
A Merge Algorithm for Circuit Partitioning

Go-An Rau

A thesis submitted for the degree of

Doctor of Philosophy

to the Faculty of Science and Engineering of the University of Edinburgh.

1995

Abstract

Digital systems continue to increase in size and complexity, and the associated

design process has grown lengthy and expensive. A method for partitioning these

designs into smaller sub-units is required for board and integrated circuit levels of

implementation. In addition, rapid checks of the functionality of a particular design

will require a digital system to be partitioned into the set of programmable logic

devices that form a system emulator.

A merge algorithm for circuit partitioning is presented in this thesis. Results are

presented illustrating the performance of a software implementation of this

algorithm. These results show that successful circuit partition can be efficiently

achieved.

The merge algorithm is based on the simple concept that cells having the maximum

number of connections should be the first to be merged. Merging starts with a

predefined initial size constraint on circuit groups, and it is implemented in several

stages. In each stage, the size constraint on groups is enlarged to keep the merge

operation active. A free competitive merge strategy followed by a leading groups

merge strategy is used to ensure a good size balance between the finally partitioned

groups.

A pseudo-parallel merge algorithm is presented to reduce the processing time when

the design to be partitioned is large. This facilitates rapid exploration of possible

partition solutions. A data parallelism approach is adopted which distributes data to

a number of processors. Each processor contains the same merge algorithm program

operating on a different segment of the circuit netlist. Results are presented showing

that the pseudo-parallel merge algorithm reduces the time to partition a circuit while

maintaining the same quality of result. The predicted performance of a fully parallel

implementation of the merge algorithm is also investigated. Practical and computer

generated netlist are used to investigate the performance of the experimental

partitioning software system.

11

Declaration of Originality

Except where noted in the text, the research recorded in this thesis is the original and

sole work of the author.

Go-An Rau

May 1995

111

Acknowledgements

I wish to thank Professor Jim Jordan and Doctor John Hannah for their advice and

direction during the course of the research recorded in this thesis. The support of the

Science and Engineering Research Council and the Government of Taiwan, R.O.C.

is gratefully acknowledged.

I also would like to thank InCA in general for supporting the use of their VA

software, and in particular Bijan Kiani, John Dunn, Shaun Lytollis and Alison

Ahmed for their valuable discussions during the development of this research.

iv

Contents

Abstract 	 ii

Declaration of Originality 	 iii

Acknowledgements 	 iv

Contents 	 V

1.0 	Introduction 1

1.1 Programmable logic devices 3

1.1.1 Using programmable logic device for emulation 3

1.1.2 The criterion for accessment of PLDs 4

1.2 Digital emulator 6

1.2.1TheVA 6

1.2.2 The Anyboard 7

1.3 The need for partition 9

1.4 Thesis structure 11

2.0 	Partitioning Techniques 13

2.1 Graph and hypergraph 13

2.1.1 Graph 13

2.1.2 Hypergraph 14

2.2 Partitioning 15

2.2.1 Definition of terms 16

2.2.2 Cost function 18

2.3 Iterative improvement algorithms 20

2.3.1 The Kernighan-Lin heuristic 20

2.3.2 The Fiduccia-Mattheyses heuristic 25

v

2.3.2.1 Data structure - Bucket list structure 28

2.3.2.2 Initialising the data structure 29

2.3.2.3 Updating the bucket data structure 31

2.3.3 The Krishnamurthy heuristic 32

2.4 Other partitioning techniques 36

2.5 Summary 37

3.0 	The Merge Algorithm 38

3.1 Merge operation 38

3.1.1 The primitive merge operation 38

3.1.2 The basic merge operation on two-terminal nets 41

3.1.3 The merge operation on multi-terminal nets 43

3.2 Graph representation 46

3.2.1 Using a matrix to represent a graph 46

3.2.2 Using a linked list to represent a graph 47

3.3 Merging strategy 49

3.3.1 Free merge 49

3.3.2 Free merge with size constraint 50

3.3.3 Merge in-turn 50

3.3.4 Merge in stages 50

3.4 Partitioning with a merging algorithm 52

3.4.1 Data structures 52

3.4.2 Merging algorithm 56

3.5 Constraints on merge algorithm 63

3.6 Parallel process on merge algorithm 63

3.7 Summary 64

4.0 	Implementing the Merge Algorithm 65

4.1 The data structure for implementing the merge algorithm 67

vi

4.2 The routines for merge 74

4.2.1 The merge_in_cell-net 75

4.2.2 The merge_in_graph 77

4.3 Summary 83

5.0 	The performance of merge algorithm 84

5.1 Experimental system 84

5.1.1 Random circuits 84

5.1.2 Structural circuits 84

5.1.3 Test circuits 85

5.2 Result 87

5.3 Mapping a design to a target structure 88

5.3.1 Mapping a design to a fixed target structure 95

5.3.2 Mapping a design to a flexible hardware target structure 96

5.4 Summary 98

6.0 The Pseudo-Parallel Process for Merge Algorithm 99

6.1 Parallel processing 99

6.2 A pseudo-parallel processing method for the merge algorithm 101

6.2.1 The data parallel method 102

6.2.2 Functions required for the data parallel method 103

6.2.2.1 Divider 103

6.2.2.2 A merge algorithm for parallel process method 108

6.2.2.3 Coordinator 108

6.2.2.4 Constructor 110

6.3 Performance of the pseudo-parallel MA 111

6.3.1 Test circuits 111

6.3.2 Results 114

6.4 Summary 123

vii

7.0 Summary and Conclusions 124

7.1 Summary 124

7.2 Conclusions 126

7.3 Further work 126

7.3.1 Partitioning for improving place and route 126

7.3.2 Improving timing performance 127

7.3.3 Equal weight 129

7.3.4 The methods for selecting candidates to merge 129

7.4 The benefits of the Merge Algorithm 129

Reference 	 130

Appendices 	 142

Appendix A: The InCA CIF Netlist Format 	 142

Appendix B: Random Circuit Generator 145

Appendix C: Data Preparation 158

C. 1 	A simple one-level netlist 158

C.2 	Hierarchical structural netlist 160

C.3 Flattening a system 162

C.4 A parser for CIF format netlist 164

C.5 The data structure for implementing the merge algorithm 165

C.6 Creating cell and net list 168

C.7 	The routine for creating cell-net list 170

C.8 The routine for creating graph and merge sequence 171

Appendix D: The Programming Code for Merge Algorithm 172

Appendix E: The Programming Code for Pseudo Parallel Merge Algorithm 182

viii

CHAPTER 1

Introduction

Partitioning has numerous definitions in different scientific and engineering

application areas. In this thesis partitioning is aimed at dividing a large circuit into

two or more small circuits to suit various technologies for implementing a digital

system. This research project started in collaboration with InCA (Integrated Circuit

Applications Limited). This company was interested in implementing a digital

design by means of arrays of FPGAs. Visits were made to InCA during this project

to discuss ideas for solving practical partitioning problems with industrial experts

working for InCA. Unfortunately, InCA has been taken over by a much larger

American company and it has been difficult to continue with this collaboration.

There are a wide variety of implementation approaches for a digital system.

Generally speaking, system designers have the options of prototyping their designs

by using either dedicated hardware or software simulation. To provide an early

working prototype, a dedicated hardware implementation consisting of available

standard parts can be created to give designers a real feel of how the system will

work and a chance to try out many functions and locate the hidden problems in the

system. Unfortunately, designers who have tried this method have been diverted

from real task of testing function and have spent considerable time on issues not

directly related to the final design, such as wire-wrapping and soldering errors and

defective components. In addition, the circuit overhead and long development time

make the resultant cost increase dramatically when the system is large and complex.

1

Introduction

Thus, its usage is limited.

Over the years digital circuit designers have used software algorithms for simulation

of their designs at logic gate level. Simulation of a design involves the execution of

an algorithm that models the behaviour of the actual design. Simulation provides the

ability to analyse and verify a design without actually constructing the design and

has many benefits in design process. However, simulation suffers from three major

limitations:

the speed of simulation.

the need for simulation models.

the inability to actually connect a simulation of one part of a design to actual

physical implementation of another part of the design.

Therefore, the results of using software algorithms for simulation have nearly always

been poor, with gate level simulation consuming large quantities of time and

computing resources. There also have been many examples of designs that were

simulated properly but have failed to operate correctly after committing designs to

silicon.

A digital emulator, which is constructed with programmable logic devices, can solve

many of the problems of dedicated hardware and software simulation. Like a

conventional breadboard, the digital emulator provides a hardware model of the

design, letting the designer test and debug a system that is operating at or close to

real-time speeds. Unlike a conventional breadboard, however, changes may be made

to a design by editing a schematic diagram instead of changing wires.

The resulting system provides functional and timing verification at speeds thousands

of times faster than the fastest hardware simulation accelerators, which are

2

Introduction

themselves thousands of times faster than software simulation. Because the digital

emulator is a user-programmable hardware test bed, it can easily be configured for

fault emulation as well, giving the same acceleration factors for the test generation

process as for the design verification process. Furthermore, it is easy to

accommodate arbitrary catalog components within the emulation system, and to

interface the digital emulator with other emulation system(such as microprocessor

emulators for firmware and software development).

A digital emulator helps in the development of integrated circuit and system design

by quickly and automatically generating a hardware prototype of the integrated

circuit or system to be designed from user's schematics or net list. The prototype is

electrically reconfigurable and may be modified to represent an infinite number of

designs with little or no manual wiring changes or device replacement. The

prototype runs at real time or close to real time speed and may be plugged directly

into a larger system.

1.1. Programmable logic devices

1.1.1. Using programmable logic device for emulation

As a broad definition, a programmable logic device is an integrated circuit capable

of having its function defined by the user at the point of design rather than during IC

production. A complex ASIC design can be implemented by an array of PLDs which

are programmed individually in advance and wire-wrapped on a board according to

the pre-defined connections. This board can be further plugged into the ASIC socket

in a target system. Then designers may execute a large number of verification cycles.

System software and some peripheral devices can be developed and tested on the

target hardware. PLDs have obvious advantages since initial ASIC production is

avoided and design faults can be located in the early design phase.

3

Introduction

PLDs have become increasingly important to system manufacturers and designers

for use in prototyping early ASIC production and low volume manufacture. For

prototyping, PLD's are often used as hardwired emulators to test out designs and

state machines before they are committed to silicon.

Each PLD is usually based around the concept of a single repeatable cell which

consists of basic gates and can be instanced from one to many times over the silicon.

With PLDs now reaching higher gate densities it should be possible to emulate entire

VLSI designs on an array of devices connected through a standard PCB. The design

could then be down loaded using silicon compilation technology to place and route

the gates over the whole array.

1.1.2. The criteria for assessment of PLDs

There are several PLD ranges which might be used for ASIC emulation. One of the

most obvious differences between the various PLDs on the market is the

functionality which is attached to each of the repeatable cells. The other main

difference is the method which each manufacturer uses to program his device. There

are three types of PLD.

The fuse programmable device, in which the connectivity and function of each

logic block is defined by removing links using a "programmer".

The anti-fuse programmable device, in which the connectivity and function of

each logic block is defined by creating links, again using a "programmer".

Configurable logic in which the function and connectivity of each block is

defined by static memory.

In the first two cases the devices may be either re-usable or non re-usable whereas

all the configurable logic can be redefined. The Xilinx FPGA [17], [36] is one of the

ru

Introduction

most popular and widely used configurable logic device. Its user-programmable

array architecture is made up of three types of configurable elements: inputioutput

blocks (JOBs), logic blocks and interconnect. The array of Configurable Logic

Blocks (CLBs) provides the functional elements from which the user's logic is

constructed. The logic blocks are arranged in a matrix within the perimeter of JOBs.

The user can define individual I/O blocks for interface to external circuitry and

define interconnection network to compose larger scale logic functions.

In order to select suitable PLDs to optimise a design, there are some factors which

should be taken into consideration [36-42]:

What percentage of the available gates are used once the design is downloaded

onto the chip? This must be considered, in conjunction with software provided

by the manufacture, for placing and routing gates onto the PLDs.

What functions are the particular cells capable of fulfilling? All the PLDs on

the market provide the normal boolean operations. However they differ

according to the size of the equations which can be placed within each cell and

the number of inputs and outputs allowed.

It is desired to program an array of PLDs through an interface connected to a

host without having to place individual chips in special programmers. Thus

dynamic programmability allows the user to be disassociated from the physical

construction of the hardware.

The number of inputs and outputs which can be supplied to each PLD or

logical block is important. 110 characteristics can restrict the use of a particular

area of cells. For example, if the function requires only one input more than the

number supplied by a particular PLD an extra package will be required.

5

Introduction

(5) The lower and higher level software available for programming and placing

particular functions within an array of PLD must be considered. Each PLD

chip has to be programmed independently and the high level partitioning

software will have to know how much functionality to assign each cell and

chip. In part, the "chunk" sizes assigned to each chip will be determined by the

efficiency of the low level minimisation and placement software (the lower

level software).

1.2. Digital Emulator

There are already some digital emulators available, two of which are introduced in

the following. One is called the VA (Virtual ASIC) developed by InCA (Integrated

Circuit Applications Limited) which is contained in a single cabinet, suitable for

either desktop or stand-alone use and capable of emulating up to 80,000 gates. The

other one is called the Anyboard Rapid Prototyping System created at NCSU (North

Carolina State University) for the development and rapid implementation of digital

hardware designs.

1.2.1. The VA

The VA emulator hardware [7] is based on arrays of Xilinx FPGAs (XC3090). A six

FPGA architecture shown in Figure 1.1 and a twelve FPGA ring architecture shown

in Figure 1.2 have been developed. The components in the centre of the ring (FPGA

5/6 and FPGA 9/10/11/12 for the six FPGA and twelve FPGA designs respectively)

are used as interconnect components and the FPGAs on the outer ring provide a

logic and interconnect resource. The numbers associated with the connecting lines

shown in Figures 1.1 and 1.2 indicate the programmable interconnects available for

linking to FPGAs. The six FPGA design includes an 11-way bus that provides a

direct connection to all FPGAs. This bus is driven from the front plane and connects

Introduction

to 110 pins on the FPGAs. It is used for clock lines, critical input nets and high fan-

out nets. The twelve FPGA design includes a 3-way bus, driven from the front plane,

that connects to all of the FPGAs. The unconnected lines in both figures indicate the

external 110 capability of the emulator cards.

Each of the centre (interconnect) FPGAs used in the twelve FPGA design can be

viewed as the hub of a wheel with eight spokes corresponding to the 16 interconnect

lines from each of the eight rim FPGAs. The four hub FPGAs provide a total

interconnect from a rim FPGA to the centre of 4 x 16 i.e. 64 lines. This design

ensures that each rim FPGA is a single hop (i.e. one interconnect link across an

FPGA) from any other rim FPGA.

bus(0: 10)

Figure 1.1 Six FPGA emulator board

1.2.2. The Anyboard

The structure of Anyboard [2 1-24], [84-86] is shown in Figure 1.3. The heart of the

Anyboard is an array of five Xilinx FPGAs (XC3090) that provide a large collection

of uncommitted logic gates. The usable gate count is approximately 25,000 logic

7

Introduction

gates.

Adjacent Xilinx chips in the array are connected by local buses that provide

communication between function blocks in systems too large to fit on one chip.

High-fan-out signals (such as clocks) can be allocated to the global bus that connects

to all the FPGAs.

'..

	

716(32) 	 16(32) /
16(32)

	

28 	 28
FPGA 1 FPGA 2 	 FPGA 3

28 	 28

FPGAs
9,10

16(32) 	 64 	 11,12 	 16(32)
FPGA 8 .' 	FPGA 4

28 	 28

	

64 /

	

64 	 64

FPGA 7 	 FPGA 6 	 FPGA 5

	

32) 	 16(32) 	 16(32)

I 	I 	i 	I 	bus(1:2) 	1 	I 	i 	I 	I 	I 	I

Figure 1.2 Twelve FPGA emulator board

RAMs are attached to the FPGAs in the middle of the array because the Xilinx chips

do not provide sufficient storage for memory-intensive designs. The leftmost Xilinx

chip serves as an address generator for all the RAMs. This limits the flexibility of

RAM addressing, but saves a large number of 1/0 pins on each FPGA.

N.

Introduction

The Anyboard communicates with external systems through its system interface, an

extension of the global bus with dedicated 110 lines from each FPGA. With

appropriate connectors and level-conversion circuitry attached, the Anyboard can

emulate an ASIC.

The Anyboard hardware is built on a single 13-by-4-inch card and housed in an

ordinary PC. Interfacing to the PC's ISA (Industry Standard Architecture) bus allows

the Anyboard to access the hardware resources of the PC and act as a simple

coprocessor.

System configuration data cascades through the Xilinx chips on a single wire. Each

FPGA picks off its own configuration data and passes along the remainder to the

chips downstream.

Global

System
interface

cal

Xilinx Xilinx Local
Xilinx Local

Xilinx

FPGA FPGA FPGA FPGA

Download

Control mx
and FPGA

I Readbac

AddressH
RJ RAM

res__
Buffers

dl

4 °
PCinterfac

Figure 1.3 Anyboard

1.3. The need for partitioning

Semiconductor circuit technology continues to advance. Moore's law [15] states

Introduction

that the number of discrete components that can be placed on a single substrate will

be doubled every five years. Fair [16] has speculated that, provided no fundamental

limits are encountered and microfabrication equipment to operate with a 0.3u feature

size can be economically developed, the ULSI (Ultra Large Scale Integration) era

will, at the end of this century, lead into gigantic scale integration (GSI) with a

capability of 226 or 67 million components per chip. It is clear that levels of silicon

system complexity will continue to increase and a stronger need will emerge for

rapid prototyping methods that will enable the functionality of product

specifications to be evaluated in a realistic setting.

As FPGAs become a mainstream technology to be considered for board, system and

application specific integrated circuit (ASIC) design processes, design complexity

will continue to increase more rapidly than the availability of larger, faster devices

[19], [20]. Board-level designers find that consolidating random logic into FPGAs

saves valuable board real estate and can often improve reliability. System-level

ASIC designers are turning to FPGAs for design verification due to their lower cost

and the advantages of more rapid prototyping. Complex designs with FPGAs can

require multiple iterations in order to achieve a successful design implementation. If

automatic design tools cannot provide a solution, the designer is forced to obtain

expert level architectural knowledge to support the manual intervention required to

complete the design. To effectively use multiple FPGAs, while enjoying the benefit

of shorter design time, an automatic partitioning method is strongly required to

partition a large design among multiple devices.

Many partitioning approaches have been proposed for attacking circuit partitioning

problem, such as clustering [1], [8], [66-68], eigenvector decomposition [25],

network flow [26], [35], [93-98], group swapping [3-5], [27-29], [101] and simulated

annealing [30], [33], [34], [70]. The clustering method is limited by the lack of a

10

Introduction

global view. The eigenvector decomposition requires the transformation of every

multi-terminal net into a two-terminal net in real circuits before establishing the

matrix. The network flow method usually produces two unevenly sized partition.

The group swapping approach needs a good initial partition to start with. Simulated

annealing requires a long running time. These available partitioning techniques

cannot suit the requirements of the increasingly circuit complexity and the rapid

growth of the circuit size. The merge algorithm presented in this thesis possesses a

number of features that will lead to its preferred use as circuit size and complexity

continue to increase:

A well-defined data structure that can easily incorporate the required

information to suit various circuit requirements.

A multi-way partitioning algorithm.

A parallelizable algorithm which can be executed on a multi-processor

computer to reduce processing time as circuit size increases.

1.4. Thesis structure

Chapter 2 describes the terminologies of graph theory which are related to the

partitioning problems, and reviews the partitioning techniques, such as the

Kernighan-Lin based heuristics, constructive, simulated annealing and ratio cut

methods. The Kernighan-Lin based heuristics which includes the Kernighan-Lin

heuristic, the Fiduccia-Mattheyses heuristic and the Krishnamurthy heuristic, are

intensively discussed.

A new method for merging cells to achieve a desired partition is introduced in

Chapter 3. The basic merging concept and operation are described and some

merging strategies are discussed. The flow chart of the merge algorithm is

11

Introduction

described.

In Chapter 4 the data structure and important routines for implementing the merge

algorithm are described and Chapter 5 presents the results of partitioning two test

circuits which have been created by a random circuit generator.

When the design becomes large, the execution speed of the available partitioning

approaches tends to be slow. Chapter 6 presents a pseudo-parallel merge algorithm

which is developed to cope with increasing circuit size and complexity. The merge

algorithm has the parallelizable feature which can be implemented by data-

parallelism method. The design can be evenly distributed to several processors in a

computer. Each processor contains the same program operating on a different

portion of the design. This concept is realised in a serial way by splitting the design

into several small size pieces, the procedures residing in a single processor

sequentially work on them. This provides a better speed performance while

maintaining the same quality of result. Distributing the data to several processors

can be predicted to give even better speed performance than a single processor.

Finally, chapter 7 summarises the work presented in this thesis, and suggests future

work.

12

Partitioning Techniques

CHAPTER 2

Partitioning Techniques

The partitioning problem is usually formalized as an operation on graphs and

hypergraphs which are briefly described in this chapter. Some terminologies and

definitions related to the partitioning problem are illustrated. Three related

partitioning approaches which have been used in many applications are discussed.

The common idea among these approaches is that an initial partition is given and the

algorithm improves the quality of the partition by modifying the partition iteratively.

2.1. Graph and hypergraph

Graphs and hypergraphs appear in many areas, such as in electrical engineering,

computer science, chemistry and geography. Graphs find their importance as models

for many kinds of problems and processes. The components on a circuit board

connected by wires form a graph, as do cities connected by highways. An organic

chemical compound can be considered a graph with the atoms as vertices and the

bonds between them as edges. Graph theory has long become recognised as an

important and useful mathematical background in these areas [63-65].

The basic definitions in the area of graphs are described in the following. The

definitions included here will be related to the partitioning problems later.

2.1.1. Graph

A graph G(X, U) consists of a set of vertices X = { x 1 , x2 , 	
}

and a set of edges

13

Partitioning Techniques

U = {
u 1 , u2 , 	},

the edges are pairs of distinct vertices from X. If u = (x 1 , x2) is

an edge with vertices x1, and x2 , then x 1 and x2 are said to lie on u, and u is incident

to x 1 and x2 .

The intuitive way to picture a graph is to represent vertices as points, squares or

circles and edges as line segments or arcs connecting the vertices. Figure 2.1 shows

an example of a graph. Here X ={x 1 , x2 , x3 , x4 , x5 , x6 1, U = {u 1 , u2 , u3 , u4 , u5 , u6 ,

u7
 }.

The edge u7 = (
x1, x5)

incident to x 1 and x5 which are called its endpoints.

The edge u3 and u4 have the same endpoints and therefore are called parallel edges.

The degree of a vertex x , d(x), is the number of times x is used as an endpoint of

the edges. Thus, in our example d(x 2)=4, d(x4)=1 and d(x 5)=2. Also, a vertex x

whose degree is zero is called isolated; in this example x 6 is isolated since d(x 6)=O.

Figure 2.1 A graph

2.1.2. Hypergraph

A hypergraph H = (V, E) consists of a finite set of vertices V = {v 1 , v2 , 	
}

and a

set of hyperedges E = {e 1 , e2 , 	e,,
-}

where e 1 is the subset of V, IeI ~! 2 and ue,

= V, where i E I. If IeI = 2, then a hypergraph becomes a graph.

A hyperedge with two endpoints is sometimes called a two-terminal edge; a

hyperedge with more than two endpoints is sometimes called a multi-terminal edge.

14

Partitioning Techniques

If e 1 = (v 1 , v 2 , v 3) is a hyperedge with vertices v 1 , v 2 , and v 3 , then v 1 , v 2 , and v 3 are

said to lie on e 1 , and e 1 is said to be incident to v 1 , v 2 , and v 3 . The degree of a

vertex v is the number of hyperedges incident to v.

A hypergraph is shown in Figure 2.2, which consists of V = {v 1 , v2 , v 3 , v4 , v 5 , v6 ,

v7 , v8 }, and E = { e 1 , e2 , e3 , e4 , e5 }. The vertices are drawn as points. An edge e

with Ie,I > 2, is drawn as a curve encircling all the vertices of e•. An edge e, with 1e 1 1

= 2, is drawn as a curve or a line segment connecting its two vertices.

VA

Figure 2.2 A hypergraph

2.2. Partitioning

Partitioning is the task of decomposing a design into parts so that a given objective

function is optimised. The objective function may be quite complex according to the

application. For example, system designers have to decompose the circuitry they

wish to implement, into components that can be realised with standard parts such as

TTL logic or with custom and semi-custom chips. The cost function in this case

includes the design time, performance of the system, the reliability of the design,

etc.. To simplify the objective function, circuit partitioning problems are

15

Partitioning Techniques

concentrated on the links (wires) between components. Before discussing the

partitioning techniques, some definitions and terminologies are described in the

following.

2.2.1. Definition of terms

Definition 2.1: Network

A network (circuit or system), which is denoted by S, is a set of cells (components,

modules) which are interconnected.

Definition 2.2: Partition

A partition of a network S separates the network into two or more parts, i.e. S = {

s1; 2;"; s 1 }, Si cS, Us 1 = S, Si r) Si = 0, i # j, and i,j,t E I.

Definition 2.3: Net

A net, which is denoted by n, may be viewed as the connection that links a set of

cells together. Examples of nets are shown in Figure 2.3.

Definition 2.4: Cutset

A cutset is the set of nets that interconnects cells in different parts of a partition, for

instance, of a network S = { A; B } shown in Figure 2.4. In this case, cutset = {n 1 ,

n2 , n6 }.

Definition 2.5: Cutsize

A cutsize is the number of nets in the cutset. The cutsize of the partition in Figure

2.4 is 3.

16

Partitioning Techniques

prp

n 1 is a net which connects two cells.
and is a hyperedge with 1n 1 1 = 2

n2 is a net which connects three cells
and is a hyperedge with 1n2 1 = 3

n3 is a net which connects five cells.
and is a hyperedge with 1n3 1 = 5

Figure 2.3 Examples of nets

17

Partitioning Techniques

Figure 2.4 An example of a cutset

A circuit contains some elements and their interconnecting wires. The elements are

often called components, modules, or cells, and the wires are called nets. Use will be

made of cells as the general term for elements in a circuit, and nets as wires. Cells

can be viewed as vertices, and nets as hyperedges in a hypergraph. From now on,

these names will be used interchangeably depending on the problems under

investigation.

2.2.2. Cost Function

A formal description of partitioning problem is given as follows: For any network S

= (C,N), let C = {
c 1 , c2 , 	, 	 , c} be a set of q cells, interconnected by a set

of nets, N = {
n 1 , 	 for instance, n1 may interconnect several

number of cells, i.e., n = { (
c, CO, (

c1 , c2),
. .,(

c, Cm) },
where 1 :~ m :!~ q and

FI

Partitioning Techniques

m#j. Nets with m=l are sometimes called two-terminal nets and nets with m ~:2 are

sometimes called multi-terminal nets. Net n has at least a pin on each of the cells it

connects. The number of pins on a cell c, is denoted as p(i), and the total number of

pins in the circuit as P. The problem is to find a partition of S, S = { S, St I'

S i c S. U Si = S. Si fl .v = 0, i # j, subject to the size constraints to each part of

the partition , which minimises the cost function:

ct(S) = 	 ct(i, j)
CtESh, C1ESk h#k

where ct(i, j) is the cost of nets that connect c, to c, i.e. the number of nets between

c, and c.

This problem is NP-hard [13], [31-32], [99] and there are various ways in which the

solution of the NP-hard problem can be approached. The heuristic partitioning

algorithms is by far the most widespread method in practice today [2]. In these

algorithms iterative improvement techniques have been used most in many

applications. The common concept among these methods is that an initial solution

(partition) is given and the algorithms improve the quality of the solution by making

local changes to the initial partition.

The simplest form of iterative improvement algorithm is the so called random

interchange algorithm [69]. In this algorithm, a given partition, is modified by first

selecting a pair of cells, one in each element of the partition, and then evaluating the

cost of the partition by interchanging them. These algorithms use randomly selected

pair of cells to swap and accept an interchange only if the cost function decreases. If

the cost function increases the interchange is rejected and the cells remain in their

previous positions.

Cell swapping was sugested by Kernighan and Lin who proposed a two-way

partitioning algorithm [3]. Subsequently, many improvements have been made to

19

Partitioning Techniques

this method. Fiduccia and Mattheyses [4] improved this algorithm by moving one

cell at a time. Krishnamurthy [5] further added a lookahead ability. The details of

these algorithms are discussed in the next section.

For the sake of simplicity the various iterative algorithms will be discussed,

assuming that the bi-partition problem is to be solved, i.e., that S = {A;B}, where A

and B are two subset of S and ISI=2. Assume further that the weights of all the nets

and the sizes of all the cells to be partitioned are the same.

2.3. Iterative improvement algorithms

2.3.1. The Kernighan-Lin heuristic

The basic idea of this algorithm is again to interchange pairs of cells among the two

elements of the partition to obtain a better solution. Instead of randomly selecting

pairs of cells to swap, a scoring function is used to evaluate the interchanges.

Before the algorithm for the Kernighan-Lin approach is explained in detail, some

definitions are required as follows:

Definition 2.6: (External and Internal Two-Terminal Net Cost)

For any partition S = {A;B } which is a network S = (C,N), the external two-terminal

net cost of a cell c, E A is defined as

E(i) = Z ct(n)
n=(c1 c)EN

C 3 E13

where ct(n) is the cost of nets that connect c, to c, i.e. the number of nets between

c 1 and c.

Similarly, the internal two-terminal net cost is defined as

20

Partitioning Techniques

ct(n)
fl=(c1c)EN

C EA

The definitions for c, E B are made in the same way.

Definition 2.7: Gain

The gain of c, is defined as

D(i) = E(i) - 1(i)

A simple example shown in Figure 2.5 illustrates the basic calculations of these

functions.

E(i)=3 I(i)=3 D(i)=O

E(j)=2 I(j)=3 D(j)=—1

Figure 2.5 Cost calculation

Lemma 2.1:

Consider any c1 E A, c E B. If c, and c are interchanged, the gain (that is, the

reduction in cost) is precisely D(i) + D(j) - 2ct(i, j).

proof: Let z be the total cost due to all connections between A and B that do not

21

Partitioning Techniques

involve c, or c. Obviously the cost including these two cells is

T = z + E(i) + E(j) - ct(i, j)

Exchange c, and c, let T' be the new cost. The following result is obtained.

T' = z + 1(i) + 1(j) + ct(i, j)

and then

gain = old cost - new cost = T - T'

= E(i) - 1(i) + E(j) - 1(j) - 2ct(i, j)

= D(i) + D(j) - 2ct(i, j) 0

D(i) is the amount by which the cutsize decreases if c1 changes sides in the partition.

Then obviously an exchange of the cell pair {c 1 , c} is associated with a decrease in

the cutsize of D(i) + D(j) - 2ct(i, j), where ct(i, j) is the cost of the net (c, c) if

that net exists, otherwise ct(i, j) = 0. In fact, if the two cells are interchanged, the

nets that were connecting c, to cells in B, become internal interconnections and do

not contribute to the cost function. However, the nets that interconnect c1 to cells in

A, become external interconnections after the interchange and they now contribute

to the cost of the partition. Note that the term 2ct(i, j) is subtracted from the cost

function since the connections between ci and c are counted twice as external

connections in E(i) and E(j).

Consider a simple example given in Figure 2.6. This network has 8 cells

interconnected by 18 nets. A partition of a network is denoted by PT. Obviously the

optimal solution of this network is PT01 , i.e.,

PT0 . S = {A;B}

where A = { 1,2,3,4}, B = {5,6,7,8}. The cutsize of this partition is equal to 2.

22

Partitioning Techniques

Suppose a partitioning procedure starts with the initial partition PT 1 whose cutsize

is equal to 8. To reduce the danger of being trapped in local minima, Kernighan and

Lin select the pairs of cells whose exchange results in the largest decrease of the

cutsize or the smallest increase, if no decrease is possible.

PTopt

A 	 : 	 B

PT 1t

Figure 2.6 A graph to be partitioned

In Figure 2.6, such a pair is, for instance, the pair {4,5}, the corresponding exchange

increases the cutsize by 2. The gain calculation is as follows:

E(4)=2,I(4)=3

D(4)=E(4)—I(4)=-1

E(5)=2,I(4)=3

D(5)=E(5)— I(5)=-1

ct(4,5)=O

D(4,5) = E(4) + E(5) - 1(4) —1(5) - 2ct(4,5)

=2+2-3-3-0=-2

23

Partitioning Techniques

The new configuration of this network after exchange is shown in Figure 2.7.

PT(45) -----

Figure 2.7 A new partition after cells swap

This exchange is made only temporatory, however. The exchanged cells are now

locked. This locking prohibits them from taking part in any further tentative

exchanges. A search is then made for a second pair whose exchange improves the

cut cost. In this example, a suitable pair is {2,7}. This procedure is continued,

keeping a record of all tentative exchanges and the resulting cutsizes. The procedure

finishes when all cells are locked. At this time, both side of the partition have been

exchanged and are back to the original cutsize. Table 2.1 shows a possible choice of

pairs of the example in Figure 2.7. The fifth column in the table displays the change

in the cutsize, if the first corresponding exchanges in the table are perfonned. The

third column of the table shows the gain with respect to the previous result and the

fourth column contains the respective new cutsize.

The final procedure is exchanging a sequence of pairs of cells from step 1 to the step

that results a best cutsize. In this example, step 2 reaches a smallest cutsize, so that

the cells in pairs {4,5} and {2,7} are exchanged, and this produces an optimal

partition in this example.

Partitioning Techniques

Step No. Selected .pair Gain Cutsize Change

0 - - 8 -

1 {4,5} -2 10 2

2 {2,7} 8 2 -6

3 {1,8} -8 10 2

4 {3,6} 1 	2 8 1 	0

Table 2.1 The record of cell exchanges for Figure 2.6

2.3.2. The Fiduccia-Mattheyses heuristic

Fiduccia and Mattheyses improved Kernighan-Lin heuristic by introducing the

following new elements:

Only a single cell is moved across the cut in a single move, then it is locked

following the move.

The "cell gain" concept is introduced to help select the cell to be moved from

one block of the partition to the other.

The concept of the D value is extended to hypergraphs, this makes the

algorithm able to handle hypergraphs.

A minimum balance condition is maintained throughout the process.

As before, the moves in a pass are tentative and are followed by locking the moved

cell. They may increase the cutsize. However, just as in Kemighan-Lin heuristic, at

the end of a pass, when no more moves are possible, the sequence of moves is

realised only if it decreases the cutsize. Otherwise, the pass is ended.

25

Partitioning Techniques

The concept of the algorithm will now be detailed. The extension of the D value to

hypergraphs is quite straightforward. It is only necessary to redefine the internal and

external hyperedge costs as follows.

Definition 2.8: (External and Internal Net Cost)

For any partition S = {A,B } which is a network S = (C,N), the external net cost of

cell c1 is defined as

E(i) = E ct(n)
eEN ex,j

where

Next ,i{fl ENI{c}=nrA}

Analogously, the internal net cost of cell c1 is defined as

ct(n)
eEN1,

where

N 1 ={n€NIc,enandnnB=ø}

With these provisions, the gain D(i) is again defined as

D(i) = E(i) - 1(i)

Intuitively, N ext ,j is the set of nets that is removed from the cut if c, changes sides,

and Nin,j is the set of nets that is added to the cut if c1 changes side. With these

observations, it is obvious that, when moving c, from A to B, the cutsize changes by

an amount of —D(i). The nets in Next j u Nintj are also called critical nets for c1 .

This will be explained later.

By the definition above, the cell gain of a cell, which is denoted by D(i), means what

results can be obtained due to moving a cell from one part to the other, i.e. , the

26

Partitioning Techniques

number of nets this moving reduces from or adds to the cutsize. Figure 2.8 shows an

example of cell gain.

A 	 B

Cl

I
I

III
I

I

I

II I

I

:

I
n

6

c5 +2 i o I c7

Figure 2.8 An example of the cell gain

D(c 1)=2, after moving c 1 to B side, two nets, n 1 and n2 , are removed from the

cutset.

D(c2)=1, after moving c2 to A side, one net, n 1 , is removed from the cutset.

D(c3)=O, after moving c3 to A side, a net n2 is removed from the cutset, but

another net n3 is added to the cutset.

D(c4)=- 1, after moving c4 to A side, one net n3 is introduced to the cutset.

D(c5)=2, after moving c5 to B side, two nets, n4 and n5 , are removed from cutset.

D(c6)=O, after moving c6 to A side, net n5 is removed from the cutset, but another

net n6 is added to the cutset. The net n4 incident to c6 is still in the

27

Partitioning Techniques

cutset.

D(c7)=-1, after moving c7 to A side, net n6 is added to the cutset.

2.3.2.1. Data structure - Bucket list structure

Clearly, the gain D(i) of cell(i) is an integer in the range -p(i) to +p(i), where p(i) is

the number of pin on cell(i), so that each cell has its gain in the range -pmax to

where pmax = max{p(i) I cell(i)}.

To choose the next free cell to move, a sorted list of cell gains is maintained, this is

done using an array Bucket[D], where D corresponds to the range -p, to +Pm,

and whose entry contains a doubly-linked list of free cells with gains equal to

- current D. Figure 2.9 shows the structure of this bucket list. Two such arrays are set

up for each side of partition. Each array is maintained by quickly moving a cell to

the appropriate bucket whenever its gain changes due to the movement of one of its

neighbours. Also a cell array is required which allows each cell to be directly

addressed in the bucket array. In addition, two lists, LockedA and LockedB, are

maintained to accommodate locked cells which are moved from one side to the other

side.

For each Bucket array, a MAXGAIN index is maintained which is used to keep track

of the bucket having a cell of highest gain. This index is updated by decrementing it

whenever its bucket is found to be empty and resetting it to a higher bucket

whenever a cell moves to a bucket above MAXGAIN.

W.

Partitioning Techniques

Bucket[D]

1 	2 	-------------------------C

Figure 2.9 Bucket list structure

2.3.2.2. Initialising the data structure

Some input routines are needed to deal with real networks whose interconnections

between cells are described in a text format. The principal function performed by the

input routine is to construct two data structures from the text input which represents

the network. The first structure is a CELL array, which for each cell contains a

linked list of the nets that are incident to the cell. The second structure is a NET

array, which for each net contains a linked list of the cells on the net.

To compute and maintain cell gain, the notion of a critical net must be introduced.

Consider an arbitrary net n. Given a partition S = {A;B}, define the number of cells

on net n in side A as A(n), likewise the number of cells on net n in side B as

B(n). A net is critical if there exists a cell on it which if moved would make the

cutset increase or decrease. It is easy to see that net n is critical if and only if either

A(n) or B(n 3) is equal toO or 1. Figure 2.10 shows an example of critical nets, and

AW

Partitioning Techniques

A(n 1) = 1, B(n 1) = 2, A(n2) = 2 B(n2) = 1, A(n 3) = 4, B(n) = 0 A(n 4) = 2, B(n4) =

3. In this example n 1 , n2 , and n3 are critical nets, and n4 is not a critical net.

A
	

B

I 	I 	 I

Figure 2.10 An example of critical nets

It is now clear that the gain of a cell, previously defined in terms of its effect on the

cutset, depends only on its critical nets. This means that if the net is not critical, its

cutset cannot be affected by a move. What is more important, a net which is not

critical either before or after a move cannot possibly influence the gains of any of its

cells.

To compute and manipulate D values, two more array A[n] and B[n] are

constructed. A[n] contains the number of cells on net n on side A. B[n] is

defined analogously. Moreover, two net lists UnlockedA[n 1] and UnlockedB[n] are

provided for each net containing unlocked cells of the net on side A and side B,

ITO

Partitioning Techniques

respectively. These two lists will be used for updating the D values in the next

section. Then, D values are computed using a scan of the Net array. The following

algorithm computes the initial gains of all free cells.

FOR each free cell c, DO
D[i] = 0 ;
FOR each net n3 on cell c, DO

IF A[n] = 1 THEN D[i] = D[i] + 1 ;
IF B[n] = 0 THEN D[i] = D[i]

END FOR
END FOR

2.3.2.3. Updating the bucket data structure

Assume now that a cell c, on side A has been chosen. The cell is then locked— that

is, its item is removed from its bucket list and is attached to the list LockedB, where

it awaits the next iteration.

Then, adjustments of D values become necessary, since during the move of cell c,

the nets incident to cell c, may become or cease to be critical, or their contribution

changes from positive to negative or vice versa. Let us call a net n for which this

changing happens. For a net n to be changing in the move of cell c1 , it is necessary

that cell c i is on net n, otherwise the values A[n] and B[n] do not change.

However, not all such nets are changing. A convenient way of viewing the changes

is to think of the move of cell c, as two-phase procedure. First, cell c1 is deleted

from side A, then it is added to side B. Figure 2.11 details the respective algorithm

for changing the D values. In line 3, cell c1 , is effectively deleted from side A.

Through this action, some nets become critical, but none of them cease to be critical.

Line 4 to 6 process the nets that make a new negative contribution to the D values.

Lines 8 to 10 process the nets whose new contribution to D values are positive. In

line 14, cell c, is effectively added to side B, which causes some nets to cease to be

critical. Lines 15 to 17 make the respective positive changes, and lines 19 to 21

31

Partitioning Techniques

make the respective negative changes, to D values.

FOR net n3 such that cell c, on net n• DO
remove cell c, from UnlockedA[n]
A(n] = A(n 1] - 1 ;
IF A[n] = 0 THEN

FOR cell ck E UnlockedB(n] DO
D[k] = D(k) - 1 ;

END FOR

ELSE IF A[n] = 1 THEN
FOR cell ck a UnlockedA[n] DO

D[k] = D[k] + 1 p
END FOR

END IF

END IF

B[n3] = B[n] + 1 p
IF B[n] = 1 THEN

FOR cell ck a UnlockedA(n 3] DO
D[k] = D[k] + 1 p

END FOR

ELSE IF B[n] = 2 THEN
FOR cell Ck € UnlockedB(n] DO

D[k] = D(k) -1 p
END FOR

END IF

END IF

END FOR

Figure 2.11 Updating the D values

2.3.3. The Krishnamurthy heuristic

One disadvantage that Fiduccia-Mattheyses heuristic share with the Kernighan-Lin

heuristic is that there is a large amount of unresolved nondeterminism. The

heuristics choose arbitrarily between cells that have equal gain. Krishnamurthy

introduced a more look-ahead approach into heuristic. With this it is possible to

distinguish among such cells with equal gain.

If a net contains more than two cells, and if the net is in the cutset of the current

partition, then moving one of the cells on this net will not necessarily remove the net

from the cutset; however, it may make it possible to remove the net in a future

iteration when another cell on that net is moved. Figure 2.12 shows a simple

32

Partitioning Techniques

example which has a net N connecting cells ci, c2, c3, c4, and c5, ci and c2 are in

partition A while c3, c4, c5 are in partition B. All these five cells have equal

conditions. Moving any one of these cells will not remove N from the cutset.

However, moving cell ci or c2 would be better than moving the other cells, since in

the next iteration c2 or ci might be moved to remove N from the cutset. Although

this example is rather simplified (because in general the other nets the cells are

connected to will also play a role in the choice of cell to be removed), it provides the

motivation for the concept of Krishnamurthy's level gain.

A 	i 	B

Figure 2.12 An example to show the concept of Krishnamurthy's level gain

Specifically, Krishnamurthy extends the cell gain value to the level gain which is a

sequence of number <D1 Dk(i)>. This sequence number is referred to as the

gain vector of order k of a cell i, denoted by Fk(i), as

= < D 1 (i), . . . , Dk(i) >

Here, D 1 (i) is the first level gain of cell i, i.e. the original cell gain of cell i, and the

following numbers D2 0),..., Dk(i) define the second level gain and higher level gain

for distinguishing cells with the same D 1 value. The gain vector <D1 Dk(i)>

is compared according to the lexicographic ordering. This provision places the

33

Partitioning Techniques

highest priority on the value of D 1 (i), and successively lower priorities on the

following components of the level gain.

What could be the second level gain criterion for distinguishing cells with the same

D 1 value? Consider Figure 2.13. Here, ci and c2 have the same gain D 1 (1) = D 1 (2)

= 0. However, moving c2 increases the gain of c3 from 0 to 1, whereas moving ci

does not change any gains. Therefore c2 should be preferred to ci as the next cell to

be moved. Thus, D2 (2) should be larger than D2(i).

Figure 2.13 An example that the cell gain concept cannot distinguish

A generalisation of this concept to higher degrees of look ahead is based on the

following definitions of gain.

Definition 2.9: Binding Number

The binding number f3A() of a net n on side A of a partition is defined to be the

number of unlocked cells of net n on side A, unless there is a locked cell of net n on

IMII

Partitioning Techniques

side A, in which case 8A() = °o.

Definition 2.10: The kth-level Gain

The kth-level gain of a cell c1 on side A of a partition is defined as

Dk(i) = Z ct(n) - 	ct(n)
flE NpØ.,,k(i) 	 n E Nneg,k()

where

Np(,s k(i) = { nENIcEn, flA() = k, 8(n) > 01

Nneg,k() = { nENIcEn, PA(n) >0, f3B(n) = k - 1 }

Figure 2.14 shows a concrete example of how to calculate the gain vector of order

k=3 of a cell.

Figure 2.14 An example to calculate the gain vector

35

Partitioning Techniques

k = 1, 	the number of nets with binding number equal to 1 in side A is naught, and

the number of nets with binding number equal to k-i = 1-1 = 0 in side B is

1 (i.e. ni), therefore, D 1 (1) = 0- 1 = -1.

k = 2, 	the number of nets with binding number equal to 2 in side A is two (i.e. n2

and n4), and the number of nets with binding number equal to k-i = 2-1 =

1 in side B is 1 (i.e. n2), therefore, D2 (1) = 2 - 1 = 1.

k = 3, 	the number of nets with binding number equal to 3 in side A is one (i.e.

n3), and the number of nets with binding number equal to k-i = 3-1 = 2 in

side B is 1 (i.e. n3), therefore, D2 (1) = 1 - 1 = 0.

The gain vector of cell ci for order 3 is F' (ci) = <-1, 1,0>.

2.4. Other partitioning techniques

Constructive methods do not need an initial partition to be given. The starting point

is in general the un-partitioned set. One of the most commonly used methods in this

class follows an aggregation strategy, i.e., assigns one module at a time to a partition.

Several versions of clustering techniques [61-62], [9-10] have been proposed over

the years. This constructive algorithm is very fast, but the quality of the result is not

good in general. It is in fact mostly used as a starting point for other methods such as

iterative improvement.

Simulated annealing [30], [33], [34] is another technique of the iterative

improvement variety. This algorithm starts at a random solution and makes

stochastically chosen moves to modify that solution. Initially the moves which are

accepted include a high proportion of moves which increase the solution's cost. As

the algorithm progress, the proportion of such move is decreased until, finally almost

no moves that increase are accepted. Simulated annealing usually needs much more

36

Partitioning Techniques

running time than the Kernighan-Lin heuristic, but has a smaller cutsize [2].

Ratio cut [6], [100] partitioning method adopts an approach termed "ratio cut" as a

metric in order to locate natural clusters in the circuit. This approach removes the

constraint on subset sizes, and lets the ratio cut produce the subsets which are

natural clusters in the circuit. It is difficult to use when tight control on the subset

size is required.

2.5. Summary

The partitioning techniques presented in this chapter do solve some partitioning

problems in certain application areas. But these techniques do not satisfactorily

handle a large, complex circuit which has buses, timing critical paths, structural

architecture and long shift registers, for example. A merge algorithm which has a

flexible data structure and can be readily modified to suit various circuit

requirements, is introduced in the next chapter.

37

The Merge Algorithm

CHAPTER 3

The Merge Algorithm

The previous chapter reviewed the techniques available to produce a required

partition. This chapter introduces a novel partitioning approach refened to as the

"Merge Algorithm" which obtains a desired partition by merging cells into groups.

The basic merge operations on two-terminal nets and multi-terminal nets are

described. During the merge operations, some new cells will contain others cells and

the nets incident to the new cells are changed. The configuration of a design will

also be changed and the number of cells is reduced.

The data structure needed for representing a design is briefly described. Following

this description, some merging strategies are discussed. Finally, the merge algorithm

for partitioning a design is detailed.

3.1. Merge operation

3.1.1. The primitive merge operation

Before explaining the details of the primitive merge operation, it is worth

emphasising some basic terms which were mentioned in the previous chapter and

are illustrated below.

A cell which does not contain any other cell is called a basic cell. All single cells

including a basic cell can be viewed as a group. This means that a group consists of

at least one basic cell. A basic cell contains itself, so it forms a group itself.

38

The Merge Algorithm

A net with only two cells on each end is called a two-terminal net, whereas a net

with more than two cells on it is called a multi-terminal net. Figure 3.1 shows these

two kinds of nets.

ni, n2 are two-terminal nets

n3 is a multi-terminal net

Figure 3.1 Two-terminal and multi-terminal nets

A net is called an external net to a cell when there are still other cells outside of this

cell on the other ends of this net, otherwise it is called an internal net. Examples of

external and internal nets are shown in Figure 3.2.

The basic function of the merge operation is to make one cell contain another cell.

The cell covered by another cell is called an implicit cell, whereas the containing

cell is called an explicit cell. The property of the implicit cell will be represented by

the explicit cell. In practice, after merging, the cell name of the explicit cell is used

as the new cell name and the cell name of the implicit cell is not used anymore. An

example shown in Figure 3.3 illustrates how the primitive mergc operation proceeds.

39

The Merge Algorithm

- ni is an external net to cell c_i

n2 is an internal net to cell c_i, but is an external net to cell c_2 and c_3

Figure 3.2 The external and internal net

>c
before merge 	 after merge

- c_i is an explicit cell.

- c_2 is an implicit cell.

Figure 3.3 The primitive merge operation

The Merge Algorithm

3.1.2. The basic merge operation on two-terminal nets

A graph with two-terminal nets only is shown in Figure 3.4. There are 6 cells and

15 nets. It is obvious that the optimal solution for this graph will be, when it is

divided into two groups, a cutsize of 1.

Figure 3.4 A graph with two-terminal nets

The main objective in merging cells is to look for the cells with the maximum inter-

connections and merge them. This will be demonstrated by the following merge

steps:

step(l)

There are four possibilities in selecting cells to merge, which are

merge c_3 to c_i.

merge ci to c_3.

merge c_4 to c_2.

merge c_2 to c_4.

For example, the possibility (i), i.e. merge c_3 to c_i, is taken. After merge, 3

nets between c_i and c_3 are buried inside the new cell c_i, i.e., these 3 nets

become internal nets of c_i. The result of this merge is shown in Figure 3.5.

41

The Merge Algorithm

Figure 3.5 The result of merge c_3 to c_i

step(2)

From the graph above, the next merge operation is going to be

merge c_5 to c_i or

merge c_i to c_S.

Taking the first choice of merging c_5 to c_i, this time four nets become

internal nets of c_i. The result is shown in Figure 3.6.

Figure 3.6 The result of merge c_S to c_i

The Merge Algorithm

step(3)

Following the same approach, the operation of merging c_4 to c_2 takes place.

There are 3 nets which become internal nets of c_2. The resulting graph is

shown in Figure 3.7.

Figure 3.7 The result of merge c_4 to c_2

step(4)

Finally, the operation of merging c_6 to c_2 is processed. In this case four nets

become internal nets of c_2. The final graph is a partition with an optimal

solution, the cutsize of which is equal to one. In this partition group c_i

contains c_i, c_3, c_5 and group c_2 contains c_2, c_4, c_6. The result is

shown in Figure 3.8.

Figure 3.8 The final partition

3.1.3. The merge operation on multi-terminal nets

A graph with mixed multi-tenninal nets and two-terminal nets is shown in Figure

3.9. There are 6 cells and 11 nets, two of which are multi-terminal nets that are ni

and n2. It can be easily identified that in this graph there is an optimal partition with

cutsize equal to one if it is divided into two groups.

43

The Merge Algorithm

nc ilO

Figure 3.9 A graph with multi-terminal nets and two-terminal nets

The same approach to merging cells introduced in the above section is applied again

to this graph. The step by step demonstrations are as follows:

step(i)

Merge c_3 to c_i. The two two-terminal nets (n9 and n7) between c_i and c_3

become internal nets to c_i. The net n i, a multi-terminal net, still exists and is

an external net to c_i and becomes a two-terminal net. The resulting graph is

shown in Figure 3.10.

110

Figure 3. 10 The resulting graph after merge c_3 to c_i

step(2)

Merge c_4 to c_2. The two two-terminal nets (n8 and ni0) between c_2 and

c_4 become internal nets of c_2. The net n2, a multi-terminal net, still exists

The Merge Algorithm

and is an external net to c_2, and becomes a two-tenninal net. The resulting

graph after this merge is shown in Figure 3.11.

n3
	 n4

ni 	
(c_5) 	

nil 	
(c_6") 	

fl 	(c_2

n5 	 n6

Figure 3.11 The graph after merge c_4 to c_2

step(3)

Merge c_5 to c_i. There are three two two-terminal nets (0, ni, n5) between

c_i and c_5 which become internal nets to c_i. The resulting graph is shown

in Figure 3.12.

C Lf1En22
Figure 3.12 The resulting graph after merge c_5 to c_i

step(4)

In this final step, merge c_6 to c_2. The nets n4, n2, and n6 become internal

nets to c_2. The resulting graph shown in Figure 3.13 comes to an optimal

partition with the cutsize equal to one. In this partition group c_i contains cells

c_i, c_3 and c_5 and group c_2 contains cells c_2, c_4 and c_6.

Figure 3.13 The resulting graph after merge c_6 to c_2

When the merging sequence presented above is analysed, it is not difficult to observe

two properties about nets which are explained below:

45

The Merge Algorithm

For two-terminal nets, after merging the nets between cells become internal

nets to the explicit cell. Hence benefits arise from burying the number of nets

between a pair of cells in the explicit cell indirectly reducing the cutsize.

For multi-terminal nets, after merging the nets between cells are still external to

the explicit cell. The merge does not imply the reduction of the number of nets

between cells. This is a significant difference from two-terminal nets which

needs further attention.

3.2. Graph representation

3.2.1. Using a matrix to represent a graph

The most straightforward representation for graphs is the so-called matrix

representation. The matrix representation for the graphs in Figure 3.4 and Figure 3.9

is shown in Figure 3.14. Although these two graphs have different configurations,

they have exactly the same matrix representation which shows the number of

connections between each pair of cells in each entry of the matrix.

c_i 	c_2 	c_3 c_4 	c_5 	c_6

X 0 3 0 2 0

0 X 0 3 0 2

3 0 X 0 2 0

0 3 0 X 0 2

2 0 2 0 X

0 2 0 2 1 X

Figure 3.14 A matrix representation for the graphs in Figure 3.4 and Figure 3.9

ci

c2

c3

c4

c5

c6

311

The Merge Algorithm

This is a symmetric matrix where the data in the upper triangle contains all the

connection information and the lower triangle can be considered as redundant. The

matrix representation is satisfactory, only if the graphs to be processed are dense and

of a reasonable size. When circuits become large, the matrix is usually large and

sparse.

3.2.2. Using a linked list to represent a graph

Using a matrix to represent a graph is inefficient for large, sparse matrices since a

huge amount of memory is wasted.

There is another representation that is more suitable for graphs. This representation

has both a list of cells (vertices) and, for each cell, another list of cells (edges)

related to each cell. This can be easily implemented with linked lists. Figure 3.15

shows the linked list for the above matrix. Note that at each cell in the list of

vertices only cells having higher index number are shown as being connected to that

cell. This corresponds to ignoring the lower triangle of the matrix representation.

It is often necessary to associate other information with the vertices or edges of a

graph to allow it to model more complicated objects or to save bookkeeping

information in complicated algorithms. Extra information associated with each

vertex and edge can be put in adjacency list nodes.

The foremost advantage of using a linked list is its flexibility. Memory usage is

efficient in a computer implementation. With dynamic allocation of memory for

linked lists, they are much better suited to a computing solution than matrices.

47

The Merge Algorithm

Head of graph

Figure 3.15 The linked list for a graph

The Merge Algorithm

3.3. Merging strategy

The most common method of partitioning a system is to divide it into groups so that

the total number of interconnections between groups is minimised. Conversely,

maximising the number of connections between cells inside groups can achieve the

same objective of minimising the interconnections between groups.

The objective of merging in a system with a large number of cells is to obtain a

successful partition by means of maximising the number of connections which are

inside groups. The methods used to guide the merging operation into a partition are

based on many factors including the size constraints (the maximum number of cells

in the groups), the required number of groups in the final partition, and the balance

of the partition. Partitioning techniques can be classified into four categories which

are free merge, free merge with size constraint, merge in-turn, and merge in stages as

will be discussed below.

3.3.1. Free merge

In this method the merge operation has the most degrees of freedom to make the

choices of pairs of cells to merge. The merge will proceed according to the number

of connections between cells, the pair of cells with the maximum connections is

chosen to merge into a group which is viewed as a new cell in the system. No size

limitation is applied to each group which may therefore grow large so long as the

merge condition is satisfied. The same procedures are continued until the number of

groups matches the number of blocks in a partition desired.

In the final result, some blocks in a partition could contain a large number of cells

while some others may contain a few cells. This is because, during the merge

procedure, the groups containing more cells tend to have stronger relations with

other cells, so that the larger groups keep absorbing cells and growing continuously

The Merge Algorithm

without giving opportunities to other groups to choose candidates to merge. This can

easily happen if there is no constraint on the size of each group.

3.3.2. Free merge with size constraint

To solve the unbalanced partition problem arising from the free merge method

described in the last section, a size limit to groups is applied. Once a group reaches

this limit, no more cells are merged which gives a chance for the rest of the groups

to select candidates to merge. This can prevent a group from dominating the whole

merging process and produce a better balanced partition.

3.3.3. Merge in-turn

A perfectly balanced partition is when the cells are evenly distributed between each

individual group. To achieve this goal, it is necessary to decide the number of

groups, denoted by ng, which a system will be partitioned into, select the first ng

different pairs of cells with the first ng maximum connection number to form the

first ng leading groups, and then merge the rest of cells with closest relations with

each of leading group in turn until no cells are left. A fairly evenly distributed

partition can be obtained by using this technique. The drawback of this approach is

that it constrains cells to be merged to leading groups and does not give other cells

chances to establish other groups which could have good structures for later merging

and so achieve a good final partition.

3.3.4. Merge in stages

In the real world, a system is usually organised in a hierarchical manner. It can be

made up of several functional blocks which can be decomposed into more functional

blocks in the next lower level, each of which can be further divided into even more

functional blocks until the bottom of the system is reached. In such a hierarchical

50

Free merge with constraint 1

Free merge with constraint 2

El

The Merge Algorithm

system, cells inherently possess some degree of group-oriented characteristics. A

number of cells may form a small group in the lowest level of a system, some small

groups may construct a functional block in the intermediate level and a few

functional blocks may form a partition of a system. This implies that a small size

constraint may be applied to each group in the beginning, then the size constraint on

each group is enlarged in each successive stage, until the desired partition is

achieved. Figure 3.16 shows a merge in stages procedure. The merge can progress

through several operating stages, each stage denoted by i, where 1 :! ~ i < L, and L is

the maximum possible number of stages valid in a partition.

START

Free merge with constraint i

Stage 	L
	

Free merge with constraint L

Figure 3.16 Diagram illustrating the merge in stages method

Due to the small size constraint in the beginning, a lot of small groups will be

formed, and the system arrives at a new configuration in which the small groups in

the next merging stage have equal chances to compete with one another to decide

51

The Merge Algorithm

which pair of groups will be the next pair to be merged under the enlarged size

constraint. This is the main advantage of the merge in-stakes method which prevents

a group from growing unimpeded to the final size constraint, and allows closely

related cells to be grouped in the early stages.

3.4. Partitioning with a merging algorithm

3.4.1. Data structures

A linked list, called the cell-net list, is used. It lists nets connected to an individual

cell and shows the number of cells on a net. This number is separated into two

fields, one of which gives the number of cells included in this cell, and the other

gives the number of cells outside of this cell. This cell-net list is used to control and

calculate the interconnections between cells/groups during the merge operation and

the merge operation includes merging cells in this list to keep the interconnections

between cells correct. Figures 3.17 and 3.18 give the cell-net list for the circuit

shown in Figure 3.9.

Head of cell-net

The net name attached to the current cell
The number of cells inside of the current cell

- - - - - The number of cells outside of the current cell
- - Pointer to the next node related to the current cell

The name of the current ceII(vertex)

The head of the net nodes which attach to the current cell

Pointer to the next cell(vertex)

Figure 3.17 Diagram defining the cell-net list

52

The Merge Algorithm

A software representation of a circuit, called a graph, is established to define the

connections between cells. Then a merge sequence is set up by listing cells in

descending connection order from the maximum value. This descending order in

connection number establishes the merging priority of cells. Figures 3.19 and 3.20

give the graph and merging sequence for the circuit shown in Figure 3.9.

Figure 3.18 Cell-net list for the circuit shown in Figure 3.9

53

The Merge Algorithm

- ------------- - Theheadoflistwith
I 	 connection number "n"

I

-- - - - - - - - - - Pointertothenodewith

I 	I 	 connection number 'n"

Head of merge sequence 	
:
-- - - - - - - - Pointer to the head of list with

I 	I 	 connection number n-I

Head of graph

Cell name

I 	I

I 	I

I 	I

I 	I

n+1I f I • I 	>Ic_51 n

• Connection number

Pointer to the node with
connection number "n'

II

- - - - Pointer to the next node which

relates to the current vertex

c_2 F- - - - - - - Vertex name(cell name)

• The head of cell list which relates to this vertex

Pointer to the next vertex

Figure 3.19 Diagram defining a graph and the merge sequence

54

He

The Merge Algorithm

Head of merge sequence

Figure 3.20 Graph and merge sequence for the circuit shown in Figure 3.9

55

The Merge Algorithm

3.4.2. Merging algorithm

The merging algorithm uses circuit information in the form of a netlist with a total

number of basic circuit cells, C. The algorithm can be considered as four separate

linked sections. The first section implements a free merging operation with size

constraint which allows merging to proceed with a constraint only on the size of the

resulting group of cells. The free merging operation progresses in stages with the

size constraint on the merged group increasing as the stage number increases. An

initial size constraint, S0 , and the number of stages to be used must be selected and

L must be set. This is discussed further after the results illustrating the performance

of the algorithm are presented below. An iteration at each stage is complete once all

available cells have been merged. Figure 3.21 shows a flow chart of free merging

with size constraint, the algorithm of which is defined in pseudo C code as follows:

1*
• C : The number of cells in the, currant circuit
• ng: The required number of groups in the partition
• So Initial size constraint
• Si The ith-stage size constraint
• C : The number of cells in cell_x
• C, : The number of cells in cell,.,,y
• Note : A merging stage corresponds to the merging of
* 	all available listed cells. Let i be the stage
* 	index and let i be L. Cells linked by
* 	the largest number of connections are selected
* 	for merging.
*1

read_data() ;
create_cell-net () ;
create_graph() ;
setup_merge_sequence C) ;
for(i=1;i:5L;i++){

Si = 2S,_ 1 ;
while(select_candidate(cell_x, cell_y){

if(C:5ng
break ;

if(C + C< S i
merge(cell_x, cell_y) ;

}

}

output() ; 1* output a reduced graph */

56

The Merge Algorithm

1st
phase)

Input ng

Input S 0 & L

[
Si =

Select a pair of cells
to merge from list

End flist?

N

y S i

Y

C : The number of cells in the current circuit

ng : The number of groups we want to partition into

S 0 : Initial size constraint

The ith stage size constraint

C: The number of cells in cell_x

c : The number of cells in cell_y

Note:

A merging stage corresponds to the merging of
all available listed cells. Let i be the stage index
and let i ma, be L.

End

1++

S i = 2S 11

N
i > L

Merge the selected

pair of cells

Figure 3.21 The flow chart of free merging in stages

A merge operation starts by merging a pair of cells into a group; the initial size

constraint S 0 on this group will be at least 2. To test all possible constraints on a

57

The Merge Algorithm

partition it is necessary to set S 0 = 2. The subsequent size constraints are applied by

using Si = 2S1 _ 1 where i starts at 1. The maximum i (max) is the total number of

stages (L) to be used. To set an appropriate L the following inequality;

C>2*2' 	 (3.1)

is used to give;

inC
L<--1 	 (3.2)

in 2

In practice the maximum integer value of L satisfying this inequality is used.

The netlist resulting from the free merge operation is presented to the second section

and will be much shorter than the original circuit netlist. The second section of the

merge algorithm proceeds in a similar way except that leading groups are selected to

ensure that results from the next section will give an approximately equal share of

cells in each of the groups in the final partition. A leading group is defined as being

the first ng pair of cells selected on the basis of maximum number of connections.

A flow chart for the selecting leading groups operation is shown in Figure 3.22 and a

listing illustrating the second section algorithm is shown below:

1* k : Leading groups index, S1 : Final size constraint /

input() ; / using the output of section 1 as input data */

for(k=1;k:5ng;k++){
while(se].ect_candidate(cell_x, celly)){

if(C:!~ ng
break ;

if(C, + C) < S){
merge(cell_x, celLy) ;

leading_group[] = cell_x ;

break p

)
)

}
output () p

W.

group index

;ize constraint

The Merge Algorithm

Figure 3.22 The flow chart of the selecting leading groups operation

59

The Merge Algorithm

The leading groups are used in the third section. In this section merging proceeds

similarly except that the pair of cells to be merged must include a leading group.

The flow chart of merging with leading groups is shown in Figure 3.23 and the

listing illustrating the third section of the merge algorithm is shown below:

input() ;
while(select_candidate(cell_x, cell_y)){

if(C:5ng
break ;

if(C + C, > S1
break ;

if(cell_x = leading_group(] G celly = leading_group()
inerge(cell_x, celly) ;
1* 	stands for exclusive OR *1

}

output () ;

A final section has been included to account for unconnected cells where the number

of connections is zero. The flow chart of merging the rest of cells is shown in Figure

3.24 and the algorithm for this section is shown below:

input() ;
while(C>ng

if(cell_x 1= leading_group[]
merge(leading_group(], cell_x) ;

output () ;

Me

The Merge Algorithm

Figure 3.23 The flow chart of merging with leading groups

61

The Merge Algorithm

4th
phase

Figure 3.24 The flow chart of merging the remaining cells

62

The Merge Algorithm

3.5. Constraints on merge algorithm

The operation of the algorithm can be further constrained by other design parameters

such as the number of pins and timing requirements. In the case of the number of

pins a check is made before each merge operation to determine whether the resulting

group of cells can be realised within the input and output pin constraints of the target

architecture. To satisfy timing requirements it is necessary to know the critical paths

in the source design and then ensure that cells on critical paths are merged. This is

achieved in practice by an initial grouping operation before the merge algorithm is

used. If area limitations prevent all critical paths from being dealt with in this way

then any paths between partitioned groups that are in fact critical paths should be

reserved for the fastest board wiring of the target system.

If function blocks are defined for the target system the designer of the source circuit

could formulate his design in terms of these function blocks. A drawback of this

approach is that a circuit designed for ASIC implementation may perform •in a

different way if reformulated to suit available function blocks. Alternatively the

initial design could be flattened and then formulated in terms of function blocks. In

this case the originally defined critical paths will remain as defined but new critical

paths will appear in the flattened circuit and must be discovered to ensure the best

performance can be achieved. An automatic technique for identifying critical paths

is required.

3.6. Parallel process on merge algorithm

A feature of this merge algorithm is that its modularity can be used to create a

pipeline of parallel operating algorithms with smaller graphs. The parallel algorithm

can be implemented by a parallel language that enables the algorithm to execute in

parallel in a multi-processor environment. Searching large amounts of data at one

63

The Merge Algorithm

time can be very slow. Processing data in smaller pieces helps to reduce searching

time. Therefore it is necessary to write a data parallel program to allow smaller

amounts of data to be distributed to each individual processor. This will result in a

higher partitioning speed for large circuits. The details of a parallel implementation

of the merge algorithm will be discussed in chapter 6.

3.7. Summary

This chapter has presented a set of merging strategies, namely: free merge, free

merge with size constraint, merge in-turn, merge in stages. These strategies are all

based on the simple concept that cells having the maximum number of connections

should be the first to be merged. Applying different size constraints or giving the

merge algorithm a different free degree of selecting candidates to merge can produce

different results.

The next chapter presents how the merge algorithm is implemented by means of a

programming language.

Implementing the Merge Algorithm

CHAPTER 4

Implementing the Merge Algorithm

The merge algorithm discussed in the previous chapter has been implemented by

means of the C progranmüng language (see Appendix D). This software was

written to interface with the InCA Virtual ASIC [7]. All source netlists were initially

converted to InCA netlist format referred to as "CIF" file format (see Appendix A

for detail) which describes a circuit in a hierarchical manner and is different from

the Caltech Intermediate Form (CIF) which is a standard machine readable form for

representing integrated system layouts.

The software for implementing the merge algorithm is separated into two parts. The

first part is called "Data Preparation" (see Appendix C) which will flatten the circuit

to acquire the detail connections between the basic gates, the flattened circuit will be

passed to the parser to create a cell list and a net list which are used to create the

cell-net list and the cell-net list is further used to generate the graph which represents

the circuit. Figure 4.1 shows the data preparation flow chart. The second part is the

implementation of the merge algorithm itself. The cell-net list and the graph will be

used by the merge program under the size constraint on groups of cells, and the

merge operations will continue until the desired partition is reached. Figure 4.2

shows the flow chart of the implementation of the merge algorithm.

The data stmcture for implementing the merge algorithm was introduced in chapter

3. In this chapter the detailed data structure for implementing the merge algorithm

will be described in Section 4.1, and the procedures for implementing the merge

algorithm follow in Section 4.2.

Implementing the Merge Algorithm

Circuit netlist

Flatten the design

Parser

Create
cell list and net list

Create
cell-net list

Create graph

End

Figure 4.1 The data preparation flow chart

Implementing the Merge Algorithm

Figure 4.2 Flow chart showing the use of the merge algorithm to partition a design

4.1. The data structure for implementing the merge algorithm

A cell list is required which is generated from the original circuit "CIF" file. This

list describes how the components in the circuit are interconnected. The cell list

consists of a head of cell list which points to where the circuit is, the cell nodes

which represent the cells themselves and point to a list that shows what nets are

incident to the cells, and the net nodes which contain information related to the nets

and the cells. A descriptive diagram to illustrate the structure of the cell list is

shown in Figure 4.3. A complete cell list of Figure 3.9 is shown in Figure 4.4.

Figure 3.9 is reproduced in Figure 4.5 for convenience. The cells are listed in the

vertical and the related nets are listed in the horizontal direction.

67

Implementing the Merge Algorithm

Head of cell list

numi- ----------- The number of the cells in the circuit

Pointer to the last cell of the cell list

Pointer to the first cell of the cell list

I ------------- Thenetnameattachedtothecurrentcell

 -- - - - Pointer to the next net related to the current cell

ni 	 H n2

c2 - - - - - - - - - - Thecurrentceiiname

. - - - - - - - - - - Pointer to a list of nets attached to the current cell

- Pointer to the next cell

c6

.

Figure 4.3 A diagram showing the structure of cell list

Implementing the Merge Algorithm

Figure 4.4 A complete cell list of Figure 3.9

nc ilO

Figure 4.5 A copy of Figure 3.9

We

Implementing the Merge Algorithm

A net list is derived from the cell list. Basically it contains the same information as

the cell list, the only difference is the nets are arranged in the vertical and the cells

which are connected to the net are arranged in the corresponding horizontal list. Its

main purpose is to facilitate generating another list called cell-net list which will be

discussed later. The net list of Figure 3.9 is shown in Figure 4.6.

A cell-net list is created from both cell list and net list. In this new list the cell is

called band-cell and the net is called band-net, this choice is made because the cell

node includes information about what nets are completely inside this cell and the net

node includes information about the number of cells outside this cell on a certain net

and the number of cells inside this cell on the same net. A descriptive diagram of

the cell-net is shown in Figure 4.7. A complete cell-net list of Figure 3.9 is shown in

Figure 4.8.

A graph structure is needed to describe the number of connections between cells.

This graph is generated from the cell-net list by counting the number of the same

nets related to any pair of cells. After establishing this graph, a merge sequence list

which arranges the nodes with the greatest number of connections at the front of the

list can be set up by scanning through the whole graph. A descriptive diagram of

these data structure is shown in Figure 4.9.

70

Implementing the Merge Algorithm

Figure 4.6 A complete net list of Figure 3.9

71

Implementing the Merge Algorithm

Head of cell-net list

The number of band-cell in the cell-net list

Pointer to the last band-cell

• I- -------Pointer to the first band-cell

I 	i -- - - - - - - - - - The band-net name attached to the current cell

I 	I 	-
The number of cells inside of the current cell

- - - - The number of cells outside of the current cell
Pointer to the next node related to the current cell

> n3 I

c2 - - - - - - - - The name of current band-cell

• -- - - - - - Pointer to a list of band-nets attached to the current band-cell

Pointer to a list of band-nets inside of the current band-cell

I -- - - - - - - Pointer to the next band-cell

c6

•

Figure 4.7 The structure of cell-net list

72

Implementing the Merge Algorithm

Head of cell-net

Figure 4.8 A complete cell-net list

73

Implementing the Merge Algorithm

Head of merge sequence

nuim 	

- -- - - - - - - - - - - The head of list with
I 	I 	I

I 	 connection number 'n"
I -- - - - - - - - - Pointertothenodewith

connection number "n'
Head of graph 	 r - - - - - - - Pointer to the head ot with ____________ 	 I I I _______ 	 connection number "n- i"

Inum2l 11,1 	6+iI,I'I 	>In kIsi 	>1 - - - - - - - -

I

-- - -
 - -- - - - - -

-Thecurrentcellname

I -- - -- - - - - - - TheCellnamerelatedtothecurrentcell

I
-- - - - - - - Connection number

I 	I - - - - ----- Pointer to the node with
ci 	 : 	: 	: 	 connection number "n"

Pointer to the next node which
relates to the current vertex

- -.

Pointer to the next cell in this group
Cell name in this group

c2 - 	Vertexname(cellname)

• . -- - - - - - - - - Theheadofcelllistwhichrelates to this vertex

• - 	Thenumberofcellsinthecuffentgroup

• -- - - - - - - - - - Ponitertoalistofcellsinthisgroup

• -

-- - - - - - - - - Pointer to the next vertex

c6

Figure 4.9 The data structure of the graph and merge sequence

4.2. The routines for merge

The objective of the merge operation is to combine a pair of cells as one cell, for

instance, if the operation of merging cell c2 to cell ci as one cell ci is required, after

74

Implementing the Merge Algorithm

the merge the cell c2 is inside the cell ci, the number of connection between ci and

other cells must have been changed due to this merge and the merge sequence may

also change, therefore the graph and the linked list for merge sequence must be

modified at the same time. Because c2 is buried in ci after merge, the nets incident

to cell c2 become incident to cell ci, so the edges belonging to cell c2 are inserted

into the list of edges belonging to cell ci in the graph. In addition, all other cells

related to c2 before merge must be changed to be related to ci.

There are two main procedures in the merge processes. One is cailed

"merge_in_cell-net", another one is called "merge_in_graph". The procedure of

merge_in_cell-net is to maintain an updated configuration of the circuit after the

candidates for merging are merged. This will provide the precise number of

connections between cells. The procedure of merge_in_graph is where the merge

operations are realised.

4.2.1. The merge_in_cell-net

The graph in Figure 4.5 is used to demonstrate how the procedures of the

merge_in_cell-net process. Assume that c3 will be merged to ci. A part of the cell-

net list of Figure 4.8 is shown in Figure 4.10 before merge. To merge c3 to ci, there

are three common nets n9, n7 and n 1 between two cells, when the merging takes

place, n9 and n7 become internal net of ci, and n i is still external to ci, therefore n9

and n7 are removed from the list of band-net and inserted to the list of the internal

band-net, the band-nets(ni and n5) incident to band-cell c3 and still external to ci

are inserted to the list of band-net of ci. Finaliy,the band-cell c3 must be removed

from the list of the band-cell.

The cell-net list after merge is shown in Figure 4.11. It is necessary to decide which

of the common band-nets become internal nets or remain external. This is

75

Implementing the Merge Algorithm

implemented by subtracting the number of the field inside of the implicit cell (6)

from the number of the field outside of the explicit cell (ci), if the result of the field

outside of the explicit cell (ci) is equal to zero, this means the corresponding band-

net becomes internal net, otherwise the band-nets are still external to the band-cell.

Figure 4.10 A part of the cell-net list of Figure 4.8

Figure 4.11 The cell-net list after merging c3 to ci

76

Implementing the Merge Algorithm

4.2.2. The merge_in_graph

Again the graph in Figure 4.5 is used to illustrate the merging procedures. According

to the merging sequence list, the pair of cells ci and c3 are the candidates to be

merged, and c3 will be merged to ci, i.e. c3 is the implicit cell and ci is the explicit

cell. Before the processes in the merge_in_.graph can be executed, the merging of ci

and c3 in the cell-net list has to be processed first.

The merge_in_.graph procedure is comprised of four sub-procedures which are

called "removing", "re-ordering", "attaching" and "replacing". The procedure of

removing is to remove the implicit cell in the list of vertices and the cells in the edge

list of the implicit cell. The procedure of re-ordering is to re-arrange the order of the

merge sequence when the connection number has been changed or the edge node

removed. The procedure of attaching is to put the cells which are related to the

implicit cell to the explicit cell. The procedure of replacing is to replace all the

implicit cell names to explicit cell names.

To merge c3 to ci, first of all, the edge node of c3 belonging to vertex ci must be

removed. Figure 4.12 shows the results of removing edge node of c3. Because the

edge node of c3 is in the merge sequence list, the procedure of re-ordering must be

applied, which is to re-arrange the priority of the merge sequence. While removing

the edge node of c3, the merge sequence for the connection number "3" has to be

modified. Figure 4.13 shows the results of the re-ordering due to removing a node.

Second, the cells related to the implicit cell (6) must be attached to the edge list of

the explicit cell (ci). Therefore, c5 which is connected c3 must be attached to the

edge list of ci. In the edge list of ci, there has been an edge of c5 existing, a visit to

the cell-net list is required to acquire the new number of connections. After merging

c3 to ci in the cell-net list, the number of connections between ci and c5 is "3". So

77

Implementing the Merge Algorithm

the number of connections of edge node c5 should be changed to 3. On the other

hand, this node is in the wrong merge sequence listing due to the connection number

change. The merge sequence must be modified. The edge node c5 is moved from

the list of connection number "2" to the list of connection number "3". The results

of this changing are shown in Figure 4.14. If there were other cells which were

related to the implicit cell, but not related to the explicit cells, they should be

inserted to the edge list of c 1 without visiting the cell-net list to obtain the new

connection number.

Third, the cell c3 has become a member of group ci and must be inserted to the

group list of ci and the number of cells inside of cell ci is 2. Furthermore the

implicit cell c3 should be removed from the vertex list and the cells in the list of

edge node of c3 also have to be removed. The results of these actions are shown in

Figure 4.15.

Finally, in the replacing procedure, every edge node in the graph must be visited to

check if there are other cells relating to c3, once the edge nodes of c3 are found, the

name of the edge node must be changed to ci, and a visit to cell-net list has to be

performed to acquire the new connection number, if this number is different with the

old connection number, then the procedure of re-ordering has to be applied to re-

arrange the merge sequence. In this example, there is no c3 left in the graph, so the

only actions that need to be carried out are visiting every edge node to check if c3

appears in any edge node and to change c3 to ci when required.

1L1

Implementing the Merge Algorithm

Head of graph

Figure 4.12 The result of removing edge node of c3

79

Implementing the Merge Algorithm

Head of merge sequence

Figure 4.13 The result of re-ordering due to removing a node

Me

Implementing the Merge Algorithm

Head of merge sequence

Figure 4.14 The result of re-ordering due to connection number change

IIN

Implementing the Merge Algorithm

Head of graph

Figure 4.15 The result of merging c3 to ci

82

Implementing the Merge Algorithm

4.3. Summary

In this chapter the detailed data structure was developed which enabled the merge

algorithm to operate effectively in creating "cell list" and "net list" from the source

circuit netlist file. These two lists were used to create the cell-net list from which the

graph of the circuit was derived.

The merge algorithm was operating on the cell-net list and graph. The cell-net list

was used to obtain the new number of connections between cells after merging. The

graph was used to form a new configuration of the circuit after each merge.

The next chapter exercises the merge algorithm on two test circuits, analyses the

performance of the merge algorithm.

The performance of merge algorithm

CHAPTER 5

The Performance of Merge Algorithm

This chapter uses two artificial circuits generated from the Random Circuits

Generator (RCG) to test out the performance of the merge algorithm. Some

representative results are presented.

5.1. Experimental system

5.1.1. Random circuits

Random circuits are created by specifying the number of cells, the number of input

pins and the number of output pins to the RCG program (described in Appendix B).

The output of RCG program is a text form describing the circuit in InCA net list

format. The circuits produced by the RCG program are not realistic and do not

possess meaningful functionality. They just provide information about how the

components in circuits are interconnected. These circuits will be used to compare

the performance of the different partitioning strategies.

5.1.2. Structural circuits

In the real world, circuits are usually constructed in a hierarchical manner which

makes circuits more structural. To make random circuits more realistic and obtain

more information about the connections inside circuits, a semi-automatic method to

generate circuits was used. First, the RCG program is used to automatically create

some smaller size of random subcircuits and then these subcircuits are manually

The performance of merge algorithm

interconnected to form a complete circuit. Constructing a circuit in this way allows

circuits with known optimal cutsize to be created and used to assess the performance

of the various partitioning algorithms.

5.1.3. Test circuits

To demonstrate the performance of the merge algorithm two test circuits were

obtained from the random circuit generator. Test Circuiti (TC1) consisted of 100

cells connected by 132 nets and 20 input/output pins. Test Circuit 2 (TC2) was

constructed by manually interconnecting six different circuits derived from the

random circuit generator. An example TC2 circuit is shown in Figure 5.1. The main

features of six units used in Figure 5.1 are shown in Table 5.1. The netlist of the six

units were sequentially combined to form the TC2 netlist. In fact 720 different

circuits were obtained to cover all possible permutations of the six separate netlists.

Unit Number of Cells 110 Number of Nets

Ul 10 5 13

U2 20 5 25

U3 30 5 43

U4 10 9 19

U5 20 6 28

U6 30 7 40

Table 5.1 The features of Test Circuits 2

The performance of merge algorithm

Figure 5.1 The block diagram of Test Circuit 2 (TC2)

The pe,fonnance of merge algorithm

5.2. Result

A balance requirement between groups is important. If this condition were

neglected during the merge operation, all the cells might be merged to one group.

To judge if a result is balanced a balance factor, denoted by B, is defined by:

ng-1 ICi - avel

ave 	 (5.1)
2(ng - 1)

where ave = C- , C, is the number of cells in the
ng

group i, C is the total number of cells

and ng is the required number of groups.

The range of B will fall between 0 and 1. If B = 0, the partition is perfectly

balanced, while B = 1 indicates that all cells are merged to one group and the

partition has totally lost balance.

Test circuit 1 was partitioned into two groups. Figures 5.2 to 5.6 show the results of

varying the initial constraint S o and the number of stages L. The balance Factor B is

also shown in each case to illustrate the way it can be used to monitor the balance of

the results.

A suitable L value for TC1 is obtained from equation (3.1) and (3.2) to be 5. L

values from 1 to 5 were used with S0 values increasing from 2 by one for each

partition until the value which makes all the cells in the circuit merge to one group.

The cutsize and balance of the partition vary with initial constraint S o for fixed L.

From a general view of these figures (i.e. Figure 5.2 to Figure 5.6), the cutsize

decreases as the initial constraint increases and the balance factor increases as the

initial constraint increases. It is easy to see that a bigger initial constraint will

generate a smaller cutsize for partitioning. However, small cutsize leads to a poor

87

The performance of merge algorithm

final balance. From these figures it can also be seen that the cutsize varies little

when the balance factor falls in a certain range, for example between 0 and 0.5. This

means that a substantially constant cutsize result is obtained when the result of

partitioning is required to be in a reasonable balance.

A version of test circuit 2(TC2) having 720 possible implementations was designed

to feature an optimal bi-partition cutsize equal to 1 in each case. The main purpose

of this design was to test the ability of the merge algorithm to find this optimal

solution. It was found that the merge algorithm found the optimal partition with

100% success. Performing the same partition with the Kemighan-Lin based

approach 478 circuits were successfully partitioned with cutsize equal to 1. The

results of the partition of the other 242 circuits demonstrated a much bigger cutsize.

A sample of the intermediate result of partitioning a TC2 is shown in Figure 5.7.

5.3. Mapping a design to a target structure

The merge algorithm (abbreviated as MA) can be applied to map a design to the

following hardware architectures:

fixed hardware target structure

flexible hardware target structure

The strategies and method used for partitioning a design for either of the above two

possible hardware configurations may differ and depends on design architecture as

well as the application purposes.

M.

The performance of merge algorithm

Cutsize

0.00 	 20.00 	 40.00 	 60.00 	 80.UU

S0 , initial size constraint

Balance

0.00 	 20.00 	 40.00 	 60.1.10

S0 , initial size constraint

Figure 5.2 Cutsize and Balance versus initial size constraint, S0 . for L = 1

42.00

40.00

38.00

36.00

34.00

32.00

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

TINN

The peiformance of merge algorithm

Cutsize
44.00

42.00

40.00

38.00

36.00

34.00

32.0(1

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00
0.00 10.00 	 20.00 	 30.00 	 40.00

S0 , initial size constraint

Balance

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.00 	 lOUt) 	 U.tJ 	 -....... 	- - - - -

So , initial size constraint

Figure 5.3 Cutsize and Balance versus initial size constraint, S0 , for L = 2

The performance of merge algorithm

Cutsize

initial size constraint

Balance

44.00

42.00

40.00

38.00

36.00

34.00

32.00

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

5.00 	 10.00 	 15.00 	 20.00

S0 , initial size constraint

Figure 5.4 Cutsize and Balance versus initial size constraint, S0 . for L = 3

91

The performance of merge algorithm

Cutsize

2.00 	,. 	-

S0 , initial size constraint

Balance

2.00 	 .UU

S0 , initial size constraint

Figure 5.5 Cutsize and Balance versus initial size constraint, S0 , for L = 4

44.00

42.00

4000

38.00

36.00

34.00

32.00

30.00

28.00

26.00

2.4.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

The performance of merge algorithm

Cutsize

45.01

40.01

35.01

30.0

25.0

20.0

15.0

10.0

5.0

0.0

2.00 	 3.00 	 4.00 	 5.00 	 ö.OU

S0 , initial size constraint

Balanc

1.04

0.9

0.91

0.8

0.81

0.7.

0.71

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
2.00 	 3.00 	 4.00 	 5.00 	 0.00

S0 , initial size constraint

Figure 5.6 Cutsize and Balance versus initial size constraint, S0 , for L = 5

93

The performance of merge algorithm

- -I-- Flattening the system...

--I-- Creating cell-net list...

--I-- creating graph...

--I-- Scanning and setting up list of descending weight...

The shrinked graph after L merging stages is defined by;

0 0 60 4 0614

6 6 60 2 6 30 2

10 10 80 3 10 90 1 10 92 3

30

60 60 80 1

80 80 90 4

90 90 92 7

92

where the first column shows the group (or cell) identifier and each row

shows the connections with other groups e.g. 0 60 4 indicates that group

0 is connected to group 60 via 4 links.

The following list shows at its first column the number of cells in each

group. Each row starts with the group identifier followed by the other

members of the group.

18 0483512933405659473639495253

20 673246344854375531355150424338575841

45
20 10 21 20 14 24 13 15 25 11 22 12 19 17 18 27 16 26 23 29

28

2 3044
20 60 67 69 74 79 65 70 78 68 71 63 73 64 76 77 75 66 61 62

72

11 80 83 85 89 86 81 84 82 87 88 114

20 90 91 96 116 105 95 103 104 113 115 93 98 108 109 94 99 101 111 102

112

9 	92 106 107 117 119 97 110 100 118

The following lists show the final partition of this special circuit with

groups 0 and 10 linked by 1 connection with each group containing 60 cells

as listed.

0 	0 10 1

10

60 04835129334056594736394952536

7 32 46 34 48 54 37 55 31 35 51 50 42 43 38 57 58 41 45 60

67 69 74 79 65 70 78 68 71 63 73 64 76 77 75 66 61 62 72 30

44
60 10 21 20 14 24 13 15 25 11 22 12 19 17 18 27 16 26 23 29

28 80 83 85 89 86 81 84 82 87 88 114 90 91 96 116 105 95 103 104

113 115 93 98 108 109 94 99 101 111 102 112 92 106 107 117 119 97

110 100 118

Figure 5.7 Listings demonstrating the bi-partition of a TC2 circuit.

The pe,formance of merge algorithm

5.3.1. Mapping a design to a fixed target structure

A fixed target structure consists of several nondisjoint FPGAs, which are

systematically connected. Typically these types of structures are used in situations

where many different designs are to be compiled onto one general purpose hardware

structure. The VA and Anyboard mentioned in chapter 1 are in this category of

hardware structure.

To fit the design into the fixed hardware target structure, the MA must be constrained

by:

Number of gates in a group not greater than G.

Number of pins associated with a group not greater than P.

Total interconnects between groups not greater than I.

where G is the number of gates that an FPGA can accommodate without the

difficulty of placement and routing, P is the number of interface pins, and I is the

number of interconnects between FPGAs in the fixed hardware target structure.

The partition which satisfies the gate counts and pin counts does guarantee enough

internal resources to FPGAs, but does not guarantee there are enough external

resource to FPGAs in the fixed hardware target structure. So that applying constraint

on the interconnects between FPGAs is necessary.

The twelve FPGA fixed hardware structure shown in Figure 1.2 is used as an

example to illustrate how to apply a constraint on the resources of interconnects

between FPGAs. The twelve FPGA is redrawn in Figure 5.8 with the dots 	-

representing FPGAs which are arranged in a ring and eight of which are for

functionality and connections , four of which are for connections only. Assume the

95

The petformance of merge algorithm

connections between groups only use pin to pin direct connections (28 wires in this

case) or pass through the connection only FPGAs. To ensure a successful mapping

in this particular hardware configuration , the following constraints must be

observed.

j-8

Z cz(i, j) :!~ 92, where cz(i, j) is the cutsize of group i and group j, and
j=I,j#i

92 is composed of 28 pin to pin direct connection between adjacent FPGAs and

4 interconnect FPGAs each with 16 connections to each of 8 functional

FPGAs.

one pair of groups must be adjacent on the physical target structure.

C4

C

2

Cl

Cl

8

C7
8

do

Figure 5.8 The ring structure

5.3.2. Mapping a design to a flexible hardware target structure

The performance of merge algorithm

A large design may be partitioned into a range of FPGAs while minimising

connectivity between FPGAs and achieving high gate utilisation and system

performance. Once an optimum partition for a given design is found then the

required hardware must be constructed using the wiring specification generated by

partitioning software. Such hardware architecture is referred to as "flexible hardware

target structure".

The main constraints for implementing the flexible hardware structure are the gate

counts and pin counts in the variety of FPGAs. How to apply these constraints to the

partitioning software depends on the user's situation. For example, if users have only

a few types of FPGAs or limited number of FPGAs, then the above constraints must

be applied to the partitioner which consequently will determine if the design is

feasible or not in such situations. A better approach to achieving an optimum

partition is finding a suitable partition from a solution space to suit user's

requirements.

The MA can offer a range of solution space by applying different parameters to the

merging processes. The following parameters can be changed to obtain the possible

partitions for a design.

• 	the number of groups for the final partition

• 	the initial size constraints S 0

• 	the number of stages, L

• 	the size of subcircuit

By changing the individual parameter or combinational parameters, the MA will

generate different results from which user may analyse them to find a feasible

partition, if no promising results are found, go back to change the parameters again

97

The peiforinance of merge algorithm

that may produce a desirable partition. This process is repeated until users find a

partition that suits their requirements.

5.4. Summary

Test circuit 1 (TC1), which is a random circuit with 100 cells, was thoroughly

exercised by changing the initial size constraint S 0 and stage number L. This

produced a large range of partitions. For practical applications, a designer may select

a partition which suits his requirements.

Test circuit 2 (TC2) is a circuit with known optimal partition and was used to test the

ability of the merge algorithm to locate this optimal partition. The merge algorithm

demonstrated an excellent potential to find this optimal partition.

The merge algorithm has a flexible capability which facilitates the use of the

software to suit various applications by meanings of modifying some minor

procedures or changing some parameters. The important problems are identifying

the requirements of the applications, then adjusting the merge algorithm to proceed

under the specified constraints.

Generation of a range of possible designs in response to a product specification is an

essential feature of successful product development [18]. A pseudo-parallel version

of the merge algorithm which has better speed performance, is presented in the next

chapter. This gives a brief summary of partitioning methods that will facilitate rapid

exploration of possible partition solutions.

The Pseudo Parallel Process for Merge algorithm

CHAPTER 6

The Pseudo Parallel Process for Merge Algorithm

This chapter presents a pseudo-parallel (or serial-parallel) method for implementing

the merge algorithm to enhance the performance of the merge algorithm when the

designs become large.

Two basic parallel processing methods are introduced which are pipeline processing

and data parallelism. The latter method is used to implement the merge algorithm.

The circuit is divided into several subcircuits which are sequentially passed to the

merge algorithm, some synchronisation actions have to be carried out, then the size-

reduced subcircuits are combined as a full circuit. These procedures are repeated

until the desired partition is reached. The associated C progranmiing code for the

pseudo-parallel algorithm is listed in Appendix E.

Five test circuits were generated to exercise fully the pseudo-parallel merge

algorithm. Some promising outcomes are also presented.

6.1. Parallel processing

A conventional computer uses one processor which executes a set of instructions in

order to produce a result. At any one time there is only one operation being carried

out by the processor. -3

Parallel processing is concerned with producing the same results using multiple

processors. There are many approaches to parallel processing, two basic ways of

The Pseudo Parallel Process for Merge algorithm

which are as follows:

Divide the problem into a sequence of tasks, with each task operating on the

results of the previous tasks. This approach is known as pipeline processing.

Have many processors performing the same task simultaneously on different

data sets. This approach is known as data parallelism.

In the pipeline method, a problem is separated into a cascade of tasks, each of which

is executed by an individual processor. Data is passed through each processor

performing a different operation on each of the data elements. Since the program is

distributed over the processors in the pipeline and the data moves from one

processor to the next, no processor can proceed until the previous processor in the

pipeline has completed its task and passed the data to it. Figure 6.1 shows the data

flow and task distribution for a pipeline of processors.

I Data in 	Task 	Task 	I 	,-I Task 	I 	>1 Task 	
Data out

ii 	I 	2 	I 	I 	3 I 	I

Figure 6.1 Task and data distribution for a pipeline of processors

Data parallelism generally distributes all of the data to be processed equally over all

of the processors in the computer. Each processor contains the same program

operating on a subset of the data. This is in contrast to a pipeline approach, in which

the program is distributed rather than the data. Figure 6.2 illustrates the distribution

of data and program task over processors.

Creating parallelism by distributing data is a popular approach because it largely

avoids the difficulty of finding a way to decompose a problem into parallel pieces.

Not only is program decomposition largely irrelevant, but distributing data by

dividing it equally among the processors also provides automatic load balance.

100

The Pseudo Parallel Process for Merge algorithm

Although the program decomposition becomes easier in data parallelism, the

synchronisation between processes can become more difficult and complicated.

Because each processor contains only a portion of the entire data set, any processor

which requires other, nonlocal data, must obtain it by communicating with other

processors. The difficulty of programming a processor network to communicate

correctly and efficiently can more than compensate for the ease of program

decomposition. Nevertheless, data parallelism is generally more flexible and easier

to implement effectively than is pipeline parallelism [87-91].

All tasks
	 All tasks

	 All tasks
	

All tasks

Data set
	

Data set
	

Data set
	

Data set

1
	

2
	

3
	

4

Processor 1 	 Processor 2 	 Processor 3 	 Processor 4

Figure 6.2 Task and data distribution for data parallelism

6.2. A pseudo-parallel processing method for the merge algorithm

The merge algorithm (abbreviated as MA) can be implemented as a data parallel

algorithm. Such an implementation will lead to an increase in the speed of circuit

partitioning.

The data, i.e. the graph, will be divided into several portions which will be

distributed to many processors which execute the MA on the subset of the graph.

Some synchronisation programs must be written to update the local data. Three

functions are needed to facilitate the implementation of the data parallel approach.

They are "divider", "coordinator" and "constructor". The divider is used to divide

the data into a number of data subsets. The coordinator is used to synchronise the

data distributed among processors and the constructor is used to re-construct a new

full data set.

101

The Pseudo Parallel Process for Merge algorithm

The parallelism of the MA was investigated by sequentially using a single processor

to implement the parallel process. It is found that this pseudo-parallel processing

method also reduces the time required for circuit partitioning.

6.2.1. The data parallel method

The first task to be carried out in data parallel system is to actually divide the data. If

the total number of data elements is a multiple of the number of processors, the data

can be divided evenly among the processors. But in most cases the number of data

elements is not a multiple of the number of processors, the data can not be evenly

divided. The policy of dividing data adopted in this work is to divide the data evenly

to the preceding subsets and any data leftover is allocated to the last subset. The

number of the subsets is decided by the number of processors available and the size

of the target system.

The graph which represents the target system is divided into a number of sub-graphs

which are passed to the MA which merges the pairs of cells in the same sub-graph.

The candidates which are not in the same sub-graph are neglected. The merging is

complete once all possible cells have been merged. This produces a number of

reduced sub-graphs.

During the process of merging, some cells become implicit cells in some sub-graphs

and the cell names of of the implicit cells have been changed to the cell names of the

explicit cells. Because these events happen at the local sub-graph level, other sub-

graphs are not informed that the names of those implicit cells having been changed

if they exist in them. As a result, a coordinator is required to change the names of

the implicit cells to the corresponding cell names of the explicit cells.

After these reduced sub-graphs have been modified for their proper cell names, they

are fed to the constructor to obtain a new full, but reduced, graph.

102

The Pseudo Parallel Process for Merge algorithm

The goal of merging is to acquire a desired partition, so the new full reduced graph

must be investigated to check if it meets the requirements of the desired partition. If

not, the new graph is passed to the divider again and the next iteration starts. Figure

6.3 shows the pseudo-parallel process for implementing the MA.

For actual parallel processing, the sub-graphs are distributed each to an individual

processor on which the MA is executed. After all of the processors complete the

merging operation, the same number of processors are used to execute the program

of the coordinator function. Figure 6.4 shows the tasks needed for the data parallel

implementation of the MA. The iterations continue until the final partition is

reached. During each iteration, the number of sub-graphs may become less, hence

the number of the required processors is reduced, therefore it may release some

processors to other tasks in the system.

6.2.2. Functions required for the data parallel method

6.2.2.1. Divider

The responsibility of the divider is to prepare the well-divided subsets of data ready

to be distributed to the available processors. A graph representing a circuit, the size

of the sub-graph or the number of available processors will be the inputs of the

divider. According to these inputs, the graph is divided into many sub-graphs with

each one having the same number of cells, except the last-graph which contains the

leftover in the graph. Figure 6.5 shows a simplified graph containing 2n cells. To

divide this graph into two sub-graphs, which contain n cells each, two sub-graph

heads are needed, the cells are sequentially allocated to a sub-graph until the

required number of cells is reached, then the link between cell n and cell n+ 1 must

be broken and the one in the front (i.e. cell n) is set to the end of one sub-graph, the

one in the rear (i.e. cell n+1) is set to the start of another sub-graph. Figure 6.6

103

The Pseudo Parallel Process for Merge algorithm

shows two sub-graphs obtained from the graph in Figure 6.5 by dividing itinto two

parts.

Figure 6.3 Flow chart of the pseudo-parallel merge algorithm

104

The Pseudo Parallel Process for Merge algorithm

Figure 6.4 The flow chart of the parallel process implementation of the merge algorithm

105

The Pseudo Parallel Process for Merge algorithm

Head of graph

Figure 6.5 A simplified graph with 2n cells

OR

The Pseudo Parallel Process for Merge algorithm

Head of sub-graph!

Head of sub-graph2

Ef_~

n+I

Figure 6.6 Two sub-graphs of Figure 6.5

107

The Pseudo Parallel Process for Merge algorithm

6.2.2.2. A merge algorithm for parallel process method

The MA used previously operates on the full graph by selecting the cells with the

maximum number of connections as the candidates to merge. For the parallel

process, the MA will be working on the sub-graphs, only the cells which are all

within the same sub-graph are merged. The MA proceeds until no cells in the sub-

graph are available to merge.

Because merging occurs within a small portion of the full graph, a record of the

corresponding implicit cells and explicit cells is kept to enable the following process

to effect synchronisation among sub-graphs.

6.2.2.3. Coordinator

When the parallel version is applied to sub-graphs, the normal actions for changing

the names of the implicit cells to the names of the explicit cells are executed only

inside the sub-graphs, therefore a routine called the coordinator is required to

process the cells which were implicit cells in certain sub-graphs and still are left in

other sub-graphs. The main goal of the coordinator is to change the names of these

cells to their proper cell names after completion of the merge operations.

The coordinator can be parallelized by loading this routine to a number of processor

into which the sub-graph, the cell-net list and the record of the changed cell names

are loaded. Every edge node in the sub-graph must be visited to investigate if the

cell names have been changed. If they have been changed, then the cell-net list will

be used to count the number of connections between the new pair of cells. Then the

routine goes to the next edge node. This is continued until all the edge nodes in the

sub-graph are exhausted. Figure 6.7 shows the flow chart of the coordinator

function.

Im

The Pseudo Parallel Process for Merge algorithm

Start

Input

Sub-graph

Cell-net list
Record of changed cell name

Is
sub-graph> --- --CEnd

empty?

Ncell name
<oftherrent edge node

hanged

VA

Count the number of connections

between the new pair of cells

Change the cell name
in the edge node

Modify the number of connections
in the edge node

Figure 6.7 The flow chart of the coordinator

109

The Pseudo Parallel Process for Merge algorithm

6.2.2.4. Constructor

The constructor is a routine that collects all the sub-graphs resulting from the

previous processes and combines them into a new reduced full graph. The

constructor will re-build the full graph by cascading the sub-graphs sequentially, it

starts from the the first sub-graph and always points to the last cell in the sub-graph

to the first cell of the next sub-graph. These steps are iterated until the last sub-graph

is reached. Finally, the head of the first sub-graph is used as the head of the full

graph. Figure 6.6 is used to illustrate the combining of the two sub-graphs which is

shown in Figure 6.8.

Headofsub. '

Headofsuph2

I
Figure 6.8 The re-construction of Figure 6.6

110

The Pseudo Parallel Process for Merge algorithm

6.3. Performance of the pseudo-parallel MA

6.3.1. Test circuits

To demonstrate the performance of the pseudo-parallel process, the random circuit

generator was used again to generate some test circuits which include one random

circuit with 10,000 cells and four structural circuits with various numbers of cells

which were constructed semi-automatically, i.e., every part in a circuit was generated

automatically, but the connections between parts were defined manually. The main

features of these test circuits are shown in Table 6.1.

Test circuits #Cells #Nets #Modules #110

ranOl 10,000 12,882 1 20

struO 1 1,000 1,292 5 2

stru02 2,000 2,578 5 2

stru03 10,000 12,850 5 2

stru04 12,000 15,471 6 8

Table 6.1 The main features of test circuits

The block diagrams of the four structural circuits (Figure 6.9 to 6.12) and the

features of each part in the circuit (Table 6.2 to 6.5) are shown below.

Figure 6.9 The block diagram of struOl

111

The Pseudo Parallel Process for Merge algorithm

Units #Cells #Nets #110

Ui 200 255 2

U2 200 258 2

U3 200 263 2

U4 200 258 2

US 200 258 2

Table 6.2 The main features of struOi

Figure 6.10 The block diagram of stru02

Units #Cells #Nets #110

Ui 400 510 2

U2 400 520 2

U3 400 518 2

U4 400 514 2

US 400 516 2

Table 6.3 The main features of stru02

112

The Pseudo Parallel Process for Merge algorithm

Figure 6.11 The block diagram of stru03

Units #Cells #Nets #110

Ui 2000 2571 2

U2 2000 2565 2

U3 2000 2564 2

U4 2000 2580 2

U5 2000 2561 2

Table 6.4 The main features of stru03

8 	 o

Figure 6.12 The block diagram of stru04

113

The Pseudo Parallel Process for Merge algorithm

Units #Cells #Nets #110

Ui 1500 1937 8

U2 3000 3848 8

U3 1500 1925 8

U4 1500 1945 8

U5 3000 3849 8

U6 1500 1967 8

Table 6.5 The main features of stru04

6.3.2. Results

The five test circuits were processed by the pseudo-parallel merge algorithm which

uses the "merge in stages" approach with a small initial size constraint. After each

iteration the next size constraint is enlarged. The initial size constraint used here is

formulated empirically as follows:

I
SOCscjçy1JJ 	 (6.1)

where S0 is the initial size constraint, C, is the size of the sub-circuit, C is the total

number of cells in the circuit and 100 is an empirical value. After each iteration the

size constraint is doubled. This is repeated until no cells can be merged.

The pseudo-parallel algorithm consists of four sequentially implemented tasks,

namely: divider, MA for parallel process, coordinator and constructor. To assess the

performance of these four tasks, they are clocked by the system c.p.u. timer to

enable the c.p.u. time to be monitored and recorded at each iteration.

The number of processors available in the system will decide how many divisions

114

The Pseudo Parallel Process for Merge algorithm

the circuit can be divided into. All meaningful and possible number of processors

were investigated when the pseudo-parallel merge algorithm was applied to these

five circuits. A sample of result shown below is the result of the test circuit stru03

which was run under the assumption of a system with 4 processors available. In the

beginning the number of cells in the full circuit is shown; at each iteration the

number of cells in the sub-circuit and the number of divisions are displayed, then the

c.p.u. time for each task and each sub-circuit are recorded, finally the total run time

and the number of cells left in the circuit are shown. In the first iteration, the divider

divides the test circuit into four subcircuits each one of which contains 2,500 cells,

these four subcircuits are sequentially run through the MA and coordinator, then the

constructor combines the four reduced subcircuits into one. The new reduced circuit

consists of 2,177 cells after combination. The size of the new circuit is less than

2,500 cells, therefore there is only one division and only one processor is needed in

the second iteration. Due to only one division left, there is no synchronisation

needed, the coordinator and constructor are not executed and the final partition is

obtained in this iteration.

The first iteration:

The size of the full circuit = 10,000 cells
The size of the subcircuit = 2,500 cells
The number of divisions = 4

time_divider=0 .016667 secs

time_merge(1)=73.949997 secs
time_merge(2)=73.133331 secs
time_merge(3)=58.500000 secs
time_merge(4)=84.400002 secs

time_coordinator(1)=0.300000 secs
time_coordinator(2)2 .950000 secs
time_coordinator(3) =1.966667 secs
time_coordinator(4)=0.000000 secs

time_constructor=0.000000 secs

115

The Pseudo Parallel Process for Merge algorithm

The second iteration:
**

The size of full circuit = 2,177 cells
the size of subcircuit = 2,500 cells
The number of division = 1

time_divider=0 .000000 secs

time_merge(l)=265.866669 secs

The final:
**

Total run time (pseudo parallel) = 561.450012 secs
Predicted parallel run time = 353.21 secs
The number of cells in the size-reduced circuit = 2

The five test circuits are individually processed by changing the size of subcircuit

and the c.p.u. time taken by each of the four procedures was recorded in the format

of the above listing. In the last block the total run time (i.e. the pseudo-parallel run

time) and the predicted parallel run time are calculated. The total run time is the

time that only one processor is used by running the parallel MA in serial manner.

The predicted parallel run time is assumed there are a number of processors running

simultaneously, in each iteration the longest time a task takes is used as the net run

time, because the other tasks which take shorter run time have to wait until the

slowest task has been finished. The run time of the regular MA was also taken to

compare with pseudo-parallel and predicted parallel. Figure 6.13 to figure 6.17 show

the graph of the speed performance of these five test circuits with the horizontal axis

as the size proportion in percentage and the vertical axis as the c.p.u. time the

processes take.

The Figure 6.13 shows the speed performance of the test circuit ranOl with respect

to the various subcircuit size in percentage to the full size circuit. If the subcircuit

size falls between 50% to 100% of the full size circuit, then two processors are

required. The less percentage the subcircuit size is, the more the processors are

116

The Pseudo Parallel Process for Merge algorithm

required. The run time of the pseudo-parallel MA with multiple processors was

dramatically reduced. It was about three times as fast as the regular MA with one

processor. When the number of processors increased beyond four, the run time

increased abruptly. This is due to the test circuit ranOl being randomly connected,

the connections between cells may be far away from each other in the netlist, it is

not easy to find a pair of cells to merge in the subcircuit itself when the full circuit is

divided into too many subcircuits, therefore the size of the full circuit after re-

construction does not reduce much, the program keeps looping until no further

merge can be made, this makes the run time increase significantly.

Figure 6.14 to figure 6.17 show the speed performance of structural circuits with

different structures and various sizes. There are two kinds of curves which are the

curve of pseudo-parallel and the curve of predicted parallel algorithm. All these

curves in these four graphs have a similar shape which demonstrates the run time of

the pseudo-parallel with multi-processor is always much less than the regular merge

algorithm, and the run time of predicted parallel is less than the run time of pseudo-

parallel. There is a special situation when the size of the subcircuit matches the

structure of the circuits and the run time is the shortest. For example, struOl with

1000cells consisting of five blocks of circuits with 200 cells each has a shortest run

time when the size of the subcircuit is 200.

To assess the pseudo-parallel MA, the structural circuits have known optimal

cutsize. The test circuits struO 1, stru02 and stru03 have optimal cutsize equal to 1

when doing bi-partition. The test circuit stru04 has a bus with 8 wires passing

through every unit of the circuit. Obviously, the optimal cutsize for bi-partition

should be 8. Applying pseudo-parallel MA to the first three test circuits, the optimal

solutions for bi-partition were always found. Applying pseudo-parallel MA to the

stru04, the optimal solution was not found, most of the case the cutsize were greater

117

The Pseudo Parallel Process for Merge algorithm

than 8. This is due to some pairs of cells in the different units having bigger

connection number through the bus which were selected to merge, and this draw

more wires which do not belong to the bus, passing through the boundary. When

changing the size constraints, the results of the cutsize varied. One point that can be

sure is that the cutset of the partition always contains the bus.

Cpu time
Hours

eria1 parallel

0.00 	20.00 	4UAJIJ 	OU.UU 	Ou.'Ju

Size proportion in %
100.00

2.0(

1.9(

1 .8(

1 .7(

1.6(

I.5(

1 .4(

1.3(

1.2(

l.1(

1.0(

0.9(

0.8(

0.7(

0.6(

03

0.41

0.31

0.21

Figure 6.13 Speed performance of the pseudo-parallel merge algorithm when ranO 1

is partitioned

118

The Pseudo Parallel Process for Merge algorithm

Cpu time
seconds

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.(

1.5

l.(

0.5

erial parallel

redicted parallel

Size proportion in %

Figure 6.14 Speed performance of the pseudo-parallel merge algorithm when struO 1

is partitioned

119

The Pseudo Parallel Process for Merge algorithm

Cpu time
seconds

38.00

36.00

34.00

32.00

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

jerial parallel

'redicted parallel

Size proportion in %
20.00 	40.00 	b0.UU 	ZSU.UU 	iuu.uu

Figure 6.15 Speed performance of the pseudo-parallel merge algorithm when stru02

is partitioned

120

Cpu time

Hours x 10-3

360.00

340.00

320.00

300.00

280.00

260.00

240.00

220.00

200.00

180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

erial parallel

predicted parallel

Size proportion in %

u.uu 	LU.UU 	'fU.UU 	 OU.UU 	 OV.uu

The Pseudo Parallel Process for Merge algorithm

Figure 6.16 Speed performance of the pseudo-parallel merge algorithm when stru03

is partitioned

121

Cpu time
Hours x 10-3

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

Serial parallel

ti1Eed ..aralle

Size proportion in %

20.00 	40.00 	60.00 	80.00 	100.00

The Pseudo Parallel Process for Merge algorithm

Figure 6.17 Speed performance of the pseudo-parallel merge algorithm when stru04

is partitioned

122

The Pseudo Parallel Process for Merge algorithm

6.4. Summary

This pseudo-parallel MA presented in this chapter proved to have better performance

than the regular MA while maintaining the same quality of the result. The

performance of the predicted parallel MA is even better than the pseudo-parallel

version. Both pseudo-parallel and real parallel can quickly let users explore a wide

range of possible partitions.

123

Summary and Conclusions

CHAPTER 7

Summary and Conclusions

7.1. Summary

Integrated circuits continue to grow in size and complexity. Correspondingly, the

design process associated with these circuits has grown lengthy and expensive. A

rapid prototype of an ASIC design is strongly needed to reduce time-to-prototype

and expenses of the overall design cycle [20], [92]. Typically designs cannot be

implemented by a single device, hence how designs are partitioned into a set of

PLDs that form a digital emulator so that the design's functionality can be evaluated,

is an important problem. Therefore partitioning is one of the most important

subtasks in preparing a design database for emulation.

In this thesis techniques for partitioning problems were reviewed. These are drawn

from the branch of mathematics known as "graph algorithms". In many cases,

however, the solution techniques belong to a class of computational problem for

which no exact solution may be generated in polynomial time. This limitation is

overcome by the introduction of heuristics to constrain the solution space. The use

of heuristics may obtain a solution within a reasonable time by compromising the

solution quality.

A merge algorithm for circuit partitioning was introduced. It is based on the simple

concept that cells with the maximum number of connections should be the first to be

merged. The merging operations are processed in several stages, having a predefined

124

Summary and Conclusions

initial size constraint on groups of cells specified at the first stage, the size constraint

on groups is enlarged at the subsequent stages. By specifying the number of groups

required and the size of each group in the final partition, a desired partition or

suggested partition will be obtained.

The merge algorithm was implemented by means of the C programming language.

A well-defined data structure was developed which is capable of dealing with the

circuits having multi-terminal nets and can be extended easily to incorporate other

information from the circuit itself or user's specification. The cell-net list was set up

for coping with the multi-terminal net problem and was used to acquire the new

number of connections between cells after merging. The graph was used to form a

new configuration of the circuit after each merging operation was completed.

The merge algorithm was fully exercised on test circuits by giving various initial

size constraint and associated number of stages which produced different results. A

balance factor was introduced to judge if a result is in a reasonable balance. A poor

balance usually leads to a small cutsize. When the balance factor falls in a certain

range, the cutsize varies little. A structured circuit with known optimal partition was

created to test the ability of merge algorithm to find this optimal partition. The

results proved that the merge algorithm has a much better performance than the

Kernighan-Lin based approach.

The merge algorithm presented in this thesis was extended to a pseudo-parallel

version. A set of procedures were developed which are the divider, merge algorithm

for parallel implementation, coordinator and constructor. The divider divides a

circuit into several subcircuits which are sequentially processed by the parallel

merge algorithm which produces size-reduced subcircuits. The coordinator modifies

these smaller subcircuits which are recombined into a size-reduced full circuit. This

cycle is repeated until a final partition is reached. Five test circuits were created to

125

Summary and Conclusions

exercise the pseudo-parallel merge algorithm. The results showed the pseudo-

parallel version had better speed performance than the basic version of the MA.

7.2. Conclusions

A merge algorithm has been investigated and it has been shown to be an effective

method for partitioning large circuits into a set of smaller circuits. A particular

feature of the algorithm is its suitability for implementation by a parallel processor

array. This parallel processing feature has been investigated by a pseudo-parallel

technique which has itself been shown to offer practical advantages. The C

programming language has been used to develop the experimental software

implementation of the algorithm. So its development for use in future research

should be straightforward. Further work is required to facilitate the practical

applications of the MA. Some proposals follow.

7.3. Further work

This section suggests a number of potential research areas which extend and

augment the work presented in this thesis.

7.3.1. Partitioning for improving place and route

The functionality and routing resources are limited in FPGA, and placement and

routing is the most time-consuming part of the FPGA design process, therefore

producing a design with higher routability is preferable than producing a design

which is difficult to route [43]. Thus, making a good preparation in the partitioning

stage for facilitating to execute "Place and Route" is important [11-12], [72-83].

In the partitioning stage, the partitioner will split a large network into several blocks

to fit into the individual FPGAs. The next stage is the assignment of the network

cells to physical cells on the Logical Cell Array in the FPGA [44] and the

126

Summary and Conclusions

configuration of routing structures to interconnect them as in the network (i.e.

placement and routing).

A partitioner is typically only concerned with the gate and pin counts that an FPGA

can accommodate, and leaves the most time-consuming tasks of performing the

actual placement and routing to the vendor software for individual FPGAs [45-46].

This makes automatic placement start with a random placement which may be

difficult to route, or in the worse case unroutable. A good initial placement would

increase the routability.

Usually, the MA using the partitioning in stages strategy partitions a design into a

number of large groups that fit the target devices. In the intermediate stage, the

partition will consist of many small groups. The available of logic cells in an FPGA

can be used as a constraint on the intermediate merging stage. This intermediate

partition will provide a useful initial input to the automatic placement routine. In

addition, the MA tends to merge more nets into a group and leave fewer nets

between groups which will alleviate the problem of limited routing resources.

Properly using the above two properties can give a good initial placement.

7.3.2. Improving timing performance

Many techniques can be used to improve the timing performance of a circuit.

According to the design level applied, they can be divided into three categories [52].

At the structural level, the internal structures of gates and their interconnections in a

circuit are modified to improve circuit performance. For example, the technique of

converting a ripple-carry adder into a carry-lookahead adder belongs to this category

[53]. This method will change the connections between the gates, even change the

design. At the physical level, techniques of transistor sizing, buffering, and

powering are used to improve gate speed [54-60]. These techniques result in

127

Summary and Conclusions

increased circuit size and circuit power consumption. It's improved performance

carries a price. At the topological level, performance-driven placement of gates and

performance-driven routing of wires are aimed at minimising the delay of the

longest paths [52], [71], while the connections between components are retained.

Generally speaking, a longer path will result in a longer time delay and external

connections will cause a longer delay than internal connections. If the longer paths

have the higher priority to route and the cells on the timing sensitive paths have the

precedence to place, the timing performance of the design can be improved by

taking these considerations into account. A timing-driven partition algorithm with a

capability to pre-allocate timing critical cells onto a group and supply the necessary

information about the critical paths to the software for place and route to optimise

the timing performance, possesses the ability to retain the connections among cells

in the design [47-49].

The merge algorithm can be guided by timing constraints to partition circuits with

timing-performance problem. Timing analysis software [50-5 1] is needed to

produce a timing data base which sequentially lists the critical paths and the cells

along these paths. According to the timing data base, the processes of merging cells

on the critical path into a group are taking place in advance. After the merge

operation on the timing data base is finished, the MA is applied to the new

configuration of the circuit. This technique can prevent the critical timing path

travelling through to external connections, which will result in a longer delay.

7.3.3. Equal weight

In the merge algorithm, when there are several pairs of cells having the same number

of connections the choice is made to select the first pair of cells in the list to be

merged. How the merge algorithm differentiates the pairs of cells having the same

128

Summary and Conclusions

weight and provide information that can guide the merge algorithm to make the best

choice of cells to merge, should be investigated.

7.3.4. The methods for selecting candidates to merge

The simple concept that cells with the maximum number of connections should be

merged first, is adopted in the merge algorithm. There should be some other metrics

that can be used to make a good cells selection and improve the results generated

from the algorithm using simple concept. This is worth investigation.

7.4. The benefits of the Merge Algorithm

Although the Kernighan-Lin based approaches are popular in practical use, there are

still some disadvantages. The merge algorithm presented in this thesis possesses a

number of advantages which are stated as follows:

No initial partition required.

An excellent potential to find the optimal partition.

A well-defined data structure that can easily incorporate the required

information to suit various circuit requirements.

A multi-way partitioning algorithm.

A parallelizable algorithm which can be executed on a multi-processor

computer to reduce processing time as circuit size increases.

129

References

REFERENCES

H. R. Chamey and D. L. Plato, "Efficient partitioning of components," IEEE

Design Automation, pp. 16.0-16.21, July 1968.

T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,

Paderborn, Germany: University of Paderborn, 1990.

B. W. Kernighan and S. Lin, "An efficient heuristic procedure for partitioning

graphs," Bell Syst. Tech. J., vol. 49, no. 2, pp. 291-307, Feb. 1970.

C. M. Fiduccia and R. M. Mattheyses, "A linear-time heuristic for improving

network partitions," in Proc. 19th Design Automation Conf., 1982, pp.

175-18 1.

B. Krishnamurthy, "An improved mm-cut algorithm for partitioning VLSI

networks," IEEE Trans. Comput., vol. C-33, pp. 438-446, May 1984.

Y. C. Wei and C. K. Cheng, "Ratio cut partitioning for hierarchical designs,"

IEEE Trans. on Computer-Aided Design, vol. 10, no. 7, July 1991, pp.

911-921.

InCA, Virtual ASIC Reference Manual, InCA Ltd., Gibbs House, Kennel Ride,

Ascot, Berkshire, 5L5 7NT, U. K., 1991.

D. M. Schuler and E. G. Ulrich, "Clustering and linear placement," in Proc. 9th

Design Automation Workshop, 1972, pp. 50-56.

130

References

H. Shin and C. Kim, "A simple yet effective technique for partitioning," IEEE

Trans. on VLSI Syst., vol. 1, no. 3, Sep. 1993, pp. 380-386.

J. Cong and M. Smith, "A parallel bottom-up clustering algorithm with

applications to circuit partition in VLSI design," in Proc. 30th ACM/IEEE

Design Automation conf., 1993, pp. 755-760.

M. A. Breuer, "Mm-cut placement," J. Design and Fault-Tolerant Computing,

vol. 1, no. 4, pp. 343-362, Oct. 1977.

L. I., Corrigan, "A placement capability based on partitioning," in Proc. 16th

Design Automation Conf., June 1979, pp. 406-413.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

R. Sedgewick, Algorithms in C, Princeton University, 1990.

G. E. Moore, "Are We Really Ready for VLSI?," in Proc. Caltech Conf. on

Very Large Scale Integration, 1979.

R. B. Fair, "Challenges to manufacturing submicron, ultra-large scale

integrated circuits," Proc. IEEE, 78(11), 1990, pp. 1687-1704.

B. T. Egan, "Designers search for the secret to ease ASIC migration,"

Computer Design, December 1991, pp. 78-94.

S. Pugh, Total Design, Addison-Wesley, 1990.

K. Perry, "Eliminating barriers to FPGA use by timing driven partitioning,"

Electronic Engineering, January 1993, pp. 41-44.

131

References

Quickturn Design Systems, "Rapid prototyping systems for early hardware

verification," Electronic Product Design, October 1994, pp. 59-6 1.

D.E. Van den Bout, J.N. Morris, D. Thomae, S. Labrozzi, S. Wingo and D.

Haliman, "AnyBoard: An FPGA-based, Reconfigurable System," IEEE Design

& Test of Computers, September 1992, pp. 2 1-29.

D.A. Thomae, "Using the Anyboard Partitioner," Electrical and Computer

Engineering Department, North Carolina State University, April 1992.

D.A. Thomae and D.E. Van den Bout, "Automatic Circuit Partitioning in the

Anyboard Rapid Prototyping System submitted to Microprocessors and

Microsystems," Electrical and Computer Engineering Department, North

Carolina State University, April 1992.

D.A. Thomae, "Performance Directed Partitioning for the Anyboard,"

Electrical and Computer Engineering Department, North Carolina State

University, March 1992.

J. Frankle and R.M. Karp, "Circuit placement and cost bounds by eigenvector

decomposition," in Proc. mt. Conf. on Computer-Aided Design, 1986, pp.

4 14-4 17.

L.R. Ford and R.M. Fulkerson, Flows in Networks. Princeton, NJ: Princeton

University, 1962.

L.A. Sanchis,"Multi-way network partitioning," IEEE Trans. on Computers,

vol. 38, January 1989, pp. 62-8 1.

D.G. Schweikert and B.W. Kernighan, "A proper model for the partitioning of

electrical circuits," in Proc. 9th Design Automation Workshop, 1972, pp.

132

References

57-62.

C. Sechen and D. Chen, "An improved objective function for mincut circuit

partitioning," in Proc. Tnt. Conf. on Computer-Aided Design, 1988, pp.

502-505.

S. Kirkpatrick, C.D. Gellatt and M.P. Vecchi, "Optimization by simulated

annealing," Science, vol. 220, 1983, pp. 67 1-680.

D.S. Johnson, "The NP-completeness column, an ongoing guide," Journal of

Algorithms, 1984, 10th edition, 5: 147-160.

D.S. Johnson, 'The NP-completeness column, an ongoing guide," Journal of

Algorithms, 1985, 16th edition, 6:434-45 1.

J.W. Greene and K.J. Supowit, "Simulated annealing without rejected moves,"

in Proc. mt. Conf. on Computer Design: VLSI in Computers, IEEE, 1984, pp.

658-663.

D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, "Optimization by

simulated annealing: An experimental evaluation (part I)," Preprint, AT&T Bell

Laboratories, Murray Hill, NJ, 1985.

D.W. Maflila and F. Shahrokhi, Graph partitioning by sparse cuts and

maximum concurrent flow, Technical Report 86-CSE-6, Department of

Computer Science and Engineering, Southern Methodist University, Dallas,

TX, 1986.

XILIINX: The Programmable Gate Array Data Book. 2100 Logic Drive, San

Jose, CA 95124, 1992.

133

References

R. Murgai, Y. Nishizaki, N. Shenoy, R.K. Brayton and A. Sangiovanni-

Vincentelli, "Logic synthesis for programmable gate arrays," in ACM IEEE

27th Design Automation Conference Proceedings, June 1990, PP. 620-625.

R. Murgai, N. Shenoy, R.K. Brayton and A. Sangiovanni-Vincentelli,

"Improved logic synthesis algorithms for table look up architectures," in IEEE

International Conference on Computer-Aided Design ICCAD-9 1, Nov. 1991,

pp.564-567.

N.-S. Woo, "A heuristic method for FPGA technology mapping based on the

edge visibility," in ACM IEEE 28th Design Automation Conference

Proceedings, June 1991, pp. 248-251.

R.J. Franics, J. Rose and K. Chung, "Chortle: A technology mapping program

for lookup table-based field programmable gate arrays," in ACM IEEE 27th

Design Automation Conference Proceedings, June 1990, pp. 227-233.

F. Dresig, 0. Rettig and U.G. Baitinger, "Logic synthesis for universal logic

cells," in Proceedings of International Workshop on Field Programmable Logic

and Applications, Sep. 1991.

D. Fib, J. Yang, F. Mailhot, and G. Micheli, "Technology Mapping for a Two-

Output RAM-based Field-Programmable Gate Arrays," in European Design

Automation Conference, Feb. 1991, pp. 534-538.

M. Schlag, J. Kong and P.K. Chan, "Routability-Driven Technology Mapping

for LookUp Table-Based FPGAs," IEEE ICCD, Oct. 1992, pp. 86-90.

R.R. Munoz and C.E. Stroud, "Automatic partitioning of programmable logic

devices," in VLSI Systems Design, Oct. 1987, pp. 74-86.

134

References

Quickturn Systems Inc., 325 East Middlefield Road, Mountain View, CA

94043, 1991.

P.K. Chan, M. Schiag and J.Y. Zien, "On Routability Prediction for Field-

Programmable Gate Arrays," 30th ACM/IEEE Design Automation Conference,

1993, pp.326-330 .

I. Lin and D.H.C. Du, "Performance-Driven Constructive Placement," Proc. of

27th Design Automation Conference, 1990, pp. 103-106.

M. Marek-Sadowska and S.P. Lin, "Timing Driven Placement," Proc. of

ICCAD, 1989, pp. 94-97.

W. Donath, "Timing Driven Placement Using Complete Path Delays," Proc. of

27th Design Automation Conference, 1990, pp. 84-89.

K. Roy and J. Abraham, "The Use of RTL Descriptions in Accurate Timing

Verification and Test Generation," IEEE Journal of Solid State Circuits, Sep.

1991.

S.K. Nag and K. Roy, "Iterative Wirability and Performance Improvement for

FPGAs," 30th ACM/IEEE Design Automation Conference, 1993, pp. 321-325.

H.C. Chen, D.H.C. Du and L.R. Liu, "Critical Path Selection for Performance

Optimization," IEEE Trans. on Computer-Aided Design, vol. 12, No. 2, Feb.

1993, pp. 185-195.

J. Fishburn, "A depth-decreasing heuristic for combinational logic; or How to

Convert a ripple-carry adder into a carry-lookahead adder or anything in-

between," in Proc. 27th Design Automation Conf., 1990, pp. 361-364.

135

References

A. A1-Khalili, Y. Zhu and D. A1-Khalili, "A module generator for optimized

CMOS buffers," in Proc. 26th Design Automation Conf., 1989, PP. 245-250.

M. Cirit, "Transistor sizing in CMOS circuits," in Proc. 24th Design

Automation Conf., 1987, pp. 12 1-124.

G. DeMicheli, "Performance-oriented synthesis in the Yorktown silicon

compiler," in Proc. IEEE Tnt. Conf. Computer-Aided Design, 1986, pp.

138-14 1•.

J. Fishburn and A. Dunlop, "TILOS: A polynomial programming approach to

transistor sizing," in Proc. IEEE Tnt. Conf. Computer-Aided Design, 1985, pp.

326-328.

W. Kao, N. Fathi and C. Lee, "Algorithms for automatic transistor sizing in

CMOS digital circuits," in Proc. 22nd Design Automation Conf., 1985, pp.

78 1-784.

D. Maple, "Transistor size optimization in the tailor layout system," in Proc.

26th Design Automation Conf., 1989, pp. 43-48.

F. Obermeier and R. Katz, "An electrical optimizer that considers physical

layout," in Proc. 25th Design Automation Conf., 1988, pp. 453-459.

M. Hanan and J. Kurtzberg, "Placement Techniques," in M. Breuer, ed., Design

Automation of Digital System, Prentice-Hall, 1972.

J.M. Kurtzberg, "Algorithms for Backplane Formation," in Microelectronics in

Large Systems, Spartan Books, 1965, pp. 5 1-76.

C. Berge, The Theory of Graphs and its Application. New York, John Wiley &

Sons, Inc., 1962.

136

References

F. Harary, Graph Theory, Reading, Mass., Addison-Wesley Publishing

Company, Inc., 1969.

0. Ore, Theory of Graphs, Providence, R.I., American Mathematical Society,

1962

R.L. Gamblin, M.Q. Jacobs, and C.J. Tunis, "Automatic Packaging of

Miniaturized Circuits," in G.A. Walker, ed., Advances in Electronic Circuit

Packaging, Vol. 2, New York, Plenum Press, 1962, pp. 2 19-232.

H.A. Nidecker and W.F. Simon, "Logic Partitioning-Component Assignment,"

Proc. 1968 ACM Nat. Conf., pp. 211-221.

M.N. Weindling, "A Method for Best Placement of Units on a Plane," Proc.

1964 SHARE Design Automation Workshop, and Douglas Paper 3108,

Douglas Aircraft Co., Santa Monica, California.

G.Micheli, A. Sangiovanni-Vincentelli and P. Antognetti, Design Systems for

VLSI Circuits:Logic Synthesis and Silicon Compilation, Martinus Nijhoff

Publishers, 1987.

D.F. Wong, H.W. Leong and C.L. Liu, Simulated Annealing for VLSI Design,

Kluwer Academic Publishers, 1988.

E.L. et al. Lawler, "Module Clustering to Minimize Delay in Digital

Networks," WEE Trans. on Computers, vol. C-18, Jan. 1969, pp. 47-57.

L.I. Corrigan, "A placement capability based on partitioning," in Proc. 16th

Design Automation Conf., June 1979, pp. 406-413.

M. Edahiro and T. Yoshimura, "New placement and global routing algorithms

for standard cell layout," in Proc. 27th Design Automation Conf., June 1990,

137

References

pp. 642-645.

M. Igusa, M. Beardsiee, and A. Sangiovanni-Vincentelli, "ORCA: A sea-of-

gates place and route system," in Proc. 26th Design Automatic Conf., June

1989, pp. 122-127.

S. Murai, H. Tsuji, M. Kakinuma, K. Sakaguchi, and C. Tanaka, "A

hierarchical placement procedure with a simple blocking scheme," in Proc.

16th Design Automation Conf., June 1979, pp. 18-23.

C. Ng, S. Ashtaputre, E. Chambers, K. Do., S. Hui, R. Mody, and D. Wong, "A

hierarchical floor-planning, placement, and routing tool for sea-of-gates

design," in Proc. Custom Integrated Circuit Conf., May 1989, paper no. 3.3.

T.-K. Ng, J. Oldfield, and V. Pitchumani, "Improvements of a mm-cut partition

algorithm," in Proc. IEEE mt. Conf. on Computer-Aided Design, Nov. 1987,

pp. 470-473.

T. Payne, R. Wells, and W. Gundel, "A study of automatic placement strategies

for very large gate array designs," in Proc. IEEE mt. Conf. on Computer-Aided

Design, Nov. 1987, pp. 194-197.

C. Sechen and D. Chen, "An improved objective function for mincut

partitioning," in Proc. IEEE Tnt. Conf. Computer-Aided Design, Nov. 1988, pp.

502-505.

C. Sechen and A. Sangiovanni-Vincentelli, "Timber Wolf 3.2 : A new standard

cell placement and global routing package," in Proc. 23rd Design Automation

Conf., June 1986, pp. 432-439.

[81] M. Terai, "A method of improving the terminal assignment in the channel

138

References

routing for gate arrays," IEEE Trans. Computer-Aided Design, vol. 4, July

1989, pp. 329-336.

K. Takahashi, K. Nakajima, M. Terai, and K. Sato, "Mm-cut placement with

global objective functions for large scale sea-of-gates arrays," IEEE Trans. on

Computer-Aided Design of Integrated Circuits and systems, vol. 14, No. 4,

April 1995, pp. 434-446.

M. Hanan, Sr.P.K. Wolff, and B.J. Agule, "Some experimental results on

placement techniques," Design Automation Conf., 1976, pp. 2 14-224.

D.A. Thomsae, T.A. Peterson, and D.E. Van den Bout, "The anyboard rapid

prototyping environment," Proceedings of the Advanced Research in VLSI

Conf., 1990, pp. 356-370.

M. McMahon, "Accelerators for faster logic simulation: The zycad approach,"

in Proc. 4th Int. IEEE VLSI Multilevel Interconnection Conf., 1987, pp. 981.

H. Wolff,"How quickturn is filling a gap," in Electronics, April 1990, pp. 70.

R. Cok, Parallel Programs for the Transputer, Prentice-Hall Inc., 1991.

D.P. Bertsekas, and J.N. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods, Prentice-Hall Inc., 1989.

Y.C. Chen, W.T. Chen, and J.P. Sheu, "Designing efficient parallel algorithms

on mesh-connected computers with multiple broadcasting," IEEE Trans, 1990,

PDS-1, pp. 241-245.

R.A. Duncan, "A survey of parallel computer architectures," IEEE Comput.,

1990, 23, pp. 5-16.

139

References

H. Li, and Q.F. Stout, Reconfigurable Massively Parallel Computers, Prentice-

Hall Inc., 1991.

R. Beresford, "An emulator for CMOS ASICs," VLSI System Design, May

1987, pp. 8.

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory,

Algorithms, and applications. Englewood Cliffs, NJ: Prentice Hall, 1993.

A.W. Goldberg and R.E. Tarjan, "A new approach to the maximum flow

problem," J. ACM, vol. 35, no. 4, Oct. 1988, pp. 92 1-940.

C.K. Cheng, "The optimal circuit decompositions using network flow

formulations," in Proc. IEEE Int. Symp. Circuits Syst., May 1990, pp.

2650-2653.

R.E. Gomory and T.C. Hu, "Multi-terminal network flows," J. Soc. Indust.

Appi. Math., vol. 9, 1961, pp. 551-570.

T.C. Hu and K. Moerder, "Multiterminal flows in a hypergraph," in VLSI

Circuit Layout: Theory and Design, T.C. Hu and E.S. Kuh, Ed. New York:

IEEE, 1985.

D.W. Matula and F. Shahrokhi, "The maximum concurrent flow problem and

sparsest cuts," Southern Methodist Univ., Dallas, TX, Tech. Rep., 1986.

M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some Simplified NP-complete

Graph Problems, Theoretical Computer Science, 1976, pp. 237-267.

[100]Y.C. Wei and C.K. Cheng, "Multiple-Level Partitioning: An application to the

very large-scale hardware simulator," IEEE Journal of Solid-State Circuits, vol.

26, no. 5, May 1991, pp. 706-716.

140

References

[101]L.T. Liu, M.T. Kuo, C.K. Cheng, and T.C. Hu, "A replication cut for two-way

Partitioning," IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, vol. 14, no. 5, May 1995, pp. 623-630.

141

Appendix A

Appendix A

The InCA CIF Netlist Format

In this appendix the InCA CIF netlist format is introduced. In order to form a netlist

of a circuit, two kinds of netlist format are used, which are an "explicit" and

"implicit" netlist format.

An explicit netlist format connects nets to ports of a cell by explicitly naming each

port. EDIF 200 is an example of an explicit netlist format, e.g.

(net netname (joined (portRef A (instanceRef U 100))

(portRef A (instanceRef U200))))

An implicit netlist has each net connected to a port of a cell by position in the cell

port list. The InCA CIF which is an example of an implicit format, e.g.

INV(cell type) U300(instance) inputNet outputNet(associated nets)

Pin order

To write out an implicit netlist, the 'order' of the ports for each cell must be known.

This information is usually obtained from an ASIC vendor's library databook and

encoded into an ASCII file. The format of this file could be as follows:

line 1: vendor_Pin_Order
line 2:
line 3: AND2 A B, Z ;
line 4: AND3 A B C , Z;

142

Appendix A

note 1: 	the header 'Vendor_Pin_Order' is required.

note2: 	one entry per cell in the library, delimited by a semi-colon.

note3: 	each cell name and each port name per cell must be unique.

note4: 	cell type and ports are delimited by whitespace.

note5: 	input ports are followed by outports, delimited by a comma.

note6: 	bidirectional ports denoted as output ports.

note7: 	if a cell has an empty input (or output) list, then that list is denoted by a

whitespace; the comma and semi-colon are still required.

The InCA CIF netlist format

An example of the CIF netlist format is as follows:

linel : netnumber 0 ;
line2 : entry TOPLEVELCELL ;
line3 : library lib/libraryNante ;
line4 : end
line5
line6 : part TOPLEVELCELL p
line7 : Vendor_Independant_Format
lineB : inputs INPUT]. INPUT2 INPUT3 p
line9 : outputs OUTPUT]. OUTPUT2 p
linelO: DFF U100 INPUT1 INPUT2 -- OUTPUT1 p
line].].: sheet BOTTOMLEVELCELL U200 INPUT3 OUTPUT2 ;
linel2: primary INPUT]. INPUT2 ;
line13: primary INPUT2 INPUT2 p
line].4: primary INPUT3 INPUT3 p
linel5: primary OUTPUT]. OUTPUT]. p
linel6: primary OUTPtJT2 OUTPUT2 p
linel7: end
linelB:
linel9: part BOTTOMLEVELCELL ;
line20: Vendor_Independant_Format
line2l: inputs INPUT]. ;
line22: outputs OUTPUT]. ;
line23: INV U100 INPUT]. OUTPUT1 p
line24: primary INPUT]. INPUT]. p
11ne25: primary OUTPUT]. OUTPUT1 ;
line26: end

143

Appendix A

The example given is a top level cell (TOPLEVELCELL) which contains two

instances: U100 (library cell DFF) and U200 (hierarchical cell

BOTTOMLEVELCELL), and the definition of the hierarchical cell. The following

notes are valid for Concept Silicon v.1.1:

	

note 1: 	the keyword 'netnumber' is always set to 0 (zero).

	

note2: 	the keyword 'entry' denotes the name of the top level instance.

	

note3: 	the keyword 'library' denotes the name of the 'VPO' file used to generate

this CIF (the 'lib' sub-directory must always be included).

	

note4: 	definitions of hierarchical cells are denoted by the keyword 'part' and

instances of hierarchical cells are denoted by the keyword

	

note5: 	the header 'Vendor_Independant_Format' is required per cell.

	

- note6: 	the keyword 'primary' is a repeated list of each input and output, one per

line.

note7: the keyword 'end' (and the header 'Vendor_Independant_Format') are not

delimited by a punctuation mark.

	

note8: 	the keyword '--' is used to denote a no-connection, eg. in the example, if

the DFF entry in the VPO file was: DFF D CLK , Q QB ; then the Q

output port is not connected to a net.

nm

Appendix B

Appendix B

Random Circuit Generator

To obtain random circuits, routines are required capable of generating random

number sequences. There are many methods available to generate random numbers.

The best-known method which has been used extensively since it was introduced by

Lehmer in 1951, is the so-called linear congruential method [14].

Different seeds will generate different random sequences. The range can be used to

define the number of basic gates or the the number of possible nets in the circuit. A

block diagram of this random number generator is shown in Figure B.1.

seeds 	
Routines I

random sequences

for
ranges

Generating Random Numbers

Figure B.1 The block diagram of Random Number Generator

Digital logic gates are used as basic cells in the random circuit to make it more

realistic. The logic components which were used are as follows;

145

Appendix B

NOT

AND2 ---- with two inputs

NAND3 	with three inputs

0R2 ---- with two inputs

NOR3 ---- with three inputs

BDFF ---- D-type flip-flop

BDFFSC ---- D-type flip-flop with "set" and "reset"

If more logic components are needed, their associated pin lay-outs are entered into

the library which accommodates the logic components. Obviously the parameter for

the number of basic gates has to be changed to the correct one.

Assumptions used to simplify the random circuit generation are as follows;

Every pin on a basic cell must be connected to other cells, i.e. no empty pin

left, except the pins of the components used as system inputs or outputs.

No output pins connected together.

The maximum number of fan-out is 10. This means the maximum number of

basic cells on a net is 11. This number 10 is derived from the fact that the fan-

out of a CMOS gate is typically 10.

The parameters which have to be input to the random circuit generator are seedi,

seed2, the number of cells required in a circuit, the number of system inputs and the

number of system outputs. The seed 1 is used to generate the random part-type

sequence. The seed2 is used to generate the random nets sequence. Figure B.2

shows the block diagram of a random circuit generator.

146

Appendix B

seed 1

seed2 	I 	 Software 	
random circuit

number of cells 	 for
	 in InCA "cif" file format

system inpit
Generating Random Circuit

system output

Figure B.2 The block diagram of Random Circuit Generator

The output is a text form describing the circuit in InCA "cif" file format. An example

of random circuit which has been generated with seed 1 = 1, seed2= 2, number of

cell= 10, system input= 5, system out= 5 is shown in the next page.

147

Appendix B

netnumber 0

entry DESIGNS

library

lib/solo ;

end

part DESIGNSXO

Vendor_Independent_Format

inputs NO Ni N2 N3 Nd

outputs Nil N12 N13 Nid N15

NND3 cell_C N7 NB N9 N5

NAND3 cell_i NiO N3 Nd N6

NOR3 ceil_2 Nil N12 N13 N7

?ND2 ceil_3 N14 N15 NB ;

BDFFSCT cell_d N5 N2 N8 NO N9 NiO ;

NOR3 cell_5 Ni Nd N2 Nil

NOT ceil_6 N3 N12 ;

NOT cell_7 Nd N13

NAND3 cell_8 Ni N13 N5 N14 ;

0R2 cell_9 N6 NO N15 p

primary NO NO

primary- Ni Ni

primary N2 N2

primary N3 N3

primary Nd Nd

primary Nil Nil

primary N12 N12

primary N13 N13

primary Nid N14

primary N15 N15 p

end

part DESIGNS

Vendor_Independent_Format

inputs NO Ni N2 N3 Nd

outputs Nil N12 N13 Nid N15 p

sheet DESIGNSXO cell_jO NO Ni N2 N3 Nd Nil N12 N13 N14 N15 p

primary NO NO p

primary Ni Ni

primary N2 N2

primary N3 N3 p

primary Nd Nd

primary Nil Nil p

primary N12 N12

primary N13 N13

primary Nid Nid

primary N15 N15

and

148

Appendix B

The following is the C programming code for the random circuit generator which

consists of a header file and a main program which contains four other functions:

namely "ranxO" which generates random numbers, "ioO" which returns the number

of input and output pins on a component, "no_output_pinsO" which returns the total

number of output pins, and "cifoutO" which creates the netlist in InCA CIF netlist

format. The header file and program code are as follows:

1*

The Header File

*1

4tdefine NUM_BASIC_PART 7

4tdefine FOR_NO_CELL 50000

4#define FOR_TOTAL_PIN 50000

1#dafine MAX_PIN_CELL 6 	/* BDFFSCT has 6 pins /

#define FOR_SYSIN 500

#define FOR_SYSOUT 500

#define FOR_INTERNAL_OUT 2000

#define TOTAL_NET 50000

#define MAX_BIND_NUN 11

1*

The Main Program

*1

#include cstdio . h>

#include "cnst.h"

jut nocell, Si, GO ; 1* Si: flO. of system input

so: no. of system output /

float p

main()

jut part_type (FOR_NO_CELL]

jut ran_net (FOR_TOTAL_PIN]

mt bind(TOTAL_NET]

mt M(FOR_NO_CELL] (MAX_PIN_CELL]

jut single[FOR_NO_CELL] ;

mt num_siugle = 0 ;

mt flag

jut tol_nets

jut son, sof ; 1 son: system out only, sof: System out with feed */

jut ip, op, i, 3, k, in, temp

jut cntr = 0 ;

jut net_no

149

Appendix B

mt part = 0

mt out_net

mt sel = 0, b = 0 ;

mt tol_input

readin() ;

raxix(part_type, NUN_BASIC_PART, nocell

dsp_array(part_type, nocell

tol_nets si + no_output..pins(part_type, nocell

printf(°tol_netsd\n, tol_nets) ;

stop U;
if(tol_nets > TOTAL_NET

printf("TOTAL_NET is too small\n") ;

printf("-I- Generating random circuit arrayn')

out_net = si ; 1* initialise the first output net /

son = so * p

sof =so -son;

tol_inputs = (tol_nats - son)/2

ranx(ran_net, tol_nets - son, FOR_TOTAL_PIN

for(i = 0 ; i < tol_nets ; i++

bind[i] = 0 ;

for(i = 0 ; i < nocell ; i++)(

printf("row %d\n", i) ;

io(part_type[i], aip, &op);

for(3 = 0 ; 3 < MAX_PIN_CELL ; J++)(

if(3 < ip)(
if(sel 9 2 I= 0)(1* eel is odd */

for(;;) {

if(bind[b] c MAX_BIND_NUN)(

M(i] (3] = b ;

Sel++

b++

bind(b]++

break

} 1* if(bind[b] < MAX_BIND_NUN) *1

b++ ;

if(b == tol_inputs

b= 0;

) 1* for(;;) *1

} 1* if(eel 9 2 I= 0) *1

else {

net_no = ran_net(cntr++

if(net_no < tol_inputs)(

if (bind (net_no] < MAX_BIND_NUN) (

MCi] [3] = net_no
bind[net_no]++

break

elee{

150

Appendix B

if (bind (b] < MAX_BIND_NUN

break

b++

if(b == tol_inpute

b = 0;

M(i][j] = b ;

bind[b]++ ;

b++ ;

if(b == tol_inputs

b = 0

break

} 1* if(nat_no < tol_inputs) *1

f or (; ;) {

if(bind(b] < MAX_BIND_NUN

break

b++ ;

if(b == tol_inputs

b= 0;

- 	 }

M(i][j] = b ;

bind[b]++ ;

b++ ;

if(b == tol_inputs

b0 ;

break

) 1* for(;;) I

} / if(j < ip) *1

alse if(j >= ip && j < ip+op)(

nat_no = out_net++

M[i][j] = net_no

bind(net_noj++ ;

/ TO prevent looping */

for(k = 0 ; k < ip ; k++){

if(M(i](k] == M(i](1])(

bind(M(i]Cfl]-- ;

for(;fl(

net_no = ran_net[cntr++

if(net_no 1= M(i)(j])(

MCi] (k) = net_no

bind[net_no]++ ;

break

} 1* for(n) /

) 1* if(M(i] 1k] == M[i] Ci]) /

} / for(k = 0 ; k < ip ; k++) *1

} 1* if(j >= ip && :j < ip+op) *1

else(

M(i] (j] = l ;

} 1* 2nd for */

151

Appendix B

} /* 1st for */

for(i = si+son ; i < tol_nets ; i++

if(bindEi] == 1

single[num_single++1

k= 0;

for(i = 0 ; i < nocell ; i++){

io(part_type(i], Edp, &op) ;

for(j = 0 ; i <ip; j++)(

if(bind(M(i](J31 > 2)(

bind(MCil (j]J-- ;

M[i](j3 = single[k++j ;

bind(M(iJ[j]]++ ;

if(k == num_single){

flag = 1

break

)

if(flag == 1

break

}

1*

To prevent pins on the same component have the seine net
*** *1

for(i = 0 ; i < nocell ; i++)(

for(j = 0 ; j < MAX_PIN_CELL ; j++)(

temp = M(i][]

for(k = 0 ; k < MAX_PIN_CELL ; k++)(

if(M[i][k]

break

if(k == J
continue

if(temp == M[i](kJ)(

net_no = ran_net [cntr++]

if(bindEnet_no] < MAX_BIND_NUN)(

for(m = 0 ; m < MAX_PIN_CELL ; m++)(

if(M[i] [m] == net_no

break

}

if(in == MAX_PIN_CELL)(

bindiMlilik]] -- I

m[i] [k] = net_no
bind(net_nol++ ;

break

)

}

} /* for(;;) /

} 1* if(temp == M(i] [k]) *1

) 1* k *1

} /* J */

152

Appendix B

} 1* i *1

cifout(M, part_type, bind, si, tol_nete, nocell, so, son

a

readin()

f
printf("How many cells in a circuit:")

scanf ("9d" , &nocell) ;

printf("system input:")

scanf("%d", &si) ;

printf("syst 	output:").;

scanf("d", &so) ;

printf("percentage of output_only(0.0 -> 1.0):")

scanf("%f", &p) ;

a

1*

This is the function to generate random numbers

*1

#include <stdio .h>

#define iei 100000000

#define Ml 10000

4#define B 31415821

4tdefine MAXTERM 1000

#define MAXRZtN_NUN 5000

static mt a

extern mt znaxtertn

mt N(MAXRAN_NUM] ;

mt n ;

void ranx(N , r, nocell

mt r, nocell

mt M(] ;

(

mt i, i ;

mt N[MP.XR7N_NUN] ;

printf("input seed a:")

scanf("d", &a)

for (i = 0 ; i < nocell 1

M[L] = randcm(r) ;

a

mt random(r)

153

Appendix B

mt r ;

(
a = C mult(a, B) + 1) % MM ;

return (C a/Mi) * r) / Ml

} 	 / To obtain different range of random */

1* numbers, change "10" which means the */

mt inuit (p, q

mt p, g

mt p1, p0, qi, gO ;

p1 = p/Mi

p0 = p%M1 ;

qi = q/M1 ;

gO = q%Mi

return (((pO*qi+pi*qO) 6 Mi)* Ml + pO*qO) %

1*

This function is used to return the number of input and output pins

io(type, nm, nout)

mt type

mt *nifl, *nout ;

{

switch(type)(

case 0 : *nin = 1

*nout = 1 ; break

/ 	NOT 	/

case 1 	*nin = 2

*nout = 1 ; break

/* ND2 *1

case 2 : *nin = 3 1

*nout = 1 ; break

/ 	NAND 	/

case 3 : *nin = 2

*nout = 1 ; break

/* 0R2 *1

case 4 	*nmn = 3

*nOut = 1 ; break

1* NOR3 */

case 5 : *nin = 2

*nOut = 2 ; break

I 	DDFF 	I

case 6 	*njn = 4

154

Appendix B

*nout = 2 ; break

1* DDFFSCT /

}

}

1*

This function is used to calculate the total nunber of output pins

*1

no_output_pins(part_type, size

mt part_type (1

mt size

{

mt nm, nout ;

mt tol, i ;

tol = 0 ;

for(i = 0 ; i < size ; i++)(

io(part_type(i), &nin, &nout)

tol = tol + flout

return(tol) ;

1*

This function is used to create the netlist in InCA "CIF' format

*1

#include <stdio .h>

#include cnst.h"

#define MAX_LENGTH 30

char buf [MAX_LENGTH]

cifout(M, part_type, bind, si, tol_nets, nocell, so, son

jut M[] (MAX_PIN_CELL]

jut part_type (J ;

mt biud(] ;

jut si, so, son, nocell, tol_nets

FILE *fp

jut i, j ;

fp = fopen("designs,w") ;

fprintf(fp,"netnumber 0 ;\n")

fprintf(fp,"entry DESIGNS ;\n"

fprintf(fp,"library\n') ;

155

Appendix B

printf(fp,"lib/solo ;\n

fprintf(fp,"end\n')

fprintf(fp,"part DESIGNSXO ;\n) ;

fprintf(fp,"Vendor_Independant_Format\n"

fprintf(fp,'inputs) ;

for(i = 0 ; i c si ; i++)(

fprintf(fp,'NEThd

fprintf(fp,;\n'

fprintf(fp,"outputs) ;

for(i = tol_nets-so ; i < tol_nets

fprintf(Ep, NET96d ", i

for(i = si ; i < tol_nets ; i++){

if(i >= si+son && i < si+so

continue

if(bind(i] == 1)

fprintf(fp,"NET964 ", i) ;

}

fprintf(fp,";\n"

for(i = 0 ; i < nocell ; j++)(

part_namef(part_typa[i], buf) ;

fprintf(fp," 	 %e ce11_9 d ", buf, i

for(J = 0 ; j < MAX_PIN_CELL ; j++)(

if(M(iJ(]

break

fprintf(fp,'NETd

}

fprintf(fp,";\n") ;

}

for(i = 0 ; i < si ; i++)(

fprintf(fp,"priinary NET%d NET9Gd ;\n",

}

for(i = tol_nets-so ; i < tol_neta ; i++

fprintf(fp,'primary NET9Gd NET'd ;\n',

for(i = ci ; i < tol_nets ; i++)(

if(i >= si+son && i < si+so

continue

if(bind[i] == 1)

fprintf(fp,°primary NET%d NET%4 ;\n, i, i

fprintf(fp,"end\n") ;

fprintf(fp,"part DESIGNS ;\n")

fprintf(fp,"Vendor_Indepen6ant_FOrUlat\fl°) ;

fprintf(fp,"inputs)

for(i = 0 ; i < ci ; i++)(

fprintf(fp,"NEPd ", i) ;

fprintf(fp,';\n") ;

156

Appendix B

fprintf(fp,outpUts ') ;

for(i = tol_nets-BO ; i < tol_nets ;

fprintf(fp, 'NETd

fprintf(fp,";\n")

fprintf(fp,"sheet DESIGNSXO cell_%d ", nocell)

for(i = 0 ; i < Si ; i++){

fprint(fp,'NETd

for(i = tol_nets-so ; i < tol_nets ; j++)(

fprint(fp,°NET%d , i) ;

fprint(fp,";\n") ;

for(i = 0 ; i < si ; i++)(

fprintf(p,"priinary NET%6 NZTd ;\n, i, i)

for(i = tol_nats-so ; I < tol_nets ;

fprintf(fp,lprimary NET%ã NET%d ;\n",

fprintf(fp,"end\n) ;

c1ose(fp

}

part_name(type, buf

char buf(]

mt type

{

switch(type){

case 0 	strcpy(buf,"NO'l"') ; break

case 1 strcpy(buf,"AND2") ; break

case 2 : strcpy(buf,"NAND3") ; break

case 3 strcpy(buf,'0R2") ; break

case 4 : strcpy(buf,"NOR3") ; break

case 5 strcpy(buf,"BDFF") ; break ;

case 6 : strcpy(buf,"BDFFSCT) ; break

}

}

157

Appendix C

Appendix C

Data Preparation

C.1 A simple one-level netlist

There are many ways to describe a circuit, a schematic circuit diagram is a graphical

method for depicting the connections among cells, but it is difficult for a computer to

read it. A text file which describes the connections among cells in a circuit is needed

to let the computer scan through and acquire the necessary information associated

with this circuit according to which the remaining analysis can be proceeded to

achieve a successful design. Usually a text file representing a circuit is called a

netlist file. The netlist format used is InCA CIF netlist format which is described in

Appendix A.

A simple example circuit is a two to four line decoder the schematic of which is

shown in Figure C. 1. The inputs are two address lines, mO and in!, and an active

low enable. The decoded outputs, again active low, are the lines outO to out3. The

InCA CIF netlist of this decoder is shown in Listing C.1 and gives all the

information. The schematic shows, such as, what are the inputs and outputs, what

components are used and how they are connected. It is presented to illustrate the

InCA CIF netlist format which is used as the netlist format of the test circuits in the

"Merge Algorithm".

IM:

Appendix C

n IkTA 	 K!cr
cell_4 	 ceII_O

ceII_6

Figure C. 1 Two to four line decoder schematic.

netnumber 0 p
entry DEC2TO4

library

lib/solo p

end
part DEC2TO4 p

Vendor_Independant_ForlDat

inputs 	IN1 INO EN p

outputs OTJT3 013T2 OUT1 OUTO p

NAND3 CELL_0 NET_0 NET_2 NET_i OUTO

NAND3 CELL_i INO NET_2 NETi. OUT1 p

NAND3 CELL_2 NET_0 NET_2 INi. OUT2 p

NAND3 CELL_3 INO NET_2 INi OTJT3 ;

NOT CELL_4 XNO NET_0 p

NOT CELL_5 INi NET_i p

NOT CELL_6 EN NET_2 p

primary IN1 INi p

primary INO INO p

primary EN EN p

primary OUT3 OUT3 p

primary OUT2 OUT2 p

primary OUTi OUT]. ;

primary OUTO OUTO p

end

Listing C. 1 The netlist of two to four decoder in InCA CIF format.

159

Appendix C

C.2 Hierarchical structural netlist

It would be difficult to create a large complex design as a one-level network full of

basic cells. A hierarchical structure design is usually used to describe a large

system. At the top level of the hierarchy, the whole design can be viewed as a single

functional block. The next lower level would decompose the single block into

several functional blocks each of which can be further decomposed into more

functional blocks. The functional blocks in the lower level would specify more

detailed operation than the higher level. At the very lowest level of hierarchy, the

functional blocks are decomposed into basic cells. As a system is built up as a

hierarchy in this way, it is easy to inspect its operation at any level required, from the

top-level overall function down to the working of basic cells.

A simple and trivial design hierarchy is illustrated in Figure C.2. This design

(named DSGN_SAMPLE) consists of two identical parts (called SPEC_UNIT)

which are made up of basic gates such as NAND and INVERTER, and shown in

Figure C.3. In this hierarchical design, there are three levels, at the top level the

whole design is a single functional block with four inputs and two outputs the

schematic diagram of which is shown in Figure C.4. At the level below that, this

single block is split into two functional blocks and the schematic diagram for this

level is shown in Figure C.5. At the lowest level, the functional blocks of

SPEC_UNIT are further decomposed into basic logic gates.

FE€

Appendix C

DSGN_SAMPLE
	 Sample of Design

ZZ
SPEC_UNIT!

NAND NAND INV ENV

SPEC_UNIT2

NAND NAND INV INV

Array of Unit

Basic Gates

Figure C.2 The hierarchy for a design

Figure C.3 The part of SPEC_UNiT

cell7

H!

H2

H3

H4

DSGN_SAMPLE

Figure C.4 The design sample

161

H5

H6

Appendix C

cell5

M5

M6

Ml

M2

M3

M4

SPEC_UNIT

Figure C.5 The schematic diagram for the array of SPEC_UNiTs

C.3 Flattening a system

To implement a design, the hierarchy has to be flattened into a series of basic cells.

When flattening a system, it is needed to start from the top most level (i.e. system

.level) and the following procedures are repeated.

Substitute the input and output signal names of the next lower level units with

the corresponding unit signal names in the current level, and make sure every

different net of units with the same type has a unique net name in the next

lower level.

Repeat step(1), until lowest level is reached.

The hierarchical CIF netlist of Figure C.2 is shown in the Listing C.2. This netlist is

flattened to a series of basic logic gates according to the above flattening procedures.

The Listing C.3 and C.4 show the intermediate stage and final flattened netlist whose

schematic diagram consisting of basic gates is shown in Figure C.6.

162

Appendix C

part SPECJJNITI.

inputs Li L2 L3 ;

outputs L4 L5 ;

HAND CELL1 Li L2 L6 ;

INV CELL2 L6 L4 ;

INV CELL3 L3 L7 ;

HAND CELL4 L6 L7 L5 ;

end

part SPEC_UNIT2

inputs Li L2 L3 ;

outputs L4 L5 ;

HAND CELL1 Li L2 L6 ;

XNV CELL2 L6 L4 ;

INV CELL3 L3 L7 ;

HAND CELL4 L6 L7 L5 ;

end

part UNXT_AP.RAY

inputs Mi M2 M3 M4 ;

outputs M5 M6 ;

SPEC_UNIT1 CELL5 Mi M2 M3 M7 M8 ;

SPEC_UNIT2 CELL6 147 M8 ff4 M5 M6 ;

end

part DSGN_SANPLE

inputs Hi ff2 H3 H4 ;

outputs H5 H6 ;

DSGN_SANPLE CELL7 Hi H2 ff3 H4 H5 H6 ;

end

Listing C.2 The hierarchical netlist of DSGN_SAMPLE

part SPEC_UNIT1

inputs Li L2 L3 ;

outputs L4 L5 ;

HAND CELL1 Li L2 L6 ;

INV CELL2 L6 L4 ;

INV CELL3 L3 L7 ;

HAND CELL4 L6 L7 L5 ;

end

part SPEC_UNIT2

inputs Li. L2 L3 ;

outputs L4 L5 ;

HAND CELL1 Li L2 L6 ;

INV CELL2 L6 L4 ;

INV CELL3 1.3 L7 ;

HAND CELL4 L6 1.7 L5 ;

end

part uNIT_ARRAY

inputs Hi ff2 ff3 ff4 ;

outputs ff5 H6 ;

SPEC_UNIT CELL5 Hi H2 ff3 M7X1 M8X1 ;

SPEC_UNIT CELL6 M7X1 M8X1 ff4 ff5 H6 ;

end

Listing C.3 The intennediate stage flattening from the top to the next lower level

163

part DSGN_SANPLE

inputs Hi ff2 H3 H4 ;

outputs H5 ff6 ;
HAND CELL1 Hi. H2 L6X1 ;

INV CELL2 L6X1 M7X1 ;
INV CELL3 ff3 L7X1 ;
HAND CELL4 L6X1 L7X1 M8X1 ;

HAND CELL5 M7X1 MBX1 L6X2 ;

INV CELL6 L6X2 ff5 ;
XNV CELL7 H4 L7X2 ;
HAND CELL$ L6X2 L7X2 H6 ;

Listing C.4 The final flattened netlist of DSGN_SAMPLE

cell! 	 112

cell3 	L7X1 L----_JM8X1

H3
	 cell8

Appenchx C

H6
cell7

H4
L7X2

Figure C.6 The flattened design consisting of basic gates

C.4 A parser for CIF format netlist

There are two procedures to deal with a netlist file which describes a real circuit.

They are "processing the characters" and "building the results into a required data

structure". The former is commonly called syntax analysis and the latter semantic

analysis. A parser is the tool that processes characters in an input stream and emits

function calls to a module that implements the semantic analysis and translates it to

a form or a data structure suitable for further processing. The data structures needed

164

Appendix C

to be built will be discussed in the next section.

C.5 The data structure for implementing the merge algorithm

A cell list is required which is generated from the original circuit "CIF" file. This

list describes how the components in the circuit are interconnected. The cell list

consists of a head of cell list which points to where the circuit is, the cell nodes

which represent the cells themselves and point to a list that shows what nets are

incident to the cells, and the net nodes which contain information related to the nets

and the cells. The exact structure and declaration in C language notation are shown

below. Cells and nets are numbered sequentially and individually.

struct net

C

mt name ; 	 1* net name 	 *1

struct net *next ; 1* a pointer points to the next net 	I

};

typedef struct net net_node ;

struct cell

C
mt name ; 	 1* cell name 	 *1

netnode *link ; 	1* a pointer points to a list of nets

which is incident to this cell */

struct cell *next ; 1* a pointer to link the next cell 	*/

typedef struct cell cell_node ;

struct cell_list 1* the head of the cell_list *1

C

mt number ; 1* the number of cells in the circuit *1

cell_node * first ; 1* points to the first cell of the
list of cells */

cell_node *last ; 1* points to the last cell of the
list of cells */

typedef struct cell_list head_cell_list ;

A net list is acquired from cell list. Basically it contains the same information as the

165

Appendix C

cell list, the only difference is the nets are arranged in the vertical and the cells

which are connected to the net are arranged in the horizontal list corresponding to it.

Its main purpose is to facilitate generating another list called cell-net list.

A cell-net list is created from both cell list and net list. The data structure and the

declaration are shown below.

struct band-net

{

mt name ; 	 1* the band-net name 	 *1

mt inside ; 	 1* the number of the cells inside */

jut outside ; 	 1* the number of the cells outside */

struct band_net *next ; 1* points to the next band-net 	*1

typedef struct band-net band_net ;

struct band-cell

{

mt 	name ;
1* the band-cell name *1

band_net 	*link ; 1* points to the list of band-net */

band_net 	*inlink ;
1* points to a list of band-nets

which are completely inside

this band-cell, it initially
points to null */

struct band-cell 	*next ; 	
1* points to the next band-cell */

typedef struct band-cell band_cell ;

struct band_list

{

mt 	number ; /* the number of the band_cell in
the list */

baud_cell 	*first ; 1* points to the first band-cell 	*/

band_cell 	*last ; 1* points to the last band-cell 	*/

};

typedef struct band_list head_band_list ;

A graph structure is needed to describe the number of connections between cells.

This graph is generated from the cell-net list by counting the number of the same

nets related to any pair of cells. After establishing this graph, a merge sequence list

which arranges the nodes with the greatest number of connections at the front of list

166

Appendix C

is set up by scanning through the whole graph. The data structure of the graph and

merge sequence list and their declarations are shown below.

struct edge

{
mt vname ; I the current cell name *1

mt ename ; 1* the cell name relating to the
current cell */

mt cntn ; / the number of connections between

cell "vnaine" and cell "ename *1

struct edge *sljnk ; 1* pointer to link the merging
sequence *1

struct edge *next ; 	1* points to the next cell relating
to the current cell */

typedef atruct edge edge_node ;

atruct grp_node

C
mt name ; 	 1* the cell name 	 *1

atruct grp_node *next ; 1* points to the next cell */

typedef struct grp_node group_node ;

struct vertex

C
mt name ; 	 1* the current cell name 	 *1

edge_node *link ; 	1* points to a list of cells which
relate to the current cell */

group_node *g].ink ; 1* points to a list of cells which

are implicit cells of the current
cell */

mt noc ; 	 1* the number of implicit cells in
the current cell */

struct vertex *next ; 1* points to the next vertex 	 *1

typedef struct vertex ver_node ;

struct graph

C
mt number ; 	 1* the number of vertices in the

graph */

ver_node *firgt ; 	1* points to the first vertex 	*1

ver_node *last ; 	1* points to the last vertex 	 *1

typedef struct graph head_graph ;

struct big_node

167

Appendix C

{

mt noc ; 	 1* the number of connections 	*1

edge_node *gjin]t ; 	1* points to a list of edge with
the same •'noc 	/

struct big_node *next ; 1* points to the next big_node 	*/

typedef struct big_node bignode ;

struct big

{

mt number ; 	 1* the number of big_node 	 *1

bignode *first ; 	1* points to the first big_node

bignode *lagt ; 	 1* points to the last big_node 	*1

typedef struct big head_big ;

C.6 Creating cell and net list

The circuit can be represented in two ways, one of which is through a list of cells for

each net (i.e. net list), another of which is through a list of nets for each cell (i.e. cell

list). The following input routine will deal with circuits described in "CIF" format to

generate cell list and net list. The input of this routine is the circuit and the outputs

are the cell list and net list.

1* the routine for creating cell and net list */

clist_head() ; / create the head of cell list */

nlist_head() ; 1* create the head of net list *1

FOR each cell DO
jnsert_vertex(clist, cell) ;
FOR each net incident to the current cell DO

insert_edge (clist, cell, net) ;
IF the current net is a new net

THEN insert_vertex(nlist, cell) ;
insert_edge (nlist,net, cell) ;

ELSE

insert_edge (nlist,net, cell) ;
END FOR

END FOR

A sample of functions written in C language for creating the head of a list, insert a

vertex and insert an edge is shown below.

W.

Appendix C

1*
* Creating a head of a list
*1

cellist *crthead()

C
cellist *fl;

if((new = (cellist *) malloc(sizeof(cellist)) != NULL)

C
new -> number = 0 ;
new -> first = new -> last = NULL

}

return (new) ;

}

1*

* Insert a vertex to a list
*1

mt insert_vertex (list, name

cellist *list ;
mt name ; 1* the name of a cell or a net *1

C
cellnode *new ;

if ((new = (celinode *) malloc(sizeof(cellnode))) == NULL)

return (NOMEM) ;
else

C
new -> name = name ;
new -> link = NULL ;
new -> next = NULL ;
list -> number++ ;
if (list -> number == 1)

list -> first = list -> last = new ;

else

C
list -> last -> next = new ;
list -> last = new ;

}

return (NOERR);
1
-1

)

1*

* Insert an edge to a list
*1

mt insert_edge(list, vertex, edge

cellist *list;
mt vertex 1

169

Appendix C

mt edge 3

(

cellnode *rver ;
netnode *new ;

r_ver = cell_exist C list, vertex) ;
if (r_ver == NULL

return (CELL_NEXIST) ;
if((new = (netnode *) malloc(sizeof(netnode))) == NULL)

return(NOMEM);

new -> name = edge ;
new -> next = NULL ;
if (r_ver -> link == NULL

r_ver -> link = new ;

else

C
new -> next = r_ver -> link ;
r_ver -> link = new;

)

return (NOERR) ;

}

C.7 The routine for creating cell-net list

The cell and net list representing the circuit are used to produce the cell-net list. The

information contained in this list is the number of cells inside the current cell and the

number of cells outside the current cell with respect to the net the cells are on.

Initially, the cell can be viewed as if it is inside itself, so the number of cells inside

the current cell for a certain net is one, the number of cells outside the current cell

for the same net is one less than the total number of cells on this net. The following

is the routine for generating cell-net list.

/* routine for generating cell-net list */

crt_head() ; 1* create the head of cell-net list */

FOR each cell in cell list DO

insert_bcell() ;
FOR each net incident to the cell DO

noc = num_of_cell(n].ist, net) ;
insert_band(head, cell, net, 1, noc) ;

END FOR

END FOR

170

Appendix C

C.8 The routine for creating graph and merge sequence

The cell-net list above is used to generate the graph of the circuit which contains

information about the number of connection between any pair of cells in the circuit.

Cells are sequentially numbered and listed as vertices, each cell in the vertices list

points to another list of cells whose cell number are greater than the cell number of

each cell in the vertices list and related to it. A routine scans through the whole

graph to set up the merge sequence by arranging the edge nodes according to the

number of connection between cells in descending order. The procedures for

generating graph and merge sequence are as follows:

1* routine for generating graph */

crt_graph () ;
FOR each band-cell "ci" in the band-cell list DO

insert_vertex() ;
FOR each band-cell "c2" behind the band-cell "ci"

in the outer loop in the band-cell list DO
nurn = nofnet_betwbc(cl,c2) ;
IF nuin # 0 THEN

insert_edge() ;
END FOR

END FOR

1* routine for generating merge sequence *1

crt_seguence() ;
FOR each edge node in the graph DO

IF the number of connection is new THEN
insert a node for the new connection number
in descending order ;
insert the edge node to the list pointed
by the new node ;

ELSE
find the old node ;
insert the edge node to the list pointed
by the old node ;

END FOR

171

Appendix D

Appendix D

The C Programming Code for the Merge Algorithm

This appendix contains the C programming code for the merge-in-stages algorithm.

There are three header files named "graph.h", "band.h" and "list.h" which contain the

data structure declarations for graph, cell-net list and cell list and net list (cell and

net list using the same data structure), respectively. These declarations can be found

in Appendix C.

The following procedure is a function named merge_in_stages which executes the

merge algorithm in four phases. It carries out the free merge operation in "L" stages

under the stage size constraint in the first phase, selects the leading groups in phase

2, merges cells with leading groups in the phase 3 and finally merges the remaining

cells. This function includes three functions which are "check_gr_numO",

"merge_bcO" and "mergeO".

#include <stdio .h>

ifinclude "graph.h"

#include "band.h"

#include "list.h"

*define MAX_NO_SEED 10

void merge_in_stages(graf, bighead, bust

graph *graf I

big *bjghead ;

bandlist *bljst ;

{

jut j, j, k, cut = 0

mt sO, si, 1, L

172

Appendix D

vernode

edgenode *etemp, *ept ;

bignode *pt ;

jut seed_i, flag, flagi, fiag2

mt seeds(MAX_NO_SEEDJ

mt si_con[iO] ; 1* si_con : size constraint /

mt teup, tei ;

jut noceli(MAX_NO_SEED) ;

for(i = 0 ; i < MAX_NO_SEED ; i++

seeds[i] = -1 ;

seed_i = 0

printf ("Input the number of group:")

scanf ("%d", aug

printf(" Input L

scanf("d", aL)

printf(" Input sO

scanf("d", asO) ;

si = sO ;

for(1 = 0 ; 1 < L ; l++)(

flag = 0

do{

pt = bighead -> first

if(pt == NULL)(

printf("List of bighead is nuli\n")

break ; 	1* Execution of program should be stopped */

ept = pt -> slink

if(ept 1= NULL

do{

vi = ept -> vnane ;

v2 = ept -> enazne ;

if((check_gr_num(graf, vi

+ check_gr_num(graf, v2)) <= si)(

merge_bc(blist, vi, v2

merge(graf, blist, bighead, vi, v2

break;

ept = ept -> slink

if(apt == NULL)(

pt = Pt -> next

if(pt == NULL

break;

ept = pt -> slink

} while(apt 1= NULL)

} while(pt 1= NULL)

si = si * 2 ;

} 1* for(1 = 0 ; 1 < L ; l++) *1

173

Appendix D

printf("finished level mergingn") ;

i=O ;

for(;;) (

Pt = bighead -> first

if(pt 1= NULL

do{

ept = pt -> slink

if(ept != NULL

do (

flag = 0

vi = ept -> vuame ;

v2 = apt -> ename ;

if((check_gr_nuin(graf, vi

+ check_gr_nuin(graf, v2)) <= fsc)(

for(j = 0 ; j < ng ; j++){

if(seeds[1] == vi II seeds[j] == v2)(

f lag = 1 ;

break ;

}

if(flag == 0){

merge_bc(bust, vi, v2

merge(graf, bust, bighead, vi, v2

seeds(seed_i++] = vi ;

flag = 2

break ;

ept = ept -> slink

} while(apt 1= NULL

if(flag == 2

break

pt = pt -> next

} while(pt 1= NULl.

if(i == ng 11 pt == NULL

break

)

printf('ieading groups have been selected\n")

pt = bighead -> first

if(pt I= NULL

do{

ept = pt -> slink

if(ept I= NULL

do(

flag = 0 ; flagi = 0 ; flag2 = 0

vi = apt -> vname

174

Appendix D

v2 = ept -> ename

for(J = 0 ; j < ng ; j++)(

if(vi == seedslj]

flagi = 1 ;

if(v2 == seeds(JJ)(

flag2 = 1 ;

k = j; 1* take the index of seed for later use /

)

if((flagl + flag2) == 1)(

if((check_gr_num(graf, vi

+ check_gr_num(graf, v2)) <= fsc){

if(flag2 == 1

seeds[k] = vi ;

merge_bc(bust, vi, v2)

merge(graf, bust, bighead, vi, v2

flag++ ;

break

}

ept = ept -> slink

} while(ept I= NULL

if(flag == 1

break

pt = pt -> next

} while(pt 1= NULL

if(flag I= 1

break

}

printf(" finish merging with the leading groups\n")

for(i = 0 ; i < MAX_NO_SEED ; i++

seeds(i] = -1 ;

for(i = 0 ; i < MAX_NO_SEED ;

nocell(i] = 0 ;

if(graf -> number > ng H

vtemp = graf -> first

do(

if(vtemp -> noc > nocailCO])(

seeds(O] = vtemp -> name

noceul[O] = vtemp -> noc

for(j = 0 ; j < ng ; j++)(

for(k = 1 ; k < ng ; k++){

jf(seeds[j] > seed[k])(

temp = seeds(k] ; 	tempi = nocell(k)

seeds(kJ = seeds[j] ; noceii[k] = nocell[j]

seeds[J] = temp ; 	noceul[j] = tempi

)

}

175

Appendix D

vtemp = vte -> next ;

) while(vtemp 1= NULL

}

if(graf -> number c= ng

break

pt = bighead -> first

if(pt != NULL

do(

ept = pt -> slink

if(ept t= NULL

do(

flag = 0

flagi = 0 ;

vi = ept -> vnaine ;

v2 = ept -> ename ;

for(i = 0 ; i < ng ; i++ H

if(vl == seeds[i] 11 v2 == seeds [i]

fiagi++ ;

if(flagi < 2)(

merga_bc(blist, vi, v2

merge C graf, bust, bighead, vi, v2

flag++ ;

break

ept = apt -> slink

) while(ept = NULL)

if(flag == 1

break

pt = pt -> next

} whiie(pt != NULL

if(flag != 1

break

}

if(graf -> number > ng)(

cnt = 0

vtemp= graf -> first

dof

flag = 0

for(i = 0 ; i < ng ; i++

if(vteinp -> name == seeds Ci]

flag++ ;

if(flag == 0)(

vi = vte -> name

v2 = seeds Lcnt++J

merge_bc(blist, vi, v2

merge(graf, bust, bighead, vi, v2

if(cnt == ng

cnt = 0 ;

}

176

Appendix D

vtelnp = vteinp -> next

} while(vtemp t= NULL

}

}

The following is the function "checL.gr_numQ" which is a short routine to return

the number of cells in the group specified by the argument of the function.

#include .cstdio.h>

#include "graph.h

mt chec)c_gr_num(graf, v

graph *graf

mt V

vernode *vpt ;

vpt = ver_exist(graf, v)

if(vpt == NULL

return(VER_NEXIST) ;

return(vpt -> noc)

The following function is "merge_bcQ" which carries out the merge operation in the

cell-net list. The cells to be merged are specified in the function arguments.

#include <stdio.h>

1#include 'band.h"

mt nerge_)3c(list, vi, v2

bandlist *liSt ;

mt vi, v2 ;

(

band *bptl, *bpt2, *bpt3

bandceil *bcpti, *bcpt2

177

Appendix D

bcptl = bceii_exist(list, vi

bcpt2 = bcell_exist(list, v2

if (bcptl == NULL 11 bcpt2 == NULL

return(BANDCELL_NEXIST) ;

bpti = bcpti -> link

bpt2 = bcpt2 -> link

bpt3 = bcpt2 -> inlink

if(bpt3 1= NULL

do(

insert_inlink(list,vi,bpt3->nae,bPt3>iflside,O,bPt3>i0) ;

del_band(list, v2, bpt3 -> name

bpt3 = bpt3 -> next

) while (bpt3 1= NULL

if(bpt2 1= NULL

for(;;)

{

if(bptl 1= NULL

do(

if(bpt2 -> name == bpti -> name

bpti -> inside += bpt2 -> inside

bptl -> outside -= bpt2 -> inside

bptl -> io += bpt2 -> io ;

if(bpti -> outside == 0

{

insert_inlink(list,vi,bpti->name,bPtl->inside,O,O) ;

del_band(list, vi, bpti -> name

break;

bpti = bpti -> next

} while (bptl 1= NULL

if (bptl == NULL

insert_band(list,vi,bpt2->name,bPt2->inside,bPt2>Outside,

bpt2 -> io) ;

bpt2 = bpt2 -> next

if(bpt2 == NULL

break

bpti = bcpti -> link

}

del_bandceli(list, v2

)

The following function is "mergeO" which merges cells in the graph. The cells to be

merged are again specified in the function arguments.

178

Appendix D

#include cetdio .h>

#include 'graph.h

ifinclude "band.h'

jut merga(graf, list, bighead, ci, c2

graph *graf ;

bandlist *liBt I

big *bjghead ;

mt 	ci, c2 ;

gnode *gtp

vernode *verl, *ver2, *vtempi, *amp2 ;

edgenode *etemp, *etampl, *etamp2 ;

mt t ;

mt cntn I

verl = ver_exist(graf, ci) ;

ven2 = ver_exist(graf, c2) ;

if C verl == NULL 11 ver2 == NULL

return C VER_NEXIST

del_edg C graf, bighead, ci, c2) ;

1* Add the same edges in ver2 to yen

1* if different edges, insert edges */

etemp2 = ver2 -> link

etempi = yen -> link

if(etemp2 I= NULL

for(;,)

if (eteiupl != NULL

do (

if (etempi -> ename == etemp2 -> ename

cntu = nofnat_betwbc(list, ci, etemp2 -> enema

if(etempi -> cntn 1= cntn

del_bigedge(bighead, eteupi, etempi -> cntn) ;

insert_)3igedge(bighead, etempi, cntn)

etempi -> cntn = cntn

}

break

)

else

179

Appendix D

ete3npl = etempl -> next

} while (etempl != NULL

if (etempl == NULL

insert_edg (graf, bighead, ci, eteixip2) ;

ete2 = eteznp2 -> next

if (etemp2 == NULL

break ;

etempl = verl 	link

}

/* Change all c2 to ci *1

vtempl = graf -> first

etempi = etemp = vtempi -> link ;

for(.t;)

if (etempl 1= NULL

do(

if (etempi -> enema == c2

do (

if(etemp -> ename == ci

cntn = nofnet_betwbc(list,vtePi->flame,eteflen)

if(etemp -> cntn 1= cntn

del_bigedga(bighead, ete, ete -> cntn) ;

etemp -> cntn = cntn ;

insert_bigedge(bighead, etemp, cntn

del_edg(graf, bighead, vtenipl -> name, etempl -> enema)

break

etemp = etemp -> next

} while (etemp I= NULL

if(etemp == NULL

if(atel -> vname > ci

{

re_order(graf, list, bighead, etexl, ci) ;

del_edg(graf,bighead,Vti>name,atemP1>e11ma)

else

cntn = nofnet_betwbc(list, ci, etempi -> vname)

if(etempi -> cntn != cntn

del_bigedge(bighead, atempi, etempi -> cntn) ;

Ec

Appendix D

insert_bigedge(bighead, etempi, cntn) ;

etevipl -> cntn = cntn ;

etempl -> ename = ci ;

break

}

etei = etel -> next

} while (etenpi 1= NULL

vtei = VtenPi -> next

if (vteznpl == NULL

break

etempi = etenip = vtenpl -> link

)

insert_grp (graf, ci, c2)

del_ver (graf, bighead, c2);

}

181

Appendix E

Appendix E

The C Programming Code for Pseudo Parallel Merge Algorithm

This appendix contains C programming code for the pseudo parallel merge

algorithm. It has the same header file as the merge algorithm in the Appendix D.

This software contains a main function named as "pseudo_parallelO", which further

contains five other functions: namely "dividerQ", "coordinatorO", "constructorO",

"parallel_mergeO", "changecellnameQ". The function "dividerQ" is used to divide

the circuit into several subcircuits. The "coordinatorO" is used to change the

implicit cell name to the corresponding explicit cell name. The "constructorO" is

used to re-combine the size-reduced subcircuits to a size-reduced full circuit. The

function "parallel_mergeQ" is used to merge cells in the graph. The

"changecellnameO" is used to record the cells being needed to change the names.

The following is the function "pseudo_parallelO".

Itinclude <stdio .h>

#include "graph .h"

#include "bana.h"

4*include "list.h"

mt M(100] (100);

mt oa11nae(90001] ;

mt vi, v2 ;

mt cnt = 0

mt ng ;

mt nameof sub ;

mt sizeconstraint ;

182

Appendix E

mt fsc ; 1* final size constraint *1

mt factor ;

extern char net(] (50]

void pseudo_.paraiiel(graf, bust, arri, arr2

graph *graf

bandlist *]j5t ;

bandcell *arrl(] ;

vernode *arr2(] ;

(

mt i, ii, i2, k, j, n, cnt = 0 ;

mt sO, 51, 1, L, bottom

graph *subcircuit(501]

vernode *emp;

adgenode *et, *ept ;

gnode *gpt ;
big *subseqhead(501], *bighaad

bignode *pt

mt iim,limi, ave ;

mt seed_i, flag

mt div=0, divi, divcnt=0, sizaofsub ;

mt oldNumber ;

for(i=0 ; i<90000 ;

cellnaine[i] = i ;

printf ("Input the number of group:")

scanf ("9d", &ng) ;

for(i =1 ; i <= 500 ; i++){

subcircuit[i] = crt_graph()

subseqhead[i] = crt_big() ;

printf ("Input the size of subcircuit:")

scanf ("%d", &sizeofsub)

printf ("Input final size constraint:")

scanf ("9d", &fsc

printf ("Input factor:")

scanf ("9d", &factor)

sizeconstraint = sizeof sub * 1 / factor

oldNumber = 0 1

pat i_again:

if(graf->number == oldNumber)(

printf("No further merge\n") p

div = divider(graf, subcircuit, graf->number

183

Appendix E

sub_seg(subcircuit(lJ, subsegheadtlj) ;

p_merge (subcircuit(lhsubseqhead(lJ,l,blist,flg,Cnt,fBC,arrl,aXr2) ;

goto finish

}

oldNumber = graf->number ;

div = divider(graf, subcircuit, sizeof sub

divi = div ;

for(i=l ; ic=div ; i++

sub_seq(subcircuit(iJ, subseqhead(iJ) ;

cnt++ ;

merge_rest

for(i1 ; i<div ; i++){

p_merge(subcircuit(i] ,subseghead(i] ,i,blist,ng,cnt,sizeconstraiflt,arrl,arr2L

if(div ==

if(subcircuit[1]->uumber > ng

p_merge(suhcircuitLl],subseqhead(lJ,l,blist,flg,Cflt,fsC , arrl , arr2) ;

goto finish

}

else

for(i=l ; i<=div ; i++)(

change_cellname(subcirCUit [i], cellnaine) ;

}

for(i=l ; ic=div ; i++){

coordinator(subcircuit(i], celinane, bust, arri, arr2) ;

coinbine(graf, subcircuit, div) ;

for(i=l ; i<=div ; i++)(

subcircuitFiJ-number = 0 ;

subcircuit[i]->first = NULL

subcircuit[i]->laBt = NULL

subseqbead[i]->nuinber = 0 ;

subseqhead(i]->first = NULL

subseqhead(iJ->last = NULL

)

sizeconstraint = sizeconstraint * 2 ;

goto pati_again ;

finish:

return

Appendix E

The following is the function "dividerO".

4#include <stdio. h>

#include "graph. h"

mt divider(graf, subcircuit, sizeof sub

graph *graf, *sjrcuit(J

mt sizeof sub

mt i cat, 1
vernode *vpt ;

m=o

cut = 0 ;

vpt = graf->first

if(vpt 1= NULL){

do{

cnt++ ;

if(cut == 1)(

i++ ;

subcircuit(il->first = vpt ;

}

if(cut == sizeofsub && vpt->next 1= NULL)(

subcircuit(i]->laSt = vpt

subcircuit(i]->number = cat ;

cut=0;

}

if(vpt->next == NULL)(

subcircuit(il->last = vpt

subcircuit(i]->nuber = cut

break

}

vpt = vpt->next

} while(vpt I= NULL

for(J=l ; :<=i ; j++)(

subcircuit[j]->last->fleXt = NULL

returu(i) ;

}

The following is the function "coordinatorO".

4tinclude cstdio .h>

(

Appendix E

1*include 'graph.h"

4$include "baud.h"

void coordinator(graf, celiname, bust, arrl, arr2

mt cellname(] ;

graph *graf

bandlist thlist ;

bandcell *arrj(] ;

vernode *arr2[] ;

(

vernode *vpt I

edgenode *ept, *eptl ;

mt last

last = graf ->last -> name

vpt = graf->first

if(vpt != NULL)(
do(

ept = vpt->link

if(ept 1= NULL)(

do{

if(opt -> ename > last)(

if(ept->ename 1= cellnamo(ept->ename])(

ept->enamo = callname(ept->enamel ;

ept->cntn = nofnat_betwbc(blist,vpt->name,ePt->ename,arrl) ;

epti = vpt->link

do(

if(eptl->enaine == ept->ename)(

if(epti 1= ept)(

dol_edg_para(graf, vpt->name, eptl->ename, arr2) ;

break

epti = eptl->next

} while(eptl 1= NULL)
}/* if(ept->ename J= cell(ept->enamel) *1

)

opt = ept->next ;

} while(apt I= NULL

} 1* if(opt I= NULL) I

vpt = vpt->next

} while(vpt 1= NULL

} I if(vpt 1= NULL) I

}

The following is the function "constructorO".

Appendix E

ifinclude <tdio .h>

4$include graph.h"

constructor(graf, subcircuit, div

graph *graf, *sjrcuit(]

mt div ;

(

mt i, J;

mt numO ;

for(i=l ; i<=div-1 ; i++){

num = num + subcircuit(iJ->nuinber ;

:J =i+l
subcircuit(ij->last->next = subcircuit(fl ->first ;

graf->firat = subcircuit(l]->first p

graf->number = num + subcircuit(divl->number p

graf->last = subcircuit[div]->last p

The following is the function "parallel_mergeQ".

#include <stdio.h>

#include "graph.h'

#include "band.h"

parallel_merge(graf, subseghead, i,blist,ng,cnt, sizecontraint,arrl,arr2)

graph *graf

big *sgeqhead p

bandlist *blist p

mt ng, i p / i: the name of subcircuit *1

mt cut p

mt sizeconstraint

bamdcell *arrl(] p

vernode *arr2[] ;

(

mt vi, v2, bottom p

bignode *pt p

edgenode *ept p

jut flag p

mt urn p 1* size constraint /

bottom = graf->last->narne p

187

Appendix E

1*

liin = (graf_>nunlber/3)*Cflt ;.

*1

while(graf -> number , ng){

pt = subseqhead -> first

if(Pt 1= NULL

do{

flag = 0 ;

ept = pt -> slink ;

if(ept 1= NULL){

do{

vi = ept -> vname

v2 = ept -> ename

if((check_gr_num(graf, vi, arr2

+ check_gr_num(graf,v2,arr2)) <= sizeconstraint){

merge_bc(bust, vi, v2, arri)

merge(graf,blist, subseqhead,vl,v2,bottom,arrl,arr2);

flag = 1

break

}

apt = apt -> slink

} while(apt 1= NULL

}

if(flag == 1)

break

pt = pt -> next

} while(pt 1= NULL

if(pt == NULL

break ;

}

The following is the function "changecellnameO".

#include <stdio.h>

*include "graph.h"

void change_cellname(graf, celinama)

mt cellname[] ;

graph *graf ;

{

varnoda *vpt ;

gnode *gpt

mt i;

vpt = graf -> first

if(vpt 1= NULL)(

IM

Appendix E

do(

gpt = vpt -> gunk

if(gpt 1= NULL)(

do (
cellnaine (gpt->name] = vpt->name

gpt = gpt-)next ;

} while(gpt I= NULL)

vpt = vt->next

} while (vpt != NULL)

}

}

189

