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Abstract 

This thesis is concerned with sonar signal processing, in particular the statistical characterisa-

tion of sonar data. It proposes a number of signal processing methods that are suitable for sonar 

data. More specifically it deals with the signal processing of time series, from a sonar system, 

which were collected during a number of experiments in the Baltic Sea. The return signals in 

sonar can be viewed as a mixture of deterministic and stochastic parameters. Consequently, 

instead of trying to model the wave propagating environment itself this thesis will illustrate a 

variety of characteristic properties of the signals and propose suitable methods for solving the 

problems. 

In Chapter 3 a statistical characterisation of sonar data is presented, different aspects of statisti-

cal properties of sonar data are addressed. The focus is on the level of stationarity of both active 

and passive sonar. For active sonar the issue of ping to ping stationarity, for both the actual ping 

and for the reverberation tail, are examined and found to be non-stationary. However, for some 

cases it is seen that there are consecutive pings that are stationary. This leads to the conclusion 

that it can be beneficial to use several pings from the same target. However it is necessary 

to remember that there is a large variation in the number of consecutive stationary pings. For 

passive sonar both ambient noise and tonals emitted from surface vessels are investigated. It is 

found that for all cases tested the sonar data is non-stationary. That is speaking of stationarity 

in the strict sense. There are however parts in the data that exhibit more stationary behaviour 

then the data in general. 

The stationarity length of the ambient noise data is also examined, using data from a multi-

sensor trial (almost 800 data files, see Section 2.5.1). A large proportion of the data set had a 

stationarity time of roughly 0.4 seconds, or slightly longer. This is also seen in data from the 

fibre glass boat trial (Section 2.5.6). The data seems to be stationary for about 0.4 seconds. 

Testing the passive data for symmetry and linearity show that the data is mostly linear, and 

symmetric. 

The ambient noise is found to have more stationary properties at higher frequencies. This leads 

to the conclusion that it is more beneficial to operate sonar systems at higher frequencies, in 

environments that are equivalent to Baltic Sea. 



In Chapter 4 a number of time-frequency methods are mentioned. Data analysis using the 

traditional Short Time Fourier Transform, and the Short Time Fractional Fourier Transform 

is presented. Performance comparisons are made between the two different transforms and 

it is shown that matching the transform to the nature of the data improves the quality of the 

time-frequency images. 

In Chapter 5 the focus is on data conditioning methods. First a method using outlier rejection 

applied to bicoherence measures is discussed and the results of applying it to sonar data are 

presented. Then empirical mode decomposition analysis is used as a data conditioning tool for 

the two data sets and the results show that the EMD algorithm does not necessarily add to the 

traditional time/frequency analysis. Never the less, EMD can be a powerful tool for data where 

the instantaneous frequency varies slowly and the SNR is lower, such as examining signatures 

from ships. 
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Chapter 1 
Introduction 

This thesis is concerned with sonar signal processing, in particular in the statistical characteri-

sation of sonar data. More specifically it deals with the signal processing of time series which 

were collected during a number of experiments in the Baltic Sea. 

Conventional sonar signal processing techniques are mainly limited to a variety of beam form-

ing and detection methods. Sound propagation in shallow water is a difficult task due to the 

stochastic behaviour of the medium both temporally and spatially. This results in the statistics 

of the data being non-stationary, and the performance of traditional methods deteriorating. In 

the thesis a brief introduction is given to wave propagation in shallow waters, and the sonar 

equation is explained for both active and passive cases. The main goal of this thesis is to in-

crease the understanding of underlying characteristics of the sonar data and thereby improving 

the possibilities of understanding the limitations of the achievable signal processing gain. And 

thereby also improving the reliability of estimates of such as, false alarm rates, the figure of 

merit of sonar systems, detection probabilities and so on. This is achieved by the following 

steps: 

• Statistical analysis of sonar data to point out some weaknesses in the traditional assump-

tions of the data characteristics, such as the extent of stationarity. 

• A comparison of time/frequency analysis methods is presented and the difference be-

tween the resulting images is examined visually as well as quantified using a number of 

suggested measures. 

• Two methods of conditioning sonar data and analysis results, are applied and evaluated. 

The methods are the stepwise outlier rejection, and Empirical Mode Decomposition. 

Both are used in a novel fashion to improve on the image quality of lofargrams. 



Introduction 

1.1 Motivation 

The underwater environment presents a great challenge for any signal processing scheme. It 

imposes restrictions on the processing that are often more difficult than anything in electromag-

netic signals in the air such as communications or radar. The sound propagation properties of 

water varies very much for different areas in the Baltic Sea. Even in an area no larger than the 

archipelago of Stockholm there are numerous different conditions to consider, such as different 

water depths, different Sea-floor characteristics, and the added effect of the weather conditions. 

All of which contributes to making it more difficult to predict the behaviour of the sound prop-

agation. The aim for this thesis is to characterise sonar data for a few characteristic areas of the 

Stockholm archipelago with very shallow water. 

The return signals in sonar systems can be viewed as a mixture of deterministic and stochastic 

parameters. Consequently, instead of trying to model the wave propagating environment itself 

this thesis will try to point out a few characteristic properties of the signals and propose suitable 

methods for solving the problems. 

1.2 Thesis Organisation 

The thesis is organised as follows: 

Chapter 2 provides a basic background for sonar signal processing and gives an insight to the 

difficulties that can occur. The topic of underwater acoustics is discussed, including wave prop-

agation, especially in shallow water, and the influence of environmental parameters on the wave 

propagation. Following this underwater acoustics overview, an explanation of the sonar equa-

tions for both the passive and active cases is given. Then the different experiments, conducted 

at the Swedish Defence Research Agency, that are analysed in this thesis are presented. 

The properties of sonar data are investigated in Chapter 3. With the focus on the statistical 

properties of the sonar data. The issues of different degrees of stationarity, linearity, and sym-

metry are discussed for different types of sonar data. For active sonar data the stationarity of 

consecutive pings is examined for both the transmitted signal and the following reverberation 

tail (the returning echoes). For passive sonar data the stationarity time is addressed, for both 

ambient noise data and data where a target appears. All of the tests are applied to data from 

the Baltic Sea, so the data is considered to be from shallow waters at all times, the depth in the 

Baltic Sea being on average about 50 m and no more then a few hundred meters at most. 

2 



Introduction 

Chapter 4 is dedicated to a number of time/frequency analysis methods. Time frequency distri-

butions have been used in sonar signal processing previously, however it is rarely implemented 

in other forms than the Iofargram (Short Time Fourier Transform or spectrogram) so there is 

plenty of room for improvement, especially in the cases where one is interested in detecting im-

pulsive sounds. Another issue addressed in chapter 4 is the quality of time/frequency displays. 

The question is how well a transforms performs compared to other transforms. An attempt is 

made to quantify the time/frequency image quality by using a number of different measures. 

The characterisation of sonar data provides a direction for the signal processing schemes to 

consider. Due to the nature of the wave propagating medium for the sonar data it becomes clear 

that methods for non-stationary and non-linear signal processing have to be considered. 

In cases where one finds that the data consists of different parts, i.e stationary (typically tones 

from machinery) and non-stationary parts (Noise in various form and shapes), there is an ad-

vantage to be gained if the non-stationary parts can be filtered out. Also in many applications 

the amount of data might not be adequate and therefore the possibilities of resampling are con-

sidered. 

To address these issues two different approaches to data conditioning are presented in Chapter 

5. Starting with a method of outlier rejection applied to lofargram images. Then followed by a 

recent method called EMD (Empirical Mode Decomposition). These methods are evaluated by 

applying them to one of the data sets that is also analysed in chapter 3. 

The results and findings of this work are discussed in Chapter 6. This is then followed by a 

section on future research. 

3 



Chapter 2 
Underwater Acoustics and sonar data 

from the Baltic Sea 

To provide an insight to the nature of the time series that are produced using sonar systems a 

brief survey of sonar and underwater acoustics is provided. The intention of this survey is to 

give an overall picture for the different aspects of sonar and underwater acoustics [1], [2], and 

[3]. First the sonar equations are introduced as they provide a good overview of the interesting 

parameters in underwater acoustics. The variables in the sonar equations are then explained in 

more detail. The sonar equations are followed by an introduction to the physical events that 

drive wave propagation underwater. 

2.1 Sonar 

Sonar is an abbreviation for SOund Navigation and Ranging. The most common of any sonar 

system is the widely used echo sounder. Virtually every sea going vessel, starting from rather 

small boats to large ships, is equipped with at least one echo sounder. There are numerous uses 

for sonars, one is the aforementioned echo sounder used for bathymetry. Other widely spread 

uses are fishing sonars, sonars for seafloor mapping, for finding shipwrecks, for oil exploration, 

and the naval applications where sonars are mounted on surface ships or on submarines, or as 

towed arrays with apertures of hundreds of meters. Sonars are also found on torpedoes used in 

combination with electronics and guiding algorithms as homing devices. Other uses of sonars 

are sonobouys, deployed from surface ships or from the air (planes and helicopters). It is also 

fairly common to have helicopters carry dipping sonars in cases when one wants to change the 

location of the sonar system rapidly. 

2.2 The sonar equations 

The sonar equations describe the key parameters and can be used to assess sonar performance. 

One of the key application is to find the range of detection both for those systems trying to 
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detect something and the those that try to avoid being detected. The sonar equations can be 

presented in many different forms, for different uses. The form below is chosen due to the fact 

that it displays most of the included variables and allows a straight forward interpretation of the 

equations. That is the sonar has detected something if the Signal Excess (SE) is larger than 

zero, SE < 0. 

For passive sonar the sonar equation for SE is defined below as 

SE=SL — TL+DI — NL — DT 	 (2.1) 

where SL is the source level of the sound emitting object, see Chapter 10 in [4], and Chapter 6 

in [5]. TL is the one way transmission loss, i.e.. the attenuation of the transmitted sound over 

the distance in question. DI is the directivity index of the receiver array. NL is the ambient 

noise level, and DT is the detection threshold. All values for the sonar equation variables are 

given in dB. 

For active sonar, the sonar equation has two main cases, the reverberation limited case and the 

noise limited case. Reverberation is a form of noise just as ambient noise is, but instead of 

being produced from other objects than the sonar itself, it is what is called signal induced noise. 

That means, that all undesired received echos are reverberation, see section 2.2.4. It can be 

compared to the interference phenomena in communications caused by multipath propagation. 

Reverberation can thought of as active noise. What distinguishes the two cases from each other 

is the use of the terms RL (reverberation level) and NL. RL and NL are compared at the 

receiver and the one that has the larger value decides if it is the reverberation or noise limited 

case. Limited in this context means a limit in range, i.e. the distance over which a sonar is able 

to detect objects. The reverberation limited case is 

SE= SL— 2TL+DI—RL+TS—DT 	 (2.2) 

where SL is the source level of the transducer in question. DI is the the directivity index for 

both the receiver and transmitter arrays. RL is the reverberation level. TS is the target strength 

of the object the sonar is trying to detect. TS is a measure of how well an object reflects 

acoustic waves. DT is the detection threshold, and it varies with the type of transmitted signal 

and the signal processing the returned signal is subject to. 

5 
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For the noise limited active case the equation looks almost the same with the exception of 

replacing RL with NL. 

SE=SL-2TL+DI—NL+TS---DT 	 (2.3) 

where all included variables are the same as above. All variables included in the equations 

above are described in more detail in the next sections. 

2.2.1 Array Gain and Directivity Index 

Under the assumption that the incoming sound wave is a unidirectional plane wave (coherent) 

and the ambient noise is incoherent then the AG (Array Gain) reduces to DI (Directivity Index). 

AG is the quotient between an omni directional sound field and the integral of the combined 

beam patterns of both receiver and transmitter, and is defined below as 

AG = DI = 101ogio( 	
f4  dcl 

 
f4br(6,c5)bt(O,q)d& 	

(2.4) 

where b, (0, 0), and bt(O, 4), are the beam patterns for the receiver and transmitter, respectively. 

If the patterns have rotational symmetry and are non-directional in the 0 plane then the equation 

above can be simplified and rewritten to the following 

2ir 
DI = 101ogio( 

f br(0)bt(0)dO 	
(2.5) 

as would be the case of a vertically non-directional (line array) active sonar with transmitter 

and receiver beams b(0), and b(0). In the passive sonar case the sound source (transmitter, 

usually a vessel of some sort) is thought of as omni -directional and the above is simplified to 

27 
DI = 101ogio( 

	

fb(o)de 	
(2.6) 

Now it is easy to see that if the receiver is omni directional then the DI is zero, since the integral 

dO is equal to 27r. 

The DI should be used with caution since the coherence of the signal is very likely to deteriorate 

over distance, and the noise might not be entirely isotropic. Then the AG will be over estimated 

using the above equations. But they do provide a fairly good approximation and certainly good 

on 
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enough to go into the sonar equation. Tactically there are different implications in overestimat-

ing the array gain. The hunter is over confident in detecting a target whereas the hunted object 

is too pessimistic in the likelihood of being detected. 

For the special case where the array is a linear one with A/2 spacing of n elements the AG is 

given as 

	

AG = 101ogio(n) 	 (2.7) 

This assumes a coherent plane wave in isotropic noise. But when the noise coherence increases 

the array gain becomes 
n 

	

AG = 1010gio(1 + (n - 	1)p 	
(2.8) 

where p is the noise coherence, and the array gain is clearly less than in Equation. 2.7 as the 

maximum in Equation. 2.8 for a fixed n is achieved for p equal to zero and the equations are 

equal to each other. 

The array gain can be viewed as the best achievable performance for any beam forming algo-

rithm, since the gain is described as a quotient between a single element (omni-directional) and 

the beamformed output from an array. Array processing and beamforming is a large research 

field in signal processing and there are numerous books, see [6], [7], [8], and articles written 

on the subject, see [9], [10],[1 1], [12]. However that falls outside the scope of this thesis since 

it will be assumed that the appropriate beamforming is already done to produce the desired 

time series or that the experimental setup does not allow any beamforming to be done (single 

hydrophones). Further reading on beamforming in a sonar context and other fields can be found 

in [13], [14], and [15] just to mention a few. 

2.2.2 Detection Threshold 

The detection threshold is probably the most interesting variable in the sonar equation, from a 

signal processing point of view. This is where the difference between signal processing schemes 

is demonstrated. When assessing sonar performance it is crucial to chose a DT that is appropri-

ate for each case. Choosing a DT to low means the system is likely to have many false alarms 

and doing the opposite means that signals that should have been detected go by unnoticed. 

Generally speaking the detection threshold is defined as, 

	

DT = 10log1o( 
S

) 	 (2.9) 
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i.e. the signal to noise ratio, where S is the signal level and N is the noise level. If the detection 

threshold is the sought after variable, it can also be found from the sonar equation setting SE = 

0, and rearranging the variables to the following, DT = SL - TL + DI - NL, this being the 

passive case. Similarly, it is possible to derive an expression for the active case. When other 

terms in the sonar equation are the target then the DT must be estimated. Fortunately there are 

simple expressions for the detection threshold for the different cases of the sonar equation. The 

detection threshold is set differently with the level of knowledge about the received signal. It 

is common knowledge that the best detection performance is achieved using a matched filter. 

This implies complete knowledge of the received signal. Active sonar with a known and well 

defined pulse shape is a good example. In that case the detection threshold can be written as 

DT = 10logio( 
d

) 	 (2.10) 

where t is the pulse length (or observation time in the passive case), and d is the detection 

index. This expression is valid for noise limited active sonar and for passive sonar when the 

signal shape is known. It can be seen that DT is decreased with longer pulses in the active case 

and by integration (observation) time in the passive case. The limiting factor for the pulse length 

in the active sonar case is reverberation, and it goes up with longer pulses. So at some point the 

reverberation becomes the limiting factor. However, with larger bandwidths the reverberation 

goes down, so there is a balance between RL and pulse length and bandwidth. 

On the other side of the scale is the case without any prior knowledge of the received signal, 

for instance in the passive narrow-band case. However, there is an assumption that the signal 

consists of tonals such as the sound emitted from the drive or transmission of a ship. Then the 

detection threshold is set to 

DT = 5logio()  

where d is the detection index, w the receiver bandwidth, and t the integration time. 

Detection is another large field in signal processing, that falls slightly outside the scope of this 

thesis but it is an important part of sonar signal processing so it will be mentioned at times, and 

parallels are drawn to the most commonly used techniques for detection, see [16], [17], [18], 

[ 1 9], [20], and [21] just to mention a few. 
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2.2.3 Noise Level 

NL (Noise Level) is a collective term for all noise sources in the sonar equation reverberation 

aside, so NL includes self noise and ambient noise, see [22], [23], and [24]. Ambient noise 

comes from different sources, shipping, from the sea it self i.e. waves, rain fall, and from 

marine life. Self noise is everything where the source of the noise can be related to the platform 

carrying the sonar in question. Starting from within there is electrical (thermal) noise, there 

is the platform itself (ship, submarine etc.), typically in the form of propulsion or auxiliary 

machinery. So depending on the frame of reference, part of one systems self noise is actually 

the signature that others want to detect. If the platform is mobile there is also flow noise in form 

of turbulent flow over the sonar. The ambient noise is often described with Knudssen spectra 

[25], [26], or Wenz curves, [27]. 

Most signal processing that is done to sonar data assumes that the ambient noise is stationary, 

it is also often assumed to be isotropic, and finally that it is Gaussian. In chapter 3 it will be 

shown that this is not necessarily true. 

2.2.4 Reverberation Level 

Reverberation is signal induced noise, see [28], and [29]. There are three different forms of 

reverberation, surface, volume, and bottom reverberation. In short all undesired echoes are 

reverberation. Surface reverberation is the back scattered wave from the sea surface, and it is 

dependent on the roughness of the sea. A rough sea will lead to higher levels of surface rever-

beration than a calm sea surface. This is due to the rough surface acting as several scatterers, 

scattering the signal rather than reflecting it. A calm, smooth sea surface will reflect rather 

than scatter the wave and provide multiple paths for the wave to travel, thus producing several 

echoes from the same objects. The total RL (Reverberation Level) can be larger or smaller 

depending on the rest of the contributing factors. A calm sea surface does not necessarily lower 

the total amount of reverberation. Volume reverberation is back scattered waves from the water 

volume and objects in the water volume. Bottom reverberation is the back scattered waves from 

the seafloor. Of all forms of reverberation the bottom reverberation is the most important and 

generally the largest contributing source of reverberation. It depends strongly on the acoustic 

properties of the seafloor. Acoustically soft materials, that is materials with a low acoustic 

impedance, give lesser echoes than materials with a high acoustic impedance, or acoustically 

hard materials. Also the scale of the bottom is important, if the bottom consists of large rocks 
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instead of non-consolidated sand the reverberation levels are inevitably higher. In other words, 

reverberation depends on how much of the sound waves are scattered back to the sonar. This is 

called the scattering strength of a bottom type, or volume or surface respectively. The scattering 

strength is the ratio of back scattered sound to incoming sound as in S 8  = 1Olog io 1 -, where f  

S,. is the scattering strength for both surface (surface and seafloor) and volume. 'S(TJt  and I 

are the scattered and incoming intensities respectively. 
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Figure 2.1: An example of shallow water reverberationfroln a trial site outside of Stockholm. 

The RL term depends on the scattering strength and the surface or volume that is insonified, 

clearly the beam patterns of both the receiver and transmitter will play an important role in the 

amount of reverberation received. In the sonar equation the RL term is given as a function of 

RL versus time/distance, see Figure 2.1 for an example of shallow water reverberation from a 

trial site outside of Stockholm. The trial site is described in Sections 2.4.2 and 2.5. In the sonar 

equation the RL is then selected for the distance in question. 

The statistics of the reverberation are largely unknown. This is due to the fact that each and 

every area will have different characteristics. The one thing that can be said is that. unlike 

ambient noise that in some cases can be thought of as isotropic, stationary and Gaussian, rever-

beration is not any of these. Due to the great variation of almost all parameters in the sea and 
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the fact that reverberation is a local phenomena driven by the signal transmitted the nature of 

reverberation changes over rather short periods of time. An attempt to shed some light on the 

statistics of reverberation is presented in chapter 3. 

2.2.5 Source Level and signatures 

The SL term is used in both the passive and active sonar equation. In the passive case it presents 

the sound unintentionally emitted by a vessel. The sound sources are typically the propeller, 

propeller shaft, drive and engine. The sound that is emitted from a vessel is called its signature. 

The signature is typically described by a number of tonals at certain frequencies, and a broad 

band frequency spectrum. The tonals from vessels are usually in the low end of the frequency 

spectrum, typically up to frequencies of about I kHz. The broad band spectrum description of 

a signature is often presented as a sparsely sampled power spectrum, in third note, octave, or 

decade frequency bands, see Figure 2.2 below. For a more thorough description of the sparsely 

sampled broadband signature see appendix A, Tab. A. 1 on page 152. 
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Figure 2.2: A synthetic example of a broadband and a narrow band signature of a vessel. 

In the active case the source level is the sound pressure produced by a transducer (transmitter). 

The source level is mostly given as a sound pressure level compared to I t Pascal at a distance 
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of one meter. For instance 210 dB (rel 1 ,uPa at I m) 

2.2.6 Transmission Loss 

Transmission loss is the amount the emitted signal is attenuated from its source to its destina-

tion. The attenuation (loss of power) of a wave travelling through water, especially shallow 

water, has many factors affecting it. The water sound speed profile is one of the main factors as 

it bends the waves up or down. Then the bottom and surface conditions are also a big influence. 

Depending on the roughness of the sea a different amount of the waves are reflected and other 

parts just scattered. The same applies to the seafloor, with the added influence of the material 

in the bottom. All these wave attenuating and guiding factors are described in more detail in 

section 2.4. 

2.3 Transducers and Receivers 

Transducers and receivers are underwater loudspeakers and microphones and are also called 

hydrophones. They share similarities to the speakers and microphones used for aero acoustics 

but have one major difference. The media they operate in, and how that influences their design. 

In aero acoustics only a percentage as small as three percent of the power input is actually 

transfered in to the air as sound pressure. In water the figure is as high as 95 percent. As 

a consequence it might be considered that making a waterproof sub-woofer would be a good 

idea of how to produce underwater sound, Unfortunately, it is not as simple as that. Speakers 

in aero acoustics have a very long stroke (in comparison with their underwater counter part). 

Bearing in mind that water is about 1000 times more dense than air it becomes clear that this 

could not possibly work. Underwater transducers work with a much shorter stroke, and smaller 

membranes. A typical way of producing a speaker for aero acoustics is simply to use a coil 

to drive a piston inside the coil which in turn is attached to a speaker membrane. The way to 

build a underwater transducer is entirely different, but the designs are not worlds apart. The 

underwater speaker works in air, but not very efficiently, and since it is not designed for it, it 

doesn't last very long when pushed to its limits. The classical approach is building what is 

called a Tonpilz element, illustrated in Figure 2.3. 
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In 

Figure 2.3: Tonpilz element. 

The Tonpilz element is made of a stack of piezoelectric elements joined together with a bolt 

that goes through the stack. Piezoelectric materials are materials that can expand and shrink 

when a voltage is applied to the adjoint surfaces of the materials, see [30]. The bolt is fastened 

to a backing weight and to the front part of the element. The front of the element is attached 

to a membrane and that membrane is the part that is in contact with the water, also known as 

an acoustic window. The backing weight, the piston head, and ceramic mass together with the 

water load gives the resonant frequency of the transducer. The Tonpilz transducer is only one 

of many different ways of constructing a transducer, another is the flextentional transducer, see 

[2] P. 84-86. There are transducers, that use elecrostrictive materials. That is using the effect of 

applying an electric field across a dielectric material and that deforms it and this motion is used 

to produce sound waves. Magnetostrictive transducers use magnet deforming materials, that 

are usually attached to a diaphragm and that motion produces the sound waves, see [31], [32], 

and [33] for more detail on different kinds of materials and transducers. Recently there has 

been interest in fibre-optic transducers. The fibre-optics based transducers have the potential 

benefit of a very high sensitivity, see[34]. 
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2.4 Oceanography 

The Baltic Sea is in comparison with other seas a shallow one, its depth ranges from about 400 

meters at the Landsort trench to the very shallow, fairly vast, coastal areas. The archipelago 

of Stockholm is of special interest of several reasons, it is a shallow water environment with 

fairly heavy shipping and highly varying bottom properties. It is also one of the waters where 

the Swedish navy operates. But first and fore most, the fact that wave propagation in shallow 

water is very hard to model and to predict makes for very interesting time series to analyse 

and to apply different signal processing schemes. The main influences on wave propagation 

are the water sound speed profile, sea floor properties, that is both the surface of the seafloor 

and the volume consisting of different materials, and the roughness of the sea or the sea state, 

i.e the surface. So how does all this affect the variables in the sonar equation? Transmission 

loss for one thing goes up if the two boundaries, bottom and surface, absorb and scatter the 

incoming waves rather than reflecting them. On the other hand if the surfaces do not reflect 

the propagated wave very well, the reverberation levels go down. With different sound speed 

profiles the wave propagation differs very much from time to time. The difference in TL can be 

in magnitudes of tens given the best and worst conditions. 

2.4.1 Sound speed profiles and Wave propagation 

We have already stated that the sound speed profile (SSP) affects the wave propagation in water, 

now we need to explain why and how, see [35] and [36]. First of all we look at the sound speed 

in water and what its dependencies are. The key parameters are the temperature of the water, 

the pressure (or depth), and salinity. The sound speed increases with increasing temperature, 

and increases with increasing pressure, it also increases with increasing salinity. The sound 

speed of the materials in the seafloor depend on the composition of the seafloor. Different 

materials have very different characteristics as far as their sound speed. The seafloor in the 

Stockholm archipelago varies quite a lot as can be seen in section 2.4.2. There are cases when 

the sound can travel faster in the sediments than it does in the water. Also at times there are 

bottom materials that have lower sound speeds than the water, which will give later arrivals 

of the emitted sound waves. And cases where the sound waves are trapped in the seafloor to 

emerge later at a greater distance. The sound speed in water is measured when ever ships are 

at sea to get an idea of the wave propagation properties. Whereas the seafloor properties are 

assumed to be more or less the same over greater areas and it would naturally be very difficult 
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to probe the sea floor at each instance the water sound speed is measured. On top of that it 

is not as great an influence as the sound speed so the approximations made are in most cases 

good enough. A typical example of how the water sound speed profile can change over just 

one day in the summer can be seen in Figure 2.4, and 2.5, this is not a very extreme example of 

changes in the SSP. The temperatures vary between roughly 8 and 1 3 degrees Celsius. During 

hot summer days the surface temperature can go up toward 24-25 degrees Celsius. That would 

make the profile even more rapidly changing, as in Figure 2.6. 
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Figure 2.4: Sound speed profiles from FOl's trial site in the archipelago of Stockhohn during 
the first of June, 2004. 

Now that the variations in sound speed have been established, the influence of the SSP on the 

wave propagation can be addressed. Sea water is typically layered with cold water (4 degrees 

Celsius) on the bottom and warmer water on the surface. When ever there are rapid changes 

in the SSP this creates the effect of a wave passing between two different media, since water 

of different temperature (and therefore sound speed) have different density and impedance, see 

figures 2.7, and 2.8. 

Waves passing from lower sound speed water to higher velocity water are refracted downward, 

and the opposite is true. So on a day when the SSP is upward refracting the propagated waves 

travel in rays that reflect from the surface and travel further away to yet again reflect from the 

surface. Or if the SSP is downward refracting the sound waves are directed to the sea floor and if 

the sea floor is acoustically soft the sound propagates down the sediments rather than reflecting 
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Figure 2.5: Individual sound speed profiles, from a shallow hay south east of Stockholm, / June 
2004. The lightest coloured one is from lain, and the darkest one isfro,n 12pm 

up in the water volume again. With an acoustically hard bottom the sound is reflected up again 

as can be seen in the middle display of Figure 2.8. Although the nature of wave propagation is 

to say the very least difficult it does create interesting effects. For instance, if a SSP has a shape 

that concentrates the waves, as in the bottom display in Figure 2.8, this creates a wave guide 

that can carry the sound waves hundreds of kilometres, this is known as a sound channel. 

The panels in Figure 2.8 show something called ray diagrams, that display how wave fronts 

propagate under certain conditions. Ray diagrams follow from solving the wave equation using 

ray theory which is one of two common approaches of solving it, the other one being normal-

mode theory. The wave equation is defined as follows, 

-2 	 -' 	2 a1) 	2 Op 	(Yj) 	Op 
(2.12) 

where p is the pressure related to the coordinates x. y, z at time t, and c is the water sound 

speed, c may vary with the r. y. c-coordinates and time as well. Solving the wave equation 

using normal-mode theory gives the complete solution to the pressure field. In normal-mode 
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Figure 2.6: Sound speed profiles from a sea trial conducted in August 2004. See section 2.5.1 

theory the propagation is described as a set of characteristic functions called normal modes, 

each of them being a solution to the wave equation. Then the normal modes are combined 

additively to produce the entire pressure field. The normal-mode solution of wave equation is 

valid for all frequencies but due to computational cost it is seldom used for anything but low 

frequencies, i.e few modes. 

The other approach is, as previously stated, ray theory. The basis of ray theory is to postulate 

wavefronts, and the assumption that there are rays that these wavefronts follow. Along the 

wavefronts the pressure is considered to be constant. When approximating the SSP with a 

linear function as in Figure 2.8 a propagating wave can be shown to to follow a circle arc, 

see [1], [2, [3]. The circularity of the rays is used in computing the propagation of sound 

waves. The approach to ray tracing programs is to approximate the SSP with piecewise linear 

functions and to make use of Snell's law to find the direction that the rays will take, i.e how 

they are refracted when going from one layer of the media to another. Snell's law is defined 

below 
cosOl 	('0S02 	cos83 = 	

('OflStOflt 	 (2.13) 
ci - c2 	c3 

IVA 



Underwater Acoustics and sonar data from the Baltic Sea 

Figure 2.7: Sound waves passing from a layer of water with sound speed ci and wavelength 
Al, to a layer of water with sound speed c2 and wavelength \2, Where ci > c2. 

Ray tracing is an appealing method for solving the wave equation as it also provides a graphical 

view of the propagated sound, but it comes with limitations. It is a high frequency approach 

to solve the wave propagation problem, it is only valid if the radius of the ray curve is larger 

than the wavelength, and that the rate if change in sound speed (with depth) is small, within 

a wave lengths depth change. Most wave propagation programs that solve the wave equation 

for the entire pressure field, use both ray and wave theory to solve the wave equation to keep 

the computational cost down and making efficient use of both methods within their valid and 

efficient regions. 
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Figure 2.8: Three examples of how a wave front can travel in water, with corresponding sound 
speed profiles to the left. The top panel shows a shallow water down refracting 
profile, the middle one a combination of both a down and upward refracting profile 
for shallow water, where the upper layer of the water has a positive gradient and 
refracts the waves upward and the bottom layer refracts the waves down to the sea 
floor The bottom panel shows a SSP that creates a sound channel where the waves 
propagates in a wave guide made up of the two layers of water 
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2.4.2 The geology of the Stockholm Archipelago 

The bedrock of the Stockholm Archipelago in the central Baltic Sea consists mainly of crys-

talline granites, gneisses and leptites formed more than 1800 Million years ago. This area is 

intersected by several tectonic lineaments and small fracture zones which contribute to the large 

extension of the archipelago. These structures were at least partly initiated in connection with 

the bedrock formation and have probably been reactivated several times since then. Even if this 

area is not tectonically active at present day some of these geological structures show evidence 

of energy release by small movements and by outflow of thermogenically altered gas [37], [38], 

and [39]. 

Figure 2.9: A bottom profile from the archipelago of Stockholm. The maximum water depth is 

approximately 40m. The rocky outcrop to the left is at a depth of about 15m 

Mostly the bedrock is covered by quaternary sediments which may be generalised as follows; 

Covering the bedrock is a thin layer of till, typically some metres thick. On top of the till are 

glacial and post glacial clays deposited. Typically, the glacial clay is quite uniform in thickness 

being frequently a few metres thick. The glacial deposits are succeeded by post glacial clays 

and recent mud. The thickness of these sediments is highly variable due to local variations in 
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condition of accumulation and erosion. Locally the post glacial sediment amounts to several 

tens of metres in thickness. Due to the post-glacial process of uplift and erosion the upper 

sediments may locally be missing and pre-quaternary sediments exposed in the seafloor. See 

Figure 2.9 

The image shown in Figure 2.9 is done stacking traces from a sea floor survey done by the 

Geological Survey of Sweden (SGU) for FOl during early spring 2000, [40], using an air gun 

(sleeve gun) as a sound source. Also see [41], and [42] for more information on seafloor char -

acterisation. Compressed air is used to build up a high pressure and then releasing it through 

a nozzle underwater creating a bubble that collapses and thereby creating a wide band low 

frequency impulse. The research vessel Ocean Surveyor from SGU was used as the platform 

carrying a hydrophone array, and the sleeve gun. Ocean Surveyor travelled at 3m/s and fired 

one shot from the sleeve gun every second. The time series in the image are not processed in 

any way just placed adjacent to one and other. The figure shows the sea floor consisting of 

an upper softer layer with a faint echo and the much harder bedrock beneath. Also the typical 

rocky out crop can be seen to the left in the figure. The deepest part of the trial site as shown in 

the image is about 40m. The rocky outcrop is at a depth of about 15m. 

2.5 Experiments and sonar data acquisition 

At the Swedish Defence Research Agency, FOl, there is an ongoing experimental activity. 

The departments concerned with underwater acoustics and electromagnetics conduct a number 

of sea trials every year. These sea trials are usually designed to answer questions about the 

different parameters in the sonar equations. For instance the TL and RL was measured at a trial 

in 2002, described below. Aside from the sea trials FOl also has a tank for underwater acoustic 

and electromagnetic field measurements. The tank is primarily used to calibrate sensors and to 

test equipment prior to sea-trials. The experimental data that has been analysed in this thesis is 

described in the following sections and are summarised in Table 2.1. 

2.5.1 The multi sensor trial 

During August 2004 a trial was conducted in the Stockholm Archipelago with the objective 

of fusing data from different types of sensors. The equipment used during the trial was a 

32 element acoustic array and a long base electromagnetic array including 8 pairs of elec- 
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Sea Trial Purpose Data size Frequency band 
Multi Sensor Trial Ambient Noise 200GB 0-12500Hz 
BAROC Sea Trial Reverhartion 2GB 0-30kHz 

Utö Sea Trial Reverberation 2GB 0-10kHz 
The SAS Sea Trial Synthetic Aperture 600MB 0-250kHz 

The Ambient Noise experiment Noise Level 600MB 0-22kHz 
The Fibre Glass Boat Trial Passive sonar 1GB 0-12500Hz 

Table 2.1: The purpose, and amounts, of sea trial data in this thesis 

trodes. furthermore a tn-axial short base-line electrode system was used as a reference. The 

targets tracked during this trial was small surface ships and towed acoustic and electromagnetic 

sources. See Figure 2. 10, and also see [43] for a more thorough explanation of the trial. 
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Figure 2.10: The true position of HMS Agir towing an acoustic source transmitting a sinusoid 

at2OOH 

Also during this sea trial the ambient noise was measured during night times and at weekends, 

collecting 1 minute of data every fifteen minutes. This was done using the 32 channel array, 

and the data was sampled at 25 kHz. 
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Frequencies and Bandwidths for the first pulse train 
350-450Hz 600-700Hz 700-800Hz 800-900Hz 900-1000Hz 

1000-1 200Hz 1200-1 400Hz 1400-1 600Hz 1600-1 800Hz 1800-2000Hz 
3000-3200Hz 3200-3400Hz 3400-3600Hz 3600-3800Hz 3800-4000Hz 
4000-4400Hz 4400-4800Hz 4800-5200Hz 5200-5600Hz 5600-6000Hz 

Frequencies and Bandwidths for the second pulse train 
CW 420Hz I 3000-5000Hz I 1000-2000Hz I CW 4000Hz F CW 1500Hz 

Table 2.2: The two different pulse trains used during the BAROC sea trial. 

2.5.2 The BAROC sea trial 

During September 2002 a sea trial was conducted in the vicinity of the Landsort trench in the 

northern part of the Baltic Sea. Trial was conducted as a joint project between FOl and FWG, 

and had three objectives. The measurements that were performed are Reverberation Level (RL) 

measurements, Transmission Loss (TL) measurements, and finally a number of tests done for 

the underwater communications group at FOl. 

During the trial three vessels were used, WFS Planet (FWG), MzB Swedeneck (Naval Test 

Center WTD 71), and HMS URD (FOl). 

The data of interest for this thesis is taken from the TL measurements. MzB Schwedeneck ran 

on given tracks to or from WFS Planet, towing three transmitters, see [44]. Every 80 seconds 

Schwedeneck transmitted a train of pulses consisting of 20 separated pulses (both time and 

frequency), where each pulse was a chirped signal starting and stopping at a given frequency as 

can be seen in Table 2.2. Each one of the pulses in this pulse train is one second long. These 20 

chirp are followed by another set of pulses, three CW (continuous wave) pulses and another two 

chirps, the first CW pulse has a duration of one second. The chirps are two seconds long and the 

final two CW pulses are five seconds long. A schematic picture of the transmitted pulse train 

can be seen in Figures 2.11, and 2.12. On board WFS Planet two different receiving systems 

were used during the experiments. The one of interest in this case is the vertical array VAIII, 

nested array, designed for three frequencies, 1200, 2400, and 4800Hz. The acoustic section of 

the array is 40 metres long and holds 128 elements. The signals were sampled at 59900 Hz. 

Each file of data is 1.8GB in size, thus having roughly 4.5 hours of data in each file. In this 

thesis the results from only one of these data files are presented, since they are representative 

for the overall behaviour of the data from this particular trial.. 

5,. 
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Figure 2.11: The first part of the data set consists of 20 chirped pulses varying bandwidth 
with a fixed duration of one second. They were transmitted in I second intervals 
without time overlap. 

2.5.3 The Utö sea trial 

The experiment was carried out in the archipelago of Stockholm during September 2001. The 

objective of this trial was to measure reverberation levels and transmission loss in a certain 

area. The equipment utilised during this trial was HMS URD, a ship of the Swedish navy for 

underwater acoustic applications, an array consisting of 32 elements, and an omni directional 

transmitter, see Figure 2.13. The data was sampled a rate of 20kHz. The results from the 

analysis of three data files from this trial are presented in this thesis. Each of the data files 

consists of 26 or 27 pings spaced 30 seconds apart. See [44] for a more thorough description 

of the trial. 

2.5.4 The synthetic aperture sonar sea trial 

In October 1999 another sea trial was conducted in a shallow bay the southern archipelago of 

Stockholm. The objective of the trial was to highlight possibilities of using synthetic aperture 

sonar (SAS). The pulse shape used during this trial was a I ms, 90kHz centre frequency, 60kHz 

band width, linear chirp, see Figure 2.14. The trial equipment consisted of a remotely operated 

vehicle (ROy), on which a 32 element receiver array and a transmitter was mounted, see [45]. 

The data collected consists of recordings from the 32 element array sampled at 500kHz. Every 

record has 25 pings (pulses). In SAS both transmitter and receiver array are moved along a 
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Figure 2.12: The second part of the data set consists of 5 pulses. Starting with a CW pulse 
followed by two chirps, and another two CWpulses 

straight line to form an array of longer length than the physical length of the array, hence the 

name synthetic aperture sonar. The interesting part of this trial for the scope of this thesis is the 

pulse shape and the data it self, not the SAS application. The BAROC experiment has very low 

bandwidths (some are even CW pulses) and low chirp rates, and this set has, high chirp rates 

and bandwidths. 

2.5.5 The ambient noise experiment 

This data set consists of sonar, wind speed data, and sound speed recordings from, and nearby a 

shallow bay in the archipelago of Stockholm in the Baltic Sea. The sonar data was collected in 

10 second sequences (sampled at 44kHz) on the hour, every hour during the period August 7th 

- 15th, 2001. Wind speed data is collected during the same period but in half an hour intervals, 

with maximum wind speeds for each measurement interval. The sound speed profiles were (are 

actually continuously being recorded) recorded with a bottom mounted array of thermistors, 

equidistantly spaced over the depth of 13m at the site, the recordings are done with 10 minute 

intervals around the clock. 

2.5.6 The fibre glass boat trial 

The sonar data was recorded in a shallow bay in the Baltic Sea with a water depth of about 30 

m. The trials were performed using a 23-ft. fibreglass motorboat with a 4-cyl. 4-stroke diesel 
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HMS URD, Experimental setup 
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Figure 2.13: Experimental setup for the Ut/i field trial in September 2001. The ship HMS URD 

belongs to the Swedish Navy. The underwater acoustic equipment consist of a 

12 meter long array with 32 hvdrophone, and an omni directional transmitter 

provided by CETUS AR 

engine as a sound source. The small boat started at a distance of about 600 in from the array of 

the bottom-mounted hydrophones. The boat was held on straight track runs with constant speed 

approaching and passing the array by a distance of about 100 m. The engine was held to run 

constantly at 2712 rpm during the recordings. The radiated underwater sound was recorded by 

four bottom-mounted hydrophones. The sampling rate was 25 kHz for all recording channels. 

For more details about the sea trial and recording procedure see, [46], [47], [48].  See Figure 

2.15 
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Figure 2.14: The data in from the SAS experiment consists of a number broad band linear 
chirps, ims length, 90kHz centre frequency and 60 kHz bandwidth. 

2.6 Traditional Sonar Signal Processing, and result displays 

In traditional sonar signal processing the first things that comes in to mind are lofargrams, 

demon and time bearing plots. An example of how a sonar signal might look like see Figure 

2.16, where a time series from the fibre glass boat trial is displayed. Simply by looking at the 

time series on can see that the CPA (Closest Point of Approach) is at about 60 seconds in, the 

amplitude is significantly higher than anywhere else in the time series. The signal to noise ratio 

in this particular experiment is fairly good and the signature of the boat is detectable all the 

way through from the point where the boat starts to the end of on its roughly 800 meter long 

track. A lofargram is a spectrogram displayed with frequency along the horizontal axis and time 

running down the vertical axis. The lofargram is continuously updated with new data coming 

in from the top of the display. The lofargram is used for narrowband processing of signals 

and are the most commonly used tool among sonar operators, be it on board a submarine or a 

surface vessel, see Figures 2.17, 2.18, 2.19, and 2.20. It is an excellent tool to pick up the tonal 

sounds from machinery (engine, drive, propeller). The tonals leave vertical lines on the display 

that are easily detected by the trained eye of an operator. The lofargram display is made out 

of Fourier transformed segments of data, the length of each segment is decided by the operator 

and is called integration time among the sonar operators, or simply as FFT length for everyone 

else. To produce the lofargram the data segments are, as stated earlier placed on top of previous 

Fourier transformed segments. This is why it is such a powerful tool for narrowband analysis 

of the data, since the Fourier transform is a transform that decomposes the data into sinusoids, 

see Chapter 4 for a more through description of transforms and time frequency displays. 
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Figure 2.16: A time series from the glass fibre boat experiment described in Section 2.5.6. 
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A sonar operator has control over two parameters, the integration time and the frequency range 

of the display. In order to emphasise different parts of the spectrum, or lofargram for that matter, 

these two parameters are changed. It is easy to see what the effect of changing the FFT-length 

is. The display in Figure 2.17 is very blocky along the frequency axis and smooth along the 

time axis. This follows from the data having a sampling frequency of 2500 Hz and using a FFT-

length of as little as 128 samples the frequency resolution is very low (2500/128 Hz). It is also 

easy to see the change in the following Figures 2.18, 2.19, and 2.20, with increasing FFT-length, 

the tonal lines appear clearer and the improvement is obvious to a FFT-length of 2048 samples. 

However, going to the other extreme with 16384 samples the lofargram does not appear any 

clearer in frequency, the tonals are not easier to detect and it is getting blocky along the time 

axis. In both Figures, 2.18, and 2.19 the tonal lines are clearly visible and so are the variations 

over time. The difference between them is as stated before, the time and frequency resolution. 

Which one of them is to be considered better is largely up to the observers preferences, and 

perhaps the ideal FFT-length would be in between 512 and 2048 (1024). Also see Chapter 3 

where stationarity lengths are discussed, as this gives a hint of what FFT-length to use. 

T 

100 

- 

80 

60-  

I 
- - -- 

40- - 

F 
207 - 	 - 

	

O il 
	 I 

	

0 	200 	400 	600 	800 	1000 	1200 
Frequency [Hz] 

Figure 2.17: A Lofargrain display using a FFT length of 128 samples. 
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Figure 2.18: A Lofargram display using a FIT length (# '512 samples 
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Figure 2.19: A Lxifargra,n display using a FFT length of 2048 samples 
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Figure 2.20: Lofarg rain display using a FFT length of 16384 samples 

The lofargram is used to detect and to identify different vessels as all vessels have a different 

set of tonals when used, and that is what is called a signature as explained in Section 2.2.5. The 

lofargram analysis method is also called LOFAR and it stands for LOw Frequency Analysis 

and Ranging, as all tonals from machinery are inherently low frequency in their nature. 
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Figure 2.21: A power V)ectrum estimate ftom synthetic data consisting of a sum of N(O. 1 

noise and modulated N(O. 1) noise. 

The demon display is another analysis method and it is an acronym for DEMOdulated Noise 
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[49}, see Figure 2.22. The idea is that a narrow band signal carrying information about a 

target has modulated a broadband noise process. This is an example of cavitation noise, where 

collapsing bubbles are modulated by the propeller. The DEMON analysis that is presented in 

Figure 2.22 is done on synthetic data that consists of a sum of N(O, 1) noise and N(O, 1) noise 

modulated at 2514z, 1(t). The amplitude for the modulated noise is half the amplitude for the 

non-modulated noise. The first step of the DEMON analysis is to segment the signal into N 

segmants. Then each segment f(t) is demodulated, ie 

q(t) = fj(t)e_327r1/'t, 	 (2.14) 

where f is the center frequency, f the sampling frequency. Then the absolute value of each 

segment is obtained and the segments of demodulated signal forms a time/frequency surface, 

such as the one in Figure 2.22. In this specific case the frequency is known and the analysis 

can be done for that frequency band. In cases where the modualting frequency is unknown 

the analysis is done for an arbitrary number of modulating frequencies in order to cover the 

frequency band of interest. 

Looking at Figure 2.21 one finds no discernible peaks in frequency. That is expected since 

there are no pure tonals in the data. However, by demodulating the noise and then doing the 

frequency analysis over again one finds a clear line in the demon plot and in the averaged demon 

plot in Figure 2.23, defined in Equation (2.15). 

PD = 
	

(2.15) 

where q(t) is a demodulated segment of data and N is the number of segments. 
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Figure 2.22: DEMON (DEMOdulated noise) display of the smnthec data described above and 

in Figure 2.21 
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Figure 2.23: An averaged DEMON display 

The above mentioned techniques are applied mainly to passive sonar, although they can be used 

on active sonar data as well. Especially different time/frequency displays can be useful for use 

with active data. 

BTR (Bearing Time Record) plots are also commonly used when a target is identified then a 

tracker is set to it and the motion of the target can be followed on the time bearing display. The 

time bearing plot is exactly what it sounds like, an image of bearing versus time, see Figure 

2.24. 

Yet another type of bearing time display is the PPI plot (Planned Position Indicator) and since 

it is primarily used on active data the distance can be given as displayed in Figure 2.25. 
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Figure 2.24: BTR plot from the multi sensor trial during August 2004 

2.7 Summary 

This brief introduction to underwater acoustics is from a rather practical point of view intro-

ducing the sonar equations that are used on a daily basis to estimate detection ranges and to 

design sonar systems. The surrounding media and its properties have been discussed briefly to 

provide a basic understanding of the difficulties of underwater acoustics and how that affects 

the signal processing techniques that are used. From a signal processing perspective, knowing 

the benefits and limitations of the methods, can justify a lower detection threshold and a higher 

probability of detection. There are after all significant advantages to gain under the assumption 

that without any knowledge about the received signal the detection threshold is set approxi-

mately 6 dB higher than in the case of exact knowledge about the emitted sound. So anything 

that can give a performance gain from the unknown signal case, up to or equal to knowing the 

signal properties and being able to use matched filtering, is of great value. That provides the 

direction for the rest of this thesis, signal processing and signal characteristics. 
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Figure 2.25: PPI plot firom the SAS trial 
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Chapter 3 
Statistical Characterisation of Sonar 

Data 

In order to apply signal processing schemes correctly and obtain reliable results at the desired 

performance, it is necessary to understand the limitations and abilities of the methods in ques-

tion. The key to this is the understanding of the underlying time series that is to be processed. 

Some assumptions about signals (or stochastic processes for that matter) are so widely and 

commonly used that they are almost considered as absolute truths. Most of the time signals 

are assumed to be stationary, if the opposite is true the results from the analysis are at best, 

worse than expected, and possibly erroneous and misleading. Another common assumption is 

that all noise is Additive White Gaussian Noise (AWGN), which of course makes for easier 

calculations but is not always true. In this thesis it is found that the stationarity characteristics 

of sonar data vary considerably from location to location over time. In order to assess these 

properties a number of tests are performed on the sonar data. The performance of these tests 

are also assessed using synthetic data. First however, this chapter begins with an introduction to 

certain aspects of mathematical statistics, stochastic processes, probabilities, and statistical sig-

nal processing. Then the tests and estimators for the relevant signal characteristics are defined 

and evaluated. 

3.1 Distribution functions and probability density functions 

The distribution function of a stochastic process x, is defined as follows 

00 

F(x) =ff(x)dx 

-00 

(3.1) 

where 1(x)  is the pdf (probability density function). The distribution function is also called a 

CDF (Cumulative Distribution Function). 
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The concept of distribution functions and probability density functions are explained in great 

detail in all textbooks on mathematical statistics, but as a brief introduction to this section the 

example of throwing a die is examined. The throwing of a die has six possible outcomes, if x 

is the outcome of the throwing of a die, then x E {1, 2,3, 4, 5, 6}. All six outcomes are equally 

probable. P(x = X) = 1  and y 6 p(x = X) 1, which can be seen in Figure 3.1. Looking 

at the distribution function one finds the probability of x < X is the sum of the outcomes. So for 

P(x < 3) = 0.5, which makes perfect sense, since it is intuitively easy to grasp that throwing 3 

or less is just as likely as throwing 4 or more. Expanding that to the probability of a < x < b it 

is easily found that by looking at the area under the pdf between a and b one finds the probability 

of x being in that interval. For instance, P(1 < x < 5) = p(x = X) = 

Probability Density Function 
ir..  .... 	......................... 	..... 	...... 	....... 	......... .......................... 

O.5F....  ...... ............. ......................... ................................... 

I 	 I 	 I 

0 	1 	2 	3 	4 	5 	6 	7 
Cumulative Distribution Function 

1 	.................................................................................... 

0.5 . . . 

0 1 2 3 4 5 6 	7 

Figure 3.1: The probability density function and the distribution function for throwing a die. 

A vector X consisting of samples from a Gaussian process is produced. A Gaussian stochastic 

variable takes values according to the Gaussian pdf below 

1 	1(x_m 2 

P(X) = 	 (3.2) 

where in, a2  denotes mean and variance respectively. The mean and variance among other 

properties a pdf and a CDF can have will be addressed later in this chapter, in Section 3.6, and 

are defined in Section 3.2. Instead of the throwing a die case the variables in X can take any 
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value that the Gaussian pdf allows with probability 

I, 
1 

P(a<x<b)=Jp(x)dx=j 	 dx. 	 (3.3) 
 or v~2 77 

Probability Mass Function 
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Figure 3.2: The estimated probability density functions and cumulative distribution functions 
for two vectors of Gaussian (N(0. 1)) variables. 

The CDF can be estimated by making a histogram of the vector X and then cumulatively 

summing the number of outcomes in each bin. The CDF is produced using 100 bins and it is 

easy to see the quantisation on both the pdf and the CDF. With a longer vector X, more data 

samples, with the same pdf, and a larger number of bins the curves would appear smoother. In 

Figure 3.2 two CDFs and pdfs are illustrated. They are produced from two vectors of Gaussian 

variables, with a length of I million samples each. The vectors are of equal mean and variance, 

so in second order statistical terms, there is no statistically significant difference. In Figure 

3.3 the pdfs are shown in a semi log plot, in order to enhance the difference between the two 

functions. It worth noting that in this way it is possible to see the difference in the tails of the 

distribution functions. 
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Figure 3.3: A log scale plot (logarithmic v-axis and linear x-axis) of the estimated probabil-
itv mass functions for the same two vectors of Gaussian (N(0, 1)) variables as 
displayed in Figure 3.2. 

3.2 Moments and cumulants 

The nth-order moment of a stochastic process with probability density function f(x) is defined 

as 

= E{xT} =J x T f(x)dx 	 (3.4) 

the first characteristic function for a distribution is defined as 

(t) = E{e} 	f(r)di 	 (3.5) 

and it is called the moment-generating function, [50], Chapter 5, [51] Chapters 10 and 15, and 

it is the mean value for e't  where r had the probability density function f(x). Looking at the 

equation above one realises that the characteristic function ((t) is the inverse Fourier transform 

of the probability density function. The reciprocal of the equation above is the Fourier transform 

of 1(t) 

27, 
	( .Jxt(J(t)dt 	 (3.6) 
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In some literature, [5 11 the pdf f(x) is termed a frequency function. 

The relation between the first characteristic function and the moments is derived below. Since 

there is a one to one relationship between the characteristic function and the pdf this derivation 

also provides the relationship between the moments and the pdf, thus showing how the pdf can 

be described by the moments. Assuming that the n-th derivative of 1(t) with respect to t at 

t = 0 exists, it is equal to 

00 

d' (t) 
dt 	

= (j)fl 
f x

m f(x)dx = (j)Th. 	 (3.7) 

-00 

Then near t = 0 the MacLaurin series expansion of 1 yields 

	

 Pn  (t) = 1+ L-' 	n! 	
(3.8) 

n=1 

and to arrive at Equation (3.7) the following steps are made. Since the MacLaunn formula for 

a function g(x) is given by 
00 	 fl 

g(x) = 	
gj 	

(3.9) 
fl-00 

where g(x) ()  denotes the nth derivative of g(x). The value for (0) and for the derivatives of 

are given in Equation (3.10) 

00 

(0) = f f (x)dx = I 

-00 

CO 

= if xf (x)dx = ji 

-00 

00 

= (j)2f x2f(x)dx = (i)22 	 (3.10) 

-00 

cc 

= (j)nf xf(x)dx = ( j)fl 

-00 

!D] 
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and then the coefficients of the MacLaurin series expansion of cI'(t) are 

(') (0) 	(") (0) 2 + 	+ 
( k) (0) tk + 	 (3.11) 

1 	2 	 k! 

and the remainder 0(t') -f 0, according to 

(et)-(o) 
o{t'} = 

	
- 0, (0 < e < 1) 	 (3.12) 

n! 

since (&t) - I(0) tends to zero with t, Chapter 12.1 in [51]. 

The following expression is attained from Equation (3.8) by substituting (jt) with s 

(s) = 1 + 11 	 (3.13) 
 n! 

n=1 

From the equations above it is easy to see that, by differentiating the characteristic function at 

the origin (s = 0), the moments of order n are equal to the nth derivative of the characteristic 

function. Which yields ' = -ti, = 02, ..., and 1?(n) = This is why I(s) is called the 

moment-generating function. 

The second characteristic function is the logarithm of the first characteristic function 

'11(t) = ln((I)(t)) 	 (3.14) 

and for 41 (t) there is a corresponding MacLaurin series expansion. Then by using 

Z 
ln(1+z)=-- + 

1 	
...±_+o(zk) 	 (3.15) 

and replacing 1 + z with 'I', and rearranging the expression, thus arriving at 

k 

W(t) = ln((t)) = 	
k(jt) 

n! 	
(3.16) 

n= 1 

and again substituting (jt) with s the expression for '11 (t) is obtained. 

k XP  (8) 
_t(s) 
- 	 (3.17) 

n! 
n= 1 

The coefficients ic are called cumulants and '11(s) is the cumulant-generating function. Just as 
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the derivatives of the first characteristic function are the moments, the derivatives of the second 

characteristic function are the cumulants. So 'P' = i, is the first order cumulant, 'I" = r'2 is 

the second order cumulant, ... , and W(n) = ic is the n:th order cumulant. 

The derivation above is valid for a scalar stochastic variable x but can be extended to the case 

where all the expressions above are given for a two-dimensional variable according to [51] 

Chapter 21.3. Thereafter according to [51] Chapters 11, and 22.4 the expressions can be given 

for a n-dimensional stochastic variable. The expressions for the general n-dimensional case are 

presented below but some of the detail in the derivation of the expressions is left out. For a 

n-dimensional variable or a vector of random variables X = [Xi, X2,... , XjT the nth-order 

moment is defined as 

z([X 1 ,X 2 ,...,XJ) =E{[X 1 ,X 2 ,...,X] 1 } 	 (3.18) 

Equivalent to the one-dimensional case there is a characteristic function for the vector X 

= E{e T X} .  ( 3.19) 

It can be shown following the same steps as for the one-dimensional case that the characteristic 

function is related to the moments as follows 

([X1,X2,...,X]) 	 (3.20) 

Then substituting j with A, and thus arriving at 

Mx(A) = E{ e \T X} 	 (3.21) 

which is the moment generating function and using a MacLaurin expansion it is found that the 

nth-order moments of X are the coefficients of fln i=0 A, and the moment generating function 

can be written as 

A n ([X1, X2, 	
X ]) - 9Mx(A) 

IAo. 	 (3.22) ... ,  

The second characteristic function is as stated in Equation (3.14) is the logarithm of the first 

characteristic function, and is defined below for the vector X 

Px(e) = ln(x(e)) = In (E{ e T X}) 	 (3.23) 
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then substituting j with ). the resulting function 

Kx(\) = E{ e )\T X} 
	

(3.24) 

is the cumulant generating function. Then by following the same steps of MacLaurin series 

expansion the relation between the cumulant generating function and cumulants is found. 

0Kx(\) 

	

icn ([X i , X2,... , Xn]) = (_J) 3w 
(4) 

k=o - - 	IA=o 	(3.25) 
1"',m 

where 	(X) = #c([Xi, X2,.. . , X 7 ]) denotes the nth-order cumulant for the random vector 

X. The moments and cumulants are obviously related to one and other, as it can be seen 

from the derivation of both. The explicit relationship between them can be seen below and the 

derivation of them can be found in [52], and the proof is found in [53] 

(X)= 	 H K(Xm ) 	 (3.26) 
P(n)EP(n) mEP(n) 

ic(X) 
	

[I /i(X m ) 	 (3.27) 
P(n)EP(n) 
	

mP(n) 

where n is the set {1, 2, ... , n}, and m is a subset of fl, Xm  is a vector of elements X with 

indexes m. P(n) is the set of all partitions of n, and P(n) is a partition of n. The expressions 

above in Equations (3.26) and (3.27) are usually written out for n = 1,2,3, and 4 

The mean of the vector X is the first-order cumulant and moment 

k i (X i ) = pi  (X I ) = E{X i } 
	

(3.28) 

The second-order cumulant and moment, are also equal to the covariance of the vector X as, 

ic2 (Xi , X2) = 2 (X 1 , X2) - (Xi)uii (X2). 	 (3.29) 
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The third-order cumulant and moment relations are, 

k3(Xl,X2,X3)= t3(Xi ,X2,X3)-3 1ii(X1 ) 2 (X2 ,X3 ) 

+2i(Xi)1(X2)111(X3) 	. 	(3.30) 

The fourth-order cumulant and moment relations are, 

tt4(Xi, X2, X3, X4 ) = 	4(X1 , X2, X3, X4) - 12(X 1 , X2 )j 2 (X3 , X4) 

—ji2 (Xi , X3)1t2(X2,X4) —i2(Xi ,X4)1t2(X2,X3) 

—1i i (Xi ) 3(X2,X3,X4) - 1(X2)1i3(X1,X3,X4) 

—/2i(X3)/L2(Xl,X2,X4) - i(X4)u2(X1,X2,X3) 

+2P2 (X1, X2) 1  (X3) 1  (X4) + 22(X1, X3)1 (X2)[L1(X4) 

+2P2 (X1, X4)bt(X2)[tl(X4) + 22(X2, X4)ji 1 (X1)p1(X3) 

+22(X3, X4 ) i (X1 ) 1 (X2) + 22(X2, X3)1i 1 (Xi )1i 1 (X4) 

—6 (X1 )1 (X2)1i1 (X3 ) 1 (X4 ). 	 (3.31) 

Then for real valued, zero mean, moments and cumulants it simplifies to the following 

The first-order cumulant and moment; 

r'1(XI) = ii(Xi) 	 (3.32) 

The second-order cumulant and moment; 

2(X 1 ,X2) = 	 (3.33) 

The third-order cumulant and moment; 

,c3(X1,X2,X3) = 	 (3.34) 
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The fourth-order cumulant and moment; 

k4(Xl,X2,X3,X4)=4(X1,X2,X3,X4)-2(X1,X2)2(X3,X4) 

—p2(X i ,X3)1i2(X2,X4) - 	 = 

- 3bt. 	 (3.35) 

3.3 Properties of the characteristic function 

It was found that the characteristic function is related to the pdf via the Fourier transform. This 

one to one relationship between them makes it possible to find the other if one is known or 

estimated. That also implies that the properties for the characteristic function are similar to 

those of the FT. The properties of distribution functions and probability density functions were 

described in Section 3.1 The characteristic function has the following properties: 

(0) = 1 

00 

I(t)I 	f f (x)d(x) = 1 

—00 

which follows from IetI = 1 and the integral over a pdf is always equal to one. 

= (t) 

where denotes the complex conjugate of a. 

3.4 Properties of Moments and cumulants 

Although both the moments and cumulants can be used to describe a distribution function there 

are a few benefits using cumulants over using moments. First the properties that concern both 

are listed 

Both moments and cumulants are symmetric in their arguments, i.e. 
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where (i1, ..., i) is a permutation of (1..... n). 

Both are additive in their arguments , i.e. 

tcfl (X l +Yl ,Z2, ... Z fl )=!cfl (X l ,Z2,..,Z fl )+,c(Yl ,Z2 ,..,Z) 

t(X1+Y1,Z2,..,Z) 

For constant a1, ..., 

kn(ai X I , ..., anXn)Icn(Xi..,Xn)flaj 

n (aiXi, ..., aX) = 	(X 1 , .., Xn )flai  

For in independent vector valued random variables xr,  where r = 1, 2,..., m and xr  has 

the components X, ..., X 7  then 

M 	 m 	 m 

For two independent vectors X1, and X2, the cumulants ic(Xi , X2) = 0, which is not true 

in general for moments, jt(X1, X2) 	0. 

For a Gaussian process the cumulants of higher than second order are zero, since the charac-

teristic function for a jointly Gaussian distributed random variables X, i = 1, ..., k, with 

mean it and the covariance matrix R is given by 

= 

The first and second order cumulants are the mean and covariance. However, the higher 

order moments are not zero in this case. 
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3.5 Estimation 

Given the fact that for real life signals the pdf is very seldom known, the moments or cu-

mulants have to be estimated in order to be able to describe the signal. In this section the 

estimation of the first four orders of central moments, mean, variance, skewness and kurtosis 

is the main scope. Since the moments and cumulants are closely related to frequency spectra 

of corresponding orders, the estimation procedures are discussed from that point of view, [54], 

[55], [56], [57]. Another reason for bringing up spectral estimation is that the practicalities for 

spectral estimates are the same as for the moments and cumulants. 

In spectral estimation there are two main approaches to the estimation process, parametric and 

non-parametric. Parametric methods offer the potential for lower variance and higher resolution 

than the parametric ones but the suffer from the fact that it is difficult to chose the type of model 

AR, MA, or ARMA (Auto Regressive, Moving Average). Furthermore it is difficult to chose 

the model order. This is especially difficult for data from in an environment that changes over 

time. Non-parametric methods do not have these difficulties and once the underlying data is 

fairly well understood there are less need to make restrictive assumptions about the system. 

Estimation theory is a field on it's own and this section is merely a brief overview, included 

here since the measures used in the statistical tests are estimated from real sonar data sets. 

3.5.1 The Power Spectrum and Autocorrelation 

In practice the power spectrum is estimated from a single realisation of a random process. The 

estimation can be done by the direct and indirect method. Either directly Fourier transforming 

the data vector and squaring the result arriving at the power spectrum or using the ACF for 

the vector of data and then Fourier transforming that to obtain the power spectrum (using the 

Wiener-Khintchine theorem). For practical purposes the direct method is convenient to use 

since it is computationally efficient. Going via the ACF requires extra steps and does not add 

anything to the quality of the estimate. Estimating the power spectrum using the direct method 

is described below. 

The N-point, Discrete Fourier Transform (DFT) is defined as follows, 

N 

X(k) = 	x(t)e_3 2 t/' 	 (3.36) 
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and from the DFT follows the power spectrum for L segments of data. 

P(k) = 	Xn(k)Xn*(k). 	 (3.37) 

A periodogram is estimated by windowing the data and then calculating the DFT on L data 

segments of length N. Each one of these segments is a part of the power spectrum above as, 

P(k) = Xn(k)Xn1*(k). 	 (3.38) 

So the power spectrum can also be defined as 

P(k) = 
	

(3.39) 

which is also known as the averaged periodogram. There are several ways of estimating the 

power spectrum, the Bartlett method, the Welch method, the Blackman-Tukey method, just 

to mention a few. All of the above mentioned methods are different ways of averaging the 

periodogram, where the Bartlett method is the most basic one. The Welch method uses a 

modified periodogram and finally, the Blackman-Tukey uses smoothing of the periodogram. 

If the objective is estimating the ACF then the process can be reversed. In some cases it makes 

sense to first obtain the power spectrum and then the ACF from that. Due to the efficiency of 

the FFT calculations it is usually better (faster) then the convolution process to obtain the ACF 

directly. 

Then again if the objective is to get the second order cumulant of lag zero, the variance, then it 

is best obtained by the following, 

K2,0 	a2 
=(X,- 

 [L) 2 	 (3.40) 

which is the best unbiased variance estimate. It can however also be obtained from the power 

spectrum. 
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3.5.2 Higher order Spectra and Cumulants 

Estimating the third order spectrum, the bispectrum can be done in a similar way as the power 

spectrum, 

B(k, 1) = 	X(k)X(1)X(k +1) 	 (3.41) 

In this section two ways of normalising the bispectrum are presented. Adopting the termi-

nology in [56] and [57], the normalised bispectral estimates are called skewness and squared 

bicoherence respectively, and are defined below as 

s2(k,1) 
= 	IB(k,1)1 2  

P(k)P(l)P(k + 1) 
(3.42) 

which is known as the skewness function [58]. Then the squared bicoherence, [59] is defined 

as 

b2(k,l) = C(k, l)P(k + 1) 
	 (3.43) 

where 
L 

1 

	

C(k, 1) = - 	IX(k)X(1)I 2 . 

	

L 	
(3.44) 

i=1 

Higher than third order spectra can of course be defined in a similar fashion, for instance the 

fourth order spectrum is called a trispectrum. However, that falls outside the scope of this thesis 

since the intended use of the higher order spectra here is limited to third order spectra. 

If the intention is to estimate the cumulants of the desired order the same approach may be 

adopted, segmenting and averaging. Thus arriving at robust estimates of the desired cumulant. 

Special cases of the cumulants are, as mentioned earlier, the lag zero of the third and fourth 

order cumulants, namely the skewness and kurtosis. The skewness 'yi  can be estimated as 

follows 

3,0 = =E(X,
- 	 (3.45) 

and the kurtosis -y in a similar fashion as 

= = 	- 	-3. 	 (3.46) 
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3.6 The shape of a distribution function related to the mean, vari-

ance, skewness, and kurtosis 

As mentioned in section 3.1 the pdf and CDF can be described by the mean, variance, and other 

higher order cumulants, the skewness and kurtosis. They are the first four orders of cumulants 

at lag zero. The mean of course not being a function of time lags but never the less the first 

order cumulant or moment and is included here for the sake of completeness. Starting with the 

mean of the variable x 

E{x(t)} = rn 
	 (3.47) 

where m is an arbitrary constant. 

Then the autocorrelation function (ACF) R() is defined as, 

	

E{x(t)x( - t)} = f(T) 	 (3.48) 

Which is equal to the covariance, in this special case. And at r = 0 it is the variance, o2. 

For lag number zero, Ti = 	= 0, the third-order moment and cumulant divided by the cube 

of the variance of the process o, is known as the skewness of a process, and it is defined as 

follows 
= E{(x—m) 3 } 

 013  
71 	 = 3,0 	 (3.49) 

The fourth order cumulant at lag zero, r1 = T2 = T3 = 0, divided by oA, is known as the 

kurtosis of a process and is defined below as 

Y2 
E{ (x - m) 4 } 	/24 - 3p 

____________ - = 

	
l4,0. 	 (3.50) 

The mean of a process gives the location of the centre of gravity of the pdf. Variance is a 

measure of dispersion. In other words it gives a measure of the spread or the variation from the 

mean. 

The skewness is a measure of symmetry, so that any symmetrical probability density function 

has a skewness equal to zero, as is the case for a Gaussian distribution function. A distribution 

function with a positive skewness has a heavier tail on the right hand side of the centre of 

gravity, and a negative skewness indicates a heavy tail to the left, see Figures 3.4, and 3.5 for 
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examples of positively and negatively skewed pdfs. 

Probability Density Functions 

- - - Gaussian, Mesokurtic 

Platykurtic 

- Leptokurtic 

- Leptokurtic, negative skewness 

Leptokurtic, more negative skew 

-5 	-4 	-3 	-2 	-1 	0 	1 	2 	3 	4 	5 
Bins 

Figure 3.4: An image of negarit'elv skewed pdfs  with both lower and higher kurtosis valites 

(platv- and lepto-kurtic) compared to a Gaussian pdf 

The kurtosis is a measure of the flattening, or pointedness, of the distribution function at its 

centre. The kurtosis is equal to zero for the Gaussian distribution function and functions that are 

more pointed than than the Gaussian distribution have a positive kurtosis and flatter distributions 

have a negative kurtosis value. When the distribution function is flatter than a Gaussian curve it 

is known as a platykurtic curve, if the curve is neither flatter nor more pointed than the Gaussian 

it is mesokurtic, and finally if the curve is more pointed than the Gaussian it is leptokurtic, see 

Figures 3.4, and 3.5 for examples of the different type of pdfs. Platy- and lepto-kurtic are also 

known as sub and super Gaussian curves. Kurtosis is also known as excess and is defined as 

above in [51] 15.8. 

Ae4 
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Probability Density Functions 

- - - Gaussian, Mesokurtic 
Platykurtic 

- Leptokurtic 
- Leptokurtic, positive skewness 

Leptokurtic, more positive ske 

-5 	- 
	

- 	 4 
Bins 

Figure 3.5: An image of positn'elv skewed pdfc with both lower and higher kurtosis values 

compared to a Gaussian pdf 

3.7 Stationarity 

Most signal processing techniques rely on the existence of stationarity in order to produce re-

liable and consistent estimates. Signals or stochastic processes can be categorised by their sta-

tionarity properties, going from stationary to the non-stationary, and other levels of stationarity 

as described below. 

The level of stationary has implications on a number of factors in signal processing, but mainly 

on the level of reliability of any estimate. Estimates from highly non-stationary data can at 

times be so bad that the variance of the estimate is by far greater than the estimate itself. 

One important parameter that is directly depending on stationarity times is integration time. It 

conies in as a parameter in most signal processing schemes since there is always a choise on 

how long data segments to use. In direction of arrival estimation where an important part is the 

estimation of a covariance matrix, it is crucial to use enough data to get a reliable estimate but it 

is on the other hand important to limit the amount of data. This is due the fact that the variance 

of the estimate will not get lower if the data is not stationary up to at least the lenght of the 

estimation window. This is also important in any estimation where a number of data segments 

are used to form an average of some sort. Again, if the data is too non-stationary the variance 
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of the estimate will be high and will not go down with a higher amount of data segments in the 

averaging process. 

Time/frequency analysis has been one of the proposed methods of analysing non-stationary 

data and in that context it also ipmortant that the data is stationary at least up to the chosen data 

segment length. 

Consider a stochastic process x(t) with two distinct sets of samples Xt1  and x, 1 ,-, where the 

second sample is merely displaced in time by a constant T. The two sets are characterised by 

their joint probability density functions, 

p(xti ,xt2 ,xt3 . .... ) 
	

(3.51) 

and 

p(xti+y,xt2+r,Xt3+r, ....). 	 (3.52) 

These two pdfs may or may not be identical. If they are equal the process is stationary in the 

strict sense (or simply, stationary). However, there are a variety of different levels of stationarity 

and non-stationarity. 

3.7.1 Non stationarity 

When the two pdfs are not equal, as can be seen below 

) 	 ) 	 (3.53) 

the process is said to be non-stationary. 

3.7.2 Wide sense stationarity 

Wide sense stationarity or weak stationarity is the least strict degree of stationarity and it is 

defined as follows. The first requirement is that the mean of the signal is constant, For discrete 

time series the mean is calculated as follows 

x(k)=rn. 	 (3.54) 
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This is rarely a limitation in reality since most of the time the mean of the signal is subtracted 

before any other analysis. 

The second requirement is that the ACF (Auto Correlation Function) only depends on the time 

lag r, and not time itself, i.e. it is time independent. 

The ACF for discrete time R(k) is defined, 

R(k) = 	x(n)x(k - n) = 1(k) 	 (3.55) 

where f(k) is a function of the time lag k. Stationanty in the strict sense implies wide sense 

stationarity, but the reverse is not true, except for those processes that are fully described by the 

first- and second-order moments, mean and variance, such as a Gaussian process. The higher 

than second-order moments of odd order for a Gaussian process are zero, and the even-order 

moments higher than second-order are described by the variance. 

3.7.3 Nth-order stationarity 

A more strict class of signals are the ones where the nth-order moment is time independent. 

The nth-order moment is defined as follows 

E{x(t)} 
= roo 

x(t)dF(x(t)) 	 (3.56) 

where F(X) is the distribution function for x(t). For a process to be labelled n:th order sta-

tionary all the moments of the process up to order n have to be time independent. The moments 

about the mean are defined as follows 

Yn= 	- m)ThdF(x(t)) 	 (3.57) 
-00 

which for a zero mean process reverts back to the previous form, [51] Chapter 15. The moments 

about the mean are also called central moments, from here on when talking about moments the 

central moment, p, is assumed, again there being no difference if the signal or process is zero 

mean. 
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3.7.4 Ergodicity 

The definition for ergodicity is that the time average is equal to the ensemble average. Which 

means that the mean in time from one realisation of a stochastic process equals the mean over 

a number of realisations of the same process. This is what is known as mean ergodic. There's 

yet another class of ergodicity, variance ergodic processes. This in turn means that the time and 

ensemble variances are equal. Ergodicity implies stationarity in the strict sense, but stationarity 

does not imply ergodicity, i.e. 

ergodicity => stationarity, but stationarity O > ergodicity. 

See Figure 3.6 for an overview of the stationarity properties of a signal, where it can be seen 

that the stricter forms of stationarity and ergodicity are subsets of all signals. 

Variance ergodic 

Mean Ergodic 

Strictly Stationary 

N:th order Stationary 

Wide Sense Stationary 

Non—stationary 

Figure 3.6: Signal categories according to their stationarity properties 

3.8 Linearity Symmetry and Gaussianity 

The principle of linearity is best described by considering a signal as an input to a system, or 

a filter for that matter. Then viewing the output of the system and deciding what the charac-

teristics of the system are. The system in this case is the acoustic sound channel that the sonar 

signals travel through. Together with linearity properties in Table 3.1 the requirement for strict 

sense stationarity is repeated and also the requirements for causality and stability are mentioned 

for the sake of completing the table over system properties. 
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System property 	 Input 	 Output 

Linear 	 f  g(t) 

A  g(t) 

af(t) ag(t) 

En  a,f?-(t) En a,g,-(t) 

Strictly Stationary 	 f(t - g(t - 

Stable 	 i f(t)I <M g (t)I <MI 

Causal 	 f(t)=0, for t<ti g(t)=0, for t<ti 

Table 3.1: Overview of system properties and their inputs versus outputs. 

where, n = 1, 2,3...., a, M, I are constants. The principle of linearity is also known as the 

principle of superposition, a linear operator is synonymous with linear system, [60]. 

Alongside with linearity, symmetry and gaussianity are very common assumptions on signal 

properties. In [61], and [62] the concepts of symmetry and Gaussianity are discussed. Since the 

basic assumption is that the systems are linear and Gaussian there are tests done for the opposite 

case. Symmetry and Gaussianity are sometimes used interchangeably but it is not always a 

correct description of the signal properties. A gaussian pdf is symmetrical but symmetry does 

not always imply gaussianity, as it can be seen in Section 3.6 where some pdfs are symmetrical 

but more pointy than the Gaussian pdf. 

3.9 Statistical test on sonar data 

The tests described and applied in this section can all be described as hypothesis testing. Testing 

a hypothesis is inferring from a sample whether or not a statement about the population is true, 

such as sonar data is stationary or ambient noise is Gaussian. In hypothesis testing there are two 

hypothesis involved, the null hypothesis H0  and the alternative hypothesis H1 . For the example 

above sonar data is stationary the null hypothesis is 

H0 : 	Sonar data is stationary 
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and the alternative hypothesis is 

H1 : 	Sonar data is not stationary 

Once the hypothesis is postulated, a test statistic is chosen, and a decision rule is made. The 

decision rule is to find the possible values that the test statistic can take. Then the test statistic is 

calculated from a sample from the population, and a decision is made on accepting or rejecting 

the null hypothesis. 

The statistical hypothesis test has a level of significance. That is, there is a certain probability 

that the test gives a faulty answer. The level of significance, also known as a, is the maximum 

probability of rejecting a true null hypothesis. For a one sided test with the significance level 

a = 0.05 there is a maximum of 5% probability to reject a true null hypothesis. There are two 

ways to make errors in hypothesis testing. The first being rejecting a true null hypothesis, the 

second is to accept a false null hypothesis. Rejecting a true null hypothesis is called a type I 

error, and accepting a false null hypothesis a type II error. 

The critical region of a test statistic is also called a rejection region, and it is defined as the set 

of all points in the sample space where the null hypothesis is rejected. The set of all points in 

the sample space where the null hypothesis is accepted is called an acceptance region. 

If the null hypothesis is false there is a possibility to accept it with a probability 3. The Power 

of a test is the ability to reject a false null hypothesis, and it is denoted as 1 - 0. 

H0 is true 

H0 is false 

Accept H0 Reject H0 

Correct decision Type I error probability = a, 

probability = 1-a level of significance 

Type II error Correct decision 

probability = 0 probability = I -/3, Power 

Another part of hypothesis testing is the p-value. The p-values is the smallest significance level 

where the null hypothesis is rejected for a given observation, meaning that, this is the value that 

the computed test statistic is compared to. 
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3.9.1 Testing for Stationarity 

This section discusses testing for different levels of stationarity, starting with stationarity in 

the strict sense then looking at nth-order stationarity and finally at wide sense stationarity. A 

number of tests are applied first to synthetic data to point out their strengths and weaknesses, 

then to real data that has been collected at FOl, over a number of years. 

Data from four different experiments is analysed, first an active sonar data set from the BAROC 

experiment, described in Section 2.5.2, from the transmission loss part of the experiment. This 

is done to point out the difficulties that arise from moving the objects in the sea and therefore 

changing the sound channel. And to compare the pings as they are recorded trying to assess 

the possible benefits of stacking or coherently adding pings. The second set of data analysed 

is data from a reverberation measurement trial, described in Section 2.5.3. Data segments from 

between the pings are analysed to examine reverberation and not the pings themselves. This 

has been done using different lengths of the data, and from different parts of the reverberation 

tail. The third data set is from the fibre glass boat experiment, described in Section 2.5.6. This 

includes both background noise data and data when the boat is running. The fourth data set is 

for looking at back ground noise at different time of the day, described in Section 2.5.5. 

3.9.2 Kolmogorov-Smirnov 

Statistics of the Kolmogorov-Smirnov (K-S) type, Chapter 6 in [63], lend themselves very well 

to this kind of test. A test for strict sense stationarity, comparing two distribution functions and 

finding whether or not there is a significant difference between them. If they are approximately 

equal, according to the test statistic, then the process is stationary. 

K-S type of statistics has been applied to sonar data before in [64], and [65] testing for station-

arity and normality. However, the data sets are from different areas and there are many factors 

in underwater acoustics that a make significant difference to the wave propagation so the results 

from the analysis done here differ in some aspects to the findings in [64], and [65]. 

The K-S two sample test uses two estimated cumulative distribution functions to produce the 

test statistic. It is defined as the maximum absolute distance between the two unknown CDFs, 

and the formal definition follows 

TKS = supICDF1(x) - CDF2 (x)I. 	 (3.58) 
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Test statistic values for two Gaussian vectors with different variance 
01 

2 0.95 0.97 1.0 1.03 1.05 
Test statistic TKS 0.0089 0.0071 0.0034 0.0057 0.0101 

LTest statistic TKS,  analytical 0.0073 0.0043 0 0.0041 0.0068 

Table 3.2: K-S test statistic values 

The assumptions made on the the underlying data samples are: 

The samples are random samples 

The two samples are mutually independent 

The measurement scale is at least ordinal 

For the test to be exact the variables are assumed to be continuous. 

If the variables are discrete the test valid but becomes conservative, meaning that the risk of 

making a type I error is less than stated, [63]. 

Here the two sided K-S test has been applied with a significance level c of 0.01. That is reject 

the null hypothesis H0 if T exceeds the 1 - c quantile, Table A 1 [63]. The approximation for 

large samples, p = 2-30  is used since the number of points, n is larger than 40. The p-value is 

the threshold that the test statistic is compared to. 

An example of how the test works is demonstrated by considering two vectors of Gaussian 

distributed data. Changing the variance in one of them until they are differing in a statistically 

significant way. In Table 3.2, are the values for the test statistic TKS  calculated for two vectors 

of length N = 100000, which makes p = 2.301./100000) = 0.0073. One of the vectors 

has a variance equal to one and the variance of the other vector is varied according to Table 3.2 

below 

The last row of Table 3.2 shows the analytical test statistic value for Gaussian cdfs with the 

variance according to the top row in the table. This is only included to illustrate the principle of 

the test. In most cases the analytical pdf or cdfs are not available and the K-S test does not make 

any assumptions on the underlying distribution function, it operates on the estimated CDFs as 

previously stated. 
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Cumulative Distribution Functions 

1 

0.8 

0.6 
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Figure 3.7: The estimated cumulative distribution functions for five vectors of Gaussian vari-
ables, with cr2 = { 0.95, 0.97, 1.0, 1.03, 1.051 

The five CDFs are presented in Figure 3.7. Only the CDFs with a variance of 0.95 and 1.05 are 

significantly different according to the test statistic TKS.  It should also be noted that even the 

vector with a variance equal to one is from another realisation of a Normal process so there is a 

difference between the vectors and the cumulative distribution functions too. But the difference 

is not statistically significant since the test statistic TKS  <p - value 

3.9.3 Wide Sense Stationarity Quotient 

A test for wide sense stationarity as suggested in [66] is the so called wide sense stationanty 

(WSS) quotient. It consists of two tests, the t-test, that tests for equality of means, A defined as 

N — li 

	

t=(1i— Iii  )( . 	)2 
	 (3.59) 

	

01i 	01j 

where t has a Students t distribution with v = 2N - 1 degrees of freedom, N is the number of 

data points in each segment, and i, j = 1, 2,. . ., S. The degrees of freedom is the number of 

parameters which may be independently varied. 

The second part of the WSS test is the F-test, which is a test for equality of variances, 02 

a2  

	

F = 4 	 (3.60) 
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where F has an F-distribution with v = 112 = N - 1 degrees of freedom. 

Then a matrix P is defined, as follows 

P00 	P01 	 Po,s—i 

- 	Pm 	P11 	 Pi ' s-1 

Ps—i,o Ps—i,i •.. Ps—i ' s—i 

Where Pij  are the entries in P and are equal to 1 if and only if both test statistics are between 

their respective limits. 

1 if ITI<t,,and 
2 

Pii{ 	F,1 V2  

0 otherwise 

(3.61) 

Then the WSS quotient can be defined as below, 

WSSq 
= S(S— 1) 	Pij 

i1 	t+1 

(3.62) 

where S is the number of segments, and Pij  are the elements in the matrix P. It should be noted 

that the summation is only over the elements in the upper triangle of the matrix since the values 

on the main diagonal are always ones and the lower triangle is the mirror image of the upper 

triangle. 

The test has been slightly modified from its original form in [67], and [66] due to the fact that 

the nature of sonar data is different from the Variable Bit Rate (VBR) data examined in [67], 

and [66]. Sonar data does not consist of a number of frames and is treated as separate segments 

of any time series. So the summation over matrix elements goes to the number of segments 

instead of the quotient between the number of frames and number of samples in each segment, 

suggested in [67], and [66]. 

This test has been applied to all data sets with a = 0.05. For wide sense stationary data the 

WSS quotient should be at least 0.90, since applying the two tailed test with a = 0.05 one 
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should expect the test to reject as much as 10 % of the data even if it were stationary. 

An example of how the WSS quotient works is shown in Figure 3.8 where the WSS quotient has 

been estimated from a synthetic data set consisting of the sum of three sinusoids with Gaussian 

(N(0, 1)) distributed noise added. Which can be considered as a very simple model of sonar data. 

The sinusoids corresponding to the sound emitted from a vessels machinery and drive, and the 

Gaussian noise being the ambient noise. The quotient has been calculated for data lengths of 

100 - 100000 samples. This synthetic data has a sampling frequency of 10kHz, thus making 

the length of the tested data from 0.Ols to lOs. In Figure 3.8 it is clear to see that in order to 

get reliable results the amount of data should be no less than at least 10000 samples (Is). Since 

the WSS quotient is less then 0.9 for sample size equal to 100, and then drops even lower for 

a sample size of about 500. After a data length of about 1000 samples the quotient remains 

higher than the stated limit of WSS = 0.9 for stationary data. It should be noted that, given 

the frequency content of the data one should use segment lengths where at least one period of 

the slowest varying part of the signal is included. In the case of getting less than a period of a 

sinusoid into each segment the mean value will always differ from one segment to the next, and 

the test will consider the data non-stationary even if it is stationary. 

Figure 3.8: The WSS quotient estimated for different sample sizes, from synthetic data. 
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3.9.4 Symmetry and Linearity tests 

A test for symmetry based on an estimate of the pdf can be done using the histogram. The test 

statistic is defined below as 

M/2 

Tsym  = 	( H(i) - H(—i)) 	 (3.63) 
i=1 

where H is the estimated histogram for a block of data with a length N and M is the number 

of bins in the histogram. The sum over the histogram divided with the number of data points N 

is equal to one. The sum of the differences around the mean value of the normalised histogram 

should be zero for a symmetric data set. However, since the histogram is estimated from a 

limited data set some deviation from zero should be allowed. The data is considered symmetric 

if iTsym i < 0.05, which means that the histogram is less than 5 percent skewed to either side. 

Another symmetry test is proposed in [61], and is applied to underwater acoustic data in Chapter 

1,[68]. and to seismic data in [62]. It is based on the normalised bispectrum, Equation (3.43), 

[56],[57], and consists of the sum over all frequency pairs inside the inner triangle (IT), see 

Figure 3.9. 

S=2 	b2 (fi , f2 ) 	 (3.64) 
fi ,f2eIT 

The test statistic S is x2  distributed with dof equal to twice the number of grid-points in the 

IT. Testing for symmetry is now essentially the same as testing S for consistency with a X2_ 

distribution. If the underlying data is symmetric in it's distribution, then S 0 under the null 

hypothesis. H0 is rejected if S differs significantly from 0. 

A test for linearity is also proposed in [61], and it also based on the normalised bispectrum. The 

test statistic is SL is equal to the ordered values in 21b(fi, f2 )1 2 . Then the interquartile range 

R of SL is estimated, R is the difference between the first and third quartile, e.g. 50 per cent 

of the values around the mean. The hypothesis of linearity is rejected if R is different from 

a theoretical value of the interquartile range of a X 2 (A)-distribution, where ) is the estimated 

mean from the bicoherence b2 (f1, f2), 
fl,

12 E IT. And where the bicoherence is a normalised 

bispectrum, much like the ordinary second order coherence function is a normalised power 

spectrum, 
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3.9.5 Stationarity testing based on the bispectrum 

Following the reasoning from the previous section on the symmetry and linearity tests based on 

the bispectrum, tests for stationarity can also be defined on the same basis. Using the normailsed 

bispectrum, see [62] a test statistic is defined below as 

i: 	Is(fl,f2)1 2-2  
fi,f2EOT 

z =(3.65) 
2 /N 2 /48 

where N 2 /48 is the number of estimated bifrequencies in the Outer Triangle (OT), see Fig-

ure 3.9, and s(fi, f2) is defined in Equation (3.42). The total number of bifrequencies in the 

bispectral plane is N 2 . This leads to the inner triangle having N 2 /16 bifrequencies, since IT 

has the width N12, and height N14. Then the number of bifrequencies in both IT and OT is 

N 2 /12, and from that it follows that OT has N2( - 	= N2 /48 as stated above. 12 	16 

C-) 

0) 

ncyf 

Figure 3.9: The non-redundant principal domain of the bispectrum. In this thesis IT is used 

for symmetry and linearity tests and OT is used for a stationarily test. IN  is the 

Nyquist frequency. 
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3.9.6 Testing ping to ping stationarity 

In active sonar it is of great interest to find out how similar consecutive pings are. Common 

techniques in sonar signal processing include stacking pings, which means averaging over con-

secutive pings. This is done to enhance the signal to noise ratio. Stacking pings works well 

under the assumption that the actual pings are stationary to some degree and that it is possi-

ble to average out the noise background over a number of pings. The idea is very similar to 

estimating power spectra by segmenting data and averaging over a spectrogram, and thereby 

improving the SNR of the spectral estimate, see Chapter 12. [69]. This technique can improve 

the probability of detection considerably, however unless the mentioned assumptions hold true 

there is very little to gain by performing the stacking, it can in fact make the situation worse if 

the pings are too different from each other and lead to the loss of information rather than a gain 

in the SNR. Under the assumption that the signals are coherent and the noise is non-coherent 

and white, the gain in SNR is proportional to the square root of the number of stacked pings, 

(s/N). 
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Figure 3.10: Time series and spectrogram over the first four pings in the data ,tile. Note that it 
is the 20 seconds long ping consisting of chirps that are analysed 

The first data set analysed is from the BAROC trial. The pings (here including the entire 

pulse train consisting of 20 chirps) from the TL measurement are compared to one another. 
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The comparison is made over the first 100 pings from the data file in question. Figure 3.10 

illustrates the first four pings. The first ping is the 20 seconds pulse train consisting of 20 

chirps, the second ping is a mixture of cw-pulses and chirps. These pings are repeated every 

80 seconds. That means that data from pings within a time frame of 3.5 hours are compared 

to determine if the received pings remain the same and it is feasible to call them invariant, or 

if indeed the underwater-channel affects them enough to make the received pings into a non-

stationary process. It is only the pulse train of 20 chirps that are analysed in this section. 
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Figure 3.11: The K-S test applied to BAROC data. Ping one is compared to all pings up to 
ping number 100 

The first test applied is the K-S two sample test. That is to determine if the pings are strictly 

stationary or not, see Figure 3.11, and Figure 3.12. Where ping number one is compared to the 

rest of the pings and then ping number 50 is compared to the rest up to ping number 100. Clearly 

the test statistic is above the p-value at all times so the data is not stationary. Reminding, that the 

p-value is the threshold which the test statistic is compared to. This is a result that is expected 

since there is 80 seconds between consecutive pings, and the vessel carrying the receiver is 

moving away from the transmitter. Thereby essentially creating a new channel for the sound to 

travel in. The bottom topography changes since the boat is moving, the SSP also changes from 

one point to another. 

The K-S test is applied to all of the pings comparing all of them to one another and are at all 

times different enough for the K-S test to distinguish between them, see Figure 3.13 where the 

test statistic is plotted. The only place where the test is accepting the null hypothesis is along 
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Figure 3.12: The K-S test applied to BA ROC data. Ping 50 compared to all pings from 51 up 
to ping number 100 

the diagonal, which is comparing a ping to itself. Otherwise the test statistic is larger than the 

p-value at all times. 
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Figure 3.13: The K-S test applied to BAROC data. including all pings up to number 100. 
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Figure 3.14: The WSS quotient applied to BAROC data, including all pings up to number 100. 

The second test applied to the BAROC data is the WSS quotient, see Figure 3.14 where all 

pings are compared as in the KS test case. The WSS test has been done in two different ways, 

first alongside with the KS test, testing one ping against another, thus getting S jj  = 1 if all 

requirements are fulfilled in the test, and Su = 0 otherwise. Then creating a matrix Tws 

with the S0 as elements. It can be seen in Figure 3.14 that the null hypothesis is not accepted 

at all times. The dark areas denotes the ones and the white areas are zeros. By summing the 

elements in Ttt-  the WSS quotient is obtained, and it has the value 0.58. The same value is 

obtained by reading all the data in and running the test by directly getting the WSS quotient. 

From this it can be concluded that the pings are not even wide sense stationary. However to 

some degree, pings following each other are similar enough, and the middle area in Figure 3.14 

actually reaches wide sense stationarity. It should also be noted that the dark area correspond 

fairly well with the area of lower values of TKS in the middle of Figure 3.13. 

This opens up another line of questioning, namely, how many pings in a row are wide sense 

stationary? As it can be seen in Figure 3.14 it depends on what the starting point is. Starting 

from the diagonal in Figure 3.14, one can trace a black line for up to 70 pings. Which means 

that the 70 following pings are wide sense stationary. This is however not the case in general, 
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Ping number 1 2 3 4 5 1 	6 7 8 9 10 

NrofWSSpings 10 9 0 1 0 5 4 0 0 1 

Ping number 11 12 13 14 15 16 17 18 19 20 

Nr of WSS pings 1 	0 0 0 0 78 76 75 0 70 69 

Ping number 21 22 23 24 25 26 27 28 29 30 

NrofWSSpings 68 70 69 0 0 65 0 65 64 61 

Ping number 31 32 33 34 35 36 37 38 39 40 

NrofWSSpings 0 0 8 7 6 4 3 0 0 0 

Ping number 41 42 43 44 45 46 47 48 49 50 

Nr of WSS pings 0 0 50 48 7 3 2 0 0 0 

Ping number 51 52 53 54 55 56 57 58 59 60 

Nr of WSS pings 0 0 40 39 0 37 12 0 10 2 

Ping number 61 62 63 64 65 66 67 68 69 70 

NrofWSSpings 0 0 6 0 4 3 1 0 0 2 

Ping number 71 72 73 74 75 76 77 78 79 80 

NrofWSSpings 1 0 2 1 0 17 0 0 0 13 

Ping number 81 82 83 84 85 86 87 88 89 90 

NrofWSSpings 12 11 0 2 1 0 0 5 0 3 

Ping number 91 92 93 94 95 96 97 98 99 100 

NrofWSSpings 2 1 0 0 0 0 3 2 1 0 

Table 3.3: The number of consecutive wide sense stationary pings from the BAROC trial 

see Table 3.2 for the number of consecutively wide sense stationary pings. Again it should 

be noted that the test is carried out for the 100 first pings from the data file so the number of 

consecutively wide sense stationary pings does not mean anything for ping number 100, since 

there has not been a comparison done outside the 100 first pings. However, is should also be 

noted that there is not a single case where the number of consecutive WSS pings reach the limit 

of 100. 

3.9.7 Testing Reverberation for stationarity 

The reasons for testing the stationarity of reverberation are similar as for the actual ping, with 

the addition of also viewing reverberation as noise as well as the part of the ping that actually 

has the desired echoes in it. It is also of importance to find out what the actual statistics of the 

noise background in active sonar is. 
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The experimental setup for the Utö trial is an almost monostatic one, the tranmitter and receiver 

are mounted to different sides of a boat, and sometimes at different depths, but this difference in 

location is rather small compared to the distances the returning echoes are from. The monostatic 

setup of this sea trial makes it an ideal data set for a reverberation analysis. An example of how 

the data looks can be seen in Figure 3.15, where the first four pings from File 1 is displayed. The 

data has been beamformed with the main lobe perpendicular to the receiver array. That simply 

means that data from the 32 channels are added to each other. The transmitted pulse passes the 

receiving array and the signal is heavily distorted (clipped), making a statistical analysis of the 

transmitted ping difficult. However, the reverberation tail is free from this sort of distortion and 

it is suitable for further analysis, since the distortion is introduced from the receiving antenna 

elements and amplifiers and has nothing to do with the actual wave propagation. File I and File 

3 have equal depths on both transmitter and receiver, 12m whereas for File 2, the transmitter is 

at 12m and the receiver is at 25m depth. 
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Figure 3.15: The four first pings from File 1. 

This data is analysed with K-S test for strict sense stationarity and the result of that is displayed 

in Figure 3.16. The test is done comparing all pings to each other but only the results from 

comparing ping number one to all other pings in each file is presented here. This is partly 

due to the test statistic TKS exceeding the p-value and the null hypothesis is rejected, so the 

reverberation data is not stationary in a strict sense, and also due to the fact that it captures the 

behaviour of the rest of the test. The full test results can be seen in appendix C. 
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Figure 3.16: The K-S test applied to Utö data. Ping one is compared to all pings up to ping 

number 27, for all three data files. 

The WSS quotient is calculated for the reverberation data, at about one and three seconds after 

the transmission of a ping. It is done for a data length of 2 seconds. For the first part of the 

test the WSS quotient reaches values of 0.49 File 1, 0.61 for File 2, and 0.47 for File 3. So the 

reverberation as such is not wide sense stationary either. But it is still interesting to find out 

if consecutive pings, or rather the reverberation following consecutive pings, are wide sense 

stationary to some degree. The results from the ping to ping wide sense stationarity analysis 

is presented in Tables. 3.4, to 3.9.Also see appendix C. Starting with the three that hold test 

results from one second after the ping transmission. 

Ping number 1 2 3 4 5 6 7 8 9 10 

NrofWSSpings 0 4 0 1 0 0 20 0 9 0 

Ping number 11 12 13 14 15 16 17 18 19 20 

NrofWSSpings 1 2 1 0 3 0 1 0 1 0 

Ping number 21 22 23 24 25 26 

Nr of WSS pings 6 1 0 3 0 1 

Table 3.4: The number of consecutive wide sense stationary pings firoin the Uk) trial, file 1. 
Analysis starting one second after the ping was transmitted. 

The WSS quotient is also calculated at the very tail end of the reverberation and it reaches values 

of 0.45 File 1, 0.50 for File 2, and 0.41 for File 3. This is at a point when the reverberation level 
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Ping number 1 1 	2 3 4 5 1 	6 7 8 9 10 

Nr of WSS pings 0 25 2 1 0 7 0 0 4 3 

Ping number 11 12 13 14 15 16 17 18 19 20 

NrofWSSpings 0 1 0 7 2 0 0 3 2 1 

Ping number 21 22 23 24 25 26 

Nr of WSS pings 0 5 1 0 2 1 

Table 3.5: The number of consecutive wide sense stationary pings from the Utö trial, file 2. 
Analysis starting one second after the ping was transmitted. 

Ping number 1 2 3 1 	4 5 6 7 8 9 10 

NrofWSSpings 0 16 2 0 1 2 3 2 1 0 

Ping number 11 12 13 14 15 16 17 18 19 20 

NrofWSSpings I 	1 0 5 4 2 1 0 0 8 7 

Ping number 21 22 23 24 25 26 

Nr of WSS pings 6 3 2 1 0 1 

Table 3.6: The number of consecutive wide sense stationary pings from the Utä trial, file 3. 
Analysis starting one second after the ping was transmitted. 

is getting close to the ambient noise level. It is worth noting that the WSS quotient is lower for 

this part of the ping. The starting point is for this part of the analysis is at about 8 seconds in 

File 1, and at corresponding times after the ping in File 2 and 3. 

Ping number 1 1 	2 3 4 5 6 7 8 9 10 

NrofWSSpings 7 2 0 0 1 0 2 1 0 17 

Ping number 11 12 13 14 15 16 17 18 19 20 

NrofWSSpings 0 1 0 10 9 2 1 0 1 0 

Ping number 21 22 23 24 25 26 

Nr of WSS pings 3 1 0 0 1 0 

Table 3.7: The number of consecutive wide sense stationary pings from the Utö trial, file I. 
Analysis starting three seconds after the ping was transmitted. 

comparing the Tables 3.7 - 3.9 with 3.4 - 3.6 One finds that the number of consecutive pings 

that are wide sense stationary is lower. It can be said about both that the number of pings that 

are stationary after any given ping varies highly. It should be noted that toward the end of the 

Tables 3.4 to 3.9 there is not enough data to say anything about the number of stationary pings 

due to the number of available pings. However, it seems that in most of the cases it does not 

limit the number of pings that are stationary. 
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Ping number 1 2 3 4 5 6 7 8 9 10 

NrofWSSpings 0 25 2 1 0 5 4 2 1 0 

Ping number 11 12 13 14 15 16 17 18 19 20 

NrofWSSpings 0 1 0 4 3 1 0 0 8 5 

Ping number 21 22 23 24 25 26 

NrofWSSpings 4 3 2 0 0 1 

Table 3.8: The number of consecutive wide sense stationary pings from the Utö trial, file 2. 
Analysis starting three seconds after the ping was transmitted. 

Ping number 1 1 	2 3 4 5 6 7 8 9 10 

NrofWSSpings 1 22 21 0 4 2 1 0 4 3 

Ping number 11 12 13 14 15 16 17 18 19 20 

NrofWSSpings 0 1 0 10 2 1 0 6 0 4 

Ping number 21 22 23 24 25 26 

Nr of WSS pings 0 2 1 0 2 1 

Table 3.9: The number of consecutive wide sense stationary pings from the Utä trial, file 3 
Analysis starting three seconds after the ping was transmitted 

3.9.8 Testing Ambient noise for stationarity 

Tests on stationarity and Gaussianity have been done on ambient noise data but mostly on 

data from deep sea locations, [68] Chapter 1. In this section three different sets of data are 

analysed, one from relatively deep waters from the Baltic Sea and two from a shallow bay 

outside Stockholm. The deepest part of the Baltic Sea is no more than about 400 meters so all 

sonar data from the Baltic Sea is to be compared to littoral areas elsewhere. 
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Figure 3.17: Time series and spectrogram over the first 160 seconds of data from the BA ROC 

data file. 

The ambient noise data from the BAROC trial is a part of the data set where there are no 

active transmission. The noise from this recording is dominated by shipping, since there was at 

least three ships in the vicinity at all times during the experiment, see Figure 3.17 for the time 

series and the spectrogram over the 160 first seconds of the BAROC data set. Although there 

are no very clear tonal lines in the spectrogram it is shipping that is the largest contributing 

factor in this data set. Both the KS and the WSS test have been applied to this data. The data 

was segmented into 100 segments of equal length, 1.6 seconds (with a sampling frequency of 

59900Hz that makes 95840 samples). The analysis has been done on the data as it is and band 

pass filtered data to find if there possible is a dependency on frequency. It should be noted that 

the number of data points are the same even if the bandwidth of the data that is processed is 

different. 

The KS test rejects the null hypothesis since there are times when the test statistic TKS exceeds 

the chosen quantile for all test cases. That is all the different frequency bands as well as the un- 

filtered data. However, it is interesting to follow how the sum over all test cases vary according 
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Centre Frequency 100 125 160 200 250 315 

Bandwidth 25 28 35 49 58 70 

Centre Frequency 400 500 630 800 1000 1250 

Bandwidth 87 125 142 173 250 280 

Centre Frequency 1600 2000 2500 3 150 4000 5000 

Bandwidth 350 490 575 705 870 1200 

Centre Frequency 6300 8000 10000 12500 16000 20000 

Bandwidth 1420 1730 2500 2800 3500 4900 

Table 3.10: Centre frequencies and bandwidths, in Hz, for the band pass filter applied to the 
BAROC ambient noise data prior to the statistical testing. Note that the centre 
frequency / bandwidth quotient is kept approxitnatelv constant through the filters. 

to 
fl - 	TI 

1) 	
Hij  

1=1 J=+1 

(3.66) 

where Hij  are either 0 or 1 corresponding to H0  and H 1 , and n is the side of the square matrix 

H. These results are presented in Figure 3.18. 
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Figure 3.18: The quotient oJKS test outcomes that accepts the null hvpothesisftr BAROC data 

without any transmission. The first data point is not filtered, the others following 

are handpass filtered according to Table 3. /0, with exception that the last data 

point isfroin unfiltered data 
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It is interesting to note that the factors that affect stationarity are lower in the spectrum and the 

percentage of accepted null hypothesis go up with frequency. This is most likely due to the low 

frequency sounds being emitted from the nearby ships and there being little acoustic energy 

higher up in frequency. 

The results from WSS quotient for the BAROC ambient noise data, segmented as described 

above and filtered according to Table 3.10 are displayed in Figure 3.19. The last point in 

the result vector comes from data that has not been band pass filtered other than during the 

collection of the data. Contrary to the results using the KS test the low frequency parts seem 

to have a more constant mean and variance and the higher up in frequency one goes the WSS 

quotient drops lower. This points in the direction that there is information beyond second order 

statistics in the sonar data. 
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Figure 3.19: The WSS quotient br BAROC data without any transmission. The last data point 

is not filtered, the others following are handpass filtered according to Table 3.10. 

The influence of the data length to estimate the test statistic WSS is examined and the result can 

be seen in Figure 3.20, where the window length goes from 600 samples to 4.8 million samples 

(0.OIs-80s). The highest value for the WSS quotient is reached at 2.3 million samples, and that 

equals 40 seconds of data. However, it is not feasible to use that many samples in each window, 

since the amount of data available is limited, and another limiting factor is the time it takes to 

make the estimation. A compromise that seems reasonable is to use data lengths of the order of 
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1.5s (100k samples). 
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Figure 3.20: The WSS quotient estimated for different lengths qf data for the BAROC sea trial. 

Starting with length of 600 samples going up to 4.8 million samples. That corre-

sponds to, lOins to about 80s of data. 
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Figure 3.21: The tune series and the spectrogram of noise data from before the fibreg lass boat 

trial. 

The second part of this ambient noise stationarity analysis is done on data collected during the 

fibreglass boat trial. During that trial ambient noise was collected both before and after the 
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actual main event, ie when the boat was in use and the straight line tracks were run, see Figure 

3.21 for the time series and the spectrogram of the data from before the trial. The analysis 

results for the data from before the boat was in use is presented in Figures 3.23, and 3.25. First 

the KS test was applied to all of the ambient noise data comparing the data at the beginning 

and the end of the sea trial. And the null hypothesis is rejected since the test statistic (TKS 

=0.085) has a larger value than the p-value (0.00 12). The two cumulative distribution functions 

are shown in Figure 3.22 and it is easy to see that there is a difference between them. The 

difference that is accepted by the KS test is however barely discernible to the eye when testing 

data sets of this length, 180s times 25kHz sampling frequency. So it is clear that the ambient 

noise from before and after the trial are statistically different. This is probably mainly due to 

differences in shipping, which basically is due to the different time of the day. 
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Figure 3.22: The KS test applied to fibreglass boat trial ambient noise data, using all data 

points from the ambient noise recording before the boat trial and after the trial. 

Again it is found that the percentage of accepted null hypothesis go up with frequency, see 

Figure 3.23. All though the experimental setup differs quite significantly from the BAROC 

trial. There is no nearby shipping to speak of, and the only surface vessel in the area is not in 

use. 
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Figure 3.23: The quotient of KS test outcomes that accepts the null hypothesis for the fibreglass 

boat trial ambient noise data. The first data point is not filtered, the following are 

bandpass filtered according to Table 3. 10, with two exceptions. The highest centre 

frequency is 10kHz, and lower centre frequency is added, 71Hz. This is due to the 

lower sampling frequency 25kHz compared to 59,9kHz 

To find out how long the ambient noise stays stationary the KS test is also applied to different 

lengths of data from the fibreglass boat trial. The results from that analysis can be seen in Figure 

3.24. The KS test is done to data lengths from lOms to roughly 88 seconds (270 samples equals 

roughly lOms of data, and 88s is roughly 2.1 million samples). There were four hydrophones 

in use during the trial and the KS test was applied to all of them. Following the curves in Figure 

3.24 one finds that up to about 10k samples the test statistic TKS  remains under the p-value on 

average. So the length of time that the ambient noise from that particular part of the Stockholm 

archipelago, under the circumstances of the trial, remain stationary is about 0.4 seconds. 

The results from the WSS quotient test is quite different from the results of the BAROC data 

analysis, see Figure 3.25. Again this could be attributed to the different experimental setup. 
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Figure 3.24: The KS test applied tofibreg/ass boat trial ambient noise data, for al/Jour avail-
able hydrophones, both beJre and after the boat trial. Using different data length 
to find how long the data stays stationary. 
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Figure 3.25: The quotient of WSS quotient test outcomes that accepts the null hypothesis for 

the fibreglass boat trial ambient noise data. The first data point is not filtered, 

the others fl/oi'iiig are handpass filtered according to Table 3. 10, with two ex-

ceptions. The highest centre frequency is I0kH, and lower centre frequency is 
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Figure 3.26: The WSS quotient estimated for diffrrent lengths of data jr the fibreglass boat 

experiment. Starting with length of 270 samples going up to 2.1 million samples, 

that equals lOins to about 88s of data. 

From looking at the Figure 3.26 it is easy to see that the highest value of the WSS quotient is 

reached at a window length equal to 10k samples which is 0.4 seconds of data. 
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Figure 3.27: The KS test applied to different lengths of datafroin the multi sensor trial in June 

2004. Starting with lengths from 100 samples going up to 750,000 samples (that 

equals 41ns to about 30s of data). 
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In Figure 3.27 the results from applying the KS test to ambient noise data from the multi sensor 

trial in June 2004, are displayed. The KS test was applied to 796 data files, each 60s of length. 

The data from each one minute file was rotated circularily, ten times to ensure that the results 

are not dependent on what part of the data was used. Then the test statistic was compared to the 

p-value, for each sample size respectively, to find the stationarity length of the data. As it can 

be seen there is a large proportion of the data that is staionary for roughly 10k samples, which 

equals 0.4 seconds. See appendix B where a table lists the number of stationary samples and 

two figures over the test statistic are shown. 

3.9.9 Testing passive sonar data for stationarity 

In this section the objective is to find out how much the sound emitted from surface vessels, 

which is the dominant contributor to the ambient noise, vary over time. More specifically, 

what kind of variation in the spectral level is found in a shallow water environment. Data 

from the fibreglass boat experiment is analysed by looking at the variation of the amplitude 

of tonals in a spectrogram. It is expected that the amplitude will vary due to the effect of 

multipath propagation. The lines in a spectrogram are essentially tones that arise from the 

machinery and drive of a vessel, See Figure 3.29. The tones being fairly narrow band in their 

nature, the multipath propagation gives either constructive or negative interference. At times 

the tones can be almost cancelled and at other times they might double in amplitude. Consider 

the third panel from the top in Figure 3.30, where the spectral level from the Fourth run from 

the fibreglass boat trial is displayed for the 137 Hz line, which happens to be the strongest. 

Also the power spectrum for the same run in Figure 3.28, where it is easy to see the spectral 

components that produce clear lines in a lofargram. The spectral level for the first seven of the 

peaks 178Hz, 90Hz, 137Hz, 156Hz, 176Hz, 181Hz, 195Hz} are displayed in Figure 3.30. The 

power spectrum is produced from a block of data that starts at 25 seconds into the data file up 

to 40 seconds, using 65336 samples, which gives a frequency resolution of about 0.4Hz. The 

relation of the first clear seven peaks in the power spectrum, to the boat are displayed in Table 

3.11. In the spectrogram it is first and foremost the four lines 1137Hz, 156Hz, 176Hz, 195Hz} 

that are multiples of the drive rotation frequency that are visible. The peaks in the power 

spectrum are mostly multiples of half the engine axis rotation frequency, 22.6Hz, and 19.5Hz 

which is the propeller shaft rotation frequency, corresponding to the engine rotation frequency 

divided by 2.31 (gear ratio of the primary drive). The frequencies 19.5 and 22.6Hz are not 

very clearly visible in the power spectrum, and they are even less visible in the spectrogram. 



3.5 

3 

- 2.5 
> 
a) 

C) 

ci) 1.5 
(I) 

0.5 

.•, 	. 	. 	. 

Statistical Characterisation of Sonar Data 

Multiples of these frequencies higher up in frequency are visible in both the power spectrum 

and the spectrogram. 

0 1  
0 50 	100 	150 	200 	250 	300 

Frequency [Hz] 

Figure 3.28: A power spectrum from the fibreglass boat trial, run number 4, hydrophone 1. 

Peak number I Frequency [Hz] I Relation to boat 

1 78 Fourth harmonic of the drive 

2 90 First harmonic of the engine rotation frequency 

3 137 Seventh harmonic to the drive 

4 156 Eighth harmonic to the drive 

5 176 Ninth harmonic to the drive 

6 181 Fourth harmonic to the engine rotation frequency 

7 195 Tenth harmonic to the drive 

Table 3.11: The seven first clear spectral peaks from run 4 and their relation to the boat. 

The first 20 seconds of data from this run was not used in the analysis of the data, even though 

it maybe displayed in the Figures. This is due to the boat not having reached a stable speed and 

that causes the frequencies of the emitted sound to vary significantly, as can be seen in Figure 

3.29. Knowing the reason for these variations they are not an interesting part of the analysis. 

Furthermore it is clear to see and intuitive to understand that with the changes in the speed of 

the boat, and the engine and drive revelutions, there is nothing in the emitted sound that can be 

stationary. 

The level of the first four clear spectral lines from the spectrogram can be seen in Figure 3.30, 

11-191 
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Figure 3.29: Spectrogram for the fourth run with the fibreglass boat. 

they are the seventh to the tenth harmonics of the drive shaft rotation frequencies, numbered 

{3,4,5,7} in Figure 3.28, and Table 3.11. Also displayed in Figure 3.30 are the two first clear 

peaks from the power spectrum in Figure 3.28, numbered I and 2, corresponding to the fourth 

harmonic to the rotation frequency of the drive and the first harmonic to the engine rotation 

frequency. Another peak that is not visible in the spectrogram but that is quite clear in the 

power spectrum is the peak numbered 6. corresponding to the fourth harmonic of the engine 

rotation frequency. It is easy to see that the level varies considerably over the run. First form 

the start where the the level is almost at zero, mostly consisting of the back ground noise. 

Then at the Closest Point of Approach (CPA), which occurs at about 60 seconds from the start, 

where the levels are at their highest. Then falling down to almost background noise levels again 

as the boat has gone past CPA and the distance increases. In the time frame closest to CPA, 

around twenty seconds before and after, there is a region where the sound levels could have 

been almost stable since the distance is fairly constant between the boat and the hydrophone 

array. Only looking at spectrogram in Figure 3.29, this might be the conclusion since the tonal 

lines appear almost as strong and clear within this time frame. Never the less, it is clear to see 

that there are rather large variations in the levels. This is due to the multipath propagation of 

the emitted sound from the boat to the hydrophone. 
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Figure 3.30: Spectral levels for the first five peaks in the power spectrum displayed in Figure 

3.28. 

In Figure 3.31 the results from a bispectrum based stationarity test are presented. The test is 
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applied to a downsampled version of the data since it is computationally demanding to estimate 

higher than second order spectra. The interesting part of the data is found below 1250 Hz in 

frequency so the test is done on the relevant part of the data. It is clear to see that the test statistic 

is over the threshold at all times and the null hypothesis of stationarity is rejected. Even if the 

KS test showed stationarity times up to 0.4 seconds it does not influence this test due to the 

fact that when estimating a bispectrum one needs to average over several time frames of data to 

ensure the significance of the estimates. In this case there are 25 windows, each of 512 samples 

in length, and that adds up to just above 5 seconds of data. 
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Figure 3.31: A bicoherence based stationaritv test applied to the data set. 

In Figure 3.32 the results from applying the KS test to the entire data file from run four from the 

fibreglass boat trial is presented. The test is applied to data lengths starting from 180 samples 

up to 1.5 million samples. In order to get data from all parts of the set the data was circularly 

shifted ten times using a tenth of the data length as a shift. Just like the KS test applied to the 

ambient noise data from the same trial the stationarity time seems to be about 10k samples, or 

roughly 0.4 seconds. 

Yet another application of the KS test is looking at the spatial difference of this trial. This is 

done by comparing the different hydrophone signals since they were placed about 50 meters 

apart. Not surprisingly there is a significant difference between the distributions functions 

for the four separate hydrophones. The KS test rejects the null hypothesis and the data is 

spatially stationary either. The test statistic T1 is equal to {0.0295, 0.0888, 0.1427, 0.0905, 
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Figure 3.32: The K-S test applied to run Jbur from the fibreglass boat trial, on data lengths 
from 180 to 1.5 million samples. The data has been circularl' shifted 10 times to 

get the different parts of the entire run into the test sequence for all data lengths. 

0. 1210, 0.1517 }, and that corresponds to comparing all the hydrophone signals to one and other 

according to, IS  - 2- .s1 - 83. S i - 84, .s2 - s3, S2 - S4. S3 - 84}. The p-value that is 

compared to is equal to 0.00 13, so Tj is at best a factor 20 too large for accepting 

While knowing that the data is not spatially strictly stationary, this leaves a possibility that it 

is stationary to some degree. The WSS quotient is calculated for the data from the four hy-

drophones. That results in a WSS quotient equal to 0. This a bit surprising, but the explanation 

lies with the data set being small. There are only four signals to compare and that leads to a 

summation over only six elements in the P array in Equation (3.62). Then by first removing 

the mean from the signal the WSS quotient rises to 0.5. And further by normalising the data so 

that the maximum value in each signal is equal the WSS quotient goes to 0.667. This leads to 

the conclusion that the data is slightly biased, and there are some low frequency disturbances 

in the data collection system (DC level). 

However, trying the same approach to removing the mean and normalising the data do not 
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change the results for the KS test. With that in mind it is safe to say, with the basis of these test 

results that the data is not spatially stationary within the array length (200m). see Figure 2.15. 

3.9.10 Testing for Symmetry and Linearity 

The first symmetry test based on the histogram is applied to the fibre glass boat trial data. The 

legnth of data segments that the histograms are estimated from is equal to 10000 samples, which 

follows from the previous stationarity test on the data that suggests a stationarity time of about 

0.4s. The histograms were estimated using 1000 bins. Examples of the histograms can be seen 

in Figure 3.33. It can be seen that there is a difference between the histograms which is also 

reflected in Figure 3.34 where the test statistic is displayed. The symmetry values differ from 

time to time. 
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Figure 3.33: Five Histogra#nsfroin the fibre glass boat trial data set. The histograms are from 

(2. Os, 30. Os, 60. Os, 90. Os, and /13.6s) respective/v. 

By studying Figure 3.34 it is clear that the test statistic lies within the limits on all occasions, 

except foir a short interval during the first 8 seconds and at one occasion at at about 12 seconds 

in and at the end of the run. So the data can be considered symmetric according to this test. 

The next symmetry test is the test based on the skewness function, and it is applied to a down-

sampled version of the same data. The reason for the down sampling is due to the computational 

cost of higher order measures and memory limitations. However, there is very little of interest 

above the 1 250H mark, so the test still reflects the nature of the interesting part of the data set. 

Looking at Figure 3.35 one finds that the results from both tests give similar results. However, 
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Figure 3.34: The test statistic - from the svnunetrv test according to Equation (3.63), applied to 

the fibre glass boat trial data. 

the regions at the start and at the end zones where the first symmetry test rejects the symmetry 

hypothesis are considered symmetric in the second test. The reason for that is likely the effect 

of the data being non-stationary, estimating the bispectrum involves a certain amount of aver-

aging and the characteristics that render the data skewed are not captured in the smoothed out 

set. The skewness function is estimated using 25 windows, each of length 512 samples. That 

equals just over S seconds of downsampled data. 

The result from the linearity test follows from the symmetry test, when the data is tested to be 

symmetrical it follows that the data is also linear. It should be noted that, since the stationarity 

tests reject the stationarity hypothesis and the linearity test is also based based on the normailsed 

hispectrum, this result should not be overiniterpreted, i.e, the data can still exhibit non-linear 

tendencies. 

3.10 Conclusions 

In this chapter different aspects of statistical properties of sonar data have been addressed. 

Mainly focusing on the level of stationarity on both active and passive sonar. It is important to 

bear in mind that all findings in this chapter are valid for shallow water environments with the 
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Figure 3.35: The test statistic from the symmetry test based on the skewness function. applied 

to the fibre glass boat trial data. 

typical bottom composition of the Baltic Sea and the archipelago of Stockholm. It is however 

reasonable to assume that similar environments, given that the acoustic parameters also are of 

close to or equal to the ones in the Baltic Sea, would give similar results for the analysis done 

above. And the general conclusions drawn from the analysis could serve as guidelines for other 

shallow water areas, as for what kind of performance one might expect from applying signal 

processing schemes. 

For active sonar the issues of ping to ping stationarity, for both the actual ping and for the 

reverberation tail, was examined and the data was found non-stationary. However, for some 

cases it is seen that there are consecutive pings that are stationary. This leads to the conclusion 

that it can be beneficial to use several pings from the same target. However it is necessary to 

remember that there is a great variation in the number of consecutive stationary pings. 

For passive sonar both ambient noise and tonals emitted from surface vessels are investigated. It 

is found that for all cases tested the sonar data is non-stationary. That is speaking of stationarity 

in the strict sense. There are however parts in the data that exhibit more stationary behaviour 

then the data in general. From the fibre glass boat trial the data seems to be stationary for about 
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0.4 seconds. That is the pdfs for two consecutive segments maintain sufficiently equal for that 

period of time. 

Testing the passive data for symmetry and linearity show that the data is mostly linear, and 

symmetrical. 

The ambient noise is found to have more stationary properties at higher frequencies. This 

leads to the conclusion that it is more beneficial to operate sonar systems at higher frequencies. 

Again this is only valid for low salinity as in the Baltic Sea, where attenuation is not of great 

importance. However, in waters with higher salinity the sonar performance would degrade from 

using higher frequency. The stationarity length on ambient noise data was examined using data 

from the from the multisensor trial (almost 800 data files). A large proportion of the data set 

also had a stationarity time of roughly 0.4 seconds, or slightly longer. 
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Chapter 4 
Time/Frequency Analysis of Sonar 

Data 

Time/frequency analysis of signals is one way of addressing the issue of non-stationarity. Since 

the signal properties change over time there is a value in finding out when and where in both 

time and frequency these changes take place. In a sonar context this traditionally means using 

a lofargram, as described in Section 2.6. 

The lofargram is a spectrogram with time running down on the y-axis and frequency on the 

x-axis. Traditionally time frequency analysis has been done on passive data, i.e. only listening 

with the sonar system, and no active transmission of sound. The Iofargram is an excellent tool 

for finding narrowband tones from sources such as the machinery, drive, and propeller. These 

tones show up as lines in the lofargram and combined with an experienced sonar operator is 

indeed a powerful system of detecting and classifying objects in the water, both on the surface 

and in the volume, see the right panel in Figure 4.1. Also see Section 2.6 where a few examples 

are given on the Iofargram of a typical sonar data recording. 

The main reason for using time/frequency analysis instead of time series or frequency domain 

analysis is the need to find where different signal components are located in time. 

The analysis of time-series data has traditionally been done by conventional time-domain tech-

niques or in the frequency domain. Over the last ten years or more, interest in the use of Time-

Frequency tools has increased. Popular techniques in the radar and sonar context have been the 

short time Fourier transform or the windowed power spectrum also known as the spectrogram. 

Later on other techniques have emerged that are more specific to the data at hand. Wigner 

Distributions [70] and others like it [71], have proved useful. Different wavelets has also been 

used [72], [73]. See Figure 4.2 for examples of chirps and chirplets, waves and wavelets. 

In this chapter the spectrogram, and Short-Time Fractional Fourier Transform (STFrFT) [74], 

[75], [76] are used to analyse sonar data. The Wigner Distribution (WD), and the Radon Wigner 

Transform are briefly discussed since the WD is a well known and widely used time/frequency 
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Figure 4.1: The panels display, from the left: A sum of sinusoids, the power spectrum, a spec-

trogram, and the lofargram. 

method. The RWT is included due to it's relation to the FrFT. 

One of the drawbacks with time/frequency methods like the WD is the cross terms that appear 

in the time/frequency images. These are discussed in more detail later on in this Chapter. 

However a major breakthrough was made with the Choi-Williams Distribution (CWD), [77], 

[78],[79], [80], which is one of the most common methods of coping with cross terms in the 

Wigner displays. It is discussed in Appendix D where it is applied to some synthetic chirps. 

The nature of active sonar data makes it easier to use a transform well matched to the received 

signal since the output of the transmitter is known. However, the return signal is always dis-

torted in a number of ways and so there is always room for improvement in trying to extract 

more information from the data. In [81] the chirplet transform is introduced and it also provides 

a useful framework for other time/frequency/scale transforms. 
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Figure 4.2: The wave and wave/el, and the chirp and chirplet. Both wavelet and chirplet can 

be viewed as wave/et basis functions and are both localised in time as well as 

frequency. 

Since the main scope of this chapter is on methods of use in a sonar and sonar operator context, 

and the most widely used method is the lofargram, the comparison of time/frequency methods 

is done between the lofargram and the STFrFT. That is mainly due to the similar fashion of 

producing the surfaces. That is windowing the signal and placing the windowed segments 

adjacent to each other to form a surface. 

Aside from applying the different transform methods an assessment is done to the quality of 

the produced image. Regardless of how good a transform seems there is often a question 

left unanswered, namely how much better one transform is compared to another, and in what 

respect. In order to answer a question like that a number of possible image quality measures, 

[82] have been explored. 

4.1 Time/Frequency Theory 

A time-frequency representation maps a one-dimensional signal f(t) into a two-dimensional 

joint time-frequency distribution P(f. '). 
The Time-Frequency Distributions represents the 
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energy distribution of the signal. 

4.1.1 Joint Time-Frequency Energy Distributions 

The time domain signal f(t) is uniquely related with the signal F(') in the frequency domain 

by its Fourier transform. 

F(w) = f(t)e t dt 	 (4.1) 

The Fourier transform F(w) is also called the spectrum of the signal f(t), and it represents the 

frequency content in f(f). The energy per time unit and frequency unit for the signal f(t) is 

E(t) and E(w), respectively. 

E(t) = If(t) 2 	 (4.2) 

E(w) = IF(w)1 2 	 (4.3) 

Then the total energy should be equally preserved in both time and frequency domains, which 

is expressed by Parceval's relation as 

CIC 	 0C 

f If(t)2dt =f IF(w) 2 dw. 	 (4.4) 

The joint time-frequency distribution P(. t) represents the energy distribution of the signal. 

The total energy of P(w, t) should also be equal to the total energy of the signal. 

Jf P(w, t)dwdt = / If(t) 2 dt = f F(w)dw 	 (4.5) 

To get the time and frequency marginal of the TFD, the TFD is integrated over frequency and 

time, respectively, 

P(t) =f P(w.t)dw 	 (4.6) 
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P() 	P('.t)(it 	 (4.7) 

The time and frequency marginals are both one dimensional distributions. The marginals should 

satisfy the conditions, 

P(t) = If(t)12 	 (4.8) 

= IF()l2 	 (4.9) 

The conditions in Equation (4.8) and Equation (4.9) do not uniquely determine the time-

frequency distribution. However, one can formulate an intuitive physical interpretation of the 

joint TFD, by defining the average and variance for the TFD. The average and variance in time 

gives an indication of where the signal energy is concentrated and the spread of the signal 

energy in time. The average in time is defined by, 

/1' = E{t} 	IP(t)dt 
=J tlf(t)I2dt 	 (4.10) 

The variance in time is given by, 

=J(t - ,i}) 2 P(t)dt =J(t_ pt)2If(t)2dt 	 (4.11) 

The average and variance in frequency describes the location and the spread of the energy in 

frequency. The average in frequency is defined by, 

= E{w} 	P()d  =1 IF(w)I 2 dw 	 (4.12) 

The variance in frequency is given by, 
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a% 	- 1i})P(w)d 	 - p)2IF(w)I2dw 	 (4.13) 

4.1.2 The uncertainty principle 

The uncertainty principle was articulated in the context of quantum mechanics, which has an 

inherently probabilistic concept. In transform theory the uncertainty principle states a funda-

mental relation between the signal and its transform. The relation can be expressed as, 

a1 a > 
1 	

(4.14) 

where Ut and a are the spread of the marginals (given by Equations (4.11) and (4.13)). This 

means that the signal and its transform cannot be arbitrarily narrow at the same time. The 

uncertainty principle only constrains the relation between the marginals and not the resolution 

in the TFD itself. Hence, the uncertainly principle and high resolution in time and frequency 

simultaneously in a TFD, do not contradict. This is due to the possibility of choosing different 

resolution in time and frequency in different parts of the TFD. However, in each part of the 

TFD the uncertainty principle always limits the resolution. 

4.2 Time/Frequency Distributions 

More recently other time/frequency and time/scale methods than the STFT have emerged. Of 

these newer methods the Wigner distribution is one of the first that springs to mind, also the 

wavelet transform is widely used. These methods offer better resolution in both time and fre-

quency and provides a much better representation of broad band signals such as transients, be 

it noise or active transmissions. The nature of these transforms are better suited for that kind 

of analysis and one way of illustrating that is to look at one basis function of the wavelet trans-

form, that is one of infinitely many. See Figure 4.2 where a generic wavelet and the chirplet 

are depicted. In cases where the nature of the data is even better understood and known as in 

active transmission of pulsed frequency sweeps (chirps) yet another method of analysing the 

sonar data presents itself, the Fractional Fourier Transform (FrFT). Never the less, the STFT is 

still a corner stone in time/frequency analysis and it is presented first of the methods mentioned 
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above 

4.2.1 The STFT and the Spectrogram 

The short-time Fourier transform is the most widely used method for studying time-varying and 

non-stationary signals. The popularity and usefulness of the method lies in it's simplicity, and 

very likely the fact that the Fourier Transform is familiar in all disciplines of science. 

The spectrogram can be used to study frequency properties at a particular time, or time prop-

erties at a particular frequency. But as previously stated arbitrarily high resolution in time and 

frequency simultaneously is not possible. When the time intervals become too short the in-

formation from the spectrum becomes meaningless, and shows no relation to the spectrum of 

the original signal. The reason is that short duration signals have large a bandwidth, and the 

spectra of such short duration signals have very little to do with the properties of the original 

signal. This is caused by the uncertainty principle applied to the short time intervals that we 

have created for the purpose of the analysis. 

To study the properties of a signal at time t, the signal is multiplied with a window function 

h(t) to produce the modified signal, 

ft() = f (7- ) h(Y - t) 	 (4.15) 

The modified signal is a function of two time variables, the fixed time t, and the running time, 

the timelag T. The window function is chosen to leave the signal as intact as possible around 

time t without introducing artefacts to the transform, and to suppress the signal outside the 

window. 

11 It<r/2 

	

h(t) 	 (4.16) 
(3 tI>r/ 2  

This gives the modified signal, 

{ 

	

 
ft  (T) 	

f(t) 	tI < T/2 
= 	 (4.17) 

0 	I tl > T/2 
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Since the modified signal contains the original signal around time I, the Fourier transform will 

reflect the distribution around that time, 

F(w) = fj (r)Jdr 
 

= f f()h( - t)eJ' T dT 

The power spectral density at time t is therefore, 

Psp(t.w) 	IFt ()I 2  

= 17 	f f(r)h(T - t)e_JwTdTI2
00 

	
(4.19) 

For each different time t a different spectrum is obtained. All of these spectra make up the time-

frequency distribution and it is called the spectrogram. The spectrogram has the the following 

general properties: 

The characteristic function of the spectrogram is given as, 

Msp(e.t) = 	T Ft())2e37-±dwdt 	
(4.20) 

= Af(e,Y)Ah(—e.Y) 

where Af(e,T) is the ambiguity function of the signal, and is defined below 

A1 (e. T) 
= 	

f*(t - r/2)f(t + T12)etdt . 	 (4.21) 

and Al,(E), T) is the ambiguity function of the window defined as, 

A/ , (6, T) =f h*(t - /2)h(t + y /2) eJetdt. 	 (4.22) 

The total energy is obtained by integrating the time-frequency distribution over time and fre- 

quency. However the total energy can also be obtained by evaluating the characteristic function 
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at zero. Then by using Equations (4.21) and (4.22), 

 ~K 

Esp = 	f Psp(i.)dtdw = AIp(O.0) 
(4'3) 

= I f(t) 2 dt x f 11(t)2dt 

Which means that the total energy of the spectrogram can be obtained by multiplying the total 

energy of the signal with the total energy of the window. By choosing the energy of the window 

to be one, the total energy of the spectrogram will be equal to the total energy of the signal. 

Then the following is integrated over frequency to obtain the time marginal of the spectrogram, 

P(t) 
= 	

Psp(t,)dw 
= 	

IF1()1

cc IDC

7 7 f f(r)h( - t)f*(TF)h* (r' - t)S(T - yF)eJ(T_T')dTdT / dw 

(4"4) 

f f f(r)h( - t)f*(y)h*(TI 
- t)ö(r - T')dTdT' 

OC 

=

- OC —3C 

I If()I2I( - t)I2dr 

To obtain the frequency marginal a similar operation but over time is performed, which yields, 

P(w) 
=/ 

F(w)I2IH( - 	 (4.25) 

It can be seen that the marginals of the spectrogram do not generally satisfy the marginal condi-

tions, which are given by Equation (4.8) and Equation (4.9). The reason is that the spectrogram 

mixes the energy distributions of the signal and the window. Because the marginals are not 

satisfied, average of time and frequency will never be correct. However, if the energy of the 

window function is chosen set to one i.e. f H(w - w')1 2 ' = 1 then the marginals are 

satisfied. 

In general arbitrarily high resolution in both time and frequency simultaneously is not possible. 

To get good time resolution a narrow window has got to be used in the time domain, vice versa 

for good frequency resolution, a narrow window in the frequency domain. But as is well known, 
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a narrow window in the time domain results in a broad window in the frequency domain, hence 

there is a trade-off between time and frequency resolution. The degree of trade-off depends on 

the window, signal, time, and frequency. The uncertainty principle (Equation (4.14)) quantifies 

these dependencies. 

4.2.2 The Wigner distribution and the Radon-Wigner distribution 

The Wigner distribution was the first distribution introduced that is qualitatively different from 

the spectrogram. The spectrogram is linear and the Wigner distribution is bilinear, see Chapter 

8 [83]. The Wigner distribution is the foundation for many other bilinear distributions, such as 

Choi-Williams method. The Wigner distribution is defined in terms of the signal, 

DC 

f(t - r/2)f(t + r12)e:Tdr 	 (4.26) 

or its spectrum, 

117 (t, W) 
= 	

F' (w + 12)F( - 
e/2)e3 e de 	 (4.27) 

The Wigner distribution at a particular time is obtained by adding up pieces made up of the 

product of the signal at a past time with the signal at a future time, the time into the future being 

equal to the time into the past, see Equation (4.26) where the signal f enters twice t - r/2 and 

t + - /2. 

In order to understand the behaviour of the Wigner distribution at a given time. The distribution 

can be viewed as the past part of the signal folded over to the future part of it, as can be seen in 

the definition 4.26. 

If there is an overlap in the signals, the properties in the overlap are also present in the Wigner 

distribution at the time. An example of this is shown in Figure 4.3. Where a signal consisting 

of: 

• The top panel displays the Wigner distribution of a CW at 700 Hz of 0.02 seconds length, 

followed by another 0.02 seconds of zeros and then another CW at 1 .2kHz, also of 0.02 

seconds in length. 
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• The bottom panel displays the Wigner distribution of the same CW's as the top panel but 

the zeros are exchanged for Gaussian (N(O, I)) noise. 
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Figure 4.3: The Wigner distribution for two CW signal separated in time, in the top panel the 

gap between the CW signals is zeros, whereas in the bottom the gap is Gaussian 

(N(O, I)) noise. 

The signals displayed in Figure 4.3 are finite duration signals with noise, or zeros present for 

only a short period of time, [0.02-0.04s]. The following applies regardless of what signal prop-

erty might be present at any given time but it is easiest described in terms of noise. To determine 

if there is noise in the Wigner distribution at a time, one can mentally fold the signal at that time 

of interest. If there is noise in the overlap there will be noise in the Wigner distribution, even if 
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there is no noise in the signal itself at that time, see Figure 4.3 outside the interval [0.02-0.04s]. 

This yields that the Wigner distribution weights the far away times equally to the near times, 

which states that the Wigner distribution is highly nonlocal. 

All properties for the time domain also hold for the frequency domain, because the Wigner 

transform is almost identical in form in both domains. 

It has already been mentioned that the Wigner distribution is nonlocal. What will happen if 

we have a signal of infinite duration? From the discussion above it is clear that for an infinite 

duration signal, the Wigner distribution will be nonzero for all times. 

Consider the signal already presented in the bottom panel Figure 4.3, it is a signal of finite 

duration. First the Wigner distribution is calculated for times before the signal starts. It is clear 

that folding the signal over from a time before the signal has started, does not result in any 

overlap. Neither will calculating the Wigner distribution for a time after the signal has ended. 

W(t, w) = 0, fort outside (t1, t2) if f(t) is zero outside (ti, t2) 	(4.28) 

As mentioned before the properties of the Wigner distribution are basically the same for the 

frequency domain as for the time domain. So for a band limited signal the Wigner distribution 

will be zero for frequencies outside the band, which gives 

	

W(t,w) = 0, for  outside (W1, W2) if F(w) is zero outside (W1, W2) 	(4.29) 

For the Wigner distribution the characteristic function is given by, 

00 00 

MW(e,7-) = f f W(t,w)e3(et+Tdtdw 
-00-00 

00 00 00 

= 	5 5 5 e3)f(t - r'12)f(t + TI12)eiTd7-drdw 
-00 -00 -00 

00 00 

= 	
(4.30) 5 5 e(r - T)f*(r - 	- T'/2)dT'dt'  

-00-00 
00 

5 f*(t - r12)f(t + y/2)etdt 
-00 

= A(e,r) 

where A(9, r) is the symmetric ambiguity function. For the Wigner distribution the character - 

istic function equals the ambiguity function, see page 74 in [84]. In terms of the spectrum that 
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yields 
00 

Mw (E), r) =f F*(w + e12)F(w - e/2)eiTwdw 	 (4.31) 

—00 

The Wigner distribution is real valued for all signals. This can be shown by looking at the 

complex conjugate of the Wigner distribution. 

00 

	

W*(t ,w ) = 	f f(t - 7-/2)f*(t + r/2)eiwTdr 
-00 

-00 

= - f f(t - r12)f*(t + T12)e_iwTdT 
00 	 (4.32) 

00 

	

= 	f f(t - r/2)f*(t + r/2)eiwTdr 
-00 

= W(t,w) 

Observe the change in the integration limits in the second row of Equation (4.38). The sym-

metry properties of the Wigner distribution are examined by substituting -W for W. And that 

yields: 

For a real signal, the same form is returned for —w as for w. Real signals have symmetrical 

spectra which leads to the Wigner distribution being symmetrical in the frequency domain. 

Similarly, for a real spectra the time signal is symmetrical and the Wigner distribution is sym-

metrical in time. 

W(t, w) = W(t, —w) for real valued signals. 

(4.33) 

Symmetrical spectra, F(w) = F(—w) 

W(t, w) = W(—t, w) for real valued spectra. 

(4.34) 

Time reversible signals, f(t) = f(—t) 

The Wigner distribution satisfies the marginals, starting with the time marginal, 

00 

f W(t, w)dw = If(t)1 2 	 (4.35) 

00 
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and the frequency marginal, 
00 

f W(t,w)dt 	 (4.36) 

—00 

Which can be verified by looking at the characteristic function 

MW (E), 0) 
= f If(t)I 2 e3etdt 	MW (0, r) 

= f IF(w)I 2 eJTwdw 	(4.37) 

That the Wigner distribution satisfies the marginals can also be calculated directly, starting with 

the time marginal, the distribution is integrated over frequency, 

00 

P(t) = f W(t,w)dw 
-00 

00 	-00 
1 	r  1 = 	j 	f f(t_712)f*(t+r/2)eTdTdw 

- 	 CO 	 (4.38) 
00 

= f f(t - T/2)f*(t + r/2)(r)dr 
-00 

= Is(t)1 2  

Then to obtain the frequency marginal of the Wigner distribution, the integration is done over 

time in a similar way, which yields, 

00 

P(w) =f W(t,w)dt = IF(w)12 	 (4.39) 

—00 

Equations (4.35), and (4.36) state that the Wigner distribution satisfies the marginal conditions. 

Since the marginals are satisfied, the total energy condition is automatically satisfied, that is 

00 00 	 00 

E 
= f f W(t,w)dtdw 

= f f(t) 2dt 	 (4.40) 

-00-00 	 -00 

An example of how the WD looks for two chirped signals can be seen in Figure 4.4. The 

signals are, starting with the one of slightly lower frequency, a chirp of approximately 0.04 

seconds duration with a start frequency of 5.1kHz ending at 7kHz. The second chirp is one that 

starts at 7kHz and stops at 9.9kHz, and also of 0.04 seconds duration. 

In Figure 4.5 the same two chirps are shown, with the difference that they are now separated in 

105 



0.5 
N 
I 

> 
0 

0 

a-ci 
LL 

iI 

—1 

Time/Frequency Analysis of Sonar Data 

time. It is noteworthy that the cross terms are visible where the signals are equal to zero. This 

is yet another example of the nonlocal behaviour of the WD described in the beginning of this 

section. 

X 10
4 

0 	0.005 	0.01 	0.015 	0.02 	0.025 	0.03 	0.035 	0.04 
Time [s] 

Figure 4.4: The Wigner distribution for the sum of two chirps 

In [85], it is stated that the WD can be an optimal detector for linear frequency modulated pulses 

given that the noise is AWGN and that the WD is integrated along all possible rotational angles 

of the time/frequency plane. This is actually equivalent to performing a Radon Transform 

(RWT) on the signal, [86]. In [87] the theory on the discrete implentation of the RWT is 

presented, then it is followed by applications in [88]. 

In [891, [90] the RWT of a signal f(t) is defined as 

D1 (r. d) = Riv,  [f (t)] = R[W1 (t, w)] 
(4.41) 

= f TV1 (rcos() - ssin(). rsin() + scos())ds, 

tons 
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Figure 4.5: The Wigner distribution for two chirps separated in time 

r 	the t-axis rotated an angle 

S 	 the w-axis rotated an angle 

where 
W1 	WD 

R[] 	Radon Transform Operator 

Radon-Wigner Operator 

Dj (r.d) RWTofasignal 

An example of the RWT applied to synthetic data can be seen in Figure 4.6, where both the 

WD and the RWT of a linear chirp are displayed. The chirp has a bandwidth of ]—'kHz, a 

centerfrequency of 6.25kHz and a duration of I Orris. 

Another example is shown in Figure 4.8 where the RWT and the WD of a chirp from the SAS 

trial data set are displayed. In Figure 4.7 one slice of the surface in Figure 4.8 is displayed. 

This is at the optimum rotational angle 74°, i.e. the rotational angle where the maximum pulse 

compression is achieved. 
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Figure 4.6: The Wigner distribution and the Radon-Wigner tranforrn of a linear chirp. The 
chirp has a bandwidth of 12kHz, a centerfrequencv of 6.25kHz, and a duration of 
lOins. 
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Figure 4.7: Radon-Wigner transform of a linear chirp, at  rotational angle of 74 degrees. The 

chirp has a bandwidth of 12kHz, a centerfrequencv of 6.25kHz, and a duration 
of lOms The Y-axis is the normalised amplitude of the RWT and the x-axis is the 

rotated frequency axis. 
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4.2.3 The Short Time Fractional Fourier Transform 

Before getting to the Short Time Fractional Fourier Transform (STFrFT) the Fractional Fourier 

Transform (FrFT) is introduced. The FrFT is a generalization of the Fourier Transform (FT) 

developed within the optics community which uses linear chirps as the basis functions, see [91] 

and [92]. 

The traditional FT decomposes signals by sinusoids, whereas the FrFT is a decomposition of 

signals by chirps. More formally the FrFT can be defined as follows, see [76] 

FrFTf(t) = 	e_ 3 	_ e jy2 cot 2  

(2irIsinI) 
,. 

i—
oo  

c,o e 	 (4.42) 

where V = 	, = sgn(ço), a is the order of the transform. For a = ±1 the FrFT reverts 

to the traditional FT, where t and y time and frequency respectively. The FrFT can defined in 

several different ways, see [84]. In the format the FrFT is presented above it can be viewed as 

four separate parts: 

A multiplication by a chirp in one domain 

. A Fourier Transform 

A multiplication by a chirp in the transform domain 

A complex scaling. 

The order of the transform is decided by the chirp properties, so that 

a = 2 - arctan( 
5f _/5t) 	

(4.43) 
2a 

Where a is the rate of change in the chirp, 8f is the frequency resolution equal to f8 1N, and 

6t is the time resolution equal to 11f, f8 is the sampling frequency and N is the number of 

samples. The expression can be rewritten as 
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2 	fs 
= - arctan( 	/ ) 	 (4.44) 

71 	 2a 

The rate of change in the chirp comes from the general expression for a linear chirp, 

g(t) = 	 3(at2+bt+(,) 	 (445) 

with the instantaneous frequency 

	

= 2at + b 
	

(4.46) 

which is the derivative of the phase for a linear chirp. 

In the case of active sonar data, the wave form is known and the transform order , can be 

given. However, if when the chirp properties are not known, u has to be optimized. Consider 

Figures 4.9,and 4.10 where the FrFT has been calculated for ct ranging from -Ito 1. At o = ± 

0.997 one can see that the pulse compression is the highest and therefore this is the optimum 

transform order for this specific chirp. 
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Figure 4.9: Verifying the optimunt choice of a, values going from -Ito 1, highest level of pulse 
compression at a = 0.997 and -0.997 
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Figure 4.10: The optimum choice of o same as in Figure 4.9 but a d/fr rent view. Note the 

ridge that goes in an arch over the entire tran.formn plane and has its peaks at the 

points G = 0.997 and -0.997 
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Figure 4.11: The FrFT applied to a linear chirp. The chirp has a bandwidth of 12kH17, a 

centerfrequencv of 6.25kHz, and a duration of' / 0,ns. The v-axis is the normalised 

amplitude of the FrFT and the x-axis is the fractional frequency axis. 
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In Figure 4.11 the FrFT of a linear chirp from the SAS sea trial is displayed. It is worth noting 

the similarity between the Figures 4.7 and 4.11, the RWT of a signal at the optimum rotational 

angle is equal to the FrFT of the signal. The differences in the images are due to the differences 

in the implementation of the FrFT, also see [93]. 

The FrFT, as with the FT, does not provide any information about time, only frequency. So 

there is no way of telling when an event including certain frequencies occur. The solution 

to this problem is the development of a Windowed FrFT [94] or the STFrFT, and it can be 

calculated in the same way as the Short Time Fourier Transform (STFT), or the spectrogram. 

The definiton for the spectrogram is shown in Section 4.2.1. Keeping the same approach in 

mind the STFrFT is defined as a windowed version of the FrFT, using a window function h(t) 

to produce a modified signal ft(T) 

ft(r)=f()h(r—t) 

Just as before in Section 4.2.1 the modified signal is a function of two time variables, the fixed 

time t, and the running time, the timelag T. The window function is chosen to leave the signal as 

intact as possible around time t without introducing artefacts to the transform, and to suppress 

the signal outside the window. 

J 1 ItHzr/ 2  h(t)=1 	
tI>r/2 

This gives the modified signal, 

ft  (T) 

= { 

f(t) Iti <r/2 

0 	ItI>r/2  

Since the modified signal contains the original signal around time t, the FrFT will reflect the 

distribution around that time, 
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FrFTf(t) = 	 e12 cot ; 

(27rs?n,5I)2 

fff0 e_+Jt2 Cot f(y)(/r 	 (4.47) 

So that each FrFT/ff(T) makes up a slice in the time frequency display at time t. see Figure 

4.12, for both the STFrFT and the spectrogram. 
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Figure 4.12: STFrFT compared to the STFT of a sonar signal, a linear chirp with a bandwidth 
of 1kHz and a center frequency of 1.5kHz, and a duration of 200ms 

4.3 Assessing Image quality in the time/frequency displays 

In [82] there are a number of image quality measures proposed. The problem that is addressed 

in this section is posed differently so they are not necessarily applicable as they are. The aim 

for the measures in [82] is quantifying image quality degradation due to compression of the 

images, whereas our aim is quantifying the advantage one transform method has over another. 

A measure that aims at quantifying the focus of the image or rather how focused the structures 
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in the image are, is the Q - value, see Figure 4.13 for an explanation of the definition, Figures 

4. 14, and 4.15 for an example of how it works. The idea is. the better the transform behave, the 

more localized in time and frequency, the structures are. In this case the structures are mostly 

lines or curves in a typical time/frequency display, see the right panel in Figure 4. 1, and Figure 

4.15. The Q - value is defined below as, 

	

(2 = 10 log 10 TV 	 (4.48) 

where H is the height of the peak over the noise floor, and 11' is the width of the peak at the 

noise floor. 

The Q value springs from a number of different uses and different areas, physics, electronics 

and indeed signal processing. Within the field of optics, it is a quotient between energy con-

tairied in a cavity and the energy that dissipates from it. see 1951. That means that the (2 value 

is a quality measure of the cavity in question. 

In spectral analysis it is ratio of the mean squared over the variance of the frequency estimate, 

see [69]. And it is defined as follows, 

r[n
i XJ2 

Q 	
: 	) 

var[P"(f)] 

where P(f) is the power spectrum. The Q values is defined for each frequency, .f. 

In electronics the Q-value is a goodness measure for filters and such, where it is defined as a 

quotient between the center frequency and width of the frequency response of the filter at the 

-3dB level, 

QB = :. 	 (4.50) 

where fo  is the center frequency and Sf is the -3dB bandwidth, see [96]. 

The two curves in Figure 4.14 correspond to the amount of pulse compression a transform gives. 

The larger the pulse compression the larger the Q - ia/,u , so for the curves in the Figure we 
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Figure 4.13: The Q-t'alue is defined as the quotient between the height and with/i of the peak 

over the noise floor 

have QbIark >> Qreo 

Note that neither the lines in Figure 4.14 or the two curves in Figure 4.15 are results from actual 

transforms. They are Gaussian probability density functions and are used to illustrate the the 

principle of more focused images and more localised transforms. The images in Figure 4.15 

were produced taking the Gaussian curves in Figure 4.14 and moving their center of gravity 

along a sinusoid. Then these shifted Gaussians were placed next to each other to form an image 

that looks like a time/frequency plot. This was done because it is easy to have complete control 

over the appearence of a Gaussian, and it gives an idea of what kind of difference a more 

focused image can make. 

Another measure is the average distance AD as defined below. The expression has to be slightly 

rewritten, from the original in 1821 where it was used as a measure of image dissimilarity 

between an original image and a compressed version, to its current form below 

AD = 	j 	- SH 	
(4.51) 

N rows x Ncols 

Where i = 1 ... Ncols, and j = 1 ... Nrows. The matrices are equally sized Ncols x Nrows. R 
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Figure 4.14: Comparing the Q-values for two different transforms to give a measure ofjbcus. 

For the curves in the figure we have Qb/ack >> Qred, so the Q - value is a lot 

higher for the black curve, ie. it is more focused. 

is the time frequency surface made with the transform of interest on real data and S is the 

same transform applied to synthetic data. The synthetic data is made out of synthetic chirps 

with arrival times and amplitudes matching the real chirps in the real data, with white noise 

added to avoid effects from the transforms being applied to zero vectors and also giving a fairer 

comparison between the transforms, see Figure 4.18. 

A second measure that is applicable in this context is a measure based on the dynamics in the 

transform surface, a measure we choose to call D, for Dynamics. 

D = 10 log10 
max(R) 	

(4.52) 
min(R) 

where R is the matrix containing the transform surface, be it performed on real or synthetic 

data, and max(R), inin(R) refers to the largest and smallest value of R. 

Yet another way of quantifying the quality of an time/frequency surface is to look at the condi- 

tion number of the transform matrix. That is, the ratio of largest to smallest singular value of 

the matrix. The measure is defined as the quotient between the condition number for the real 

0.2 
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Figure 4.15: Comparing the Q-values for two dtJerent transforms to give a measure offocus. 

The upper panel is made stacking displaced versions of the black curve in Figure 

4.14 adjacent to one aother and the lower one is made in the same wa using the 

red curve in Figure 4.14. 

and synthetic matrices, as below 

	

Cq = 1()Logio cond(R) 
	

(4.53) 
cond(S) 

where R and S are the real and synthetic transform matrices. Knowing the condition number of 

the matrix tells us something about the amount of information in the matrix, and also provides 

a metric that makes it possible to compare the real and synthetic matrices. The idea is that 

the better the transform behaves on real data the smaller the difference between the real and 

synthetic matrices is, and also a transform that produces an image with as few artefacts and 

as little content, still producing the desired features, as possible will have a lower condition 

number. If the data one is analysing is strictly tonals without much variations, the image matrix 

produced should be almost be a linear combination of the first column in the transform matrix, 

hence giving the lower condition number. 
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4.3.1 Applying the Image quality measures 
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Figure 4.16: STFrFT compared to the STFT of a sonar signal, a linear chirp with a bandwidth 

of 1kHz and a center frequency of 1.5kHz, and a duration of 200,ns. The topmost 

panel displays the STFrFT. the middle one displays the STFT both on real data. 

The bottoin panel displays the STFrFT on the synthetic data. 

The data that is chosen for the time/frequency image quality assessment is two different sets. 

The first one is from the reverberation measurements done at Utö in 2001, see Section 25.3. 

The second data set is the SAS experiment from 1999, see Section 2.5.4. The reason for picking 
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these two data sets is that they represent two different chirps, the first one has a very low rate 

of change and a rather low bandwidth, and the second set consists of chirps with a high rate of 

change and large bandwidth. 

STFrFT of the real data 
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Figure 4.17: STFrFT compared to the STFT of a sonar signal, a linear chirp with a bandwidth 

of 60kHz and a center frequency of 90kHz, and a duration of l,ns. The topmost 

panel displays the STFrFT the middle one displays the STFL both on real data. 

The bottom panel displays the STFrFT opn the synthetic data. The first of the 

chirps is the transmitted pulse and the other 6 are returns from objects in the 

water volume. 
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In Figure 4.16 the analysis results of a linear chirp with lkl-Iz bandwidth, a center frequency of 

1.5kHz, and a duration of 200ms is presented. Both the STFT and the STFrFT are calculated. 

For the sake of comparison the window lengths are the same. There is no overlap between 

consecutive frames. A Harming window is applied when estimating the spectrogram. In Figure 

4.17 the panels display the STFrFT and the spectrogram on the other linear chirp. It has a 

60kHz bandwidth, 90kHz center frequency, and I ms duration. 

It can be seen that the STFrFT images have slightly fewer artifacts introduced by the transform. 

The reverberation after the chirp has been transmitted can be seen in the spectrogram and it is 

spread over the entire frequency band of the chirp, whereas it is more suppressed in the STFrFT 

and less spread out in frequency. In Figure 4.17 where the data with the higher chirp rate is 

presented the advantage of the STFrFT is easier seen. However, with longer analysis windows 

the fractional transform produces even better localized peaks, but by using longer windows the 

time resolution suffers as with any short time transform. 

The real matrices R for both the STFrFT and the spectrogram can be seen in the two top most 

panels in Figures 4.16 and 4.17. 

All the image quality measures mentioned above, in Section 4.3, are applied to the data. And 

the results for the Average distance, Dynamics, and the Condition quotient are presented in 

Table 4.1 Out of these three measures the Ad and Cq is done as comparisons between synthetic 

and real data. An example of the real and synthetic timeseries can be seen in Figure 4.18. 

The chirp with a bandwidth of 1kHz 

Method / Measure Spectrogram STFrFT 
Average distance (Ad) 3.8 x 10 3.7 x 10 

Condition Quotient (Cq) 12.0 18.2 
Dynamics (D) 65.3 51.8 

The chirp with a bandwidth of 60kHz 

Method / Measure Spectrogram STFrFT 
Average distance (Ad) 1.5 x 10 5.3 x i0 

Condition Quotient (Cq) 2.73 2.38 
Dynamics (D) 56.3 50.4 

Table 4.1: The results from applying the Ad, D, and Cq measures to the Utä and SAS trial 
data. 

One can see that the average distance measure is smaller for both surfaces produced using the 
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Figure 4.18: The timeseries from the SAS experiment that the image quality measures are ap-
plied to. The synthetic time series is displayed in the top panel, and real time 
series in the bottom one. 

STFrFT, but the difference is smaller when the chirp rate is lower, as would be expected. The 

dynamics measure is greater for the images produced with the spectrogram. 

The results from applying the condition number quotient are a bit inconclusive, for the chirp 

with the higher frequency the condition number is lower as it was expected since having a less 

cluttered image would produce a matrix with a smaller difference between largest and smallest 

eigenvalues. However in the case of the 1kHz chirp, although the image looks less cluttered the 

Cq number is higher. 

The Q-value has been applied to the higher chirp rate time frequency image. It was applied 

to the slices of Figure 4.17 where there is a clear return visible and the results can be seen in 

Figures 4.19, 4.20, 4.21, and 4.22 and Table 4.2. 

In most cases the Q-value is larger for the STFrFT than for the STFT. However, there are cases 

when the STFT outperforms the STFrFT. In Figure 4.22 the Q-value is larger for the STFT. 
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Time [s] 	(Peak number) Q2-value, Spectrogram Q i -value, STFrFT 

0.0519 	(1) 0.16 1.09 

0.0588 	(2) 0.13 1.59 

0.0669 	(3) 0.14 1.10 

0.1163 	(4) 0.11 0.28 

0.1319 	(5) 0.37 0.99 

0.1450 	(6) 0.12 1.20 

0.1450 	(9) 0.11 0.09 

Table 4.2: The results from applying the Q- valueto the SAS trial data. 

This is due to the fact that, it is the STFrFT for the lower half of the STFrFT spectrum that is 

compared to the STFT. Where the FT is entirely symmetrical the FrFT is not so it is important 

to use the right part of the image one wants to make the comparison over. 
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Figure 4.19: The Q-value for peak number one. 
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Figure 4.20: The Q- value for peak number two. 

0.8 

CL  
cz 0.6 

ci 
N 

( 

0.4 
0 
Z 

0.2 

C 

L
12

1214  01  

- 

14 	16 	18 	20 	22 	24 

Normalized frequency 

Figure 4.21: The Q- value for peak number three. 
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Figure 4.22: The Q- valueJbr peak number nine. 

4.4 Conclusions 

Although mentioning a number of time/frequency analysis methods and pointing out their pos-

sible uses the time-frequency analysis in this chapter has been done using the traditional Short 

Time Fourier Transform, and the Short Time Fractional Fourier Transform. Performance com-

parisons are made between the two different transforms and it is shown that matching the trans-

form to the nature of the data improves the quality of the time-frequency images. I.e. if the 

data consists of chirps then it is benefitial to decompose the timeseries using a chirp as a basis 

function rather then using sinusoids (the FrFT and FT respectively). It is important to note 

that when the chirp rate approaches zero (a sinusoid is a chirp with zero chirp rate) there is no 

advantages to use the STFrFT over the STFT to produce time/frequency images. 

In the second section of this chapter a number of different metrics for image quality assessment 

are defined and evaluated using the time/frequency images produced with the aforementioned 

transform techniques. 

The results show that the Fractional Fourier Transforms (FrFT) has advantages over the tradi- 
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tional short time Fourier transform, as they make use of the knowledge of the transmitted wave 

form 

Of all the implemented image quality measures (Q - 'ilu. Ad. D. Cq) the Q-value seems to 

be most consistent with expectation and proves reliable for the presented images. The other 

metrics have their use but should be applied with a bit of caution since the results found were 

inconclusive. 
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Chapter 5 
Data Conditioning Methods applied to 

Sonar Data 

Recorded sonar data is processed in many different ways to extract information from the sig-

nals. Trying to separate different sources of sound, or identifying vessels by examining the 

emitted tonals, is often done in the time-frequency domain, i.e. using the lofargram. Narrow-

band components appear as long-time duration lines and transients as broadband short-time 

duration pulses. The transients may be generated by the same source as the lines, from an-

other near distance source, or be a part of the additional ambient noise. If the transients are 

considered as disturbances they are preferably suppressed in the Lofargram. Furthermore, con-

ventional spectral estimation methods are based on the assumption of stationarity. If transients 

and narrowband components are mixed in the estimation window, distortion and masking of 

the lines may occur especially in the low SNR regimes. If suppression or removal of transients 

is possible, the source signal identification of spectral lines may be improved. 

In this section two methods of improving sonar data are applied. The first one is a method 

of stepwise outlier rejection. The rejection of outliers is done in a hispectral domain, and 

incorporates different methods of replacing the rejected data. 

A second method for improving the visibility of relevant spectral lines in a Iofargram is also 

performed, instead of trying to get rid of data by regarding parts as outliers the signal is decom-

posed by using the method of empirical decomposition. 

5.1 Outlier rejection 

The stepwise outlier rejection method is used to detect and remove the data containing distur-

bances. This method of rejection of outliers has been used earlier for sonar data conditioning, 

see [59],[47], [97], and [48]. One disadvantage with the outlier rejection method is the require-

ment of relatively long data sets for significant estimates due to the properties in the bicoherence 

domain, see [98]. The procedure attempts to identify any quadratic phase couplings (QPC) for 

127 



Data Conditioning Methods applied to Sonar Data 

testing of independence of sources, therefore, the amount of the data used in the estimation 

should be kept intact if possible. Instead of reducing the data set by the removal of the rejection 

method, the data points that are rejected are replaced. 

0 

I 
2. 
40 

Frequeneyf1  

Figure 5.1: The non-redundant part IT of the principal domain used for hispectral estimations. 

fN is the Nvquist frequenc' 

The assumptions for the outlier rejection are; the estimates at each bifrequency are independent 

and if no transients are present in the estimation window the bispectral values follow a bivariate, 

normal distribution with unknown mean and variance, [99],[ 100]. 

The individual bispectrum B(k.i) as defined in Equation (3.41) for each block ii = 1.2, ... L is 

estimated, see [101]. Then the averaged bispectrum as defined in Equation (3.43) is estimated. 

The bispectral estimates are restricted to the non-redundant part of the inner triangle (IT), 

11.12 0. fl ~ 12.11+12 IN 

see [102] and Figure 5.1. 

The difference for each frequency triplet from the global mean is compared with a statistical 
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table at the required significance level using a chi-squared test, [103]. If the value is larger than 

the threshold it is considered an outlier, and is rejected, removed from the bispectral estimate 

and replaced by a value depending on the method. The procedure is repeated until all values are 

considered as inliers to form the modified bicoherence used in the projection in Equation (3.43) 

to form a modified Lofargram, (see Section 2.6 for examples of Lofargrams). The different data 

replacement methods are summarised in Table 5.1. For estimation of passive underwater target 

features such as spectral lines in the Lofargram, it is important to use as significant values as 

possible. If the sonar data contain short-time disturbances, with unknown amplitude, arrival 

and duration time, the estimated spectra lines may be distorted. In this case it is difficult for 

a limited time and frequency resolution to achieve significant estimates. For reduction and 

removal of disturbances a stepwise outlier rejection algorithm is used, see [59]. 

Figure 5.2: The nearest neighbour (NN) of an outlier value in the bispectral domain used by 
method B, C, D and F 

Method A is based on replacing each outlier value in the bispectrum domain by a zero. Instead 

of using zeros as replacement values, the other methods B to D and F use nearest neighbour 
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Method Replaced outlier value 

A Zero 

B Mean of nearest neighbour (NN) 

C Median of NN 

D Minimum of NN 

E Mean of a global slice 

F Mean of a NN slice 

Table 5.1: Data replacement methods for replacing outlier values. 

(NN) values in the bispectrum domain as can be seen in Figure 5.2. Around the outlier value at 

a distance of at least one value from the bispectral manifolds, the number of nearest neighbour 

values are eight. For method B the mean of the eight values is estimated, for method C and D 

the median and the minimum value are estimated, respectively. Methods E and F use slices of 

the NN to replace the outlier value. The slices are produced by holding the value of frequency 

fi constant, i.e. producing a slice along the frequency f2 axis. Three values in both directions, 

not counting the outlier value are used, by taking the mean of the six values. For method F the 

mean of all values along the slice is estimated. 

5.1.1 Data analysis and results 

The data set analysed in this section is the fibre glass boat trial as described in section 2.5.6. 

First the bicoherence for a segment 10-40 seconds of the data is shown in Figure 5.3. Then the 

same data is processed with the the outlier rejection method and the data considered as outliers 

is replaced using method D, see Table 5. 1, and the result can be seen in Figure 5.4. It is clear to 

see that the number of visible points are reduced, and the ones remaining are the ones that are 

quadratically phase coupled. Amongst the coupled frequency pairs the most prominent ones 

are the ones that are related to the different rotating parts of the machinery, such as the engines 

crank shaft, primary drive, and the propeller. 
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Figure 5.3: Bicoherence estimated from the same data as in Figure 2.18. 
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Figure 5.4: Bicoherence with outlier rejection and data replacement method D applied for the 
same data as in Figure 5.3 
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Figure 5.5: Time-frequency display (Lofargram) by bicoherence projection with outlier rejec-
tion and method A. 
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Figure 5.6: Time-frequency display (Lofargram) by bicoherence projection with outlier rejec-
tion and method B. 

As can be seen in Section 2.5.6 the length of a complete recording is about 115 seconds in total. 

In the analysis the data was divided into time frames of 15 sec. Very little information about 

the source was found above 1 kHz so the data is lowpass filtered and down sampled to 2.5 kHz. 

The frames of data are segmented into 36 non-overlapping blocks of 1024 samples each. The 

estimation is performed in 0.2 sec steps of the time frame. The estimate is from the same data 

as in Section 2.6. 

The Lofargram in Figures 5.5, 5.6, 5.7, and 5.8, display the final result with data modified by 

outlier rejection and data replacement methods A, B, D and E. The lofargrams are estimated 

by a projection of the bicoherence, so that the frequencies are averaged over fi  and then as 

usual in Iofargram analysis, the slices produced are placed adjacent to one and other to form a 

time/frequency display. It can be seen that the spectral lines are more stable for the Lofargram 

based on the modified data throughout the entire run. It is however not very easy to distinguish 

between the different data replacement methods. Although it seems that the methods B,D and 

E allow more variation in the spectral lines whereas method A appears to give a thin sharp line 

in the lofagram. Depending on the data at hand and the goal for the conditioning there is reason 

to use either methods A or B (or depending on the width of the peaks in the bicoherence surface 
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Figure 5.7: Time-frequency display (Lofargram) by bicoherence projection with outlier rejec-
tion and method D. 

the methods C, D, and E might be good candidates). 

Method A would be best suited when the target that appear as spectral lines in the lofargram 

holds a constant speed (i.e. constant engine and propeller revolutions). Conversely, method B 

would work better when it is known that the speed of the target might not be constant and the 

slight variations in the spectral lines are not to be considered as outliers. All of the methods of 

replacing data are done after removing the outliers, so the methods B-E (based on the value of 

the nearest neighbours) affect the distribution of the bicoherence surface the least. 

5.2 Empirical Mode Decomposition 

A new way of analysing non stationary data has recently been developed by [104], termed 

Empirical Mode Decomposition (EMD). It is a purely data driven analysis method that decom-

poses the signal into so called Intrinsic Mode Functions (IIMF's). The introduction of EMD has 

aided the understanding of instantaneous frequency concept, and hence the well known Hilbert 

Transform is refered to as the HH-Transform (HHT) in many recent publications (the Hilbert 
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Figure 5.8: Time-frequency display (Lofargram.) by bicoherence projection with outlier rejec-
tion and method E. 

Transform a method for obtaining the analytical signal). Further work on the algorithm has 

been done in [105], and [106] to name a few. The algorithm has been applied to different fields 

such as Geophysics in [107], and another application for the EMD algorithm is naturally sonar 

data, which follows from the previous attempts of applying different time/frequency methods 

to analyse the data. In this section the EMD algorithm is explained and then applied to a sonar 

data set, see section 2.5.6. The data set has been analysed using the spectrogram and also been 

tested for various statistical properties, in chapter 3. 

5.2.1 The EMD Algorithm 

For a signal x(t) the EMD algorithm can be summarised into five steps as follows 

Identifying all extrema of x(t). 

Interpolation between the maxima and minima, and retrieving a function of the envelope 

em jn (t) and emax (t). 

Computing the average of the envelope function m(t) = (emjn (t) + epiax (t))/2 
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The extraction of the detail from the data d(t) = x(t) - m(t) 

Iterate on the residual m(t) until it is sufficiently small 

The first step from the summary is rather self explanatory and is left as it is. The following steps 

might however, require further explanation. The second step of the summary is the definition 

of the minimum and maximum functions of the envelope, so that (e1  (t) describes all the 

minima from the original time series and, emax (t) describes the maxima from the time-series. 

Then the third step is simply the mean of these two envelope functions. The fourth step of 

extracting the so called detail from the data is a matter of finding the most rapidly oscillating 

modes from the data and extracting it, thus creating the IMF's. Then the fifth and final step is 

to iterate the entire process until the residual is sufficiently small. Small enough in this case 

means leaving a monotonic function as a residue that no more IMF's can be extracted from. 

This is also known as the sifting process. The entire signal can be recovered from the IMF's 

and the residual such that 

x(t) = 	d + r 
	

(5.1) 

The decomposition of the signal into empirical modes is made under the following three as-

sumptions: 

The signal has at least two extrema, a minimum and a maximum 

The Characteristic time scale of the signal is defined by the time between the extrema 

If data is completely devoid of extrema but contain only inflection points then it can be 

differentiated to reveal the extrema, thus it needs to be n times differentiable. 

The IMF's satisfy the following two conditions: 

In the whole data set the number of extrema and zero crossings is equal or differ at most 

by one. 

At any point, the mean value of the envelope defined by the local maxima and, the enve-

lope defined by the local minima, is equal to zero. 
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5.2.2 Data analysis and results 

The fibre glass boat trial data is analysed to see if the EMD algorithm can reveal more in-

formation from the data than the traditional time/frequency methods. This data set is rich in 

harmonics from the rotating parts of the boats engine and drive, and it is interesting to find 

out if the EMD algorithm can separate the different components of the signal and maybe relate 

the different tonals to each other, see Figure 5.9 for the Power spectrum of the fibre glass boat 

data up to 300 Hz, and Table 5.2 for the frequencies that can be seen as peaks. The fibre glass 

boat data also has some outliers in it according to the data conditioning done in the previous 

section. These outliers are usually spiky noise, and broad band in their nature. This leads to a 

degradation of the spectral lines in the spectrogram or the lofargram. If these noise components 

can be caught in one or several of the imfs then the lofargram can be improved by only using 

those imfs that include the harmonics. 

The data analysis in this section falls into three parts: 

• Producing Hilbert spectra of the data. 

• Comparing the intrinsic mode functions and their spectra with the ordinary power spec-

trum of the signal. 

• Conditiong lofagrams by using the intrinsic mode functions as an input to making the 

lofargram. 
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Figure 5.9: The Power spectrum of the fibre glass boat trial data, for 65-80 seconds, including 

CPA. Also see Table 5.2 where the frequency peaks are noted. 
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The frequncy peaks from Figure 5.9 in Hz. 

19.5 64.4 117.1 180.8 234.2 

39.5 78.2 136.6 195.3 253.7 

45.4 90.4 156.1 206.9 273.1 

58.7 97.7 175.8 214.7 296.2 

Table 5.2: The indentsfied frequency peaks in Figure 5.9. 
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Figure 5.10: The Hubert spectrum of the fibre glass boat trial data for the part that includes 

CPA, 65-80 seconds 
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Figure 5.11: The Hilbert spectrum of the fibre glass boat trial data for the part that includes 

CPA, 65-80 seconds. The image is downsampled with a factor of 50. 
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Figure 5.12: The Hilbert spectrum of the fibre glass boat trial data for the part that includes 

CPA, 65-80 seconds. The image is downsampled with afactor of 100. 
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Figure 5.13: The Hubert spectrum of the fibre glass boat trial data for the part that includes 

CPA, 65-80 seconds. The image is downsamnpled with afactor of 200. 

Initially the EMD algorithm was used to produce a hubert spectrum, see Figure 5. 10, and it can 

be seen in the Figure 5.10 that it is difficult to to obtain any information from the hubert spec-

trum. This is due to the fact that the instantaneous frequencies vary rapidly in their amplitude. 

However, the data used to produce the images can be lowpass filtered so that the variations 

become less rapid. This can be achieved by first decimating the data and then resampling it 

again. For the image shown in Figure 5.11 the data was decimated by a factor of 50, and then 

resampled again to regain the same number of samples. Now the amplitudes of the instanta-

neous frequencies are becoming easier to follow. By doing this decmimation and resampling 

process the actual resolution of the instantaneous frequency has gone down by as much as the 

decimation factor implies. 

In figures 5.12 and 5.13, the data shown was decimated and resampled using a factor of 100 

and 200, respectively. In performing this decimation and resampling process the amplitudes of 

the instantaneous frequencies become a lot more stable and it is posible to distinguish different 

parts of the signal. It must however be kept in mind that, while performing the decimation and 

resampling and bringing out features in the data the results must be interpreted with utmost 

caution. Since the actual instantaneous frequencies as they are shown in Figure 5.10 are the 

ones that most resemble the physical process behind the produced image. 
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Figure 5.14: The first seven intrinsic mode functions from the fibre glass boat trial data. 
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Figure 5.15: The Fourier transform of the first seven intrinsical mode functions from the fibre 

glass boat trial data. 
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Figure 5.14 displays the first seven intrinsic mode functions from the middle part of the fibre 

glass boat sea trial. Then the power spectrum was estimated for each of the imfs, see Figure 

5.15. Some of the frequency peaks that are seen in the power spectrum (Figure 5.9) can also 

be found in the panels of Figure 5.15. The lowest panel displays the lowest frequencies and the 

top most panel the highest frequencies. The lowest panel displays the two peaks at 19.51-lz and 

39Hz. The second panel from the bottom displays the 39Hz and 58.71-lz peaks. The peaks at 

45.41-lz and 64.4Hz are not visually distinguishable in any of the panels. In the third panel from 

the bottom, the frequencies 58.7Hz and 78.2 Hz are visible. Moving up in frequency the are a 

number of peaks missing in the spectra from the imfs and some that. are difficult to tell apart. 

The ones missing are 90.4Hz, and 206.91-1z. The frequencies that are difficult to tell apart are 

175.81-lz and 180.8Hz, but they can be seen in the spectrum in the second panel from the top. 

Then the top most panel displays frequencies that are above the ones in the spectrum in Figure 

5.9. 
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Figure 5.16: The percentage of rejected data by the stepwise outlier algorithm. 

The third part and final part of the data analysis is done making use of the EMD algorithm to 

pick out the interesting imfs and then summing them to create a lofargram. The data used to 
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create the modified lofagrams is defined in the equation below 

s(t) = 	(I i . 	 (5.2) 

where d1 are the imfs and N1, N2 are the number of the included imfs. In the cases presented 

below N1  = 2, and N2  = 7, so that out of 14 inifs that makes up the entire data set, only 5 of 

them are used to create the improved lofargrams. 

The number of rejected blocks from the stepwise outlier rejection is used as an input for the 

further EMD analysis of the data set. in the beginning of the boat run there are very few data 

points that are considered to be outliers whereas in the middle of the run at CPA there are more 

data points that are rejected, see Figure 5.16. 
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Figure 5.17: A spectrograin of the first 15 seconds of data from the run. 

The two lofagrams from the beginning of the boat run are displayed in Figures 5.17 and 5.18. 

Where the lofagram in Figure 5.17 is produced from the raw data data set and the lofagram in 
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Figure 5.18: A spectrogram of the sum of imf ftoln imnf two to imnf seven. From the first 15 

secinds of data 

Figure 5.18 is from the reduced times series s(t). 

The two lofagrarns from the middle of the boat run (including CPA) are displayed in Figures 

5.19 and 5.20. Where the lofagrarn in Figure 5.19 is produced from the raw data data set and 

the lofagram in Figure 5.20 is from the reduced times series s(t). 

In both the lofagrams produced using the reduced data set s(t) it is easier to see the lines made 

up of tonals in the data. The images are less cluttered, which is a result of removing the first 

high frequency imf and then by removing the latter imfs the low frequency content below 10Hz 

are also suppressed. This gives image of the remaining data a better dynamic and the wanted 

features are easier to see. It is however possible to see the lines in the lofagrams made out of 

the original data set too. 
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Figure 5.19: A spectrogram of the middle part, 15 seconds of the run including CPA. 

5.3 Conclusions 

Features in displays can be enhanced by different data conditioning schemes, in this chapter the 

application was on a Lofargram and the improvement of the spectral lines. 

Both the stepwise outlier rejection method and the emd method of cleaning data improved the 

lofagrams. 

The different methods of replacing data in the outlier rejection scheme had less impact on 

the lofargram than expected but it did show some difference. Depending on the objective of 

the data conditioning the different data replacement strategies gives slighlty different results 

results. When the frequencies are known to vary it is beneficial to use method B-E, and when 

the frequencies are more stable then replacement method A is prefered. 

The Hilbert spectra on the IMFs from this data set does not really add to the understanding of 

the data other than that the instantaneous frequencies vary rapidly. 
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Figure 5.20: A spectrogram of the Sum of iinfs from unf two to inifset'en. From the middle part 
o/ the run, including CPA 

The power spectra made from the imfs show most of the frequency content in the original signal 

but some peaks are not easily distinguished. It should be noted that by using all the imfs and 

the residual all of the frequncies are accounted for. 

As a data conditioning method the EMD shows promise and the lofagrams produced from a 

sum of the imfs of interest are clearly an improvement over the lofagram produced from the 

raw data. 
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Chapter 6 
Conclusions and Suggestions for future 

Research 

6.1 Introduction 

The work in this thesis falls into two categories, a statistical characterisation of sonar data and 

a part that is aimed at time/frequency analysis of sonar data. The latter part is divided into two 

chapters. One chapter that is aimed at producing time/frequency images and assessing their 

quality, and a second chapter where the aim is to improve on the quality of time/frequency 

surfaces. 

6.2 Achievements 

In Chapter 3 on statistical characterisation of sonar data, different aspects of statistical prop-

erties of sonar data have been addressed. Mainly focusing on the level of stationarity on both 

active and passive sonar. It is important to bear in mind that all findings in this chapter are valid 

for shallow water environments with the typical bottom composition of the Baltic Sea and the 

archipelago of Stockholm. It is however reasonable to assume that equivalent environments, 

given that the acoustic parameters also are of close to or equal to the ones in the Baltic Sea, 

would produce similar results for the analysis reported in this thesis. The general conclusions 

drawn from the analysis could serve as guidelines for other shallow water areas, as for what 

kind of performance one might expect from applying signal processing schemes. 

For active sonar the issues of ping to ping stationarity, for both the actual ping and for the 

reverberation tail, was examined and was found to be non-stationary. However, for some cases 

it is seen that there are consecutive pings that are stationary. This leads to the conclusion that it 

can be beneficial to use several pings from the same target. However it is necessary to remember 

that there is a large variation in the number of consecutive stationary pings. 

For passive sonar both ambient noise and tonals emitted from surface vessels are investigated. It 
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is found that for all cases tested the sonar data is non-stationary. That is speaking of stationarity 

in the strict sense. There are however parts in the data that exhibit more stationary behaviour 

then the data in general. From the fibre glass boat trial the data seems to be stationary for about 

0.4 seconds, That is the PDFs for two consecutive segments maintain sufficiently equal for that 

period of time. 

Testing the passive data for symmetry and linearity show that the data is mostly linear, and 

symmetrical. 

The ambient noise is found to have more stationary properties at higher frequencies.. This leads 

to the conclusion that it is more beneficial to operate sonar systems at higher frequencies. This 

is only valid in shallow water environments equivalent to the Baltic Sea, where attenuation due 

to salinity is a lesser factor in the sound propagation. However, in waters with higher salinity 

the sonar performance would degrade from using higher frequency. 

The stationarity length on ambient noise data was examined using data from the from the multi-

sensor trial (almost 800 data files). A large proportion of the data set also had a stationarity time 

of roughly 0.4 seconds, or slightly longer. 

In Chapter 4 a number of time-frequency methods were examined. The data analysis was 

done using the traditional Short Time Fourier Transform, and the Short Time Fractional Fourier 

Transform. Performance comparisons were made between the two different transforms and 

it is shown that matching the transform to the nature of the data improves the quality of the 

time-frequency images, i.e. if the data consists of chirps then it is beneficial to decompose 

the time series using a chirp as a basis function rather then using sinusoids (the FrFT and 

FT respectively). It is important to note that if the chirp rate tends towards zero there is no 

advantages to use the STFrFT over the STFT to produce time/frequency images. 

In the second section of Chapter 4 a number of different metrics for image quality assessment 

are defined and evaluated using the time/frequency images produced with the aforementioned 

transform techniques. 

Of all the implemented image quality measures (Q - 'alue. Ad. D, Cq) the Q-value seems to 

be most consistent with expectation and proves reliable for the presented images. The other 

metrics have their use but should be applied with caution since the results were inconclusive. 
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Features in displays can he enhanced by different data conditioning schemes. as can be seen in 

Chapter 5. The application was to improve the spectral lines in a lofargram. 

Both the stepwise outlier rejection method and the EMD method of cleaning data improved the 

lofargrams. 

The different methods of replacing data in the outlier rejection scheme had less impact on the 

lofargram than expected but it did show some difference. Depending on the objective of the data 

conditioning the different data replacement strategies gives slightly different results. When the 

frequencies are known to vary it is beneficial to use method B-E, and when the frequencies are 

more stable then replacement method A is preferred. 

The Hilbert spectra on the IMFs from this data set does not really add to the understanding of 

the data other than that the instantaneous frequencies vary highly. 

The power spectra made from the IMFs show most of the frequency content in the original 

signal but some peaks are not easily distinguished. It should be noted that by using all the IMFs 

and the residual all of the frequencies are accounted for. 

As a data conditioning method the EMD shows promise and the lofargrams produced from a 

sum of the IMFs of interest are clearly an improvement over the lofargram produced from the 

raw data. 

6.3 Suggested Future Work 

Concluding this thesis I suggest a number of possible additions to the work done in the main 

chapters. 

The statistical evaluation of the sonar data in Chapter 3 can be extended with an analysis of a 

longer ambient noise measurement. This would be done to enable an analysis of the seasonal 

variations, mainly the difference in the sound speed profile and the influence of ice cover. It 

would also enable the analysis of the influence of different weather conditions, such as wind 

speed, wind direction, and wave height (sea state). 

The time-frequency methods examined in Chapter 4 could be used from a detection point of 

view, just as using a matched filter and making the detection of signals in a time lag domain it 
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could be done in any other domain such as the FrFT produces. The performance of the FrFT 

could be evaluated in an intercept sonar situation (ping stealing, or torpedo detection). 

The data conditioning could be extended to reconstructing data from the enhanced lofargram, 

or any other altered time/frequency surface. It would be possible to examine the EMD method 

from a more image processing point of view, since the images produced using the EMD were 

using significantly less data than the original. 

And finally, all of the work done in this thesis is done on sonar data. Lately there has been 

an increasing interest in using other sensors for underwater applications, such as magnetic and 

electric. The background noise statistics for that kind of sensors in a shallow water environment 

is at some extent still unexamined. 
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Appendix A 
Description of the Broad Band 

Signature of a vessel 

The broad band signature of vessels are typically given as a simplified spectrum consisting of 

56 third note band values. 

More familiar to most people is probably the concept of an octave. An octave means the eighth 

note on a scale and its pitch is twice as high as the base note. For instance, if the frequency for 

the base note is 400 Hz then the octave to that is 800 Hz. So a spectrum in octave hands starting 

at 1Hz would have its second band centered around 2Hz, its third band at 4Hz and so on. It is 

very common to talk about filters and frequency drop off after the cut off frequency in terms of 

dB/octave or dB/decade. A decade is the as the name suggests a tone that is pitched ten times 

higher than the base tone. So a spectrum given in decade bands would if the first frequency is 

1Hz have 10Hz as its second frequency and 100Hz as its third, and son on. The third note band 

notation is used because it produces as closer sampled spectrum, since the ratio between the 

frequency hands is 5;4 as can be seen in Tab A. 1 below. 

The spectrum is typically presented as a vector of 56 values, one for each frequency band. 

The spectral density for each band is retreived by reducing the value for the frequency band in 

question by 10iogio(w), where w is the band width of the frequency band. 

Table A.]: Table over the Frequencies in the broad band description of a signature 

Freq. band nr 

2 

3 

4 

5 

6 

Center Freq. [Hz] 

1.25 

1.6 

2.5 

3.15 

4 

Lower limit [Hz] 

1.13 

1.41 

1.76 

2.2 

2.8 

3.5 

Upper limit [Hz] 

1.41 

1.76 

2.2 

2.8 

3.5 

4.4 

Band width [Hz] 

0.28 

0.35 

0.44 

0.6 

0.7 

0.9 
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7 5 4.4 5.7 1.3 

8 6.3 5.7 7.1 1.4 

9 8 7.1 8.8 1.7 

10 10 8.8 11.3 2.5 

11 12.5 11.3 14.1 2.8 

12 16 14.1 17.6 3.5 

13 20 17.6 22 4.4 

14 25 22 28 6 

15 31.5 28 35 7 

16 40 35 44 9 

17 50 44 57 13 

18 63 57 71 14 

19 80 71 88 17 

20 100 88 113 25 

21 125 113 141 28 

22 160 141 176 35 

23 200 176 225 49 

24 250 225 283 58 

25 315 283 353 70 

26 400 353 440 87 

27 500 440 565 125 

28 630 565 707 142 

29 800 707 880 173 

30 1000 880 1130 250 

31 1250 1130 1414 284 

32 1600 1414 1760 346 

33 2000 1760 2250 490 

34 2500 2250 2825 575 

35 3150 2825 3530 705 

36 4000 3530 4400 870 

37 5000 4400 5650 1250 

38 6300 5650 7070 1420 

39 8000 7070 8800 1730 
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40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

Description of the Broad Band Signature of a vessel 

10000 8800 11300 2500 

12500 11300 14100 2800 

16000 14100 17600 3500 

20000 17600 22500 4900 

25000 22500 28300 5800 

31500 28300 35300 7000 

40000 35300 44000 8700 

50000 44000 56500 12500 

63000 56500 70700 14200 

80000 70700 88000 17300 

100000 88000 113000 25000 

125000 113000 141400 28400 

160000 141400 176000 34600 

200000 176000 225000 49000 

250000 225000 283000 58000 

315000 283000 353000 70000 

400000 353000 440000 87000 
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Appendix B 
KS testing the ambient noise data from 

the multisensor trial 

The results in this appendix are an extention to the analysis results displayed in Figure 3.27. 

Figure B.1 is from the early part of the trial (Aug 16 - Aug 17) where the stationarity times 

varied a lot but also provided the longest and of course the shortest stationarity times, Figure 

B. I is an example of when the stationarity time was exceptionally long compared to other parts 

in this data set, at around 4-5 seconds. Figure B.3 is also from the first days of the sea trial, 

and is an example where the data is strictly non-stationary at all times. Figure B.3 is from the 

middle part of the trial (Aug 19 - Aug 23) where the stationarity time remained constant over 

the period, where the typical stationarity time was about 0.4-0.5 seconds. 

Figure B.I : The KS test app/icd to different lengths of'datafrom the multi sensor trial in June 

2004. Example file 1, where the test statistic is less than the p- valuefor sample 

sizes up to 185.000 samples. 
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Figure B.2: The KS test applied to different lengths of data firoin the multi sensor trial in June 

2004. Exam pie 2 where the test statistic is less than the p-value for all sample 

sizes of about 10.000 samples. 
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Figure B.3: The KS test applied to different lengths of data from the multi sensor trial in June 

2004. Example 3 where the test statistic is larger than the p-value /r all sample 

sizes. 

156 



KS testing the ambient noise data from the multisensor trial 

Table B.1 shows the amount data used for the stationarity test. The x-axis of Figures B. 1, B.2, 

and B.3 is a logarithmic scale where the smallest and largest value corresponds to the smallest 

and largest value in Table B.1 respectively. 

112 700 4480 42880 
134 896 5360 53600 
160 1072 6700 75040 
200 1340 8576 107200 
268 1600 10720 187600 
320 1876 11725 300160 
350 2240 15008 750400 
448 2680 21440 
536 3200 23450 
640 3752 30016  

Table B.1 : Number of samples used in the stationary testing of the ambient noise data collected 
during June 2004, where the sampling frequency was 25kH7. 
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Appendix C 
Reverberation stationarity analysis on 

the Utö data 
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Figure C.1: The WSS and the K-S test applied to data from the reverberation sea trial at Utö, 
File number 1. The panels show, from left to rig/It, the WSS hypothesis, the K-S 
hypothesis, and the K-S test statistic. 

WSS 	 K-S 

•g 	10 

E 

15 
C) 
C 

a. 	
20 

i.J 

11•j 
Li.411 •u r. 

U 	 U• t - — I • • 	• 
15 

:: 	 11r: :" ii  N 4 
L 	 I -- 

 

5 	10 15 20 25 	 5 	15 15 20 

Ping number 

 

Figure C.2: The WSS and the K-S test applied to data J'ro,n the reverberation sea trial at Uto. 
File number 2. 

Figures C. 1, C.2 and C.3 show the full analysis results from the three files from the reverber-

ation sea trial at Utö 2001 that was analysed in Chapter 3. The tests are applied to the data 

starting I second after each ping has been transmitted. 
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Figure C.3: The WSS and the K-S test applied to data from the reverberation sea trial at Utii. 
File number 3. 

The K-S test rejects the null hypothesis for all files but as it can be seen in the right side panel 

in figures CA, C.2 and C.3 the value of the test statistic varies and it is smaller in the regions 

around the main diagonal. The mean value of the test statistic shown in the figures is 0.02 and 

the threshold it is compared to has a value of 0.01. The colormap for the right side panel in the 

figures goes from blue to dark red, where blue values are low and the red ones are high. Some 

of the test cases (ping to ping) are stationary but the entire data set as such, is not. 

The percentage of stationary pings is shown in Table C. 1, for both the K-S and the WSS tests. 

In the figures C.1, C.2 and C.3, in the left and middle panels, the null hypothesis is rejected 

where the figure is colored white, and conversely the figure is blue when the null hypothesis is 

accepted. 

Percentage of accepted H0  File 1 File 2 File 3 
WSS 

SS 
49 
54 

61 
30 

47 
46 

Table C.!: The percentage of accepted iiull hypothesis for the K-S (strictly stationary) and WSS 
(wide sense stationnarv) tests for File I - File 3. 
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Appendix D 
The Choi-Williams distribution 

Before moving onto other time/frequency distributions, the idea of a general class of transforms 

that can he presented in the form of an integral over a quadratic form of a signal f(f) and a 

kernel ) is introduced, see Chapter 9 [83]. 

= 
j J'  j f( - T/2)f(t + y /2)(e.y ) e _ ( T_dud7dw  (D.1) 

Using the above notation the Wigner distribution has a kernel o(e. T) 	1, and the form in 

Equation (4.26) is obtained. The Spectrogram has the kernel 

th(e, T) = f h(u - 	+ T12)dl! 	 (D.2) 

It becomes clear that with this formulation a time/frequency distribution with the desired char -

acteristics can be obtained. The Choi-Williams distribution was devised to address the one big 

disadvantage with the Wigner distribution, the cross terms that are present for multi-component 

signals. The kernel function for the Choi-Williams,[77], distribution has the following form 

c(e. T) 
= 	 (D.3) 

Which is a product kernel, and a is a parameter that is varied to obtain different levels of cross 

term suppression. For large a the Choi-Williams distribution approaches the Wigner distribu-

tion. Moreover, both marginals are satisfied, which can be seen by looking at the following 

property, (O. r) = O(E). 0) = 1. 
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Then by substituting the kernel into the general class function the following is obtained 

00 00 

1 	f I 	1 	(u_r)2 

) e 	2/c, 3 	* 
f (u - r/2)f(t + r/2)dudr 	(D.4) Pcw(t.w) = 43/2 J  

- 00 - 00  

The problem with cross terms has been studied extensively and this usually involves violating 

the desired properties like the marginals. Choi and Williams introduced this method to reduce 

the cross terms without violating any of the desired properties of the distribution. An example 

of how the Choi-Williams distribution affects the cross terms is given below. Consider the sum 

of two sine waves, 

f(t) = Aie3)1t + A2e3Y2t 	 (D.5) 

For the signal in Equation (D.5) the distribution can be calculated exactly from Equation (D.4), 

which yields, 

P(t,w) = A l  8(w - Wi) + A6(w - w2) + 2AiA2cos((w2 - wl))17(w,w1,w2,a) (D.6) 

where 

77 	
1 	I (w_(w1+w2)/2)2 

	

(w,wi,w2, a) 
=rwi —w2) 2 /a 	4(wi W2)2/a I (D.7) exp 

Seeing that the amplitudes A 1 , and A2 are followed by 6 functions that are infinite at w1 = W2, 

the distribution will be infinitely peaked at wl = w2, which is at the auto terms. The amplitude 

of the cross term depends on i(w, w1, w2,  a). The limit of i(w W1, w2, a), a - oo, as shown 

below 

urn 77(w,w1,w2,0') = ö(w - (w +W2)/2) 	 (D.8) 

gives back the Wigner distribution, and the infinite peak at W = (wi + w2)12. 

An example of how the Choi-Williams distribution works for a multicomponent signal can be 

seen in Figure D.l where the distribution is estimated for a = { 1O, 10} respectively. It is 

clear to see the effect that the kernel has on the distribution. For a = 10 5  the distribution is 
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The Choi-Williams distribution 

clear of cross terms but the lines corresponding to the two chirps are also slightly smeared out 

in frequency, but the two chirps are well localised, so this choice of a is clearly better then the 

one displayed in the bottom panel of the figure. The signals that are analysed here are the same 

ones as in Section 4.22, and displayed in Figures 4.4. 
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Figure DA: The Choi—Williams distribution for two chirps, using a = { 1 ü. 1 ü } 

For a = 10 9 , displayed in the bottom panel of Figure D.I. the distribution is approximately 

back to the Wigner distribution and the cross terms are back as can they were in Figure 4.4. 
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