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SUMMARY

It was the aim of this thesis to characterise op-adrenoceptor
subtypes using radiolabelled agonist and antagonist ligands in a variety
of tissue preparations. RS-15385-197 is a high affinity and selective o(3-
adrenoceptor antagonist. [3H]-RS-15385-197 was shown to label oa-
and opp-adrenoceptor subtypes in human platelet and rat neonatal lung
membranes, and a subtype in rat cortex which showed greatest
similarity with the ozp-adrenoceptor subtype. Thus the receptor in rat
brain was shown to form a distinct subtype from that previously
described. Differentiation of the o-adrenoceptor into 2A and 2B
subtypes could not be demonstrated however with the agonist ligand,
[3H]-adrenaline, under normal assay conditions, suggesting that
characterisation of receptor subtypes 1s best carried out using both an
agonist and an antagonist radioligand.

The functional consequences of 02a- and opp-adrenoceptor
activation was addressed 1in a model of op-adrenoceptor mediated
inhibition of cAMP accumulation. Human platelet oa-adrenoceptors
are negatively coupled to adenylate cyclase, and the o-adrenoceptor
agonists UK 14304, clonidine and oxymetazoline were shown to inhibit
cAMP levels in whole cells and platelet membranes. In the neonatal rat
lung preparation, which binding studies showed to contain oB-
adrenoceptors, no inhibition of cAMP levels or adenylate cyclase
activity was observed in response to the ap-adrenoceptor agonists. It is
suggested that the op-adrenoceptor may not couple efficiently to
adenylate cyclase.

[3H]-idazoxan an op-adrenoceptor antagonist with an imidazoline
structure, in addition to labelling o-adrenoceptors was also shown to
label a population of imidazoline binding sites in rat kidney which were
not adrenoceptors based on the low affinity of noradrenaline and RS-
15385-197. Characterisation of these sites with [3H]-idazoxan and
another imidazoline ligand [3H]-p-aminoclonidine suggested that the
imidazoline sites labelled by these ligands were heterogeneous and were
located in discrete areas of rat brain. As a direct consequence of this
work RS-45041-190 was identified as a high affinity imidazoline
compound which has greater than 10,000 fold selectivity for
imidazoline sites over oz-adrenoceptors. In the hamster adipocyte, a
tissue which was shown previously to contain both oz-adrenoceptors



and imidazoline binding sites, the inhibition of glycerol release by UK
14304 was reversed by compounds showing selectivity for oio-
adrenoceptors and not by imidazoline selective agents, suggesting that
imidazoline sites are not involved in the UK 14304 mediated inhibition
of lipolysis in this tissue.

The functional role of oz-adrenoceptor subtypes and imidazoline
binding sites are discussed.



List of Publications arising from this thesis

Published Abstracts:

MACKINNON, A.C., BROWN, C.M., KILPATRICK, A.T. &
SPEDDING, M. (1990) RS-15385-197 a selective o.2-adrenoceptor
antagonist has low affinity for imidazoline binding sites on hamster
adipocytes. Br. J. Pharmacol., 102, 377P. Presented to the London
Meeting of the British Pharmacological Society December 1989.

MACKINNON, A.C., BROWN, C.M., KENNY, B.A., STEWART, M.
ROBSON, L., KILPATRICK, A.T. & PARNES, H. (1991). [3H]-RS-
15385-197; A high affinity probe for o-adrenoceptors. in
Adrenoceptors: Structure, Mechanisms, Function. Advances in
Pharmacological Sciences, 295-296, Birkhauser Verlag Basel.
Presented to the XIth IUPHAR Satellite Symposium on the
Pharmacology of Adrenoceptors. Manchester, June 1990.

MACKINNON, A.C., BROWN, C.M., STEWART, M. & SPEDDING,
M. (1991). [3H]-p-aminoclonidine and [3H]-idazoxan label different
populations of imidazoline sites on rat kidney. Fundam. Clin.
Pharmacol., 5, 420P. Presented to the Lyon Meeting of the British
Pharmacological Society, April 1991.

MACKINNON, A.C., SPEDDING, M. & BROWN, C.M. (1991). [3H]-
adrenaline does not label an o.pg-adrenoceptor on rat neonatal lung. Br.
J. Pharmacol., 104, 415P. Presented to the Southampton Meeting of
the British Pharmacological Society, September, 1991.

MACKINNON, A.C., STEWART, M., SPEDDING, M. & BROWN,
C.M. (1992). Autoradiographic distribution of imidazoline sites in rat
brain labelled by [3H]-idazoxan and potential endogenous ligands.
Fundam. Clin. Pharmacol., 6, (Suppl 1), 45s. Presented to the First
International Symposium on Imidazoline Preferring Receptors. Paris,
June 1992.

i



STEWART, M., MACKINNON, A.C., HUSSAIN, J.F., SPEDDING,
M. & BROWN, C.M. (1992). Naphazoline distinguishes two non-
adrenergic sites for [3H]-idazoxan in kidney membranes. Fundam. Clin.
Pharmacol,. 6, (Suppl 1), 54s. Presented to the First International
Symposium on Imidazoline Preferring Receptors. Paris, June 1992.

MACKINNON, A.C. & BROWN, C.M. (1993). Sodium ions
differentially regulate agonist and antagonist binding to 02B-
adrenoceptors. Br.J. Pharmacol., (in press).

Published papers:

KILPATRICK, A.T., BROWN, C.M. & MACKINNON, A.C. (1992).
Non-o-adrenoceptor idazoxan binding sites; a new target for drug
development. Biochem. Soc.Transactions, 20, 113-118.

MACKINNON, A.C., KILPATRICK, A.T., KENNY, B.A,
SPEDDING,M. & BROWN, C.M. (1992). [3H]-RS-15385-197, a
selective and high affinity radioligand for op-adrenoceptors:
implications for receptor classification. Br. J. Pharmacol., 106, 1011-
1018.

MACKINNON, A.C., SPEDDING, M. & BROWN, C.M. (1993).
Sodium modulation of [3H]-agonist and [3H]-antagonist binding to o;-
adrenoceptor subtypes. Br.J. Pharmacol., (in press).

MACKINNON, A.C., STEWART, M., OLVERMAN, H.J.,
SPEDDING, M. & BROWN, C.M. (1993). [3H]-p-aminoclonidine and
[3H]-1dazoxan label different populations of imidazoline sites on rat
kidney. Eur. J. Pharmacol., 232, 79-87.



ACKNOWLEDGEMENTS

The studies reported in this thesis were carried out in the
Department of Pharmacology, Syntex Research Centre, Edinburgh, in
conjunction with the Department of Pharmacology, University of
Edinburgh. Neither this thesis or any part of it has been submitted to
any other University.

I would like to thank a number of people who have given me a
great deal of help and support during these studies. These include:

-My supervisor Dr. M. Spedding, for directing and guiding me
through this thesis.

-Dr. Christine Brown, who laterly became my supervisor, for
her invaluable scientific assistance and encouragement throughout the
duration of this PhD.

-My internal supervisor Dr. H. J. Olverman, for his guidance and
encouragement, and help in constructing this thesis.

-Dr. G. Milligan for the adenylate cyclase experiments.

-Dr. N. Sharif for the quantification of the [3H]-RS-15385-197
autoradiography.

-Dr. P. Kelly and Dr. J. Sharkey for showing me the mysteries of
the Quantimet Image Analyser.

-Dr. R. Armstrong for showing me the cAMP extractions.

-Jackie Cowan, John Grant and Willma Pottinger for their
valuable library assistance.

-My workmates Barry Kenny, Michael Stewart, Katrina Wyatt
and many others for their help and support.

-All people who donated their blood.

-Finally, I would like to thank my husband Gordon, for his love
and putting up with me for the duration of this work, and for taking on
all domestic duties during the latter stages, and my family, particularly
my parents, to whom this thesis is dedicated.



Summary

CONTENTS

List of Publications arising from this thesis
Acknowledgements

Contents

Abbreviations
Chapter One

General Introduction
1.1. Historical perspectives
1.2. o-adrenoceptor classification

21,

L2

1,2.3.

1.2.4.

1.2.3.

1.2.6.
1:2:4.

op/on classification

Characterisation of op-adrenoceptor subtypes in
radioligand binding studies

Subclassification of op-adrenoceptors in

ligand binding studies

Functional az-adrenoceptor subtypes

Pre/post junctional ox-adrenoceptors
Second-messenger systems

Molecular biology of op-adrenoceptor subtypes

1.3. Imidazoline binding sites

1.3:1:
1:3.2,
1.3.3.

Discovery
Radioligand binding
Functional imidazoline sites

1.4. Background to thesis
1.5. Aims of this thesis

Chapter Two

Materials and Methods
2.1. Generalised receptor binding protocol

2.1.L.
I
2.3,
2.1.4.
2.1.5.

Membrane Preparation
Saturation Binding Assay
Competition Assay
Kinetics Assay

Protein determination

2.2. Membrane preparation

2.2
2.2.2.
2,2:3.

Preparation of rat cerebral cortex membranes
Preparation of human platelet membranes
Preparation of neonatal rat lung membranes

Vi

111

Vi
X11

(SO O I SO I

23

35



2.24.

Preparation of rat kidney membranes

2.3. Binding to oz-adrenoceptor subtypes

2.3.1.
2:3.2.

[3H]-RS-15385-197 binding
[3H]-adrenaline binding

2.4. Imidazoline site binding

2.4.1.

2.4.2.
2.4.3.

2.5. In vitro
291
2.5.2.
2.5:3.

2.5.4.
2.3.5.

2.5:6.
237,
2.5.8.
2:59.
2.6. Lipolysis
2.6:1:
2.6.2.

[3H]-p-aminoclonidine binding to rat kidney
membranes

[3H]-idazoxan binding to rat kidney membranes
[3H]-RS-45041-190 binding to rat kidney
membranes

receptor autoradiography

Preparation of slides for autoradiography
Preparation of sections for autoradiography
Preparation of labelled sections for autoradio-
graphy

Establishing a labelling protocol

Preparation of [3H]-RS-15385-197 labelled
sections

Preparation of [3H]-1dazoxan labelled sections

L)
35
36
36
36

36
37

37
38
38
38

40
40

41
42

Preparation of [3H]-RS-45041-190 labelled sections 42

Quantitative autoradiography
Photography

in hamster adipocytes
Preparation of hamster adipocytes
Measurement of glycerol release

2.7. Measurement of cAMP

4 4
2.9.2.
50 )

Whole platelet preparation

Human platelet and neonatal rat lung membranes

Assay of cAMP

2.8. Rat anococcygeus muscle preparation
2.9. Data analysis

2.9.1.
2.9.2.
2.9,
294,
2.10. Materials
2.10.1.

Equilibrium binding parameters
Kinetic analysis

Functional data analysis
Statistical analysis

Chemicals and drugs

vil

42
43
43
43
44
45
45
45
46
46
48
48
50
51
51
51
51



Chapter Three
Antagonist and agonist binding to «3-adrenoceptor
subtypes
3.1. Introduction
3.2. [3H]-RS-15385-197 binding to rat cerebral cortex
membranes
3.2.1.  Association and dissociation kinetics
3.2.2.  Saturation analysis
3.2.3.  Effect of ions and membrane protein on [3H]-
RS-15385-197 binding to rat cerebral cortex
membranes
3.2.4.  Effects of temperature on [3H]-RS-15385-197
binding to rat cerebral cortex membranes
3:.2.5. Pharmacological characterisation of [3H]-
RS-15385-197 binding to rat cerebral cortex
membranes
3.2.6.  Effect of GTP on [3H]-RS-15385-197 binding to
rat cerebral cortex membranes
3.3. [3H]-RS-15385-197 autoradiography in rat brain
3.4. [3H]-RS-15385 binding to human platelet and neonatal

rat lung membranes

3.4.1.  Association and dissociation kinetics
3.4.2.  Saturation analysis

3.4.3.  Pharmacological characterisation of [3H]-

RS-15385-197 binding to human platelet and
neonatal rat lung membranes
3.4.4. Effect of MgClp, Gpp(NH)p and prazosin on
[3H]-RS-15385-197 binding to neonatal rat lung
and human platelet membranes
3.5. [3H]-Adrenaline binding
3.5.1.  Kinetic and saturation analysis of [3H]-adrenaline
binding to human platelet and neonatal rat lung
membranes
il Pharmacological characterisation of [3H]-
adrenaline binding in human platelet and
neonatal rat lung membranes
3.6. Comparison of [3H]-RS-15385-197 and [3H]-adrenaline
binding

Vil

53
54

54

54

54

56

56

57

63
66

66
66
72

12

77
79

34

84

90



3.7. Effect of buffer constituents and Na+ on [3H]-agonist and
[3H]-antagonist binding in neonatal rat lung membranes
3.8. Discussion

3.8:1;
3.8.2.
3.8.3.
3.8.4.
3.8.5.

[3H]-RS-15385-197 binding
Autoradiographical distribution
oz-adrenoceptor subtypes
Agonist versus antagonist binding

Effects of Na+

3.9. Conclusions

Chapter Four

Characterisation of imidazoline binding sites
4.1. Introduction

4.2. [3H]-1dazoxan binding to rat kidney

4.2.1.
4.2.2.

4.2.3.

4.2.4.

[3H]-idazoxan binding to ox-adrenoceptors
Kinetics of [3H]-idazoxan binding to imidazoline
sites

Affinity and density of imidazoline sites labelled
by [3H]-1dazoxan

Pharmacology of [3H]-idazoxan binding

4.3. [3H]-p-Aminoclonidine binding to rat kidney

4.3.1.

4.3.2.

4.3.3.

4.3.4.

[3H]-p-aminoclonidine binding to oz-adreno-
ceptors

Kinetics of [3H]-p-aminoclonidine binding to
imidazoline sites

Affinity and density of sites labelled with [3H]-p-
aminoclonidine

Pharmacology of [3H]-p-aminoclonidine binding
sites

4.4. [3H]-RS-45041-190 binding to rat kidney

44.1.

4.4.2.

4.4.3.

4.4.4.

Kinetics of [3H]-RS-45041-190 binding to rat
kidney

Affinity and density of sites labelled with [3H]-
RS-45041-190

Pharmacology of [3H]-RS-45041-190 binding
sites in rat kidney

Effect of ions and Gpp(NH)p on [3H]-RS-45041-
190 binding

92
97
97
99
102
106
108
110

112
113
113
113
113
116
116
119
119
123
123

126
131

131

131

134



4.5. Autoradiographical distribution of imidazoline binding sites
in rat brain
4.5.1.  Distribution of [3H]-1dazoxan labelled imidazoline
binding sites in rat brain
4.5.2.  Biochemical characterisation of [3H]-RS-45041-
190 binding sites in rat brain
4.5.3.  Distribution of [3H]-RS-45041-190 binding sites
in rat brain
4.6. Discussion
4.6.1.  Comparison of [3H]-idazoxan and [3H]-p-
aminoclonidine binding
4.6.2. [3H]-RS-45041-190; a selective imidazoline ligand
4.6.3.  Distribution of imidazoline binding sites in rat
brain
4.6.4.  Cellular localisation
4.7. Conclusions

Chapter Five
Functional consequences of imidazoline and oz-adreno-
ceptor subtype activation
5.1. Introduction
5.2. Measurement of cAMP accumulation in human platelets
(02a) and neonatal rat lung (02B)
5.2.1.  ¢cAMP accumulation in whole platelets

5.2.2.  cAMP accumulation in platelet membranes

5.2.3.  ¢AMP accumulation in neonatal rat lung
membranes

5.2.4.  Adenylate cyclase activity in neonatal rat lung
membranes

5.3. Lipolysis in hamster adipocytes

5.4. Rat anococcygeus muscle

5.5. Discussion
5.5.1.  Inhibition of cAMP accumulation
5.5.2.  Lipolysis in hamster adipocytes
5.5.3.  Rat anococcygeus muscle

5.6. Conclusions

136

136

143

143
143

143
154

158
161
162

163
164

165
165
167

167

173
173
181
185
185
188
190
192



Chapter Six

Discussion and Conclusions 194
6.1. op-adrenoceptor subtypes 195
6.2. imidazoline binding sites 199
References 201

Appendix I
Chemical structures of key compounds used in this thesis

Appendix II
Publications arising from this thesis. Permission from all authors

concerned has been obtained.



ABBREVIATIONS

The abbreviations used in this thesis are in accordance with the
guidelines set out in the British Journal of Pharmacology Instructions to
authors. Those not defined in the above publication are listed below.

Ca2+, Na+, Mg2+, Cl-, K+ refer to the ionic species of calcium, sodium,
magnesium, chloride and potassium respectively.

8-OH-DPAT

ACTH
ADH
ADP
ATP
BHT 920

BRL 44409

cAMP
CDS
cGMP
CH-38083

dor.

dpm

EDTA
ET-1
FMRF-NH;

G-protein
GHRH
Gpp(NH)p
GTP
HT29
IBMX
L-654,284

8-hydroxy-2-(di-n-propylamino)-tetralin
hydrobromide

adrenocorticotrophic hormone

anti-diuretic hormone

adenosine 5~ diphosphate

adenosine 5 triphosphate
6-allyl-2-amino-5,6,7,8-tetrahydro-4H-thiazolo-
[4,5-d] azepine hydrochloride

2-[5-chloro-1, 3-dihydro-2H-isoindol-2-yl)
methyl]|-4,5-dihydro- 1 H-imidazole
dihydrochloride

adenosine 3” 5" cyclic monophosphate
clonidine displacing substance

guanosine 3”57 cyclic monophosphate
7,8-(methylenedioxi)-14a-hydroxyalloberbane
HCI

dorsal

disintegrations per minute
ethylenediaminetetraacetic acid (free acid)
endothelin 1
phenylalanine-methionine-arginine-
phenylalanine-amide

guanyl nucleotide binding protein

growth hormone releasing hormone

5 -guanylimidophosphate

guanosine 5~ triphosphate

human colonic adenocarcinoma cell line
isobutyl methyl xanthine

(2R, 12bS)-N-(1,3,4,6,7,12b-hexahydro-2H-

X1l



L-657,743 (MK-912)

lat.

LH

LHRH

MDL 72222

med.

MK 912 (L.-657,743)

mRNA
MSH
NG108-15
NMDG-CI
NRL

NSB

NTS

nuc.

0O.D.

PK 11195

PMSF

PRP

RU 24969
RX 821002
SKF 104078

RS-15385-197

benzo[b]-furo[2,3-a] quinolizone-2-yl)-N-
methyl-2-hydroxyethanesulphonamide

(2S, 12bS) 17,3 "dimethylspiro
(1,3,4,57,6,67,7,12b-octahydro-2H-
benzo[b]furo[2,3-a]quinazoline)-2,4"-
pyrimidin-2"-one

lateral

luteinising hormone

luteinising hormone releasing hormone
loH,3aH,50H-tropan-3-yl 3,5
dichlorobenzoate methane sulphonate

medial

(2S, 12bS) 17,3"dimethylspiro
(1,3,4,57,6,6°,7,12b-octahydro-2 H-
benzo[b]furo[2,3-a]quinazoline)-2,4 -pyrimidin-
27-one

messenger ribonucleic acid

melanocyte stimulating hormone
neuroblastoma x glioma hybrid cell line
N-methyl-D-glucamine chloride

nucleus reticularis lateralis

non specific binding

nucleus of the solitary tract

nucleus

optical density
1-2(chlorophenyl-N-methyl-N-(1-
methylpropyl))-3-

isoquinolinecarboxamide
phenyl-methyl-sulphonyl-fluoride

platelet rich plasma

5-methoxy-3-(1,2,3,6, tetrahydropyridin-4-yl)-
1 H-indole
2-[2-(2-methoxy-1,4-benzodioxanyl)
imidazoline hydrochloride
6-chloro-9-(3-methyl 2 butenyl) oxyl-3-
methyl-1H-2,3,4,5-tetrahydro-3-benzazepine
(8aR, 12a§, 13aS)-5,8,8a,9,10,11,12,12a,13,
13a-decahydro-3-methoxy-12-(methylsulfonly)-

Xlii



subs. nigra
TRH
trig.
UK 14304

VIP
WB 4101

WY 26703

6H-isoquino [2,1-g][1,6]-naphthyridine
substantia nigra

thyrotropin releasing hormone

trigeminal

S-bromo-6[2-imidazoline-2yl amino]
quinoxaline

vasoactive intestinal polypeptide
2-[2,6-dichloro(N-beta chloroethyl-N-methyl)-
4-methyl amino] phenylimino-2-imidazoline
dihydrochloride
W-methyl-N-(1,3,4,6,7,11b-hezahydro-2H-
benzo-oaf-quinolizin-2-yl)-s-butane-
sulphonamide

X1v



CHAPTER ONE

GENERAL INTRODUCTION



1.1 HISTORICAL PERSPECTIVES

The actions of adrenaline, an adrenal hormone and a central
neurotransmitter, and noradrenaline, a peripheral and central
neurotransmitter, are mediated through o- and B-adrenoceptors. The
initial subclassification of adrenergic receptors into the alpha and beta
subtypes was done by Alquist (1948) on the basis of their
pharmacology. He studied the effect of five catecholamines on eight
different physiological functions and showed that the order of potency
for the first five functions was markedly different from the remaining
three functions. He attributed this difference to an actual difference in
the receptors involved and termed these receptors a- and B-adrenergic
receptors. At that time the adrenoceptor antagonists available,
phentolamine and phenoxybenzamine, appeared to block only o-
mediated responses. Specific -antagonists were not developed for
another 10 years. The subdivision of 3-adrenoceptors into 31 and [3;
was carried out by Lands et al. (1967), where [31-adrenoceptors were
defined as having equal affinity for adrenaline and noradrenaline,
whereas [2-adrenoceptors had higher affinity for adrenaline. The
subclassification has been substantiated by the development of subtype
specific antagonists and by direct binding studies (Minneman et al.,
1979).

1.2. a-ADRENOCEPTOR CLASSIFICATION

1.2.1. o/ classification

It had been known for many years that a-adrenoceptor
antagonists increased the flow of noradrenaline evoked by sympathetic
nerve stimulation. Brown & Gillespie (1957) suggested that the effect
of the antagonists was to bind to postjunctional o-adrenoceptors, thus
preventing the interaction of these receptors with released transmitter
and thereby increasing transmitter overflow. Other suggestions were
that the effect was due to neuronal (Thoenen er al., 1964) or
extraneuronal (Langer, 1970) uptake. The concept of a presynaptic
receptor which could modulate the release of noradrenaline was pul
forward in 1971 by two groups (Starke er al, 1971; Langer et al.,
1971). The subsequent finding that clonidine could discriminate
between pre- and postjunctional adrenoceptors (Starke er al., 1974) led
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Langer (1974) to propose that the postjunctional receptor that mediates
the response in the effector organ be termed o, whereas the
prejunctional receptor that regulates neurotransmitter release be termed
o7,

The anatomical classification holds true in several instances,
however, it became clear that some postjunctionally mediated events
such as the inhibition of melanin granule dispersion in frog skin
(Pettinger, 1977), and the inhibition of isoprenaline-induced increases in
lipolysis and glycerol release from isolated hamster adipocytes
(Schimmel, 1976), were produced by agonists that were highly selective
for ap-adrenoceptors. In addition, ap-adrenoceptors were reported to
exist postjunctionally in the vasculature due the selectivity of yohimbine
in reversing pressor responses to noradrenaline in the pithed rat (Drew
& Whiting, 1979). Therefore, a new method of classification was
developed based on the relative affinities of selective antagonists and
sometimes agonists. Thus, a response that was activated by
methoxamine or phenylephrine and competitively blocked by prazosin
or WB4101 was classified as being mediated via an oj-adrenoceptor,
whilst a response evoked by clonidine, UK-14304 or BHT 920 and
competitively blocked by yohimbine, rauwolscine or idazoxan was
classified as an ap-adrenoceptor mediated response. Since the initial
classification, newer antagonists have been developed which show
greater affinity and/or selectivity for the oj-adrenoceptor than
yohimbine, rauwolscine or idazoxan. These include L[.-654,284
(Pettibourne et al., 1986), L.-657,743 (Pettibourne et al., 1987), CH-
33083 (Vizi etal., 1986) and RX 821002 (Stillings et al., 1985; Langin
et al., 1989).

1.2.2. Characterisation of az-adrenoceptor subtypes in
radioligand binding studies

Direct measurement of a-adrenoceptors in vitro was acheived in
1976 with the development of [3H]-dihydroergotryptine (DHE, William
& Lefkowitz, 1976). Although [3H]-DHE was the first radioligand used
to label oz-adrenoceptors, it binds with equal affinity at both ;- and
a2-adrenoceptors. However, its use in conjunction with selective
competitors provided compelling evidence for the existence of unique
o 1- and op-adrenoceptors (Miach et al., 1978). Since then, selective
radiolabelled agonists and antagonists has been used to reversibly label
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az-adrenoceptor subtypes. Table 1.1. shows some of the radioligands
which have been used.

According to Hoffman &Lefkowitz (1980), the ap-adrenoceptor,
like the B-adrenoceptor exists in two conformational states; antagonists
recognise both states of the az-adrenoceptor with equal affinity,
whereas agonists have high affinity for only one of the states and show
biphasic inhibition curves against labelled antagonists. A labelled
agonist at low concentrations would be expected to bind to the high
affinity (H) state of the receptor, and with increasing concentrations to
identify an increasing amount of the low affinity (L) state. Thus,
saturation transformations of radioligand binding over a wide
concentration range would be curvilinear, but would be linear over a
more restricted range.

Early studies with labelled agonists were carried out with [3H]-
catecholamines. [3H]-Adrenaline was used in preference to [3H]-
noradrenaline due to the higher affinity of the former compound.
Initial studies were limited by the use of the low specific activity
racemic mixture of [3H]-adrenaline (U’Prichard & Snyder, 1977). [3H]-
adrenaline binding was limited compared to that with [3H]-imidazolines
such as clonidine, due to expense and technical difficulties. Care had to
be taken to prevent oxidation and degradation and binding to other
adrenoceptors present in the membrane preparation. However, the
human platelet was found to be an ideal tissue to study o-adrenoceptors
as this tissue contained a very low density of o- and [3-adrenoceptors
(Bylund & U’Prichard, 1983).

The development of an assay buffer system to prevent oxidation
of [3H]-adrenaline for up to 4 hours (Sénard et al., 1988) has improved
the selective labelling of az-adrenoceptors by [3H]-adrenaline, allowing
the characteristics of the receptor to be examined using the endogenous
ligand. The (H) state of the receptor has also been labelled with [3H]-
clonidine, [3H]-p-aminoclonidine and [3H]-UK 14304 (for references see
Table 1.1.) and in general showed very similar characteristics to the site
labelled with [3H]-adrenaline; however, these ligands have also been
shown to label non-adrenergic binding sites in many tissues (Ermsberger
et al., 1987; Bricca et al., 1989; Michel & Insel, 1989; Langin et al.,
1990). The radiolabelled antagonists most frequently used have been the
alkaloid 1somers yohimbine and rauwolscine, and for a while these have
been the most selective and potent ap-antagonists available. Binding of
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these radioligands has been carried out in human platelets (Motulsky et
al., 1980; Limbird et al., 1982), human brain (Petrash & Bylund,
1986), human spleen (Dickinson et al., 1986), rat brain (Cheung et al.,
1982; Rouot et al., 1982; Bylund, 1985; Brown et al., 1990a,b), rat
kidney (Schmitz er al., 1981; Woodcock & Johnston, 1982), neonatal rat
lung (Latifpour er al., 1982), and rabbit spleen (Michel et al., 1989b),
see also references cited in Regan (1988). However, there are instances
where the presence of o-adrenoceptors have been irrefutably proven in
functional studies and in binding studies with [3H]-clonidine and [3H]-
UK 14304, but where no specific [3H]-yohimbine binding has been
detected. Such a tissue is the adult rat submandibular gland which
contains a high density of [3H]-clonidine binding sites (150 fmoles/mg
protein), but contains no specific [3H]-yohimbine binding (Bylund &
Martinez, 1981). Similarly, in rabbit adipocytes, a tissue which contains
functional op-adrenoceptors (Lafontan & Berlan 1980), [3H]-yohimbine
failed to bind to a-adrenoceptors (Langin & Lafontan, 1989) whereas
[3H]-UK 14304 labelled the high affinity state and [3H]-RX 821002
labelled the whole population of oj-adrenoceptors (Bmax = 289
fmoles/mg protein, Langin er al., 1990). The inability of [3H]-
yohimbine to label op-adrenoceptors in these studies was explained by
its relatively low affinity in these tissues, and the high level of non-
specific binding.

Amongst the newer op-adrenoceptor antagonist ligands, [3H]-
idazoxan has been employed to label ap-adrenoceptors in rat cerebral
cortex (Langer et al., 1983; Doxey et al., 1983b; Lane et al., 1983) and
human platelets (Elliot & Rutherford, 1983). These studies showed that
[3H]-1dazoxan had high affinity and labelled sites with the characterisics
of the oy-adrenoceptor, but demonstrated a high level of non-specific
binding and was more sensitive to buffer composition than [3H]-
yohimbine. Recent studies from this laboratory (MacKinnon et al.,
1989; Brown et al., 1990a) and others (Yablonsky et al., 1988; Michel
& Insel, 1989) have demonstrated an additional non-adrenergic site
which [3H]-idazoxan labels with high affinity. Unless binding to this
additional site is excluded (which may not be possible due to the lack of
selectivity of available compounds), the use of [3H]-idazoxan as a
selective marker for oz-adrenoceptors is limited, and at present offers
no particular advantage over [3H]-yohimbine or [3H]-rauwolscine in the
measurement of op-adrenoceptor affinity. As shown in Table 1.1.
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Table 1.1. [3H]-agonist and [3H]-antagonist ligands used for
the identification of oz-adrenoceptors.

specific activity
compound Ci/mmole  selectivity references

agonist ligands

[3H]-adrenaline 60 - 90 non-selective  ab
[3H]-clonidine 20 - 60 (0] cd
[125]]-10doclonidine 2200 (057} e
[3H]-p-aminoclonidine 40 - 60 o f
[3H]-guanfacine 24 (6%) g
[3H]-UK 14304 60 - 90 o h

antagonist ligands

[3H]-dihydroergotryptine 20 - SO non-selective

. ~,

[3H]-dihydroergonine 27 non-selective
(3H]-phentolamine 23 non-selective &
[3H]-yohimbine 70 - 90 o I m
[3H]-rauwolscine 70 - 90 (0% n
[3H]-1dazoxan 30-50 (0%) op
[3H]-RX 821002 44 o q
[3H]-L-654,284 58 o r
[3H]-L-675,743 70 o 8

a. U’Prichard & Snyder, 1977, b. Garcia-Sevilla & Fuster, 1986, c.
U’Prichard et al., 1977, d. Tanaka & Starke, 1979, e. Baron & Siegel,
1990, f. Rouot & Snyder, 1979, g. Timmermans et al., 1982, h. Neubig et
al., 1985, j. Miach et al., 1978, k. Steer et al., 1979, [. Motulsky et al.,
1980, m. Brown et al., 1990a, n. Cheung et al., 1982,0. Lane et al., 1983,
p. Boyajian & Leslie, 1987, ¢. Langin & Lafontan 1989, r. Randall ez al.,
1988, s. Pettibourne et al., 1988.
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newer, and more selective, antagonists have been employed as probes
for the oz-adrenoceptor, but due to lack of general availability of these
ligands, their use for classification of op-adrenoceptor subtypes is
limited.

1.2.3. Subclassification of oj-adrenoceptors in ligand
binding studies

Despite the limitations of using [3H]-yohimbine and [3H]-
rauwolscine to reversibly label all az-adrenoceptors, these ligands have
been used exclusively to subdivide o-adrenoceptors into 3 or perhaps
more subtypes (Bylund, 1988,1992). Early studies demonstrated a clear
difference between the characteristics of the oz-adrenoceptor in rodent
and non-rodent species (Cheung et al., 1982, Kawahara & Bylund,
1985). The affinity for yohimbine and oxymetazoline was higher in
non-rodent than in rodent species, while the oj-adrenoceptor antagonist
prazosin showed higher affinity in rodents. The species dependent
differences have been substantiated in soluble receptor populations from
a variety of tissues and species, suggesting that variations in receptor
environment could not account for the heterogeneity observed in intact
membranes (Cheung ez al., 1986; McKerman et al., 1986).

The high affinity of prazosin for [3H]-yohimbine binding in
rodent tissues originally led to some hesitation in defining the rodent
receptor as an op-adrenoceptor (Yamada et al., 1980). However, the
finding that yohimbine had very low affinity for [3H]-prazosin binding,
and that yohimbine and rauwolscine had much higher affinity than the
stereoisomer corynanthine, suggested that they did comply with the
definition of an oy-adrenoceptor (Bylund et al., 1988). In addition,
selective op-adrenoceptor antagonists, WY 26703, idazoxan and BDF
6143, had high affinity for [3H]-yohimbine binding in the rat cerebral
cortex (Brown et al., 1990b). True receptor heterogeneity, however,
should be demonstrated in the same species, so Bylund (1985) showed,
from careful analysis of prazosin inhibition curves to [3H]-yohimbine in
the rat cerebral cortex, that prazosin displayed high and low affinity
components, with 50 fold separation between the sites (high affinity site
4 - 20 nM; low affinity site 0.2 - | uM). Biphasic inhibition curves
were subsequently reported to exist in some areas of human brain
(Petrash & Bylund, 1986). Therefore it was suggested, based on the
affinity of prazosin, that the prazosin insensitive component be termed
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oA (oxymetazoline > prazosin), and the site demonstrating high
affinity for prazosin be termed o2 (prazosin > oxymetazoline)
(Nahorski et al., 1985; Bylund, 1985). Examples of tissues reported to
contain an homogeneous population of one subtype include the human
platelet (02 4), rabbit spleen (oA ), neonatal rat lung (o2p) rat kidney
(oeag) and selective cell lines HT29 (a2a) and NG108-15 (a2B)
(Nahorski et al., 1985; Bylund, 1985; Bylund ef al., 1988; Michel et al.,
1989b,1990).

A third subtype of op-adrenoceptor has been proposed to exist on
a cell line from the opposum kidney (Murphy & Bylund, 1988). This
subtype labelled by [3H]-rauwolscine and [3H]-yohimbine, had high
affinity for prazosin and was initially termed opp-like, however, the
ratio of yohimbine to prazosin affinity was closer to that described for
the opa-subtype, and it was subsequently termed oc. There have been
very few reports of receptors characteristic of the o¢ subtype In
species other than the opposum, but in cultured smooth muscle cells of
the rabbit aorta, prostaglandin synthesis elicited by adrenergic stimuli
has been reported to be mediated via oja- and opc-adrenoceptors
(Nebgil & Malik, 1992), suggesting that the apc-adrenoceptor may not
merely be a species variant of the apg-adrenoceptor.

More recently, a fourth subtype has been proposed by Bylund and
co-workers to exist in membranes prepared from bovine pineal gland
(Simmoneaux et al., 1991), which had similar characterisitics to that
described by Michel et al. (1990) on rat submaxillary gland. This site
did not show the characteristics of the oA, 02 or apc-adrenoceptors
when the affinities of 16 drugs were compared in correlation graphs
and was proposed to be of a unique subtype, or a species variant of an
existing subtype. The site was characterised as being a discrete subtype
due to the low affinity of yohimbine and rauwolscine and the high
affinity of phentolamine. This subtype also displayed a low affinity for
SKF 104078 and was thus proposed to represent a prejunctional
receptor (see following Section and Simmoneaux et al., 1991).

The more recent identification of newer, and slightly more
selective drugs for the op-adrenoceptor subtypes has helped somewhat
in the distinction of separate subtypes, although a singularly selective
drug for each subtype still remains to be identified. Therefore, to
distinguish the presence of a subtype in radioligand binding experiments
necessitates the comparison of several drugs. The matter i1s complicated
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even more where two or more subtypes exist in the same tissue. This
was highlighted by Uhlen & Wikberg (1991) who suggested that the rat
kidney contained oja-adrenoceptors and two subtypes of oB-
adrenoceptors, which could be delineated using guanoxabenz and ARC
239. Table 1.2. outlines the characterisitcs of the existing subtypes
described to date.

As outlined previously the present definition of op-adrenoceptor
heterogeneity lies solely on the characteristics of the receptor labelled
with the [3H]-antagonists, and more particularly with [3H]-yohimbine
and [3H]-rauwolscine. However, an earlier study by Kahn ez al. (1982)
casts doubt on the use of [3H]-antagonist binding to adequately describe
the nature of the op-adrenoceptor on the NG 108-15 cell line, a cell line
considered by Bylund ez al. (1988) as being of the aug-subtype. When
the receptor was labelled by the agonists [3H]-p-aminoclonidine or [3H]-
adrenaline 1t demonstrated characteristics of the o2-adrenoceptor but
showed 10 - 100 fold lower affinity for antagonists, whereas [3H]-
yohimbine binding in the same tissue showed 20 fold lower affinity for
agonists. Thus, the receptor labelled by the agonist ligands displayed
high affinity for oxymetazoline and low affinity for prazosin, which
was not consistent with the oyg-adrenoceptor subtype and probably
more consistent with the opa-subtype. This could provide evidence that
agonists and antagonists label different sites, or that binding of an
agonist results in a conformational change in the receptor which alters
its ability to bind antagonists, 1.e. different affinity states. The question
then arises as to whether the receptor labelled by the agonist or by the
antagonist is the functionally relevant receptor? Whatever the answer,
it suggests that a receptor should be characterised in both [3H]-agonist
and [3H]-antagonist binding studies, and that this would be more directly
comparable to that employed in classical functional experiments. The
difference between agonist and antagonist binding to o-adrenoceptor
subtypes will be addressed later in this project.

1.2.4. Functional o-adrenoceptor subtypes

By far the majority of functional experiments with o 2-
adrenoceptors have had the characterisitics of the opa-adrenoceptor
subtype in that prazosin has had low affinity. A possible explanation for
this 1s the greater pace of developments in the field of radioligand
binding, coupled with fact that a high affinity for prazosin would have
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Table 1.2. Affinity values (pK;) for a2-adrenoceptor
subtypes.

02A 02A 2B 02B1 022 02C 02D

human rabbit neonate  rat rat OK bovine

platelet spleen lung kidney kidney cell pineal
yohimbine 9.26 9.00 8.17 7.68 9.73 8.44

rauwolscine  9.36  8.06 9.35 7.91 7.52 10.37 8.47
prazosin 6.47 5.33 8.27 7.45 7.14 7.82 6.98

oxymetazoline 9.20  8.11 7.28 5.91 583 7.16 8.84

ARC 239 6.74 8.80 8.21 742 7.89 6.83
BAM 1303 139 942 1.27
phentolamine  8.15  7.78 8.44 8.01 8.51

WB 4101 9.10 8.17 8.30 7.48 7.10 9.57 8.12

SKF 104078 7.74  7.00 1.31 7.37 640

Data from the human platelet from Bylund ez al. (1988); the rabbit spleen
from Michel er al. (1989b); rat kidney subtypes from Uhlen & Wikberg,
(1991); all other values taken from Simonneaux et al., (1991).
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in the past been confused with an o-mediated event (see references
cited in McGrath et al., 1989; Wilson et al., 1991a). Exceptions to this
include the relatively high potency of prazosin in stimulating the release
of noradrenaline in the rat submandibular gland (Tumer ez al., 1984),
the inhibition of neurotransmitter release in the rat atria (prazosin EC3g
= 6.97, Smith et al., 1992) and the high potency of prazosin (pA; = 7.2)
in op-adrenoceptor mediated attenuation of cAMP formation in NG 108-
15 cells (Bylund & Ray-Prenger, 1989). However, this must be taken
into context with the report that adrenaline-induced Na+/H+ exchange in
NG 108-15 cells was insensitive to prazosin (Isom et al., 1987). Table
1.2. shows, that op-adrenoceptor subclassification is characterised by
the differential affinities of a number of competing drugs. The
demonstration of a functionally relevant opg-adrenoceptor cannot
therefore be based solely on a relatively high affinity for prazosin, but
must be characterised in conjunction with a number of other drugs.
Functional definition of «-adrenoceptor subtypes therefore awaits
clarification.

1.2.5. Pre/post junctional oz-adrenoceptors

Early attempts failed to differentiate between pre- and
postjunctional o-adrenoceptors. A good correlation of affinities was
shown to exist between prejunctional oz-adrenoceptors in the guinea pig
atrium and postjunctional ap-adrenoceptors in the cat saphenous vein
(Hieble et al., 1986) suggesting that there was no pre/postjunctional og-
adrenoceptor heterogeneity. This held true for a number of antagonists
including yohimbine, rauwolscine, idazoxan and phentolamine. Initial
studies in vivo also provided evidence for no pre/postjunctional
differentiation with the available antagonists. In 1981 however, de
Jonge er al. (1981) demonstrated the prejunctional selectivity of 2,5-
substituted imidazoline agonists. However, the interpretation of these
data is complicated by the possible differences in efficacy of the agonists
used and in the tissue receptor reserve. Evidence for the existence of
heterogenous pre- and postjunctional az-adrenoceptors came with the
identification of SKF 104078, an op-adrenoceptor antagonist of the 3-
benzazepine class. This antagonist has been shown to have >100 fold
selectivity for postjunctional o-adrenoceptors in the canine saphenous
vein relative to the prejunctional receptor in the guinea pig atria
(Ruffolo et al., 1987). The ability of SKF 104087 to block
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postjunctional oz-adrenoceptors has been shown in several reports in
vitro (Hieble et al., 1988; Connaughton & Docherty, 1988; Kelly et al.,
1989). In addition SKF 104078 had little effect on noradrenaline
overflow from rabbit aorta, guinea pig vas deferens and human
saphenous vein. The ability of SKF 104078 to differentiate between pre-
and postjunctional oy-adrenoceptors was not species dependent, as
selectivity for postjunctional receptors was demonstrated in the rabbit
and dog saphenous vein (Hieble et al., 1988). In addition, the selectivity
has recently been demonstrated within a single tissue, the human
saphenous vein (Hieble ez al., 1991).

The demonstration of the pre/postjunctional selectivity of SKF
104078, however, has been disputed (Connaughton & Docherty, 1988),
and the ability of SKF 104078 to be used as a pharmacological tool to
identify pre- and post-junctional a-adrenoceptors could be limited.
Firstly, by its inability to differentiate postjunctional o1- and o2-
adrenoceptors (Ruffolo et al., 1987), and by the existence of multiple
pre- and postjunctional op-adrenoceptors showing differing sensitivities
to SKF 104078. This may be highlighted by the action of SKF 104078
in vivo. In the pithed rat SKF 104078 blocked op-mediated pressor
responses at low doses, but unlike yohimbine and rauwolscine was
limited to a maximum 3 - 4 fold shift in the control response curve.
This suggested that there may be 2 populations of postjunctional -
adrenoceptors, only one of which was sensitive to SKF 104078. Using a
dose of SKF 104078 that produced inhibition of postjunctional pressor
responses in the pithed rat, Akers er al. (1989) showed no effect on
prejunctional inhibition of neurogenic tachycardia induced by BHT 933,
but it was effective against xylazine, suggesting multiple prejunctional
oz-adrenoceptors exist with different sensitivity to SKF 104078.
However, another study in the rat vas deferens showed that SKF
104078 blocked prejunctional agonist activity of clonidine and but not
that of xylazine, UK 14304, and BHT 920 (Ruffolo er al., 1991). The
authors concluded that the sympathetic neurones in the rat vas deferens
contained a mixed population of prejunctional az-adrenoceptors, one of
which was sensitive to SKF 104078 and similar to the op-adrenoceptors
found postjunctionally in the vasculature.

Evidence for two populations of prejunctional op-adrenoceptors
with differential selectivity for xylazine have also been obtained in other
in vitro studies in the rat vas deferens, where like SKF 104078,

12



idazoxan was shown to be completely ineffective against xylazine
responses (Harsing & Vizi, 1992). Therefore two subtypes of
prejunctional op-adrenoceptors may exist in the rat vas deferens, one
which is activated by clonidine and inhibited by SKF 104078 and
idazoxan, and another which can be activated by xylazine and is
insensitive to SKF 104078 and idazoxan. These receptors may be
different from those found prejunctionally in the atria, where xylazine
responses were inhibited by SKF 104078 (Akers et al., 1989).

The 1dentification of anatomically and pharmacologically distinct
op-adrenoceptors would be aided by direct radioligand binding studies.
Binding studies with postjunctional preparations such as isolated
adipocytes and platelets have demonstrated that these adrenoceptors
show characteristics of the op4-subtype. However, the low density of
oa-adrenoceptors on sympathetic neurones within a tissue, and the
problems associated with separating pre- and post-junctional tissue has
limited the use of this technique in characterising prejunctional
adrenoceptors.

1.2.6. Second-messenger systems

Activation of op-adrenoceptors in a variety of cell types has been
shown to decrease cellular cAMP levels by inhibiting the activity of the
membrane bound adenylate cyclase. This has been directly observed in
several studies including;- human platelets (Jakobs er al., 1979; Clare et
al., 1984), adrenocortical carcinoma cells (Jaishwal & Sharma, 1985),
hamster adipocytes (Aktories er al., 1979), rat renal collecting tubules
(Edwards et al., 1992), rat pancreatic islets, (Yamazaki et al., 1982),
prejunctional o-adrenoceptor activation in the rat neocortex
(Schoffelmeer & Mulder, 1983), and postjunctional ap-adrenoceptors in
the vasculature of the pithed rat (Boyer et al., 1983). on-Adrenoceptors
have also been shown to inhibit adenylate cyclase activity in a number of
cell lines, such as NG 108-15 cells (Sabol & Nirenberg, 1979; Bylund &
Ray-Prenger, 1988) and HT29 cells (Bylund & Ray-Prenger, 1988).
The inhibition of adenylate cyclase activity appears to be mediated via a
pertussis toxin sensitive G-protein named G; (Katada & Ui, 1982), and
the ability of pertussis toxin to abolish responses to o2-agonists has been
used as evidence for the role of adenylate cyclase in the transduction of
these responses. Thus, pertussis toxin has been shown to inhibit o;-
adrenoceptor mediated antilipolytic responses in hamster adipocytes
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(Garcia-Sainz, 1980), insulin release from pancreatic islets (Katada &
Ui, 1982) and vasoconstriction in the pithed rat (Nichols ez al., 1989).

Although the inhibition of adenylate cyclase has been a well
documented consequence of oz-adrenoceptor activation (see above), the
importance of this in relation to the final effector response is open to
some doubt. For example, in the human platelet some o2-adrenoceptor
agonists could produce an aggregatory response without inhibition of
adenylate cyclase, and could in fact block the inhibition of adenylate
cyclase by adrenaline (Clare er al., 1984). This suggests that the o;-
mediated aggregatory response may not be completely dependent on a
decreased level of cAMP. Indeed for this to be the sole mechanism of
action, it would suggest that resting platelets contain a high level of
cAMP sufficient for adrenaline to produce an inhibition. It does not
detract from the fact that op-adrenoceptor agonists could produce an
aggregatory response via a decrease in cAMP when cAMP levels are
elevated by, for example prostaglandin E;.

A similar problem has been encountered when interpreting data
from the vasoconstrictor responses to o-agonists in the vasculature.
Thus 1if an inhibition of adenylate cyclase leads to a contractile response
then there must be a resting level of cAMP high enough to produce an
effect (Ruffolo er al., 1991). Vasocontrictor responses to o 7-
adrenoceptor agonists have also been shown to be accompanied by an
influx of extracellular Ca2+ (Medgett & Rajanayagam, 1984). The
means by which a decreased level of cAMP would increase intracellular
Ca2+ and thus facilitate a vasoconstrictor response is still unclear, but
could be explained by the dual ability of cAMP to increase binding of
intracellular Ca2+ and hence suppress activity of contractile proteins,
and to assist closure of Ca2+ channels (McGrath et al., 1989). Thus a
decrease in cAMP mediated by a-adrenoceptor activation would cause
a contraction by increasing intracellular Ca2+.

The role of cAMP and Ca2+ in mediating the prejunctional
inhibition of neurotransmitter release is however, contradictory, as one
would expect an increase in intracellular Ca2+ to facilitate release.
Indeed, in rat cortical synaptosomes, ¢2-adrenoceptor agonists have
been shown to reduce intracellular Ca2+ (Adamson et al., 1987). In
addition, several studies have demonstrated that the presynaptic -
adrenoceptor mediated inhibition of noradrenaline release is not
sensitive to pertussis toxin (Musgrave et al., 1988: Nichols er al., 1988).
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Thus 1t appears that there is not a uniform mechanism whereby o;-
adrenoceptors mediate their functional responses via cAMP and Ca2+.

There is less evidence suggesting a role of phospholipase C in
mediating op-adrenergic responses, although it has been shown that in
hamster fibroblasts transfected with cloned op-adrenoceptors from
kidney and platelets, adrenaline can produce a increase in inositol
phosphates (Cotecchia et al., 1990). How much an overexpression of
the receptor in the host cell led to this response is not clear. Limbird
(1984) has suggested that an indirect stimulation of phospholipase C
may, via the breakdown of diacylglycerol and phosphorylation to
phosphatidic acid, serve as a substrate for phospholipase A to release
the aggregatory prostanoids in the human platelet. This action was
thought to be through the direct stimulation of a membrane bound
Na+/H+ antiporter. oa-Adrenoceptors have also been demonstrated to
cause arachidonic acid mobilisation via phospholipase A in transfected
hamster ovary cells, which was Ca2+ and pertussis toxin sensitive, and
blocked by yohimbine (Jones et al., 1991). Transduction of -
adrenoceptor mediated events, therefore do not occur via a common
pathway, and may involve two or more different second-messenger
systems, or may in fact be directly coupled to ion channels. It remains
to be elucidated whether different subtypes of az-adrenoceptor utilise
distinct transduction systems.

1.2.7. Molecular biology of oz-adrenoceptor subtypes

Recent advances in molecular biology have allowed for the
isolation and cloning of genes coding for o»-adrenoceptor subtypes.
The first of these studies was carried out by Koblika et al. (1987), who
purified and generated oligonucleotide probes to the human platelet o4 -
adrenoceptor. When screened against a human genomic library, two of
the probes hybridised to a 5.5 kilobase fragment of genomic DNA,
localised to chromosome 10, which was subsequently sequenced and
found to encode for a protein of 450 amino acids. Analysis of the
primary structure revealed seven distinct hydrophobic domains of 20 -
25 amino acids connected by hydrophilic loops of polar and charged
residues, and thus demonstrated the characteristics of a G-protein
coupled receptor (Savarese & Fraser, 1992). Figure 1.1. shows the
primary structure of the human platelet o;a-adrenoceptor. The
proposed arrangement within the membrane is such that the seven
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Figure 1.1. Structure of the human platelet a2a-adrenoceptor
using the one letter code for amino acid sequence, and the
proposed arrangement of the receptor within the membrane.
The conserved amino acid residues identified by site-directed mutagenesis

are indicated. From Wang et al., (1991).
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hydrophobic domains represent the seven membrane-spanning regions
similar to that described for rhodopsin, muscarinic receptor subtypes,
and the [-adrenoceptors (Savarese & Fraser, 1992). Pstl restriction
enzyme digests of the platelet gene identified 2 additional bands of 1.8
and 5.9 kilobases which were subsequently localised to different human
chromosomes, C 4 and C 2, suggesting the existence of 2 more closely
related genes.

Since the initial isolation of the platelet cpa-adrenoceptor, several
additional clones have been identified from human, pig and rat libraries.
The sequences for several of these genes have been analysed, and show
some structural differences, particularly in the presence of consensus
sites for N-linked glycosylation. The derived gene products have been
expressed in host cells. Careful analysis of the binding and functional
characteristics of the transfected receptors has allowed for the
classification of these receptors into respective «-adrenoceptor
subtypes. Table 1.3. summarises the nature of the clones so far
identified. The observation that the C 2 clone from human kidney,
which demonstrates the pharmacology of an o;g-adrenoceptor subtype,
would not hybridise with mRNA from neonatal rat lung (the
prototypical o2 preparation), whereas the rat kidney o clone,
RNGa,, does, suggests species differences in the ozp-adrenoceptor or
multiple subtypes. The rat RG 20 clone showed greatest homology with
the ozxp-adrenoceptor subtype, however an equivalent human clone
remains to be identified. Thus, molecular biology has provided
additional evidence for the existence of multiple subtypes of ;-
adrenoceptors.

1.3. IMIDAZOLINE BINDING SITES

1.3.1. Discovery

Although 1t was well established that catecholamines and
imidazoline compounds such as clonidine interacted with o 1- and o;-
adrenoceptors to produce their pharmacological effects (see section
1.1.), in 1977 Ruffolo and co-workers (Ruffolo er al., 1977) showed
that the interaction of these two classes of compounds with the o;-
adrenoceptor was also dependent on their chemical structure.
Desensitisation of the rat vas deferens to oxymetazoline rendered the
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Table 1.3. Characteristics of the oz-adrenoceptor clones so
far described.

0- human
Clone source glycosylated mRNA subtype chromosome
C 10  human platelet  yes widespread 00A 10
porcine pig brain yes ? 02A 10
RNG o3 rat kidney no neonate lung OB ?
SA  humanspleen no ? 0B ?

C2 human kidney  no liver/kidney ogp like? 2
not neonate lung

or brain
RG 10 rat kidney yes brain 0QC 4
C4 human kidney  yes brain, OK cells opc 4

NG108-15, not
neonate lung

GRo2B rat kidney yes brain OC 4
pA2d rat brain 7 brain e 4
RG 20 rat kidney yes brain, kidney, ogp ?

salivary gland

C 10 (Koblika et al., 1987; Lorenz et al., 1990), porcine (Guyer et al.,
1990) C 2 (Koblika et al., 1987; Lorenz et al., 1990; Lomasney et al.,
1990), C4 (Koblika et al., 1987; Regan et al., 1988; Lorenz et al., 1990;)
RNG o (Zeng et al ., 1990), SA (Weinshank et al., 1990), RG 10 and RG
20 (Lanier et al., 1991; Harrison et al., 1991), GRaz B (Flordellis et al .,
1991), pA2d (Voigt et al., 1991).
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tissue insensitive to other imidazoline agonists but responses to the
catecholamines were unaffected. A different mode of interaction of
these two classes of compounds, with a-adrenoceptors was suggested.

The imidazoline ap-agonist clonidine, has been shown in several
studies to produce a centrally-mediated hypotension in cats
(Timmermans et al., 1981), rats (Emnsberger et al., 1988) and dogs
(Schmitt et al., 1973). Although originally proposed to be mediated by
central ap-adrenoceptors, it was subsequently shown that the site of
action of clonidine and the potent o-adrenoceptor agonist, ct-methyl
noradrenaline, were different (Bousquet et al., 1984). Bousquet et al.
(1984) showed that clonidine and other structurally related drugs which
lacked oy selectivity, could produce a fall in blood pressure when
injected into the medullary area, particularly the nucleus reticularis
lateralis (NRL) of the cat, whereas a-methyl noradrenaline was
inactive. The existence of imidazoline preferring receptors mediating
the hypotensive actions of clonidine was therefore suggested. Later
studies in the anaesthetised rat showed that the intracisternal
administration of idazoxan (an oz-adrenoceptor antagonist containing an
imidazoline ring), but not yohimbine could block the hypotensive effect
of intravenously administered clonidine (Tibiriga ez al., 1991). Recent
data suggests that other centrally acting antihypertensives such as
rilmenidine may act preferentially via imidazoline preferring receptors
in the rostral medulla, and this may explain the lack of sedative effects
observed with this compound (Fillastre ez al., 1988; Gomez et al., 1991)
However, other studies have disputed this, suggesting that the effects of
rilmenidine may be primarily via spinal or ganglionic structures
(Sannajust et al., 1992). Therefore if clonidine and related drugs act at
imidazoline preferring sites in the medulla, this will not be their only
site of action.

1.3.2. Radioligand binding

Direct evidence for an imidazoline preferring
from studies on [3H]-p-aminoclonidine binding in membranes prepared
from the bovine ventrolateral medulla. It was found that only 70% of
the sites labelled were competed for by noradrenaline and other
catecholamines, while compounds containing an imidazoline moeity
inhibited the remaining noradrenaline insensitive binding (Ernsberger er
al., 1987). The imidazoline preferring sites were localised in the

(4

‘receptor” came

19



medullary region, as membranes from the frontal cortex were entirely
sensitive to noradrenaline. Studies in other species revealed that [3H]-
clonidine binding was completely displacable with catecholamines in rat
brainstem membranes, while in membranes prepared from the human
NRL region, noradrenaline and adrenaline had virtually no effect on
[3H]-clonidine binding. This suggests a species difference in the density
and distribution of imidazoline preferring “receptors” in brain.

Based on ligand binding studies, the site labelled by [3H]-p-
aminoclonidine exhibited a rank order of affinity for displacing agents
of clonidine (6 nM) > phentolamine (42 nM) >> guanabenz (10000 nM)
(Michel & Insel, 1989). Recent data has shown that rilmenidine also has
high affinity for these sites (K; = 6 nM, Gomez et al., 1991). However,
it must be stressed that these affinities were calculated based on the
relative affinity of these compounds for only 30% of the specifically
bound [3H]-p-aminoclonidine, and interpretation was complicated by the
presence of a large population of aj-adrenoceptors which [3H]-p-
aminoclonidine labelled at the concentrations used in the studies. The
nature of these sites, therefore, would best be studied either in an
homogeneous tissue (human NRL), or in the presence of a selective ;-
adrenoceptor antagonist.

[dazoxan behaves functionally as a potent and selective op-
adrenoceptor antagonist, and the radiolabelled ligand has been used to
label ox-adrenoceptors in homogenate preparations (see sections 1.2.1.
to 1.2.6.). However, recent studies in a variety of tissues such as rabbit
kidney (Hamilton et al., 1988), rabbit urethral tissue (Yablonsky et al.,
1988; Yablonsky & Dausse, 1989), rabbit adipocytes (Langin &
Lafontan, 1989), hamster adipocytes (MacKinnon et al., 1989), guinea
pig cerebral cortex (Wikberg & Uhlen, 1990), rat cerebral cortex
(Brown et al., 1990a), rat and human kidney (Michel ez al., 1989a), and
pig kidney (Vigne et al., 1989), have shown that [3H]-idazoxan labelled
additional sites that were not competed for by catecholamines and were
therefore not adrenoceptors. These non-adrenergic binding sites were
competed for with high affinity by several imidazoline compounds such
as cirazoline (Wikberg & Uhlen, 1990), and also by guanabenz (Michel
et al., 1989a) and amiloride (Yablonsky & Dausse, 1989), and have been
termed non-adrenoceptor idazoxan binding sites (NAIBS) or
imidazoline-guanidinium receptive sites (IGRS) by some authors
(Kilpatrick et al., 1992; Coupry et al., 1989). These sites were shown
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to be pharmacologically distinct from those labelled by [3H]-p-
aminoclonidine in bovine and human brain, as clonidine had low affinity
(MacKinnon et al., 1989). Subsequent studies have shown this to be the
case 1n rat, pig, human and rabbit tissues, although rabbit tissues
displayed additional differences with regard to a higher affinity for
amiloride (Michel & Insel, 1989). Table 1.4. shows the affinity of some
imidazoline and non-imidazoline agents in competing for [3H]-p-
aminoclonidine, [3H]-clonidine and [3H]-idazoxan binding in various
tissues.

1.3.3.  Functional imidazoline sites

Although much is known about the nature of the imidazoline
binding sites, there is little information regarding their function. [t
appears that central imidazoline sites labelled by [3H]-p-aminoclonidine
and [3H]-clonidine may be partly involved in the hypotension observed
with some imidazoline and oxazoline compounds (see Section 1.3.1.),
although the mechanism through which this occurs is uncertain. A
number of systems have been shown to be sensitive to clonidine and
other imidazoline related compounds which could not be explained by
an action at an op-adrenoceptor. These include catecholamine release in
adrenal chromaffin cells (Regunathan et al., 1991); acid secretion in
parietal cells (Houi et al., 1987); electrolyte transport in the rabbit
ileum (Dharmsathaphorn er al., 1984) and stimulation of insulin release
from rat pancreatic islets (Schulz & Hasselblatt, 1989). A detailed
analysis of the structure-activity of the compounds active in these
systems would help elucidate the possible involvement of an imidazoline
receptor.

Some studies have shown an effect of idazoxan which could not be
adequately explained by o-adrenoceptor blockade, including the
blockade of nonadrenergic-noncholinergic relaxations of the rat
anococcygeus muscle (Ramagopal & Leighton,1989), the inhibition of
Na+/H+ exchange in renal proximal tubule cells (Bidet er al., 1990), the
inhibition of noradrenaline release in rabbit aorta and pulmonary artery
(Gothert & Molderings, 1991), and the inhibition of prolactin release
(Krulich et al., 1989). In addition, idazoxan has been suggested to
reduce focal cerebral ischaemic damage by an action at an imidazole
receptor (Maiese et al., 1992). Although suggestive of imidazoline
receptor mediated events, in most of these studies the concentration of
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Table 1.4. Inhibition of [3H]-p-aminoclonidine, [3H]-
clonidine and [3H]-idazoxan binding in various tissues.

pK pKj pKi pKj
radioligand/tissue idazoxan clonidine  amiloride guanabenz

[3H]-p-aminoclonidine

bovine brain n.d. 8.2a <5.0 25.0¢
[3H]-clonidine

human NRL 7.5d 7.0d n.d. n.d.

[3H]-idazoxan

rabbit kidney 8.8e 6.5¢ 7.4e 8.7e
rabbit adipocytes 8.7f 6.0f T3f n.d.
rabbit liver

mitochondria 8.5¢ S5.1g 6.82 8.3g
human kidney 8.5e 5.6¢ 6.4e 8.0e
rat brain 8.4h 6.3h 6.3h 8.2h
hamster

adipocytes 8.7 o) n.d. n.d.
pig kidney 8.8/ 5.0/ n.d. 7.7)

aEmsberger er al., 1988, bMichel & Insel, 1989, cGomez et al., 1991,
dBricca et al., 1989, eLachaud-Pettiti er al., 1991, flLangin & Lafontan,
1989, gTesson et al., 1991, hBrown et al., 1990a, iMacKinnon et al.,
1989, jVigne et al., 1989, n.d. not determined.



idazoxan used was higher than may be expected for a selective effect,
thus an interaction with serotonergic, oj-adrenoceptors or indeed a
subtype of ap-adrenoceptor could not be completely ruled out. In
addition, the lack of additional data on other high affinity imidazoline
compounds, such as cirazoline or guanabenz, could not unequivecably
implicate the [3H]-idazoxan labelled imidazoline sites in these systems.
The identification of a high affinity imidazoline compound with low
affinity for other receptor types would greatly assist our understanding
of imidazoline site function.

In a search for an endogenous ligand for the imidazoline site(s),
Atlas & Burnstein (1984) isolated and partially purified an extract from
bovine brain which displaced [3H]-clonidine from bovine cerebral
cortex membranes. This endogenous clonidine displacing substance
(CDS) was not a catecholamine but the exact chemical nature of its
active ingredient(s) has not yet been established. CDS has been found to
bind to op-adrenoceptors in human platelets (Diamant et al., 1987) and
imidazoline sites in adrenal chromaffin cells (Regunathan et al., 1991)
and rat liver cells (Zonnenschein er al., 1990). Preparations of CDS
from different laboratories have been shown to increase blood pressure
in the cat (Bousquet er al., 1986) or decrease blood pressure in the rat
(Meeley et al., 1986) suggesting species differences in the actions of
CDS, or, more likely, that different extracts were isolated from the
different laboratories. CDS has been shown to contract the rat gastric
fundus (Felson et al., 1987), inhibit the twitch response in the rat vas
deferens (Diamant & Atlas, 1986) and potentiate ADP-stimulated
aggregation of human platelets (Diamant et al., 1987) and in these
respects mimicked the actions of clonidine. CDS has been found to be
present in human serum, and its levels are increased in patients with
pregnancy-induced hypertension suggesting its physiological relevance
in humans (Atlas, 1991). The purification and elucidation of the exact
chemical structure of the compound(s) will help in understanding its
physiological role, and whether it represents the endogenous
imidazoline ligand.

1.4. BACKGROUND TO THESIS

Previous studies from this laboratory (Brown er al., 1990a.b)
demonstrated that [3H]-yohimbine labelled two subtypes of on»-
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adrenoceptor in rat cortex membranes; one which was sensitive to
prazosin (02g) and another which was insensitive (2a). In contrast,
another op-adrenoceptor antagonist ligand, [3H]-idazoxan, labelled only
one subtype of op-adrenoceptor in rat cerebral cortex, which was
insensitive to prazosin. However, it was noted in these studies, that
although the site in rat cerebral cortex displaying low affinity for
prazosin was similar to the oa-adrenoceptor on human platelets, a
tissue reported to contain an homogeneous population of 02a-
adrenoceptors (Cheung et al., 1982; Nahorski et al., 1985), there were a
number of differences, particularly in regard to the affinity of [3H]-
yohimbine itself, which had 8 fold higher affinity in the human platelet.
Therefore, it was suggested that the az-adrenoceptor subtypes in rat
cerebral cortex may not be consistent with the current classification.

In the mid eighties my colleagues and I at Syntex Edinburgh, and
in collaboration with the Institute of Chemistry, Syntex, Palo Alto were
involved 1n an extensive screen of novel compounds synthesised to have
oz-adrenoceptor antagonist properties. From this work, RS-15385-197
(Figure 1.2) a tetracyclic structure based on rauwolscine emerged as
having high affinity (pK; = 9.5 - 10.2) for op-adrenoceptors on rat
cortex, human platelets, neonatal rat lung and baboon cerebral cortex
membranes, and more than 1000 fold selectivity over all other subtypes
studied (Table 1.5.). This work, and additional work describing the
pharmacology of RS-15385-197 and its modulation of central
noradrenergic functioning has been published or has been submitted for
publication (Brown et al., 1989,1993; Clark et al., 1989,1990b;
MacKinnon et al., 1990,1991a,b; Redfern er al., 1993). RS-15385-197
has since been radiolabelled. The use of a high affinity radiolabelled
antagonist with high selectivity for op-adrenoceptors will help in
reassessing the classification of o»-adrenoceptor subtypes.

Further analysis of [3H]-idazoxan binding in the rat cerebral
cortex revealed that this ligand labelled an additional non-adrenergic
site in this tissue, which was defined in the presence of 3 UM yohimbine
and when 0.3 uM cirazoline was used to determine non-specific binding
(Brown et al., 1990a). Characterisation of the additional site revealed it
to be similar to the recently described imidazoline site in rabbit kidney
(Hamilton er al., 1988), rabbit adipocytes (Langin & Lafontan, 1989)
and rabbit urethral tissue (Yablonsky er al., 1988; Yablonsky & Dausse,
1989), as described in detail in Section 1.3.. Further characterisation of
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Cl Cr
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The structure of RS-45041-190

RS-45041-190 is Syntex company confidential
information and is the subject of
a patent application

Figure 1.2. Structure of RS-15385-197 and RS-45041-190
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Table 1.5. Receptor profiles of RS-15385-197 and RS-45041-
190.

RS-15385-197 c-affinity

rat cerebral cortex pKi =9.45
baboon cerebral cortex pK;=10.12
human platelets pKi=9.90
neonatal rat lung pKi =9.70
hamster adipocyte pKi =8.13

RS-45041-1 imidazolin ffini

rabbit kidney pKi =9.37
hamster adipocytes pKi = 8.50
rat kidney pKi = 8.66

pKi

o (0 %) B] Bz 5-HT14o 5-HT, D7y D> M, M- CEB

RS-15385-197
5.29 527 <50 6.50 510 <50 <50 <50 <50 <50

RS-45041-190
<5.0 570 <5.0 <50 503 420 <50 <50 <50 <50 <50

Methods as described in MacKinnon er al. (1989) and Brown et al.

(1993). Imidazoline affinity of RS-15385-197 was assessed in hamster
adipocyte membranes (pK; <4.0).
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[3H]-idazoxan binding in hamster adipocyte membranes revealed that 70 -
80% of the sites labelled were to imidazoline-like binding sites
(MacKinnon er al., 1989) with only 20 - 30% of the sites inhibited by
yohimbine, noradrenaline and RS-15385-197 (MacKinnon et al.,
1989,1990). Although classed as imidazoline binding sites it was noted
that there were marked differences between these sites and those
previously described for [3H]-p-aminoclonidine in bovine ventrolateral
medulla (Meeley er al., 1986; Ernsberger er al., 1987) and [3H]-
clonidine in human brainstem (Bricca et al., 1988; 1989). Possible
heterogeneity of the imidazoline binding site was thus suggested
(MacKinnon et al., 1989; Brown et al., 1990a).

When a number of novel compounds with an imidazoline
structure were estimated for affinity at the imidazoline binding site in
hamster adipocyte and rabbit kidney membranes, RS-45041-190 (Figure
1.2.) was identified as having high affinity (pK; = 8.5 at hamster
adipocytes and pK; = 9.7 at rabbit kidney, unpublished observations,
methods as described in MacKinnon et al., 1989 and Stewart et al.,
1992). When this compound was studied for affinity at the o;-
adrenoceptor it was found that it had very low affinity for [3H]-
yohimbine (pK; = 5.2) and [3H]-RS-15385-197 (pK; = 5.7) binding 1n
rat cerebral cortex membranes (unpublished observations, methods as
described in Brown et al., 1993, and in this thesis). In addition, Table
1.5. shows that it had very low affinity for all other receptor types
studied including o1, By, B2, S-HT1a, 5-HT2, Dy, D2, M, M3 and the
dihydropyridine binding site (CEB) labelled by [3H]-nitrendipine
(methods as described in Brown et al., 1993). RS-45041-190 was thus
the most selective agent for the imidazoline site so far described.
Synthesis of a high affinity radiolabelled agent for the imidazoline site
which has low affinity for a-adrenoceptors would greatly increase our
understanding of the nature of the imidazoline site(s) and whether true
heterogeneity exists.

1.5. AIMS OF THIS THESIS

The primary aims of this piece of work is to investigate subtypes
of o-adrenoceptors using the selective antagonist ligand, [3H]-RS-
15385-197, and the agonist ligand [3H]-adrenaline (Chapter three). In
addition the autoradiographical distribution of oz-adrenoceptors in rat
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brain will be studied using [3H]-RS-15385-197. Subtypes of imidazoline
sites on rat kidney will also be studied using [3H]-idazoxan, [3H]-p-
aminoclonidine and [3H]-RS-45041-190 (Chapter four). The distribution
of imidazoline sites in rat brain will be studied by autoradiography. In
addition, the functional consequences of imidazoline binding site and ot-
adrenoceptor subtype activation will be studied (Chapter five). The
impact of this work for future studies is considered in Chapter six.
Chapter two describes the methods used in this thesis.



CHAPTER TWO

MATERIALS AND METHODS



2.1. GENERALISED RECEPTOR BINDING PROTOCOL

2.1.1 Membrane Preparation

[n the majority of studies, tissues from male Sprague Dawley rats
(Charles River U.K. 200-250g) were used. The animals were pair
houSed and fed standard Laboratory chow ad lib. On the day of the
experiment the animals were brought to the animal preparation area.
Rats were sacrificed by a blow to the head and the neck broken. The
tissues required were rapidly dissected out onto ice and either used
immediately for membrane preparation or stored in plastic capped vials
under liquid nitrogen until required. All further procedures were
carried out at 40C unless otherwise indicated. All buffers and solutions
were freshly prepared each day. Fresh or thawed-frozen tissue was
suspended in the appropriate volume of homogenising buffer and
homogenised using a Polytron P10 Tissue Homogeniser (2 x 10 sec
bursts at maximum setting). Homogenates were centrifuged in a
refrigerated centrifuge (Sorval Superspeed RC 5B with a fixed angle
rotor). The speeds and times of centrifugation and the number of
washes varied with each individual preparation and will be detailed
separately in the following sections. Final membrane pellets
(approximate protein concentration 1 to 3 mg/ml) were suspended in a
small volume (~3 ml) of assay buffer and stored under liquid nitrogen
until required.

2.1.2. Saturation Binding Assay

All buffers and solutions were freshly prepared each day.
Binding assays were conducted in 4.9 ml round bottomed polypropylene
tubes (Fisons U.K.). The assay volume varied for each receptor /
radioligand studied but was generally between 0.5 - 2.0 ml. Assay
buffer was added to the tubes first using an Eppendorf automatic pipette
fitted with disposable plastic tips which were capable of dispensing
repeated volumes of buffer from 10 ul to 1 ml. A series of radioligand
dilutions were next prepared to cover at least a concentration range of
~10 fold higher to ~10 fold lower than the K4 value for that receptor.
Stock radioligands were purchased from Amersham International plc
(Buckingham, UK), Du-Pont (Stevenage, UK) or synthesised by Dr. H.
Parnes, Institute of Chemistry, Syntex Palo Alto. Small quantities were
removed from the undiluted stock radioligand (usually kept at a
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concentration of 1 mCi/ml in ethanol and stored at -200C) with a
Hamilton glass syringe and added to an appropriate volume of buffer to
produce the highest concentration of radioligand required for that assay
taking into account the dilution factor incurred when added to the
particular assay volume. Seven serial dilutions were prepared by
sequentially diluting 1 : 2 in assay buffer to cover the range of
concentrations required, a new tip was used for each dilution.
Generally 8 concentrations of radioligand were used in each saturation
experiment for each of 4 total binding tubes and 2 non-specific binding
(NSB) tubes. In addition, for each radioligand concentration, 2 total
binding tubes were included which were not filtered but from which
aliquots (10 - 20 %) were taken for the determination of total
radioligand concentration. Radioligand was added to each total, NSB
and unfiltered tube for that radioligand concentration using Pipetteman
Automatic pipettes fitted with disposable plastic tips, a new tip was used
for each concentration of radioligand. The appropriate NSB drug was
added to NSB tubes. Membrane samples were removed from storage
and thawed before adding to the appropriate volume of assay buffer.
The suspended pellets were homogenised briefly in the required volume
of assay buffer (for protein concentrations see following sections and
Table 2.2.) and aliquots were added to the assay using an Eppendorf
automatic pipette. Each assay tube was vortexed and placed in order in
racks contained in a water bath at the appropriate temperature for that
assay. The samples were left to equilibrate in the water bath before
filtration. Table 2.1. illustrates a typical assay protocol.

A Brandel Cell Harvester (Semat, St. Albans, UK) was used to
separate bound from free radioligand. This apparatus is capable of
filtering 24 samples simultaneously under a constant vacuum pressure of
24 mm Hg. Bound ligand was collected on Whatman GF/B filters which
had been pre-wetted with filtration buffer. In general filtered material
was washed twice by drawing filtration buffer over the filter for 5 sec.
Filters were left to dry thoroughly and placed in plastic scintillation
mini-vials to which 4 ml Beckman Ready Safe Scintillation Cocktail was
added. The samples were capped and left for at least 8 hours before
counting for tritium in a Beckman LS 5000 or 1700 series scintillation
counter. Each sample was counted for 3 min and the average
radioactivity was expressed as the mean dpm (disintigrations per
minute) per sample based on a counting efficiency of 40 - 45 %.
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Table 2.1 Assay additions for a typical saturation experiment.

Addition Total NSB unfiltered
Buffer 400 pl 300 pl 400 pl
radioligand 100 pl 100 pl 100 pl
(for each of 8 concentrations)

NSB drug - 100 pl -
membranes 500 pl 500 pl 500 pl
assay volume 1000 pl 1000 pl 1000 pul

Radioligand and NSB drug were prepared at a stock concentration 10 x
the required concentration and added to the assay tube. Membranes were
homogenised in the appropriate volume of buffer prior to addition to the
assay (see Sections 2.1.2. and 2.3.1. to 2.4.3. for individual assay
requirements).



2.1.3. Competition Assay

A competition curve comprised 2 total binding tubes 2 NSB tubes
and a series of 13 concentrations of competing drug tubes in duplicate.
Buffer was added to the assay tubes first. Radioligand was added next at
a concentation lower than or equal to the Kq4 value for that receptor. A
series of 13 dilutions of competing drug was constructed by diluting 1 :
10 and 1 : 3.33 from the highest concentration of drug taking into
account the dilution factor incurred when aliquots of the dilution were
added to the assay volume. When serial 1 : 10 dilutions were made
from these 2 dilutions a series of concentrations of decreasing half a log
order of magnitude was produced. Dilutions were constructed using a
Pipetteman Automatic pipette fitted with disposable plastic tips, a new
tip was used for each dilution. The appropriate concentration of
competitor was added to the assay tubes in duplicate. Aliquots of
membrane were added at the same concentration as for the saturation
assay. Samples were equilibrated and filtered as described for the
saturation assay (section 2.1.2.).

2.1.4. Kinetics Assay

To determine the kinetics of a binding reaction, association and
dissociation experiments were carried out. For an association
experiment triplicate total and NSB tubes were incubated for various
times before filtration. Plotting specific binding against time yielded an
exponential time course from which the association rate (Kops) and time
to equilibrium could be calculated (see section 2.9.2.). For a
dissociation experiment triplicate total and NSB tubes were incubated to
equilibrium (equilibrium time being estimated from association
experiments). Excess cold ligand (generally 100 x Kg), or preferably a
structurally unrelated competing drug, was added to each assay tube 1n a
small volume (<5 % assay volume), the tubes were vortexed briefly and
incubated for various times before filtration. A one way process of
dissociation was thus initiated as re-association of the radioligand to the
binding site was unlikely due to the large excess of unlabelled
competitor present. In most dissociation experiments, for each time
point, an additional series of total and NSB tubes received the same
volume of buffer. This was included to correct for any dilution error
and drift in equilibrium over the dissociation period. Analysis of the
exponential time course gave the dissociation rate constant Ky (see
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section 2.9.2.)

2.1.5. Protein determination

Protein content of membrane homogenates was determined using
the Pierce BCA Protein Assay Reagent (Pierce, UK) using bovine serum
albumin (BSA) as the protein standard. This reagent kit is based on the
biuret reaction and allows for the accurate determination of protein
concentration in a sample from 20 - 2000 pg protein/ml. A standard
curve for BSA was constructed over this range. Aliquots (100 ul) of
sample was added to reagent tubes in triplicate (sample was diluted to be
within the standard curve as appropriate); the tubes were vortexed for 3
sec and incubated for at least 2 hours at 250C or 30 min at 370C before
reading for absorbance at 562 nm in a Unicam SP1800
spectrophotometer against reagent blank.

2.2. MEMBRANE PREPARATION

2.2.1. Preparation of rat cerebral cortex membranes

Rat cerebral cortex membranes were prepared as described by
Brown et al. (1990a) by homogenising freshly dissected or thawed
frozen rat cerebral cortices in 25 volumes of ice cold 50 mM Tris HCI,
5 mM EDTA, (pH 8.0). The homogenate was centrifuged at 48000 g for
15 min at 40C. The pellet was resuspended in the same volume of
buffer and washed once more under the conditions described. The
pellet was washed twice in assay buffer (50 mM Tris HCI, 0.5 mM
EDTA, pH 8.0 at 40C) by repeated centrifugation at 48000g for 15 min
at 4oC. The final pellet was resuspended in assay buffer at an
approximate protein level of 3 mg/ml.

2.2.2. Preparation of human platelet membranes

Platelet membranes were prepared essentially as previously
described by Cheung et al. (1982). Blood was donated by healthy male
and female Syntex employees who undergo an annual screen for
Hepatitis-B virus. No more than 200 ml blood was collected from any
volunteer in any eight week period. Blood was collected into 50 ml
blood tubes containing 5 ml of 3.5 % (w/v) trisodium citrate.
Disposable gloves, face mask and safety glasses were worn at all times
when handling blood or derived products. All homogenisation
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procedures were carried out in an externally vented Grade 3 fume
hood.

Platelet rich plasma (PRP) was obtained by centrifugation at 200g
for 15 min in a MSE Centaur bench centrifuge. The PRP was
centrifuged in aliquots of 25 ml at 48000 g for 10 min at 40C and the
resulting pellet resuspended in cold lysing buffer (5 mM Tris HCI, 5
mM EDTA, pH 8.0). The pellet was washed once more in lysing buffer
by resuspension and centrifugation followed by a wash in 50 mM Tris
HCl, 0.5 mM EDTA pH 8.0 at 4oC. The final pellet was resuspended
in assay buffer at a protein concentration of 1.0 mg/ml. Membranes
from individual volunteers were stored separately under liquid nitrogen
until required for use in the binding assay. For [3H]-adrenaline binding
an additional step was included by incubating the membrane suspension
in assay buffer for 15 min at 370C prior to centrifugation to facilitate
removal of endogenous agonist and GTP.

2.2.3. Preparation of neonatal rat lung membranes

Neonatal Sprague Dawley rats (< 24 hours old) of mixed sexes
were sacrificed by decapitation and the lungs dissected out and frozen
under liquid nitrogen until use. Membranes were prepared as described
for cerebral cortex (Section 2.2.1.) by homogenising 3 lungs in 25 ml
homogenising buffer. Because lung tissue is quite fibrous the
homogenate was strained through a layer of muslin to remove non-
homogenised material before the first centrifugation step. The final
pellet was suspended in 3 ml assay buffer at an approximate protein

concentration of 2.0 mg/ml.

2.2.4. Preparation of rat kidney membranes

Kidney membranes were prepared as previously described
(MacKinnon et al., 1991a). Kidneys were dissected from male Sprague
Dawley rats and each kidney homogenised in 25 ml 50 mM Tris HCI
buffer pH 7.4 at 250C containing S mM EDTA. Membranes were
prepared as described for rat cortical membranes (section 2.2.1.). The
final pellet was suspended in 3 ml assay buffer to a protein
concentration of 3 mg/ml.

2.3. BINDING TO o2-ADRENOCEPTOR SUBTYPES
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2.3.1 [3H]-RS-15385-197 binding

[3H]-RS-15385-197 was synthesised to a specific activity of 57
Ci/mmole by Dr. H. Parnes (Institute of Chemistry, Syntex, Palo Alto,
U.S.A.) and stored at -200C at a concentration of 0.75 mCi/ml. Under
these storage conditions [3H]-RS-15385-197 retained > 98 % purity
(determined by HPLC) throughout the duration of this study. [3H]-RS-
15385-197 (0.01 - 2.0 nM) was incubated to equilibrium in 50 mM Tris
HCI buffer, pH 7.4 at 250C containing 0.5 mM EDTA with 50-250 pg
membrane protein. Incubations were carried out at 250C in a final
volume of 1 ml for 90 min for rat cerebrocortical membranes and for
60 min for human platelet and neonatal rat lung membranes.
Competition experiments were carried out with 0.1 - 0.2 nM [3H]-RS-
15385-197 and 13 concentrations of competing drug. Bound ligand was
determined as described (Section 2.1.2.). Non-specific binding at each
free ligand concentration was determined in the presence of 1 uM
phentolamine.

2.3.2. [3H]-adrenaline binding

[3H]-(-)-Adrenaline was purchased from Du-Pont (specific
activity 65-75 Ci/mmole). In all cases during this study the (-) isomers
of adrenaline and noradrenaline were used. [3H]-Adrenaline (0.2 -25
nM) was incubated with 100 -200 pg neonatal rat lung or human platelet
membranes to equilibrium (60 min at 250C). Competition experiments
were carried out with 2 - 3 nM [3H]-adrenaline and 13 concentrations of
competing drug. The assay buffer S0 mM Tris HCI pH 7.4 at 250C
contained 0.3 mM ascorbic acid, S mM MgCl,, 0.8 mM dithiothreitol
and 0.1 mM catechol which mimimised degradation of the radioligand
(Sénard et al., 1988). For neonatal rat lung membranes the assay also
contained 10 nM propranolol to prevent binding to B-adrenoceptors.
Bound ligand was determined as described (Section 2.1.2.). Non-
specific binding was carried out in the presence of 10 uM (-)-
noradrenaline.

24. IMIDAZOLINE SITE BINDING

2.4.1. [3H]-p-Aminoclonidine binding to rat Kkidney

membranes
[3H]-p-Aminoclonidine (2.0 - 3.0 nM. Du-Pont U.K., 50 - 60
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Ci/mmole) was incubated to equilibrium (30 min at 40C unless
otherwise indicated) with 0.8 - 1.0 mg rat kidney membranes in the
absence or presence of 13 concentrations of competing drug in a final
assay volume of 0.5 ml (50 mM Tris HCI pH 7.4 at 40C containing 0.1
UM RS-15385-197 to preclude binding to o-adrenoceptors). Non-
specific binding was determined in the presence of 100 uM clonidine.
Bound ligand was determined as described (Section 2.1.2.) followed by
2 x 5 sec washes (unless otherwise indicated) with ice cold assay buffer.
In some experiments centrifigation at 15000 g for 90 sec in a Wifug
microfuge was used to separate bound ligand. In these experiments the
filtrate was tipped out and the resultant pellet washed rapidly and
superficially with 0.5 ml ice cold assay buffer and then solubilised in
100 pl formic acid for 30 min. Filters or solubilised pellets were
suspended in 4 ml scintillation cocktail and bound ligand estimated by
counting in a Beckman S000CE Scintillation counter. Due to the low
affinity of [3H]-p-aminoclonidine for its binding site and to reduce the
amount of label required for a saturation assay, equilibrium binding
parameters (Kg and Bmax) were calculated from competition
experiments with unlabelled p-aminoclonidine (see Section 2.8.).

2.4.2. [3H]-idazoxan binding to rat Kidney membranes

Rat kidney membranes (300-500 pg protein) were incubated with
1.0 - 2.0 nM [3H]-idazoxan (Amersham, Bucks, U.K., 40 - 50
Ci/mmole) for 90 min at 250C (unless otherwise indicated) in the
presence of 0.1 utM RS-15385-197 and various concentrations of drugs
in a final assay volume of 0.5 ml assay buffer (50 mM Tris HCI; pH 7.4
containing 0.5 mM EDTA). Bound ligand was separated from free as
described (Section 2.1.2.) followed by 2 x 5 sec washes with assay
buffer at room temperature. Non-specific binding was determined in
the presence of 1 uM cirazoline.

2.4.3. [3H]-RS-45041-190 binding to rat kidney membranes
[3H]-RS-45041-190 was synthesised to a specific activity of 28
Ci/mmole by Dr. H. Parnes (Institute of Chemistry, Syntex Palo Alto,
U.S.A.), and stored at -200C at a concentration of I mCi/ml. Under
these storage conditions [3H]-RS-45041-190 retained > 96 % purity
(determined by HPLC) throughout the duration of this study. 0.2 - 25
nM [3H]-RS-45041-190 was incubated with rat kidney membranes (200-
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400 pg protein) to equilibrium (60 min at 250C) in an assay volume of
500 pl 50 mM Tris HCI pH 7.4 at 250C containing 0.5 mM EDTA. In
competition experiments 1.0 - 2.0 nM  [3H]-RS-45041-190 was
incubated with 13 concentrations of competing drug. Non-specific
binding was defined in the presence of 10 uM cirazoline. Bound ligand
was determined as described (Section 2.1.2.).

A summary of the receptor binding conditions used in this thesis
is given in Table 2.2.

25.IN VITRO RECEPTOR AUTORADIOGRAPHY

2.5.1. Preparation of slides for autoradiography

Double frosted glass microscope slides were cleaned in running
tap water and dried in an oven at 60oC. A subbing solution was
prepared by dissolving 10 g gelatin and 0.5 g chromic potassium
sulphate in 1 L deionised water. The solution was heat stirred to a
temperature of 60 - 700C and filtered through Whatman 91 filter paper.
The solution was cooled to below 400C and racks containing the cleaned
slides dipped in the subbing solution to coat thoroughly. The slides
were dried overnight in an oven at 600C with copper sulphate dessicant.
The subbing solution could be used to coat several batches of slides at
once but was discarded after use.

2.5.2. Preparation of sections for autoradiography

Male Sprague-Dawley rats (250-350 g) were anaesthetised with
60 mg/kg pentobarbitone 1.p. and the thorax opened. A clamp was
placed around the descending arteries and the animal was perfused
intracardially with 20 mls 0.9% saline by means of a blunted needle
inserted into the left ventricle and up into the aorta. A nick was made
in the right atria to allow passage of blood and perfusate. The brains
were carefully removed and frozen in isopentane at -450C (temperature
was maintained by cooling in a dry ice / acetone mixture). Tissue
blocks were frozen onto orientating microtome chucks with Tissue Tek
and dipped in Lipshaw Embedding Matrix. 20 pm coronal sections
were cut on a Bright cryostat and thaw mounted onto gelatin subbed
slides. For a detailed brain receptor map sections were taken in the
caudal to rostral direction in a plane related to Bregma as described by
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Table 2.2. Summary of binding conditions

ligand buffer membranes NSB  incubation
(concentration) (protein)
[3H]-RS-15385-197 50 mM Tris pH 7.4; rat cortex 1 UM 250C
0.1-0.2nM EDTA 0.5 mM (150-250 ug)  phentolamine 90 min
[3H]-RS-15385-197 50 mM Tris; pH 7.4  human platelet 1 uM 250C
0.1 -0.2nM EDTA 0.5 mM (50-150 pg) phentolamine 60 min
(3H]-RS-15385-197 50 mM Tris; pH 7.4 rat neonate lung 1 uM 250C
0.1 -0.2 nM EDTA 0.5 mM (100-200 pg)  phentolamine 60 min
[3H]-adrenaline 50 mM Tris; pH 7.4  human platelet 10 uM 250C
2.0-3.0nM MgCl; 5 mM (100-200 pg)  noradrenaline 60 min
dithiothreitol 0.8 mM
ascorbate 0.3 mM
catechol 0.1 mM
[3H]-adrenaline 50 mM Tris; pH 7.4 rat neonate lung 10 uM 25°C
2.0-3.0nM MgCl; 5 mM (100-200 pg)  noradrenaline 60 min
dithiothreitol 0.8 mM
ascorbate 0.3 mM
catechol 0.1 mM
propranolol 10 nM
[3H]-p-aminoclonidine 50 mM Tris; pH 7.4  rat kidney 0.1 mM 4oC
2.0-3.0nM EDTA 0.5 mM (800-1000 pg) clonidine 30 min
RS-15385-197 0.1 uM
[3H]-idazoxan 50 mM Tris; pH 7.4 rat kidney 1 UM 250C
1.0-2.0nM EDTA 0.5 mM (300-500 pg)  cirazoline 90 min
RS-15385-197 0.1 uM
[3H]-RS-45041-190 50 mM Tris; pH 7.4  rat kidney 10 uM 250C
1.0- 2.0 nM EDTA 0.5 mM (200-400 pg)  cirazoline 60 min
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Paxinos & Watson (1982). Six sections were taken (3 sections per
slide) for each brain area with 15 sections discarded between areas, in
this way the receptor distribution in approximately 50 brain areas could
be made from 1 animal. Sections were allowed to dry at room
temperature and then stored at -200C for at least 3 days before use to
facilitate adhesion to the slide.

2.5.3. Preparation of labelled sections for autoradiography

The preparation of labelled sections for autoradiography
requires; 1) a preincubation step to remove any endogenous ligands
which may interfere with the binding of the radioligand 2) an
incubation step in an appropriate buffer system with radioligand to
maximise radioligand binding; parallel sections are incubated in the
presence of non-specific binding drug to define the level of non-specific
binding in the brain section 3) a washing stage to remove unbound
radioligand whilst retaining a high proportion of bound ligand and a
good ratio of specific to non-specific binding 4) a drying stage prior to
exposure to radioactive film 5) quantification.

2.5.4. Establishing a labelling protocol

Prior to the generation of autoradiograms, the optimum
incubation and washing conditions were established for each
radioligand. This was achieved by bringing the sections to room
temperature and preincubating in assay buffer for 20 min at room
temperature in racks which hold 25 slides. The assay buffer used was
the same as that used in membrane binding experiments except that
isotonic buffers were used e.g. 170 mM Tris HCL. The slides were then
transferred to 25 ml Coplin jars containing 20 ml assay buffer and
radioligand. These jars are capable of holding 10 slides back to back in
parallel. The incubation time and concentration of radioligand used
were the same as that used in membrane binding experiments. Parallel
incubations were performed in the presence of non-specific drug.
Sections were washed by placing slides individually in metal racks in
troughs containing ice-cold assay buffer. The slides were removed at
timed intervals, dipped in ice-cold distilled water and the sections wiped
immediately from the slide with a circle of filter paper. Filters
representing total and non-specific binding for each wash time were
placed in scintillation mini-vials and 4 ml scintillation cocktail added.
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Samples were counted for radioactivity in a Beckman S5000CE
Scintillation counter. From these experiments a graph of wash time
against specific dpm bound/section could be constructed and the
optimum washtime for further experiments established. The optimum
incubation time for each radioligand was established similarly by
incubating in assay buffer with radioligand for various times before
washing. The wash time used would be that established from the
washing experiments. From these experiments the time to reach
equilibrium could be established by plotting incubation time against
specific dpm bound/section. Using the optimised assay conditions,
labelled sections were prepared for the generation of autoradiograms.

2.5.5. Preparation of [3H]-RS-15385-197 labelled sections

Sections were brought to room temperature and preincubated for
20 min at room temperature in 170 mM Tris HCIl buffer pH 7.4
containing 0.5 mM EDTA. Incubations were performed in the same
buffer containing 0.1 nM [3H]-RS-15385-197 for 60 min, non-specific
binding was determined in the presence of 1 uM phentolamine.
Labelled sections were washed in ice-cold Tris EDTA buffer for 10
min, dipped in ice cold distilled H,O and dried by placing on dry ice
and blowing with ambient air with a domestic Clairol Coolset hairdryer
for several hours. The sections were left overnight at room
temperature to dry thoroughly and opposed to [3H]-sensitive Hyperfilm
(Amersham) with appropriate standards (3H microscales Amersham) in
X-ray cassettes for 12 weeks. [3H]-Microscales are supplied in 2
radioactivity ranges, RPA 505 (0.07 to 6.5 nCi/mg tissue equivalent)
and RPA 507 (0.1 to 16 nCi/mg tissue equivalent), each containg 8
activity levels in a polymer matrix. The tissue equivalent activity is
calculated as an estimate of the optical density expected in a section of
brain tissue (gray and white matter) of an equivalent activity and this
data is supplied in an accompanying data sheet. The activity in each
brain region can be calculated from a standard curve constructed from
the optical density of the standards against activity in moles/mg tissue
equivalent (see Section 2.5.8.), or as calculated for [3H]-RS-15385-197
autoradiography in moles/unit area (in this case mmz2).

The films were developed in Agfa X-ray developer (diluted 1 : 5
with tap water) for 4 min at room temperature, rinsed briefly in water
and fixed in Agfa X-ray fixer (diluted 1 : 4 with tap water) for 4 min

41



Films were rinsed for 10 min in running water and dried in a drying
cabinet at 300C.

2.5.6. Preparation of [3H]-idazoxan labelled sections

Sections were brought to room temperature and preincubated for
20 min at room temperature in 170 mM Tris HCI buffer pH 7.4
containing 0.5 mM EDTA, 100 uM phenyl methyl sulphonyl fluoride
(PMSF) and 0.1 uM RS-15385-197. Incubations were performed in the
same buffer containing 3 nM [3H]-idazoxan for 3 hours, non-specific
binding was determined in the presence of 10 uM cirazoline. Labelled
sections were washed in ice cold preincubation buffer for 10 min and
dipped in ice cold distilled H2O. The sections were dried and exposed
to [3H]-sensitive Hyperfilm for 12 weeks as described (Section 2.5.5.).

2.5.7 Preparation of [3H]-RS-45041-190 labelled sections

Sections were brought to room temperature and preincubated for
20 min at room temperature in 170 mM Tris HCI buffer pH 7.4
containing 0.5 mM EDTA. Incubations were performed in the same
buffer containing 3 nM [3H]-RS-45041-190 for 60 min, non-specific
binding was determined in the presence of 10 uM cirazoline. Labelled
sections were washed in ice cold preincubation buffer for 10 min,
dipped in ice cold distilled H2O and dried. Autoradiograms were
generated as described (Section 2.5.5.).

2.5.8. Quantitative Autoradiography

Autoradiograms were analysed using a Quantimet 970 Image
Analyser run on a PDP 11 computer with a Video Camera. After
background subtraction by a matrix shading corrector facility, the
optical density (O.D.) in each of the 8 Amersham microscale standard
sections was calculated and stored on disc as In O.D. versus In
radioactivity in fmoles/mg tissue equivalent.  [3H]-RS-15385-197
autoradiography sections were sent to Dr. N. Sharif, Syntex Palo Alto
for quantification. In these studies, standard curves were calculated as
O.D. vs radioactivity in moles/unit area (mm2). O.D. measurements of
the brain structures were performed by selecting a measuring box of
appropriate dimensions which was used to overlay the structure in a
total binding section and measure the optical density of that area. Once
all the measurements in a particular section was complete the image area
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was stored, and after edge enhancement and alignment of the
corresponding non-specific section, the specific O.D. of all structures in
that section was made automatically by subtraction of the non-specific
from the total. Measurements from replicate sections were collated and
stored on disc to be later printed to give the mean specific binding for a
defined brain area. Prior to calculation of activity in the
autoradiograms, a protocol was established to outline the structures to
be measured in each section plus the area of the box used to measure
each structure. Often more than one measurement would be made of
any one structure in a given section, and also measurements of left and
right portions of a structure where appropriate. Once the protocol was
established it was adhered to for all sections and animals in that study

group.

2.5.9. Photography

For diagramatic representation in this thesis, autogadiograms
were photographed using a Canon SLR camera with Kodak Ortholith
black and white film. All further procedures were carried out under
safe-light conditions. Exposed films were developed in Microfen
developer for 5 min at 220C, rinsed with cold water, and fixed in Ilford
Hypam fixer for 2 min at 220C. The developed film was washed for 10
min in running water and dried at 300C for at least 30 min. Prints were
made from the film using Ilford grade 5 black and white printing paper.
The prints were developed in Ilford Bromofen developer for 2 min at
220C, rinsed in cold water, and fixed in Hypam fixer for 2 min at
220C. The prints were washed in running water for 10 min, and dried
at 300C. Individual autoradiograms were mounted onto white card, and
the corresponding legend attached. This was then rephotographed and
printed as described above.

2.6. LIPOLYSIS IN HAMSTER ADIPOCYTES

2.6.1. Preparation of Hamster adipocytes

Hamster adipocytes were prepared essentially as previously
described (MacKinnon ez al., 1989). Male Syrian hamsters (2-3 months
old; 100 - 150 g) were killed by gassing with nitrogen. White adipose
tissue from the epididymal area, kidneys and subcutaneous layer was
removed onto ice and minced finely. Normally 8 - 10 g fat was
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obtained per animal. Minced tissue was suspended in Krebs Ringer
bicarbonate buffer (3ml/g tissue) of the following composition; 25 mM
NaHCOs3, 120 mM NaCl, 2 mM KCI, | mM MgSOyg4, 1.2 mM KH,POy4,
6 mM glucose, 3.5 % fatty acid free bovine serum albumin and 1 mM
CaCl, (pH 7.4; gassed with 95% O3 / 5% CO7) and contained 1 mg/ml
collagenase (Sigma Type 1A). The tissue was incubated at 370C for 20
min, with vigorous shaking by hand every 5 min. The suspension
containing the adipocytes was filtered through 2 layers of muslin to
remove undigested fat and was left to settle at room temperature for 5
min. During this time the adipocytes floated to the surface of the
supension and were separated from the digestion buffer by aspiration of
the infranatant. The adipocytes were washed 3 times by suspension in
equal volumes of collagenase free buffer.

2.6.2. Measurement of glycerol release

Aliquots (200 pl) of isolated adipocytes were suspended in Krebs-
Ringer bicarbonate buffer pH 7.4 containing 100 nM propranolol and
various concentrations of agonist and antagonist in a final volume of
500 pl. Lipolysis was initiated by the addition of 100 uM theophylline
and 2 pg adenosine deaminase (72 units/mg protein). Batches of
adenosine deaminase were made up to 2 mg/ml with deionised water on
arrival and then split into 100 pl aliquots and frozen at -200C. One
aliquot of thawed enzyme was suspended in 10 ml of 0.5 mM
theophylline in assay buffer and 100 pl of this mixture added to each
assay tube. The cells were incubated at 370C for 20 min with agitation,
unless otherwise indicated, and the reaction stopped on ice. Aliquots of
infranatant (200 pl) were removed for the determination of glycerol.
Glycerol was measured using spectrophotometric kits supplied by
Randox (Ireland). The direct colometric procedure uses a quinoneimine
chromogen system in the presence of peroxidase and glycerol phosphate
oxidase and is linear up to a glycerol concentration of S mM. 30 ul of
sample or glycerol standard was incubated with 1 ml reagent at 250C
for 10 min and read for absorbance at 520 nm. Agonist responses were
expressed as a percentage of the theophylline/adenosine deaminase
stimulation.
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2.7. MEASUREMENT OF CAMP

2.7.1. Whole platelet preparation

Whole platelets were prepared by the method of Tymkewycz et
al. (1991). Blood (200 ml) from male and female volunteers, was
collected into 50 ml tubes containing 5 ml of 3.5% (w/v) trisodium
citrate and centrifuged at 250 g for 15 min (MSE Centaur bench
centrifuge) to produce a platelet-rich plasma (PRP). Idomethacin (10
uM) was added to the PRP and whole platelets were sedimented by
centrifugation at 450g for 20 min. The pellet was supended in 20 ml 50
mM Tris HCI; S mM EDTA pH 7.4 and swirled gently to disperse the
platelets. Aliquots (0.5 ml, ~1.5 mg protein) were incubated at 370C
for 1 min with cicaprost (8§ nM) to stimulate adenylate cyclase. Where
inhibitory agonists were included they were preincubated with the
platelets for 2 min prior to the addition of cicaprost. The reaction was
stopped with addition of 1 ml ethanol and the precipitate sedimented by
centrifugation at 3000g for 15 min. The supernatant was evaporated
overnight at 500C and the residue resuspended in 0.5 ml Tris EDTA
buffer for analysis of cAMP (Section 2.7.3.). Standard cAMP samples
were extracted in parallel to assess the percentage recovery of cAMP.
In this system cAMP recovery was not less than 94%.

2.7.2. Human platelet and neonatal rat lung membranes
Human platelet and neonatal rat lung membranes were prepared
as described (Sections 2.2.2 and 2.2.3.), diluted to give an approximate
protein concentration ‘of 2 mg/ml, and frozen at -800C prior to use.
Aliquots (50 pl ~ 100 pg protein) of thawed membrane were incubated
at 370C for 15 min (unless otherwise indicated) in 0.5 ml of cAMP
generating buffer (50 mM Tris HCI; pH 7.4, 0.5 mM EDTA, 2.5 mM
MgCly, 5 mM creatine phosphate, 50 U/ml creatine phosphokinase
(Sigma, type 1), I mM IBMX, 0. mM GTP, 1 mM ATP, | mM
ascorbate). Adenylate cyclase activity was stimulated with cicaprost
(platelet membranes) or isoprenaline or forskolin (lung membranes)
and inhibitory agonists added 15 min prior to the addition of cicaprost.
The reaction was stopped by boiling for 5 min and the precipitated
proteins sedimented at 10000g for 2 min. Aliquots of supernatant were
assayed for cAMP with standards prepared in cAMP generating buffer.
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2.7.3. Assay of cAMP

cAMP was assayed using a cAMP binding protein suplied by BDH
(BDH, Poole, UK). This assay is based on the competitive binding of
[3H]-cAMP (28 Ci/mmole; Amersham, Buckingham, UK) and
unlabelled cAMP to a protein kinase isolated from bovine adrenal
cortex. It is largely specific for cAMP and binds much less readily to
cGMP. The assay procedure was essentially as described in the
accompanying data sheet, but the protein was diluted 1.5 ml in 20 ml
assay buffer (50 mM Tris HCI, 4 mM EDTA pH 7.4) prior to use.

Duplicate 50 pl aliquots of extracted cAMP and 50 pl [3H]-cAMP
(20-25 Ci/mmole, Amersham Bucks UK, diluted 5 pl in 10 ml assay
buffer to give 0.025 pCi/assay) were incubated with 100 pl diluted
binding protein for 2 hours in an ice bath. A standard curve (0, 1, 2, 4,
8, 16, 30, 100 pmoles cAMP/S50 pl) was constructed in duplicate and
assayed in parallel. Unbound cAMP was separated by the addition of
100 pl charcoal adsorbent (0.52g charcoal, 0.4g bovine serum albumin
in 20 ml ice cold distilled water), vortexed and centrifuged in a Wifug
microfuge for 90 sec. Charcoal blank tubes containing [3H]-cAMP in
the absence of binding protein were included to assess the efficiency of
the charcoal adsorbent. Aliquots (200 pl) of supernatant were
suspended in 5 ml Ready Safe Scintillation cocktail. The samples were
capped and vortexed thoroughly, and left for at least 8 hours before
counting for tritium as described in Section 2.1.2.

After subtraction of the charcoal blank, a standard curve was
constructed by plotting CO/Cx against pmoles cAMP, where CO is the
dpm in the absence of unlabelled cAMP and Cx is the dpm in the
presence of each concentration of unlabelled cAMP. This plot was
essentially linear over the range 1 - 100 pmoles cAMP/50 pl. Linear
regression analysis was carried out using the Kaleidagraph programme
run on an Apple Macintosh computer. Unknown cAMP samples were
calculated from the standard curve using the equation of the line. A
typical standard curve is presented in Figure 2.1.

2.8. RAT ANOCOCCYGEUS MUSCLE PREPARATION

Male Sprague-Dawleyv rats (250 - 300 g) were sacrificed by a
blow to the head and cervical dislocation. The abdomen was opened and
the bilateral anococcygeus muscles exposed by breaking the pelvic bone
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Figure 2.1. An example of a typical cAMP standard curve. The
curve was constructed over the range 1 - 100 pmoles cAMP/50 pl, and is
essentially linear over this range. Unknown cAMP samples are read from
the curve using the equation of the straight line y = mx + c. Linear
regression analysis was carried out using the Kaleidagraph programme
run on an Apple Macintosh computer.
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and carefully retracting the descending colon. Ligatures were placed
around each muscle at the intestinal and spinal attachments and tied.
The muscles were removed with care to avoid stretching of the tissue
and placed in Krebs Henselheit buffer (118 mM NaCl, 5.6 mM KCl,
1.19 mM MgSQg4, 1.3 mM NaH,POg4, 25 mM NaHCO3, 10 mM glucose,
2.5 mM CaCl; gassed with 95% O2/59, CO, pH 7.4 at 370C). Each
tissue was mounted on a stainless steel field-stimulating electrode under
0.5 g tension in a 30 ml organ bath maintained at 370C. Changes in
tension were recorded by Dynamometer UF1 isometric force
displacement transducers (25 g range) coupled to a BBC Georz
Melrawatt SE 460 chart recorder. Tissues were allowed to equilibrate
for 45 min with frequent changes of medium before commencement of
the experiment. After equilibration, the tissues were contracted to
various agonists. The concentration of agonist was selected so as to
produce equal increases in tension in the tissue (approximately 5 g, or
75 % noradrenaline maximum). Upon attainment of the contraction
plateau (10 - 15 min) the tissues were field stimulated via a Grass S88
stimulator (square wave, 0.5 msec duration; 50V). Cumulative
frequency inhibition response curves (0.025 - 32 Hz) were constructed
by increasing the frequency 2 fold sequentially after the attainment of a
steady response. After determination of a control response, the
stimulator was switched off and the tissues washed frequently for 30
min or until the precontraction baseline was achieved. The antagonist
was added, and allowed to equilibrate with the tissue for 60 min before
addition of agonist and the construction of a second frequency response.

2.9. DATA ANALYSIS

2.9.1. Equilibrium binding parameters

Equilibrium binding parameters (Kg and Bpax) were obtained
using the iterative, non-linear least-square curve-fitting programme
"Ligand” (Munson & Rodbard, 1980) run on an HP 3000 computer.
Analysis of the data was carried out after initial graphical display of the
data on an IBM PC which enabled the elimination of rouge points. In
several cases throughout this thesis saturation data will be presented in
the form of Scatchard plots. These plots are for graphical illustration
only and are linear transformations, plotting bound ligand against
bound/free ligand. K4 and Bmax values for [3H]-p-aminoclonidine
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binding were obtained from competition studies with unlabelled p-
aminoclonidine where K4 = ICsq - [ligand] and Bmax = Bo x ICsq /
[ligand] (Deblasi et al., 1989). ICsq is the concentration of competing
drug producing 50% inhibition of specific binding and Bo is the amount
of labelled ligand specifically bound.

Binding isotherms from competition studies were analysed using a
non-linear least-square parametric curve-fitting programme run on a
BBC model B computer (Michel & Whiting, 1981). This programme
was designed for the interpretation of sigmoidal concentration response
curves and capable of estimating ICsp and curve steepness (Hill slope;
nH) and iterative curve-fitting to a single or two site model. The ICsg
was converted to a pK; (when Hill slopes were equal to 1) or a pICsg
corrected for ligand concentration (when Hill slopes deviated from 1)
by the equation (Eq.1) of Cheng & Prussof (1973). Where [L] = the
concentration of free ligand and Ky is the dissociation constant for the
radioligand.

. ICso )
pKipICso = -log o (Eq.1)

I + [L]/Kq

All data were initially analysed assuming a one site model of
radioligand binding. The data with Hill slopes of less than unity were
then analysed assuming a 2 site model and the results of the fit were
statistically compared to those of the one site fit by the differential F
value defined by Eq.2:

(§§1-SS2)/(df-df?)
Fis (Eq.2)

SS,/df>

where SS is the sum of squares error for the single site, SS» is the sum
of squares error for the two site model, df; is the degrees of freedom
for the single site model and df; the degrees of freedom for the two site
model (Munson & Rodbard, 1980; Petrash & Bylund, 1986). A two site
fit was assumed to be significantly better than a single site fit if the
determined F value was significant (95% confidence limits). For the
purpose of graphical presentation in this thesis, competition curves were
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plotted using the Kaleidagraph programme run on an Apple Macintosh
computer.

2.9.2. Kinetic analysis

For kinetic experiments, the pseudo first order rate constant
(Kobs) was initially calculated from the slope of the plot In(Be/Be-Bt)
versus time where Be is the binding at equilibrium and Bt is the binding
at time t. Essentially the same results were obtained with a non-linear
least squares fit to a single exponential function (Eq. 3), and this was
subsequently used in all determinations of Kyps, where Be and k are,
respectively, the amount of equilibrium binding and the rate constant
(Kobs) for the single exponential model. Experiments for which
semilogarithmic plots were non-linear, were analysed according to a
double exponential fit (Eq. 4).

Bt = Be (1 - e-k) (Eq. 3)
Bt = Ber(1 - e-kf) + Beg(1 - e-ks) (Eq. 4)

Berand Beg are the amplitudes, and kr and kg are the rates (Kops) of the
fast and slow binding components in the double exponential model. The
fits for a one or two site model were compared using the differential F
value (Section 2.8.1. and Eq.2). Non-linear fits were analysed by the
Kaleidagraph programme run on an Apple Macintosh computer. The
association rate constant K| was determined from the equation K; =
(Kobs-K2)/[Ligand], where K3 is the dissociation rate constant calculated
from the slope of the plot In(Bt/BO) against time, where BO represents
binding at time 0 and Bt the binding at time t . Again, the same results
were obtained with a non-linear least-squares fit to a single or double
exponential function (Eq. 5 and 6), and this was used in all
determinations of K.

Bt = BO (- ek) (Eq. 5)
Bt = BO(- e-kf) + BOy(- e-ks) (Eq. 6)

The equilibrium dissociation constant (Kq) was calculated from the
equation Kyq = Ky/Ky.
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2.9.3. Functional data analysis

In functional experiments the dissociation constant for antagonists
was calculated using the procedures developed by Arunlukshana &
Schild (1959). This procedure permits the determination of the
dissociation constant (Kg) while making no assumptions regarding the
relationship between fractional occupancy of the receptor and the
ultimate response. In each experiment a family of four dose response
curves were constructed. One in the absence of antagonist (control),
and one in the presence of each of 3 concentrations of antagonist. From
these response curves ECsq values were determined; where ECsq 1s the
concentration of agonist producing 50% of the maximum response. The
log of the dose ratio (i.e. the ECsg in the presence of antagonist divided
by the ECsp of the control) minus one was plotted against [log
antagonist]. The y intercept determined by least squares linear
regression was the pAj.

2.9.4. Statistical analysis

The majority of figures in this thesis are diplayed as a
representative experiment from at least three experiments carried out
on preparations from different animals (unless otherwise indicated) and
the meaned data and standard error are given in the text or in a table
referred to in the text or figure legend. Where only two determinations
were made, the meaned data are presented. The statistical tests used in
this thesis were the Students t-test and the differential F test test (Section
2.9.2.).

2.10. MATERIALS

2.10.1. Chemicals and drugs

[3H]-RS-15385-197 (57 Ci/mmole) and [3H]-RS-45041-190 (28
Ci/mmole) were synthesised by Dr H. Parnes, Syntex, Palo Alto, US;
[3H]-(-)-adrenaline (65-75 Ci/mmole) and [3H]-p-aminoclonidine (50 -
60 Ci/mmole) were purchased from Du Pont, Hertfordshire, UK; [3H]-
idazoxan (60 - 70 Ci/mmole) and [3H]-cAMP (28 Ci/mmole) were
purchased from Amersham, Bucks, UK. Photographic chemicals and
films were purchased from H.A.West, Edindurgh, UK. Tissue Tek was
purchased from Lab-Tek Products, Illinois, US; Lipshaw Embedding
Matrix was purchased from Lipshaw Detroit, US; 5-HT, yohimbine,
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clonidine, oxymetazoline, (-)-adrenaline, (-)-noradrenaline, (-)-
isoprenaline, Gpp(NH)p, dopamine, naphazoline, GTP, ATP, cAMP,
amiloride, glibenclamide, histamine, adenosine deaminase,
theophyline, indomethacin, cAMP, IBMX, creatine phosphate and
creatinephosphokinase and collagenase were purchased from Sigma;
ritanserin, haloperidol, p-aminoclonidine and &-OH-DPAT from
Research Biochemicals (Semat); phentolamine from Ciba Geigy;
forskolin from Calbiochem; cicaprost from Schering; Rauwolscine from
Carl Roth; WY 26703, guanabenz and indoramin from Wyeth; prazosin
from Pfizer; MDL 72222 from Merrel Dow; WB 4101 from Ward
Bleckinsop; cirazoline from Synthelabo; cimetidine from Smith Klein &
Beecham; methysergide from Sandoz; RS-15385-197, RS-45041-190,
BRL 44409, SKF 104078, idazoxan, imiloxan and UK 14304 were
synthesised by Dr R. Clark, Syntex, Palo Alto, US. All other chemicals
were of the highest purity and purchased from Fisons, UK.



CHAPTER THREE

ANTAGONIST AND AGONIST BINDING TO oz2-
ADRENOCEPTOR SUBTYPES
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3.1. INTRODUCTION

In Chapter one of this thesis the history of op-adrenoceptor
classification was described, and also how the current classification
could be misinterpreted due to the inadequate nature of the [3H]-
antagonists used. In addition, it was shown, that characterisation of 0-
adrenoceptors using [3H]-agonist ligands may not be consistent with the
current classification. The discovery of the novel compound RS-15385-
197 as a potent and selective ap-adrenoceptor antagonist was described
and has been radiolabelled. In this chapter the characterisation of -
adrenoceptors on rat cortical membranes with [3H]-RS-15385-197 i1s
described and the autoradiographical distribution in brain sections
examined. In addition the characterisation of the oy-adrenoceptor
subtypes on human platelet and neonatal rat lung membranes with [3H]-
RS-15385-197 and the op-agonist ligand [3H]-(-) adrenaline will be
compared.

3.2 [3H]-RS-15385 BINDING TO RAT CEREBRAL CORTEX
MEMBRANES

3.2.1. Association and dissociation kinetics

Association of [3H]-RS-15385-197 to rat cerebral cortex
membranes was rapid at 250C with a ty = 15 min. (Figure 3.1.).
Equilibrium was reached after 90 min and the mean observed initial
rate constant (Kops) calculated from 4 separate experiments was 0.045 +
0.006 min-1. Dissociation of [3H]-RS-15385-197 initiated by the
addition of 1 uM phentolamine followed first order kinetics with ty =
53 min (Figure 3.1.). The mean rate constant for dissociation (K7) was
0.013 + 0.001 min.-1. The equilibrium dissociation constant (Kg)
determined from the equation K4 = K2/K; where K1 = (Kops-K2)/[3H-
RS-15385-197] was 0.062 + 0.015 nM. Thus initial kinetic analysis
revealed that [3H]-RS-15385-197 labelled a single high affinity binding
site in rat cortex membranes. In all further experiments with [3H]-RS-
15385-197 in rat cortical membranes, incubations were carried out for
90 min at 250C.

3.2.2. Saturation analysis
Saturation analysis of [3H]-RS-15385-197 binding in rat cerebral
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Figure 3.1. Kinetic analysis of 0.2 nM [3H]-RS-15385-197
binding in rat cerebral cortex membranes at 250C. The top panel
shows the association plots and the bottom panel shows the dissociation
plots. The insets show the semilogarithmic transformations of the data.
The data represents a single experiment performed in triplicate.
Essentially similar data was obtained in three other experiments (see text
for meaned values). Association was rapid (t1/2 = 12.6 min) and the
association rate constant (Kobs) = 0.055/min. Dissociation, initiated by the
addition of 1 uM phentolamine was slow (t12 = 53 min) had a dissociation
rate constant (K2) = 0.013/min, giving a derived affinity K4 = 0.058 nM.
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cortex membranes is shown in Figure 3.2.. The affinity (Kq) = 0.12 +
0.01 nM and the density of sites (Bmax) = 275 £ 19 fmoles/mg protein
(n = 4). Thus, saturation analysis of [3H]-RS-15385-197 binding
revealed that this ligand labelled a single population of high affinity sites
in rat cerebral cortex membranes, and that the sites were saturable with
increasing concentrations of radioligand. Previous studies from this
laboratory have shown that [3H]-yohimbine labelled a population of sites
in the same preparation but with a lower affinity and density than that
seen with [3H]-RS-15385-197 (K4 = 5.2 nM, Bpax = 121 fmol/mg
protein, Brown et al., 1990a,b). The reasons for this discrepancy will
be discussed (Section 3.8.).

3.2.3. Effect of ions and membrane protein on [3H]-RS-
15385-197 binding to rat cerebral cortex membranes

The monovalent cation Na+ had a small facilitatory effect on [3H]-
RS-15385-197 binding in rat cortical membranes at concentrations up to
100 mM, but the divalent cations Mg2+ and Ca2+ inhibited [3H]-RS-
15385-197 binding with 58 and 49% inhibition respectively at 100 mM
(Figure 3.3.). Further studies with [3H]-RS-15385-197 were carried out
in 50 mM Tris HCI buffer containing 0.5 mM EDTA to chelate divalent
cations. Specific [3H]-RS-15385-197 binding was dependent on
membrane protein (Figure 3.4) and was linear up to 600 pg
protein/assay. Subsequent experiments were conducted with 150 - 250
lLg membrane protein to ensure that less than 10% of added ligand was
bound whilst maintaining a workable amount of specific binding.

3.2.4. Effects of temperature on [3H]-RS-15385-197 binding
to rat cerebral cortex membranes

Measurements of [3H]-RS-15385-197 dissociation from rat
cortical membranes at different temperatures was characterised to
investigate what effects the fluid state of the membrane had on its
interaction with the receptor. Arrhenius plots of In Ky vs 1/T, i.e. the
natural logarithm of the dissociation rate (time-1) against temperature
(degrees Kelvin-1) were prepared to assess temperature effects. A
linear plot would suggest that the binding is dependent on aqueous
diffusion, whereas a plot with a “break”at 170C corresponding to the
phase transition temperature of the lipid component of the membrane
would suggest that the interaction was aided by diffusion through the
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lipid component of the membrane (Berg & Hippel, 1985).
[3H]-RS-15385-197 dissociation from rat cortical op-
adrenoceptors was characterised by a simple exponential time course
with half times varying more than 50 fold over the temperature range 2-
300C (Figure 3.5.). An Arrhenius plot of the dissociation rates was
linear over the temperature range studied. Analysis of the slope of the
plot provided an activation energy of 94.82 kJ/mole/degree. This
suggests that [3H]-RS-15385-197 binding is limited predominately by
aqueous diffusion, and that probably 3 or more hydrogen bonds are
involved in the interaction of RS-15385-197 with the receptor site.

3.2.5. Pharmacological characterisation of [3H]-RS-15385-
197 binding to rat cerebral cortex membranes

In order to determine the nature of the binding site labelled by
[3H]-RS-15385-197 1n the rat cortex, the affinities of a number of
selective ap-adrenoceptor agonist and antagonist ligands were
determined at this site (Table 3.1). The antagonists, yohimbine,
rauwolscine, idazoxan and WY 26703 each inhibited [3H]-RS-15385-197
with high affinity and with Hill slopes not significantly different from
unity. The mixed o/0p-antagonist phentolamine showed very high
affinity for [3H]-RS-15385-197 binding (pKi = 8.96). The -
adrenoceptor agonists clonidine and oxymetazoline, and the endogenous
catecholamines adrenaline and noradrenaline, displayed high affinity
and inhibited [3H]-RS-15385-197 from rat cortical membranes with Hill
slopes that were significantly lower than unity, consistent with these
agonists displaying high and low affinity for az-adrenoceptor states.
Thus, the profile of op-adrenoceptor agonist and antagonist affinities 1s
consistent with [3H]-RS-15385-197 labelling an o-adrenoceptor in rat
cortical membranes.

The o -adrenoceptor antagonists prazosin and i1ndoramin
competed for [3H]-RS-15385-197 binding with low affinity and with
Hill slopes close to unity. Dopamine, haloperidol, 5-HT and the mixed
5-HT; and 5-HT; ligand methysergide also had low affinity; 8-OH-
DPAT a 5-HTa agonist, showed moderate affinity for [3H]-RS-15385-
197 binding. These data suggest that [3H]-RS-15385-197 did not label
ap-adrenoceptors, dopamine or 5-HT receptors and is consistent with
the high selectivity of RS-15385-197 for o-adrenoceptors previously
reported (Clark er al., 1989,1990b; MacKinnon et al., 1990,1992b;
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Figure 3.2. Saturation analysis of [3H]-RS-15385-197 binding
to rat cerebral cortex membranes. The inset shows the Scatchard
transformation of the data. The data represents a single experiment
performed in triplicate. Essentially similar data was obtained in three
other experiments {see text for meaned data). The equilibrium binding
constants Kq and Bmax = 0.14 nM and 248 fmoles/mg protein.
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concentrations of membrane protein were incubated with 0.1 nM [3H]-RS-
15385-197 as described in Chapter 2. The data represents a single
experiment performed in triplicate.
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Table 3.1.

Inhibition of [3H]-RS-15385-197 from rat
cerebral cortex membranes.

compound pKipICso nH

RS-15385-197 3 9.46 + 0.04 1.01 + 0.01
phentolamine 3 8.96 + 0.20 0.99 + 0.01
idazoxan 3 8.45 £ 0.23 0.92 + 0.04
WY 26703 3 8.16 + 0.17 0.98 £ 0.05
yohimbine 6 7.85 £ 0.08 0.91 £ 0.04
rauwolscine 3 7.68 + 0.04 0.92 + 0.04
clonidine 3 7.79 £ 0.22 0.77 £ 0.04
adrenaline 3 7.34 £ 0.15 0.63 + 0.01
noradrenaline 3 7.01 £ 0.25 0.70 + 0.06
oxymetazoline 4 7.94 +0.15 0.74 + 0.01
SKF 104078 3 7.36 + 0.02 0.94 + 0.05
BRL 44409 3 7.69 £+ 0.06 0.90 + 0.02
imiloxan 3 7.14 + 0.02 0.95 + 0.04
WB 4101 3 152 0.05 1.04 + 0.05
prazosin 5 6.17 £ 0.18 1.04 £ 0.05
indoramin 3 5.24 + 0.10 0.97 £ 0.05
5-HT 3 468 +£0.18 1.15 + 0.08
methysergide 3 594 +£0.11 0.94 + 0.07
ritanserin 3 7.38 +0.19 0.87 £ 0.01
MDL 72222 3 4.69 +0.12 0.96 £ 0.04
8-OH-DPAT 3 6.47 = 0.08 0.90 £ 0.10
naphazoline 3 7.83£0.15 0.80 + 0.03
cirazoline 3 6.45 + 0.04 0.95 + 0.05
dopamine 3 6.00 = 0.04 0.76 £ 0.05
haloperidol 3 5.59 % 0.15 0.96 + 0.08

Compounds were incubated with 0.1 nM [31{]-RS-15385-197 and rat
cortical membranes for 90 min at 250C as described in Chapter two.
The data are expressed as pK; (nH = 1) or pICsg (nH < 1) and
represent the mean + s.e.mean of n separate determinations on
different preparations performed in duplicate.
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Brown et al., 1992; Redfern et al., 1992).

To determine the nature of the az-adrenoceptor subtype labelled
by [3H]-RS-15385-197 in rat cerebral cortex, the affinities of several
compounds reported to be selective for the aa- or aipg-adrenoceptor
were determined. Oxymetazoline and BRL 44409; compounds showing
selectivity for the o subtype (Bylund, 1985; Nahorski er al., 1985;
Young et al., 1989), had high affinity. Prazosin and imiloxan have been
reported to show selectivity for the o subtype (Bylund, 1985;
Nahorski et al., 1985; Michel et al., 1989b). As stated previously,
prazosin had low affinity (pK;j = 6.17) and imiloxan had moderate
affinity, however, the affinities of these compounds are intermediate
between their reported affinities for apa and o2 subtypes (see Section
3.4. and Discussion). SKF 104078, an antagonist with apparent post-
junctional op-adrenoceptor selectivity (Hieble er al., 1988; Akers et al.,
1989; Ruffolo et al., 1991), had moderate affinity for [3H]-RS-15385-
197 binding. These results suggest that the ap-adrenoceptor labelled by
[3H]-RS-15385-197 in rat cortical membranes does not fit with the
presently defined o2 A - or opp-adrenoceptor classification and,
therefore, probably represents an additional subtype.

3.2.6. Effect of GTP on [3H]-RS-15385-197 binding to rat
cerebral cortex membranes

As shown in Section 3.2.5. the inhibition curves for the agonists,
clonidine, adrenaline, noradrenaline and oxymetazoline were shallow,
whilst the displacement curves for the antagonists were closer to unity.
Fitting the data to a two site model revealed that the agonists competed
for [3H]-RS-15385-197 binding with biphasic inhibition curves
consistent with these compounds distinguishing high and low affinity
agonist states of the receptor (Table 3.2. Figure 3.6.). The antagonist
yohimbine displayed monophasic inhibition curves against [3H]-RS-
15385-197, suggesting that yohimbine had equal affinity for both states
of the receptor. The percentage of sites in the high affinity state for
agonists varied from between 42% to 56%. In the presence of 100 uM
GTP, the agonist inhibition curves were shifted to the right and there
was a steepening of the Hill slope (Figure 3.6.), such that the data was
better fitted to a 1 site model. The inhibition curve to yohimbine,
however, was unaffected. This suggests that two populations of sites
were labelled by [3H]-RS 15385-197, which had high and low affinity
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Table 3.2. Effect of GTP on the inhibition of [3H]-RS-
15385-197 from rat cerebral cortex membranes.

Control

competing
ligand pICso nH

+100 uM GTP

pICso nH

adrenaline 7.37+0.09 0.66%0.02
high (%) 7.96+0.11 (42%)
low (%) 6.37+0.14 (58%)

noradrenaline 7.08+0.13 0.70+0.03
high (%) 7.21+0.08 (49%)
low (%) 5.601+0.15 (51%)

clonidine 7.80+0.10 0.75%0.03
high (%) 8.08+0.19 (56%)
low (%) 6.941+0.06 (44%)

oxymetazoline 8.16+0.09 0.71+0.01
high (%) 8.411+0.17 (49%)
low (%) 7.031+0.08 (51%)

yohimbine  7.68+0.03 1.00+0.08

6.32+0.04* 0.87+0.09*

6.10£0.11* 0.81+0.03*

6.95+0.03* 0.93x0.01*

7.39£0.06* 0.99+0.04*

7.94+0.19  0.80+0.04

The affinity values were determined from the inhibition of 0.1 nM [3H]-
RS-15385-197 to rat cerebral cortex membranes in the absence and
presence of 100 pM GTP. The results are expressed as pICsp and Hill
slope for a one site fit, and for a two-site fit the pICsg and %
contribution of each component is given. Values shown are the mean +
s.e.mean of 3 - 4 experiments on different preparations. *Statistically
significant difference (p < 0.05) relative to corresponding control value.
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Figure 3.6. Effect of GTP (100 uM) on agonist inhibition
curves in rat cerebral cortex membranes. The data represents a
typical experiment performed in duplicate. Essentially similar data was
obtained in at least two other experiments; @adrenaline control, pICsg =
8.14 (53%), 6.63 (47%),0adrenaline + GTP pICsg = 6.36, nH = 0.96;

m noradrenaline control pICsg = 7.69 (59%), 6.12 (41%),

onoradrenaline + GTP pICsp = 6.20, nH = 0.85; #oxymetazoline control
pICso = 8.44 (50%), 6.78 (50%),Ooxymetazoline + GTP pICsg = 7.11, nH
= 0.96;Aclonidine control pICsg = 8.29 (77%), 7.08 (23%),

Aclonidine + GTP pICsg = 6.74,nH =0.97. Meaned values in Table 3.2..
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for agonists, but equal affinity for antagonists. In the presence of GTP
the low affinity agonist state predominates; this results in low affinity,
monophasic inhibition curves for agonists.

3.3. [3H]-RS-15385-197 AUTORADIOGRAPHY IN RAT
BRAIN

To maximise the specific [3H]-RS-15385-197 binding to brain
sections, the wash time was varied and the sections wiped from the slide
for analysis by liquid scintillation spectrometry. Figure 3.7. shows that
after 10 min wash, non-specific binding was reduced to ~10% of total
binding. Further washing produced no appreciable decrease in non-
specific binding, so in all further experiments a wash time of 10 min
was employed.

The autoradiographic distribution of [3H]-RS-15385-197 binding
sites was studied in serial sections from rat brain. Plates 3.1 and 3.2.
illustrate images of [3H]-RS-15385-197 binding, and the corresponding
binding density in each of 62 regions is tabulated in Table 3.3. The
distribution of ap-adrenoceptors identified with [3H]-RS-15385-197 in
rat brain sections revealed high density binding in areas receiving
noradrenergic innervation. Particularly, the anterior olfactory nucleus,
septum, striatum, entorhinal and piriform cortex, hypothalamic,
amygdaloid and thalamic nuclei, central gray, locus coeruleus and the
nucleus of the solitary tract. In the forebrain a low density of [3H]-RS-
15385-197 binding sites was found in the globus pallidus. In the
midbrain, the CA-layers of the hippocampus, and in the hindbrain, the
molecular layer of the cerebellum, had the lowest level of [3H]-RS-
15385-197 binding sites. The white matter of the corpus callosum and
internal capsule exhibited the lowest density of ap-adrenoceptors.

3.4. [3H]-RS-15385 BINDING TO HUMAN PLATELET
AND NEONATAL RAT LUNG MEMBRANES

3.4.1. Association and dissociation Kkinetics

Association of [3H]-RS-15385-197 to human platelet membranes
was rapid with a ty2 value of 12 min (Figure 3.8 ). Equilibrium was
reached within 60 min and the mean observed initial rate constant
(Kobs) calculated from 3 separate experiments was 0.059 + 0.010 min-1.
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Figure 3.7. Effect of increasing washtime on [3H]-RS-15385-
197 dissociation from rat brain sections in vitro. The sections
were incubated with 0.1 nM [3H]-RS-15385-197 in the presence or
absence of 1 uM phentolamine for 60 min as described in chapter two, and
washed by immersion in ice-cold assay buffer for the times indicated.
The sections were dipped in ice cold distilled water, wiped from the slide
and counted for bound [3H]-RS-15385-197 by scintillation spectroscopy.
The results represent the means of two experiments on different rat brains
each performed in triplicate.
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Table 3.3.

Autoradiographic localisation of oz-adrenoceptors

in rat brain with [3H]-RS-15385-197.

Region Specific Binding Region Specific Binding
(amol/mm2) (amol/mm?2)
Olfactory System Amygdaloid nucleus
claustrum 2646 £ 226 basolateral nucleus 4757 £ 411
olfactory tubercle 2804 + 308 basomedial nucleus 5106 £ 433
anterior olfactory nuc. 3517 + 249 central nucleus 4491 £ 218
Septal Area cortical nucleus 5218 + 497
lat. septum 3701 £ 696 medial nucleus 3344 + 381
medial septum 3763 £ 978 Thalamic nuclei
Corpus Striatum dor. med. nucleus 2919 + 297
nucleus accumbuns 1841 + 214 ventrolateral nucleus 421 £ 44
striatum, head 1663 =130 ventromedial nucleus 3529 + 592
striatum, body 1212 £ 109 periventricular nucleus 3058 + 178
bed. nuc. stria term. 3086 £ 282 Hippocampal Regions
globus palidus 399 £45 molecular layer 1686 £ 111
ventral palladium 2769 + 342 pyramidal CA1 layer 496 + 79
endopiriform nucleus 2781 + 316 pyramidal CA2 layer 657 £ 67
Cortical Regions pyramidal CA3 layer 565+ 99
frontal cortex 1565 + 220 Mid-Hindbrain
angular insular cortex 3030 £ 318 dor. lat. geniculate body 2962 + 288
entorhinal cortex 3578 £ 677 dor. med. geniculate body 1139 + 219
piriform cortex 3319 £ 278 superior colliculus 2813 £511
cerebral cortex 1. 1 2348 + 195 inferior colliculus 1923 + 203
cerebral cortex 1. 2-3 1861 + 126 central gray 2612+ 304
cerebral cortex 1. 4 2164 t 161 subs. nigra, compacta 2309 + 480
cerebral cortex 1. 5-6 1121 £97 ventral tegmental area 2296 + 668
Hypothalamic Regions dorsal tegmental area 1574 £ 122
Stria terminalis 2304 + 387 Pons/Medulla Regions
medial preoptic area 2095 £ 257 locus coeruleus 2961 + 293
supraoptic nucleus 2089 + 446 nuc. solitary tract 4118 + 341
dorsomedial 3319 + 277 area postrema 2294 £ 597
ventomedial 2615 £ 508 nuc. spinal trig. nerve 1601 £+ 209
ventrolateral 2277 £ 104 med. vestibular nucleus 1511 + 319
mammilliary nucleus 3216 £ 791 facial nucleus 950 + 86
arcuate nucleus 2240 + 366 lateral reticular area 1050%220
White Matter cerebellum, mol layer 442 + 234

190 + 56
154 + 42

internal capsule cerebellum, granular layer 1287 + 234

corpus callosum

Frozen sections (20 um) were labelled with 0.1 nM [3H]|-RS-15385-197
as described in Chapter two. Quantimet analysis was carried out by Dr.
N. Sharif, Institute of Chemistry, Syntex Palo Alto. Density is
expressed as specific binding in amol/mm2 and represents the mean +
s.e.mean for 3-4 rats.
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Plate 3.1. [3H]-RS-15385-197 binding in rat brain. The images
show representative total binding sections through the rat brain. Non-
specific binding in consecutive sections was not significantly greater than
background. BL (basolateral amygdaloid nucleus), CG (central gray), ent
(entorhinal cortex), LC (locus coeruleus), LRt (lateral reticular area),
MVe (medial vestibular nucleus), NTS (nucleus of the solitary tract), sp5
(spinal trigeminal nerve), VTA (ventral tegmental area).
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Plate 3.2. [3H]-RS-15385-197 binding in rat brain. The images
show representative total binding sections through the rat brain. Non-
specific binding in consecutive sections was not significantly greater than
background. AA (anterior amygdaloid area), AOD (anterior olfactory
nucleus, dorsal), AOL (anterior olfactory nucleus, lateral), AOM
(anterior olfactory nucleus, medial), CPu (caudate putamen), GP (globus
pallidus), LSD (lateral septal nucleus, dorsal), LSV (lateral septal nucleus,
ventral), MPO (medial preoptic area), st (stria terminalis).
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Figure 3.8. Kinetic analysis of 0.05 nM [3H]-RS-15385-197
binding to human platelet membranes at 250C. The insets show
the semilogarithmic transformations of the data. The data represent a
single experiment performed in triplicate. Essentially similar data was
obtained in at least two other experiments on different preparations (see
text for meaned values). Association (top panel) was rapid (tj2 = 17.7
min) and the association rate constant (Kgps) = 0.0391/min. Dissociation
(bottom panel), initiated by the addition of 1 uM phentolamine had a
dissociation rate constant (K») = 0.0279/min (tj2 = 24.8 min), giving a
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derived affinity Kgq = 0.125 nM.
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Dissociation of [3H]-RS-15385-197 from the human platelet initiated by
the addition of 1 uM phentolamine followed first order kinetics with a
ti2 = 19 min (Figure 3.8.). The mean rate constant for dissociation
(K2) was 0.0357 + 0.005 min.-1. The equilibrium dissociation constant
(K4) determined from the equation Kgq = K2/K; where K1 = (Kobs-
K2)/[3H-RS-15385-197] was 0.113 + 0.021 nM. In all further
experiments with [3H]-RS-15385-197 in human platelets, incubations
were carried out for 60 min at 250C.

In neonatal rat lung membranes, the t1, for association was 8 min
and the binding reaction reached equilibrium within 42 min (Figure
3.9.). The association rate constant Kops calculated from 3 experiments
was 0.082 + 0.012 min-1. Dissociation of [3H]-RS-15385-197 from
neonatal rat lung membranes initiated by 1 uM phentolamine had a ti1p
=44 min and K7 = 0.0158 £ 0.001 min-1.(Figure 3.9.). The kinetically
derived K4 = 0.056 + 0.007 nM.

3.4.2. Saturation analysis

Saturation analysis of [3H]-RS-15385-197 binding revealed a
single high affinity binding site in human platelet membranes (Figure
3.10.) with an affinity (K4) of 0.13 £ 0.01 nM and Bpax = 111.6 £ 7.4
fmoles/mg protein (n=7). In neonatal rat lung membranes (Figure
3.11.) K4 = 0.081 = 0.01 nM, Bmax = 174 + 20 fmoles/mg protein
(n=4).
3.4.3. Pharmacological characterisation of [3H]-RS-15385-
197 binding to human platelet and neonatal rat lung
membranes

In order to determine the nature of the binding sites labelled by
[3H]-RS-15385-197 in subtype selective tissues, the affinity constants
(pKi) of several compounds against [3H]-RS-15385-197 binding in the
human platelet (a¢t2a) and neonatal rat lung (o) were determined
(Table 3.4). Rauwolscine and yohimbine were equipotent in the human
platelet, but rauwolscine was more potent than yohimbine in the
neonatal rat lung. Adrenaline was more potent than noradrenaline in
the platelet, although the rank order of potency was reversed in the
neonatal rat lung. Prazosin and imiloxan, compounds reported to show
selectivity for the o subtype (Michel er al., 1989b), displayed high
affinity in the neonatal lung but only weak affinity in the human
platelet, whereas the selective a4 compounds oxymetazoline and BRL
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Figure 3.9. Kinetic analysis of 0.2 nM [3H]-RS-15385-197
binding in neonatal rat lung membranes at 250C. The insets show
the semilogarithmic transformations of the data. The data represent a
single experiment performed in triplicate. Essentially similar data was
obtained in at least two other experiments on different preparations (see
text for meaned values). Association (top panel) was rapid (tj = 7.1 min)
and the association rate constant (Kops) = 0.097/min. Dissociation
(bottom panel), initiated by the addition of 1 uM phentolamine had a
dissociation rate constant (K») = 0.0181/min. (t12 = 38.3 min), giving a
derived affinity Kq = 0.05 nM.
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The equilibrium binding constants K4 and Bmax = 0.12 nM and 112
fmoles/mg protein respectively.
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Table 3.4.

Inhibition of [3H]-15385-197 from human platelet
and neonatal rat lung membranes.

human platelet

rat neonatal lung

n pKiplCsg nH n pK;plCso nH
RS-15385-197 4 9.51+0.10 0.99+0.01 3 9.58+0.31 1.01%+0.02
yohimbine 4 8.98+0.10 0.89+0.04 3 8.16+0.08 0.99+0.01
rauwolscine 4 891+0.12 1.04+0.09 3 8.62+0.07 0.85+0.02
phentolamine 3 8.70+0.22 1.25+0.35 3 8.11+0.08 1.01+0.08
idazoxan 4 8.22+0.03 1.01+x0.04 3 7.46+0.08 0.99+0.01
adrenaline 6 7.55+0.11 0.81+0.07 5 7.08+0.04 0.75+0.05
noradrenaline 4 6.93x0.04 0.75£0.01 3 7.25+0.03 0.68+0.04
BHT 920 3 7.17£0.03 1.05+0.06 3 6.89+0.04 0.83+0.02
clonidine 3 7.4710.06 1.01£0.04 3 7.30+£0.01 1.05+0.04
UK 14304 3 7.87+£0.04 0.97+0.13 3 7.04+£0.10 0.79+0.05
prazosin 4 6.1320.08 0.94+0.15 4 7.49+0.12 1.04+0.09
imiloxan 3 6.30+0.04 1.30+£0.06 3 7.36+0.02 1.03+0.04
oxymetazoline 4 8.49+0.01 0.90+0.06 3 6.91+0.04 0.73+0.07
BRL 44409 3 7.77£0.05 0.98+0.08 3 6.38+0.05 1.07+0.07

The affinity values were obtained from the inhibition of 0.1 nM [3H]-RS-
15385-197 from human platelet and neonatal rat lung membranes as
described in Chapter two. The values represent the pK; (nH = 1) or
pICsgp (nH < 1). Each value represents the mean + s.e.mean of n
determinations on different preparations.
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44409 (Young et al., 1989) showed higher affinity in the human
platelet. These results suggest that [3H]-RS-15385-197 labelled o4 and
apg-adrenoceptor subtypes in human platelet and rat neonatal lung
membranes with high affinity, but was itself not able to distinguish
between subtypes.

3.4.4. Effect of MgCly, Gpp(NH)p and prazosin on [3H]-RS-
15385-197 binding to neonatal rat lung and human platelet
membranes

The effects of 100 puM Gpp(NH)p, a stable GTP analogue, and 5
mM MgCl, are shown in Table 3.5. As in the rat cortex (Section
3.2.6.), the inhibition curves for the agonist adrenaline in the human
platelet and the neonatal rat lung was shallow and could be fitted to a 2
site model, consistent with adrenaline distinguishing high and low
affinity agonist states of the receptor. In the presence of S mM MgCl,
the curves became more markedly biphasic, this was manifest by an
increased affinity for the higher affinity component of agonist binding,
without an apparent change in the % of sites in the high affinity agonist
state. Antagonist inhibition curves were unaffected by MgCl, in both
tissues. In the presence of 100 M Gpp(NH)p, there was a decrease in
affinity and a steepening of the Hill slope for the agonists in the neonatal
rat lung such that they gave monophasic inhibition curves. Gpp(NH)p
had no significant effect on the concentration response curves to
yohimbine or prazosin in either tissue. In the human platelet, although
Gpp(NH)p had no significant effect on control inhibition curves to
adrenaline, there was a significant reduction in affinity when compared
to the inhibition in the presence of MgCl,. Therefore, as in the rat
cortex, the op-adrenoceptor labelled by [3H]-RS-15385-197 in the
human platelet and the neonatal rat lung showed high and low affinity
states for agonists. The proportion of receptors in the high affinity state
could be modified by the GTP analogue Gpp(NH)p. The effect of the
guanyl nucleotide in the human platelet was less marked and only
evident when compared to agonist responses in the presence of MgCls.

Given that prazosin has historically been the drug of choice to
define opp-adrenoceptors, it was decided to investigate the mode of
interaction of prazosin with the ozp receptor on neonatal rat lung
membranes, its effects on [3H]-RS-15385-197 saturation curves and
dissociation kinetics were examined. At 30 nM prazosin (a
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Table 3.5.

platelet membranes.

Effect of Gpp(NH)p and MgCl; on the inhibition

of [3H]-RS-15385-197 from neonatal rat lung and human

1 site fit 2 site fit
pIng nH p[Cso (%)
neonate lung
adrenaline
control 7.1240.09 0.64+0.04 7.36+0.20 (46+8) 6.0710.16 (54+8)
MgCl, 7.23+0.03 0.56£0.01 8.25+0.08 (35+4) 6.41+0.09 (6514)
Gpp(NH)p 6.60+0.09* 0.79+0.06*
yohimbine
control 8.21+0.05 0.9440.02
MgCl, 8.02+0.15 0.96+0.01
Gpp(NH)p 8.01+0.08 1.0140.02
prazosin
control 7.39+0.11 0.96+0.02
MgClp 7.2610.20 0.961+0.08
Gpp(NH)p 7.24+0.13 1.0440.01
platelet
adrenaline
control 7.36£0.01 0.80+0.05 7.70+0.37 (71%£12) 6.03%+0.43 (29+12)
MgCl, 8.00+0.06* 0.58+0.04 8.09+0.02 (65+2) 6.08+0.12 (35+2)
Gpp(NH)p 7.34+0.21% 0.7340.05
yohimbine
control 8.98+0.10 0.89+0.04
MgCl, 8.721+0.16 0.95+0.07
Gpp(NH)p 8.52+0.29 0.9740.06
prazosin
control 6.191£0.08 1.02+0.04
MgCl, 5.76+0.06* 0.82%0.15
Gpp(NH)p 5.87+0.12 0.83+0.08

The affinity values were determined from the inhibition of specific
binding of 0.1 nM [3H]-RS-15385-197 in the absence and presence of 5
mM MgCl; or 100 pM Gpp(NH)p as shown. The results are expressed
as pICsp and Hill slope (nH) for a one site fit, and plICso and %
contribution for a 2 site fit where appropriate. Values shown are the
mean * s.e.mean of 3 experiments. *Statistically significant difference
(p < 0.05) relative to corresponding control; $ relative to MgCl;
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concentration around the pK; for prazosin) there was a decrease in
affinity of [3H]-RS-15385-197 binding with no change in Bmax (Figure
3.12.); control Kq = 0.12 + 0.02 nM, Bpax = 178 £ 11 fmoles/mg
protein; 30 nM prazosin K4 = 1.14 + 0.23, Bpax = 172 = 7 fmoles/mg
protein (n=3, p<0.01 for an effect on Kg4). This suggests a competitive
type of interaction. In dissociation experiments (Figure 3.13.), a 10
fold higher concentration of prazosin than the Kgq (300 nM) had no
effect on phentolamine induced dissociation (control K, = 0.0158 min-1,
prazosin K, = 0.0148 min-1, n=3). This further supports a competitive
interaction of prazosin for o binding sites in neonatal rat lung
membranes.

A correlation of affinities for the sites labelled with [3H]-RS-
15385-197 in different tissues is shown in Figures 3.14.a-c. There was
a poor correlation between affinity estimates obtained in the rat cerebral
cortex and neonatal rat lung (r = 0.296, Figure 3.14.a.), and in the
neonatal rat lung and human platelet (r = 0.384, Figure 3.14.b.). The
correlation between the human platelet and the rat cerebral cortex was
better (r = 0.667, Figure 3.14.c.), but yohimbine and rauwolscine had
greater than 10 fold selectivity for the human platelet, whereas imiloxan
was 7 fold selective for the rat cerebral cortex. This suggests that the
ap-adrenoceptors in the rat cortex, human platelet and neonatal rat lung
probably represent 3 distinct subtypes of the oz-adrenoceptor.

3.5. [3BH]-ADRENALINE BINDING

[3H]-Adrenaline binding in human platelet and rat neonatal lung
membranes was carried out in a 50 mM Tris HCI buffer; pH 7.4
containing 5 mM MgCl,, 0.3 mM ascorbate, 0.1 mM catechol and 0.8
mM dithiothreitol. This buffer system was shown by Sénard et al.
(1988) to sufficiently protect (-)adrenaline from degradation at 250C
for at least 2 hours. Monoamine cxidase inhibitors pargyline and
iproniazid were not included as they were shown to directly inhibit [3H]-
adrenaline binding to HT29 cell membranes. HT29 cells are a human
carcinoma cell line containing an homogeneous population of aA-
adrenoceptors (Bylund er al., 1988). Garcia-Sevilla & Fuster (1986)
showed previously that [3H]-adrenaline preferentially labelled o-
adrenoceptors on human platelet and that propranolol had very low
affinity (pK; = 10 uM), however Figure 3.15. shows that in neonatal rat
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Figure 3.12. Effect of 30 nM prazosin on [3H]-RS-15385-197
saturation curves in neonatal rat lung membranes. The results
represent a single experiment performed in triplicate. Essentially similar
data was obtained in at least two other experiments on different
preparations (see text for meaned values). The bottom panel shows the
Scatchard transformation of the data. Control K4 = 0.14 nM, Bnax =
203.9 fmoles/mg protein; prazosin Kqg = 0.76 nM, Bpax = 163.1
fmoles/mg protein.
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Figure 3.13. Effect of 300 nM prazosin on [3H]-RS-15385-197
dissociation from rat neonatal lung membranes. The timecourse.
of dissociation was followed after the addition of 1 puM phentolamine
(control) or 1 uM phentolamine plus 300 nM prazosin (prazosin). The
results represent the mean + s.e.mean of 3 experiments performed in
triplicate. Calculated values given in text.
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Figure 3.15. Inhibition of [3H]-adrenaline binding to neonatal
rat lung membranes by propranolol. The data represents the mean
of 2 experiments performed in different preparations each performed in
duplicate. The inhibition curve was better fitted to a two-site model and
showed high affinity (pK; = 9.30) for 24% of the binding.
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lung membranes propranolol displaced 24 % of the [3H]-adrenaline
binding with high affinity (pK; = 9.30). Subsequent experiments in
neonatal rat lung membranes were carried out in the presence of 10 nM
propranolol to prevent binding to 3-adrenoceptors.

3.5.1. Kinetic and saturation analysis of [3H]-adrenaline
binding to human platelet and neonatal rat lung membranes

Kinetic analysis revealed that [3H]-adrenaline binding to neonatal
rat lung membranes was rapid and fully reversible on the addition of 10
UM noradrenaline (Figure 3.16.) with Kobs = 0.0324 + 0.003 min-1, and
K7 = 0.021 + 0.004 min-1, giving a kinetically derived K4 = 5.03 + 2.99
nM (n=3). In the human platelet (Figure 3.17.) equilibrium was
reached after 60 min with Kgps for association = 0.215 min-1, and K7 =
0.171 min-1. Figure 3.17. shows that the data were possibly better
described by a 2 site model but due to the limited availability of
platelets, kinetic experiments were performed only once. Saturation
analysis (Figure 3.18.) revealed that [3H]-adrenaline labelled a single
high affinity site in the neonatal rat lung (K4 = 3.04 + 0.44 nM, Bnax =
77.7 = 11 fmoles/mg protein, n=7) and human platelet (K4 = 2.62 *
0.56 nM, Bpax = 95.1 £ 17 fmoles/mg protein, n=3). Therefore, the
percentage of sites labelled by the agonist, [3H]-adrenaline compared to
that labelled by the antagonist, [3H]-RS-15385-197, was 44% in the
neonatal rat lung and 85% in the human platelet.

3.5.2. Pharmacological characterisation of [3H]-adrenaline
binding to human platelet and neonatal rat lung membranes
To determine the nature of the site labelled by [3H]-adrenaline in
subtype specific tissues, the affinity of a number of competing agonist
and antagonist compounds were studied in human platelet and neonatal
rat lung membranes (Table 3.6.). pK; Determinations in platelet
membranes were very similar to those determinations in rat neonatal
lung membranes. The agonists adrenaline, noradrenaline,
oxymetazoline and BHT 920 showed high affinity for [3H]-adrenaline
binding in both tissues. The az-antagonists yohimbine, rauwolscine,
1dazoxan and phentolamine displayed moderate to high affinity in both
tissues, whereas prazosin had very low affinity. In Figure 3.19. a
correlation between affinity estimates obtained in the two preparations
are presented. There was a good correlation between affinities obtained
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Figure 3.16. Kinetic analysis of 3 nM [3H]-adrenaline binding
to neonatal rat lung membranes at 250C. The insets show the
semilogarithmic transformations of the data. The data represent a single
experiment performed in triplicate. Essentially similar data was obtained
in at least two other experiments on different preparations (see text for
meaned values). Association (top panel) was rapid (tj2 = 11.8 min) and
the association rate constant (Kops) = 0.0585/min. Dissociation (bottom
panel), initiated by the addition of 10 M noradrenaline had a dissociation
rate constant (K2) = 0.0251/min. (t;2 = 27.6 min), giving a derived
affinity K4 = 2.25 nM.
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Figure 3.17. Kinetic analysis of 1 nM [3H]-adrenaline binding
to human platelet membranes. The insets show the semilogarithmic
transformations of the data. The data represent a single experiment
performed in triplicate. Association (top panel) was rapid (tj = 3.22
min) and the association rate constant (Kgps) = 0.2152/min. Dissociation
(bottom panel), initiated by the addition of 10 UM noradrenaline had a
dissociation rate constant (K2) = 0.171/min (t;2 = 4.05 min), giving a

derived affinity Kq = 3.87 nM. -
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Figure 3.18. Saturation analysis of [3H]-adrenaline binding to
neonatal rat lung and human platelet membranes. The data
represents a typical experiment performed in triplicate. Essentially
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preparations (see text for meaned values). The equilibrium binding
parameters K4 and Bmax were 2.75 nM and 82 fmoles/mg protein
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protein respectively in the human platelet (b).
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Table 3.6.

Affinity values for a number of competing

agonists and antagonists for [3H]-adrenaline binding in human
platelet and neonatal rat lung membranes.

neonatal rat lung

human platelets

pKipICsg nH n pK;iplCso nH
yohimbine 7.3740.20 0.98+0.20 3 8.20+0.28 0.78+0.11
rauwolscine 7.89+0.12 0.80+0.07 2 8.36 0.79
phentolamine 7.84+0.11 0.93+0.07 2 7.99 1.20
1dazoxan 7.58+0.06 0.98+0.02 2 7.68 0.89
imiloxan 5.61+0.12 0.81+0.10 3 5.68+0.14 0.81+0.09
WB 4101 6.78+0.01 0.89+0.11 nd nd
prazosin 5.68+0.16 0.99+0.01 3 5.12+0.14 1.09+0.09
noradrenaline 8.42+0.14 0.97+0.03 3 8.15+0.32 1.18+0.31
adrenaline 8.41+0.16 1.00+0.01 3 8.56%+0.15 0.89+0.19
UK 14304 7.83+0.17 0.82+0.13 2 8.21 0.94
clonidine 7.45+0.23 0.79+0.11 2 7.92 0.88
BHT 920 7.97+0.11 0.88+0.09 2 7.79 0.79
oxymetazoline 3  8.22+0.09 0.90+0.10 3 8.33%+0.13 0.78+0.17
BRL 44409 6.67+0.24 1.06x0.06 3 7.19%0.19 0.77+0.07

The affinities are determined from competition experiments with [3H]-
adrenaline as described in Chapter two. The values represent the pK;
(nH = 1) or pICsp (nH < 1) of the mean (n=2) or the mean *+ s.e.mean
of n determinations from different preparations performed in duplicate,
(nd = not determined).
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in human platelet and neonatal rat lung membranes (r=0.90).
Therefore, unlike [3H]-RS-15385-197, which distinguished 2 subtypes
with distinct pharmacology, the profile of the agonist state of the
receptor was essentially the same in both tissues.

3.6. COMPARISON OF [3H]-RS-15385-197 AND [3H]-
ADRENALINE BINDING

In the previous sections, the op-antagonist and the o-agonist
radioligands, [3H]-RS-15385-197 and [3H]-adrenaline were characterised
in the putative subtype specific tissues, the human platelet (02a) and the
neonatal rat lung (o). Studies with the [3H]-antagonist revealed
marked differences in the nature of the oz-receptor in the two tissues
with regard to compound selectivity, e.g. prazosin was more potent in
the neonatal lung whereas oxymetazoline was more potent in the human
platelet. However, a comparison of affinities with the [3H]-agonist
revealed broadly similar affinities in the two tissues. In this section the
results of these studies will be compared. In Figures 3.20. a-d.
correlations between affinity estimates obtained from the two
radioligands in the two preparations are presented. As can be seen from
Figure 3.20.a. there was a poor correlation (r=0.003) between [3H]-RS-
15385-197 and [3H]-adrenaline binding in the neonatal rat lung, and
between the two radioligands in the human platelet (Figure 3.20.b.
r=0.526). The correlation in the human platelet was improved
considerably when agonist affinities were removed from the analysis
(r=0.99), and although there was an improvement in the neonatal rat
lung correlation (r=0.31) there was still an obvious heterogeneity within
the antagonists alone. This suggests that in the human platelet, [3H]-RS-
15385-197 and [3H]-adrenaline label largely the same population of
sites, and this is further substantiated by the similar number of sites
labelled by the two ligands. In the neonatal rat lung, however, [3H]-RS-
15385-197 recognises additional, low affinity, agonist sites which have
higher affinity for antagonists.
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binding in neonatal rat lung and human platelet membranes.
The solid line represents the line of best fit and the dotted line represents
the line of identity in each case. (a) [3H]-RS-15385-197 and [3H]-
adrenaline binding in neonatal rat lung (slope = 0.09, r = 0.003); (b) [3H]-
RS-15385-197 and [3H]-adrenaline binding in human platelet (slope =
0.79, r = 0.526); (c) [3H]-adrenaline binding in platelets and [3H]-RS-
15385-197 binding in neonatal rat lung (slope = 0.15, r = 0.008); (d) [3H]-
adrenaline binding in neonatal rat lung and [3H]-RS-15385-197 binding in
platelets (slope = 0.55, r = 0.302).



3.7. EFFECT OF BUFFER CONSTITUENTS AND NA+ ON
[3H]-AGONIST AND [3H]-ANTAGONIST BINDING TO
NEONATAL RAT LUNG MEMBRANES

To determine whether buffer constituents were responsible for
the differences seen between the two radioligands, prazosin inhibition
curves to [3H]-RS-15385-197 were performed in the absence of EDTA
and contained MgCl, (5 mM), ascorbate (0.3 mM), catechol (0.1 mM)
and dithiothreitol (0.8 mM) as used in the [3H]-adrenaline binding assay
(Table 3.7.). Inhibition curves to [3H]-adrenaline under [3H]-RS-15385-
197 binding conditions were not determined as degradation of
radioligand and the absence of MgCl, from the buffer would make
interpretation of the results difficult. Under conditions used for [3H]-
adrenaline binding, the specific binding of 0.1 nM [3H]-RS-15385-197
was reduced by 30%. This was most likely due to the effect of MgCl,,
as Figure 3.3. showed that MgCl, inhibited [3H]-RS-15385-197 binding
by 35% at 5 mM. However, in competition experiments prazosin
retained high affinity for [3H]-RS-15385-197 in the neonatal rat lung.
This suggests that differences in assay buffer cannot be responsible for
the difference seen in the affinity of prazosin for agonist and antagonist
binding.

Previous studies by Limbird er al., (1982) have shown that Na+
increases the affinity for antagonist binding to op-adrenoceptors whilst
agonist binding i1s decreased. In the present study, saturation
experiments showed that 100 mM NaCl had no effect on the affinity, but
increased the density of sites labelled with [3H]-RS-15385-197 in
neonatal rat lung membranes by 52% (control, K4 = 0.081 + 0.010 nM,
Bmax = 174 + 20 fmoles/mg; NaCl, K4 = 0.092 + 0.005 nM, Bpax =
265.4 + 3.2 fmoles/mg; p < 0.05 for an effect on Bmpax, n=3). NaCl
(100 mM) also increased the density of sites labelled by [3H]-adrenaline
in neonatal rat lung membranes, but there was a consequent decrease in
affinity (control, K4 = 3.04 £ 0.44 nM, Bmax = 77.7 £ 11 fmoles/mg;
NaCl, Kq = 11.06 + 1.73 nM, Bpnax = 208.7 = 37.5 fmoles/mg; p < 0.05
for an effect on K4 and Bmax, n=3). In the human platelet, 100 mM
NaCl had no significant effect on [3H]-RS-15385-197 binding (control,
Kq =0.118 £ 0.012 nM, Bmax = 99.2 £ 11.7 fmoles/mg; NaCl, K4 =
0.157 £ 0.011 nM, Bpax = 92.78 £ 10.8 fmoles/mg; n = 3). In the
presence of 100 mM NaCl, no specific [3H]-adrenaline binding was
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Table 3.7. Effect of buffer composition on the affinity of
prazosin for [3H]-RS-15385-197 and [3H]-adrenaline binding
in the neonatal rat lung.

[3H]-RS-15385-197 [3H]-adrenaline
prazosin prazosin

pKi pKi

nH nH
Tris EDTA 7.20 £ 0.08 (3) nd
(control) 0.99 + 0.06
[3H]-adrenaline  7.01 + 0.03 (3) 5.79 £ 0.06 (4)
buffer system *  1.01 *+ 0.03 0.97 +0.19

Membranes were incubated with radioligand as described in Chapter
two. The number of determinations performed in duplicate is indicated
in brackets. * Tris-EDTA-free buffer containing 5 mM MgCl,, 0.8
mM dithiothreitol, 0.1 mM catechol, 0.3 mM ascorbate and 10 nM
propranolol. The results represent the mean + s.e.mean.
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observed in human platelet membranes.

Table 3.8. shows the effect of 100 mM NaCl on the affinity of
several competing drugs for [3H]-adrenaline and [3H]-RS-15385-197
binding to neonatal rat lung membranes. There was no significant
effect on the affinity of prazosin for [3H]-RS-15385-197 binding in the
neonatal rat lung, however, imiloxan affinity was increased 13 fold.
The affinity of the catecholamine agonists adrenaline and noradrenaline
for [3H]-RS-15385-197 binding was significantly decreased, whereas
oxymetazoline affinity was much less affected and there was no
significant change in the affinity of UK 14304. The affinity of prazosin
for [3H]-adrenaline binding was significantly increased (p < 0.05) from
5.68 to 6.22 in the presence of 10 mM NaCl and to 6.70 in the presence
of 100 mM NaCl. Similarly, the affinity of imiloxan was increased
from 5.61 to 6.69 in the presence of 100 mM NaCl. Conversely, the
affinity of adrenaline and noradrenaline was decreased in the presence
of NaCl, whereas there was no change in the affinity of oxymetazoline
or UK 14304.

In platelet membranes (Table 3.9.) 100 mM NaCl had no effect
on the affinity of prazosin for [3H]-RS-15385-197 binding but the
affinity of imiloxan was significantly increased. NaCl (100 mM)
significantly decreased the affinity of the catecholamines adrenaline and
noradrenaline. There was a small decrease in the affinity of UK 14304,
whereas oxymetazoline affinity was unaffected. Competition
experiments with [3H]-adrenaline in the presence of NaCl in platelets
were difficult to characterise as the specific binding was very low under
these conditions.

NaCl therefore produced complex interactions with the ;-
adrenoceptor labelled by [3H]-agonists and [3H]-antagonists. In the
neonatal rat lung, NaCl reduced agonist affinity whilst increasing the
total number of receptors labelled by both the agonist and antagonist.
The profile of the agonist binding site in the presence of NaCl was such
that the affinities of prazosin and imiloxan, were increased, whilst those
for the catecholamines were decreased. The affinity of the imidazolines
agonists, oxymetazoline and UK 14304 were much less affected by the
presence of NaCl. Possible mechanisms whereby NaCl exerts these
effects will be addressed in Section 3.8.
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Table 3.8. The effect of 100 mM NaCl on agonist and
antagonist binding to oz-adrenoceptors on neonatal rat lung
membranes.

[3H]-adrenaline [3H]-RS-15385-197
NaCl NaCl
control 100 mM control 100 mM

adrenaline pICso 8.41+0.16 7.78+0.20* 7.05+0.04 6.25+0.05*
nH 1.00+0.01 0.92+0.07 0.82+0.02 1.01%+0.03
noradrenaline pICsg 8.42+0.14 8.00+£0.13* 7.25+0.03 6.19+0.06*
nH 0.971£0.03 0.82+0.10 0.68+0.04 0.9410.13
oxymetazoline pICsp 8.22+0.09 8.34+0.25 6.91+0.04 6.28+0.04*
nH 0.90+0.10 0.75+0.02 0.73+0.07 1.06+0.04
UK 14304 pICso 7.83%+0.17 7.82+0.10 7.04+0.10 6.81+0.07
nH 0.82+0.13 0.87+0.13 0.79+0.05 0.92+0.04

prazosin pICso 5.68+0.16 6.70+0.23* 7.49+0.12 7.66+0.02
nH 0.99+0.01 0.98+0.04 1.04+0.12 1.18+0.09
imiloxan - plCsp 5.61%0.12 6.69+0.27* 6.30+0.04 7.40+0.22*

nH 0.81£0.10 0.91£0.12 1.03+0.04 0.98+0.13

The results represent the mean + s.e.mean for at least 3 determinations
performed in duplicate.
* p < 0.05 compared to corresponding control.



Table 3.9.

platelet membranes.

The effect of 100 mM NaCl on agonist and
antagonist inhibition of [3H]-RS-15385-197 binding to human

[3H]-RS-15385-197

NaCl

control 100 mM

adrenaline pICso 7.3620.01 6.48+0.15*
nH 0.80%0.05 0.65+0.04

noradrenaline plCsg 6.93+0.04 5.70+0.05*
nH 0.76+0.07 0.85+0.05

oxymetazoline plCsp 8.49+0.01 8.57+0.08
nH 0.90£0.06 0.81+0.12

UK 14304 plCso 7.87+0.04 7.44+0.06*
nH 0.97+0.13 0.82+0.17

prazosin pICsp 6.13+0.08 6.13+0.08
nH 0.94+0.06 1.241+0.14

imiloxan pICso 6.30+0.04 7.00+0.22*
nH 1.30+0.16 0.67+0.12

The results represent the mean * s.e.mean for at least 3 determinations

performed in duplicate.

* p < 0.05 compared to corresponding control.
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3.8. DISCUSSION

3.8.1. [3H]-RS-15385-197 binding

In this chapter the interaction of a novel ap-antagonist ligand [3H]-
RS-15385-197 has been determined in three different membrane
preparations and in autoradiography studies in rat brain. The binding
of [3H]-RS-15385-197 in all tissues was reversible, saturable and of high
affinity, and had advantages over other op-antagonist ligands in several
respects. Firstly, it displayed very low levels of non-specific binding (<
5%) at concentrations around the K4, and was highly selective over
other receptor types. The finding that the op-adrenoceptor antagonists,
yohimbine, rauwolscine, idazoxan, WY 26703 and phentolamine, and
the oz-adrenoceptor agonists, clonidine, noradrenaline and adrenaline
displayed high affinity towards this site whereas a variety of ligands
with affinity for a number of other receptor types displayed low
affinity, confirms our previous studies showing RS-15385-197 to be a
highly potent and selective o2-adrenoceptor antagonist (Brown et al.,
1989,1992; Clark et al., 1989,1990b; Redfern et al., 1992).

Saturation studies revealed [3H]-RS-15385-197 (K4 = 0.12 nM) to
have higher affinity than [3H]-yohimbine (K4 = 5.3 nM, Brown et al.,
1990a) and [3H]-1dazoxan (K4 = 4.1 nM, Brown et al., 1990b) at o-
adrenoceptors in rat cerebral cortex. The density of op-adrenoceptors
labelled by [3H]-RS-15385-197 (275 fmoles/mg protein) was
significantly greater than the number identified with [3H]-yohimbine
and [3H]-idazoxan in the same preparation (Bmax = 121 and 87
fmoles/mg protein for [3H]-yohimbine and [3H]-idazoxan respectively;
Brown et al., 1990a,b).

The higher density of aj-adrenoceptors labelled by [3H]-RS-
15385-197, relative to the number of sites identified by [3H]-yohimbine,
is unlikely to be caused by [3H]-RS-15385-197 labelling another
receptor, as the compound has > 800 fold selectivity over any other
receptor subtype studied (Clark er al., 1989,1990b and Table 1.5).
Furthermore, all of the ay-adrenoceptor antagonists fully inhibited the
binding of [3H]-RS-15385-197 to rat cerebral cortex with Hill slopes not
significantly different from unity, confirming that [3H]-RS-15385-197 is
binding only to oy-adrenoceptors. Thus, if the difference in Bmax
values obtained with [3H]-RS-15385-197 and [3H]-yohimbine is not due
to additional binding sites for [3H]-RS-15385-197, then [3H]-yohimbine
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must not label the total population of o-adrenoceptors in rat cerebral
cortex. In rabbit adipocyte membranes, [3H]-yohimbine failed to bind
to op-adrenoceptors (Langin & Lafontan, 1989), whereas [3H]-UK
14304 labelled the high affinity state and [3H]-RX821002 labelled the
whole population of oz-adrenoceptors (Bmax = 289 fmoles/mg protein,
Langin et al., 1990). The inability of [3H]-yohimbine to label oc-
adrenoceptors in these studies was explained by the relatively low
affinity and the high level of non-specific binding. The present study
showed that yohimbine had only moderate affinity for [3H]-RS-15385-
197 binding in rat cortical membranes (K; = 14 nM), and previous
studies in the same preparation (Brown et al., 1990a,b) showed [3H]-
yohimbine to have moderate affinity (K4 = 5.3 nM). The lower affinity
of [3H]-yohimbine may suggest that a faster dissociation rate with this
ligand could result in dissociation from a proportion of op-
adrenoceptors during the filtration process.

[3H]-Idazoxan binding has been studied in the rat cortex (Boyajian
& Leslie, 1987; Boyajian et al., 1987; Brown et al., 1990a). In the
former study [3H]-idazoxan was proposed to label two populations of -
adrenoceptor, one of which was recognised by [3H]-rauwolscine,
however the latter study showed that an additional site labelled by [3H]-
idazoxan was due to binding to a non-adrenergic imidazoline binding
site which had a distinct pharmacology. When [3H]-idazoxan binding
was analysed using 3 uM phentolamine to define non-specific binding
(thus isolating the o-component) the density of op-adrenoceptors
labelled with [3H]-idazoxan was less than that labelled with [3H]-
yohimbine. Therefore, in these studies, [3H]-yohimbine was proposed
to label two ap-adrenoceptors (Brown et al., 1990a,b) opa and ogp, the
latter subtype being defined as having high affinity for prazosin.

The number of binding sites identified with [3H]-yohimbine is
dependent upon the concentration range chosen for the experiment.
Saturation studies carried out over a wider [3H]-yohimbine
concentration range (0.2 - 80 nM) have demonstrated binding to a
second site in rat cortex (Michel & Whiting, 1984). Conditions for [3H]-
yohimbine binding to rat cortex have to be carefully defined in order to
exclude binding to this second component which, if unresolved, would
increase the density of binding sites. [3H]-rauwolscine, a stereoisomer
of yohimbine, also binds in a biphasic manner to rat cortical membranes
at high concentrations (Diop et al., 1983; Broadhurst & Wyllie, 1986).
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Recent studies have shown that [3H]-rauwolscine labels 5-HTia
receptors in human cortex (Convents et al., 1989) and a spiperone-
sensitive site that most likely represents a 5-HT;a receptor in rat
cerebral cortex (Broadhurst er al., 1988). Rauwolscine and yohimbine
also have high affinity for the SHTp binding site identified in non-
rodent brain (Heuring & Peroutka, 1987). In autoradiography studies,
[3H]-rauwolscine was shown to bind to areas receiving primarily
dopaminergic innervation and corresponded closely to [3H]-spiroperidol
binding distribution (Boyajian ez al., 1987). However the same authors
demonstrated that selective D1 and D, compounds failed to inhibit [3H]-
rauwolscine binding in an homogenate preparation, suggesting that the
binding was not to dopaminergic receptors (Boyajian & Leslie, 1987).
[3H]-Rauwolscine binding to dopaminergic areas (caudate-putamen,
nucleus accumbens and hippocampus) may represent binding to a 5-HT-
receptor subtype. Indeed, previous studies from this laboratory have
shown that like prazosin, some 5-HT agents, 8-OH-DPAT, RU 24969
and methysergide, show high affinity for ~40% of specifically bound
[3H]-yohimbine in rat cortical membranes (Brown et al., 1990b).
Because of the inability of [3H]-yohimbine to adequately label the
entire population of o-adrenoceptors in a variety of preparations (see
above), and because of the non-adrenergic interactions of both [3H]-
yohimbine and [3H]-idazoxan, [3H]-RS-15385-197 is proposed to be a
superior ligand for the characterisation of 0p-adrenoceptor subtypes.

3.8.2. Autoradiographical distribution

The distribution of oz-adrenoceptors was characterised with [3H]-
RS-15385-197. The highest density binding was observed over areas
reported to receive dense noradrenergic innervation (Loughin &
Fallon, 1985), namely the anterior olfactory nuclei, amygdala,
entorhinal cortex, locus coeruleus and the nucleus of the solitary tract.

Previous studies with the agonists [3H]-p-aminoclonidine
(Unnerstall et al., 1984) and [3H]-clonidine (Young & Kuhar, 1981) and
with the antagonist [3H]-1dazoxan (Bruning et al., 1987; Boyajian et al.,
1987) have demonstrated a similar distribution to that shown with [3H]-
RS-15385-197 in the present study. The presence of ap-adrenoceptors
in these areas corresponded closely to the neuronal populations
receiving innervations from the noradrenergic and adrenergic cell
groups (amygdaloid nucleus, entorhinal cortex, anterior olfactory
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nucleus, paraventricular and periventricular hypothalamic nucleus and
bed nucleus of the stria terminalis) and to those regions where the cell
bodies of adrenergic and noradrenergic neurons are found (locus
coeruleus, nucleus of the solitary tract), and suggest that op-
adrenoceptors in rat brain are located both pre- and post-synaptically.
A diagram of the noradrenergic projections from the locus coeruleus is
given in plate 3.3.

Some anomalies between this present and previous studies include
the high density binding observed with [3H]-idazoxan over parts of the
hypothalamus and the subfornical organ and area postrema (Bruning et
al., 1987). Binding in these areas was not displaceable with yohimbine
and was therefore unlikely to represent binding to op-adrenoceptors. In
the following chapter, evidence will be presented suggesting that
binding in these areas is to imidazoline binding sites and the nature of
these sites will be discussed.

The distibution of o-adrenoceptors has also been studied with
[3H]-rauwolscine in rat brain (Boyajian et al., 1987). Unlike the
disribution observed with [3H]-idazoxan (Bruning et al., 1987; Boyajian
et al., 1987), [3H]-p-aminoclonidine (Unnerstall er al., 1984), [3H]-
clonidine (Young & Kuhar, 1981) and [3H]-RS-15385-197 (this study),
[3H]-rauwolscine binding sites were observed over areas which receive
primarily dopaminergic innervation, namely the nucleus caudate-
putamen, nucleus accumbens, olfactory tubercle, islands of Calleja,
hippocampus, parasubiculum, basolateral amygdaloid nucleus and
substantia nigra (Boyajian er al., 1987), and corresponded closely to
[3H]-spiroperidol binding distributions. However, very low density
binding was observed over areas receiving noradrenergic innervation
and labelled by the other aj-radioligands, particularly in the
hypothalamus and pons medullary area. It must be stressed, however,
that the density of sites labelled by [3H]-rauwolscine were consistently
lower than, or equal to, those determined from parallel incubations with
[3H]-idazoxan, even in the highest density areas. From these studies the
authors concluded that [3H]-rauwolscine labelled a subset of sites
labelled by [3H]-idazoxan.

[3H]-Rauwolscine has, until now, been the highest affinity o-
adrenoceptor antagonist available. It is therefore surprising, that
although [3H]-rauwolscine and [3H]-idazoxan were used at
concentrations around their respective Kq values, [3H]-rauwolscine did
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Plate 3.3. Diagram of the projections of the locus coeruleus
viewed in the sagittal plane. AON, anterior olfactory nucleus; BS,
brainstem nuclei; CER, cerebellum; CTT, central tegmental tract; CTX,
cerebral cortex; DPS, dorsal periventricular system, DTB, dorsal
catecholamine bundle; H, hypothalamus; HF, hippocampal formation; LC,
locus coeruleus; OB, olfactory bulb; PT, pretectal area; S, septal area; SC,
spinal chord; ST, stria terminalis; T, tectum; TH, thalamus; VAB, ventral
amygdaloid bundle system.
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not label sites which all other selective oz-adrenoceptor agonists and
antagonists label. An alternative explanation for the discrepancy
between the two radioligands could be that the wash times chosen for
the autoradiography experiments resulted in the removal of unequal
amounts of specifically bound ligand. The washtime chosen for [3H]-
1dazoxan (2 min at 0oC) with a tj of 19 min would have resulted in a
loss of less than 5% bound ligand at 0.3 nM, whereas a washtime for
[3H]-rauwolscine (30 min. at 0oC) with a ti/2 of 105 min would have
resulted in a loss of more than 20% bound ligand at 0.6 nM. Thus, it is
possible that the [3H]-rauwolscine bound to those regions labelled by
[3H]-idazoxan was lost during the washout period.

3.8.3. «az-adrenoceptor subtypes

The pharmacological basis for suggesting that heterogeneity exists
within o2-adrenoceptors is primarily based upon the relative affinities
of prazosin or oxymetazoline to inhibit [3H]-yohimbine and [3H]-
rauwolscine binding to sites in a variety of tissues (Bylund, 1985;
Cheung et al., 1982; Latifpour et al., 1982) and not upon differences in
receptor densities. Prazosin is a more potent inhibitor of [3H]-
yohimbine and [3H]-rauwolscine binding to «ap-adrenoceptors in
neonatal rat lung (Latifpour er al., 1982) and rat cerebral cortex
(Cheung et al., 1982) than from o-adrenoceptors present on human
platelets (Cheung et al., 1982). In contrast, oxymetazoline displays
higher affinity towards o2-adrenoceptors on human platelets than at the
receptors on neonatal rat lung.

There are no highly selective antagonists for op-adrenoceptor
subtypes, although a number of o-adrenoceptor antagonists have been
reported in recent years, including imiloxan (Michel & Whiting, 1981),
idazoxan (Doxey et al., 1983b), RX 821002 (Stillings et al., 1985), WY
26703 (Lattimer et al., 1984), L-654,284 (Pettibourne et al., 1986), L-
657,743 (Pettibourne et al., 1987) and CH-38083 (Vizi er al., 1986).
These antagonists have the advantages over yohimbine and rauwolscine
of either being more potent and/or selective relative to the other
adrenoceptor subtypes. Amongst the new antagonists, idazoxan, RX
821002, L-657,743 and 1.-654,284 have been radiolabelled. [3H]-RX
821002, an imidazoline analogue of idazoxan is described as a new
radioligand for the identification of aya-adrenoceptors (Langin et al.,
1989), but has also been reported recently to label 2 classes of op-
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adrenoceptor in rat kidney (Uhlen &Wikberg, 1991). The binding of
the non-imidazoline «y-adrenoceptor radioligands [3H]-L-654,284
(Randall er al., 1988) and [3H]-L-657,743 (Pettibourne et al., 1988), to
rat cerebral cortex have also been characterized. Prazosin displaced
each radioligand with low affinity and with Hill slopes that did not
deviate from unity, a finding consistent with binding to the 0a-
adrenoceptor subtype. Recently, BRL 41992, structurally related to
mianserin, has been described as a potent and selective ligand for o;p-
adrenoceptors in rat neonatal lung (Young et al., 1989). The synthesis
of [3H]-BRL 41992 and its confirmation as a selective, high affinity
radioligand for the app-adrenoceptor subtype would help resolve the
precise nature of the apg-adrenoceptor subtype.

This study showed that [3H]-RS-15385-197 labels both the opa
adrenoceptor subtype in the human platelet and the oy adrenoceptor
subtype in the neonatal rat lung, as defined by relative affinities of
prazosin and oxymetazoline. However, the lower affinity for prazosin
in the rat cerebral cortex is consistent, using current classification, with
[3H]-RS-15385-197 labelling an oA subtype in this tissue. However, it
is unlike the o4 site in the human platelet which has very high affinity
for yohimbine and rauwolscine and low affinity for prazosin (Cheung et
al., 1982; Brown et al., 1990b) and in this study a relatively poor
correlation (r=0.67, Figure 3.14.c.) was acheived when affinity values
from 11 compounds were compared in the two tissues. It is also unlike
the oz site described for the rabbit spleen (Michel et al., 1989b, Table
1.2), which showed 10 fold lower affinity for prazosin (pK; = 5.33) and
50 fold lower affinity for imiloxan (pK; = 5.52, Michel et al., 1989b).

Michel er al. (1989b) have characterised a site in the rat
submaxillary gland which showed intermediate affinity for prazosin,
moderate affinity for imiloxan, and only moderate affinity for
yohimbine and rauwolscine, and in this respect shows some similarities
to the site in the rat cerebral cortex labelled by [3H]-RS-15385-197. In
Figure 3.21. a correlation between affinity estimates obtained from 10
compounds against [ 3H]-rauwolscine in the submaxillary gland, and [3H]-
RS-15385-197 binding in the rat cortex is presented and shows the best
degree of homology (r=0.80). Recently, Simonneaux et al. (1991)
showed the rat submaxilliary site to be similar to a site in the bovine
pineal gland and has tentatively termed this site opp. In addition, a gene
isolated from a rat gene library (clone RG20), when expressed in COS-
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pKi rauwolscine submandibular gland

Figure 3.21. Correlation of binding affinity (pK;) of several
compounds for [3H]-RS-15385-197 binding rat cerebral cortex
membranes and [3H]-rauwolscine binding to rat submaxillary
gland. The solid line represents the line of best fit and the dotted line
represents the line of identity. The data is best described by the equation y
=0.928x + 0.24, r = 0.80. Data for the submaxillary gland is taken from
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I cells, exhibited binding properties similar to the op subtype (Lanier
et al., 1991), and to the cerebral cortex binding site described in this
thesis.

In the present study, therefore, a paradox is evident, as 024 and
o2B subtypes have been reported to exist in the rat cerebral cortex as
labelled by [3H]-yohimbine and as defined by a prazosin-sensitive
component (Nahorski et al., 1985; Bylund, 1985, Brown et al., 1990a,b)
although other studies have failed to demonstrate this (Dickinson et al.,
1986; Boyajian et al., 1987). In addition, a single class of adrenoceptor
showing, until now, the greatest similarity with the cza-adrenoceptor
subtype, has been labelled with [3H]-idazoxan (Brown et al., 1990a),
[3H]-L-654-284 (Randall er al., 1988) and [3H]-L-657-743 (Pettibourne
et al., 1988) in rat cerebral cortex membranes. On reflection, it now
seems more likely that the subtype labelled by these agents is of the aop
rather than the oA subtype.

The nature of the prazosin-sensitive component of [3H]-yohimbine
binding in the rat cerebral cortex is therefore not clear. If indeed it
represented binding to an ojp-adrenoceptor subtype as suggested
(Nahorski et al., 1985; Bylund, 1985; Brown et al., 1990a,b) then [3H]-
RS-15385-197 would be expected to label it with high affinity, as [3H]-
RS-15385-197 had equal affinity for a4 and app-adrenoceptor
subtypes in human platelet and rat neonatal lung. However, in the rat
cortex, inhibition curves to prazosin were monophasic and of low
affinity, suggesting that the opg-adrenoceptor was not labelled. Since
the density of sites labelled by [3H]-yohimbine in an identical membrane
preparation was only 44% of those labelled by [3H]-RS-15385-197, and
given that only 40% of those sites were sensitive to prazosin (Brown et
al., 1990a,b), then it could be calculated that only 18% of sites labelled
by [3H]-RS-15385-197 would be prazosin-sensitive. It is possible
therefore, that due to the small percentage of sites and the relatively low
selectivity of prazosin (20-100 fold, Nahorski et al., 1985; Brown et al.,
1990a,b) resolution was limiting in identifying a high affinity prazosin-
sensitive component with [3H]-RS-15385-197.

A recent study with [3H]-MK 912 has suggested that the rat cortex
contains two populations of a-adrenoceptors; one designated aza (296
fmoles/mg protein) and a smaller population designated o2¢ (33
fmoles/mg protein) for which prazosin showed 16 fold selectivity.
Although classed as opa-adrenoceptors, the former population was of a
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similar density to those described in the present study, and showed only
moderate affinity for yohimbine and rauwolscine (K4 = 49.8 and 34.5
nM respectively) and was therefore more similar to the onp-
adrenoceptor described here. The latter population, indeed showed
characterisitcs similar to the opc-adrenoceptor and could represent the
prazosin-sensitive component of [3H]-yohimbine binding previousely
designated oz (Nahorski et al., 1985; Bylund, 1985; Brown et al.,
1990a,b). Both [3H]-yohimbine and [3H]-MK 912 show high selectivity
for the ap¢ adrenoceptor (Murphy & Bylund, 1988; Uhlen et al., 1992),
which could explain why a prazosin-sensitive component was evident in
rat cerebral cortex with these ligands and not others.

The identification of a selective, high affinity, radioligand for the
app-adrenoceptor subtype would help resolve the precise nature of this
receptor, and whether or not it exists in the rat cerebral cortex.
However, based on the available evidence, I would now suggest that [3H]-
RS-15385-197 and other op-radioligands label a site in the rat cerebral
cortex of the op subclass, and that this forms the major population of
oz-adrenoceptors in the rat cortex.

3.8.4. Agonist versus antagonist binding

The ability of the agonist [3H]-adrenaline to label oz4- and oB-
adrenoceptors was assessed in human platelet and neonatal rat lung
membranes, and compared with [3H]-RS-15385-197 binding. Marked
differences were noted in the nature of the sites labelled by the
antagonist and the agonist. [3H]-Adrenaline labelled 85% and 44% of
the sites labelled by [3H]-RS-15385-197 in the human platelet and the
neonatal rat lung respectively. Unlike [3H]-RS-15385-197 binding,
however, the pharmacology of the agonist labelled site in both tissues
was essentially similar (r=0.85). Prazosin had low affinity and
oxymetazoline had high affinity for the agonist labelled site in both
tissues suggesting that an adrenoceptor characteristic of the og-subtype
could not be labelled with [3H]-adrenaline. Kahn er al. (1982) have
demonstrated on NG 108-15 cells, a cell line reputed to express an
homogeneous population of a;g-adrenoceptors (Bylund et al., 1988),
that binding sites labelled by the agonists [3H]-p-aminoclonidine and [3H]-
adrenaline exhibited low micromolar affinity for prazosin, but that sites
labelled by [3H]-yohimbine possessed 10-100 fold higher affinity for
antagonists (prazosin affinity 16 nM) and 20 fold lower affinity for
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agonists. In these respects the data resembles data from the present
study in the neonatal rat lung.

In another study, [3H]-clonidine and [3H]-UK 14304 failed to
distinguish oa- and opg-adrenoceptor subtypes on HT29 and NG 108-
15 cells (r > 0.9, Gleason & Hieble, 1991), although it was suggested
that closer examination of the slope of the plots revealed that prazosin
and ARC 239 retained some selectivity for the op-adrenoceptor
subtype labelled by the agonists (slope < 0.6). Correlations in the
present study revealed slope values closer to unity for displacement of
agonist binding to human platelet and neonatal rat lung membranes and
no selectivity of prazosin and imiloxan for the opg-adrenoceptor was
evident. Therefore, no marked differences were observed in the
binding characteristics of the activated state of the oA and oB-
adrenoceptor subtypes in the human platelet and neonatal rat lung.

Unlike antagonists, agonist binding is influenced by guanine
nucleotides which results in a complex interaction of the receptor with
the agonist and a guanine nucleotide binding protein. In the present
study it was demonstrated that GTP shifted adrenaline inhibition curves
to [3H]-RS-15385-197 to the right in rat cerebral cortex, and that
Gpp(NH)p, a stable GTP analogue had a similar effect in neonatal rat
lung, and to a lesser extent in the human platelet. The affinity of the
antagonists yohimbine and prazosin, however, were unaltered. The
ability of Gpp(NH)p to decrease agonist affinity in the human platelet,
was only evident when compared to agonist inhibition in the presence of
Mg2+. In the absence of Mg2+ and Gpp(NH)p, agonist inhibition curves
were less markedly biphasic and in fact clonidine and UK 14304 were
monophasic. The differential effects of Mg2+ in the human platelet
compared to other tissues has been previousely reported (Bylund &
U’Prichard, 1983). In human platelet membranes Mg2+ has been
reported to produce a leftward shift of adrenaline competition curves at
[3H]-yohimbine labelled sites (U’Prichard et al., 1983), but not to
cortical membranes (U’Prichard & Snyder, 1980) or NG 108-15 cell
membranes (Bylund & U’Prichard, 1983). In addition, the ability of
GTP and Gpp(NH)p to inhibit [3H]-adrenaline binding in platelets was
enhanced in the presence of MgCly (U’Prichard & Snyder, 1980).
These data indicate that in the human platelet, Mg2+ enhances binding to
the high affinity agonist state of the a-adrenoceptor, and suggests
differences in the effects of guanyl nucleotides on agonist interactions
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with the receptor.

Although antagonists are historically reported to have equal
affinity for agonist receptor states, variable affinity for op-
adrenoceptor states by some antagonists has been reported (Perry &
U’Prichard, 1983). In human platelets, [3H]-yohimbine has been
reported as having some selectivity for the lower affinity agonist state
of the receptor (Daiguji et al., 1981). In the current study, yohimbine
and prazosin exhibited monophasic inhibition curves for [3H]-RS-15385-
197 binding which were unaltered by the presence of Gpp(NH)p or
GTP or MgCl; in all tissues, although the affinity of prazosin was
decreased slightly in the presence of MgCl in the human platelet.

The fact that prazosin had >100 fold lower affinity for the high
affinity agonist state of the ayg-adrenoceptor, as delineated by [3H]-
adrenaline binding, cannot explain why this compound exhibited
monophasic inhibition curves for [3H]-RS-15385-197, if it is assumed
that the latter compound labels both high and low affinity states of the
receptor. It cannot be explained by a non-competitive interaction of
prazosin, as prazosin does not influence the dissociation rate of, or the
number of sites labelled by [3H]-RS-15385-197. Alternatively, [3H]-
adrenaline may label an additional high affinity state of the opg-
adrenoceptor, which has low affinity for some antagonists, particularly
prazosin and imiloxan, and may not be labelled by [3H]-RS-15385-197.
Multiple high affinity agonist states of the aj-adrenoceptor on the
human platelet have been previously suggested using [3H]-adrenaline
(U’Prichard et al., 1983) and [3H]-UK-14,304 (Neubig ez al., 1988). It
is possible, therefore, that the same is true for the ayg-adrenoceptor,
and could be elucidated by a detailed kinetic analysis of [3H]-adrenaline
binding in the neonatal rat lung. The interaction of prazosin and RS-
15385-197 with the various states of the oj-adrenoceptor must
therefore be more complicated than previously thought, and the
difference in the ability of selective antagonists to inhibit [ 3H]-antagonist
and not [3H]-agonist binding suggests additional differences in the
interaction of these radioligands with the oz-adrenoceptor subtypes.

3.8.5. Effects of Na+

Another factor shown to differentially modulate agonist and
antagonist binding to o-adrenoceptors 1s Na+ (Limbird et al., 1982).
The reciprocal effects of Na+ on agonist versus antagonist interactions
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appear to be a property of all receptor populations linked to inhibition
of adenylate cyclase activity (Jakobs, 1979). For the op-adrenoceptor at
least, the effect of Na+ is to decrease agonist potency for [3H]-antagonist
binding and to increase receptor affinity for antagonists. In the present
study, the effects of Na+ on «p-adrenoceptor subtypes were studied in
more depth by examining changes in affinity of a variety of compounds
for agonist and antagonist labelled sites in the absence or presence of
100 mM NaCl. Previous studies have looked only at agonist and
antagonist inhibition of [3H]-yohimbine binding which, for the reasons
stated in the previous section, may not adequately explain changes
observed in agonist and antagonist binding at op-adrenoceptor subtypes.

The present data showed that complex interactions of agonist and
antagonist binding occurred in the presence of NaCl in tissues
containing the o2 and azp-adrenoceptor subtypes. The effects were
unlikely to be due to changes in osmolality, as previous studies have
shown that the regulatory effects of NaCl on the porcine 0 4-
adrenoceptor and the NG 108-15 cell oazp-adrenoceptor were not
produced by equimolar concentrations of N-methyl-D-glucamine-Cl
(Guyer et al., 1990; Wilson et al., 1991a). They are also not likely to
be due to Cl- ions as LiCl and KCIl were much less effective (Nunnari et
al., 1987; Guyer et al., 1990; Wilson et al., 1991a).

100 mM NaCl decreased the affinity of adrenaline by 4 fold in the
neonatal rat lung and by 9 fold in the platelet. In the human platelet, the
decreased affinity was so great that no detectable binding was observed
with [3H]-adrenaline. No change in the density of binding was seen for
[3H]-RS-15385-197 in the platelet, however, in the neonatal rat lung, an
increase in the density of both [3H]-RS-15385-197 and [3H]-adrenaline
was observed, suggesting that Na+ brought about changes in the
conformation of the receptor so that more sites in the low affinity
agonist state was seen by both ligands.

The allosteric effects of Na+ on the cloned porcine o A-
adrenoceptor showed that this cation increased the affinity of [3H]-
yohimbine binding (Guyer et al., 1990). The interaction was non-
competitive in that there was an increase in the dissociation rate of [3H]-
yohimbine. Although an increase in dissociation rate would not be
consistent with an increase in affinity, a previous study indicated that
this is offset by a 3 fold increase in the association rate, resulting in a
net increase in affinity (Limbird er al., 1982). Another study on the
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solubilised oyp-adrenoceptor from NG 108-15 cells showed, that
although Na+ decreased adrenaline affinity for [3H]-yohimbine binding
it did not facilitate [3H]-yohimbine dissociation, (Wilson et al., 1991a).
These studies would therefore support the results from the present
study, that Na+ modulates agonist and antagonist interactions with the
a2a- and app-adrenoceptors via different mechanisms.

In the neonatal rat lung, competition experiments with [3H]-
adrenaline in the presence of Na+, showed that the affinity of imiloxan
and prazosin was increased more than 10 fold whilst adrenaline and
noradrenaline affinity was decreased by a similar magnitude. The
decreased agonist affinity was highlighted in that adrenaline and
noradrenaline inhibition of [3H]-RS-15385-197 binding was decreased
by Na+ and the Hill slopes were closer to unity, suggesting a
predominance of a low affinity agonist state. Similar changes in the
affinity of noradrenaline and adrenaline were observed in the human
platelet. The affinities of the imidazoline agonists, oxymetazoline and
UK 14304, however, were unchanged by Na+ when inhibiting [3H]-
adrenaline binding, and there was only a small decrease in the affinity
of oxymetazoline for [3H]-RS-15385-197 binding. These data suggest
that the interaction of imidazoline and catecholamine agonists with the
a-receptor may be different, and support an earlier hypothesis by
Ruffolo et al. (1977).

A recent study has identified a specific aspartate residue (asp79)
on the porcine oa-adrenoceptor to which Na+ binds and exerts its
allosteric effects (Horstman et al., 1990). By mutating this residue to an
asparagine residue, the mutatant receptor resembled the wild-type
receptor in the presence of Na+, but, further allosteric effects of Na+
were prevented. An aspartate residue reported to lie In a
topographically identical position (asp63) has been detected in the
derived amino acid sequence from a rat cDNA encoding an op-
adrenoceptor (Zeng et al., 1990). Thus, it appears that Na+ plays a
crucial role in the regulation of aza-and opg-adrenoceptor function via
an interaction with a specific amino acid residue.

3.9. CONCLUSIONS

In conclusion, this study has demonstrated that the new o;-
adrenoceptor antagonist ligand [3H]-RS-15385-197, labelled o4- and
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app-adrenoceptor subtypes in human platelet and neonatal rat lung
membranes, and an additional subtype, similar to the ayp-adrenoceptor,
in rat cerebral cortex. However, [3H]-adrenaline binding to the opa-
and op-adrenoceptor subtypes revealed that agonist binding to these
receptors was essentially the same. The study emphasised, that to
accurately characterise receptor subtypes in ligand binding studies, the
receptor should be studied with both an agonist and an antagonist ligand.
The functional consequences of 0pa- and ozp-adrenoceptor activation
will be addressed in Chapter five of this thesis.

The allosteric effect of Na+ on the apg-adrenoceptor was to
increase the density of sites in a low affinity (catecholamine insensitive)
agonist state, whilst increasing the affinity of antagonists. Although
qualitatively similar effects were observed at the apa-adrenoceptor
there was no increase in the density of agonist sites labelled.
Competition experiments in the presence of 10 and 100 mM NaCl
revealed, that UK 14304 and oxymetazoline inhibition curves were less
sensitive to Na+, suggesting differences in the interaction of the
catecholamines and the imidazolines with the receptor. The impact of
this work for future studies on o-adrenoceptors is considered in
Chapter six of this thesis.
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CHAPTER FOUR

CHARACTERISATION OF IMIDAZOLINE BINDING SITES



4.1. INTRODUCTION

In Chapter one of this thesis the discovery of imidazoline binding
sites distinct from the oj-adrenoceptor was described, and how
structures with an imidazoline moeity were found to interact with these
sites with differing degrees of affinity. To date, the classification of
these sites is defined with [3H]-idazoxan binding in peripheral tissues
and with [3H]-clonidine or [3H]-p-aminoclonidine in the brain. In this
chapter, the pharmacology of [3H]-idazoxan and [3H]-p-aminoclonidine
binding sites 1s compared in the same tissue; the rat kidney, to determine
whether imidazoline site heterogeneity exists within a tissue. In addition
a novel, selective, imidazoline ligand [3H]-RS-45041-190 will be
described. The binding characteristics, distribution in rat brain, and its
contribution to the understanding of imidazoline site pharmacology will
be discussed.

4.2. [BH]-IDAZOXAN BINDING TO RAT KIDNEY

4.2.1. [3H]-idazoxan binding to oz-adrenoceptors

Initial studies with [3H]-1dazoxan were performed in the absence
of ap-antagonist to assess the contribution of 0p-adrenoceptor binding
in the rat kidney preparation. Inhibition of total [3H]-idazoxan binding
by noradrenaline, RS-15385-197 and idazoxan are shown in Figure 4.1..
RS-15385-197 displaced < 10% [3H]-idazoxan binding at 0.1 mM,
whereas noradrenaline displaced 40-50% with low affinity (pICso =
4.86 *+ 0.30, n=3) and unlabelled idazoxan displaced 80% of the total
binding with high affinity (pICsg = 8.15, nH = 0.89, n=2). Due to the
low affinity of noradrenaline and RS-15385-197, it was concluded that
[3H]-idazoxan did not label ap-adrenoceptors in rat kidney at 1 nM.
However, subsequent experiments with [3H]-idazoxan were carried out
in the presence of 0.1 uM RS-15385-197 to exclude possible binding to
ap-adrenoceptors at higher ligand concentrations and tissue variations.

4.2.2. Kinetics of [3H]-idazoxan binding to imidazoline sites

The interaction of [3H]-idazoxan with the imidazoline binding site
on rat kidney membranes was rapid and reversible (Figure 4.2.).
Equilibrium was attained within 90 min with Kops = 0.0727 +
0.0065/min (n=5). In 3 out of 5 experiments however, the association
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Figure 4.1. Inhibition of [3H]-idazoxan binding in rat Kidney
membranes. The results represent a typical experiment performed in
duplicate. Essentially similar data was obtained in one (idazoxan) or two
(RS-15385-197 and noradrenaline) other experiments on different
preparations (see text for meaned values). Idazoxan displaced 80% of the
total binding (pICso = 8.22), whereas noradrenaline displaced 46% (pICso
= 5.34) and RS-15385-197 displaced <10% of the binding at 0.1 mM.
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Figure 4.2. Kinetic analysis of [3H]-idazoxan binding to rat
kidney membranes. The insets show the semilogarithmic plots of the
data. The data represents a single experiment performed in triplicate.
Essentially similar data was obtained in two other experiments on
different preparations (see text for meaned values). Two association rate
constants (top panel) were calculated; Kops1 = 0.307/min and Kobs2 =
0.0299/min. On the addition of 1 uM cirazoline, [3H]-idazoxan
dissociated with two rate constants K21 = 0.1701/min and K22 =
0.0197/min (bottom panel). Calculated K4 values for the fast and slow
components were 2.23 and 3.46 nM respectively.
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log plots were better fitted to 2 site model with t1/2 for the fast and slow
associating components = 1.59 and 30.1 min respectively (%
contribution = 62 and 38 respectively). On the addition of 1 uM
cirazoline, [3H]-idazoxan binding was fully reversed but showed fast and
slow dissociation components, with 65% of the specific [3H]-idazoxan
binding dissociated within the first 15 min (K7 = 0.5176 *+ 0.1823/min,
ti2 = 1.3 min). The remaining binding dissociated more slowly (K3 =
0.0234 £ 0.007/min, tj2 = 30 min). In experiments showing biphasic
association plots Kq values were calculated based on the percentage of
ligand associating and dissociating rapidly and yielded affinity constants
for the fast and slow dissociation components of 4.38 + 1.10 and 2.24 +
1.23 nM respectively (n=3).

4.2.3. Affinity and density of imidazoline sites labelled by
[3H]-idazoxan '

In saturation studies (Figure 4.3.), [3H]-idazoxan labelled a single
site with high affinity in the presence of 0.1 uM RS-15385-197 (K4 =
3.78 £ 0.28 nM, Bpax = 45.94 + 11.4 fmoles/mg, n = 4). The slope of
the associated Hill plot (nH) = 0.95 £ 0.06. At the K4 concentration,
non-specific [3H]-1dazoxan binding represented 25-35% of the total
binding. The inability of saturation analysis to detect two binding sites
(as derived from kinetic experiments) is probably due to the fact that
[3H]-1dazoxan had similar affinity for these sites (K4 = 4.38 and 2.24
nM). It is unlikely that saturation analysis would differentiate two
binding sites in this case.

4.2.4. Pharmacology of [3H]-idazoxan binding

Table 4.1. shows affinity values (pK;) for a variety of agents for
the imidazoline binding site labelled by [3H]-1dazoxan. Noradrenaline
and RS-15385-197 had low affinity, emphasising the non-adrenergic
nature of the interaction. Clonidine and p-aminoclonidine showed low
affinity (pK; = 5.64 and 5.05) and the imidazolines phentolamine and
cimetidine also had low affinity (pK; = 4.48 and 4.31). However, some
imidazoline structures, idazoxan and the o-adrenoceptor agonist
cirazoline, showed high affinity (pK; = 7.95 and 8.48 respectively).
High affinity was not restricted to compounds containing an imidazoline
ring as guanabenz, which has a guanido structure, had high affinity
(pKij = 7.26). The K+ sparing diuretic, amiloride, which shows high
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Figure 4.3. Saturation analysis of [3H]-idazoxan binding to rat
kidney membranes. The inset shows the Scatchard plot of the data and
the associated Hill plot is shown in the bottom panel. The results represent
a single experiment performed in triplicate. Essentially similar data was
obtained in three other experiments on different preparations (see text for
meaned values). The affinity (Kg) = 3.35 nM and the Bmax = 57.2
fmoles/mg protein. The Hill coefficient (nH) = 0.953.
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Table 4.1. [3H]-Idazoxan binding to imidazoline sites on rat
kidney membranes.

compound n pK; nH

RS-45041-190 3 8.66 £ 0.09 0.92 + 0.08
cirazoline 3 8.48 £ 0.10 0.96 + 0.04
idazoxan 4 8.06 +£ 0.16 1.00 = 0.01
guanabenz 3 7.26 £ 0.07 0.90 £ 0.10
amiloride 3 6.36 £ 0.06 0.92 + 0.08
clonidine 5 5.64 £ 0.16 0.92 + 0.08
p-aminoclonidine 6 5.05£0.16 1.02 +0.10
noradrenaline 4 4.53 + 0.20 -
phentolamine 3 4.48 + 0.07 -
cimetidine 3 431 +£0.19 -
RS-15385-197 3 4.26 + 0.21 -
GTP 3 3.48 + 0.07 -

Compounds were incubated with 1 nM [3H]-idazoxan and 0.1 uM RS-
15385-197 for 90 min at 250C as described in Chapter two. Values
represent the mean + s.e.mean. Each assay was performed in duplicate
and the number of determinations on separate preparations is indicated

by n.
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affinity for [3H]-idazoxan binding in rabbit tissues (see chapter one and
Michel er al., 1989a), had only moderate affinity (pKi = 6.36). The
most potent compound was RS-45041-190 (pKi = 8.66), a novel
imidazoline agent which has low affinity (pKi < 5) for a wide range of
other receptor types including o;- and oj-adrenoceptors (see Table
1.5). GTP inhibited [3H]-idazoxan binding (pK; = 3.48), however, in
saturation experiments (Figure 4.4.) 300 pM GTP had no significant on
the Kq or Bmax (control; Kg = 3.78 + 0.28 nM, Bnpax = 45.94 + 8.6
fmoles/mg protein, GTP; Kyq = 4.05 + 0.70 nM, Bpax = 41.7 £ 2.9
fmoles/mg, n=3).

Figure 4.5. shows inhibition curves for the oj-adrenoceptor
agonist compounds naphazoline and cirazoline for [3H]-idazoxan binding
to imidazoline sites in the rat kidney. The inhibition curve for
cirazoline was monophasic and of high affinity (pK; = 8.48 + 0.10,
n=3), however, the inhibition curve for naphazoline was better fitted to
a 2 site model and gave affinity values for the high and low affinity
components of 8.65 + 0.18 and 6.88 + 0.21 respectively (n=4), with
the high affinity component comprising 68 + 6% of the specifically
bound [3H]-1dazoxan. In the rat kidney therefore, these studies suggest
that [3H]-idazoxan labels two populations of imidazoline sites with
similar affinity in the presence of RS-15385-197 to exclude binding to
oz-adrenoceptors, and these sites could be differentiated with
naphazoline.

4.3. [3BH]-p-AMINOCLONIDINE BINDING IN RAT KIDNEY

4.3.1. [3H]-p-Aminoclonidine binding to oz-adrenoceptors

Initial studies with [3H]-p-aminoclonidine were performed at
250C. In competition experiments (Figure 4.6.) RS-15385-197 and
noradrenaline showed high affinity for 50-60% of the total [3H]-p-
aminoclonidine binding (pICsp = 8.81 £ 0.09, n=5 and 7.23 * 0.48,
n=3 respectively), whereas clonidine displaced 70-80% (pICsgp = 7.64,
n=2). These initial studies suggested that ~60% of the [3H]-p-
aminoclonidine binding was to «-adrenoceptors (high affinity for
noradrenaline and RS-15385-197) and the remaining binding was
insensitive to noradrenaline but displaceable with clonidine (non-
adrenergic).

In the following work, to study the non-adrenergic component of
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Figure 4.4. Effect of 300 uM GTP on [3H]-idazoxan binding in
rat kidney. The data represents a single experiment performed in
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Figure 4.5. Inhibition of 1 nM [3H]-idazoxan binding in rat
kidney by cirazoline and naphazoline. The data represents a single
experiment performed in duplicate. Essentially similar data was obtained
in at least two other experiments on different preparations (see text for
meaned values). One and two site fits were compared for the data. The
cirazoline curve was better fitted to a 1 site model pICsg = 8.52, whereas
the naphazoline curve was better fitted to a two site model with pICsg
values for the high and low affinity components = 8.32 (75%) and 6.18
(25%).
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the binding in isolation, and to make the data comparable with the [3H]-
1idazoxan studies, experiments with [3H]-p-aminoclonidine were
performed in the presence of 0.1 uM RS-15385-197 to prevent binding
to ap-adrenoceptors.

4.3.2. Kinetics of [3H]-p-aminoclonidine binding to
imidazoline sites

Initial studies with [3H]-p-aminoclonidine showed the radioligand
to be fully associated within 1 min at 250C and fully dissociated on the
addition of 100 uM clonidine within 90 seconds. Experiments with [3H]-
p-aminoclonidine were subsequently performed at 40C to slow the
reaction rate, in an attempt to establish the kinetically derived affinity of
[3H]-p-aminoclonidine, and to minimise dissociation of the ligand during
filtration. Figure 4.7. shows that even at 40C the kinetics for [3H]-p-
aminoclonidine were rapid with equilibrium being attained within 10
min. On the addition of 0.1 mM clonidine, [3H]-p-aminoclonidine
binding was rapidly reversed and fully dissociated within 10 min. Due
to the rapid rate of association and dissociation it was not possible to
determine reliable estimations of association and dissociation rate
constants for [3H]-p-aminoclonidine in consecutive experiments.

4.3.3. Affinity and density of sites labelled with [3H]-p-
aminoclonidine

To determine the saturability of [3H]-p-aminoclonidine binding,
K4 and Bmax values were calculated from competition experiments with
unlabelled p-aminoclonidine. This was found to be necessary as the low
affinity of the ligand required concentrations of [3H]-p-aminoclonidine
greater than 100 nM to approach saturation. K4 and Bpax values from
competition experiments with unlabelled p-aminoclonidine were
calculated from a knowledge of the ICsp and free ligand concentration,
and based on the assumption that labelled and unlabelled compound bind
to the same site with equal affinity (Deblasi et al., 1990). Figure 4.8.
shows that [3H]-p-aminoclonidine binding was monophasic and of low
affinity (Kg = 127.6 = 19.7 nM) and labelled more than 20 times the
number of sites than [3H]-idazoxan (Bmax = 978 £ 172 fmoles/mg
protein, n=8; compared to 45.94 + 11.4 fmoles/mg protein for [3H]-
idazoxan). The percentage of non-specific binding was greater than that
for [3H]-idazoxan and represented 40-50% of the total [3H]-p-
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Figure 4.7. Kinetic analysis of [3H]-p-aminoclonidine binding
in rat kidney membranes at 4oC. The insets show the
semilogarithmic plots of the data. The data represents a single experiment
performed in triplicate. The association rate (top panel) was rapid, and
the ligand fully associated after 10 min (Kops = 0.707/min). The
dissociation rate (bottom panel) was also rapid, with 66% of the bound
ligand dissociated within the first 2 min (K2 = 0.681/min), giving a
derived affinity Kq = 81.2 nM. Accurate determination of the rates in
consecutive experiments was not possible due to the rapidity of the

reaction.
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Figure 4.8. Saturation analysis of [3H]-p-aminoclonidine
binding to rat kidney membranes. Experiments were performed
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performed in triplicate. Essentially similar data was obtained in seven
other experiments on different preparations (see text for meaned values).
K4 = 127 nM, Bpax = 1020 fmoles/mg protein; nH = 1.02.



aminoclonidine binding.

Due to the low affinity of [3H]-p-aminoclonidine, it was
surprising that specific binding could be demonstrated using filtration to
separate bound from free ligand, as a high percentage of the specifically
bound ligand would be expected to dissociate during the separation
process. Figure 4.7. showed that 25-40 % of the specifically bound [3H]-
p-aminoclonidine dissociated rapidly between 0 and 30 sec after the
addition of 100 uM clonidine. It was possible that a large percentage of
bound ligand would be lost during the washing stage of the filtration
process. This problem was addressed in two ways. Firstly, using
filtration to separate bound ligand, [3H]-p-aminoclonidine binding was
determined at equilibrium with different wash times with ice cold assay
buffer. Secondly, bound [3H]-p-aminoclonidine was separated by
centrifugation at 15000g for 90 sec. Figure 4.9. shows that between a
2 and 10 sec wash, no significant decrease in specific binding was
observed (24.2 £+ 3.1 fmoles/mg at 2 sec, 22.7 = 1.7 fmoles/mg at 10
sec) suggesting minimal dissociation occurred at these wash times.
Thereafter, [3H]-p-aminoclonidine dissociated with time with less than
40% of the initial binding remaining after 2 min. The washtime of 10
sec used in previous experiments with [3H]-p-aminoclonidine was
therefore maintained in subsequent experiments, as this was shown to
minimise ligand dissociation whilst ensuring removal of unbound
ligand.

When centrifugation was used to separate bound radioligand, the
affinity and density of sites labelled by [3H]-p-aminoclonidine was not
significantly different from the filtration assays (Kq = 104.2 + 21.7 nM,
Bmax = 1480 % 310 fmoles/mg protein, n=3). These data suggested that,
the percentage of [3H]-p-aminoclonidine binding lost during filtration
and centrifugation experiments was comparable as similar binding
parameters were gained using both protocols. It was decided that for
ease of sample preparation and throughput, filtration could be
justifiably employed to characterise the pharmacology of the binding
site. However, for compounds critical to the classification of
imidazoline sites, centrifugation experiments were carried out in
parallel.

4.3.4. Pharmacology of [3H]-p-aminoclonidine binding sites
Table 4.2. shows affinity values (pKj) for a variety of agents for
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Figure 4.9. Effect of washing [3H]-p-aminoclonidine bound to
rat kidney membranes on glass fibre filters. Membranes were
incubated with 3 nM [3H]-p-aminoclonidine as described in Chapter two
and filtered over Whatman GF-B filters followed by various wash times
with ice-cold assay buffer. The data represents the mean + s.e.mean of
three experiments on different membrane preparations each performed in
triplicate.



Table 4.2. [3H]-p-Aminoclonidine binding to imidazoline
sites on rat kidney membranes.

[3H]-p-aminoclonidine

filtration centrifugation
pKiplICsp nH pKi nH
guanabenz 7.81 2006 1.25+0.11 (3) 7.29+0.37 1.05 +£0.44 (3)
RS-45041-190 7.18+£0.09 092+0.10 (3)
clonidine 6.88 £ 0.07 0.80£0.06 (3)
p-aminoclonidine 6.98 + 0.09 0.87 £0.07 (6) 6.87 +0.21 1.02+0.12 (3)
1dazoxan 534+004 077+0.11 (3) 534+0.25 1.05+0.05(3)
phentolamine 510+ 023 1.01 £0.01 (3)
cimetidine 4.99 + 0.09 . (3)
RS-15385-197 4.85+0.13 - (3)
amiloride <4 ‘ (3)
noradrenaline <4 : (3)
GTP <3 - (3)

Compounds were incubated with 3 nM [3H]-p-aminoclonidine and 0.1
UM RS-15385-197 for 30 min at 40C as described in Chapter two. The
values represent the pK; (nH = 1) or pICsg (nH < 1). Values were
obtained from filtration or centrifugation experiments as indicated and
represent the mean * s.e.mean. Each assay was performed in duplicate
and the number of separate determinations on different membrane
preparations is shown in brackets.
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the imidazoline binding site labelled by [3H]-p-aminoclonidine.
Noradrenaline and RS-15385-197 had low affinity (pKi < 5)
emphasising the non-adrenergic nature of the interaction. Clonidine and
p-aminoclonidine showed moderately high affinity (pK; = 6.88 and 6.98
respectively), whereas idazoxan and amiloride had very low affinity
(pKi = 5.34 and < 4.00 respectively). Guanabenz and RS-45041-190
showed moderately high affinity (pK; = 7.26 and 7.18 respectively),
while the imidazolines phentolamine and cimetidine had low affinity
(pKi = 5.10 and 4.99). To ensure that the pharmacology of the [3H]-p-
aminoclonidine binding site was the same irrespective of the method
employed to separate bound ligand, the affinity of guanabenz, idazoxan
and p-aminoclonidine were estimated for [3H]-p-aminoclonidine binding
using centrifugation to separate bound ligand. The affinity of these
compounds was not significantly different from filtration affinity
estimates (pKj = 7.29, 5.34 and 6.87 respectively). GTP did not inhibit
[3H]-p-aminoclonidine binding up to a concentration of 1 mM. The
observation that GTP inhibited [3H]-idazoxan (Table 4.1.) but not [3H]-p-
aminoclonidine binding in competition experiments, suggested that [3H]-
idazoxan may label an agonist GTP-sensitive state of the imidazoline
“receptor”, while [3H]-p-aminoclonidine may label both affinity states
(i.e. an antagonist), in the same way that [3H]-RS-15385-197 and [3H]-
adrenaline label affinity states of the ap-adrenoceptor (see Chapter
three). Experiments were carried out, therefore, to determine the
effect of GTP on idazoxan inhibition curves to [3H]-p-aminoclonidine
(Figure 4.10.). Inhibition by idazoxan was conducted in the presence of
0.1 and 1 mM GTP (concentrations which inhibit [3H]-idazoxan binding
by approximately 25 and 60%) and no effect was seen on the affinity or
the Hill slope of the idazoxan displacement curve (control: pICsg =
5.39, nH = 0.83; 0.1 mM GTP pICsg = 5.43, nH = 0.74; 1 mM GTP:
plCsg = 5.44, nH = 0.86; n=2).

These results show that imidazoline sites labelled by [3H]-p-
aminoclonidine are pharmacologically distinct from those labelled by
[3H]-1dazoxan. It is unlikely that those sites labelled by [3H]-idazoxan
represent a GTP-sensitive agonist state of the imidazoline receptor
labelled by [3H]-p-aminoclonidine.

129



120 -

100 -

[o+]
o
|

F =Y
o
T

% specific binding
[p]
o

—@—control
—0O—0.1 mM GTP

20 |
-1 mM GTP
.
1079 108 10 10°°

idazoxan concentration (M)

Figure 4.10. Effect of GTP on idazoxan inhibition-of [3H]-p-
aminoclonidine binding to rat kidney membranes. Incubations
were performed in the presence of 0.1 pM RS-15385-197 as described in
Chapter two. The results represent one of two experiments on different
preparations performed in duplicate. Control pICsg = 5.39, 0.1 mM GTP
pICsp=5.43, 1 mM GTP plICsg = 5.44.
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4.4. [3H]-RS-45041-190 BINDING TO RAT KIDNEY

4.4.1. Kinetics of [3H]-RS-45041-190 binding to rat Kkidney

[3H]-RS-45041-190 binding to rat kidney membranes was rapid
and reversible (Figure 4.11.). Equilibrium was reached within 60 min,
but the semilogarithmic transformations of the association plots were
distinctly non-linear. Consequently the time course of [3H]-RS-45041-
190 binding was fitted to two exponential phases of binding. The rate
constant Kops for the fast phase of binding was 1.395 + 0.518/min with
ti2 = 35 sec and represented 53 + 6% of the total bound ligand at
equilibrium. The remaining binding associated slowly 0.055 +
0.035/min with tj, = 12.6 min (n=4 in each case). After the addition of
10 uM cirazoline, [3H]-RS-45041-190 exhibited a biphasic dissociation
plot with 57 * 6% dissociating rapidly (K2 = 0.401 £ 0.118/min, tp; =
1.7 min). The remaining binding dissociated slowly (K, = 0.037 *
0.102/min, ty/2 = 19 min). K4 values were calculated based on the
percentage of rapidly associating and dissociating components, thus, the
amount of rapidly associating ligand was more similar to the amount of
rapidly dissociating ligand (53% and 57% respectively). The
calculation of Kg4 values based on the slowly associating, rapidly
dissociating, components was inappropriate in some cases where K, was
greater than Kops therefore giving K| a negative value. Taking these
criteria into account, Kq values of 0.573 + 0.208 nM for the fast phase
and 0.886 + 0.154 nM for the slow phase were estimated. These results
indicated that [3H]-RS-45041-190 labelled 2 sites or 2 affinity states of
an imidazoline site on rat kidney.

4.4.2. Affinity and density of sites labelled with [3H]-RS-
45041-190

[3H]-RS-45041-190 binding was of high affinity and saturable in
the rat kidney (Figure 4.12.). The data was better fitted to a one site
model (K4 = 2.71 £ 0.59 nM, Bmax = 223.1 = 18.4 fmoles/mg protein,
n=6). At the K4 concentration the percentage of binding defined with
10 uM cirazoline was 70-75% of the total [3H]-RS-45041-190 bound.
The failure of saturation analysis to define 2 sites for [3H]-RS-45041-
190, was probably due to the very similar affinity shown for the two
sites in kinetic experiments (see previous section).
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Figure 4.11. Association and dissociation of [3H]-RS-45041-
190 binding to rat kidney membranes. The insets show the
semilogarithmic plots of the data. The data represents a single experiment
performed in triplicate. Essentially similar data was obtained in three
other experiments on different preparations (see text for meaned values).
Two association rate constants (top panel) were calculated; Kops1 = 1.376,
Kobs2 = 0.0346/min. On the addition of 10 uM cirazoline, [3H]-RS-45041-
190 dissociated with two rate constants; K71 = 0.714, K77 = 0.0204/min.
Calculated K values for the fast and slow components were 1.18 and 1.57
nM respectively.
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Figure 4.12. Saturation analysis of [3H]-RS-45041-190
binding to rat kidney membranes. The data represents a typical
experiment performed in triplicate. Essentially similar data was obtained
in five other experiments on different preparations (see text for meaned
values). The inset shows the Scatchard plot of the data and the associated
Hill plot is shown in the bottom panel. The affinity (K4) = 1.91 nM and
the Bmax = 280.1 fmoles/mg protein. The Hill coefficient (nH) = 0.979.
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4.4.3. Pharmacology of [3H]-RS-45041-190 binding sites in
rat kidney

In competition experiments (Table 4.3.), adrenaline, RS-15385-
197, dopamine, histamine and prazosin had very low affinity for [3H]-
RS-45041-190 (pK;< 5.1). Inhibition curves with unlabelled RS-45041 -
190 showed high affinity (pK; = 8.39) and a Hill slope of 0.75,
indicating that more that one site was being labelled with [3H]-RS-45041-
190, however statistical analysis of the fits revealed that the data was not
significantly better fitted to a two site model. The imidazoline
compounds idazoxan and cirazoline showed high affinity, but displaced
[3H]-RS-45041-190 binding with high and low affinity components
(pICsg = 7.85 and 5.80 for idazoxan and 8.16 and 6.11 for cirazoline).
Naphazoline displaced [3H]-RS-45041-190 binding with moderate
affinity and a shallow Hill slope (pICsgo = 6.61 = 0.11, nH = 0.62 *
0.03) although this was not significantly better fitted to two sites.
Guanabenz showed high affinity for [3H]-RS-45041-190 binding and p-
aminoclonidine showed very low affinity. These data suggest that 60 -
70% of the sites labelled with [3H]-RS-45041-190 were more similar to
the site described for [3H]-idazoxan in rat kidney (see Section 4.2.4.)
and other rat tissues (MacKinnon et al., 1991; Michel & Insel, 1989)
than to the [3H]-p-aminoclonidine binding site in rat kidney (see section
Section 4.3.) or bovine brainstem (Ernsberger et al., 1987).
Glibenclamide, and phentolamine, compounds which have been shown
to have K+ channel blocking activity and hypoglycaemic action (Schulz
& Hasselblatt, 1989; Dunne, 1991), had low affinity for [3H]-RS-45041-
190 binding. Saturation experiments showed that [3H]-RS-45041-190,
labelled more sites than [3H]-idazoxan ([3H]-RS-45041-190 Bpax = 223,
[3H]-idazoxan Bpax = 46 fmoles/mg protein). These data suggest that
[3H]-RS-45041-190 labelled an imidazoline site with characteristics
similar to that described for [3H]-idazoxan, but also an additional site
which is at present undefined.

4.4.4. Effect of ions and Gpp(NH)p on [3H]-RS-45041-190
binding

In order to determine whether the [3H]-RS-45041-190 binding
site(s) couple to a G-protein, the regulation of binding by Gpp(NH)p
was determined. Gpp(NH)p did not compete for [3H]-RS-45041-190
binding at concentrations up to 1 mM (Table 4.3.). However, for G-
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Table 4.3. Inhibition of [3H]-RS-45041-190 binding to rat
kidney membranes.

pICso pICso
compound n pKi/pICsp nH (60-70%) (30-40%)

RS-45041-190 8.39 £ 0.04 0.75 + 0.02

idazoxan 7.85+0.03 5.80+0.12
cirazoline 8.16 £ 0.05 6.11 +0.17
guanabenz 1232007 123 £0.10
amiloride 6.91 + (.36 0.72 +0.03

'%
’%
%
'{
3
naphazoline 4 6.61 £0.11 0.62 + 0.02
p-aminoclonidine 3 4.89 £ 0.15 0.77 £ 0.08
phentolamine 3 4.09 £ 0.05 1.04 + 0.02
3 391 £0.04 1.48 £0.16
3 3.72 £ 0.05 1.02 £ 0.06
3 <4.00 -
2 5.08 0.72
2 4.13
2 4.20
3 <3.00

glibenclamide
adrenaline
RS-15385-197
dopamine
histamine
prazosin
Gpp(NH)p

Competing ligand was incubated with 1 nM [3H]-RS-45041-190 for 60
min at 250C as described in Chapter two. The results are expressed as
pKi (when nH = 1) or pICsg (nH < 1) and represent the mean +
s.e.mean of n determinations on separate preparations each performed
in duplicate. For compounds displaying biphasic displacement curves,
the pICsg and % contribution of each component is given.

133



protein coupled receptors, guanylnucleotides change the affinity state of
the receptor for its agonist to a low affinity state. One potential agonist
1s 1dazoxan, as in competition experiments idazoxan gave rise to a
biphasic inhibition curve; and, as shown in Section 4.2.4., [3H]-1dazoxan
was sensitive to GTP, therefore inhibition curves to idazoxan were
carried out in the presence and absence of 100 uM Gpp(NH)p. Figure
4.13. shows that the affinity and the % of sites defined with idazoxan
were unaltered by the presence of 100 uM Gpp(NH)p (control: pICsp =
7.74 £ 0.03 (69%) and 5.75 + 0.18 (21%); 100 uM Gpp(NH)p: pICsp =
7.93 + 0.11 (68%) and 5.56 + 0.31 (22%), n=3). These data suggest
that either idazoxan is not an agonist or that the binding sites are not
coupled to a G-protein.

Figure 4.14. shows the effects of monovalent and divalent cations
on [3H]-RS-45041-190 binding. Monovalent ions were more potent in
inhibiting binding; KCI inhibited specific binding by 80% at 500 mM.
The rank order of potency was K+ > Na+ = Ca2+ = Mg2+. [3H]-RS-
45041-190 binding therefore shows a similar ion dependancy to [3H]-
idazoxan (Coupry et al., 1989; Zonnenschein et al., 1990).

4.5. AUTORADIOGRAPHICAL DISTRIBUTION OF
IMIDAZOLINE BINDING SITES IN RAT BRAIN

4.5.1. Distribution of [3H]-idazoxan labelled imidazoline
binding sites in rat brain

The distribution of imidazoline binding sites labelled by [3H]-
idazoxan was studied in rat brain by in vitro autoradiography, in the
presence of 0.1 uM RS-15385-197 to prevent binding to o;-
adrenoceptors. Table 4.4. shows the density of imidazoline sites
measured in 6 areas of rat brain. The optical densities observed over
other areas of the brain were not significantly higher than the film
background. Imidazoline sites were highly localised in the
circumventricular organs; the area postrema and the subfornical organ
(plates 4.1. and 4.3.). High density binding was observed in specific
hypothalamic nuclei namely the interpeduncular (plate 4.1.), lateral
mammilary and arcuate nuclei (plate 4.2.). Imidazoline sites labelled by
[3H]-1dazoxan were therefore localised over discrete areas of rat brain.
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inhibition of [3H]-RS-45041-190 binding. The data represents the
mean * s.e.mean of three experiments on different preparations each
performed in duplicate. The data was better fitted to a two site model in
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text.
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Table 4.4. Distribution of imidazoline binding sites labelled
by [3H]-idazoxan in rat brain.

specific binding

structure fmoles/mg tissue
subfornical organ 191.2% 31.3
arcuate nucleus 843+ 17.4
interpeduncular nucleus 11.5 £ 3.6
area postrema 64.9 + 16
lateral mammillary nucleus 428+ 199

Sections were labelled with | nM [3H]-idazoxan in the presence of 0.1
UM RS-15385-197 as described in Chapter two. Quantification of
image density in fmoles/mg tissue was carried out using a Quantimet
970 image analyser. The results represent the mean * s.e.mean of
multiple measurements made from 4-5 animals.
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Plate 4.1. [3H]-idazoxan binding in rat brain. The images show
representative total binding sections through the rat brain. Non-specific
binding in consecutive sections was not significantly greater than
background. AP (area postrema), IP (interpeduncular nucleus).
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Plate 4.2. [3H]-idazoxan binding in rat brain. The images show
representative total binding sections through the rat brain. Non-specific
binding in consecutive sections was not significantly greater than
background. Arc (arcuate nucleus), LM (lateral mammillary nucleus).
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Plate 4.3. [3H]-idazoxan binding in rat brain. The images show
representative total binding sections through the rat brain. Non-specific
binding in consecutive sections was not significantly greater than
background. SFO (subfornical organ).
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4.5.2. Biochemical characterisation of [3H]-RS-45041-190
binding sites in rat brain

Initial characterisation of [3H]-RS-45041-190 binding was carried
out on coronal sections through the hypothalamic area (Figure 4.15.).
Equilibrium was reached after 60 min and a washtime of 10 min was
chosen to remove unbound ligand. Given that RS-45041-190 has very
low affinity for o-adrenoceptors in rat cerebral cortex membranes
(pKi = 5.37; unpublished observations), and RS-15385-197 had very
low affinity for [3H]-RS-45041-190 binding in rat kidney (pKi < 4.0,
Section 4.4.3.), [3H]-RS-45041-190 was considered as being highly
selective for imidazoline sites. RS-15385-197 was therefore, not
included in these experiments as [3H]-RS-45041-190 would not be
expected to label ap-adrenoceptors in rat brain.

4.5.3. Distribution of [3H]-RS-45041-190 binding sites in rat
brain

[3H]-RS-45041-190 binding sites were highly localised in discrete
regions of rat brain. Table 4.5. shows the density of binding sites
measured in several regions of rat brain. Images of total binding
sections are presented in plates 4.4. - 4.6. The distribution of binding
sites was similar to that seen with [3H]-idazoxan (Section 4.5.1.) in as
much as the highest levels were observed over the area postrema (plate
4.4), the interpeduncular nucleus (plate 4.5), the arcuate and lateral
mammillary nuclei, and the subfornical organ (plate 4.6.). However,
additional sites were observed over the locus coeruleus, the medial
habenular nucleus, the dorsomedial hypothalamic nucleus, the inferior
olive and the nucleus of the solitary tract. Very low levels (<30
fmoles/mg tissue) were observed over all other areas.

4.6. DISCUSSION

4.6.1. A comparison of [3H]-idazoxan and [3H]-p-
aminoclonidine binding

The present study indicated that [3H]-idazoxan and [3H]-p-
aminoclonidine labelled non-adrenergic binding sites rat kidney
membranes. The choice of drug to define non-specific binding was
based on the concentration of drug required to maximally inhibit the
binding in the presence of RS-15385-197 (1 uM cirazoline for [3H]-
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Figure 4.15. Association and dissociation kinetics of [3H]-RS-
45041-190 binding to coronal sections of rat brain. Following
incubation and washing, the sections were wiped from the slide and
counted for radioactivity as described in Chapter two. The data
represents a typical experiment performed in triplicate. Dissociation was
initiated by the addition of 10 uM cirazoline (indicated by the arrow).
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Table 4.5. Distribution of imidazoline binding sites labelled
by [3H]-RS-45041-190 in rat brain.

specific binding
fmoles/mg tissue

specific binding

fmoles/mg tissue region

region

olfactory system
Ant. olfactory nuc.lat.
septal area
subfornical organ
lateral ventricles
corpus striatum
caudate putamen
globus pallidus

nuc. accumbens
thalamic regions
paraventricular
medial habenular nuc.
fascilus

retroflexus

97.13%10.64

195.7£12.26
103.04+6.40

52.07%+4.63
11.14+1.39
101.30+9.63

125.92+3.09
159.20+9.44

88.74%£15.02

hypothalamic regions

dorsomedial

arcuate nuc.

lateral mammilary nuc.
mammilary nuc. med.
mammilary peduncle

hippocampal regions

dentate gyrus
subiculum

CAl

CA2

CA3
mesencephalon
central gray
interpeduncular nuc.
substantia nigra

237.60+29.72
247.32+10.17
214.43+11.24
152.88+81.4
112.85%16.2

62.6715.72
97.83%16.45
105.40%+8.70
97.58%7.99
89.23+11.02

93.4314.07
2174LE21.03
32.92+0.78

cortical regions
entorhinal cortex
occipital cortex
temporal crtex
parietal cortex
cingulate cortex
cort/amygdaloid

zone

orbital cortex

pons

locus coruleus
olivocochlear bundle
ventrospinal cer. tract
pontine nuclel

dorsal tegmental nuc.
dorsal raphe
medulla

gracile nucleus
hypoglossal nuc.
nuc. spin. tract trig.
area postrema

lateral reticular nuc.
dor. motor nuc. vagus
pyramidal tract

nuc. sol. tract med.
inferior olive
paramedian lobule
cerebellar regions
Cl

9

Copulla of the pyramis

85.08+8.16
62.56£5.3%
62.6512.93
38.31+1.96
43.30+1.60

124.48+16.42
88.46+17.73

184.48+15.63
110.89+25.53
86.35+£5.81
35.70x4.79
76.91%£3.40
135.12+£20.58

56.17%12.92
71.2538.25
D.65k1:16
215.58+25.83
40.69%4.07
149.981+6.79
66.3+10.46
100.57%5.65
76.35%£3.09
35.41%£4.33

571.93%5.74
24.1+3.68
32.99%5.3

Sections were labelled with 8 nM [3H]-RS-45041-190 as described in
Chapter two. Quantification of image density in fmoles/mg tissue was
carried out using a Quantimet 970 image analyser. The results
represent the mean * s.e.mean of multiple measurements made from 3-4
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Plate 4.4. [3H]-RS-45041-190 binding in rat brain. The images
show representative total binding sections through the rat brain. Non-
specific binding in consecutive sections was not significantly greater than
background. AP (area postrema), 1O (inferior olive), LRt (lateral
reticular area), NTS (nucleus of the solitary tract), 12 (hypoglossal
nucleus).
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Plate 4.5. [3H]-RS-45041-190 binding in rat brain. The images
show representative total binding sections through the rat brain. Non-
specific binding in consecutive sections was not significantly greater than
background. CG (central gray), IP (interpeduncular nucleus), LC (locus
coeruleus), ocb (olivocochlear bundle), S (subiculum).
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Plate 4.6. [3H]-RS-45041-190 binding in rat brain. The images
show representative total binding sections through the rat brain. Non-
specific binding in consecutive sections was not significantly greater than
background. Arc (arcuate nucleus), AOL (anterior olfactory nucleus,
lateral), CPu (caudate putamen), DM (dorsomedial hypothalamic
nucleus), GP (globus pallidus, LM (lateral mammillary nucleus), MHb
(medial habenular nucleus), SFO (subfornical organ).
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idazoxan binding, 100 uM clonidine for [3H]-p-aminoclonidine
binding). The sites labelled by each ligand had low affinity for the
catecholamine noradrenaline and low affinity for the selective o;-
adrenoceptor antagonist RS-15385-197 and were therefore not
adrenoceptors. Both ligands labelled a population of sites that showed
marked differences in nature. Firstly, [3H]-p-aminoclonidine labelled
more than 20 times the number of sites than [3H]-idazoxan but with
relatively low affinity. Because of the low affinity of [3H]-p-
aminoclonidine for its binding site, the binding parameters (K4 and
Bmax) were analysed from competition experiments with unlabelled p-
aminoclonidine. The data showed that p-aminoclonidine labelled a
single population of low affinity sites (Kq = 128 nM, Bpax = 978
fmoles/mg protein).

It was surprising that specific [3H]-p-aminoclonidine binding
using filtration to separate bound from free radioligand, as this is
normally only suitable for ligands having nanomolar affinity for their
receptor site. Ligands with lower affinity would be expected to
dissociate from the receptor site during the washing stage of the
separation. However, the experiments were repeated using separation
by centrifugation, and no significant difference was found in the affinity
of the site compared with that determined by filtration. The
pharmacological profile of the site was also similar, as the affinities of p-
aminoclonidine, idazoxan and guanabenz, compounds critical to the
classification, were identical using both separation methods. This lead
to the conclusion that the same site was being labelled under the
different protocols. By using ice cold washing buffer to minimise
ligand dissociation it was shown that a significant proportion of binding
remained after a separation time of up to 10 sec. Conducting the
separation at 40C, must slow the dissociation rate sufficiently to allow
for the determination of reproducible binding data with [3H]-p-
aminoclonidine using a filtration protocol. Filtration has been
successfully used to label glutamate receptor subtypes and the
neurotoxin receptor site associated with Na+ channels using radioligands
of moderate affinity (Catterall er al., 1981; Honore et al., 1989).

In competition experiments, the rank order of potencies of a
number of compounds for imidazoline sites labelled by the two ligands
was markedly different. Figure 4.16 shows that the affinities correlated
poorly (r = 0.249, nH = 0.427). In particular, idazoxan had very low
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affinity for [3H]-p-aminoclonidine binding (pK; = 5.34). Other studies
with i1dazoxan have shown differences in affinities for [3H]-p-
aminoclonidine binding, ranging from 220 nM in the rat renal cortex
(Ernsberger et al., 1990) to 33 nM for [3H]-clonidine binding in the
human brainstem (Bricca et al., 1988). The low affinity for idazoxan in
the present study may be due to the removal of idazoxan's high affinity
for op-adrenoceptors with RS-15385-197.

In competition experiments with [3H]-idazoxan, p-aminoclonidine
and clonidine had low affinity. This is consistent with a number of
studies in pig (Vigne et al., 1989), hamster (Mackinnon ez al., 1989),
human and rat kidney (Michel et al., 1989), whereas clonidine has
somewhat higher affinity in rabbit tissues (Yablonsky et al., 1988;
Langin & Lafontan, 1989). Guanabenz showed moderately high affinity
for [3H]-idazoxan binding which is consistent with other studies (Vigne
et al., 1989), but also had high affinity for [3H]-p-aminoclonidine
binding. Studies with [3H]-p-aminoclonidine in the bovine ventrolateral
medulla (Ernsberger er al., 1988) show guanabenz to have very low
affinity.

Studies by Bricca et al. (1989) have shown that [3H]-clonidine
labels imidazoline-like binding sites with high affinity in bovine and
human brainstem membranes, and that the human nucleus reticularis
lateralis provides an homogeneous population of imidazoline binding
sites. However, using the same protocol, imidazoline binding sites could
not be labelled with [3H]-clonidine in rat brainstem membranes (Bricca
et al., 1989). Imidazoline sites have also been labelled with [3H]-p-
aminoclonidine (Piletz ez al., 1991) and [125]]-p-iodoclonidine (Piletz et
al., 1992) in human platelets. In these studies clonidine and p-
aminoclonidine had high affinity and idazoxan had low affinity. The
site on the human platelet, therefore showed similarities to the site
identified in bovine brainstem (Emsberger er al., 1987; Michel & Insel,
1989). The lack of high affinity [3H]-clonidine and [3H]-p-
aminoclonidine binding in rat tissues may represent a species difference
in the imidazoline binding site.

The finding in the present study that [3H]-p-aminoclonidine had
low affinity for imidazoline binding sites in rat kidney is, however, not
consistent with studies by Ernsberger et al. (1990), who demonstrated
high affinity for this ligand in rat renal cortex membranes. These
studies showed that imidazoline compounds would displace 100% of the
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specific binding, while the catecholamines would only displace ~68%.
Imidazoline affinity was calculated as the relative affinity for 32% of
the specifically bound [3H]-p-aminoclonidine defined with 10 uM
phentolamine. It is considered that 10 uM phentolamine would not be a
sufficiently high enough concentration to displace all imidazoline-like
binding with either [3H]-p-aminoclonidine or [3H]-idazoxan, as in the
present study, phentolamine had an affinity of 7.9 and 33 puM for these
two ligands respectively. There are several differences between this
study and that of Emsberger ez al. (1990) in that the present study used
whole kidney homogenate, whereas renal cortex was used by
Ernsberger et al. (1990). This, however, is unlikely to explain the
differences seen, as one would still expect to label the high affinity
cortical binding in a whole kidney preparation. The assay conditions
were similar in both studies except that the incubation conditions in the
present work were set to specifically label imidazoline sites, i.e.
performed in the presence of RS-15385-197 to block o-adrenoceptors.
Under the conditions employed by Ernsberger et al. (1990); long
incubation time at 250C and non-specific binding defined with 10 uM
phentolamine, one would expect [3H]-p-aminoclonidine to label a
significant population of o-adrenoceptors and would then perhaps not
label the whole population of imidazoline sites. True imidazoline
affinity is likely to be masked when the radioligand used is also labelling
az-adrenoceptors.

The imidazoline compound naphazoline showed high affinity for
the [3H]-idazoxan binding site on rat kidney, but exhibited a
displacement curve which had a Hill slope of less than unity.
Naphazoline has been shown to exhibit a shallow displacement curve for
[3H]-idazoxan binding to imidazoline sites in rat brain (Brown et al.,
1990), rat liver (Zonnenschein et al., 1990), rabbit kidney (Stewart et
al., 1992) and hamster adipocyte (Mackinnon et al., 1989). In the
present study the displacement curve for naphazoline could be better
resolved into a two site model with affinities for the high and low
affinity components (pICsg) of 8.65 and 6.88 respectively. This could
suggest that naphazoline 1s defining two non-interacting subtypes of
imidazoline binding site for [3H]-idazoxan, or that naphazoline is
defining two affinity states of the same receptor. There is some
evidence to suggest that imidazoline sites labelled by [3H]-1dazoxan may
be heterogeneous. Michel & Insel (1989) suggested that imidazoline
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sites in rabbit tissues may show differences to those from rat, human
and pig tissues based on the affinity of guanabenz, amiloride,
phentolamine and clonidine, all of which have much higher affinity in
the rabbit. However, the rank order of potency of these compounds was
the same in all species (guanabenz > amiloride > clonidine >
phentolamine) and this has been shown to hold in a number of other
studies in rabbit (Yablonsky & Dausse, 1989) and human (Lachaud-
Pettiti e al., 1991) tissues. The rabbit binding site may then represent a
species homologue of the same imidazoline site.

In some studies heterogeneous binding sites for [3H]-idazoxan
have been demonstrated in the same species. Wikberg et al. (1991)
demonstrated that [3H]-idazoxan labelled two classes of imidazoline site
in guinea pig ileum and cerebral cortex membranes which showed
different affinities for clonidine, and different stereoselectivity for
medetomidine isomers, and named these subtypes IA and IB. Further
studies are required to elucidate whether naphazoline has selectivity for
either of these subtypes.

Previous studies have shown that the stable GTP analogue
Gpp(NH)p had no effect on the inhibition curves of UK 14304,
cirazoline, guanabenz or clonidine at idazoxan binding sites in rat liver
membranes (Zonnenschein et al., 1990), however other studies
suggested that GTP decreased the number of imidazoline sites labelled
by [3H]-idazoxan in the bovine brain (Hussain et al., 1991). In this
study GTP inhibited [3H]-idazoxan binding but not [3H]-p-
aminoclonidine or [3H]-RS-45041-190 binding. From competition
studies with [3H]-idazoxan, 300 uM GTP inhibited binding by 15-20%,
but had no significant effect in saturation experiments. This is possibly
explained by Gpp(NH)p having a selective effect over lower
concentrations of [3H]-idazoxan such as that used in competition
experiments. When studied in saturation experiments a relative lack of
effect at higher concentrations may, in the analysis, mask effects at
lower concentrations, particularly when the inhibition is relatively
small.

Inhibition by guanyl nucleotides is a phenomenon normally
associated with agonist binding, and therefore suggests that idazoxan
may be an agonist at the imidazoline binding site. This, coupled with
the finding that [3H]-idazoxan labelled a fraction of the number of sites
labelled by [3H]-p-aminoclonidine, may suggest that the latter ligand
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labels the whole population of sites, a subset of which has high affinity
for agonists. Studies by Yakabu er al. (1990) showed that chronic
infusions of idazoxan produced a down-regulation in the number of sites
labelled by [3H]-idazoxan but not those labelled by [3H]-yohimbine in
the rabbit kidney. Down-regulation is consistent with chronic agonist
treatment, further evidence that idazoxan may be an agonist or a partial
agonist at the imidazoline site and that this site represents a functional
receptor. Unlabelled idazoxan had low affinity for [3H]-p-
aminoclonidine binding and exhibited a shallow displacement curve. In
the presence of GTP however, the inhibition curve to idazoxan was
unaffected. Idazoxan also exhibitied a shallow displacement curve to
[3H]-RS-45041-190 but again this was unaltered in the presence of
Gpp(NH)p. These studies suggest that either idazoxan is not an agonist
or that the imidazoline receptor is not linked to a G-protein. Further
studies are required to elucidate the effect of GTP on imidazoline sites,
and functional studies are neccessary to elucidate the possible agonist
effects of idazoxan.

4.6.2. [3H]-RS-45041-190; a selective imidazoline ligand

[n the mid-eighties, following extensive structure-activity studies
with analogues of idazoxan, it was suggested that three major binding
sites exist for this type of compound at the oz-adrenoceptor (Stillings et
al., 1985). These were a planar hydrophobic area that interacts with the
benzene ring, a site which binds one or both of the benzodioxan oxygens
and an imidazoline binding region. Subsequently, myself and colleagues
showed, with a series of substituted 2-(tetrahydroisoquinolin-2-yl
methyl) and 2-(isoindolin-2-yl methyl) imidazolines, that ;-
adrenoceptor antagonist potency could be maintained with the proviso
that an additional methylene spacer was introduced between the planar
and imidazoline rings and that the nitrogen of the isoquinoline or
isoindoline group bound to the benzodioxan site (Clark er al., 1990).
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structure of wdazoxan and a 2-(etrahydroisoquinolin-2-vimethyl) indazoline
compound (5j from Clark ¢t al. 1990) showing the proposed points of

mteraction with the o -adrenoceptor
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Zonnenschein et al. (1990) looked at a series of substituted
imidazoline and guanido structures and suggested that shortening the
link between the aromatic group and the imidazoline/guanido group,
although decreasing oj-adrenoceptor affinity, increased affinity for
imidazoline sites labelled by [3H]-1dazoxan in rat liver (e.g. guanabenz
and RBII 170(d)). In this case the guanido group presumably occupied
the imidazoline binding region of the a-adrenoceptor. In addition,
substitution of halogen groups on the aromatic moeity facilitated
binding to the imidazoline binding site whilst ap-adrenoceptor affinity

was unaffected.

F
¥ NH NH
p CH=N-NHZ —CH,-NHA
\ NH, NH,
cl F
guanabenz RB 11 170 (d)

K, imidazoline = 28 5 nM

K, imidazoline = 33 .8 nM
K, ap = 3000 nM

K, 0 =50 - 100 nM

Thus, it appears that shortening the link between the planar and
imidazoline ring and halogen substitution on the former ring would
facilitate imidazoline site vs az-adrenoceptor selectivity. RS-45041-190
(Figure 1.2.) 1s a 5-chloroisoindoline imidazoline compound with a
single link bond between the indoline and imidazoline groups and
showed high affinity for the imidazoline binding site labelled by [3H]-
idazoxan on rat kidney (pK; = 8.66), rabbit kidney (pK; = 9.37) and
hamster adipocyte (pKi = 8.50) but very low affinity for the o;-
adrenoceptor on rat cortex (pK; = 5.70). It therefore appears that there
are very different structural requirements for an interaction at
imidazoline sites and op-adrenoceptors.

This study showed that [3H]-1dazoxan and [3H]-p-aminoclonidine
label different subsets of imidazoline binding sites in the rat kidney, and
the results emphasised that the lack of selectivity of these ligands
necessitates the inclusion of an ¢-antagonist to isolate the imidazoline
site. [3H]-RS-45041-190 was shown to be a selective imidazoline ligand
which displayed high affinity for an imidazoline site on rat kidney
membranes. Competition studies showed noradrenaline and RS-15385-
197 to have negligible affinity suggesting that this ligand does not label
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ap-adrenoceptors. Kinetic analysis showed that [3H]-RS-45041-190
labelled two sites in rat kidney (Kg = 0.57 and 0.89 nM), however, in
saturation studies and in competition experiments with unlabelled RS-
45041-190 the data was better fitted to a one-site model. This could be
explained by the lack of resolution in the latter two analyses given that
the affimties calculated from kinetic experiments differed by less than
two fold. Inhibition curves to idazoxan and cirazoline confirmed that
[3H]-RS-45041-190 labelled two sites as they showed >100 fold
selectivity for 60-70% of the binding.

The characterisation of [3H]-RS-45041-190 binding showed that
60-70% of the sites labelled were similar to the sites labelled by [3H]-
idazoxan. Figure 4.17. shows a very good correlation (r = 0.968, nH =
1.067) between [3H]-RS-45041-190 and [3H]-idazoxan binding in the rat
kidney, whereas a poorer correlation was observed against [3H]-p-
aminoclonidine (r = 0.205, nH = 0.586).

[3H]-RS-45041-190 binding was inhibited by monovalent and
divalent cations with a rank order of potency K+ > Na+ = Ca2+ = Mg2+.
Studies with [3H]-1dazoxan in basolateral membranes from rabbit renal
proximal tubules (Coupry et al., 1989) and rat liver (Zonnenschein et
al., 1990) showed a similar sensitivity to ions. The interaction of K+
was allosteric in as much as both the affinity and the dissociation rate of
[3H]-1dazoxan were increased in the presence of 75 mM K+ (Coupry et
al., 1989). This, coupled with the finding that the K+ channel blocker 4-
aminopyridine inhibited [3H]-idazoxan binding at an effective K+
channel blocking concentration, led the authors to conclude that
imidazoline sites may be linked to K+ gating (Zonnenschein et al.,
1990). However, more recent studies in rat liver membranes showed
that a series of K+ channel openers were devoid of affinity at
imidazoline sites with the exception of pinacidil (Ibbotson & Watson,
1992). Furthermore, several potent imidazoline ligands were inactive
in displacing [3H]-glibenclamide from rat brain homogenates. In the
present study [3H]-RS-45041-190 showed a similar ion sensitivity to [3H]-
idazoxan, but glibenclamide, phentolamine and clonidine, agents which
increase insulin secretion and inhibit ATP-dependent K+ channels (Plant
& Henquin, 1990; Cook & Quast, 1990; Plant ez al., 1991), had low
affinity for [3H|-RS-45041-190 binding, confirming the conclusions of
[bbotson & Watson (1992) that the imidazoline site is unlikely to be
associated with an ATP-dependent K+ channel.
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Figure 4.17. Correlation of binding affinities (pK;) of several
compounds for [3H]-idazoxan (top panel) and [3H]-p-
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the line of identity and the solid line represents the line of best fit. For
[3H]-1dazoxan the data is best described by the equation y = 1.067x +
0.655, r=0.968, and for [3H]-p-aminoclonidine y = 0.586x + 2.56, r =
0.205.
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The possibility that [3H]-RS-45041-190 was labelling both states
of a G protein-linked receptor exhibiting high and low affinity states for
agonists was addressed in experiments with the stable GTP analogue
Gpp(NH)p. Idazoxan exhibited a biphasic inhibition curve against [3H]-
RS-45041-190 and for that reason and those outlined in Section 4.6.1.,
represented a likely candidate for an agonist at the imidazoline site.
However 100 uM Gpp(NH)p had no effect on the affinity or the
percentage of sites defined with idazoxan suggesting that either idazoxan
i1s not an agonist or that [3H]-RS-45041-190 binding sites are not
associated with a G-protein.

4.6.3. Distribution of imidazoline binding sites in rat brain

The distribution of imidazoline sites was studied in rat brain
sections with [3H]-1dazoxan and [3H]-RS-45041-190 and showed several
similarities. Both ligands labelled discrete regions of the hypothalamus,
namely the interpeduncular nucleus, lateral mammilary nucleus, and
arcuate nucleus and were also similar to other studies with [3H]-
idazoxan (Mallard eral., 1992). The arcuate nucleus is associated with
pituitary function and a large number of hormones and peptides are
found in this and other imidazoline rich areas. A recent study from this
laboratory (MacKinnon er al., 1992b) investigated the affinity of many
of these compounds for the [3H]-idazoxan labelled imidazoline binding
site on rabbit renal cortex. Unfortunately none were potential
candidates for the endogenous ligand; ACTH and LH showed moderate
affinity (pK; = 5.86 and 5.80, respectively). All other compounds
showed pK; < 5; LHRH, GHRH, angiotensin I & II, progesterone,
testosterone, beta estradiol, endothelin ET-1, ADH, FMRF-NH>,
prolactin, dynorphin, neuropeptide Y, somatastatin, acetylcholine,
GABA, substance P, TRH. met-enkephalin, met-enkephalinamide,
ouabain, oxytocin, VIP, alpha-MSH, gamma-MSH, neurotensin, galanin,
gastrin, renin and beta endorphin. Thus, none of these ligands are
likely to have endogenous activity at this site.

High density binding was also observed in the circumventricular
organs the area-postrema and the subfornical organ. These organs lack
an intact blood-brain barrier and are thought to be the sites associated
with angiotensin II mediated changes in blood volume and salt and water
intake (Phillips, 1987: Allen er al., 1988). The distribution of
angiotensin Il receptors in rat brain displays some close parallels with
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imidazoline site distribution in as much as high density binding is
observed over the circumventricular areas and the ventricular areas,
(Mendelsohn et al., 1984). However, as stated above, neither
angiotensin I or Il have appreciable affinity for imidazoline sites
labelled with [3H]-1dazoxan, and it 1s therefore unlikely that imidazoline
sites are associated with angiotensin II receptors in these areas.

In studies carried out recently by Mallard er al. (1992), it was
demonstrated that high density binding was also observed over the
pineal gland in rat brain. The rat pineal gland is small, and is located at
the dorsal surface of the brain protected by a bony case. Unless
particular attention is paid to its removal the gland will remain in the
skull during removal of the brain. This would most likely explain why
imidazoline binding to the pineal gland was not demonstrated in the
present study with either [3H]-idazoxan or [3H]-RS-45041-190.

A recent study by Ruggiero et al. (1992) has demonstrated that
imidazoline binding sites labelled by [3H]-1dazoxan are highly localised
in mitochondrial membranes prepared from glial cells, particularly
astrocytes in the CNS. Using antibodies raised to the solubilised binding
site from rabbit kidney, imidazoline sites were localised using
immunocytohistochemistry in rat brain sections. These studies showed
that the distribution closely parallelled the distribution of imidazoline
sites labelled by [3H]-1dazoxan and [3H]-RS-45041-190 in the present
autoradiography studies, and also showed several similarities to the
distribution of the peripheral-type benzodiazepine sites (»3) labelled by
[3H]-PK-11195 in rat brain (Benavides et al., 1983). This suggests that
central localisation of imidazoline binding sites may be primarily to non-
neuronal structures. However, it 1s unlikely that the benzodiazepine site
and the imidazoline site are one and the same as Tesson et al. (1991)
showed that PK 11195 had low affinity for [3H]-idazoxan labelled
imidazoline sites in rabbit and human liver mitochondrial membranes.

In addition to labelling those regions also labelled by [3H]-
idazoxan, [3H]-RS-45041-190 labelled other discrete nuclei in rat brain.
Binding was observed over the locus coeruleus and nucleus tractus
solitaris, the dorsal raphe and the dorsomedial hypothalamic nucleus.
The exact nature of the binding site in these areas, and its functions,
remain to be elucidated.

The lateral medullary region has been proposed to be the major
site for the hypotensive action of imidazolines, particularly the nucleus
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reticularis lateralis (NRL) in the cat (Bousquet et al., 1984,1987), and
the C1 area of the rostral ventrolateral medulla in the rat (Meeley et al.,
1986; Granata & Reis, 1987; Ernsberger et al., 1988).
Autoradiography studies with [3H]-p-aminoclonidine (Unnerstal ez al.,
1984) have localised binding in the rat medullary area to the nucleus
tractus solitaris (NTS) and the raphe pallidus with lower diffuse areas of
binding extending from the lateral NTS toward the ventrolateral
medulla (lateral reticular area), and on more rostral sections extended
to the ventrolateral surface of the medulla (C1 area). In these respects
the distribution of [3H]-p-aminoclonidine binding paralleled very closely
the distribution of ap-adrenoceptors identified with [3H]-RS-15385-197,
and probably represented binding to op-adrenoceptors (see plate 3.1.).

Another study identified [3H]-p-aminoclonidine binding in the
rostral ventrolateral medulla and the NTS which was sensitive to
imidazole-4-acetic acid, suggesting that imidazoline sites were present in
these areas (Arango et al., 1986). In studies where imidazolines have
been shown to exert a hypotensive action when injected into the medulla
of the rat (Meeley et al., 1986; Ernsberger et al., 1988) the injection site
corresponded to the lateral reticular area, where diffuse [3H]-p-
aminoclonidine binding was described by Unnerstall er al., (1984) and
[3H]-RS-15385-197 (for illustration see plate 3.1.). Injections into
areas 1 mm medial, dorsal or dorsolateral to this area (Meeley et al.,
1986), or into the inferior olive or the nucleus raphe magnus
(Ernsberger et al., 1988), however, produced no fall in blood pressure.
Therefore, the area sensitive to imidazolines was very restricted.

In this thesis it was demonstrated that 1midazoline “specific”
binding (as defined by [3H]-idazoxan in the presence of op-blockade and
by [3H]-RS-45041-190) was confined to highly specific areas in the
medulla. Low levels of [3H]-idazoxan and only moderate levels [3H]-RS-
45041-190 binding were observed over the lateral reticular area of the
medulla (plate 4.1. and 4.4., and Table 4.5.). [3H]-RS-15385-197
binding to o-adrenoceptors was also present in this region (plate 3.1.
and Table 3.3.).

Given that autoradiography studies with different radioligands
cannot be directly quantitatively compared, due to the different affinity
of the ligands, and the concentrations used. Given also, that it is
uncertain what density of receptors would be necessary to produce a
functional effect. It remains unclear, whether an action at a binding site
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with the characteristics of that described for [3H]-idazoxan and [3H]-RS-
45041-190 or an action at op-adrenoceptors or central [3H]-p-
aminoclonidine binding sites, would be essential to elicit to an

hypotensive response.
In rat kidney membranes [3H]-RS-45041-190 labelled a secondary

component which had low affinity for idazoxan and cirazoline and
represented 30-40% of the specifically bound [3H]-RS-45041-190 at 1 -
2 nM. It is unlikely that these sites were similar to those labelled by
[3H]-p-aminoclonidine for two reasons. The total number of sites
labelled by [3H]-RS-45041-190 amounted to less than 20% of that
labelled by [3H]-p-aminoclonidine, and unlabelled p-aminoclonidine had
very low affinity for [3H]-RS-45041-190 binding. It is also not due to
binding to az-adrenoceptors as RS-15385-197 and noradrenaline had
very low affinity for [3H]-RS-45041-190 binding. Furtheremore, RS-
45041-190 had very low affinity for [3H]-RS-15385-197 binding in rat
cerebral cortex membranes. Other studies from this laboratory have
also shown that RS-45041-190 has very low affinity (pKi < 5.0) for o,
B1, B2, 5-HTya, 5-HT7, Dy, D2, H receptors and dihydropyridine
binding sites (Table 1.5.), ruling out an action at these classes of
receptors. The additional component 1s also unlikely to represent an
imidazoline site similar to that described in human and bovine
medullary membranes (Ernsberger et al., 1986; Bousquet et al., 1984;
Bricca et al., 1989b) as p-aminoclonidine and cirazoline had relatively
low affinity. The nature of this component is therefore uncertain.
Autoradiography studies revealed that [3H]-RS-45041-190 labelled
several areas that were not recognised by [3H]-idazoxan, including the
inferior olive, NTS and locus coeruleus. It is feasable therefore that
these areas contain the additional as yet undefined site identified by [3H]-
RS-45041-190 in rat kidney membranes.

4.6.4. Cellular localisation

Several lines of evidence suggest that [3H]-idazoxan labelled
imidazoline binding sites are enriched in the mitochondria prepared
from human and rabbit liver(Tesson er al.. 1991) and rabbit cerebral
cortex (Tesson & Parini, 1991). In the rabbit hiver, the sites are
particularly localised to the outer mitochondrial membrane (Tesson et
al., 1991). An enrichment in the mitochondria has also been suggested
in chromaffin cells (Reis er al., 1992) and glial cells (Ruggiero er
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al.,1992). The identification of these sites on the mitochondrial
membrane could help in the definition of a function. Other studies,
however, have suggested that on human placental trophoblasts, [3H]-
idazoxan labelled imidazoline sites are present mainly on the cell surface
(Diamant er al., 1992). In the present study a relatively crude
preparation of rat kidney membranes was studied which would be
expected to contain both plasma membrane and mitochondrial
membrane fractions. The subcellular localisation and the consequent
function of the imidazoline binding sites in these membrane
compartments requires further study.

4.7. CONCLUSIONS

In this chapter, imidazoline binding sites were studied 1n the same
preparation of rat kidney membranes with three different radioligands.
Three binding sites with different pharmacology were identified: 1) a
moderate affinity [3H]-p-aminoclonidine binding site, which had low
affinity for idazoxan and moderate affinity for clonidine and guanabenz;
2) a site showing high affinity for idazoxan, guanabenz and cirazoline
and labelled by [3H]-1dazoxan and [3H]-RS-45041-190; 3) a site labelled
by [3H]-RS-45041-190 which had low affinity for p-aminoclonidine,
idazoxan and cirazoline. In autoradiography studies, [3H]-idazoxan
binding was restricted to the circumventricular organs and some areas
of the hypothalamus. These areas were also labelled by [3H]-RS-45041-
190, and probably represent areas containing high densities of the
second type of imidazoline site. Additional sites were recognised by
[3H]-RS-45041-190 in the locus coerulues, the NTS and the inferior
olive, and may represent areas containing imidazoline sites of the third
type described above.

Further characterisation of these binding sites, and the
identification of the second messenger systems involved in the
transduction of a functional response, is necessary to elucidate whether
these sites may be classed as functional receptors. Aspects of
imidazoline “receptor” function will be addressed in more detail in the
following chapter.
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CHAPTER FIVE

FUNCTIONAL CONSEQUENCES OF IMIDAZOLINE AND
0a2-ADRENOCEPTOR SUBTYPE ACTIVATION
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5.1. INTRODUCTION

In Chapters three and four of this thesis, evidence was presented
for the existence of different subtypes of oj-adrenoceptor and
imidazoline binding site. In Chapter one, the current knowledge
regarding the function of these subtypes was discussed, and was
highlighted by the lack of functional backup supporting the existence of
different subtypes. In this chapter, the function of these sites will be
addressed.

Several studies have demonstrated that o-adrenoceptors are
negatively linked to adenylate cyclase in a number of preparations (see
Chapter one for references). To determine whether this applies to both
the opa- and opp-adrenoceptor subtypes, the ability of ap-adrenoceptor
agonists to inhibit cCAMP accumulation in human platelet (ct2a) and
neonatal rat lung (o) will be examined.

The function of the imidazoline sites will be addressed in two
systems:

Firstly, previous data from this laboratory has demonstrated the
presence of imidazoline binding sites on hamster adipocyte membranes
(MacKinnon et al., 1989), although a physiological function for these
sites was not demonstrated. The imidazoline binding site was not a
minor component of the [3H]-idazoxan binding; its density was
approximately four times that of the op-adrenoceptor. In view of the
finding that the imidazoline agonist UK 14304 inhibits lipolysis by 80%
in rat adipocytes (Rebourcet er al., 1988), and has high affinity for
imidazoline binding sites on hamster adipocytes (pK; = 7.52,
MacKinnon ez al., 1989), it is important to establish if UK 14304 is
acting via the o-adrenoceptor or the imidazoline binding site.
Therefore, the functional consequences of imidazoline site activation
will be examined in this system by assessing the ability of selective
imidazoline (RS-45041-190 and cirazoline), selective o (RS-15385-
197, yohimbine and phentolamine) and non-selective (idazoxan) agents
to influence the UK 14304-induced inhibition of glycerol release in
hamster adipocytes.

Secondly, Ramagopal & Leighton (1989) demonstrated that
idazoxan could abolish the field stimulation-induced, frequency-
dependent relaxations in the rat anococcygeus muscle, when the tone of
the muscle was raised with imidazoline agonists such as clonidine, UK
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14304 and oxymetazoline but not when the tone was raised with
noradrenaline or phenylephrine. The effect of idazoxan was unlikely to
be due to blockade of ap-adrenoceptors as phentolamine was ineffective
in this regard. Instead, it was suggested that idazoxan may be acting via
an imidazoline preferring receptor or a novel ag-adrenoceptor subtype.
To determine whether imidazoline sites are responsible for this effect,
the effect of idazoxan and the selective imidazoline agent RS-45041-190
will be compared in this system.

5.2. MEASUREMENT OF c¢cAMP ACCUMULATION IN
HUMAN PLATELETS (02a) AND NEONATAL RAT LUNG

(o2B)

5.2.1. cAMP accumulation in whole platelets

A whole cell platelet preparation was used initially as a system for
measuring opa-adrenoceptor-induced inhibition of adenylate cyclase, as
this has been shown by several studies to produce a greater maximal
response to op-adrenoceptor agonists (Bylund & U’Prichard, 1983).
Due to the very low levels of cAMP in resting platelets (11.4 £ 2.69
pmoles cAMP/min/mg protein, n=4), an inhibitory action was measured
when the levels of cAMP were raised by a stimulatory agonist. In this
study the prostacyclin mimetic, cicaprost, was used to stimulate cAMP.
Cicaprost (8 nM) raised cAMP levels in whole platelets by 4 fold to
48.64 *+ 6.85 pmoles cAMP/min/mg protein (n=4).

In Figure 5.1. the effects of the ap-adrenoceptor agonists UK
14304, clonidine and oxymetazoline on the inhibition of cicaprost-
stimulated cAMP accumulation in whole platelets is presented.
Oxymetazoline was the most potent (ICsg = 2.54 + 1.06 nM, n=3) but
only produced a maximum response (I max) of 47%. UK 14304
produced a greater maximum response than oxymetazoline (ICsg = 6.35
+ 1.88 nM, I max = 81%, n=4) or clonidine (ICsg = 10.45 + 4.45 nM, 1
max = 70%, n=3). The ability of the a-adrenoceptor agonists to
produce an inhibition of cAMP accumulation, confirms several studies
demonstrating a functional ap-adrenoceptor linked to the inhibition of
adenylate cyclase activity in the human platelet (Jakobs er al., 1978;
Jakobs, 1979; Clare et al., 1984).
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Figure 5.1. Inhibition of ¢cAMP accumulation in human
platelets. Agonists were preincubated with whole human platelets for 1
min and incubated in the presence of 8 nM cicaprost for 2 min as
described in Chapter two. The results represent the mean + s.e.mean of 3
experiments (UK 14304, n=4) performed in duplicate. See text for mean
values.
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5.2.2. cAMP accumulation in platelet membranes

Because an assessment of the o-adrenoceptor mediated inhibition
of cAMP accumulation in the neonatal rat lung would necessitate the use
of a membrane preparation, the platelet studies were repeated in a cell-
free, membrane preparation, to make the studies more directly
comparable. In both cases, membrane preparations identical to those
used in the binding studies were used (see Section 2.2.2., 2.2.3. and
2.7.2.). A buffer containing MgCl,, creatine phosphate, creatine
phosphokinase, IBMX, GTP, and ATP was used to ensure adequate
levels of the ATP substrate (Golf et al., 1984).

Figure 5.2. shows the effect of incubation time on the
accumulation of cAMP in human platelet membranes. Basal, forskolin-
and cicaprost-stimulated cAMP levels were linear over the time period
0 - 30 min. In all further experiments an incubation time of 15 min was
chosen. Figure 5.3. shows the effect of cicaprost (0.08 - 80 nM) on
cAMP production in human platelet membranes. Cicaprost gave a dose
dependent increase in cAMP accumulation with an ECsg = 3.7 nM. For
studies with inhibitory agonists, a concentration of cicaprost which gave
75% of the maximum response i.e. 8 nM, and gave 10 - 13 fold
stimulation of cAMP over basal levels (basal, 16.1 + 3.8 pmoles/min/mg
protein; cicaprost 216.5 + 33.4 pmoles/min/mg protein, n=6) was used
to stimulate cAMP.

In Figure 5.4. the effect of UK 14304, clonidine and
oxymetazoline on cicaprost-stimulated cAMP accumulation in human
platelet membranes is presented. UK 14304 inhibited cAMP
accumulation with a maximum inhibition of 40% (ICsg = 7.05 £ 1.21
nM, n=3). Clonidine and oxymetazoline were less efficacious, giving
maximal inhibition of only 26 and 23% respectively (clonidine ICsq =
13.9 + 5.3 nM, n=3; oxymetazoline ICsg9 = 19.8 + 8.86 nM, n=3).
Therefore, the maximal effectiveness of these agonists was reduced in
the membrane preparation as compared to the whole platelet
preparation. This suggests that an efficiently coupled system is
necessary to observe a maximum o-adrenoceptor-induced inhibition of
adenylate cyclase.

5.2.3. c¢AMP accumulation in neonatal rat lung membranes
A time course of cAMP production in neonatal rat lung
membranes is presented in Figures 5.5. and 5.6.. Figure 5.5. shows that
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Figure 5.2. Time course of cAMP accumulation in human
platelet membranes. Experiments were performed in the absence
(control) or presence of 1 uM forskolin or 8 nM cicaprost at 370C. The
results represent the mean of two experiments on different platelet
preparations performed in duplicate.
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Figure 5.3. Effect of cicaprost on cAMP accumulation in
human platelet membranes. Platelet membranes were incubated with
increasing concentrations of cicaprost for 1 min at 370C as described in
Chapter two. The results represent the mean of two experiments on
different platelet preparations performed in duplicate. Cicaprost ECsp =
3.7 nM.

169



120 -

T
100 - n
2
-;-:a 80 -
o
o
@ K14
8 60 - ——U 304 1
—
% —&— clonidine
(]
3]
S 40 —— oxymetazoline
20
0 . ; . : ;
10"° 10° 0t 107 {4 107°

agonist concentration (M)

Figure 5.4. Effect of UK 14304, clonidine and oxymetazoline
on cicaprost-stimulated cAMP accumulation in human platelet
membranes. Platelet membranes were incubated with increasing
concentrations of agonist in the presence of 8 nM cicaprost as described in
Chapter two. The results represent the mean + s.e.mean of 3 experiments
performed in duplicate. See text for mean values.
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Figure 5.5. Time course of cAMP accumulation in neonatal
rat lung membranes at 370C. Aliquots of membrane preparation
were incubated with 1 pM isoprenaline or 1 uM isoprenaline in the
presence of 1 uM UK 14304 and compared to the rate of cAMP
accumulation in the absence of drugs (basal). The results represent the
mean of two experiments performed on separate preparations in
duplicate.
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Figure 5.6. Effect of 1 uM forskolin on the rate of cAMP
accumulation in neonatal rat lung membranes at 370C. Aliquots
of membrane preparation were incubated in the absence (basal) or
presence of 1 uM forskolin as described in Chapter two. The results
represent the mean of two experiments performed on separate
preparations in duplicate.



the basal rate of cAMP production was linear over the first 30 min and
was 30 fold higher that that observed in human platelet membranes
(489.9 + 87.6 pmoles cAMP/min/mg protein, n=6). The rate of cAMP
production was not significantly altered by the B-adrenoceptor agonists
isoprenaline (1 uM) in the presence or absence of UK 14304 (1 uM).
Similarly, as shown in Figure 5.6., 1 uM forskolin had no effect on the
basal rate of cAMP production.

5.2.4. Adenylate cyclase activity in neonatal rat lung
membranes

Due to the inability of forskolin and isoprenaline to stimulate
cAMP levels significantly in neonatal rat lung membranes, the activity
of the adenylate cyclase enzyme in this preparation was determined
directly by Dr. Graeme Milligan, University of Glasgow, using the
method of (Salomon er al., 1974). This method measures the
conversion of [32P]-ATP substrate to [32P]-cAMP. A two column
system is then employed to separate the labelled [3H]-cAMP. Table 5.1
shows the basal activity of the enzyme and the effect of 10 pM
forskolin, 10 uM isoprenaline and 10 uM UK 14304 in the presence of
forskolin.  Although 10 uM forskolin produced just over a 3 fold
increase in adenylate cyclase activity, this stimulation was a lot less than
that observed in other systems (13 fold stimulation in rat adipocytes,
(Garcia-Sainz & Martinez, 1989); 10 fold stimulation in NG 108-15
cells, (Bylund & Ray-Prenger, (1989)). Similarly, isoprenaline
increased activity by less than 2 fold. UK 14304 at a concentration of
10 uM, a maximally effective concentration in the human platelet
(Section 5.2.1.), failed to attenuate forskolin- or isoprenaline-induced
adenylate cyclase activity in the neonatal rat lung preparation.
Therefore, the azg-adrenoceptor in neonatal rat lung membranes does
not couple efficiently to adenylate cyclase to facilitate an inhibition of
this enzyme.

5.3. LIPOLYSIS IN HAMSTER ADIPOCYTES

Lipolysis stimulated by theophylline and adenosine deaminase was
linear up to 30 min at 370C in adipocytes isolated from hamster fat pads
(Figure 5.7.). All subsequent experiments were carried out at an
incubation time of 20 min. The stimulated release of glycerol was
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Table 5.1. Adenylate cyclase activity in neonatal rat lung
membranes.

adenylate cyclase activity

additions pmol/min/mg protein
basal 129.9 £8.5
10 uM forskolin 426.3+9.3
10 uM isoprenaline 235.51+8.5

10 uM forskolin
+ 10 uM UK 14304 393.0+10.8

Adenylate cyclase activity was measured in neonatal rat lung membranes
by Dr. Graeme Milligan, University of Glasgow, using the method of
Salomon er al. (1974). The results represent the mean + s.e.mean of four
different preparations performed in triplicate.
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Figure 5.7. Time course of glycerol release from hamster
adipocytes at 370C. Adipocytes were incubated in the absence (basal)
or presence of 100 uM theophylline and 0.15U adenosine deaminase
(stimulated). Glycerol released into the medium was determined as
described in Chapter two. The results represent the mean of two
experiments performed on separate preparations in triplicate.
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inhibited in a concentration dependent manner by o-adrenergic agonists
(Figure 5.8.). UK 14304 and guanabenz appeared to act as full agonists
and reversed the stimulated release of glycerol by 80-85%, whereas
clonidine and naphazoline acted as a partial agonists, inhibiting release
by 40-45%; cirazoline, however, had little effect giving 19% inhibition
at 0.1 mM (not shown). The rank order of potency was naphazoline
(pICsp = 8.00 £ 0.17, I max = 46%) > guanabenz (pICso=7.37 £+ 0.07,
I max = 84%) > UK 14304 (pICsg = 7.34 £ 0.17, I max = 82%) >
clonidine (pICsg = 6.92 *+ 0.05, I max = 43%), n=4. RS-15385-197,
phentolamine, yohimbine, and RS-45041-190 had no direct effect on
basal or stimulated levels of glycerol release at concentrations up to 0.1
mM.

The effects of ap-antagonists and the imidazoline compounds RS-
45041-190 and cirazoline were studied on UK 14304 induced inhibition
of glycerol release (Table 5.2.). The effects of idazoxan and RS-15385-
197 are also shown in Figure 5.9.. Each antagonist was examined at
least three concentrations over the range 10 nM - 10 uM and produced
parallel shifts to the right of the concentration response curve for UK
14304 without producing a reduction in maximum response. The pA;
values and the slope of the Schild plots are summarised in Table 5.2.
along with affinity values for [3H]-idazoxan binding to o;-
adrenoceptors and imidazoline binding sites in hamster adipocyte
membranes (taken from MacKinnon et al., 1989). The slope of the
Schild plot for phentolamine and RS-15385-197 was not significantly
different from unity with pA; = 7.87 and 7.44 respectively. In
contrast, yohimbine, idazoxan and cirazoline gave rise to slopes of less
than unity and pA, = 7.19, 7.36 and 5.95 respectively. RS-45041-190
was ineffective at concentations up to 0.1 mM. RS-45041-190 was also
ineffective in reversing naphazoline induced inhibition of glycerol
release (Figure 5.10.). These data indicate that phentolamine and RS-
15385-197 antagonised competitively the antilipolytic effects of UK
14304, whereas a more complex interaction occured with idazoxan,
yohimbine and cirazoline. Reversal of the antilipolytic effects of UK
14304 occurred with a rank order of potency phentolamine > RS-15385-
197 = idazoxan > yohimbine > cirazoline, consistent with an action at an

o2-adrenoceptor.
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Figure 5.8. Inhibition of theophylline- and adenosine
deaminase-stimulated glycerol release from hamster

adipocytes. Increasing concentrations of agonist were incubated with
100 uM theophylline and 0.15U adenosine deaminase for 20 min at 370C
as described in Chapter two. The results represent the mean + s.e.mean of
at least 3 separate determinations each performed in duplicate. See text
for mean values.
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Table 5.2. Reversal of UK 14304 mediated inhibition of
glycerol release in hamster adipocytes.

[3H]-idazoxan binding glycerol release
n o imidazoline n pA2

RS-15385-197 3  8.38 <4.00 3 7.4410.12
idazoxan 4 8.34 +0.16 3 736032
phentolamine 3 7.92+0.14  5.21+0.02 3 7.87+0.31
yohimbine 3 7.28+002 4.26+0.18 3 7.26+£0.17
cirazoline 3 663+009 9.02+0.13 3 $5.95%031
RS-45041-190 3 491+022 8.13+£0.11 3 <4.00

The data represents the mean * s.e.mean of n experiments performed in
duplicate. Imidazoline and op-adrenoceptor affinity were measured in
binding experiments with [3H]-idazoxan in hamster adipocyte membranes
(taken from MacKinnon et al., 1989).
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Figure 5.9. Effect of idazoxan and RS-15385-197 on UK
14304-induced inhibition of glycerol release from hamster
adipocytes. UK 14304 was incubated in the presence of 100 uM
theophylline, 0.15U adenosine deaminase and various concentrations of
idazoxan (a) or RS-15385-197 (b) as described in Chapter two. The
results represent the mean * s.e.mean of 3 experiments performed in

duplicate. See Table 5.2. for meggyalues.
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Figure 5.10. Effect of RS-45041-190 on naphazoline-induced
inhibition of glycerol release from hamster adipocytes.
Naphazoline was incubated in the presence of 100 uM theophylline, 0.15U
adenosine deaminase and various concentrations RS-45041-190 as
described in Chapter two. The results represent the mean * s.e.mean of 3
experiments performed in duplicate.
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5.4. RAT ANOCOCCYGEUS MUSCLE

To study the effect of field stimulation in response to o-
adrenoceptor agonists in the rat anococcygeus muscle, a concentration
of agonist which produced equal amounts of tension in the tissue was
chosen. In Figure 5.11. a concentration effect curve to noradrenaline is
presented. Noradrenaline was added cummulatively; 1.e. the next
concentration was added when a plateau was reached with the
preceeding concentration, without washing between additions. Figure
5.11. shows that noradrenaline produced contractions in the rat
anococcygeus muscle with an ECsg = 140 = 17 nM (n=8) and a maximal
increase in tension of 6.53 * 0.36g. Thus a concentration of agonist
producing approximately 5.0g tension (75% noradrenaline maximum)
in the tissue was chosen for all subsequent experiments.

A representative trace showing the effect of field stimulation on
tissues precontracted to clonidine and phenylephrine is presented in
Figure 5.12. Clonidine (1 pM) produced a contracture in the
anococcygeus muscle of 5.02 + 0.21g. The same concentration of
phenylephrine produced a mean contracture of 5.21 + 0.31g. When the
tissue was contracted with clonidine, field stimulation induced biphasic
frequency-dependent changes in tension; i.e., lower frequencies
produced relaxations, whereas, higher frequencies produced
contractions. Frequencies higher than 8 Hz always produced frequency-
dependent contractions. In contrast, when the tissue was contracted with
phenylephrine, field stimulation produced only frequency-dependent
contractions.

To assess whether antagonist effects could be measured in the
same tissue following an initial control response, the reproducability of
the clonidine response was established. In these experiments the
response to field stimulation was assessed in an initial response curve;
the stimulator was switched off, and the tissue washed every 5 min until
precontraction baseline activity was observed (30 min). The tissue was
then left for 60 min before receiving a second concentration of
clonidine and a second frequency response curve. Figure 5.13. shows
that the second frequency response was shifted to the left of the first,
although the variability of the response this suggested this was not
significantly different. It was therefore decided, that antagonists could
be assessed in the same tissue following the determination of a control
response.

181



g tension
F =9
|

0+ —® e | . :

10°° 107 10°° 103

noradrenaline concentration, M

Figure 5.11. Concentration effect curve of noradrenaline on
the rat annococcygeus muscle. The results represent the mean *
s.e.mean of 8 experiments. See text for mean values.
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Figure 5.12. A typical trace showing the effect of field
stimulation after administration of 1 pM phenylephrine (a) or
1 uM clonidine (b) in the rat annococcygeus muscle. Field
stimulation was initiated at a frequency of 0.25Hz and was doubled after
attainment of a plateau (idicated by the dots). In (a), field stimulation
after phenylephrine produced contractions at all frequencies, whereas
after clonidine (b) low frequencies produced relaxations followed by
contractions at higher frequencies.
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Figure 5.13. Reproducability of frequency response curves
induced on clonidine contractions. Frequency response curves
were initiated after the administration of clonidine (1 uM). After
construction of the first response curve the tissues were washed and
allowed to relax back to precontraction baseline. A second response
curve was constructed after 60 min. The results represent the mean *
s.e.mean of n experiments. See text for details.
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The effect of idazoxan (1 uM) and RS-45041-190 (1 uM) is
shown in Figure 5.14.. In the presence of these antagonists, the
contraction produced by 1 uM clonidine was 5.71 *+ 0.25 and 4.79 +
0.77g respectively. Neither compound blocked the frequency-dependent
relaxations. Indeed, it appeared as though idazoxan in fact potentiated
the inhibitory response to low frequencies. However, when the
variability of the second response is taken into account (Figure 5.13.),
the effect of idazoxan is not significant. Taken together these results
suggest that imidazoline sites of the type recognised by RS-45041-190
are probably not involved in the frequency-dependent relaxations
observed in the rat anococcygeus muscle.

5.5. DISCUSSION

5.5.1. Inhibition of cAMP accumulation

This study attempted to characterise the functional activity of the
oA~ and ogg-adrenoceptor subtypes, by determining the inhibition of
cAMP induced by the selective ap-adrenoceptor agonists UK 14304,
oxymetazoline and clonidine in human platelets and neonatal rat lung.
In whole platelets, UK 14304 exhibited the greatest efficacy and
decreased cAMP stimulated by cicaprost with a ICsg of 6.4 nM. The
rank order of potency for inhibition of cAMP accumulation was
oxymetazoline > UK 14304 > clonidine, and was therefore in good
agreement with the affinity of these compounds for o-adrenoceptors in
binding experiments. A similar potency was observed with UK 14304
in a platelet membrane preparation ICsg = 7.1 nM but the maximal
inhibition observed was much lower than that observed in the whole cell
(40% compared to 81%). The efficacy of oxymetazoline and clonidine
was also reduced in the platelet preparation. These studies therefore
agree with that of Lenox et al. (1980) which indicated that clonidine
only exhibits efficacy in a more efficiently coupled system.

In this study, measurement of cAMP accumulation was conducted
in the absence of Na+ ions, as Chapter three demonstrated that agonist
potency was greatly reduced in binding experiments in the presence of
this cation. However, several studies have suggested that Na+ ions are
essential for the inhibition of adenylate cyclase in a number of cell free
systems (for a review see Jakobs, 1979). Studies in whole platelets have
shown that the intracellular concentration of Na+ in platelets suspended
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Figure 5.14. Effect of idazoxan (a) and RS-45041-190 (b) on
field stimulation induced on clonidine contractions. Idazoxan (1
uM) or RS-45041-190 (1 uM) were added after the construction of a
control frequency response, and incubated with the tissue for 60 min
before the construction of a second response. The results represent the
mean * s.e.mean of 4 separate experiments in the presence of antagonist.
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in a Na+ free medium, as used in the present study, is around 14 mM
(Motulsky & Insel, 1983) and that this is sufficient to regulate adenylate
cyclase activity (Limbird er al., 1984). Therefore, it is possible that the
absence of Na+ in the platelet membrane studies, could account for the
reduced efficacy of the agonists compared to the whole cell, and may
also explain the complete lack of efficacy in the neonatal lung.
Adenylate cyclase activity in the neonatal rat lung was therefore
measured directly in the presence of 100 mM Na+ using the method of
Salomon ez al. (1974).  However, using this protocol, no inhibition of
10 uM forskolin-stimulated adenylate cyclase activity was observed with
10 uM UK 14304. It appears, therefore, that the op-adrenoceptor in
the neonatal rat lung does not couple efficiently to adenylate cyclase.

As outlined in Chapter one, there are very few examples of a
functional system showing the characteristics of an opp-adrenoceptor
subtype. One study in intact NG 108-15 and HT29 cells; cell lines
proposed by Bylund et al. (1988) to contain an homogeneous population
of ozBp- and opa-adrenoceptors respectively, showed that UK 14304-
induced inhibition of VIP-stimulated (HT29) and forskolin-stimulated
(NG 108-15) adenylate cyclase was reversed by antagonists with Ky
values similar to the K; values in binding experiments with [3H]-
yohimbine (Bylund & Ray-Prenger, 1989). The authors concluded that
the functional studies supported the existence of aza- and a2B-
adrenoceptor subtypes. What was not addressed in these studies, was
that the potency of UK 14304 was approximately 100 fold higher in the
HT29 cell, and whether this correlated with the pK; of UK 14304 in
binding experiments.

The characterisation of the NG 108-15 cell op-adrenoceptor as
a2 has recently been questioned, as a probe constructed from the o;-
adrenoceptor gene on human chromosome 4 (o-C4), which shows the
pharmacology of the opc-adrenoceptor subtype, hybridised with mRNA
present in NG 108-15 cells but not neonatal rat lung (Lorenz et al.,
1990). This suggests that the oz-adrenoceptor mediating an inhibition
of adenylate cyclase in NG 108-15 cells (Bylund & Ray-Prenger,1989)
could be the apc-adrenoceptor. It therefore remains to be confirmed
whether og-adrenoceptors couple functionally to adenylate cyclase.
Results from this study suggest that they do not. Early studies by
Latifpour & Bylund (1982) suggested that the density of o;-
adrenoceptors in the neonatal rat lung decreases rapidly with age;
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decreasing by 60% in the first week, and to undetectable levels from 5
weeks. The physiological role of the cpp-adrenoceptor on neonatal rat
lung therefore, remains to be determined. Future studies are required
to elucidate whether or not an alternative second messenger system 1is
utilised by this op-adrenoceptor subtype.

5.5.2. Lipolysis in hamster adipocytes

This present study extends previous observations from this
laboratory that [3H]-idazoxan labels an «j-adrenoceptor and an
imidazoline binding site in hamster adipocytes (MacKinnon et al.,
1989). Thus, the hamster adipocyte was considered to be an 1deal model
to explore the functional consequences of imidazoline site activation.
Adipocytes are the storage sites for triglycerides in white and brown fat
tissue. Considerable evidence indicates that catecholamines alter the rate
of free fatty acid and glycerol production through two distinct
receptors: stimulation through beta-adrenoceptors and inhibition
through op-adrenoceptors. This dual effect of catecholamines operates
in hamster (Giudicelli et al., 1977b; Garcia-Sainz et al, 1980), rabbit
(Lafontan, 1981), dog (Berlan er al., 1982) and human (Lafontan &
Berlan, 1980; Burns et al., 1981) adipocytes.

The low level of lipolysis in isolated fat cells makes it necessary
to first stimulate the system if an antilipolytic effect of op-adrenergic
agonists is to be observed. A number of stimulants have been used
including adrenaline and noradrenaline (Pecquery et al., 1984),
isoprenaline (Berlan & Lafontan, 1982), methyl isobutylxanthine (Tan
& Curtis-Prior, 1984), theophylline (Lafontan & Berlan, 1980),
theophylline and adenosine deaminase (Lafontan et al., 1983) and
forskolin (Burns er al., 1982). In this study, lipolysis was stimulated by
theophylline together with adenosine deaminase. The mechanisms
through which theophylline and adenosine deaminase stimulate lipolysis
most likely involve an elevation of cAMP through the inhibition of
cAMP dependent phosphodiesterase (theophylline) and the removal, by
adenosine deaminase, of the inhibitory effects of adenosine released into
the medium. Clonidine has been shown to inhibit stimulated lipolysis
from adipocytes isolated from human and hamster fat tissue with a
profile consistent with an interaction with o-adrenoceptors (Lafontan
& Berlan, 1980; Tan & Curtis-Prior, 1984). In a study in isolated rat
adipocytes, the antilipolytic action of clonidine was compared with UK
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14304, a potent and more selective «ap-adrenoceptor agonist
(Cambridge, 1981). Clonidine at concentrations up to 100 uM had only
a small antilipolytic effect whereas UK 14304 at 1 puM inhibited
lipolysis by approximately 80% (Rebourcet et al, 1988). The findings
of the present study that clonidine only partially reversed lipolysis in
hamster adipocytes, while UK 14304 reversed lipolysis by 80% at the
maximally active concentration, provides additional evidence for the
greater antilipolytic effects of UK 14304 over clonidine.

The oz-adrenoceptor nature of the antilipolytic effects of
clonidine in a number of functional studies are based solely on the rank
order of affinity of idazoxan > yohimbine > prazosin. The
concentrations of the ap-adrenoceptor antagonists required to reverse
the antilipolytic effects of clonidine are generally in the micromolar
range whereas their affinity at the oz-adrenoceptor is in the nanomolar
range. Although UK 14304 is more selective than clonidine for o;-
adrenoceptors, it also displays high affinity for the imidazoline site on
hamster adipocyte membranes (MacKinnon et al., 1989; Saulnier-Blache
et al., 1989). Thus it was important to establish if the antilipolytic
effects of clonidine and UK 14304 were mediated through the o;-
adrenoceptor or the imidazoline binding site.

Competition studies on the displacement of [3H]-idazoxan from
imidazoline binding sites and op-adrenoceptors suggest that idazoxan
can be considered as a non-selective ligand, having high affinity for
both receptors (MacKinnon et al., 1989). Yohimbine, phentolamine and
RS-15385-197 show selectivity towards the oj-adrenoceptor, and
cirazoline and RS-45041-190 are selective for imidazoline sites (see
Chapters three and four of this thesis). The finding from functional
studies, that the antilipolytic effects of UK 14304 were reversed with a
rank order of potency of phentolamine > RS-15385-197 = idazoxan >
phentolamine > yohimbine > RS-45041-190 agrees with the rank order
of affinity for the displacement of [3H]-idazoxan from o>-
adrenoceptors, and suggests that the antilipolytic effects of these agents
are mediated via an op-adrenoceptor and not an imidazoline receptor.

The subtype of oz-adrenoceptor involved in the antilipolytic
effect is not certain. In hamster adipocyte membranes [3H]-idazoxan
labelled a population of az-adrenoceptors with a rank order of affinity
RS-15385-197 = idazoxan > phentolamine > yohimbine = rauwolscine >
prazosin (MacKinnon et al., 1989, 1990). Studies with [3H]-RX 821002,
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a ligand reported to be oo selective from studies in the HT29 cell line
(Langin et al., 1989) showed that it had low affinity for imidazoline
sites and labelled a site in the hamster adipocyte which resembled 04 in
that 1t had low affinity for prazosin and higher affinity for
oxymetazoline, but was unlike the o4 in that it had low affinity for
yohimbine (Saulnier-Blanche er al., 1989). The low affinity for
yohimbine reported in these studies and others (Pecquery er al., 1984) 1s
probably responsible for the inability of [3H]-yohimbine to label the
entire population of o-adrenoceptors in fat cell membranes. It also
casts doubt on the oA classification of the adrenoceptor mediating
antilipolytic effects.

In Chapter three of this thesis the existence of an aup-
adrenoceptor subtype was discussed and has been reported to exist on
rat submaxillary gland (Michel er al., 1989b), bovine pineal gland
(Simonneaux et al., 1991) and from this thesis, in rat cerebral cortex.
This site is characterised as having high affinity for phentolamine, and
low affinity for yohimbine, rauwolscine and prazosin, and in this
respect may better describe the o-adrenoceptor mediating lipolysis in
the adipocyte. However, Michel ez al. (1989b, 1990) described an o;-
adrenoceptor labelled with [3H]-rauwolscine on rabbit spleen which they
termed o4 but which had lower than expected affinity for rauwolscine,
and may thus represent a species variant of the o a-adrenoceptor.

An important finding is that the affinity of RS-15385-197 for the
op-adrenoceptor on hamster adipocytes labelled by [3H]-idazoxan (pKj =
8.34, MacKinnon et al., 1990) and in functional studies of glycerol
release (pAy = 7.44, this study) is more than 30 times lower than that
reported for any other oz-adrenoceptor subtype (MacKinnon et al.,
1991a; 1992b and this thesis) and lends credence to the possibility that
the adipocyte receptor mediating antilipolytic effects in hamster
adipocytes 1s via a species variant of the apa-adrenoceptor and not an
imidazoline site.

5.5.3. Rat anococcygeus muscle
There are several pieces of evidence to suggest that functional
imidazoline receptors exist in smooth muscle. Ruffolo er al. (1977) was
the first to show that structurally dissimilar a-adrenoceptor agonists
(imidazolines and catecholamines) failed to cross-desensitise responses
in the rat vas deferens. This suggested that the two types of agonists act
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at different receptors or different parts of the receptor. However, this
has recently been disputed (Rice et al., 1991), and an alternative
explanation based on agonist intrinsic efficacy has been proposed.
Another study in the rat vas deferens showed that the imidazoline,
naphazoline, but not noradrenaline produced spontaneous phasic activity
in this normally quiescent tissue after washout (Grana et al., 1991). The
contractile activity could be blocked by cromakalim suggesting that
naphazoline could block K+ channels. Presynaptic imidazoline receptors
have also been suggested to modulate noradrenaline release in a number
of vascular preparations (Gothert & Molderings, 1991; Gothert ez al.,
1991).

In the present study the effect of idazoxan and RS-45041-190 was
studied in the rat anococcygeus muscle. This muscle originally
described by Gillespie (1972), responds to agents of several
pharmacological classes, and exhibits a relaxation response to field
stimulation when the tone of the tissue is raised with guanethidine
(Gillespie, 1972,1980). However, Ramagopal & Leighton (1989),
demonstrated that the relaxation response observed was dependent on
the agent used to initially raise the tone in the tissue. Using a series of o-
adrenoceptor agonists, they demonstrated that the relaxation response
was observed when clonidine, UK 14304 and oxymetazoline but not
noradrenaline or phenylephrine were used to raise the tone of the tissue.
Results from the present study showed that relaxation responses were
observed at low frequencies with clonidine but not phenylephrine, and
were thus in good agreement with the studies of Ramagopal & Leighton
(1989). However, in contrast to these studies, the present study did not
demonstrate that the relaxation response was blocked by 1dazoxan,
indeed, it appeared as though idazoxan in fact potentiated the response
to field stimulation. Moreover, RS-45041-190 (1 uM) had no
significant effect on the relaxation response. Thus, results from this
study would suggest that imidazoline “receptors” of the i1dazoxan type,
are not involved in the relaxation response to field stimulation in the rat
anococcygeus muscle. It remains to be shown whether a different
subclass of imidazoline “receptor” may be involved in the response.

It 1s not clear at present why these two studies gave conflicting
results with idazoxan. One reason could be the type of electrode used;
steel electrodes were used in the present study whilst platinum
electrodes were used in the studies of Ramagopal & Leighton.
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However, given that that the control responses were very similar in both
studies suggests that the stimulation received by each tissue was
essentially the same. Another reason could be the length of time the
tissue was allowed to recover following the initial contraction. In the
present study the tissue was washed for 30 min until precontraction
baseline was acheived and idazoxan or RS-45041-190 were incubated
for 60 min prior to the second response. In the studies of Ramagopal &
Leighton (1989), this length of time was not stated. It is possible
therefore, that the time allowed for recovery, and the exposure time of
the antagonist, could be crucial in demonstrating an antagonist effect of
1dazoxan.

Recently, the transmitter mediating the inhibitory response in the
rat anococcygeus muscle has been identified as nitric oxide based on the
ability of the competitive inhibitors of L-arginine, NG-monomethyl L-
arginine (L-NMMA, Gillespie et al., 1989) and L-NG-nitro-arginine (L-
NOARG, Gibson et al., 1989) to inhibit the response. Ramagopal &
Leighton (1990), in an additional study, suggested that the effects of
1dazoxan seen in their earlier experiments (Ramagopal & Leighton,
1989) could be via the generation of nitric oxide. Therefore, it remains
to be elucidated, whether imidazoline “receptors” can modulate nitric
oxide metabolism in this or other tissues.

5.6. CONCLUSIONS

In the present chapter, the functional characteristics of the 0a-
and the opp-adrenoceptor subtypes, and the imidazoline binding sites
were addressed. The op-adrenoceptor subtypes were assessed by their
ability to inhibit adenylate cyclase activity in tissue preparations
containing the oA and oy subtypes. The studies showed that the 0pa-
adrenoceptor subtype on human platelets, could inhibit adenylate cyclase
activity in whole cells and membranes, although the efficacy of the
agonists was improved in the whole cell preparation. In contrast, in
neonatal rat lung membranes, a preparation shown to contain the og-
adrenoceptor subtype in binding studies, failed to show an inhibitory
response to a supramaximal concentration of UK 14304. The o;g-
adrenoceptor subtype in this preparation was therefore not efficiently
coupled to adenylate cyclase.

The imidazoline site on hamster adipocyte membranes was studied
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in a functional assay of glycerol release. The ability of several
compounds to reverse UK 14304-induced glycerol release was
consistent with these agents affinity for ap-adrenoceptors, suggesting
that the imidazoline site was not involved in the antilipolytic effect of
UK 14304. In the rat anococcygeus muscle, the frequency-dependent,
field stimulation-induced relaxations were not affected by 1dazoxan and
RS-45041-190, suggesting that imidazoline sites are probably not
involved in this response. The impact of this work for future studies on
ap-adrenoceptors and imidazoline binding sites is considered in Chapter
six of this thesis.
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DISCUSSION AND CONCLUSIONS
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6.1. 02-ADRENOCEPTOR SUBTYPES

This thesis has described the interaction of the novel antagonist
ligand, [3H]-RS-15385-197, and the agonist ligand, [3H]-adrenaline, with
op-adrenoceptor subtypes on human platelets, neonatal rat lung and rat
cerebral cortex, in an attempt to classify the subtypes present on these
tissues. Binding data with the antagonist described three
pharmacologically distinct binding sites, which were characterised as
oA (human platelet), oz (neonatal rat lung) and opp (rat cerebral
cortex). So far, gene cloning has identified 5 distinct subtypes (see
Table 1.3 and references therein). Although classified as distinct
receptor subtypes, not all of these subtypes have been shown to exist in
more than one species. Thus, a gene coding for the apa-adrenoceptor
has been demonstrated in human and pig tissues, but an equivalent rat
gene has so far not been identified. Conversely, although a gene has
been isolated from human and rat tissues, which shows og-
adrenoceptor pharmacology, the human kidney gene did not hybridise
with mRNA present in the neonatal rat lung, the prototypical ogg tissue,
or brain. The human kidney gene should therefore be termed opg-like,
and may represent a species variant of the opg-adrenoceptor. The o c-
adrenoceptor, however, has been isolated from rat and human kidney
and rat brain and shows a high degree of homology between species.
This leaves the ozp-adrenoceptor subtype, for which a gene has been
identified in rat kidney. So far, this gene has not been identified in any
other species other than the rat and it could be tempting to suggest that
this gene may represent the rat homologue of the aza-adrenoceptor for
which there 1s as yet no known gene.

Limberger et al. (1992) suggested that the prejunctional o;-
adrenoceptors in the rat submaxillary gland and the rat vas deferens,
previously designated o4 could be better described as op. Further
supporting the view that the azp-adrenoceptor may represent a rat 0 A-
adrenoceptor. However, the opp-adrenoceptor was first characterised
in bovine tissue suggesting that this subtype is not unique to the rat.
Duda et al. (1990) demonstrated that an o-adrenoceptor cDNA clone
from a rat brain library hybridised with four different sized mRNAs in
rat brain and three in both heart and adrenal gland, suggesting that the
range of az-adrenoceptor diversity may be larger than originally
thought.  Elucidation of the structure and pharmacological
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characteristics of these gene products, and the identification of more
selective compounds, would help in the classification of ag-
adrenoceptor subtypes.

Chapter three of this thesis demonstrated that the identification of
different oz-adrenoceptor subtypes, depends on whether a radiolabelled
agonist or antagonist 1s used to label the receptor. Thus, normally
selective antagonists could not discriminate between the subtypes in the
“activated” state. I would like to propose a model of agonist and
antagonist interactions with the o-adrenoceptor subtypes, which is
based on the receptor existing in three states with regard to agonist and
Gi.

Neubig et al. (1988) demonstrated by a series of elegant kinetic
studies of [3H]-yohimbine and [3H]-UK 14304 binding in the human
platelet that approximately one third of the receptors were precoupled
to Gi and bound agonist with high affinity to form a tightly coupled
ternary complex (precoupled). Another third had low affinity for
agonist and were unable to couple to Gi (free) while the remainder
bound agonist with high affinity and coupled with Gi following an
agonist induced conformational change and diffusional translocation in
the membrane (couplable). If this model i1s correct then it could be
assumed that [3H]-agonists would label the precoupled and couplable
receptors, while [3H]-antagonists (which don’t discriminate between
states) would label the precoupled and free receptors. Antagonists,
however, could not label the couplable receptors if it is assumed that
antagonists, having no efficacy, can not induce the conformational
change required for diffusional-dependent G-protein coupling. This
latter aspect is highlighted by the linear Arrhenius plots observed with
[3H]-RS-15385-197 binding in the rat cortex. Previous studies in the
human platelet have shown linear Arrhenius plots with [3H]-yohimbine,
but non-linear plots with [3H]-UK 14304, suggesting that the agonist
required protein diffusion in the membrane presumably for coupling to
Gi (Gantzoz & Neubig, 1988).

This model therefore suggests firstly that, not all states of the
receptor are labelled by antagonists and secondly, that the couplable
state is labelled only by agonists. The possibility does exist however
that antagonists may label the couplable state but only in the presence of
agonist, thus explaining the shallow displacement curves observed with
agonist inhibition of antagonist binding.
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The model can be used to explain some of the data in the present
study: 1) The idea that agonist labelled sites may not meerly a subset of
those labelled by the antagonist could explain the vastly different
affinities of prazosin for agonist and antagonist binding in the neonatal
rat lung. Prazosin may not influence agonist-induced G-protein-
coupling but may instead have high affinity for the free receptor. 2)
The percentage of sites existing in the three states may be different in
the human platelet and the neonatal lung. If as suggested by Neubig et
al. (1988) the proportion of precoupled, couplable and free receptors on
the human platelet are 1:1:1 then the density of sites labelled by [3H]-
adrenaline (precoupled and couplable) would be approximately equal to
the density of sites labelled by [3H]-RS-15385-197 (precoupled and
free). The present study showed that [3H]-adrenaline labelled 85% of
those sites labelled by [3H]-RS-15385-197 which would be consistent
with this model. However, in the neonatal rat lung the number of
agonist labelled sites represented only 44% suggesting that a large
proportion of these receptors may be uncoupled and show higher
affinity for antagonists. This may also explain the inability of the app-
adrenoceptor to inhibit adenylate cyclase activity in the neonatal rat
lung. In this tissue, agonists may not be able to induce the formation of
a ternary complex due either to the inability of the app-adrenoceptor to
couple, or, to the lack of the required G-proteins.

The finding that agonist affinities in the 2 tissues correlated well
whilst antagonist affinities correlated poorly, suggest that the
differences in the o2a and app-adrenoceptor reside in the
characteristics of the free receptor. Antagonists such as prazosin and
imiloxan may have higher affinity for the free ag-adrenoceptor. The
relationship of this selectivity to functional antagonism of the o»g-
adrenoceptor is however unclear.

Based on these findings I would like to suggest that [3H]-
antagonist binding may overestimate the postulated potency of
antagonists in functional experiments and lead to a dubious estimation of
receptor subtype selectivity. The combined use of [3H]-antagonist and
[3H]-agonist binding data may better describe the physiological nature of
the receptor. This may also be applicable to receptor systems other than
the oz-adrenoceptor.

The differential effects of Na+ ions on [3H]-agonist and [3H]-
antagonist binding to the - and azg-adrenoceptor subtypes suggests
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that the concentration of Na+ arround the vicinity of the receptor may
affect its physiological characteristics. In addition, the concentration of
Na+ may determine whether oa- or app-adrenoceptor pharmacology is
displayed functionally. Given that the residue reputed to be responsible
for Na+ regulation of ligand binding faces intracellulary (Hoffman et
al., 1990), the intracellular Na+ concentration may be important. For
instance different characteristics may be shown in depolarised cells. As
described in Chapter one, o-adrenoceptors have been shown to
influence Na+/H+ exchange in the human platelet and in NG 108-15 cells
(Limbird, 1984; Isom et al., 1987). The consequent increase in
intracellular Na+ following oz-adrenoceptor activation could alter
receptor sensitivity to agonists and antagonists. Given that prazosin
showed high affinity for the ayg-adrenoceptor labelled by the agonist
only in the presence of Na+, a high antagonist potency for this
compound in functional experiments may only be observed when
intracellular Na+ levels are high.

Functional studies of oz-adrenoceptor mediated inhibition of
adenylate cyclase showed that the platelet az-adrenoceptor coupled
more efficiently to adenylate cyclase than the neonatal rat lung op-
adrenoceptor. The possibility exists that apg-adrenoceptor in the
neonatal rat lung prefers an alternative second messenger pathway.
Chapter one described that other second messenger pathways have been
reputed to be utilised by p-adrenoceptors, but that the subtype of o2-
adrenoceptor involved has not been elucidated. Jones er al. (1990)
demonstrated that that the stably transfected aa-adrenoceptor gene
could activate three distict signal transduction systems in hamster ovary
cells; inhibition of adenylate cyclase, stimulation of phospholipase A;
and potentiation of cAMP production, the latter being insensitive to
pertussis toxin. Federman et al. (1992) suggested a more complex
scheme, and showed that the interaction of a transfected oAa-
adrenoceptor with adenylate cyclase was inhibitory or facilitatory,
depending on the cell type in which it was transfected. They suggested
that the effect observed depended on the subtype of adenylate cyclase
present, and the ability of the By subunit of Gi to stimulate cyclase.
Presumably, a similar scenario could be possible with other o;-
adrenoceptor subtypes. This indicates that the ability of a receptor to
produce a functional response may not be limited purely by the
structure of the receptor itself, but also by the nature of the other

198



components of the transduction pathway present in the cell.

Therefore, ligand binding studies and molecular biology have
identified unique subtypes of az-adrenoceptors in a variety of tissues
and species. The manner in which these subtypes produce their
functional effects depends upon a number of physiological variables; the
nature of which is begining to be understood.

6.2. IMIDAZOLINE BINDING SITES

Chapter four of this thesis demonstrated that the op-adrenoceptor
antagonist [3H]-idazoxan, the o-adrenoceptor agonist [3H]-p-
aminoclonidine and the novel imidazoline compound [3H]-RS-45041-190
labelled distinct populations of imidazoline binding site in rat kidney.
These sites were termed imidazoline binding sites as the compounds
themselves contain an imidazoline ring, and the binding sites labelled by
these compounds recognised other imidazoline containing structures.
However, I would hesitiate to suggest that these sites meerly represent a
chemical recognition site as compounds of other chemical classes also
display affinity, e.g. guanabenz.

The binding sites identified by these three radioligands in
themselves showed marked differences. Thus, [3H]-RS-45041-190
labelled two populations, a subset of which was labelled by idazoxan.
The characteristics of the of site labelled by [3H]-p-aminoclonidine did
not resemble previously reported data with this compound. However,
previous data showing high affinity [3H]-p-aminoclonidine binding was
carried out i1n higher species, and suggests that the [3H]-p-
aminoclonidine binding site described in the present study may
represent a species variant. A recent study by Wikberg er al. (1992)
showing [3H]-p-aminoclonidine to label a low affinity site (Kgq = 213
nM) in guinea-pig kidney would be consistent with this arguement. At
present it is unclear why [3H]-p-aminoclonidine should label a site in rat
kidney given its low affinity, however, separation by centrifugation and
filtration gave essentially similar results, suggesting that the
characterisation 1s valid.

A recent symposium on imidazoline receptors (Paris June 29 -30,
1992; Proceedings published in Fundam. Clin. Pharmacol. volume 6,
Suppl. 1), in an attempt to simplify nomenclature, suggested that
imidazoline sites labelled with high affinity by clonidine and p-
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aminoclonidine, and which are sensitive to rilmenidine and insensitive to
guanabenz, should be termed I;; and that sites labelled by [3H]-idazoxan
which are sensitive to guanabenz and insensitive to clonidine, should be
termed Ip.

In the present study, the binding sites labelled by [3H]-1idazoxan
and the majority of those labelled by [3H]-RS-45041-190, showed the
characteristics of the I binding site. However, none of the sites
identified in the kidney, showed the characteristcis of the 11 binding
site. The [3H]-p-aminoclonidine binding site described in the present
study, may represent a species homologue of the I binding site.

To classify these binding sites as receptors they must be shown to
elicit a functional response, and the functional pharmacology of the
binding site should relate to the response. Using this criteria, the I
subtype was suggested, at the above symposium, to be involved in the
hypotensive effect observed with some imidazoline compounds when
administered directly into the ventrolateral medulla. However, no
conclusive functional effect of the I, subtype demonstrated.
Unfortunately, using glycerol release in the hamster adipocyte and
inhibition of field stimulation-induced relaxation in the rat
anococcygeus muscle, no functional I imidazoline effect could be
observed in the present study. Autoradiography studies showed that the
I, subtype exhibited an unique distribution in rat brain. A recent study
in human brain showed that [3H]-idazoxan labelled sites were more
widespread and localised particularly over the basal ganglia (De Vos et
al., 1991). The anatomical and intracellular localisation of these sites to
the mitochondria, and the purification and characterisation of the
endogenous ligand, may provide some clues as to the functional role of
these binding sites.
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In the presence of RS-15385-197 to preclude binding to a,-adrenoceptors, [*H]p-aminoclonidine labelled a low affinity high
capacity site, (K, =127.6+19.7 nM, B,,,, 978 + 172 fmol/mg protein) whereas [*Hlidazoxan labelled a high affinity low
capacity site (K;=1.66 +£0.28 nM, B, 453 1+ 11.4 fmol/mg protein). Clonidine and p-aminoclonidine showed moderate
affinity for the site labelled by [*H]p-aminoclonidine, but low affinity for the site labelled by [*Hlidazoxan, whereas idazoxan
showed high affinity for [*HJidazoxan and low affinity for [*H]p-aminoclonidine binding. Naphazoline inhibited [*Hlidazoxan in
a biphasic manner suggesting that [*Hlidazoxan may label an heterogeneous population of imidazoline sites. GTP inhibited
[*Hlidazoxan but not [*H]p-aminoclonidine binding. These results suggest that [*HJidazoxan labelled imidazoline 1, binding
sites, whereas [*H]p-aminoclonidine labelled a novel subtype which showed marked differences to the imidazoline I, binding site
reported in bovine and human brainstem.

[*H]p-Aminoclonidine; [*H]Idazoxan; Imidazoline binding sites; RS-15385-197; Kidney (rat)

1. Introduction

The imidazoline radioligands [*H]p-aminoclonidine
and [*Hlidazoxan, in addition to labelling a,-adreno-
ceptors, also label populations of non-adrenoceptor
binding sites which show high affinity for some imida-
zoline structures. Imidazoline binding sites labelled
with [*H]p-aminoclonidine (I, sites) in bovine ventro-
lateral medulla (Ernsberger et al., 1987) and with
[*H]clonidine in human brainstem (Bricca et al., 1989)
show high affinity for clonidine and oxymetazoline and
low affinity for the catecholamines noradrenaline and
adrenaline. The imidazoline binding sites labelled with
[*Hlidazoxan (I, sites) in a variety of rabbit tissues
show moderate affinity for clonidine and low affinity
for catecholamines and yohimbine (Yablonsky et al.,
1988; Hamilton et al., 1988), but show high affinity for
the guanido compound guanabenz and the diuretic
amiloride (Coupry et al., 1989; Yablonsky and Dausse,
1989). In rat and pig kidney [*HJidazoxan labels a site
that has low affinity for clonidine and amiloride and
moderate affinity for guanabenz (Michel et al., 1989;

Correspondence to: A.C. MacKinnon, Department of Pharmacology,
Syntex Research Centre, Research Park, Riccarton, Edinburgh EH14
4AP, UK. Tel. 44-31-451 5511, fax 44-31-449 5562.

Vigne et al., 1989) which is similar to the site reported
on the hamster adipocyte (MacKinnon et al., 1989).
This evidence led Michel and Insel (1989) to propose
that imidazoline binding sites may form two or three
distinct subgroups, depending on the species and the
radioligand used.

In rat kidney membranes, imidazoline binding sites
have been identified with [*H]p-aminoclonidine (Erns-
berger et al., 1990) and [*Hlidazoxan (Michel et al.,
1989). Although some differences in the pharmacology
of the sites were evident, particularly the affinity of
p-aminoclonidine, which was very low against
[*Hlidazoxan, interpretation was complicated by the
presence of a large population of @,-adrenoceptors
which both ligands labelled at the concentrations used
in the studies. RS-15385-197 is a potent (pK; for a,-
adrenoceptors in a variety of tissues 9.3-10.1, Clark et
al., 1990) and selective (> 1000-fold selective over a,-
adrenoceptors, Clark et al., 1990) a,-adrenoceptor an-
tagonist which has been shown to label all subtypes of
a,-adrenoceptor so far described (MacKinnon et al.,
1992), but has very low affinity for imidazoline sites in
hamster adipocyte membranes (MacKinnon et al., 1990)
and would thus be an ideal compound to selectively
inhibit binding to a,-adrenoceptors. It was the purpose
of this study to directly compare imidazoline binding
sites labelled by [*Hlidazoxan and [*H]p-aminocloni-
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dine in the rat kidney in the presence of RS-15385-197
to preclude binding to a,-adrenoceptors, therefore al-
lowing the characterisation of imidazoline binding
site(s) as a single binding component. Some aspects of
this work have been published in abstract form (Mac-
Kinnon et al., 1991).

2. Materials and methods
2.1. Preparation of rat kidney membranes

Male Sprague-Dawley rats, 200-250 g, were killed by
cervical dislocation. Kidneys were homogenised in 25
volumes (w/v) 50 mM Tris HCI; 5 mM EDTA, pH 8.0
at 4°C with a polytron PT 10 tissue disruptor. The
homogenate was centrifuged at 48000 X g for 15 min
at 4°C. The supernatant was discarded and the pellet
resuspended in the original volume of homogenisation
buffer and recentrifuged. The pellet was washed twice
by centrifugation in 50 mM Tris HCIL; 0.5 mM EDTA,
pH 8.0 at 4°C, and the final pellet resuspended in 3 ml
50 mM Tris HCI; pH 8.0 at 4°C and stored under liquid
N, until used in the binding assay.

2.2. [°H]p-Aminoclonidine binding

[*H]p-Aminoclonidine, 3-4 nM, was incubated to
equilibrium (30 min at 4°C) with 0.8-1.0 mg rat kidney
membranes in the absence or presence of various drugs
in a final assay volume of 0.5 ml (50 mM Tris HCI pH
7.4 at 4°C containing 0.1 uM RS-15385-197 to preclude
binding to a,-adrenoceptors). Non-specific binding was
determined in the presence of 100 wM clonidine.
Bound ligand was separated from free by filtration
over Whatman GF /B filters in a Brandel Cell Har-
vester followed by 2 x5 s washes (unless otherwise
indicated) with ice cold assay buffer. In some experi-
ments centrifugation at 15000 X g for 90 s was used to
separate bound ligand. In these experiments the resul-
tant pellet was washed once with 0.5 ml ice cold assay
buffer and solubilised in 100 w1 0.19 M formic acid for
30 min. Filters or solubilised pellets were suspended in
4 ml scintillation cocktail and bound ligand estimated
by counting in a Beckman 5000CE Scintillation counter.
Protein was determined using Pierce BCA protein as-
say reagent and bovine serum albumin as the protein
standard.

2.3. [3H]Idazoxan binding

Rat kidney membranes (300-500 wg) were incu-
bated with 1 nM [*HJidazoxan for 90 min at 25°C in
the presence of 0.1 M RS-15385-197 and various
concentrations of drugs in a final assay volume of 0.5
ml assay buffer (50 mM Tris HCl; 0.5 mM EDTA, pH

7.4). Bound ligand was separated from free by filtration
followed by 2 X 5 s washes with assay buffer at room
temperature. Non-specific binding was determined in
the presence of 1 uM cirazoline.

2.4. Data analysis

Binding isotherms from competition studies were
analysed by a non-linear least squares curve fitting
programme capable of fitting to a one- or two-site
model. The IC, (concentration of drug displacing 50%
specific binding) was converted to the inhibitory con-
stant (K,) by the equation of Cheng and Prusoff (1973)
where K, =1C,,/([ligand]/ K + 1). All data were ini-
tially analysed assuming a one site model of radioli-
gand binding. The data with Hill slopes of less than
unity were then analysed assuming a two-site model
and the results of the fit were statistically compared to
those of the one site fit by the differential F value
defined by Eq. 1.

(S, —SS,)/(df, —df,)
- SS, /df,

(Eq. 1)

where S8S, is the sum of squares error for the single
site, 8§, is the sum of squares error for the two-site
model, df, is the degrees of freedom for the single-site
model and df, the degrees of freedom for the two-site
model (Munson and Rodbard, 1980). A two-site fit was
assumed to be significantly better than a single-site fit
if the determined F value was significant (95% confi-
dence limits). Equilibrium binding parameters (K, and
B,..) for [*Hlidazoxan binding were obtained by the
iterative non-linear least squares curve fitting pro-
gramme ligand (Munson and Rodbard, 1980). K, and
B,... values for [*H]p-aminoclonidine binding were ob-
tained from competition studies with unlabelled p-
aminoclonidine where K, = ICs, — [ligand] and B, =
BolCj,/ [ligand] (Deblasi et al., 1989).

For kinetic experiments, the pseudo first order rate
constant (K ,.) was calculated from the slope of the
plot In(Be /Be-Bt) versus time where Be is the binding
at equilibrium and Bt is the binding at time t. Essen-
tially the same results were obtained with a non-linear
least squares fit to a single exponential function (Eq.
2), Experiments for which semilogarithmic plots were
non-linear, were analysed according to a double expo-
nential fit (Eq. 3).

Bt = Be(1—e ™) (Eq.2)

(Eq. 3)

Be and k are, respectively, the amount of equilib-
rium binding and the rate constant (K ,) for the single
exponential model. Be; and Be, are the amplitudes,
and k; and k, are the rates of the fast and slow binding
components in the double exponential model. The fits
for a one- or two-site model were compared using the

Bt=Be(1—e *f')+Be(l—e kY



differential F value. Linear and non-linear fits were
analysed by the Kaleidagraph programme run on an
Apple Macintosh computer. The association rate con-
stant K, was determined from the equation K, = (K,
— K,)/ligand], where K, is the dissociation rate con-
stant calculated from the slope of the plot In(Bt/B0)
against time, where B0 represents binding at time 0
and Bt the binding at time t. The equilibrium dissocia-
tion constant (K,) was calculated from the equation
K,=K,/K,.

2.5. Chemicals and drugs

[*H]Idazoxan (40 Ci/mmol) was purchased from
Amersham International ple U.K. and [*H]p-amino-
clonidine (56 Ci/mmol) was purchased from Dupont
N.E.N. Division U.K. Drugs were obtained from the
following sources; noradrenaline, naphazoline and
clonidine from Sigma; p-aminoclonidine from Re-
search Biochemicals Incorporated; cirazoline from Syn-
thelabo; phentolamine from Ciba Geigy; cimetidine
from SmithKlein & Beecham; guanabenz from Wyeth;
RS-15385-197 ((8aR,12aS,13a8)-5,8,8a,9,10,11,12,12a,
13,13a-decahydro-3-methoxy-12-(methylsulfonyl)-6H-
isoquino[2,1-g][1,6]-naphthyridine) and idazoxan were
synthesised by Dr. R. Clark, Syntex Palo Alto. All
other chemicals were of the highest purity commer-
cially available.

3. Results

3.1. Specificity of [’Hlidazoxan and [°H]p-aminocloni-
dine binding

Initial experiments were carried out in the absence
of RS-15385-197 to establish the experimental condi-
tions required to isolate the imidazoline component. In
competition experiments (fig. 1A) RS-15385-197 did
not displace total [*Hlidazoxan binding at concentra-
tions up to 0.1 mM, whereas noradrenaline displaced
40% with low affinity (pICs, = 4.86 + 0.30, n = 3) and
unlabelled idazoxan displaced 80% of the total binding
with high affinity (pICs, = 8.15, n = 2). RS-15385-197
and noradrenaline showed high affinity for 50-60% of
the total [*Hlp-aminoclonidine binding at 25°C (pICs,
=881+4+009 n=5 and 7.23 +0.48, n=23 respec-
tively), whereas clonidine displaced 70-80% (pICs, =
7.64, n=2, fig. 1B). Although [*HlJidazoxan did not
appear to label a,-adrenoceptors in competition exper-
iments at 1 nM, subsequent experiments with both
[*Hlidazoxan and [*H]p-aminoclonidine were carried
out in the presence of 0.1 uM RS-15385-197 to exclude
possible binding to a,-adrenoceptors at higher ligand
concentrations.
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Fig. 1. Inhibition of 1 nM [*Hlidazoxan binding (A) and 3 nM
[*H]p-aminoclonidine (B) binding to rat kidney membranes by RS-
15385-197 (@), noradrenaline (O), idazoxan (m) and clonidine (O).
Incubations were performed at 25°C as described in Methods. The
data represents a typical experiment performed in duplicate.

3.2. Kinetics of [°Hlidazoxan and [°H]p-aminoclonidine
binding to imidazoline sites

The interaction of [*Hlidazoxan with the imidazo-
line binding site on rat kidney membranes was rapid
and reversible (fig. 2). Equilibrium was attained after
90 min with K, =0.0727 4+ 0.0065/min (n=35). In
three out of five experiments however, the association
log plots were better fitted to two-site model with t, ,,
for the fast and slow associating components = 1.59
and 30.1 min respectively. On the addition of 1 uM
cirazoline, [*Hlidazoxan binding was fully reversed but
showed fast and slow dissociation components, with
65% of the specific [*Hlidazoxan binding dissociated
within the first 15 min (K, = 0.5176 £ 0.1823 /min, t, ,
= 1.3 min). The remaining binding dissociated more
slowly (K, = 0.0234 + 0.007 /min, t, ,, = 30 min). In ex-
periments showing biphasic association plots K values
were calculated based on the percentage of ligand
associating and dissociating rapidly and yielded affinity
constants for the fast and slow dissociation components
of 438 + 1.10 and 2.24 + 1.23 nM (n = 3).
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Initial studies with [*H]p-aminoclonidine showed the
radioligand to be fully associated after 1 min at 25°C
and fully dissociated on the addition of 100 wM cloni-
dine within the first 90 s. Experiments with [*H]p-
aminoclonidine were subsequently performed at 4°C to
slow the reaction rate. Figure 3 shows that even at 4°C
the kinetics for [*H]p-aminoclonidine were rapid with
equilibrium being attained after 10 min. On the addi-
tion of 0.1 mM clonidine, [*H]p-aminoclonidine bind-
ing was rapidly reversed and fully dissociated after 10
min. The rapidity of the interaction did not allow for
the determination of reliable rate constants in consecu-
tive experiments, but the data was consistent with
[*H]p-aminoclonidine labelling a low affinity site in rat
kidney.
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Fig. 2. Kinetic analysis of [*HJidazoxan binding to rat kidney mem-
branes at 25°C. The insets show the semilogarithmic plots of the
data. The data represents a single experiment performed in tripli-
cate. Two association rate constants (top panel) were calculated;
K b1 = 0.307/min and K ;50 = 0.0299 /min. On the addition of 1
uM cirazoline, [*Hlidazoxan dissociated with two rate constants
K,; = 0.1701 /min and K, = 0.0197 /min (bottom panel). Calculated
K4 values for the fast and slow components were 2.23 and 3.46 nM
respectively.
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Fig. 3. Kinetic analysis of [*H]p-aminoclonidine binding in rat kidney
membranes at 4°C. The insets show the semilogarithmic plots of the
data. The data represents a single experiment performed in tripli-
cate. The association rate (top panel) was rapid, and the ligand fully
associated after 10 min (K, = 0.707/min). The dissociation rate
(bottom panel) was also rapid, with 66% of the bound ligand dissoci-
ated within the first 2 min (K, = 0.681/min), giving a derived affinity
K =812 nM. Accurate determination of the rates in consecutive
experiments was not possible due to the rapidity of the reaction.

3.3. Number and affinity of [’Hlidazoxan and [*H]p-
aminoclonidine binding sites

In saturation studies (fig. 4) [*Hlidazoxan labelled a
single site with high affinity in the presence of RS-
15385-197 (K ,=1.66 +0.28 nM, B, ., =4533+114
fmol/mg protein, n=_8). At the K, concentration,
non-specific [*Hlidazoxan binding represented 20-30%
of the total binding. The site labelled with [*H]p-
aminoclonidine was monophasic and of low affinity
(Ky=127.6 + 19.7 nM, n = 12) but [*H]p-aminocloni-
dine labelled more than 20 times the number of sites
than [*Hlidazoxan (B ,,, = 978 + 172 fmol /mg protein).
The percentage of non-specific binding with this ligand
was greater than that for [*Hlidazoxan and repre-
sented 40-50% of the total [*H]p-aminoclonidine bind-
ing at 3 nM. Because of the low affinity of [*H]p-
aminoclonidine, we were surprised that we were able
to show specific binding using filtration to separate
bound from free ligand as a high percentage of the
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Fig. 4. Saturation analysis of [*HJidazoxan (A) and [3H]p—amin0—

clonidine (B) binding in rat kidney. The results represent a typical

experiment performed in triplicate. K and B, values were calcu-

lated as described in Methods. (A) K ;=1.88 nM, B, =547
fmol /mg. (B) K4 = 100 nM, B, = 775.4 fmol /mg protein.

specifically bound ligand would be expected to dissoci-
ate during the separation process, however, when cen-
trifugation was used to separate bound radioligand, the

TABLE 1
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affinity and density of sites labelled by [*H]p-amino-
clonidine were not significantly different from the fil-
tration assays (K,=104.2+21.7 nM, B, = 1480 +
310 fmol /mg protein, n = 4). Given that the method of
separation yielded essentially similar results, the char-
acterisation of [*H]p-aminoclonidine binding sites was
continued using filtration to make our study more
comparable with other work (Ernsberger et al., 1990).

3.4. Pharmacology of [*Hlidazoxan and [>H]p-amino-
clonidine binding sites

Table 1 shows affinity values (pK,) for a variety of
agents for the imidazoline binding site labelled by
[*H]p-aminoclonidine and [*HJidazoxan. Clonidine and
p-aminoclonidine showed moderately high affinity for
the site labelled by [*H]p-aminoclonidine (pK, = 6.88
and 6.98 respectively) but only low affinity for the site
labelled by [*Hlidazoxan (pK;=5.64 and 5.05). lda-
zoxan and amiloride had low affinity for the site la-
belled with [*H]p-aminoclonidine (pK; = 5.34 and <4
respectively) but high affinity for [*HJidazoxan binding
(pK; =7.95 and 6.36 respectively). Noradrenaline and
RS-15385-197 had low affinity for both ligands empha-
sising the non-adrenergic nature of the interaction.
Guanabenz showed high affinity for both radioligands
(pK; = 7.81 and 7.26), while the imidazolines phentol-
amine and cimetidine had low affinity (pK; for [*H]p-
aminoclonidine binding 5.10 and 4.99 and for [*H]
idazoxan binding 4.48 and 4.31). To ensure that the
pharmacology of the [*H]p-aminoclonidine binding site
was the same irrespective of the method employed to
separate bound ligand, the affinity of guanabenz, ida-
zoxan and p-aminoclonidine were estimated for [*H]p-
aminoclonidine binding using centrifugation to sepa-
rate bound ligand. The affinity of these compounds

Affinity values (pK ;) for [*H]p-aminoclonidine and [*HJidazoxan binding in the rat kidney in the presence of 0.1 uM RS-15385-197. Assays were
performed as described in Methods. For [*H]p-aminoclonidine binding values were obtained from filtration or centrifugation experiments as
indicated. Values represent the means+S.E.M. Each assay was performed in duplicate and the number of determinations is shown in

parentheses.

[*H]p-Aminoclonidine [*H]Idazoxan

Filtration Centrifugation pK; nH

pK; nH PK; nH
Clonidine 6.88+0.07 0.80+0.06 (3) - - 5.64+0.16 0.92 +0.08 (5)
p-Aminoclonidine 6.98 +0.09 0.87+0.07 (6) 6.87+0.21 1.02+0.12(3) 5.05+0.16 1.02+0.10 (6)
Idazoxan 5.344+0.04 0.77+0.11(3) 5344025 1.05+0.05 (3) 7.9540.17 0.99+0.01 (4)
Guanabenz 7.81+0.06 1.25+0.11 (3) 7.29+0.37 1.05+0.04 (3) 7.26 +0.07 0.90+0.10(3)
Phentolamine 5.10+0.23 1.0140.01 (3) - - 4.48+0.07 - (3)
Cimetidine 4.99 +0.09 - 3) = - 4.3140.19 o 3)
RS-15385-197 4.85+0.13 - 3) - - 4.26+0.21 - (3)
Amiloride <4 - (3) - - 6.36+0.06 - (3)
Noradrenaline <4 - (3) - - 4.53+0.20 - (4)
GTP <=3 - 3) - ~ 3.48+0.07 -~ (3)
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Fig. 5. Inhibition of [*H]p-aminoclonidine binding by idazoxan in the
absence and presence of GTP. Assays were performed as described
in Methods. The figure represents a single experiment performed in
duplicate. Specific binding is calculated as a percentage of binding in
the absence of GTP. Control () pICs, =539, nH = 0.83; 0.1 mM
GTP (0) pICsy =543, nH=0.74; 1 mM GTP (m) plCg, =544,
nH = 0.86.

was not significantly different from filtration affinity
estimates.

3.5. Effect of guanyl nucleotides and naphazoline

GTP inhibited [*HJidazoxan binding (pK; = 3.48;
60% inhibition at 1 mM) but did not inhibit [*H]p-
aminoclonidine binding up to a concentration of 1 mM.
When inhibition of [*H]p-aminoclonidine binding by
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Fig 6. Inhibition of 1 nM [*Hlidazoxan binding in rat kidney by
naphazoline (®) and cirazoline (©) in the presence of 0.1 pM
RS-15385-197. Assays were performed as described in Methods. The
data represents a single experiment performed in duplicate. The
inhibition curve for cirazoline was monophasic and gave a pK; of
8.43, however the inhibition curve for naphazoline was better fitted
to a two-site model (P < 0.05), and gave pICs, values for the high
(60%) and low (40%) affinity components of 8.73 and 6.89 respec-
tively.

idazoxan was conducted in the presence of 0.1 and 1
mM GTP (concentrations which inhibit [*Hlidazoxan
binding by approximately 25 and 60%) no effect was
seen on the affinity or the Hill slope of the idazoxan
displacement curve (control pICs,=5.39, nH = 0.83;
0.1 mM GTP pIC,;=5.43, nH=0.74; 1 mM GTP
pICy, = 5.44, nH = 0.86, fig. 5).

Figure 6 shows the inhibition of [*HJidazoxan bind-
ing by naphazoline and cirazoline in the presence of
RS-15385-197. The inhibition curve for cirazoline was
monophasic and of high affinity (pK, = 8.48 4+ 0.10,
n =4) however, the inhibition curve for naphazoline
was better fitted to a two-site model and gave affinity
values for the high and low affinity components of
8.65+ 0.18 and 6.88 +0.21 respectively (n=4), with
the high affinity component comprising 50-60% spe-
cific binding.

4. Discussion

This study indicated that [*HJidazoxan and [*Hlp-
aminoclonidine labelled imidazoline binding sites in rat
kidney membranes. Previous studies on imidazoline
binding sites in this tissue have been hindered by the
presence of a large population of a,-adrenoceptors, so
it was the purpose of this study to isolate the imidazo-
line site(s) by performing the experiments in the pres-
ence of RS-15385-197. Under these conditions, [*Hlp-
aminoclonidine and [*HJidazoxan labelled populations
of sites that showed marked differences in nature.
Firstly, [*H]p-aminoclonidine labelled more than 20
times the number of sites than [*HJidazoxan but with
relatively low affinity. We were surprised to show spe-
cific [*Hlp-aminoclonidine binding using filtration to
separate bound from free radioligand, as this is nor-
mally only suitable for ligands having nanomolar affin-
ity for their receptor site. Ligands with lower affinity
would be expected to dissociate from the receptor site
during the washing stage of the separation. However,
we repeated the experiments using separation by cen-
trifugation and found no significant difference in the
affinity of the site determined by filtration. The phar-
macological profile of the site was also similar as the
affinities of p-aminoclonidine, idazoxan and guan-
abenz, compounds critical to the classification, were
identical using both separation methods. This lead us
to believe that the same site was being labelled under
the different protocols. Conducting the separation at
4°C must slow the dissociation rate sufficiently to allow
for the determination of reproducible binding data
with [*H]p-aminoclonidine using a filtration protocol.
Filtration has been successfully used to label glutamate
receptor subtypes and the neurotoxin receptor site
associated with Na™ channels using radioligands of low
affinity (Honore et al., 1989; Catterall et al., 1981).



In competition experiments, idazoxan had low affin-
ity for [*Hlp-aminoclonidine binding (K; = 4571 nM).
Other studies with idazoxan have shown differences in
affinities for [*H]p-aminoclonidine binding, ranging
from 220 nM in the rat renal cortex (Ernsberger et al.,
1990) to 33 nM for [*Hlclonidine binding in the human
brainstem (Bricca et al., 1988). The low affinity for
idazoxan in this study may be due to the removal of
idazoxan’s high affinity for a,-adrenoceptors with RS-
15385-197. In competition experiments with [*H]
idazoxan, p-aminoclonidine and clonidine had low
affinity. This is similar to the imidazoline I, binding
site in pig (Vigne et al., 1989), hamster (MacKinnon et
al., 1989), and human kidney (Michel et al., 1989),
whereas clonidine has somewhat higher affinity in rab-
bit tissues (Yablonsky et al., 1988; Langin and La-
fontan, 1989). The imidazoline site labelled by [*H]
idazoxan in the rat kidney is therefore consistent with
an imidazoline 1, subclass. The affinity of the diuretic
amiloride has been used as a means of subclassifying
imidazoline sites (Michel et al., 1989). In this study,
amiloride had very low affinity (pK;<4) for [*H]p-
aminoclonidine binding, but had higher affinity for
[*Hlidazoxan binding (K; =436 nM). The affinity of
amiloride for [*HJidazoxan binding was lower than that
reported in rabbit tissues (K; = 30-48 nM) but higher
than that reported in human and pig tissues (K, > 1100
nM), see Michel et al., 1989 for review) but was similar
to that reported in rat brain (Brown et al., 1990). The
affinity of clonidine and amiloride, therefore, shows a
large variation in affinity between species.

Studies by Bricca et al. (1989) have shown that
[*HIclonidine labels imidazoline I, binding sites in
bovine and human brainstem membranes with high
affinity, and that the human nucleus reticularis later-
alis provides an homogeneous population of imidazo-
line I, sites. However, using the same protocol, they
could not label high affinity 1, sites with [?H]clonidine
in rat brainstem membranes. The lack of high affinity
[*H]clonidine and [*H]p-aminoclonidine binding in rat
tissues may represent a species difference. A recent
study by Wikberg et al. (1992) showed that [*Hlp-
aminoclonidine labelled a low affinity site in guinea pig
kidney (K, =213 nM) with a similar pharmacology to
that shown in the present study. Imidazoline (I,) bind-
ing in brainstem tissues from higher mammals may
therefore represent a different subset of imidazoline
sites.

The finding that [*HJp-aminoclonidine has low
affinity for imidazoline binding sites in rat kidney is not
consistent with studies by Ernsberger et al. (1990) who
demonstrated high affinity for this ligand in rat renal
cortex membranes. These studies showed that imidazo-
line compounds would displace 100% of the specific
binding while the catecholamines would only displace
~ 68%. Imidazoline affinity was calculated as the rela-
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tive affinity for 32% of the specifically bound [*H]p-
aminoclonidine defined with 10 uM phentolamine. We
consider that 10 uM phentolamine would not be a
sufficiently high enough concentration to displace all
imidazoline-like binding with either [*H]p-amino-
clonidine or [*Hlidazoxan. There are several differ-
ences between our studies and those of Ernsberger. In
our studies whole kidney homogenate rather than renal
cortex was used, however, this is unlikely to explain the
differences seen as one would still expect to label the
high affinity cortical binding in a whole kidney prepa-
ration. The assay conditions were similar in both stud-
ies except that the incubation conditions in our studies
were set to specifically label imidazoline sites, i.e.
performed in the presence of RS-15385-197 to block
ay-adrenoceptors. Under the conditions employed by
Ernsberger (long incubation time at 25°C and non-
specific binding defined with 10 wM phentolamine)
one would expect [*H]p-aminoclonidine to label a sig-
nificant population of a,-adrenoceptors. True imidazo-
line affinity is likely to be masked when the radioligand
used is also labelling a large population of a,-adreno-
ceptors.

The imidazoline compound naphazoline showed high
affinity for the [*Hlidazoxan binding site on rat kidney
but exhibited a displacement curve which had a Hill
slope of less than unity. Naphazoline has been shown
to exhibit a shallow displacement curve for [*HJidazo-
xan binding to I, sites in rat brain (Brown et al., 1990),
rat liver (Zonnenschein et al., 1990) and hamster
adipocyte (MacKinnon et al., 1989). In the present
study the displacement curve for naphazoline could be
better resolved into a two-site model with affinities for
the high and low affinity components (pICs,) of 8.65
and 6.88 respectively. In addition, kinetic analysis of
[*Hlidazoxan binding revealed that two binding com-
ponents of similar affinity were labelled by this ligand.
Studies in guinea pig tissues suggest that [*Hlidazoxan
may label two classes of imidazoline site which show
different affinities for clonidine (Wikberg et al., 1991).
These subtypes have been termed 1A and IB.

Inhibition by guanyl nucleotides is a phenomenon
normally associated with agonist binding. In this study
we showed that GTP inhibited [*Hlidazoxan but not
[*H]p-aminoclonidine binding. Previous studies have
shown that GTP decreases the number of imidazoline
binding sites labelled by [*HJidazoxan in the bovine
brain (Hussain et al., 1991), and therefore suggests that
idazoxan may be an agonist at a G protein-linked
imidazoline receptor. This coupled with the finding
that [*HJidazoxan labelled a fraction of the number of
sites labelled by [*H]p-aminoclonidine lead us specu-
late whether the latter ligand was labelling the whole
population of sites, a subset of which had high affinity
for the agonist idazoxan. However, when idazoxan inhi-
bition curves were carried out in the presence of GTP,
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there was no effect on the affinity or the Hill slope for
idazoxan. Further studies are required to elucidate the
effect of GTP on imidazoline sites, and functional
studies are neccessary to elucidate the possible agonist
effects of idazoxan.

[*H]p-Aminoclonidine binding to I, sites in the ven-
trolateral medulla have been claimed to be responsible
for the hypotensive actions seen by some imidazoline
compounds when injected into this region, and an
endogenous substance extracted from bovine brain
(‘clonidine displacing substance’ or CDS) has been
shown to have high affinity for these sites (Ernsberger
et al., 1987), and for I, sites in rabbit kidney (Coupry
et al., 1989). In this study we show that [*H]p-amino-
clonidine labelled a site which was unlike the I, site in
bovine brainstem, and may not be a functional receptor
on the basis of low affinity, high capacity and rapid
kinetics. I, sites labelled by [*Hlidazoxan have been
suggested to be involved in Na®’ transport in renal
proximal tubule cells (Bidet et al., 1990), and on norad-
renaline release in rabbit pulmonary artery and aorta
(Gothert and Molderings, 1991). Further characterisa-
tion of these effects with selective agonists / antagonists
is necessary to elucidate whether these sites may be
classed as receptors.

It is clear from this study that [?Hlidazoxan and
[*H]p-aminoclonidine label different subsets of imida-
zoline binding site in the rat kidney and the results
emphasise the necessity to perform studies on imidazo-
line sites in the presence of an a,-antagonist until
more selective imidazoline ligands become available.
Further studies are required to substantiate the possi-
bility that non-adrenoceptor [*HJidazoxan binding may
form an heterogeneous population of sites
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Non-a,-adrenoceptor idazoxan binding sites; a new target for drug development
Andrew T. Kilpatrick,* Christine C. Brown and Alison C. Mackinnon
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Non a,-adrenoceptor idazoxan-bind-
ing sites: hamster adipocytes a func-
tional model for these sites

The introduction of selective agonists/antagonists
has permitted the pharmacological characterizaton
of a,-adrenoceptors. Clonidine, p-aminoclonidine,
and UK 14304 are considered selective a,-adreno-
ceptor agonists and yohimbine. rauwolscine and
idazoxan are high-affinity a,-adrenoceptor antag-
onists. For review see [1]. The availability of these
compounds as high-specific-acuvity radioligands
combined with the technique of ligand binding has
contributed greatly to our understanding of a,-
adrenoceptors.

Ligand-binding studies indicate that clonidine,
p-aminoclonidine, UK 14304 and idazoxan, in addi-
tion to binding to a,-adrenoceptors, also interact
with a non-adrenoceptor binding site in a wide
variety of tissues. Considerable interest exists at
present in defining a functional role for these non-
adrenoceptor idazoxan-binding sites (NAIBS).

Ligand-binding studies

Saturation experiments

A number of studies have demonstrated that
[*H]idazoxan binds to a second site in a wide range
of tissues, with an affinity comparable with that
determined at a,-adrenoceptors. The number of
binding sites defined in rabbit kidney with [*H]ida-

Abbrevianon used: NAIBS, non-adrenocepror idazoxan-
binding sites.

zoxan is approximately 3-4 times greater than that
identified with [*H]vohimbine [2]. A similar differ-
ence in the density of binding sites is observed in
rabbit basolateral membranes if [‘H]yohimbine is
replaced by [*HJrauwolscine; [*H]idazoxan labels
3=5 times more sites than [*H]rauwolscine [3]. This
variability in the density of binding sites and s
dependence on the radioligand employed has been
reported in rabbit urethral tissue [4, 5]. rat liver
cells [6), hamster adipocytes [7] and rat and human
kidneys [8, 9].

Saturation studies demonstrate that [*H]p-
aminoclonidine labels two distinct populations of
binding sites in the ventrolateral medulla of bovine
brain, an a,-adrenoceptor and a non-adrenoceptor
site. [10]. In addition to [*H]p-aminoclonidine,
[‘H]clonidine labels a non-adrenoceptor site in
human brainstem [11]. Evidence. presented later,
suggests that the non-adrenoceptor sites labelled by
[*H]p-aminoclonidine and [‘H]clonidine may be
different from the sites labelled by [*H]idazoxan.

Competition experiments

The phenylethanolamines, adrenaline and nora-
drenaline either display low affinity or fail to inter-
act, at concentrations up to 107 with NAIBS in
rabbit kidney [2. 3]. adipocytes [12], urethral tissue
[+, 5]. hamster and human adipocytes [7. 13], rat
liver cells [6] and brain [14]. Standard non-imida-
zoline a,-adrenoceptor antagonists such as yohim-
bine and rauwolscine have low affinity towards
NAIBS, whereas compounds with an imidazoline/
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guanidinium structure, such as cirazoline, guana-
benz and naphazoline bind with high athmty. An
affinity rank order of cirazoline (K, 2.6 nat) > guana-
benz (K, 6.2 num) > naphazoline (K, 46.7 ny) > cloni-
dine (K, 537 nm) is reported for NAIBS in rat brain
[14]. A similar affinity rank order exists for NAIBS
in human fat cells [13] whereas in rat liver cells the
order is cirazoline (K, 2.21 nm)> naphazoline (K,
8.99 nu)>guanabenz (K, 33.8 nm)> clonidine (K|
15066.9 nm) [6].

The imidazoline a,-adrenoceptor agonist, UK
14304 [15] has a relatively high affinity at NAIBS in
human fat cells (K; 53.4 nm) [16] and rat liver cells
(K, 420 nM) [6], modest affinity at NAIBS in
human kidney (K, 241 nx1) [8], but low affinity at
the site in rabbit colon epithelial cells (K, 1049 nxi)
[17]. Hill slopes of less than unity have been
reported for UK 14304 at NAIBS in hamster fat
cells, rat liver cells and rat colon epithelial cells.

NAIBS are distinct from a,-
adrenoceptors .
Phenyoxybenzamine and benextramine are irrever-
sible antagonists at a number of receptors. including
a,-adrenoceptors. Receptor inactivation experi-
ments provide evidence that NAIBS and a,-adren-
oceptors  have  disunct  binding  domans.
Prctreatment of human adipocytes with phenoxy-
benzamine reduces the density of a,-adrenoceptors
without altering the number of NAIBS [16]. In the
same tissue, benextramine acts as a reversible anta-
gonist at NAIBS whereas irreversible antagomsm
occurs at the a,-adrenoceptor [16].

NAIBS and a,-adrenoceptors display ditfer-
ing sensitivity towards mono- and divalent 1ons.
The affinity of [*H]yohimbine at a,-adrenoceptors
is increased by monovalent ions with a rank order
potency of Na™ > Li™ > K™ [18]. Binding at NAIBS
in human kidney basolateral membranes is inhibi-
ted in a concentration-dependent manner by K~
[8]. Maximum inhibition of binding (70%) occurs at
150 mat with an ICy, (concentration producing 50%
inhibition) of 70 mxt. The divalent cations Mg**,
Ca’* and Mn?* have no effect in human kidney
NAIBS at concentrations up to 75 mm. The NAIBS
in human fat cells are also sensitive to monovalent
ions. Specific [*H]idazoxan binding to these sites is
reduced by 37% for K*. 27% for Li* and 13% for
Na*® [16]. In contrast with the NAIBS, binding of
the selective a,-adrenoceptor antagonist [*H]RX
821002 [19] is unaffected by K*, Li* and Na*
[16].

Differential centrifugation experiments demon-
strate that a,-adrenoceptors of human kidney
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are predominantly enriched in fractions con-
taining the basolateral membranes from proximal
tubules [8]. A similar finding 1s reported for rabbit
[20] and rat kidney |21]. In contrast with a,-adren-
oceptors. NAIBS appear to exist in both basolateral
and intracellular membranes [18], indicating that
NAIBS and a,-adrenoceptors may have difterent
subcellular distnibutions.

Solubilizaon and  partial  purnficanon  of
NAIBS and a,-adrenoceptors from rabbit kidney
has been reported |22]. Separation of solubilized
NAIBS and a,-adrenoceptors is achieved using
heparin—agarose chromatography. Under these
conditions. a,-adrenoceptors are retained by the
chromatography  medium, whereas the NAIBS
appear in the fall-through fraction. The falure of
NAIBS 1w be retained by the heparin-agarose
matrix. under condinons i which  a,-adreno-
ceptors are readily absorbed [23, 24|, provides
evidence that these nwo entities are disuncet.

Soluble NAIBS from rabbit kidney are tryp-
sin-sensitve indicaung that they are proteins and
not simply a lipid membrane component |22]. In
solubilizanon  experiments, NAIBS are not dis-
sociated from rabbit-kidney-membrane prepari-
tions by high salt concentrations, suggesting that
they are intrinsically bound.

A umgque distribution of NAIBS in rat brain
has been reported | 25]. They are located in discrete
areas, associated with brain nuclei, such as the
arcuate nucleus, the mterpenduncular nucleus and
area postrema. The physiological role of the NAIBS
in these nucler has sull to be defined.

Heterogeneity within NAIBS
Affimty values derived from ligand-binding studies
suggest the existence of more than one non-adreno-
ceptor binding site. Three distinct binding sites are
suggested to exist: (1) [*H]p-aminoclonidine bind-
ing sites distinet from NAIBS, (2) NAIBS in various
rabbit ussues and (3) NAIBS in non-rabbit tissue
[26]. The non-adrenoceptor sites identified with
[*H]p-aminoclonidine are pharmacologically differ-
ent from NAIBS (Table 1). Clonidine displaces
[*H] p-aminoclonidine binding to bovine and rat
brainstem with nanomolar affinity, whereas guana-
benz has low (710000 mi) affinity [27]. In contrast,
NAIBS. irrespective of whether they are located in
rabbit or non-rabbit tissue, display high affinity
(mum) towards guanabenz but low affinity (uM) to-
wards clonidine and p-aminoclonidine [14. 26].

The argument for multiple NAIBS is pri-
marily based upon differing affinities reported in
ligand-binding studies for the K*-sparing diuretic.



All vaiues are K(nm) except for bovine brain which are IC.(nr) values.
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Table |
Drug affinities at NAIBS and p-aminoclonidine binding sites

Binding site Cirazoline  Clonidine  Nephazoline  Amiloride ~ Guanabenz UK 14304
[*H]p-aminoclonidine binding site
Bovine brain 6 524 > 10,000 > 10,0002 n.d.
NAIBS (rabbit)
Kidney 0.8° 170° nd. 30 .8 120°
Urethra 293¢ 1265¢ n.d. 26° 445 297¢
Colon epithelial cells 85 n.d. 15.3' n.d. nd. 1049
Adipocytes n.d. 9758 9.2¢ 482 n.d. 948¢
NAIBS (non-rabbit tissue)
Human kidney 0.64" 2575" n.d. 369" 9.6" 241"
Human adipocytes 8.5 19054 68.2' n.d. n.d. 53.4'
Rat brain 257 537 46.7 562.3 6.2 nd.
Rat liver cells 221% 15067* 8.89 4808" 338" 4.0
Hamster adipocytes 0.9% 1950' 12.6 nd. n.d. 30.2

Key 1o references: “Ernsberger. P. et al. (1988) |. Hypertens. 6 (Suppl 4), 5554-5557: ®"Langin, D. et al. (1990) Mol. Pharmacol. 188, 261-
272: ‘Coupry. L. et al. (1989) FASEB |. 3. A1187: °Yablonsky, F. et al. (1988) Eur. |. Pharmocol. 164, 167-170; *Yablonsky, F. & Dausse,
J. P. {1989) Eur. |. Pharmocol. 164. 167-170; Senard. ). M. et al. (1990) Eur. J. Pharmacol. 191, 59-68: iLangin, D. & Lafontan, M. (1989)
Eur. J. Pharmacol. 159, 199-203: "Lachaud-Petuti. V. et al. (1991) Eur. |. Pharmacol. 206, 23-31: Langin. D. et al. (1990) Eur. |. Pharmacol.-
Mol. Pharmacol. Section. 188. 261-272; Brown. C. M. et al. (1990) Br. |. Pharmacol. 99, 803-809: “Zonnenschein, R. et al. (1990) Eur. J.

Pharmacol. 190, 203-215: MacKinnon, A. C. ei al. (1989) Br. |. Pharmacol. 98. 1143-1150.

amiloride at NAIBS in rabbit and non-rabbit tssue
(Table 1). Amiloride displays high athimty at NAIBS
in rabbit urethra (K, 26 na), kidney (K, 30 ny) and
adipocytes (K, 48 nx). modest affinity towards
human kidney (K, 369 nm) and rat brain (K, 562
num) [8. 14, 28], and low affinity in rat liver cells (K|
4808 nm) and rat kidney (K, 7760 nxi) [6, 9]. The
widely different affinity values reported for amilo-
ride at NAIBS in rabbit and non-rabbit tissue may
simply reflect a species difference among NAIBS
and not an example of heterogeneity within this
class of sites. Confirmation that heterogeneity exists
within NAIBS will require identification of a rabbit
tissue displaying low affinity towards amilonide or
conversely, a non-rabbit tissue displaying num affin-
ity towards this drug.

Physiological function of NAIBS

The non-adrenoceptor binding sites labelled by
[‘H] p-aminoclonidine are implicated in the central
hypotensive effects of clonidine-like substances
[29]. An endogenous substance termed clonidine
displacing substances (CDS) has been partially
purified and shown to interact with brainstem
| 'H ] p-aminoclonidine-binding sites and produce
hypotensive effects when injected into the rostral

ventrolateral medulla of the rat through a mechan-
ism independent of a-adrenoceptors [30]. It has
also been suggested that these sites may bg¢ a sub-
type of the histamine H,-receptor [31].

In contrast with the non-adrenoceptor sites
labelled by [*H]p-aminoclonidine, less is known of
the physiological relevance of NAIBS. Cirazoline
and idazoxan inhibit **N* uptake into isolated
rabbit renal proximal tubule cells by a mechamsm
independent of the a,-adrenoceptor [32]. It has
been suggested that this effect could be mediated
through inhibition of the Na*/H* antiporter in
these cells [32]. NAIBS may also be involved in
regulating insulin release [33] and inhibition of K*-
channel opening in vascular smooth muscle [34].
Recently, it has been demonstrated that NAIBS in
human and rabbit liver are mainly located in the
outer mitochondrial membrane and not with the
plasma membrane [35]. Cirazolone, idazoxan or
guanabenz have no effect on respiratory control
indicating that NAIBS are not involved in the regu-
lation of respiratory activity and oxidative phos-
phorylation. Furthermore, PK 11195, a selective
ligand for the mitochondrial peripheral-type benzo-
diazepine receptor [36] has low affinity for mito-
chondnal NAIBS, indicating that these two sites are
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different. Additional studies are required to confirm
that NAIBS present in non-liver tissue are also
located on the outer mitochondrial membrane. The
identification of selective agonists/antagonists for
NAIBS will allow the physiological/biochemical
function of these mitochondrial sites to be esta-
blished.

NAIBS in adipocytes
The adipocyte may be a simple model in which to
examine a,-adrenoceptor function and the possible
effects of interactions at NAIBS. Human adipocyte
a,-adrenoceptors are labelled with high affinity by
[*H]clonidine and [‘H]yohimbine [37, 38]. Hamster
adipocytes are labelled with high affinity by
[*H]clonidine whereas binding with [*H]yohimbine
has proved difficult [39]. a,-Adrenoceptors have
been shown to co-exist with NAIBS in human [13],
rabbit [12] and hamster adipocytes [7].
Catecholamine-induced lipolysis is regulated
through sumulatory B-adrenoceptors and inhibitory
a-adrenoceptors in adipocytes of white-fat tissue

from man [40], dog [41] and hamster [42]. Func-'

tional studies indicate that a - and a,-adrenocep-
tors exist in human [34] and hamster fat cells [43,
44]. The anti-lipolytic effects of a-adrenoceptor
agonists are mediated through the a,-adrenoceptor
in hamster [45] and man [46].

We have reported previously the existence of
a,-adrenoceptors and NAIBS in hamster adipo-
cvtes [7]. We have extended our initial observations
and report that from ligand-binding studies, an
affinity rank order of idazoxan (p K; 8.34) > phento-
lamine (pK, 7.92)> UK 14304 (pK,; 7.52)> yohim-
bine (pK, 7.28)> cirazoline (pK, 6.63) exists for
a,-adrenoceptors in hamster adipocytes (Table 2).
In contrast, the affimity rank order for hamster
NAIBS of crazoline (pK, 9.02)> yohimbine (pK,
4.26) is different to that defined from a;-adrenocep-
tors. The derived phentolamine/cirazoline affinity
rato of 1:19 at a.-adrenoceptors and 0.58 at
NAIBS is sufficiently different to potentially act as a
predictor of the relauve contribution that each site
makes to an anti-lipolytic effect produced in func-
tional studies.

UK 14304 acts as a full agonist (relative 10
clonidine), promoting a strong anti-lipolytic effect in
rabbit [13] and hamster adipocytes [47]. The anti-
lipolytic effect of UK 14304 in functional studies on
isolated hamster adipocytes 1s inhibited with an
affinity rank order of phentolamine (pA, 7.87)>
idazoxan (pA, 7.36)>yohimbine (pA, 7.26)>
cirazoline (pA, 393). The derived phentol-
amine/cirazoline affinity ratuo of 1.32 is indicative
of an a,-adrenoceptor-mediated effect. Thus, al-
though UK 14304 is a non-selective high-affinity

B gl A8 $fiTable 2 i - : 4
Affinity of idazoxan, yohimbine, phentolamine and cirazoline at hamster
adipocytes

The isolation of hamster adipoctye membranes and binding studies we-2 carried out as

described previously [7]. In functional

studies. intact adipocytes (approxirately

10000-20000 cells) were suspended in Krebs-Ringer bicarbonate buffe- 5H 7.4, ccntain-
ing 3.5% (wiv) fatty-acid-deficient BSA, 2 m~-CaCl, and 10 um-pron-znolel in z final
volume of 0.5 ml. Adipocytes were preincubated with increasing concantrations of UK
14304 for 20 min at 37°C before being stimulated by the addition of 102 um-theopnylline
and 2 ug of adenosine deaminase (72 units/mg of protein). Incubations were carried out
for 20 min. at 37°C. Test drugs were added 20 min. before stimulation =. UK 14304, Gly-
cerol in the infranatant was measured spectrophotometrically. The UK 4304 concentra-
tion-response curves were repeated in the presence of at least three zoncentrations of
the drug and each value represents the mean tser of five separate exo2riments.

[’H)ldazoxan binding Lipolysis
a, NAIBS PA.
ldazoxan 834+0.16 7361032
Yohimbine 7.28+0.02 426%0.18 7.26£0.17*
Phentolamine 7.92+0.14 521 +002 7.87 1031
UK 14304 7.52+0.22*
Cirazoline 6.63+£0.09 9.02+0.13 5.95+0.3I

* denotes a slope significantly less than unity, 7 <0.01.
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ligand at a,-adrenoceptors and NAIBS and displays
Hill slopes of less than unity at both sites, the anu-
lipolvtic effects of UK 14304 are mediated through
the «,-adrenoceptor. The failure of NAIBS to
modity the anti-lipolytic effects of UK 14304 sug-
gest that either UK 14304 is not an agonist at
NAIBS or that these sites are not involved in a,-
adrenoceptor regulation of lipolysis. However, if it 1s
confirmed that hamster adipocvte NAIBS are
located within the mitochondna, the results
obtained with UK 14304 may simply reflect ease of
access to a,-adrenoceptors relatuve 1o NAIBS. An
indication of intracellular accumulaton of UK
14304 in isolated adipocytes is required.

Iniial data suggest that NAIBS are not
involved in the regulaton of lipolysis. However, the
adipocyte may sull represent a relatvely simple
model tor exploring the possible relationship
between a,-adrenoceptors and NAIBS and provide
the means of assigning a physiological function to
this parucular binding site.
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Inter-species variants of the 5-HT; receptor
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The 5-HT; receptor

The 5-HT: receptor is located on neurones in the
peripheral and central nervous svstems where it
mediates some of the excitatory effects of 5-HT (see
[1] for review). While the 5-HT; receptor has not
yet been cloned, biochemical and electrophysio-
logical evidence support the view that this receptor
belongs 1o the multi-subunit ligand-gated 1on
channel family of receptors, a family to which the
acetylcholine, nicounic and GABA, receptors
belong. This contrasts with the other receptors for
5-HT which are all thought to belong to the single-
subunit G-protein-linked class of receptors (see
2))

Electrophysiological analysis of 5-HT ;-recep-
tor-mediated events reveals that it is directly linked
to a monovalent cation channel [3]. Sumulation of
the receptor results in a fast depolarization which
rapidly desensitizes. often leaving a small main-
tained response (see [4]). The 5-HT; receptor has
been solubilized from several sources [5-8]; the
molecular mass of the solubilized receptor complex
has been estimated to be 250-600 kDa using gel fil-
tration techniques [6, 9]. Affinity chromatography
using covalently attached 3-HT-receptor antagon-
ists has allowed purification of the receptor, and
PAGE of the purified receptor reveals either wo
bands of molecular masses 38 and 54 kDa (NCB20
cells, [9]) or a single band of 35 kDa (NIE 115
cells, [8]). The disparity between the molecular
masses of the receptor as determined by gel filtra-
tion and PAGE support the view that the 5-HT;
receptor exists as a multimeric complex which can
be dissociated into its monomer units.

The 5-HT; receptor has been classified as
such on the basis of its pharmacological profile
assessed using agonist and antagonist compounds.
A limited number of selective agonists for the

Abbreviation used: mCPBG, metachlorophenylbiguanide.
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5-HT; receptor have been identified. The most fre-
quently used compound is 2-methyl-5-HT which
was first identified by Richardson et al. [10]. This
compound is nearly as potent as 5-HT at 53-HT;
receptors, but has little activity at other 5-HT recep-
tors. Phenylbiguamde has a similar profile [11, 12].
The most potent agonist available i1s metachloro-
phenylbiguanide (mCPBG: [13, 14]). This com-
pound is significantly more potent than 3-HT at
5-HT; receptors, with minimal effect on other 5-HT
receptors.

Recent majer advances in 3-HT ;-receptor
research stem from the availability of highly selec-
tive and potent anagonists. Some of the first to be
identified were MDIL, 72222 [15], ICS 205-930
[10]; ondansetron (GR38032F; [16]) and granise-
tron (BRLA43694: [17]). but there are now more
than 20 such conmpounds. As a group. these com-
pounds are pecular in as much as they are highly
selective lor the -HT; receptor — each shows at
least 1000-fold sclectivity for the 5-HT. receptor
over the other necurotransmitter receptors. upon
which they have been tested (note that ICS 203-930
has weak affinitv “or the 3-HT, receptor) — and po-
ssess high affinin. This means that commonly
observed effects wwith these compounds at reason-
able doses/concentrations can  be confidently
ascribed 10 antagonism at 3-HT; receptors.

These seleczive antagonists are not only good
pharmacological -ools for the study of 5-HT; recep-
tors but are also useful climcally in the treaument of
emesis resulting from cancer therapy. Data from
animal behaviounl studies and preliminary clinical
trials indicate that they may also be useful in the
treatment of vanaus psychiatric disorders [18. 19].

Heterogeneity of the 5-HT, receptor

In the absence of sequence data on the 3-HT;
receptor, the bes: means of identification of receptor
subtypes remains the classical pharmacological



