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Abstract 

 
This thesis consists of three essays on banking in the U.S. The first two chapters 

study how supervisors and regulators influence bank behavior. The third chapter 

explores how bank CEOs allocate credit.  

The first chapter uses a quasi-natural experiment, the closure of regulatory 

offices, to identify the effects of supervision on bank behavior. Under the decentralized 

structure of U.S. bank supervision, banks in the same geographic area may be 

supervised by different regulatory offices. The chapter shows that, following the 

closure of a regulatory office, banks previously supervised by that office increase their 

solvency risk and lending compared with banks in the same counties that are 

supervised by a different regulatory office. Further, these banks exhibit lower risk-

adjusted returns, lower asset quality, and opportunistic provisioning behavior for loan 

losses. Information asymmetry between banks and supervisors partly explains the 

results. 

 The second chapter documents that nearly 30% of U.S. banks employ at least 

one board member who currently or previously served on a regulator’s advisory 

council or on the board of a regulator as a form of public service. The chapter shows 

that connections to regulators undermine regulatory discipline by decreasing the 

sensitivity of bank risk to capital. Connected banks are able to extract larger public 

subsidies than non-connected banks by shifting risk to the financial safety-net, 

resulting in wealth transfers from taxpayers to shareholders of risk-shifting connected 



 

ix 
 

banks. One potential reason for these effects is that connected banks receive 

preferential treatment in supervision from regulators.  

The third chapter uses the birthplace of U.S. bank CEOs to investigate the 

effect of hometown favoritism on bank business policies. Exploiting within-bank 

variation in distances to a CEO’s hometown, the chapter shows that banks make more 

mortgage and small business lending as well as branch expansions in counties that are 

proximate to the hometown of the CEO. This is due to the CEO’s altruistic attachment 

to her hometown; the effects are stronger during economic downturns, among altruistic 

CEOs, in poorer counties and marginal mortgage applicants. Further, hometown 

favoritism does not lead to worst bank performance. However, it is associated with 

positive economic outcomes in counties exposed to greater favoritism. 
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Introduction 

 
Banks play a pivotal role in the economy. Well-functioning financial systems 

facilitate efficient allocation of credit from savers to businesses, spurring 

entrepreneurial growth and capital formation. This is primarily achieved by funding 

long-term loans with short-term demandable deposits. Because of the fragility of the 

business model of the bank and its importance in the economy, banks are heavily 

regulated and supervised, a sui generis feature of the industry. This thesis consists of 

three independent chapters exploring the themes of supervision and bank behavior. 

The first two chapters studies how bank supervisors and regulators can influence bank 

behavior. The third chapter investigates the credit allocation policies of bank CEOs. 

The first chapter studies the impact of supervision on bank outcomes. 

Analyzing whether and how bank supervisors influence bank behavior poses several 

challenges. First, supervisory scrutiny is endogenously related to the behavior of a 

bank. Second, changes in local economic conditions could simultaneously influence 

the behavior of banks as well as supervisors. To overcome these challenges, I make 

use of the supervisory setting in the U.S. where banks in the same geographic area may 

be supervised by different regulatory offices. I exploit regulatory office closures —

which only affects banks under its supervision— and compare the behavior of these 

banks to a group of banks residing in the same area that are not affected by these office 

closures.  

Following regulatory office closures, banks supervised by the recently closed 

office increase their risk-taking and grew their loan portfolios more aggressively as 
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compared to unaffected banks that are located in the same counties as banks affected 

by the closure. Further, I show that bank supervisors were not too strict during the pre-

closure period and that increases in risk-taking and lending by affected banks led to 

negative consequences. Banks that were affected by regulatory office closures before 

the 2007-2009 financial crisis had lower risk-adjusted returns, more non-performing 

loans and a higher probability of failure during the crisis. Regulatory office closures 

also led to increases in bank resolution costs. Lastly, I highlight one possible channel 

—the increase in information asymmetry between supervisors and banks— to explain 

why regulatory office closures decrease the efficacy of bank supervision. The results 

of this chapter should be of broad interest to supervisors and regulators. It highlights 

the benefits and costs of maintaining physical offices and the effects local offices have 

on the quality of supervision. 

The second chapter builds on the theme of supervisory efficacy and studies 

how bank connections to regulators influences supervisory discipline. I highlight an 

under-explored regulatory arrangement, the representation of bankers in regulatory 

agencies as a form of public service, and show that nearly 30% of U.S. banks have at 

least one director who is connected this way. Most notably, the 12 Federal Reserve 

Banks, which between them supervise all Bank Holding Companies in the U.S., are 

each overseen by a board of directors that consists of bankers. In addition, the Federal 

Reserve also relies heavily on bankers to inform policy through their participation in 

advisory councils.   

 I show that connected banks —banks that have directors who served in 

regulatory agencies as a form of public service— undermine supervisory effectiveness. 

Connected banks have lower risk to capital sensitivities and extract larger public 
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subsidies by shifting risk to the financial safety-net. I use two empirical strategies: (i) 

the retirement of Federal Reserve Presidents as negative shocks to the efficacy of 

existing connections and; (ii) the heterogenous effects of the Emergency Economic 

Stabilization Act of 2008 on risk-shifting incentives, to minimize endogeneity 

concerns. I further show that preferential treatment in supervision is one reason that 

explains the risk-shifting behavior of connected banks. The chapter concludes by 

documenting that wealth is transferred from taxpayers to the shareholders of well-

performing connected banks. The findings draws attention to the potential conflicts of 

interest that exists in allowing bank representation and involvement in regulatory 

agencies.  

 The third chapter takes a departure from the subject of supervisory 

effectiveness and focuses on a determinant of credit allocation policies within banks 

—CEO hometown favoritism— and investigates its real effects on the economy. 

Understanding how bank credit is allocated in the presence of behavioural biases and 

whether such allocations are efficient is an important question given the importance of 

credit supply on housing outcomes and economic development.  

Exploiting within-bank variation in distances to a CEO’s place of birth, I show 

that bank CEOs make more mortgage and small business lending as well as open more 

branches in counties that are proximate to their place of birth as compared to counties 

that are located further away. To establish causality and reduce the possibility that 

CEO-bank matching is driving the results, I use: (i) a subsample of exogenous 

turnovers and; (ii) exogenous changes in the macroeconomic environment. I further 

explore various explanations for why bank CEOs favor their hometown and find 

support for an altruistic motive; the hometown favoritism effect is stronger during 
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economic downturns, among altruistic CEOs, in poorer counties and marginal 

mortgage applicants. Finally, I document that hometown favoritism is not associated 

with worst bank performance, but leads to positive economic outcomes for residents 

located in counties proximate to the hometown of bank CEOs. This suggests that 

hometown favoritism, while arising out of the altruistic goodwill of the CEO, might 

inadvertently contribute to economic inequality. 
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1 

Does Bank Supervision Matter? 

Evidence from Regulatory Office 

Closures 

 

 

 

 
1.1 Introduction 

 

Banking is one of the most heavily regulated industries. While U.S. banks 

operate under a unified framework of written rules, the task of ensuring compliance 

with these rules is divided between different supervisory agencies and their nationwide 

network of local offices. A particular feature of this supervisory system is that banks 

in the same geographic area may each be supervised by a different supervisory office. 

In this chapter, I utilize these decentralized supervisory arrangements to investigate 

whether supervision has an effect on bank behavior. 

Analyzing whether and how bank supervisors affect bank behavior poses a 

number of identification challenges. Most poignantly, the behavior of banks and 

supervisors is determined in an endogenous process where risk and other operational 

bank choices will spur supervisory action. Likewise, economic shocks, many local in 

nature and not directly observable, will affect the conduct of banks and supervisors 
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simultaneously. Therefore, establishing causal links between bank outcomes and 

supervision is challenging. 

The existing literature highlights some of the difficulties of linking supervision 

to banking sector variables (Barth, Caprio, and Levine, 2004). In particular, the 

literature demonstrates how the supervisory setting is endogenously determined when 

banks locate risky activities away from geographic environments under strict 

supervision (Ongena, Popov, and Udell, 2013), when the strictness of supervisors is 

dependent on the state of the economy (Agarwal, Lucca, Seru, and Trebbi, 2014) or 

when banks shop for supervisors they expect to be softer on them (Rosen, 2003; 2005).  

In this chapter, I utilize some of the unique features of the U.S. system of bank 

supervision to overcome these identification challenges. I exploit the fact that banks 

in the same geographic area may be supervised by different regulators. Specifically, 

commercial banks are supervised by one of three main federal regulators (the Federal 

Deposit Insurance Corporation (FDIC), the Federal Reserve (Fed) or the Office of the 

Comptroller of the Currency (OCC)).1 This decentralized supervisory set-up allows 

me to devise a quasi-natural experiment that utilizes the closures of regulatory offices 

as negative shocks to the efficacy of supervision. 

My identification is based on the rationale that the closure of a regulatory office 

increases the cost of collecting and verifying bank-specific soft information for 

supervisors and thus, leads to a decrease in efficacy of bank supervision. However, 

within the counties in which a recently closed supervisory office has operated, only 

                                                           
1 A bank’s charter and membership to the Federal Reserve System determines the primary federal 

regulator charged with supervising a bank’s activities. Banks with national charters are supervised by 

the OCC. Banks with state charters that are members of the Fed System are supervised by the Fed while 

other state-chartered banks are supervised by the FDIC.  



 

7 

 

banks supervised by the closed regulatory office should be affected by the shock. 

Banks that are supervised by a different regulatory office should remain unaffected by 

the closure.   

A key advantage of this set-up is that I can compare the behavior of treated 

banks that were affected by regulatory office closures (because the closed office was 

responsible for their supervision) to a control group of banks that operate in the same 

counties as affected banks but are not supervised by the closed office. Since treatment 

and control banks are located in the same counties, they are exposed to similar local 

economic conditions. This alleviates concerns that my results could be biased by 

unobserved local economic shocks that simultaneously affect the behavior of banks 

and supervisors.2 

My main hypothesis is that the closure of a regulatory office will impair the 

efficacy of banking supervision amongst the banks under the supervision of the office 

that has been closed. To test this hypothesis, I hand-collect a new dataset that maps 

out the locations of regulatory offices belonging to the FDIC, the Fed and the OCC. I 

conduct my analysis in a difference-in-difference (DiD) setting using 10 regulatory 

office closures, 278 (140) treatment (control) banks, and 8,321 bank-quarter 

observations from 2002 to 2013.  

My results show that, following regulatory office closures, banks supervised 

by the recently closed office increase their risk-taking compared to a control group of 

banks that are located in the same counties as banks affected by the closure. The 

                                                           
2 A further advantage of my identification strategy is that there are multiple shocks (i.e., regulatory 

office closures) affecting different banks in different geographical locations at different times. This 

minimizes the possibility that potential omitted variables coinciding with a single shock could bias my 

results (Atanasov and Black, 2016). 
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economic magnitude of the effects are sizable. For instance, banks whose supervisory 

office closed increase their solvency risk (Z-Score) by approximately 19% (relative to 

the sample mean) compared to the control group. Further, regulatory office closures 

are also linked to changes in the asset portfolios of banks under the supervision of a 

closed office. These banks grew their total loan portfolio by 11% and their real estate 

loan portfolio by 16% compared to the control group.3  

My findings are robust to different model specifications as well as the inclusion 

of various control variables and different sets of fixed effects. The tightest 

specification includes county x year-quarter, regulatory office x year-quarter and bank 

fixed effects. Thus, I estimate changes in the behavior of banks vis-à-vis the control 

group within the same county and quarter and within the group of banks supervised by 

a particular regulatory office in each quarter. Consequently, time-varying omitted 

variables (e.g., local economic shocks or time-varying preferences in the enforcement 

of supervision by regulatory offices) are unlikely to bias my results.  

Further, I conduct several diagnostic and placebo tests to validate my empirical 

design. I confirm that there are no statistical differences in bank characteristics or 

trends in the pre-closure period between the treated and control group of banks. I also 

show that changes in bank behavior are indeed observed after (and not before) 

regulatory office closures. Incidentally, the effects I document remain fairly persistent 

in each of the post-closure years. This rules out a temporary “distraction” explanation 

                                                           
3 The exact characteristics of each closure (e.g., what percentage of staff will relocate to the new office 

or the distance to the new office) could affect the extent to which regulatory office closures impair 

effective enforcement. Indeed, I show that changes in bank behavior are more pronounced for large 

increases in distance between banks and the new regulatory office (as caused by the closure of the 

previously responsible office). However, many other office characteristics are not observable. I 

therefore interpret the effects I document in this chapter as an aggregate estimate of the effects that 

office closures have on banks. 
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following the closure when a new supervisory office is now allocated to a bank and 

needs to familiarize itself with the institution.  

Additionally, I conduct a placebo test that repeats my analysis using only banks 

in the control group. I find no evidence that banks in the control group increase their 

risk-taking and lending in the period following regulatory office closures. Finally, I 

confirm that changes in the performance or risk of banks under the supervision of a 

regulatory office do not predict the closure of that office. Instead, office closures occur 

when offices are smaller and experience declines in the assets under its supervision. 

Thus, the closure of offices is related to the need to rebalance supervisory resources 

and not the behavior of the individual banks under their supervision. 

The increases in risk-taking and lending I document following closures of 

regulatory offices may not necessarily be a cause for concern. For instance, my 

findings are equally consistent with explanations that regulators may have been too 

strict in the pre-closure period and that less regulatory attention in the period after a 

supervisory office closure permits banks to take calculated risks without negative 

consequences for them. However, the results from various tests do not support this 

view. While I show that bank profitability increases after regulatory office closures, I 

also show that less supervisory attention is associated with a number of negative bank 

outcomes, including lower risk-adjusted performance, more non-performing loans and 

a higher probability of failure during the 2007-09 financial crisis. Subsequently, office 

closures are also associated with real costs to the FDIC. I estimate that the closure of 

a single regulatory office leads to bank failure resolution costs of approximately $15.7 

million.  
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Why do regulatory office closures lead to higher bank risk-taking? In the 

second part of this chapter, I present evidence that points to information asymmetry 

issues between regulators and banks as one driving factor behind my results. In a first 

test, I examine the loan loss provisioning practices of banks. Loan loss provisions 

(LLPs) should reflect the expected future losses on a bank’s loan portfolio. Sustained 

under-provisioning by banks can lead to capital inadequacy concerns if the accrued 

LLPs are insufficient to cover losses during economic downturns (Beatty and Liao, 

2014; Bushman and Williams, 2015). Ensuring that banks maintain LLPs that are 

commensurate with the expected future losses on their loans is therefore important 

from a regulatory perspective (Costello, Granja, and Weber, 2016).  

However, since loans are notoriously opaque, banks enjoy considerable 

discretion in provisioning for expected losses on their loan portfolio (Beatty and Liao, 

2014). I therefore expect that office closures impede a supervisor’s ability to enforce 

provisioning practices that are commensurate with the risk profile of a bank’s loan 

portfolio. Specifically, I expect to find that information asymmetry issues permit banks 

to lever their information advantages over their newly assigned regulatory office to 

delay provisioning and boost current income. 

In line with this expectation, I find that the closure of a regulatory office affects 

the discretionary provisioning practices of banks previously supervised by the closed 

office. First, I find that banks previously supervised by a closed office report lower as 

well as less timely loan loss provisions. Second, using various approaches to determine 

the discretionary component in banks’ LLPs (as used in Kanagaretnam, Krishnan, and 

Lobo, 2010; Beatty and Liao, 2014; Jiang, Levine, and Lin, 2016), I show that, 

following supervisory office closures, banks previously supervised by a closed office 
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systematically increase their use of income-increasing provisions which leads to more 

opaque balance sheets. I interpret this as consistent with banks making opportunistic 

use of information asymmetry issues between them and their newly assigned 

regulatory office to make income-increasing accruals.  

My second test for information frictions is based on the distance between banks 

and supervisory offices. Larger physical distances between economic agents are 

commonly associated with higher levels of information asymmetry due to the 

increased cost of collecting and verifying of soft information (Coval and Moskowitz, 

2001; Malloy, 2005; Agarwal and Hauswald, 2010; Kedia and Rajgopal, 2011). When 

banks are assigned a new regulatory office, this results in a kilometer-increase in the 

physical distance between a bank and its regulatory office. My results show that 

increases of 15 km or more lead to higher levels of bank risk-taking. By contrast, 

smaller increases in distance have no measurable effect on bank behavior.  

1.2 Related Literature and Institutional Background 

 

1.2.1 Related Literature 

 

My work is related to a growing literature on the impact of supervision on 

bank-level outcomes. Early studies on this topic rely on cross-country differences in 

supervision and have produced mixed results. Barth et al. (2004) find no evidence that 

measures of supervisory power are related to bank development, bank efficiency or 

loan performance across countries. Ongena et al. (2013) find that the effectiveness of 
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regulation on banks’ lending standards abroad partly depends on the strength of 

supervision in their home market.4  

Recent work has devised empirical set-ups to isolate the effects of supervision 

on bank behavior within the U.S. Rezende and Wu (2014) use discontinuities in bank 

size thresholds that determine the minimum number of on-site bank examinations to 

demonstrate that more frequent examinations are associated with better bank 

performance. Hirtle, Kovner, and Plosser (2016) use size rankings of Bank Holding 

Companies (BHCs) within the individual 12 districts of the Federal Reserve System 

as a proxy for regulatory attention. They show that the five largest banks in a Fed 

district display lower risk compared to a matched sample of similar-sized BHCs in a 

different Fed district that are not amongst the five largest banks in that district.  

I take this previous work on supervision and bank behavior as a starting point 

and build on it in the following ways. I devise a new quasi-experimental setting —the 

closure of regulatory offices— which allows me to use geographically granular data 

to systematically contrast changes in the behavior of banks supervised by a previously 

closed office to the behavior of unaffected banks residing in the same counties. In a 

later study by Kandrac and Schlusche (2017), the authors offer an analysis set across 

the 12 Federal Home Loan Banks (FHLB) that act as the primary supervisor of thrifts 

in their districts. They show that following the relocation of the 9th district FHLB in 

1983, thrifts under its supervision took on more risk compared with thrifts in other 

districts.  

                                                           
4 More broadly related to my work are studies that examine the effects of regulatory enforcement 

actions. For instance, Peek and Rosengren (1995) and Danisewicz, McGowan, Onali, and Schaeck 

(2016) find that regulatory enforcement actions reduce the supply of credit provided by banks. 
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My paper differs from Kandrac and Schlusche (2017) in several ways. First, 

Kandrac and Schlusche (2017) compare thrifts affected by the relocation of the 9th 

FHLB office to unaffected thrifts from neighboring districts (where economic 

conditions might differ). Importantly, my analysis is set within the counties in which 

banks affected by an office closure reside. This aids a plausibly causal interpretation 

of the results as it allows me to compare affected and unaffected banks operating under 

similar local conditions and thus, hold constant any effects local economic conditions 

might have on the conduct of banks and supervisors. 

Further, my analysis exploits multiple (10) office closures from all three federal 

regulators spanning years 2003 to 2010 (Kandrac and Schlusche (2017) use only one 

relocation event in 1983). The use of multiple office closures occurring in different 

years as well as across different regulators allows me to sharpen inference and 

generalize my findings by reducing any systematic bias that arise from any specific 

circumstance surrounding an office closure. Based on this granular geographic 

analysis, I show that decreases in supervisory efficacy lead to higher bank risk, lower 

asset quality and higher failures rates in times of economic downturns.5 

Second, my work is related to studies on regulatory inconsistency and arbitrage 

within the decentralized structure of U.S. bank supervision. Rosen (2003; 2005) finds 

that banks show better performance after switching regulators and argues competition 

                                                           
5 In a paper that entered the public domain after mine, Gopalan, Kalda, and Manela (2017) use a similar 

research design and present results that are largely complementary. Goplan et al. cite this chapter as 

inspiration for their identification strategy and for part of their data collection strategy. I find that 

following regulatory office closures, banks increase their risk-taking and loan expansion while Gopalan 

et al. report higher leverage ratios. They also find a higher probability of bank failures as I do. However, 

while Gopalan et al. use OCC regulated banks, I examine the closures of offices of all three federal 

agencies. This allows me to paint a systematic picture of the effects of supervisors beyond the specific 

behavior (including biases) of any single supervisor. Additionally, I offer evidence of information 

asymmetry issues between supervisors and banks by examining bank loan loss provisioning behavior.  
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between regulators is beneficial. However, Rezende (2014) shows that although banks 

receive better regulatory ratings after they switch regulators, they also tend to fail 

more. Agarwal et al. (2014) exploit supervisory rotation policies —which assign 

federal and state regulators to the same bank exogenously— to show that different 

regulators implement identical regulations inconsistently. Agarwal et al. (2014) argue 

that discrepancies in regulatory behavior arises due to differences in incentives, with 

state regulators being more lenient because they are more concerned about local 

economic conditions. The chapter contributes to this line of work by offering evidence 

consistent with information asymmetry issues between examiners and banks as a 

complementary explanation for discrepancies in supervisory enforcement.  

Third, the chapter is also part of the literature on the determinants of bank 

financial reporting choices and their consequences. Costello et al. (2016) use a 

regulatory stringency index to show that strict regulators are more likely to enforce 

income-reducing reporting choices by forcing bank restatements. Further, distortions 

in bank financial reporting can lead to increases in bank and systemic risk (Bushman 

and Williams, 2015), reductions in the supply of loans (Beatty and Liao, 2011) and 

lower bank valuations (Huizinga and Laeven, 2012). I show that the nearby presence 

of regulatory offices prevents banks from engaging in income-increasing accounting 

choices which could potentially be destabilizing.  

1.2.2 Institutional Background 

 

Banks in the U.S. operate under a decentralized structure of bank supervision. 

Three federal regulators divide the supervision of U.S. commercial banks based on the 

charter and geographic location of these institutions (Federal Deposit Insurance 

Corporation, 2015; Board of Governors of the Federal Reserve System, 2017a; Office 
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of the Comptroller of the Currency, 2017). The OCC supervises banks with a federal 

charter, i.e. all national banks. By contrast, the federal regulator responsible for state-

chartered banks is divided between the Federal Deposit Insurance Corporation (FDIC) 

and the Federal Reserve (Fed). If a bank is a member of the Federal Reserve System, 

it is supervised by the Fed. Alternatively, if it is not a member of the Fed, it is then 

supervised by the FDIC.  

Prior to the 1980s, different bank charters implied differences in bank capital 

requirements, lending limits and permissible activities. However, these differences 

have diminished over time. Subsequently, banks select their charters based on the cost 

that supervisors charge for supervision and their accessibility (Rosen, 2005; Blair and 

Kushmeider, 2006; Agarwal et al., 2014).6 

While a bank’s charter determines which agency is responsible for supervising 

a bank, the supervisory unit (or “office”) in charge of a bank’s day-to-day supervision 

is determined by the geographic location of a bank. The Federal Reserve System 

covers 12 districts, each headed by a Federal Reserve Bank with multiple local offices 

that supervise banks located in that district. For instance, the Federal Reserve Bank of 

San Francisco heads the 12th district and oversees four offices (located in Seattle, 

Portland, Salt Lake City, and Los Angeles).  

Similarly, the FDIC divides its supervisory activities into eight regions 

(Atlanta, Boston, Chicago, Dallas, Kansas City, Memphis, New York and San 

Francisco). In each region, a regional office heads a network of offices that are tasked 

                                                           
6 I take several steps to ensure that bank preferences for a certain charter does not bias my results. First, 

I exclude banks which have changed their charters. Second, I also omit banks which have changed the 

location of their headquarters. Third, I include bank, regulatory office and time fixed effects to control 

for any time-invariant differences. I detail this in Section 1.3.  
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with supervising banks that fall under its geographic coverage. The OCC divides itself 

into four districts (Central, Northeastern, Southern and Western) and relies on a 

network of offices that operate under each district to supervise banks that are 

headquartered within their area of jurisdiction.  

 This decentralized network of offices is vital for supervisors to carry out on-

site and off-site monitoring of banks. Teams of travelling examiners, who are typically 

based in the nearest responsible supervisory office, will conduct on-site (“safety and 

soundness”) examinations to verify the accuracy of information contained in 

regulatory filings made by banks. The examiners will also assess the validity of 

internal risk management processes and models, review loan portfolios and meet with 

and evaluate the management of a bank. Between on-site examinations, examiners 

engage in off-site monitoring to assess a bank’s financial condition via monitoring of 

the Call Reports filed by banks with supervisors on a quarterly basis (Federal Deposit 

Insurance Corporation, 2015). 

For these supervisory activities, knowledge of the environment in which banks 

and their customers operate is important. Much of this information is soft and of a local 

nature and proximity to banks is therefore important for effective bank supervision. 

Consistent with this, the Federal Reserve Bank of St. Louis (2017) argues that 

“Gathering in-depth information […] would be a challenging task to accomplish from 

a single location. Therefore, one of the key ways branches assist the St. Louis Fed is 

through the gathering of economic information from around their zones. Branches 

allow not only for a more efficient collection of information, but also for deeper 

relationships through staff involvement in their local economies, producing a depth 

and breadth of information not possible from hundreds of miles away.” 
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1.3 Data and Empirical Methodology 

 

1.3.1 Regulatory Office Closures 

 

I study the effects of supervisory office closures on bank behavior. My analysis 

focuses on federal supervisors (rather than state supervisors), because federal 

regulators have been shown to enforce regulations more consistently than state 

regulators. For instance, Agarwal et al. (2014) show that state regulators are influenced 

by the potential effects that their actions might have on local economic conditions. 

Further, Costello et al. (2016) argue that state regulators are more prone to “capture” 

by the banks they supervise as compared to federal regulators. Therefore, by focusing 

on federal regulators, I can interpret the results as plausibly due to a reduction in 

supervisory attention rather than other supervisor-specific factors.  

To study the impact of regulatory office closures on bank behavior, I require a 

comprehensive dataset of the locations of regulatory offices. However, data on the 

historical locations of offices are not directly obtainable from regulators. I therefore 

hand-collect data from various sources to construct a novel dataset of regulatory office 

locations that I then use to identify office closures.  

To obtain data on the past locations of Fed offices, I manually collect and verify 

regulatory office locations from the annual reports of the 12 Federal Reserve Banks. I 

obtain annual reports from the websites of the respective Federal Reserve Banks and 

the FRASER archive maintained by the Federal Reserve Bank of St. Louis. When I 

cannot identify past office locations this way, I consult historical accounts detailing 

the histories of the Federal Reserve Banks. These accounts often include architectural 

descriptions as well as the physical location of the buildings used by the Fed Banks 
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and their branches.7 I am able to identify the exact geographical locations of all Federal 

Reserve Banks and their branches from 1984 to 2013.  

The FDIC and OCC offer considerably less information on the locations of 

their offices in their Annual Reports or websites. I therefore rely on a different strategy 

to identify the historical locations of offices belonging to the FDIC and OCC.8 I use 

Wayback Machine, a web archiving site (https://archive.org/web/) to access past 

versions of the websites of the FDIC and OCC at specific time intervals. Since the 

FDIC and OCC maintain information on office locations on their websites, accessing 

past versions of these websites allows me to map the historical locations of FDIC and 

OCC offices across time. I am able to retrieve geographical locations of FDIC offices 

from 2002 to 2009 and data on OCC office locations from 2004 to 2013 (differences 

in the data coverage between the two regulators are due to differences in the coverage 

of WayBack Machine). 

Using the above steps, I accurately determine the location of 93 unique FDIC 

offices between 2002 and 2009, 78 OCC offices between 2004 and 2013 and 37 

Federal Reserve offices between 1984 and 2013. Having obtained the locations of 

regulatory offices, I next match banks to the regulatory office that supervise them using 

information on the charter type and zip codes of a bank’s headquarters as published in 

their Call Reports.  

                                                           
7 For instance, the Federal Reserve Bank of Boston explains in its website: “In 1977, the Boston Fed 

moved once more to its current site at 600 Atlantic Avenue in Dewey Square. The 1922 Reserve 

Building was declared a Boston Landmark in the 1980's and now serves as a luxury hotel, The 

Langham.” (www.bostonfed.org/about-the-boston-fed/our-history.aspx) 
8 Office locations can typically be found under the “contact” or organizational structure” pages. E.g.,  

https://www.fdic.gov/about/contact/directory/#Field_Offices and http://www.occ.treas.gov/about/who-

we-are/district-and-field-offices/index-organization.html 
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Specifically, I identify a regulatory office as responsible for a bank if it meets 

two conditions: (i) the regulatory office belongs to the federal regulator that banks 

indicate in their Call Reports as responsible for overseeing them9 and (ii) the regulatory 

office is geographically closest to the headquarters of a bank.10 To calculate the 

distance between the headquarters of each bank and regulatory offices, I obtain the 

latitude and longitude coordinates corresponding to their zip codes from the U.S. 

Census Bureau Gazetteer. I then use the Haversine Formula to obtain the kilometer 

distance between each bank-office pair. Specifically, I compute the distance between 

locations 1 and 2 as follows: 

Distance12 = r × 2 × arcsin(min (1, √a))  (1-1)     

where a = [sin(lat2-lat1)/2]2 + cos(lat1) × cos(lat2) × [sin(lon2-lon1)/2]2  

    and r ≈ 6,378 km (the radius of the earth) 

 

where lat1 and lon1(lat2 and lon2) are the latitudes and longitudes of the headquarters 

of the bank (regulatory office) respectively.  

I identify regulatory offices as closed if the office location ceases to be listed 

in official documents or on the regulator’s website. For example, the Federal Reserve 

Bank of New York Buffalo Office last appeared in official documents in 2008. In my 

analysis, I treat 2008 as the year of the closure of this office. Following a closure, I 

assume that the next closest regulatory office that is responsible for banks of the same 

charter will take over the supervision of the banks affected by the closure. 

                                                           
9 As detailed in Section 1.2.2, nationally-chartered banks are supervised by the OCC. State-chartered 

banks that are not members of the Federal Reserve System are regulated by the FDIC while state- 

chartered banks that are members of the Federal Reserve System are regulated by the Fed. 
10 I confirm the validity of the assumption that banks are mostly supervised by the geographically closest 

regulatory office with senior supervisors. Further, I match banks and regulators based on the bank’s 

headquarters, because on-site examinations involve discussion and evaluations of a bank’s senior 

management and risk management units who tend to be based in the headquarters.  
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To ensure that regulatory offices are not simply renamed following minor 

relocations, I manually check and compare the addresses of new offices after an 

existing office was closed. I exclude closures where a new regulatory office opened in 

the same county up to one year after an office was closed. I show the years in which 

offices close in Panel A of Table 1-1. I am able to identify 11 office closures (5 FDIC, 

1 Fed and 5 OCC). The locations of both the closed offices as well as of the offices 

that do not close are shown in Figure 1-1.  

Minimizing the costs of maintaining multiple on-site locations is a likely 

consideration behind the closure of regulatory offices.11 For instance, when 

announcing the closure of its Buffalo Office in 2008, the New York Fed announced 

“[this]  follows a re-examination of the Bank’s regional strategy, which determined 

that the Second District would be better served if the Bank rebalanced the resources 

applied to its regional efforts to enhance analysis and outreach across the entire 

District” (Federal Reserve Bank of New York, 2008).  

As the viability (costs) of maintaining a regulatory office is indirectly tied to 

the amount of bank assets under its supervision (as the amount of assets under 

supervision is positively related to the amount of supervisory fees paid), a potential 

concern that could arise in my analysis is that office closures reflect changing local 

economic conditions. For instance, if the reason behind decreases in assets under super

                                                           
11 For the OCC, regulatory revenues are directly tied to the amount of bank assets under supervision. 

By contrast, the Fed and FDIC do not derive their revenues from bank supervision. The Fed’s income 

comes primarily from the interest on U.S. Treasury securities that it has acquired through open market 

operations and fees received for the provision of non-supervisory services provided to banks such as 

check clearing and funds transfers (Board of Governors of the Federal Reserve System, 2017b). For the 

FDIC, it is funded by premiums that banks pay for deposit insurance and investments in U.S. Treasury 

securities (Federal Deposit Insurance Corporation, 2017).  
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Figure 1-1: Regulatory Office Locations 

This figure shows the geographical locations of regulatory offices in the U.S. The blue circle denotes Federal Reserve (Fed) offices from 1984 to 2013. The green triangle 

shows locations of offices belonging to the Office of the Comptroller of the Currency (OCC) from 2004 to 2013. The yellow squares are offices belonging to the Federal 

Deposit Insurance Corporation (FDIC) from 2002 to 2009. The red “x” shows the locations of offices belonging to the OCC, Fed and FDIC that were closed between 

2001 and 2013.  
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-vision at a closed office is due to banks under that office performing poorly because 

of deteriorating local economic conditions, comparing those banks that experience an 

office closure to better performing banks would bias my analysis. I devise an empirical 

strategy in the next section that circumvents this issue.  

1.3.2 Empirical Methodology 

 

1.3.2.1 Identification 

 

My identification strategy exploits closures of federal regulatory offices to 

investigate the impact of bank supervision on bank business policies. I use a 

difference-in-difference (DiD) setting to contrast the behavior of banks following the 

closure of their responsible regulatory office to banks located in the same counties as 

affected banks but not affected by the office closure. This is possible as banks located 

in the same geographical areas can be supervised by different offices depending on 

their federal regulator (charter) and proximity to regulatory offices.  

By exploiting differences in the exposure of banks to regulatory closures within 

the counties affected by the closure, I can rule out the possibility that my results are 

driven by local factors (e.g., local economic shocks) that could affect both the decision 

to close a regulatory office and the behavior of banks. Furthermore, there are multiple 

closures affecting different banks located in different geographical locales across time. 

This reduces the possibility that omitted variables, which coincide with a single office 

closure, are correlated with bank outcomes and could thus bias my findings. I estimate 

variants of the following specification:  

Yi,k,t  =  αi,k,t  + β1Treatedi,k,t + β2Postk,t + β3Treatedi,k,t × Postk,t + Zi,k,t    

+ Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t (1-2) 
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where i, k and t indicate bank i, regulatory office k and year-quarter t, respectively. Z 

is a vector of control variables. For robustness, I estimate the DiD regressions with and 

without control variables as the inclusion of time-varying control variables could 

introduce bias in the estimation if these variables are affected by regulatory office 

closures (Angrist and Pischke, 2009).  

Treated is equal to 1 if banks are in the treated group (and 0 for banks in the 

control group). Treated banks are banks that are affected by regulatory office closures 

(i.e., banks that are under the supervision of a closed office). My control group contains 

banks that are headquartered in the same counties as treated banks but not affected by 

regulatory office closures (because they are not supervised by the closed office).  

Post equals 1 in the three years after the closure of a regulatory office k (and 0 

in the two years before the closure of a regulatory office). For instance, if the last year 

for which I find a record that an office exists is 2008, Post equals 1 in 2009 to 2011 

and 0 in 2007 to 2008. I use a five-year DiD window as it is long enough for banks to 

implement changes in their business policies following the closure of a regulatory 

office. Analyzing bank behavior over longer periods risks introducing noise to the 

analysis (Bertrand, Duflo, and Mullainathan, 2004) and would prevent me from 

including most of the FDIC office closures in my analysis. The latter is due to the 

relatively shorter period (2002 to 2009) for which I observe FDIC office closures.  

My variable of interest is the coefficient on the interaction term Treated × Post 

that takes a value of 1 for treated banks in the three years after closure of its regulatory 

office (and 0 otherwise). Treated × Post therefore captures changes in the behavior of 
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banks affected by regulatory closures relative to their pre-closure behavior and relative 

to banks in the same counties that are not affected by office closures.  

Finally, I include bank, year-quarter and regulatory office fixed effects to 

further sharpen the identification. Bank fixed effects control for time-invariant bank 

specific omitted variables that could differ across banks. For instance, banks which are 

affected by regulatory office closures could exhibit risk cultures that are inherently 

different from other banks. The inclusion of year-quarter fixed effects controls for time 

effects while regulatory office fixed effects controls for time-invariant heterogeneity 

in supervisory practices across different offices (and different federal regulators). For 

instance, different federal regulatory agencies and regulatory offices could differ in 

their stringency of supervision. 

I obtain financial variables from Call Reports from the Federal Reserve Bank 

of Chicago and winsorize them at the 1% and 99% percentile. I require that both treated 

and control bank have < $1 billion in assets (adjusted using the 2009 GDP deflator) 

and not have relocated or changed charters during the 5-year DiD window. Larger 

banks (with >1 billion in assets) may be subject to different levels of depositor, market 

and regulatory discipline which could bias my results. For instance, many large banks 

have in-house examiners which makes regulatory offices less relevant for their 

supervision (Wilson and Veuger, 2016). Further, changes in a bank’s charter or the 

relocation of its headquarters could be due to banks engaging in “regulatory shopping” 

(e.g., Rosen, 2003; 2005) to evade supervision. These filters ensure that any potential 

reasons banks might have for selecting different charters (which would determine if 

they are affected by regulatory office closures) do not affect my analysis.  
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For the difference-in-difference analysis, I use a total of 10 regulatory office 

closures (4 FDIC, 1 Fed and 5 OCC) with 278 treatment banks, 140 control banks, and 

a total of 8,321 bank-quarter observations. Summary statistics of the banks used in the 

DiD analysis are reported in Panel B of Table 1-1. A full list of balance sheet variables 

used in this study and their definitions are listed in Appendix 1-A1.  

 

Table 1-1: Office Closures and Summary Statistics 

This table reports information on the year of regulatory office closures and summary statistics for the 

variables used in this chapter which consists of U.S. commercial banks for the years 2002-2013 

(unbalanced panel). # is the number of bank-year observations, std. is the standard deviation while p1, 

p50 and p99 are the 1st, 50th, and 99th percentiles. Panel A report regulatory office closure years while 

Panel B show summary statistics of treated and control banks used in the difference-in-difference 

analysis. Treated banks are banks which are affected by regulatory office closures (because they are 

supervised by the closed office). Control banks are banks which are headquartered in the same counties 

as treated banks but are not supervised by the closed office. See Section 1.3 for the detailed construction 

of treatment and control groups. Bank balance sheet variables are winsorized at the 1% and 99% levels. 

Refer to Appendix 1-A1 for the definition and construction of variables used in this chapter.  

      

Panel A: Office Closures   
Federal Regulator Year Closed # Offices Closed 

Fed 2008 1 

FDIC 2003 4 

FDIC 2007 1 

OCC 2005 1 

OCC 2006 1 

OCC 2009 2 

OCC 2010 1 
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Panel B: Summary Statistics Difference-in-Difference Sample 

 # mean std. p1 p50 p99 

       

Risk & Performance Variables       

Z-Score 7,679 -4.684 0.775 -6.312 -4.746 -2.722 

σROA 7,681 0.00134 0.00126 0.000224 0.000914 0.00622 

σROE 7,681 0.0135 0.0138 0.00187 0.00916 0.0737 

ROA/σROA 7,679 3.737 4.438 -0.659 2.903 14.85 

ROE/σROE 7,679 38.21 47.72 -7.414 28.11 151.6 

ROA 8,321 0.00216 0.00327 -0.0155 0.00256 0.00806 

ROE 8,321 0.0235 0.0277 -0.0693 0.0251 0.0905 

EBLLP 8,321 0.00289 0.00252 -0.00819 0.00306 0.00877 

       

Loan Variables       

Total Loans 8,321 0.609 0.167 0.163 0.629 0.888 

Total Loans (Thousands) 8,321 93,771 103,515 3,609 54,154 496,375 

Real Estate Loans (to Total Assets) 8,321 0.409 0.167 0.0490 0.407 0.740 

Real Estate Loans (to Total Loans) 8,321 0.658 0.167 0.215 0.686 0.944 

Real Estate Loans (Thousands) 8,321 66,729 79,723 1,028 36,190 373,697 

Agri Loans 8,321 0.0681 0.107 0 0.0163 0.481 

CI Loans 8,321 0.153 0.0918 0.00829 0.134 0.467 

Indiv Loans 8,321 0.105 0.0916 0.00260 0.0786 0.428 

       

Financial Variables       

Total Assets (Log) 8,321 11.43 0.990 9.280 11.40 13.44 

Total Deposits 8,321 0.840 0.0734 0.534 0.857 0.928 

Tier-1 Capital 8,321 0.175 0.0988 0.0859 0.144 0.654 

LLA 8,321 0.0148 0.00737 0.00455 0.0130 0.0465 

LLP 8,321 0.00113 0.00239 -0.00121 0.000509 0.0121 

BHC 8,321 0.766 0.424 0 1 1 

Mandatory Audit 8,321 0.0397 0.195 0 0 1 

Audit 8,321 0.592 0.492 0 1 1 

Bad Loans 8,321 0.0101 0.0147 0 0.00502 0.0699 

Loan Charge-Offs 8,321 0.000958 0.00212 0 0.000248 0.0108 

       

Accounting Variables       

|ALLP A| 7,961 0.120 0.163 0.00197 0.0858 0.852 

|ALLP B| 7,961 0.117 0.163 0.00175 0.0791 0.816 

+ALLP A 1,933 0.182 0.319 0.00116 0.0739 1.836 

+ALLP B 2,176 0.167 0.299 0.00112 0.0683 1.717 

-ALLP A 6,028 -0.102 0.0723 -0.358 -0.0881 -0.002 

-ALLP B 5,785 -0.0997 0.0781 -0.366 -0.0821 -0.002 

       

County & State Variables       

County Income per Cap (Log) 8,321 3.464 0.240 3.003 3.457 4.067 

County Pop (Log) 8,321 4.352 1.737 1.647 3.772 8.211 

County HHI 8,321 1,081 795.5 275.9 848.7 3,334 

County Pop Density 8,321 0.000181 0.0002850 0.0000018 0.0000307 0.000997 

∆State UR 8,321 0.0388 0.173 -0.138 0 0.583 

∆State HPI 8,321 0.00815 0.00832 -0.0222 0.00928 0.0219 
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Second, I confirm that the parallel trends assumption which states that, absent 

treatment, the average change (trend) in bank behavior should be similar for the 

treatment and control group prior to regulatory office closures is not violated. I conduct 

t-tests for the difference in means in the changes in all dependent variables that I use 

in this chapter between the treatment and control groups in t-1. Columns (7)-(8) of 

Panel B Table 1-2 show that all variable changes are statistically insignificant. 

Accordingly, there are no differences in trends between the treatment and control 

group in the pre-office closure period. 

Importantly, Table 1-2 also validates my choice of using banks that are located 

in the same counties as treated banks. Columns (9)-(10) in Panel A of Table 1-2 show 

that in t-1 (pre-office closure), treated banks are systematically different from a general 

control group of banks that is distributed across the U.S.12 Likewise, Columns (9)-(10) 

in Panel B test the parallel trends assumption for the treatment group and the U.S.-

wide control group. I find that the trend (change) in the pre-closure period for eight 

out of eighteen dependent variables is statistically significant (at least at the 10% level) 

which violates the parallel trends assumption. 

                                                           
12 This general group of control banks contains all banks that I am able to match to their relevant 

supervisory office and are unaffected by regulatory office closures.  
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Table 1-2: Pre-closure Covariate Balance and Parallel Trends 

This table shows the results of diagnostic tests for the difference-in-difference regressions. Panel A reports pre-shock (1 quarter before regulatory office closures) means 

(Columns (1)-(6)) and differences in means and their p-values (Columns (7)-(10)) of covariates between the treated and control groups as well as the full sample. Panel 

B reports pre-shock (1 quarter before regulatory office closures) changes in the mean of dependent variables (Columns (1)-(6)) and differences in changes of the means 

and their p-values (Columns (7)-(10)) between the treated and control groups as well as the full sample. Treated banks are banks which are affected by regulatory office 

closures (because they are supervised by the closed office). Control banks are banks which are headquartered in the same counties as treated banks but not supervised by 

the closed office. See Section 1.3 for the detailed construction of treatment and control groups. Bank balance sheet variables are winsorized at the 1% and 99% levels. 

Refer to Appendix 1-A1 for the definition and construction of variables used in this chapter. 

                      

Panel A: Covariate Balance (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Treated Control All Possible Controls Diff. in Means Diff. in Means 

Variables # mean # mean # mean (Treated-Control) p (Treated-Full Sample) p 

 
          

Z-Score 264 -4.6100 128 -4.6119 32889 -4.6232 0.0019 0.98 0.0132 0.80 

σROA 264 0.0015 128 0.0014 32914 0.0015 0.0000 0.74 -0.0001 0.39 

σROE 264 0.0148 128 0.0148 32914 0.0158 0.0000 0.98 -0.0011 0.34 

ROA/σROA 264 3.3219 128 3.4891 32889 3.6742 -0.1671 0.62 -0.3522 0.74 

ROE/σROE 264 33.6462 128 35.5393 32889 37.6020 -1.8931 0.59 -3.9559 0.71 

ROA 278 0.0014 140 0.0012 34860 0.0009 0.0002 0.70 0.0004 0.11 

ROE 278 0.0161 140 0.0162 34860 0.0094 -0.0001 0.98 0.0067 0.02** 

EBLLP 278 0.0024 140 0.0022 34860 0.0026 0.0002 0.55 -0.0002 0.22 

Total Loans 278 0.5936 140 0.6103 34860 0.6465 -0.0168 0.33 -0.0529 0.00*** 

Total Loans (Thousands) 278 85711 140 93080 34860 217177 -7368 0.46 -131466 0.00*** 

Real Estate Loans (to Total Assets) 278 0.3948 140 0.4033 34860 0.4406 -0.0085 0.61 -0.0458 0.00*** 

Real Estate Loans (to Total Loans) 278 0.6523 140 0.6484 34860 0.6698 0.0039 0.82 -0.0176 0.12 

Real Estate Loans (Thousands) 278 59405 140 65524 34860 142611 -6119 0.41 -83206 0.00*** 

Agri Loans 278 0.0655 140 0.0710 34860 0.0777 -0.0055 0.62 -0.0123 0.11 

CI Loans 278 0.1508 140 0.1641 34860 0.1518 -0.0134 0.17 -0.0011 0.86 

Indiv Loans 278 0.1145 140 0.0992 34860 0.0804 0.0153 0.11 0.0341 0.00*** 

Total Assets (Log) 278 11.3639 140 11.4145 34860 11.8038 -0.0506 0.62 -0.4399 0.00*** 

Total Deposits 278 0.8456 140 0.8353 34860 0.8262 0.0103 0.18 0.0195 0.00*** 

Tier-1 Capital 278 0.1777 140 0.1727 34860 0.1591 0.0050 0.64 0.0186 0.00*** 

LLA 278 0.0155 140 0.0146 34860 0.0153 0.0009 0.28 0.0001 0.78 

LLP 278 0.0015 140 0.0013 34860 0.0024 0.0002 0.48 -0.0009 0.00*** 
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Mandatory Audit 278 0.0288 140 0.0429 34860 0.1297 -0.0141 0.45 -0.1010 0.00*** 

Audit 278 0.5791 140 0.6000 34860 0.6337 -0.0209 0.68 -0.0546 0.06* 

Bad Loans 278 0.0112 140 0.0098 34860 0.0159 0.0014 0.42 -0.0047 0.00*** 

Loan Charge-Offs 278 0.0016 140 0.0014 34860 0.0021 0.0002 0.43 -0.0005 0.05* 

|ALLP A| 267 0.1425 133 0.1312 33837 0.2063 0.0112 0.57 -0.0639 0.00*** 

|ALLP B| 267 0.1381 133 0.1303 33837 0.2038 0.0079 0.68 -0.0656 0.00*** 

-ALLP A 188 -0.1056 99 -0.0958 20277 -0.1113 -0.0098 0.31 0.0057 0.40 

-ALLP B 186 -0.1017 91 -0.0999 19771 -0.1133 -0.0018 0.86 0.0116 0.11 

+ALLP A 79 0.2334 34 0.2344 13560 0.3595 -0.0010 0.99 -0.1261 0.04** 

+ALLP B 81 0.2254 42 0.1960 14066 0.3409 0.0294 0.61 -0.1155 0.04** 

                      

Panel B: Parallel Trends (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Treated Control All Possible Controls Diff. in Means Diff. in Means 

Variables # mean # mean # mean (Treated-Control) p (Treated-Full Sample) p 

 
          

∆Z-Score 264 -0.0111 126 -0.0071 32719 0.0388 -0.0040 0.87 -0.0499 0.00*** 

∆σROA 264 0.0000 126 0.0000 32746 0.0001 0.0000 0.69 -0.0001 0.00*** 

∆σROE 264 0.0000 126 -0.0003 32746 0.0011 0.0003 0.62 -0.0011 0.00*** 

∆ROA/σROA 264 0.0070 126 -0.0377 32719 -0.1253 0.0447 0.67 0.1322 0.36 

∆ROE/σROE 264 -0.0559 126 -0.3286 32719 -1.3706 0.2726 0.81 1.3147 0.39 

∆Total Loans 276 0.0009 138 0.0067 34673 -0.0044 -0.0058 0.23 0.0053 0.04** 

∆Total Loans (Thousands) 276 311 138 1671 34673 2904 -1360 0.42 -2593 0.12 

∆Real Estate Loans (to Total Assets) 276 0.0047 138 0.0059 34673 0.0002 -0.0012 0.76 0.0045 0.02** 

∆Real Estate Loans (Thousands) 276 1420 138 1428 34673 2243 -7 0.99 -823 0.47 

∆LLP 276 0.0001 138 0.0002 34673 0.0007 -0.0002 0.54 -0.0007 0.00*** 

∆Bad Loans 276 -0.0007 138 0.0003 34673 0.0006 -0.0009 0.27 -0.0012 0.05* 

∆Loan Charge-Offs 276 0.0007 138 0.0004 34673 0.0007 0.0003 0.32 -0.0001 0.78 

∆|ALLP A| 267 0.0089 133 0.0322 33644 0.0399 -0.0233 0.33 -0.0310 0.13 

∆|ALLP B| 267 0.0059 133 0.0355 33644 0.0397 -0.0295 0.19 -0.0338 0.09* 

∆-ALLP A 155 0.0119 88 0.0018 17338 0.0174 0.0101 0.25 -0.0055 0.38 

∆-ALLP B 153 0.0139 78 -0.0011 16671 0.0173 0.0150 0.12 -0.0034 0.59 

∆+ALLP A 36 0.1115 20 0.0798 6830 0.1197 0.0317 0.74 -0.0083 0.93 

∆+ALLP B 39 0.0558 23 0.0989 7279 0.1110 -0.0431 0.57 -0.0552 0.48 
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1.3.2.2 Determinants of Regulatory Office Closures 

 

After showing that no differences exist between my treatment and control 

group, I next analyze the determinants of regulatory office closures. One concern is 

that if regulatory office closures were systematically related to banks under the 

supervision of the closed office performing poorly, comparing these poorly performing 

banks to a control group of better performing banks could bias my results. 

I run a logit regression and show results in Table 1-3 to explore the 

determinants of office closures.  I create several variables in the form of the ROA, Bad 

Loans and Z-Score of the average bank under the supervision of each regulatory office 

as well as the total bank assets under the supervision of each regulatory office. Refer 

to Appendix 1-A1 for the definition of these variables. The dependent variable is 

defined as Office Closure (which is equal to 1 if a regulatory office closes in a year 

and 0 otherwise). I also include regulator (FDIC, Fed or OCC) and year fixed effects. 

I include regulator fixed effects to control for any potential differences that different 

regulators might have in their organizational structure. Columns (1)-(2) (all 

coefficients are in odds ratios) show that the average level or changes in ROA, Bad 

Loans and Z-Score of banks under the supervision of a regulatory office do not predict 

its closure. Incidentally, this confirms my finding in Table 1-2 that treated banks are 

similar to control banks in the pre-shock period and that bank characteristics do not 

predict office closures.  

Columns (3)-(4) show that smaller offices (i.e., offices with fewer total assets 

under supervision, Column (3)) and offices that experience a reduction in the assets 

under supervision (Column (4)) are more likely to be closed. A decrease in assets under 

supervision at a particular regulatory office means that it is less cost efficient to 
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maintain a physical presence in the area due to fixed costs incurred. Jointly, my results 

suggest that the need to make efficiency gains and to rebalance supervisory resources 

are a reason for the closure of offices. Importantly, banks under the supervision of a 

closed office are not underperforming and riskier than other banks.13  

 

Table 1-3: Determinants of Office Closures 

This table reports estimates of a logistic regression on the determinants of regulatory office closures. I 

report estimates of the following equation:  

Office Closurek,t =  αk,t  + Zk,t + Regulator FE + Year FE + εk,t 

where subscripts k and t indicate regulatory office and year respectively. Office Closure = 1 if a 

regulatory office is closed in a particular year and 0 if otherwise while Z is a vector of control variables. 

ROA under Sup. (defined as Net Income/Total Assets), Bad Loans under Sup. (defined as Total Loans 

and Receivables 90+days late/Total Loans), and Z-Score under Sup. (computed as [Log (ROA+Equity) 

/ σROA)] x (-1). ROA is defined as Net Income/Total Assets, Equity as Equity/Total Assets and σROA 

is the standard deviation of ROA over the past 3 years) are the average ROA, Bad Loans and Z-Score 

of the banks under the supervision of the regulatory office. Log Total Assets under Sup. is defined as 

the Log (Sum of Total Assets under the regulatory office supervision). Main Office = 1 if a regulatory 

office is a non-satellite field office and Beside Main Office = 1 if a regulatory office is the closest office 

to Main Office. Bank variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-A1 for 

the definition and construction of variables used in this chapter. The coefficient is in odds ratio. The 

constant is suppressed. Standard errors are clustered at the regulatory office-level. t-statistics are 

reported in parenthesis. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 

 

 (1) (2) (3) (4) 

 Office Closure Office Closure Office Closure Office Closure 

     
ROA under Sup.t-1 40.0277    

 [1.59362]    

ROA under Sup.t-2 3.48214    

 [0.34183]    

Bad Loans under Sup.t-1 0.58998    

 [-0.37441]    

Bad Loans under Sup.t-2 5.60484    
 [1.38817]    

Z-Score under Sup.t-1 1.80254    
 [0.34221]    

Z-Score under Sup.t-2 0.23967    
 [-0.91853]    

∆ROA under Sup.t-1  1.73445   

  [0.29109]   

∆ROA under Sup.t-2  0.18477   

                                                           
13 One reason that could explain the joint findings of a decrease in banking assets under supervision at 

a regulatory office predicting closure and banks under the supervision of a closing office not under-

performing is as follows. A decrease in banking assets could arise if banks choose to switch charters. 

This could be either as a result of consolidation or other reasons (e.g., the accessibility of supervisors). 

I do not distinguish between these reasons. However, more importantly for my analysis, I show that 

bank performance under a closed office does not predict office closures and that office closures lead to 

worse bank outcomes. 



 

32 

 

  [-0.39642]   

∆Bad Loans under Sup.t-1  0.52199   
  [-0.47411]   

∆Bad Loans under Sup.t-2  2.13191   

  [1.11038]   

∆Z-Score under Sup.t-1  0.44342   

  [-0.38133]   

∆Z-Score under Sup.t-2  0.09901   

  [-0.77603]   

Log Total Assets under Sup.t-1   0.39810**  

   [-1.97580]  

Log Total Assets under Sup.t-2   1.61231  

   [0.74867]  

∆Log Total Assets under Sup.t-1    0.3920** 

    [-2.20363] 

∆Log Total Assets under Sup.t-2    1.29185 

    [0.41494] 

Main Office 0.22505  0.21365  

 [-1.25549]  [-1.20322]  

Beside Main Office 21.258*** 6.135** 20.553*** 7.421** 

 [2.71381] [2.18653] [2.68292] [2.21055] 

     

Year FE Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes 

Pseudo R-squared 0.206 0.15 0.173 0.138 

Observations 973 415 973 415 

 

1.4 Main Results 

 

1.4.1 Regulatory Office Closures and Bank Risk 

 

I begin my main analysis by investigating the effects of regulatory office 

closures on bank risk-taking in Table 1-4. As proxies for risk, I employ the Z-Score 

(Columns (1)-(2)), σROA (Columns (3)-(4)) and σROE (Columns (5)-(6)). The Z-Score 

measures a bank’s distance to default as the number of standard deviations by which 

ROA can fall before a bank becomes insolvent. Following Laeven and Levine (2009) 

and Demirgüç-Kunt and Huizinga (2010), I calculate Z-Score as the logarithm of 

[(ROA+Equity)/σROA] and inverse it. A higher Z-Score therefore indicates higher 

bank risk. σROA and σROE are the logarithmic values of the standard deviation of 

ROA and ROE, respectively. I calculate the risk measures over a 12-quarter (t-11 to t) 

window.  
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Table 1-4 shows bank risk increases after regulatory office closures. The 

coefficient on Treated × Post is positive and statistically significant for all risk proxies 

I examine. Further, the economic effects are large. For instance, Column (1) reports 

that banks affected by the closure of a supervisory office increase their Z-Score by 

about 19% (relative to the mean) compared to banks in the same counties that are not 

affected by the office closure.14 This confirms my hypothesis that more effective bank 

supervision curtails bank risk-taking.15 

1.4.2 Regulatory Office Closures and Bank Lending 

 

Loans are typically the most important assets that banks issue. I therefore 

investigate the impact of bank supervision on bank lending, in particular, if regulatory 

office closures are linked to banks aggressively growing their loan portfolios. To 

measure the loan origination activities of banks, Table 1-5 examines the effects of 

supervisory office closures on Log Total Loans (Columns (1)-(2)), Total Loans/TA 

(Columns (3)-(4)), Log Real Estate Loans (Columns (5)-(6)) and Real Estate Loans/TA 

(Columns (7)-(8)). Log Total Loans and Log Real Estate Loans are the logarithmic 

values of total loans and real estate loans, respectively. Total Loans/TA and Real Estate 

Loans/TA are total loans and real estate loans scaled by total assets.  

 

 

                                                           
14 This is calculated as (0.88474/4.684). Mean values are obtained from Panel 1B in Table 1-1. 
15 It should be noted that I include regulatory office fixed effects, and therefore, control for any 

differences in regulatory office closures that affect national banks (supervised by the OCC) and state 

banks (supervised by the FDIC or Fed, alongside their respective state banking supervisor). In 

unreported results, I find that OCC office closures lead to larger changes in bank behavior than FDIC 

and Fed office closures. This is unsurprising as the OCC functions as the primary supervisor for 

nationally-chartered banks while state-chartered banks are primarily supervised by both the state and 

the FDIC or Fed. Therefore, the effects of OCC office closures (as compared to FDIC and Fed office 

closures) on bank behavior is likely to be greater.  
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Table 1-4: Office Closures and Bank Risk 

This table reports estimates of a difference-in-difference regression which estimates the effect of 

regulatory office closures on bank risk. I report estimates of the following equation:  

Yi,k,t =  αi,k,t  + β1Treatedi,k,t + β2Postk,t + β3Treatedi,k,t x Postk,t + Zi,k,t + Bank FE  

+ Regulatory Office FE + Year-Quarter FE + εi,k,t   

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively. Y is either the 

Z-Score (Columns (1)-(2)), computed as [Log (ROA+Equity) / σROA)] x (-1). ROA is defined as Net 

Income/Total Assets, Equity as Equity/Total Assets and σROA is the standard deviation of ROA over 

the past 3 years)], σROA (Columns (3)-(4), computed as Log (σROA)) or σROE (Columns (5)-(6), 

computed as Log (σROE)). ROE is defined as Net Income/Total Equity. σROE is the standard deviation 

of ROE over the past 3 years. Treated is a dummy variable that = 1 if banks are in the treated group 

(and 0 if in the control group). Treated banks are banks which are affected by regulatory office closures 

(supervised by the closed office). Control banks are banks which are headquartered in the same counties 

as treated banks but are not supervised by the closed office. See Section 1.3 for the detailed construction 

of treatment and control groups. Post is a variable that = 1 for the 3 years after the closure of a regulatory 

office k and 0 for the 2 years before (5-year diff-in-diff window). The variable of interest is the 

coefficient β3 on the interaction term Treated x Post which takes a value of 1 for treated banks in the 3 

years after closure of its regulatory office and 0 otherwise. Z is a vector of control variables and includes 

Audit, Mandatory Audit, ROA, Log Total Assets, Tier-1 Capital, Real Estate Loans, Agri Loans, CI 

Loans, Indiv Loans, Total Deposits, Total Loans, BHC, County Income per Cap, County Pop, County 

HHI, County Pop Density, ∆State UR and ∆State HPI. Bank balance sheet variables are winsorized at 

the 1% and 99% levels. Refer to Appendix 1-A1 for the definition and construction of variables used in 

this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are 

reported in parenthesis. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively 

              

 (1) (2) (3) (4) (5) (6) 

 Z-Score Z-Score σROA σROA σROE σROE 

       

Treated x Post 0.88474*** 1.04435*** 0.00084** 0.00101*** 0.00497* 0.00799** 

 [6.38229] [6.67965] [2.35018] [2.89023] [1.71593] [2.47198] 

Post -0.0294 -0.02156 -0.00002 0 -0.00009 0.00021 

 [-0.2601] [-0.1925] [-0.1245] [0.0008] [-0.036] [0.0926] 

Audit  -0.05814  -0.00006  -0.00063 

  [-1.02380]  [-0.65997]  [-0.61139] 

Mandatory Audit  0.09483  0.00029***  0.00282** 

  [0.95962]  [2.63896]  [2.10404] 

ROA  -26.896***  -0.057***  -0.589*** 

  [-5.76037]  [-5.66165]  [-4.91650] 

Log Total Assets  -0.15349  -0.00035  -0.00222 

  [-0.99902]  [-1.38763]  [-0.89001] 

Tier-1 Capital  -1.12054  -0.00039  -0.02348 

  [-1.33262]  [-0.20789]  [-1.06360] 

Real Estate Loans  -0.27728  -0.00032  0.00037 

  [-0.56303]  [-0.38219]  [0.04641] 

Agri Loans  -0.95622  -0.00092  -0.00827 

  [-1.53541]  [-0.75568]  [-0.67386] 

CI Loans  0.35934  0.0008  0.00808 

  [0.67018]  [0.77098]  [0.93148] 

Indiv Loans  -0.32819  -0.00146  -0.01012 

  [-0.54058]  [-1.38961]  [-0.93199] 

Total Deposits  0.48689  0.00013  0.01813 

  [0.91121]  [0.13615]  [1.50221] 

Total Loans  -0.35245  -0.00016  -0.00358 

  [-1.20806]  [-0.29218]  [-0.56544] 

BHC  -0.07195  0.00026  0.00177 

  [-0.47778]  [1.29759]  [1.04567] 

County Income per Cap  -0.0572  -0.00044  -0.00445 
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  [-0.11483]  [-0.63222]  [-0.55326] 

County Pop  -0.94134  -0.0002  -0.01068 

  [-0.96715]  [-0.13885]  [-0.64810] 

County HHI  0.00003  0  0 

  [0.74628]  [1.43353]  [1.48960] 

County Pop Density  -42.46308  -0.22695  -23.74901 

  [-0.01351]  [-0.04132]  [-0.34164] 

∆State UR  0.16591  0.00016  0.00134 

  [1.07216]  [0.64933]  [0.46063] 

∆State HPI  -1.46702  -0.00224  -0.03505 

  [-0.87243]  [-0.72197]  [-0.90527] 

       

Bank FE Yes Yes Yes Yes Yes Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes 

Reg Office FE Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.108 0.135 0.0935 0.128 0.0928 0.131 

Observations 7,254 7,254 7,274 7,274 7,274 7,274 

 

Table 1-5 reports the estimation results. The coefficient on Treated × Post is 

positive and statistically significant in all eight columns. This indicates that banks 

whose responsible supervisory office has closed grow their loan portfolios more 

aggressively relative to the control group. The economic impact of this effect is non-

trivial. Relative to the control group, treated banks increase their total loans by 

approximately 11% (in Column (1)) and their real estate loans by 16% (Column (5)). 

Further, the proportion of loans to total assets also increases, indicating that my 

findings are not simply driven by substitution effects when banks grow their non-

lending assets more aggressively than their lending assets. The ratios of total loans to 

assets (Column (3)) and real estate loans to total assets (Column (7)) also increase by 

approximately 6% and 7%, respectively.
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Table 1-5: Office Closures and Bank Lending 

This table reports estimates of a difference-in-difference regression which estimates the effect of regulatory office closures on bank lending. I report estimates of the 

following equation:  

Yi,k,t =  αi,k,t  + β1Treatedi,k,t + β2Postk,t + β3Treatedi,k,t x Postk,t + Zi,k,t  + Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t 

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively. Y is either Log Total Loans (Columns (1)-(2)), Total Loans/Total Assets (Columns 

(3)-(4)), Log Real Estate Loans (Columns (5)-(6)) or Real Estate Loans/Total Assets (Columns (7)-(8)). Treated is a dummy variable that = 1 if banks are in the treated 

group (and 0 if in the control group). Treated banks are banks which are affected by regulatory office closures (supervised by the closed office). Control banks are banks 

which are headquartered in the same counties as treated banks but are not supervised by the closed office. See Section 1.3 for the detailed construction of treatment and 

control groups. Post is a variable that = 1 for the 3 years after the closure of a regulatory office k and 0 for the 2 years before (5-year diff-in-diff window). The variable 

of interest is the coefficient β3 on the interaction term Treated x Post which takes the value of 1 for treated banks the 3 years after closure of its regulatory office and 0 

otherwise. Z is a vector of control variables and includes Audit, Mandatory Audit, ROA, Log Total Assets, Tier-1 Capital, Total Deposits, BHC, County Income per Cap, 

County Pop, County HHI, County Pop Density, ∆State UR and ∆State HPI. Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-

A1 for the definition and construction of variables used in this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are reported 

in parenthesis. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 

                  

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Log Log Total Loans/ Total Loans/ Log Real Log Real Real Estate Real Estate 

  Total Loans Total Loans TA TA Estate Loans Estate Loans Loans/TA Loans/TA 

 
        

Treated x Post 0.11091* 0.08526*** 0.06375*** 0.06269*** 0.16294* 0.13729*** 0.07694*** 0.07345*** 

 [1.65728] [2.79060] [3.47526] [3.87428] [1.69674] [2.69768] [3.86230] [3.97454] 

Post 0.00077 0.02138 0.00411 0.00889 -0.00436 0.02157 0.00931 0.01377 

 [0.02073] [1.19446] [0.33735] [0.90684] [-0.10336] [0.72873] [0.72732] [1.13819] 

         

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes 

Reg Office FE Yes Yes Yes Yes Yes Yes Yes Yes 

Other Controls No Yes No Yes No Yes No Yes 

Adj. R-squared 0.26 0.883 0.1 0.449 0.251 0.781 0.144 0.402 

Observations 8,321 8,321 8,321 8,321 8,321 8,321 8,321 8,321 
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1.5 Are Regulatory Office Closures Linked to Negative Bank Outcomes 

 

My finding that a reduction in regulatory attention is linked to riskier banks 

that expand their loan portfolios is not sufficient to argue that regulatory office closures 

produce negative outcomes. By contrast, it could be argued that supervisors may have 

been unduly strict in the period preceding the closure and may have constrained 

lending and other risky bank activities. If so, the increase in risk and lending that I 

observe in the period following an office closure could result from easing credit 

constraints that may well benefit borrowers without producing negative bank 

outcomes. This section examines changes in risk-adjusted returns and the performance 

of banks during the 2007-09 financial crisis to conclude that less regulatory attention 

is indeed linked to negative bank outcomes. 

1.5.1 Evidence from Risk-adjusted Performance 

 

Table 1-6 shows that banks affected by regulatory office closures increase their 

performance after office closures (as measured by ROA in Columns (1)-(2) and ROE 

in Columns (3)-(4)). Jointly interpreted with analysis in the previous section, this 

indicates that affected banks make business policy choices to increase profitability by 

increasing risk. 

However, when examining risk-adjusted returns (measured using the 

logarithmic values of ROA/σROA (Columns (5)-(6)) and ROE/σROE (Columns (7)-

(8)) in Columns (5)-(8) of Table 1-6, it is clear that that office closures are linked to 

negative outcomes. The coefficient on Treated × Post is negative and statistically 

significant at the 1% level.
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Table 1-6: Regulatory Office Closures and Risk-adjusted Bank Performance 

This table reports estimates of a difference-in-difference regression which estimates the effect of regulatory office closures on risk-adjusted performance. I report 

estimates of the following equation:  

Yi,k,t =  αi,k,t  + β1Treatedi,k,t + β2Postk,t + β3Treatedi,k,t x Postk,t + Zi,k,t + Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t 

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively. Y is either ROA (Columns (1)-(2), ROA is defined as Net Income/Total Assets), 

ROE (Columns (3)-(4), ROE is defined as Net Income/Total Equity), (ROA/σROA (Columns (5)-(6), ROA is defined as Net Income/Total Assets and σROA is the 

standard deviation of ROA over the past 3 years) or ROE/σROE (Columns (7)-(8), ROE is defined as Net Income/Total Equity and σROE is the standard deviation of 

ROE over the past 3 years). Treated is a dummy variable that = 1 if banks are in the treated group (and 0 if in the control group). Treated banks are banks which are 

affected by regulatory office closures (supervised by the closed office). Control banks are banks which are headquartered in the same counties as treated banks but are 

not supervised by the closed office. See Section 1.3 for the detailed construction of treatment and control groups. Post is a variable that = 1 for the 3 years after the 

closure of a regulatory office k and 0 for the 2 years before (5-year diff-in-diff window). The variable of interest is the coefficient β3 on the interaction term Treated x 

Post which takes the value of 1 for treated banks the 3 years after closure of its regulatory office and 0 otherwise. Z is a vector of control variables and includes Audit, 

Mandatory Audit, Log Total Assets, Tier-1 Capital, Real Estate Loans, Agri Loans, CI Loans, Indiv Loans, Total Deposits, Total Loans, BHC, County Income per Cap, 

County Pop, County HHI, County Pop Density, ∆State UR and ∆State HPI. Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-

A1 for the definition and construction of variables used in this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are reported 

in parenthesis. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 

                  
 (1) (2) (3) (4) (5) (6) (7) (8) 
 ROA ROA ROE ROE ROA/σROA ROA/σROA ROE/σROE ROE/σROE 
         

Treated x Post 0.00258*** 0.00154*** 0.02802*** 0.01782*** -0.70590*** -0.88987*** -0.94181*** -1.04770*** 
 [10.79505] [4.49616] [11.76359] [5.16875] [-3.81854] [-4.61868] [-3.87038] [-4.06278] 

Post -0.00013 -0.00006 -0.00045 0.00021 0.01326 0.01968 0.11114 0.09308 
 [-0.46013] [-0.20023] [-0.15043] [0.06593] [0.13935] [0.21093] [0.73214] [0.62419] 
         

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes 
Reg Office FE Yes Yes Yes Yes Yes Yes Yes Yes 

Other Controls No Yes No Yes No Yes No Yes 
Adj. R-squared 0.0639 0.0773 0.057 0.0703 0.0983 0.134 0.0901 0.12 

Observations 7,254 7,254 7,254 7,254 7,250 7,250 6,957 6,957 
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Consequently, following a supervisory office closure, the risk-adjusted 

performance of banks deteriorates compared with a control sample of local banks. Less 

regulatory attention means that banks become less profitable per unit of risk. 

Consequently, a negative shock to the efficacy of bank supervision is associated with 

negative bank outcomes on average. 

1.5.2 Evidence from the 2007-09 Financial Crisis 

 

The 2007 to 2009 financial crisis presents a significant shock to the asset 

quality of banks. Since this shock is plausibly exogenous to individual banks and office 

closures, contrasting bank outcomes during the crisis by whether banks were 

previously exposed to supervisory office closures presents me with a second test of 

whether regulatory office closures lead to negative outcomes for banks. Put succinctly, 

if more supervisory attention was beneficial for banks, I should observe that banks 

affected by regulatory office closures prior to the crisis should perform better in the 

crisis.  

I restrict my analysis to the 6 regulatory office closures that occurred before 

the crisis (between 2003 and 2006) and estimate the following difference-in-difference 

specification for the years up to 2009: 

Yi,k,t   =   αi,k,t + β1Treated Crisisi,k,t + β2Crisist + β3Treated Crisisi,k,t × Crisist + Zi,k,t   

+  Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t   (1-3) 

 

Variable definitions are as before with the exception of Treated Crisis which is a 

dummy variable that is 1 if banks are affected by one of the six regulatory office 

closures that occurred before 2007 (and 0 otherwise). As previously, control banks 
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include banks in the same counties as treated banks that are not affected by regulatory 

office closures. Crisis is 1 for the years 2007 to 2009 (and 0 otherwise). 

The variable of interest is the coefficient β3 on the interaction term Treated 

Crisis × Crisis. The interaction term takes a value of 1 for treated banks in years 2007 

to 2009 (and 0 otherwise). Consequently, the set-up compares the crisis performance 

of treated banks (that were affected by regulatory office closures prior to the crisis) to 

themselves in the pre-crisis period and to a set of control banks.  

Table 1-7 employs several variables to investigate bank performance during 

the crisis. Specifically, I examine Bad Loans (defined as loans and receivables which 

are 90+ days late scaled by total loans in Columns (1)-(2)), Loan Charge-offs (bad 

loans that are charged off scaled by total loans in Columns (3)-(4)), and bank failures 

during the financial crisis (Columns (5)-(8)). As regards the latter, I construct Fail07-

10 and Fail07-09 (defined as a dummy variable that equals 1 for years 2007-10 (2007-

09) for banks that failed during 2007-10 (2007-09) and 0 otherwise). I focus on bank 

failures up to 2010 because not all bank closures and resolutions occurred at the outset 

of the crisis (Ng and Roychowdhury, 2014).16 

I find that the coefficient on the interaction term Treated Crisis × Crisis is 

positive and statistically significant in all columns. This suggests that banks which are 

affected by regulatory office closures prior to the crisis display worse performing loan 

portfolios and were more likely to fail during the crisis relative to the group of control 

banks. The economic impact is meaningful. Relative to the sample mean, banks 

                                                           
16 In my analysis, no banks in the treatment and control group failed before the crisis (years 2002-2006). 

Thus, I focus on failures during the 2007 to 2010 crisis period. Out of the 351-unique treated and control 

banks, I observe 11 bank failures from 2007 to 2009 and 15 bank failures from 2007 to 2010.  
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affected by a regulatory office closure prior to the crisis have 40% more bad loans 

(Column (1)), 50% more loan charge-offs (Column (3)) and are 6% (Column (5)) more 

likely to fail.  

Using this test, I am also able to estimate one specific cost —cost of bank 

failures— to the FDIC that arises due to regulatory office closures. In Table 1-7 

(Columns (5)-(6)), I find that 15 banks failed from years 2007 to 2010. The failure of 

these 15 banks generated losses of approximately $1.57 billion to the FDIC. Given that 

office closures in the pre-crisis period increases the probability of bank failure in the 

crisis by 6%, this implies losses of $15.7 million for a single regulatory office 

closure.17  

It should be noted that this estimate is likely to form a lower bound of total 

costs associated with regulatory office closures to the taxpayer for at least three 

reasons. First, these losses only include bank failure costs. Given that banks receive 

other forms of assistance during the crisis (e.g., discount window lending, increased 

insurance coverage limits and explicit bailout funds), the total cost to taxpayers is 

likely to be higher (Berger, Black, Bouwman, and Dlugosz, 2015; Duchin and Sosyura, 

2012; 2014; Lambert, Noth, and Schüwer, 2016). Second, regulators are likely to 

increase forbearance in the crisis and delay the resolution of weak banks (Brown and 

Dinç, 2011). Therefore, the bank failure cost I estimate is likely to be underestimated.  

Lastly, in my analysis, I limit my sample to only small banks (< $1 billion in assets) 

which excludes losses from larger banks.  

                                                           
17 Expected losses arising from bank failures are obtained from the FDIC failed bank list. I calculate 

$15.7 million as ($1.57 billion x 6%)/6. I divide by 6 because there were 6 regulatory office closures in 

the pre-crisis period in my sample.  
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Taken together, the results in this section do not support the view that 

supervisors are unduly strict or that the riskier portfolio choices that banks make 

following a reduction in supervisory attention are without negative consequences for 

banks. By contrast, I show that less supervisory attention is associated with a number 

of negative outcomes, including lower risk-adjusted performance, more non-

performing loans and a higher probability of failure during the crisis. 

1.6 Information Asymmetry and Supervisory Effectiveness 

 

In this section, I provide evidence on the role of information asymmetry as one 

mechanism that impedes supervisory effectiveness. I offer two tests that show 

evidence of increased information frictions between banks and supervisors. First, I 

show evidence from the loan loss provisioning practices of banks. Specifically, I 

examine if supervisors are less able to accurately evaluate the expected losses on a 

bank’s portfolio following a supervisory office closure. Second, I use variation in the 

increase in the physical distance between banks and their newly assigned supervisory 

office as a measure of information asymmetry between banks and supervisors. 

1.6.1 Evidence from Loan Loss Provisioning Practices 

 

In the process of lending to firms, banks acquire firm-specific soft information 

on borrowers that is largely unavailable to outside parties. Since loans are notoriously 

opaque and difficult to value for supervisors and other outsiders, they afford banks 

some discretion over how to provision for expected losses on their loan portfolios (see 

Beatty and Liao (2014) for a survey). This presents me with an indirect test of the 

effects of information asymmetry on supervisory effectiveness.  
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Table 1-7: Regulatory Office Closures and the Financial Crisis 

This table reports estimates of a difference-in-difference regression which estimates the effect of regulatory office closures on loan performance and bank failure rates 

during the 2007-2009 financial crisis. I report estimates of the following equation:  

Yi,k,t =  αi,k,t  + β1Treated Crisisi,k,t + β2Crisist + β3Treated Crisisi,k,t x Crisist + Zi,k,t + Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t 

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively. Y is either Bad Loans (Columns (1)-(2), Bad Loans is defined as Total Loans 

and Receivables 90+days late/Total Loans), Loan Charge-Offs (Columns (3)-(4), Loan Charge-Offs is defined as Total Loan Charge-Offs/Total Loans), Fail07-10 

(Columns (5)-(6)), Fail07-10 is a dummy variable that = 1 for years 07 to 09 if a bank failed in years 07 to 10) or Fail07-09 (Columns (7)-(8), Fail07-09 is a dummy 

variable that = 1 for years 07 to 09 if a bank failed in years 07 to 09). Treated Crisis is a dummy variable that = 1 if banks are in the treated group (and 0 if in the control 

group). Treated banks are banks which are affected by regulatory office closures in the pre-crisis period (supervised by the closed office). Control banks are banks which 

are headquartered in the same counties as Treated Crisis banks but are not supervised by the closed office. See Section 1.5 for the detailed construction of treatment crisis 

and control groups. Only Treated Crisis (and corresponding control) banks which experience regulatory office closures before the financial crisis are included in this 

analysis to investigate the impact of office closures on performance during the crisis.  The variable of interest is the coefficient β3 on the interaction term Treated Crisis 

x Crisis which takes the value of 1 for treated banks during the financial crisis (years 2007 to 2009) and 0 otherwise. Z is a vector of control variables and includes Audit, 

Mandatory Audit, Log Total Assets, Tier-1 Capital, Real Estate Loans, Agri Loans, CI Loans, Indiv Loans, Total Deposits, Total Loans, BHC, County Income per Cap, 

County Pop, County HHI, County Pop Density, ∆State UR and ∆State HPI for Columns (1)-(4) and Audit, Mandatory Audit, ROA, Log Total Assets, Tier-1 Capital, Real 

Estate Loans, Agri Loans, CI Loans, Indiv Loans, Total Deposits, Total Loans, BHC, County Income per Cap, County Pop, County HHI, County Pop Density, ∆State 

UR and ∆State HPI for Columns (5)-(8). Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-A1 for the definition and construction 

of variables used in this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are reported in parenthesis. ***, ** and * indicate 

significance at the 1%, 5% and 10% levels, respectively. 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Bad Loans Bad Loans Loan Charge-Offs Loan Charge-Offs Fail07-10 Fail07-10 Fail07-09 Fail07-09 

 
        

Treated Crisis x Crisis 0.00397* 0.00383** 0.00053** 0.00052** 0.05746*** 0.05306*** 0.03057* 0.03063* 

 [1.80299] [1.98642] [2.22975] [2.47512] [2.61043] [2.76225] [1.70093] [1.86407] 

Crisis 0.01250*** 0.01226** 0.00275*** 0.00363*** -0.00631 -0.11455** -0.00774 -0.08501*** 

 [4.12184] [2.11628] [7.06763] [5.52382] [-1.07260] [-2.33267] [-1.28878] [-2.90283] 

 
        

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes 

Reg Office FE Yes Yes Yes Yes Yes Yes Yes Yes 
Other Controls No Yes No Yes No Yes No Yes 

Adj. R-squared 0.151 0.23 0.101 0.144 0.0784 0.193 0.0451 0.165 

Observations 9,055 9,055 9,055 9,055 9,055 9,055 9,055 9,055 
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Loan loss provisions (LLPs) are accrued expenses that reflect expected future 

losses on a bank’s loan portfolio. When banks delay recognition of expected losses by 

under-provisioning for loan losses, loan losses above previously made provisions have 

to be absorbed by bank capital. This can raise solvency concerns if capital cushions 

are insufficient to cover losses during economic downturns. For instance, Beatty and 

Liao (2011) find that delays in provisioning (a form of under-provisioning) lead to 

decreases in bank lending in recession times while Bushman and Williams (2015) 

show that delays in provisioning for expected losses are associated with higher bank 

risk during economic downturns.  

As banks have some discretion over how to expense for expected bad loans, 

supervisors charged with maintaining the safety and soundness of the system will 

require banks to hold levels of LLPs that are commensurate with the expected losses 

arising from their loan portfolio. However, effective enforcement of LLP rules 

depends on the information set that is available to regulators. Consistent with this, 

Costello et al. (2016) show supervisors that perform well on several dimensions 

enforce more bank income-reducing restatements as well as higher levels of LLPs. I 

expect that, after regulatory office closures, the cost of collecting and verifying soft 

information increases for examiners. I then use this intuition to infer that information 

asymmetry issues following regulatory office closures will negatively impact the 

ability of supervisors to enforce appropriate loan loss provisioning practices of banks. 

I conduct two complementary, but related tests to examine the extent to which 

banks affected by regulatory office closures are able to exploit the heightened 

information asymmetry issues between them and supervisors to: (i) make lower and 
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less timely loan loss provisions; and (ii) increase their discretionary use of loan loss 

provisions to under-provision for expected loan losses.  

1.6.1.1 Magnitude and Timeliness of Loan Loss Provisions 

 

If heightened information asymmetry issues following regulatory office 

closures decrease a supervisor’s ability to enforce bank loan loss provisions that are 

commensurate with bad loans, I expect less timely provisioning for banks that are 

affected by these closures. That is, I expect to see a decline in how sensitive current 

LLPs are to the actual bad loans that materialize in the future amongst affected banks.  

To analyze whether information asymmetry affects the provisioning behavior 

of banks, we estimate the following model in the spirit of Nichols, Wahlen, and 

Wieland (2009) and Kanagaretnam, Lim, and Lobo (2014): 

LLPi,k,t  = αi,k,t  + β1Treatedi,k,t + β2Postk,t + β3Treatedi,k,t × Postk,t +β4Treatedi,k,t × 

Postk,t × ∆Bad Loansi,k,t+1 + β5Treatedi,k,t × Postk,t × ∆Bad Loansi,k,t + β6Treatedi,k,t × 

Postk,t × ∆Bad Loansi,k,t-1+ Zi,k,t +  Bank FE + Regulatory Office FE + Year-Quarter 

FE + εi,k,t  (1-4) 

 

where i, k and t indicate bank i, regulatory office k and year-quarter t respectively while 

Z is a vector of control variables. Treated and Post are as previously defined in Section 

1.3.2.1. LLP is defined as Loan Loss Provisions scaled by Total Loans. Bad Loans is 

constructed as Total Loans and Receivables 90+ days late scaled by Total Loans.  

The variables of interest are the coefficients on β4, β5 and β6. These interaction 

terms measure the extent to which regulatory office closures affect the sensitivity 

between bad loans (past, current and future) and current LLPs. I first estimate Equation 
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(1-4) with only Treated × Post in Columns (1)-(2) and then include the full Equation 

in Columns (3)-(4) of Table 1-8.  

In Columns (1)-(2) of Table 1-8, the coefficient on Treated × Post is negative 

and statistically significant. This shows that banks that were affected by a regulatory 

office closures decrease their LLPs compared to the group of control banks. Further, 

provisioning practices become less timely for banks affected by office closures. This 

is demonstrated by a negative coefficient on Treated × Post × ∆Bad Loanst+1 

(statistically significant at the 1% level in Columns (3)-(4)). This is consistent with the 

argument that information asymmetry impedes effective supervision. Following office 

closures, the newly assigned supervisory office is less effective when enforcing levels 

of LLPs that are appropriate for future bad loans.  

1.6.1.2 Abnormal Discretionary Loan Loss Provisions 

 

After demonstrating that LLPs become less sensitive to future loan losses 

following the closure of a supervisory office, I next show results from banks’ use of 

discretionary provisions to under-provision for bad loans. While the earlier test show 

that the timeliness of provisioning for bad loans decreases for banks that are affected 

by office closures, they do not demonstrate that affected banks increase their use of 

the discretionary component of LLPs to under-provision for expected loan losses.  
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Table 1-8: Office Closures and Loan Loss Provisions 

This table reports estimates of a difference-in-difference regression which estimates the effect of regulatory office closures on loan loss provisioning practices. I report 

estimates of the following equation in Columns (3)-(4): 

Yi,k,t =  αi,k,t  + β1Treatedi,k,t + β2Postk,t + β3Treatedi,k,t x Postk,t +  β4Treatedi,k,t x Postk,t x ∆Bad Loansi,k,t+1 + β5Treatedi,k,t x Postk,t x ∆Bad Loansi,k,t + β6Treatedi,k,t x Postk,t 

x ∆Bad Loansi,k,t-1 + Zi,k,t + Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t  

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively. Y is LLP (Columns (1)-(4), LLP is defined as Loan Loss Provisions/Total Loans). 

Treated is a dummy variable that = 1 if banks are in the treated group (and 0 if in the control group). Treated banks are banks which are affected by regulatory office 

closures (supervised by the closed office). Control banks are banks which are headquartered in the same counties as treated banks but are not supervised by the closed 

office. See Section 1.3 for the detailed construction of treatment and control groups. Post is a variable that = 1 for the 3 years after the closure of a regulatory office k 

and 0 for the 2 years before (5-year diff-in-diff window). The variable of interest for Columns (1)-(2) is the coefficient β3 of the interaction term Treated x Post which 

takes the value of 1 for treated banks the 3 years after closure of its regulatory office and 0 otherwise. The variable of interest for Columns (3)-(4) is the coefficient on 

the three triple interaction terms β4, β5 and β6. Z is a vector of control variables and includes EBLLP, Log Total Assets, LLA, Audit, Mandatory Audit, Real Estate Loans, 

Agri Loans, CI Loans, Indiv Loans, Total Deposits, Total Loans, Loan Growth, BHC, County Income per Cap, County Pop, County HHI, County Pop Density, ∆State 

UR and ∆State HPI. Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-A1 for the definition and construction of variables used 

in this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are reported in parenthesis. ***, ** and * indicate significance at 

the 1%, 5% and 10% levels, respectively. 

 
 (1) (2) (3) (4) 
 LLP LLP LLP LLP 
     

Treated x Post -0.00079*** -0.00075** -0.00061*** -0.00070* 
 [-4.35262] [-1.97893] [-3.76394] [-1.83867] 

Treated x Post x ∆Bad Loanst+1 
  -0.04141*** -0.04758*** 

   [-2.69609] [-3.15270] 

Treated x Post x ∆Bad Loanst 
  -0.00778 -0.0083 

   [-0.18322] [-0.19332] 

Treated x Post x ∆Bad Loanst-1 
  0.00602 0.0063 

   [0.28855] [0.28283] 
     

Bank FE Yes Yes Yes Yes 
Year-Quarter FE Yes Yes Yes Yes 

Reg Office FE Yes Yes Yes Yes 
Other Controls No Yes No Yes 

Adj. R-squared 0.058 0.128 0.0744 0.139 

Observations 8,321 7,214 7,214 7,214 
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I use a two-step approach following the literature (e.g., Kanagaretnam et al., 

2010; Beatty and Liao, 2014; Jiang et al., 2016). In the first-step, I estimate the 

discretionary component in LLPs as the residuals of a regression that predicts loan 

defaults. Negative (positive) residuals indicate that banks understate (overstate) their 

LLPs relative to a level of LLPs that is commensurate with expected loan losses. I then 

use the residuals as dependent variables in the second-step to investigate if regulatory 

office closures affect the discretionary uses of LLPs. The advantage of this approach 

is that I am able to separate the component of LLPs that are nondiscretionary and 

observe if supervisors are less able to enforce the under-provisioning of expected loan 

losses for affected banks. 

Interpreting residual LLPs as proxies for discretionary uses of LLPs relies on 

the accuracy of the LLP model to predict expected loan losses. Beatty and Liao (2014) 

assess various models used in the literature and test their validity in predicting earnings 

restatements and comment letters from the Securities and Exchange Commission.18  

I follow their choice of the two best performing models and estimate Models 

A and B as: 

Model A: LLPi,j,t = αi,j,t   + ∆NPAi,j,t+t  + ∆NPAi,j,t + ∆NPAi,j,t-1 + ∆NPAi,j,t-2 + Log 

Total Assetsi,j,t-1  + ∆Loansi,j,t + ∆State GDPj,t  + ∆State HPIj,t  + ∆State URj,t + State 

FE + Year-Quarter FE +  εi,j,t (1-5) 

 

                                                           
18 While I acknowledge that using residuals as proxies for discretionary loan loss provisioning behavior 

relies heavily on the model assumptions and variables included in the first-step, I follow the “best” 

models specified in Beatty and Liao (2014) to minimize the issues of “non-standard arbitrary” models.  

Specifically, Beatty and Liao (2014) review 9 different models used in the banking literature to identify 

discretionary loan loss provisioning behavior. They conduct factor analysis on these 9 models to 

understand the importance of the different underlying factors. Based on the results of their factor 

analysis, the authors specify “best” models and test the validly of these models in predicting SEC 

restatements and comment letters.  
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Model B: LLPi,j,t = αi,j,t  + ∆NPAi,j,t+t  + ∆NPAi,j,t + ∆NPAi,j,t-1 + ∆NPAi,j,t-2 + LLAi,j,t-1 

+ Log Total Assetsi,j,t-1  + ∆Loansi,j,t + ∆State GDPj,t   + ∆State HPIj,t  + ∆State URj,t + 

State FE + Year-Quarter FE + εi,j,t (1-6) 

 

where i, j and t indicate bank i, state j and year-quarter t respectively. I also include 

state and year-quarter dummies. Appendix 1-A1 lists the variable definitions. Standard 

errors are clustered at the bank-level. Results of Equations (1-5) and (1-6) are reported 

in Appendix 1-A2. +ALLP A (-ALLP A) are the residuals from Equation (1-5) if εi,k,t > 

0 (εi,k,t < 0). I also calculate the absolute value of the residuals (|ALLP A|) from 

Equation (1-5). An increase in the absolute value of residuals indicates that banks make 

more use of discretionary LLPs (have more opaque accounting practices). A decrease 

(increase) in -ALLP (+ALLP) indicates that banks make more use of discretionary 

LLPs for income-increasing (income-decreasing) reasons respectively. For robustness, 

I also use the residuals from Equation (1-6) in my analysis.  

I show the results in Table 1-9. When examining the results for -ALLP, the 

coefficients on the interaction term Treated × Post in Columns (1)-(4) is negative and 

statistically significant at the 1% level. Following regulatory office closures, banks 

that were affected by closures increase their understating of LLPs.19 I observe no effect 

in Columns (5)-(8) in terms of banks overstating their provisions. Finally, in Columns 

(9)-(12), which examine the absolute value of residuals, the coefficient on Treated × 

Post is mostly positive and statistically significant. This suggests that following office 

closures, affected banks increase their use of discretionary LLPs, resulting in more 

opaque provisioning and financial reporting practices.  

                                                           
19 Note that -ALLP A and -ALLP B have negative values while +ALLP A and +ALLP B have positive 

values. Thus, a negative coefficient on Treated x Post in Columns (1)-(4) means that understating uses 

of LLPs increases after regulatory office closures by affected banks.  
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Table 1-9: Office Closures and Abnormal Loan Loss Provisions 

This table reports estimates of a difference-in-difference regression which estimates the effect of regulatory office closures on earnings management via loan loss 

provisioning practices. I report estimates of the following equation:  

Yi,k,t =  αi,k,t  + β1Treatedi,k,t + β2Postk,t + β3Treatedi,k,t x Postk,t + Zi,k,t + Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t 

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively. Y is either -ALLP A (Columns (1)-(2), -ALLP A is the negative residuals of 

Equation (1-5), the discretionary component of LLPs), -ALLP B (Columns (3)-(4), -ALLP B is the negative residuals of Equation (1-6), the discretionary component of 

LLPs), +ALLP A (Columns (5)-(6), +ALLP A is the positive residuals of Equation (1-5), the discretionary component of LLPs), +ALLP B (Columns (7)-(8), +ALLP B 

is the positive residuals of Equation (1-6), the discretionary component of LLPs), |ALLP A| (Columns (9)-(10), |ALLP A| is the absolute value of residuals of Equation 

(1-5), the discretionary component of LLPs) and |ALLP B| (Columns (11)-(12), |ALLP B| is the absolute value of residuals of Equation (1-6), the discretionary component 

of LLPs). Treated is a dummy variable that = 1 if banks are in the treated group (and 0 if in the control group). Treated banks are banks which are affected by regulatory 

office closures (supervised by the closed office). Control banks are banks which are headquartered in the same counties as treated banks but are not supervised by the 

closed office. See Section 1.3 for the detailed construction of treatment and control groups. Post is a variable that = 1 for the 3 years after the closure of a regulatory 

office k and 0 for the 2 years before (5-year diff-in-diff window). The variable of interest is the coefficient β3 on the interaction term Treated x Post which takes the value 

of 1 for treated banks the 3 years after closure of its regulatory office and 0 otherwise. Z is a vector of control variables and includes Audit, Mandatory Audit, Lag LLP, 

EBLLP, Log Total Assets, Tier-1 Capital, Real Estate Loans, Agri Loans, CI Loans, Indiv Loans, Total Deposits, Total Loans, BHC, County Income per Cap, County 

Pop, County HHI, County Pop Density, ∆State UR and ∆State HPI. Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-A1 for 

the definition and construction of variables used in this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are reported in 

parenthesis. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 

                          

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 -ALLP A -ALLP A -ALLP B -ALLP B +ALLP A +ALLP A +ALLP B +ALLP B |ALLP A| |ALLP A| |ALLP B| |ALLP B| 

 
            

Treated x Post -0.0336*** -0.0453*** -0.0470*** -0.0684*** 0.2681 0.371 -0.0489 -0.0754 0.0320** 0.0715*** 0.0283 0.0659** 

 [-4.161] [-4.891] [-3.051] [-4.280] [0.837] [1.187] [-0.507] [-0.644] [2.117] [2.735] [1.4680] [2.375] 

Post -0.0274* -0.021 -0.0126 -0.0088 -0.007 0.0179 0.0379 0.045 0.000 0.002 -0.003 -0.000 

 [-1.79] [-1.62] [-0.772] [-0.57756] [-0.040] [0.116] [0.19516] [0.25998] [0.008] [0.08463] [-0.10787] [-0.031] 

 
            

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Reg Office FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Other Controls No Yes No Yes No Yes No Yes No Yes No Yes 

Adj. R-squared 0.502 0.531 0.426 0.457 0.0819 0.109 0.081 0.101 0.103 0.118 0.0946 0.108 

Observations 5,042 5,041 4,868 4,867 1,486 1,486 1,660 1,660 6,528 6,527 6,528 6,527 
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Overall, the evidence presented in this section shows that, following 

supervisory office closures, banks engage more in their use of discretionary LLPs and 

do so in way that under-provisions for expected loan losses. I interpret this finding as 

evidence that regulatory office closures increase information asymmetry issues in 

supervision and facilitate opportunistic provisioning behavior by banks.  

1.6.2 Evidence from Changes in Distance 

 

Physical distance is commonly used as a proxy for information asymmetry 

between economic agents. That is because increases in physical distance increase the 

cost of collecting and verifying the type of soft information that facilitates monitoring 

and enforcement (Kedia and Rajgopal, 2011; Wilson and Veuger, 2016). 

Upon closure of a regulatory office, the supervision of affected banks is 

typically transferred to the next closest regulatory office. Therefore, regulatory office 

closures generate an increase in the physical distance between a treated bank and its 

supervising regulatory office. I exploit variation in the increase in distance for banks 

which are affected by regulatory office closures and hypothesize that for larger 

increases in physical distance, information asymmetry issues between banks and 

supervisors should become more pronounced. The latter should result in larger 

increases in bank risk for banks with larger increase to the supervisory office taking 

over the supervision. I estimate the following equation: 

Yi,k,t  = αi,k,t  + β1Postk,t+ Zi,k,t  +  Bank FE + Regulatory Office FE + Year-Quarter FE 

+ εi,k,  (1-7) 

 

where subscripts i, k and t indicate bank, regulatory office and year-quarter 

respectively, while Z is the same vector of control variables used in Section 1.4.1. In 
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this analysis, I only include banks affected by regulatory office closures (banks that 

are not affected do not change their distance to supervisors). I thus run the analysis for 

groups of treated banks that differ in terms of how large the increase in distance 

between the previous and the new regulatory office is.  

I show the results in Table 1-10. Columns (1)-(2) and (3)-(4) analyze changes 

in risk when the increases in distance to the new office are in the lowest 20% and 50% 

of the sample distribution respectively. Columns (5)-(6) and (7)-(8) analyze changes 

in risk for increases that are in the top 50% and 20% of the sample distribution 

respectively. The results show that Post is mostly insignificant in Columns (1)-(4) and 

positive and significant at the 1% level in Columns (5)-(8). Thus, increases of 15 km 

or more (the median increase in distance in the sample) are positively related to risk-

taking, while smaller increases are not related to increases in bank risk.  

Further, I also observe that larger increases in distance lead to higher risk-

taking post-closures. Columns (7)-(8) show larger coefficient estimates for Post when 

increases in distance are 42 km or more (the 80th percentile of the sample distribution) 

as compared to when increases in distance are 15 km or more in Columns (5)-(6) (the 

50th percentile of the sample distribution). These findings are consistent with 

explanations that higher levels of information asymmetry present a challenge to 

effective supervisory enforcement. 

1.7 Robustness  

 

 This section conducts various robustness tests on my main findings that banks 

affected by regulatory office closures become riskier and more aggressively grow their 

loan portfolios. 
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1.7.1 Time-varying Local Economic Shocks and Supervisory Effectiveness 

 

To address remaining concerns that time-varying omitted variables that arise 

from local economic shocks or differences in regulatory enforcement practices could 

bias my results, Table 1-11 offers a particularly tight specification that includes bank 

fixed effects and 2 two-way fixed effects (County x Year-Quarter FE and Reg Office 

x Year-Quarter FE).  

A within-county and -quarter specification is feasible because banks residing 

in the same county may be supervised by different regulatory offices (with some 

affected by closures and others are not) which allows me to control for two-way fixed 

effects. Reg Office x Year-Quarter dummies control for the time-varying intensity of 

supervision specific to each regulatory office. Table 1-11 shows the coefficients on 

Treated × Post remains statistically significant for the risk and lending outcomes. This 

gives me confidence that my results are not biased by time-varying unobservable 

factors.  

1.7.2 Dynamic Timing Effects of Regulatory Office Closures 

 

To confirm that my findings are indeed caused by regulatory office closures, I 

follow Bertrand and Mullainathan (2003) and estimate a dynamic timing effects 

model. I re-estimate the risk and lending results in Section 1.4.1 and 1.4.2 by replacing 

Post with four dummy variables (Post Closure-1, Post Closure, Post Closure+1 and 

Post Closure+2) which are equal to 1 (and 0 otherwise) in the year of a regulatory 

office closure, the year immediately after the closure of a regulatory office and two or 

three years after the closure of a regulatory office, respectively.  
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Table 1-10: Office Closures and Increases in Distance to the New Office 

This table reports regression estimates of the heterogeneous effects of the change (increase) in distance to a treated bank’s new regulatory office after closure of its 

existing regulatory office. Only treated banks are used in this analysis. I report estimates of the following equation:  

Yi,k,t =  αi,k,t  + β1Postk,t + Zi,k,t + Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t 

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively Y is the Z-Score (Columns (1)-(8), computed as [Log (ROA+Equity) / σROA)] 

x (-1). ROA is defined as Net Income/Total Assets, Equity as Equity/Total Assets and σROA is the standard deviation of ROA over the past 3 years). Treated banks are 

banks which are affected by regulatory office closures (supervised by the closed office). Post is a variable that = 1 for the 3 years after the closure of a regulatory office 

k and 0 for the 2 years before (5-year diff-in-diff window). The variable of interest is the coefficient β1 on the term Post which takes the value of 1 for treated banks the 

3 years after closure of its regulatory office and 0 otherwise. Z is a vector of control variables and includes Audit, Mandatory Audit, ROA, Log Total Assets, Tier-1 

Capital, Real Estate Loans, Agri Loans, CI Loans, Indiv Loans, Total Deposits, Total Loans, BHC, County Income per Cap, County Pop, County HHI, County Pop 

Density, ∆State UR and ∆State HPI. Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-A1 for the definition and construction 

of variables used in this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are reported in parenthesis. ***, ** and * indicate 

significance at the 1%, 5% and 10% levels, respectively. 
                  

 (1) (2) (3) (4) (5) (6) (7) (8) 
 Increase in Distance 
 Bottom 20% (7km) Bottom 50% (15km) Top 50% (15km) Top 20% (42km) 
 Z-Score Z-Score Z-Score Z-Score Z-Score Z-Score Z-Score Z-Score 
   

  
    

Post 0.0674 0.3995 0.16629* 0.2157 0.37721*** 0.30145*** 0.40408*** 0.99578*** 
 [0.3164] [1.0374] [1.6717] [1.1194] [3.5365] [2.64656] [2.78245] [4.6678] 
   

  
    

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes 

Reg Office FE Yes Yes Yes Yes Yes Yes Yes Yes 

Other Controls No Yes No Yes No Yes No Yes 

Adj. R-squared 0.169 0.274 0.106 0.153 0.173 0.247 0.182 0.364 

Observations 1,067 1,067 2,473 2,473 2,429 2,429 951 951 
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I interact the four Post Closure variables with Treated. This allows me to assess 

the timing effects of regulatory office closures. The results are displayed in Table 1-

12. The coefficient on the interaction term Treated × Post Closure-1 is never 

significant.20 

Further, the effects of increased risk-taking and lending for banks affected by 

regulatory office closures occurs only after regulatory office closures. Treated × Post 

Closure, Treated × Post Closure+1 and Treated × Post Closure+2 are mostly positive 

and significant. Therefore, the results of the dynamic timing effects model gives me 

additional confidence that the changes in bank behavior I document occurred in 

response to regulatory office closures.  

Another advantage of the dynamic timing test is that I am able to rule out a 

“distraction” interpretation, where regulators are temporarily distracted as they 

supervise new institutions. In most columns, the economic and statistical magnitude 

of my results (increased risk-taking or loan expansion) remains relatively similar for 

each of the three years after an office closes. Should my results arise due to a temporary 

distraction effect, I would observe a gradual decrease in risk-taking and loan expansion 

in the later post regulatory office closure years. 

 

 

 

                                                           
20 If Treated × Post Closure-1 was statistically significant, this would indicate that banks which are 

affected by regulatory office closures differed in terms of their risk from the control group before 

regulatory office closures occur. This would give rise to concerns over reverse causality or that some 

unobservable shock is driving both office closures and bank behavior and therefore bias my results. 
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Table 1-11: Time-varying Economic Shocks and Supervisory Intensity 

This table reports estimates of a difference-in-difference regression that controls for time-varying economic shocks and time-varying supervisory intensity and estimates 

the effect of regulatory office closures on bank risk and lending. I report estimates of the following equation:  

Yi,k,t =  αi,k,t  + β1Treatedi,k,t + β2Postk,t + β3Treatedi,k,t x Postk,t  + Bank FE + County x Year-Quarter FE + Reg Office x Year-Quarter FE + εi,k,t 

where subscripts i, k and t indicate bank, regulatory office and year-quarter, respectively. Y is either Z-Score (Column (1), computed as [Log (ROA+Equity) / σROA)] x 

(-1). ROA is defined as Net Income/Total Assets, Equity as Equity/Total Assets and σROA is the standard deviation of ROA over the past 3 years), σROA (Column (2), 

computed as Log (σROA)), σROE (Column (3), computed as Log (σROE)). ROE is defined as Net Income/Total Equity. σROE is the standard deviation of ROE over 

the past 3 years), Log Total Loans (Column (4)), Total Loans/Total Assets (Column (5)), Log Real Estate Loans (Column (6)) or Real Estate Loans/Total Assets (Column 

(7)). Treated is a dummy variable that = 1 if banks are in the treated group (and 0 if in the control group). Treated banks are banks which are affected by regulatory office 

closures (supervised by the closed office). Control banks are banks which are headquartered in the same counties as treated banks but are not supervised by the closed 

office. See Section 1.3 for the detailed construction of treatment and control groups. Post is a variable that = 1 for the 3 years after the closure of a regulatory office k 

and 0 for the 2 years before (5-year diff-in-diff window). The variable of interest is the coefficient β3 on the interaction term Treated x Post which takes the value of 1 

for treated banks the 3 years after closure of its regulatory office and 0 otherwise. Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to 

Appendix 1-A1 for the definition and construction of variables used in this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics 

are reported in parenthesis. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 

                

 (1) (2) (3) (4) (5) (6) (7) 

 Z-Score σROA σROE Log Total Loans Total Loans/TA Log Real Estate Loans Real Estate Loans/TA 

 
       

Treated x Post 1.441*** 0.001*** 0.00682*** 0.352*** 0.102** 0.471*** 0.11664** 

 [12.467] [19.690] [10.38542] [3.316] [2.460] [2.879] [2.15439] 

Post 0.734* 0 -0.00282 0.407** 0.118*** 0.483*** 0.07511** 

 [1.775] [-0.030] [-0.76395] [2.431] [4.334] [2.625] [2.16379] 

 
       

Bank FE Yes Yes Yes Yes Yes Yes Yes 

County x Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes 

Reg Office x Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes 

Other Controls  No No No No No No No 

Adj. R-squared 0.24 0.243 0.358 0.289 0.109 0.221 0.132 

Observations 7,254 7,274 7,274 8,321 8,321 8,321 8,321 
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1.7.3 Placebo Tests 

 

I repeat my analysis in Section 1.4.1 and 1.4.2 using only the group of control 

banks (defined in Section 1.3.2.1). If local economic conditions (rather than office 

closures) explain my results, I should also observe changes in bank behavior in the 

control group in the period following office closures. After all, these banks reside in 

the same counties as the banks affected by regulatory office closures and are thus 

exposed to the same local economic shocks. 

The results of this placebo test are reported in Table 1-13. The variable of 

interest is Post which is 1 in the three years following a regulatory office closure (and 

0 otherwise). The coefficient on this variable is never significant for the risk and 

lending regressions. Therefore, the increase in bank risk and lending I observe for 

banks affected by a regulatory office closure is plausibly due to regulatory office 

closures, rather than unobserved local economic shocks.  

1.8 Conclusion 

 

This chapter studies the effects of supervision on bank business polices. I use 

a novel quasi-natural experiment, the closing of regulatory offices, as negative shocks 

to the efficacy of bank supervision. My results show that, after a regulatory office 

closes, banks under the supervision of the closed office become riskier and expand 

their loan portfolios more aggressively than banks located in the same counties but not 

under the supervision of the closed office. Further, banks affected by regulatory office 

closures exhibit lower risk-adjusted returns, lower asset quality and a higher 

probability of failure during the 2007-2009 financial crisis. 
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Table 1-12: Dynamic Timing Effects of Office Closures 

This table reports estimates of a difference-in-difference regression which estimates the timing effects of regulatory office closures on bank risk and lending to show that 

bank behavior only changes after office closures. I report estimates of the following equation:  

Yi,k,t =  αi,k,t  + β1Treatedi,k,t + β2Post Closure-1k,t + β3Post Closurek,t + β4Post Closure+1k,t + β5Post Closure+2k,t + β6Treatedi,k,t x Post Closure-1k,t + β7Treatedi,k,t x Post 

Closurek,t  + β8Treatedi,k,t x Post Closure+1k,t + β9Treatedi,k,t x Post Closure+2k,t + Bank FE + Regulatory Office FE +Year-Quarter FE + εi,k,t 

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively. Y is either Z-Score (Column (1), computed as [Log (ROA+Equity) / σROA)] x 

(-1). ROA is defined as Net Income/Total Assets, Equity as Equity/Total Assets and σROA is the standard deviation of ROA over the past 3 years), σROA (Column (2) 

computed as Log (σROA)), σROE (Column (3), computed as Log (σROE). ROE is defined as Net Income/Total Equity. σROE is the standard deviation of ROE over the 

past 3 years), Log Total Loans (Column (4)), Total Loans/Total Assets (Column (5)), Log Real Estate Loans (Column (6)) or Real Estate Loans/Total Assets (Column 

(7)). Treated is a dummy variable that = 1 if banks are in the treated group (and 0 if in the control group). Treated banks are banks which are affected by regulatory office 

closures (supervised by the closed office). Control banks are banks which are headquartered in the same counties as treated banks but are not supervised by the closed 

office. See Section 1.3 for the detailed construction of treatment and control groups. Post Closure-1 is a variable that = 1 for the year of the closure of regulatory office 

k and 0 otherwise. Post Closure is a variable that = 1 for the year immediately after the closure of regulatory office k and 0 otherwise. Post Closure+1 is a variable that 

= 1 for the 2nd year after closure of regulatory office k and 0 otherwise. Post Closure+2 is a variable that = 1 for the 3rd year after the closure of regulatory office k and 

0 otherwise. The variable of interest is the coefficient β6, β7, β8 and β9 on interaction terms Treated x Post Closure-1, Treated x Post Closure, Treated x Post Closure+1 and 

Treated x Post Closure+2. Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-A1 for the definition and construction of variables 

used in this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are reported in parenthesis. ***, ** and * indicate significance 

at the 1%, 5% and 10% levels, respectively. 

                

 (1) (2) (3) (4) (5) (6) (7) 

 Z-Score σROA σROE Log Total Loans Total Loans/TA Log Real Estate Loans Real Estate Loans/TA 

 
       

Treated x Post Closure-1 0.05144 0.0001 0.00075 -0.02659 -0.00858 -0.03931 -0.0079 

 [1.11611] [1.28686] [0.86995] [-0.96471] [-1.32662] [-1.23277] [-1.36721] 

Treated x Post Closure 0.91264*** 0.00087** 0.00473 0.17720** 0.06410*** 0.21791** 0.07484*** 

 [6.21637] [2.35133] [1.54742] [2.37429] [3.19017] [2.08471] [3.52153] 

Treated x Post Closure+1 0.86395*** 0.00082** 0.00435 0.15179** 0.06914*** 0.19741** 0.01572* 

 [5.85610] [2.26003] [1.44764] [2.16909] [3.60098] [1.97872] [1.75542] 

Treated x Post Closure+2 0.84695*** 0.00085** 0.00515* 0.04678 0.06183*** 0.08975 0.07865*** 

 [5.58759] [2.36912] [1.71508] [0.63816] [3.13182] [0.87596] [3.82711] 

 
       

Bank FE Yes Yes Yes Yes Yes Yes Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes 

Reg Office FE Yes Yes Yes Yes Yes Yes Yes 
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Other Controls No No No No No No No 

Adj. R-squared 0.11 0.0944 0.094 0.266 0.101 0.255 0.144 

Observations 7,254 7,274 7,274 8,321 8,321 8,321 8,321 
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Table 1-13: Placebo Group and Office Closures 

This table reports estimates of a regression which estimates the effect of regulatory office closures on bank risk and lending for a group of control banks. Only control 

banks are used in this analysis. I report estimates of the following equation:  

Yi,k,t =  αi,k,t  + β1Postk,t + Bank FE + Regulatory Office FE + Year-Quarter FE + εi,k,t 

where subscripts i, k and t indicate bank, regulatory office and year-quarter respectively. Y is either Z-Score (Column (1), computed as [Log (ROA+Equity) / σROA)] x 

(-1). ROA is defined as Net Income/Total Assets, Equity as Equity/Total Assets and σROA is the standard deviation of ROA over the past 3 years), σROA (Column (2), 

computed as Log (σROA)), σROE (Column (3), computed as Log (σROE). ROE is defined as Net Income/Total Equity. σROE is the standard deviation of ROE over the 

past 3 years), Log Total Loans (Column (4)), Total Loans/Total Assets (Column (5)), Log Real Estate Loans (Column (6)) or Real Estate Loans/Total Assets (Column 

(7)). Treated banks are banks which are affected by regulatory office closures (supervised by the closed office). Control banks are banks which are headquartered in the 

same counties as treated banks but are not supervised by the closed office. See Section 1.3 for the detailed construction of treatment and control groups. Post is a variable 

that = 1 for the 3 years after the closure of a regulatory office k and 0 for the 2 years before (5-year diff-in-diff window). The variable of interest is the coefficient β1 on 

the term Post which takes the value of 1 for control banks the 3 years after closure of regulatory office of treated banks that are residing in the same counties as themselves 

and 0 otherwise.  Bank balance sheet variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-A1 for the definition and construction of variables used in 

this chapter. The constant is suppressed. Standard errors are clustered at the bank-level. t-statistics are reported in parenthesis. ***, ** and * indicate significance at the 

1%, 5% and 10% levels, respectively. 

                

 (1) (2) (3) (4) (5) (6) (7) 

 Z-Score σROA σROE Log Total Loans Total Loans/TA Log Real Estate Loans Real Estate Loans/TA 

 
       

Post -0.143 -0.00013 -0.00058 -0.03835 0.01323 -0.02905 0.0242 

 [-1.17353] [-0.80232] [-0.33416] [-0.63925] [0.76755] [-0.42705] [1.25590] 

 
       

Bank FE Yes Yes Yes Yes Yes Yes Yes 

Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes 

Reg Office FE Yes Yes Yes Yes Yes Yes Yes 

Other Controls No No No No No No No 

Adj. R-squared 0.0859 0.0755 0.0814 0.229 0.0518 0.223 0.0911 

Observations 2,352 2,352 2,352 2,947 2,947 2,947 2,947 
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Office closures are also associated with real costs to the FDIC. The closure of a single 

regulatory office leads to bank failure resolutions costs of approximately $15.7 

million. 

I argue that regulatory office closures reduce the level and quality of 

information that bank examiners have on banks. I show evidence that information 

asymmetry issues between banks and supervisors is one mechanism that impedes 

supervision. Specifically, I demonstrate that, following regulatory office closures, 

banks affected by closures exploit heightened information frictions between them and 

regulators to make lower and less timely provisions for future bad loans. I also show 

the post-closure changes in bank risk become more pronounced as the physical 

distance between banks and the newly assigned regulatory office increases.  

My findings are of broad interest to regulators and help inform policy debates 

regarding regulations and supervision. Most importantly, my work paints a positive 

picture of the effectiveness of a decentralized structure of bank supervision where 

supervisory offices are located close to the banks which they examine. The findings 

are timely because of continued pressures on bank supervisors to deliver their services 

in a cost-effective way and with as few offices as feasible. Government and regulators 

should carefully weigh the cost savings of a more centralized organizational structure 

against the possibility of less effective bank supervision that may result from office 

closures. 

A case in point is the ongoing implementation of the Single Supervisory 

Mechanism (SSM) in Europe where the supervision of systemically important banks 

is transferred from national regulators to the European Central Bank in Frankfurt. 
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However, the results I present in this chapter suggest that the informational advantages 

of being close to the institutions under supervision may well outweigh the other 

benefits of a more centralized supervisory structure. 
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Appendix 1-A1: Definition of Variables 
        

Variables Definition Source 

 

Risk & Performance Variables 

Z-Score [Log (ROA+Equity) / σROA)] x (-1). σROA calculated  Call Report 

 is calculated using a 3-year rolling window  

σROA Log (Standard deviation of ROA). σROA is  Call Report 

 calculated using a 3-year rolling window  

σROE Log (Standard deviation of ROE). σROE is  Call Report 

 calculated using a 3-year rolling window  

ROA/σROA Log (ROA / σROA). σROA is calculated  Call Report 

 using a 3-year rolling window  

ROE/σROE Log (ROE / σROE). σROE is calculated Call Report 

 using a 3-year rolling window  

ROA Net Income / Total Assets Call Report 

ROE Net Income / Total Equity  Call Report 

EBLLP (Net Income before Extraordinary Items + Loss 

Provisions)  
Call Report 

 Loan Loss Provisions) / Total Assets  

Fail07-09 Dummy variable = 1 if a bank failed from FDIC Failed  

 07-09 and 0 otherwise Bank List 

Fail07-10 Dummy variable = 1 if a bank failed from  FDIC Failed  

 07-10 and 0 otherwise Bank List 

   

Loan Variables   

Total Loans Total Loans / Total Assets Call Report 

Log Total Loans Log (Total Loans in Thousands) Call Report 

Real Estate Loans Real Estate Loans / Total Loans Call Report 

Log Real Estate Loans Log (Real Estate Loans in Thousands) Call Report 

Real Estate Loans/TA Real Estate Loans / Total Assets Call Report 

Agri Loans Agricultural Loans / Total Loans Call Report 

CI Loans Commercial and Industrial Loan / Total Loans Call Report 

Indiv Loans Individual Loans / Total Loans Call Report 

   

Financial Variables   

Log Total Assets Log (Total Assets) Call Report 

Total Deposits Total Deposits / Total Assets Call Report 

Tier-1 Capital Tier-1 Capital / Risk Weighted Assets Call Report 

LLA Loan Loss Allowances / Total Loans Call Report 

LLP Loan Loss Provisions / Total Loans Call Report 

BHC Dummy variable = 1 if a bank is part of a  Call Report 

 Bank Holding Company and 0 otherwise  

Audit Dummy variable = 1 if a bank receives  Call Report 

 an external audit and 0 otherwise  

Mandatory Audit Dummy variable = 1 if total assets Call Report 

 >$500m and 0 otherwise  

Bad Loans Total Loans and Receivables 90+ days late Total Loans Call Report 

 / Total Loans  

Loan Charge-Offs Total Loan Charge-Offs / Total Loans Call Report 

Equity Total Equity / Total Assets Call Report 

   

Accounting Variables   

|ALLP A| Abs. value of the residuals of Model A (Equation 1-5) Author’s calculation 

|ALLP B| Abs. value of the residuals of Model B (Equation 1-6) Author’s calculation 

-ALLP A Negative residuals of Model A (Equation 1-5) Author’s calculation 

-ALLP B Negative residuals of Model B (Equation 1-6) Author’s calculation 

+ALLP A Positive residuals of Model A (Equation 1-5) Author’s calculation 

+ALLP B Positive residuals of Model B (Equation 1-6) Author’s calculation 
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NPA Total Loans and Receivables 90+ days late Call Report 

 / Lag Total Loans  

   

County & State Variables 

∆State GDP Change in state GDP Bureau of Economic 

  Analysis 

∆State HPI Change in the return of the House Price Index Federal Housing  

 (all transactions index) Finance Agency 

∆State UR Change in State Unemployment Rate Bureau of Labor 

Statistics County Income per 

Cap 
Log (Income per capita of the county) Bureau of Economic 

  Analysis 

County HHI HHI index using the deposits of banks Call Report 

 headquartered in the county  

County Pop Density Population of the county / area of the county U.S. Census Bureau 

County Pop Log (Population of the county) U.S. Census Bureau 

   

Regulatory Office Variables 

ROA under. Sup. Mean ROA of banks under the Call Report 

 regulatory office’s supervision  

Bad Loans under Sup. Mean Bad Loans of banks under the Call Report 

 regulatory office’s supervision  

Z-Score under Sup. Mean Z-Score of banks under the Call Report 

 regulatory office’s supervision  

Log Total Assets Log (Sum of Total Assets of banks  Call Report 

under Sup. under the regulatory office’s supervision)  

Main Office Dummy variable that = 1 if a regulatory office Author’s calculation 

 is a non-satellite field office and 0 otherwise  

Beside Main Office Dummy variable that = 1 if a regulatory office  Author’s calculation 

 is the nearest office to a Main Office and 0 otherwise  
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Appendix 1-A2: Determinants of Non-Discretionary Loan Loss Provisions 

This table reports estimates of the determinants of loan loss provisions (where these determinants are 

the non-discretionary components) for which the residuals are used as proxies for the discretionary 

component of loan loss provisioning practices used in Table 1-9. I report estimates of the following 

equation in Column (1) (Equation 1-5): 

LLPi,j,t =  αi,j,t  + β1∆NPAi,j,t+1 + β2∆NPAi,j,t + β3∆NPAi,j,t-1 + β4∆NPAi,j,t-2 + β5Log Total Assetsi,j,t-1 + 

β6∆Total Loansi,j,t + β7∆State GDPj,t + β8∆State HPIj,t + β9∆State URj,t + State FE + Year-Quarter FE 

+ εi,k,t 

I report estimates of the following equation in Column (2) (Equation 1-6): 

LLPi,j,t =  αi,j,t  + β1∆NPAi,j,t+1 + β2∆NPAi,j,t + β3∆NPAi,j,t-1 + β4∆NPAi,j,t-2 + β5LLAi,j,t-1 +  β6Log Total 

Assetsi,j,t-1 + β7∆Total Loansi,j,t + β8∆State GDPj,t + β9∆State HPIj,t + β10∆State URj,t + State FE + 

Year-Quarter FE + εi,k,t 

where subscripts i, j and t indicate bank, state and year-quarter respectively. Bank balance sheet 

variables are winsorized at the 1% and 99% levels. Refer to Appendix 1-A1 for the definition and 

construction of variables used in this chapter. The constant is suppressed. Standard errors are clustered 

at the bank-level. t-statistics are reported in parenthesis. ***, ** and * indicate significance at the 1%, 

5% and 10% levels, respectively. 

 (1) (2) 
 Model A Model B 
 LLP LLP 
   

∆NPAt+1 0.00870** 0.00940** 
 [2.03799] [2.19948] 

∆NPAt 0.01770* 0.01844** 
 [1.90483] [1.98542] 

∆NPAt-1 0.01908*** 0.01925*** 
 [3.80754] [3.83945] 

∆NPAt-2 0.01821*** 0.01830*** 
 [3.99261] [4.00174] 

Log Total Assetst-1 0.00002 0.00003 
 [0.49810] [0.74532] 

∆Total Loanst -0.00034 -0.0004 
 [-0.77181] [-0.91821] 

∆State GDPt 0.00831*** 0.00819*** 
 [3.34693] [3.30327] 

∆State HPIt -0.01970*** -0.01981*** 
 [-3.09660] [-3.10118] 

∆State URt -0.0008 -0.00081 
 [-1.59034] [-1.59383] 

LLAt-1 
 0.01084* 

  [1.70958] 
   

Year-Quarter FE Yes Yes 

State FE Yes Yes 

Adj. R-squared 0.07652 0.07782 
Observations 7,953 7,953 
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2 

Is the Fox Guarding the Henhouse? 

Regulatory Connections and Public 

Subsidies in Banks 

 

 

 

 
2.1 Introduction 

 

In 2012, JPMorgan Chase incurred a multi-billion dollar trading loss that 

subsequently led to a Senate Congressional hearing and a $920 million fine for ‘unsafe 

and unsound practices’. At the time JPMorgan incurred the loss, Jamie Dimon, the 

bank’s CEO, served on the board of the New York Fed, JPMorgan’s regulator.21 In a 

similar case, Mary Pugh who was the chair of Washington Mutual Bank’s finance 

committee when the bank incurred large losses that led to its bankruptcy in 2008, 

previously held a directorship position at the San Francisco Fed.22 Are these isolated 

cases where regulators appear less effective when supervising banks whose senior 

management hold positions in these agencies? This chapter focuses on a previously 

unexplored institutional setting. I examine connections between banks and regulators 

that result when members of a bank’s board serve regulatory agencies in an advisory 

                                                           
21“Dimon's Role on N.Y. Fed Board Sparks Fierce Debate”, American Banker, 18 May 2012. See also, 

“Dimon and the Fed’s Legitimacy”, New York Times Blog, 24 May 2012. 
22 “WaMu board director forced out”, Financial Times, 16 April 2008. 
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or other public service position. I find that these connections are widespread. 

Consequently, connected banks have lower risk to capital sensitivities which facilitates 

risk-shifting to the financial safety-net.  One possible explanation for these findings is 

that connected banks receive preferential treatment in supervision.   

Recent studies document the effects of financial firms hiring former regulatory 

employees (e.g., Lucca, Seru, and Trebbi, 2014; Shive and Forster, 2016). In contrast, 

this chapter focuses on members of bank boards who serve regulatory agencies by 

undertaking public service positions. In the U.S., members of bank boards routinely 

take up directorship and advisory positions with regulatory agencies. Most notably, 

the 12 Federal Reserve Banks, which between them supervise all Bank Holding 

Companies (BHCs) in the U.S., are each overseen by a board of directors that consists 

of representatives from the private sector, including representatives from banks that 

the Fed supervises. In addition, the Federal Reserve (as well as other agencies) also 

rely on advisory councils consisting of bankers to inform policy.23 Thus, public service 

roles constitute a unique setting in which bankers, which are intended to be regulated 

                                                           
23 Involvement of bankers in regulatory agencies and central banks are not limited to the U.S. For 

instance, Austria, France, Germany, Italy and Switzerland amongst other countries have bankers 

involved in some official capacity at regulatory agencies or central banks. For e.g. see  

https://www.oenb.at/en/About-Us/Organization/Decision-Making-Bodies/General-Council.html,  

https://acpr.banquefrance.fr/en/acpr/organisation/the-consultative-committees-and-the-scientific-

committee.html,  

https://www.bafin.de/EN/DieBaFin/GrundlagenOrganisation/Gremien/Fachbeirat/fachbeirat_node_en.

html,  

http://www.bancaditalia.it/chisiamo/organizzazione/filiali/index.html?com.dotmarketing.htmlpage.lan

guage=1 

http://www.snb.ch/en/iabout/snb/bodies/id/snb_bodies_council#t9. 
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by regulatory agencies, are given opportunities to serve in various positions in these 

very agencies.  

I propose two competing hypotheses on the effects of public service 

connections. On the one hand, such connections may not undermine, and could even 

improve the supervisory process. The ‘public interest view’ states that regulators 

derive utility and a sense of duty when contributing to society (Shiller, 2012; Bond 

and Glode, 2014). If so, public service connections should not influence the 

supervisory process. Additionally, these interactions could even improve the 

regulatory process by providing regulators with timely information on industry trends 

to support the formulation and implementation of monetary policy and regulations 

(Federal Reserve Bank of New York, 2015). 

On the other hand, having connected directors on boards may allow banks to 

shift risk to the safety-net for two main reasons. Firstly, connected banks could receive 

preferential treatment by regulators. The ‘private interest view’ put forth by Stigler 

(1971) argues that regulators are frequently captured by the industry they regulate and 

seek to further their own private interests. For instance, the prospect of future 

employment in the banking sector could incentivize a regulator to be less stringent in 

her supervision in an attempt to promote relationships with the industry. Public service 

connections would then function as a conduit for supervisors to offer favors to banks. 

Further, personal connections could undermine supervisory monitoring by making the 

relationship between supervisors and banks more communal (Mills and Clark, 1982). 

This encourages supervisors to “go easy” on connected banks for fear of “rocking the 

boat”. Second, connections between bank directors and regulators could allow bank 

directors to acquire expertise on supervision and enforcement that could help banks 
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evade regulatory discipline (Dal Bo, 2006; Lucca et al., 2014; Shive and Forster, 

2016). 

To investigate if connections established via public service positions 

undermine regulatory efficacy, I use detailed data from the CVs of members of the 

boards of U.S. Bank Holding Companies (BHCs) between 2001 and 2013.24 I identify 

what I call public service connections if board members currently or previously served 

either on a regulator’s advisory council or on a Fed board.25 Following, I construct 

bank-level measures of connectedness to the main regulatory agencies: the Federal 

Reserve (Fed), the Federal Deposit Insurance Corporation (FDIC), the Office of the 

Comptroller of the Currency (OCC), the Office of Thrift Supervision (OTS), the U.S. 

Securities and Exchange Commission (SEC) and state banking regulators. Such 

connections are widespread. Nearly 30% of banks in my sample employ at least one 

board member who is connected to a regulatory agency in this way. Further, 13% of 

banks have at least one director who currently serves in a public service position while 

sitting on the board of the bank.   

This chapter explores if connections allow banks to access larger public 

subsidies. In the presence of deposit insurance, the value of public subsidies afforded 

to shareholders of banks can be modelled as the value of a put option that is 

underwritten by the FDIC (Merton, 1977). To prevent banks from shifting risk to the 

safety-net (that is, to prevent banks from increasing the value of the put option), 

                                                           
24 Throughout the chapter, I use the term banks to refer to BHCs unless I need to distinguish between a 

BHC and banks operating under the BHC.  
25 I include previous as well as current connections because many of the effects of connections that the 

analysis is meant to identify (personal familiarity with regulators and the transfer of supervision-related 

skills to banks) outlast currently active connections. Some of my analysis is based on current 

connections only and finds similar results. 
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regulators must monitor and discipline bank risk-taking. They do so by requiring a 

commensurate increase in capital when bank risk increases (Duan, Moreau, and 

Sealey, 1992; Hovakimian and Kane, 2000).26 If the capital discipline imposed by 

regulators is insufficient to offset increases in risk, banks can increase the value of 

public subsidies by increasing risk. I measure the extent to which connected banks are 

able to enjoy greater public subsidies by increasing risk, which operates through the 

decrease in the sensitivity of capital to risk.  

 My baseline results show that public service connections increase the gain to 

banks from shifting risk to the financial safety-net. This effect is economically large. 

An average-sized board of twelve with one connected director increases the gain from 

risk-shifting by 36% (compared to banks with no connected directors). This gain is 

achieved through a decrease in the sensitivity of the bank’s capital to asset risk. The 

sensitivity of a bank’s capital base to asset risk decreases by almost 39% with one 

connected director on an average-sized board. This indicates that connected banks are 

able to increase risk without holding a commensurate amount of capital compared to 

their unconnected peers. My results are robust to the inclusion of bank fixed effects, 

which helps rule out concerns related to time-invariant omitted variables, and to a 

range of other robustness tests. 

To support a causal interpretation of my results, I exploit two identification 

strategies. The first strategy relies on the retirements of Federal Reserve Presidents to 

                                                           
26 The intuition follows basic option theory. As standard in option theory, gains to one party implies 

losses to the opposite party. Thus, increases in the value of the put to banks comes at the expense of the 

FDIC. The objective of regulators is to prevent bank shareholders from increasing the value of the put 

option (shifting risk to the safety-net). As the value of the put option is dependent on risk and leverage, 

increases in risk must be met with decreases in leverage for the value of the put option to remain 

constant. I discuss the model in greater detail in Section 2.2. 
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generate plausibly exogenous shocks to the quality of existing bank connections to 

regulators. In the U.S., BHCs are overseen by 1 of the 12 Reserve Banks, each headed 

by a President. Each Reserve Bank has their own board of directors as well as their 

own advisory councils. I employ a difference-in-difference method (DiD) that 

measures variation in banks’ gains from risk-shifting within Fed districts. This set-up 

controls for potential within-district changes in bank behavior that may be related to 

the retirements of Fed Presidents. The group of treated banks are banks with board 

members who have served alongside the outgoing Fed President in advisory or 

directorship positions. I show that the gain from risk-shifting of banks with 

connections decreases if the President of a Fed retires, as compared to a control group 

of banks without connections that are located in the same Federal Reserve district.  

A key advantage of this empirical set-up is that there are multiple instances of 

retirements in my data that affect different banks in different years and geographic 

areas. This rules out the possibility that omitted variables coinciding with a single 

retirement could bias my findings. Further, to ensure that retirements are plausibly 

exogenous to bank risk-shifting, I check newspaper reports and articles for the reason 

behind retirements as well as exclude unplanned retirements (that could be dismissals 

dressed up as retirements and thus potentially be related to regulatory effectiveness). 

Various placebo and robustness tests report consistent results.  

The second identification strategy is based on the heterogeneous effects of the 

Emergency Economic Stabilization Act (EESA) on gains from risk-shifting at 

connected versus unconnected banks. The EESA, the largest federal investment 

program in U.S. history, was signed into law in 2008 in response to the crisis, and 

contained a number of provisions to support and recapitalize the banking industry. 
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Various studies have demonstrated that EESA increased moral hazard and risk-taking 

by banks (Duchin and Soysura, 2014; Lambert, Noth, and Schüwer, 2016). Further, 

the EESA signalled the willingness of regulators to engage in forbearance during crisis 

times (Archarya and Yorulmazer, 2007; Brown and Dinç 2009). I predict that the 

effects of regulatory forbearance would be more evident at connected banks and lead 

to larger gains in risk-shifting following EESA as compared to non-connected banks.  

 I provide evidence of the exogeneity of the timing of the shock to bank 

connections by showing that the proportion of directors with public service 

connections remains constant before and during the enactment of the Act. 

Additionally, I also consider only banks with directors who currently hold public 

service positions at the time (and after) the implementation of the Act. This reduces 

the possibility that banks establish connections in anticipation of the Act.27 The results 

are consistent with the prediction that connected banks increase the gains to risk-

shifting as compared to non-connected banks following the enactment of EESA. They 

are also robust to numerous tests such as controlling for the receipt of TARP funds and 

the exclusion of too-big-to-fail banks. Taken together, the results of the two 

identification strategies reinforce the baseline results and suggest a causal link between 

connections and gains from risk-shifting.  

Having shown that connected banks risk shift more to the financial safety-net, 

I proceed to disentangle between the two principle channels of why they are able to do 

so: 1) preferential treatment by supervisors or; 2) through the transfer of skills. I 

conduct two tests which present evidence that preferential treatment by regulators is 

                                                           
27 Fahlenbrach and Stulz (2011) also provide evidence that suggest bank CEOs were unable to anticipate 

the timing of the financial crisis. This suggests that bankers were unable to “time” their current public 

service connections to coincide with the financial crisis and the Act.  
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one reason for gains from risk-shifting by connected banks. It is empirically 

challenging to disentangle the two explanations, mainly because preferential treatment 

is publicly unobservable. I circumvent this challenge by exploiting the public attention 

generated by JPMorgan Chase’s large trading loss in 2012 as a negative shock to the 

ability of regulators to afford preferential treatment to connected banks. The 

publication of the trading loss heightened public scrutiny of the Fed’s connections to 

banks and stoked suspicion over conflicts of interest in the supervisory process after it 

emerged that JPMorgan’s CEO was sitting on the board of the New York Fed at the 

time of the loss.  

Consistent with this, I find a reduction in gains from risk-shifting at connected 

banks in the aftermath of the trading loss. Additionally, I find that the gains to 

connected banks decrease most when banks are regulated by the New York Fed, under 

whose supervision the trading loss occurred. Crucially, the use of the trading loss 

shock backs the view that preferential treatment (rather than technical expertise or 

skills) explains my results, because any skills which bank directors may have 

developed from dealings with connected regulators are not plausibly affected by the 

trading loss. Bank directors will be no less skilled following the trading loss, but the 

loss (and the heightened public scrutiny that followed it) will have curtailed the ability 

of the Fed to extend preferential treatment to connected banks. 

The second test for preferential treatment exploits the charter type of the main 

commercial bank operating under a BHC. While all BHCs are regulated by the Fed, 

commercial banks operating under the umbrella of a BHC are regulated by either the 

Fed, the FDIC or the OCC depending on their charter. If there is evidence of 

preferential treatment, my results should be strongest when connections exist to the 
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regulator in charge and weakest when connections exist to regulators not responsible 

for a particular bank. However, if connections are related to skills, I should observe 

that connections lead to risk-shifting irrespective of the regulator in charge, due to the 

uniformity of regulations. Consistent with explanations of preferential treatment, I find 

that banks that are connected to the Fed while also being regulated by the Fed are able 

to access larger subsidies from the financial safety-net.  

The last set of results show that gains from risk-shifting at connected banks 

occurs when banks are not performing poorly, and that wealth is transferred to 

shareholders. Risk-shifting by well-performing connected banks is positively 

associated with higher stock and accounting performance and an increased probability 

of larger payouts to shareholders. Overall, the results show that connections facilitate 

risk-shifting and that wealth is transferred from taxpayers to the shareholders of 

connected banks.  

 My research contributes to several strands of literature. This chapter is the first 

to document the scale of public service connections in banking and how they 

undermine regulatory discipline. In doing so, I identify a previously undocumented 

channel through which regulatory capture manifests itself. Previous work identifies 

campaign contributions (Mian, Sufi, and Trebbi, 2010), lobbying (Igan, Mishra, and 

Tressel, 2011; Lambert, 2015), and the hiring of ex-regulators (Shive and Forster, 

2016) as vehicles through which the financial industry seeks to influence regulation 

and bank outcomes.28 I contribute to this work by demonstrating that public service 

connections also acts as a conduit for regulatory capture. 

                                                           
28 Mian et al. (2010) find that higher campaign contributions from the financial industry influence 

politicians’ voting behavior regarding financial regulations. Igan et al. (2011) show that lobbying by 
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 Second, the chapter contributes to the literature on financial firms hiring former 

regulatory employees. This literature remains inconclusive on the motivations behind 

revolving door hires. Shive and Forster (2016) and Lucca et al. (2014) suggest that 

former regulators are hired for their technical skills and expertise while Duchin and 

Sosyura (2012) show that the presence of connected board members leads to 

preferential treatment by regulators in times of crisis.29 My evidence suggests that 

connected banks benefit from preferential treatment rather than from expertise 

acquired via connections. Public service roles do not involve decision-making or direct 

participation in supervision, whereas ex-regulators have experience in the supervision 

of banks. Given this, my finding of preferential treatment at banks with public service 

connections complements existing evidence that hiring ex-regulators brings benefits 

of greater expertise about the regulatory process and highlights the heterogeneity of 

the various channels of influence.  

Finally, I document that bank connections to regulators facilitate a wealth 

transfer from taxpayers to shareholders. The results of previous work on connections 

are suggestive but not conclusive of a wealth transfer. For instance, extant studies 

report shareholder wealth gains linked to regulatory and political connections 

(Acemoglu, Johnson, Kwak, and Mitton, 2016; Adams, 2013) but do not show that 

connections are detrimental to taxpayer interests. Further, existing studies show that 

                                                           
financial institutions is positively associated with risk-taking leading up to the crisis, while Lambert 

(2015) finds that lobbying banks are less likely to be subject to severe enforcement actions. Shive and 

Forster (2016) show that hiring ex-regulators leads to a reduction in risk-taking in U.S. banks in support 

of the skills channel. The authors explain that if preferential treatment were present, risk-taking should 

increase after the recruitment of ex-regulators. 
29 Duchin and Sosyura (2012) define connected directors as having current or former positions at the 

Treasury, the firm’s banking regulator or Congress. They also use an index of political connections that 

includes connected directors, bank representation on the House Financial Services Committee, lobbying 

expenditures and campaign contributions for the majority of their tests.  
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politically connected banks that received taxpayer-funded bailouts underperformed as 

compared to non-receivers, suggesting a misallocation of government funds in the 

2008/09 crisis period (Duchin and Soysura, 2012). Since crisis periods are typically 

characterized by heightened policy discretion and a high chance of forbearance by 

regulators (cf. Brown and Dinç, 2011), it is unclear whether this result holds more 

generally. By contrast, I present evidence that risk-shifting by well-performing banks 

with public service connections consistently facilitate access to public subsidies.  

2.2 Institutional Setting and Hypothesis Development 

 

2.2.1 Institutional Setting  

 

 Depending on their charter, commercial banks are supervised by one of three 

federal regulators. The Fed supervises all Bank Holding Companies as well as state-

chartered banks that are members of the Fed. The FDIC supervises non-member state-

chartered banks, while the OCC supervises nationally-chartered banks. Additionally, 

the SEC regulates all publicly listed firms.  

 The chapter focuses on bank directors who serve regulatory agencies in a 

public service capacity. I define public service positions as positions that members of 

a bank’s board presently hold or previously held in regulatory agencies. Since many 

of the public service positions (91%) in my sample are with the Fed, Figure 2-1 

provides illustrations relating the structure of the Fed with emphasis on public service 

positions. 
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Figure 2-1: Federal Reserve Structure and Public Service Positions 

 

There are two main types of public service positions that members of a bank 

board (as well as other private sector employees) can take up with the Fed. First, bank 

directors can take up directorship positions on the board of Federal Reserve Banks. 

The 12 Federal Reserve Banks (and their 24 branches) have three classes of directors; 

A, B and C. Class C directors are appointed by the Board of Governors to represent 

the public. Class A and B directors are elected by member banks in each Fed district 

to represent member banks and the public, respectively. Class A directors are typically 

bank directors of commercial banks residing in the Fed district. Four of the seven Fed 

branch directors must be Class A and B directors, and the rest constitute Class C 
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directors.30 All of the 12 Fed Banks have their own board of directors as well as 

advisory councils.  

 Members of the board of directors of a Fed Bank are responsible for 

supervising the Fed’s operations and its internal auditing procedures, and for holding 

the President and First Vice-President to account. Crucially, Fed directors are not 

involved in matters of supervision (Board of Governors of the Federal Reserve System, 

2013, p. 2). That is, “[Fed] directors may not be consulted regarding bank examination 

ratings, potential enforcement actions, application/approval matters and other such 

supervisory matters” (pg. 41). Thus, they are not in a position to favor a particular bank 

directly, nor to acquire detailed knowledge pertaining to bank supervision. 

 The second type of public service position is membership to an advisory 

council. The range of advisory councils that members of a bank’s board may serve in 

is extensive (see Panel C of Table 2-1). For instance, “The New York Fed meets 

regularly with small business leaders, community bankers, financial market 

participants, economists and others through external committees and outreach 

programs to obtain essential perspectives on the economy from both Main Street and 

Wall Street. These interactions help the New York Fed to provide timely information 

to the Federal Reserve System and to support the formulation and implementation of 

monetary policy effectively” (Federal Reserve Bank of New York, 2015). 

 Advisory councils typically meet two to four times a year with their respective 

Federal Reserve Presidents (or the Board of Governors), consist of ten to twelve 

                                                           
30 Class B and C directors cannot be employees of the bank while serving Fed directorship positions. 

They are however not prohibited from joining banks after their tenures as Federal Reserve Bank 

directors. 
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members, have two- to three-year terms (with the possibility of extension) and varied 

responsibilities. For instance, the Federal Advisory Council (FAC) which advises the 

Board of Governors is “…composed of twelve representatives of the banking industry, 

consults with and advises the Board on all matters within the Board’s jurisdiction…. 

[Each] year, each Reserve Bank chooses one person to represent its district on the 

FAC, and members customarily serve three one-year terms” (Board of Governors of 

the Federal Reserve System, 2016).31 

2.2.2 Modelling Bank Subsidies 

 

The deposit insurance premium model pioneered by Merton (1977) and later 

developed by Duan et al. (1992) and Hovakimian and Kane (2000) offers a tool to 

estimate the subsidies afforded to banks. Merton (1977) models safety-net subsidies 

as the value of a put option underwritten by the FDIC (and by extension, the taxpayer). 

On a conceptual level, deposit insurance permits banks to put the assets back to the 

FDIC at the face value of its debt whenever the value of assets falls below the value 

of liabilities. It follows that bank shareholders can extract higher public subsidies by 

increasing the value of the put option if they increase asset risk and leverage.32  

This model is widely used to test for risk-shifting by banks to the financial 

safety-net (e.g., Duan et al. 1992; Hovakimian and Kane, 2000; Wagster, 2007; 

Bushman and Williams, 2012; Carbo-Valverde, Kane, and Rodriguez-Fernandez, 

2008; 2013).33 Risk-shifting is distinct from risk-taking in that the former arises when 

                                                           
31 The descriptions of the objectives of individual Advisory Councils can be obtained from the 

individual Federal Reserve Banks’ websites.  
32 The idea corresponds to the valuation of a put option. The value of a put option increases in volatility 

(bank asset risk) and leverage (the strike price). It follows that losses to one party imply gains to the 

counterparty.   
33 Duan et al. (1992) test if U.S. banks are able to risk shift to the safety-net. Hovakimian and Kane 

(2000) show that capital regulations in the U.S. were not effective in controlling risk-shifting by U.S. 
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a contractual counterparty (in this case the taxpayer) is inadequately compensated for 

the risks to which they are exposed. The model permits me to investigate if public 

service connections to regulators impedes the supervisory process and allow banks to 

extract larger benefits from the financial safety-net.  

This chapter adopts the quasi-reduced form equations developed by Duan et al. 

(1992) and Hovakimian and Kane (2000):   

∆(B/V) = α0 + α1∆σv + ε1      (2-1) 

∆IPP = β0 + β1∆σv + ε2         (2-2) 

where B is the book value of debt, V the market value of bank assets, B/V the leverage 

ratio and v the volatility of the bank’s assets. IPP is the per-period flow of subsidies 

to bank shareholders, defined as the actuarially fair insurance premium percentage per 

dollar of debt. ∆ is the first-difference operator. The estimation of V, v and IPP is 

described in Appendix 2-A2.  

 The slope coefficients of Equations (2-1) and (2-2) have the following 

interpretations: 

α1 = d(B/V) / dσv      (2-3) 

β1 = dIPP / dσv  = (∂IPP / ∂σv ) + ∂IPP / ∂(B/V)α1      (2-4) 

Equation (2-1) describes the notion that regulators (and also bank creditors) restrict 

banks to certain combinations of leverage and volatility. Accordingly, Equation (2-1) 

reflects outside discipline to reduce (increase) bank leverage as an institution’s asset 

                                                           
banks. Wagster (2007) shows that the adoption of explicit deposit insurance expanded risk-shifting 

incentives for Canadian banks and trusts. Bushman and Williams (2012) show that accounting 

discretion can influence risk-shifting incentives by banks. Carbo-Valverde et al. (2013) show that too-

big-to-fail banks are more able to extract subsidies from the safety-net. 
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risk increases (decreases). Equation (2-2) measures if banks are able to increase the 

value of public subsidies by increasing risk after overcoming the effects of discipline 

imposed by regulators and creditors.  

For regulatory and market forces to fully neutralize risk-shifting incentives, 

two joint conditions have to be satisfied: 

Leverage decreases with volatility: α1 < 0. 

The value of public subsidies (IPP) does not rise with volatility: β1 ≤ 0. 

A negative α1, while indicative of disciplinary forces imposed on a bank, is insufficient 

to show that outside discipline mitigates the incentives to shift risk. To fully neutralize 

risk-shifting incentives, a decline in leverage must be sufficiently large to offset 

increases in the value of public subsidies that would be generated by increasing asset 

volatility (β1 ≤ 0). If so, banks would not find it advantageous to increase risk. 

2.2.3 Hypotheses 

 

I propose two competing hypotheses about the effect of public service 

connections. On the one hand, such connections may not undermine, and could 

improve the supervisory process if regulators are motivated by a sense of duty (Bond 

and Glode, 2014) or social purpose (Shiller, 2012). The ‘public interest view’ implies 

that regulators may derive utility and a sense of purpose from contributing to society 

and that they work hard to achieve these ideals (Predergast, 2007). As connections 

between regulators and bank directors are publicly observable, public scrutiny could 

thwart the ability of banks to influence supervisory stringency. In fact, regulators may 

safeguard themselves against allegations of preferential treatment and limit the ability 

of connected banks to shift risk to the safety-net. Subsequently, connections could even 
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improve the regulatory process by providing regulators with timely information on 

industry insights to support the efficient formulation and implementation of monetary 

policy and regulations. 

 On the other hand, having connected directors on boards may allow banks to 

shift risk to the safety-net. I put forth two reasons; preferential treatment and the 

transfer of skills through connections. Firstly, connected banks could receive 

preferential treatment by regulators. This is the ‘private interest view’, first put forth 

by Stigler (1971), which argues that regulators are frequently captured by the industry 

they regulate.34 Information asymmetry surrounding supervision grants discretionary 

powers to regulatory staff who might not necessarily work to promote societal welfare, 

but might seek to further their own private interests (Baron and Myerson, 1982; 

Laffont and Tirole, 1993). One example of this is the prospect of future employment 

in the banking sector which could incentivize a regulator to be less stringent in her 

supervision to promote relationships with the industry (Dal Bo, 2006). A member of 

staff might be more tempted to curry favor or avoid conflict with banks with 

connections with her employer, than with unconnected banks. Additionally, personal 

connections could undermine monitoring by making the relationship between 

supervisors and supervisees more communal (Mills and Clark, 1982) and by tempting 

supervisors to socially identify with the banking sector (Barth, Caprio, and Levine 

2012). For instance, bank examiners might be less willing to imposed regulatory 

discipline and scrutiny on connected banks to minimize conflicts and retain communal 

relationships with “friends” of the agency.  

                                                           
34 Dal Bo (2006) surveys the extensive literature on regulatory capture. 
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Secondly, connected directors could acquire relevant expertise on supervision 

and enforcement from their dealings with regulators. Any expertise acquired from 

regulators could help banks evade regulatory discipline (Lucca et al., 2014; DeHaan, 

Koh, Kedia, and Rajgopal, 2015; Cornaggia, Cornaggia, and Xia, 2015). 

To empirically analyze if regulatory connections are linked to regulatory laxity, 

and subsequently, larger public subsidies, I modify Equations (2-1) and (2-2) as: 

∆(B/V)i,t = α0 + α1∆σVi,t + α2(Public Servicei,t x ∆σVi,t) + α3Public Servicei,t  + Bank 

Controls + Year FE + Regulator FE + εi,t      (2-5) 

 

∆IPPi,t = β0 + β1∆σVi,t + β2(Public Servicei,t x ∆σVi,t) + β3Public Servicei,t + Bank 

Controls + Year FE + Regulator FE + εi,t      (2-6) 

 

where i indexes bank, t indexes year, and Public Service is my main measure of 

regulatory connections, defined in detail in Section 3.2. Regulator FE are dummy 

variables that control for the main federal regulator (Fed, FDIC or OCC) of the largest 

commercial bank operating under the BHC. Carbo-Valverde, Kane, and Rodriguez-

Fernandez (2008) explain that the dialectical nature of the process in which banks 

devise new strategies to conceal or understate risk to avoid capital requirements makes 

it advisable to estimate B/V, σv and IPP in first-difference form.  

The coefficient α2 captures the effect of public service connections on 

regulatory discipline imposed on banks in response to increasing risk (sensitivity of 

changes in capital or leverage to changes in risk).  

Hypothesis 1: Connected banks have lower levels of risk-leverage sensitivities (α2 > 

0). 
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If 2 > 0, and the bank’s risk increases, its capital ratio does not increase by as much 

as the capital ratio of unconnected banks. 

The interaction term β2 measures the extent to which connected banks gain 

access to larger public subsidies by evading regulatory discipline imposed on them for 

higher asset risk.   

Hypothesis 2:  Connected banks extract higher public subsidies if bank risk increases 

(β2 > 0).  

If 2 > 0, a connected bank has more to gain by increasing its risk than an unconnected 

bank. 

2.3 Data and Descriptive Statistics 

 

2.3.1 Sample Construction 

 

The initial sample consists of all public U.S. banks from 2001 to 2013 covered 

in BoardEx, a database maintained by Management Diagnostics Limited. BoardEx 

provides me with detailed biographical and employment (current and historical) data 

on all members of the board which allows me to identify public service positions held 

in regulatory agencies. BoardEx began populating their database on corporate directors 

in 2000 from various sources, including, but not limited to SEC filings, company press 

releases, corporate websites and news outlets. I retain deposit-taking banks with SIC 

codes starting 602 (commercial banks) and 603 (savings institutions).  
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Table 2-1: Summary Statistics 

This table contains summary statistics of key variables (Panel A and B) and description of the public 

service positions bank directors undertaken while in regulatory agencies (Panel C). # is the number of 

bank-year observations, std. is the standard deviation while p1, p50 and p99 are the 1st, 50th and 99th 

percentiles. Panel A show summary statistics of the variables used in this chapter. Panel B presents 

detailed information on public service connections. Panel C shows the positions as well public service 

committees that connected directors have or is currently serving in at regulatory agencies. Refer to 

Appendix 2-A1 for construction and definition of these variables. The sample period is 2001 to 2013. 

       

Panel A: Summary Statistics # mean std. p1 p50 p99 

       
Connection Variables       

Public Service 3,011 0.0306 0.0552 0 0 0.250 

Current Public Service 3,011 0.011 0.03 0 0 0.125 
Fed Public Service 3,011 0.0289 0.0542 0 0 0.250 

Politically Connected 

Top 

3,011 0.0174 0.043 0 0 0.182 
Top Politician 3,011 0.0088 0.284 0 0 0.143 

Lobby% 3,011 0.405 1.545 0 0 8.199 
       

Financial Variables       

IPP (%) 3,011 0.285 1.131 0 0.00034 4.456 
∆IPP (%) 3,011 0.049 1.288 -2.235 0 2.879 

σv (%) 3,011 3.333 2.495 0.579 2.849 12.20 
∆σv (%) 3,011 -0.172 2.893 -7.453 -0.178 7.562 

(B/V)% 3,011 89.80 6.853 73.16 89.67 103.1 

∆(B/V)% 3,011 0.619 3.844 -8.378 0.349 10.594 
Tier-1 Capital 3,011 0.124 0.039 0.061 0.118 0.233 

∆Tier-1 Capital 3,011 0.00052 0.0235 -0.06 0.0001 0.0588 
Bad Loans 3,011 0.0131 0.0162 00004 0.0075 0.0796 

Enforcement Actions 3,011 0.093 0.43 0 0 2 
ROA (%) 3,011 0.586 0.0132 -5.69 0.863 2.14 

Total Deposits 3,011 0.757 0.0899 0.464 0.774 0.898 

Market Risk 3,011 0.108 0.175 -0.366 0.106 0.529 
Total Assets 3,011 6.480 0.687 5.460 6.320 9.102 

Asset Growth 3,011 0.0854 0.171 -0.158 0.0547 0.726 
Total Loans 3,011 0.673 0.123 0.316 0.690 0.890 

Stock Rets. 3,011 -0.0156 0.3575 -0.95 0.0161 0.8415 

Pr Div↑ 3,011 0.42 0.49 0 0 1 
Pr Net Payout↑ 3,011 0.43 0.49 0 0 1 

Noninterest Income 3,011 0.1827 0.1183 -0.0062 0.163 0.6047 
Leverage 3,011 0.904 0.0299 0.835 0.906 0.9618 

Book-to-Market Ratio 3,011 1.46 0.838 0.146 1.348 3.916 
Core Deposits 2,958 0.789 0.129 0.259 0.820 0.955 

Sub Debt 3,011 0.0399 0.0859 0 0 0.3421 

       
Variables in Appendix 2-A2       

σE (Annualized) 3,011 0.302 0.225 0.0718 0.230 1.297 
E (Millions) 3,011 4,083 20,632 8.500 270.1 120,049 

B (Millions) 3,011 31,110 182,698 265.5 1,900 1157816 

V (Million) 3,011 34,207 195,248 294.7 2,125 1273114 

       

Board & Bank Structure Variables       
Board Size 3,011 11.82 3.442 6 11 22 

Board Independence 3,011 0.780 0.120 0.438 0.800 0.933 
CEO Tenure (Years) 3,011 6.63 5.988 0 4.9 25.9 

Duality 3,011 0.496 0.500 0 0 1 

Reg by FED 3,011 0.217 0.412 0 0 1 
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Reg by FDIC 3,011 0.493 0.500 0 0 1 

Reg by OCC 3,011 0.290 0.454 0 0 1 

       
State Economic Variables       

∆State GDP 2,998 0.038 0.049 -0.043 0.0385 0.1 
∆State Housing Index 2,998 0.021 0.073 -0.222 0.009 0.253 

∆State Unemployment 3,011 0.247 1.303 -1.5 -0.199 4.5 
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Panel B: Connection Statistics bank-years Max #  # bank-years with connected director 
  (% of total bank-years) connected dir. 1 2 3 4 5 

Connection Type      
At least 1 Public Service dir. 870 (28.9%) 4 688 145 46 11 0 
At least 1 Current Public Service dir. 380 (12.6%) 2 360 20 0 0 0 

        
Public Service Regulatory Agency        

At least 1 Fed Public Service dir. 822 (27.3%) 4 629 141 43 9 0 
At least 1 FDIC Public Service dir. 5 (0.17%) 1 5 0 0 0 0 

At least 1 SEC Public Service dir. 27 (0.9%) 2 26 1 0 0 0 

At least 1 State Public Service dir. 52 (1.7%) 1 52 0 0 0 0 

      

Panel C: Public Service Positions  

Regulatory Agency Position Position Served in: 

Federal Reserve Director Federal Reserve Bank Board of directors 

   

Federal Reserve Advisor 

Federal Advisory Council, New England Advisory Council, Community Depository Institution Advisory Council, 

Business and Community Advisory Council, Industry Councils Committee, Economic Advisory Council, Business 

Advisory Council, Small Business Advisory Council, Small Business and Agriculture Advisory Council, US Treasury 

and the Foreign Exchange Committee, International Advisory Committee, Investors Advisory Committee on Financial 

Markets, Community Depository Advisory Council, Community Bank Advisory Council, Small Bank Advisory 

Council, Labor, Education and Healthcare Advisory Council, Agriculture, Small Business and Labor Advisory 

Council, Thrift Institution Advisory Council, Consumer Advisory Council 

   

FDIC Advisor Advisory Committee on Economic Inclusion, Advisory Committee on Community Banking 

   

SEC Advisor 
Market Oversight and Financial Services Advisory Committee, Consumer Affairs Advisory Committee, Advisory 

Committee on Smaller Public Companies 

   

State Director Board of Directors 

   

State Advisor Bankers Advisory Board, Commissioner's Council 
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I next match the list of BoardEx banks to 4th Quarter FR Y9-C consolidated 

accounting information reported by banks to the Federal Reserve. Market information 

is obtained from CRSP. The final sample contains 3,011 bank-year observations 

consisting of 448 unique banks. Definitions of the variables used in this chapter are 

described in Appendix 2-A1. Summary statistics of the variables are reported in Table 

2-1. The mean ∆σv and ∆IPP is -0.17% and 0.049% respectively.  

2.3.2 Bank Regulatory Connections 

 

The main proxy of a bank’s regulatory connectedness is the proportion of board 

members who are currently serving or have previously served the Fed, FDIC, OCC, 

OTS, SEC or state regulators in a public service capacity (Public Service). I include 

previous as well as current connections because the potential benefits of connections 

—personal familiarity with regulators— outlast the period during which connections 

exist. Parts of the analysis are based on currently active positions only, and the results 

are similar.  

I define public service positions as positions that are held as a form of public 

service (and not as a full-time occupation). They consist of directorship positions on 

the boards of Fed Banks or membership in various advisory councils in either the Fed 

system, the FDIC, OCC, OTS, SEC or state regulators. Information on each director’s 

employment history is from BoardEx. I manually supplement missing information 

from regulators’ annual reports, legal documents, LinkedIn, Marquis Who’s Who and 

news sources such as Bloomberg, the Wall Street Journal and the Financial Times.  

 Panel B of Table 2-1 show some descriptive statistics for the sample of 

connected banks. In total, almost 30% (28.9%) of bank-years in the sample have 
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directors with formal public service connections to regulators. Additionally, connected 

directors are not limited to a small subset of banks; 135 out of 448 banks have at least 

one director with public service connections to regulatory agencies in the sample. The 

majority (91%) of public service positions held by directors in the sample are with the 

Fed and typically involve Fed board directorships and advisory roles on various 

councils. Public service connections between banks and regulators, which are the focus 

of this chapter, are widespread.  

2.3.3 Control Variables 

 

The control variables correspond to the CAMELS ratings system. CAMELS 

—an acronym for capital adequacy, asset quality, management quality, earnings, 

liquidity and sensitivity to market risk— is a composite supervisory rating system used 

by bank regulators to assess the safety and soundness of a bank.35  Bank safety and 

soundness are likely to affect the gains from risk-shifting, because banks in poor 

financial condition may either have more to gain (Eisdorfer, 2008; Bushman and 

Williams, 2012) or, alternatively, these banks may receive more regulatory attention 

and thus be less able to shift risk. As CAMELS ratings are confidential, I employ 

proxies for each component.  

I measure capital adequacy using Tier-1 Capital and proxy for asset quality 

using Bad Loans. Enforcement actions proxy for management quality (Duchin and 

Sosyura, 2012). Enforcement actions (i.e., Formal Agreements, Cease and Desist 

Orders, Prompt Corrective Actions and Civil Money Penalties) are collected from 

                                                           
35 See https://www.fdic.gov/regulations/examinations/ 
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websites of the three main federal regulators.36 When enforcement actions are issued 

to the commercial bank, I attribute it to the holding company. I control for earnings 

and liquidity using ROA and Total Deposits, respectively. I proxy for Market Risk 

using the gap between short-term assets and short term-liabilities scaled by total assets. 

The gap approximates the net amount of assets and liabilities that will be repriced 

within one year, reflecting the bank’s sensitivity to interest rate risk. Further, I control 

for firm size using the log of Total Assets. Carbo-Valverde et al. (2013) show that too-

big-to-fail banks are able to access larger public subsidies. Asset Growth and Total 

Loans measure the aggressiveness of expansion and the lending focus of a bank, which 

could both affect risk.  

Finally, I include as controls a number of board level corporate governance 

variables that could influence bank risk policies. I proxy for the effectiveness of 

monitoring and advisory functions of the board using Board Size and Board 

Independence (e.g., Adams and Mehran, 2012; Minton, Taillard, and Williamson, 

2014). Finally, I also control for the power of a CEO in affecting risk policies using 

CEO Tenure and Duality, a dummy variable that equals 1 if the CEO is also the 

Chairman of the board (e.g., Ellul and Yerramilli, 2013).  

2.4 Baseline Results 

 

2.4.1 Connections and the Risk-leverage Sensitivity 

 

Panel A of Table 2-2 show how public service connections impact the risk-

leverage sensitivity of banks (Hypothesis 1). Panel B investigates the same for the 

sensitivity of Tier-1 capital to risk. By definition, regulatory Tier-1 capital is meant to 

                                                           
36 Federal Reserve: http://www.federalreserve.gov/, FDIC: https://www5.fdic.gov/edo/ and OCC: 

http://apps.occ.gov/EnforcementActions/ 
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be risk sensitive. If connected banks were to receive preferential treatment by 

supervisors, I should expect decreases in leverage (and increases in Tier-1 capital) to 

be less sensitive to risk increases for connected banks as compared to banks without 

connections. Columns (1)-(4) of both panels in Table 2-2 estimate a baseline model, 

with different specifications. Column (5) report results for only banks with at least one 

public service director during the sample period.  

The coefficient on the main interaction term of interest Public Service x ∆σv is 

positive and statistically significant at the 5% level across different specifications used 

in Columns (1)-(5) of Panel A Table 2-2. This shows that, as the proportion of public 

service connections increases, connected banks reduce leverage less for a given level 

of asset risk increase compared to non-connected banks.  

The results are similar when investigating the sensitivity of Tier-1 capital to 

risk at connected banks as reported in Panel B of Table 2-2. The coefficient on Public 

Service x ∆σv is negative and statistically significant at the 5% significance level or 

lower. Thus, a given change in risk is associated with a smaller change in Tier-1 capital 

at banks with public service connections as compared to non-connected banks.  

The results are economically meaningful. For instance, in Column (4) Panel B, 

a one standard deviation increase in the proportion of the board with public service 

experience (the equivalent of a 5% increase) decreases the sensitivity of Tier-1 capital 

to changes in risk by 32% at the mean.37 Alternatively, the addition of a single 

connected director to an average-sized board of 12 directors decreases the sensitivity  

                                                           
37 I calculate this figure using coefficient estimates from Column (4) Panel B of Table 2-2 and the 

corresponding means and standard deviation in the summary statistics. At the mean Public Service 

(0.0306), ∆Tier-1 increases by 0.11% [(0.129)-(0.623*0.0306)] and by 0.075% [(0.129)-(0.623*0.086)] 

in banks with high Public Service (one standard deviation above the mean, which is equal to 
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Table 2-2: Sensitivity of ∆B/V and ∆Tier-1 to ∆σv at Connected Banks 

This table reports estimates of Equation (2-5) using panel OLS regressions (with different 

specifications) and examines the sensitivity of changes in leverage (B/V in Panel A) and Tier-1 Capital 

(Tier-1 in Panel B) to changes in σv at connected banks. I estimate the following regression: 

∆Yi,t = α0 + α1∆σVi,t + α2(Public Servicei,t x ∆σVi,t) + α3Public Servicei,t + Bank Controlsi,t +Year FE + 

Regulator FE + εi,t  

where subscripts i and t indicate bank and year respectively. Y is (B/V), defined as the book value of 

leverage divided by market value of assets in Panel A and (Tier-1), defined as (Tier-1 Capital/Risk-

weighted assets) in Panel B. Public Service is defined as: (number of Public Service directors/board 

size). σv is the volatility of asset returns. Bank Controls is the vector of variables in each column. The 

coefficient α2 on (Public Service x ∆σv) is the variable of interest. Refer to Appendix 2-A1 for description 

of variables. The sample period is from 2001 to 2013. Standard errors are clustered at the bank-level 

and t-statistics are reported in parenthesis. The constant is suppressed for brevity. ***, ** and * indicate 

significance level at the 1, 5 and 10% respectively. 
            

Panel A: ∆Leverage (1) (2) (3) (4) (5) 
 ∆B/V ∆B/V ∆B/V ∆B/V ∆B/V 

      
Public Service x ∆σv 2.477** 2.437** 2.532** 2.371** 3.431** 

 [2.000] [2.096] [2.088] [2.040] [2.406] 
Public Service 0.949 3.344 0.277 1.119 1.49 

 [1.120] [1.345] [0.323] [0.521] [0.643] 
∆σv -0.157 -0.113 -0.15 -0.097 -0.266 

 [-1.457] [-1.123] [-1.411] [-1.011] [-1.564] 

Tier-1 Capital   -7.501 -18.716*** -25.460*** 
   [-1.303] [-4.461] [-3.999] 

Bad Loans   19.883** 26.883*** 34.775* 
   [2.507] [2.714] [1.758] 

Lag Enforcement Actions   0.434*** 0.335* 0.504** 
   [2.600] [1.926] [2.525] 

ROA   -38.815*** -39.634*** -30.91 

   [-3.541] [-3.402] [-1.233] 
Total Deposits   -0.898 -1.252 0.055 

   [-1.149] [-0.753] [0.021] 
Market Risk   -0.336 -1.06 -1.617 

   [-1.129] [-1.603] [-1.500] 

Total Assets   0.008 4.631*** 3.311** 
   [0.071] [5.066] [2.391] 

Asset Growth   3.344*** 3.059*** 2.609*** 
   [6.688] [7.221] [2.910] 

Total Loans   -0.439 0.813 1.345 
   [-0.548] [0.628] [0.599] 

Board Size   0.009 0.013 0.038 

   [0.625] [0.368] [0.739] 
Board Independence   0.46 -1.368 -0.656 

   [0.903] [-1.366] [-0.395] 
CEO Tenure   0.011 0.027 0.032 

   [1.090] [1.640] [1.276] 

Duality   0.211* 0.373* 0.444 
   [1.848] [1.693] [1.381] 

      
Bank FE No Yes No Yes Yes 

Year FE Yes Yes Yes Yes Yes 
Regulator FE Yes Yes Yes Yes Yes 

                                                           
0.0306+0.055=0.086). Thus, banks with high public service connections are able to decrease the 

sensitivity of risk increases by (0.075-0.11)/(0.11) = -32%. 
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Observations 3,011 3,011 3,011 3,011 1,175 

Adj. R-squared 0.368 0.371 0.429 0.451 0.457 
Observations 3,011 3,011 3,011 3,011 1,175 

      

Panel B: ∆Tier-1 Capital (1) (2) (3) (4) (5) 
 ∆Tier-1 ∆Tier-1 ∆Tier-1 ∆Tier-1 ∆Tier-1 

      
Public Service x ∆σv -0.831** -0.788** -0.841** -0.623*** -1.223*** 

 [-1.983] [-1.979] [-2.275] [-2.710] [-3.058] 

Public Service 0.389 -3.734 0.01 -2.164 -1.985 
 [0.605] [-1.532] [0.018] [-1.557] [-1.483] 

∆σv 0.181*** 0.152*** 0.176*** 0.129*** 0.215*** 
 [4.475] [4.919] [4.264] [5.834] [3.181] 

Tier-1 Capital   13.882 53.335*** 63.183*** 

   [1.258] [8.002] [6.785] 
Bad Loans   1.073 -6.12 -8.904 

   [0.111] [-0.950] [-0.627] 
Lag Enforcement Actions   -0.08 -0.022 0.014 

   [-0.878] [-0.322] [0.167] 
ROA   38.361*** 15.327** 6.563 

   [2.816] [2.088] [0.418] 

Total Deposits   0.975 -1.988 -5.292** 
   [0.835] [-1.159] [-2.179] 

Market Risk   0.309 0.354 0.069 
   [1.192] [0.851] [0.109] 

Total Assets   0.330*** -1.321* -0.92 

   [2.938] [-1.710] [-0.898] 
Asset Growth   -2.715*** -1.948*** -1.343** 

   [-4.271] [-6.022] [-2.531] 
Total Loans   0.696 1.488 1.805 

   [0.492] [1.389] [1.097] 
Board Size   0.004 0.001 -0.034 

   [0.346] [0.031] [-0.895] 

Board Independence   -0.398 0.188 0.962 
   [-1.022] [0.281] [1.060] 

CEO Tenure   -0.004 -0.006 -0.027 
   [-0.473] [-0.541] [-1.606] 

Duality   -0.256** 0.109 0.512** 

   [-2.402] [0.720] [2.378] 
      

Bank FE No Yes No Yes Yes 
Year FE Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes 
Adj. R-squared 0.0746 0.0725 0.202 0.428 0.571 

Observations 3,011 3,011 3,011 3,011 1,175 
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of Tier-1 capital to risk by 39%. This supports Hypothesis 1 and show that banks with 

public service connections are able to engage in capital arbitrage compared to non-

connected banks by holding less capital as asset risk increases.  

2.4.2 Regulatory Connections and Risk-shifting  

 

As outlined in Section 2.2, a lower sensitivity of risk to leverage is a necessary 

but insufficient condition for banks with public service connections to extract subsidies 

from the financial safety-net. For banks to be able to shift risk to the safety-net via 

regulatory connections, they need to be able to increase the value of the taxpayer put.  

Table 2-3 reports results from estimating Equation (2-6) (Hypothesis 2). The 

coefficient on ∆σv is positive and significant at the 1% level in all models (Columns 

(1)-(5)). This means that by increasing asset risk, banks are able to extract larger public 

subsidies from the safety-net. The key coefficient of interest, on Public Service x ∆σv, 

is positive and statistically significant at the 1% to 5% level depending on the 

specifications used in Columns (1)-(5). Column (5) only use the sample of banks with 

at least 1 public service director. The economic significance is sizable. For instance, a 

one standard deviation (0.055) increase in public service connections from the mean 

increases the gain from extracting safety-net benefits by 22% in Column (4).38 An 

increase in connectedness of a single board member at an average-sized board 

increases the gain by 36%.  

 

                                                           
38 I calculate this figure using coefficient estimates from Column (4) of Table 2-3 and the corresponding 

means and standard deviation in the summary statistics. At the mean Public Service (0.0306), ∆IPP 

increases by 0.313% [(0.275)+(1.236*0.0306)] and by 0.381% [(0.275)+(1.236*0.086)] in banks with 

high (one standard deviation above the mean, which is equal to 0.0306+0.055=0.086). Thus, banks with 

high public service connections are able to increase risk-shifting to the safety-net by (0.381-

0.313)/(0.313) = 21.7% 
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Table 2-3: Sensitivity of ∆IPP to ∆σv at Connected Banks 

This table reports estimates of Equation (2-6) using panel OLS regressions (with different 

specifications) and examines the sensitivity of changes in the value of public subsidies (IPP) to changes 

in σv at connected banks. I estimate the following regression:  

∆(IPP)i,t = β0 + β1∆σVi,t + β2(Public Servicei,t x ∆σVi,t) + β3Public Servicei,t + Bank Controlsi,t +Year 

FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. IPP is the fair value of the deposit insurance 

premium. Public Service is defined as: (number of Public Service directors/board size). σv is the 

volatility of asset returns. Bank Controls is the vector of variables in each column. The coefficient β2 on 

(Public Service x ∆σv) is the variable of interest. Refer to Appendix 2-A1 for description of variables. 

The sample period is from 2001 to 2013. Standard errors are clustered at the bank-level and t-statistics 

are reported in parenthesis. The constant is suppressed for brevity. ***, ** and * indicate significance 

level at the 1, 5 and 10% respectively. 

            

 (1) (2) (3) (4) (5) 
 ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP 

      
Public Service x ∆σv 1.247** 1.227** 1.276** 1.236** 2.021*** 

 [2.150] [2.146] [2.246] [2.188] [2.861] 
Public Service 0.075 0.205 -0.059 -0.143 -0.166 

 [0.329] [0.299] [-0.257] [-0.219] [-0.263] 

∆σv 0.262*** 0.273*** 0.263*** 0.275*** 0.156* 
 [5.775] [6.130] [5.871] [6.337] [1.746] 

Tier-1 Capital   0.227 -1.102 -0.25 
   [0.247] [-0.779] [-0.134] 

Bad Loans   8.391*** 13.225*** 12.535** 
   [4.372] [4.746] [1.992] 

Lag Enforcement Actions   0.270*** 0.245*** 0.168* 

   [4.160] [3.481] [1.712] 
ROA   -7.754** -7.775* -7.117 

   [-2.265] [-1.725] [-0.882] 
Total Deposits   -0.036 -0.037 -0.783 

   [-0.244] [-0.079] [-1.260] 

Market Risk   -0.056 -0.117 -0.168 
   [-0.817] [-0.691] [-0.793] 

Total Assets   0.008 0.799*** 0.348 
   [0.341] [3.487] [1.120] 

Asset Growth   0.211*** 0.096 0.054 
   [2.856] [1.027] [0.436] 

Total Loans   0.009 0.076 0.465 

   [0.059] [0.217] [0.885] 
Board Size   0.006* 0.020** 0.012 

   [1.913] [2.084] [0.918] 
Board Independence   0.083 -0.227 0.087 

   [0.798] [-0.845] [0.214] 

CEO Tenure   0.004* 0.008 0.001 
   [1.670] [1.334] [0.195] 

Duality   0.064*** 0.169** 0.246** 
   [2.619] [2.119] [2.087] 

      
Bank FE No Yes No Yes Yes 

Year FE Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes 
Adj. R-squared 0.562 0.583 0.601 0.624 0.671 

Observations 3,011 3,011 3,011 3,011 1,175 
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The potential to extract higher public subsidies is achieved through the risk-leverage 

mechanism shown in Section 2.2. Subsequently, regulatory efforts to impose discipline 

on banks by making them hold additional capital against increasing asset risk are less 

effective in connected banks. 

2.5 Endogeneity 

 

 The empirical results so far show a relationship between connections and the 

extraction of public subsidies by connected banks. However, I recognize that the 

baseline results could be endogenous. In this section, I address the different potential 

sources of endogeneity, specifically time-invariant and variant omitted variable bias 

and reverse causality.  

2.5.1 Time-invariant Omitted Variables 

 

 Unobserved time-invariant omitted variables could confound causal inference 

between connections and risk-shifting when such variables correlate with both public 

service connections and risk-shifting. For instance, a particular risk culture might 

simultaneously attract directors with regulatory connections, and be related to risk-

shifting. The results in Section 4 are robust to the inclusion of bank fixed effects 

(Columns (2), (4), and (5) of Table 2-3) which helps alleviate concerns pertaining to 

time-invariant omitted variables. Additionally, I include year fixed effects in all 

specifications. The latter absorb time related trends that could influence both 

connections and risk-shifting, such as the business cycle.  

 I further reduce concerns related to time-invariant omitted variables by running 

the baseline regressions (Equations (2-5) and (2-6) with bank fixed effects) on a 

sample of banks that have at least one public service director during the sample period 
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(Columns (5) of Tables 2-2 and 2-3). By excluding banks that do not have any public 

service directors, I estimate the within-connected-bank variation of public service 

connections on gains from risk-shifting. This ameliorates concerns that unobservable 

time-invariant differences between banks with and without connections are driving my 

results. 

2.5.2 Identification: Retirements of Federal Reserve Presidents 

 

 Time-variant unobservable variables could jointly affect both connections and 

risk-shifting. For example, a change in the business strategy of the bank could 

simultaneously increase risk-shifting and regulatory connectedness if connections are 

established to give the appearance of regulatory approval of the bank’s activities.39 To 

help establish causality, I exploit a quasi-natural experiment in a difference-in-

difference (DiD) setting, the retirements of Federal Reserve Presidents, as exogenous 

shocks to the quality of existing bank connections. The retirements of Fed Presidents 

should decrease the ability of connected banks to shift risk. Fed Presidents are arguably 

the single most powerful Fed officer and if personal familiarity between Fed Presidents 

gives rise to preferential treatment, the quality of these connections will be different 

and less conducive to risk-shifting following the retirement. 

I therefore predict that banks with connections will experience a decrease in 

gains from risk-shifting if the President of the Fed district that they belong to retires, 

as compared to a control group of banks without connections that are located in the 

same Federal Reserve district. I rely on within-district variation to minimize the 

                                                           
39 Reverse causality would not necessarily be inconsistent with my explanations. Banks that engage in 

risk-shifting could establish regulatory connections to attract regulatory leniency. However, this 

explanation would be consistent with my interpretation of preferential treatment from regulators at 

connected banks, and need not bias my results. 
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possibility that geographical economic shocks could influence risk-shifting and bias 

the results. The following example illustrates my empirical approach. Consider two 

banks (Bank A and Bank B) both supervised by the Richmond Fed under President 

Broaddus. Bank A has board members that served the Richmond Fed as a form of 

public service during Broaddus’ tenure while Bank B does not. Broaddus retired in 

2004, causing a negative shock to the quality of Bank A’s connections to the Richmond 

Fed. I compare risk-shifting gains of the connected Bank A (the treatment bank) before 

and after the President’s retirement to the non-connected Bank B (the control bank). 

The control bank absorbs changes associated with the retirement of the Fed President 

(if any) and allows me to investigate if a decrease in the efficacy of connections to the 

President leads to a reduction in risk-shifting gains at Bank A.  

The DiD strategy has several characteristics that aid in the inference of a causal 

effect. The cross-sectional comparison between treated and control banks avoids the 

problem of omitted trends while the time-series difference alleviates issues related to 

unobserved differences between the treated and control groups before and after the 

event (Roberts and Whited, 2012); i.e., I am comparing risk-shifting of treated banks 

after the shock (to itself, before the shock) and to a group of control banks. An 

additional advantage of this identification strategy is that there are multiple retirements 

(11 in total) affecting different banks that reside in different Federal Reserve districts 

across time. This alleviates concerns that omitted variables coinciding with a single 

retirement are correlated with risk-shifting (Atanasov and Black, 2016).  

I begin by identifying the years in which Federal Reserve Presidents retired 

from their positions during the sample period from Federal Reserve documents and 

their corresponding websites. I identify 11 Fed President retirements (listed in 
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Appendix 2-A3).40 To ascertain the exogeneity of the shock, I conduct searches on 

Factiva and various news websites to confirm that the retirements are not related to 

Fed Presidents being seen as too close to banks or risk-shifting (and thus possibly 

linked to risk-shifting). I use a five-year window (t-2, t-1, t, t+1, t+2) around the year 

the Fed President retires (year t). Years’ t-2 and t-1 are the pre-shock years while years 

t+1 and t+2 are the post-shock years. The DiD strategy requires me to identify the 

treatment and control groups.  

I allocate banks to the treatment group (Treated Public Service = 1) if they have 

at least one director with public service experience throughout the 5-year DiD window 

surrounding the shock and if the bank is located in the Fed district that the President is 

retiring from. Additionally, the public service director must have served alongside the 

retiring President and thus have/had an opportunity to establish connections. The group 

of control banks (Treated Public Service = 0) are banks which are in the same district 

of the outgoing Fed President but do not have any directors with regulatory 

connections in the 5-year window.  

I show summary statistics for both the treated and control groups in t-1 in Panel 

A of Table 2-4. In total, there are 34 banks in the Treated Public Service group and 81 

banks in the control group. Importantly, the mean of ∆IPP, the dependent variable of 

interest, is statistically insignificant between treated and control banks. This satisfies 

the parallel trends assumption which requires trends in outcomes (∆IPP) to be similar 

for both the control and treatment groups prior to the shock. I further observe that there 

                                                           
40 The original sample consists of 14 retirements. I exclude Timothy Geithner (New York Fed President 

in 2008 who later took up the position of Secretary of the Treasury), Janet Yellen (San Francisco Fed 

President in 2010 who took up positions as Vice Chairman, then Chairman of the Board of Governors 

of the Federal Reserve System) and Thomas Hoenig (Kansas City Fed President in 2011 who later 

become Vice Chairman of the FDIC) as they constitute “reassignments” within regulatory agencies.  
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are covariate differences between treated and control groups prior to the shock. 

Covariate imbalances could lead to biasness in the estimations as they could produce 

heterogeneous effects of the shock to the treatment and control group. I address this 

issue later in the robustness tests. 

I perform the DiD tests using different variants of the following model: 

∆IPPi,k,t = α0 + β1∆σVi,k,t + β2Treated Public Servicei,k,t + β3Postk,t + β4 Treated Public 

Servicei,k,t x Postk,t + β5Treated Public Servicei,k,t x ∆σVi,k,t + β6Postk,t x ∆σVi,k,t + 

β7Treated Public Servicei,k,t x Postk,t x ∆σVi,k,t +  Bank Controls + Year FE + 

Regulator FE + εi,t   (2-7) 

 

where k indexes Fed districts, and Post is a dummy variable that equals 0 for t-2, t-1, t 

and 1 for t+1 and t+2 by Fed district. The main variable of interest is the triple interaction 

term Treated Public Service x Post x ∆σv which shows how the marginal effects of Fed 

retirements on ∆IPP at connected treated banks (relative to the non-connected control 

banks) varies with ∆σv.  

Columns (1)-(4) of Table 2-4 Panel B show the results for the DiD analysis. 

The coefficient on Treated Public Service x Post x ∆σv is consistently negative and 

statistically significant at the 1% level throughout different specifications (inclusion 

of baseline controls and bank fixed effects). The results show gains from risk-shifting 

decrease at connected banks relative to the group of non-connected control banks, after 

the retirement of Federal Reserve Presidents. This is consistent with my predictions 

that connections facilitate risk-shifting and that a negative shock to the efficacy of 

existing connections reduces opportunities to shift risk.  
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Next, I discuss the exogeneity of Fed President retirements as well as run a 

number of placebo and robustness tests for the DiD analysis. The results are presented 

in Panel C of Table 2-4.  

Dynamic timing effects: I ascertain that the treatment effects of the DiD 

estimation are due to retirements as opposed to some other omitted variable or events 

that might coincide with the timing of the shock in Column (1) of Panel C Table 2-5. 

I follow Bertrand and Mullainathan (2003) and replace the Post variable with four 

indicator variables (Shockt-1, Shockt, Shockt+1, Shockt+2). These variables equal 1 for 

the year before retirement, the year of retirement, the year following retirement and 

two years after retirement (and 0 otherwise). I interact the variables with Public Service 

x ∆σv. As observed, the reduction in risk-shifting gains at connected banks is only 

detectable in the second year after the Fed President’s retirement (significant at the 1% 

level). This suggests that a reduction in the gains to risk-shifting at connected banks 

manifests itself only after the shock, and with a short delay, as banks adjust their asset 

risk and capital structure following a retirement. 

Placebo test: I maintain the actual timing of retirements in the DiD analysis 

but randomly assign these shocks to banks. For example, if the data indicates that a 

shock occurred in 2003 in Fed Districts 2 and 4, I now randomly allocate banks located 

in Fed districts that did not experience a shock to be shocked. If unobservable shocks 

occurring in the year of the actual shock are correlated with the actual timing of the 

shock, I should observe similar results to those in Panel B of Table 2-4 (as these 

unobservable shocks would still reside in the DiD framework and drive my results).41 

                                                           
41 However, this scenario is unlikely as my research design uses multiple shocks in different geographic 

markets and years. For the inference to be biased there would have to be a time-varying omitted variable 
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Table 2-4: DiD Analysis: Fed Reserve Bank Retirements as Shocks to 

Connections 

This table reports summary statistics (Panel A), estimates (Panel B), placebo and robustness tests (Panel 

C) of the difference-in-difference (DiD) estimation (with different specifications) as described in 

Equation (2-7) and examines the sensitivity of changes in the value of public subsidies (IPP) to changes 

in σv at treated banks as compared to a group of control banks following shocks to the efficacy of public 

service connections. The DiD analysis is carried out over a 5-year window (t-2, t-1, t, t+1 and t+2) 

where t is the year of Fed President retirements (11 shocks). Post is a dummy variable that = 1 for years 

t+1 and t+2 and 0 otherwise. I define banks to be in the treatment group (Treated Public Service = 1) 

if banks: 1) have at least one public director with public service experience throughout the 5-year DiD 

window and; 2) the public service position held by the director overlaps with the tenure and Fed district 

of the outgoing Federal Reserve President. Banks in the control group (Treated Public Service = 0) are 

banks that do not have any directors with public service experience in the 5-year DiD window and are 

in the district of the outgoing Federal Reserve President. Panel A reports difference in means (and p-

values) of the characteristics of treated and control banks in the pre-shock (t-1) year. Panel B presents 

estimates of the DiD regression:  

∆IPPi,k,t = α0 + β1∆σVi,k,t + β2Treated Public Servicei,k,t + β3Postk,t + β4 Treated Public Servicei,k,t x 

Postk,t + β5Treated Public Servicei,k,t x ∆σVi,k,t + β6Postk,t x ∆σVi,k,t + β7Treated Public Servicei,k,t x Postk,t 

x ∆σVi,k,t +  Bank Controlsi,t + Year FE + Regulator FE + εi,t 

where subscripts i, k and t indexes bank, Fed district and year respectively. IPP is the fair value of the 

deposit insurance premium, σv is the volatility of asset returns while Bank Controls is the vector of 

variables in each column. The variable of interest is the coefficient β7 on (Treated Public service x Post 

x ∆σv). Refer to Appendix 2-A1 for a description of variables. The sample period is from 2001 to 2013. 

Standard errors are clustered at the bank-level and t-statistics are reported in parenthesis. The constant 

is suppressed for brevity. ***, ** and * indicate significance level at the 1, 5 and 10% respectively. 

 

 

 

  

         

Panel A: Diagnostics Pre-Shock Treated Pre-Shock Control Diff. in Means 
Variables # Treated Mean # Control Mean p(Treated-Control) 

∆IPP 34 0.0100 81 0.00200 0.00800 
∆σv 34 -0.184 81 -0.12 -0.0680 

Tier1 Capital 34 0.108 81 0.113 -0.005 
Bad Loans 34 0.00600 81 0.00500 0 

Lag Enforcement Actions 34 0.147 81 0.0370 0.110* 

ROA 34 0.0130 81 0.0100 0.003*** 
Total Deposits 34 0.731 81 0.746 -0.0150 

Market Risk 34 0.172 81 0.102 0.070** 
Total Assets 34 6.966 81 6.416 0.550*** 

Asset Growth 34 0.0890 81 0.135 -0.046* 

Total Loans 34 0.643 81 0.703 -0.060** 
Board Size 34 14 81 12.07 1.926** 

Board Independence 34 0.781 81 0.765 0.0160 
CEO Tenure 34 5.75 81 7.277 -1.527 

Duality 34 0.765 81 0.556 0.209** 

     
     

     
     

     
     

     

     
     

     
     

                                                           
related to the timing of each retirement that only affects connected banks. Nonetheless, I formally 

address this issue. 
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Panel B: DiD Analysis (1) (2) (4) (4) 
 ∆IPP ∆IPP ∆IPP ∆IPP 

     
Treated Public Service x Post x ∆σv -0.327*** -0.326*** -0.280*** -0.287*** 

 [-3.181] [-3.008] [-3.085] [-2.975] 
Treated Public Service x Post -0.128 -0.126 -0.039 -0.104 

 [-1.640] [-1.656] [-0.700] [-1.645] 
Treated Public Service x ∆σv -0.001 0.013 -0.003 0.005 

 [-0.081] [0.552] [-0.150] [0.211] 

Treated Public Service -0.003  0.013  
 [-0.093]  [0.417]  

Post x ∆σv 0.336*** 0.329*** 0.300*** 0.319*** 
 [3.346] [3.253] [3.574] [3.649] 

Post 0.099 0.088 0.035 0.084 

 [1.622] [0.956] [0.727] [1.011] 
∆σv 0.018 0.011 0.030** 0.009 

 [1.610] [0.839] [2.433] [0.581] 
Tier-1 Capital   2.249 6.089** 

   [1.595] [2.605] 
Bad Loans   15.389**

* 

15.367** 

   [2.831] [2.054] 

Lag Enforcement Actions   0.033 -0.014 
   [0.370] [-0.128] 

ROA   -25.83*** -32.90*** 
   [-3.224] [-2.785] 

Total Deposits   0.475* 0.932 

   [1.970] [1.182] 
Market Risk   0.011 0.174 

   [0.106] [0.428] 
Total Assets   0.107** 0.511 

   [2.271] [0.477] 
Asset Growth   0.121 0.069 

   [0.851] [0.256] 

Total Loans   0.027 1.439 
   [0.118] [1.305] 

Board Size   -0.002 0.002 
   [-0.469] [0.100] 

Board Independence   0.169 -0.432 

   [1.034] [-1.091] 
CEO Tenure   0.003 -0.003 

   [0.742] [-0.554] 
Duality   0.049 -0.165** 

   [0.979] [-2.113] 
     

Bank FE No Yes No Yes 

Year FE Yes Yes Yes Yes 
Regulator FE Yes Yes Yes Yes 

Adj. R-squared 0.42 0.43 0.612 0.597 
Observations 575 575 575 575 
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Panel C: Placebo & Robustness (1) (2) (3) (4) (5) (6) 
 Dynamic Placebo Exclude Control Control Control 

 Timing Year Fed 1,3,4,11 Macro. Macro. Pre-shock 
 ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP 

       
Treated Public Service x Post x ∆σv  0.079 -0.341*** -0.215*** -0.203*** -0.274*** 

  [0.809] [-3.221] [-3.240] [-3.190] [-3.165] 
Treated Public Service x Shockt-1 x ∆σv 0.056      

 [0.97]      

Treated Public Service x Shockt x ∆σv 0.021      
 [0.37]      

Treated Public Service x Shockt+1 x ∆σv -0.05      
 [-0.69]      

Treated Public Service x Shockt+2 x ∆σv -0.343***      

 [-3.16]      
∆State GDP x ∆σv    2.985* 0.026  

    [1.826] [0.051]  
∆State Housing Index x ∆σv    -0.634** -0.389**  

    [-1.997] [-2.063]  

∆State Unemployment x ∆σv    0.136*** 0.008  
    [4.518] [0.469]  

∆State GDP x Post x ∆σv     5.323*  
     [1.844]  

∆State Housing Index x Post x ∆σv    -0.852  
     [-1.229]  

∆State Unemployment x Post x ∆σv    0.163***  

     [3.449]  
       

Bank FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes Yes Yes 
Other Controls x Treated x Post No No No No No Yes 

Adj. R-squared 0.64 0.496 0.629 0.735 0.759 0.603 
Observations 575 640 440 570 570 575 
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However, if no such omitted variables exist, the coefficient on Public Service 

x Post x ∆σv  should become statistically insignificant. When repeating the DiD analysis 

with the placebo retirement year shocks in Column (2) of Panel C, the coefficient on 

the interaction term of interest Public Service x Post x ∆σv is statistically insignificant. 

This alleviates concerns that findings are driven by omitted variables relating to the 

timing of the shock.  

 Mandatory vs unexpected retirements: A natural question that arises relates to 

the reason for the retirements of Federal Reserve Presidents to satisfy the identifying 

assumption that retirements are not related to connected banks, risk-shifting or any 

time-varying omitted variables. As mentioned above, I read news reports pertaining to 

retirements and do not find any reason linking retirements to risk-shifting or being too 

close to banks. In addition, I use only retirements that are mandatory and, thus, 

planned. I exclude unplanned retirements as these could be dismissals dressed up as 

retirements (and be potentially related to regulatory effectiveness which would not 

appear in news articles and regulatory reports). Specifically, I exclude retirements 

occurring more than one year before the mandatory retirement age of 65, or less than 

ten years from an appointment that commenced after the age of 55.42 I repeat the DiD 

analysis, dropping observations from Fed Districts 1, 3, 4 and 11 as these retirements 

constitute “unplanned” retirements, and obtain similar results (Column (3) of Panel C 

in Table 2-4).  

                                                           

42 “Reserve Bank Presidents are subject to mandatory retirement upon becoming 65 years of age. 

However, Presidents initially appointed after age 55 can, at the option of the board of directors, be 

permitted to serve until attaining ten years of service in the office or age 75, whichever comes first”. 

https://www.federalreserve.gov/aboutthefed/bios/banks/default.htm 
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 Macroeconomic conditions: I allow macroeconomic conditions to influence 

risk-shifting (by interacting three economic proxies, ∆State GDP, ∆State Housing 

Index and ∆State Unemployment with ∆σv) in Column (4) of Panel C in Table 2-5 as 

macroeconomic conditions could influence the timing of Fed President retirements. 

Presidents could choose to retire in certain states of the economy. Thus, changes in the 

local economic environment might be correlated with risk-shifting at connected banks, 

instead of the shock. In Column (5) of Panel C Table 2-5, I interact the three economic 

proxies with ∆σv and Post to control for macroeconomic trends in the post-retirement 

period. As Fed Presidents have information about the forecasts of the economy, they 

could choose the timing of their retirements. By including the triple interaction term, 

I control for that possibility. The coefficient of the interaction term of interest Public 

Service x Post x ∆σv  continues to remain statistically significant and negative at the 

1% level in both these specifications. 

Pre-shock covariate imbalances: I note in Panel A of Table 2-4 that the 

covariates are not balanced in the pre-shock period between the treatment and control 

groups. I would ideally like to conduct matching exercises to ensure that the treatment 

and control groups are similar along most observable characteristics in the pre-shock 

period to ensure that the shock does not produce heterogeneous treatment effects that 

arise from differences in bank characteristics. Unfortunately, due to the relatively 

small number of potential control banks in the sample, I am unable to do so. I take a 

different approach and interact all the control variables with Treated Public Service x 

Post in Column (6) of Panel C in Table 2-4. By interacting the vector of covariates 

with Treated x Post, I control for the possibility that the covariates of treated banks 

produce heterogeneous effects to the shock as compared to the group of control banks. 
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My results remain statistically significant at the 1% level, consistent with estimates in 

the DiD analysis. 

2.5.3 Alternative Identification: The Emergency Economic Stabilization Act of 

2008  

 

 An alternative identification exploits the heterogeneous effects of the 

Emergency Economic Stabilization Act (EESA) of 2008 as a positive shock to the 

incentives of banks to risk shift. EESA was enacted in response to the recent financial 

crisis, the largest shock to the U.S. banking system to date (Fahlenbrach, Prilmeier, 

and Stulz, 2012). To stabilize the economy, the EESA contained various programs 

including the largest taxpayer-financed capital infusion in U.S. history (cf. Duchin and 

Sosyura, 2012; 2014), increased insurance coverage limits for depositors (cf. Lambert 

et al., 2016) as well as short-term lending to banks (cf. Berger, Black, Bouwman, and 

Dlugosz, 2015).  

I hypothesize that following the enactment of EESA, connected banks would 

increase risk-shifting more than non-connected banks. The rationale underlying the 

identification strategy follows the well-documented moral hazard effect of public 

guarantees on increased bank risk-taking (Merton, 1977; Hovakimian and Kane, 2000; 

Gropp, Hakenes, and Schnabel, 2011; Dam and Koetter; 2012; Gropp, Kakenes, and 

Guettler, 2013). Importantly, the literature has demonstrated that EESA has indeed led 

to an increase in moral hazard and risk-taking at U.S. banks (Duchin and Soysura, 

2014; Lambert et al., 2016). Additionally, EESA signalled the willingness of 

regulators to engage in forbearance during crisis times (Archarya and Yorulmazer, 

2007; Brown and Dinç 2009). This leads me to predict that connected banks would 
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engage in more risk-shifting as compared to non-connected banks in the presence of 

heightened regulatory forbearance.  

EESA can be viewed as plausibly exogenous to public service connections for 

a number of reasons. Firstly, public service positions fulfil specific roles as determined 

by regulators and are taken up by bank directors periodically, independent of the 

timing of financial crises or specific pieces of legislation. Second, to further mitigate 

concerns that banks hire directors with public service experience in anticipation of the 

crisis and EESA, I use Current Public Service, the proportion of board members who 

currently hold public service positions with a regulator, as well as Public Service.43  

I present summary statistics for Public Service and Current Public Service by 

year in Panel A of Table 2-5 and t-tests for the difference in means between these two 

variables during the pre-crisis and crisis period in Panel B to provide some evidence 

for argument two above. The mean value of Current Public Service remains constant 

throughout the sample period. For instance, 1% of board members have current public 

service connections in 2006-2008 compared with 1.1% in 2009 and 1% in 2010. I 

further show differences for Public Service and Current Public Service between the 

pre-crisis and crisis periods. There are no statistical differences between the means for 

both periods, presenting further evidence that banks do not attempt to hire in 

anticipation of the crisis. Lastly, connected banks could not have anticipated the 

magnitude of government support or the crisis.  

                                                           
43 Fahlenbrach and Stulz (2011) show evidence that CEOs of banks whose incentives were better aligned 

with shareholders suffered larger losses in their compensation during the crisis. This suggests that bank 

CEOs were not able to anticipate the crisis. 
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 I estimate variants of the following equation with and without bank fixed 

effects and baseline controls to test my hypothesis: 

∆IPPi,t = α0 + β1∆σVi,t + β2Connectedi,t + β3Post-EESA08-13 + β4Connectedi,t x 

Post-EESA08-13 + β5Connectedi,t x ∆σVi,t + β6Post-EESA08-13 x ∆σVi,t + β7Connectedi,t x 

Post-EESA08-13 x ∆σVi,t + Bank Controls + Year FE + Regulator FE + εi,t      (2-8) 

 

where Post-EESA08-13 is a dummy variable that equals 1 for years 2008 to 2013 and 0 

otherwise, and Connected is either Public Service or Current Public Service. The main 

variables of interest are the triple interaction terms Public Service x Post-EESA08-13 x 

∆σv and Current Public Service x Post-EESA08-13 x ∆σv which investigate if connected 

banks increase their gains from risk-shifting after EESA with respect to banks without 

connections.  

The results of the estimation are shown in Panel C of Table 2-5. The first 4 

columns show different specifications for the banks with public service connections 

while Columns (5)-(8) show banks with current public service connections. The 

coefficient on Post-EESA08-13 x ∆σv is positive and statistically significant at the 1% 

level in all columns, lending support to the moral hazard hypothesis of government 

subsidies. Public Service x Post-EESA08-13 x ∆σv and Current Public Service x Post-

EESA08-13 x ∆σv are both positive and statistically significant at the 5% level or better, 

regardless of the specifications used. These results support the predictions that the 

regulatory climate of enhanced forbearance following EESA allowed greater gains 

from risk-shifting at connected banks relative to banks without connections.  
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Table 2-5: Heterogeneous Effects of EESA on Risk-shifting at Connected Banks 

This table reports the annual mean % of Public Service and Current Public Service (Panel A), results of the t-test of the difference in means between these connection 

variables in the pre-crisis and crisis period (Panel B) and estimates of Equation (2-8) using panel OLS regressions (with different specifications) which examines the 

sensitivity of changes in the value of public subsidies (IPP) to changes in σv at connected banks (Panel C) following the enactment of the Emergency Economic 

Stabilization Act of 2008. I estimate the following regression:  

∆(IPP)i,t = α0+ β1∆σVi,t + β2Zi,t + β4Post-EESAt + β5(Zi,t x Post-EESAt) + β6(Zi,t x ∆σVi,t) + β7(Post-EESAt  x ∆σVi,t) +  β8(Zi,t x Post-EESAt x∆σVi,t) + Bank Controlsi,t + 

Year FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. IPP is the fair value of the deposit insurance premium while Post-EESA is a dummy variable that equals 1 

for years 2008-2013 and 0 otherwise. Z is either Public Service (number of Public Service directors/board size) or Current Public Service (Number of Public Service 

directors who are currently holding public service roles/board size). σv is the volatility of asset returns. Bank Controls is the vector of variables in each column and 

includes Tier-1 Capital, Bad Loans, Lag Enforcement Actions, ROA, Total Deposits, Market Risk, Total Assets, Asset Growth, Total Loans, Board Size, Board 

Independence, CEO Tenure and Duality. The variable of interest is the coefficient β8 on (Z  x Post-EESA x ∆σv). Refer to Appendix 2-A1 for description of variables. The 

sample period is from 2001 to 2013. Standard errors are clustered at the bank-level and t-statistics are reported in parenthesis. The constant is suppressed for brevity. 

***, ** and * indicate significance level at the 1, 5 and 10% respectively. 

                              

Panel A: Summary Statistics Years 
 01 02 03 04 05 06 07 08 09 10 11 12 13 All 

             
Mean (# Public Service Dir./Board Size) % 3.9 4.2 4.4 2.7 2.4 2.6 2.6 2.8 2.9 3.0 3.6 3.6 3.9 3.1 
Mean (# Current Public Service Dir./Board Size) %  1.4 1.5 1.4 1.0 0.9 1.0 1.0 1.0 1.1 1.0 1.2 1.1 1.3 1.1 

     
Panel B: Difference in Means Pre-Crisis Crisis Diff in Means Diff  

Means  % % (Pre-Crisis - Crisis) % p-value 

     
Public Service: Pre-Crisis (04-07) & crisis (08-10)  2.58 2.88 -0.30 0.20 

Public Service: Pre-Crisis (05-07) & crisis (08-10)  2.55 2.88 -0.33 0.19 
Public Service: Pre-Crisis (06-07) & crisis (08-10)  2.61 2.88 -0.27 0.35 

Public Service: Pre-Crisis (06-07) & crisis (08-09)  2.61 2.83 -0.22 0.49 
Public Service: Pre-Crisis (07) & crisis (08-09)  2.63 2.83 -0.20 0.61 

Public Service: Pre-Crisis (07) & crisis (08)  2.63 2.76 -0.13 0.77 

Public Service: Pre-Crisis (05-07) & crisis (08)  2.55 2.76 -0.21 0.55 
Public Service: Pre-Crisis (06-07) & crisis (08)  2.61 2.76 -0.15 0.70 

     
Current Public Service: Pre-Crisis (04-07) & crisis (08-10)  0.97 1.01 -0.04 0.73 

Current Public Service: Pre-Crisis (05-07) & crisis (08-10)  0.97 1.01 -0.04 0.77 
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Current Public Service: Pre-Crisis (06-07) & crisis (08-10)  0.99 1.01 -0.02 0.88 
Current Public Service: Pre-Crisis (06-07) & crisis (08-09)  0.99 1.01 -0.02 0.88 

Current Public Service: Pre-Crisis (07) & crisis (08-09)  1.00 1.01 -0.01 0.96 

Current Public Service: Pre-Crisis (07) & crisis (08)  1.00 0.95 0.05 0.83 
Current Public Service: Pre-Crisis (04-07) & crisis (08)  0.97 0.95 0.02 0.94 

Current Public Service: Pre-Crisis (05-07) & crisis (08)  0.97 0.95 0.02 0.92 
Current Public Service: Pre-Crisis (06-07) & crisis (08)  0.99 0.95 0.04 0.86 

         

Panel C: EESA 2008 (1) (2) (3) (4) (5) (6) (7) (8) 
 ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP 

         
Public Service x Post-EESA08-13 x ∆σv 1.300*** 1.303*** 1.307*** 1.343***     

 [2.695] [2.712] [2.760] [2.821]     
Current Public Service x Post-EESA08-13 x ∆σv    2.467*** 2.466*** 2.374** 2.391*** 

     [2.597] [2.679] [2.506] [2.630] 

Public Service x Post-EESA08-13 -0.094 -0.660* -0.043 -0.029     
 [-0.296] [-1.714] [-0.120] [-0.066]     

Public Service x ∆σv -0.062** -0.067* -0.043 -0.1     
 [-2.032] [-1.944] [-0.733] [-1.202]     

Public Service 0.032 0.942* 0.006 0.207     

 [0.740] [1.869] [0.063] [0.391]     
Current Public Service x Post-EESA08-13     0.701 0.385 0.721 1.254 

     [1.034] [0.393] [0.921] [1.223] 
Current Public Service x ∆σv     -0.131* -0.078 -0.028 0.021 

     [-1.730] [-1.207] [-0.209] [0.111] 
Current Public Service     0.009 0.839* -0.1 -0.381 

     [0.115] [1.949] [-0.525] [-0.740] 

Post-EESA08-13 x ∆σv 0.313*** 0.318*** 0.313*** 0.314*** 0.332*** 0.337*** 0.334*** 0.335*** 
 [8.100] [8.222] [8.095] [8.400] [9.490] [9.504] [9.567] [9.749] 

Post-EESA08-13 -0.262*** -0.183** -0.287*** -0.438*** -0.274*** -0.201*** -0.287*** -0.440*** 
 [-4.736] [-2.581] [-4.241] [-3.214] [-5.196] [-3.135] [-4.478] [-3.388] 

∆σv 0.008*** 0.009** 0.009** 0.014*** 0.008*** 0.008** 0.008** 0.011*** 

 [3.458] [2.479] [2.224] [3.591] [3.779] [2.317] [2.018] [2.816] 
         

Bank FE No Yes No Yes No Yes No Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
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Regulator FE Yes Yes Yes Yes Yes Yes Yes Yes 
Other Controls No No Yes Yes No No Yes Yes 

Adj. R-squared 0.647 0.662 0.686 0.701 0.643 0.659 0.681 0.699 

Observations 3,011 3,011 3,011 3,011 3,011 3,011 3,011 3,011 
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 I present and discuss a number of robustness tests for my results and show them 

in Panels A (for Public Service) and B (for Current Public Service) of Appendix 2-A4, 

respectively. 

 TARP bailout funds: I control for additional risk-shifting incentives of banks 

that receive TARP bailout funds. Duchin and Soysura (2014) show that banks that 

receive bailout funds make riskier loans as compared to banks that did not receive 

these funds. I include an indicator variable, TARP Dummy, which equals 1 if years are 

from 2008-2013 and the bank receives bailout funds in 2008 and similarly, 1 if years 

are from 2009-2013 and the bank received bailout funds in 2009. I further interact 

TARP Dummy with ∆σv. Estimates are shown in Columns (1) of Panel A and B in 

Appendix 2-A4. The coefficient on the interaction term TARP Dummy x ∆σv is positive 

and statistically significant at the 5% level indicating that gains from risk-shifting 

increase at banks that receive these funds, consistent with evidence of increased risk-

taking by Duchin and Soysura (2014). Importantly, the variables of interest Public 

Service x Post-EESA08-13 x ∆σv and Current Public Service x Post-EESA08-13 x ∆σv 

remains positive and statistically significant at the 1% level.  

 Excluding too-big-to-fail: Large systematically important banks could receive 

regulatory laxity in the crisis due to their importance in the economy. I remove the 

largest 10% and 20% of banks (by assets) and re-run Equations (2-8) in Columns (2) 

and (3) of Panel A and B, respectively. The triple interaction terms of interest continue 

to remain positive and statistically significant at least at the 5% level. 

 Alternate post-EESA windows: I use different post-EESA windows (2008-

2010), (2008-2011) and (2008-2012) in Columns (4)-(6) of Panel A and B in Appendix 
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2-A4 respectively for robustness. Public Service x Post-EESA x ∆σv  and Current 

Public Service x Post-EESA x ∆σv continue to remain positive and statistically 

significant at the 1% level.  

2.6 Do connected Banks Receive Preferential Treatment by Regulators? 

 

 The previous section presents evidence of a link between public service 

connections and risk-shifting. One explanation for my findings is that connected banks 

receive preferential treatment from regulators. An alternative explanation, which is 

partly consistent with the results so far, is that connected banks obtain the technical 

expertise and skills needed to evade regulatory discipline. In this section, I present 

evidence that backs the view that connected banks benefit from preferential treatment. 

I find no evidence that connected banks display superior skills in terms of evading 

regulatory discipline.  

2.6.1 Testing for Preferential Treatment 1: JPMorgan Chase Trading Loss  

 

 My first test exploits a widely publicized trading loss at JPMorgan Chase in 

2012. In May 2012, JPMorgan reported a $2 billion-dollar trading loss (which 

subsequently increased to $6 billion), leading to a senate congressional hearing and a 

$920 million fine.44 Crucially, JPMorgan’s CEO Jamie Dimon was on the board of 

directors of the New York Fed at the time of the trading loss. Following the publication 

of the trading loss, there were calls for Dimon’s resignation from the Fed Board as 

well as for reforms to the Federal Reserve System.45  

                                                           
44 http://money.cnn.com/2013/09/19/investing/jpmorgan-london-whale-fine/ 
45 See for example: http://money.cnn.com/2012/05/21/news/economy/jamie-dimon-new-york-fed/, 

http://business.time.com/2012/06/19/jamie-dimon-isnt-the-only-or-even-the-worst-problem-plaguing-

the-federal-reserve/, http://www.seattletimes.com/business/dimons-place-on-fed-board-renews-

conflict-of-interest-concerns/ and http://www.theatlantic.com/business/archive/2012/06/simon-

johnson-rips-into-jamie-dimons-conflicts-of-interest/259258/ 
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The media attention and public scrutiny surrounding this event and how 

regulators failed to effectively supervise JPMorgan’s risk management provides me 

with an exogenous shock to regulators’ stringency in monitoring banks, especially 

those with connections. If preferential treatment was one explanation behind my 

results, I expect to observe a decrease in gains from risk-shifting at connected banks 

after 2012. Any technical expertise which bank directors may have obtained from their 

connections to regulators is not plausibly affected by this event. Therefore, if a transfer 

of skills is the reason why banks can shift risk following the establishment of 

connections, I should find risk-shifting to continue following the JPMorgan trading 

loss. 

I test this using both Public Service and Current Public Service definitions of 

connectedness. I estimate the model as: 

∆IPPi,t = α0 + β1∆σVi,t + β2Connectedi,t + β3Post-JPMorgan Loss12-13 + 

β4Connectedi,t x Post-JPMorgan Loss12-13 + β5Connectedi,t x ∆σVi,t + β6Post-

JPMorgan Loss12-13 x ∆σVi,t + β7Connectedi,t x Post-JPMorgan Loss12-13 x ∆σVi,t + 

Bank Controls + Bank FE + Year FE + Regulator FE + εi,t      (2-9) 

 

where Connected is either Public Service or Current Public Service, and Post-

JPMorgan Loss12-13 is a dummy variable that equals 1 for years 2012 to 2013 and 0 

otherwise. The main variables of interest are the triple interaction terms Public Service 

x Post-JPMorgan Loss12-13 x ∆σv and Current Public Service x Post-JPMorgan Loss12-

13 x ∆σv which investigate if connected banks increase their risk-shifting after the 

JPMorgan trading loss in 2012, in relation to banks without connections.  
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The results are displayed in Panel A of Table 2-6. Estimations without baseline 

controls and bank fixed effects show similar results but are omitted for brevity. In 

Columns (1)-(2), I observe that the triple interaction terms of interest Public Service x 

Post-JPMorgan Loss12-13 x ∆σv and Current Public Service x Post-JPMorgan Loss12-13 

x ∆σv is negative and significant at the 5% level. These findings suggest that gains from 

risk-shifting is reduced at banks with public service connections in the immediate 

aftermath of the JPMorgan trading loss, presumably due to heightened regulatory 

scrutiny of banks with public service connections. If skills were related to connections, 

I would continue to observe risk-shifting at public service connected banks following 

the shock. 

Interestingly, Columns (3)-(4) show that gains from risk-shifting at connected 

banks decrease most when banks are regulated by the New York Fed, as shown by the 

negative quadruple interaction term (at the 1% significance level). One plausible 

explanation for this finding is that regulators in the New York Fed district, which 

oversaw JPMorgan’s trading loss and had Jamie Dimon as a director on their board, 

increased the stringency of their monitoring of connected banks as compared to the 

other districts, to safeguard themselves from further negative publicity. Overall, the 

results indicate that risk-shifting is due to preferential treatment rather than skills
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Table 2-6: Preferential Treatment or Skills 

This table reports estimates using panel OLS regressions (with different specifications) and examines the sensitivity of changes in the value of public subsidies (IPP) to 

changes in σv at connected banks to investigate why connections facilities risk-shifting to the safety-net. Panel A show results of Equation (2-9) using the JPMorgan 

Trading Loss Shock in 2012 while Panel B investigates if risk-shifting occurs under different regulators. I estimate the following regression in Panel A: 

∆(IPP)i,t = α0 + β1∆σVi,t + β2Zi,t + β4Post-JPMorgan Losst + β5(Zi,t x Post-JPMorgan Losst) + β6(Zi,t x ∆σVi,t) + β7(Post-JPMorgan Losst x ∆σVi,t) +  β8(Zi,t x Post-

JPMorgan Losst  x ∆σVi,t) + Bank Controlsi,t + Bank FE + Year FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. IPP is the fair value of the deposit insurance premium while Post-JPMorgan Loss is a dummy variable that 

equals 1 for years 2012-2013 and 0 otherwise. Z is either Public Service (number of Public Service directors/board size) or Current Public Service (Number of Public 

Service directors who are currently holding public service roles/board size). New York Fed is a dummy variable that equals 1 if BHC is supervised by the New York 

Fed and 0 otherwise. σv is the volatility of asset returns. Bank Controls is the vector of variables in each column and includes Tier-1 Capital, Bad Loans, Lag Enforcement 

Actions, ROA, Total Deposits, Market Risk, Total Assets, Asset Growth, Total Loans, Board Size, Board Independence, CEO Tenure and Duality. The variable of interest 

is the coefficient β8 on (Z  x Post-JPMorgan Loss x  ∆σv) in Columns (1)-(2). Panel B is estimated using variants of Equation (2-6). Reg by FDIC and Reg by OCC are 

dummy variables that equals 1 if the main commercial bank under the BHC is supervised by the FDIC and OCC respectively and 0 otherwise. The coefficient on (Public 

Service x ∆σv) is the variable of interest. Refer to Appendix 2-A1 for description of variables. The sample period is from 2001 to 2013. Standard errors are clustered at 

the bank-level and t-statistics are reported in parenthesis. The constant is suppressed for brevity. ***, ** and * indicate significance level at the 1, 5 and 10% respectively. 

 

Panel A: JPMorgan Trading Loss Shock 2012 (1) (2) (3) (4) 
 ∆IPP ∆IPP ∆IPP ∆IPP 

Public Service x Post-JPMorgan Loss12-13 x ∆σv -1.855**  -0.832  
 [-2.529]  [-1.195]  

Current Public Service x Post-JPMorgan Loss12-13 x ∆σv  -2.764**  -0.459 

  [-2.236]  [-0.430] 
Public Service x Post-JPMorgan Loss12-13 x New York Fed x ∆σv   -6.108***  

   [-3.462]  
Current Public Service x Post-JPMorgan Loss12-13 x New York Fed x ∆σv   -8.966*** 

    [-3.083] 

Public Service x Post-JPMorgan Loss12-13 0.199  0.847  
 [0.330]  [1.566]  

Public Service x ∆σv 1.247**  0.354  
 [2.309]  [0.738]  

Public Service -0.05  -0.416  
 [-0.070]  [-0.614]  

Current Public Service x Post-JPMorgan Loss12-13  -0.724  0.224 

  [-0.719]  [0.238] 
Current Public Service x ∆σv  2.223**  -0.015 
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  [1.981]  [-0.017] 
Current Public Service  0.448  0.06 

  [0.681]  [0.091] 

Public Service x Post-JPMorgan Loss12-13 x New York Fed   -4.407***  
   [-3.450]  

Public Service x New York Fed   2.867  
   [1.306]  

Public Service x New York Fed x ∆σv   3.366***  
   [6.793]  

Current Public Service x Post-JPMorgan Loss12-13 x New York Fed    -6.835** 

    [-2.143] 
Current Public Service x New York Fed    4.494** 

    [2.265] 
Current Public Service x New York Fed x ∆σv    7.147*** 

    [7.754] 

Post-JPMorgan Loss12-13 x New York Fed x ∆σv   0.254*** 0.220*** 
   [3.428] [3.281] 

Post-JPMorgan Loss12-13 x New York Fed   0.165** 0.096* 
   [2.316] [1.666] 

New York Fed x ∆σv   -0.304*** -0.294*** 

   [-6.628] [-7.188] 
Post-JPMorgan Loss12-13 x ∆σv -0.229*** -0.260*** -0.243*** -0.265*** 

 [-3.363] [-4.191] [-3.561] [-4.253] 
Post-JPMorgan Loss12-13 -0.931*** -0.895*** -0.891*** -0.843*** 

 [-4.837] [-4.602] [-4.778] [-4.662] 
∆σv 0.289*** 0.308*** 0.307*** 0.316*** 

 [6.860] [8.284] [7.764] [8.627] 

     
Bank FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 
Regulator FE Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes 

Adj. R-squared 0.643 0.636 0.675 0.671 
Observations 3,011 3,011 3,011 3,011 
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Panel B: Relevant Regulators (1) (2) (3) (4) 
 All Reg by Fed Reg by OCC Reg by FDIC 

 ∆IPP ∆IPP ∆IPP ∆IPP 

     
Fed Public Service x ∆σv  2.228*** -0.303 0.647 

  [8.367] [-0.437] [1.179] 
Fed Public Service  2.259** -1.422* 0.208 

  [2.250] [-1.833] [0.143] 
Reg by FDIC x ∆σv -0.129    

 [-1.485]    

Reg by OCC x ∆σv -0.077    
 [-0.781]    

Reg by FDIC 0.057    
 [0.577]    

Reg by OCC 0.016    

 [0.130]    
∆σv 0.393*** 0.258*** 0.322*** 0.236*** 

 [5.023] [6.193] [4.788] [4.739] 
     

Bank FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 
Regulator FE No Yes Yes Yes 

Other Controls Yes Yes Yes Yes 
Adj. R-squared 0.604 0.8 0.641 0.492 

Observations 3,011 652 874 1,485 
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2.6.2 Testing for Preferential Treatment 2: Relevant Regulators 

 

The second test that points to preferential treatment exploits the charter types 

of the main commercial banks operating under BHCs. While all BHCs in the sample 

are regulated by the Fed, commercial banks operating under the BHC umbrella are 

regulated by either the Fed, the FDIC or OCC depending on their charter. For there to 

be evidence of preferential treatment, the results should be strongest when connections 

exist to the regulator in charge and weakest when connections exist to regulators not 

responsible for regulating a particular bank.  

By contrast, if I were to find uniform risk-shifting behaviour irrespective of the 

relevance of the connections to regulatory agencies, this would back the skills channel. 

That is because bank regulations are identical regardless of the regulator responsible 

(Agarwal, Lucca, Seru, and Trebbi, 2014).46 In the presence of uniform regulations and 

no preferential treatment by connected regulators, banks with Fed connections should 

be able to extract larger subsidies irrespective of whether the commercial banks 

operating under their holding company are regulated by the FDIC or the OCC. As 

BHCs could have multiple commercial entities operating under them, I rely on the 

charter of the largest commercial bank (by assets) operating under the BHC to perform 

this test.  

I first show that the three different federal regulators show similar levels of 

stringency towards supervision in Column (1) Panel B of Table 2-6. I re-run the 

baseline regression (Equation 2-6) without the connections variable but with a dummy 

                                                           
46 Arguably, regulatory enforcement may differ across agencies. Agarwal et al. (2014) find differences 

in enforcement between state and federal regulators but not across federal regulators. They explain that 

state banking regulators are more lenient to banks when there are concerns over the local economy, 

while federal regulators are harsher as a result of their emphasis on systemic stability. They say little 

regarding differences between federal agencies. 
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variable for the regulator in charge of the main commercial bank under the BHC and 

interact it with ∆σv. The coefficients on Reg by FDIC x ∆σv and FDIC x ∆σv are both 

insignificant, suggesting that enforcement is similar across the federal agencies.  

Next, I re-run the regression using the number of directors who have served in 

public service positions at the Federal Reserve scaled by board size (Fed Public 

Service). I do this because the Fed is the most common regulator in which directors 

hold public service positions. Note that the Fed oversees banks at the BHC level. If the 

main commercial bank operating under a BHC is also regulated by the Fed, 

connections to the Fed would be undoubtedly more important compared to a BHC 

whose main commercial bank is regulated by the OCC or FDIC. 

I show estimates of the baseline regression as in Equation (2-6), but with Fed 

Public Service x ∆σv as the main interaction term of interest in Columns (2)-(4) of 

Panel B Table 2-6. Columns (2)-(4) are sub-samples where the main commercial bank 

is regulated by the Fed, the OCC and the FDIC, respectively. The interaction term of 

interest Fed Public Service x ∆σv is positive and significant at the 1% level in only 

Column (2), indicating that banks with public service connections to the Fed which 

are also regulated by the Fed are able to access larger subsidies from the financial 

safety-net.47 Importantly, the results show that public service connections to seemingly 

less relevant regulators do not result in detectable gains from risk-shifting by 

connected banks. If connections were related to technical expertise, such gains should 

be observable regardless of the responsible regulator.  

                                                           
47 I would ideally like to show that FDIC/OCC connections should only result in risk-shifting when 

regulated by the FDIC/OCC but am unfortunately unable to do so due insufficient connections 

established with the FDIC/OCC. For instance, there are 0 FDIC connections under FDIC regulated 

banks. 
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2.7 Additional Analysis 

 

2.7.1 When Do Connected Banks Risk Shift?  

 

I next investigate when banks use their connections to shift risk to the safety-

net. Eisdorfer (2008) show that risk-shifting incentives are higher for poorly 

performing firms. I partition banks into three groups based on whether a bank has low, 

medium or high Tier-1 capital in Columns (1)-(3) and low, medium or high ROA in 

(4)-(6) of Table 2-7 Panel A.  

I re-run the baseline regressions (Equation 2-6) by the level of Tier-1 capital 

and ROA (calculated on a yearly basis) and display the results in Table 2-7 Panel A. I 

observe that the coefficient on Public Service x ∆σv is only positive and statistically 

significant at the 1% level when banks are in the medium group of Tier-1 capital 

(Column (2)). When splitting the sample by ROA, risk-shifting by public service banks 

is only observable for banks with high and medium levels of ROA (Columns (5)-(6)). 

Therefore, the results indicate that risk-shifting at connected banks occurs only when 

banks are not undercapitalized or underperforming. One explanation for this is that 

connected banks risk shift when regulatory scrutiny is likely to be low and when 

regulators may exhibit more leniency. 
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Table 2-7: When do Connected Banks Shift Risk and Benefits to Shareholders 

Panel A of this table reports estimates of Equation (2-6) using panel OLS regressions (with different 

specifications) and examines the sensitivity of changes in the value of public subsidies (IPP) to changes 

in σv at connected banks at three terciles (low, medium and high) of Tier-1 Capital and ROA. I estimate 

the following regression:  

∆(IPP)i,t = α0 + β1∆σVi,t + β2(Public Servicei,t x ∆σVi,t) + β3Public Servicei,t + Bank  Controlsi,t + Bank 

FE + Year FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. IPP is the fair value of the deposit insurance 

premium. Public Service is defined as: (number of Public Service directors/board size). σv is the 

volatility of asset returns. Bank Controls is the vector of variables in each column and includes Tier-1 

Capital, Bad Loans, Lag Enforcement Actions, ROA, Total Deposits, Market Risk, Total Assets, Asset 

Growth, Total Loans, Board Size, Board Independence, CEO Tenure and Duality. The coefficient β2 on 

(Public Service x ∆σv) is the variable of interest. Panel B and C of this table reports estimates of the 

panel OLS and logit regressions and examines if larger public subsidies at banks with public service 

connections is beneficial for shareholders of these banks at three terciles (low, medium and high) of 

Tier-1 Capital (Panel B) and ROA (Panel C). Panel B and C estimates the following regression in 

Equation (2-10):  

(P)i,t = α0+ β1∆IPPi,t + β2(Public Servicei,t x ∆IPPi,t) + β3Public Servicei,t +  Bank Controlsi,t +Bank 

FE + Year FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. P is  one of the following 4 variables: Stock 

Rets (the annualized monthly log buy-hold returns), ROA (the Income before extraordinary items 

divided by total assets), Pr Div↑ (a dummy variable that = 1 if the change in (common dividends/total 

equity) increases from the previous year and 0 otherwise) or Pr Net Payout↑ (a dummy variable that =  

1 if the change in total net payout [common dividends + (treasury stock purchase – sales)]/(total equity) 

increases from the previous year and 0 otherwise). Bank Controls in Columns ((1), (2), (5), (6), (9) and 

(10)) of Panel B and C includes: Tier-1 Capital, Bad Loans, Total Deposits, Total Assets, Total Loans, 

Noninterest Income, Asset Growth, Leverage, Board Size, Board Independence and CEO Tenure. Bank 

Controls in Columns ((3), (4), (7), (8), (11) and (12)) of Panel B and C includes: Tier-1 Capital, Bad 

Loans, Total Assets, ROA, Asset Growth, Leverage, Book-to-Market Ratio, Board Size, Board 

Independence, Duality and CEO Tenure. Columns ((3), (4), (7), (8), (11) and (12)) reports odd ratios 

from a logit model. The coefficient β2 on (Public Service x ∆IPP) is the variable of interest. Refer to 

Appendix 2-A1 for description of variables. The sample period is from 2001 to 2013. Standard errors 

are clustered at the bank-level and t-statistics are reported in parenthesis. The constant is suppressed for 

brevity. ***, ** and * indicate significance level at the 1, 5 and 10% respectively. 

 
Panel A: Tier-1 & ROA (1) (2) (3) (4) (5) (6) 

 Tier-1 Capital ROA 

 Low Mid High Low Mid High 
 ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP 

        
Public Service x ∆σv -0.147 2.674*** -0.176 0.034 1.599*** 1.999** 

 [-0.335] [8.638] [-0.239] [0.054] [3.289] [2.560] 

Public Service 0.058 -2.259 -2.107** 2.441 -0.201 -1.529 
 [0.069] [-1.487] [-2.297] [1.043] [-0.248] [-1.314] 

∆σv 0.306*** 0.165*** 0.309*** 0.337*** 0.196*** 0.224** 
 [7.204] [3.331] [4.501] [8.534] [3.969] [2.275] 

        
Bank FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes Yes 
Other Controls Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.543 0.773 0.693 0.624 0.586 0.739 
Observations 1,009 1,003 999 1,009 1,003 999 
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Panel B: Tier-1 Capital (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 Low Tier-1 Capital Mid Tier-1 Capital High Tier-1 Capital 

 Stock  Pr Pr Net Stock  Pr Pr Net Stock  Pr Pr Net 

 Rets. ROA Div↑ Payout↑ Rets. ROA Div↑ Payout↑ Rets. ROA Div↑ Payout↑ 

               

Public Service x ∆IPP -0.191 -0.647 0.974** 0.985 0.297** 1.031*** 1.047** 1.032* -0.051 -0.235 0.889* 0.966 

 [-1.248] [-0.878] [-2.065] [-1.043] [2.175] [2.850] [2.410] [1.680] [-0.287] [-0.530] [-1.822] [-1.350] 

Public Service -0.111 -0.73 1.051 0.97 -0.139 -1.282 0.969 0.955 0.293 0.061 1.135** 1.037 

 [-0.388] [-0.700] [1.256] [-1.071] [-0.407] [-0.949] [-0.869] [-1.190] [0.537] [0.046] [2.231] [0.721] 

               

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.6 0.628 0.23 0.206 0.562 0.38 0.234 0.16 0.417 0.306 0.182 0.139 

Observations 1,009 1,009 640 668 1,003 1,003 673 683 999 999 677 704 

                          

Panel C: ROA (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 Low ROA Mid ROA High ROA 

 Stock  Pr Pr Net Stock  Pr Pr Net Stock  Pr Pr Net 

 Rets. ROA Div↑ Payout↑ Rets. ROA Div↑ Payout↑ Rets. ROA Div↑ Payout↑ 

               

Public Service x ∆IPP -0.048 -0.55 0.951* 0.967** 0.468*** 0.221** 1.070** 1.049** 0.014 0.026 1.052** 1.021** 

 [-0.446] [-0.730] [-1.872] [-2.287] [3.825] [2.089] [2.300] [2.450] [0.078] [0.292] [2.255] [2.012] 

Public Service 0.008 -0.36 1.041 0.988 -0.316 -0.263 1.034 0.981 0.32 -0.77 1.037 0.999 

 [0.017] [-0.182] [0.573] [-0.208] [-1.027] [-1.429] [0.912] [-0.612] [1.167] [-1.223] [1.107] [-0.037] 

               

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.637 0.593 0.288 0.198 0.581 0.845 0.251 0.221 0.44 0.358 0.222 0.166 

Observations 1,009 1,009 470 539 1,003 1,003 651 681 999 999 778 801 
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2.7.2 Do Shareholders Benefit When Connected Banks Shift Risk?  

 

I next investigate if risk-shifting to the safety-net results in tangible benefits to 

the shareholders of a bank. I have shown that an increase in risk is associated with an 

increase in IPP at banks with public service connections. As explained, IPP can be 

viewed as a risk subsidy or a put option held by the shareholders of the bank. 

Therefore, an increase in gains from IPP at connected banks should produce benefits 

for shareholders. To investigate this hypothesis, I use four measures of shareholder 

benefits and estimate the following model in Panel B of Table 2-7: 

Stock Returnsi,t, or ROAi,t, or Pr Div↑i,t or Pr Net Payout↑i,t = α0 + β1∆IPPi,t + β2 

Public Servicei,t  + β3Public Servicei,t x ∆IPPi,t  + Bank Controls + Bank FE + Year 

FE + Regulator FE + εi,t  (2-10) 

 

where Stock Returns is the annualized monthly logarithmic buy-and-hold returns for 

the calendar year and it is used as a dependent variable in Columns (1), (5) and (9). 

ROA is Total Income/Total Assets and is used in Columns (2), (6) and (10). The 

probability of a dividend increase Pr Div↑ is a dummy variable that equals 1 if the 

ratio of common dividends to the book value of equity increases from the previous 

year and is used in Columns (3), (7) and (11). Lastly, the probability of a total net 

payout increase Pr Net Payout↑ is an indicator variable that equals 1 if total net payout 

to shareholders, defined as[(common dividends + treasury stock repurchase – treasury 

stock sales)/book value of equity] increases from the previous year and is used in 

Columns (4), (8) and (12). For the payout variables, I exclude banks that do not pay 

dividends or make share repurchases during the sample period and use a logit model. 

Odds ratios are reported. 
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Because Section 2.7 show that gains from risk-shifting by connected banks 

occurs predominately when banks are not undercapitalized or underperforming, I 

partition the analysis and run the regressions by Tier-1 capital in Panel B of Table 2-7 

and by ROA in Panel C. The main variable of interest are the interaction terms Public 

Service x ∆IPP which investigates if an increase in IPP at banks with public service 

connections is linked to shareholder benefits.  

The results of the estimations are displayed in Panel B and C of Table 2-7. The 

control variables are suppressed for brevity. When partitioning the sample by Tier-1 

capital, I observe that the coefficient on the interaction term of interest Public Service 

x ∆IPP is positive and statistically significant in Columns (5)-(8) for connected banks 

with medium levels of Tier-1 capital. This is consistent with the results in Panel A of 

Table 2-7 which shows that gains from risk-shifting are largest for such banks. I repeat 

the analysis using ROA in Panel C and find similar results. The coefficient on Public 

Service x ∆IPP is statistically significant in 6 out of 8 columns in the medium and high 

ROA partitions. Overall, I show that gains from risk-shifting to the safety-net results 

in real benefits to the shareholders of connected banks (that are not financially weak) 

in the form of higher stock returns, better accounting performance and a higher 

probability of dividend increases and or other payouts.48 

                                                           
48 It is worth noting that the transfer of wealth effects I document are not contingent on if these banks 

receive bailout funds (an explicit form of wealth transfer). Because well-performing connected banks 

are able to access larger public subsidies by risk-shifting, the increase in shareholder benefits that I 

document constitutes a wealth transfer because these banks are “underpaying” for their deposit 

insurance. Therefore, the “loss” of fees that the FDIC collects is transferred as benefits to shareholders 

of well-performing banks.  
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2.8 Robustness Tests 

 

This section reports the results of various robustness tests. First, an alternative 

explanation for some of my findings is that regulatory connections do not lead to a 

reduction in monitoring by regulators, but to less discipline exerted by market 

participants. For instance, investors may assume that connected banks are more likely 

to be bailed out when distressed. To control for the effects of market discipline, I 

follow the literature and use subordinated debt and core deposits as proxies for creditor 

discipline (Ashcraft, 2008; Schaeck, Cihak, Maechler, and Stolz, 2012). I rerun the 

baseline regressions and show the results in Appendix 2-A5. The interaction term of 

interest Public Service x ∆σv continues to remain statistically significant.  

Second, large banks could find it easier to recruit directors with public service 

positions. Subsequently, large banks could also be more likely to shift risk onto the 

safety-net as a result of being too-big-to-fail (Carbo‐Valverde et al., 2013). I conduct 

a number of tests and show estimation results in Appendix 2-A6. I first exclude banks 

with assets >$10 Billion (Peer group 1), >$3 Billion (Peer group 1 and 2) and the top 

20% of assets as ranked in 2004 in Columns (1)-(3).49 I next control for risk-shifting 

for these size groups in Columns (4)-(6). In all estimations, Public Service x ∆σv 

continues to remain statistically significant. 

Third, a number of recent studies focus on the effects lobbying and political 

connections have in affecting legislation and bank outcomes (Mian et al., 2010; Igan 

et al., 2011; Duchin and Sosyura, 2012; Acemoglu et al., 2016; Lambert, 2015). As 

                                                           
49 Refer to https://www.ffiec.gov/nicpubweb/content/BHCPRRPT/BHCPR_Peer.htm for information 

on BHC peer groups. The year of ranking is arbitrarily chosen. Multiple ways of ranking banks by assets 

are tested and produce similar results. 
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banks could also wield various forms of influence that could influence regulatory 

outcomes, I control for a bank’s lobbying and political connections. Appendix 2-A1 

details the construction of these variables (Politically Connected, Top Politician and 

Lobby%). The results are shown in Appendix 2-A7. I find that even after controlling 

for various forms of political influence, the main variable of interest Public Service x 

∆σv continues to remain statistically significant.  

Fourth, BoardEx began populating data on boards from 2000 and initially only 

covered the largest firms. It began to reach full capacity only in 2003. I re-estimate the 

main regressions using data starting from 2004 to address any concerns of sample 

selection. The results are shown in Column (1) of Appendix 2-A8. The results remain 

consistent and robust.  

Finally, I re-estimate the main regression using IPP and σv derived from Duan 

(1994) Maximum likelihood estimations (ML). Estimations of IPP and σv are provided 

by Carbo-Valverde et al. (2013).50 I match data from their paper to my sample and re-

run the baseline estimations. The results for the regression using values obtained by 

ML estimates are reported in Column (2) of Appendix 2-A8. The interaction Public 

Service x ∆σv remains positive and statistically significant. 

2.9 Conclusions 

 

This chapter investigates if connections established while bank directors hold 

public service positions in regulatory agencies allow banks to access larger subsidies 

from the financial safety-net. I demonstrate that banks with public service connections 

hold less capital for a given increase in risk than non-connected banks. As a result, 

                                                           
50 I thank Santiago Carbo, Francisco Fernandez and Ed Kane for sharing their data. 
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connected banks are able to shift risk to the financial safety-net and extract larger 

public subsidies. The analysis also shows that preferential treatment by regulators is 

one reason why connected banks are able to risk shift. Lastly, I find that risk-shifting 

is primarily concentrated among well-performing connected banks and that wealth is 

transferred from taxpayers to the shareholders of these banks.   

The chapter draws attention to the darker side of interactions between 

regulators and bank directors and suggests that connections between regulators and 

bankers warrant more scrutiny. The fact that connected banks can shift risk on the back 

of connections established through public service roles —which carry no formal 

decision-making powers over matters of supervision and enforcement— is notable. It 

suggests that regulators do not treat banks equally and are subject to a degree of bias 

in their dealings with certain banks. My findings also suggest that attempts to restrict 

the brief of advisory directors are unlikely to be effective. This is because my findings 

find that risk-shifting is linked to preferential regulatory treatment that continues to 

persist even after bank directors have ended their tenure in public service roles and not 

by banks wielding formal influence over decision-making. 
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Appendix 2-A1: Definition of Variables 
 

Variables Definition Source 

  

Connection Variables  

Public Service Total number of directors of the board that have current or former 

experience in public service positions at the Fed, FDIC, OCC, OTS, 

SEC or State regulators / Board Size. A position is defined as 

public service if the position is to be held by private sector 

individuals as a form of service to the public and not as a full-time 

position at the regulatory agencies 

Various 

sources 

Current Public Service Total number of directors of the board that are currently serving in 

public service positions at the Fed, FDIC, OCC, OTS, SEC or State 

regulators / Board Size 

Various 

sources 

Fed Public Service Total number of directors of the board that have current or former 

experience in public service positions at the Fed / Board Size 

Various 

sources 

Politically Connected (Total number of directors of the board that hold current or former 

positions in the U.S. Congress, the U.S. Department of the 

Treasury, the White House, are Deputy Secretary, Secretary of U.S. 

Departments, are U.S. State Lieutenant Governors/Governor/U.S. 

City Mayors) / Board Size 

Various 

sources 

Top Politician (Total number of directors of the board that have been 

Congressman (U.S. Senators and U.S. House Representatives), 

Deputy Secretary/Secretary of U.S. Departments, U.S. State 

Lieutenant Governors/Governors or U.S. City Mayors) / Board Size 

Various 

sources 

Lobby% (Lobbying / Total Assets) in % Center for 

  Responsive 

 Politics 

Financial Variables  

IPP% Fair value of the deposit insurance premium in % as described in 

Appendix 2-A2 

CRSP, 

FRY-9C 

σv% Volatility of asset returns (annualized) in % as CRSP, 

 described in Appendix 2-A2 FRY-9C 

(B/V)% (Book value of Liabilities / Market value of Assets) in % FRY-9C 

Tier-1 Capital Tier-1 Capital / Risk Weighted Assets FRY-9C 

Bad Loans Sum of loans past due 90 days or more and nonaccrual loans / Total 

Assets 

FRY-9C 

Enforcement Actions Total number of enforcement actions issued by the Fed, FDIC, 

OCC and State regulators to a bank and its subsidiaries 

Regulatory 

websites 

ROA Return on Assets defined as the Income before extraordinary items / 

Total Assets 

FRY-9C 

Total Deposits Total Deposits / Total Assets FRY-9C 

Market Risk (Short term interest earning assets - Short term interest earning 

liabilities) / Total Assets 

FRY-9C 

Total Assets Natural logarithm of the book value of Total Assets FRY-9C 

Asset Growth Change in Total Assets from previous year FRY-9C 

Total Loans Total Loans / Total Assets FRY-9C 

Stock Rets. ∑ [1+Log Monthly Buy-hold Returns for the 12 months of the year] 

-1 

CRSP 

Noninterest Income Noninterest Income / (Interest income + Noninterest Income) FRY-9C 

Leverage Book value of liabilities / Book value of assets FRY-9C 

Book-to-Market Market value equity at year end / Book value of equity CRSP 

Ratio  FRY-9C 

Core Deposits (Core Deposits / Total Assets). Core Deposits include deposits held 

in domestic offices of the subsidiaries of the bank, excluding all 

time deposits of over $100,000 USD and any brokered deposits 

FRY-9C 

Sub Debt Book value of Subordinated debt / (Subordinated debt + Tier-1 

Capital) 

FRY-9C 

   

Financial Variables (used in Appendix 2-A2)  

σE Volatility of monthly equity returns (annualized) CRSP 
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E Number of shares outstanding times the share price on the last day 

of the trading year 

CRSP 

B Book value of Total Liabilities FRY-9C 

V Market value of Total Assets CRSP, 

  FRY-9C 

TARP & Payout Variables  

TARP Dummy Dummy variable that = 1 if the bank receives TARP bailout funds 

and 0 if otherwise 

Center for 

Responsive 

Politics 

Common Div Common dividends / Book value of equity FRY-9C 

Pr Div↑ Dummy variable that = 1 if the change in Common Div from the 

previous year is positive and 0 if otherwise  

FRY-9C 

Net Repo (Treasury stock purchase – Treasury stock sales) / Book value of 

equity 

FRY-9C 

Total Net Payout (Common dividends + Net Repo) / Book value of equity FRY-9C 

Pr Net Payout ↑ Dummy variable that = 1 if the change in Net Payout from the 

previous year is positive and 0 if otherwise  

FRY-9C 

   

Board & Bank Structure Variables  

Board Size Total number of directors on the board of the bank BoardEx 

Board Independence Total number of directors that are classified as independent / Board 

Size 

BoardEx 

CEO Tenure Total number of years the CEO has served in this position BoardEx 

Duality Dummy variable that = 1 if the CEO is also the Chairman of the 

board and 0 if otherwise 

BoardEx 

New York Fed Dummy variable that = 1 if the bank is under the supervision of the 

New York Fed and 0 if otherwise 

FRY-9C 

Reg by Fed Dummy variable that = 1 if the main bank subsidiary (as defined by 

proportion of total assets) under the BHC is regulated by the Fed 

and 0 if otherwise 

Call 

Reports 

Reg by FDIC Dummy variable that = 1 if the main bank subsidiary (as defined by 

proportion of total assets) under the BHC is regulated by the FDIC 

and 0 if otherwise 

Call 

Reports 

Reg by OCC Dummy variable that = 1 if the main bank subsidiary (as defined by 

proportion of total assets) under the BHC is regulated by the OCC 

and 0 if otherwise 

Call 

Reports 

Peer Group 1 Dummy variable that = 1 if the assets of the bank is larger than $10 

billion U.S. and 0 if otherwise 

FRY-9C 

Peer Group 1 & 2 Dummy variable that = 1 if the assets of the bank is larger than 

$3billion U.S. and 0 if otherwise 

FRY-9C 

Top 20% Assets 2004 Dummy variable that = 1 if the bank has Total Assets in the top 

20% of banks in the sample as ranked in year 2004 and 0 if 

otherwise 

FRY-9C 

   

State & Economic Variables  

State GDP GDP of the state in which bank is headquartered  Bureau of 

Economic 

Analysis 

State Housing Index Return of the House Price Index of the state in which bank is 

headquartered (All Transactions Index) 

Federal 

Housing 

Finance 

Agency 

State Unemployment  Unemployment rate of the state in which bank is headquartered  Bureau of 

Labor 

Statistics 
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Appendix 2-A2: Estimation of σV, V and IPP 

I follow Ronn and Verma (1986), Duan, Moreau, and Sealey (1992) and 

Bushman and Williams (2012) in estimating the two unobservables (σv and V) required 

as inputs to compute the insurance premium percentage (IPP). I obtain values for both 

σv (volatility of asset returns) and V (market value of assets) by through solving an 

iterative process of two non-linear equations based on the Black-Scholes-Merton 

option pricing model.  

The first Equation (2-A1) models the market value of a bank’s equity as a call 

option on the unobservable market value of a bank’s total assets: 

E = VN(X) – pBN(X - σV√T)  (2-A1) 

where X = (ln(V/pB ) + σ2
VT/2)/(σV√T)  (2-A2) 

 

where E is the market value of equity, B is the book value of liabilities, T is the time 

to maturity of the option and is set to one on the assumption that the next audit occurs 

in one year when the option is re-priced following changes in the financial parameters, 

N() is the cumulative density of a standard normal variable, and p is a regulatory 

forbearance parameter introduced by Ronn and Verma (1986) that accounts for 

regulatory delays in exercising the option due to dissolution costs. p is set to 0.97 

following previous research (Ronn and Verma, 1986; Hovakimian, Kane, and Laeven, 

2003; Bushman and Williams, 2012) which allows the asset value of a bank to 

deteriorate to 97% of debt before the option is exercised.  

Using Ito’s lemma, it can be shown that: 

σE = (VN(X)σV )/(E)  (2-A3) 
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where σE is the standard deviation of the returns of equity volatility (annualized using 

monthly equity returns). Equation (2-A3) is the optimal hedge equation that relates the 

volatility of bank equity returns to bank asset returns. A Newton search algorithm 

obtains annual estimates of σv and V by simultaneously solving Equations (2-A1) and 

(2-A3) in an iterative process.  

  After obtaining estimates of σv and V, I am then able to compute the fair value 

of IPP, derived by Merton (1977) as: 

IPP = N(y + σV√T)  (1  δ)n(V/B)N(y) (2-A4) 

where y = ((ln(B/V(1  δ)n)  (σ2
vT/2))/(σv√T)  (2-A5) 

 

where δ is the dividend per dollar of market value of assets and n is the number of 

times per period the dividend is paid per annum. Dividends are included in the IPP 

valuation equation since the writer of the put option, the FDIC, is not dividend-

protected.  
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Appendix 2-A3: Federal Reserve Presidents Retirement Years 

This table reports the years and Federal Reserve Districts in which the Federal Reserve President retired 

and is used in the difference-in-difference (DiD) tests presented in Table 2-4. Information on retirements 

are obtained from the Federal Reserve websites.   

    

Federal Reserve Banks Year President Stepped Down 

Federal Reserve Bank of New York, District 2 2003 

Federal Reserve Bank of Cleveland, District 4 2003 

Federal Reserve Bank of Richmond, District 5 2004 

Federal Reserve Bank of Dallas, District 11 2004 

Federal Reserve Bank of San Francisco, District 12 2004 

Federal Reserve Bank of Philadelphia, District 3 2006 

Federal Reserve Bank of Atlanta, District 6 2006 

Federal Reserve Bank of Boston, District 1 2007 

Federal Reserve Bank of Chicago, District 7 2007 

Federal Reserve Bank of St. Louis, District 8 2008 

Federal Reserve bank of Minneapolis, District 9 2009 
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Appendix 2-A4: Heterogeneous Effects of EESA on Risk-shifting at Connected 

Banks 

This table reports robustness tests for Table 2-5 Panel C. I examine the sensitivity of changes in the 

value of public subsidies (IPP) to changes in σv at connected banks (Public Service in Panel A) and 

(Current Public Service in Panel B) following the enactment of the Emergency Economic Stabilization 

Act of 2008. Refer to Appendix 2-A1 for description of variables. The sample period is from 2001 to 

2013. Standard errors are clustered at the bank-level and t-statistics are reported in parenthesis. The 

constant is suppressed for brevity. ***, ** and * indicate significance level at the 1, 5 and 10% 

respectively. 

             

Panel A: Public Service (1) (2) (3) (4) (5) (6) 

EESA Robustness Tests TARP Excl. Excl. EESA EESA EESA 

 Receipt Top10% Top20% 08-10 08-11 08-12 

  Assets Assets    

 ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP 

       

Public Service x Post-EESA08-13 x ∆σv 1.351*** 1.228** 1.737***    

 [3.470] [2.059] [3.088]    

Public Service x Post-EESA08-10 x ∆σv    2.739***   

    [3.757]   

Public Service x Post-EESA08-11 x ∆σv     1.440***  

     [3.125]  

Public Service x Post-EESA08-12 x ∆σv      1.523*** 

      [3.115] 

TARP Dummy x ∆σv 0.154**      

 [2.382]      

TARP Dummy -0.168***      

 [-3.442]      

Public Service x Post-EESA08-13 0.185 0.679 0.652    

 [0.408] [1.569] [1.233]    

Post-EESA08-13 x ∆σv 0.188*** 0.301*** 0.241***    

 [2.950] [7.184] [5.917]    

Post-EESA08-13   -0.356** -0.481*** -0.467***    

 [-2.578] [-3.236] [-2.710]    

Public Service x Post-EESA08-10    -1.356**   

    [-2.196]   

Post-EESA08-10 x ∆σv    0.177**   

    [2.148]   

Post-EESA08-10    -0.671***   

    [-3.796]   

Public Service x Post-EESA08-11     -0.41  

     [-0.896]  

Post-EESA08-11 x ∆σv     0.328***  

     [8.403]  

Post-EESA08-11     -0.055  

     [-0.478]  

Public Service x Post-EESA08-12      0.008 

      [0.018] 

Post-EESA08-12 x ∆σv      0.307*** 

      [7.320] 

Post-EESA08-12      -0.15 

      [-1.116] 

Public Service x ∆σv -0.097 -0.057 -0.105 -1.366** -0.207 -0.297** 

 [-1.205] [-0.559] [-1.016] [-2.051] [-1.495] [-1.968] 

Public Service 0.158 0.028 -0.236 0.37 0.557 0.347 

 [0.294] [0.040] [-0.364] [0.699] [1.133] [0.668] 

∆σv 0.016*** 0.013*** 0.012*** 0.174** 0.023 0.032* 
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 [4.038] [3.124] [3.219] [2.047] [1.462] [1.734] 

       

Bank FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.718 0.678 0.635 0.706 0.729 0.71 

Observations 3,011 2,676 2,386 3,011 3,011 3,011 

       

Panel B: Current Public Service (1) (2) (3) (4) (5) (6) 

EESA Robustness Tests TARP Excl. Excl. EESA EESA EESA 

 Receipt Top10% Top20% 08-10 08-11 08-12 

  Assets Assets    

 ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP 

       

Current Public Service x Post-EESA08-13 x ∆σv 2.271*** 2.669** 3.944***    

 [2.868] [2.431] [4.338]    

Current Public Service x Post-EESA08-10 x ∆σv   3.786***   

    [3.278]   

Current Public Service x Post-EESA08-11 x ∆σv    2.456***  

     [2.788]  

Current Public Service x Post-EESA08-12 x ∆σv     2.487*** 

      [2.721] 

TARP Dummy x ∆σv 0.138**      

 [2.162]      

TARP Dummy -0.17***      

 [-3.305]      

Current Public Service x Post-EESA08-13 1.592* 1.79 1.787    

 [1.706] [1.431] [1.004]    

Post-EESA08-13 x ∆σv 0.223*** 0.307*** 0.250***    

 [3.769] [8.263] [6.753]    

Post-EESA08-13   -0.35*** -0.47*** -0.44***    

 [-2.652] [-3.393] [-2.672]    

Current Public Service x Post-EESA08-10    0.93   

    [0.711]   

Post-EESA08-10 x ∆σv    0.228***   

    [2.648]   

Post-EESA08-10    -0.78***   

    [-3.873]   

Current Public Service x Post-EESA08-11     1.767  

     [1.569]  

Post-EESA08-11 x ∆σv     0.351***  

     [9.409]  

Post-EESA08-11     -0.078  

     [-0.696]  

Current Public Service x Post-EESA08-12      1.58 

      [1.583] 

Post-EESA08-12 x ∆σv      0.331*** 

      [8.414] 

Post-EESA08-12      -0.183 

      [-1.384] 

Current Public Service x ∆σv 0.028 -0.042 -0.198 -1.476* -0.128 -0.134 

 [0.158] [-0.175] [-0.799] [-1.791] [-0.613] [-0.577] 

Current Public Service -0.518 -0.382 0.273 -0.276 -0.015 -0.419 

 [-0.914] [-0.521] [0.246] [-0.491] [-0.038] [-0.989] 

∆σv 0.013*** 0.012*** 0.011*** 0.153* 0.018 0.025 

 [3.289] [3.140] [3.194] [1.885] [1.297] [1.511] 

       

Bank FE Yes Yes Yes Yes Yes Yes 
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Year FE Yes Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.712 0.683 0.649 0.692 0.726 0.708 

Observations 3,011 2,676 2,386 3,011 3,011 3,011 
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Appendix 2-A5: Market Discipline  

This table reports estimates of Equation (2-6) using panel OLS regressions (with different 

specifications) and examines the sensitivity of changes in the value of public subsidies (IPP) to changes 

in σv at connected banks and tests for the effects of market discipline. I estimate variants of the following 

regression:  

∆(IPP)i,t = α0+ β1∆σVi,t + β2 (Public Servicei,t x ∆σVi,t) + β3Public Servicei,t +  Bank Controlsi,t + Bank 

FE + Year FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. IPP is the fair value of the deposit insurance 

premium. Public Service is defined as: (number of Public Service directors/board size). σv is the 

volatility of asset returns. Bank Controls is the vector of variables in each column and includes Tier-1 

Capital, Bad Loans, Lag Enforcement Actions, ROA, Total Deposits, Market Risk, Total Assets, Asset 

Growth, Total Loans, Board Size, Board Independence, CEO Tenure and Duality. The coefficient β2 on 

(Public Service x ∆σv) is the variable of interest. Refer to Appendix 2-A1 for description of variables. 

The sample period is from 2001 to 2013. Standard errors are clustered at the bank-level and t-statistics 

are reported in parenthesis. The constant is suppressed for brevity. ***, ** and * indicate significance 

level at the 1, 5 and 10% respectively. 

        

 (1) (2) (3) 
 ∆IPP ∆IPP ∆IPP 

    
Public Service x ∆σv 1.313** 1.192* 1.267** 

 [2.359] [1.944] [2.083] 

Core Deposits x ∆σv -0.131  -0.127 
 [-0.780]  [-0.779] 

Sub Debt x ∆σv  0.278 0.283 
  [0.686] [0.670] 

Core Deposits -0.904***  -0.929*** 

 [-2.837]  [-2.760] 
Sub Debt  0.097 0.12 

  [0.166] [0.205] 
Public Service -0.154 -0.168 -0.18 

 [-0.214] [-0.254] [-0.247] 

∆σv 0.373*** 0.266*** 0.361*** 
 [3.033] [5.931] [2.902] 

    
Bank FE Yes Yes Yes 

Year FE Yes Yes Yes 
Regulator FE Yes Yes Yes 

Other Controls Yes Yes Yes 

Adj. R-squared 0.628 0.626 0.63 
Observations 2,958 3,011 2,958 
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Appendix 2-A6: Size Effects 

This table reports estimates of Equation (2-6) using panel OLS regressions (with different 

specifications) and examines the sensitivity of changes in the value of public subsidies (IPP) to changes 

in σv at connected banks and tests for the effects of bank size. I estimate variants of the following 

regression:  

∆(IPP)i,t = α0 + β1∆σVi,t + β2(Public Servicei,t x ∆σVi,t) + β3Public Servicei,t +  Bank Controlsi,t + Bank 

FE + Year FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. IPP is the fair value of the deposit insurance 

premium. Public Service is defined as: (number of Public Service directors/board size). σv is the 

volatility of asset returns. Bank Controls is the vector of variables in each column and includes Tier-1 

Capital, Bad Loans, Lag Enforcement Actions, ROA, Total Deposits, Market Risk, Total Assets, Asset 

Growth, Total Loans, Board Size, Board Independence, CEO Tenure and Duality. The coefficient β2 on 

(Public Service x ∆σv) is the variable of interest. Refer to Appendix 2-A1 for description of variables. 

The sample period is from 2001 to 2013. Standard errors are clustered at the bank-level and t-statistics 

are reported in parenthesis. The constant is suppressed for brevity. ***, ** and * indicate significance 

level at the 1, 5 and 10% respectively. 

              

 (1) (2) (3) (4) (5) (6) 

 Excl. Excl. Excl. Ctrl. Ctrl. Ctrl. 

 Peer  Peer  Top20% Peer  Peer  Top20% 

 Group 1 Group 1&2 Assets Group 1 Group 1&2 Assets 

 > $10b > $3b  > $10b > $3b  

 ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP ∆IPP 

       

Public Service x ∆σv 1.349** 1.881*** 1.458** 1.146* 1.266** 1.238** 

 [1.990] [3.329] [2.468] [1.733] [2.174] [2.101] 

Peer Group 1 x ∆σv    0.058   

    [0.747]   

Peer Group 1    0.189   

    [1.251]   

Peer Group 1 & 2 x ∆σv    0.052  

     [0.805]  

Peer Group 1 & 2     0.220***  

     [2.833]  

Top 20 Assets 2004 x ∆σv     -0.002 

      [-0.019] 

Public Service -0.314 -0.216 0.307 -0.121 -0.09 -0.144 

 [-0.376] [-0.214] [0.340] [-0.191] [-0.136] [-0.222] 

∆σv 0.261*** 0.215*** 0.266*** 0.266*** 0.246*** 0.275*** 

 [5.147] [4.682] [5.539] [5.523] [6.143] [6.160] 

       

Bank FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Regulator FE Yes Yes Yes Yes Yes Yes 

Other Controls Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.611 0.623 0.633 0.627 0.628 0.624 

Observations 2,460 1,836 2,457 3,011 3,011 3,011 
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Appendix 2-A7: Political Connections & Lobbying 

This table reports estimates of Equation (2-6) using panel OLS regressions (with different 

specifications) and examines the sensitivity of changes in the value of public subsidies (IPP) to changes 

in σv at connected banks and tests for various forms of influence. I estimate variants of the following 

regression:  

∆(IPP)i,t = α0 + β1∆σVi,t + β2 Public Servicei,t x ∆σVi,t) + β3Public Servicei,t +  Bank Controlsi,t + Bank 

FE + Year FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. IPP is the fair value of the deposit insurance 

premium. Public Service is defined as: (number of Public Service directors/board size). σv is the 

volatility of asset returns. Bank Controls is the vector of variables in each column and includes Tier-1 

Capital, Bad Loans, Lag Enforcement Actions, ROA, Total Deposits, Market Risk, Total Assets, Asset 

Growth, Total Loans, Board Size, Board Independence, CEO Tenure and Duality. The coefficient β2 on 

(Public Service x ∆σv) is the variable of interest. Refer to Appendix 2-A1 for description of variables. 

The sample period is from 2001 to 2013. Standard errors are clustered at the bank-level and t-statistics 

are reported in parenthesis. The constant is suppressed for brevity. ***, ** and * indicate significance 

level at the 1, 5 and 10% respectively. 

        

 (1) (2) (3) 
 ∆IPP ∆IPP ∆IPP 

    
Public Service x ∆σv 1.275** 1.250** 1.236** 

 [2.404] [2.272] [2.193] 

Politically Connected x ∆σv -0.528   
 [-1.141]   

Top Politician x ∆σv  -1.165  
  [-1.588]  

Lobby% x ∆σv   -5.369 

   [-0.136] 
Politically Connected 0.43   

 [0.487]   
Top Politician  0.753  

  [0.874]  

Lobby%   10.364 
   [0.314] 

Public Service -0.214 -0.082 -0.14 
 [-0.324] [-0.127] [-0.215] 

∆σv 0.285*** 0.279*** 0.275*** 
 [6.257] [6.446] [6.259] 

    

Bank FE Yes Yes Yes 
Year FE Yes Yes Yes 

Regulator FE Yes Yes Yes 
Other Controls Yes Yes Yes 

Adj. R-squared 0.627 0.627 0.624 

Observations 3,011 3,011 3,011 
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Appendix 2-A8: Data Start Date and Alternative IPP Calculation 

This table reports estimates of Equation (2-6) using panel OLS regressions (with different 

specifications) and examines the sensitivity of changes in the value of public subsidies (IPP) to changes 

in σv  at connected bank. Column (1) uses data from years 2004-2013 while Column (2) uses IPP and σv 

calculated by the Duan (1994) Maximum likelihood method. I estimate the following regression:  

∆(IPP)i,t = α0 + β1∆σVi,t + β2(Public Servicei,t x ∆σVi,t) + β3Public Servicei,t +  Bank Controlsi,t + Bank 

FE + Year FE + Regulator FE + εi,t. 

where subscripts i and t indicate bank and year respectively. IPP is the fair value of the deposit insurance 

premium. Public Service is defined as: (number of Public Service directors/board size). σv is the 

volatility of asset returns. Bank Controls is the vector of variables in each column and includes Tier-1 

Capital, Bad Loans, Lag Enforcement Actions, ROA, Total Deposits, Market Risk, Total Assets, Asset 

Growth, Total Loans, Board Size, Board Independence, CEO Tenure and Duality. The coefficient β2 on 

(Public Service x ∆σv) is the variable of interest. Refer to Appendix 2-A1 for description of variables. 

Standard errors are clustered at the bank-level and t-statistics are reported in parenthesis. The constant 

is suppressed for brevity. ***, ** and * indicate significance level at the 1, 5 and 10% respectively. 

      

 (1) (2) 
 Sample Period Duan (1994) Max. Likelihood 
 2004-2013 Estimations of IPP & σv 

 ∆IPP ∆IPP 

   
Public Service x ∆σv 1.354*** 0.012** 

 [2.608] [2.125] 

Public Service -0.292 -0.561 

 [-0.388] [-0.781] 
∆σv 0.286*** -0.0003 

 [6.773] [-0.997] 
   

Bank FE Yes Yes 

Year FE Yes Yes 
Regulator FE Yes Yes 

Other Controls Yes Yes 
Adj. R-squared 0.652 0.261 

Observations 2,718 299 
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3 

Is Home Where the Heart Is?  

CEO Hometown and Bank Policies 

 

 

 

 
3.1 Introduction 

 

How bank credit is allocated and whether this allocation is efficient is a 

fundamental question given the importance of credit supply on housing outcomes and 

local economic development (Mian, Rao, and Sufi, 2013; Mian and Sufi, 2014). In this 

chapter, I investigate how bank CEO hometown favoritism affects credit allocation 

policies within banks and its real effects on the local economy.  

I define the hometown of the CEO as the county or state that the CEO was 

born. I hypothesize that CEOs emotional attachment to their hometown community 

makes them more likely to favor their hometown area over other geographical areas 

when making credit allocation decisions.51 This is grounded in the psychological 

concept of place attachment, which argues that people tend to gravitate towards 

familiar places such as their hometown (e.g., Hernandez, Hidalgo, Salazar-Laplace, 

and Hess, 2007; Low and Altman, 1992). Specifically, I ask four questions. Do bank 

                                                           
51 I recognize that CEOs do not personally make local lending decisions. However, there are many ways 

CEOs could influence the process. For instance, CEOs could open more branches (shown later) or set 

targets to encourage local branch managers to lend more in relevant regions. 
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CEOs favor their hometown in mortgage and small business lending? Is hometown 

favoritism efficient for shareholders? Why do CEOs favor their hometown? Who 

benefits from bank CEO favoritism and are there real effects?  

To conduct the analysis, I use hand-collected data on the birthplace of CEOs 

from multiple sources, including NNDB, Marquis Who’s Who, ancestry.com, CEO 

appointment announcements and obituaries.52 The data allows me to precisely identify 

birthplace information up to the county-level of nearly 55% of CEOs of all publicly 

listed U.S. banks between 1999 and 2014.53  

My empirical strategy takes advantage of the fact that most banks lend in 

multiple geographic locations. Therefore, I am able to exploit within-bank variation in 

the proximity between the bank CEO’s birthplace county and the county where lending 

decisions take place. In my main results, I find that bank CEOs favor their hometown 

in lending and branching decisions. Within the same bank, banks have higher mortgage 

approval rates and mortgage origination growth rates in counties that are located nearer 

to the hometown of the CEO as compared to counties that are located further away. 

The effects are economically meaningful. For instance, a one standard deviation 

increase in proximity to the CEO’s hometown is associated with a 2.1% (28% as 

compared to the mean) increase in mortgage origination growth rates. The results from 

higher bank growth rates are particularly notable given that branch decisions are real 

business choices. This reflects a conscious choice by bank CEOs to expand the 

                                                           
52 I thank Louis Nguyen for providing the data on CEO birthplaces.  
53 This is a significant improvement relative to prior studies. For instance, Bernile, Bhagwat, and Rau, 

(2017) are only able to identify the birthplace of 30% of CEOs in their S&P1500 sample.  
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operations of the bank to counties proximate to their hometown, possibly to facilitate 

increases in lending or to create local jobs.  

Importantly, I control for the proximity to the headquarters (HQ) of the bank, 

indicating that the CEO hometown favoritism effect I identify is conceptually distinct 

from the HQ effect (Giroud, 2013). Time-varying controls that could influence loan 

decisions, such as the riskiness of the loan as well as bank-level characteristics are also 

included. I also include bank fixed effects and county-year fixed effects in all of the 

estimations. The inclusion of bank fixed effects means that I hold constant any time-

invariant bank omitted variables and identify lending and branching decisions at the 

same bank in different counties, conditional on the distance to the CEO’s hometown 

of that same bank. Incorporating county-year fixed effects ensures that I control for 

any time-varying changes in local economic conditions or changes in state laws or 

regulations that could bias my results. 

I employ several identification strategies to increase the confidence of a causal 

interpretation that CEOs favor counties closer to their hometown over others. The main 

endogeneity challenge is endogenous CEO-bank matching. Unobserved bank 

heterogeneity (both time-invariant and variant) could simultaneous determine the 

matching between CEOs to a bank and the bank’s mortgage and branching decisions.  

For example, banks that have traditionally lent to counties proximate to the CEO’s 

hometown (or have time-invariant characteristics that would explain this, such as the 

mission statement of the bank) could attract CEOs whose preference is to operate in 

these counties.  
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To address the possibility that CEO-bank matching is due to time-invariant 

bank factors, I rely on within-bank variation. The inclusion of bank FE means that any 

time-invariant bank characteristics that would be correlated with a CEO’s preference 

to join any particular bank would be differenced out (i.e., effects are partially identified 

following CEO turnovers at the same bank) and the findings can be interpreted as 

causal.   

However, if changes in the characteristics of the bank or bank business 

strategies (time-varying CEO-bank matching) are the main reasons behind CEO 

turnovers, relying on within-bank variation would not sufficiently address this issue. 

If changes in underlying business strategies were driving the turnover, the hometown 

favoritism effect I document following turnovers would be irrelevant as the board 

would select any CEO willing to implement the new business strategy of the bank 

(Fee, Hadlock, and Pierce, 2013). I use two identification strategies to address this 

concern.   

In the first identification strategy, I focus on a subsample of banks where CEO 

turnovers are likely to be exogenous (turnovers arising from natural causes (death or 

illness), planned retirements, or scheduled succession plans). While the choice of the 

incoming CEO is not random, the timing of the turnover is likely to be exogenous to 

changes to the business strategy of the bank (Custodio and Metzger, 2014; Bushman, 

Davidson, Dey, and Smith, Forthcoming). Therefore, exogenous turnovers produce a 

shock to the proximity to the bank CEO’s hometown while being orthogonal to local 

lending and branching decisions. I also use an alternate CEO turnover subsample; 

internal CEO turnovers. Internal CEO turnovers are succession events where the 

incoming CEO was already an employee of the bank for a period of time before taking 
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over the role of CEO. In this turnover setting, the choice of an internal CEO successor 

is likely to reflect continuity in the business strategy of the bank and less likely to 

reflect major changes in bank policies (Dittmar and Duchin, 2016). In both 

subsamples, the results remain consistent with the baseline findings that CEOs favor 

their hometown with additional mortgage origination and branching decisions. 

 The second identification strategy exploits exogenous shocks in 

macroeconomic conditions, i.e., boom and bust periods, to show that CEO-bank 

endogenous matching does not bias the results. This approach is similar in spirit to 

Opler and Titman (1994) and Yonker (2017b) and has several advantages. First, boom 

and bust periods are largely exogenous to the CEO-bank matching process as firms do 

not frequently change their CEOs in anticipation of business cycles.54 Second, it allows 

me to observe if a CEO’s hometown favoritism persists in changing business 

environments, where decisions are likely to be more complex and unstructured, and 

thus, more likely to be influenced by the CEO’s characteristics. Further, the use of 

both boom and bust periods allows me to contrast the hometown favoritism effect of 

the CEO in differing credit conditions; when credit is most crucial to borrowers (bust), 

and when additional credit is unlikely to matter (boom).  

Consistent with expectations, I find that CEO hometown favoritism is 

particularly salient during bust periods (when credit conditions are tight and an extra 

favor from the CEO would make a large difference to their hometown communities) 

                                                           
54 Fahlenbrach and Stulz (2011) show that CEOs of banks whose incentives were better aligned with 

shareholders suffered larger losses in their compensation during the crisis, suggesting the inability of 

bank CEOs to anticipate the crisis. 
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but not during boom periods (when credit is abundant and additional credit is unlikely 

to matter).  

Beyond endogenous CEO-bank matching, I also control for a host of CEO 

observable characteristics to mitigate issues related to omitted variables that might be 

correlated with CEO hometown favoritism. Specifically, I control for CEO educational 

background (MBA and Ivy League), age, overconfidence, military and Great 

Depression experience and if the CEO started her career in a recession. My findings 

of CEO hometown favoritism on bank policies remains robust to the inclusion of these 

other CEO-level characteristics.  

To further give validity to my findings of hometown favoritism and sharpen 

inference, I condition the main results on the CEO’s degree of attachment to her 

hometown. For example, individuals who spend longer periods of time in their place 

of birth should develop deeper connections to their hometown. I show that CEOs who 

undertake their undergraduate degree in their birth state —and therefore are more 

likely to spend most of their formative years there— show stronger hometown 

favoritism in mortgage lending and branching decisions. Overall, the results from 

various tests for endogeneity related interpretations supports the findings of a causal 

link between CEO hometown favoritism and bank policies. Alternate endogeneity 

driven interpretations would need to persist through the different identification 

strategies and various fixed effects.  

 After showing that CEOs favor their hometown with mortgage lending and 

branching decisions, I next seek to disentangle the reasons behind these effects. The 

three main reasons that could explain why CEOs favor their hometown in business 
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decisions are: (1) informational advantages; (2) private benefits due to agency conflicts 

and; (3) altruistic hometown attachment.  

The first reason states that CEOs favor their hometown due to informational 

advantages in conducting business (Coval and Moskowitz, 1999; 2001; Ivkovic and 

Weisbenner, 2005; Malloy, 2005). Local contacts could still reside and work in the 

CEO’s hometown and provide them with information regarding local economic 

conditions and trends (Cohen, Frazzini, and Malloy, 2008). CEOs could also be better 

informed about the local culture (Fisman, Paravisini, and Vig, 2017) and have 

accessibility and connections to key politicians and regulators (Mian, Sufi, and Trebbi, 

2010; Duchin and Sosyura, 2012).  

A second reason that could explain hometown favoritism is the pursuit of 

private benefits due to the presence of agency conflicts (Jensen and Meckling, 1976; 

Shleifer and Vishny, 1997). By conducting business in her hometown, a CEO could 

obtain local awards, local directorship positions, speaking arrangements, popularity 

and status. Local lending could also be seen as a form of corporate philanthropy to 

increase the private utility of the CEO at the expense of bank shareholders (Masulis 

and Reza, 2014). 

Finally, the last reason why CEOs favor their hometown in lending and 

business decisions is due to an altruistic hometown attachment. Place attachment 

theory suggests that people develop deep attachments to places where they are familiar 

with, such as their hometown, and that these attachments forms a key portion of their 

personal identity (Low and Altman, 1992; Manzo, 2003; Gieryn, 2000; Hernandez et 

al., 2007; Lewicka, 2011). Further, place attachment theory suggests that individuals 
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are more likely to invest their time and money, as well as care more about the welfare 

of people that reside in these places (Vaske and Kobrin, 2001; Manzo and Perkins, 

2006).  

Importantly, these three explanations offer different predictions. If information 

advantages were driving the results, the hometown favoritism effect that I document 

would materialize as an optimal business strategy of the bank. This predicts that CEO 

hometown favoritism should result in positive bank-level outcomes. However, if 

hometown favoritism were motivated by agency conflicts at the expense of bank 

shareholders, this implies that hometown favoritism are agency costs and should result 

in negative bank outcomes. Lastly, while hometown attachment could manifest as 

private benefits accrued to the CEO in the presence of agency conflicts, what 

distinguishes the altruistic hometown interpretation from the agency argument is that 

shareholders of the bank are not harmed by this altruistic hometown attachment. If the 

reason behind hometown favoritism were altruistic motives, the resources of the bank 

would simply be relocated to counties that are proximate to the hometown of the CEO 

and have no effects on bank performance. 

I show strong empirical support for the altruistic hometown attachment 

interpretation. First, using bank-level analysis, I find that banks that lend more in the 

CEO’s birth state do not have better baseline performance (ROA) nor have better 

performance in their loan portfolio (bad loans) as compared to other banks. These 

banks also do not increase their lending (the proportion of total loans to assets remains 

consistent). Taken together, these results suggest that CEOs relocate credit from 

counties located further away to favor counties proximate to their birthplace for 
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altruistic reasons, and is inconsistent with predictions from both the information 

(agency) argument which predicts positive (negative) bank outcomes.  

Second, I also show that hometown favoritism effects are stronger for CEOs 

whose cultural heritage places a greater emphasis on patriotism, selflessness, humane-

orientation, and collectivism.55 These attributes are related to altruism and aligns well 

with the altruistic hometown explanation which suggests that CEOs invest in their 

hometown as a way to contribute back to their community.56  

Third, the hometown favoritism effects are more salient amongst struggling 

counties (i.e., higher unemployment and lower home ownership rates) and marginal 

applicants (i.e., poorer, riskier, and non-white applicants). These applicants typically 

face a higher barrier in accessing bank credit and would benefit the most from a CEO’s 

desire to help. Given that home ownership has been a hallmark of the “American 

dream” (Laeven and Popov, 2017), my findings that CEOs increase mortgage lending 

near their hometowns to weaker applicants and counties supports the idea that CEOs 

aim to help their hometown residents achieve their aspirations, in-line with the 

altruistic attachment interpretation. 

Finally, I also document that CEO hometown favoritism extends to small 

business lending. CEOs make more small business loans (loans that do not exceed 

$250,000) to counties that are closer to their hometown as compared to counties that 

are further away. However, there are no changes to small business loans exceeding 

                                                           
55 As I am unable to directly observe a CEO’s degree of altruism, I infer a CEO’s altruistic values based 

on her cultural heritage. This is based on Nguyen, Hagendorff and Eshraghi (Forthcoming) who find 

that bank CEOs exhibit distinct behavior based on the country from which their ancestors immigrate 

from. Hence, I infer a CEO’s level of altruism based on their inherited cultural values.   
56 These findings also rule out the agency explanation. If agency reasons prevail, I should observe 

opposite results in the analysis. For example, the agency argument would predict that hometown lending 

should be more prevalent when the CEO is individualistic, not collectivistic.  
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$250,000. This supports my interpretation of a hometown altruistic driven motive. If 

CEOs where motivated by other reasons (such as agency conflicts), I should find that 

origination of larger loan amounts to be equally probable, or, even likelier. Larger 

firms are likely to take out larger loan amounts, and approving these loans would help 

increase the reputation and visibility of the CEO more as compared to smaller loans. 

All of these tests consistently support the altruistic hometown attachment 

interpretation, indicating that CEOs lend more near their birthplace because they want 

to help their hometown communities. 

I conclude by showing that hometown favoritism is likely to be beneficial to 

residents near the bank’s CEO birthplace beyond the receipt of loans. I find 

correlational evidence suggesting that counties with a greater exposure to CEO 

hometown favoritism have higher income levels as well as lower unemployment rates.  

Intriguingly, a different way to interpret my results is that, if a county is unlucky 

(lucky) enough to have a lower (higher) exposure to hometown favoritism, it would 

have to unfairly experience lower economic development. Thus, hometown favoritism 

may contribute to the deepening of economic inequality.  

3.2 Related Literature and Contributions 

 

This chapter is related to three streams of literature: the economic effects of 

home bias, behavioral factors that influence economic decisions, and the idiosyncratic 

style of CEOs. The home bias literature focuses largely on investor behavior and 

generally finds that investors prefer proximate stocks over others. However, it offers 

conflicting explanations on the economic mechanisms behind the effect. For instance, 

while Coval and Moskowitz (1999) and Ivkovic and Weisbenner (2005) argue that 

home bias reflects informational advantages to investors, Pool, Stoffman, and Yonker 
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(2012) find no such advantages to local investing. More recently, the home bias 

literature investigates firm-level business outcomes, including employment policies 

(Yonker, 2017b), mergers and acquisitions (Chung, Green, and Schmidt, 2017; Jiang, 

Qian, and Yonker, 2017) and show evidence for the differing motives of hometown 

favoritism. Most related to this chapter is a study by Yonker (2017b) who finds that, 

following periods of industry distress, CEOs are less likely to fire employees working 

in establishments proximate to their hometown and concludes that such favoritism is 

suboptimal.  

The key difference in this chapter is that I identify the effect of hometown 

favoritism on a firm’s production outputs (i.e., bank credit) as opposed to its 

production inputs (e.g., employees). I further show that the hometown favoritism effect 

extends beyond internal favoritism to benefit the wider community where the CEO 

grew up in. Furthermore, focusing on outputs allows me to estimate the economic 

effects of home bias on the real economy. Finally, the richness of my tests enables me 

to disentangle between the different explanations behind the hometown effect. I 

propose a new explanation, an altruistic attachment motive, and find that it better 

explains the findings as compared to the information and agency arguments.  

 This chapter also contributes to the literature that studies how behavioral 

factors influence credit allocation. The prior literature shows that loan applications 

may be rejected due to: the loan applicant appearing less physically trustworthy 

(Duarte, Siegel, and Young, 2012); negative moods induced by the weather (Cortes, 

Duchin, and Sosyura, 2016); behavioural biases that follow sequential streaks of 

approvals (Chen, Moskowitz, and Shue, 2016). This chapter extends this literature by 
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uncovering a new factor —CEO geographical origin— that leads to bias in credit 

allocation decisions.  

Finally, this chapter is related to the literature that studies the impact of CEO 

attributes on corporate outcomes. Various studies have found that CEO’s life (Bernile, 

Bhagwat, and Rau, 2017; Cronqvist and Yu, 2017) and career experience (Custodio 

and Metzger, 2014; Benmelech and Frydman, 2015; Dittmar and Duchin, 2016; Schoar 

and Zuo, 2017) matters for corporate decisions. While these studies focus on firm-

level outcomes, I show how a CEO’s geographic origin explains heterogeneity in the 

production outputs within the firm.  

3.3 Sample Construction and Data 

 

3.3.1 Sample Construction 

 

My sample is constructed using public listed U.S. Bank Holding Companies 

and commercial banks from 1999 to 2014. Balance sheet data on these banks are 

obtained from Call Reports (forms FFIEC 031/041 and FR Y-9C) maintained by the 

Federal Reserve Bank of Chicago. I then merge this sample of banks with data from 

BoardEx to retrieve demographic information on the CEO. BoardEx’s coverage is 

fairly comprehensive for U.S. public firms and provides detailed biographical and 

employment data of board members and executives. The sample begins in 1999 

because it is the first year in which BoardEx started collecting executive-level 

information.  

To determine the hometown of the CEO, the county and state of the birth place 

of the CEO is manually collected from various sources, starting with NNDB.com and 

Marquis Who’s Who, which have birth data for CEOs of the largest banks. If birth data 



 

154 

 

cannot be obtained this way, extensive Google searches are performed using keywords 

of “CEO full name + native of” and/or “CEO full name + born”. This process allows 

the identification of birth information for a large number of CEOs from multiple 

sources, including CEO appointment announcements, SEC filings, school donations, 

charity events, biographies, interviews and obituaries. For the remaining CEOs, 

searches are conducted on ancestry.com, the world’s largest genealogy database, for a 

CEO’s birth and marriage certificates that occasionally list the CEO’s location of birth. 

In total, CEO birth county and state data is available for 485 out of 906 CEOs (54%) 

in the sample between 1999 and 2014 (from 369 out of 783 banks). This is an 

improvement over Bernile et al. (2017), who can only identify the birth locations of 

approximately 31% of CEOs in the S&P1500 sample. Appendix 3-A2 lists, by birth 

state, the number and proportion of bank CEOs in my sample. 

An advantage of this approach is that it contains information on the exact 

location of the birthplace of the CEO. In contrast, other studies (e.g., Yonker, 2017a) 

rely on the CEO’s Social Security Number (SSN) to infer their state of birth.57 As most 

SSNs are obtained at the ages between 14-17, inference of a CEO’s place of birth using 

SSNs introduces noise to the accuracy of the data due to the possibility of family 

relocations. However, the drawback of targeting such a high level of accuracy in 

determining a CEO’s birth location is the loss of a large proportion of CEOs whose 

birthplace cannot be precisely identified.58   

                                                           
57 Using the SSN approach, Yonker (2017a) is able to identify the state of origin of approximately 89% 

of S&P1500 CEOs.  
58 As I am unable to identify the birthplace of all bank CEOs, it could be argued that there exists a 

sample selection bias that could influence the interpretation of my results. For instance, if CEOs are not 

proud of their hometown, they could be less likely to publicize this information, causing me to overstate 

my findings when generalizing to the entire population of CEOs. However, this concern is unlikely to 

influence the interpretation of my findings for several reasons. First, I use a larger proportion of CEO 
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3.3.2 Mortgage Loan Data 

 

 The data on mortgage loans comes from the Home Mortgage Disclosure Act 

(HMDA) database collected by the Federal Financial Institutions Examination Council 

(FFIEC). The HMDA database covers all mortgage applications that have been 

reviewed by qualified financial institutions. Specifically, an institution is required to 

disclose any mortgage lending under HMDA if it has at least one branch office in any 

metropolitan statistical area and meets the minimum size threshold. For instance, in 

2002, this reporting threshold is $32 million in book assets.59 Because of this low 

reporting threshold, almost all banks are included in the dataset.60  

Each loan application in the dataset provides borrower demographic 

characteristics (e.g., income, gender, and race), loan characteristics (e.g., loan amount 

applied for and its purpose), property characteristics (e.g., type and geographical 

location), decision on the loan application (e.g., approved, denied, or withdrawn) and 

the year the application of the loan was made. The HMDA data also contains a lender 

identifier which allows the matching of loan data to the sample of banks for which 

there is information on CEO birthplace.  

                                                           
birthplace locations than previous studies, which reduces the possibility of this bias. Second, and more 

importantly, the results I document holds when I use the state of birth of the CEO as a measure of 

hometown. As there exist multiple CEOs born to the same state, it is less obvious why some CEOs 

would be less proud of their home state and choose to hide it and some do not. For example, I find that 

27 bank CEOs were born in California. If there were something inherently less ideal about being born 

in California, it is not obvious why these 27 CEOs would make known this information and other 

Californian CEOs would choose to hide it.  Further, specifying hometown at the state level (a larger 

unit of geographical disaggregation as compared to the county) also reduces the possibility that CEOs 

deliberate hide their hometown of origin because they are less proud of it, as their state of birth is likely 

to be less “personal” than the county that they were born, and therefore, should have less negative 

feelings about it (if any).  
59 HMDA reporting criteria can be found at https://www.ffiec.gov/hmda/reporterhistory.htm 
60 See Cortes et al. (2016) for a more detailed description of the HMDA dataset.  
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 The sample includes all mortgage loan applications reviewed by my sample of 

U.S. listed banks between 1999 and 2014. I drop applications that were closed for 

incompleteness or withdrawn by the applicant before a decision was made. Following 

Agarwal, Benmelech, Bergman, and Seru (2012), loan amount and applicant income 

are winsorized at the 1% level. 

3.3.3 Dependent Variables 

 

In this chapter, I use three outcome variables: (1) Approval rate; (2) 

ln($originated loan) and; (3) branches. All of these measures are aggregated at the 

bank-county-year level. The data used to construct branches is obtained from the 

Summary of Deposits (SOD) dataset, maintained by the Federal Deposit Insurance 

Corporation (FDIC). HMDA mortgage loan data described in the previous section is 

used to construct Approval rate and ln($originated loan). 

The first measure, Approval rate, is defined as the number of approved 

mortgage loan applications divided by the total number of applications received by a 

bank, in a particular county, in a specific year. The key advantage of this dependent 

variable is that it normalizes the number of approved applications by the number of 

loan application a bank receives in a county-year, and thus, partially accounts for 

significant demand related variations in loan applications (Gilje, Loutskina, and 

Strahan, 2016). Holding other loan and applicant characteristics constant, Approval 

rate measures a bank’s willingness to supply mortgage credit in a county-year.  

The second measure, ln($originated loan), is defined as the logarithmic 

originated mortgage loans a bank makes relative to the prior year divided by 

logarithmic originated loans in the prior year, again, measured at the bank-county-year 



 

157 

 

level. In contrast to Approval rate, this measure looks at logarithmic changes in the 

nominal dollar amount of loans that were originated. Estimating the model in growth 

rates allows me to difference out lending for a bank-county relative to the prior year 

which, again, partially controls for fluctuations in demand for mortgages over the 

sample period.  

The last measure, branches, is defined as the number of branches a bank has 

in a county minus the number of branches in the prior year, scaled by the number of 

branches in the prior year. It measures the percentage change in annual growth rates 

of branches of the bank in a county from the previous year.  

Table 3-1 provides summary statistics on these dependent variables as well as 

other variables used in this chapter.  Overall, the summary statistics are in line with 

those reported in the literature (e.g., Agarwal et al., 2012; Cortes et al., 2016).  The 

average approval rate is 69.8%, meaning 7 out of 10 mortgage applications are 

approved in an average bank-county-year. The average borrower earns about $102,300 

per year and applies for a $155,100 mortgage loan. The average growth rate in 

mortgage originations is –7%, which is perhaps driven by the large lending reduction 

during the 2007-2009 financial crisis. Finally, branch growth rates are also decreasing 

at a –2% rate for a bank-county-year, consistent with the overall trend of bank branch 

consolidation in the U.S.   

3.3.4 CEO Hometown Measure 

 

Using data on a CEO’s birth county, I create a within-bank measure to 

investigate if CEO hometown affects a bank’s mortgage lending and branching 

decisions. To illustrate, consider Mr. James E. Rohr, the former CEO of PNC Financial 
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Services Group Inc. He was born in Cleveland, a major city located in Cuyahoga 

County in the state of Ohio. Thus, it is unclear if Mr. Rohr would consider the city of 

Cleveland, the county of Cuyahoga or the state of Ohio, or all of these, as his 

hometown. That is, the geographical measure of ‘hometown’ is not clear ex-ante and 

can be different across CEOs. Additionally, Cuyahoga County is approximately 50 km 

away from Lake County. Both counties are located in the state of Ohio and share very 

similar demographic and economic characteristics. Therefore, it is equally likely that 

Mr. Rohr also considers Lake County as part of his hometown identity.  

Based on these considerations, I create a continuous, within-bank variable to 

measure a CEO’s degree of hometown attachment. Specifically, Ln(dist. hometown) is 

the natural logarithm of the physical distance (in kilometers) between a CEO’s birth 

county and the county in which the mortgage originations and branching decisions 

take place.61 As an example, PNC Financial Service Group Inc. is headquartered in 

Allegheny County (PA) and has operations in multiple counties across the U.S., 

including Lake County (OH) and King County (WA). While Lake County (OH) is 

only 50 km away from the hometown of PNC CEO (James Rohr), King County (WA) 

is more than 3,000 km away. The measure therefore measures bank outcomes in Lake 

County (proximate to his hometown) as compared to King County (located further 

away).  

 

 

 

 

                                                           
61 Geographic coordinates (longitude and latitude) are obtained from the U.S. Census (2014) Gazetteer. 
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Table 3-1: Summary Statistics  

This table reports summary statistics for bank and loan characteristics in the sample. std. is the standard 

deviation while p1, p50 and p99 are the 1st, 50th, and 99th percentiles. The sample covers the period 

1999–2014 for which data on CEO birthplace is available. Refer to Appendix 3-A1 for the definition 

and construction of variables used in this chapter.  

 

 # mean std. p1 p50 p99 

       
Hometown Variables       

Ln(dist. hometown) 558,932 6.658 1.105 3.682 6.832 8.301 
Ln(dist. HQ) 558,932 6.530 1.213 3.504 6.723 8.318 

Dist. hometown 558,932 1,219 1,038 38.71 925.6 4,028 
Dist. HQ 558,932 1,162 1,065 32.25 829.9 4,094 

       

Key Dependent Variables      
Approval rate 558,932 0.698 0.303 0.000 0.759 1.000 

ln($originated loan) 408,184 -0.074 0.309 -1.000 -0.007 0.415 

branches 85,086 -0.027 0.139 -1.000 0.000 0.143 

       
Loan Characteristics        
%minor applicants 558,932 0.329 0.333 0.000 0.231 1.000 

%female applicants  558,932 0.199 0.229 0.000 0.167 1.000 
Loan 558,932 155.100 670.500 6.000 97.960 1000.000 

Income  558,932 102.300 210.400 20.000 69.410 683.000 

       
Bank Characteristics       
Assets 5,357 14.940 1.789 12.240 14.550 20.950 
Leverage  5,357 0.908 0.026 0.826 0.910 0.954 

ROA (%) 5,357 0.783 1.077 -4.510 0.958 2.167 
Lending 5,357 0.662 0.122 0.303 0.674 0.890 

Deposits  5,357 0.751 0.104 0.385 0.769 0.898 
%mortgage loan in home state 5,357 0.528 0.421 0.000 0.645 1.000 

%small business loan in home state 3,913 0.532 0.431 0.000 0.637 1.000 

       
CEO Characteristics        
Out-of-state CEO 485 0.412 0.487 0.000 0.000 1.000 
Hometown UG  474 0.640 0.481 0.000 1.000 1.000 

Ivy 474 0.136 0.342 0.000 0.000 1.000 

MBA 474 0.231 0.422 0.000 0.000 1.000 

       

County Characteristics       
Unemployment rate (%) 22,741 6.188 2.505 2.328 5.636 13.600 

Non-ownership (%) 22,741 26.820 7.709 14.000 25.400 52.300 
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For robustness, I also create Hometown state, a dummy that equals 1 if the 

CEO’s birth state and the state in which the mortgage originations and branch 

decisions occur is similar. I obtain consistent results using this alternative definition of 

CEO hometown favoritism.   

3.4 Empirical Results 

 

3.4.1 Methodology 

 

 To investigate if CEO hometown matters in the bank’s mortgage origination 

and branching decisions, I estimate the following equation at the bank-county-year 

level: 

Yi,k,t  =  αi,k,t  + β1Ln(dist. hometown)i,k,t + Loan Controlsi,k,t + Bank Controlsi,t  

+ Bank FE + County-Year FE + εi,k,t  (3-1) 

 

where i, k and t indicate bank i, county k and year t, respectively. Y is either Approval 

Rate, ln($originated loan) or branches, measured at the bank-county-year level. 

The key variable of interest, Ln(dist. hometown), is the natural logarithm of the 

physical distance (in kilometers) between a CEO’s birth county and the county in 

which the mortgage originations and branching decisions occur. If CEOs favor 

counties proximate to their hometown, the coefficient β1 should be significantly 

negative. 

All the estimations include bank fixed effects as well as county-year fixed 

effects. The inclusion of bank fixed effects means that I hold constant any time-

invariant bank omitted variables and identify mortgage lending and branching 

decisions at the same bank in different counties conditional on the county’s distance 

to the CEO’s hometown. Furthermore, the inclusion of bank FE also means that 
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unobserved time-invariant bank characteristics that simultaneously explain the 

matching between CEOs, banks and business policies (see for e.g., Custodio and 

Metzger, 2014) are controlled for. I address this in greater detail in the next section.  

 The inclusion of county-year fixed effects removes any time-varying county-

level factors such as demographic, social, economic as well as demand-side factors 

related to local business cycles, industry consumption, and housing demand (Gilje et 

al., 2016).  In addition, it also controls for the possibility that the results are driven by 

changes in state foreclosure or anti-predatory lending laws that could affect bank 

origination behavior in different geographical locations (Agarwal, Amromin, Ben-

David, Chomsisengphet, and Evanoff, 2014; Di Maggio and Kermani, 2017).  

With these two sets of fixed effects, the estimations are identified by two 

sources of variation: (1) varying distances between a CEO’s hometown to different 

counties in the same bank; and (2) changes in the distance between the CEO’s 

hometown and a given county in the same bank that arises because of CEO turnovers. 

Therefore, the coefficient of interest β1 compares the mortgage origination and 

branching decisions of the same bank in two identical counties, which varies only by 

distance to the CEO’s hometown. 

I also include a number of time-varying control variables, the most important 

of which is Ln(dist. HQ). Ln(dist. HQ) is the natural logarithm of the physical distance 

between a bank’s headquarters (HQ) to the counties where mortgage and branching 

decisions take place. I include this control variable as Landier, Nair, and Wulf (2009) 

and Giroud (2013) show that proximity to the firm’s HQ influences how managers 

allocate labor resources and monitor non-HQ establishments. To further isolate the 
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hometown effect from the HQ effect, I follow Yonker (2017b) and include the 

interaction term between Ln(dist. HQ) and Ln(dist. hometown) as an additional control 

variable.62 Finally, controls for loan (% female applicants, % minor applicants and 

Loan/Income) and bank (Assets, Leverage, ROA, Lending and Deposit) characteristics 

are also included. Importantly, the inclusion of the borrower’s loan-to-income ratio 

controls for the riskiness of the loan (a higher ratio implies that the loan is riskier as 

borrowers are less able to use their income to repay the loan). See Appendix 3-A1 for 

the definition and construction of these variables.  

3.4.2 Baseline Results 

 

In this section, I examine how a bank’s mortgage origination (Columns (1)-

(2)) and branching decisions (Column (3)) vary with distance to its CEO’s hometown.  

Table 3-2 presents the baseline results. 

Across all dependent variables, the coefficient on Ln(dist. hometown) is 

negative and statistically significant at the 1% level. This indicates that, within the 

same bank, counties located nearer to the CEO’s hometown enjoy higher mortgage 

approvals (Column (1)), higher mortgage origination growth rates (Column (2)), and 

higher branch growth rates (Column (3)) as compared to counties located further away. 

The effects are economically meaningful. For instance, the magnitude of the 

coefficient estimate in Column (2) indicates that a one standard deviation decrease in 

ln distance to the CEO’s hometown is associated with a 2.1% increase in mortgage 

origination growth (28% as compared to the mean).63 

                                                           
62 The results in this chapter remains qualitatively similar even when I do not include the interaction 

term. 
63 These values are calculated using the mean ln distance to HQ (6.53). I calculate 2.1% as [-0.006 + (-

0.002*6.53)]*(1.105) while 28% is calculated as [(-0.006 + (-0.002*6.53))*(1.105)] / (0.074). 
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When looking at bank branching decisions in Column (3), I also show that 

being close to the CEO’s hometown matters. This is noteworthy as the opening of bank 

branches constitutes real business decisions, therefore reflecting a conscious choice by 

the CEO to expand the operations of the bank to counties proximate to her hometown, 

possibly to facilitate increases in lending. This also rules out interpretations that credit 

officers located nearer to the hometown of the CEO are pursuing aggressive lending 

practices without the knowledge of the CEO.  

In Appendix 3-A3, I show that the results are robust to using an alternate 

definition of CEO hometown favoritism. I create Hometown state, a dummy that 

equals 1 if the state in which the CEO was born and the state in which the mortgage 

originations and branch decisions take place is the same. Consistent with the main 

results, I find higher mortgage approval rates, higher mortgage origination and branch 

growth rates in the state of the CEO’s birth as compared to other states. In sum, I find 

that banks lend more, and, open more branches in counties proximate to the CEO’s 

hometown, suggesting that the CEO’s hometown matters for bank business policies.  
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Table 3-2: CEO Hometown Favoritism and Mortgage Lending 

This table reports estimates of an OLS regression which estimates the effect of CEO hometown 

favoritism on bank business policies. I report estimates of the following equation: 

Yi,k,t  = αi,k,t  + β1Ln(dist. hometown)i,k,t + Loan Controlsi,k,t +Bank Controlsi,t + Bank FE + County-Year 

FE + εi,k,t 

where subscripts i, k and t indicate bank, county and year respectively. Y is either: (1) Approval rate, 

defined as the number of approved mortgage loan applications divided by the total number of 

applications received; (2) ln($originated loan), defined as the logarithmic originated mortgage loans 

relative to the prior year divided by logarithmic originated loans in the prior year; or (3) branches, 

defined as the number of branches minus the number of branches in the prior year scaled by number of 

branches in the prior year. Ln(dist. hometown) is the logarithmic distance between the bank CEO’s 

hometown county and the county in which lending or branching decisions take place. The coefficient 

β1 on Ln(dist. hometown) is the variable of interest. Standard errors are clustered at the bank-level. The 

sample covers the period 1999–2014 for which data on CEO birthplace is available. Refer to Appendix 

3-A1 for the definition and construction of variables used in this chapter. The constant is suppressed. t-

statistics are reported in parentheses. ***, **, and * indicate significance at the 1, 5 and 10% level, 

respectively.   

  

 (1) (2) (3) 
 Approval rate ln($originated loan) branches  
    
Ln(dist. hometown) -0.008*** -0.006*** -0.003***  

(-8.919) (-4.813) (-3.248) 
Ln(dist. hometown) x Ln(dist. HQ) 0.000 -0.002*** 0.001*** 

 (0.400) (-8.596) (3.173) 
Ln(dist. HQ) -0.004*** -0.023*** -0.007*** 

 (-4.591) (-17.359) (-5.751) 

Assets -0.021*** 0.065*** 0.023***  
(-9.626) (20.675) (5.473) 

Leverage -0.755*** -0.936*** 0.029  
(-20.076) (-16.790) (0.429) 

ROA 0.011*** 0.007*** 0.002* 

 (15.417) (7.252) (1.889) 
Lending 0.004 0.191*** 0.102***  

(0.464) (13.938) (5.574) 
Deposit  0.352*** 0.082*** 0.033  

(36.103) (5.743) (1.416) 
%female applicants  -0.085*** -0.049***   

(-34.595) (-11.759)  

%minor applicants -0.142*** -0.152***   
(-70.978) (-48.258)  

Loan/Income 0.000 -0.001*  
 (0.697) (-1.835)  
    

Bank FE Yes Yes Yes 
County-Year FE Yes Yes Yes 

Adj. R-squared 0.178 0.097 0.058 
Observations 558,932 408,184 85,086 
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3.5 Endogeneity  

 

In this section, I employ multiple strategies to establish a causal link between 

CEO hometown favoritism and mortgage origination and branching decisions. The 

first and main endogeneity concern is the endogenous CEO-bank matching problem. 

The second concern is that hometown favoritism of CEOs might be correlated with 

other observable CEO characteristics. Lastly, there is also a concern about potential 

measurement errors related to the hometown favoritism variable.  

3.5.1 Addressing CEO-Bank Matching 

 

The main endogeneity concern is that there exists the possibility that 

unobserved bank heterogeneity (both time-invariant and time-variant) simultaneously 

explains the matching between CEOs and banks. For instance, banks that have 

traditionally lent more to counties proximate to the CEO’s hometown (or have time-

invariant unobservable bank characteristics such as the mission ethos of the bank that 

targets these areas) could attract a CEO whose preference is to operate in these 

counties. If so, my findings that banks lend more in counties proximate to the 

hometown of CEOs could simply reflect the matching between CEOs and these banks, 

and not CEO hometown favoritism.  

In all models in this chapter, I follow the literature (e.g., Malmendier, Tate, and 

Yan, 2011; Graham, Harvey, and Puri, 2013; Custodio and Metzger, 2014; Dittmar 

and Duchin, 2016; Schoar and Zuo, 2017) and rely on within-bank variation to deal 

with this time-invariant CEO-bank matching. The inclusion of bank FE means that the 

hometown variable is partially identified by changes in distance to the counties that 

the bank operates in as a result of changes in bank CEOs at the same bank (because 
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CEOs at the same bank can have different hometowns).64 Thus, any time-invariant 

bank characteristics that would be correlated with a CEO’s preference to join any 

particular bank would be differenced out, and my results can be interpreted as causal.  

The inclusion of bank fixed effects to mitigate CEO-bank matching due to 

time-invariant omitted bank heterogeneity is only valid if these omitted variables 

remain constant through time. However, if changes in bank strategies or characteristics 

are the primary determinants behind CEO turnovers, the concern is that the hometown 

favoritism effect of incoming CEOs is irrelevant, as the board of directors would select 

any CEO willing to implement the bank’s new business strategy of expanding its 

business to areas proximate to the hometown of the CEO (Fee et al., 2013). As an 

example, banks with a new business plan to expand to California would be more likely 

to appoint a California-born CEO and, at the same time, implement strategies to open 

more branches and increase lending in California. 

If so, the hometown favoritism effect I document would in fact be attributed to 

the bank (led by the board of directors), and not the CEO.  This implies that some CEO 

changes could be driven by endogenous policy considerations set by the board and that 

using these turnovers for identification would cause me to over-attribute the hometown 

favoritism effect to the CEO (Fee et al., 2013).65 To mitigate this time-varying CEO-

bank matching concern, I use two identification strategies: (1) a subsample of 

                                                           
64 To illustrate, in 2013, William Demchak (born in Pittsburgh, Pennsylvania) replaced James E Rohr 

(born in Cleveland, Ohio) as CEO of PNC Financial Services Group Inc. This generates a change to the 

distance between the CEO’s hometown and a given county. For example, Lake County is 50 km away 

from the outgoing CEO James E Rohr’s birthplace but is 213 km away from the new CEO William 

Demchak’s birthplace.  
65 See Fee et al. (2013) and Custodio and Metzger (2014) for a detailed discussion on CEO-firm 

matching.  
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exogenous CEO turnovers and; (2) exogenous changes in credit markets (boom-bust 

periods).  

3.5.1.1 Exogenous Turnovers 

 

The first strategy focuses on a subsample of banks that experience changes in 

their CEO for plausibly exogenous reasons. To illustrate the intuition behind this 

strategy, consider an unfortunate situation where the current CEO suddenly passes 

away due to natural reasons, thereby forcing the board to reappoint a new CEO. The 

timing of this turnover event is likely to be exogenous because the board is unable to 

anticipate the CEO’s sudden death, and therefore, the appointment of the new CEO is 

unlikely to be driven by policy considerations concerning lending or branching 

decisions near the CEO’s hometown. Thus, exogenous CEO turnovers produces a 

shock to the distance to a CEO’s hometown while being exogenous to the business 

strategies of the bank.66   

To classify exogenous CEO turnovers, articles from the company’s press 

release and reputable news journals such as the Wall Street Journal or The Financial 

Times are read to obtain the reason behind changes in CEOs. A turnover is considered 

as exogenous if it meets at least one of the following three criteria’s: (1) the outgoing 

CEO departs as a result of death or illness; (2) is above 60 years old, and; (3) the 

turnover occurs as part of the bank’s succession plan. Using the above criteria, I find 

that 60% of CEO turnovers can be classified as exogenous, consistent with the 

frequency of ‘exogenous’ turnovers classified in the literature (e.g., Dittmar and 

Duchin, 2016).  

                                                           
66 While the choice of the incoming CEO is not random, the timing of the turnover is likely to be 

exogenous (Custodio and Metzger, 2014; Bushman et al., Forthcoming). 
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Table 3-3: Exogenous CEO Turnover Events  

This table reports estimates of an OLS regression which estimates the effect of CEO hometown 

favoritism on bank business policies around CEO turnover events. I report estimates of the following 

equation: 

Yi,k,t  = αi,k,t  + β1Ln(dist. hometown)i,k,t + Loan Controlsi,k,t +Bank Controlsi,t + Bank FE + County-Year 

FE + εi,k,t 

where subscripts i, k and t indicate bank, county and year respectively. Y is either: (1) Approval rate, 

defined as the number of approved mortgage loan applications divided by the total number of 

applications received; (2) ln($originated loan), defined as the logarithmic originated mortgage loans 

relative to the prior year divided by logarithmic originated loans in the prior year; or (3) branches, 

defined as the number of branches minus the number of branches in the prior year scaled by number of 

branches in the prior year. Ln(dist. hometown) is the logarithmic distance between the bank CEO’s 

hometown county and the county in which lending or branching decisions take place. The coefficient 

β1 on Ln(dist. hometown) is the variable of interest. In Panel A, I only include banks which have 

experienced at least one exogenous CEO turnover event. Exogenous CEO turnovers are defined as one 

of the following reasons: CEO’s death, CEO’s long-term illness, the turnover is part of a long-planned 

retirement, or the turnover takes place when the CEO is at least 60 years of age. In Panel B, I only 

include banks which have experienced at least one internal CEO turnover event. Internal CEO turnovers 

are defined as when the new CEO is an existing employee of the bank. Control variables include: Assets, 

Leverage, ROA, Lending, Deposit, %female applicants, %minor applicants and Loan/Income. Standard 

errors are clustered at the bank-level. The sample covers the period 1999–2014 for which data on CEO 

birthplace is available. Refer to Appendix 3-A1 for the definition and construction of variables used in 

this chapter. The constant is suppressed. t-statistics are reported in parentheses. ***, **, and * indicate 

significance at the 1, 5 and 10% level, respectively.   

 

Panel A: Exogenous Turnovers (1) (2) (3) 
 Approval rate ln($originated loan) branches 
    
Ln(dist. hometown) -0.012*** -0.007*** -0.004***  

(-9.035) (-4.202) (-2.621) 

Ln(dist. hometown) x Ln(dist. HQ) 0.001*** -0.000 0.001*** 

 (3.269) (-0.988) (3.101) 
Ln(dist. HQ) -0.006*** -0.026*** -0.007*** 

 (-4.129) (-14.364) (-4.548) 
    

Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 
Other Controls Yes Yes Yes 

Adj. R-squared 0.196 0.104 0.049 
Observations 365,993 283,372 61,259 

 

 

 

 

 

 

 

 

 

 

 

  

Panel B: Internal Turnovers (1) (2) (3) 
 Approval rate ln($originated loan) branches 
    
    

Ln(dist. hometown) -0.012*** -0.011*** -0.003**  
(-8.848) (-6.157) (-2.367) 

Ln(dist. hometown) x Ln(dist. HQ) 0.001*** -0.000 0.001** 

 (3.833) (-1.051) (2.008) 
Ln(dist. HQ) -0.005*** -0.025*** -0.006*** 

 (-3.942) (-13.642) (-3.240) 
    

Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 
Other Controls Yes Yes Yes 

Adj. R-squared 0.199       0.106 0.039 
Observations 360,624 274,379 60,078 
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In Panel A of Table 3-3, I re-run the baseline analysis with only banks that 

experience at least one exogenous turnover following Dittmar and Duchin (2016). As 

before, bank FE and county-year FE are included. As observed, the coefficient of 

interest Ln(dist. hometown) remains statistically significant at the 1% level for all the 

dependent variables.67 

In Panel B of Table 3-3, I focus on an alternative CEO turnover event; internal 

CEO turnovers. Internal CEO turnovers are CEO appointment events where the 

incoming CEO was already an employee of the bank before taking over the role of 

CEO. In this turnover setting, the choice of an internal CEO successor is likely to 

reflect continuity in the business strategy of the bank and less likely to reflect major 

changes in bank policies (Dittmar and Duchin, 2016). When limiting the sample of 

banks to only those that experience at least one internal turnover event, I find that 

Ln(dist. hometown) is still negative and significant. Taken together, the results from 

this section suggests that CEO hometown favoritism is likely to be an idiosyncratic 

style and that endogenous CEO-bank matching is unlikely to explain my findings.  

3.5.1.2 Boom-Bust Periods 

 

In the second strategy, I follow Opler and Titman (1994) and Yonker (2017b) 

and exploit exogenous variations in macroeconomic conditions —periods of economic 

booms and busts— to further alleviate concerns relating to time-varying endogenous 

CEO-bank matching. This approach has several advantages. First, boom and bust 

periods are largely exogenous to the CEO-bank matching process as firms do not 

                                                           
67 It is important to note that I exploit cross-sectional variation in proximity to CEO hometown following 

exogenous turnovers. This differs from findings in Fee et al. (2013) who show that on average, 

exogenous turnovers are not followed by changes in firm policies.  
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change their CEOs in anticipation of business cycles.68 Therefore, any change in bank 

policies during these periods should be largely exogenous to the CEO-bank matching 

process and can be directly attributed to the CEO.  

Second, this approach allows me to observe if a CEO’s hometown favoritism 

persists through changes in the external business environment, where business 

decisions are likely to be more complex and unstructured, and thus, more likely to be 

influenced by the CEO’s innate characteristics. Lastly, the use of both boom and bust 

periods allows me to contrast decisions made by the CEO in her hometown when 

credit conditions are tight and likely to be most crucial for borrowers (bust periods) as 

compared to when credit is loose and additional credit is unlikely to matter (boom 

periods). Should CEO hometown favoritism matter, I should expect to observe 

increases in bank lending during bust periods as compared to boom periods. 

Boom (Boom) years are defined as years 2004 to 2006 while bust (Bust) periods 

are years 2007 and 2008 and take the values of 1 for these years and 0 otherwise. Boom 

and Bust years are defined following house price growth rates in the U.S.; house prices 

in the U.S. grew aggressively from 2004 to 2006 and started to decline in 2007, 

marking the start of the subprime financial crisis.69 The coefficients of interest are the 

interaction terms Bust x Ln(dist. hometown) and Boom x Ln(dist. hometown). A similar 

set of control variables and fixed effects are included as before. Table 3-4 reports the 

results.  

                                                           
68 Fahlenbrach and Stulz (2011) show evidence that CEOs of banks whose incentives were better aligned 

with shareholders suffered larger losses in their compensation during the crisis, suggesting the inability 

of bank CEOs to anticipate the crisis. 
69 House price index data is obtained from https://fred.stlouisfed.org/series/USSTHPI.  
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The coefficient on Bust x Ln(dist. hometown) is negative and statistically 

significant in two out of the three columns (less Column (3)). This means that, during 

periods of distress, bank CEOs continue to extend more mortgage credit to counties 

proximate to their hometown (Columns (1)-(2)). While the coefficient is insignificant 

when looking at branch growth rates in Column (3), it is still negative. One reason that 

can explain this is that while CEOs could still continue lending to counties that are 

proximate to her hometown in economic downturns, branching decisions might be 

more inelastic and sticky, and thus lose power in the regression tests. 

 The coefficient on Boom x Ln(dist.hometown) is statistically insignificant in all 

columns. This suggests that there is no hometown favoritism when credit is loose and 

when applicants are less likely to be declined credit. Taken together, the results clearly 

show that CEO hometown favoritism is particularly salient in times of economic 

downturns. Bank CEOs make a conscious choice during bust periods to continue 

extending mortgage credit to borrowers nearer to their hometown, when borrowers 

require it the most.   

3.5.2 Omitted CEO Characteristics 

 

Another endogeneity concern is that CEO hometown favoritism might be 

correlated with other observable CEO characteristics. For instance, CEOs who lend 

more to counties nearer to their hometowns could be overconfident, as they might 

falsely believe that they have superior information on economic conditions in their 

hometown (even if they do not). To rule out this concern, I include in Table 3-5 other 

observable CEO characteristics that have been shown to influence firm policies.  
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 Table 3-4: CEO Hometown Favoritism: Boom and Bust Periods  

This table reports estimates of an OLS regression which estimates the effect of CEO hometown 

favoritism on bank business policies during boom and bust periods. I report estimates of the following 

equation: 

Yi,k,t  = αi,k,t  + β1Boomt x Ln(dist. hometown)i,k,t + β2Bustt x Ln(dist. hometown)i,k,t + Loan Controlsi,k,t 

+Bank Controlsi,t + Bank FE + County-Year FE + εi,k,t 

where subscripts i, k and t indicate bank, county and year respectively. Y is either: (1) Approval rate, 

defined as the number of approved mortgage loan applications divided by the total number of 

applications received; (2) ln($originated loan), defined as the logarithmic originated mortgage loans 

relative to the prior year divided by logarithmic originated loans in the prior year; or (3) branches, 

defined as the number of branches minus the number of branches in the prior year scaled by number of 

branches in the prior year. Ln(dist. hometown) is the logarithmic distance between the bank CEO’s 

hometown county and the county in which lending or branching decisions take place. Bust is a dummy 

that equals 1 for years of 2007-2008 and 0 otherwise. Boom is a dummy that equals 1 for years of 2002-

2004 and 0 otherwise. The coefficient β1 on Boom x Ln(dist. hometown) and β2 on Bust x Ln(dist. 

hometown) are the variables of interest. Control variables include: Bust x Ln(dist. HQ), Boom x Ln(dist. 

HQ), Ln(dist. HQ), Assets, Leverage, ROA, Lending, Deposit, %female applicants, %minor applicants 

and Loan/Income. Standard errors are clustered at the bank-level. The sample covers the period 1999–

2014 for which data on CEO birthplace is available. Refer to Appendix 3-A1 for the definition and 

construction of variables used in this chapter. The constant is suppressed. t-statistics are reported in 

parentheses. ***, **, and * indicate significance at the 1, 5 and 10% level, respectively.   

 

 (1) (2) (3) 
 Approval rate ln($originated loan) branches 
    
Bust x Ln(dist. hometown) -0.011*** -0.016*** -0.002 

 (-4.615) (-4.925) (-1.195) 

Bust x Ln(dist. hometown) x Ln(dist. HQ) 0.000 0.004*** 0.000 
 (0.935) (7.196) (1.205) 

Boom x Ln(dist. hometown) -0.003 0.001 -0.002 
 (-1.512) (0.514) (-0.768) 

Boom x Ln(dist. hometown) x Ln(dist. HQ) 0.001** -0.002*** 0.000 

 (2.169) (-4.312) (0.884) 
Ln(dist. hometown) x Ln(HQ) -0.000 -0.002*** 0.000** 

 (-0.960) (-7.864) (2.159) 
Ln(dist. hometown) -0.006*** -0.004*** -0.003** 

 (-5.421) (-2.847) (-2.318) 
    

Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 
Other Controls Yes Yes Yes 

Adj. R-squared 0.178 0.097 0.058 
Observations 558,932 408,184 85,086 
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Specifically, in Table 3-5, I control for: the education background of the CEO, 

if the CEO is from an Ivy League or has an MBA (Bertrand and Schoar, 2003; 

Custodio, Ferreira, and Matos, 2013); the age of the CEO (Yim, 2013); if the CEO was 

born during the Great Depression in years 1920-1929 (Malmendier et al., 2011); if the 

CEO began her career in a recession (Schoar and Zuo, 2017); if the CEO is 

overconfident (Malmendier et al., 2011); and if the CEO has military experience 

(Benmelech and Frydman, 2015).70  

The variable of interest Ln(dist. hometown) remains negative and statistically 

significant at the 1% level across all three dependent variables. This gives me 

confidence that the hometown favoritism measure is not capturing other observable 

CEO characteristics.  

3.5.3 Refining Definitions of CEO’s Hometown Favoritism 

 

 The implicit assumption behind the measurement of CEO hometown 

favoritism is that it is constructed using the CEO’s birth county and state. However, 

one could argue that there are measurement errors associated with the variable. For 

instance, the variable might not capture CEO hometown effects if the CEO’s family 

relocates to a new place soon after the CEO’s birth. 

 

 

 

 

 

 

 

                                                           
70 I thank Abhishek Srivastav and Tim King for providing data on bank CEO overconfidence and 

military experience. 
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Table 3-5: Other CEO Characteristics 

This table reports estimates of an OLS estimation regression which estimates the effect of CEO 

hometown favoritism on bank business policies while controlling for other observable CEO 

characteristics. I report estimates of the following equation: 

Yi,k,t  = αi,k,t  + β1Ln(dist. hometown)i,k,t + CEO characteristicsi,t +Bank Controlsi,t + Bank FE + County-

Year FE + εi,k,t 

where subscripts i, k and t indicate bank, county and year respectively. Y is either: (1) Approval rate, 

defined as the number of approved mortgage loan applications divided by the total number of 

applications received; (2) ln($originated loan), defined as the logarithmic originated mortgage loans 

relative to the prior year divided by logarithmic originated loans in the prior year; or (3) branches, 

defined as the number of branches minus the number of branches in the prior year scaled by number of 

branches in the prior year. Ln(dist. hometown) is the logarithmic distance between the bank CEO’s 

hometown county and the county in which lending or branching decisions take place. The coefficient 

β1 on Ln(dist. hometown) is the variable of interest. CEO characteristics includes observable CEO 

characteristics: Ivy League, a dummy that equals 1 if the CEO obtains a degree from an Ivy League 

institution; MBA, a dummy that equals 1 if the CEO has an MBA degree; Age, the age of CEO; 

Depression baby is a dummy that equals 1 if the CEO is born between 1920 and 1929; Crisis career 

starter is a dummy that equals 1 if the CEO starts her career (assuming at the age of 22) during a crisis 

period (defined in the NBER database); Overconfidence is a dummy variable that equals 1 if moneyness 

of the option holdings is 67% and above; Military experience is a dummy that equals 1 if the CEO has 

prior military experience. Control variables include: Assets, Leverage, ROA, Lending, Deposit, %female 

applicants, %minor applicants and Loan/Income. Standard errors are clustered at the bank-level. The 

sample covers the period 1999–2014 for which data on CEO birthplace is available. Refer to Appendix 

3-A1 for the definition and construction of variables used in this chapter. The constant is suppressed. t-

statistics are reported in parentheses. ***, **, and * indicate significance at the 1, 5 and 10% level, 

respectively.   

 

 (1) (2) (3) 
 Approval Rate ln($originated loan) branches 
    
Ln(dist. hometown) -0.004* -0.028*** -0.006***  

(-1.879) (-7.646) (-3.002) 

Ln(dist. hometown) x Ln(dist. HQ) 0.000 0.001** 0.001*** 
 (1.011) (2.366) (3.083) 

Ln(dist. HQ) -0.011*** -0.042*** -0.007*** 
 (-4.925) (-11.726) (-3.266) 

MBA -0.045* -0.053* -0.264*** 

 (-1.724) (-1.855) (-3.356) 
Ivy League -0.195*** -0.210*** -0.662*** 

 (-6.282) (-3.048) (-2.843) 
Age -0.006*** -0.008*** 0.002*** 

 (-12.213) (-14.325) (2.804) 

Depression baby  -0.073 -0.021 0.269 
 (-1.444) (-0.076) (1.129) 

Crisis career starter  0.045*** -0.015*** -0.015* 
 (12.224) (-2.924) (-1.746) 

Overconfidence  -0.032*** 0.009 -0.014 
 (-7.472) (1.463) (-1.460) 

Military experience  0.159*** 0.096** 0.326*** 

 (4.214) (2.089) (3.722) 
    

Bank FE Yes Yes Yes 
County-Year FE Yes Yes Yes 

Other Controls Yes Yes Yes 

Adj. R-squared 0.122 0.131 0.086 
Observations 209,237 158,544 32,310 
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In this section, I refine the CEO hometown measure to sharpen inference. First, 

I condition the baseline results on the CEO’s degree of attachment to her hometown 

by interacting Ln(dist. hometown) with Hometown UG, a dummy variable that equals 

1 if the CEO undertakes an undergraduate degree in the same state as her birth state. 

The intuition behind this test is that CEOs who attended university in the state of her 

birth should be more attached to her hometown as she would have spent most of her 

formative years till after university in the same state (or area) and would have had the 

opportunity to establish deep relationships and emotional attachments (Mesch and 

Manor, 1998). In contrast, a CEO who attended university in a non-hometown state 

would imply that the CEO has likely moved away prior to university, or at the very 

least, moved away from the state of birth to attend university and subsequently, be less 

likely to be attached to it.   

Second, since 58% of CEOs in the sample work for a bank headquartered in 

the same state as their birth state, the baseline findings may capture effects linked to a 

bank’s HQ location.71 To completely isolate the CEO’s hometown favoritism effect 

from the bank’s HQ effect, I interact Ln(dist. hometown) with Out-of-state CEO, a 

dummy variable that equals 1 if the CEO was born in a state different from the bank’s 

HQ state. Table 3-6 displays the interactions results with Hometown UG in Panel A 

and Out-of-state CEO in Panel B. 

 

 

 

                                                           
71 This possibility is remote since I already control for Ln(dist. HQ). 
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Table 3-6: Refining Measures of CEO’s Hometown Favoritism 

This table reports estimates of an OLS estimation regression which estimates the cross-sectional CEO 

hometown favoritism effects on bank business policies. I report estimates of the following equation: 

Yikt  = αikt  + β1CEO characteristicsit x Ln(dist. hometown)ikt + Loan Controlsikt +Bank Controlsit + Bank 

FE + County-Year FE + εikt 

where subscripts i, k and t indicate bank, county and year respectively. Y is either: (1) Approval rate, 

defined as the number of approved mortgage loan applications divided by the total number of 

applications received; (2) ln($originated loan), defined as the logarithmic originated mortgage loans 

relative to the prior year divided by logarithmic originated loans in the prior year; or (3) branches, 

defined as the number of branches minus the number of branches in the prior year scaled by number of 

branches in the prior year. Ln(dist. hometown) is the logarithmic distance between the bank CEO’s 

hometown county and the county in which lending or branching decisions take place. CEO 

characteristics is either: Hometown UG, defined as a dummy that equals 1 if the CEO undertakes an 

undergraduate degree in the same state as her birth state in Panel A or Out-of-state CEO, defined as a 

dummy that equals 1 if the CEO was born in a state different from the bank’s HQ state. The coefficient 

β1 on CEO characteristics x Ln(dist. hometown) is the variable of interest. Control variables include: 

(Hometown UG x Ln(dist. HQ), Hometown UG in Panel A), (Out-of-state CEOs x Ln(dist. HQ),Out-of-

state CEOS in Panel B), Ln(dist. HQ), Assets, Leverage, ROA, Lending, Deposit, %female applicants, 

%minor applicants and Loan/Income. Standard errors are clustered at the bank-level. The sample covers 

the period 1999–2014 for which data on CEO birthplace is available. Refer to Appendix 3-A1 for the 

definition and construction of variables used in this chapter. The constant is suppressed. t-statistics are 

reported in parentheses. ***, **, and * indicate significance at the 1, 5 and 10% level, respectively.   

  

Panel A: Birth State UG Degree CEOs (1) (2) (3) 
 Approval ln($originated branches 
 rate loan)  

    
Hometown UG x Ln(dist. hometown) -0.018*** -0.008*** -0.005**  

(-8.905) (-2.904) (-2.260) 

Hometown UG x Ln(dist. hometown) x Ln(dist. HQ) 0.001*** -0.001*** 0.000 

 (2.837) (-2.921) (1.044) 
Ln(dist. hometown) x Ln(dist. HQ) -0.001*** -0.001*** 0.000 

 (-5.234) (-4.546) (1.195) 
Ln(dist. hometown) 0.007*** -0.000 -0.000 

 (4.262) (-0.060) (-0.233) 

    
Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 
Other Controls Yes Yes Yes 

Adj. R-squared 0.186 0.098 0.058 
Observations 550,376 402,306 83,361 

 

Panel B: Out-of-State CEOs (1) (2) (3) 
 Approval ln($originated branches 
 rate loan)  

    
Out-of-state CEO x Ln(dist. hometown) -0.017*** -0.033*** 0.002  

(-4.689) (-6.489) (0.506) 
Out-of-state CEO x Ln(dist. hometown) x Ln(dist. HQ) 0.002*** 0.007*** -0.000 

 (3.178) (9.986) (-0.334) 
Ln(dist. hometown) x Ln(dist. HQ) 0.001*** -0.003*** 0.001** 

 (2.971) (-14.502) (2.344) 
Ln(dist. hometown) -0.007*** -0.006*** -0.004*** 

 (-5.440) (-3.485) (-2.581) 

    
Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 
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Other Controls Yes Yes Yes 

Adj. R-squared 0.185 0.098 0.056    
Observations 558,932 408,184 85,086 

 

 As shown in Panel A of Table 3-6, the coefficient on Hometown UG x Ln(dist. 

hometown) is negative and statistically significant across all dependent variables, 

indicating that the CEO hometown favoritism effect (i.e., higher mortgage approval, 

mortgage loan origination and branch growth rates) at counties proximate to the CEO’s 

hometown, is stronger when the CEO obtains her undergraduate degree from her birth 

state. This is consistent with the idea that when CEOs spend more time in their state 

of birth, they become more deeply rooted to the local community and exhibit a stronger 

tendency to favor their hometown. As nearly two-thirds of CEOs in the sample 

undertook their undergraduate degree in the state that they were born, the hometown 

favoritism effect that I document in the baseline analysis is underestimated.  

Columns (1)-(2) of Panel B show statistically negative coefficient estimates on 

the interaction term Out-of-state CEO x Ln(dist. hometown), indicating that the CEO 

hometown favoritism effect is stronger for out-of-state CEOs. For instance, a CEO 

who was born in California but now works for a bank in Ohio show more hometown 

favoritism to counties in California as compared to a California born CEO lending in 

Californian counties.  

Overall, the results in this section show that endogeneity concerns pertaining 

to CEO-bank matching, omitted CEO characteristics and measurement errors are 

unlikely to influence the interpretation of my findings. Subsequently, any alternate 

endogeneity driven interpretation would have to persist through all the identification 

strategies and fixed effects. This gives me confidence that I am indeed identifying a 
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causal link between CEO hometown favoritism and bank business policies (mortgage 

lending and branching decisions). The results also suggest that CEOs favor their 

hometown because they are emotionally attached to it and care for their hometown 

communities. I investigate this more in the next section.   

3.6 Why Do Bank CEOs Show Favoritism to their Hometown? 

 

 Results in the previous section show that CEOs favor their hometown with 

more mortgage lending and bank branching decisions. In this section, I put forth three 

reasons to explain this finding. The three main reasons are: (1) informational 

advantages; (2) private benefits due to agency conflicts and; (3) altruistic hometown 

attachments. 

First, CEOs could favor their hometown due to informational advantages 

(Coval and Moskowitz, 1999; 2001; Ivkovic and Weisbenner, 2005; Malloy, 2005).72 

CEOs could have local contacts that still reside and work in their hometowns and 

provide them with information regarding local economic conditions and trends (Cohen 

et al., 2008). CEOs could also be better informed about the local culture which reduces 

information asymmetry in loan decisions (Fisman et al., 2017). Finally, informational 

advantages could also arise through accessibility to key politicians and regulators who 

could provide information on legislations or tax policies that could influence bank 

business decisions (Mian et al., 2010; Duchin and Sosyura, 2012).  

A second reason that could explain hometown favoritism is the pursuit of 

private benefits due to the presence of agency conflicts (Jensen and Meckling, 1976; 

                                                           
72 Coval and Moskowitz (1991; 2001) and Ivkovic and Weisbenner (2005) show that mutual fund 

managers and individual investors overweight their investments towards local firms and subsequently, 

outperform in these holdings. Malloy (2005) find that local analysts make more accurate forecasts.  
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Shleifer and Vishny, 1997). Potential private benefits to a manager could be numerous 

and range from monetary benefits to personal utility. By conducting business in her 

hometown, a CEO could obtain local awards, local directorship positions as well as 

speaking arrangements. Further, these hometown favored business strategies of 

additional credit could also increase the utility of the CEO by increasing her status or 

popularity. Importantly, hometown favoritism motivated by agency conflicts could be 

seen as a form of corporate philanthropy to increase the private utility of the CEO at 

the expense of firm shareholders (Masulis and Reza, 2014).  

Finally, the last reason why CEOs favor their hometown in lending and 

business decisions is due to an altruistic hometown attachment. Place attachment 

theory suggests that people develop deep attachments to places that they are familiar 

with such as their hometown, and that these attachments forms a key portion of their 

personal identity (Low and Altman, 1992; Manzo, 2003; Gieryn, 2000; Hernandez et 

al., 2007; Lewicka, 2011). These attachments are stronger the longer one resides in the 

area and increases with the strength of social bonds established in the area (Mesch and 

Manor, 1998). Importantly, place attachment theory suggests that individuals are more 

likely to invest their time and money as well as care more about the welfare of people 

that reside in their place of attachment (Vaske and Kobrin, 2001; Manzo and Perkins, 

2006). Subsequently, it suggests that CEOs may be driven by an altruistic purpose to 

favor residents in their hometown in lending policies.  

3.6.1 Bank-Level Evidence 

 

Crucially, the three interpretations lead to different empirical predictions. If 

informational advantages were the reason behind my findings, the hometown 

favoritism effect that I document in the previous section would arise as an optimal 
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business strategy of the bank. Therefore, I should observe that increases in hometown 

mortgage lending should lead to positive outcomes for banks. If hometown favoritism 

were driven by agency motives, hometown favoritism should be related to agency 

costs and lead to less favorable bank outcomes. Importantly, while hometown 

attachment could indeed manifest as private benefits accrued to the CEO in the 

presence of agency conflicts, what distinguishes the altruistic motive from the agency 

argument is that shareholders of the bank are not harmed by this altruistic hometown 

attachment. In this interpretation, the resources of the bank are simply reallocated to 

serve the areas proximate to the hometown of the CEO.   

Ideally, I would like to observe the ex-post performance of mortgage loans that 

were made by the bank in conjecture with hometown favoritism to disentangle between 

these reasons. Unfortunately, data unavailability prevents me from doing so. Instead, 

I rely on bank-level measures to infer and disentangle the possible explanations behind 

why CEOs favor their hometown. I estimate the following bank-level equation: 

Yit  = αit  + β1%mortgage loan in home state + Bank Controlsit 

+ Bank FE + Year FE + εkt  (3-2) 

 

where i and t indicate bank i and year t respectively. I create a new variable, 

%mortgage loan in home state, which is the proportion of mortgage loans a bank has 

in the state that the CEO was born in, and regress it against several bank-level 

outcomes (Y). Y is total loans scaled by total assets, bad loans and ROA. If hometown 

mortgage lending is optimal (suboptimal), I should observe that increases in hometown 

mortgage lending will lead to better (worst) bank outcomes. Instead, if hometown 

favoritism does not harm shareholder value, I should expect to see an insignificant sign 

on the coefficient of %mortgage loan in home state. 
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Results are shown in Table 3-7. In all specifications, I include bank and year 

fixed effects. I also conduct the analysis using a subsample of only Out-of-state CEOs 

as many CEOs work for banks headquartered in the state of their birth. As observed, 

the coefficient on %mortgage loan in home state is statistically insignificant at the 

conventional levels.73 It is interesting to note that the proportion of total loans to total 

assets is not related to %mortgage loan in home state in Columns (1)-(2). This implies 

that CEOs do not change the proportion of their assets to increase mortgage lending to 

their hometowns, and that lending is simply reallocated from counties that are located 

further away to counties that are geographically proximate. Also, increases in 

mortgage lending to the CEO’s hometown state is not related to aggregate loan 

performance of the loan portfolio (Columns (3)-(4)) or the profitability of the bank 

(Columns (5)-(6)). Taken together, the evidence seems to lend support to the altruistic 

hometown attachment interpretation of why CEOs favor their hometown in business 

policies.  

3.6.2 CEO-Level Evidence 

 

I next focus my attention on the individual traits of the CEO that would likely 

be related to altruistic behavior. If CEOs care more about fulfilling credit demands of 

residents nearer to her hometown for altruistic reasons, I should expect hometown 

effects to be more pronounced if CEOs display traits such as selflessness or patriotism. 

Put another way, I infer the motive of why CEOs lend more to their hometown, 

conditional on a number of traits that are related to altruism.  

                                                           
73 The results are similar even I lag %mortgage loan in home state by one or two years. 
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As I am unable to directly observe a CEO’s degree of altruism, I infer the value 

of these traits based on the CEO’s cultural heritage. Nguyen et al. (Forthcoming) show 

that bank CEOs exhibit distinct behavior depending on the cultural values of the 

country from which their ancestors immigrated from. For instance, CEOs whose 

ancestors were from a country that emphasizes restraint make better use of a bank’s 

economic resources.  

Specifically, I infer the level of CEO altruism based on her inherited cultural 

values of: (1) Collectivism, which reflects an individual’s integration to groups; (2)-

(3) Patriotism and Selflessness, which measures how much a society values individual 

sacrifice for their country and other people; and (4) Humane-oriented, which measures 

the extent to which a society encourages an individual to be altruistic.74 

CEO cultural scores based on her ancestor’s country of origin is assigned to 

the CEO and interacted with Ln(dist. hometown).75 If CEOs lend to their hometown 

for altruistic reasons, I should expect to observe that higher scores on the cultural 

variables (that is, a negative sign on the interaction) should lead to higher lending and 

branching decisions in counties proximate to the hometown of the CEO.  

                                                           
74 Refer to Nguyen et al. (Forthcoming) for a detailed description of the data collection process. I thank 

the authors for providing the data on CEO cultural traits. 
75 If, for instance, the father of the CEO was from Italy, the score for Italy for these four traits would be 

assigned to the CEO. 



 

183 

 

Table 3-7: CEO Hometown Favoritism and Bank Performance 

This table reports estimates of an OLS estimation regression which estimates the proportion of lending by the bank in the home state of the CEO to various measures of 

bank performance I report estimates of the following equation: 

Yit  = αit  + β1%mortgage loan in home stateit + Bank Controlsit + Bank FE + Year FE + εit 

where subscripts i and t indicate bank and year respectively. Y is either: (1) Total Loans/Total Assets, a bank’s total loans divided by its total assets (Columns (1)-(2)); 

(2) Bad Loans/Total Assets, total non-performing loans divided by total assets (Columns (3)-(4)); or (3) ROA, net income divided by total assets (Columns (5)-(6)). 

%mortgage loan in home state is a bank’s portion of mortgage lending made in the CEO’s birth state. The coefficient β1 on %mortgage loan in home state is the variable 

of interest. Standard errors are clustered at the bank-level. The sample covers the period 1999–2014 for which data on CEO birthplace is available. Refer to Appendix 3-

A1 for the definition and construction of variables used in this chapter. The constant is suppressed. t-statistics are reported in parentheses. ***, **, and * indicate 

significance at the 1, 5 and 10% level, respectively.   

 

 (1) (2)  (3) (4) (5) (6) 
 All CEOs Out-state CEOs  All CEOs Out-state CEOs All CEOs Out-state CEOs 

 Total Loans/Total Assets  Non-performing loans/Total Assets ROA 

        
%mortgage loan in home state 0.009 0.023  -0.001 -0.010 -0.015 0.792  

(0.960) (0.332)  (-1.180) (-1.013) (-0.158) (0.895) 

Assets 0.008 -0.006  0.003 0.003 -0.192** 0.042 

 (0.966) (-0.396)  (1.328) (0.475) (-2.119) (0.190) 
Leverage -0.139 -0.057  0.038 -0.008 -21.655*** -23.674*** 

 (-1.224) (-0.208)  (0.932) (-0.068) (-12.771) (-6.173) 
ROA 0.001 -0.002  -0.007*** -0.006**   

 (0.632) (-0.670)  (-8.974) (-2.063)   

Lending    -0.019** -0.052* 0.209 -0.515 
    (-2.577) (-1.704) (0.636) (-0.638) 

Deposit  0.187*** 0.111  0.022** 0.001 -2.101*** -1.853 
 (2.969) (1.070)  (1.995) (0.045) (-4.451) (-1.445) 

        
Bank FE Yes Yes  Yes Yes Yes Yes 

Year FE Yes Yes  Yes Yes Yes Yes 

Adj. R-squared 0.145 0.167  0.515   0.338 0.411 0.383 
Observations 5,357 922  5,357 922 5,357 922 
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 Results of interactions of Ln(dist. hometown) with Collectivism, Patriotism, 

Selflessness and Humane-oriented are shown in Panels A, B, C and D of Table 3-8 

respectively. The coefficient on the interaction terms are generally negative and 

statistically significant across all panels. This indicates that CEOs who inherit cultural 

values that place a greater emphasis on collectivism, patriotism, selflessness and 

humane-orientation make more lending near their hometown as compared to other 

CEOs. These results are in-line with CEOs favoring their hometown for non-self-

serving reasons. 

It is worth noting that these findings also rule out the agency explanation 

behind hometown favoritism.  If agency motives prevailed, I should observe the 

opposite results in the interaction analysis; e.g., the hometown favoritism effects 

should be stronger when the CEO is less collectivistic (more individualistic).  

3.6.3 Recipient Level Evidence 

 

Should the altruistic hometown attachment interpretation explain why CEOs 

favor their hometown, I should expect the hometown favoritism effect to be more 

prevalent in counties and amongst loan applicants that are performing less well and 

require additional help (Vaske and Kobrin, 2001; Manzo and Perkins, 2006). This is 

consistent with earlier evidence that the hometown favoritism effect is stronger during 

periods of economic downturns, when credit conditions are tight and additional credit 

is likely to matter most. If hometown favoritism were driven by altruism, bank 

mortgage lending would be targeted specifically to groups of people that would require 

it the most.  
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Table 3-8: CEO Hometown Favoritism and Cultural Traits  

This table reports estimates of an OLS estimation regression which estimates the CEO hometown 

favoritism effects on bank business policies conditional on the cultural characteristics of the CEO. I 

report estimates of the following equation: 

Yikt  = αikt  + β1CEO characteristicsit x Ln(dist. hometown)ikt + Loan Controlsikt +Bank Controlsit + Bank 

FE + County-Year FE + εikt 

where subscripts i, k and t indicate bank, county and year respectively. Y is either: (1) Approval rate, 

defined as the number of approved mortgage loan applications divided by the total number of 

applications received; (2) ln($originated loan), defined as the logarithmic originated mortgage loans 

relative to the prior year divided by logarithmic originated loans in the prior year; or (3) branches, 

defined as the number of branches minus the number of branches in the prior year scaled by number of 

branches in the prior year. Ln(dist. hometown) is the logarithmic distance between the bank CEO’s 

hometown county and the county in which lending or branching decisions take place. CEO 

characteristics are the CEO’s inherited cultural values of Collectivism, which reflects an individual’s 

integration in groups (Panel A); Patriotism and Selflessness, which capture how much a society values 

individual sacrifice for their own country and other people (Panels B and C); and Humane-oriented, 

which measures the extent to which a society encourages an individual to be altruistic (Panel D). The 

coefficient β1 on CEO characteristics x Ln(dist. hometown) is the variable of interest. Control variables 

include: (Collectivism x Ln(dist. HQ), Collectivism in Panel A), (Patriotism x Ln(dist. HQ), Patriotism 

in Panel B), (Selflessness x Ln(dist. HQ), Selflessness in Panel C), (Humane-oriented x Ln(dist. HQ), 

Human-oriented in Panel D), Ln(dist. HQ), Assets, Leverage, ROA, Lending, Deposit, %female 

applicants, %minor applicants and Loan/Income. Standard errors are clustered at the bank-level. The 

sample covers the period 1999–2014 for which data on CEO birthplace is available. Refer to Appendix 

3-A1 for the definition and construction of variables used in this chapter. The constant is suppressed. t-

statistics are reported in parentheses. ***, **, and * indicate significance at the 1, 5 and 10% level, 

respectively.   

 
Panel A: CEO’s Collectivism Culture (1) (2) (3) 

 Approval rate ln($originated branches 
  loan)  

    

Collectivism x Ln(dist. hometown) -0.017*** -0.034*** -0.004  
(-4.381) (-6.269) (-0.946) 

Collectivism x Ln(dist. hometown) x Ln(dist. HQ) 0.001* 0.004*** 0.001 

 (1.897) (4.818) (1.064) 

Ln(dist. hometown) x Ln(dist. HQ) -0.004* -0.020*** -0.004 

 (-1.747) (-5.910) (-1.043) 

Ln(dist. hometown) 0.064*** 0.143*** 0.014 

 (3.942) (6.233) (0.751) 

    

Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 

Other Controls Yes Yes Yes 

Adj. R-squared 0.226 0.105    0.083   

Observations 298,238 197,651 41,435 

    

Panel B: CEO’s Patriotism Culture (1) (2) (3) 

 Approval rate ln($originated branches 
  loan)  

    

Patriotism x Ln(dist. hometown) -0.009** -0.050*** -0.005  
(-2.089) (-8.121) (-1.019) 

Patriotism x Ln(dist. hometown) x Ln(dist. HQ) 0.000 0.007*** 0.001 

 (0.753) (7.342) (1.108) 

Ln(dist. hometown) x Ln(dist. HQ) -0.002 -0.028*** -0.005 

 (-0.736) (-8.979) (-1.323) 

Ln(dist. hometown) 0.027* 0.178*** 0.015 
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 (1.791) (8.319) (0.943) 

    

Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 

Other Controls Yes Yes Yes 

Adj. R-squared 0.239 0.108 0.091 

Observations 298,238 197,651 41,435 

     

Panel C: CEO’s Selflessness Culture (1) (2) (3) 

 Approval rate ln($originated branches 
  loan)  

    

Selflessness x Ln(dist. hometown) -0.011 -0.134*** -0.022*  
(-1.102) (-9.538) (-1.886) 

Selflessness x Ln(dist. hometown) x Ln(dist. HQ) 0.002 0.021*** 0.003 

 (1.311) (10.189) (1.110) 

Ln(dist. hometown) x Ln(dist. HQ) -0.001 -0.012*** -0.002* 

 (-1.143) (-16.975) (-1.767) 

Ln(dist. hometown) -0.001 0.048*** 0.006 

 (-0.159) (9.565) (1.479) 

    

Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 

Other Controls Yes Yes Yes 

Adj. R-squared 0.239 0.108 0.091 

Observations   298,238 197,651   41,435 

    

Panel D: CEO’s Humane-oriented Culture (1) (2) (3) 

 Approval rate ln($originated branches 
  loan)  

    

Humane-oriented x Ln(dist. hometown) -0.024*** -0.041*** -0.004  
(-7.667) (-8.905) (-1.178) 

Humane-oriented x Ln(dist. hometown) x Ln(dist. HQ) 0.002*** 0.005*** 0.001 

 (4.565) (7.051) (1.106) 

Ln(dist. hometown) x Ln(dist. HQ) -0.008*** -0.023*** -0.003 

 (-4.201) (-8.438) (-1.084) 

Ln(dist. hometown) 0.091*** 0.165*** 0.014 

 (7.129) (8.947) (0.950) 

    

Bank FE Yes Yes Yes 

County-Year FE Yes Yes Yes 

Other Controls Yes Yes Yes 

Adj. R-squared 0.226 0.105 0.083 

Observations 298,238 197,651 41,435 

     

 

 

 

 

 

 



 

187 

 

In Panel A of Table 3-9, I condition the baseline results on county-level 

characteristics. I define Struggle county in Columns (1)-(2) as the % unemployment 

rate of the county and as the % of non-home owners in the county in Columns (3)-(4) 

respectively and interact it with Ln(dist. hometown).76 The negative coefficient on the 

interaction term Struggle county x Ln(dist. hometown) in all columns indicate that 

CEOs lend more to proximate counties with weaker economic conditions, i.e., those 

with high unemployment rates and in counties with a higher proportion of residents 

staying in rented homes.  

In Panel B of Table 3-9, I directly condition the results on the characteristics 

of the mortgage applicants received by the bank in a county-year. Marginal applicant 

is defined in Columns (1)-(2) using the applicant’s reverse income decile where a 

higher index indicates poorer applicants; in (3)-(4) using the applicant’s loan-to-

income where a higher ratio indicates riskier applicants; and in (5)-(6) as the ratio of 

non-white applicants reviewed by the bank in the county. I then interact Marginal 

applicant with Ln(dist. hometown).

                                                           
76 A high proportion of non-home ownership indicates that a large proportion of local residents live 

houses that they rent, instead of own.    
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Table 3-9: CEO Hometown Favoritism and Mortgage Loan Recepients 

This table reports estimates of an OLS estimation regression which estimates CEO hometown favoritism on bank business policies conditional on county and applicant 

characteristics I report estimates of the following equation: 

             Yikt  = αikt  + β1Struggle countykt or Marginal applicantikt x Ln(dist. hometown)ikt + Loan Controlsikt +Bank Controlsit + Bank FE + County-Year FE + εikt 

where subscripts i, k and t indicate bank, county and year respectively. Y is either: (1) Approval rate, defined as the number of approved mortgage loan applications 

divided by the total number of applications received; (2) ln($originated loan), defined as the logarithmic originated mortgage loans relative to the prior year divided by 

logarithmic originated loans in the prior year; or (3) branches, defined as the number of branches minus the number of branches in the prior year scaled by number of 

branches in the prior year. Ln(dist. hometown) is the logarithmic distance between the bank CEO’s hometown county and the county in which lending or branching 

decisions take place. In Panel A, Struggle county is defined using the county’s unemployment rate (Columns (1)-(2)) or the county’s proportion of houses not occupied 

by its owner (Columns (3)-(4)).  In Panel B, Marginal applicant is defined using the mortgage applicant’s reverse income decile (Columns (1)-(2)), loan-to-income ratio 

(Columns (3)-(4)), or race (Columns (5)-(6)). The coefficient β1 on Struggle county or Marginal applicant x Ln(dist. hometown) are the variables of interest. Control 

variables include: (Struggle county x Ln(dist. HQ), Struggle county in Panel A), (Marginal applicant x Ln(dist. HQ), Marginal applicant in Panel B), Ln(dist. HQ), 

Assets, Leverage, ROA, Lending, Deposit, %female applicants, %minor applicants and Loan/Income. Standard errors are clustered at the bank-level. The sample covers 

the period 1999–2014 for which data on CEO birthplace is available. Refer to Appendix 3-A1 for the definition and construction of variables used in this chapter. The 

constant is suppressed. t-statistics are reported in parentheses. ***, **, and * indicate significance at the 1, 5 and 10% level, respectively.   

  

       

Panel A: Struggling Counties (1) (2) (3) (4) 
Struggle county defined as: Unemployment rate %non-home owner 

 Approval rate ln($originated loan) Approval rate ln($originated loan) 
     
Struggle county x Ln(dist. hometown) -0.001*** -0.003*** -0.019** -0.035***  

(-2.873) (-5.072) (-2.481) (-3.272) 
Struggle county x Ln(dist. hometown) x Ln(dist. HQ) 0.000*** 0.001*** 0.007*** 0.006*** 

 (3.306) (6.140) (4.877) (3.454) 
Ln(dist. hometown) x Ln(dist. HQ) -0.001*** -0.005*** -0.002*** -0.003*** 

 (-2.968) (-8.884) (-4.222) (-5.375) 
Ln(dist. hometown) -0.001 0.011*** -0.002 0.004 

 (-0.371) (3.071) (-0.681) (0.949) 

     
Bank FE Yes Yes Yes Yes 

County-Year FE Yes Yes Yes Yes 
Other Controls Yes Yes Yes Yes 
Adj. R-squared 0.184 0.101 0.178 0.098 

Observations 558,051 407,556 558,051 407,556 
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Panel B: Marginal Applicants       (1) (2) (3) (4) (5) (6) 
Marginal applicant defined as: Reverse Income Deciles Loan/Income %Minor applicants 

 Approval 

rate 
ln($originated 

loan) 

Approval ln($originated 

loan) 

Approval 

rate 
ln($originated 

loan) rate 

       
Marginal applicant x Ln(dist. hometown) 0.001*** -0.001** -0.001* -0.004*** 0.003 -0.050***  

(-3.304) (-2.124) (-1.646) (-3.785) (0.619) (-7.265) 

Marginal applicant x Ln(dist. hometown) x Ln(dist. HQ) 0.000 0.000 -0.003*** -0.003*** 0.000 0.006*** 
 (1.171) (0.320) (-81.865) (-57.466) (0.019) (5.595) 

Ln(dist. hometown) x Ln(dist. HQ) -0.004** -0.002 0.001*** -0.003*** 0.000 -0.003*** 

 (-2.309) (-1.038) (13.474) (-24.035) (0.150) (-9.785) 
Ln(dist. hometown) -0.001 -0.018*** -0.014*** -0.000 -0.004** -0.017*** 

 (-0.759) (-7.918) (-14.734) (-0.002) (-2.249) (-7.680) 
       

Bank FE Yes Yes Yes Yes Yes Yes 

County-Year FE Yes Yes Yes Yes Yes Yes 
Other Controls Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.197         0.113       0.197   0.113 0.178 0.097 
Observations 558,932 408,184 558,932 408,184   558,932 408,184 
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The coefficient on the interaction terms are generally statistically negative, 

indicating that CEO hometown favoritism effects are stronger in counties where 

applicants face a higher barrier in securing mortgage loans; i.e., those that are poorer, 

riskier, and belonging to a minority group.  

Given that home ownership has been a hallmark of the “American dream” 

(Laeven and Popov, 2017), my findings that CEOs increase mortgage lending more 

when proximate counties are struggling and among marginal applicants supports the 

idea that CEOs aim to help their hometown residents achieve their aspirations. It is 

worth pointing out that these cross-sectional results do not reflect aggregate changes 

in the loan portfolio of the bank. The performance of the loan portfolio of the bank 

does not change conditional on hometown mortgage lending. Increases in mortgage 

loans to struggling counties and marginal applicants located nearer to the hometown 

of the CEO are met with decreases in mortgage lending from applicants that are located 

further away.  

3.6.4 Small Business Lending Evidence 

 

So far, the analysis focuses on mortgage lending. However, given also the 

importance of credit supply to small business outcomes and local economic effects 

(e.g., Rice and Strahan, 2010; Chodorow-Reich, 2013; Krishnan, Nandy, and Puri 

2014), I conduct an out-of-sample test to examine whether counties located nearer to 

the CEO’s hometown also enjoy more small business lending. I obtain small business 

lending data from the Community Reinvestment Act (CRA) database collected by the 

Federal Financial Institutions Examination Council (FFIEC). As before, the data are 

aggregated at the bank-county-year level.  
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I use two dependent variables, ln(#loans) and ln($loans), which measure the 

change in small business loan originations (in number and nominal amount) by a bank 

in a given county, relative to the prior year. 77, 78 As before, I include bank and county-

year fixed effects. Results are shown in Panel A of Table 3-10. As small business loans 

vary substantially in size, I further categorize them into three size brackets: Columns 

(1)-(2) consider loans whose amount is below $100,000 while Columns (3)-(4) 

consider loans between $100,000 and $250,000. Columns (5)-(6) consider loans 

between $250,000 and $1,000,000. 

The coefficient on Ln(dist. hometown) is negative and statistically significant 

at the 1% level in Columns (1)-(4); meaning that CEOs increase their lending to small 

businesses whose business loans do not exceed $250,000 in counties proximate to the 

CEO’s hometown. This reflects favoritism to only the small and medium sized 

businesses, but not when loans are large (more than $250,000). This aligns well with 

the earlier interpretation of a hometown altruistic driven motive. Should CEOs be 

motivated by other reasons (such as agency conflicts, e.g., the pursuit of fame), it is 

more likely that CEOs would favor lending to larger firms (that would borrow larger 

amounts) which would grant them more visibility and repute in the local community.   

In Table 3-10 Panel B, I repeat the analysis of bank-level outcomes (following 

Section 3.6.1) conditional on the proportion of small business lending the bank makes 

in the home state of the CEO. The coefficient on %small business loan in home state 

                                                           
77 A disadvantage of the CRA data is that CRA only reports data that is originated while HMDA data 

allows me to observe the entire pool of loan level applications (including loans that are rejected). Thus, 

I am unable to construct the Approval rate variable for small business lending.  
78 ln(#loans) is defined as the logarithmic number of small business loans made relative to the prior 

year divided by the logarithmic number of loans in the prior year. ln($loans) is the logarithmic total 

loans made relative to the prior year divided by the logarithmic total loans in the prior year. 
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Table 3-10: CEO Hometown Favoritism and Small Business Lending 

This table (Panel A) reports estimates of an OLS regression which estimates the effect of CEO hometown favoritism on small business lending and Panel B reports 

estimates of an OLS regression which estimates the effect of CEO hometown favoritism on aggregate bank performance. I report estimates of the following equation in 

Panel A: 

Yi,k,t  = αi,k,t  + β1Ln(dist. hometown)i,k,t +Bank Controlsi,t + Bank FE + County-Year FE + εi,k,t 

where subscripts i, k and t indicate bank, county and year respectively. Y is ln(#loans) in odd-numbered columns, defined as logarithm of the number of loans originated 

relative to the prior year divided by logarithm number of loans in the prior year. In even-numbered columns, Y is ln($loans), defined as logarithm $ amount of loans 

originated relative to the prior year divided by logarithm $ amount of loans in the prior year. Columns (1)-(2) include loans whose amount at origination is less than or 

equal to $100,000. Columns (3)-(4) include loans whose amount at origination is more than $100,000 but less than or equal to $250,000. Columns (5)-(6) include loans 

whose amount at origination is more than $250,000 but less than or equal to $1,000,000. Ln(dist. hometown) is the logarithmic distance between the bank CEO’s 

hometown county and the county in which lending or branching decisions take place. The coefficient β1 on Ln(dist. hometown) is the variable of interest in Panel A. I 

report estimates of the following equation in Panel B:  

Yi,t  = αi,t  + β1%small business loan in home statei,t +Bank Controlsi,t + Bank FE + Year FE + εi,t 

where subscripts i and t indicate bank and year respectively. Y is either: (1) Total Loans/Total Assets defined as the number total loans divided by total assets (Columns 

(1)-(2)); (2) Bad Loans/Total Assets, defined as total non-performing loans divided by total assets (Columns (3)-(4)); or (3) ROA, defined as total income divided by total 

assets (Columns (5)-(6)). %small business loan in home state is the total small business loans that the bank makes in the state that the CEO was born divided by total 

small business loans. The coefficient β1 on %small business loan in home state is the variable of interest in Panel B. Standard errors are clustered at the bank-level. The 

sample covers the period 1999–2014 for which data on CEO birthplace is available. Refer to Appendix 3-A1 for the definition and construction of variables used in this 

chapter. The constant is suppressed. t-statistics are reported in parentheses. ***, **, and * indicate significance at the 1, 5 and 10% level, respectively. 

 

Panel A: Small Business Lending (1) (2) (3) (4) (5) (6) 
Loan size Amount <=$100k 100k<Amount <=$250k 250k<Amount <=$1000k 

 ln(#loans) ln($loans) ln(#loans) ln($loans) ln(#loans) ln($loans) 
       
Ln(dist. hometown) -0.007*** -0.012*** -0.008*** -0.009*** 0.003 0.002 

 (-3.535) (-8.837) (-2.735) (-4.235) (0.958) (1.152) 
Ln(dist. hometown) x Ln(dist. HQ) 0.001*** 0.002*** -0.001 -0.001* -0.004*** -0.003*** 

 (3.499) (8.943) (-1.201) (-1.790) (-6.341) (-8.479) 
Ln(dist. HQ) 0.001 -0.012*** -0.027*** -0.034*** -0.011*** -0.019*** 

 (0.486) (-8.186) (-8.040) (-13.652) (-3.312) (-7.731) 

Assets 0.052*** 0.034*** 0.032*** 0.025*** 0.052*** 0.015** 
 (10.116) (9.316) (3.490) (3.568) (5.140) (2.074) 

Leverage 0.337*** 0.164** 0.150 0.307** 0.768*** 0.525*** 
 (3.342) (2.548) (0.832) (2.280) (4.012) (3.859) 
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ROA -0.041*** -0.015*** -0.005* -0.000 -0.000 0.006** 
 (-21.866) (-11.951) (-1.695) (-0.177) (-0.005) (2.478) 

Lending 0.439*** 0.261*** 0.015 -0.041 -0.054 -0.072** 

 (18.339) (16.347) (0.363) (-1.313) (-1.252) (-2.262) 
Deposit  0.555*** 0.353*** -0.267*** -0.173*** -0.231*** -0.140*** 

 (19.860) (17.348) (-5.067) (-4.285) (-4.306) (-3.531) 
       

Bank FE Yes Yes Yes Yes Yes Yes 
County-Year FE Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.043 0.033 0.036 0.055 0.031 0.051 

Observations 277,496 277,483 117,654 117,654 113,175 113,175 

        
Panel B: Small Business Lending (1) (2)  (3) (4) (5) (6) 
& Bank Outcomes All CEOs Out-state CEOs  All CEOs Out-state CEOs All CEOs Out-state CEOs 
 Total Loans/Total Assets  Non-performing loans/Total Assets ROA 

        
%small business loan in home state 0.050 -0.014  -0.002 0.003 -0.014 0.340  

(1.146) (-0.148)  (-1.267) (0.256) (-0.148) (0.484) 

Assets -0.014 -0.292***  0.004 0.004 -0.292*** -0.276 
 (-0.800) (-2.847)  (1.130) (0.462) (-2.847) (-1.298) 

Leverage -0.094 -22.183***  0.036 -0.012 -22.183*** -22.500*** 
 (-0.307) (-10.401)  (0.606) (-0.077) (-10.401) (-5.030) 

ROA -0.001 0.267  -0.007*** -0.006*   
 (-0.252) (0.697)  (-7.065) (-1.772)   

Lending    -0.021** -0.066 0.267 -0.177 

    (-2.199) (-1.631) (0.697) (-0.252) 
Deposit 0.198** -2.494***  0.040*** 0.013 -2.494*** -2.098* 

 (2.038) (-5.043)  (2.722) (0.499) (-5.043) (-1.691) 
        

Bank FE Yes Yes  Yes Yes Yes Yes 

Year FE Yes Yes  Yes Yes Yes Yes 
Adj. R-squared 0.163    0.183  0.418 0.402   0.497       0.340 

Observations 3,913 775  3,913 775 3,913 775 
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 is insignificant in all columns and is not related to the proportion of Total Loans/Total 

Assets (Columns (1)-(2)), Bad Loans/Total Assets (Columns (3)-(4)), and ROA 

(Columns (5)-(6)), consistent with results and explanations laid out in Section 3.6.1. 

This, again, supports the hometown altruistic explanation and does not lend support to 

the information and agency motives for hometown favoritism.   

Taken together, while I do not have one single test to powerfully rule out 

alternative interpretations such as the information or agency explanations, the body of 

evidence strongly points to the altruistic hometown attachment motive as the main 

explanation of the effects I document. That is, CEOs make more mortgage and small 

business lending as well as open more branches nearer to their hometown because they 

want to help their hometown communities. This does not harm the bank’s performance 

and benefits residents proximate to the CEO’s hometown at the expenses of those 

located further away.  

3.7 The Effects of CEO’s Hometown Favoritism on County Development 

 

The findings so far show that banks make more lending and open more 

branches in areas closer to a CEO’s hometown. In this section, I explore if counties 

that have larger exposure to hometown favoritism enjoy greater economic benefits. 

I aggregate data at the county-year level and exploit variation in a county’s 

exposure to CEOs hometown favoritism in the following equation: 

Ykt  = αkt  + β1Hometown Favoritism Exposurekt + β2HQ Favoritism 

Exposurekt + County Controlskt  + County FE + Year FE + εkt  (3-3) 

 

where subscripts k and t indicate county and year, respectively. The dependent variable 

is one of the following two county-level measures of economic development: (1) 
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Ln(Personal Income), the natural logarithm of individual income from wages, 

investment enterprises and other ventures and; (2) Unemployment rate. Hometown 

Favoritism Exposure is the fraction of branches in the county that is exposed to bank’s 

CEO hometown favoritism. A branch is considered to be exposed to a CEO’s 

hometown favoritism if it is located within a 645 kilometer radius (25th percentile) to 

the bank CEO’s birthplace.79, 80 It measures the proportion of branches in the county 

which belong to CEOs that considers the county “home”. I also include HQ Favoritism 

Exposure to control for possible bank HQ effects. All models include county and year 

fixed effects as well as time-varying county-level variables for population size and the 

HHI of county-level deposit concentration (Cetorelli and Strahan, 2006).  

The results in Table 3-11 Panel A suggest that counties with a higher exposure 

to CEO hometown favoritism are associated with significantly higher personal 

incomes (Column (1)) and lower unemployment rates (Column (2)). These findings 

indicate that exposure to hometown favoritism lead to positive local economic 

developments. It should be pointed out that although I include county and year fixed 

effects (and therefore hold constant any time-invariant county characteristics that 

could bias my findings), the results I document in this section should be interpreted 

with caution as it lacks the strong identification of my main tests. Nonetheless, at the 

minimum, I show that there is a positive correlation between hometown favoritism and 

county-level benefits to residents that are proximate to the CEO’s hometown.  

 

 

                                                           
79 I obtain consistent results when using other thresholds.  
80 In addition to using the fraction of exposed branches, I also use the fraction of mortgage lending 

(Panel B) and small business lending (Panel C) that is exposed to hometown favoritism and obtain 

consistent results. 
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Table 3-11: CEO Hometown Favoritism and County Outcomes  

This table reports estimates of an OLS estimation regression which estimates if CEO hometown 

favoritism affects county economic development. I report estimates of the following equation: 
Ykt  = αkt  + β1Hometown Favoritism Exposurekt + County Controlskt 

+ County FE + Year FE + εkt 

where subscripts k and t indicate county and year respectively. Y is either: (1) Ln(Personal Income), the 

natural logarithm of the individual’s income from wages, investment enterprises and other ventures, or 

(2) Unemployment rate. Hometown Favoritism Exposure is the fraction of branches (Panel A) in the 

county that is exposed to CEO’s hometown favoritism. A branch is considered to be exposed to 

hometown favoritism if it is located within 625 km (25th percentile) from the bank CEO’s birthplace. 

Hometown Favoritism Exposure is defined as the fraction of mortgage lending and the fraction of small 

business lending that are exposed to CEO’s hometown favoritism in Panels B and C respectively. The 

coefficient β1 on Hometown Favoritism Exposure is the variable of interest. Standard errors are clustered 

at the county-level. The sample covers the period 1999–2014 for which data on CEO birthplace is 

available. Refer to Appendix 3-A1 for the definition and construction of variables used in this chapter. 

The constant is suppressed. t-statistics are reported in parentheses. ***, **, and * indicate significance 

at the 1, 5 and 10% level, respectively. 

 

Panel A: Exposure measured using  (1) (2) 
#branches Ln(Personal 

Income) 

Unemployment 

rate  

   
Hometown Favoritism Exposuret-1 0.016*** -0.268*** 

 (3.542) (-4.224) 

HQ Favoritism Exposuret-1 0.016*** -0.193** 
 (3.039) (-2.539) 

Ln(HHI)t-1 0.000 0.006 
 (0.042) (0.259) 

Ln(Population)t-1 -0.002 0.020 
 (-1.166) (1.228) 

   

County FE Yes Yes 
Year FE Yes Yes 

Adj. R-squared 0.356 0.209 
Observations 22,741 22,741 

   

Panel B: Exposure measured using (1) (2) 
Mortgage Loan Originations Ln(Personal 

Income) 

Unemployment 

rate  

   
Hometown Favoritism Exposuret-1 0.041*** -0.726*** 

 (7.499) (-9.841) 

HQ Favoritism Exposuret-1 0.017*** -0.234*** 

 (3.025) (-2.948) 
Ln(HHI)t-1 -0.002 0.004 

 (-0.737) (0.176) 
Ln(Population)t-1 -0.002 0.016 

 (-1.210) (1.121) 

   
County FE Yes Yes 

Year FE Yes Yes 
Adj. R-squared 0.356 0.209 

Observations 22,741 22,741 
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Panel C: Exposure measured using (1) (2) 
Small Business Loan Originations Ln(Personal 

Income) 

Unemployment 

rate  

   
Hometown Favoritism Exposuret-1 0.019*** -0.416*** 

 (4.565) (-7.268) 

HQ Favoritism Exposuret-1 0.009** -0.263*** 
 (2.077) (-4.334) 

Ln(HHI)t-1 -0.002 0.007 

 (-0.718) (0.318) 
Ln(Population)t-1 -0.002 0.017 

 (-1.071) (1.151) 
   

County FE Yes Yes 

Year FE Yes Yes 
Adj. R-squared 0.356 0.209 

Observations 22,741 22,741 

 

An alternate way to interpret the results is that hometown favoritism in one 

area implies bias against residents in another. Since residents in a given county are not 

easily able to select their level of exposure to bank CEO’s hometown favoritism, this 

implies that some counties have lower levels of economic outcomes as a result of their 

lower exposure to favoritism. This suggests that hometown favoritism, while arising 

out of the goodwill of bank CEOs, could inadvertently contribute to economic 

inequality.  

3.8 Conclusion 

 

 This chapter provides evidence on the effects of CEO hometown favoritism on 

a firm’s production outputs, i.e., bank credit allocation decisions, and uses it to 

quantify the effects of hometown favoritism on the real economy. I find that banks 

increase mortgage and small business origination and open more branches in counties 

that are closer to the CEO’s birthplace and that this effect reflects the CEO’s altruistic 

hometown attachment rather than information advantages or agency costs. 

Specifically, the hometown favoritism effect is stronger during economic downturns, 

among altruistic CEOs, in poorer counties, and among marginal applicants. I interpret 
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this as evidence of CEOs helping their hometown residents to achieve their aspirations 

of home ownership.   

Furthermore, hometown favoritism does not affect the bank’s profitability. I 

also find suggestive evidence that hometown favoritism is associated with positive 

county-level economic outcomes. The findings imply that hometown favoritism is 

beneficial to residents proximate to the CEO’s hometown with no additional cost to 

the bank. However, since residents in a given county cannot easily control their 

exposure to favoritism, this indicates that some “unlucky” counties with lower 

exposure to favoritism may have to experience lower economic developments. 

Therefore, hometown favoritism, while arising out of the altruistic goodwill of the 

CEO, might inadvertently contribute to economic inequality. 
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Appendix 3-A1: Definition of Variables 

Variables  Definition Source 

   

Main Variables  

Ln(dist. hometown)  The natural logarithm of the physical distance between the bank CEO’s 

hometown county and the county in which lending or branching decisions 

take place  

Various 

sources 

Ln(dist. HQ)  The natural logarithm of the physical distance between the bank HQ 

county and the county in which lending or branching decisions take place 

SOD 

Hometown state  A dummy that equals 1 if the CEO’s birth state and the state in which the 

lending or branching decisions take place is the same 

Various 

sources 

HQ state  A dummy that equals 1 if the bank’s HQ state and the state in which the 

lending or branching decisions take place is the same 

SOD 

   

Bank Characteristics  

Assets Natural logarithm of total assets  FRY-9C 

Leverage  Total liabilities divided by total assets FRY-9C 

ROA (%) Earnings before interest and taxes divided by total assets  FRY-9C 

Lending  Total loans divided by total assets FRY-9C 

Deposit Total deposits divided by total assets FRY-9C 

Non-performing 

loans  

Non-performing loans divided by total assets FRY-9C 

%mortgage loan in 

home state 

The fraction of mortgage lending made in the CEO’s birth state HMDA 

%small business loan 

in home state 

The fraction of small business lending made in the CEO’s birth state CRA 

   

Mortgage Loan Characteristics  

Approval rate The number of mortgage loan applications approved divided by the total 

number of applications received by a bank in a county-year 

HMDA  

ln($originated loan)  The logarithmic originated mortgage loans relative to the prior year divided 

by logarithmic originated loans in the prior year by a bank in a county-year 

HMDA 

branches  The number of branches minus the number of branches in the prior year 

scaled by number of branches in the prior year for a bank in a county-year 

HMDA  

%female applicants  The ratio of the number of applications from female applicants to the total 

number of applications reviewed for each bank-county-year 

HMDA 

%minor applicants The ratio of the number of applications from minority applicants to the 

total number of applications reviewed for each bank-county-year. Minority 

applicants include all applicants whose reported race is non-white 

HMDA 

Loan/Income  The average ratio of the loan amount in a mortgage application to the 

applicant’s income for applications reviewed in each bank-county-year 

HMDA 

Reverse Income 

Decile  

10 – Applicant’s Income Decile  HMDA  

   

Small Business Loan Characteristics   

ln(#loan)  The logarithm of the number of loans originated relative to the prior year 

divided by logarithm number of loans in the prior year  

CRA 

ln($loan)  The logarithm $ amount of loans originated relative to the prior year 

divided by logarithm $ amount of loans in the prior year 

CRA 

   

County Characteristics   

Unemployment rate  Unemployment rate of the county  

 

Bureau of 

Labor 

Statistics  

%non-home owner The fraction of houses not occupied by the owner in the county Bureau of 

Labor 

Statistics  

Ln(Personal Income) The natural logarithm of the average individual’s income from wages, 

investment enterprises and other ventures in the county 

Bureau of 

Labor 

Statistics 

Ln(HHI) The natural logarithm of the HHI of deposits (calculated as the summation 

of the deposit2 of branches) in the county 

SOD 
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Ln(Population) The natural logarithm of the population in the county Bureau of 

Labor 

Statistics 

Home Favoritism 

Exposure 

The proportion of branches in a county that is considered exposed to CEO 

hometown favoritisim. A branch is considered to be exposed to hometown 

favoritism if it is located within 625 km (25th percentile) from the bank 

CEO’s birthplace 

Various 

HQ Favoritism 

Exposure 

The proportion of branches in a county that is considered exposed to the 

HQ. A branch is considered to be exposed to HQ favoritism if it is located 

within 625 km (25th percentile) from the bank’s HQ 

Various 

   

CEO Characteristics    

MBA Dummy equals 1 if the CEO has an MBA degree   BoardEx 

Ivy League Dummy equals 1 if the CEO obtains a degree from an Ivy League 

institution    

BoardEx 

Age The age of the CEO BoardEx 

Depression baby Dummy equals 1 if the CEO is born between 1920 and 1929 BoardEx 

Crisis career starter Dummy equals 1 if the CEO starts her career (assuming at the age of 22) 

during a crisis  

BoardEx, 

NBER crisis 

database 

Overconfidence  Equals 1 if the CEO holds exercisable stock options that are at least 67% in 

the money. 

BoardEx 

Military experience  Dummy equals 1 if the CEO has prior military experience  BoardEx 

Hometown UG Dummy equals 1 if the CEO undertakes an undergraduate degree in her 

birth state 

BoardEx 

Out-of-state CEOs Dummy equals 1 if the CEO was born in a state different from the bank’s 

HQ state 

BoardEx 

Collectivism  Measures the individual integration to groups based on the cultural 

ancestry of the CEO 

Hofstede 

Patriotism  Measures how much a society values individual sacrifice for their own 

country based on the cultural ancestry of the CEO 

European 

Value 

Survey 

(EVS) 

Selflessness  Measures how much a society values individual sacrifice for other people 

based on the cultural ancestry of the CEO 

European 

Value 

Survey 

(EVS) 

Humane-oriented  Measures how much a society encourages individuals to be altruistic based 

on the cultural ancestry of the CEO 

GLOBE 
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Appendix 3-A2: CEO’s Birth State 

This table reports descriptive statistics of states in which bank CEOS were born in. The sample covers 

the period 1999–2014 for which data on CEO birthplace is available.  
 

Birth State #CEOs Percentage (%) 

AL 13 2.68 

AR 2 0.41 

AZ 3 0.62 

CA 27 5.57 

CT 10 2.06 

DC 2 0.41 

FL 10 2.06 

GA 13 2.68 

HI 3 0.62 

IA 6 1.24 

IL 20 4.12 

IN 19 3.92 

KS 4 0.82 

KY 7 1.44 

LA 3 0.62 

MA 17 3.51 

MD 9 1.86 

ME 8 1.65 

MI 11 2.27 

MN 7 1.44 

MO 8 1.65 

MS 19 3.92 

MT 2 0.41 

NC 31 6.39 

ND 1 0.21 

NE 2 0.41 

NJ 16 3.3 

NY 48 9.9 

OH 25 5.15 

OK 3 0.62 

OR 2 0.41 

PA 48 9.9 

RI 4 0.82 

SC 13 2.68 

SD 2 0.41 

TN 2 0.41 

TX 18 3.71 

UT 3 0.62 

VA 24 4.95 

VT 3 0.62 

WA 8 1.65 

WI 3 0.62 

WV 6 1.24 
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Appendix 3-A3: Alternate Definition of CEO Hometown Favoritism 

This table reports estimates of an OLS regression which estimates the effect of CEO hometown 

favoritism on bank business policies. I report estimates of the following equation: 

Yi,k,t  = αi,k,t  + β1Hometown statei,k,t + Loan Controlsi,k,t +Bank Controlsi,t + Bank FE + County-Year FE 

+ εi,k,t 

where subscripts i, k and t indicate bank, county and year respectively. Y is either: (1) Approval rate, 

defined as the number of approved mortgage loan applications divided by the total number of 

applications received; (2) ln($originated loan), defined as the logarithmic originated mortgage loans 

relative to the prior year divided by logarithmic originated loans in the prior year; or (3) branches, 

defined as the number of branches minus the number of branches in the prior year scaled by number of 

branches in the prior year. Hometown state is a dummy variable that equals 1 if the county that bank 

decisions take place in is in the state where the CEO was born and 0 otherwise. The coefficient β1 on 

Hometown state is the variable of interest. Control variables include: Hometown state*HQ state, Assets, 

Leverage, ROA, Lending, Deposit, %female applicants, %minor applicants and Loan/Income. Standard 

errors are clustered at the bank-level. The sample covers the period 1999–2014 for which data on CEO 

birthplace is available. Refer to Appendix 3-A1 for the definition and construction of variables used in 

this chapter. The constant is suppressed. t-statistics are reported in parentheses. ***, **, and * indicate 

significance at the 1, 5 and 10% level, respectively.   

 

 (1) (2) (3) 
 Approval rate ln($originated loan) branches 
    
Hometown state 0.011*** 0.021*** 0.006**  

(6.831) (9.414) (2.450) 
HQ state 0.020*** 0.096*** 0.012*** 

 (13.883) (48.762) (5.551) 
    

Bank FE Yes Yes Yes 
County-Year FE Yes Yes Yes 

Other Controls Yes Yes Yes 

Adj. R-squared 0.178   0.095  0.058 
Observations 559,263 408,377   85,138 
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Conclusion 

 
This thesis contains three independent chapters that study banking in the U.S. 

The first two chapters study how supervisors and regulators influence bank behavior. 

The third chapter explores how bank CEOs allocate credit. 

The findings in Chapter 1 are of broad interest to regulators and help inform 

policy debates regarding regulations and supervision. It studies the effects of 

supervision on bank behavior. I use a novel setting, the closure of regulatory offices, 

as negative shocks to the efficacy of bank supervision. I find that following regulatory 

office closures, banks under the supervision of the closed office become riskier and 

expand their loan portfolios more aggressively as compared to banks located in the 

same counties but are not under the supervision of the closed office. Further, I show 

that supervisors were not too strict prior to office closures and that closures led to worst 

bank outcomes. Banks affected by regulatory office closures prior to the 2007-2009 

financial crisis exhibit lower risk-adjusted returns, larger loan losses and a higher 

probability of failure during the crisis, leading to higher bank resolution costs. Finally, 

I show evidence that information asymmetry issues between supervisors and banks is 

one mechanism that impedes supervision. 

Chapter 1 paints a positive picture of the effectiveness of a decentralized 

structure of bank supervision where supervisory offices are located close to the banks 

which they examine due to informational advantages. Supervisors should carefully 

weigh the cost savings of maintaining a more centralized organizational structure 
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against the possibility of less effective bank supervision, keeping in mind that bank 

fragility might not manifest immediately but only during economic downturns.  

Chapter 2 draws attention to the darker side of interactions between regulators 

and bank directors and suggests that connections between regulators and bankers 

warrant more scrutiny. The chapter shows that connections established while bank 

directors hold public service positions in regulatory agencies undermines supervisory 

effectiveness. I demonstrate that banks with public service connections hold less 

capital for a given increase in risk than non-connected banks. As a result, connected 

banks are able to shift risk to the financial safety-net and extract larger public 

subsidies. The analysis also shows that preferential treatment by regulators is one 

reason why connected banks are able to shift risk to the safety-net. Further, risk-

shifting at well-performing connected banks lead to wealth transfers from the taxpayer 

to shareholders of these banks.  

Despite public service positions carrying no formal authority on matters 

relating to supervision and enforcement, connected banks are still afforded preferential 

treatment. Supervisors should consider the costs of maintaining supervisory 

consistency against the potential benefits of industry insights that bankers bring during 

their involvement with regulatory agencies.  

Chapter 3 provides evidence on the effects of CEO hometown favoritism on 

credit allocation and bank policies. I find that banks increase mortgage and small 

business lending as well as open more branches in counties that are closer to the CEO’s 

birthplace as compared to counties that are located further away. CEOs show 

favoritism to their hometown due to altruistic attachments; hometown favoritism 
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effects are stronger during economic downturns, among altruistic CEOs, in poorer 

counties, and among marginal applicants. Finally, I show that CEO hometown 

favoritism does not affect the bank’s profitability and is associated with positive 

economic outcomes in counties exposed to greater favoritism.  

The findings in Chapter 3 implies that since residents of a given county cannot 

easily control their exposure to favoritism, hometown favoritism, while arising out of 

the altruistic goodwill of the CEO, might inadvertently contribute to economic 

inequality.  
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