temporal

patterns across the study domain.

Chapter 9 Summarises the results of the analysis and presents camgdugor wind

integration.
Appendix A Presents maps of the average wind resource, broken down thmobthe year.
Appendix B Gives the full specification of the model configuration antpouvariables.

Appendix C Presents comparison plots against individual in-situ nfag@n stations.



Chapter 2
Background

2.1 Introduction

Wind speeds measured close to the surface of the Earth shiatisaacross a range of spatial
and temporal scales. Turbulent gusts cause fluctuationdtwyeourse of a few seconds, while
wind speeds change hour-to-hour and day-to-day as weafttenss pass over the country, and

season-to-season as the global circulation changes.

Spatially, wind speeds show well defined global and regigadderns, with the UK among
the windiest places on Earth, and the highest regional wiegds found in the northwest of
Scotland. Wind speeds also show spatial variations on srmehles: wind flow is influenced

by terrain, local roughness changes, and local tempergtadients.

The aim of this research is to produce a model of wind speeelstbe UK which,

covers the whole UK and offshore region;

is spatially and temporally coherent;

is temporally coherent with patterns of energy demand;

covers a long enough period to capture important weathsodes; and

has a spatial resolution high enough to give realistic wjpgksls at wind farm sites.

These requirements strongly suggest a physical, ratheratstatistical model. Although it is
possible to produce and summarise the wind climate visstitati models, it is more difficult

to produce a multivariate model that allows wind speeds tmatehed to coincident variables
such as temperature or electricity demand. Furthermordaysigal model representing true

historic time periods is much easier to validate againstpetident observations.

Given a preference to use a physically-based model, thisoeenow briefly reviews the

physical systems governing the atmosphere. A very basirigéen is given of the scales of

5
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the atmosphere and the modelling approaches used at edeh®uia is to give a background
and context to the modelling approach used in this work, abttie strengths and limitations
can be discussed. It is not intended to be an overview of ghes& dynamics. The
information is drawn from a number of textbooks and papershersubject namely [Dutton,
1976, Holton, 2004, Martin, 2006, Petersen et al., 1998|,3@88, Warner, 2011], and those

facts which are generally regarded as common knowledgecamreierenced.

2.2 The Atmosphere

The atmosphere is a thin layer of gases surrounding the Hartpidly thins with height, and
although there is no clear boundary, beyond 100km is uswalhsidered to be outer space.
The primary cause of all the weather we experience is theaméeating of a fluid on a
rotating sphere. This gives rise to a vast array of featutewery scale from dust devils a
few meters across, to high level jets which encircle the glldbeatures of the atmosphere are

often categorised according to their scale, Table 2.1.

Scale Length scale  Time scale Example features Modellipgoagh
Planetary 6000 km  days to months Hadley cells General Gitionl Model
Jet stream (GC™M)
Rossby waves
Synoptic 2000 km  days to weeks Pressure systems GCM &
Frontal systems Mesoscale
Meso 100 km  hours to days Sea breezes Mesoscale
Low-level jets
Gap winds
Sub-meso 10 km  minutes to hours Thunderstorms Mesoscale &
Dust devils Large Eddy Simulations (LES)
Micro 2m  seconds Small eddies Computational Fluid Dynamics
Tip vortices (CFD)

Table 2.1: Scales of the atmosphere, adapted from [Donaldn&h 2008, Holton, 2004]

2.2.1 The troposphere

The lowest layer of the atmosphere, the troposphere, extamg to 10-20km above the surface
yet accounts for around 80% of the mass of the atmospherwififidand Jones, 2010]. Itis
this thin layer is most important for weather and climate] dris a tiny fraction of the energy

contained in this layer which is harnessed for wind genanati
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The troposphere is largely transparent to incoming shoveveslar radiation, and is mainly
heated by convection and radiation from the ground. Aparnfthe air immediately above
the surface, or where water vapour is condensing, procésgbe troposphere are close to
adiabatic. Due to this convective heating, the tropospieerelatively well-mixed vertically,
with declining temperature with height. This is in markedhirast to the stratosphere above,
where increasing temperature with height inhibits velticaxing, leading to the highly

stratified structure which gives it its name.

The boundary between the troposphere and the stratosghdre iropopause. Stratospheric
processes and stratosphere-troposphere interaction Isveinaportant drivers of weather
systems and global circulation [Butchart et al., 2011], amast atmospheric models place

their upper boundary somewhere in the stratosphere, tipatea pressure of 50hPa or less.

2.2.2 General circulation

The flow in the lower atmosphere shows distinct global pastereferred to as the general
circulation, and described in any meteorology text e.g.l{¢ig 2004, Martin, 2006]. A very

brief and simplified overview is that differential heatingtlveen the tropics and the polar
regions gives rise to large convective cells, which trartsparm air poleward from the equator.
Areas where warm air rises in these cells lead to zones ofrgigntow surface pressure with

frequent rainfall; areas where air is sinking corresponddoes of high pressure and low
rainfall. Since the Earth is a rotating reference frame pibleward moving air in these cells is
acted on by an apparent force, the Coriolis force, whichgjige to the bands of easterly and
westerly winds, shown in Figure 2.1. Additionally, the disition of land and ocean produce
semi-permanent continental pressure systems such adga8ihigh, an area of cold, dense,
dry air which forms over much of northern Eurasia, and thdaludic low, a region of low

pressure in the Atlantic ocean.

The UK lies roughly at the polar front, the boundary of two \eection cells, where warm air
from the tropics meets colder polar air. The temperaturerdiice between these air masses
causes a pressure gradient at height, which leads to thegats The course of the jet stream
meanders and changes, perturbed by a succession of plasetde westward movinBossby
waves and is influenced by continental and synoptic pressuresyst The position of the

polar front and the jet stream is a major influence of the weradhmid latitudes.
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Figure 2.1: General circulation. Public domain image froit p: //rst. gsfc. nasa.
gov/ Sect 14/ Sect 14_1c. htm

The dominant weather feature at these latitudes is the atittidle cyclone or depression.
Initial instabilities or waves in the polar front cause caidto be pulled southward and warm
air northward around a deepening area of surface low predgswwn as a depression. The
fronts circle the depression, and the system begins tgodigsivhen the cold front catches and
occludes the warm front. The location of the jet stream aedréguent passage of depressions

across the UK is the major reason for the high wind speeds.

Conversely, conditions which alter the usual position aé fbt stream and the path of
depressions across the UK, such as ‘blocking high’ patteras lead to much lower wind
speeds than average. Thus, depending on the prevailingtiomisd individual months, years,

and decades can show a significant amount of variation frenatbrage.

2.2.3 Turbulence and the spectral gap

Observations of the surface wind field showspectral gap Figure 2.2. That is, a clear
separation is observed between slower synoptic scale ggesand faster turbulent processes.
In the equations which describe atmospheric motion, thisvala convenient separation into
explicitly resolved mean fields and parameterised turtiydescessesReynold’s averagings

the technique of decomposing variables into slowly vargngrage fields and rapidly varying,
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Figure 2.2: Schematic representation of the observed rsp@ap in the surface wind. After
[Stull, 1988]

zero-mean turbulent fields:

b=0+¢ (2.1)

Whereg is any of the atmospheric variables: wind speed, temperaia. By definition, the

mean¢’ = 0. The over-bar on the average terms is usually omitted.

Turbulence is often quantified ast@bulence intensity/. This is the standard deviation of
horizontal wind speed over a sampling window, normalisedheymean wind speed over the

sampling window [Petersen et al., 1998]:

I=% (2.2)

For neutral conditions over flat terrain, turbulence iniignsight be around 8% over the
open sea, 13% over flat grassland, and 20% or more over coraplexgh terrain [Petersen
et al., 1998]. Turbulence intensity is sensitive to the damgte and averaging window used,;
generally the aim is to ensure the mean wind speed corresporitle left of the spectral gap,
while I gives a measure of the fluctuations on time scales to theafghe spectral gap. Hence,

sampling every minute or less, and averaging over 10 mirtatese hour is common.
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2.3 Atmospheric modelling

Atmospheric modelling grew out of the desire to predict theather. The idea that this could
be achieved by numerically integrating a set of equatiortesdback over one hundred years
[Lorenz, 2006], but was only made possible with advent ofdheputer. Since then the need
for more accurate weather forecasting as well as the desivaderstand the global climate
has lead to an enormous development of numerical models amtienormous number of
applications. Lorenz [2006] gives a review of the historyl atevelopment of atmospheric

models and numerical weather forecasting.

2.3.1 Primitive equations

The basis for all atmospheric models is a sepmitive equationsmposing conservation of
mass, momentum, and energy on the motion of the atmosplketted by the equation of state.
The primitive equations are simplified through various agstions, for example molecular
viscosity is neglected since this is negligible at largelescaln addition, since the transport
and transformation of water is so important to weather amdate, equations describing the
continuity of moisture are introduced. The developmentefprimitive equations is covered

in any fluid mechanics text e.g. [Douglas et al., 2005].

Although most climate and Numerical Weather Prediction (NWhodels are based on a very
similar set of primitive equations [Warner, 2011], they défer significantly in the simplifying

assumptions made e.g. whether or not they are coupled toesmacodel, how the equations
are cast, the vertical and horizontal coordinates used,tidcumerical schemes used to

integrate them.

The primitive equations are a set of non-linear partialedéhtial equations which cannot be
solved analytically, and are integrated numerically iadteThey govern atmospheric motion
at all scales from the global down to local turbulence. Haveit is infeasible to resolve all

scales of turbulent motion in a global model and differeassks of model have evolved to suit

each scale, which make different sets of simplificationautbthe scale of the domain.

10
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2.3.2 Global

General Circulation Models (GCMs), are the primary tool fimderstanding global weather
systems in the long term, and are used extensively in cliclad@ge research. They recreate
many of the features of the global atmosphere very well, amdofien coupled to models
of ocean circulation and biological systems to give a monmplete understanding of the
biosphere. A large advantage of a global model is that sineg tepresent the whole globe,
there is no need to specify lateral boundary conditions.s Eniables weather forecasts to be

run for several days or weeks, and climate forecasts to badgfinitely.

However, GCMs are computationally intense due to their \@mye domain, and resolution is
limited even on the most powerful supercomputers. GCMs ter spectral models, with an
equivalent grid spacing of arourid5° or more, and are therefore unable to resolve many local
features of the wind climate. However, higher resolutionM®Gre being deployed, including
mesoscale-resolving global models [Shen et al., 2006],thee an increasing convergence

between GCMs and mesoscale models.

2.3.3 Mesoscale

Mesoscale models are a class of atmospheric model designgddy weather phenomena
smaller than synoptic scale but larger than microscale fMaml Kuo, 1998]. Typically they

are used to study regions of the order of tens to hundreddahkters, and are used over a
much shorter timescale than GCMs: predicting weather ¢iomdi a few days ahead, rather than
climate forecasts over decades. They solve an expandedl egtiaions compared to GCMs,
and are usually non-hydrostatic since many of the featurégerest, e.g. convective storms,
require vertical motion to be a prognostic variable. Theyally have more detailed schemes
to represent cloud processes, surface exchanges, andetdrifluxes in the the Planetary

Boundary Layer (PBL).

Although they have been an important part of weather fotewpgor at least twenty years
[Mass and Kuo, 1998], it is only in the last decade that comgutower and the availability of
global gridded datasets for boundary conditions has eddb&gr use outside of a few national

centres. A review of mesoscale models in relation to windgnis given in Section 3.2.

11
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2.3.4 Sub-meso scale

Mesoscale models are run over a wide range of grid spacioggtanes below 1km. However,
at scales much below this, the models begin to resolve sothe ¢drgest turbulent eddies, and

may need a different approach to separate resolved andolredgurbulence.

Large Eddy Simulation (LES) models are the term given todlass or application of a model,
where the largest of the energy carrying turbulent eddiegesolved explicitly. LES models
may give a more realistic profile through the PBL since thgyliekly model turbulent eddies,
rather than rely on semi-empirical parameterisation se&semThey also capture turbulent
fluctuations on short timescales. However, the resolutoto® high to allow simulation of

large domains, and it is more difficult to cleanly separasolieed and unresolved turbulence.

2.3.5 Microscale
Microscale models of wind flow can be broadly split into twaeggries: linear and non-linear.

Non-linear microscale models fall in the domain of Compotal Fluid Dynamics (CFD),
which are based on the full Navier-Stokes equations. Time @vmputational Fluid Dynamics
comes from engineering, and has come to mean models agplatahis particular scale, even

though all atmospheric modelling involves computation oidfldynamics.

There are a large array of CFD models depending on what diogtions are made to the
primitive equations, how space and time are discretiseetlvén Reynold’s averaging is used,
and what numerical methods are applied to integrate thetieggsa Typically CFD models are
used to study the detailed interaction of fluid with othereah§, e.g. the flow past a turbine
blade, or the wake caused by a single turbine, and have a gstl on the order of centimetres.
As a result, most CFD models are too computationally intémée used across large domains,
although there is an overlap between CFD and mesoscale snatel recently there have been
some models developed specifically with wind power analiysimind see e.g. [Castro et al.,
2003, Undheim, 2005].

Linear flow models, such as the widely used Wind Atlas and ispfibn Program (WAsP)
[Troen et al., 2008], largely developed out of a need to kestile effects of microscale features
(small hills, obstacles, changes in roughness, etc) onviiage flow, in a manner which did

not require the intense computation of a CFD model. Typictley model a steady state,

12
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incompressible flow using linearised equations to consarass and momentum. The big
advantage is computational speed, which allows them torbever much larger domains than
non-linear models. The disadvantage is the linearisedtieqsaare a simplification which

cannot represent complex flow, such as flow separation andga@ation in the lee of steep

hills [Bowen and Mortensen, 1996, 2004].

2.4 Nesting and downscaling

Downscaling is the method of relating the output of larg&rse resolution models to smaller
scale, higher resolution ones. There are two main appreadafieect nesting and statistical

dynamical downscaling.

Statistical dynamical downscaling begins from the assionpthat the large scale weather
system for a particular area can be characterised by a tirmitenber of different weather
types or episodes. The first step is to define these episode aralculate how often they
occur. This is usually done by analysing multi-year timeéeseputput from a GCM. Higher
resolution regional models are then run to determine thal lwiond conditions during that type
of episode. Then, based on the frequency of each episodeyéhnall wind conditions can be

derived statistically.

The first use of downscaling to assess wind conditions watishelol by Wippermann and
Gross [1981], while Heimann [1986] used the approach tosdexitwo dimensional array of
wind roses describing a region. Frey-Buness et al. [1995 tha first to use the method in
conjunction with the output of GCMs in order to study the ef§eof predicted warming in
the Alpine region. The method was also applied by Mengelk§t®p7], and further refined
by Fuentes [1998]. Fuentes and Heimann [2000] gives mowglsiein the development and

application of this approach.

The advantage of statistical downscaling is that it redticesamount of modelling required to
arrive at long-term statistics describing the wind climafde accuracy of such an approach
depends on the accuracy of both the larger model and theesmedjional model. Accuracy
is limited by the representation of weather by a finite nundfegpisodes which may miss the
tails of the wind speed distribution and miss extreme butrtgnt events e.g. very high winds

or exceptionally calm periods.

13



Background

The other approach, becoming more common with increasingpating power, is to directly
nest models within each other, for example, using a GCM tedrimesoscale model, or using

a mesoscale model to drive a CFD model or microscale flow model

2.5 Scale selection

Returning to the criteria listed in the introduction to tbisapter, the aim is to produce a dataset
which can realistically represent wind speeds over the UKadfshore for a period of ten years
or more, but has high enough resolution to capture impoféeattires of the wind climate such

as the interaction with terrain and coastal processes.

Based on these criteria and the discussion above, the niesimescales are the synoptic down
to the mesoscale. It would be unnecessary to run a globallrsmaly to look at the UK, when
global reanalysis datasets already exist, and it would teagible to run a microscale model
over a domain this large. Therefore the most appropriatecapp is to use a mesoscale model

on a regional domain covering the UK and surrounding waters.

This choice means that only the steady terms of Eq. 2.1 wilrdsolved, that is, wind
speed changes on the timescales of several minutes to mmirkjgher frequency turbulent
fluctuations on timescales of seconds. Although higherueeqgy turbulent fluctuations are
important considerations for wind energy, impacting on powsystem stability, mechanical

loading, power quality and many other areas, they are authiel scope of this work.

However, the net effect of turbulence is very important aahnd speed profile close to the
surface. Since the hub-heights of wind turbines are up tonl@®undary-layer processes are
very important for accurately modelling wind speeds at bi@ght. To give some background
to later discussions, the following sections briefly intiod planetary boundary layer theories,

and how they are dealt with in atmospheric models.

2.6 Planetary boundary layer

The Planetary Boundary Layer (PBL) is defined by Stull [1988]

“the part of the troposphere that is directly influenced by pinesence of the
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Earth’s surface, and responds to surface forcings with @ sicale of about an hour
or less.”

The defining characteristic of the PBL is the presence ofderize. The no-slip condition at the
surface means that whenever the wind blows, a wind sheds elxiging mechanical turbulence,

while the heating of the ground surface by solar radiatiausea convective turbulence. The
result is a well-mixed layer where potential temperature lummidity are almost constant with

height.

By contrast, in thdéree atmospherabove, the flow is rarely turbulent, vertical mixing is much

less, and there is a clearly defined vertical profile of paaétemperature and humidity.

In the PBL, turbulent eddies cause vertical mixing of moraent temperature and other
variables. As discussed previously it is infeasible to kasthese turbulent eddies explicitly in
synoptic or mesoscale models. In the free atmosphere, hgl¢nt terms are small in relation
to mean flow and can be ignored. However in the PBL their infteeon the mean flow must

approximated through a parameterisation scheme.

The vertical mixing of horizontal momentum, the momentunx,floan be described by an
equivalent shear stress known as Beynold’s stressr,.. The magnitude of Reynold’s stress

due to the verticalA) transport of horizontala) momentum is given by Stull [1988]:

Tz = —p(W/w') (2.3)

wherev’ andw’ are the horizontal and vertical fluctuations associatetl witbulent motion,

andp is air density. The total vertical flux of horizontal momemtis then given by:

7ol = [72, + 2] (2.4)
The magnitude of the Reynold’s stress is an important sgakmiable for surface wind speeds,

and is usually expressed as a velocity scale, the frictidocitg, u., defined by the size

Reynold’s stress vector [Stull, 1988].

u? = il (2.5)
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Although it is usually assumed that is parallel to the mean wind vector, this may not hold in

complex terrain [Weber, 1999]. The friction velocity canderessed as:

u? =1/ T + v (2.6)

Boundary layer theories are usually basedniring lengtharguments. Turbulent eddies are
treated as ‘units’ which travel an average mixing lengthefore imparting their momentum to
the mean flow, analogous to the mean free path in the kinedmryhof gases. The mean wind

profile for a homogeneous and stationary flow can then beegetatthe momentum flux by:

ou Uy

ot 2.7

0z Kl 2.7)
wherex is the Von Karmann constant, an empirical constant usualgrt to be).4 [Andreas
et al., 2006]. The challenge is to find expressions for a lesgéle, which may depend on the

depth of the boundary layer, height above the surface, gthesie stability and other factors.

2.6.1 Closure schemes

Eqg. 2.6 contains double correlation, or second moment,seu’ andv’w’. The inclusion
of turbulent terms means there are more variables than pstigrequations, and additional
relations are needed to close the equation set. If prognegtiations are developed for the
second moment terms, they are found to contain third moneentste.g.u/«/w’, and so on.
This is theclosure problenStull, 1988, Warner, 2011]. Additional, diagnostic eqoas are
needed to close the set of equations, and the assumptionkioh these are based are called
closure assumptions. Closure schemes are usually cateddny their order [Warner, 2011]: if
the second moment terms are parameterised in terms of thevagables, the scheme is a first
order closure scheme. If the third moment terms are paraiseden terms of the second and
first, the scheme is second order. The order of a closure siegiven by the highest-order
prognostic equations retained. However in some closurensel, some of the higher order
terms may be parameterised and others predicted. In thistibarder of the closure scheme
may be given a non-integer order e.g. 2.5 [Warner, 2011]. eikample, the simplest simple

first-order closure is:
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@
0z

Ww' = -K (2.8)
WhereK is known as the eddy viscosity coefficient, or the exchangdfictent, and this type
of closure is known ag{-theory [Brown, 1981]. Higher order closure schemes wilticha

more complex expression for Eq. 2.8.

The other aspect of a closure scheme is whether only adjgcehpoints in the vertical are

used, known akcal closure or whether grid points further away in the vertical are ddeed,

a non-local closure Physically, a local closure scheme assumes that turbelddies have

a vertical length scale comparable to the models verticatisg, so that mixing only occurs
between adjacent levels, while in non-local closure sclser@tical mixing can occur between

non-adjacent vertical levels.

2.6.2 Atmospheric stability

Atmospheric stability describes whether an air parcel wdhtinue to rise or return when
displaced vertically. This is governed by thapse rate the rate of change of temperature
with height.

The dry adiabatic lapse ratgy, is the rate of change of temperature that a dry air parceldvou
experience if it rose adiabatically through an atmospherhydrostatic equilibrium [AMS,
2000]. The moist adiabatic lapse ralg, is the rate of change of temperature a saturated parcel
of air would experience, accounting for the latent heat ofdemsation [AMS, 2000]. The
actual lapse rate, or environmental lapse rate,is simply the observed temperature change

with height. This varies day to day around an average valué.6K/km [Martin, 2006].

A dry parcel of air displaced upward will experience a loweegsure, expand and cool. If
I'. < Ty, the parcel will be cooler and denser than its new surrowsdand will sink. The
atmosphere is said to be absolutely stable, and verticdbma damped. ', = 'y, there
will be no net buoyancy force, the parcel will remain at itsviieeight. The atmosphere is said
to be neutral: vertical mixing occurs, but free convectioesinot develop. IF, > T'y, arising
parcel of air will be warmer than its surroundings and wilhtoue to rise, and the atmosphere
is said to be absolutely unstable. Free convection will igvkeading to rapid vertical mixing,

which tends to bring the atmosphere back towards neutral.
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If the air contains water vapour, aid > I',, then the parcel will rise and cool at the rate
of 'y, until it reaches the dew point and clouds begin to form. Inegal, it will continue to
rise until all of the moisture has condensed, and its stghigi thereafter determined by the

environmental lapse rate above this level.

In an unstable (convective) boundary layer, convectionidatas turbulence creation, and the
PBL can grow to a depth of several kilometres. This is typinairopical and mid-latitudes
during the daytime, but can also occur when cold air adveots a warm surface, such as

offshore winds when the sea is warmer than the land.

In a stable boundary layer, vertical motions are damped agdwbulence is driven by the
wind shear between the free atmosphere and the surfacebl®& siaundary layer is typical at
night when the ground surface is cooling, or when warm aidigated over a cold surface. An
inversion often separates the stable layer from the atnesspdibove, and the flow above the
stable layer can become decoupled-coupled from the sugach as with the formation of low

level jets [Smedman et al., 1996].

Stability was first classified by Pasquill [1974] accordingrtsolation and wind speed; Pasquill

stability classes are shown in Table 2.2.

Stability class Typical occurrence conditions

Stable Low wind speeds, nocturnal, or warm air advecting ogkler surface
Slightly stable

Neutral High winds and overcast skies

Slightly unstable

Unstable High insolation, or cold air advecting over a wauriace

Table 2.2: Pasquill stability classes

There are variety of more objective approaches to detengistability, see e.g. Golder [1972].
A commonly used approach used the Obhukhov lengthlefined as [AMS, 2000]:

uT,

L=—-——x
grw'0!

(2.9)

where, T,,, is virtual temperature, and’¢! is the flux of virtual potential temperature at
the surface.L can be interpreted as a length scale describing the heid¢iw behich shear
production dominates over buoyant production of turbudddviS, 2000]. It is often combined

with the height above the surfageas adimensionless stability parameter
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¢ = (2.10)

z
L
A number of slightly different mappings betweéror ¢ and stability class exist in the literature
e.g. [Gryning et al., 2007, Hsu, 1992, Pefia et al., 2008u¥ag al., 2006]. The approach used
here is taken from Gryning et al. [2007] and summarised ineray. Figure 2.3 shows a

schematic representation of these stability class boiewar relation to and L.

Obukhov length interval (m)  Stability class

10 < L < 50 Very stable
50 < L < 200 Stable
200 < L < 500 Nearstable
|[L|] > 500 Neutral
500 < L < -200 Near unstable
200 < L < -100 \Unstable
-100 < L < -50 \Veryunstable

Table 2.3: Stability class boundaries from [Gryning et2007]

Neutraf Unstable 1st-

Figure 2.3: Schematic representation of stability classesrding to Obhukhov length, and
¢ for z = 10m. z-axis is shown with a log scale

2.6.3 The surface layer profile

The lowest part of the PBL is known as thearface layertypically defined as the region where
fluxes vary by less than 10% of their magnitude with heightllfS1988], and is often assumed
to be about 10% of the PBL height. Surface drag means windidsgaehe surface layer are
typically much lower than geostrophic speed.
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Monin and Obukhov [1954] developed a theory describing timelwpeed profile in the surface
layer, known now as Monin-Obhukov Similarity Theory (MOST™OST is based on the
assumption that the momentum flux in the surface laygris approximately constant with
height, so that local fluxes at a heightan be taken as equal to the surface flux [Gryning et al.,
2007, Pefa et al., 2008]:

Use = UsxQ (2.11)

The mixing length in the surface layég,;, is assumed to be a function only of the height above

the surfacez, and the atmospheric stability:

z

bm (€)

Iy = (2.12)

Whereg,,, is known as atability correction function Various formulations o#,,, exist based
on field experiments, see e.g. [Dyer, 1974, Garratt and 4889, Hogstrom, 1988], though

most find a power-law dependence [Pefia et al., 2008]:

(1-a%)” unstable
¢m = {1 neutral (2.13)

(1+0b%) stable

For unstable conditions, there is reasonable consenstgtha —1/4 anda = 16, see
e.g. Garratt and Pielke [1989] for a review. For weakly stadtnditions, a range of values
are reported fob, from 4.6 to 9.4 [Garratt and Pielke, 1989, Yague et al., 2086d other
other functional forms or various extensions have beengs®g to account for strongly stable
conditions [Beljaars and Holtslag, 1991, Hicks, 1976, 8hak009].

Combining equations 2.7 and 2.12;

ou  UsDi

-2 2.14
0z Kz ( )

The height at which the wind profile is equal to zero is knowthasroughness lengthg, and

is described furthe§2.6.4. Integrating fromy, to a heightz, gives the surface wind profile:
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w= % [ln (Z—ZO> —w, (%)} (2.15)

whereV,, is the integrated stability correction function, whichedated tod,,, by [Garratt and
Pielke, 1989]:
W = [ (1= 0n(O)ilin(c) (2.16)

In neutral conditions),,, = 0 and 2.15 reduces to:

uw= 0 <i> (2.17)

K 20

This is often known as the adiabatic wind profile, or just thgakithmic wind profile, since the
wind speed varies with the natural log of height. It is widabed within the wind industry,
as the atmosphere is neutral on average, and thereforefiers @ good approximation to the

surface layer profile.

To account for atmospheric stability, Eq. 2.13 must be aegl. Under (weakly) stable
conditions, Eq. 2.13 can be integrated to [Panofsky anddnuft984:

U (C) = =6 (2.18)

whereb has the same uncertainty described previously. In unstariditions, the integrated
form of Eq. 2.13 depends on the value of the constants, bubthe most often found in the

literature is [Paulson, 1970]:

¢m(g):zn[<1+2x2> (“J;‘”)Qﬂ — 2tan”a + (2.19)

where

z=(1-16¢)"*

The particular forms of the stability correction functiofizq 2.18-2.19) are often collectively
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Figure 2.4: Surface layer wind profiles under different sitglclasses.

known as the Businger-Dyer formulations after [Busing@88, Businger et al., 1971, Dyer,

1974, Skibin and Businger, 1985].

MOST is only valid at sufficient height that the surface camdgarded as homogeneous with
a single roughness length. As most atmospheric models hairddwest level around 20m or
so, and may diagnose wind speed at 10m, this is not a problenrehatively smooth surfaces
such as grassland or lows crops. However, over rough testaih as forestry or cities, this
layer will be in theroughness sub-layewhere the effects of individual roughness elements are

significant, and MOST may not be valid Hsu et al. [2009].

2.6.4 Roughness length

The roughness length is the height at which the logarithmoéilp observed in the surface layer
tends to zero. If observations are available at multiplghisiin the surface layer, then the wind
profile can be determined and the local roughness lengtina®d directly. Alternatively it can

be estimated from observations at one height using gusiiaftion [Manwell et al., 2002a].

Roughness length is found to be related to the typical lengthobstacles or vegetation.
Davenport [1960] first classified roughness lengths acogrth land use, and the classification
has been subsequently updated [Davenport et al., 2000ing4er1 993, Wieringa et al., 2001].
Table 2.4 gives some typical values. However, over non-fgemeous or very rough surfaces,

there is large uncertainty when assigning a single roughiesgjth.

Roughness length is the main determinant of momentum fluxerstirface layer, and the sole

determinant in neutral conditions [Beljaars and Holtsldg§91]. It is source of inaccuracy
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Class Terrain Description 20

m
Sea Open sea or lake 0.0002
Smooth Featureless land surface i.e. sand, snow. 0.005
Open Level country with low vegetation i.e. grass 0.03
Roughly open  Cultivated area with high crops 0.25
Rough Low, densely planted vegetation. Trees and occdsaiidings 0.5
Very rough Forests, small towns and suburbs 1.0
Skimming City centres, large forests. > 2

Table 2.4: Davenport roughness categories [Wieringa €2@01].

for atmospheric models, as scaling theories assume a homoge surface. An effective
roughness length for an entire grid cell must be estimateldictwin reality will cover
inhomogeneities in land use. In addition, and sub-gridestedrain features exert form drag,

and this must also be accounted for in roughness lengthg&wsljand Holtslag, 1991].

2.6.5 Offshore and coastal boundary layer

Much of boundary layer theory has been developed based @mimgnts over land. It is only

relatively recently, in particularl with interest in offsife wind generation, that more attention
has been paid to offshore and coastal boundary layers. Atdhst, the sharp change in
characteristics between the sea and land breaks any assasnpt horizontal homogeneity,

and the sharp change in roughness and temperature calmeslittoundary layers to grow
[Mortensen et al., 1990, USNRC, 1992].

USNRC [1992] recommended a complete re-examination of deynlayer processes in the
coastal zone including “ surface and boundary layer scdlegries, higher order moment
relationships throughout the PBL, and the relative impur¢aof turbulent vs coherent
motions”, and Pefia et al. [2008] states our understandintieo processes in the marine

boundary layer is “particularly immature”.

Most atmospheric models derive surface fluxes using enapisi@bility correction functions
developed over land. In addition, the sea surface roughsessially assumed only to depend
on the instantaneous surface momentum flux, and the effdotimidity flux on stability is

usually ignored, despite its significance offshore [Bdrtfie et al., 2009].

However, Vickers and Mahrt [2006] note that despite manyhesé assumptions not holding

in the coastal layer, there is often no viable alternativel mesoscale and other atmospheric
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models remain a useful tool, and are able to recreate matyrésaof the marine and coastal
boundary layer. This is underscored by their growing usg, éor offshore wind resource

assessment.

Sea surface roughness

In general, the sea surface is much more aerodynamicallptntban land. However, the
surface roughness is not static, but depends on wave aamglitiThis must be represented in
atmospheric models, and is particularly important in cedmtmosphere-ocean models where
the momentum flux is a major driver of ocean currents, andéariarge influence on weather
and climate. Wind flow over the ocean is often modelled as ®gimes: a ‘smooth’ regime
where the main driver of surface exchange is the viscoudagidr; and a ‘rough’ regime where

the effect of waves dominate [Janjic, 1994].

Charnock [1955] first proposed that surface roughness duweates depends on the surface

stress and the restoring force:

acuz

0= —— (2.20)
g
whereca, is an empirically derived constant: is often taken to b@.018 in the open ocean
[Hersbach, 2011], however, it has long been known that desivajue ofa. cannot describe all
the experimental data [Drennan et al., 2005]. A wide rangeabfes betwees x 10~3 and

6 x 10~2 are found in the literature [Pefia and Gryning, 2008].

This spread has been explained by various modificationsetd#ésic Charnock equation to
account for wave fetch [Lange et al., 2001], wave age andgstss [Drennan et al., 2005,
Lange et al., 2004]. However, there is still no consensus sameral recent studies approaches
have proposed fundamental re-examinations of the basitiaeships [Foreman and Emeis,
2010, Vickers and Mahrt, 2010]. For example, Vickers and M§010] found roughness
lengths much smaller than formulations commonly used inoapheric models, based on
several recent sets of observation from mid-latitude ebasgions. They found no evidence for
a smooth flow regime and proposed an empirical relation fdaee roughness very different

to a Charnock formulation.

Without detailed information about the wave state, and avitrany consensus on the relation

between roughness and wave state, assuming a consgtant 0.018 is currently the only
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Figure 2.5: Examples of Weibull distributions with diffeteparameters

feasible approach for most models.

2.7 Wind speed distributions

The observed distribution of surface wind speeds at a pdatidocation is often found to be
a two-parameter Weibull distribution [Manwell et al., 2@)2The Weibull probability density

function f(x) and cumulative distribution functioR'(x) are given by:

() -] =
Flz)=1— exp [— (%)k} (2.22)

wherek is a dimensionless shape parameter @aisdhe location parameter with the same units
asz. k determines how ‘peaked’ the distribution is. For a given meé@nd speed, a higher
value of k implies less distribution around the mean speed. FiguresBdws the effect of

different parameters on the distributions shape.

There are a number of different ways of fitting Weibull paréene to observed data [Manwell
et al., 2002a], with maximum likelihood generally thoughbe the most robust [Chang, 2010].

The maximum likelihood method is used throughout this work.
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2.8 Chapter review

This chapter introduced some background material on thesgihere, and the separation of
atmospheric process by scale. It briefly reviewed the ctas$@tmospheric model by their
target scale, and selected mesoscale modelling as theigeehto use for this work. The
importance of boundary layer processes was highlightediadmief discussion of PBL theories
was presented to give some context to future discussionsne &b the inherent challenges
of the marine and coastal boundary layer were highlightedally, the Weibull distribution

commonly used to describe wind speed distributions waspted.

The next chapter reviews available mesoscale models in ohetadl, and will refer to the

theories outlined here.
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Chapter 3
Modelling approach

3.1 Introduction

The previous chapter gave some theoretical backgroundjuatitied the use of a mesoscale
model as the primary tool for this work. This chapter preseteview of alternative mesoscale
models, to explain the choice of the Weather Research amat&stir(WRF) model for this work.

WREF is then explained in more detail, and the strengths anithliions are discussed.

3.2 Comparison of alternative models

There are a wide range of mesoscale atmospheric models nsggerational forecasting,
research, and within industry. Many of them share similatdees, though there are significant
differences between models. This section briefly reviewsesof the available models, before
selecting one to be used in this research. A summary of sortieesé models is also given in
[Giebel et al., 2002].

3.2.1 WAsP

The Wind Analysis and Siting Programme (WAsP) is develope®isg National Laboratory
[Troen et al., 2008]. While it is not a dynamic atmosphericdelpit is so widely used within

industry it has become something ofl@ factostandard, and warrants a brief review here.

WASP is primarily observation driven: it takes an observaddaspeed distribution together
with a description of the orography, roughness and obstatigounding an observation point,
and derives a generalised ‘cleaned’ wind climate adjusiealdtandard height and roughness.
This cleaned wind climate can then be used to downscale tdfexedtit site in the general

vicinity.

This approach can be accurate [Bowen and Mortensen, 1988jided (i) the reference site

and prediction site are subject to the same overall weadgeme, (ii) the prevailing weather
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Measurement Issues Insufficient masts to give good spasalution
Mast measurements typically at 10m agl, and strongly infltedrby local orography,
roughness, and obstacles
No guarantee of data quality
Measurements may be effected by the mast configuration
Instrument configuration or surroundings may change
Sparse observations offshore

Model Issues Only produces statistical distributions
Requires detailed orography and roughness, but cannotehi@nge maps
Assumes a neutral boundary layer
Predictions only valid for locations subject to the sameaitang wind climate
Manually time consuming for large areas
Not well parallelised

Table 3.1: Difficulties using WAsP analysis over wide areas

conditions are close to being neutrally stable, (iii) thierence wind data are reliable, (iv) the
surrounding terrain of both sites is sufficiently gentle anaooth to ensure mostly attached
flows and (v) the topographical model inputs are adequateediathle [Bowen and Mortensen,

2004, Frank et al., 2001].

However, this type of approach faces a number of difficultsesnmarised in Table 3.1. The
major limitation is that, since it is driven by observatiptize predicted site must be subject to
the same weather conditions as the observations. Thislthétdistance over which WASP can
be used, as there are a large number of features such asveWwdes, sea breezes, katabatic
winds, etc, which may be significantly different between timserved and predicted site.
Furthermore, WAsP assumes a neutral boundary layer, whighb@ a reasonable assumption

when dealing with average distributions, but could leadtgé errors during specific periods.

WAsP was designed to allow transformation of wind speedidigions: it is not a dynamical

model which can be used to produce time-series. In lightief #nd the limitations described
above, it is clear it is not well suited to this type of studyhal said, Boehme and Wallace
[2008] showed that WASP can be used with surface obsengtmprovide a reanalysis on a

national scale, using it to model hourly wind speeds achossvhole of Scotland.

3.2.2 MC2

The Mesoscale Compressible Community (MC2) model [Benbiale 1997] is a fully
compressible, non-hydrostatic mesoscale model develbpeaddnumber of academic groups

in Canada. It uses a semi-langrangian, semi-implicit ratiégn scheme with time splitting in

28



Modelling approach

order to efficiently integrate acoustic and meteorologinaldes. The vertical coordinate is a
terrain-following pressure-based)(coordinate. It has been used for air-quality modelling in
complex terrain [Niewiadomski et al., 1999], and for weatfogecasting over the entire Alps
region [Benoit et al., 2002], although this revealed a spugisensitivity to orographic forcing,

traced to a numerical inconsistency, later fixed [Girard.e2805].

MC2 been used to study wind resources across Canada [Glade¥ia 2005] driven by
NCEP/NCAR reanalysis data and using statistical dynantdgavnscaling to derive wind
climate, with WAsP used to account for small scale terraauees. MC2 has also been used to
study offshore and coastal wind climates, with Beaucagé g@07] comparing the wind field

from MC2 to Synthetic Aperture Radar (SAR) and scatterometad speeds from satellites.

MC2 has been combined with the micro-scale model MS-Mic@dommercial package called
the Wind Energy Simulating Toolkit (WEST) [Pinard et al.,0&), which it is claimed gives
good results. However, the cost of a license is $ 10 000, agding community support

appears to be limited. The most recent training programstediis from 2005 [RPN, 2011].

3.2.3 Eta

The Eta model [Black, 1994, Janjic, 1994, 1996] was mainlyetigped by the National Center
for Environmental Prediction (NCEP). It has been runningragionally since 1993, and still
runs today [NCAR, 2011]. It was the first model to use the ‘steguntain’ vertical coordinate
[Mesinger et al., 1988], where mountains are representegtichboxes with vertical sides.
This reduces errors in the calculation of the pressureigmafbrce, and allows it to model well
orographic effects, such as blocking and channelling. dsuwn explicit integration scheme in

the horizontal and an implicit scheme in the vertical.

Eta has been widely used for weather forecasting. It hasralsently been used to model
the output from wind farms in complex terrain [Lazic et &010]. However, the use of the
step-mountain coordinate can make it difficult to model PBacpsses over elevated terrain,

and can lead to waves forming at step changes in height [&&Q000].
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3.2.4 SKIRON

The SKIRON forecasting system was developed at the Untyeofi Athens [Kallos, 1997,
Kallos et al., 1998, Papadopoulos et al., 2001]. The dynansizre is based on the NCEP Eta
model, with modifications and improvements in the paransson of various processes such
as atmospheric radiation and surface processes. In gartiitis able to model the mobilisation
and transport of dust, and the subsequent impact on incoamdgputgoing radiation [Kallos
and Nickovic, 2001].

It is run operationally at the University of Athens, and hagib used to forecast wind energy
production using a Kalman filter to further improve the rawdalooutput [Louka et al., 2008].
SKIRON is freely avalilable on request, and documentatoaviailable from the Atmaospheric

Modeling and Weather Forecasting Group, at the Universiitens.

3.2.5 KAMM

The Karlsruhe Atmospheric Mesoscale Model [Adrian and [Eied1991] is a three
dimensional, non-hydrostatic atmospheric mesoscale medéch has been implemented
for parallel processing [Adrian, 1999]. It uses a terrailefving pressure-based vertical

coordinate.

KAMM was used widely for a time to produce wind atlases in carmabon with WAsP where
the output from KAMM at scales of a few km is used to drive WAs$ing a statistical
dynamical downscaling approach. This technique has beed s derive wind atlases in
a number of countries including Denmark, Ireland, Portugad Chile [Frank et al., 2001,
Kalthoff et al., 2002]. However, it appears the model mustubeas a steady-state model for
a range of geostrophic wind speeds and inflow directions@iet al., 2002], rather than a
time-series model. Up-to-date documentation on the madielcking, and it does not appear

to be under active development.

3.2.6 MM5

The Fifth Generation Mesoscale Model (MM5) is the most réaethe ‘MM’ series of NWP
models developed by Pennsylvania State University and NICAs a fully compressible

non-hydrostatic mesoscale model, which uses a terrdiofivlg, pressure-based vertical
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coordinate.

Research began on these models in the early 1970s [Anthed/amgbr, 1978], and they are
now widely used in academic research. MM5 has been usedsivegnin numerical weather

prediction, air quality, and hydrological studies e.g. Bdand Kuo, 1998], both regionally
and locally. For example Yim et al. [2007] coupled MM5 witketinass-conserving microscale
CALMET model and high resolution terrain and land-use datartduce the hourly wind field

at 100m resolution. Jimenez and Tambke [2007] used MM5 toetaifishore wind speeds,

comparing the predictions from offshore observations aWRMV/simulations. However, the
development of MMS5 is frozen, as it is largely being replabgdthe Weather Research and
Forecasting Model (WRF).

3.2.7 WRF

The Weather Research and Forecasting modelling systemeisntist recently developed
mesoscale model, produced mainly by National Center forospheric Research (NCAR)
with collaboration from the National Oceanic and Atmosph&dministration (NOAA), the
National Centers for Environmental Prediction (NCEP) dmal Eorecast Systems Laboratory
(FSL), the Air Force Weather Agency (AFWA), the Naval Resbhataboratory (NRL),
Oklahoma University, and the Federal Aviation Administat(FAA).

At its core, WRF is a fully compressible non-hydrostatic pssle model, which uses an
explicit time-split integration scheme, with differentnig-steps for meteorological acoustic
modes. It actually support two dynamical solvers: the AdeahResearch WRF (ARW)
[Klemp et al., 2008b] developed and maintained by NCAR, ahd Non-hydrostatic
Mesoscale Model (NMM) [NCEP, 2008], developed by NCEP anthimaised for operational
forecasting. The model architecture is described in motailde a further section. It owes
a significant amount to MM5, though WRF has been entirely ngen to be a flexible,
portable model, efficient in a massively parallel computamyironment with advanced data

assimilation techniques.

The success of WRF has largely come from its design as a coitymuadel, with dedicated
support and training provided by NCAR, and the encourage¢wfarser contribution to physics
and other parameterisation packages. It has been wideptetlamong academic groups due

to its relative ease of use and flexibility, coupled with athed data assimilation capabilities.
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It is also used in industry, forming the basis of a number ofc@rcial modelling packages.

WREF is run operationally for North America at both NCAR and B and also at a wide
number of academic institutions (see [WRF, 2011]), incigdan operational run in the UK by
the National Centre for Atmospheric Science (NCAS).

It has been used in academic studies to numerous to catdhegegthese include as a regional
climate model [Bukovsky and Karoly, 2009], combined with $¥for wind energy assessment
[Berge and Bredesen, 2007], for modelling large scale gielgration [Brower, 2010, Ploski,
2007, Potter et al., 2008], as an LES model to examine thdetkfiow around wind farms [Liu
et al., 2011], to study the impact of Low-Level Jets (LLJs)vand power [Storm, 2008], to
study the marine boundary layer [Berge et al., 2009, Soodsarselj, 2006]. A search on the
Science Direct database lists 240 papers using WRF in 2@ht al

3.2.8 COAMPS

The Coupled Ocean/Atmosphere Mesoscale Prediction Sy§&€®AMPS) [NRL, 2003] is
used and developed by the US Navy for short term numericathgearediction. As the name
suggests, it can be run in coupled mode with an ocean modktharatmospheric model solves
the compressible, non-hydrostatic equations using ariciixpime-split integration scheme.
The vertical coordinate is a terrain-following sigma cdoade. The model includes a 3D data
assimilation package, which allows the assimilation ofamcebservations. As such, COAMPS
is well suited to ocean-atmosphere studies and long-raomgedsts, and is reasonably widely
used in this field e.g. [Doyle et al., 2009, Kong, 2002]. Thiersupport and training provided
for COAMPS, although the user base is smaller than WRF or MiNtiwever, for a reanalysis,
using a coupled ocean model may not be necessary when otbs&8vedatasets can be used as

the lower boundary of a non-coupled model.

3.29 RAMS

The Regional Atmospheric Modeling System (RAMS) is a flexibhesoscale model
developed at Colorado State University [Cotton et al., 2008mback and Walko, 2005],
largely by Dr. William Cotton and Roger Pielke. RAMS supgotivo-way and moveable
nests for the tracking features such as hurricanes [Trekndnad Walko, 2005]. RAMS uses

a terrain-following sigma coordinate in the vertical, argbs time-split explicit integration
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scheme similar to WRF and MM5.

RAMS has been used in studies too humerous to list here. Tiesee for operational NWP,
for example at the University of Athens [2011] for regionkate studies [Liston and Pielke,
2000], for air quality modelling [Chandrasekar et al., 20B8inis et al., 1994], and to study
mesoscale features such as LLJs [Liu et al., 2006], and &tatbow and mountain waves
[Poulos et al., 2007]. Since there is no lower limit to the damsize or the mesh cell size
of the grid, high resolution studies have used RAMS to studyrascale phenomena such the
turbulent flow over buildings [Cermak et al., 1995], and tlmvflover vegetated hills [Paiva
et al., 2009].

The code is freely available and RAMS has a reasonable user Wah an active forum.
However the most recent user workshop appears to have b@é0&n and there are no regular

training courses.

3.2.10 HIRLAM/HARMONIE

The High Resolution Limited Area Model (HIRLAM) is a synoptscale model developed
by a broad collaboration of European meteorological imstihs. In began development in the
1980s and continues to undergo extensive development grdwament. A ‘reference system’
is maintained by the European Centre for Medium Range Wed&tbeecasting (ECMWF).

The reference model is hydrostatic, and uses a semi-irgpSemi-lagrangian integration
scheme, and a hybrid vertical coordinate based on the Et&lmdidsupports sophisticated

data assimilation [Driesnaar, 2011].

HIRLAM is used extensively for operational forecasting;liding in Ireland [Hamilton, 2008]

and Denmark [Petersen et al., 2005]. It is used widely fodagdc studies - the web page
lists several hundred journal papers in recent years [Mietance, 2012]. For example, it has
been used for air quality studies [Rantamaki et al., 200%],vaas perhaps one of the first NWP
models to be used for power forecasting for wind farms [Langh1999]. It has a wide and

active user base.

In recent years, the members of HIRLAM have focused on theldpment of a mesoscale
non-hydrostatic model in cooperation with the ALADIN corsam, leading to the
development of the Hirlam Aladin Research on Mesoscale @iosial NWP In Europe
(HARMONIE).
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Global North Atlantic UK
Approximate 40 km 12 km 4 km
resolution
Grid points 640 x 481 600 x 360 288 x 360
Vertical levels 50 38 38
Forecast length 144 hrs 48 hrs 36 hrs

Table 3.2: Standard configurations of the Met Office UnifieddelJUKMO, 2008]

The source codes are available for academic use, howevporsupr users external to the

development consortium is very limited.

3.2.11 UK Met Office Unified Model

The suite of oceanic and atmospheric numerical models oleedl and operated by the UK
Met Office are known as the Unified Model (UM) [UKMO, 2008]. lar be configured

for different domains and resolutions, and can be run in gphere-only, ocean-only, or in
coupled mode, enabling it to be used both for weather fotiegpand global climate modelling.
For forecasting, the models are usually run in one of thedsti@hconfigurations outlined in
Table 3.2.

At its core, the UM is a fully-compressible, non-hydrostatiodel, which uses a semi-implicit,
semi-lagrangian integration scheme. It has advanced daiaiation capabilities, and is well
parallelised. The source code is available for academigarel, but only once a proposal
has been accepted by the UKMO. However the UM has limited aadpr external users.

In addition, the UKMO have a commercial product, the virtoadt mast, aimed at the wind
industry. This sells archived UM output at the cost of sevirausand pounds per grid cell,

which conflicts with one of the aims of this work which is to neadimilar data freely available.

3.3 Choice of model

The previous sections have briefly reviews some of the maiuidate mesoscale models
which could be used to create a high resolution wind speeathhgsis. The review is neither
particularly wide nor deep; to review every available modetietail would be an enormous
task. The aim is to provide enough information to make a (pémidrmed decision about

which model to take forward as the basis for this work.
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Many of the models have similar technical capabilities,veatimilar equations, and have
been well validated over many years. In light of this, manythe important criteria relate
to the practicality of using a particular model, for exampleether the code would be easy
to obtain, and whether support is available from other usétsset of criteria were drawn
up to allow comparison of the models available, this is shiwiTable 3.3. Most criteria
are self-explanatory: ‘validation’ refers to whether thedal has been validated by numerous
studies against observations; ‘documentation’ referstietiher online guides exist explaining
how to install and use the model; ‘maintained’ relates to tivbethe model appears to be
currently maintained; and ‘interfaces’ relates to whetloeis exists to facilitate running the

model and working with the outputs.

The judgements were made entirely subjectively, on theshzdihe available documentation,
the existence of user-forums and help desks, and the nurobeeterences to the model in

recent academic publications.

c
8 c =
3 % "§ % é e
g ° g 8 = £ 2 o g &
Q s =2 3 © o o o % o
Model 8 8 g z S 8 @ 3 = E
MC2 good good ok good good good ok ok ok ok
Eta good good good good good good ok ok good ok
SKIRON  good good good good good good ok good good good
KAMM ok poor poor good good poor poor poor poor poor
MM5 good good good good good good good ok poor good
WRF good good good good good good good good good good
COAMPS  good good good good good ok ok poor good ok
RAMS good good good good good good ok good good good
HIRLAM  good good good good good ok poor good good good
UM good good good poor good ok poor ok good ok

Table 3.3: Comparison of mesoscale models

It can be seen that most of the models were deemed to have webldialidated capabilities.
The deciding factors were mainly how available the code wasthe user support. On the
basis of these criteria, the final choice was between WRF &M% Both are technically very

advanced, openly available and widely used.

The final decision was taken to use WRF, based on the bettesugport provided through a
dedicated helpdesk and forums, and regular (bi-annuahat)l&raining courses. WRF is also
used with the University of Edinburgh to model pollutantisport [Vieno, 2005]. Given this

decision, the following section briefly describes the maiat@ires of WRF.
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Figure 3.1: Schematic overview of WRF-ARW model

3.4 Description of WRF

The WRF-ARW model has already been introduced ariBi@.7 . This section describes the
architecture in slightly more detail, based mainly on Kleet@l. [2008b] and NCAR [2008].

However, only a brief overview of the main features is giveneh The dynamics and physics
are not presented in detail, as repeating them here woulglysibe a exercise in copying a

pasting. Some things are best left to the experts.

3.4.1 Model components

WREF consists of two main components, the dynamic modef et the WRF Pre-processing

System (WPS). These are shown conceptually in Figure 3.1.

The task of WPS is to interpolate static and dynamic databotally onto whatever projection
is chosen for the computational grid. Static data consiktepography and land-use, while
dynamic data consists of the meteorological data needeihif@ and boundary conditions.
Dynamic data is accepted in gridded binary (grib) formatichtallows most global forecast
and reanalysis datasets to be used as input. Static datzeistad in a simple binary format. If

custom static data is used, this must be first converted $dthary format.
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3.4.2 \ertical coordinate

WREF uses a terrain-following coordinate based on hydraspaéssure. It is given the symbol

n (although it is not the step-mountain coordinate used irEtlaemodel), defined as:

Pz — Dht (31)
Phs — Pht

U

wherep,, pn:, andpy, are the hydrostatic pressures at heighat the model top, and at the
model surface respectively. Since the hydrostatic pressuhe dry mass of a column, gives
the fraction of mass above compared to the total column mass. The upper boundary is a

gravity-wave absorbing layer using a technique by Klemp.¢2808a].

3.4.3 Governing equations

WREF solves the Euler equations in flux form, which ensureg #re mass-conservative with
an explicit integration scheme. The governing equatiomesliated in [Klemp et al., 2008b].
Variables are defined as perturbations from a hydrostalialgnced reference state to reduce
truncation errors. The prognostic variables are the vgloobmponentsu and v, vertical
velocity w, perturbation potential temperature, perturbation gesmygil, and the perturbation
surface pressure of dry air [Klemp et al., 2008b]. There mayptognostic equations for
other variables such as turbulent kinetic energy (TKE)ewaapour mixing ratio and others,

depending on the various physics and parameterisatiomehased.

3.4.4 Numerical integration scheme

An explicit integration scheme with a split timestep is yseith acoustic modes are integrated
over a smaller timestep to preserve model stability, alhgwa longer timestep to be used
overall. The meteorological modes are integrated with i torder Runge-Kutta integration
scheme. This arrangement makes for an efficient model, asvedy long timesteps can be

used and remain numerically stable.
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3.4.5 Horizontal coordinate

Variables are defined on a C-staggered horizontal grid [iKletal., 2008b]. This means scalars

are defined at the centre of grid cells, while vectors defiti¢kdeaboundaries of the cells.

:

|

Figure 3.2: C-staggering in the horizontal direction. \aitvelocities are similarly staggered,
and defined on the lower and upper faces of the grid cube.

3.4.6 PBL and surface schemes

PBL schemes exist to allow the effect of sub-grid scale bannthyer processes - turbulent
mixing - to be reflected in the model. It is worth noting thahaligh the schemes are known
as PBL schemes, they actually handle vertical mixing thihoug the atmosphere, including
above the PBL. It is also worth mentioning that, over watke $urface roughness and

friction velocity u, both depend on each other, and therefore must be solvetivitsdya

The surface layer scheme computes the parameters needddulaie fluxes of heat, moisture
and momentum between lowest model level and the surfaceseTixes then provide the
lower boundaries for the PBL scheme. The parameters passedtiie surface scheme to
the PBL are the friction velocities and exchange coefficiéot heat, moisture and momentum.
The ground surface scheme governs the exchange of moigtiwedn soil layers and, provides
inputs into the surface scheme. Usually only certain coatlins of surface, ground surface

and PBL schemes can be used together.

WRF supports a number of PBL and surface schemes. The twaalignezcommended
for use with WRF (Dudhia, personal communication), are tredldt-Yamanda-Janjic (MYJ)
scheme [Janijic, 2002], and the Yonsei State University (¥fBldng et al., 2006].

The MYJ scheme is a local, 2.5 order Turbulent Kinetic Endiy¢E) scheme. A diagnostic

relationship is used to determine the mixing length. A pomiic equation for the production or
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dissipation of TKE is then used to update the TKE at each tiepesSince it is a local scheme,

the prognostic equation for TKE production is based onlplgradients.

In WRF the MYJ PBL scheme must be coupled to a surface layenselinherited from the Eta
model [Janjic, 1996], which uses the Businger-Dyer formthefstability correction functions
(sees2.6.3). Over water, exchange coefficients are calculated the viscous sub-layer, except

for momentum in rough sea conditions which is prescribed 6parnock relation.

The YSU PBL scheme [Hong et al., 2006] is a development of tleeim Range Forecast
(MRF) scheme which became widely used in MM5. YSU is a noall@cheme which first
diagnoses the PBL height, and then constraints the eddysifi coefficient/{, to a prescribed
profile through the PBL. It is non-local as it contains a cotitn to the local gradient which

incorporates the effect of large-scale eddies to the tatal[Hong et al., 2006].

In WRF, the YSU scheme must be coupled to the surface lay@nselinherited from MM5
(see [Bianco, 2008]). In this scheme there are four stgb#igimes and associated correction
functions following [Zhang and Anthes, 1982]. Over waterface roughness is estimated by a
Charnock relation, and exchanges calculated using the statidity correction functions used

over land.

It is also worth noting that the surface and PBL schemes &jlgianpose limits on some of the
variables to prevent spuriously high values. For examptaénY SU surface scheme, the bulk

Richardson number is constrained to<@.2 [Bianco, 2008]

3.4.7 Static data
Land use

By default WRF uses a land-use dataset referred to in thengeatation as the US Geological
Survey (USGS) dataset. Land use categories from this adetoskesignate various parameters
such as surface roughness and leaf-area index for detegrémapotranspiration rates. Despite
its importance, metadata on the exact source of this ‘US@ftiset is severely lacking. Sertel
and Robock [2010] indicates the source is the land covesdatd the International Geosphere
Biosphere Programme (IGBG) [Loveland et al., 2000]. This weoduced from unsupervised
classification of 1km resolution Advanced Very High ResoluiRadiometer (AVHRR) images
dating from 1992 and 1993. As such, the USGS dataset is dgnsoasidered outdated [Sertel
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and Robock, 2010].

The alternative dataset which is readily available for ms&/RF is the land-use derived from
Moderate Resolution Imaging Spectroradiometer (MODIS)ges Justice et al. [2002]. This is
generally thought to be more up to date and more accuratagtthaot without problems [Giri
et al., 2005]. For this to be used in WRF requires the NOAH damdace scheme [Ek et al.,
2003].

It is possible to use other land-use datasets in WRF. For gheaithmay be beneficial to use
the CORINE dataset [European Environment Agency, 2000Efoopean land use, which is
thought to be more accurate [Neumann et al., 2007] Howelergtis no consensus on how
land-use categories map to each other, and various assmsptiould have to made on the
roughness lengths and leaf-area, on top of the practicitultly/ of converting this into the

binary format required for WPS.

Terrain elevation

The default source of terrain elevation comes from the &hiRadar Topography Mission
(SRTM) data [Farr et al., 2007]. It is available by defaultWRF at resolutions of up to
30 arc-second resolution, which equates to around 500ntutEsoat the latitude of the UK.
Since SRTM data is generally known to be very accurate, armderrain input into models is
usually smoothed to reduce noise, the SRTM data is adecaradethere is no need for higher

resolution terrain data, unless modelling down to a very megolution.

3.4.8 Analysis nudging

Nudging is a method of directing a model toward a a particatdotion. When a mesoscale
model is driven by a global reanalysis, it is possible foritesoscale model to diverge from
the larger global analysis. For example, a storm may follatferent track within the high

resolution model compared to the analysis. Analysis niglgiia way of keeping the mesoscale

model ‘on track’ with a larger set of global observations.

WRF implements analysis nudging through Newtonian relardiKlemp et al., 2008b]. Each
grid point is nudged toward a value which is time-interpetafrom the analysis, by introducing

a nudging term for horizontal winds, potential temperatamnel water vapour. The nudging
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terms are not physical and represent fake sources or sinksifiserved variables.

It is usually not recommended to use nudging within the PBirtipularly with temperature
[Dudhia, 2010, Zhang et al., 2001], as the PBL scheme witihémtodel ought to give a more

realistic representation of the temperature profile thaimt@mpolation from an analysis.

3.4.9 Data assimilation

WRF supports a range of data assimilation options includdbgervational (Newtonian)
nudging, three-dimensional and four-dimensional variatl assimilation (3DVAR and

4DVAR), and also an Ensemble Kalman Filter (EnKF) througlexternal package.

However, doing additional data assimilation at a regioeatl is no mean feat. Any datasets of
sufficient quality and coverage will already have been aitsied into the global model, after

the application of sophisticated quality controls develbpver several decades. Assimilating
data from specific point sources, of unknown quality, is Jésly to degrade the performance

overall.

Perhaps the only candidate data source which might be dat@this sea-surface winds from
satellite scatterometers, described in more detail in @&hnah Although these are already
ingested into global models, there is some indication they &ire under-utilised compared to
traditional in-situ measurements [Chelton et al., 2006jwiver, the computational costs and
complexity of doing this well, coupled with the difficulty afeating the coastal zone where

satellite winds become contaminated, meant this optiondegamed too difficult to attempt.

3.4.10 Parallel environment

WREF supports MPI and OpenMP parallelism. The model domagteomposed into tiles,
which can be further decomposed into patches. Tiles argrassito MPI tasks with their own
memory space which communicate via message passing; patithen a tile are assigned to
OpenMP threads. Domain decomposition provides a limit atirsg performance of WRF, as
at some point tiles within a domain become too small to futifise individual CPUs, and the

latency of message passing degrades performance.
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3.5 Chapter review

The previous chapter outlined the context for the work, aescdbed the decision to use a
mesoscale atmospheric model to create a high resolutiasetadf wind speeds of the UK and

surrounding waters.

This chapter briefly reviewed available mesoscale modeterims of their capabilities and
ease of use. On the basis of this review, the WRF model wastedle This model was
then described in more detail, outlining the model strigtihe datasets available, and the
parameterisation schemes supported. The capabilitiedatarassimilation were also touched

on, and the decision not to use additional data assimil@imhained.

This chapter provides the definitions and background fofdt@wing chapter, which describes

the use of a case study simulation to test different moddigrations against observations.
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Chapter 4
Observations and Model
Configuration

4.1 Introduction

There are a large number of different options to considemwhbaning an atmospheric model
such as WRF, for example, the layout and resolution of moalelains, the number and spacing
of vertical levels, how observations are used to constiannhodel, and how a variety of

sub-grid scale processes and land-model interactiongpresented.

The model configuration has to be chosen carefully. Howemmputational expense makes
it impractical to evaluate all possible model permutatio@®nversely, it would be unwise to
commit to a very large simulation without having done sonstig and verification first; this

obviously requires a set of observations to verify against.

For these reasons, a week-long case study was simulatéovtaiifferent model configurations
to be tested and compared to observations. This chapterltEEssome practical constraints
encountered during this phase of work, the observatiors foseerification, the model options
which were held constant throughout the case study mods) the model options which were
varied, the error statistics used for verification, the cstsely chosen, and the comparative
performance of different model configurations. The final elanfiguration is then selected

to be carried forward into the main simulation stage.

4.2 Computing platform and practical constraints

Producing a reanalysis dataset which covers ten years @ ai@ reasonable resolution is a
computationally demanding task only feasible using a pErabmputing environment. Initial

testing revealed very quickly that the local computing ®@yswvhich despite its 128 cores, was
insufficient for this task. This was mainly due to the use ahdard shared ethernet as the

interconnect with relatively high-latency. Under thesaditons, WRF cannot be effectively
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parallelised since the network latency quickly becomestddneck, and performance actually

deteriorates when run on a large number of cores.

Therefore an application was made for an account on the High-Computing Terascale
Resource (HECToR). HECToR is a world-class high perforrearmnputing facility to support

UK based research institutions [UKRC, 2011], which at tmeetihad around 10 000 cores,
subsequently upgraded to around 90 000.

There is a defined process for securing an account, and adfigraf classes which allow for
different allocations. At this model configuration phaseapplication was submitted under the
Class 2a mechanism, designed to support pump-priming gidraiory research, and to allow
new users access to a high-performance computing envirtnnasder this mechanism 200
000 Allocation Units (AU) were granted for the testing andifdguration of WRF. One AU is
equivalent to a 1 GFlop (floating point operations per sef@noicessor running for one hour.
For comparison, a typical modern desktop CPU might be r&t88-40 GFlops, therefore 200
000 AU is roughly equivalent t5000 hours on a single CPU.

This allocation had to be used within a fixed timescale; intéatdthe configuration had to be
completed reasonably quickly in order to apply for a largercation. Therefore the number
of test cases and extent of configuration was limited by mactonstraints on the time and
resource available. This meant that all permutations caootdbe tested, and also that some

observation were not available during this phase.

4.3 Parallel performance

With an account established on HECTOR, a test domain cayeahia whole of the UK at
3km was established to test the parallel performance of WiRFeatimate the computational
requirement of later stages. Performance was measuredebyuthber of integration steps

performed per wallclock (i.e. real) hour..

WRF was compiled using the Portland Group Compilers (PGith wnly Message Passing
Interface (MPI) parallelisation. Testing showed no perfance gains using hybrid (MPI +
OpenMP). The scaling performance is shown in Figure 4.1lirfRc& almost linear at core
counts below 150, and begins to diminish above two hundidtbwgh reasonable scaling is

still seen up to 512 cores. A much larger model domain woulshdxeded to see continued
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performance gains beyond 512 cores, otherwise the indiVitlies and patches become too
small to make efficient use of the processors.

6000
5000

4000 /
3000 /

2000 /

1000 //

0
0 100 200 300 400 500

Steps per wallclock hour

No of cores

Figure 4.1: Parallel performance on HECToR. Number of irsttign steps per wallclock hour
Vs core count

4.4 Observations

This section details the observations which were used ¢ffirout the course of the study.
Some of the observations were not publicly available andired (in some cases lengthy)
negotiations before they could be used. Others were pulaicilable but required some effort
to obtain and process. This meant that not all datasets waialale during the configuration
phase. They are described here for completeness and emosisto that the descriptions are all
contained within one section. At the end of this section,|@db5 summarises which datasets

were available during the configuration phase.

4.4.1 Anemometers

Many of the observations come from cup anemometers. A tiypicalern cup anemometer
states an accuracy e6f2% [Manwell et al., 2002a, p72]. However, when deployed treieacy
depends on many factors including turbulence intensity taednclination of the mean flow
[Pedersen, 2003]. As turbulence increases, cup anemanetet to record a higher signal due
to the inertia of the cups, termed ‘overspeeding’ [Kriseansl998]. Additionally there may
be flow distortion caused by the mast. Therefore it is diffitmkpecify the exact measurement

error of a deployed anemometer, and the stated accuradielg to be a lower bound on the
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actual error when deployed.

All cup anemometers have a minimum speed needed to overdwniedrtia of the cup, which
for some older anemometers may be as high as six knots{8)ms addition, a malfunctioning
anemometer may report a zero wind speed, which may not beeflaggyan error. This means

that calms are much more common in observed data than wowrdested.

4.4.2 Meteorological stations

The UK has a large network of meteorological stations (heretierred to as met stations)
observing synoptic and climatic variables. A database stbhic measurements is maintained
as the Met Office Integrated Data Archive System (MIDAS) [BB[R006]. This contains

surface observations as far back as the digital record égteas well as radiosonde

measurements and some marine observations.

UK met stations are organised into networks to suit differmd-users. The basic network
types are synoptic, climate, wind, and rainfall. One statian report observations to multiple
networks, and may have a different identifier within eachwoek. Within MIDAS, stations
are identified uniquely by thesrc.id. Observations to a particular network take the form of a

standardnessagereported using a standantessage type

The synoptic network is designed for real-time exchangenfafrmation to support weather
forecasting. There are 225 stations reporting to the symoptwork in the UK, with a
guaranteed spacing of less than 50 km [UKMO, 2010]. Obsenstreported to the synoptic
network are encoded in the international SYNOP messageatoind speed is reported as a
10-minute average and the UK uses a non-standard obserysiad of HH-20 to HH-10 i.e.
a wind speed reported at 0500 GMT will represent the averateden 0440-0450 GMT.

Most stations in the synoptic network, plus some additistetions, also report hourly-average
wind speeds in the Hourly Climate Message (HCM) forméatourly averages cover the period
HH-70 to HH-10 [UKMO, 2010, Section 5.5]. Speed and diraettare averaged separately,
and maximum gusts are calculated from 3-second averageeedsTable 4.1 summarises the

variables and precision recorded.

Hourly-averaged wind speeds for the 11 years 2000-2010 d@waloaded and stored locally

!Automatic weather stations use the AWSHRLY format
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in a relational SQL database. MIDAS data is quality checkgdhle Met Office before being
archived and erroneous records are flagged; only recordgefiiags clean were used in this

study. Missing data averagéél; of the total number of observations.

Data from Irish met stations was obtained from Mgteann. The data was very similar
in nature to the UK data: hourly averaged wind speeds andttaire mainly from cup

anemometers at 10m agl.

Variable Units and precision
Mean hourly wind direction 10 degree bins
Mean hourly wind speed 1 knot bins
Direction of maximum gust 10 degree bins
Speed of maximum gust 1 knot bins

Time of maximum gust Nearest minute
10 cm soil temperature (0¥

Global irradiation W hr/ri

Table 4.1: Variables reported in the HCM and AWSHRLY mesggge

Instrumentation

A met station is a collection of measuring instruments at iqudar site. Wind speeds are
measured by an anemometer with a ‘standard exposure’ neeaetequivalent to 10m above
open terrain. The MIDAS user guide [UKMO, 2010] states:

“The standard exposure is over level, open terrain at a hefyhOm above
the ground. Open terrain is defined as an area where the chststween the
anemometer and any obstruction is at least 10 times thethaigimat obstruction.
If standard exposure is unobtainable the anemometer mayskadléd at a height
greater than 10m. Whether or not such an adjustment is midg@esmometers
are allocated an ‘effective height” which is defined as thiglteabove open, level
terrain in the vicinity at which mean wind speeds would be shene as those
actually recorded by the anemometer. Various methods haea Hevised for
the calculation of effective height. At stations where tlffeaive height differs
substantially from the actual height, corrections areiagpb the 10-minute wind
speed reported in the SYNOP message. No corrections arie@pplany gusts
measurements or to any hourly mean wind speeds. ”
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Figure 4.2: Bealach na Ba met station: the anemometer masttise right. Picture taken by
the author.

Problems with met station observations

The main problem with met station observations is that theytaken at 10m agl, and are
therefore influenced by surrounding obstacles and locgraphy. Although masts are meant
to have a standard exposure, this is not exact and may vanydivéction. Figure 4.2 shows
one particularly extreme example: the Bealach na Ba mdbstat mountainous terrain in
Scotland. The mast itself is clearly well below 10m agl anthimlee of a building which will
distort the flow substantially. The surrounding terrain ésywcomplex: the station is perched

above the steep headwall of a valley which leads from the sea.

Another issue is that instrumentation varies betweenostatand over time. Older and heavier
cup anemometers had slow response and high start-up speearticular the Munro MK4
had a start-up speed of 6 knots, and was in common usage. Aapnote to replace these
with lighter anemometers was started in the 1990s, but ih@ear from the record when this
occurred at a particular station, or whether any are stilsetoday. A high start-up speed would
show up as a large frequency of zero speeds, which is founditymet station records. Wind
speeds are only recorded as an integer number of knots aodraiss for some met stations

show regular spikes and troughs, suggesting a bias in lggomithod, Figure 4.3.

Another problem is inaccurate location information: BoehfR006] found the latitude and
longitude recorded in the MIDAS database to be inaccuraig carrected the locations for 21

selected stations in Scotland based on OS maps. The UK Mate(fis since updated the
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Figure 4.3: Example of the binning problem: observed howilyd speeds and fitted Weibull
parameters at Lerwick, 2005. Original one-knot bins (laft)l two-knot bins (right)

coordinates of the met stations, and these updated losatiere used in this study.

Boehme [2006] also rated the exposure of each met statiorder to select only the exposed
stations. However, selecting met stations by this methodddfication would risk excluding
stations in complex terrain, and could lead to an unrealastsessment of model performance.
Therefore, no attempts were made to choose ‘better’ mébissator weight some observations

over others.

Despite these problems, the density and historical recbeldiface met stations means they

offer a very comprehensive way of verifying onshore surfaged speeds.

4.4.3 Wind farm masts

Wind farms typically require at least a year of observatitmnsecure finance, and typically will
continue to monitor wind speeds over their operation, algiiithis data is usually commercially
sensitive. Scottish Power Renewables (SPR) kindly praljate-construction data for three
sites, and Community Wind Power provided data for threes sgemmarised in Table 4.2. This
data is covered under a non-discosure agreement and thdoecet&ins or raw time-series are

not revealed.

These masts are important for a number of reasons. Firgtatbeat sites characteristic of actual

wind farms, which is not always the case with met stationso8e, they are independent and do
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Label Location Terrain Period Instrument heights  Farnustat time
S1 England Flat Mar 2003 - Mar 2004 10m, 50m Pre-construction
S2 Scotland Moderate Nov 2003 - Dec 2004 20m, 30m, 40m Pretrcmtion

S3 Scotland Complex + Forestry ~ Jun 2001 - Nov-2004  20m,30m,4 Pre-construction
C1l Scotland Moderate + Forestry  Jan 2007 - Jan 2010 30m Qpwaht

Cc2 Western Isles  Moderate Jun 2005 - Mar 2007 ~ 30m, 40m, 50m  raGmeal

C3 Scotland Moderate Jan 2010 - Jan 2011 80m Operational

Table 4.2: Windfarm met masts used for verification. ‘S’ nuzgh provided by Scottish Power
Renewables Ltd, ‘C’ mast data provided by Community Wind.

not report to central meteorological organisations, amtéédave not been assimilated into any
reanalysis datasets. Third, mast heights are significhdlyer than met station observations,

up to 80m in the case of mast C3.

However, the measurements are still subject to flow distestcaused by the mast and the local
orography. In the case of the masts at operational farms thay be major wake effects due to
the wind farm. Masts are usually located in the prevailing/imp direction, in order to sample
the free-flow, but will be in the park wake from some directiorAlso, the wind speeds are
provided as raw-data, and extensive quality-control and diganing is usually applied to the

raw wind speeds before being used commercially (ScottisteRP@ersonal communication).

4.4.4 Buoys

The Met Office has a series of buoys, and the Irish Marinetlristhas a network of six buoys,
five of which were inside the model domain. Buoy locations sltewn in Figure 4.5. The
deployment dates of the Irish buoys are summarised in TaBléM4 was moved in May 2007,

so has been labelled M4a before the move, and M4b after.

Buoy Deployed

M1 Nov 2000
M2 April 2001
M3 July 2002
M4a  April 2004
M4b  May 2007
M5 Oct 2004

Table 4.3: Deployment dates of Irish Marine Institute Buoys

All of the buoys used here record wind speed primarily via @ anemometer, with a typical
accuracy of around-2kn below 40kn andt:1.5% above 40kn [Turton, 2009]. Some Met Office
buoys are being re-equipped with dual cup and sonic aneneosndturton, 2009]. Out of the
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Figure 4.4: Raw buoy data showing frequent missing data harpsspikes. The spikes were
removed with a simple quality control algorithm

water the buoys are 6m high, so for verification it was assuthedcanemometer was at 4m
when afloat.

Missing data is relatively common, both individual missingurs and longer periods. For
example, the K7 buoy was lost on 27th of October 2000 and ceglan September 2001.
Buoys need frequent maintenance, and the time to failurthBoanemometer may be as little
as six-months [Turton and Pethica, 2010]. Before failurgglity may degrade substantially

over time, and salt ingress into the oil slows the anemonj&teton and Pethica, 2010].

Given the low height, in moderate seas they will be in theatlirfluence of roughness elements
(waves), and surface-law scaling may not necessarily ghalsge et al., 1995]. Also, buoys
are thought to be affected by wave sheltering [GilhouseO6R0However, averaging over an
hour should reduce the effect of swell on the readings, aghdlow separation in very high

waves may still be a problem [Ingleby, 2010].

UK buoy data was supplied before any quality control had laggatied, and showed occasional
spurious spikes of winds speeds 40ms~!, Figure 4.4. These spikes were obvious as
single-hour spikes, not matched by neighbouring readitgs. that reason, a simple quality
control algorithm was applied: any wind speeds which wemal30ms 'were cross-checked
against the nearest neighbouring buoy or met-station. elfvtind speed there was less than
10ms!, the spike was flagged as erroneous. This successfullyrgited the small number

< 300 of erroneous observations.

4.4.5 Lightships

The Met Office operate a number of lightships. These are smadlred ships which act as
lighthouses and automatic weather stations; these areadedivessels, distinct from voluntary

observing ships. Ship winds are known to be higher than buogsyeven after the height of
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the anemometer has been accounted for [Gilhousen, 200&]hwiay be due a combination
of the sheltering of buoys in high waves and acceleratiom@fiow by the ship. Yelland et al.
[2002] found significant de-acceleration or acceleratibtihe flow can occur depending on the

position of the anemometer on the ship and the wind direction

4.4.6 OillPlatforms

Shell kindly provided data from the Auk Alpha, Lemana A, andl$dn A oil platforms,
Figure 4.5, for the month of January 2005. The exact instniati®n on the platforms
varies although they are all cup anemometers similar toethused at onshore met stations.
The instruments are at heights above mean sea level of 108m,and 110m respectively.
Wind speeds are reported as 10-minute averages, and drerfavieraged to hourly values for

verification.

The largest problem with platform observations is the platfs influence on the flow. The
platforms are large, bluff bodies in an otherwise open sd® &ifects are complex, site and
direction specific, and would require detailed flow modelia correct [Hogstrom et al., 2008].
Therefore, oil platform winds are not used in the calculatberror statistics, but they are used

to check the time series of wind speeds and the timing of niefdures appears sensible.

4.4.7 Radar profilers

UKMO have a number of radar profilers which can measure wirgtdmat multiple heights
through the troposphere. The main purpose is to observelévghwind speeds, and typically
the minimum observation height is 100m or more, which makesitless useful for surface
verification. Some of the profilers are mobile and occaslgmabve location; the locations,

heights, and time periods covered are summarised in Tadble 4.

4.4.8 Satellites

There are a number of satellite-derived sources of winddspa&a over oceans, see e.g. [JPL,
2010, Nielsen et al., 2004], and satellite data have beahingenumber of resource assessment
studies e.g. [Capps and Zender, 2010, Christiansen ebab, Hasager et al., 2002, Kim et al.,

2010]. However, it is a relatively new discipline and the emainties in the methods are not
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Name Heights (km) Dates
Min Max Step(m) From until

Cambourne 0.3 8.0 60 1998 Present
South Uist (915 MHz) 0.2 8.0 100 2003 2004
South Uist (64 MHz) 1.0 13.0 400 2004 Present
Dunkeswell 0.1 7.9 100 1999 Present
Wattisham 0.2 8.2 100 2001 Present
Isle of Man 0.3 8.0 60 2005 2008
Aberystwyth 0.3 8.0 60 1999 2002

Table 4.4: Summary of radar profiler data held by UKMO

fully quantified [Barthelmie and Pryor, 2003]. Althoughediite data was not be obtained until

after the configuration phase, it is used extensively irr lebapters, so is described here for

completeness.

The source which offers the longest contigous record of medads comes from the remote
sensing of microwave backscatter from centimetre-scahélasy waves, which allows wind
speed and direction to be estimated. Dedicated activerggssatterometers for wind speed
and direction have been carried on a number of satelliteg $ive early 1990s, notably NSCAT,
QuickSCAT, and ASCAT [JPL, 2010]. Together, QuUickSCAT an8@AT provide an almost

continuous record over the study period, and for that reassye used for this study.

There are other satellite sources of wind speeds, such &stbpean Remote Sensing satellites

(ERS-1 and ERS-2), TOPEX/Poseidon and others. JPL [201@k@n excellent review of

satellite data sources. However, working with multiplecltit datasets at different spatial
and temporal resolutions, with different accuracies, radslt various distances from the
coast, presents significant practical difficulties, withoacessarily adding extra detail. The
Cross-Calibrated Multi-Platform Ocean Surface Wind V#joProduct (CCMP) dataset [JPL,
2010] would have been ideal to use, except that it is maskedocamservatively near the coast,

sometimes up to 100km from the coast, making it unsuitabits icurrent form.

Therefore, only scattermeter winds from QuickSCAT and A$@/re used, as these offered
the best coverage, resolution, and proximity to the coasiceSscatterometer winds are used

the equivalent neutral wind is now introduced, before theces are described in more detail.
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Equivalent neutral wind

Scatterometers measure backscatter from capillary wambs;h are assumed to be in
equilibrium with the surface stress, The surface stress is then converted into an Equivalent
Neutral Wind (EQNW),U,,, usually at 10m above the surface [Liu et al., 1996]. This
represents the wind speed which would exist at that heigtiteifatmosphere were neutral.

U,, < U in stable conditions, antl,, > U in unstable conditions.

There are a number of algorithms to derive actual wind spesd EQNW [Liu et al., 1996,
Winterfeldt et al., 2010]. Generally these require air temapure, sea temperature and humidity,
although humidity can be assumed with minor consequencebifiBand Thompson, 2000].
However, many authors [Chelton et al., 2006, Kara, 2008, d&&aamd Xie, 2007, Winterfeldt
et al., 2010] note that the difference between the neutrativeind the actual wind at 10m
is relatively small. For example, Kara [2008] found the elifince between monthly-averaged
stability-dependent and neutral winds was 0.2hsvhile the difference in hourly values was at
most 0.5ms!. Sampe and Xie [2007] found that for high winds, the diffeedue to stability
was around 0.2mg .

It light of this, it was decided to use the EQNW directly, ®rattempting to correct it based on
air and sea temperature, which may themselves have esqust ias likely degrade rather than

improve the quality of the wind speeds.

Quickscat

The SeaWinds scatterometer was launched on the QuickSAdiamisatellite in 1999, as a
‘quick recovery’ following the early failure of the NSCAT t&dlite. It provided data from 1999
until until 2009 and is probably the longest and highest ltém single satellite record of

surface winds over the period in question.

In mid-latitudes it provides observations twice per daytlemascending and descending path.
Accuracy is estimated as 0.75 mn the along- wind component and about 1.57is the
crosswind component [Chelton et al., 2006], and it has bleews to have little or no bias when
compared to in-situ observations [Wallcraft et al., 200Mdéffeldt et al., 2010]. QuickSCAT
retrievals are known to be contaminated by heavy rain (thilagged), although accurate
assessment is still possible provided winds are relatigélgng, and Chelton et al. [2006]

suggests the extent of rain contamination has been ovierststl.
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Satellite data is available on a number of processing ‘tevélevel 1 data represents the raw
datai.e. scatterometer returns. Level 2 represents oge st@ost-processing: for QuickSCAT
this consists of wind speeds and directions on the origidKin swaths corresponding to the
ascents and descents of the satellite. Level 3 data repsegiebally gridded data on a regular

spatial grid.

Working with Level 2 data is difficult, since it is not on a réguspatial grid, and therefore
Level 3 data was used here. The Institut Francais de reohgrour I'exploitation de la mer
(Ifremer) produce a globally gridded dataset on &€l [Ifremer, 2002]. Average wind fields
are derived from discrete observations by an objectivargitechnique [Ifremer, 2002]. The
advantage of this dataset over others is that wind speedsoarexplicitly masked near the
coast, allowing users to define their own mask based on denshies of the wind speeds
(scatterometer readings over land produce wind speeds @f ms~!). This allows a much

closer mask to be used compared to other Level 3 datasetsh ate typically masked within
20 or 30km of the coast. In March 2011 a coastal dataset frok@CAT winds was released
which gets within 5km of the coast [Vanhoff et al., 2009];stig only available for the eastern
coast of the US.

ASCAT

The Advanced Scatterometer (ASCAT) is carried on board thefean Space Agency's
MetOp satellite, launched in 2007. It has lower horizon&dotution than QuickSCAT, with
an effective resolution of 25km rather than 12.5km grid. Bfte&ted accuracy of the 10m
wind speed is 0.5m3 bias, and 2ms!'Route-Mean-Square Difference (RMSD), and it has
been found to compare very well to buoy and QuickSCAT datejgodarly within the range
3-20ms ![Bentamy et al., 2008].

Ifremer provide a globally gridded dataset derived from A$Gt 0.25resolution. This uses
ECMWF analysis data to derive the real ocean wind (rathen thea EQNW), and also for
temporal interpolation so that so that a more accurate dayage can be assessed from the

two passes of the satellite [Bentamy and Fillon, 2011].
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4.49 Summary of observations

This section has outlined all of the observational data irsélae course of this study. Many of
the observational datasets described were not availablegdilne configuration phase of this
work, but are described here for completeness. Table 4.5suises the datasets used in each

stage, and the locations of all the in-situ observationshosvn in Figure 4.5.

Class Type Source Number  Period Available
during
configuration

In-situ UK met stations UK Met Office 200 11 years yes

Irish met stations MeEireann 22 11 years no
Wind farm masts Scottish Power Renewables 3 ~ 2 years no
Wind farm masts Community Wind Scotland 3 ~2years no
UK buoys UK Met Office 4 11 years no
Irish buoys Irish Marine Institute 5 ~4years yes
Lightships UK Met Office 4 11 years no
Oil Platforms Shell UK 3 1 month yes
Remote sensing  Radar profilers UK Met Office 6 ~10years no
QUICkSCAT satellite  Ifremer - 9 years no
ASCAT satellite Ifremer - 2 years no

Table 4.5: Summary of observations available during aret #fie configuration phase

met stations
buoys

A lightships

*  platforms

Figure 4.5: Locations of in-situ observations

56



Observations and Model Configuration

4.5 Options held constant

Certain aspects of the model configuration were dictated hey available computational
resource, storage requirements, and other practicalifidss section describes the options

which were defined in advance and not varied between mods! run

45.1 Domain and horizontal resolution

One of the most influential choices is model resolution, esitids determines the scale of
features which can be explicitly represented, and alsoantias the choice of parameterisation
schemes. An important aim is to ensure a clear separatioricbbgale processes, which are

modelled explicitly, and sub-grid process which must beypeatrised.

For a given domain size, the number of grid points in the lomiial dimension increases with
1/(Ax)?, whereAz is the horizontal grid spacing. In addition, the time-stagstbe decreased
with Ax to maintain numerical stability. Therefore the number adl groints per vertical level
increases as/(Ax)3. If n, is the number of vertical levels, the total computationglLieement
is O(n,/(Ax)3), and hence the resolution quickly becomes a limiting faet@n on the most

powerful computers.

Additionally, to perform high-resolution simulations, ig generally recommended to use a
series of nested domains of increasing resolution. Thiaressa smooth transition from the
relatively coarse boundary conditions to the high resofuthner domain, and limits the impact
of noise from the boundaries. The horizontal resolutionhef ¢hild domain must be smaller
than the parent by an integer factor, and a nest factor of 3i®@pfien recommended [NCAR,
2008].

With a requirement for a dataset spanning the whole UK andsoding waters for a period of
at least 10 years, initial simulations showed that 3km wasighest resolution feasible in the
inner domain. At this resolution, with a minimal set of outpariables (listed in Appendix B),

each day of raw output required 30GB of storage space, anthonth of simulations could be

completed in 12 hours using 512 processors.

The model domains used are shown in Figure 4.6. A Lambercara conic projection is
used, which is well suited to mid-latitudes [NCAR, 2008] asdlso well supported by most

post-processing and visualisation tools. The projecsateifined by a central meridian of\&
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and one standard parallel at°®

A nest factor of 3 is used, with the outer domain at 27km wh&chpproximately a factor of

three less than a resolution of typically found in global reanalysis datasets.

Figure 4.6: The model domains at 27km, 9km and 3km resolution

45.2 \Vertical levels

The number of vertical levels was set at 28. Although this rhayon the low side, it has
worked well in previous studies [Vieno, 2005], and was adwdfito allow a higher horizontal
resolution. Although the total number of vertical levelsswixed, the spacing was varied to
position moren levels close to the surface, as it was thought this may imgpredictions of

the wind profile close to the ground, and also limit any eriateoduced when interpolating

from 7 to height levels.
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Figure 4.7: Typical heights above the surface)tévels over one month.
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Figure 4.7 shows the typical height above mean sea leveleofritreased spacing. This is
illustrative for a point over the sea for one day in Januasydascribed ir§3.4.2, levels
are pressure-based and terrain-following so vary with tamé terrain height. However the

variation in height of the lowest three levels is relativeiyall, and was< 1%.

4.5.3 Microphysics and cumulus schemes

Since the primary focus of this study is wind speeds rathan tprecipitation, different
microphysics and cumulus schemes were not compared. Howgneeipitation and cloud
fraction outputs may be useful for future work, such as fareing solar and hydro resource,
so it is still preferable to use sensible schemes for thegsiditiénally, the choice of scheme
may have implications for wind speed, for example by remgwvatmospheric instabilities

through enhanced convective mixing.

Following guidance in NCAR [2008], a Kain-Fritsch cumuliheme [Kain, 2004] was used
in the outer two domains, though not in the inner 3km domainictv may be at (just) high

enough resolution not to require a scheme. A five-class piysics scheme [Hong et al.,
2004] is used, a simple downward shortwave radiation schgpuelhia, 1989], and the Rapid
Radiative Transfer Model [Mlawer et al., 1997] for long-wearadiation were used throughout.

These and all other options are specified in Appendix B.

4.5.4 Time resolution of output

To maintain numerical stability, an integration time-stéy, in seconds, of roughlgAz, in
km, is recommended [NCAR, 2008]. With an inner resolutior8kin, this meang\t ~ 18s.
To ensure the output fits into a whole number of minutes, adiegeof 15s was used in the

inner domain, achieved using a timestep of 135s in the otheraih.

It is infeasible to store the output every 15 seconds. Fissiting so frequently to disk
would severely slow down the simulation; second it woulduremfar too much storage (many
hundreds of Terabytes); third since WRF solves the Reysaldtraged equations, even at high
frequency the output only represents the evolution of steeidd component, not turbulent
fluctuations, so storing output more frequently does noessarily add more information.
Figure 4.8 shows a comparison between WRF output archivednaminute and one-hour

intervals over the course of a meteorologically active daythough the 10-minute output

59



Observations and Model Configuration

8 T T T T
€ 77|o o hourly i
= 61 ; -
8 51| — 10 minute L
=%
54 i
R i
2 2] f
1 00 02 04 06 08 10 12 14 16 18 20 22

Time

Figure 4.8: Output from WRF at 10m and 1h intervals over thers® of one day. The 1lh
output reveals little more detail than the 10m

shows some more variation, very little information is addedhe hourly output, while the
storage requirement is increased six-fold. Therefore thed Hutput was stored at one-hour

resolution.

4.5.5 Boundary conditions

Boundary conditions are taken from the NCEP/NCAR Final Asisl (FNL) dataset [NCEP,
2010]. These are archived analyses at 00z, 06z, 12z and driéztfie NCEP Global Forecast
System (GFS) see e.g. Werth and Garrett [2010], on the oapeahgrid ‘003’, at approximately

1° resolution.

This dataset is similar in nature to the NCEP/NCAR reanalji€alnay et al., 1996], but at
higher resolution and more recent, although with no guasthat the modelling system is
fixed throughout the analysis period. The GFS assimilatés flam all validated sources
reporting to the Global Telecommunications System (GT®)s Tncludes global radiosonde

data, surface observations and satellite data [Kalnay,et396].

The advantage of using the operational analysis rather shaganalysis is the increased
resolution, the more recent time coverage, and the moshtreeedel configuration, using the
most assimilated data. The disadvantage is that the coafigaris not fixed over the period,
so that the quality of data may change over time, with paéstep-changes in variables as
configuration is changed. According to Werth and Garreti(20the most significant change
in the GFS over the period in question was the update in riésojdrom T254 (around 50km) to
T382 (around 35km) on 30 May 2005. However, improvement®algmade after significant

testing and verification, and so small improvements are iikely than large step changes.
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It was also hoped to use data from ECMWEF, such as the ERAkimtexanalysis [Uppala et al.,
2005] for comparison. However, there were several prddtiiffculties getting WRF to run
correctly with ECMWF data. Furthermore, at the time, theycmht agreement was much
more restrictive than GFS, making it questionable whethdataset heavily derived from the
ECMWF data could be made freely available. Since it was @drto make the outputs of this
study freely available, this provided the main reason toNG&P GFS data.

4.6 \Verification process

4.6.1 Interpolation to height

Model winds are given on levels, and additionally the diagnostic 10m wind. For thmalgsis,
the 10m wind was regarded as if it were simply an extra model leelow the first) level. For
verification at surface met stations, the 10m wind can be dgedtly. For all other heights,
wind speeds were interpolated from the closest model l@garithmically in height. Given
the decreased spacing of mogdéevels near the surface, the vertical interpolation distanas

typically very small, no more than a few metres.

4.6.2 Comparing grid cells to point measurements

Variables in WRF represent time-averaged and volume agdrdtpws - steady state
components of the Reynold’s averaged flow through a grid dédie boundary of the lowest
grid cell is an area-average of terrain height. These fagorsent two sets of difficulties when

comparing model output against point measurements.

The first set are the intrinsic difficulties in comparing pdiased measurements to
volume-averaged model solutions. Point measurements imdlude contributions from
turbulent eddies at a variety of spatial and temporal scaled could be highly influenced by

local topography or obstacles.

The second set of difficulties relate to extrapolating fromdel levels to heights above the
surface. Model terrain height is averaged to the grid reémwiuin this case 3km. This means
the actual met station will be above or below the modellechiey and may even be above the

first few model levels, Figure 4.9.
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Accounting for this is neither straightforward nor obviol®r example, for point X it may be

argued that the second or third model level may be more repiasve of the wind speed than
the lowest model level, which is ‘below’ the real terrain. wiver, the second or third level
still does not account for the shape of the hill and its infbeeon the low-level flow, nor the

proximity and roughness of the ground. Also, it implies ttie wind speed at Y should be
reduced by some factor to represent the valley. Howard aack2007] proposed a method
for correcting this based on the linear flow theories of Jackand Hunt [1975], but their

approach is not yet well verified, and relies on being ableheracterise features by a length
scale, an approach which is difficult to generalise acrossmiole model domain. Given this
uncertainty, for this analysis the observation statioresragarded as if they sit on the model
terrain, i.e. at X’ and Y.

- Model terrain
_——— Actual terrain

Figure 4.9: Observation stations at X and Y having positiarthe model terrain at X’ and Y.

4.6.3 Self verification

The GFS model assimilates observational data from mulipleces, including surface wind
speed from SYNOP stations [Kalnay et al., 1996]. There isefloee some degree of self
verification when comparing model output to met station oleens. This is not a problem

in itself, after all, the purpose is to create a dataset whieliches observations. The danger
is that the model performs wednly near observation sites, and that any verification therefore

gives an overly optimistic picture of performance.

The standard approach of partitioning met stations int@imitrg and verification set cannot
be used here, since the data assimilation has already been However, the main use of the
analysis is as initial conditions (on all domains), and larmg conditions every six hours (on

the outermost domain). If the model can recreate hourly gpekeds at observations points
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Figure 4.10: Observed wind speed at Sella Ness, an expostiahsin Shetland. Zero wind
speeds in observed data appear as a large spike in the foyqdistribution. The
size of the spike and the exposure of the met station sugiiisis due to missing
data not properly flagged, rather than low wind speeds bdievetart-up speed of
the anemometer

across the whole domain (i.e. well away from the boundanes) several days (i.e. well away
from the initial conditions), then this is a good indicatbat the predictions are correct due to
a realistic representation of the physical flow, rather thiamply an effect of being constrained
by observations. Therefore, verification against metatatis still a useful exercise, and is an

approach commonly taken many similar studies.

4.6.4 Zero wind speeds

Zero-wind speeds are common in observational data, eitheause the wind speed is below
the start up speed of the anemometer, which might be coesidegenuine calm, or because
the anemometer is malfunctioning or stuck and error is nggéd, which would be considered
a ‘spurious calm’. Spurious calms are easily visible in thedsspeed distribution as a spike at
zero, as shown in Figure 4.10. Spurious calms affect eratisits, particularly?? which is

not robust to outliers. For that reason, all zero wind speedsgnored in the calculation of the

error statistics.

4.6.5 Error statistics

Error statistics used here are the Mean Bias Error (MBE) addled Bias (B), Root Mean

Square Difference (RMSD) and a coefficient of determinatidh If e; is the difference
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between an individual predictiop;, and observation;:

€; = P; — 05 (4-1)

then standard error statistics can be defined:

(4.2)

(4.3)

(4.4)

whereo, ando, are the observed and predicted standard deviations.

Bias is a simple indicator of whether the simulation overmder-predicts wind speeds. RMSD
is a measure of the overall error, with the property that tp@siand negative errors do not
cancel. RMSD also depends on the distribution of errord) laiger errors contributing most. It
is possible for a forecast to have zero bias, but be wrongestydocation. RMSD is therefore a
good complementary measure to B. The coefficient of detextioim, R?, is a measure of degree
of the linear relationship between the observed and petiitata.R? is a useful statistic in the

presence of systematic errors since it indicates goodridisindlependent of systematic errors.

However, R? not robust and is heavily influenced by outliers [Legates Biu€Cabe, 1999].
Zero wind speeds have been eliminated as a source of outligie observed data. However,
unrealistically low wind speeds can also be caused by stneknameters, or for other reasons
which are much more difficult to identify. Also, sind® is not robust, it is heavily influenced
by phase errors. The following section briefly shows how tleasares are affected by errors

of different types.

4.6.6 Types of error

In relation to modelling, there is often a distinction betnesystematic errors in the average

value of variables, often termed bias or level errors, amdrern the patterns of variables.
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Figure 4.11: Schematic error types and effects on errois8tat Systematic errors (top)
don’t affect correlation. Amplitude errors, 2nd and 3rd,ynafect both bias
and correlation depending on whether they are symmetriasé€hrrors (bottom)
primarily affect correlation. The x-axis can be interpress time or space

Different types of pattern error affect error statistic ifffatent ways, shown schematically
in Figure 4.11. In relation to the wind speed dataset, diffetypes of error have different
implications. A systematic error could lead to wrong cosimns about the overall energy
yield or profitability of a wind farm. However systematic @s are the easiest to correct using

post-processing.

Phase or timing errors of a few hours could affect conclusiahout how wind speed and
electrical demand are related, but are not important fronovemall energy production point
of view. However, even small phase error can have very largmct on correlation statistics.
For example, Kok et al. [2008] notes that high resolution el®dre often double-penalised in
their assessment of performance, since although they rsalveesmaller features than coarser
models and hence provide more information,they may misptacmis-time these features,
leading to higher error statistics. This demonstrates #ednfor multiple statistics when
comparing model performance, as there is no single meashichwan adequately describe

a model fit.
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Figure 4.12: Observed wind speeds at Blackford Hill, Edighlover the case study period

4.7 Description of case study

The week of 1'-15" January 2005 is used as a case study. This was an active week wi
two very deep depressions crossing the north of the UK, ngusime damage. Observed wind
speeds at Blackford Hill met station (Edinburgh) are shawrigure 4.12. Detailed description
of the meteorological conditions associated with thesatsvie described in [Hisscott, 2007],
and the evolution of synoptic conditions in the GFS modebkai@vn in Figure 4.13. This week
shows a wide range of variability, from periods of relatiang, to periods where wind speeds
exceed the typical cut-out speeds of turbines; the abiifyetreate such patterns accurately is

therefore very important.

It would have been preferable to also include a case studyeasymoptic forcing was not so
strong, and thermal effects were more significant. Howelning this phase of the project,

time and computational constraints did not permit this.
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Figure 4.13: Evolution of synoptic conditions over the fiest/ days of the case study period.
This was a week of generally westerly flow with frequent fotioraand passage
of depressions, with an occasional ridge of high pressutefa pressure and
10m wind speed are shown from GFS final analysis.
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4.8 Comparison of model configurations

4.8.1 Baseline

The baseline configuration is summarised in Table 4.6.

Domain

do1 do2 do3
Resolution (km) 27 9 3
Grid cells west-east 145 196 331
Grid cells south-north 115 181 391
Vertical levels 27 27 27
Timestep (s) 135 45 15
Feedback - Yes Yes
SST update No No No
Vegetation fraction update Yes Yes Yes
PBL scheme YSH® YSU YSU
Analyses nudging No No No
Nudging in PBL No No No
Cumulus scheme Kain-Fritsth Kain-Fritsch None
Boundary conditions NCEP GFS final analysisx 1°
Land use dataset USGS
Surface layer physics Monin-Obhukov [Janjic, 1996]
Ground surface scheme Noah Land Surface Model [Chen andi@&{i00]
Microphysics WSM 5 class [Hong et al., 2004]
LW physics Rapid Radiative Transfer Model [Mlawer et al.9ID
SW Physics Simple downward [Dudhia, 1989]
Diffusion 2nd order on model levels

Eddy diffusion coefficient =~ Smagorinksy first-order closure

2YSU [Hong et al., 2006]
b [Kain, 2004]

Table 4.6: Baseline configuration

4.8.2 Alternatives

Land use options tested were the default USGS and the MODitSeta(se€3.4.7). PBL
options tested were the YSU and MYJ schemes, (34.6). Different permutations of
configurations of analysis nudging were tested, both in uppels and within the PBL, and

default and increased spacingrplievels were tested.

Table 4.7 describes the alternative configurations stuatidgpresents the overall error statistics
against the in-situ observations,, while Figure 4.14 press¢he distribution of B between

observation sites.

The baseline configuration [1] gave relatively high bias kowvd correlation. The distribution
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Label Landuse Eta spacihg PBLP Analysis nudging Error statistics
di d2 d3 PBL B RMSD R?
(ms™!) (ms™h)

[1] USGS d YyYsu — — — — 2.11 3.61 0.69
[2] USGS d YSU tqu tqu tqu — 2.35 3.56 0.76
[3] Modis d YSU tqu tqu tqu — 1.62 3.14 0.77
[4] Modis d MYJ tqu tqu tqu — 1.44 2.89 0.78
[5] Modis d MYJ tqu tqu — — 1.41 3.06 0.73
[6] Modis d MYJ tqu tqu tqu tqu 0.79 2.84 0.77
[7] Modis d MYJ tqu tqu tqu -u 1.34 2.84 0.73
[8] Modis i MYJ tqu tqu tqu tqu 0.63 3.01 0.74
[9] Modis i MYJ tqu tqu tqu -u 1.34 2.84 0.81

& d=default spacing, i=increased spacing close to the ground
b YSU=Yonsei state university, MYJ=Mellor Yamanda and Janji
¢ t=temperature, g=water vapour mixing ratio, u=wind speeds

Table 4.7: Comparison of error statistics for configuragitested

probability density probability density probability density

B SN ZA NS O AN N SNOVENIEN O

bias / ms~! bias / ms~! bias / ms~!

Figure 4.14: Error distributions at met stations for alegive model runs. Plot numbers refer
to labels in Table 4.7
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of errors can be seen to be skewed towards the high end, gpovirid speeds are consistently

over-predicted at most sites.

Using analyses nudging, [2], substantially improves theetation (??=0.76) although does
not significantly change B or RMSD. An explanation might batthudging helps to correct

phase errors, which can which have a large impadgén

Using the MODIS land use dataset [3] gives a small improverimeB and RMSD, with little
effect R2. A possible explanation is a more realistic roughness gadweund observation sites,

but a high wind-speed bias still exists.

Using the MYJ PBL scheme [4], instead of the YSU [3], appeargive a reasonable
improvement in B and RMSD, although the reasons for this weteinvestigated in detail,

as no vertical profiles of wind speed, temperature or otheahies were available at this stage.

The configurations [4-7] use different approaches for aiglyudging. Turning analysis
nudging off completely in the inner domain, [5] comparedn], reducesk? slightly, from
0.78 to 0.73. Nudging within the PBL, [6] compared with [digrsficantly reduces B to 0.79

ms~ 1. Nudgingu, but nott andq within the PBL, [7], causes the B to increase again.

Increasing the vertical resolution close to the groundc{8hpared to [6], decreases the B from
0.79 ms! to 0.63 ms!, although with a slight reduction in correlation. This algiges a

reasonably symmetric distribution of errors.

Finally [9], using increased vertical resolution closehe ground, coupled with no-nudging of
t or ¢ in the PBL gives the highest correlation of all configurasitested?? = 0.81, although

with a reasonably high bias @f34 ms™1.

From these comparisons, no single configuration appearsaa wlinner, although there are
significant improvements over the baseline. Given the erdu® assess the contribution that
wind energy may make, it is prudent to weight B more heavintlother statistics, to avoid
systematically over-stating the energy available fromdwiRor that reason, configuration [8]
was selected for the full simulation runs, as this gives tweekt overall bias, yet reasonable

correlation and RMSD.

One consistent result among the comparisons is a high wieddspeen at onshore surface

stations. It seems that analysis nudging corrects thigsyatic high bias somewhat. However,
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this may be by providing an artificial sink for momentum whishould more properly get

removed by other processes.

A recent analysis [Mass and Ovens, 2011] suggests that WRibitsxa high wind speed bias
over land due to the exclusion of sub-grid orographic drathe formulation of roughness
lengths. By formulating roughness length including thdfezts, they were able to significantly
reduce the high wind speed bias in low-level winds. Howetheiy adapted PBL scheme is not
yet available in WRF. In the absence of this, it seems thdysisanudging may be providing

an artificial sink of momentum which should be removed byuiebt processes.

A number of recent studies have evaluated different PBLreelseand other options in WRF
[Hu et al., 2010, Jin et al., 2010], although these were nailale at the time of this analysis.
However the findings are generally inconclusive, with ddfg PBL schemes having different
strengths and weaknesses, and no single scheme found taibedlg better. Furthermore,
results from different regions of the world may not be apyie, and each configuration may

have its own particular strengths and weaknesses depeoditigg application.

4.9 Choice of configuration

Configuration [8] was used for the full simulations. This isysnarised in Table 4.8, and the

complete set of options, as defined by tanelist.inpufile is included in Appendix B.

4.10 Chapter summary

This chapter describes how WRF was configured and verifiethstgabservations, before
committing to a long reanalysis. The practical limitatisagarding the availability and timing
of the computing resource were described, which limitednimmber of permutations which
could be tested and the length of the case study used. Alllikereational datasets used for
verification, both in this chapter and in later chapters ascdbed. The options which were

held constant during this and later stages were outlined.

The verification process was then described, including dolrtique for comparing model
output to point observations with a discussion of some oéiieht challenges. A number of

error statistics were defined, and it was demonstrated heyvale affected by different error
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Domain

doi do2 do3
Resolution (km) 27 9 3
Grid cells west-east 145 196 331
Grid cells south-north 115 181 391
Vertical levels 27 27 27
Timestep (s) 135 45 15
Feedback - Yes Yes
SST update Yes Yes Yes
Vegetation fraction update Yes Yes Yes
PBL scheme MY3 MYJ MYJ
Analyses nudging tdu tqu tqu
Nudging in PBL tqu tqu tqu
Cumulus scheme Kain-Fritsth Kain-Fritsch  None
Simulation block One month + 1 day spin up
Boundary conditions NCEP GFS final analy$fsx 1°
Land use dataset MODf{S
Surface layer physics Modified Monin-ObhuKov
Ground surface scheme Noah Land Surface Model
Microphysics WSM 5 clads
LW physics Rapid Radiative Transfer Mollel
SW Physics Simple downdrd
Diffusion 2nd order on model levels

Eddy diffusion coefficient =~ Smagorinksy first-order closure

& [Janjic, 2002, Mellor and Yamada, 1982]

b t=temperature, g=water vapour mixing ratio, u=wind speeds
¢ [Kain, 2004]

4 [Friedl, 2002]

¢ [Janjic, 1996]

f [Chen and Dudhia, 2000]

9 [Hong et al., 2004]

" [Mlawer et al., 1997]

' [Dudhia, 1989]

Table 4.8: Final configuration of WRF used for all future siation runs
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types. Then, a week-long case study represented a metgicedlp active week was chosen
and outlined, and a series of model runs were made usingatiffenodel configurations.
Aggregate error statistics were calculated for each of thdetruns, and were used to compare
different configurations. On the basis of this comparisbme, final configuration was chosen

and defined; this is now taken forward to the main simulatioase.
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Chapter 5
Simulation and Verification

5.1 Introduction

The previous chapter described a week long case study usddstodifferent model

configurations and select a configuration to use during mainlation phase.

This chapter now describes the simulation process usedetiiecthe reanalysis. Then, the
complete reanalysis dataset is verified against availdidergations. Long-term averages and
spatial and temporal patterns are compared to observatodshe nature of model errors are
explored. A systematic low bias in offshore wind speedsasiified, which is then corrected

in the following chapter.

5.2 Simulation process

For the main simulation phase an application was made viaClhgs 1B ‘direct access’
mechanism for an extended allocation on HECToR. The apijgitavas successful, and 6M
AU were granted, roughly equivalent to 200 000 hours, or 2&yef processing time on a

single CPU, to be used within six months of the allocation.

Simulation was performed in blocks of one calendar montlgwahg one day for model

spin-up. Using a simulation block of one month enables newdedeatures to develop and
persist in the model, and avoids frequent re-initialisatidcHowever, it also runs the risk of
biases and errors compounding over time, for example, a tegigitation bias could lead to
soil levels becoming too dry, which would re-enforce thiashi For that reason one month
was deemed to be a good compromise to allow features to geaeld persist, but prevents
long-term drift. Additionally, using 512 processors, onenth could be simulated within a

single 12-hour job, which is the time-limit for single jobs BIECToOR.

A reduced set of output variables were written to disk, diedain Appendix B, and only the

inner domain output files were kept, resulting in a raw oufipeisize of 30GB per day. Storage
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Figure 5.1: Schematic of the simulation process.

limitations meant that only one month at a time could be sataal. After completion, output
files were processed using the NetCDF operat@¥CO) to remove all but the lowest five

levels, reducing the file size to just over 1GB per day. Thiam@ariables were only retained
in about the lowest 500m or so of the atmosphere, and a sigmifaanount of information was

disregarded. However, this was the only way to ensure thedataset was a manageable size.

Each month required around 12-hours to simulate, plus akveurs pre-processing and
post-processing. The process was automated via a seriesripfss although manual
intervention was frequently required, for example, toagstuns which had been interrupted
by hardware failures. Additionally, during the six-montbcass window, the hardware on
HECTOR was upgraded from quad-core to 12-core, meaningersysiosures were fairly
regular, and the system was split between two architectuhésh required re-compilation of
various codes. Ten years of simulations were completedmiiie 6-month allowance, and an
extension granted to compensate hardware disruption edlaanother year to be simulated,

giving an 11-year reanalysis.

Figure 5.1 shows a schematic of the process. Detailed irtiomon the software components
which collectively make up WRF are given in the user manual AR, 2008], and are only
briefly described here. GFS final analyses are downloadedttlyirto HECToR in gridded
binary (GRIB) format one month at a time. These are unpackedr{b.exe) and interpolated
(metgrid.exe) to the model domain using the WRF pre-pracgssoftware. Static data e.g.
land-use and topography, are stored on HECToR and inteéepbta the model domain only

once (geogrid.exe). The meteorological data and statia de¢ combined and vertically

Yhttp:/Inco.sourceforge.net/
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interpolated (real.exe) to produce initial conditionsybdary conditions and analysis nudging
files. Finally the WRF solver (wrf.exe) is run to produce timawdation and write the output. If
the simulation completed successfully, the the NCO toadsraroked to reduce the number of
vertical levels and the resulting files are then transfetoed machine in Edinburgh, and also
to the tape archive facility provided by HECToR. If simutatifailed, the reason for the failure
is investigated (usually a hardware failure, or a storagetayexceedance) and the simulation
re-started from the nearest (weekly) restart point. Onceoatimof simulation files has been

transferred from the working filespace, the process begjamdor the next months simulation.
Table B.2 in Appendix B gives details of the output varialsetsined in the final output.

The final dataset consists of around 5 terabytes (TB) of NE&t@Ies, stored as one file per
simulated day. Working with this volume of raw data is vergvgland makes analysis difficult.
To facilitate analysis, time series are extracted at pahisterest and stored in a relational
SQL database. The gridded files are retained and used fordbagiion of resource maps and

for continuous spatial analysis; this dual data strategiustrated in Figure 5.2.

Eleven-year time series were extracted from the raw datatfd# points of interest, namely the
locations of observation stations and the locations ofesurand future wind farms. These time
series were then stored in a relational database which edldar detailed validation against

observations, and for easy conversion to power output taries

_)@ ;l o ;
WRF data |
‘

Figure 5.2: Data strategy involved the averaging of griddath and the extraction of time
series for analysis

SQL database

5.3 \Verification process

This section shows the results of verification of the wholéasket against observations
described earlier i§4.4. The figures and statistics presented here summarigetftemance

across multiple observation sites; verification againet#i individual sites are presented in
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Appendix C.

In addition to the statistics described §4.8.2, a number of visual tools were used to aid

verification, which allow for more detailed insight into thature of model errors.

5.3.1 Taylor and target diagrams

Taylor diagrams [Taylor et al., 2000] are based on centdaadics and summarise how well a
model captures patterns in observations. Continuing tketina defined ir$4.6.5, the centered
RMSD is defined as:

X 1/2
RMSD' = {N > l(pi —p) — (0i — 0)]2} (5.1)
=1

which can be decomposed into amplitude and correlationst@arphy, 1988]:
RMSD"” = 0,2 + 0,2 — 2R - 0,0, (5.2)

Eqg. 5.2 has the same form as the cosine rule, and Taylor diesgeae plotted in polar

coordinates(a, #), where:

a:@:? (5.3)
9 = cos }(R) (5.4)

This makes RMSDproportional to the distance from the reference pdin0). Points with
higher correlation lie closer to the x-axis, and points whi@pture the observed standard
deviating well lie closer to the contour, = 1. Since Taylor diagrams are based on centred
statistics, they do not say anything about absolute biasshauld be interpreted alongside an
indications of bias. To facilitate this, data on the Tayltagilams presented here are shown

coloured byB. An example is shown in Figure 5.3.

Target diagrams [Jolliff et al., 2009] show centered siagsand bias on the same diagram. The
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Figure 5.3: Example Taylor and target diagrams. Taylor rdiag show how well a model
captures patterns in observations; target diagrams shewnhoch of the total
RMSD is due to bias. Points A and B have similar correlationt A has a
systematic bias. Point A underestimatesand B overestimates.

total RMSD is related to RMSTand the bias by [Murphy, 1988]:

RMSD? = B> + RMSD" (5.5)

A target diagram plots RMSDon the x-axis and B on the y-axis: the x-axis indicates how
much of the RMSD explained by pattern error, and the y-axdgates how much is explained
by systematic error. The distance to the origin gives thal ®MSD. Furthermore, although
RMSD is, by definition, positive, the whole axis can be used bygmssg it the sign otr, — o,
[Jolliff et al., 2009]. Therefore, whether a point is leftright of the y-axis indicates whether
the model variance is larger or smaller than the observedceSiarget diagrams contain no
information about correlation, points on the diagrams Hzeen coloured according . An

example is shown in Figure 5.3.

5.3.2 QQ plots

Quantile-quantile (QQ) plots are a way of comparing twortbations. Quantiles from an
observed set of data are plotted against quantiles of anattieer observed or theoretical,
distribution. Figure 5.4 shows a comparison of two Weibuditributions. S2 is a linearly

scaled version of'1, which manifests itself in the QQ plot as a steeper, but emigjradient.
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Figure 5.4: (a) Distribution$'1 and 52, whereS2 = 1.2 x S1. (b) Resulting QQ plot.

5.4 General agreement

Table 5.1 presents overall error statistics by class oftinebservation, computed by pooling
all observations within that category. It shows a small fpasibias at met stations and
windfarm masts, and a reasonably large negative bias atavéfs particularly at lightships
where B=-1.35ms"!. WRF consistently under-predicts the observed standasiati®. This

is evident on the Taylor and target diagrams, Figure 5.5. Gemdered statistics show better

performance offshore, but systematic bias at buoys antshihs is evident.

category n obsmean wrfmean abs wrfo B RMSD R
ms~! ms?! ms! ms! ms! ms~1

Met station 222 5.00 5.15 3.34 2.85 0.15 2.03 0.64

Mast 6 7.66 7.93 4.14 3.81 0.27 227 071

Buoy 9 7.30 6.48 3.63 3.24 -0.82 2.02 0.74

Lightship 4 8.48 7.13 4.31 3.60 -1.35 230 0.82

Table 5.1: Summary of error statistics by in-situ obseoratype

The wind speed distributions and resulting QQ plots are shiaviFigure 5.7. For onshore met
stations, the model output is very good, representing tservled distribution very well across

the range of wind speeds.

For onshore windfarm masts, the agreement is also very gobthegins to deviate towards the
tail of the distribution, showing that WRF does not repregeak wind speeds well. In terms of
the overall energy from wind this is not important, since dvapeeds in this range will be in the
constant region of the power curve. However, it suggestmagasing the dataset to explicitly
investigate peak wind speeds e.g. when assessing the fiqoé high-wind cut-outs or for

assessing structural design loads.
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Figure 5.5: Taylor and target diagrams by observation cayeg

For buoys and lightships the distributions confirm a system@egative bias, evident in a
steeper gradient on the QQ plot, which is most evident atdlgjps. This also shows the bias
not entirely due to the failure to represent peak wind spdmads present across a wider range
of speeds. However, the linear nature of the QQ plot showts #side from the systematic
error, the underlying form of the distribution is very goodhis is also confirmed by the
high correlation seen at buoys and lightships, which shdws the patterns of wind speed

are captured very well.

Finally, the error in the average hourly speed is calculateass all onshore and offshore
observations, and the distribution of this is shown in Fé&gbii8. Again, onshore wind speeds
can be seen to be unbiased overall,with a almost zero-eeh#ed symmetric distribution. The
offshore speeds are consistently too low, with a distridsushifted to the left, and symmetric

about the mean.

In each case, the errors are not quite Normally distributggliven the large number of
observations, confidence intervals can be estimated Wirédadm the percentiles, are
summarised in Table 5.2.

5.5 Spatial agreement

Figures 5.9 show the spatial distribution of error statsstigainst in-situ observations. There

are a range of values, though there is no noticeable gedgraphd i.e. the performance does
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Figure 5.6: Histograms of observed and simulated wind spgeazhtegory of observation
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Figure 5.7: QQ plots by observation category
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Figure 5.8:

Distribution of hourly bias against all onsharel offshore in-situ observations.

Onshore  Offshore
ms! ms 1

B 0.11 -1.02
80% ClI +0.51 +0.91
90% ClI +0.68 +1.21
95% CI +0.85 +1.50

Table 5.2: Confidence intervals @ghby comparison with in-situ observations
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Figure 5.9: Geographic distribution of B and RMSD

not depend on latitude or longitude.

Figure 5.10 shows the distribution &f across in-situ observation points. It can be seen that
the vast majority of stations have2.0 < B < 2.0, with a few outliers with very high error

statistics. These outliers in terms of error statisticsrarestigated later.
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Figure 5.10: Distribution of average bias at individual rstettions

5.6 Temporal agreement

This section examines the extent to which model winds réeteanporal patterns on a number

of temporal scales.
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5.6.1 Time series
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Figure 5.11: Simulated and observed wind speed at for ongmadifa) Nelson A oil platform
and (b) M3 buoy

Time series plots show the model wind match observed pattary well: Figure 5.11 gives
an example of the typical match between observed and sietllgind speeds. The observed
wind speeds show some higher-frequency variation than hspeeds, but the main patterns
are captured very well. There are too many such plots to deglso the following sections

examine the temporal match in average wind speeds acropstainscales.

5.6.2 Diurnal

Figure 5.12 shows observed and simulated wind speeds byhthe day across all observation
types. Wind speeds are presented as anomalies from meahatseystematic errors are

excluded.

At met stations the modelled diurnal pattern is very closthéobserved, and has the correct
amplitude and shape. It appears to lead the observed paftearound one hour, suggesting
the growth of the daytime boundary layer is slightly too famtd its decay too rapid. At
wind farms masts, the diurnal amplitude is slightly undedicted. It is worth noting that the

observed diurnal pattern seen at wind farms masts is muclesrttan the pattern seen at met
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Figure 5.12: Observed and modelled average diurnal vaniati in-situ observations.

stations, which are at 10m agl.

Offshore, diurnal variation would be expected to be less] bath the observations and
simulations reflect this, with any departures from the medyn around 0.1ms!. At lightships,
both the observations and simulations show a pattern pgssitaracteristic of a weak sea
breeze, although the amplitude of this pattern is largere gimulations. At buoys, the
simulated pattern has three distinct peaks, which may beergasition of different diurnal
patterns seen in onshore and offshore flows. A three-pedkrpat faintly present in the
observation. The amplitude of all of these patterns is vemals It is worth noting that
Lapworth [2005] also found a diurnal pattern at lightshipsickh was not characteristic of a

sea breeze or orographic induced jets.

Overall, this analysis suggests the model captures diverations very well, with only minor
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differences compared to observations. It would be interggo look in more detail at coastal

thermal circulations, but this is left for future work.

5.6.3 Seasonal
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Figure 5.13: Observed and modelled variation in monthlydrgpeeds

Figure 5.13 shows observed and simulated wind speeds byhnebrihe year. The seasonal
pattern matches observations very well in all cases, wighdst wind speeds in January, and

lowest between June and August, and with seasonal varsiigirily larger offshore.

5.6.4 Inter-annual

Figure 5.14 shows wind speed anomalies over 2000-2010 saaibthe in-situ observations
which had observations spanning the whole period. Sepalats per category are not
presented, since many sources do not span the whole peribdye periods of missing data
in certain years. The model capture the inter-annual vangtwell. There are only minor

differences, which may have a physical cause, but equallidaelate to changes in the number
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Figure 5.14: Observed and simulated annual wind speed diesroger the period 2000 - 2010.

of sources included in the observational record.

Of note is the unusually low wind speeds in 2010. These warsszhby a strong blocking high
pattern over northern Europe, evident in a negative wintmttiNAtlantic Oscillation (NAO)
index, perhaps the lowest on record. These variations itatige-scale circulation are very

significant in terms of power production [Brayshaw et al1 2?0
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5.7 \Vertical profiles
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Figure 5.15: Comparison of vertical profiles from WRF andaraprofilers. The agreement
in the overlapping region is reasonably good aside from #he ¢f Man and
Capel Dewi, where the shape is reasonable but the profile sslaosystematic
displacement

Substantial effort was made to obtain data from offshoretenagh anemometers at multiple
heights. However, due to the very high cost of the masts anddmmercial sensitivity of the
results, detailed observations of offshore profiles wet@wailable. The only datasets available

with vertical profiles are the UKMO radar profilers descriled4.4.7.

Most of the UKMO radar profilers begin reading at 200m agl orendsince only the lowest
five n levels are retained in the WRF output, this gives limitedriag and doesn't allow
comparison at typical hub heights. The radar profilers arkeadt 1km inland, with the
exception of the Isle of Man and South Uist. The Isle of Manfifgpis on the east coast
with prevailing winds coming over land; only South Uist ikdly to be representative of an

offshore profile.

Raw profiler data was obtained from the BADC, and then birraayed using 50m bins to derive
vertical profiles at each site. Figure 5.15 compares averagieal profiles derived from radar

observations to WRF simulations over the same period.

A promising feature of the comparison is that, in the ovegrlag region, the profile shapes
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appear to agree very well. At the Isle of Mann and Capel Dewreghis a systematic

displacement of the profile. This suggests that any systereatbrs detected at low levels
might be reasonably constant with height, and any cornestitetermined at surface level may
be applicable up to typical hub-heights.

5.8 Investigation of errors

The verification so far has shown that average wind speed® agell onshore, although there
is a low bias offshore. It has also shown that the spatial amgboral patterns are captured very
well. This section investigates potential causes of erswdhat a better understanding of the
model performance can be gained, and so that some insight begyained as to how to tackle

the systematic bias offshore.

5.8.1 Terrain

Figure 5.10 shows the majority of stations have -2tas B <2ms™!, with a few outliers
with a large negative bias. On inspection, the stations Witk —3ms™'are those situated on
mountain tops, listed in Table 5.3.

Station Elevation B RMSD R?
m ms! ms~?

Cairngorm Summit 1245 -6.24 7.68 0.68
Great Dun Fell 847 -4.68 557 0.74
Cairnwell 933 -3.94 510 0.72
Bealach na Ba 773 -3.63 5.15 0.63
Aonach Mor 1130 -3.02 4.28 0.58
Glen Ogle 564 -2.88 3.69 0.62

Table 5.3: Outlier met stations were those situated on naduribps. Elevation given is the
station elevation, not the model terrain.

Terrain has the largest influence on local wind speed, andsoake model at 3km resolution
will not represent complex terrain very well. To explorestiai measure of terrain complexity
was computed using higher resolution SRTM4 terrain dater [ftzal., 2007]. SRTM4 data at
approximately 90-metre resolution was used to compike the terrain height range within
each 3km model cell, based on the 90m DEM data. Figure 5.18ssth@ range of B and Rf

the stations are partitioned ly;,, using the definitions:
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e smooth:A,; < 50m,;
e complex:50 < Ay, < 100m; and

e extreme:A;, > 100m
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Figure 5.16: Distribution of B and Rfor met stations in smooth, complex and extreme terrain.
Whiskers denote 1.5 times the inter-quartile range.

It is evident that performance degrades in complex terrdihis is not surprising since five
grid points are needed to accurately capture a terrainrisasithough simply shaped hills can
be represented with less. It may be possible to correct fogiteusing one of the numerous
‘rules of thumb’ e.g. [Lemelin et al., 1988, Lubitz and Whi007]. These are formulated
based on wind tunnel experiments and field trials, in pasrcine Askervein field trial [Castro
et al., 2003]. Typically terrain is classified as distincatigres such as a ridge or a hill, which
can represented by a characteristic length and height,tas#stermine a speed-up factor. For
example, Howard and Clark [2007] develop and apply a simgi&in correction for NWP
forecasts based on the linear flow theories of Jackson ant[Hirb]. However, this approach

would be difficult to generalise across the whole countrg @ifficult to automate.

A better way to account for the local terrain would be to nestigher resolution linear or
non-linear flow model, see e.g. Ayotte [2008] for a reviewlwde techniques. However, even
with a higher resolution model the flow in complex terrain iiclilt to model, particularly
where there is flow detachment and recirculation and thiginesra challenge for many models
e.g. [Bitsuamlak et al., 2004, Castro et al., 2003, Undh&@f5]. Since the purpose here
is a national-scale assessment, it was not thought negessadopt this kind of microscale
approach across the whole model domain for the purposespobuimg point predictions. Such

an approach can be performed as necessary if the data is stdar micro-siting.
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Additionally, the output from WRF is the steady flow througBkam grid cell, which in some

cases may be a better indicator of the average wind congliicross a whole wind farm site
than a highly-resolved prediction at a single point. Thenefit was not thought necessary to
apply considerable effort to resolve fine-scale featurdsaat not until the power outputs from

windfarms had been verified.

Furthermore, although wind farms are found in reasonabigpdex terrain, they are unlikely
to be sited in terrain classified here as extreme, partly dyghysical reasons of increased
turbulence and construction difficulties, but mainly assth@reas correspond to mountain
ranges which, in the UK, mostly have environmental designatthat prevent windfarm

development.

5.8.2 Roughness length

Although performance against windfarm masts was generatlygood, systematic biases were
found at a some of the windfarm masts sites. This can be seerain time series plot for the

mast S1, shown in Figure 5.17.
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Figure 5.17: Influence of roughness length on simulated wpeed mast S1. Top: wind speeds
are interpolated from the closest model level using theirmalgoughness length.
Bottom: wind speeds are interpolated from a higher modelllev 100m) using
the revised roughness length. This can be seen to remove ontivh systematic
error.
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Mast Figures zp B RMSD R

C1 default 0.21 -2.52 3.50 0.77
C1 revised 0.05 -1.78 2.90 0.75
S1 default 0.50 -1.35 1.90 0.80
S1 revised 0.03 -0.07 1.68 0.74

Table 5.4: Default and revised roughness lengths at wind faasts and consequent changes
in error statistics

A major source of systematic error is the parametrisatioroofhness length. For example,
the grid cell containing S1 has a roughness length in WRF %0r@, which represents very
rough terrain. The operators of the wind farm site suggest tihis is too high (Personal
communication), and that a roughness length of 0.03m is eygpeopriate. Figure 5.17 shows
the effect of changing the roughness length and scaling ithé speed from WRF from a higher

model level & 100m) using a neutral logarithmic profile.

The roughness length parameterisation at all six of the snaas reviewed in consultation
with the site operators and by examining their location odrance Survey maps. Two major
revisions to roughness length were made, at C1 and S1. Sldeadvirongly attributed to
forestry (there was some forestry nearby) and C1 had beenglyrattributed to an urban
land-use category (there was a small town nearby). Rewdimmoughness lengths are listed
in Table 5.4, which also shows the revised error statisfidss can only improve systematic
errors and will not improve phase errors. In fact there igghseterioration observed in the
correlation as a result of taking the wind speed from a hidénezl. This may be a result of
ignoring features of the wind profile resolved in the lowesels e.g. nocturnal jets. However,

this was deemed to be less important than the significanttietuin model bias.

This confirms findings of Brower et al. [2004], who found theeqdately characterising
roughness length was one of the major sources of error in snako models, but also
demonstrates that it may be possible to improve the perfoceaat particular locations

post-hoc, with the use of higher resolution terrain and lase data.

However, this result should be interpreted with some caytas an examination of mast profiles
reveals. Of the mast data obtained here, S2, S3, and C2 hataraters at three individual
heights which allowed their profiles to be examined; windfifgs above homogeneous terrain
in neutral conditions should exhibit the logarithmic prefilefined ir;2.6.3. Figure 5.18 shows

a plot of in(z) vs U for masts S2, S3 and C2. Since there was not enough informatio

91



Simulation and Verification

at the masts to correct for atmospheric stability, only okeéons likely to be from neutral
atmospheric conditions were used. The stability paramefesm WRF was used to aid the
selection, and only daytime wind speeds (10:00 to 16:00y&fdé < 0.02 were used to derive
the profiles.

141 /

s _c{ana 3 2022004
11 sre C2,20=1.4e-07 ||
eee S2, 70=1.0e-03

2.0 2.5 3.0 3.5 4.0 4.5 5.0
In(z)

wind speed m/s

Figure 5.18: Observed vertical profiles at three windfarnstsiand fitted logarithmic profiles.
Only daytime wind speeds whefg < 0.02 are used in the averaging

Very low wind shear is seen at all masts: S3 actually showsilomind speed at 40m than
30m. Plotting a least-squares line of best fit allows roughriength to be estimated, albeit
with considerable uncertainty [Schaudt, 1998, Wierin@93]. From the line of best fit:

U=A-In(z)+B (5.6)

2o can be estimated &t = 0. This approach gives roughness lengths (shown on the lkgend
many orders of magnitude smaller than would be expecteddbasehe prevailing land-use.
Even S2, which shows the closest agreement to a logarithrafdgohaszy = 0.001m which

is the roughness typically associated with a flat sea surtawmesiderably lower than expected

from the actual land use.

The conclusion is that the observations themselves do fobiexa surface layer logarithmic
profile.  This could be due to orographic effects, upwind ress-length changes,
instrumentation error, or flow distortion around the instants. It suggests that attempts to
improve predictions at individual sites would require mdegailed modelling, and highlights
the danger of using simple scaling laws to downscale fromhdrigevels. It would be
interesting to perform some microscale simulations drivgthe 3km WRF outputs, but for a

national-wide assessment, it was not thought necessaryrsagthis approach.
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Month obs mean wrfmean obsstd wrfstd B RMSD 2R
1 9.89 8.92 452 3.82 -0.97 2.33 0.78
2 8.71 7.74 4.19 357 -0.97 239 0.73
3 8.26 7.15 4.06 3.36 -1.11 2.28 0.76
4 6.98 5.89 3.54 296 -1.09 2.05 0.76
5 6.91 5.75 3.44 2.82 -1.16 2.07 0.75
6 6.02 4,91 3.00 243 -1.11 2.02 0.69
7 6.41 5.29 3.19 2.60 -1.12 205 0.71
8 6.62 5.55 3.08 259 -1.07 1.99 0.70
9 7.38 6.31 3.43 3.00 -1.06 1.96 0.77
10 8.69 7.61 3.86 3.33 -1.08 2.09 0.78
11 9.49 8.35 4.15 351 -1.14 225 0.78
12 9.35 8.29 4.23 3.52 -1.06 2.25 0.78

Table 5.5: Offshore error statistics by month of the yeare Pplerformance drops slightly in
summer.

5.8.3 Coastal influence

The sharp roughness and temperature gradients at the asasfymdamental challenges for
mesoscale models, as discusseglis.5. PBL schemes are based on assumptions of horizontal
homogeneity which do not hold at the coast. Conditions mastitmngly stable or unstable as
air advects across the temperature boundary, while thegeharroughness length leads to the
formation of an internal boundary layer. In some cases tfieence of land can be seen tens

of kilometres offshore [Barthelmie, 1999].

To explore the effect of nearby lan#? was plotted as a function of direction sector for each of
the in-situ offshore observations, shown in Figure 5.1% [Dleations of the in-situ observations
and their relation to the coast is shown in Figure 4.5. Theianfite of land does seem to be
visible at Aberporth and Pembroke buoys, which are clogestnd. At Aberporth, which has
land to the east and southeast,i®Rmarkedly worse for offshore winds. Similarly at Pembroke
which has land to the northeast? B lower for offshore winds. However, K5 and K7 also
appear to show a directional influence ofy Respite being relatively far from land, so no firm

conclusions can be drawn from this.

5.8.4 Season

Figure 5.20 shows bias by months of the year, and Table 5.5nsuises the offshore statistics
by season. There is a reasonably clear indiction that pedoce is worse in the summer

months.
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Figure 5.20: B and Rby month of the year for offshore observations
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5.8.5 Sea surface temperature

While investigating the seasonal effect on performancejas discovered that SST was not
updated in the inner domain during the simulation. Inst&®IT was taken at the start of the
month and then remained constant. This was despite thenfgtdihe option to update SST had
been specified, and was eventually traced to an error in th& \dGRumentation, a problem

which has since been encountered in another study [BukausttyKaroly, 2009].

Figure 5.21 shows observed and modelled monthly SST and@gwexir temperature at two
sites, Aberporth buoy and the M3 buoy. Observed sea temyperittaken through the hull of
the buoy, and the true SST may be slightly cooler due to thestao effect. Air temperature
is measured at 3m above sea level. Two metre temperatur@(t23ST are taken from WRF

directly.

WRF has a too-cold sea in the months where the sea is heatingndpa too-warm sea in
the months when the sea is cooling down. The magnitude obibisis largest in June and

November when the observed SST is changing most rapidly.

Of more importance for stability is the air-sea temperatdifference. WRF matches
the observed air temperatures closely, but predicts a rladiféerence between air and
sea temperature than observed in June, October and Noveaitherugh in all cases the
temperature difference is in the same direction. In Juneirtigact would likely be the
prediction of more stable conditions than observed, wittluced convective mixing of
momentum and a generally reduced wind speed within theestapér. In October the impact

would be the converse, unstable conditions and generalteased surface winds.

Since the discrepancy in SST will increase throughout thatmsimulation, bias was plotted
as a function of day of the month, Figure 5.22, to show whebhas grows throughout a
simulation. No discernible trend is clear, and the SST issuexplored in further detail in

the following section which examines error by stabilitysda

5.8.6 Stability

A challenge for mesoscale models is determining near suvdd speeds in conditions which
strongly depart from neutral stability. In addition, sif88T was not correctly updated, there

may be larger deviations from neutral than observed. Migthaed stability would lead to a
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Figure 5.21: Average monthly air temperature (*) and sefasartemperatureX). Within each
month, buoy observations are on the left (in red) and modeligitions on the
right (in blue). The largest discrepancy between model drsgiwvations occurs in
June and November when the rate of change of SST is highest
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Figure 5.22: Bias by day of the month
Stability class  frequency obs mean wrfmean obsstd wrfstd B MSR R?
% ms? ms! ms! ms! ms! % ms !
very stable 32 6.29 5.33 3.04 2.49 -0.96 2.06 0.64
stable 11 9.50 8.47 3.48 2.74 -1.03 2.24 0.68
neutral 33 10.64 9.48 3.97 3.16 -1.16 2.47 0.70
unstable 10 7.30 6.05 2.86 1.92 -1.25 2.24 0.58
very unstable 15 4.72 3.59 2.38 1.63 -1.13 2.03 0.50

Table 5.6: Error statistics at offshore in-situ observaiby WRF stability class. Stability class
is determined by the value gffrom WRF.

bias in the surface flux.., and hence a bias in the surface winds. In order to exploge thi
statistics by stability class were computed according ¢oviilues off and the classification in
§2.3. Table 5.6 shows the frequency of stability classesmisgd by WRF across all offshore
in-situ observations. Neutral conditions predominateugh very stable conditions are almost
as common. The frequency of stability classes is similantsé found by Barthelmie [1999].
The error statistics within the stable class are similah&odrrors in neutral conditions. Very
unstable conditions also quite frequently diagnosed,ithid markedly lower for very unstable
conditions. This could reflect a mis-diagnosis of unstaldad@tions caused by the SST
problem. In particular, the fact that WRF is diagnosing ahk conditions when the observed
average wind speed is over 7msuggests this may be the case. However, it could also reflect
the difficulty inherent in predicting wind speeds when theaptic forcing is not so strong, or

greater error in the observations seen in relatively londvwgipeeds.

The main finding is that the low bias seen offshore is seenemnyestability class, which rules

out misdiagnosed stability class as a cause.
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5.9 Comparison with satellite data

The comparison with in-situ observations strongly suggestow wind speed bias offshore.
Offshore wind speeds are now compared to QuickSCAT and ASU@Ad speeds, as described
in §4.4.8. QuickSCAT winds are used for the period 2000-2008,ABCAT thereafter. These

are referred to collectively here as ‘satellite winds’.

Daily average satellite wind speeds were interpolated thr@digher resolution WRF grid using
bi-linear interpolation. More complex interpolation medts e.g. bi-cubic can lead to problems

near the coast by extending the influence of land furthehofs.

Figure 5.23 shows a comparison of average wind speeds owestible period, from 2000
to 2010 inclusive. Although the broad geographic pattersingilar, WRF wind speeds are
consistently lower than satellite winds. For example, b# horthwest of Scotland, satellite
winds show an average of 9.5ms while WRF only shows 8.5ms.

QSCAT WRF raw

Wind speed (m/s)

4.0 45 5.0 55 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Figure 5.23: Average satellite (left) and WRF winds (righitlOm amsl|

Also of note are some unusual features in the WRF wind fieletr& s a noticeable low wind
speed centre in the North Sea, and another smaller low wieddspentre near the northwest
corner of the domain. Figure 5.24 shows these anomalous aoegespond to the location of
the oil platforms in the North Sea, and the K5 buoy. Wind spdeaim all of these sources are
assimilated by the GFS model and other global models. Shmeedre in areas of relatively

sparse of observations, a single observation will haverafgignt effect on the model solution.

Since analysis nudging was used throughout this study, @syib the global model could
manifest itself in the mesoscale model. It was not feasiblehtain the full GFS dataset for

the period in question due to storage constraints, but iyi®thesised that a similar area will

98



Simulation and Verification

[CONTOUR FROM 3.6 TO 8.8 BY .4]

Figure 5.24: Influence of observations on WRF wind speed. thoeareas of unusually low
wind speed correspond to locations of in-situ observatiores otherwise sparse
area. It is hypothesised that these observations are degrde global and the
mesoscale model.

appear in the GFS wind speeds. Indeed, a similar featursiide/in the wind speed maps of the
DTI Marine Atlas, which noted “one unexpected feature tortbeth-west of Scotland” [DTI,

2004], which appears to coincide with the K5 buoy.

This is an important result in itself, as it highlights pdiahimprovements in forecast models
from relatively simple changes. In particular, wind speegasurements from oil platforms,
which have long been known to be problematic due to the infleief the platform, should
either be improved, excluded, or at least given a higher nmiogy in data assimilation

programs, so that they are not overly weighted over sa&adliservations.

As a further illustration of the systematic nature of thesbiplots of average monthly wind
speed are shown in Figure 5.25 for January and May 2001, wdmehtypical of a high
wind speed and low wind speed month in the period studied.ahudry, the shape of the
wind two wind fields are in broad agreement. However, 10m dpdom WRF are still
systematically lower than QuickSCAT across much of the doywaith the highest wind speed
off the north-west of Scotland reaching 11m& WRF compared to 13msfrom satellite
observations. A similar low bias is seen in the North Sea. fabethat these biases are seen in
the open ocean shows it is not simply coastal effect. In Maytivo wind fields show similar
geographic features, particularly in the North Sea. HoweReickSCAT data shows higher
wind speeds off the northwest of the domain, with wind speedsnd 6 or 7 ms!compared
to 4 or 5 mslin WRF.
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WRF Jan, 2000 QCK Jan, 2000

Figure 5.25: Comparison of WRF (left) and QuickSCAT (righvind vectors for January and
May 2000. In January, WRF wind speeds reach a maximum of drblims ! off
the northwest of Scotland, while QuickSCAT winds show a mmaxi of 13ms'!.

In May, wind speeds in the open sea in the northwest are signifiy lower the
QSCAT winds.
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5.10 Comparison with other models

5.10.1 Marine Atlas

The Marine Atlas was developed by the DTI to provide data am rknewable resource
available offshore. Offshore wind speeds in the Marine gnéitlas are derived from archived
output from the Met Office UM. The main dataset uses just oeget years (1st June 2000
- 30th September 2003) of archived output UK Waters configuraat approximately 11km
resolution [DTI, 2004], driven by the global configuratiohtbhe UM. In the Marine Atlas,
model winds were converted to 10m from the lowest presswel l@pproximately 19.5m

amsl), using a simple scaling factor of 0.94 [DTI, 2004].

Wind speeds from the Marine Atlas are available as an Arc@GEpefile, at approximately
12km resolution. For comparison with WRF, wind speeds dversame period were averaged
onto the lower resolution Marine Atlas grid, and subtradtedh the speed. Figure 5.26 shows
the difference in 100m wind speed - comparisons at 10m andsBanved a similar picture. It
can be seen that WRF wind speeds are universally lower ofidhoaround 1ns', with larger
discrepancy of up to 2.5msin semi-enclosed coastal areas. In the open ocean, theagaigr

agreement is very good, with both showing very similar sppatriation in wind speeds.

It is worth noting that verification against in-situ obsdiwas performed for the Marine Atlas
showed errors in the region of 10-15% and as high as 30% atienf>d’|1, 2004]. Table 5.7
shows comparisons for those buoys and lightships whichlayvéretween studies. There is a
slight difference in the observed figures, suggesting thesg be a difference in the quality
control used between studies. Bias has been expressed aseatpge since that is quoted
in the Marine Atlas. The magnitude of the errors is compaabbwever wind speeds from
WRF are consistently low, while the Marine Atlas errors vdepending on location. Given the
uncertainties involved, it is not desireable to correct pralel on the basis of another model.
Also, since it only presents monthly averages, and is onlivelé from three-years of data, the

Marine Atlas it is not suitable for correcting the WRF output

5.10.2 GFS

Finally, the raw output of the GFS was extracted and compared/RF output and in-situ

observations, to investigate whether this might be thecgoaf the low bias. Storage and time
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Difference (m/s) -0.49 - 0.00
® -400--3.50 0.01-0.50
® -3.49--3.00 0.51-1.00
m -299--250 1.01-1.50
m -249--2.00 1.51-2.00

®  -199--150 ®  200-250
-1.49--1.00 m  250-3.00
-0.99 - -0.50

Figure 5.26: Comparison with the DTI Marine Atlas. Diffecenis computed as [Marine Atlas]
- [WRF]
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Station Type Marine Atlas This study
Model Observed Bias Model Observed Bias
ms~! ms~! % ms! ms~! %
K5 Buoy 9.33 7.99 17 7.70 795 -3.2
Aberporth Buoy 7.24 5.60 29 5.24 6.19 -15.3
Sevenstones Lightship 8.19 8.61 -5 7.64 8.62 -11.4
Greenwhich  Lightship 7.98 8.43 -5 7.01 8.63 -18.7

Table 5.7: Comparison with DTI Marine Atlas validation. Tiarine Atlas was derived from
three years of output from the UK Waters configuration Metc@flunified Model,
and verified against in-situ observations.

constraints prevented the full global reanalysis beingrdoaded, so a limited comparison
across one month was performed. Figure 5.27 compares mavittage GFS 10m wind with
WRF 10m wind and in-situ observations for an exposed andtalobsoy. At the exposed
location of K5, the agreement between the three sourcesigemably close. As noted, if the

observations at K5 are low, this will constrain the GFS mauofel subsequently WRF.

At a less exposed buoy, such as M2 buoy in the Irish Sea, thend#s have a significant low
bias compared to the observations. This is very likely dugnéolower spatial resolution and
coarser land-sea boundary in the GP8dta. Figure 5.28 shows the landmask at this resolution,
together with the locations of the in-situ observations nilaf observations, particularly on the
west coast, fall into land cells. In these cells the GFS winbliased low compared to offshore

observations. Analysis nudging in these regions will tanddt as a sink of momentum.

5.11 Discussion

None of the investigations conclusively reveal the souf¢aeoffshore low wind speed bias in
WRF. Whatever the reason, this type of bias is common - if natassal - in mesoscale models
[Hart et al., 2004, Mass, 2003]. As Hart et al. [2004] states:

“considerable improvement is needed to existing models dourately
simulate local boundary layer structure and evolution. Assalt, current models
exhibit systematic biases that limit their application séod/detailed point-specific
forecasting ”

From the investigations here, the most likely cause appedns a combination of bias inherited

from the GFS model through the use of analysis nudging. Rdhteobias in the GFS model

103



Simulation and Verification

GFS

6 . L
4 — WRF i
2 —— observed | |-

wind speed (m/s)
[ee]

OJ an Feb  Mar Apr  May Jun Jul Aug Sep Oct Nov  Dec Jan

(a) K5

16 ‘
» 14 l
£ 1] /
= 10 1 L
8 8 -- GFS -
I -
s & e e —_ — WRF |
E 5 ] e —— observed | |

O L 1 |

Jan Feb  Mar Apr  May Jun Jul Aug Sep Oct Nov  Dec Jan
(b) M2

Figure 5.27: Average monthly winds for 2005 from GFS, WRF ansditu observations. GFS
agrees closely with in-situ observations for exposed lonatlike K5, but is biased
low for in-situ observations close to the coast which maliféd land points.

may be due to assimilation of problematic observationslgilaiforms and the K5 buoy. Part

of the bias towards the coast might be explained by the céangenask at dresolution.

Another reason for the low bias may be related to the reswoluif the global model. Recent
studies have found both NCEP and ECWMF reanalysis surfawgsAo be biased low [Fangohr
etal., 2008, Reistad et al., 2011, Thomas et al., 2008]. ¥amnele, Reistad et al. [2011] found
ERA-40 10m wind to be biased low by about -0.86rhswhile Kolstad [2008] found NCEP
reanalysis surface winds to be significantly (8%) lower tRanckSCAT over the Nordic seas,

both in open water but particularly so near the coast.

One explanation of this low bias is an underestimation ofkpe@nds associated with
depressions [Cardone et al., 1999, Chelton et al., 2006il &né Cox, 2000]. For example,
Chelton et al. [2006] found both NCEP and ECMWF models urstenated the intensity, and
over-estimated the spatial scale and smoothness of egpial cyclones. This would explain

the underestimation of peak wind speeds found here.

As detailed in Chapter 4, the decision to use analysis ngdgas to remove high bias seen at

onshore met stations. However, recent work [Mass and O2€i4,] suggests that this onshore
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GFS land

Figure 5.28: GFS landmask dtrisolution

high bias is due to the neglect of sub-grid scale orographag,da problem which will be

corrected in future implementations of WRF. It is probaltiattanalysis nudging provides a
sink for momentum which should be removed through this meisha The use of analysis
nudging may remove some of the advantage of a higher resolotodel. That said, the overall
error statistics and wind speed distributions are very goNdidging terms are very small,

designed not to overwhelm the physical processes beindaiaal

In most applications, a small bias may be acceptable, bengive sensitivity of power output
to wind speeds, a difference in an average wind between 6.5and 7.5ms'could be the
difference between a project being commercially viableair ior this reason it was decided

this offshore bias needed to be corrected, and this is thjedutf the next chapter.

5.12 Chapter summary

In this chapter, the simulation process used to derive aelpear reanalysis at 3km resolution
was described. Extensive verification against observatiwas performed, and it was shown
that the reanalysis recreates average wind speed digtrisutand the spatial and temporal
variation in wind speeds across the whole of the Britishslsleoth onshore and offshore.

Hourly, diurnal, seasonal and spatial patterns are alisteal

Onshore, performance compared to met stations is very ggaatt from a few met stations
in very complex terrain. Limited comparisons to wind farmstsashows good performance,
and these are independent sites whose observations haearoaissimilated into the driving
model. Systematic errors seen at some wind farm masts werel fm be due to incorrect

roughness lengths, and could be removed once better infiornmaas available. Peak wind
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speeds are not represented well.

Offshore, the wind speeds patterns are captured well, bys@@rmatic low bias of around
1-2 mslis a concern, particularly for coastal observations. Thpaah of wind direction

and atmospheric stability were explored as potential causg no conclusive factor emerged
which might offer a simple explanation. It was found that matous geographic features,
not supported by the satellite record, could be traced t@$isemilation of observations from
platforms and buoys. It is proposed that further invesiigabf these has the potential to

improve the quality of global forecasts models.

The following chapter details a simple correction schentetoove the low bias seen offshore.
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Chapter 6
Offshore Bias Correction

6.1 Introduction

The previous chapter has shown that the model wind speedpatemrery well to observed
spatial and temporal patterns, although a systematic lassbiists offshore, which was deemed
to require further action. This chapter presents a simpteection for the bias based on a
complete satellite record over the corresponding periazhstStent with the previous chapter,
the term ‘satellite wind’ is used to collectively refer to IGkSCAT and ASCAT derived wind
speeds, described {4.4.8.

6.2 Background

Post-processing of model output to remove bias has long lmmlied in weather

forecasting [Klein and Glahn, 1974], and is still regardedaecessary step [Giebel, 2010].

The most common family of approaches are known as Model @&tatistics (MOS) see e.g.
[Giebel et al., 2003, Klein and Glahn, 1974, Nielsen et 807 Termonia and Deckmyn, 2007,
Vannitsem and Nicolis, 2008]. The general technique is t@ldg statistical relations between
variables of the NWP model, the predictors, and the desitggdud, the predictand [AMS,
2000]. The predictand may be an error-corrected version & rimble already in the NWP
model, or it may be new diagnostic variable, for example thassnof ice on wind turbine
blades. A wide variety of techniques can be used to deterthimetatistical relationship such
as simple linear regression, multiple linear regressiayelian models, and neural networks;

Gel and Raftery [2004] give a good review.

Most error-correction methods are local, restricted td gints where previous observations
are available. It is more difficult to generalise to grid geiaway from observations. Gel and
Raftery [2004] developed a gridded approach by first rejatiwdel bias to spatial and temporal
variables, such as the latitude or day of the year. Thisiogiship may then be applied to any
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grid point, regardless of whether observations exist fat point or not. However, this approach
still requires enough observation sites to adequately Eathp spatial variables used in the
regression. Given the small number of in-situ offshore pla@ns, this kind of approach was

not thought applicable.

The satellite scatterometer winds describedsd4.8 offer the only obvious approach for
correcting bias across the whole offshore domain. As ajreated, satellite winds are thought
to be under-utilised by global models and provide more tHatai smaller biases compared to
raw GFS output [Chelton et al., 2006]. However, the maintttndn of these is their daily time

resolution.

The desire was to develop an offshore bias correction whmhldvpreserve the temporal and
spatial resolution of WRF output. In addition, it was desbie to keep the method transparent,
so that the original model data could easily be recovered.cbirection had to be derived from
the daily satellite data, but be applicable to the hourly WiREa. Finally, a correction had to

be derived from, and applied to, each 3km offshore cell dvefll eleven-year period.

There are many methods for post-processing, in particughoas based on the Kalman-Filter
(KF) can have very dramatic results [Crochet, 2004, Delledtine et al., 2011, 2008, Libonati
et al., 2008, Louka et al., 2008]. Such an approach is adapiias at time partly determines

the bias at time + 1, which allows correction of non-stationary errors suchessenal effects.

However, it was not thought feasible to apply this methogplacross the whole reanalysis
dataset. Working with the raw data files is slow, each day mufated wind speed is stored
in a single file, and the whole dataset is too large to fit in th@mory of a single machine.

Implementing a KF per grid cell would require repeatedlydieg through the dataset at each
point in the domain, applying a KF to calculate the corractmthe daily wind speed, and then
applying this to the hourly wind speeds and writing the updatalues to a new file. Storage
and time constraints meant this was not possible, althougfilimake an interesting area of

further work.

In any case, many simple bias correction schemes have beemn $hbe very effective [Hamill

et al., 2008]. It has been shown in Chapter 5 that the biasasoreably stationary in time, in
which case a linear regression will minimise the RMSD betwsatellite speeds and model
data. Hamill [2010] advocates using the simplest possifflective approach, noting that

very often simple techniques are as effective as more comguies. For these reasons a bias
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correction based on linear regression is used here; thithbdarge advantage of being simple,

transparent, and only requires the additional storageaafignt and intercept terms.

6.3 Processing satellite data

Background information about satellite scatterometerdgjrand the sources used is given in
Chapter 4. Satellite winds are interpolated from the rieetr latitude-longitude global grid
onto the higher resolution curvilinear WRF grid using Ioiar interpolation. This simple
interpolation scheme minimises some of the problems as®atiwith interpolation near the

coast.

The EQNW from the satellite data is used directly: the ainvigreate a simple correction
derived directly from the satellite data, without requiriadditional estimates of surface fluxes
themselves introduce further uncertainties. At the le¥ainonthly averages, the difference
between EQNW and real winds is small [Kara, 2008], and the BQas found to be unbiased

with respect to in-situ observatiorfg.4.

The time resolution of the gridded satellite winds is daifyor QuickSCAT this is a direct
average of two overhead passes of the satellite, while faZ ANSthese two overhead passes
are averaged with the aid of NWP model output to determineedaily average. However,
the months where both are available shows the two datasdds io close agreement, e.g.

Figure 6.1.

ASC Jan, 2009

Figure 6.1: Comparison of QuickSCAT and ASCAT winds, Japz4&09
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6.4 Verification of satellite data

In Chapter 5 it was shown that the magnitude of the offshoas I8 around 1.0-1.5ms.
This is comparable in magnitude to the estimated error ittexcemeter winds, thought to
be 1.5 ms![Winterfeldt et al., 2010]. Therefore it is first necessaoycompare satellite
observations to in-situ observations, to assess whetbesattellite winds are indeed less biased

than uncorrected WRF output.

Satellite wind speeds are extracted at the locations ohalltu offshore observations. In-situ
observations are converted from the anemometer height ®ighthof 10m using a neutral
logarithmic profile; the adjustment due to height is smabasy anemometers are at 4m height,

and lightships anemometers at 19m.

Figure 6.2 shows daily average wind speeds from all threeceswat Channel Lightship. Bias
is much lower in the satellite winds (0.08m§ than WRF (-0.9ms!). ASCAT also shows less
bias than WRF, although over a much shorter period. How&VBf- speeds have much higher
correlation,0.95 compared td@.88. This is due to the higher temporal resolution of WRF data
which enables a much better estimation of the daily average two passes of a satellite. It
shows that WRF captures the temporal patterns very wellshods that the model wind speed

will add significant detail to the daily satellite speed, esystematic bias is removed.

Channel Lightship Channel Lightship Channel Lightship
+ +
/

20 20
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Figure 6.2: Daily average WRF, QuickSCAT and ASCAT data carag to in-situ observations
at Channel lightship. WRF data covers the period 2000-20Q0ickSCAT
2000-2009 and ASCAT 2009-2010
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Name Mean (ms?) B (ms) RMSD (ms™*) R?

obs  wirf sat wrf sat  wirf sat  wirf sat
Sevenstones lightship 8.40 7.46 8.35 -0.95 -0.06 1.49 1.360 00.86
Channel lightship 8.27 739 835 -0.87 0.08 1.29 1.21 0.93880.

Sandettie lightship 8.08 6.17 852 -190 044 225 156 0.8881
Greenwich lightship 825 6.72 8.15 -150 -0.07 1.85 1.27 20.9.88

Aberporth buoy 6.53 5.73 807 -080 154 1.92 246 0.69 0.68
Pembroke buoy 733 656 825 -0.77 0.92 1.39 1.81 0.88 0.79
M2 870 6.76 8.08 -1.74 -0.52 2.02 1.23 0.90 0.90
M3 884 753 892 -122 0.13 1.55 1.17 091 0.89
M4a 85 750 921 -110 0.73 1.62 1.71 0.88 0.83
M4b 9.35 863 955 -129 -0.17 158 119 0.94 0.90
M5 8.67 712 827 -150 -0.47 1.88 1.19 0.88 0.89
K5 8.67 850 984 -011 129 1.70 241 079 0.73
K7 8.49 852 929 005 087 192 208 0.73 0.76

Table 6.1: Comparison of daily averaged 10m wind speed leztwbserved, WRF and satellite
wind speeds. Satellite wind speeds are taken from QuickS@WT October 2009,
and ASCAT thereafter.

Table 6.1 compares error statistics between WRF and satsfieeds at all available offshore
in-situ observations. Satellite data is predominantlys Ibeased than WRF, particularly at
lightships and Irish buoys. The satellite winds are muclseido the observed means at all
in-situ observations with the exception of Aberporth, Peskb, K5 and K7, where satellite

wind speeds are higher than observed.

Aberporth and Pembroke are very close to the coast, 13kmlandé&spectively. Here satellite
wind speeds may be contaminated by land, or by errors intexibby interpolation near the
coast. Newer versions of the QuickSCAT winds have beensetbavhich account for land
contamination and are valid much closer to the coast [Vdrgtafl., 2011]. However, these are

not yet available for the UK

There are also discrepancies at buoys K5 and K7, whereisateihd speeds are higher than
observed. These buoys are very exposed and are not neagaificant land masses, so land
contamination of the satellite speeds is not the cause. RbtaAnd K7 suffer long periods

of missing data, particularly over the winter. Before 2008th buoys had cup anemometers
which would often fail or degrade within six-months [Turtand Pethica, 2010]. Salt ingress
into anemometer bearings causes the anemometer to sloviimegrand is difficult to detect

(Turton, personal communication). In 2008, both were sexviand upgraded to dual cup and

sonic anemometers [Turton and Pethica, 2010] and sincetieenatch with QuickSCAT data

!see http://podaac.jpl.nasa.gov/node/142
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Figure 6.3: Data quality at exposed buoys. Daily averagettKRCAT and observed wind
speeds at buoy K5. Top plot shows comparison for first 6 mooftt2900, where
QUICkSCAT speeds are significantly higher than observed Idiver plot shows
the same comparison for the first six months of 2009 after ttsm@meter was
upgraded. It is concluded that the high bias seen in QuickS@iAds at K5 and
K7 is actually due to problems with the buoy anemometersrbet08.

is considerably closer, shown in Figure 6.3.

Itis concluded that that the bias at bias at K5 and K7 is a prabkith the anemometers before
2008, and the satellite wind speeds are a more accurataiodif the long term wind speeds.
In fact poor-quality buoy data was the main reason for thereimeeter upgrade [Turton and
Pethica, 2010]. This further supports the hypothesis dpeel in the previous chapter, that
areas of anomalously low wind speed relate to poor qualisgnlations assimilated into global

models.

One concern is that, since satellite wind speeds have be¢ialgpaveraged to a 0°?5rid, any
correction derived from them may lose geographic detaijufé 6.4 shows a comparison of
average satellite, WRF wind speeds and in situ observatiwrasregion close to the coast. The
satellite wind speeds show a fairly universal average afraai@® ms !, while WRF speeds show
much more spatial variation and a greater influence of larmvév¥er, the in-situ observations
themselves suggest little variation in average wind spesuts agree much more closely with
the satellite speeds. The satellite winds show a averag8.B8m0s !, while WRF shows the

highest wind speed in the area only 7.5rhsIn-situ observations are centered around 8.5ms
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with only Aberporth and Pembroke buoy showing significatalyer wind speeds from the rest.

This suggests that although WRF captures the reductionrid speed very close to the coast, it
generally under-estimates the wind speeds elsewhere va@ngstimates the influence of land
relatively far from the coast.

QSCAT WRF raw

Wind speed (m/s)

4.0 4.5 . . . . 7.0 75

Figure 6.4: Average 10m wind speed from satellite data)(leftd average 10m wind speed
from WRF (right). Average wind speeds from in situ obseadi are shown as
labels on a white background. WRF shows much more spatiatiar than the
lower-resolution gridded data, although this variationasconfirmed by the in-situ
observations.

6.5 Bias correction method

Two bias correction methods based on linear regression trete A linear regression was
computed at each WRF grid cell between an 11-year time sefidaily average WRF and

satellite wind. That is, the coefficients; andc; were calculated for each grid cell

T = m T + (6.1)

whereUs3 s the daily average 10m satellite wind, ab#" is the daily average 10m model
wind in each grid cell. The advantage of this approach iéfliias is stationary, this method
will return the optimum linear solution. The disadvantagéhiat, since it contains an intercept
term, it will shift wind speed distributions as well as soglithem. Given that the bias is most

obvious at higher wind speeds, this may over-correct at lavdwpeeds.
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Figure 6.5: Comparison of bias correction methods. Houvigrage wind speed across all
offshore in-situ observations. (a) uncorrected WRF wineksis (b) bias corrected
WRF wind speeds using linear regression, (c) bias corredt&F wind speeds
using only multiplicative scaling. Plots (d), (e) and (f)ogh residuals against
observed wind speeds for the corresponding plot above.

Therefore a second approach was tested where the intetgepas constrained to be zero, and
only a multiplicative correction remains. Eq 6.1 becomespdy:

F7sat —wrf

U = mU, (6.2)

and the gradienty;, is simply the ratio of average satellite wind speeds to rhaifed speeds.
In theory, the more general Eq. 6.1 should find this solufidris indeed the best fit. However,

large errors at higher wind speeds can have a large impabeadntercept term.

Figure 6.5 shows QQ plots against offshore in-situ obsematfor uncorrected and bias
corrected wind speeds using both methods. From the top rdvigafe 6.5 it can be seen that
both bias correction methods do well at correcting the Hiasthe linear regression method is

marginally better throughout a larger range of wind speEdsm the bottom row of Figure 6.5,
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it can be seen that the first bias correction method tendsstea@mpensate at low wind speeds,
probably due to the intercept term. In contrast, the secaettiod tends to over-correct at higher

wind speeds, due to the larger size of the multiplicativenter

Figure 6.6 shows the geographic distribution of the leasases gradient (a) and intercept (b),
and also the value of the gradient when only multiplicatigeling is used (c). The intercept
terms in Figure 6.5 (b) appear quite large, with values ofaw@ ims™'. However, they are
difficult to interpret alone, since they may offset to someekby a gradient o& 1. Figure 6.5
(c), which can be interpreted alone, shows but the cormestiend to be betweehn0 to 1.2 for

the open sea, and betwegr2 to 1.2 for coastal areas. It can also bee seen that the largest
corrections, which occur in the Irish Sea and the Englishn@kh correlate very closely with
areas of wind speed bias seen in comparison with the Marifes AEigure 5.26. This gives
further support to the notion that the orrections are pllsicealistic. However, they should
be interpreted with caution, as current satellite datasmtsiot be relied on close to the coast.
It could be that the satellite ‘correction’ is actually a eefion of poor quality near to the coast,
and this approach should be revisited once higher resolotastal datasets become available
for the UK.

(a) gradient (b) intercept (c) multiplicative scale

Figure 6.6: Bias correction gradient (a), intercept (b}l aoale factor alone (c) from linear
regression between 11 years of satellite and WRF wind speed

Finally, it should me noted that, although the regressiodeigeloped between daily average
speeds, the correction is assumed to be applicable to hwirmty speeds. This is a reasonable
assumption since it is a linear operation, and thereforédbeaapplied to the hourly components
and have the same transformation on the daily averages. als@gsassumed that the same

correction applies at hub-height. This is supported by #ntical profiles investigated itb.7,
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which show systematic displacement to the wind profile thhmut the height range.

6.6 Results

Figure 6.7 shows the model winds corrected by the linearessjpn and the satellite wind
speeds. As intended, the adjustment brings the model daamnch closer agreement
with satellite wind speeds. In particular it removes themalous features associated with
observations at oil platforms and buoys. Figure 6.7 alsavstadetail close to the coast, also
showing averages from in-situ observations. The bias ctadevind speeds agree more closely
with the in-situ observations. Much of the spurious geolii@pariation has been removed, yet
the model winds still show a realistic decrease close to tast; in agreement with in-situ

observations.

Table 6.2 summarises revised error statistics at in-siseations. There is a dramatic
improvement inB at all sites, apart from K5 and K7, which are disccuss€dai. There is also
an improvement in RMSD at all sites apart from K5 and K7. Intotly, R remains the same
at all sites, confirming that the simple linear correctios hat altered the temporal patterns.
The transformed QQ plots against all offshore observatttmse already been presented as
Figure 6.5. The bias correction brings the distributionsgommuch better agreement. Once
transformed, there is a slight positive bias against in-sliservations; however, this mainly

results from the lower than expected speeds at buoys K5 and¥discussed previously.

Finally, Figure 6.8 shows the error distribution in the age hourly windspeed against in
situ observations both before and after the satellite ctam is applied. The bias correction
shifts the error distribution, with the new errors reasdypabrmally distributed about the mean
B = 0.26 ms™!. Again, this small positive bias mainly relates to the K5 a€d buoys.
Estimating confidence intervals ds directly from the sample quantiles give<).91, £1.20,

and=+1.50 for the 80%, 90% and95% confidence intervals respectively.

Taken together, these statistics give a very strong vdiifitaf the dataset, showing it to be
essentially unbiased and give a realistic representafitirecspatial and temporal variations in

wind speed seen over the eleven year period.
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Figure 6.7: Average satellite wind speeds at 10m (left) dad-borrected WRF winds at 10m
(right). Bottom plot shows a detail closer to the coast, vatlerage speeds from
in-situ observations shown as labels on a white background.

6.7 Chapter summary

This chapter addresses a low wind speed bias in offshordatieauwind speeds, which would
have been of sufficient magnitude to affect conclusions. #mete record of daily average
wind speed from satellite records was established. Cosganwith in-situ observations
showed the satellite wind speeds to be essentially unhiemad also revealed a potential
low wind-speed problem at an exposed UK Met Office buoy be6@7. Satellite winds

were then used to derive a simple bias correction, and twedmnarection methods were tried
based on linear regression. This resulting correction veadiead to the hourly wind speeds,
which significantly improves the representation of win@eg distributions, and brought the

geographic pattern into much closer agreement with obdgraterns.

The bias-corrected dataset represents a major output efdhe It is of use to researchers,

wind farm developers, grid operators, policy makers an@rsthlt is used in future chapters
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Name Mean (ms?) B (ms1) RMSD (ms™!) R?
obs raw sca raw sca raw sca raw  sca
Aberporth Buoy 6.19 525 6.78 -0.95 059 224 2.14 0.62 0.62

Channel Lightship 857 759 857 -098 0.00 1.92 1.69 0.85850.
Greenwich Lightship  8.63 7.02 849 -1.61 -0.14 2.4 1.81 0.8484

K5 Buoy 795 7.70 9.03 -0.25 108 2.03 232 073 0.73
K7 782 769 851 -0.13 0.69 227 242 065 0.65
M2 784 629 7.77 -155 -0.07 218 154 081 0.81
M3 8.04 690 817 -114 012 1.76 137 084 0.84
M4a 788 683 854 -1.05 0.66 1.87 1.68 0.82 0.82
M4b 832 716 7.89 -116 -043 1.86 153 084 0.84
M5 783 644 768 -140 -0.15 1.97 139 084 0.84
Pembroke Buoy 680 596 7.23 -085 043 1.75 159 0.80 0.80

Sandettie Lightship 834 641 821 -193 -012 274 2.00 00.8®.80
Sevenstones lightship 8.62 7.64 8.60 -0.98 -0.02 2.06 1.882 00.82

Table 6.2: Error statistics calculated for hourly WRF wipgeds against in-situ observations.
Table shows in-situ observations (obs), original WRF wifrd®/), and bias corrected
WRF wind speeds (sca).
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Figure 6.8: Distribution of error before and after correntagainst satellite wind speeds.
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Offshore Bias Correction

to examine the geographic and temporal patterns in powpubfrom current and future wind

farms.
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Chapter 7
Conversion to power

7.1 Introduction

The previous chapters have described the creation andatialidof an 11-year wind speed
dataset across the British Isles. This has been shown tareapéery well the spatial and
temporal variations in wind speed over this period. Onshtite wind speeds showed very
little systematic bias, although the performance deperaetthe terrain complexity; offshore,
a systematic low bias was corrected using eleven years @figatscatterometer derived wind

speeds.

This chapter now examines how this dataset may be used matstthe outputs from current
onshore and offshore wind farms, and validates the apprageimst published data. This

provides support for the analysis chapters which followrlat

7.2 Power curves

7.2.1 Single turbines

The amount of electrical power which can be generated by d tirine is proportional to the

total kinetic power available [Burton et al., 2011]:

1
P= Cp§pAU3 (7.1)

where P is power, p the air density,A the rotor swept ared/ the incident wind speed, and
the coefficient of proportionality(’,,, is known as the power coefficient. However the response
of a turbine is not simple €, is not constant - so the actual relation between wind spedd an
power generated is not a straightforward cubic relatignsand is usually summarised by a

power curve It is useful to define power curves in terms of the normalipeder, orload
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factor (LF):
P

Pma:c

LF = (7.2)

whereP is the instantaneous power, af,... is the maximum rated power of the turbine. A

typical power curve is shown in Figure 7.1. It is characesdiby:

1. acut-in speed: the speed at which the turbine begins ergen
2. arated speed: the speed at which the the turbine reachdsuma output; and

3. acut-out speed: the speed at which the turbine is shut timprevent damage.

Rated Cut-out

Load Factor

Cutin Wind speed,

Figure 7.1: Schematic of a typical turbine power curve

The primary use of power curves is to allow developers toiptdate energy yield of a site
once the wind speed distribution is known. Power curves eterchined by field measurements
according to strict standards [IEC, 2009], and are usuatgrinined using thenethod of bins

where power is bin-averaged power over 0.5 or 1hisins [Burton et al., 2011].

The reason for using the method of bins is that the raw dateaiyp shows large scatter related
to, for example, turbulent variations in wind speed and theadhic response of the turbine
[Gottschall and Peinke, 2008, Kaiser et al., 2007]. The IE@dards define, as far as possible,
site characteristics for the testing of turbines. The dqtesformance of the turbine may be
significantly different when deployed in different condits. In particular, turbulence intensity

at the site will have a large effect on the power curve.

The power curve gives thereragepower output of a turbine within each wind speed bin, and a
time series of power output created from a power curve givembst likelyoutput given those
wind speeds. In the long-term it should match the observedage, but it will not recreate the

large scatter seen in real observations.
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7.2.2 Wind farms

Estimating the aggregate output from a wind farm is more derian simply scaling up from

a single turbine. The output is influence by a number of factoainly:

variation in wind speed and turbulence across the site;

wake losses;

technical availability;

storm control actions; and

electrical losses within the wind farm.

Also, it should be noted that observations of whole-farm @ogurves show greater scatter than
single-turbine cases. Figure 7.2 shows the amount of s¢gpieal in field measurements [Wan
et al., 2010]. For a given wind speed, there is clearly a widee of observed power outputs,
and a number of different regimes can be noted, possiblgsponding to wind direction. The

ramp down region at high wind speeds can also be seen.

Met Tower HO6

= H1m/s {69m)
| K H2 m/s {50m)

(Mw)

30.0

Wind Speed (m/s)

Figure 7.2: An example of the experimental scatter seen iasorements of power curves at
operational wind farms. From Wan et al. [2010]. Wind speednaasured at a
nearby met mast is on the x-axis, and power output of the wiaahe on the y-axis.
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Technical Availability

Technical availability of onshore turbines has been wellligtd and is known to be very high.
Harman et al. [2008] reviewed a technical database rel&iig GW of installed capacity and

found availability to be 97%; this is typical of the level nguaranteed by manufacturers.

Offshore technology is much less mature and the sites deseleo far have been relatively
close to shore. Further offshore, access for repair becomoes limited by weather windows.
Rather than assume a single number for technical avatlghtlis studied separately later in
the analysis as a sensitivity parameter. Furthermore,fibet ®f technical availability on load
factor is not straightforward. Many studies assume, formgda, that a reduction in technical
availability of 10% will reduce output by 10%. While this méne a valid assumption for
thermal generators, for wind generators it also matidrsnit occurs. If a turbine is unavailable
in the winter, it will have a larger reduction in output théit iwere unavailable in the summer.

This is studied as a sensitivity parameter in Chapter 8.

Electrical losses

Resitive losses in cables, transformers and other baldnmard equipment cause a small loss
of energy production, which are of the order of 2% of annuargy production [Manwell et al.,
2002a].

Storm control

All wind turbines take action to prevent damage in very higimds. Most large modern
turbines are pitch-controlled and in very high winds, tgflic above 25ms!, the blades are
fully pitched to stop production. Depending on the contttegy, this may be a fairly sudden
change to zero output, or a more gradual ramp-down, knownfasterm control. To reduce
fatigue loading associated with repeated shut-down eventse form of hysteresis is often
implemented where the turbine is not re-started until thedvgipeed reduces below a particular

level.
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Wake losses

The most significant losses for a wind farm, as opposed to@estarbine, are wake losses.
The energy extracted by a turbine generates a speed defiaiistteam, until entrainment of
momentum from above causes the wind speed to recover [Bettaln 2011]. Wake losses are
thought to be lower in more complex terrain where turbulantensity is higher. The effect of
wake losses on average energy production for onshore farassially found to be in the range
4-12% [Manwell et al., 2002b]. In the cross-wind directiarake losses can be as high as 40%,
and wind farms are generally laid out to minimise wake logséise prevailing wind direction,

although landscape and planning factors may affect thautayo

Most offshore turbines are not radically different from reunt large onshore turbines, and
the power curves have a similar form. However, much less idadgailable on the aggregate
performance of offshore farms. Wakes are generally thotmlie more significant, since

they persist for longer due to the lower turbulence intgneftshore. However, real world

data is lacking, and in particular the effect of atmosphstability on wake effects is not

understood [Espafia et al., 2012]. Most studies predictewakses of the order of 10-15%
[Barthelmie et al., 2007, Mclean and Hassan, 2008]. Howewmst studies are based on
existing wind farms relatively close to shore. Although wagffects are thought to be
more significant, for future offshore wind farms, largerdes at lower wind speeds may be
compensated by the longer time spent at higher wind spebdsgeahe steepest part of the

power curve.

7.3 Accounting for losses

There are three general ways to account for these lossesfirghis to use a single turbine
power curve - ignoring the losses - and then scale the finaltrdswn by a constant factor.
Assuming constant array losses of around 10% is typicaltfBuet al., 2011]. An advantage of
this approach is it is very simple to apply and transpareunith€r, the loss factor can be chosen
so that the outputs match long-term published averagesdiwveback is that wake losses are
not distributed realistically across the wind speed rangeng this approach the output of a

wind farm never reaches 100%.

The second approach is to use an aggregate power curve, shegse accounts for losses. The

advantage of this approach is that it is relatively simplagply, yet it distributes wake losses
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more realistically through the range of wind speeds, andatsm account for the smoothing
of wind speeds seen across the whole farm. The drawbackbatré thay be impossible to

adequately characterise the farm by a single curve, as Ved®ss vary considerably with wind
direction [Manwell et al., 2002b]. In addition it may be diffit to make the curve generic and

applicable to multiple farms.

The third approach is to try to account for losses separd@bed on physical considerations,
for example, using a CFD model to determine wake losses by sfieed and direction e.g.
[Barthelmie et al., 2007, Costa et al., 2006, Li et al., 20H¢$wever, the physical effects are
complex and difficult to predict, and this approach intragkianother uncertainty on top of any

underlying uncertainties in the wind speed.

The second approach, an aggregate power curve, is used s@rgiees a good trade-off
between complexity and realism. The third approach of mimgekach effect individually
using more complex models was not attempted, as it is iffkatd apply this across several
hundred wind farms. In any case, when estimating the power future farms there are many
other uncertainties which are as, if not more, significanchsas changes in the future wind
speeds, assumptions about the number, size and heighbofdsy and assumptions about the

layout of wind farms, and assumptions about the technicalahility of offshore turbines.

7.3.1 Aggregate power curves

A number of approaches have been taken to produce aggregaier gurves, based on
theoretical arguments e.g. [Kaiser et al., 2007, Ngrga2084], measured data e.g. [Hayes
et al., 2010, Tindal et al., 2008, Wan et al., 2010], or engjiimg experience and judgements
e.g. [Mclean and Hassan, 2008].

All the approaches cited above point to a similar modifigatethe shape of the curve, shown in
Figure 7.3. Power output at low wind speeds may be very $jigfigher than expected, as some
turbines will be experiencing higher than average wind dpeds speed increases, the first row
of turbines will reach rated power, but turbines in the wabisind will not. Maximum output
is not reached until the average wind speed is sufficiengi tat turbines in the back row are
at rated wind speed. Finally, the farm output may begin tdigedefore the cut-out speed is
reached, due to wind speed variations across the site dnddat gusts causing control actions

to be taken at individual turbines. The behaviour in theaegipproaching cut-out speed is not
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Figure 7.3: Shape of an aggregate power curve (dashed)atiorelto a single-turbine curve

(solid).

well documented, partly due to the infrequent occurrenceeo§ high winds, but also due to

differences in the control strategies between differerttifes and site operators. Due to the

infrequent occurrence, the behaviour in this region is ilegm@rtant for energy production.

Given the shape outlined in Figure 7.3, a generalised agtgegower curve may be

characterised by:

e cut-in speed: the speed at which the farm begins to produsemno

rated speed: the speed at which the farm reaches rated power;
ramp-down speed: the speed above which the power beginsieades;
cut-out: the speed above which the farm produces no power;

fup- @ function describing the ramp up; and

e fqown: @ function describing the ramp down.

Hayes et al. [2010] used wind speeds measured at indivicacglles (corrected to represent

the free-stream flow) to derive aggregate power curves forwind farms. Although the
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two sites studied had different terrain and geography, tigremate power curves showed
similar features, with significantly reduced power outmgnipared to a single-turbine curve)
in the range 9-15m3 . They proposed a simple per-unit adjustment based on wieedsgo
transform a turbine curve into an aggregate curve. Thessmagnts are given in Appendix B,
Table B.3.

The adjustments defined by Hayes et al. [2010] are derived freasurements at farms with
3MW turbines with fairly standard characteristics: a auspeed of 4n1stand a rated speed
of 12ms™!'. This is representative of many large turbines, althougheswery small or very
large turbines differ. In order to generalise these peranijustments to all turbines, they were
re-defined in terms of a normalised varialblevhere

— cut-in
_ _U~cutin (7.3)
cut-out— cut-in
so they could be applied to any power curve. The intervalevédualso given in Table B.3.
Adjustments at high wind speeds close to cut-out were nolighdd in [Hayes et al., 2010]
due to the small number of observations, but the authorsroosdi that the output was seen to

reduce as the average speed approached the cut-out spged,(pkersonal communication).

With the adjustments applied, the resulting power curvgufé 7.4, is shallower than a normal

turbine power curve, and can be very well approximated byestic function:

LF == ﬁ (74)
1+e 0
whereU is the wind speed and andb are parameters relating to the centre and width of the
curve. This has the advantage of being easy to apply, reguirly two parameters, and does

not fluctuate or overshoot like higher-order fitted polynaisi

Figure 7.5 shows an example time series using single-teirpower curve and an aggregate
curve based on the per-unit adjustments described. Thetadjaurve appears to give a realistic
estimate of wake losses in the correct wind speed region.leTAl shows the estimated
reduction in energy yield using this approach at a high-wamdl low-wind site. Energy
reductions are of the order 10% to 13%, which agrees with dhge of estimates found in

the literature. Moreover, energy losses are more reallticlistributed across the range of

127



Conversion to power

1.0 . g
o proreTe
e
/d
0.8 io
5
£
506 /
S £
a A
¢
0.4 g
/
&
021 d’/f single turbine
O‘,.-" o o aggregate observed
) /_O""/ - - logistic a=9.7, b=1.8
0.0 k== =20 . .
o 5 10 15 20
speed m/s

Figure 7.4: Single turbine power curve, measured aggrggautesr curve from Hayes et al.
[2010], and a two-parameter sigmoid approximation to it.

wind speeds, with the highest losses in moderate wind spedsd the steepest part of the

power curve. This approach is therefore thought to be teafisr both onshore and offshore

sites.
Weibull parameters Energy yield Difference
k c Turbine  Aggregate
ms~!  MWh MWh %
highwind 2.15 10.56 178 160 -10
lowwind  1.88 8.55 130 113 -13

Table 7.1: Reduction in energy yield due to wake losses whedelted with an aggregate
power curve compared to a single-turbine curve.

7.3.2 Approach taken

Based on the discussion above, the following approach wes teo define aggregate wind
farm curves. Manufacturer's power-curves for a large nundjeexisting turbines ranging
from 500kW up to 5MW were taken from WASP [Troen et al., 20G8jd the cut-in speed,
rated-speed and cut-out speeds were obtained. Per-unstiadint of Hayes et al. [2010] were
applied to transform the turbine shape into an aggregatpestich reflects array losses.

Two-parameter logistic functions (Eq.7.4) were then fiteethe ramp-up region.

In the absence of detailed information, the power curvegweade to ramp down from 1 to O

linearly across the interval [cut-out0.5ms™!, cut-out+0.5ms™!]. That is, a relatively sharp
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Figure 7.5: Example time series of wind speed (top) and spmeding power output (bottom)
using a single-turbine curve, and an aggregate power cWake losses are highest
in wind speeds around 5-15m's

cut-off at the nominal cut-out speed was assumed. Elettasses were assumed fixed at 2%.
No account is made technical availability was made at tlaigestthis is analysed separately as

a sensitivity parameter.

Existing wind farms were matched to the turbine power cursiegiinformation in the UK
Wind Energy Database [Renewable UK, 2011]. This contaiesntlake, model and size of
turbine at all operational or under-construction wind far®@ffshore wind farms not yet under
construction were assumed to have turbines similar to a REPBMW turbine, which is
representative of the types of turbine which may be instale Round 3 sites [Mclean and
Hassan, 2008]. The main difference of this power curve isteoatiat 30ms!, rather than

25ms !,

The resulting procedure for predicting the output from eaatd farm is best illustrated by an
example. To predict the power from a wind farm with ten 3.6MWbtnes the following steps
are followed:

1. the manufacturer’s power curve is selected for the ctaseslable turbine;

2. the curve is transformed by applying adjustments overahmgp-up region;

3. atwo-parameter logistic function is then fitted to the paup region;
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4. alinear ramp-down about the turbine cut-out speed iweasgdu
5. wind speeds are applied to this power curve to give an ggtgé ['; and

6. the LF is scaled up by the total installed capacity £18.6 MW) of the wind farm to

give the total power output.

7.4 Comparison to published data

7.4.1 Data sources

Detailed data on the outputs of existing wind farms is notlilgaavailable, as data owned by
wind farm operators is regarded as commercially sensilibe. main publicly available sources

of data are summarised in Table 7.2.

Data source Aggregation Time resolution ~ Comments

BM Reports Individual wind farms  Half-hourly Transmissioonnected only
Frequent missing data
Quality sometimes questionable

ROC Register Individual wind farms ~ Monthly Comprehensiogarage
Early offshore data unreliable

Capital grants reports  Individual wind farms ~ Monthly Onlyshore
Limited time coverage
Has technical availability

Table 7.2: Data sources on wind farm outputs

BM reports

The New Electricity Trading Arrangements (NETA) mandatat tbertain information must be
provided to support the balancing mechanism used by theh&tGrid use to ensure power
flows into and out of the transmission grid remain balanceldis @ata is currently provided
by Elexon [2011]. Information is provided in real-time oretbutput of individual generator
units connected to the transmission grid, and some dataasaathived. However, archived
data is only available from 2010 onwards, and only data fnr@ndmission connected wind is
available. Hourly output is given to the nearest MWh. Largeiquls of missing (zero) data is
also common in the archives. Table 7.3 summarised the wimasféor which reliable hourly

wind data was available.
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Name Region Capacity (MW)
Black Law South Lanarkshire 97
Farr Windfarm Highland 92
Hadyard Hill, Barr ~ South Ayrshire 130
Kilbraur Highland 48
Millennium Highland 40
Toddleburn Scottish Borders 28
Whitelee East Renfrewshire 322

Table 7.3: Onshore wind farms with hourly production datarfrBM Reports.

ROC Register

The primary mechanism in the UK for subsidising wind powes &enewable Obligation
Certificates (ROCs). Since April 2002, all UK electricitypgliers have been obliged to obtain
a proportion of their energy from renewable sources. Thigcisieved by issuing ROCs to
renewable generators, from whom suppliers can buy thetiicaes to fulfil their obligation.
One ROC is earned per MWh of electricity generated for oreskagnd, and 2 ROCs per MWh

for offshore wind.

The ROC register is a comprehensive record of the number @$R6sued to each generator
each month, and therefore allows the calculation of morithedyl factors at each wind farm.
At the time of downloading, the ROC register had data up tceetiee of February 2010. It was
found to be unreliable for offshore wind before 2009, as mahthe generators had ROCs
aggregated into a whole year e.g. 2007-2008, rather thandmthn Data compiled in the

capital grants reports was found to be a better source fehaifé farms for most of the period.

The ROC register does not contain the coordinates of redewgmerators, only the name
and the region. The coordinates of wind farms are availabldKWED. However, the only
link between these two sources is the name of the wind farnghwil not standard and varies
between the two. Alternative names and different spelliagscommon, for example “Red
House Wind Farm” appears in the ROC register while “GedneysklgRed House)” appears
in UKWED.

The two datasets were linked using the following algorithirthe names were converted to
lower case and common nouns were removed: farm, hill, meor]Tdis ensured the remaining
tokens were mainly related to the place name. A fuzzy magchigorithm based on trigrarhs

was applied to create a similarity score (from O to 1) betwesmsh possible pair of names. Each

http://www. postgresgl.org/docs/current/static/pgtrigtml
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name in the ROC register was then matched to the name in UKWiELle highest similarity
score, with any matches with a similarity score below 0.3wked as unreliable. Finally, the
resulting matching was examined manually and a few remgif@ilse or inconclusive matches

were excluded.

There are 301 operational onshore wind generators in the R@€ter, and 307 in UKWED.
Applying the matching algorithm identified 192 definitive tci@es. Of those, 107 were
operational before 1st January 2007, so had at least thigrs pé data; these are used for

verification.

Capital grants reports

Offshore wind farms which received UK Government supportlamnthe capital grants
programme [DTI, 2003] were required to submit annual penmce reports for the first few
years of operation. This includes monthly load factors, thignwind speed, and monthly
technical availability, and is the only source of offshoegadwith these figures. Unfortunately
it only covers a few farms for a relatively short period, suamnized in Table 7.4. Tavner et al.

[2010] gives a good summary of the data available in the iddal reports.

Windfarm name  Period available

Barrow Jul 2006 - Jun 2007
Scroby Sands Jan 2001 - Dec 2007
Kentish Flats Jun 2006 - Dec 2007
North Hoyle Jul 2001 - Jun 2007

Table 7.4: Operational offshore wind farms with availaldgital grants reports.

7.4.2 Onshore
Hourly

Comparison of hourly time series for individual wind farnfiggure 7.6 (a,b), shows a fairly
large amount of scatter, typical of that seen when derivipgveer curve (se&7.2.2). However,
the overall trend is still quite strong. When hourly timeisgrare averaged across multiple
farms, the match is much stronger. Figure 7.7 shows the g&draurly load factor computed
across the seven farms with hourly data available listedainlel' 7.3. However, the simulated
time series are smoother than the observed time seriesharedare periods of low load factors

which are not captured. This could be due technical outggasned turbine maintenance,
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changes in wind direction causing additional losses, dorémt due to insufficient network
capacity or other factors not modelled.
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Figure 7.6: Comparison of hourly load factors at a singlegmission connected wind farm,
and across seven transmission connected wind farms

The conclusion from the hourly comparison is that the sitedldoad factors capture the main
features of the observed load factors, but shows a largededscatter, demonstrating there are
many other determining factors than just the wind speedsagechge power curve. However,
averaging over seven wind farms shows a much strongerae#ip, and the hourly output
is very well correlated. There is a slight high bias overglhiast these seven wind farms,
B = 0.03, but this is before technical availability has been accedribr. Given that technical

availability is around 97% for onshore turbines, this sigg¢he results are unbiased overall.

observed

Load Factor

Figure 7.7: Time series of average hourly load factors iudan2010 across the seven wind
farms listed in Table 7.3
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Figure 7.8: The good, the bad, and the ugly: examples of th@hlthomatch at individual wind
farms

Monthly

The farms with hourly data are all large, transmission cotetewind farms in Scotland. Most
of the onshore wind in the UK consists of smaller, distribntconnected farms, more widely
distributed across the country. The only source of data fstridution connected wind is

monthly data from the ROC register.

Figure 7.8 shows the match against three individual farmthénROC register, distributed
around the country. The examples have been chosen to beeagatve of a good, reasonable,
and poor match. There are some systematic differencesiaidinal wind farms as would be

expected since the terrain at 3km resolution will not adegjyaapture all sites.

Figure 7.9 shows the average load factor across 107 farnhethin the ROC register. The
match is reasonably good. Again, there is a slight overiptied, with B = 0.03, but this is

before adjusting for technical availability.
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Figure 7.9: Comparison of simulated and observed averageghtydoad factor over 107 wind
farms in the ROC register for the period 2007-2010.

The conclusion from the comparison of monthly values is fadterns are captured very well,
simulated load factors may show systematic errors at iddaliwind farms, but when averaged
across a number of sites the agreement is very good, andsaxbignce a reduction has been

made for technical availability.

7.4.3 Offshore
Hourly

No hourly data for offshore farms was available, therefaggfication could only be done at
done at a monthly level.

Monthly

Offshore wind farms in the UK have been operational sincetiNBlioyle began generating in
2003, but it is only since 2005 that three or more farms haes loperational. Load factors for
operational farms are taken from the capital grants repmatsre 2009, and the ROC register
thereafter. Technical availability is available in the italpgrant reports, and observed outputs

have been adjusted to 100% technical availibility

Figure 7.11 (a-c) shows monthly time series plots for thqeerational wind farms around the
UK coast. The load factor derived from raw WRF speeds anddna®cted speeds as described
in Chapter 6 are shown. It can be seen that load factors defieen the bias-corrected

wind speed are in closer agreement, and where there is apisay, it is present in both
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Figure 7.10: Observed and simulated monthly load factoeyamed across all operational
offshore wind farms.

the corrected and uncorrected wind speeds i.e. it is a naiudt ref applying the correction.

Figure 7.11 shows agreement at all offshore wind farms.

The conclusion from the comparison with offshore farms &t tfhe simulated load factors
show a good match with published figures, both in terms of thetrage values and monthly
variation. Although no direct hourly comprisons could befpened, this still gives strong

evidence that the simulated hourly output will be realistic
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Figure 7.11: Example of the match at three offshore wind sarm
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7.5 Chapter summary

Factors affecting the simulation of power output from singiirbines and whole wind farms
were discussed, and background material on wake and ogsdavas summarised. The large
amount of scatter seen in empirical measurements of poweeswas noted, highlighting the
inherent difficulties of predicting power-output time sariusing a power curve. Nonetheless,
an aggregate power-curve approach was developed anddfipliend speed data from WRF
to simulate power outputs from existing wind farms. Numearpublished sources of wind farm
data were collated to allow the validation of hourly and niintime series at existing onshore

wind farms, and monthly time series at offshore wind farms.

At individual onshore wind farms, there was a large amourdcatter between the simulated
and observed hourly values, though the time series capthiespghase and variability of major
features very well. When averaged over several large trissgn connected wind farms, the
scatter was much reduced and the match improved subsigniial= 0.84. There was a slight
positive bias,B = 0.03, which is desireable since no account has yet been madecfurital

availability.

Comparsion to monthly load factors calculated from the R€gister, showed some systematic
bias at individual farms, though this tended to get averamgdacross a large number (107) of
transmission and distribution connected wind farms. A lsimsmall positive biasB = 0.03

seen in the hourly comparisons, which again is desireabt® ghis was before accounting for

technical availability.

Offshore, the agreement between monthly load factors wasdfdo be very good, and the
satellite bias-correction derived in the previous chaps found to work well. Comparison of
average monthly load factors over all currently operati@mshore wind farms showed good
agreementR? = 0.86, and a similar positive bias seen at onshore sifesz 0.02, before

accounting for technical availability.

This chapter provides valuable evidence that the hourlylwpeed data from WRF can be used
to create realistic hourly load factors for existing onghand offshore wind farms. Chapter 5
has already shown that wind speeds are captured well ovevttbke of the British Isles and
surrounding waters. On that basis, it can be assumed thdfdotors derived at the locations
of future wind farms are also realistic and representafife remaining chapters the expected

power production from a future wind fleet and the implicatiarf this.
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Chapter 8
Analysis

8.1 Introduction

Previous chapters have described the creation and validafia high-resolution wind speed
dataset spanning a period of eleven years. It has been sh@awthe dataset captures the
variability of wind speeds very well across a variety of sdadnd temporal scales. The wind
speeds have been shown to match observed averages onstua® awery large number of
met stations and onshore masts. Offshore, the wind speegshe®n bias-corrected using
wind speeds derived from satellite scatterometer measmsm The corrected speeds match

observed average values, and the spatial and temporainzattery well.

It has also been shown that this dataset can be used to medsitiput of existing onshore and
offshore wind farms, and that the patterns of power productire realistic. On this basis, it
is proposed that this dataset can be used to provide infmmand insight about the spatial
and temporal patterns of power generation from future wieetdl. Although eleven years is not
long enough to be considered a true climatology, it is longugh to capture an extensive range
of weather types, and capture a large amount of inter-arnvauiibility, including an extremely

calm winter by historic standards.

A large advantage of this dataset is that it represents ahigieric time-series, so can be
matched to other time-series, such as historic electragiyand. Often studies looking at the
wind resources use statistical downscaling to produce arage climatology, which cannot be

linked to specific time periods.

This chapter presents an analysis of likely patterns of pawd energy production from future

wind farms, with a focus on offshore generation. The apgr@atopted here is to use relatively
simple technigues and clear assumptions to demonstratecam®e achieved with the dataset.
By making the dataset publicly available, it is hoped thesel other key research questions

can be explored in more detail, and that the results are dapile.
This chapter is divided into three sections: first, some gamknd is reviewed regarding the
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possible size and extent of the UK’s future offshore windtfleecond, the analysis approach

is presented,; finally, the results of the analysis are ptedeand discussed.

The basic assumption which underpins this analysis is bgalaist eleven years of wind speed
are broadly representative of the expected future windatimAlthough it is known that the

climate is changing, the British Isles will continue to bevgmed by similar mid-latitude

synoptic systems seen today, perhaps with a shift in frezjegrof weather types and the
position of storm tracks. Analysing the impacts of climakamge are outside the scope of
this work, but are discussed n9.4. Also, by providing a link between different weather
episodes and patterns of energy production and demandjdtaset could provide a baseline

for future climate change studies.

8.2 Background

8.2.1 Growth of wind

Under the European Renewable Energy Directive, the UK haigattto supply 15% of primary
energy demand from renewables by 2020. The electricitypsecexpected to make the largest
contribution, with renewable generation contributing r086% of electricity generated in the

lead scenario [UK Government, 2009].

Wind has seen rapid and sustained growth in the UK over the gesade, and is widely
expected to contribute the most to the UK’s renewable enengets. The UK currently has
around 4GW of operational onshore wind and around 1.5GWoifss[Renewable UK, 2011].
It is expected that much of the growth in renewables will cdroen offshore wind generation
[PWC, 2010, Toke, 2011]. The Crown Estate has already lesisesiwhich could be developed
to around 40GW of installed offshore capacity in a relativ&tort timescale. These sites have
been leased in a series of three rounds, Round 1, Round 2, @nmtlR3, plus an additional

Scottish Exclusivity (SE) round.

Most build-rate projections for the growth of wind energythie UK are based explicitly on the
2020 renewable energy targets. Various growth projectiawe been made by industry bodies,
with different motivations or purposes, for example to Higjit the potential economic value
of wind generation for the UK [The Offshore Valuation Gro@Q,11], to identify the size of the
supply chain needed to support growth [Renwewable UK, 20t highlight the number of
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jobs which might be supported [Esteban et al., 2011].

However, it is increasingly recognised that the buildsdtethese projections are optimistic.
For example, a recent report [Crown Estate, 2010] estimtiatito develop the 32GW of

offshore wind identified in the Round 3 zones according todéeelopers’ stated timetables
would require the manufacture and installation of aroun@01foirbines per year in the period
2017-2019. Given that installation at many Round 3 siteslavoot be possible for much

of the winter, this would mean installation of tens of tudsnper day during admissible
weather windows. As well as the obvious practical diffi@sdtithe report concluded such high

installation rates could lead to an unwelcome increasesh co

This highlights the difficulty associated with predictirgetfuture growth rate, and the difficulty
with tying an analysis to a particular time-based scenadi@ommon approach is to develop
a number of parallel scenarios, e.g. low growth, high grogtth However, for this analysis,
the key question is novhena wind farm gets built, butvhere and how that changes the
overall geographic distribution of capacity. The locatiasf wind farms will determine how

their outputs correlate to one another, and the distributibcapacity between regions will
determine how much geographic smoothing is achieved anlikéig size of the power flows

between regions.

Similarly, it may be diffcult to predict the exact install@dpacity at specified points in the
future. However, much of the analysis does not depend ontb@dte capacities installed, but
depends on the relative distribution of capacity betwegiores. Therefore, for this analysis,
rather than invent several time-based scenarios desgriba growth of wind out to 2020 or
2030, an approach is taken which highlights how the geodeagibtribution will change in
several stages as more onshore and offshore wind is dedel®pese are described by a series

of ‘snapshots’ defined if8.3.

8.2.2 Location of future wind
Onshore

Onshore wind is relatively widespread across the whole UtHoagh it is concentrated in those
areas of high wind resource with good access to the trangmiss distribution grid. When
assessing the locations of future wind, it would be posdiblallocate new wind to ‘optimal’

sites based on average wind speed and proximity to the gitid certain areas excluded due to
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Status Num sites IMW  Capacity (GW)
Operational 231 3.6
Under construction 36 1.3
Consented 155 3.6
Submitted to planning 202 6.0
Total 668 15.1

Table 8.1: Set of all onshore wind farm locations used inyaisl

environmental or planing constraints; this was the apgraaken by e.g. Boehme et al. [2006].

However, this approach is somewhat idealistic, as it asswp8mal sites are developed first.
In reality, many other factors such as landowner cooperaiitd the expectation of planning
consent, play a very important role; these criteria areatiffj if not impossible, to specify

in an automated way. In addition, future development wiloatome from the extension or

re-powering of existing sites with larger turbines.

For the analysis presented here, the exact locations ofidudil wind farms is not critical
provided they are geographically distributed in way brgaeipresentative of the future. For
that purpose, the set of locations already developed oragled for development is likely to

be a reasonable representation of the future.

The Renewable UK ‘Wind Energy Database’ [Renewable UK, 20fdferred to hereafter
as UKWED, has over 700 sites listed as developed or subntittgdlanning. The number
and capacity of wind farms under different categories attitne of downloading are given
in Table 8.1. Sites below 1MW are excluded from the analysighese make a minimal
contribution overall, but increase the computational dednaf the analysis. The UKWED has
information on the make, model and turbine size of all exgsbperational farms, which allows

the output to be assessed using a power curve tailored toséachs described in Chapter 7.

Although many of the sites submitted to planning will not gpeved for development,
they are still likely to be geographically representatifehe spread of sites which will get
developed. The total set of 668 onshore locations which wsed in the analysis is shown in

Figure 8.1.
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Figure 8.1: Location of all onshore wind farms used in thdyaisa

Offshore

Determining the locations of future offshore wind farms &sier, as the Crown Estate have
leased specific areas of the seabed for offshore wind dewelop This has been done in
three main rounds: Round 1, Round 2 and Round 3, plus ond@additScottish Exclusivity’
(SE) round. The rounds are designed to allow incrementatldpment of offshore wind,
beginning with small shallow-water sites relatively claseshore, before moving to larger and

more distant sites. The sites are summarised in Table 8.tharndcations are shown Figure 8.2.

Itis not expected that all of the Round 3 zones will be devetyp to the maximum permissible
capacity under the lease agreements. To do so would lead@W6f offshore wind capacity,
which when combined with onshore wind capacity, would be garable to UK’s current peak
demand of around 60GW. In a connection study by National (2008] provided indicative
connection capacities for the Round 3 zones, which tot@&@W compared to 32GW under

maximum leases, this is also indicated in Table 8.2.

Since Round 1 and Round 2 zones are relatively small, winddspeere extracted from the
dataset at a single point at the centre of these zones. FordRdsites, wind speeds were

extracted at the centre point, plus four points at the ‘ca'rees defined by the maximum and
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Round Num. Max Indicative Comments
sites capacity  capacity
Round 1 12 1.2 1.2 Most operational
Round 2 17 7.8 7.8 Some operational, most planning or cartgiru
Round 3 9 32 25 Early design and planning stages
Scottish Exclusivity 7 55 5.5 Very early design and plagrsétages
Total 45 46.5 39.5

& maximum available under the Crown Estate lease
® indicative capacity assumed by National Grid [2008]

Table 8.2: Summary of Crown Estate leasing rounds

Lz

Round 1
Round 2
Round 3
Scottish Exclusivity|

" m 0B

Figure 8.2: Location of Crown Estate leasing rounds

minimum latitude and longitude.

8.2.3 Regional aggregation

It is useful to aggregate the output from individual windnfiarinto regions to present results
at a meaningful level. To do this, a set of regional boundanere created. Onshore regions
were based on the Distribution Network Operator (DNO) beuigs [National Grid, 2011].
Offshore regions were based mainly on the named sea areasdaBritain (for example as
used for the shipping forecast [UKMO, 2011]) with additibaggregation where appropriate.
The regions used for aggregation are shown in Figure 8.8,aey in Table 8.3.
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Figure 8.3: Regions used in analysis

Onshore Offshore
Code Name Code Name
swe South West England ech English Channel
see South East England lun Lundy
se South England th Thames
Idn London hu Humber
swa South Wales irs Irish Sea
ea East Anglia td Tyne and Dogger
wm West Midlands mal Malin
em East Midlands frt Forth
nwa North Wales cro Cromarty
ee East England
nwe North West England
ni Northern Ireland
nee North East England
SS South Scotland
nes North East Scotland
nws North West Scotland

Table 8.3: Region codes and names
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8.2.4 Demand

A key question for wind energy integration is how the temp@attern of wind generation
matches current electricity demand e.g. [Boehme et al.6,20@wald et al., 2008, Sinden,
2007], so a time-series of electricity demand is necessaexamine these questions in more

detail.

Electricity demand in the UK grew steadily up to the year 2080 has declined slightly since

[DECC, 2010]. It is difficult to assess likely demand in 202@d&eyond, since there are
many influential factors, such as changes in the econommiatdi, changes in the cost of fossil
fuels, changes in the electricity pricing structure madesgme by smart metering, changes in
the price structure due to the larger penetration of renagalnd changes in technology and

behaviour such as the adoption of electric vehicles.

Central projections [DECC, 2011c] are for demand to declime¢he near-term as energy
efficiency improves, and to begin to rise slowly after 2020eketricity begins to make up
a larger share of transport. In some scenarios electricheshiead to a doubling of demand
by 2050 [DECC, 2011a]. However, the projected changes inageinuip to 2030 are relatively
small, and for the purposes of this analysis, historic dehmrer the period 2000 to 2010 is
used without modification. The major benefit of this approaadhpreserves all links between

weather and electricity demand.

Historic, aggregated, half-hourly demand data going baclpril 2001 is available from
National Grid [2011]. The GB ‘IO1DEM’ dataset is used here since it is based on operational
generation metering and includes station load, but exslutterconnector exports and pumped
storage pumping. Figure 8.4 shows the average winter andnsurdiurnal demand pattern

over the study period.

8.2.5 Conventional generation

The conventional generation fleet will not remain fixed: mafyhe UK’s nuclear and coal
stations are due to be decomissioned, and there is conslielenacertainty regarding the future
generation mix [Ofgem, 2010]. Current and previous UK Gowant policy indicates support
for new nuclear stations, provided they are not directlysglibsed [BERR, 2008, DECC,
2011a]. Eight existing sites have been earmarked for patetgvelopment, with an indicative

timetable which sees new generators on-line by 2017. Hawéwvere remains considerable
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Figure 8.4: Average hourly electricity demand

uncertainty as to when, or whether, these will be deliverethb market [Ofgem, 2010].

The integration of large amounts of wind will put very di#et requirements on conventional
generation. For example there may be more requirement fogrgors which can respond
relatively quickly to provide short to medium-term resertd¢owever, in the near term wind
will continue to be installed against a relatively fixed centional fleet, and it is useful to take
the existing fleet as a baseline against which to analyse hoehmwind generation might be

integrated before large-scale changes would be needed.

The output from the existing conventional fleet is used fat pathe analysis. Hourly output
by fuel type is available via the Balancing Mechanism RepgrSystem [Elexon, 2011]. At
the time of this analysis data was only available for thequb2009-2010. Figure 8.5 shows
conventional generation by fuel type over the period, wittydhe major fuel types shown for

clarity.

Power (MW)

06 2 06
2009 2010

— NUCLEAR — CCGT — WIND
— COAL OIL

Figure 8.5: Production by major categories of conventiggaeration. Weekly averages over
period 2009-2010
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8.3 Analysis approach

The previous sections have described additional datasetd to support this analysis. This

section now defines some notation and definitions beforecthdts are presented.

8.3.1 Notations and definitions

Throughout the analysis, variables range over a set ofiomagnd a set of time periods. A
single location is an individual wind farm, and a single tipexiod is one hour. A subscript
is used to restrict variables to particular time periodsjleva superscript restricts variables
to particular locations. A lower-case superscript or stipsdenotes a single time period or
location, while an uppercase superscript or subscript téena subset of times or locations,
such as a geographic region or particular season. Wheresargthor superscript is omitted,

the variables ranges across the whole set. That is, for the sgeed/:

Uz.j : wind speed in period, location;

U, : set of wind speeds in periadacross all locations

UZR . set of wind speeds in periador all locations in region?
U% : set of wind speeds across peribdt locationj

U . set of wind speeds across periidor locations inR

— 1 ; , : . . ;
UR; = 7 Z(UZ?) : average wind speed in periodcross all locations i
jER

maz(U}) = I?eaTX(Ug) : maximum wind speed at locatignacross period’

The following variables are defined:

Rated Capacity’, of wind farm j is the maximum output when all turbines are operating at
full capacity

Power GeneratedPGZ, of a wind farmyj, is the average power output in the one hour pefiod

Power Demanded? D;, is the average electrical power demand in the one hour périod

Energy Generatedt'GG, is defined as the total energy produced by collection of warchs,
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assuming sufficient load and network capcity exists. If egped in the units gPowef -

h, i.e. KWh, it is given by:

EGE=>"Y" PG (8.1)

i€T jER

Load Factor,L F', over a set of wind farms and a time period is the energy geseti@ater the
period, divided by the total which would have been generételde wind farms had
operated at rated capacity for the whole period:

EGE
LFf = ——1T (8.2)
T e €7
When averaging the load factor over multiple wind farmss titefinition ensures.F'
is properly weighted by the rated capacity of each individuad farm, to ensure that

larger wind farms contribute more to the result.

Energy Demandedy D, is total amount of energy used over a period. If expresseahits u

of [Powet - hours, i.e. MWh, it is given by:

EDp =) _PD; (8.3)
€T

Net demand]N D, is the simply difference between energy generated and gmienganded,
and may be negative:

NDp =) (PG;— PD;) (8.4)
€T

Residual DemandR D, is the difference between energy demanded and energy ¢eshera

zero if generation exceeds demand:

RDp =) max(0, PG; — PD;) (8.5)
€T
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Excess Generation G is the difference between energy generated and energy dechan

where generation exceeds demand:

XGr =Y max(0,PD; — PG) (8.6)
€T

Energy ContributedEC, is the energy generated excluding any excess generation:

ECp =Y _min(PG;, PD;) (8.7)
€T

it is useful to express the energy contributed as percerntétipe energy demanded:

I EC
% =100 - =— )
o contribution= 100 =D (8.8)

The terms used are illustrated schematically in Figure e definitions of EC' and ED
assume that neither demand nor generation can be shifteaché twind generation only
contributes if sufficient demand exists in each hour. As suidh a slightly more pessimistic
metric than other measures, such as the total energy geddrgtwind divided by the total
energy demanded. However, it is also the most defensiblee sincontains no implicit
assumptions about the viability of large-scale storagéh@extent to which electricity demand
can be shifted through behavioural change. These two aspewatd be examined in detail with
this dataset, but are outside the scope of the current workptesents the contribution wind

energy would make if the demand pattern remained complatethhanged.

16 -
_____ = = generation

144 excess generation - I — demand
12 A

]0 . £
s [ o~

Power

(= A )
L

0 5 10 15 20
Time

Figure 8.6: lllustration of terms used. Demand is shown @oridor clarity. ED is the area
under the demand curveEG is the area under the generation curveC is the
shaded areaX G and RD are annotated

150



Analysis

8.3.2 Analysis snapshots

Following the discussion i§8.2 a number of analysis ‘snapshots’ are defined. Each so&psh
represents a certain geographic distribution of wind gtiraar which may be achieved at some
point in the future, broadly based on the consecutive deveémt of the offshore rounds.

Analysis snapshots are summarised in Table 8.4 and Figare 8.

Snapshot A is representative of the current situation, witsst wind onshore and a small
amount offshore in Round 1 and Round 2 sites. Snapshot Bs@mie the development of
all the Round 2 sites, coupled with the steady growth in oreskond. Snapshot C represents
the development of all of the Round 3 sites, apart from thgelstrand most distant site, Dogger
Bank. Snapshot D represents the development of all Rounte8 isicluding Dogger Bank.
Finally Snapshot E also also includes the Scottish Exdlyssites. Thus, each snapshot shows
a greater proportion of wind capacity offshore, and a pregjve shift to sites further from the
coast. In absolute terms, there is a relatively large ledwdsn Snapshot B and C - this is
to highlight changes which will occur when the balance ofdviapacity shifts conclusively

offshore.

Under each snapshot, each individual wind farimassigned a nominal rated capadity. This
results in a total nominal capacity for each snaps@bt: C7, which is given in the second
column of Table 8.4, and is shown graphically in Figure 8.1thdugh each snapshot has a
total nominal installed capacity, it is more useful to se@apshot as describing a geographic
distribution of wind farms and their relative sizes. The maiirpose of the nominal capacities
assigned to each wind farm is to determine a weighted avdoagkfactor across any level of
geographic aggregation by Eq. 8.2. This enables a rangestailled capacities to be analysed

for each snapshot.

This implicitly assumes that increasing or decreasing dka tnstalled capacity has no impact
on the load factors at individual farms, i.e. that capaci#ty be added without any diminishing
returns due to increased intra or inter-park losses. Gikenarge space available in offshore
zones, this is a reasonable first approximation, althoughay not hold if the analysis were

extended to very large installed capacities.
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(b) Snapshot B

(d) Snapshot D (e) Snapshot E

Figure 8.7: Nominal capacities installled in each regiod thre relative distribution under each
analysis snapshot

Nominal Distribution (%)
Installed
Capacity
Snapshot GW Onshore Round1 Round2 Round3 SE
A 4 69 22 9
B 14 53 9 38 -
C 40 33 3 23 41
D 49 27 2 19 52 -
E 54 24 2 17 47 10

Table 8.4: Analysis snapshots
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8.4 Analysis Results

In this section the analysis results are presented, bewjiwith average statistics describing the
wind speeds, wind speed distributions, load factors andrpiad contribution of wind energy
to energy demand. Then, spatio-temporal patterns of vhiyaére examined and some of the

implications are explored.

8.4.1 Average conditions
Wind speeds

Wind conditions have been discussed in Chapters 5 and 6.agwewnind conditions but are
included again here here since they are integral to the sisalyigure 8.8 shows average wind
speed at 80m above the surface across the period 2000 torf)dsive, after bias correction
against satellite wind speeds. As has been previously siieci) these final results agree closely
with in-situ observations, and with the output of other nitilg studies. Detailed resource
maps showing power density and average wind speed by morttiegfear are included as

Appendix A.

Onshore at a national level the major visible patterns eetat terrain height and coastal
exposure, with high-level terrain and western coasts lgavighest wind speeds, and the lowest
wind speeds in central England and urban areas. Offshadjitiinest wind speeds are seen
off the western seaboard, particularly off the northwesistof Scotland. Over the areas likely
to be developed for wind energy, the average wind speedsasomably uniform, between
8-10ms!, decreasing closer to the coast. Of note are regions oftlsliplgher wind speed
either side of the Dover straight, which may be related toDeer jet [Capon, 2003] and

warrant further investigation.

Average wind conditions only reveal one part of the pictamed until now there has been no
publicly released assessment of the wind spdisttibutionsat the future offshore wind sites
in the UK. Table 8.5 provides mean wind speed and Weibull patars for each individual

offshore site in the UK. In addition, the probability thaetvind speed is below 5, 10, 15, 20,

and 25 ms! is included in the table.

The range of average wind speeds and Weibull parametersvensim Figure 8.9. Round 1

sites show the lowest wind speeds, and also the most varibgoveen sites. This is likely
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Figure 8.8: Average wind speed at 80m above surface.
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Figure 8.9: Mean wind speeds and Weibull distributions &thafre wind sites. The whiskers
are drawn to the full range of the data

due to the proximity to the coast where the wind speed is Sen$d the distance to the shore
and to the onshore topography. The relatively high maximoaniRbund 1 is from the Beatrice
demonstration project: a turbine which was placed on anlaifgrm off the coast of northeast

Scotland.

Round 2 sites also show quite a spread in Weibull parametdtscting the range of distances
to the shore. The highest shape parametés, is associated with the London Array, which
shows the wind speeds are more dispersed about the meammaiise due to differing wind

regimes with wind direction: from some directions windsIviidve blown over very rough

urban areas, but from other directions will have had a cletihffrom the North Sea or through
the English Channel. It also may relate speed up of wind speethe approach to the Dover
Straight known to occur in northerly and easterly windsgistable conditions [Capon, 2003].

This warrants further investigation but is outside the scofthis immediate work.

Round 3 sites show a relatively tight distribution of meandvspeeds and Weibull parameters
reflecting the more homogeneous wind speeds at this distiiooe the coast. Scottish
Exclusivity sites show a large spread, due to the fact thatsite is in an coastal estuary, while

another is off the exposed northwest coast.

Load factors

Figure 8.10 shows the distribution of hourly load factors d onshore, Round 1, Round 2,
Round 3 and SE rounds. These are shown before any reductiwasbken made to account
for technical availability. The average load factor for lboie wind is 28%, which agrees well
with published figure between 2006-2010 of 26% [DECC, 20a0particularly good match
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Name

Barrow

Beatrice

Burbo Bank
Gunfleet Sands |
Kentish Flats
Lynn & Inner Dowsing
North Hoyle
Ormonde

Rhyl Flats
Robin Rigg
Scroby Sands
Teesside
Docking Shoal
Dudgeon

Greater Gabbard - Galloper

Greater Gabbard - Inner
Gunfleet Sands Il
Gwynt y Mor
Humber Gateway
Lincs

London Array
London Array |
London Array Il
Race Bank
Sheringham Shoal
Solway Firth
Thanet

Triton Knoll
Walney |

Walney Il

West Duddon
Westernmost Rough
West of Duddon Sands
Bristol Channel
Dogger Bank

Firth of Forth
Hastings

Hornsea

Irish Sea

Moray Firth
Norfolk

West Isle of Wight
Argyll Array
Beatrice

Forth Array

Inch Cape

Islay

Kintyre

Neart na Gaoithe

Mean Weibull PU} <z) (%)
ms! k cms® 5 10 15 20 25
8.95 2.33 925 15 65 93 99 99.95
993 245 1061 12 53 83 99 99.90
7.44  2.09 7.62 28 78 97 100 99.98
9.05 2.47 950 14 63 94 100 99.98
8.69 231 922 17 66 94 100 99.98
833 231 886 19 69 96 100 99.99
7.86 2.12 808 24 74 96 100 99.98
9.03 2.35 937 15 63 92 99 99.94
7.86 211 806 25 74 95 100 99.98
7.92 210 804 25 74 95 99 99.97
8.71 2.40 939 17 65 95 100 99.99
759 213 799 25 77 97 100 99.99
9.10 2.37 963 15 62 92 99 99.98
9.39 243 9.97 13 59 91 99 99.98
9.89 261 1039 10 54 90 99 99.97
9.81 256 1034 10 55 90 99 99.96
9.05 247 950 14 63 94 100 99.98
831 218 854 21 70 94 99 99.98
9.00 2.33 962 16 62 93 99 99.99
857 233 911 18 67 95 100 99.99
986 263 1032 9 54 90 99 99.97
983 263 1029 9 55 90 99 99.97
983 263 1029 9 55 90 99 99.97
9.45 2.44 999 13 58 91 99 99.98
9.05 2.36 962 15 62 93 99 99.98
8.42 223 857 19 70 94 99 99.97
972 261 1021 10 55 91 99 99.97
941 241 1001 13 58 91 99 99.98
9.37 241 975 13 60 91 99 99.94
9.42 242 983 12 59 91 99 99.94
9.38 242 974 12 60 91 99 99.94
8.98 2.32 965 16 62 93 99 99.98
9.35 2.42 968 13 61 91 99 99.93
9.31 2.32 968 14 60 91 99 99.94
9.83 230 1060 14 54 87 98 99.93
9.90 233 1054 13 54 83 98 99.86
9.29 2.35 9.80 14 60 91 99 99.95
9.41 227 1015 15 58 90 99 99.98
969 234 1030 13 56 89 99 99.94
1002 243 1075 12 52 88 99 99.89
956 2.36 1018 13 57 90 99 99.96
963 240 1020 13 57 89 99 99.95
1090 240 1168 10 46 81 96 99.62
9.97 242 1074 12 53 88 99 99.90
9.44 231 9.99 14 58 90 99 99.90
9.40 2.28 987 15 59 90 99 99.83
10.67 2.43 1140 10 47 83 97 99.69
1001 239 1056 12 53 87 98 99.83
9.53 2.33 999 13 58 90 99 99.85

Table 8.5: Wind speed distributions at offshore sites
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Figure 8.10: Distribution of aggregateF' for onshore, Round 1, Round 2, Round 3 and SE
zones

considering technical availability for onshore is aroud®Harman et al., 2008].

The predicted values for offshore load factors are conaldgrhigher: 37%, 46%, 48% and
51% at Round 1, 2, 3, and SE sites respectively. Again, itlshoel stressed that this is before
any reductions due to technical availibility. These figuaigeee with other assessments based
on more limited wind speed data, for example, Garrad Hasx208] predicted load factors of
47.5% for sites with an average wind speed of 9.5l he shape of the distributions is also
changed, with a progressive shift to the right, with offghaind speeds being higher and more

consistent.

Finally, load factor distributions are presented by arialgeapshot in Figure 8.11. This shows
how the load factor will change as the distribution of capaprogressively shifts offshore.

This starts from an average of 34% for Snapshot A, rising téo4dr Snapshot E.
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Sensitivity analysis

So far, load factors have been presented without any sgtisgi There are a number of
sensitivities which will effect the prediction of load facs from future wind farms, these

include:

1. errors in the simulated wind speed over the period;
2. assumptions about wake losses experienced at futurefarnmdg; and

3. assumptions about technical availability.

Curtailment losses due to network constraints are not exainhere. To do so adequately
would require a reasonably sophisticated model of the né&twas well as a range of
assumptions or scenarios about the future electricity owthis is outside the scope of this

work.

To assess the sensitivity to the simulated wind speed, anadst of the wind speed error is
taken from comparison against in-situ observations, thdtom Figure 5.8 for onshore and
Figure 6.8 for offshore. To simplify the sensitivity andfysa single bound of=1.2 ms~'was

used to encompass the 90% confidence interval for both o#siad onshore wind speeds.

So far, array losses have been applied as describ§d.&11l. Wake losses depend on wind
speed, but amount to around a 10% reduction in energy yied)l€¢T7.1). To assess the
sensitivity to wake losses, the analysis was repeated wtitnoy wake losses, and with double
the adjustments made in the base case. Figure 8.12 showsfdloesrs applied to a particular
power curve. Using the same test wind speeds as Table 7.fedbetion in energy yield using

doubled wake losses is around 20%.

The difficulty of estimating technical availability for affiore sites is discussed §i.2.2. In
most studies technical availability is usually assumedeadnstant throughout the year e.g.
[Boehme et al., 2006, Poyry, 2008]. However, for offshotessitechnical availability may be
more sensitive to season, since higher winds and fewer ereaindows may reduce technical
availability disproportionately in autumn and winter, whiwould disproportionately affect

energy production.

To examine whether this is significant, the impact of a seas@riation in technical availability

is assessed on the load factors of Round 3 farms. This is shioWwable 8.6: it can be seen
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Figure 8.12: Power curves used to study sensitivity to dosses

Technical Availability Load Factor
% %
Spring - Summer  Autumn - Winter

100 100 48.3

90 90 43.5

95 85 43.1

80 80 38.7

85 75 38.2

Table 8.6: Impact of seasonality on average load factor ahB@ sites

that the impact of seasonal imbalances in technical avéiyals minor and is not pursued
further. Assuming a constant reduction due to technicalabifity seems reasonable. For the

sensitivity analysis, technical availability was assdsse80%, 90% and 100%.

Figure 8.13 shows the sensitivities used, and the impacterage load factors at onshore and
offshore wind farms. As would be expected, load factors arg gensitive to changes in wind
speed. A change in the wind speed of 1.3fthanges the load factor by an absolute value of
0.10. Sensitivity to the shape of the aggregate power curve @s\asy significant. Doubling
the array loss factors changes the load factors by an absedliie 0f0.05. This highlights
the importance of properly understanding array losses, iliustrates the need to develop
aggregate power curves based on real offshore data, ratwertd make simple assumptions
such as fixed array losses. It also highlights the importalet that proper layout will play,
particularly at more remote Round 3 sites which are largdrvaimere the aesthetic constraints
on layout may be more relaxed, allowing for layouts whichliexgpy aim to reduce array losses.

Finally, technical availability is also a significant seity highlighting the need for ongoing
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Sensitivity lower mid upper
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Figure 8.13: Sensitivity of average load factor to wind shearray losses, and technical
availability. Mid value is indicated by the x’.
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monitoring and cataloguing of real data.

This section shows conclusively that the load factors froifishore wind farms will be
significantly higher than onshore sites, even if low tecahavailability and high array losses
are assumed. The main purpose is to highlight the relatipoitance of different sensitivities.
The high sensitivity to wind speed is shown, and some attémput confidence bounds on
this is made. Sensitivities to other assumptions are shbutrthese are not combined with the
wind speed into a single ‘uncertainty’ as they are simplyedént assumptions, not empirical
estimates of the likely error. Without more data, it is imgbke to know whether, for example,
a value of technical availability of 80% corresponds to a 99%%%6 or 99% confidence bound

on the true value, and it would be misleading to combine them.

For the following sections, the central case from the seitgitanalysis is used, that is, wind
speed is not perturbed, technical availability is assunoedet 90%, and baseline array loss

factors are used, so that array losses amount to around 10%.

Average energy contribution

This section now examines the overall contribution windegation could make to meeting
existing electricity demand under each analysis snapshBnergy match is calculated
hour-by-hour, but presented at a monthly-level, which stm®out daily and hourly variations.
In later sections, hourly variations are shown, and two weal periods representing the

highest and lowest generation are shown.

Figure 8.14 shows the results from the analysis, preserstedoathly averages for clarity; a
week of maximum and minimum output is shown later. Lines &e drawn corresponding to
the energy which would be generated by a constant power botd® and 20 GW. This is to
give a visual guide as to where the output of any inflexibleretaseload generation may be,

for example if existing nuclear plants are renewed or neweau@lants developed.

In Snapshot A, which is representative of the current snatvith an installed capacity of
4GW, the wind contribution is 3.6%. This agrees very closeith current figures [DECC,
2011b, p29], which show that wind contributed 2.8% to eleityr supply in 2010, or 3.7%
when adjusted to average long-term wind conditions [DEQ¥102 (The wind contribution
in Snapshot A for 2010 is 2.9%). The seasonal pattern is wadert, with wind contributing

more in the winter. However, at this relatively low penatmatthere is no significant change in
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Figure 8.14: ED, EC and RD by year and month. ED is the top Ht&js the grey shaded area
below, and RD is white area below. The energy which would breegeed by a
constant power output of 10 and 20GW are shown as the twolibasknes
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the underlying shape of residual demand.

In Snapshot B, which represents a total installed capaditd@W, the wind contribution is
12.3%. If electricity generation from other renewable sesrsuch as hydro, biomass, wave
and tidal remained at today’s levels of around 4.6% of dl@tirdemand [DECC, 2011b],
then under this snapshot the UK would produce 17% of eléiytritom renewable sources.
This is significantly higher than today, but still considayashort of the 30% target for 2020.
This indicates that developing Round 2 sites alone will matde the UK to reach its current
targets. The seasonal pattern in Snapshot B is evident,muitth more energy production in
the winter when demand is highest. At a monthly level theduedi demand is considerably
smoother than the total demand, i.e., wind generation exlitlte seasonal range of demand.
However, monthly averaging masks a large amount of variatichich is analysed in later
sections. In Snapshot B, at monthly average level, theuwabkiemand does not approach the
baseload lines at 10GW or 20GW. This shows that the systelstilliheed thermal generation
whose primary function will be to supply energy to meet detharot only to provide reserve

or auxiliary functions.

Snapshot C represents a considerably leap in terms of ¢tapaith 40GW of installed wind.
The wind contribution is much higher, 37.5% of energy demdndhis snapshot, wind alone
would allow the UK to meet its 2020 renewable energy targassuming the network can
accomodate this. On a monthly average level, residual dénsdittle over the baseload line
at 20GW. This indicates that if there were an increase ofeawobr other inflexible plant to
this level, there would be relatively little energy remaigi on a monthly average level, to be
served by other thermal generation. This suggests thaettemue for such generators would
have to be found by exploiting much higher electricity pritiferentials, or from payments for

providing other auxilliary services to support the network

Snapshot D shows a further increase in capacity to 49GW, wiitlal contribution of 47.2%.
Monthly average residual demand approaches the baseloadagjen line at 10GW, suggesting
any inflexible baseload generation above this level may teaignificant curtailment, export,
or storage. Snapshot E shows a further increase, with dgpeici54GW giving a wind
contribution of 53%, with several winter months where thenthty production meets, or
exceeds, the baseload line at 10GW. This suggests thafleikilnle baseload of 10GW were

installed in this scenario, significant export or curtaiirhef wind may occur.
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Figure 8.15: Wind contribution as function of snapshot argialled capacity

As described ir8.3.2, the snapshots can be viewed as a describing a geagdigthnibution

of capacity, and can be scaled up or down to reflect diffemestalled capacities. Figure 8.15
shows the wind contribution as percentage of demand, aimcancreasing capacity to each
shapshot while maintaining the same relative distributleigure 8.15 clearly shows the benefit
in energy terms of developing offshore sites, with the shagsswith large amounts of offshore
wind producing significantly more energy for the same leVvéhstalled capacity. It can be seen
that to meet targets of 30% of electricity from wind genenatalone would require between

30-36GW of installed capacity, depending on the geogragisicibution.

In Figure 8.15, the gradients eventually begin to level autigher wind penetrations, due to
the increasing number of hours where wind generation woxideed total demand, with any
excess generation discounted as defined in Eqg. 8.7. Thisvasim Figure 8.16 for Snapshots
B, C and D. Net demand is shown (which can be negative), rétherresidual demand (which
is defined to be positive), to show how much energy might béadla for export, storage, or
be spilled. In Snapshot B, the distribution of net demandifiexd but not radically changed.
In Snapshot C, net demand is considerably reduced, andagiveeground 2% of the time and
less than 20GW 40% of the time. In Snapshot D, net demand &timegaround 18% of the
time, and less than 20GW 60% of the time. However, there ig argmall reduction in peak
demand: even in Snapshot D peak demand is is still around 5¢@Wpared with 60GW.
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Figure 8.16: CDF of net demand for three analysis snapshots

Maximum and minimum week

“It was the best of times, it was the worst of times...”

Charles DickensA Tale of Two Cities.

So far, the energy contributed has been presented as mawhigiges, which masks a large
amount of variability. As an illustration of this, two weddng periods with the lowest and
highest average load factor are selected, to illustratebmst’ and ‘worst’ weeks in terms of

energy production.

The week with the lowest aggregate load factor over the pesindied was the 7-days
beginning 17th May 2010. This was a week which saw a high presikuilding from the

17th, and only weakening after the 23rd, with daytime terapees reaching a record for May
of 27°, but nightime temperatures falling to just a few degreesffge, 2011]. The synoptic
situation on 20th May is shown in Figure 8.17 (a), which shbwgh pressure extending from

the south of the UK into Norway.

The week with the highest aggregate load factor over theogestudied was the 7-days
beginning 3rd January 2005. This week saw the UK in a strorgjesty flow, with a succession
of depressions crossing from the Atlantic [Brugge, 201He $ynoptic situation on 6th January
is shown in Figure 8.17 (b), which shows two deep areas of Imgure to the north of the

UK, and a large area of high pressure over southern Europe.

Figure 8.18 shows energy contributed over both periodsaoh enapshot. Demand is relatively
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Figure 8.17: Synoptic situations causing the lowest (a) lsigtiest (b) weekly average load
factors over whole period.

low in the week in May 2010, with a peak of around 40GW, andtredly high in January
2005, with a peak at 50GW. Of most interest are the snapshtiiigh penetrations of wind,
as the contrast between the two periods are more evidenhadpsBot D, the wind contribution
during the ‘worst’ week is around 6%, with a two-day periodhie middle with very little wind
contribution at all. In contrast, the contribution durifget'best’ week is 95%, with several

days where wind meets 100% of electricity demand.

This analysis is important since it illustrates the radycdifferent nature of the system with
high penetrations of wind, and the challenges associatddderling with different extremes.
It will be shown in the following sections that the geograpdistribution of wind provides a
very much smoother resource than single points, but theeggtg output is still very variable,
and any system has to be able to deal with periods where \itlgy dinergy is generated,
as well as times where wind could provide all the current deanand more. It should be
stressed that wind generation is shown against current i petternss an illustration only
The conventional generation and demand backdrop may bediéeyent by the time such
penetrations of wind are reached. The periods have beestestlas the two extremes; analysis

in the following sections looks at how often similar periausur.

It is worth noting that both synoptic systems shown in Fig8r&7 indicate that much of
northern Europe would experience similar wind conditiohishough this should be confirmed
from observations or other model output, the lack of any igant pressure gradient in

Figure 8.17 (a), and the strong westerly flow in Figure 8.)&(lmgest that in both cases that
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the UK, Denmark, Germany and southern Norway and Swedendwyderience co-incident
low or high wind speeds. This confirms findings of Poyry [2Q1athich found that wind speed
variability across Northen Europe would not simply average How often the positions of
different synoptic systems cause this to occur across thaendf northern Europe would be

interesting further work, and could be examined in broachgsirom a global reanalysis dataset.
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Figure 8.18: Energy production by snapshot for the highedtiewest wind speed week
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8.4.2 Spatio-temporal variability

As illustrated by the two extreme cases presented aboveptim-temporal variability of wind

speeds are of crucial importance to the energy system. Hod gpeeds vary in time, and the
the number of co-incident calm periods will determine howchhenergy must be supplied by
alternatives, be that conventional generation, energagéy imports from other countries, or

other sources of renewables.

The following sections examine spatial and temporal pasteeen in wind speeds and in the
subsequent outputs from wind farms. Diurnal, seasonal,aamtial patterns are examined,
before cross correlation between regions, calm periodsamg events are looked at in more

detail.

Diurnal

It was shown in Chapter 5, Figure 5.12, that WRF captured thenal variation at typical
turbine hub heights relatively well, and that the amplitofleariation was much less than seen
at met stations at 10m agl. WRF also showed a small but digfincnal pattern at coastal

in-situ observations, stronger than the pattern seen iereatons.

Figure 8.19 shows whether these wind speed patterns tramsia noticeable diurnal patterns
in load factor for onshore and offshore sites. For onshamadathere is a diurnal variation in
LF of around 0.02, with a minimum around 0900, and a broad plaftesn midday onwards.
The pattern is much less distinct than the diurnal patterwimd speeds seen at 10m met
stations [Sinden, 2007], and suggests that predictionwhél variations based on met station

observations will significantly over-estimate the diurmatiation in load factor.

This relatively low diurnal variation can be explained irrtply typical hub height of 80m,
at which height diurnal variations in wind speed will be sigrantly less. From Figure 5.12
showed that the observed and simulated diurnal variatan friean wind speed was around
0.8ms 'at met masts. However, only one of the masts was at 80m agkeshavere at 30-40m
agl. So the diurnal variation at turbine hub-height woul@keected to be less than 0.8msIn
addition, diurnal variation will only effect power outputghen it occurs against a background
wind speed over the steepest part of the power curve. Out§ithés range, diurnal variations
will not translate into variations in power output. This dhthurnal variation is also seen in

studies of Nordic countries [Holttinen, 2005].
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Figure 8.19: Averagé. F' by hour

For Round 1 sites, which are near the coast, there are two pestés at 1200 and 1900, which
might indicate the influence of a sea-breeze circulatiohth® other rounds, which are further
from the coast, show a peak at 1900. It is not immediatelyr cideat is causing this peak, and
it would be interesting to explore the flow patterns in mor@ileperhaps splitting the analysis
into onshore and offshore flow e.g. [Lapworth, 2005], ankiog at the potential contribution
of LLJs. However, this is beyond the scope of current workfiGito say, there are indications
of diurnal patterns in load factor even at offshore siteoalgh the magnitude of these are
relatively small when compared to typical inter-hourly obas, and are far less important than

the variations due to changing synoptic situations.

Seasonal

Seasonal patterns are very pronounced: Figure 8.20 shanavtrage load factor for each
month of the year over the whole period. Load factors are liyutyvice as high in winter

as summer. This result is well known, and agrees with thergwiof e.g. Sinden [2007]
who found monthly capacity values ranged from about 40% éwtter to about 20% in the
summer. This analysis extends that result by showing theoseh patterns of offshore load

factors follow the same pattern.
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Inter-annual

Figure 8.21 show the inter-annual variation in load factmrdhe whole period. The variation
between most years is within a 5% band (i.e. an absolute ehan¢pad factor of 0.05).
However in 2010, load factors were exceptionally low, atb@0% for onshore sites compared
with an average of 28%. The low load factors in 2010 were aatamtwith a strongly negative
NAO and persistent blocking high pattern, forcing the je¢at and storm tracks much further

south.

This highlights the dangers of assessing wind resourcastgashort climatology. If the dataset
produced in this study had been only ten years, it would hasseed the pattern in 2010. It also
demonstrates the great benefit that seasonal forecastifdy lming [Brayshaw et al., 2011], as
being able to predict years of exceptionally low winds waalldw contingency plans to be put
in place. Although seasonal forecasting has improved derably in recent decades, overall

skill remains fairly moderate [Smith et al., 2011].

Cross-correlation

Of importance for wind energy is the degree of correlatiotwieen wind speeds in different
areas, since this will determine the extent to which theaVeuntput is smoothed. This section
examines this first in the raw wind speeds, then in regiored factors. The extent to which

geographic smoothing removes absolute calms and rampsdgesxamined in a later section.

Wind speed correlation is known to decrease with distanogféfe et al., 2001, Sinden, 2007].
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Figure 8.21: Averagé F' by year

However, this was based on discrete observation at pomttserrthan a continuous field. By
computing the correlation coefficienk, between wind speeds at each point in the domain
against a reference pointy,.r, yr.f), the variation ofR with distance can be seen. This is
shown in Figure 8.22, computed from a reference point in trdre of the domain (a), and a
reference point in the upper-left corner of the domain (b)bdth cases the correlation can be
seen to fall rapidly with distance. The influence of complkexain can also be seen to reduce
the correlation. It is also clear that reduction with dis&is not symmetric, and the gradient is

steepest in the west-east direction.

Figure 8.22 (c) shows the variation &f with distance. The northwest corner is used as a
reference since, of the four corners, it is most represgatat the entry points of depressions
and is likely to lead any wind speed changes. The correlat@nbe seen to decrease with
distance in both directions, falling to around 0.8 at 200lamd 0.4 at 600km. This broadly
agrees with Sinden [2007], who found that the correlatiopawer output (rather than wind
speed) decreases from around 0.8 at 50km down to 0.4 at 408kan0.1 at 800km. This
analysis confirms that the trend continues offshore. Furtbee it also shows the decrease
is not symmetric, but is more rapid in the west-east planetiqodarly at distances greater
than 200km, showing that wind speeds are correlated ovgefodistances in the north-south
direction. These values are also in line with Hogrefe et200[L], who found the correlation
decreased to around 0.1 at 800m, when considering the $gyragrhponent of wind speed

time-series.

Figure 8.22 shows the maximum rate of chang&a$ along a south-east bearing. Wind farms
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shows two cross-sections through (b)
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Figure 8.23: Geographic cross correlation of wind speethageentre of the domain (a) shows
the lag in hours of the maximum value &f (b) shows the value aR at that lag.

separated along this diagonal will tend to be less cormlaténd farms in the Irish Sea will
be relatively uncorrelated with wind farms in the ThamesaegThis highlights a flaw in the
analysis by Oswald et al. [2008], who looked at correlatiosig sites which were largely
aligned North-South.

However, this is based on instantaneous hourly values. uhsirprising that instantaneous
correlation decreases rapidly with distance, since wireegdp are governed by synoptic systems
which themselves move across the country with a timescaleeeéral hours to days. To
examine this in more detail, the cross-correlation is rqmated at a lag oftn, wheren is

an integer number of hours.

Figure 8.23 shows (a) the lag at the maximum valu&lpaind (b) the value oR at that lag.

The west-east pattern is very clear showing a lag of arourdodirs across the whole domain.
This highlights the eastward-propagating nature of miitide depressions which are the main
driver of wind speeds in the UK. By plotting a cross sectiamtigh this, Figure 8.24, a clear
linear relationship is found. The reason for three or foun{sooccurring on the same level is

due the timestep of one-hour, meaning only integer lags earséd.

Taking the speed as the inverse of the gradient, a phase spasmind 56 km/h (15.5mg) is
found, i.e. the average speed at which wind-speed changpagate across the country. Such
a clear pattern highlights the dominant driver of wind spelegihges: mid-latitude depressions
from the Atlantic progressing eastward over the country timascale of days. Figure 8.23 (b)

shows that correlation remains high across large distambes the temporal lag is taken into

175



Analysis

account, withR above 0.9 for most of the domain.

On a large-scale this is inherently positive for wind enengggration, as it highlights the
forecastability of wind speed changes on timescales dait@abp bringing conventional plant
online to provide reserve. It also is positive for the intgm of wind energy over larger
geographic domains. From Figure 8.23 it can be reasonaklynad that there is a lag of
the order of around 0.5-1 day between the UK and other naertBaropean countries such as

Germany or Denmark.

The phase speed is somewhat higher than the 8-10tyysically estimated for synoptic scale
features [Canziani and Legnani, 2003]. However, it is stilich less than the mean flow speed
of the jet stream, and therefore is still consistent witmbedriven by synoptic scale Rossby
waves [Gerber and Vallis, 2009]. TO examine this in more ijatavould be preferable to
partition weather types according to large scale synoptgjarisation, e.g. using GWL types,
and calculate the phase speed under each classificatiorh iMoie detailed studies have been
done along these line [Hoskins and Ambrizzi, 1993, Yang aaskihs, 1996], and this type of

study is more suited to a global model.

An analysis on similar lines has been done in relation to gettemical pollutants over the
Eastern United States [Sistla et al., 1998], where phadewas calculated by the time of

occurrence of maximum ozone concentration.

Finally, load factors at wind farm sites are examined to sme the power outputs relate to
one another. This is computed at discrete sites, rather ¢batinuously over the domain.
Figure 8.25 shows the cross-correlation between averajenad load factormi, between

all offshore regions, taking the Irish Sea region as refeei®nly offshore regions are shown
for clarity, as these geographically encompass all of the&hore regions. Load factor is less
correlated than raw wind speed over the same distance, astexpsince the non-linear power
curve amplifies small changes. Nevertheless, the samagpatporal pattern remains with

the average lag between Irish Sea and Tyne-Dogger beingdibhours.

These results are useful for the design and operation ofdutetworks, as they provide a
simple way of relating the outputs of wind farms to one angtaed could be used as the basis

of statistical forecast models.

This analysis could be taken further, by performing a spéckecomposition the time series,
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Figure 8.24: Lag with west-east distance from centre of ttrean. The best-fit line gives an
average phase speed of 56km/hr, or 16 ms

e.g. [Hogrefe et al., 2001], which can provide insight beydraditional time-series bases

analyses and verification statistics. However, this isdefturther work.

Calms

Meteorologically, calms are usually defined as wind speeds than 1 knot, or 0.5ms.
However the typical cut-in speed of a turbine is 3-4rrend most turbines generate very little
power below 5ms!, so here a ‘calm’ is defined as anything under 5msThis would include

anything classified as a gentle breeze or less on the Beacfig.

When assessing a calm across a set of locations, there isificsigt difference between using

the average wind speed and the maximum wind speed within@mwgbat is:

P [maa:(UiR) <z|<P [U—ZR < x} (8.9)

since it is possible for the average wind speed to be low,enstill being high at a number
component sites. Here absolute calms used to mean that the maximum wind speed at all

locations is less than 5ms, and no individual wind farm is generating:
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Figure 8.25: Cross correlation of hourly wind speeds betwadtshore regions, with Irish Sea
as the reference region
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Figure 8.26: Schematic showing the progressive enlargeofayeographic subdomains used
to calculate the extent of calm conditions

P(absolute calim= P(maz(UF) < 5) (8.10)

The geographic extent of calms is assessed using a squadesi#in centred gt /2, ny/2),
which is progressively enlarged around each edge by a siadjtea few stages in the process
are shown in Figure 8.26. At each step the probability of asolibe calm within the
sub-domain is calculated from the full eleven-year dataBe¢ probability of an aboslute calm
versus the length length of one side of the domain in showmguarE 8.27. In a single 3km cell,
the probability of a calm hour is around 25%, which agreed pitvious analyses [Sinden,
2007]. As the domain is expanded, the chance of a total calmsgdthe region drops very
rapidly. For a domain of siz€00 x 100 km, the probability of an absolute calm is only around

5%, and beyond00 x 400 km, an absolute calm did not occur in dataset.

This is a steeper drop than that reported by Sinden [2007}eler the analysis here uses a
continuous domain which extends offshore, rather thanrelisconshore met stations. This
shows that widespread absolute calms are incredibly raenwiine continuous wind field is
analysed. In short, the wind is always blowing somewherewéder it would be misleading
to use this continuous analysis to predict the probabilitgeyo power production, since it
includes locations such as mountain tops, where there mipavainds above 5ms', but no

wind farms there. What matters more for wind energy is whretthe wind is blowing at wind
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Figure 8.27: Probability of maximum wind speed less than5ras a function of the width of
a square sub-domain centred within the model domain

farms.

The probability of calms at individual offshore wind farmsshalready been given in Table 8.5,
and is around 20%. However, there will also be smoothing eetvwvind farms within a region
and between regions. Also, the use of 5rias a cut-off for calms is somewhat arbitrary. It is
much more informative to analyse the Cumulative DistrimutFunction (CDF) over the fulll

range of wind speeds aggregated across regions.

To show this, the distribution ofnax(Uf) was calculated for all geographic regions,
Figure 8.28. The very thin lines show the CDF for individualbgraphic regions, while the
thick lines show the CDF across all onshore or offshore regidhe probability of an absolute
calm within a single offshore region ranges between 5% imiégsato to 14% in Lundy, while
the probability of an absolute calm across individual omshieegions ranges from 4% in
Northwest Scotland to 51% in London (the next highest oatsidLondon is 27% in the West
Midlands). The effect of geographic smoothing is very cleBne probability of an absolute
calm across all onshore or offshore regions is far lower tay individual region. In fact,
an absolute calm across all onshore regions, or all offsteg®ns, did not occur in the full

eleven year dataset (96360 hours).

On this evidence can be reasonably concluded that the ghtpalh an absolute calm across
the entire country is less than once in eleven ygars,1 x 10°. However, to accurately assess

the probability of such an extreme event, at the very tailhef distribution, would require a
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Figure 8.28: CDF for maximum wind speed within a regiﬁmx(UZR). The thin dotted lines
represent individual geographic regions; the thick liness aggregated over all
onshore and offshore regions.

longer timeseries. It is evident though, that absolute ganods are very rare indeed.

Although absolute calms are very rare, they are only parthefgicture. Windfarms still
produce relatively low output at speeds below 8msRather than analyse wind speed, it is
more relevant to look at the CDF of aggregate load factos ithishown in Figure 8.29. As
expected from the analysis of wind speeds, the probabifitgeco output across the whole
onshore or offshore fleet is zero, at least over these elevarsyThere is always a wind farm

somewhere producing power.

However, the lines in Figure 8.29 rise relatively steeplynirzero. The probability that the
aggregate load factor is less than 10% is alB8tonshore and.1 for the offshore fleet.
The most striking feature is the marked difference betweeshore and offshore sites in this
low-output region. This shows that when average wind spaegisround the steepest part of
the power curve, the higher wind speeds offshore transtébeai very large benefit in terms of

power output.

For a fully diversified offshore fleet, the CDF is quite closatinear relationship, reflecting the

relatively uniform distribution of load factors for offstesites in Figure 8.10. This provides a
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Figure 8.29: CDF of average load factors. (a) shows averggeegated over onshore and
offshore farms. (b) shows average by analysis snapshotlintg® are too close
to differentiate by colour or symbols, but Snapshot A is the line through to
Snapshot E at the bottom

convenient rule-of-thumb for assessing the output of offsiwind.

Finally, CDF of aggregate load factor is presented by amabrsapshots A to E in Figure 8.29
(b). The lines are much closer together since they show arggsiye shift from onshore

generation offshore. The largest difference is in the neigdirt of the range. For example, the
probability of aggregate load factor of less than 0.4 is ado0.55 in Snapshot A and around
0.4 in Snapshot E.

This analysis has shown that absolute calms are very ragge thill almost always be a wind
farm generating power somewhere. It has also shown thahdpavind farms offshore gives
considerable benefit in terms of more consistent output dddianal geographic smoothing.
It has also shown the importance of looking beyond a binasgsification of ‘calm’ or 'not

calm’, as this reveals only part of the picture. It is much enimstructive to look the aggregate
production or load factor, and how this is distributed. \Wlkro production is rare, relatively
low production is not so rare, even when aggregated acriosssiore and offshore wind farms,

and clearly the system must be designed around this.
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Low output

The previous section has shown that hour-long periods ofdatput do occur, even when
aggregated across the country. A key question is how longetleriods last for, since
this will determine what type of generation may be suitalde providing the balance.
Figure 8.30 shows the CDF for the average load factor actbesgéions, assuming that wind
is geographically dispersed as in Snapshot E. Aggregatiféaaor is calculated over different
averaging windows: hourly, weekly, and daily. This gives wamtification of how often

sustained periods of low output occur.

From Figure 8.30 it can be seen that the probability of hadngaggregate hourly or daily
load factor of< 0.10 is around 10%, while the probability of having a aggregatekiyeload
factor is around 2%. This shows that calm conditions tendmpérsist over periods of a week.
The most noticeable of Figure 8.30 feature is that the hoamig daily lines are very close.
This demonstrates the link between the spatial and temposgdés: when averaged across all
geographic regions, hourly variations are smoothed outlzdominant feature is day-to-day

changes related to synoptic conditions.

From a system-wide perspective this suggests that wingriaien at an aggregate level is not
primarily a challenge of providing fast reserve to repladedyoutages’, but is more a question
of day-ahead scheduling of conventional plant, storagemports. It shows that sufficient
generation must be available to routinely cover periodsowof dutput persisting for a day or

more, but low outputs persisting for more than a few days arg rare.

Ramp events

Rapid changes in the aggregate power output of a wind farroltgotion of a wind farms are
termed ‘ramp events’. Ramp events are a challenge for tegration of wind power as they
may require the output of conventional generation or pungp@ege to be adjusted rapidly, and
could lead to large and rapid changes in the power flows irrémsmission network [Dragoon,
2010, Ela and Kemper, 2009]. If the system cannot accomradtiase changes, it could lead

to a loss of load or network instabilities [Dragoon, 2010].

There are a number of ways in which ramp events can be definachdkh, 2010]. In this

analysis, ramp events are characterised by the gradieheafind speed or load factor over a
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Figure 8.30: CDF of aggregate load factor over differenetimdows. (a) shows the the whole
CDF while (b) shows the lower tail.

time-windowAt:

AUR _ m(1t+At) ~UR, ALFE LFRynp — LFR,
At At At At

(8.11)

Some further notation is introducekU%,,, is used as shorthand to represent the change over
a period ofn hours. The units oAU are expressed here ins~thour !, rather thanns2,

since the former are more intuitive when discussing ramptsve

As discussed in Chapter 2, since the simulations use Regnalgraged equations, high
frequency turbulent fluctuations on timescales of secoadsnihutes are unresolved, and the
smallest value ofAt is one hour. In relation to network operation, this meansiltesare
relevant to inter-hourly balancing mechanisms, not subwuitei regulation currently provided

by the dynamic frequency response of conventional gelerati

First, wind speed changes in each 3km cell are analysedredR8381. An obvious characteristic
is that the distribution is zero-centred: the wind changey little between consecutive 1-hour
periods. This result is already well known in weather fosticey - persistence forecasting
shows considerable skill over a timescales of a few houraurlavind speed changes range
betweent2.5 ms™!, and the distribution is symmetric showing increases oreseses of the

same size are equally likely.
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Figure 8.31: (a) Distribution of hourly wind speed changéthiw each 3km cell, (b) QQ plot
against Normal distribution

The changes are not normally distributed, as evident frarQQ plot, where the distribution
is leptokurtic with fatter tails. It suggest something @o$o a Levy stationary distribution
[Chechkin et al., 2008], which is often found to describeatité processes which show
self-similarity across scales and have ‘bursts’ of agtivuch as some turbulent diffusion
processes [Chechkin et al., 2008] and as stock market lityldtviasoliver et al., 2000]. More

detailed statistical analysis of the wind speed changesdamaiinteresting, but is left for future

work.

As shown in§8.4.2, the wind speed changes show a very clear dominanttceasst
propagation. Therefore ramp events are expected to be Betbathen averaged over larger
geographic areas. To examine the relation betwaAér? and the size of the regioR, a
number of square subdomains of increasing size were ceotetiluas shown in Figure 8.26.

The distribution ofAﬁlh for each of these sub-domains, is shown in Figure 8.32.

Figure 8.32 shows that ramp events are smoothed consigesdigin averaged over a wider
area. With a domain of width 15 km, the probability of a chaingéhe average wind speed
of Ims™! is around0.01, or about 88 hours per year. For a domain of width 315 km, the
probability of the same event is aroudd05, or 44 hours per year, and for a domain of width
615 km, the probability of the same event is und#X001, or 8 hours per year. Moreover, the
trend continues as the area is expanded, and the smootli@ay isfgreater for larger ramps.
When averaging over a domain of width 915 km, changes in thelyhaind speed are limited
to+1.5ms 1.
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Figure 8.32: Geographic smoothing of wind speed ramps. ®tetmition of AU R, is shown
for a number of sub-domains. The legend shows the length efsae of the
domain.

Wind speed changes will have biggest impact when they oatthiesteepest part of the power
curve. For wind energy, a ramp from an average speed of 2 to-3 matters very little. Ramp
events are now examined in terms of the load factors from vianchs. For this part, it is
assumed that wind farms are distributed across all onsimot@fésore regions, as per analysis

Snapshot E.

Figure 8.33 shows the probability of changes in load factggregated over individual
geographic regions, and over all regions. Again, the distions are zero-centred and
symmetric. The effect of geographic smoothing is eviderd saimiking: the probability of
a load factor change of-0.10 within an individual region ranges betwednx 102 and

5 x 1073. When averaged across all regions, the probability is reditkeenfold tol x 1074,

Also of importance is the duration of a ramp event, sincewliisietermine the total size of the
change between the start and finish. Figure 8.34 shows tlhalpitidy of a ramp event across
all regions, calculated over time windows of 1h, 4h, 6h ank. 12eyond a certain averaging
window, there is no clear distinction between a ‘ramp-evand the normal expected changes

in output due to the transition between weather patterns.

To compare averaging windows on the same scale, ramp evergg@ressed by their gradient

ALFR/At. In other words gradients seen in the 6-hour averaging wingdere sustained for 6
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Figure 8.34: Aggregate ramp events by time windaw

hours and lead to a larger overall change between the sththarend of the event. Figure 8.34
shows that as the averaging window is increased, the pidadfia particular ramp gradient is

reduced. However, there is relatively little differencévibmen the 1h and 6h lines until gradients
of +0.05/ hr are reached. This shows that at a country-wide levelprarents seen over 1 hour
tend to persist for 6 hours. This is consistent with chang&sgodriven by transitions between
synoptic systems, which take place over timescales of aelieurs to days, rather than large

transient spikes at individual wind farms.

To investigate the distribution of the extreme ramp evemtsme, the 10 largest hourly ramp
events were selected from each of the the 26 geographicedgiod the largest 260 aggregate
(across all regions) ramp events were selected. Figure(8)3hows ramp events in individual
regions, and Figure 8.35 (b) shows ramp events across #&nseglin Figure 8.35 (a), ramps
of +1.0 in one hour can be seen, related to high wind speed cut-ousarsequent cut-in in

regions with very few wind farms. More common are event3-0f3. The largest ramp events
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Figure 8.35: Timing and size of (a) the 10 largest ramp evier®§ individual regions, (b) the
260 largest ramp events aggregated across all regions

tend to be clustered in the winter, although they are by nonsieaclusive to winter. Ramp
events in the aggregate output, range betwe@n5, demonstrating that geographic smoothing
limits overall ramp events to within well-defined bounds.wéwer, even though the aggregate
ramp events are much smaller, they are still significanth\8aGW of installed wind capacity,

a ramp rate of 0.15 / hour equates to 4.5GW / hour.

This agrees with Wan and Bucaneg [2002], who analysed tthewugaut over the course of one

year from two geographically separated sites, and condlude

“... despite the stochastic nature of wind power fluctuatjdhe magnitudes
and rates of wind power changes caused by wind speed vadgatice seldom
extreme, nor are they totally random. Their values are bedria narrow ranges.

Large swings of wind power do occur, but those infrequarge changes
(caused by wind speed changes) are always related to wigledeveather events,
most of which can be accurately predicted in advance.”

Finally for this part, a preliminary investigation into thergest ramp events occurring in the
dataset is made. The largest (simulated) negative rampatiMarch 2008, and the largest
positive ramp occurred at end of June 2010, Figure 8.36. yinepsic picture relating to these
are shown in Figure 8.37. In the negative ramp event (to@),UK is in a strong northerly
airflow, which is then disrupted as a large area of high pressdges in from the Atlantic.
Figure 8.36 shows the aggregdié’ drops from around 0.9 to 0.3 in around 12 hours. The

progressive nature of the event can be seen, with individegibns dropping down as the
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Figure 8.36: Largest negative and positive ramp eventstbeeentire period

system moves over the country. The largest positive rampteaeurs in June 2010, when a
system of weak highs and lows giving way to a fairly deep degpiom, Figure 8.37 (bottom).
Aggregate load factor rises from around 0.1 to 0.5 in 12 howith a particularly sharp rise

near the end of the period.

From a system operators perspective, what is most impag#mé change in residual demand,
as this is ultimately what determines how much reserve isleeé¢o balance any change in
generation. To explore this in more detail, Figure 8.38 carep hourly changes in demand and
residual demand, assuming a distribution of wind as in Sm&{ds, that is just under 50GW of
wind distributed across all the country and through the RidurRound 2 and Round 3 offshore
zones. The shape of the distribution of changes in demaatkrts the diurnal profile. The
largest ramps rate is an increase of around 7.5GW / hour segmgdhe early morning peak. A
very striking result is that the largest changes in resideatand with around 50GW of wind on
the system are comparable in magnitude to this, with thesingamp rate around 10 GW/hour.
This shows conclusively that, if wind is distributed arouhd country, and provided network
capacity exists, the ramp rates in residual demand will agtignificantly larger those managed
today. Viewed from a systems perspective, integration athis more a question of scheduling

and balancing energy on a timescale of several hours, ritaeproviding fast-acting reserve.

Relation to demand

The expected load factor at periods of high demand is impgréa it determines the ability of

wind generation to contribute generation adequacyhat is the ability of the whole generation
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Figure 8.37: The synoptic systems causing the largestimegatd positive change in aggregate
output. Top: a ridge of high pressure pushes into the UK friwm west.
Bottom: a complex picture of highs and lows give way to degies over
the UK. Surface analyses archivednatt p: / / www. wet t er zent r al e. de/
t opkar t en/ t kf axbr aar . ht m Crown Copywright UK Met Office.
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Figure 8.38: Comparison of ramps events in demand and wdsdkmand with 50GW of
installed wind capacity.

system to meet demand. Failure to meet demand leads$ots af load meaning customers
are disconnected. Determining the contribution of windraet of high demand enables the
determination of the level of conventional generation megito maintain a desired level of
generation adequacy, usually expressed as a loss of loadlplity.. At times of high demand,
less spare conventional capacity is available to meet dénrathe case of an outage of a
conventional plant. The loss of load expectation is doneithdily a small number of these
high-demand, high-risk hours, so the behaviour of wind @séhhours is of interest. However,
very high demand occurs infrequently, so the number of hoalsded in the calculation of
LF falls, and the confidence in the result drops accordinglye &treme case - the highest
absolute demand over the whole period - occurs by definitioly once. Although what
actually happened in this extreme case is interesting éff,itaothing can be revealed about

the distribution ofLF'.

To estimate the contribution of wind at times of peak demamdapproach following Keane
et al. [2011] is taken. Demand is grouped into two-perceri#nds, and the aggregaté”
within those hours is taken. Figure 8.39 shows the resulth, te number of included within
each band shown on the right-hand scale. The results confpattern seen onshore by e.g.
[Keane et al., 2011, Sinden, 2007], where load factor temagtease in times of relatively high
demand, but declines as the highest demand hours are appdoddhis is usually attributed to
‘cold snap’, anticyclonic conditions leading to increasianand but relatively little wind, but

a more detailed meteorological investigation is given bgyBhaw et al. [2011].
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Figure 8.39: Average onshore and offshdré’ against electricity demand as a % of yearly
peak. Error bars shod 1 standard deviation. The number of hours within each
band is shown on right hand axis
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This analysis was pursued to produce the first credible agtiof thecapacity crediof offshore
wind [Hawkins et al., 2011]. Capacity credit is a measuréheflevel of firm generation which
can be relied on to meet demand, and has been previously arsedshore wind [Keane et al.,
2011].

However, capacity credit was developed with thermal geoesan mind, where the probability
of a not being available to contribute to peak demand is datath by the probability of
unplanned outages. Each generator is an independent ithia {generally small) probability
of an outage in each period. This can be modelled with a biabdistribution, and the
probabilities can be summed over many independent gemner&to give the aggregate
distribution. The resulting distribution approaches a malr distribution, with a high
confidence of being relatively close to the mean value, arehasmall probability of being at

one extreme.

With wind generation, the probability that generation may be available to meet demand
is dominated by natural variation of wind speed, not teciinautages. Furthermore, wind
farms are not independent, and are governed by the sametigysyptems. Although a
mean load factor can be calculated at periods of high denthedyariation about the mean
is very high. This is evident by the standard deviations show Figure 8.39, not shown in
previous studies [Keane et al., 2011]. This is further esqaldn Figure 8.40, which shows the
distribution of L F" when demand is within 10% of peak. Although the meah#sis 55%, there

is a good chancé F' will be less than 20%. It becomes difficult, and perhaps radileg, to

characterise the load factor at peak entirely by a singtestita the mean, when the distribution
has so much spread. This questions the whole approach ofrdeiteg capacity credit for wind

generation, at least without putting confidence bounds efiigiure.

8.5 Chapter summary

This chapter uses the WRF re-analysis to analyse the comsegg! for wind integration in the
UK. The chapter provides some background describing thentegrowth of wind and future
targets. Existing demand patterns and conventional geoer@e described to provide context
to and support the analysis. An analysis method is presevtietdh is flexible enough to model
the future growth of wind without being tied to particularsamptions about the timing or

location of individual wind farms.
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Figure 8.40: LF of offshore wind in hours where demand wittd86 of peak

A detailed analysis is then presented, demonstrating thestyf question which can be
answered using this dataset. The large contribution wimiggion can make to satisfying
energy demand is shown, and the challenge of integratiomgiighted by the selection of
highest and lowest production weeks, with an illustratidrihe synoptic conditions causing
this.

Spatial and temporal patterns are then looked at in mord,datduding diurnal, seasonal and
inter-annual variations in wind speed and load factor. Tdreetation of wind speeds is shown
to decrease rapidly with distance. This traditional arialys extended to include a temporal
axis, showing very clearly the dominant pattern of easttwesd speed changes across the

country.

The probability of absolute calms is shown to be very low ealealthough the probability of

relatively low aggregate output is not, and distributiofieggregate output are developed for
hourly, daily and weekly averaging periods. It is shown tlggregated across the country,
changes happen on a timescale of days rather than hours. &anfs are examined detall,
and probability distributions are developed for variougele of geographic aggregation. It is
shown that although large ramp events can occur within anegvhen aggregated over all

regions, they are constrained within tight bounds.

Finally, the relation of wind output to current patternsclieity demand is shown, and it
is confirmed that wind generally has higher than averageubuiptimes of relatively high
demand, but tails off in the very extreme hours. However tagability of wind, and the

challenge of assigning it a capacity credit based on a swajlee is highlighted. Throughout
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the analysis the focus is on deriving probability distribos, to show not just than an event

does occur, buhow oftenit occurs which is essential for the future design of network
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Chapter 9
Discussion and conclusion

9.1 Introduction

Providing a safe, secure and clean future energy supplyrimps one of the most important
scientific, political and economic tasks facing societyatpdl he potential to harness renewable
energy sources on a large scale offers an immense benefitigtyscand also presents an

immense challenge.

In the UK, wind energy has enormous potential. In the intodid to this work, it argued that
a key step to exploring and overcoming the challenge of rab&wintegration is a detailed
understanding of the physical resource: both the averagdittms which determine how
much energy is available, and also the spatial and temparglbility which govern when and
where it is available. Yet despite the importance of thisiésgesearch, and policy making
based on it, is frequently hampered by a lack of reliableessible, and freely available
data. It is hypothesis that meteorological modelling casvigle more insight into some of
the key challenges, and a major motivation for this work isniake available a high-quality
dataset which can be used to help explore and address sohesefdhallenges. In Chapter 1,

requirements were specified that such a dataset must:
¢ be arealistic representation of the average onshore asidooéf wind conditions;
e capture spatial and temporal variability across a rangealés; and
e be physically based, so that relations between wind spemdpdrature and other

meteorological variables are preserved.

This concluding chapter confirms these objectives have vetnand takes key results from the
analysis of Chapter 8 to draw conclusions regarding thegiat®n of large amounts of wind

energy into the UK grid. First, a brief chapter summary isgivsecond, key conclusions are
outlined and discussed; finally, the limitations of the ajggh and options for futher work are

discussed.
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9.2 Thesis summary

Chapter 1presents the background and context to this work, sets ewiths and objectives,

describes the contribution to knowledge, and provides arsany of the chapters.

Chapter 2provides some theoretical background and context to theefvogl work. A brief
‘Cook’s tour’ of the atmosphere and atmospheric modelliaggiven. The scales of the
atmosphere are discussed and the existence of a spectra¢jgaating turbulent scales from
longer scales is highlighted. Planetary boundary layecgsses and the challenges they present

to atmospheric models are described.

Chapter 3provides a review of alternative mesoscale models and edeslthat a number
of models provide similar sophisticated capabilities,hvthie main differences being in their
ease of use, accessibility, and community support. A moagren-source, and well-supported
mesoscale model, WRF, is chosen for the rest of the work. Téie features and options

available in WRF are then summarised.

Chapter 4reviews the sources of observations available for moddie&tion from both in-situ
and remote sources. A week-long case study is used to comiffarent model configurations,
in an attempt to limit some of the systematic errors which oaour using poorly chosen
options. Significant improvement of error statistics isrseeer the baseline case, and a model

configuration is chosen to use in the full reanalysis.

Chapter 5describes the main simulation phase, in which an eleven+gzmalysis over the
UK and surrounding waters at 3km resolution is performed.e Wind speed outputs are
compared to an extensive set of observations. Against oashet stations, modelled wind
speeds are shown to capture observed distributions vety&et 0.15 ms™!, RMSD = 2.03
ms~1), although with some large systematic errors seen at soatierst in complex terrain.
Against offshore observations, a significant low bias Bf £ —1.05ms™!) is found against
buoys and lightships, as well as against wind speeds defriopdsatellite scatterometers. The
effect of various influences on model performance are eggdldncluding terrain complexity,
stability and the influence of the coast. It is concluded ihas most likely the low bias
offshore is inherited from the global model, due to the lowpatial resolution causing the
spatial smoothing of depressions and subsequent unddictioa of peak winds, as well as the

assimilation of poorer quality observations at platformd huoys.
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Chapter 6presents a simple method for removing model bias offshorénear regression
against daily average wind speeds from the QuickSCAT andA¥S€atellites. The satellite
datasets are first compared to in-situ observations, anttlfte be significantly less biased
than raw model output. This comparison also confirms thaies@mote buoys appear to have
instrument problems across some of the period studied. iHsedorrected model speeds have
significantly improved error statistics, with the bias muetuced B = 0.26ms ' RMSD =
1.88ms™1).

Chapter 7then develops a process for converting wind speeds intoddverpoutputs from wind

farms based on a power curve which matches the size and type tfrbine expected to be in
use. A method of accounting for wake losses is developedestdd which distributes losses
over a range of wind speeds, rather than apply a constanttreduSources of published data
on wind farm outputs are reviewed, simulated outputs ane teenpared to published figures

for existing farms and shown to be realistic on hourly and thigrtimescales.

Chapter 8presents a detailed analysis of the wind speed dataset amahplications for wind
energy integration. Supporting material regarding thggoted future growth of wind, existing
electricity demand, and conventional generation is ptesen An analysis method is then
developed which is flexible enough to model the future growfthwvind without being tied
to particular assumptions about the timing or location dividual windfarms. Results of the
analysis are then presented, demonstrating the types sfigievhich can be answered using
this dataset. The large contribution that wind generatian make to satisfying electricity
demand is shown, and the challenge of integration is queaitliiy showing the spatial and
temporal variability at a number of scales. Throughout thalysis the focus is on deriving
probability distributions, to show not just than a certaser occurs, buhow oftenit occurs

which is essential for the future design of networks.

In the analysis described above, results were presented ‘@amiding subjective judgements
on the implications for wind energy. In this concluding cteapsome of the key results from the

analysis are interpreted as to their implications for tlgdascale integration of wind energy.
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Figure 9.1: Final QQ plots of observed and modelled hourlameind speed against all
onshore and offshore in-situ observations

9.3 Conclusions

9.3.1 Wind speed dataset

The main output from the work is a high-resolution reanalydataset of wind speeds and
other meteorological variables which is an accurate anlistiearepresentation of the recent
(2000-2010) wind climate over the whole of the British Iskesl surrounding waters. The final
error statistics against all available in-situ observaiare shown in Table 9.1, and QQ plots

of observed and simulated average wind speeds, Figure 6vl thlat this objective has been
achieved.

However, the limitations of the dataset have been honestlggmted. In particular it is shown
that large systematic biases may exists at individual ioegaf particularly in complex terrain,
and it would not be advised to use wind speeds for single poadictions in complex terrain,

without accounting for local terrain, or at least correlgtivith a short set of observations.

category n B RMSD R

ms! ms!

onshore 237 0.15 2.03 0.64
offshore 19 0.27 1.88 0.71

Table 9.1: Summary of error statistics against all in-shiseyvations
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The fact that such a dataset did not publicly exist previpisssomewhat remarkable. Advances
in meteorology have long been driven by cooperation and e @nd free sharing of data
across institutions and national borders for the publicdgdbhe commercial aspects of wind
energy have not encouraged a similar approach, and it isdhibyae, by making this dataset
publicly and easily accessible, it will greatly supportthar research in a scientific tradition of

open data sharing.

9.3.2 Wind energy integration

Energy potential
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Figure 9.2: Summary of wind energy’s contribution to megtéxisting demand. Top line is
electricity demand, shaded area is wind contribution, d®remaining area is
residual demand.

A major contribution is a detailed quantification of the adnition that wind generation, and
particularly offshore wind generation, can make to curedettricity demand. Figure 9.2 shows
three snapshots, illustrating the fundamental changehwinizild occur in the electricity system

with the large scale development of wind.

Figure 9.3 shows that 25% of electricity demand could be metibd with the installation of
around 25-30GW of capacity, depending on its geographticilolision. Even if no increase in
other renewable sources are envisaged, and they contincentdbute the 5% they supply
today [DECC, 2010], this will allow the UK to generate 30% déaricity demand from
renewables, consistent with EU targets for 2020. Whethigitdkel of capacity can be achieved
in less than 8 years depends a great deal on the level ofgabliind economic support.
Furthermore, the analysis shows that 50% of current etégtrdemand could be met with

50GW of capacity, provided it is distributed around all of thffshore zones.
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Figure 9.3: Contribution of wind energy to demand by ins@licapacity under different
geographic distributions of wind.

Variability

There has been a long, often heated, debate as to whetheartability of wind generation is

a ‘show stopper’. On one side, it is argued that the integmadicross a large area [Milborrow,
2000, Sinden, 2007] aids the integration of wind power atulal the challenges to become
manageable. On the other side of the debate [Oswald et 8B, 8harman et al., 2011] there
are claims that the variability of wind means it is either wapible, or undesirable, to use it
is an energy source. The somewhat entrenched positionssidebate were summarised by
Gross and Heptonstall [2008]: “East is east, and west is,\aastnever the twain shall meet”.

This work brings a large amount of quantitative evidencéis debate.

A major conclusion of this study is that geographic distiidau considerably smooths the output
from a wind fleet, limiting the rate of change in the aggregaigput to within well defined
bounds. Geographic smoothing removes mesoscale and sdscade fluctuations, leaving
only the changes associated with more slowly varying syoemale processes on a timescale
of several hours to days. The cross-correlation in an easest direction is highlighted, and

the characteristic speed of synoptic systems over the goisndetermined as 56 km / hr.

It is shown conclusively in Figure 9.4 that although wind g@extion changes the pattern of
demand substantially, the ramp rates seen in residual demidh 50GW of wind capacity
are comparable to the ramp rates seen, and managed, inldiemand patterns today. This
contradicts those [Oswald et al., 2008, Sharman et al.,]20do argues that large amounts
of wind will cause larger and more frequent power swingshwiegative implications for

conventional plant lifetimes and efficiency.
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Figure 9.4: Comparison of inter-hourly ramp events in dednand residual demand with 49
GW of wind capacity

On the other hand, it is shown that the variability assodiatéh synoptic scale processes still
remains, and the argument used most frequently against, wiat periods of low aggregate
wind output and high demand occur, is confirmed and quantifiedthese situations, it is

clear that conventional generation or significant impaxigif other countries must be relied on.
The findings of Sinden [2007] are confirmed, that periods @bhlie calm across the whole
wind fleet are exceptionally rare, but it is also shown thaies when the entire wind fleet is
producing relatively little are not unusual. Even with witidtributed around all offshore sites,

the output will be expected to be less than 10% of the maximarm@% of the time.

However, the claim that conventional generation must bestandby’ [Sharman et al., 2011]
as spinning reserve, and therefore burning fossil fuelaptssupported, since the ramp rates
in residual demand are comparable to ramp rates in demang. tdd/arm’ units burn fossil
fuels in order to provide fast reserve within 20 minutes [fReéae et al., 2006]. Wind speed
ramps governed by synoptic scales are forecastable on sd@es much longer than this, and

suitable for scheduling conventional plant in much the samg as is done today.

It is also shown that with an increasing penetration of wihe, residual demand is decreased
substantially. This means a much lower utilisation of émgstor new conventional plants,
requiring these generators to exploit much larger prictedintials between windy and calm

days, as well as revenue from auxiliary services, to makeanamic return.

With an increasing penetration of wind, not only does regidiemand decrease, but frequently
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becomes negative. With 49 GW of wind on the system, assumirrgrt demand patterms, net
demand would be expected to be negative just under 20% ointlee &nd would be less than
10 GW around 35% of the time.

Traditionally, this might be thought of as energy which,titould not be stored or exported,
is somehow ‘wasted’ and therefore represents an ineffigiand an argument against wind.
However, since the variable cost, the fuel, of wind is frlés is not necessarily an inefficiency.
At the very least this energy can be spilled without consegee Moreover, it represents the
potential for wind generation to play a much more active parthe balancing of supply
and demand. Modern wind turbines can modulate their outpty vapidly through blade
feathering, and therefore represent a source of balaneisgrre [Ramtharan et al., 2007].
Since it has been shown that times of low residual demand,hande low spot-price, will
be common, it may be more beneficial to operate wind turbieésbfull capacity and provide
balancing reserve to the system. This would also allow bettegration with inflexible
baseload generation such as nuclear. However, ensurinketriacentives are structured in
such a way to achieve this is essential. In particular, tmeeotisystem of compensating wind
generators for ‘lost’ production if they face network or @titonstraints, would become highly

inefficient at high penetrations of wind and would incredszdverall cost.

The main conclusion from this work is that many of the peredichallenges of wind
integration come from a failure to distinguish between alalé and unpredictable. The
technical challenges, from a system wide perspective, rhectractable provided wind
generation can be accurately forecast on a timescales of kmdays ahead, and forecasting is
increasingly playing a key role in energy systems [Dobsgiiiet al., 2007, Foley et al., 2012,
Giebel and Kariniotakis, 2003, Lei et al., 2009].

This is not to suggest there are not many other challengegvAnpresent assumption in this
work is an ideal electricity network, effortlessly transjiig and smoothing generation over
any level of geographic aggregation. There are a whole Hogti@stions regarding network
capacity, frequency regulation, voltage support, andesysstability which are beyond the
scope of this work. Significant research, development avebiment is being made to try and
equip future networks to handle variable generation, amslhbped this work may contribute

to this process.
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9.4 Limitations

There are a number of limitations inherent in using any aphesc model to recreate historic
weather patterns, as there are always simplifications amdlesmpirical formulations used
to represent complex turbulent processes, and the obeeraiatecord is only a sample of
continuous field. In particular in this work, turbulent ssslare not explicitly resolved so the
dataset can not be used to study variability on very shoggoales. Additionally peak wind
speeds were not well reproduced and so the impact of higd-airt-outs is not explored in
detail. However these limitations are common to many sinaifgoroaches, and are not specific

to this work.

There are a number of more specific limitations to this stuRhactical constraints limited the
time which could be spent configuring WRF. A high bias seemmores likely due to the neglect
of sub-grid scale orographic drag, lead to the use of arsfysiiging which may have affected
the quality of the model output offshore. Additionally, aplem with sea surface temperature
remaining constant over one month may have affected théyjoémodel output in the coastal

region.

A major limitation onshore is the resolution of 3km, whichnoat capture complex terrain
features. Work is ongoing within The University of Edinblrgp try various downscaling
approaches such as WAsP and more sophisticated CFD madellacccount for local terrain.
Other work is experimenting with neural networks to accdontsystematic and phase errors

in the output.

Another limitation is the length of the period simulated,igthat eleven years is too short to
claim to be a climatology. One solution would be to extend smaulation further back in
time. However, there may be more efficient ways of effecgiveltending the length, by using
existing datasets such as the NCEP/NCAR [Kalnay et al.,[189&RA-40 reanalysis [Uppala
et al., 2005]. A relatively simple approach would be to clatesaverage monthly wind speeds
between this study and a longer reanalysis. This would giviedication of whether the eleven
year period studied here is representative of the longer tdimate in terms of the average

values and monthly variation captured.

A more sophisticated approach would be to classify the vegatbisodes within the dataset
e.g. using GWL types, and compare the frequency distribstimetween the shorter and longer

reanalysis. This may also help to address another limitatiee assumption that the last eleven
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years are representative of the future climate. This assammight not be justified in the

face of human-induced climate change. There are a varietyechanisms by which climate
change could affect UK wind speeds. For example, changdgifréequency of negative NAO
episodes, changes in the jet stream position, and changgsrin tracks could have a direct
effect [Cradden, 2009]. Similarly, other changes couldtcbuate, for example, changes in
frequency of Atlantic hurricanes, which often become extopical storms and reach the UK,

may have an effect on the wind climate [Jiang and Perrie, 007

However, a recent review [Pryor and Barthelmie, 2010] fodmat most studies projected
relatively small changes in the wind climate of northern dpa, with natural variability a

much stronger signal than any human-induced climate chaRgeexample, Cradden [2009]
examined output from regional climate models over the UK fmahd very little change in

surface wind speeds. However, even representing curram wlimates accurately within
a GCM is difficult [Brown et al., 2009, Hoglund et al., 2009Ind the difference between
alternative models is often larger than any climate signahalysis of observations have
generally found small trends in ocean surface wind speedsonind 0.08 nis' per decade

[Tokinaga and Xie, 2010, Wentz et al., 2007]. Young et al1flfound a much higher trend,
though the methodology was heavily criticised [Wentz anctRirdulli, 2011].

The UK Climate Change Impacts Program 2009 (UKCIPQ9) [Myrphal., 2009] did not
include probabilistic assessments of surface wind speadgds, due to the lack of comparable
surface variables between different climate models. Refudm an 11-member ensemble of
the same model showed wind speed changes bet#weaett, but the ensemble mean showed
little change. More recently, probabilistic projectionsUK wind speed have been released
[Sexton and Murphy, 2010], again showing generally smadingies of< 0.2ms—!, with
natural climate variability contributing the most to urteémty. However, some model runs with
a better representation of stratospheric processes stgeatbr changes [Sexton and Murphy,

2010] related to changes in the general circulation.

Although current understanding is incomplete, it seemsarably clear that climate change
signals in surface wind speed are much less clear than sudatperature, and on the basis of
current knowledge, changes in the wind speed are likely tenball. It would be interesting
to classify the reanalysis dataset presented here intchereyipes, and explore the impact of
changes in frequency of certain weather patterns such akibiphighs, but this is an area for

future work.
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9.5 Future work

Some areas for future work have been mentioned above, fonggahe use of an objective
weather classification for the use in future climate impéaotiies. Other work is ongoing at
Edinburgh to use the dataset to accurately assess theg@sgnirements in systems with high
penetrations of wind, as well as other work to estimate thgrdmition which embedded wind
generation already makes to the grid. Such generation imptgred by the system operator,

and there is considerable uncertainty over its currentrifrion.

A major area of future work is to use the dataset to do detatedies of power flows in
potential future networks, assessing what level of netwaakacity, what level of auxiliary
support, and what technologies may allow the integratiomiofl energy into the grid. Another
major area of work is to investigate the impact of large-sctbrage and flexible demand.
In particular it is hoped that the amount of storage neededctueve a certain level of
‘smoothness’ in wind output can be quantified and relatetie¢csize of physical schemes such
as pumped hydro or compressed air storage. This would alloasaessment as to whether

such schemes are technically feasible or not.

The most immediate area for further work is to provide anrfatee to the model data, which
allows public access to average statistics and time setligs. envisaged that this will be a

graphical front end o the netCDF files based on Google M4os similar.

Finally, if time and computational resource allows, thengdgsis will be continued to the
present, and the existing data may be re-run and improvedexample using better PBL

parameterisation schemes, higher resolution land-ussetat and a better treatment of SST.

9.6 Concluding remarks

In Chapter 1, a hypothesis was proposed that advanced roleigicel model could deliver

new insight into the UK’s wind energy resource, and the paéto integrate this on a large
scale. On the basis of the arguments made in this chaptsrhyipothesis is accepted. By
analysing over a sufficiently long period, the probabilitgtdbution of important events have
been found, rather than focusing on a single selected shrtgeriod. It has been shown that
the integration of large-scale wind energy can providegel@art of current electricity demand,

displacing large amounts fossil fuel. It has also been shibatsuch an energy system will have
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to cope with periods of very low output relatively frequgntivhich may mean conventional
generation in the medium term. However, it has been showirttibavariability of wind is not
an insurmountable challenge, since the flexibility reqiiienot so different from the system

operated today.

The integrating wind generation requires an approach akihg approach adopted by sailors:

“Therefore we should not try to alter circumstances but taphdurselves to
them as they really are, just as sailors do. They don't tryhange the winds or
the sea but ensure that they are always ready to adapt thesselconditions. In
a flat calm they use the oars; with a following breeze theytHolksail; in a head
wind they shorten sail or heave to. Adapt yourself to circiamses in the same
way.”

Bion of Borysthenes, quoted in [Kindstrand and Blomqvi&74].
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Figure A.1: Average wind speed at 80m agl, 2000-2010
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Figure A.2: Wind speed at 80m agl by month
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Appendix B
WRF Options

&domai ns maxens3 = 16,

time_step = 135, ensdi m = 144,/
time_step_fract_num =0,
time_step_fract_den =1, &f dda
max_dom = 3, grid_fdda =1, 1, 1,
s_we =1, 1, 1, gf dda_i nnanme = "w f f dda_d<domai n>",
e_we = 145, 196, 331, gfdda_end_h = 8760, 8760, 8760,
s_sn =1, 1, 1, gf dda_i nterval _m = 360, 360, 360,
e_sn = 115, 81, 391, fgdt =0, 0, 0,
s_vert =1, 1, 1, i f_no_pbl _nudging_uv =0, 0, 0,
e_vert = 27, 27, 27, i f_no_pbl _nudgi ng_t =0, 0, 0,
num netgrid_| evel s = 27, i f_no_pbl _nudgi ng_q =0, 0, 0,
num netgrid_soil _levels = 2, if_zfac_uv =0, 0, 0,
dx = 27000, 9000, 3000, k_zfac_uv = 10, 10, 10,
dy = 27000, 9000, 3000, if_zfac_t =0, 0, 0,
grid_id =1, 2, 3, k_zfac_t = 10, 10, 10,
parent _id =0, 1, 2, if_zfac_q =0, 0, 0,
i_parent_start =1, 42, 50, k_zfac_q = 10, 10, 10,
j _parent _start =1, 28, 20, guv = 0.0003, 0.0003, 0.0003,
parent_grid_ratio =1, 3, 3, gt = 0.0003, 0.0003, 0.0003,
parent _time_step_ratio =1, 3, 3, aq = 0.0003, 0.0003, 0.0003,
f eedback =1, if_ranping =1,
snoot h_opti on =0, dtranp_min = 60.0,
eta_levels = 1.0, 0.9950, 0.990, 0.985, 0.960, i o_formgfdda =2,/

0. 93275, 0. 908, 0. 8547878, 0. 804364,

0. 7539393, 0.7035151, 0.635023, 0.5527188, &dynami cs

0.4785737, 0.411915, 0.3521141, 0. 2985896, w_danpi ng =0,

0.250710, 0.2082415, 0.1704494,0.136992, di ff_opt =1,

0.1074684, 0.08151028, 0. 0587756, 0. 03894893, km_ opt = 4,

0. 02173894, 0. 0/ di ff_6th_opt =0,

diff_6th_factor = 0.12,
&physi cs danp_opt =0,

nmp_physi cs =2, 2, 2, base_t enp = 290
ra_l w_physics =1, 1, 1, zdanp = 5000., 5000., 5000.,
ra_sw_physics =1, 1, 1, danpcoef = 0.01, 0. 01, 0.01
radt = 30, 30, 30, khdi f =0, 0, 0,
sf_sfclay_physics =2, 2, 2, kvdi f =0, 0, 0,
sf_surface_physics = 2, 2, 2, non_hydrostatic = .true., .true., .true.,
bl _pbl _physics =2, 2, 2, noi st _adv_opt =1, 1, 1,
bl dt =0, 0, 0, scal ar _adv_opt =1, 1, 1,
sst_updat e =1, tke_adv_opt =1, 1, 1,/
cu_physics =1, 1, 0,
cudt = 5, 5, 5, &bdy_control
isfflx =1, spec_bdy_wi dth =5,
i fsnow =0, spec_zone =1,
icloud =1, rel ax_zone = 4,
surface_i nput_source =1, speci fied = .true., .false.,.false.,
numsoil _l ayers = 4, nest ed = .false., .true., .true.,/
num | and_cat = 20,
sf_urban_physics =0, &nanelist_quilt
np_zer o_out =0, ni o_tasks_per_group = 0,
maxi ens =1, nio_groups = 1,/
nmaxens =3,
maxens2 =3

Table B.1: Namelist.input file specifying configuration iopis
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Variable

Description

BN2
COSALPHA
HGT
LANDMASK
P

PB

PBLH

PH

PHB
PSFC
Q2
QVAPOR
RMOL
SINALPHA
SST

7

T2

TH2

TKE
TKE_MYJ
TSK

u

u10

usT

v

V10

w

XLAT
XLONG
XTIME
0

ZNT

brunt-vaisala frequency

Local cosine of map rotation
Terrain Height
land mask (1 for land, O for water)
perturbation pressure

base state pressure

pbl height

perturbation geopotential
base-state geopotential

sfc pressure

Qvat2M

Water vapor mixing ratio
1./Monin Ob. Length

Local sine of map rotation

sea surface temperature
perturbation potential temperature (theta-t0)
2m temperature

2m potential temperature
turbulence kinetic energy

tke from mellor-yamada-janjic
surface skin temperature
x-wind component

Uat1l0M

u* in similarity theory

y-wind component

Vat1l0 M

z-wind component

latitude, south is negative
longitude, west is negative
minutes since simulation start
background roughness length
time-varying roughness length

Table B.2: Variables retained in the output from WRF



Speed Interval Adjustment

—1 U —cut-in
U (ms ) cut-in—cut-out

1 - 1
2 - 1
3 - 1
cut-in 4 0.00 1
5 0.05 1
6 0.10 1
7 0.14 0.99
8 0.19 0.98
9 0.24 0.97
10 0.29 0.95
11 0.33 0.93
12 0.38 0.91
13 0.43 0.91
14 0.48 0.94
15 0.52 0.96
16 0.57 0.98
17 0.62 0.99
18 0.67 0.99
19 0.71 1
20 0.76 1
21 0.81 1
22 0.86 1
23 0.9 1
24 0.95 1
cut-out 25 1.00 1

Table B.3: Per-unit adjustments to a turbine power curvh witut-in speed of 4 mdand rated
speed of 15nTs!



Appendix C
Station verification

ABERDARON 30 Aberporth Buoy 30 ABERPORTH 30 ABOYNENO?2
251 20t 25 251 o
20 Soa® | 20 e 20 5 t
B 15 L 15 Ry 15 | L
104 L 10 10 4 H
# 5] L 5 # 54 t
5 10 15 20 25 30 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
Aikengall 30 ALTNAHARRANO 2 30 . AONACH MOR 0 Auk Alpha
e 25 (g/ r 25 /’ 25 L
g 204 t 20 L 204 L
151 i 15 15 ,
i S H 10 0l |
5147 [ 5 /' 51 L
510 15 20 35 30 310 15 20 25 30 310 15 20 35 30 310 15 20 25 30
AULTBEA NO 2 10 AVIEMORE 30 AVONMOUTH 30 BALA
25 | e 25 25 | e
Jo 201 b 20 201 L’ L
15 1 8 15 R o 15 1 8
10 | b 10 10 | d b
51 47 L 5 P s1 47 L
5 10 15 20 25 30 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
BALLYKELLY 3 BALTASOUND NO 2 30 BARRA 10 BEDFORD
25 | o, 25 25 | e
201 H 20 T 201 ‘ H
y 15 s t 15 15 . t
10 | b 10 y 10 | b
si f t 5 54 t
5 10 15 20 25 30 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
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30

30

30

30— DBENSON 30 —BERRY HEAD 30— DINGLEY. NO 2
25 | Ot 251 b 25
20| L L 20| E 20
15 - H 15 - H 15
10 | b 10 | ’ b 10
5 H 5 H 5 i
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30
BOSCOMBE DOWN 30 BOULMER BRACKNELL, BEAUFORT P
25 | et 25 | ot 25
20| o L 20| P 20
154 p H 154 t 15
10 | b 10 | b 10
5 H 5 H si g7
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30
BRIDLINGTON MRSC BRISTOL WEATHER CENT 30 BRIZENORTON
25 ot 25 " 25
20 L 20 L 20
154 P H 154 o t 15
10 - H 10 H 10
5 b 5| L 5
310 15 20 25 30 310 15 20 25 30 510 15 20 25 30
CAIRNWELL 20 CAMBORNE 30 _CAPEL CURIGNO 3
25 e 25 e 25 e
20| b 20| b 20
151 . 151 b 15
10 b 10 b 10 y
51 H 5 H 5
510 15 20 25 30 510 15 20 25 30 510 15 20 25 30
3CARDINHAM, BODMIN 30 CARLISLE 30 . Channel Lighiship
251 b 251 o 25
204 .. | 201 < F 20
15 s — 15 — 15 >
10 r 10 r 10
54 r 54 r 5
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30
20 CHIVENOR 30 CHURCHFENTON 30 .CHURCHLAWFORD
254 e 25 e 25
20+ I 20+ b 20 7
154 H 154 t 15
10 | b 10 | / b 10
5 H 5 H 5 g
510 15 20 25 30 310 15 20 25 30 310 15 20 35 30

l%lOACKPOOL, SQUIRES GA

25
20
15
10

5

30
25
20
15
10

30
25
20
15
10

5

25
20
15
10

5

25
20
15
10

‘Ll;}%THORPES, HAVERSTOE

25
20
15
10

%ﬁRDIFF WEATHER CENT

1 , L

1 . L

5 10 15 20 25 3

BRAMHAM

1 L, L

1 . L

5 10 15 20 25 3

CAIRNGORM SUMMIT

4 , L

4 . L

1 - L

1 . L

4 L L

1 . L

CHARTERHALL

.

1 , L
-

.

5 10 15 20 25 3

4 . L
4 . L
1 0, L

i . L




COLTISHALL 30 CONINGSBY 30 COTTESMORE 30 CRANWELL
O 25 | e 25 25 | e
e L 201 SO 20 e 20 e
b 15 4 b 15 4 15 1 y L
t 10 4 t 10 / 10 4 P t
b 5 b 5 5 b
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
CULDROSE 30 DISHFORTH AIRFIELD 30 DONNA NOOK NO 2 30 DRUMALBIN
0 25 | L 25 25 | L
, , p S
L 20 PO 20 00 201 P
t 15 / t 15 15 t
b 10 | b 10 10 | b
b 5 b 5 5 b
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
DUNDRENNAN QYNKESWELL AERODRO! 30 DUNSTAFFNAGE 20 DURHAM
L 254 R 25 254 L
L 204 L 20 s o 20 2, L
t 15 | t 15 15 | o~ t
b 10 | b 10 10 | b
P I s| /A I s s/ I
510 15 20 25 30 310 15 20 25 30 310 15 20 35 30 310 15 20 25 30
DYCE 30 EAST KILBRIDENO 2 10 . EAST MALLING EDJNBURGH, BLACKFORD
b 254 " 25 . 254 b
. L 201 § t 20 7 20 L7 . |
t 15 | t 15 15 | t
b 10 | b 10 10 | b
|- 5, // |- 5 // 5, // |-
510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30
ESKDALEMUIR 30 ESKMEALS 20 FAIR ISLE 30 FILTON
Lt 251 Ot 25 65 251 Ot
L 20| L 20 201 |
o t 15 t 15 /! 15 g~
: 10 4 : 10 10 4 P :
b 54 b 5 g 54 b
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
FYLINGDALES 30 GORLESTON 30GREAT DUN FELL NO 2 30 Greenwich Lightship
Pt 251 e 25 e 251 Ok
& 204 L 20 201 e
1 15 ] Y A 15 15 ] —
H 10 < b 10 104 L
t 51 b 51 /g 51 L

510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30



30 HAWARDEN AIRPORT 30 HEATHROW 20 HEMSBY
25 ] e 25 | e 25
20| L 20| L 20 S
154 ° H 154 H 15
10 b 10 / b 10
5 H 5 H 5
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30
HERSTMONCEUX, WEST E 30 HIGH BRADFIELD 30 . HOLBEACHNO 2
25 | 25 | 25
20 L 20| L 20 o
15 1 H 15 1 H 15
10 b 10 b 10
s g H 51 H 5
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30
30 HURN 30 INVERBERVIENO 2 30 ISLE OF PORTLAND
25 " 254 Bt 25 e
20 H 20 et 20
154 5 H 154 H 15
10 b 10 b 10 g
5 H 51 H 5
310 15 20 25 30 310 15 20 25 30 310 15 20 35 30
0 30 (RENLEY AIRFIELD 30— SESWICK
254 ok 25 " 25
20 b 20 H 20
151 b 154 H 15 b
10 b 10 1 b 10
5 b s1 47 b Ry 4
510 15 20 25 30 510 15 20 25 30 510 15 20 25 30
30KINBRACE, HATCHERY 30 KINLOSS 20 KIRKWALL
25 | 0L 25 | oL 25 L
@& 7 07 .
20 L 20| ) H 20
154 t 154 t 15
10 4 H 10 4 H 10 P
s{ H 5 H 5
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30
s (LANGDONBAY | LARKMIL _ j,  LECONAELD
254 e 25 e 25
20 0 20 e H 20
154 # H 154 H 15
10 4 H 10 4 4 H 10
5 H 5 H 5
310 15 20 25 30 310 15 20 25 30 310 15 20 35 30

30

HERNE BAY NO 2

25
204
15
10

5

30

1015

HONINGTON

20 25 3

254
204
15
10

5

30 T

1015

K5 Buoy

20 25 3

254
20
15
10

54

iE\%’O(ROYAL BOTANIC GARL

25 4
20
15
10

5| 4

. L

. L

30

LAKE VYRNWY NO 2

254
204
15
10

54

5

3JClEEDS WEATHER CENTR

1015

20 25 3

25 4
204
15
10
5

5

0 15

20 25 30



30 o emana A 30— LERWICK 30 —LEUCHARS 30 HINTON ONOUSE
b 251 gt 25 251 o
L 20 ’ H 20 e 20| 4 b
L 15 t 15 15 t
L 10 | b 10 10 | b
| 5 b 5 5 H
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3

30 LISCOMBE 30 LITTLE RISSINGTON 39 LOCH GLASCARNOCH 30 LOSSIEMOUTH
25 | SO oS b s s 25 | 2L
20 ’ H 20 b 20 y 20 y b
15 - ’ H 15 - g H 15 15 - H
10 H 10 H 10 10 H
5 b 5 H s1 4 5 H
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3

30 — LYNEHAM 0 M 0 ——M 30— M
25 Tt 25 .t 25 25 ot
204 P 201 0 | 20 201 1
L5 t 15 | b 15 15 | H
101 r 10 1 b 10 10 b
5 t 5 L 5 5 L
510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30

30— M 0 30  MACHRIHANISH 30 — MANSTON
25+ b 251 - 25 . 254 b
20 7 1 201 e ® | 20 pon & 20 ©
15 | H 15 L 15 15 | H
10 b 104 L 10 g 10 b
51 H 5] | 5 51 H
510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30

30 MARHAM 30 MIDDLE WALLOP “OBD HAVEN CONSERVANC' 30 MONKS WOOD
25 Ot 25 R 25 25 o
204 .’ H 204 . H 20 g 204 - r

P/ @ 7

15 - / H 15 - H 15 15 - H
10 | b 10 | b 10 10 | b
5 H 5 H 5 si 4 H
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3

30 MUMBLES HEAD j0._ NelsonA NEWCASTLE WEATHER CE? 30 NORTHOLT
25 1 L 25 | | 25 L 25 1 b
20 4 /,’ L 20 L 20 L7 20 e t
15| — 5 | | 15 # 15| < —
10 | b 10 | g | 10 10 | b
5 g L s| & | 5 4 5 L

510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30



30 NORTH WYKE NQRWICH WEATHER CEN1 5 NOTTINGHAM, WATNAL 10 ODIHAM
25 ] P 25 ] e 25 25 | '
20 b 20 b 20 20 g H
15 t 15 e t 15 15 t
10 b 10 o b 10 r 10 b
si g7 H s{ g7 b 5 5 H
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
30 PEMBREY SANDS 30 Pembroke Buoy 30 PERSHORE 3 PETERHEAD HARBOUR
25 | . 25 | e 25 25 | o
201 201 L sewd 20 201 H
15 1 — 151 | 15 A 5] I
10 1 t 10 | | 10 10 1 t
51 t 5] L 5 54 t
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
PJYMOUTH, MOUNTBATT 30 POINT OF AYRE 30 . PRESTON WYNNE 30 PRESTWICK RNAS
254 b 251 oL 25 e 254 L
204 R 20+ 5 °°t 20 20+ ® L
15 | t 15 | t 15 y 15 | t
10 g b 10 b 10 - 10 b
51 H 51 H 5 51 H
510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30
30 RHYLNOZ 30 RINGWAY 30 [ ROCHDALE 30 RONALDSWAY
254 b 254 Lot 25 e 251 oL
204 H 204 b 20 204 Py
15 | . H 15 | e H 15 15 | p H
10 | 4 b 10 | b 10 10 | b
5 H 5 H si g 5 H
510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30
30 SALSBURGH 30 Sandetie Lighiship 30 SCAMPTON SGILLY: ST MARYS AIRPO
251 Pt 25 . 25 Lk
, p o
20 e | 20 20 H
15 t 15 15 t
10 | b 10 10 | b
51 H 5 5 H
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
30 ‘SEI‘MLAI NESSI 30 Sn?ven‘slon‘es llgh(sl?lp/ 30 ‘ ‘SH‘API ‘ 30 ‘SH‘AWIBUI‘RY i
254 L0 25 s 25 25 b
20 7 | 20| o 20 7 201 P
15| — 15 7 1 15 15 | -4 ,
10 b 104 L 10 10 b
5 H 5] | s{ 47 5 H

510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30



25
204
15
10

254

SHOBDON AIRFIELD SHOEBURYNESS, LANDWI 3 SHOREHAM AIRPORT 30 SOLENT
e 251 e 25 251 e
L 20| o’ L 20 4 20| |
t 15 2 t 15 15 t
b 10 | b 10 10 | b
t 54 t 5 51 t
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
SOUTHAMPTON 3SOUTH FARNBOROUGH 30  SPADEADAM NO 2 30 STBEESHEAD NO2
25 | 25 251
L L 20| L 20 ‘ 20| ey
057 t 15 | . t 15 15 t
t 10 | t 10 10 | t
b 54 b 5 51 b
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
ST MAWGAN 30STORNOWAY AIRPORT JSTRATHALLAN AIRFIELI 30 SUTTON BONINGTON
P 25 A 25 254 o
2 t 20 t 20 c 201 H
H 15 1 / H 15 151 F
b 10 | b 10 2 10 | b
L 5] b 5 5] b
310 15 20 25 30 310 15 20 25 30 510 15 20 25 30 310 15 20 25 30
TAIN RANGE 30 THORNEY ISLAND 30 TRAWSGOED 30 TULLOCH BRIDGE
L 25 L 25 254 L
3 e L’ e
P b 20| p b 20 o’ 20| b
P b 151 # b 15 151 /. b
b 10 | b 10 10 | b
L 5 L 5 /A 5 1/ L
510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30
VALLEY 30 WADDINGTON 30 . WALNEY ISLAND 30WALTON-ON-THE-NAZE
L 25 | A - 25 | 2
L 20| oo 20 20| o |
P H 154 H 15 154 H
b 10 1 b 10 10 1 b
b 5 b 5 5 L
5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 30 5 10 15 20 25 3
WARCOP RANGE 30 WATTISHAM 30 WEST FREUGH 30 WEYBOURNE
L 254 R 25 254 L
o f 20 e t 20 e 20 L t
t 15 | t 15 # 15 | t
t 10 4 t 10 10 4 / t
b 5] b 5 5] b

510 15 20 25 30 510 15 20 25 30 510 15 20 25 30 510 15 20 25 30



30 ‘WICK AIRPORT ngHT.' ST CATHERINES PC 30 ‘WINTER HILL
25 A 25 /’/ F 25 /'/
e . e
20 P r 20 . t 20 ,
L0
154 r 154 r 15 .
10 — 10 — 10 y
5 — 5 — 5
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o WITERING | VEOTON.
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20 . r 20 e r
15 1 H 15 1 i H
10 r 10 r
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510 15 20 25 30 510 15 20 25 30

30

WISLEY

25 4
204
15
10

5

0 15

20 25 30



References

Adrian, G. (1999). Parallel processing in regional clinagy: The parallel version of the
Karslruhe Atmospheric Mesoscale ModBharallel Computing 25(7):777—-787.

Adrian, G. and Fiedler, F. (1991). Simulation of unstatignaind and temperature fields over
complex terrain and comparison with observatiolgeitrage zur Physik der Atmosgle,
64:27-48.

AMS (2000).Glossary of meteorologyAllen Press, 2nd (onlin edition. ISBN 9781878220349.

Andreas, E. L., Claffey, K. J., Jordan, R. E., Fairall, C. Gluest, P. S., Persson, P., and A.A.,
G. (2006). Evaluations of the von Karman constant in the aprheric surface layedournal
of Fluid Mechanics559:117-149.

Anthes, R. A. and Warner, T. T. (1978). Development of hygirainic models suitable
for air-pollution and other mesometeorological studiesMonthly Weather Review
106(8):1045-1078.

Ayotte, K. (2008). Computational modelling for wind energgsessmentJournal of Wind
Engineering and Industrial Aerodynamjc®6(10-11):1571-1590. ISSN 01676105. doi:10.
1016/j.jweia.2008.02.002.

Babin, S. and Thompson, D. (2000). Effects of atmosphenmbary layer moisture on friction
velocity with implications for SAR imagendEEE Transactions on Geoscience and Remote
Sensing38(1):618-621.

BADC (2006). MIDAS Land Surface Stations Data (1853-cuxenBritish Atmospheric Data
Centre.

Barthelmie, R. J. (1999). The effects of atmospheric dgtgbibn coastal wind
climates. Meteorological Applications 6(1):39-47. ISSN 13504827. do0i:10.1017/
S1350482799000961.

Barthelmie, R. J. and Pryor, S. C. (2003). Can satellite $iagpof offshore wind
speeds realistically represent wind speed distributionisfurnal of Applied Meteorology
42(1):83-94.

Barthelmie, R. J., Rathmann, O., Frandsen, S. T., Hanse., Rolitis, E., Prospathopoulos, J.,
Rados, K., Cabezbn, D., Schlez, W., Phillips, J., Neul®ertSchepers, J. G., and Pijl, S. P.
V. D. (2007). Modelling and measurements of wakes in largeMarms.Journal of Physics:
Conference Serieg5:012049. ISSN 1742-6596. doi:10.1088/1742-6596/032049.

Barthelmie, R. J., Sempreviva, A. M., and Pryor, S. C. (200#Juences of humidity fluxes on
offshore wind speed profileg\nnales Geophysicag&8:1043-1052.

224



Beaucage, P., Glazer, A., Choisnard, J., Yu, W., Bernier, Bénoit, R., and Lafrance, G.
(2007). Wind assessment in a coastal environment usindgiaytitaperture radar satellite
imagery and a numerical weather prediction modehnadian Journal of Remote Sensing
33(5):368-377. ISSN 1712-7971. doi:10.5589/m07-043.

Beljaars, A. C. M. and Holtslag, A. A. M. (1991). Flux paraer&ation over land surfaces
for atmospheric modelslournal of Applied Meteorologyd0(3):327-341. ISSN 0894-8763.
doi:10.1175/1520-0450(1991)0&B27:FPOLSK2.0.CO;2.

Benoit, R., Binder, P., Schar, C., Chamberland, S., and 8604 High-performance
modelling for the Mesoscale Alpine Programme (MAP) fielderxxment.High Performance
Computing Systems and Applicatippp. 301-312.

Benoit, R., Desgagné, M., Pellerin, P., Pellerin, S., @bary., and Desjardins, S. (1997). The
Canadian MC2: A semi-lagrangian, semi-implicit widebameh@pheric model suited for
finescale process studies and simulatidvionthly Weather Reviewl25(10):2382. ISSN
0027-0644. doi:10.1175/1520-0493(1997)1Z32: TCMASL 2.0.CO;2.

Bentamy, a., Croize-Fillon, D., and Perigaud, C. (2008). a@hterization of ASCAT
measurements based on buoy and QuikSCAT wind vector oligrsya Ocean Scienge
4(4):265-274. ISSN 1812-0792. doi:10.5194/0s-4-2658200

Bentamy, A. and Fillon, D. C. (2011). Daily ASCAT surface wifields. , L'Institut Francais
de Recherche pour I'Exploitation de la Mer.

Berge, E. and Bredesen, R. E. (2007). Combining WASP with/#fiR- meso-scale model.
Evaluation of wind resource asessment for three Norwegiad farm areas. , Presentation
to WRF users worskhop.

Berge, E., Byrkjedal, O., Ydersbond, Y., Kindler, D., andekgr Vindteknikk, A. (2009).
Modelling of offshore wind resources. Comparison of a mesale model and measurements
from FINO 1 and North Sea oil rigs. IiProceedings of the European Wind Energy
Conferencepp. 1-8.

BERR (2008). Meeting the energy challenge: a white paper wriear power. January,
Department for Business, Enterprise and Regulatory Reform

Bianco, L. (2008). Surface layer parameterization in WRPresentation at the ATOC 7500
Mesoscale Modelling Conference.

Bitsuamlak, G., Stathopoulos, T., and Bedard, C. (2004)matical evaluation of wind flow
over complex terrain: ReviewJournal of Aerospace Engineering7(4):135-145. doi:10.
1061/(ASCE)0893-1321(2004)17.

Black, T. L. (1994). The New NMC Mesoscale Eta Model: Dedaripand Forecast Examples.
Weather and Forecasting(2):265-278. ISSN 0882-8156. doi:10.1175/1520-04234])
009(0265:TNNMEM)2.0.CO;2.

Boehme, T. (2006)Matching renewable electricity generation with demanddptand Ph.D.
thesis, University of Edinburgh.



Boehme, T., Taylor, J., Wallace, R. A., and Bialek, J. (2008)atching Renewable Energy
Generation With Demand. , Technical Report for the Scotfisbcutive, Edinburgh.

Boehme, T. and Wallace, R. (2008). Hindcasting hourly windigr across Scotland based on
met station datawind Energy 11(3):233-244.

Bowen, A. J. and Mortensen, N. G. (1996). Exploring the latins of WAsP The Wind
Atlas and Application Program. In Larsen G C (Edyropean Wind Energy Conference
RisgNational Laboratory, Gotenburg Sweden.

Bowen, A. J. and Mortensen, N. G. (2004). WAsP predictiomrsrdue to site orography. ,
Risg, Roskilde, Denmark.

Brayshaw, D. J., Troccoli, A., Fordham, R., and Methven201(). The impact of large scale
atmospheric circulation patterns on wind power generadiot its potential predictability:
A case study over the UKRenewable Energy86(8):2087-2096. ISSN 09601481. doi:10.
1016/j.renene.2011.01.025.

Brower, M. (2010). Development of eastern regional wincbuese and wind plant output
datasets. December 2009, Report for the National Renezaiglgyy Laboratory, New York.

Brower, M., Zack, J., Bailey, B. H., Schwartz, M., and Eljdd. (2004). Mesoscale modeling
as a tool for wind resource assessment and mappind.4tim Conf. Applied Climatology,
Boston, MAp. 4.2. AMS, Seattle, Wash.

Brown, R. (1981). On the use of exchange coefficients in niiodelturbulent flow.
Boundary-Layer Meteorology0:111-116.

Brown, S., Boorman, P., McDonald, R., and Murphy, J. (200&grpretation for use of surface
wind speed projections from the 11-member Met Office redioliimate model ensemble. ,
UK Climate Change Impacts Programme.

Brugge, R. (2011). British Isles Weather Diary. , Univer$daf Reading, online weather diary.

Bukovsky, M. S. and Karoly, D. J. (2009). Precipitation Slaiions Using WRF as
a nested regional climate model.Journal of Applied Meteorology and Climatolagy
48(10):2152—-2159. ISSN 1558-8424. doi:10.1175/2009JRNVEE.1.

Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E. (20Wind Energy HandbookJohn
Wiley and Sons. ISBN 0470699752.

Businger, J. A. (1988). A note on the Businger-Dyer profilBeundary-Layer Meteorology
42(1-2):145-151. ISSN 0006-8314. doi:10.1007/BF0010988

Businger, J. A., Wyngaard, J., Izumi, Y., and Bradley, E 79 Flux-profile relationships in the
atmospheric surface layefournal of Atmospheric Sciengez3:181-189. ISSN 0022-4928.

Butchart, N., Charlton-Perez, A. J., Cionni, ., Hardim&n,C., Haynes, P. H., Kriger, K.,
Kushner, P. J., Newman, P. A., Osprey, S. M., Perlwitz, §m®nd, M., Wang, L., Akiyoshi,
H., Austin, J., Bekki, S., Baumgaertner, A., Braesicke, Brijhl, C., Chipperfield, M.,
Dameris, M., Dhomse, S., Eyring, V., Garcia, R., Garny, H¢kel, P., Lamarque, J.,
Marchand, M., Michou, M., Morgenstern, O., Nakamura, T.w&an, S., Plummer, D.,



Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., $hilkaf Smale, D., Teyssedre,
H., Tian, W., Waugh, D., and Yamashita, Y. (2011). Multimbdeémate and variability
of the stratosphere. Journal of Geophysical Research16(D5):1-21. ISSN 0148-0227.
doi:10.1029/2010JD014995.

Canziani, P. O. and Legnani, W. E. (2003). Tropospherittstpdneric coupling: Extratropical
synoptic systems in the lower stratosphe@uarterly Journal of the Royal Meteorological
Society 129(592):2315-2329. ISSN 1477870X. doi:10.1256/g1.09.

Capon, R. A. (2003). Wind speed-up in the Dover Straits withMet Office New Dynamics
Model. Meteorological Applications 10(3):229-237. ISSN 13504827. doi:10.1017/
S1350482703003037.

Capps, S. B. and Zender, C. S. (2010). Estimated global oa#zth power potential from
QUuIKSCAT observations, accounting for turbine charastes and siting. Journal of
Geophysical Researcthi15(D9):1-13. ISSN 0148-0227. doi:10.1029/2009JD09267

Cardone, V., Cox, A., and Swail, V. (1999). Evaluation of NCEanalysis surface marine
wind fields for ocean wave hindcasts. Bioc. WMO Workshop on Advances in Marine
Climatology (CLIMAR99)pp. 8-15.

Castro, F. A, Palma, J. M. L. M., and Silva Lopes, A. (2003)m@ation of the Askervein
flow. Part 1: Reynolds averaged Navier-Stokes equatiorspgilon turbulence model).
Boundary-Layer Meteorology107:501-530.

Cermak, J., Davenport, A., Plate, E. J., and Viegas, D. (1984nd climate in cities Kluwer
Academic Publishers. ISBN 0792332024 9780792332022.

Chandrasekar, A., Russell Philbrick, C., Doddridge, Bark|R., and Georgopoulos, P. (2003).
A comparison study of RAMS simulations with aircraft, winafiler, lidar, tethered balloon
and RASS data over Philadelphia during a 1999 summer epigagwspheric Environment
37(35):4973-4984. ISSN 13522310. doi:10.1016/j.atm086A3.08.030.

Chang, T. P. (2010). Performance comparison of six numarethods in estimating Weibull
parameters for wind energy applicatioApplied Energy ISSN 03062619. doi:10.1016/].
apenergy.2010.06.018.

Charnock, H. (1955). Wind stress on a water surfad@uarterly Journal of the Royal
Meteorological Society81(350):639—640. ISSN 1477870X. doi:10.1002/qj.49BBBR7.

Chechkin, A., Metzler, R., Klafter, J., and Gonchar, V. (2D0Introduction to the Theory of
Lévy Flights. In Rainer, K., Radons, G., and Sokolov, I. Ed§.),Anomalous Transport:
Foundations and Applicationschapter 5. Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany, 1 edition. ISBN 9783527622979. doi:Q02/9783527622979.

Chelton, D. B., Freilich, M., Sienkiewicz, J., and Von Ahn(J006). On the use of QUIkSCAT
scatterometer measurements of surface winds for marineharearediction. Monthly
weather review134(8):2055-2071. ISSN 0027-0644. doi:10.1175/MWR31L79

Chen, F. and Dudhia, J. (2000). Coupling an advanced lan@daiirydrology model with
the Penn StateNCAR MM5 modeling system. Part I: model implaattion and sensitivity.
Monthly Weather Revievt29:569-585.



Christiansen, M., Koch, W., and Horstmann, J. (2006). Wesburce assessment from C-band
SAR. Remote sensing of Environmeh05(1):68-81.

Costa, J. C. L. D., Castro, F. A., Palma, J., and Stuart, RR0Computer simulation of
atmospheric flows over real forests for wind energy resoexaduation. Journal of Wind
Engineering and Industrial Aerodynam;jc34(8):603—620.

Cotton, W. R, Pielke, R. A., Walko, R. L., Liston, G. E., Treatk, C. J., Jiang, H., McAnelly,
R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., andcWadden, J. P. (2003).
RAMS 2001: Current status and future directiomdeteorology and Atmospheric Physics
82(1):5-29.

Cradden, L. (2009)The Impact of Climate Change on Wind Energy Generation itutkePhd
thesis, Edinburgh University.

Crochet, P. (2004). Adaptive Kalman filtering of 2-metre pamature and 10-metre wind-speed
forecasts in IcelandMeteorological Applications11(2):173-187. ISSN 1350-4827. doi:10.
1017/S1350482704001252.

Crown Estate (2010). Towards Round 3 : Building the Offshdfied Supply Chain.

Davenport, A. G. (1960). Rationale for determining windigesrselocities. American Society
of Civil Engineering 86:39-68.

Davenport, A. G., Grimmond, C. S. B., Oke, T. R., and Wieringa(2000). Estimating the
roughness of cities and sheltered country.12th AMS Conf. on Applied Climatologgp.
96-99. Asheuville.

DECC (2009). The UK renewable energy strategy. , Departrf@nEnergy and Climate
Change.

DECC (2010). Digest of UK Energy Statistics. , DepartmentHoergy and Climate Change.

DECC (2011a). Planning our electric future: A white paper $ecure, affordable and
low-carbon electricity. 1, UK Government. doi:10.1161R30b013e3182456d46.

DECC (2011b). UK Energy in Brief 2011.

DECC (2011c). Updated energy and emissions projectionsob@g Department for Energy
and Climate Change.

Delle Monache, L., Nipen, T., Liu, Y., Roux, G., and Stull, 011). Kalman filter and
analog schemes to post-process numerical weather poedicklonthly Weather Revievp.
110318133207035. ISSN 0027-0644. do0i:10.1175/2011MVBR 36

Delle Monache, L., Wilczak, J., Mckeen, S., Grell, G., PagkivM., Peckham, S., Stull,
R., Mchenry, J., and Mcqueen, J. (2008). A Kalman-filter lwasection method applied
to deterministic, ensemble averaged and probabilistieckasts of surface ozondellus B
60(2):238-249. ISSN 0280-6509. doi:10.1111/j.1600-038%7.00332.x.

Dobschinski, J., Wessel, A., Lange, B., and Bremen, L. VO{20 Reduction of wind power
induced reserve requirements by advanced shortest-tegoafsts and prediction intervals.
In Presentation to the Bremen Workshop on Wind Integra&yemen.



Donald Ahrens, C. (2008Essentials of meteorology: an invitation to the atmosph€engage
Learning. ISBN 0495115584.

Douglas, D. J. F., Gasoriek, D. J. M., Swaffield, P. J., an#t,Jac(2005). Fluid Mechanics
Prentice Hall; 5 edition. ISBN 0131292935.

Doyle, J., Jiang, Q., and Chao, Y. (2009). High-resolutieal-time modeling of the marine
atmospheric boundary layer in support of the AOSN-II fielthpaign. Deep Sea Research
Part II: Topical.

Dragoon, K. (2010). Valuing Wind Generation on Integrated Power Systeri$sevier, 1st
edition. ISBN 9780815520474. doi:10.1016/B978-0-8194-24.10002-X.

Drennan, W. M., Taylor, P. K., and Yelland, M. J. (2005). Maeterizing the sea surface
roughness.Journal of Physical Oceanograph5(5):835—-848. ISSN 0022-3670. doi:10.
1175/3P02704.1.

Driesnaar, T. (2011). HIRLAM Newsletter 58. , HIRLAM Tecloal Newslettters.
DTI (2003). Offshore Wind Capital Grant Scheme. , Departini@nTrade and Industry.
DTI (2004). Atlas of UK Renewable Marine Renewable Energgdreces: Technical Report.

Dudhia, J. (1989). Numerical study of convection observednd the winter monsoon
experiment using a mesoscale two-dimensional maldeirnal of the Atmospheric Sciences
46(20):3077—-3107. doi:doi:10.1175/1520-0469(1989}8887:NSOCOD2.0.CO;2.

Dudbhia, J. (2010). WRF Physics Options. , Presentationd®RF user tutorial.

Dutton, J. A. (1976)The ceaseless wind : an introduction to the theory of atmespimotion
McGraw-Hill, New York. ISBN 0070184070.

Dyer, A. J. (1974). A review of flux-profile relationshipsBoundary-Layer Meteorology
7(3):363-372. ISSN 0006-8314. doi:10.1007/BF00240838.

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, Rgren, V., Gayno, G., and Tarpley,
J. D. (2003). Implementation of Noah land surface model acka in the National Centers
for Environmental Prediction operational mesoscale EtalehoJournal of Geophysical
Research108(D22):1-16. ISSN 0148-0227. doi:10.1029/2002JD0632

Ela, E. and Kemper, J. (2009). Wind Plant Ramping BehavidREN Technical Report.
December, National Renewable Energy Laboratory.

Elexon (2011). Balancing Mechanism Reporting System (BMRBS&der the The New
Electricity Trading Arrangements. , BMRS reporting websit

Espafia, G., Aubrun, S., Loyer, S., and Devinant, P. (201¥nd tunnel study of the wake
meandering downstream of a modelled wind turbine as anteffielarge scale turbulent
eddies. Journal of Wind Engineering and Industrial Aerodynamid®1:24-33. ISSN
01676105. doi:10.1016/j.jweia.2011.10.011.



Esteban, M., Leary, D., Zhang, Q., Utama, A., Tezuka, T., lahthara, K. N. (2011). Job
retention in the British offshore sector through greenifighe North Sea energy industry.
Energy Policy 39(3):1543-1551. ISSN 03014215. doi:10.1016/j.enpdli212.028.

European Environment Agency (2000). CORINE Land Cover ZDatset.

Fangohr, S., Woolf, D. K., Jeffery, C. D., and Robinson, [(Z08). Calculating long-term
global air-sea flux of carbon dioxide using scatterometagsiwve microwave, and model
reanalysis wind dataJournal of Geophysical Researchl13(C9):1-14. ISSN 0148-0227.
doi:10.1029/2005JC003376.

Farr, T. G., Rosen, P. A, Caro, E., Crippen, R., Duren, Rngity, S., Kobrick, M., Paller, M.,
Rodriguez, E., Roth, L., Seal, D., Shaffer, S., ShimadadJland, J., Werner, M., Oskin,
M., Burbank, D., and Alsdorf, D. (2007). The shuttle radgrdgraphy missionReviews of
geophysics45(RG2004):1-33. doi:10.1029/2005RG000183.

Foley, A. M., Leahy, P. G., Marvuglia, A., and McKeogh, E.2012). Current methods and
advances in forecasting of wind power generatidRenewable Energy37(1):1-8. ISSN
09601481. doi:10.1016/j.renene.2011.05.033.

Foreman, R. J. and Emeis, S. (2010). Revisiting the defiitiothe drag coefficient in the
marine atmospheric boundary laydournal of Physical Oceanograph#0(10):2325-2332.
ISSN 0022-3670. doi:10.1175/2010JP04420.1.

Frank, H. P., Rathmann, O., Mortensen, N. G., and Landber(2d01). The Numerical Wind
Atlas: the KAMM/WASP Method.

Frey-Buness, F., Heimann, D., and Sausen, R. (1995). Asttalidynamical downscaling
procedure for global climate simulations. Theoretical and Applied Climatology
50(3-4):117-131. ISSN 0177-798X. doi:10.1007/BF0086611

Friedl, M. (2002). Global land cover mapping from MODIS: @lghms and early results.
Remote Sensing of Environmer3(1-2):287-302. ISSN 00344257. doi:10.1016/
S0034-4257(02)00078-0.

Fuentes, U. (1998). Statistisch-dynamische Regionalisgeauf der Basis einer Klassifikation
synoptischer Entwicklungen.

Fuentes, U. and Heimann, D. (2000). An improved statistgalamical downscaling
scheme and its application to the alpine precipitation atotogy. Theoretical and Applied
Climatology 65(3-4):119-135.

Gallus, W. A. (2000). The impact of step orography on flow ia Eta model: two contrasting
examples. Weather and Forecastingl5(5):630-639. ISSN 0882-8156. do0i:10.1175/
1520-0434(2000)019630:TIOSO02.0.CO;2.

Garrad Hassan (2003). Economies of scale , engineeringnesand load factors.

Garratt, J. R. and Pielke, R. A. (1989). On the sensitivitynesoscale models to surface-layer
parameterization constanBoundary-Layer Meteorology8(4):377-387. ISSN 0006-8314.
doi:10.1007/BF00123060.



Gel, Y. and Raftery, A. (2004). Combining global and localdgrsased bias correction for
mesoscale numerical weather prediction models.Pioceedings of the 17th Conference
on Probaility and Statistics in the Atmospheric Sciencaamber 206 in Probability and
Statistics in the Atmospheric Sciences, pp. 1-31. Wasbimgt

Gerber, E. P. and Vallis, G. K. (2009). On the Zonal Structiréne North Atlantic Oscillation
and Annular ModesJournal of the Atmospheric Sciencé6(2):332—352. ISSN 0022-4928.
doi:10.1175/2008JAS2682.1.

Giebel, G. (2010). The State-Of-The-Art in Short-Term Regon of Wind Power: A literature
overview. , Riso DTU.

Giebel, G., Badger, J., Louka, P., Kallos, G., Lac, C., Dedwes, G., Palomares, A.-M., and
Perez, I. M. (2002). Project ANEMOS: Description of NWP, Msesale and CFD models. ,
Project Anemos.

Giebel, G. and Kariniotakis, G. (2003). The state-of-theirashort-term forecasting of wind
power: a literature overview. , Project Anemos.

Giebel, G., Kariniotakis, G., Pinson, P., Siebert, N., ardtBelmie, R. J. (2003). The state of
the art in short-term prediction of wind power-from an otish perspective. , RisgNational
Laboratory.

Gilhousen, D. B. (2006). A complete explanation of why madpeoy winds are less than ship
winds. Mariners Weather Logb0(1).

Girard, C., Benoit, R., and Desgagné, M. (2005). Finestafmgraphy and the MC2 Dynamics
Kernel. Monthly Weather Reviewl33(6):1463-1477. ISSN 0027-0644. doi:10.1175/
MWR2931.1.

Giri, C., Zhu, Z., and Reed, B. (2005). A comparative analysithe Global Land Cover 2000
and MODIS land cover data setRemote Sensing of Environmef4(1):123-132. ISSN
00344257. doi:10.1016/j.rse.2004.09.005.

Glazer, A. and Yu, W. (2005). Numerical wind energy atlasGanadaGeophysical Research
Abstracts 7(05185).

Golder, D. (1972). Relations among stability parametetiénsurface layerBoundary-Layer
Meteorology 3(1):47-58. ISSN 0006-8314. doi:10.1007/BF00769106.

Gottschall, J. and Peinke, J. (2008). How to improve theregion of power curves for wind
turbines. Environmental Research Letter3(1):015005. ISSN 1748-9326. do0i:10.1088/
1748-9326/3/1/015005.

Gross, R. and Heptonstall, P. (2008). The costs and imp#&dtgesmittency: An ongoing
debate “East is East, and West is West, and never the twalhmnskat”. Energy Policy
36(10):4005—-4007. ISSN 03014215. doi:10.1016/j.enp6i8206.013.

Gryning, S.-E., Batchvarova, E., Brummer, B., Jargensén,and Larsen, S. (2007). On
the extension of the wind profile over homogeneous terrayote the surface boundary
layer. Boundary-Layer Meteorologyl24(2):251-268. ISSN 0006-8314. doi:10.1007/
$10546-007-9166-9.



Hamill, T. (2010). Survey of ensemble post-processingrtigles. , Technical Report by the
NOAA Earth System Research Lab.

Hamill, T. M., Hagedorn, R., and Whitaker, J. S. (2008). Riulistic forecast calibration using
ECMWF and GFS ensemble reforecasts. Part Il: precipitatiglonthly Weather Review
136(7):2620—-2632. ISSN 0027-0644. doi:10.1175/2007MWR21.

Hamilton, J. (20Q8). HIRLAM Use of the Hirlam NWP Model at Mgtreann. , Technical
Report for MetEireann.

Harman, K., Walker, R., and Wilkinson, M. (2008). Availatyiltrends observed at operational
wind farms. InEuropean Wind Energy Conferendepril, pp. 1-8.

Hart, K. a., Steenburgh, W. J., Onton, D. J., and Siffert, A(2004). An Evaluation
of mesoscale-model-based Model Output Statistics (MO&)nduthe 2002 Olympic and
Paralympic winter games.Weather and Forecastingl9(2):200-218. ISSN 0882-8156.
doi:10.1175/1520-0434(2004)00200:AEOMMO 2.0.CO;2.

Hasager, C. B., Frank, H. P., and Furevik, B. R. (2002). Oshmife wind energy mapping
using satellite SARCanadian Journal of Remote Sensi2g(1):80—89.

Hawkins, S., Eager, D., and Harrison, G. (2011). Charasiteyithe reliability of production
from future British offshore wind fleets. IRroceedings of the 1st IET Renewable Power
Generation Conferenc¢ET, Edinburgh.

Hayes, B., llie, I., Porpodas, A., and Djokic, S. (2010). Eglent Power Curve Model of
a Wind Farm Based on Field Measurement Data.Ptasentation to Supergen Networks
Consortium pp. 1-7.

Heimann, D. (1986). Estimation of regional surface layendviield characteristics using a
three-layer mesoscale mod&eitraege zur Physik der Atmosphaeb®:518-537.

Hersbach, H. (2011). Sea surface roughness and drag ceetffacs functions of neutral wind
speed.Journal of Physical Oceanograph$1(1):247-251. ISSN 0022-3670. doi:10.1175/
2010JP04567.1.

Hicks, B. B. (1976). Wind profile relationships from the wang experiment. Quarterly
Journal of the Royal Meteorological Society02(433):535-551. ISSN 00359009. doi:10.
1002/qj.49710243304.

Hisscott, A. (2007). When NWP met climatology: storms over Isle of Man during January
2005. Weathey 62(3):74—77. ISSN 00431656. doi:10.1002/wea.36.

Hoglund, A., Meier, H. M., Broman, B., and Kriezi, E. (2009Yalidation and correction of
regionalised ERA-40 wind fields over the Baltic Sea usingRlossby Centre Atmosphere
model . , Swedish Meteorological and Hydrological Ins&tutlorrkoping.

Hogrefe, C., Rao, S. T., Kasibhatla, P., Kallos, G., Trerkb&c J., Hao, W., Olerud, D., Xiu,
A., and Mchenry, J. (2001). Evaluating the performance gfomal-scale photochemical
modeling systems : Part | - meteorological predictionsAtmospheric Environment
35:4159-4174.



Hogstrom, U. (1988). Non-dimensional wind and temperapn&iles in the atmospheric
surface layer: A re-evaluation. Boundary-Layer Meteorology42(1-2):55-78. ISSN
0006-8314. doi:10.1007/BF00119875.

Hogstrom, U., Sahlee, E., Drennan, W., and KK (2008). Motue fluxes and wind
gradients in the marine boundary layer— a multi-platformadgt Boreal Environment
6095(December):475-502.

Holton, J. R. (2004)An introduction to dynamic meteorolagfcademic Press, 4 edition.

Holttinen, H. (2005). Hourly wind power variations in the i countries. Wind Energy
8(2):173-195. ISSN 1095-4244. doi:10.1002/we.144.

Hong, S.-Y., Dudhia, J., and Chen, S.-H. (2004). A revisepr@gch to ice microphysical
processes for the bulk parameterization of clouds andgitaton. Monthly Weather Review
132(1):103-120. ISSN 0027-0644. doi:10.1175/1520-02034)1320103:ARATIM)2.0.
CO;2.

Hong, S.-Y., Noh, Y., and Dudhia, J. (2006). A New Verticaffision Package with an Explicit
Treatment of Entrainment Process&onthly Weather Revievt34:2318-2341.

Hoskins, B. and Ambrizzi, T. (1993). Rossby wave propagatia a realistic longitudinally
varying flow. Journal of the Atmospheric Scienc@&§(12):1661-1661.

Howard, T. and Clark, P. (2007). Correction and downscatihtyWP wind speed forecasts.
Meteorological Applications14(2):105-116. ISSN 1469-8080. doi:10.1002/met.

Hsu, S. (1992). An overwater stability criterion for thestfbre and coastal dispersion model.
Boundary-Layer Meteorolog¥0(4):397-402. ISSN 0006-8314.

Hsu, S., Blanchard, B., and Yan, Z. (2009). Bulk transfeatiehs for the roughness
sublayer. Boundary-Layer Meteorologyl34(2):257-267. ISSN 0006-8314. do0i:10.1007/
$10546-009-9450-y.

Hu, X.-M., Nielsen-Gammon, J. W., and Zhang, F. (2010). &a&abn of three planetary
boundary layer schemes in the WRF modelJournal of Applied Meteorology and
Climatology 49(9):1831-1844. ISSN 1558-8424. doi:10.1175/2010JRNR2.1.

IEC (2009). Wind farm power performance testing. , Inteioral Electrotechnical
Commission.

Ifremer (2002). QuickSCAT scatterometer mean wind fielddpats user manual. February,
Ifremer.

Ingleby, B. (2010). Factors affecting ship and buoy datdityua data assimilation perspective.
Journal of Atmospheric and Oceanic Technolo@y(9):1476-1489. ISSN 0739-0572.
doi:10.1175/2010JTECHA1421.1.

Jackson, P. S. and Hunt, J. C. R. (1975). Turbulent wind flasv evow hill. Quarterly Journal
of the Royal Meteorological Societ§01(430):929-955.



Janjic, Z. 1. (1994). The step-mountain eta coordinate rhoBarther development of the
convection, viscous sublayer and turbulence closure seberonthly Weather Review
122:927-945.

Janjic, Z. 1. (1996). The surface layer in the NCEP Eta Model Eleventh Conference on
Numerical Weather Predictigmpp. 354—355. Norfolk, VA.

Janjic, Z. 1. (2002). Nonsingular implementation of the Melyamanda level 2.5 scheme in
the NCEP global model. , NCEP Office Note, no 437.

Jiang, J. and Perrie, W. (2007). The Impacts of Climate CaammgAutumn North Atlantic
Midlatitude Cyclones. Journal of Climate 20(7):1174-1187. ISSN 0894-8755. doi:10.
1175/JCLI4058.1.

Jimenez, B. and Tambke, J. (2007). Offshore wind resoursesament with WAsP and MM5:
comparative study for the German Bightind Energy 10(2):121-134.

Jin, J., Miller, N. L., and Schlegel, N. (2010). SensitivByudy of Four Land Surface Schemes
in the WRF Model. Advances in Meteorology010:1-12. ISSN 1687-9309. doi:10.1155/
2010/167436.

Jolliff, J. K., Kindle, J. C., Shulman, |., Penta, B., Frieths, M. A., Helber, R., and
Arnone, R. A. (2009). Summary diagrams for coupled hydreaiyic-ecosystem model skill
assessmentJournal of Marine System&6(1-2):64-82. ISSN 09247963. doi:10.1016/].
jmarsys.2008.05.014.

JPL (2010). Cross-Calibrated , Multi-Platform Ocean SeefaVind Velocity Product (
MEaSUREs Project ). May, Jet Propulsion Laboratory.

Justice, C., Townshend, J., and Vermote, E. (2002). An ésenof MODIS Land data
processing and product stati®emote Sensing of Environme@B:3 — 15.

Kain, J. S. (2004). The KainFritsch Convective Paramedéion: An Update. Journal of
Applied Meteorology 43(1):170-181. ISSN 0894-8763. do0i:10.1175/1520-02604)
043(0170:TKCPAU2.0.CO;2.

Kaiser, K., Langreder, W., Hohlen, H., and Hgjstrup, J. @00 urbulence correction for power
curves.Wind Energy pp. 159-162.

Kallos, G. (1997). The regional weather forecasting sysERON. In Proceedings of the
Symposium on Regional Weather Prediction on Parallel CdergenvironmentsAthens.

Kallos, G., Boukas, L., Mimikou, N., and N, M. (1998). The &l System: Parallelization of
the Eta Model. IrBth ECMWF Workshop: Towards Terra Computing

Kallos, G. and Nickovic, S. (2001). A model for prediction désrt dust cycle in the
atmosphereJournal of Geophysical ResearctD6(16):113-118.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deayé&h, Gandin, L., Iredell, M., Saha,
S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, Gelliah, M., Ebisuzaki,
W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wand., Jenne, R., and
Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Rrdidletin of the American
Meteorological Society77(3):437-471.



Kalthoff, N., Bischoff-GauR3, I., Fiedler, F., Thurauf, Kphler, M., Fiebig-Wittmaack, M.,
Novoa, E., Pizarro, C., Castillo, R., Gallardo, L., and @H2002). Mesoscale wind regimes
in Chile at 30 S.Journal of Applied Meteorologyt1(9):953-970.

Kamath, C. (2010). Understanding wind ramp events througtlyais of historical data. In
IEE PES Transmission and Distribution Conference and Eitipos pp. 1-6. IEEE, New
Orleans.

Kara, A. (2008). Air-sea stability effects on the 10 m windsgiothe global ocean: Evaluations
of air-sea flux algorithms. Journal of Geophysical Researcii13(C4):1-14. ISSN
0148-0227. doi:10.1029/2007JC004324.

Keane, A., Milligan, M., Dent, C. J., Hasche, B., D’Annunz{®., Dragoon, K., Holttinen, H.,
Samaan, N., Soder, L., and O’Malley, M. (2011). Capacityu¢abf Wind Power. IEEE
Transactions on Power Systen®6(2):564-572. ISSN 0885-8950. do0i:10.1109/TPWRS.
2010.2062543.

Kim, D.-H., Lee, H.-W., and Lee, S.-H. (2010). Evaluationhd resource using numerically
optimized data in the southwestern Korean Peninsiia-Pacific Journal of Atmospheric
Sciences46(4):393-403. ISSN 1976-7633. doi:10.1007/s13143-Q021-4.

Kindstrand, J. F. and Blomgvist, J. (197%ion of Borysthenes: a collection of the fragments
with introduction and commentary, Volumes 11-18ppsala University, Uppsala. ISBN
9155404863.

Klein, W. H. and Glahn, H. R. (1974). Forecasting Local Weatby Means of Model
Output StatisticsBulletin of the American Meteorological Socighp(10):1217-1227. ISSN
0003-0007. doi:10.1175/1520-0477(1974)(BBL7:FLWBMO 2.0.CO;2.

Klemp, J. B., Dudhia, J., and Hassiotis, a. D. (2008a). An &dpgpravity-Wave Absorbing
Layer for NWP Applications. Monthly Weather Review136(10):3987-4004. ISSN
0027-0644. doi:10.1175/2008MWR2596.1.

Klemp, J. B., Gill, D. O., Barker, D. M., Duda, M. G., Wang, \dnd Powers, J. G. (2008b). A
Description of the Advanced Research WRF Version 3.

Kok, K., Schreur, B. W., and Vogelezang, D. (2008). Valuinfgprmation from mesoscale
forecasts.Meteorological Applications15(1):103-111. ISSN 13504827. doi:10.1002/met.
54.

Kolstad, E. W. (2008). A QuikSCAT climatology of ocean sudavinds in the Nordic seas:
Identification of features and comparison with the NCEP/NRC#eanalysis. Journal of
Geophysical Researcthi13(D11):1-15. ISSN 0148-0227. doi:10.1029/2007JDQ889

Kong, F. (2002). An experimental simulation of a coastat$b@gtus case using COAMPS (tm)
model. Atmospheric research

Kristensen, L. (1998). Cup anemometer behavior in turtiuggwvironments. Journal of
Atmospheric and Oceanic Technolpd(1969):5-17.



Landberg, L. (1999). Short-term prediction of the powerduion from wind farmsJournal
of Wind Engineering and Industrial Aerodynamic®0(1-2):207-220. ISSN 01676105.
doi:10.1016/S0167-6105(98)00192-5.

Lange, B., Hgjstrup, J., Larsen, S., and Barthelmie, R.QDXR A fetch dependent model of
sea surface roughness for offshore wind power utilisatimnProceeding of the European
Wind Energy Conferencd, pp. 830-833. Citeseer.

Lange, B., Johnson, H. K., Larsen, S., Hgjstrup, J., Kofdadsen, H., and Yelland, M. J.
(2004). On Detection of a Wave Age Dependency for the Sea&aiRoughnessournal of
Physical Oceanography4(6):1441-1458. ISSN 0022-3670. doi:10.1175/15206(2@04)
034(1441:0DOAWA 2.0.CO;2.

Lapworth, A. (2005). The diurnal variation of the marine faoe wind in an offshore
flow. Quarterly Journal of the Royal Meteorological Society31(610):2367—2387. ISSN
00359009. doi:10.1256/qj.04.161.

Large, W. G., Morzel, J., and Crawford, G. B. (1995). Accaumtfor Surface Wave
Distortion of the Marine Wind Profile in Low-Level Ocean St Wind Measurements.
Journal of Physical Oceanography5(11):2959-2971. ISSN 0022-3670. doi:10.1175/
1520-0485(1995)022959:AFSWDQ2.0.CO;2.

Lazi¢, L., Pejanovit, G., andivkovic, M. (2010). Wind forecasts for wind power gendoat
using the Eta modeRenewable Energy5(6):1236—-1243. ISSN 09601481. doi:10.1016/].
renene.2009.10.028.

Legates, D. R. and McCabe, G. J. (1999). Evaluating the ugeadness-of-fit Measures in
hydrologic and hydroclimatic model validatiowater Resources Resear@(1):233. ISSN
0043-1397. doi:10.1029/1998WR900018.

Lei, M., Shiyan, L., Chuanwen, J., Hongling, L., and Yan, Z0@9). A review on the
forecasting of wind speed and generated poRenewable and Sustainable Energy Reviews
13(4):915-920. ISSN 13640321. doi:10.1016/j.rser. 200802.

Lemelin, D., Surry, D., and Davenport, A. (1988). Simple rppmations for wind speed-up
over hills. Journal of Wind Engineering and Industrial Aerodynami2$(1-3):117-127.
ISSN 01676105. doi:10.1016/0167-6105(88)90108-0.

Li, Y., Paik, K.-J., Xing, T., and Carrica, P. M. (2011). Dyn& overset CFD simulations of
wind turbine aerodynamicsRenewable Energy87(1):298-285. ISSN 09601481. doi:10.
1016/j.renene.2011.06.029.

Libonati, R., Trigo, I., and Dacamara, C. (2008). Corrattadf 2 m-temperature forecasts
using Kalman Filtering techniqguéAtmospheric ResearcB7(2):183-197. ISSN 01698095.
doi:10.1016/j.atmosres.2007.08.006.

Liston, G. E. and Pielke, R. a. (2000). A Climate Version o# fRegional Atmospheric
Modeling System.Theoretical and Applied Climatolog®6(1-2):29-47. ISSN 0177-798X.
doi:10.1007/s007040070031.



Liu, H., Olsson, P. Q., Volz, K. P., and Yi, H. (2006). A clinotdgy of mesoscale model
simulated low-level wind jets over Cook Inlet and Sheliktrfe®, Alaska.Estuarine, Coastal
and Shelf Scien¢c&0(4):551-566. ISSN 02727714. doi:10.1016/j.ecss.Z@611.

Liu, W., Tang, W., (US), J. P. L., Aeronautics, U. S. N., andnfidistration, S. (1996).
Equivalent neutral wind National Aeronautics and Space Administration, Jet Psipu
Laboratory, California Institute of Technology.

Liu, Y., Warner, T., Liu, Y., Vincent, C., Wu, W., Mahoney, BSwerdlin, S., Parks, K., and
Boehnert, J. (2011). Simultaneous nested modeling frorsytheptic scale to the LES scale
for wind energy applicationsJournal of Wind Engineering and Industrial Aerodynamics
ISSN 01676105. doi:10.1016/j.jweia.2011.01.013.

Lorenz, E. N. (2006). Reflections on the conception, bintld, ehildhood of numerical weather
prediction. Annual Review of Earth and Planetary Scien&&37-45.

Louka, P., Galanis, G., Siebert, N., Karinotakis, G., Ki&tdas, P., Pytharoulis, I., and
Kallos, G. (2008). Improvements in wind speed forecastswiord power prediction
purposes using Kalman filteringournal of Wind Engineering and Industrial Aerodynamics
96(12):2348—-2362. ISSN 01676105. doi:10.1016/j.jw€a803.013.

Loveland, T., Reed, B., Brown, J., Ohlen, D., Zhu, Z., Yang, dnd Merchant, J. (2000).
Development of a global land cover characteristics databad IGBP DISCover from 1 km
AVHRR data. International Journal of Remote Sensjrj.(6-7):1303-1330.

Lubitz, W. and White, B. (2007). Wind-tunnel and field invgation of the effect of local wind
direction on speed-up over hilldournal of Wind Engineering and Industrial Aerodynamics
95(8):639-661. ISSN 01676105. doi:10.1016/j.jweia.200®01.

Manwell, J. F., McGowan, J., and Rogers, A. (2002&)nd energy explained : theory, design
and application Wiley, Chichester. ISBN 0471499722.

Manwell, J. F., Rogers, A. L., McGowan, J. G., and Bailey, B(2002b). An offshore wind
resource assessment study for New Englddehewable Energyp7(2):175-187.

Martin, J. E. (2006).Mid-latitude atmospheric dynamics: a first cours@é/iley, 1st edition.
ISBN 0470864656.

Masoliver, J., Montero, M., and Porra, J. (2000). A dynamisadel describing stock market
price distributionsPhysica A: Statistical Mechanics and its ApplicatipB83(3-4):559-567.
ISSN 03784371. doi:10.1016/S0378-4371(00)00117-5.

Mass, C. F. (2003). IFPS and the Future of the National WeaBevice. Weather
and Forecasting18(1):75-79. ISSN 0882-8156. doi:10.1175/1520-0433820180075:
IATFOT)2.0.CO;2.

Mass, C. F. and Kuo, Y.-H. (1998). Regional Real-Time NuoaiVeather Prediction: Current
Status and Future Potenti8ulletin of the American Meteorological Sociefp(2):253—-263.

Mass, C. F. and Ovens, D. (2011). Fixing WRFs High Speed Wiad:B\ New Subgrid Scale
Drag Parameterization and the Role of Detailed Verificatiom Presentation to the WRF
Users Workshop



Mclean, A. J. R. and Hassan, G. (2008). Equivalent Wind P@ueves. Report for the Trade
Wind Project. October, Garrad Hassan.

Mellor, G. and Yamada, T. (1982). Development of a turbubetlosure model for geophysical
fluid problems.Reviews of geophysics and space phy<i6§4):851-875.

Mengelkamp, H. T. (1997). Statistical-dynamical downisgabf wind climatologies.Journal
of Wind Engineering and Industrial Aerodynamié3-68:449-457. ISSN 01676105. doi:10.
1016/S0167-6105(97)00093-7.

Mesinger, F., JANJIC, Z., and Nickovic, S. (1988). The stemdntain coordinate: Model
description and performance for cases of Alpine lee cyclegis and for a case of an
Appalachian developmenionthly Weather Revievt16(7):1493-1518.

Meteo France (2012). Papers in NWP specialised interratipurnals with a reviewing
commitee.

Milborrow, D. (2000). The real costs and problems of intéigcawind. Windpower Monthly
pp. 5-9.

Mlawer, E. J., Taubman, S. J., Brown, P. D., lacono, M. J.,@Glodigh, S. A. (1997). Radiative
transfer for inhomogeneous atmospheres: RRTM, a validetecklated-k model for the
longwave. Journal of Geophysical Research02(D14):16663-16682. ISSN 0148-0227.
doi:10.1029/97JD00237.

Monin, A. and Obukhov, A. (1954). Basic laws of turbulent mgin the surface layer of the
atmosphereContrib. Geophys. Inst. Acad. Sci., USSR, (124]151):163-187.

Mortensen, N. G., Larsen, S. E., and Troen, |. (1990). Respaf neutral boundary
layers to change of roughness, boundary layer meteordbmgindary-Layer Meteorology
50(1988):205-225.

Murphy, A. (1988). Skill scores based on the mean square an their relationships to the
correlation coefficientMon. Wea. Rev116:2417-2424.

Murphy, J. M., Sexton, D. M. H., Jenkins, G. J., Booth, B. B, Brown, C. C., Clark, R. T,
Collins, M., Harris, G. R., Kendon, E. J., Betts, R. A., Brgw J., Humphrey, K. A.,
McCarthy, M. P., McDonald, R. E., Stephens, A., Wallace,\Wajren, R., Wilby, R., and
Wood, R. A. (2009).UK Climate Projections Science Report: Climate Change &utipns
December. Meteorological Office Hadley Centre.

National Grid (2008). Round 3 Offshore Wind Farm Connectaady. , National Grid.
National Grid (2011). Distribution Network Operator (DNOpmpanies.

NCAR (2008). WRF ARW Version 3 Modelling System User's Guitkartional Center for
Atmospheric Research.

NCAR (2011). Real Time Weather Data.

NCEP (2008). User’s Guide for the NMM Core of the Weather Resdeand Forecast (WRF)
Modeling System Version 3.



NCEP (2010). U.S. National Centers for Environmental Ritgzh, updated daily: NCEP FNL
Operational Model Global Tropospheric Analyses, contiguirom July 1999. , National
Center for Environmental Prediction, Published by the C[&ta Support Section at the
National Center for Atmospheric Research, Boulder.

Neumann, K., Herold, M., Hartley, a., and Schmullius, C.020 Comparative assessment of
CORINE2000 and GLC2000: Spatial analysis of land cover ttat&urope. International
Journal of Applied Earth Observation and Geoinformati®):425—-437. ISSN 03032434.
doi:10.1016/j.jag.2007.02.004.

Nielsen, H. A., Pinson, P., Nielsen, T. S., ChristiansenMadsen, N. H., Giebel, G., Badger,
J., Guo Larsen, X., Ravn, H., Tgfting, J., and Others (200W)telligent wind power
prediction systems: Final report. Fu 4101, Riso.

Nielsen, M., Astrup, P., Hasager, C., Barthelmie, R. J.,%8d2004). Satellite information for
wind energy applicationsRisgNational Laboratory

Niewiadomski, M., Leung, D., and Benoit, R. (1999). Simigdas of wind field and other
meteorological parameters in the complex terrain of Hongd<asing MC2-a mesoscale
numerical modelJournal of Wind Engineering and Industrial Aerodynamig3(1-3):71-82.

Ngrgaard, P. (2004). A Model to Simulate the Aggregated WRogver Time Series for an
Area. InEuropean Wind Energy Conference

NRL (2003). COAMPS Version 3 model descriptiddU/7500-03-448, Marine

Ofgem (2010). Project Discovery - Options for deliveringuwe and sustainable energy
supplies.

Oswald, J., Raine, M., and Ashrafball, H. (2008). Will Bshi weather provide reliable
electricity? Energy Policy 36(8):3212-3225. ISSN 03014215. do0i:10.1016/j.enpoig2
04.033.

Paiva, L. M., Bodstein, G. C., and Menezes, W. F. (2009). Nigak simulation of
atmospheric boundary layer flow over isolated and vegetaitesiusing RAMS. Journal
of Wind Engineering and Industrial Aerodynamic&y/(9-10):439-454. ISSN 01676105.
doi:10.1016/j.jweia.2009.07.006.

Panofsky, H. A. and Dutton, J. A. (1984Atmospheric Turbulence: Models and Methods for
Engineering Applicationsvolume p. Wiley. ISBN 0471057142.

Papadopoulos, A., Katsafados, P., Kallos, G., and Nick&:i¢2001). The Weather Forecasting
System for POSEIDON An Overview. The Global Atmosphere and Ocean System
00(0):1-19.

Pasquill, F. (1974)Atmospheric diffusion: the dispersion of windborne matdrom industrial
... Wiley and Sons, New York.

Paulson, C. A. (1970). The Mathematical Representation widV8peed and Temperature
Profiles in the Unstable Atmospheric Surface Layejournal of Applied Meteorology
9(6):857-861. ISSN 0021-8952. do0i:10.1175/1520-04500)@090857: TMROWS2.0.
CO;2.



Pefia, A. and Gryning, S.-E. (2008). Charnock’s Roughnessigth Model and
Non-dimensional Wind Profiles Over the Sé&2oundary Layer Meteorologyl28:191—-203.
ISSN g.

Pefa, A., Gryning, S.-E., and Hasager, C. B. (2008). Measents and Modelling of the Wind
Speed Profile in the Marine Atmospheric Boundary LayBoundary-Layer Meteorology
129(3):479-495. ISSN 0006-8314. doi:10.1007/s10546-983-9.

Pearmine, R., Song, Y. H., Williams, T. G., and Chebbo, A.0@0 Identification of a
loadfrequency characteristic for allocation of spinniagarves on the British electricity grid.
IEE Proceedings Generation Transmission and Distributid3(6):633. ISSN 13502360.
doi:10.1049/ip-gtd:20050404.

Pedersen, T. F. (2003). Development of a ClassificationeBydbr Cup Anemometers -
CLASSCUP. April, RisgNational Laboratory.

Petersen, C., Kmit, M., Nielsen, N. W., Amstrup, B., and Hy&é (2005). Technical Report
05-13 Performance of DMI-HIRLAM-T15 and DMI-HIRLAM-S05 dnthe storm surge
model in winter storms. , Danish Meterorological Institute

Petersen, E. L., Mortensen, N. G., Landberg, L., Hgjstrup,add Frank, H. P. (1998).
Wind power meteorology. Part I: climate and turbulend¥ind Energy 1(1):2—22. ISSN
1095-4244. doi:10.1002/(SICI)1099-1824(199809)2:1AID-WE15) 3.0.CO;2-Y.

Pidwirny, M. and Jones, S. (2010). Fundamentals of Physical Geography
PhysicalGeography.net, 2nd edition.

Pilinis, C., Kassomenos, P., and Kallos, G. (1994). ModlgfigPhotochemical Pollution
in Athens, Greece. Application of the RAMS-CALGRID Modgirsystem. Atmospheric
Environment27B(4):353-370.

Pinard, J., Benoit, R., and Yu, W. (2005). A WEST wind climsitaulation of the mountainous
Yukon. Atmosphere-ocead3(3):259-281.

Ploski, J. (2007). Implementing the WRF Model on the Germad.Gctober pp. 1-22.

Potter, C. W., Lew, D., Mccaa, J., Cheng, S., Eichelbergerr®l Grimit, E. (2008). Creating
the Dataset for the Western Wind by WIND ENGINEERING and Baiéegration Study.
Wind Engineering32(4).

Poulos, G. S., Bossert, J. E., McKee, T. B., and Pielke, RO27). The Interaction of Katabatic
Flow and Mountain Waves. Part II: Case Study Analysis andc€ptual Model.Journal of
the Atmospheric Science®4(6):1857—-1879. ISSN 0022-4928. doi:10.1175/JAS3926.

Poyry (2008). I[IMPLICATIONS OF THE UK MEETING ITS GET 2020 REEWABLE
ENERGY TARGET. August, Poyry Energy Consulting.

Poyry (2011). ANALYSING TECHNICAL CONSTRAINTS ON RENEWABE
GENERATION TO 2050: A report to the Committee on Climate Gigan March, Poyry
Energy Consulting.



Pryor, S. C. and Barthelmie, R. J. (2010). Climate changeaatgpon wind energy: A review.
Renewable and Sustainable Energy Revjew§l):430-437. ISSN 13640321. doi:10.1016/
j.rser.2009.07.028.

PWC (2010). Meeting the 2020 renewable energy targetsingrithe offshore wind financing
gap. , Pricewaterhouse Coopers.

Ramtharan, G., Ekanayake, J. B., and Jenkins, N. (2007)pdsufor Spinning Reserve from
DFIG based wind turbines?ower, (August):8 — 11. doi:10.1109/ICIINFS.2007.4579158.

Rantamaki, M., Apohjola, M., Tisler, P., Bremer, P., Kukkon J., and Karppinen, a. (2005).
Evaluation of two versions of the HIRLAM numerical weatheegiction model during an
air pollution episode in southern FinlandAtmospheric EnvironmenB9(15):2775-2786.
ISSN 13522310. doi:10.1016/j.atmosenv.2004.12.050.

Reistad, M., Breivik, O. y., Haakenstad, H., Aarnes, O. drekik, B. R., and Bidlot, J.-R.
(2011). A high-resolution hindcast of wind and waves forNweth Sea, the Norwegian Sea,
and the Barents Sealournal of Geophysical Researchl16(C5):1-18. ISSN 0148-0227.
doi:10.1029/2010JC006402.

Renewable UK (2011). UK Wind Energy Database (UKWED).

Renwewable UK (2010). UK Offshore Wind : Building an IndystrJune, Renewable UK.
Report by Douglas Westwood.

RPN (2011). AnemoScope.

Sampe, T. and Xie, S.-P. (2007). Mapping High Sea Winds frpac8: A Global Climatology.
Bulletin of the American Meteorological Societ§8(12):1965-1978. ISSN 0003-0007.
doi:10.1175/BAMS-88-12-1965.

Schaudt, K. J. (1998). A New Method for Estimating Roughrirezmmeters and Evaluating the
Quality of ObservationsJournal of Applied Meteorologyd7(5):470-476. ISSN 0894-8763.
doi:10.1175/1520-0450(1998)0®A70:ANMFER 2.0.CO;2.

Sertel, E. and Robock, A. (2010). Impacts of land cover daity on regional climate
simulations.International Journal of Climatologydoi:10.1002/joc.

Sexton, D. and Murphy, J. (2010). Probabilistic projedsiaf wind speed. IMJKCP Users
Community WorkshopMet Office Hadley Centre, Birmingham,.

Sharan, M. (2009). Performance of various similarity fiomts for nondimensional wind
and temperature profiles in the surface layer in stable tondi Atmospheric Research
94(2):246-253. ISSN 01698095. doi:10.1016/j.atmose&2D5.014.

Sharman, H., Leyland, B., and Livermore, M. (2011). Rendw&mergy: Vision or Mirage, .
, Adam Smith Institute, London.

Shen, B.-W., Atlas, R., Chern, J.-D., Reale, O., Lin, S.ike, T.,, and Chang, J.
(2006). The 0.125 degree finite-volume general circulatimdel on the NASA Columbia
supercomputer: Preliminary simulations of mesoscaleiogst Geophysical Research
Letters 33(5):1-4. ISSN 0094-8276. doi:10.1029/2005GL024594.



Sinden, G. (2007). Characteristics of the UK wind resoulageg-term patterns and relationship
to electricity demandEnergy Policy 35(1):112-127.

Sistla, G., Hao, W., Ku, J.-y., and Kallos, G. (1998). An Gytiemal Evaluation of Two
Regional-Scale Ozone Air Quality Modeling Systems over Hastern United States.
Bulletin of the American Meteorological Socie82:945-964.

Skibin, D. and Businger, J. A. (1985). The vertical extenthaf log-linear wind profile under
stable stratificationAtmospheric Environment (19679(1):27-30. ISSN 00046981. doi:10.
1016/0004-6981(85)90133-7.

Smedman, A., Bergstrom, H., and Hogstrom, U. L. F. (199@w level jets - a decisive factor
for offshore wind energy siting in the Baltic S@alind Engineering23(2):133-142.

Smith, D., Scaife, A., and Kirtman, B. (2011). Migration a@tbbal Environmental Change
SR6 : What is the current state of scientific knowledge withard to seasonal and decadal
forecasting ? October, UK Government Office for Science.

Sood, A. and Suselj, K. (2006). High Resolution NWP North 8&ad Forecasts in the Marine
Atmospheric Boundary Layenf the European Wind Energy Conference, Atheps 1-5.

Storm, B. A. (2008) Modeling of Low-Level Jets over the Great Plains: Implioas for Wind
Energy Phd, Texas Tech University.

Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology (Atmospbesind
Oceanographic Sciences Library$pringer. ISBN 9027727694.

Swall, V. R. and Cox, A. T. (2000). On the Use of NCEPNCAR Régsia Surface Marine
Wind Fields for a Long-Term North Atlantic Wave HindcastJournal of Atmospheric
and Oceanic Technology7(4):532-545. ISSN 0739-0572. doi:10.1175/1520-02Q80)
017(0532:0TUONN2.0.CO;2.

Tavner, P. J., Long, H., and Feng, Y. (2010). Early expegemith UK round 1 offshore wind
farms. Proceedings of the ICE - Energ$63(4):167-181. ISSN 1751-4223. doi:10.1680/
ener.2010.163.4.167.

Taylor, K., Diagnosis, L. L. N. L. P. C. M., and Intercompanis(2000). Summarizing multiple
aspects of model performance in a single diagradournal of Geophysical Research
(106):7183-7192.

Termonia, P. and Deckmyn, A. (2007). Model-Inspired Priedgcfor Model Output Statistics
(MOS). Monthly Weather Reviewl35(10):3496—-3505. ISSN 0027-0644. doi:10.1175/
MWR3469.1.

The Offshore Valuation Group (2011). The offshore valuatioa a valuation of the UKs
offshore renewable energy resource.

Thomas, B. R., Kent, E. C., Swalil, V. R., and Berry, D. I. (2D08Trends in ship wind
speeds adjusted for observation method and heigtternational Journal of Climatology
28(6):747-763. ISSN 08998418. doi:10.1002/joc.1570.



Tindal, A., Johnson, C., Leblanc, M., Harman, K., and RddeshE. (2008). Site specific
adjustments to wind turbine power curves AWEA Windpower Conference Houstdane,
pp. 1-11.

Toke, D. (2011). The UK offshore wind power programme: A skange in UK energy policy?
Energy Policy 39(2):526-534. ISSN 03014215. doi:10.1016/j.enpol0208.043.

Tokinaga, H. and Xie, S.-p. (2010). Wave and AnemometeedaSea-surface Wind
(WASWind ) for Climate Change Analysis.Journal of Climate 24:267-285. ISSN
08948755. doi:10.1175/2010JCLI3789.1.

Tremback, C. J. and Walko, R. L. (2005). RAMS: Regional Atpieic Modelling System -
User’s Guide.

Troen, I, Mortensen, N. G., and Petersen, E. (2008). WaspdWitlas Analysis and
Application Programme: User’s Guide. , Riso National Latbory.

Turton, J. (2009). E-Surfmar moored buoy technical desonpE-Surfmar moored buoy
systems. , UKMO.

Turton, J. and Pethica, C. (2010). Assessment of a New AnatmgnSystem for the
Met Offices Moored Buoy Network.Journal of Atmospheric and Oceanic Technology
27(12):2031-2038. ISSN 0739-0572. d0i:10.1175/2010 HATA75.1.

UK Government (2009). The UK Renewable Energy StrategyOffice of Public Sector
Information. ISBN 9780101768627.

UKGOV (2008). Climate Change Act. , UK Government ParliatagnAct, London.
UKMO (2008). The Unified Model.

UKMO (2010). Met Office Surface Data Users Guide. , UK Metéagaal Office.
UKMO (2011). Met Office: Shipping forecast and gale warnings

UKRC (2011). HECToR HECToR Home Page.

Undheim, O. (2005). The non-linear microscale flow solver 3DWind. Developmemtd
validation Ph.D. thesis, Norwegian University of Science and Teatmpl

University of Athens (2011). RAMS High Resolution Forecast

Uppala, S. M., KA llberg, P. W., Simmons, A. J., Andrae, U., Costa, V. D., Kor B. M.,
Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, ®&nogi, K., Saarinen, S., Sokka,
N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. Ae)j&ars, A. C. M., Berg, L.
V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, Fetbof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S., Ho6Im, E., Hoskins, B. Jkden, L., Janssen, P. A. E. M.,
Jenne, R., Mcnally, A. P., Mahfouf, J. F., Morcrette, J. Ayier, N. A., Saunders, R. W.,
Simon, P., Sterl, A., Trenberth, K. E., Untch, A., VasiligvD., Viterbo, P., and Woollen, J.
(2005). The ERA-40 re-analysiQuarterly Journal of the Royal Meteorological Society
131(612):2961-3012.



USNRC (1992).Coastal meteorology: a review of the state of the sciefNagional Academy
Press, Washington DC.

Vanhoff, B., Risien, C., Strub, P., and Foley, D. (2009). AjhiResolution Ocean Vector Wind
Product for the California Current System from 10 Years ofk@CAT Scatterometer Data.
In Eastern Pacific Ocean Conference Symposium Abstracts

Vanhoff, B., Risien, C., Strub, P., Foley, D., and Chelton,B (2011). A high resolution
ocean vector wind product for the California Current Systesm 10 years of QUIkSCAT
scatterometer data. Bastern Pacific Ocean Conference

Vannitsem, S. and Nicolis, C. (2008). Dynamical PropertésModel Output Statistics
Forecasts. Monthly Weather Reviewl36(2):405-419. ISSN 0027-0644. do0i:10.1175/
2007MWR2104.1.

Vickers, D. and Mahrt, L. (2006). Evaluation of the air-sadkbformula and sea-surface
temperature variability from observation¥ournal of Geophysical Researctil1(C5):1-14.
ISSN 0148-0227. doi:10.1029/2005JC003323.

Vickers, D. and Mahrt, L. (2010). Sea-surface roughnesgtlenin the midlatitude coastal
zone. Quarterly Journal of the Royal Meteorological Society36(649):1089-1093. ISSN
00359009. doi:10.1002/qj.617.

Vieno, M. (2005). The use of an Atmospheric Chemistry-TpamsModel (FRAME) over the
UK and the development of its numerical and physical schemes

Wallcraft, A. J., Kara, A. B., Barron, C. N., Metzger, E. Jaukey, R. L., and Bourassa,
M. A. (2009). Comparisons of monthly mean 10 m wind speedsh fsatellites and NWP
products over the global oceadournal of Geophysical Researctil4(D16):D16109. ISSN
0148-0227. doi:10.1029/2008JD011696.

Wan, Y.-h. and Bucaneg, D. (2002). Short-Term Power Fluiing of Large Wind Power
Plants. Journal of Solar Energy Engineering24(4):427. 1ISSN 01996231. doi:10.1115/1.
1507762.

Wan, Y.-h., Ela, E., and Orwig, K. (2010). Development of aguizalent Wind Plant
Power-Curve. IrProceedings of WindPower 2010une. NREL, Dallas, Texas.

Warner, T. T. (2011)Numerical Weather and Climate PredictioGambridge University Press,
1st edition.

Weber, R. (1999). Remarks on the definition and estimationfrtion velocity.
Boundary-Layer Meteorology

Wentz, F. J. and Ricciardulli, L. (2011). Comment on "Globahds in wind speed and wave
height”. Science (New York, N.Y.334(6058):905; author reply 905. ISSN 1095-9203.
doi:10.1126/science.1210317.

Wentz, F. J., Ricciardulli, L., Hilburn, K., and Mears, CO®). How much more rain will
global warming bring?Science317(5835):233-235.



Werth, D. and Garrett, A. (2010). Patterns of Land-Surfao®r& and Biases in the Global
Forecast SysteniMonthly Weather Revievt39(2004):1569-1582. ISSN 0027-0644. doi:10.
1175/2010MWR3423.1.

Wieringa, J. (1993). Representative roughness paramdtershomogeneous terrain.
Boundary-Layer Meteorology3(4):323-363. ISSN 0006-8314. doi:10.1007/BF00705357

Wieringa, J., Davenport, A. G., Grimmond, C. S. B., and OkeRT(2001). New revision of
Davenport Roughness Classificatidtroc., 3EACWE, Eindhoven, The Netherlands

Winterfeldt, J., Andersson, A., Klepp, C., Bakan, S., andsa& R. (2010). Comparison of
HOAPS, QuikSCAT, and Buoy Wind Speed in the Eastern Nortlamtit and the North
Sea. IEEE Transactions on Geoscience and Remd®(1):338-348. ISSN 0196-2892.
doi:10.1109/TGRS.2009.2023982.

Wippermann, F. and Gross, G. (1981). On the constructiorragraphically influenced wind
roses for given distributions of the large-scale wiBeitr. Phys. Atmqs4:492—-501.

WRF (2011). The Weather Research & Forecasting Model WehiRital Time Forecasting.

Yague, C., Viana, S., Maqueda, G., and Redondo, J. M. (200&juence of stability on
the flux-profile relationships for wind speed,m , and temperatureq h , for the stable
atmospheric boundary layelonlinear Processes in Geophysids:185-203.

Yang, G. and Hoskins, B. (1996). Propagation of Rossby wal/asnzero frequencylournal
of the atmospheric sciences3(16):2365-2378.

Yelland, M. J., Moat, B. I., Pascal, R. W., and Berry, D. I.Q2). CFD Model Estimates of the
Airflow Distortion over Research Ships and the Impact on Mot Flux Measurements.
J. Atmos. Oceanic Techndl9:1477-1499.

Yim, S.H. L., Fung, J. C. H., Lau, A. K. H., and Kot, S. C. (200DEveloping a high-resolution
wind map for a complex terrain with a coupled MM5/CALMET syst.  Journal of
Geophysical Research-AtmospherEs2(D5):—.

Young, I. R., Zieger, S., and Babanin, A. V. (2011). Globahts in wind speed and wave
height. Science (New York, N.Y332(6028):451-5. ISSN 1095-9203. doi:10.1126/science.
1197219.

Zhang, D. and Anthes, R. C. (1982). A high-resolution modél tlee planetary
boundary-layer-sensitivity tests and comparisons witB SHE-79 dataJournal of Applied
Meteorology 21:1594-1609.

Zhang, K., Mao, H., Civerolo, K., Berman, S., Ku, J., Rao,3ddridge, B., Philbrick, C.,
and Clark, R. (2001). Numerical investigation of boundiyer evolution and nocturnal
low-level jets: Local versus non-local PBL scheme&nvironmental Fluid Mechanigs
1(2):171-208.



	PhD coversheet April 2012
	thesis

