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Abstract 

Digital systems continue to increase in size and complexity, and the associated 

design process has grown lengthy and expensive. A method for partitioning these 

designs into smaller sub-units is required for board and integrated circuit levels of 

implementation. In addition, rapid checks of the functionality of a particular design 

will require a digital system to be partitioned into the set of programmable logic 

devices that form a system emulator. 

A merge algorithm for circuit partitioning is presented in this thesis. Results are 

presented illustrating the performance of a software implementation of this 

algorithm. These results show that successful circuit partition can be efficiently 

achieved. 

The merge algorithm is based on the simple concept that cells having the maximum 

number of connections should be the first to be merged. Merging starts with a 

predefined initial size constraint on circuit groups, and it is implemented in several 

stages. In each stage, the size constraint on groups is enlarged to keep the merge 

operation active. A free competitive merge strategy followed by a leading groups 

merge strategy is used to ensure a good size balance between the finally partitioned 

groups. 

A pseudo-parallel merge algorithm is presented to reduce the processing time when 

the design to be partitioned is large. This facilitates rapid exploration of possible 

partition solutions. A data parallelism approach is adopted which distributes data to 

a number of processors. Each processor contains the same merge algorithm program 

operating on a different segment of the circuit netlist. Results are presented showing 

that the pseudo-parallel merge algorithm reduces the time to partition a circuit while 

maintaining the same quality of result. The predicted performance of a fully parallel 

implementation of the merge algorithm is also investigated. Practical and computer 

generated netlist are used to investigate the performance of the experimental 

partitioning software system. 
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CHAPTER 1 

Introduction 

Partitioning has numerous definitions in different scientific and engineering 

application areas. In this thesis partitioning is aimed at dividing a large circuit into 

two or more small circuits to suit various technologies for implementing a digital 

system. This research project started in collaboration with InCA (Integrated Circuit 

Applications Limited). This company was interested in implementing a digital 

design by means of arrays of FPGAs. Visits were made to InCA during this project 

to discuss ideas for solving practical partitioning problems with industrial experts 

working for InCA. Unfortunately, InCA has been taken over by a much larger 

American company and it has been difficult to continue with this collaboration. 

There are a wide variety of implementation approaches for a digital system. 

Generally speaking, system designers have the options of prototyping their designs 

by using either dedicated hardware or software simulation. To provide an early 

working prototype, a dedicated hardware implementation consisting of available 

standard parts can be created to give designers a real feel of how the system will 

work and a chance to try out many functions and locate the hidden problems in the 

system. Unfortunately, designers who have tried this method have been diverted 

from real task of testing function and have spent considerable time on issues not 

directly related to the final design, such as wire-wrapping and soldering errors and 

defective components. In addition, the circuit overhead and long development time 

make the resultant cost increase dramatically when the system is large and complex. 
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Introduction 

Thus, its usage is limited. 

Over the years digital circuit designers have used software algorithms for simulation 

of their designs at logic gate level. Simulation of a design involves the execution of 

an algorithm that models the behaviour of the actual design. Simulation provides the 

ability to analyse and verify a design without actually constructing the design and 

has many benefits in design process. However, simulation suffers from three major 

limitations: 

the speed of simulation. 

the need for simulation models. 

the inability to actually connect a simulation of one part of a design to actual 

physical implementation of another part of the design. 

Therefore, the results of using software algorithms for simulation have nearly always 

been poor, with gate level simulation consuming large quantities of time and 

computing resources. There also have been many examples of designs that were 

simulated properly but have failed to operate correctly after committing designs to 

silicon. 

A digital emulator, which is constructed with programmable logic devices, can solve 

many of the problems of dedicated hardware and software simulation. Like a 

conventional breadboard, the digital emulator provides a hardware model of the 

design, letting the designer test and debug a system that is operating at or close to 

real-time speeds. Unlike a conventional breadboard, however, changes may be made 

to a design by editing a schematic diagram instead of changing wires. 

The resulting system provides functional and timing verification at speeds thousands 

of times faster than the fastest hardware simulation accelerators, which are 
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themselves thousands of times faster than software simulation. Because the digital 

emulator is a user-programmable hardware test bed, it can easily be configured for 

fault emulation as well, giving the same acceleration factors for the test generation 

process as for the design verification process. Furthermore, it is easy to 

accommodate arbitrary catalog components within the emulation system, and to 

interface the digital emulator with other emulation system(such as microprocessor 

emulators for firmware and software development). 

A digital emulator helps in the development of integrated circuit and system design 

by quickly and automatically generating a hardware prototype of the integrated 

circuit or system to be designed from user's schematics or net list. The prototype is 

electrically reconfigurable and may be modified to represent an infinite number of 

designs with little or no manual wiring changes or device replacement. The 

prototype runs at real time or close to real time speed and may be plugged directly 

into a larger system. 

1.1. Programmable logic devices 

1.1.1. Using programmable logic device for emulation 

As a broad definition, a programmable logic device is an integrated circuit capable 

of having its function defined by the user at the point of design rather than during IC 

production. A complex ASIC design can be implemented by an array of PLDs which 

are programmed individually in advance and wire-wrapped on a board according to 

the pre-defined connections. This board can be further plugged into the ASIC socket 

in a target system. Then designers may execute a large number of verification cycles. 

System software and some peripheral devices can be developed and tested on the 

target hardware. PLDs have obvious advantages since initial ASIC production is 

avoided and design faults can be located in the early design phase. 
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PLDs have become increasingly important to system manufacturers and designers 

for use in prototyping early ASIC production and low volume manufacture. For 

prototyping, PLD's are often used as hardwired emulators to test out designs and 

state machines before they are committed to silicon. 

Each PLD is usually based around the concept of a single repeatable cell which 

consists of basic gates and can be instanced from one to many times over the silicon. 

With PLDs now reaching higher gate densities it should be possible to emulate entire 

VLSI designs on an array of devices connected through a standard PCB. The design 

could then be down loaded using silicon compilation technology to place and route 

the gates over the whole array. 

1.1.2. The criteria for assessment of PLDs 

There are several PLD ranges which might be used for ASIC emulation. One of the 

most obvious differences between the various PLDs on the market is the 

functionality which is attached to each of the repeatable cells. The other main 

difference is the method which each manufacturer uses to program his device. There 

are three types of PLD. 

The fuse programmable device, in which the connectivity and function of each 

logic block is defined by removing links using a "programmer". 

The anti-fuse programmable device, in which the connectivity and function of 

each logic block is defined by creating links, again using a "programmer". 

Configurable logic in which the function and connectivity of each block is 

defined by static memory. 

In the first two cases the devices may be either re-usable or non re-usable whereas 

all the configurable logic can be redefined. The Xilinx FPGA [17],  [36] is one of the 
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most popular and widely used configurable logic device. Its user-programmable 

array architecture is made up of three types of configurable elements: inputioutput 

blocks (JOBs), logic blocks and interconnect. The array of Configurable Logic 

Blocks (CLBs) provides the functional elements from which the user's logic is 

constructed. The logic blocks are arranged in a matrix within the perimeter of JOBs. 

The user can define individual I/O blocks for interface to external circuitry and 

define interconnection network to compose larger scale logic functions. 

In order to select suitable PLDs to optimise a design, there are some factors which 

should be taken into consideration [36-42]: 

What percentage of the available gates are used once the design is downloaded 

onto the chip? This must be considered, in conjunction with software provided 

by the manufacture, for placing and routing gates onto the PLDs. 

What functions are the particular cells capable of fulfilling? All the PLDs on 

the market provide the normal boolean operations. However they differ 

according to the size of the equations which can be placed within each cell and 

the number of inputs and outputs allowed. 

It is desired to program an array of PLDs through an interface connected to a 

host without having to place individual chips in special programmers. Thus 

dynamic programmability allows the user to be disassociated from the physical 

construction of the hardware. 

The number of inputs and outputs which can be supplied to each PLD or 

logical block is important. 110 characteristics can restrict the use of a particular 

area of cells. For example, if the function requires only one input more than the 

number supplied by a particular PLD an extra package will be required. 
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(5) The lower and higher level software available for programming and placing 

particular functions within an array of PLD must be considered. Each PLD 

chip has to be programmed independently and the high level partitioning 

software will have to know how much functionality to assign each cell and 

chip. In part, the "chunk" sizes assigned to each chip will be determined by the 

efficiency of the low level minimisation and placement software (the lower 

level software). 

1.2. Digital Emulator 

There are already some digital emulators available, two of which are introduced in 

the following. One is called the VA (Virtual ASIC) developed by InCA (Integrated 

Circuit Applications Limited) which is contained in a single cabinet, suitable for 

either desktop or stand-alone use and capable of emulating up to 80,000 gates. The 

other one is called the Anyboard Rapid Prototyping System created at NCSU (North 

Carolina State University) for the development and rapid implementation of digital 

hardware designs. 

1.2.1. The VA 

The VA emulator hardware [7] is based on arrays of Xilinx FPGAs (XC3090). A six 

FPGA architecture shown in Figure 1.1 and a twelve FPGA ring architecture shown 

in Figure 1.2 have been developed. The components in the centre of the ring (FPGA 

5/6 and FPGA 9/10/11/12 for the six FPGA and twelve FPGA designs respectively) 

are used as interconnect components and the FPGAs on the outer ring provide a 

logic and interconnect resource. The numbers associated with the connecting lines 

shown in Figures 1.1 and 1.2 indicate the programmable interconnects available for 

linking to FPGAs. The six FPGA design includes an 11-way bus that provides a 

direct connection to all FPGAs. This bus is driven from the front plane and connects 
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to 110 pins on the FPGAs. It is used for clock lines, critical input nets and high fan-

out nets. The twelve FPGA design includes a 3-way bus, driven from the front plane, 

that connects to all of the FPGAs. The unconnected lines in both figures indicate the 

external 110 capability of the emulator cards. 

Each of the centre (interconnect) FPGAs used in the twelve FPGA design can be 

viewed as the hub of a wheel with eight spokes corresponding to the 16 interconnect 

lines from each of the eight rim FPGAs. The four hub FPGAs provide a total 

interconnect from a rim FPGA to the centre of 4 x 16 i.e. 64 lines. This design 

ensures that each rim FPGA is a single hop (i.e. one interconnect link across an 

FPGA) from any other rim FPGA. 

bus(0: 10) 

Figure 1.1 Six FPGA emulator board 

1.2.2. The Anyboard 

The structure of Anyboard [2 1-24], [84-86] is shown in Figure 1.3. The heart of the 

Anyboard is an array of five Xilinx FPGAs (XC3090) that provide a large collection 

of uncommitted logic gates. The usable gate count is approximately 25,000 logic 
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gates. 

Adjacent Xilinx chips in the array are connected by local buses that provide 

communication between function blocks in systems too large to fit on one chip. 

High-fan-out signals (such as clocks) can be allocated to the global bus that connects 

to all the FPGAs. 

'.. 
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Figure 1.2 Twelve FPGA emulator board 

RAMs are attached to the FPGAs in the middle of the array because the Xilinx chips 

do not provide sufficient storage for memory-intensive designs. The leftmost Xilinx 

chip serves as an address generator for all the RAMs. This limits the flexibility of 

RAM addressing, but saves a large number of 1/0 pins on each FPGA. 

N. 
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The Anyboard communicates with external systems through its system interface, an 

extension of the global bus with dedicated 110 lines from each FPGA. With 

appropriate connectors and level-conversion circuitry attached, the Anyboard can 

emulate an ASIC. 

The Anyboard hardware is built on a single 13-by-4-inch card and housed in an 

ordinary PC. Interfacing to the PC's ISA (Industry Standard Architecture) bus allows 

the Anyboard to access the hardware resources of the PC and act as a simple 

coprocessor. 

System configuration data cascades through the Xilinx chips on a single wire. Each 

FPGA picks off its own configuration data and passes along the remainder to the 

chips downstream. 

Global 

System 
interface 

cal 

Xilinx Xilinx Local 
Xilinx Local 

Xilinx 

FPGA FPGA FPGA FPGA 

Download 

 

Control mx 
and FPGA 

I Readbac 

AddressH  
RJ RAM 

res__ 
Buffers 

dl 

4 ° 
PCinterfac 

Figure 1.3 Anyboard 

1.3. The need for partitioning 

Semiconductor circuit technology continues to advance. Moore's law [15] states 
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that the number of discrete components that can be placed on a single substrate will 

be doubled every five years. Fair [16] has speculated that, provided no fundamental 

limits are encountered and microfabrication equipment to operate with a 0.3u feature 

size can be economically developed, the ULSI (Ultra Large Scale Integration) era 

will, at the end of this century, lead into gigantic scale integration (GSI) with a 

capability of 226  or 67 million components per chip. It is clear that levels of silicon 

system complexity will continue to increase and a stronger need will emerge for 

rapid prototyping methods that will enable the functionality of product 

specifications to be evaluated in a realistic setting. 

As FPGAs become a mainstream technology to be considered for board, system and 

application specific integrated circuit (ASIC) design processes, design complexity 

will continue to increase more rapidly than the availability of larger, faster devices 

[19], [20]. Board-level designers find that consolidating random logic into FPGAs 

saves valuable board real estate and can often improve reliability. System-level 

ASIC designers are turning to FPGAs for design verification due to their lower cost 

and the advantages of more rapid prototyping. Complex designs with FPGAs can 

require multiple iterations in order to achieve a successful design implementation. If 

automatic design tools cannot provide a solution, the designer is forced to obtain 

expert level architectural knowledge to support the manual intervention required to 

complete the design. To effectively use multiple FPGAs, while enjoying the benefit 

of shorter design time, an automatic partitioning method is strongly required to 

partition a large design among multiple devices. 

Many partitioning approaches have been proposed for attacking circuit partitioning 

problem, such as clustering [1], [8],  [66-68], eigenvector decomposition [25], 

network flow [26], [35], [93-98], group swapping [3-5], [27-29], [101] and simulated 

annealing [30], [33], [34], [70]. The clustering method is limited by the lack of a 
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global view. The eigenvector decomposition requires the transformation of every 

multi-terminal net into a two-terminal net in real circuits before establishing the 

matrix. The network flow method usually produces two unevenly sized partition. 

The group swapping approach needs a good initial partition to start with. Simulated 

annealing requires a long running time. These available partitioning techniques 

cannot suit the requirements of the increasingly circuit complexity and the rapid 

growth of the circuit size. The merge algorithm presented in this thesis possesses a 

number of features that will lead to its preferred use as circuit size and complexity 

continue to increase: 

A well-defined data structure that can easily incorporate the required 

information to suit various circuit requirements. 

A multi-way partitioning algorithm. 

A parallelizable algorithm which can be executed on a multi-processor 

computer to reduce processing time as circuit size increases. 

1.4. Thesis structure 

Chapter 2 describes the terminologies of graph theory which are related to the 

partitioning problems, and reviews the partitioning techniques, such as the 

Kernighan-Lin based heuristics, constructive, simulated annealing and ratio cut 

methods. The Kernighan-Lin based heuristics which includes the Kernighan-Lin 

heuristic, the Fiduccia-Mattheyses heuristic and the Krishnamurthy heuristic, are 

intensively discussed. 

A new method for merging cells to achieve a desired partition is introduced in 

Chapter 3. The basic merging concept and operation are described and some 

merging strategies are discussed. The flow chart of the merge algorithm is 
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described. 

In Chapter 4 the data structure and important routines for implementing the merge 

algorithm are described and Chapter 5 presents the results of partitioning two test 

circuits which have been created by a random circuit generator. 

When the design becomes large, the execution speed of the available partitioning 

approaches tends to be slow. Chapter 6 presents a pseudo-parallel merge algorithm 

which is developed to cope with increasing circuit size and complexity. The merge 

algorithm has the parallelizable feature which can be implemented by data-

parallelism method. The design can be evenly distributed to several processors in a 

computer. Each processor contains the same program operating on a different 

portion of the design. This concept is realised in a serial way by splitting the design 

into several small size pieces, the procedures residing in a single processor 

sequentially work on them. This provides a better speed performance while 

maintaining the same quality of result. Distributing the data to several processors 

can be predicted to give even better speed performance than a single processor. 

Finally, chapter 7 summarises the work presented in this thesis, and suggests future 

work. 

12 
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CHAPTER 2 

Partitioning Techniques 

The partitioning problem is usually formalized as an operation on graphs and 

hypergraphs which are briefly described in this chapter. Some terminologies and 

definitions related to the partitioning problem are illustrated. Three related 

partitioning approaches which have been used in many applications are discussed. 

The common idea among these approaches is that an initial partition is given and the 

algorithm improves the quality of the partition by modifying the partition iteratively. 

2.1. Graph and hypergraph 

Graphs and hypergraphs appear in many areas, such as in electrical engineering, 

computer science, chemistry and geography. Graphs find their importance as models 

for many kinds of problems and processes. The components on a circuit board 

connected by wires form a graph, as do cities connected by highways. An organic 

chemical compound can be considered a graph with the atoms as vertices and the 

bonds between them as edges. Graph theory has long become recognised as an 

important and useful mathematical background in these areas [63-65]. 

The basic definitions in the area of graphs are described in the following. The 

definitions included here will be related to the partitioning problems later. 

2.1.1. Graph 

A graph G( X, U) consists of a set of vertices X = { x 1 , x2 , 	
} 

and a set of edges 
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U = { 
u 1 , u2 , 	}, 

the edges are pairs of distinct vertices from X. If u = (x 1 , x2 ) is 

an edge with vertices x1, and x2 , then x 1  and x2  are said to lie on u, and u is incident 

to x 1  and x2 . 

The intuitive way to picture a graph is to represent vertices as points, squares or 

circles and edges as line segments or arcs connecting the vertices. Figure 2.1 shows 

an example of a graph. Here X ={x 1 , x2 , x3 , x4 , x5 , x6 1, U = {u 1 , u2 , u3 , u4 , u5 , u6 , 

u7 
 }. 

The edge u7  = ( 
x1, x5 ) 

incident to x 1  and x5  which are called its endpoints. 

The edge u3  and u4  have the same endpoints and therefore are called parallel edges. 

The degree of a vertex x , d(x), is the number of times x is used as an endpoint of 

the edges. Thus, in our example d(x 2)=4, d(x4)=1 and d(x 5 )=2. Also, a vertex x 

whose degree is zero is called isolated; in this example x 6  is isolated since d(x 6)=O. 

Figure 2.1 A graph 

2.1.2. Hypergraph 

A hypergraph H = (V, E) consists of a finite set of vertices V = {v 1 , v2 , 	
} 

and a 

set of hyperedges E = {e 1 , e2 , 	e,, 
-} 

where e 1  is the subset of V, IeI ~! 2 and ue, 

= V, where i E I. If IeI = 2, then a hypergraph becomes a graph. 

A hyperedge with two endpoints is sometimes called a two-terminal edge; a 

hyperedge with more than two endpoints is sometimes called a multi-terminal edge. 

14 
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If e 1  = ( v 1 , v 2 , v 3 ) is a hyperedge with vertices v 1 , v 2 , and v 3 , then v 1 , v 2 , and v 3  are 

said to lie on e 1  , and e 1  is said to be incident to v 1 , v 2 , and v 3 . The degree of a 

vertex v is the number of hyperedges incident to v. 

A hypergraph is shown in Figure 2.2, which consists of V = {v 1 , v2 , v 3 , v4 , v 5 , v6 , 

v7 , v8  }, and E = { e 1 , e2 , e3 , e4 , e5  }. The vertices are drawn as points. An edge e 

with Ie,I > 2, is drawn as a curve encircling all the vertices of e•. An edge e, with 1e 1 1 

= 2, is drawn as a curve or a line segment connecting its two vertices. 

VA 

Figure 2.2 A hypergraph 

2.2. Partitioning 

Partitioning is the task of decomposing a design into parts so that a given objective 

function is optimised. The objective function may be quite complex according to the 

application. For example, system designers have to decompose the circuitry they 

wish to implement, into components that can be realised with standard parts such as 

TTL logic or with custom and semi-custom chips. The cost function in this case 

includes the design time, performance of the system, the reliability of the design, 

etc.. To simplify the objective function, circuit partitioning problems are 
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concentrated on the links (wires) between components. Before discussing the 

partitioning techniques, some definitions and terminologies are described in the 

following. 

2.2.1. Definition of terms 

Definition 2.1: Network 

A network (circuit or system), which is denoted by S, is a set of cells (components, 

modules) which are interconnected. 

Definition 2.2: Partition 

A partition of a network S separates the network into two or more parts, i.e. S = { 

s1; 2;";  s 1  }, Si cS,  Us 1  = S, Si r) Si = 0, i # j, and i,j,t E I. 

Definition 2.3: Net 

A net, which is denoted by n, may be viewed as the connection that links a set of 

cells together. Examples of nets are shown in Figure 2.3. 

Definition 2.4: Cutset 

A cutset is the set of nets that interconnects cells in different parts of a partition, for 

instance, of a network S = { A; B } shown in Figure 2.4. In this case, cutset = {n 1 , 

n2 , n6 }. 

Definition 2.5: Cutsize 

A cutsize is the number of nets in the cutset. The cutsize of the partition in Figure 

2.4 is 3. 

16 
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prp 

n 1  is a net which connects two cells. 
and is a hyperedge with 1n 1 1 = 2 

n2  is a net which connects three cells 
and is a hyperedge with 1n2 1 = 3 

n3  is a net which connects five cells. 
and is a hyperedge with 1n3 1 = 5 

Figure 2.3 Examples of nets 
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Figure 2.4 An example of a cutset 

A circuit contains some elements and their interconnecting wires. The elements are 

often called components, modules, or cells, and the wires are called nets. Use will be 

made of cells as the general term for elements in a circuit, and nets as wires. Cells 

can be viewed as vertices, and nets as hyperedges in a hypergraph. From now on, 

these names will be used interchangeably depending on the problems under 

investigation. 

2.2.2. Cost Function 

A formal description of partitioning problem is given as follows: For any network S 

= (C,N), let C = { 
c 1 , c2 , 	, 	 , c} be a set of q cells, interconnected by a set 

of nets, N = { 
n 1 , 	 for instance, n1  may interconnect several 

number of cells, i.e., n = { ( 
c,  CO, ( 

c1 , c2 ), 
. .,( 

c, Cm) }, 
where 1 :~ m :!~ q and 

FI 
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m#j. Nets with m=l are sometimes called two-terminal nets and nets with m ~:2 are 

sometimes called multi-terminal nets. Net  n has at least a pin on each of the cells it 

connects. The number of pins on a cell c, is denoted as p(i), and the total number of 

pins in the circuit as P. The problem is to find a partition of S, S = { S, St I' 

S i  c S. U Si = S. Si  fl .v = 0, i # j, subject to the size constraints to each part of 

the partition , which minimises the cost function: 

ct(S) = 	 ct(i, j) 
CtESh, C1ESk h#k 

where ct(i, j) is the cost of nets that connect c, to c, i.e. the number of nets between 

c, and c. 

This problem is NP-hard [13], [31-32], [99] and there are various ways in which the 

solution of the NP-hard problem can be approached. The heuristic partitioning 

algorithms is by far the most widespread method in practice today [2]. In these 

algorithms iterative improvement techniques have been used most in many 

applications. The common concept among these methods is that an initial solution 

(partition) is given and the algorithms improve the quality of the solution by making 

local changes to the initial partition. 

The simplest form of iterative improvement algorithm is the so called random 

interchange algorithm [69]. In this algorithm, a given partition, is modified by first 

selecting a pair of cells, one in each element of the partition, and then evaluating the 

cost of the partition by interchanging them. These algorithms use randomly selected 

pair of cells to swap and accept an interchange only if the cost function decreases. If 

the cost function increases the interchange is rejected and the cells remain in their 

previous positions. 

Cell swapping was sugested by Kernighan and Lin who proposed a two-way 

partitioning algorithm [3]. Subsequently, many improvements have been made to 
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this method. Fiduccia and Mattheyses [4] improved this algorithm by moving one 

cell at a time. Krishnamurthy [5] further added a lookahead ability. The details of 

these algorithms are discussed in the next section. 

For the sake of simplicity the various iterative algorithms will be discussed, 

assuming that the bi-partition problem is to be solved, i.e., that S = {A;B}, where A 

and B are two subset of S and ISI=2. Assume further that the weights of all the nets 

and the sizes of all the cells to be partitioned are the same. 

2.3. Iterative improvement algorithms 

2.3.1. The Kernighan-Lin heuristic 

The basic idea of this algorithm is again to interchange pairs of cells among the two 

elements of the partition to obtain a better solution. Instead of randomly selecting 

pairs of cells to swap, a scoring function is used to evaluate the interchanges. 

Before the algorithm for the Kernighan-Lin approach is explained in detail, some 

definitions are required as follows: 

Definition 2.6: (External and Internal Two-Terminal Net Cost) 

For any partition S = {A;B } which is a network S = (C,N), the external two-terminal 

net cost of a cell c, E A is defined as 

E(i) = Z ct(n) 
n=(c1 c)EN 

C 3  E13 

where ct(n) is the cost of nets that connect c, to c, i.e. the number of nets between 

c 1  and c. 

Similarly, the internal two-terminal net cost is defined as 
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ct(n) 
fl=(c1c)EN 

C EA 

The definitions for c, E B are made in the same way. 

Definition 2.7: Gain 

The gain of c, is defined as 

D(i) = E(i) - 1(i) 

A simple example shown in Figure 2.5 illustrates the basic calculations of these 

functions. 

E(i)=3 I(i)=3 D(i)=O 

E(j)=2 I(j)=3 D(j)=—1 

Figure 2.5 Cost calculation 

Lemma 2.1: 

Consider any c1  E A, c E B. If c, and c are interchanged, the gain (that is, the 

reduction in cost) is precisely D(i) + D(j) - 2ct(i, j). 

proof: Let z be the total cost due to all connections between A and B that do not 
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involve c, or c. Obviously the cost including these two cells is 

T = z + E(i) + E(j) - ct(i, j) 

Exchange c, and c, let T' be the new cost. The following result is obtained. 

T' = z + 1(i) + 1(j) + ct(i, j) 

and then 

gain = old cost - new cost = T - T' 

= E(i) - 1(i) + E(j) - 1(j) - 2ct(i, j) 

= D(i) + D(j) - 2ct(i, j) 0 

D(i) is the amount by which the cutsize decreases if c1  changes sides in the partition. 

Then obviously an exchange of the cell pair {c 1 , c} is associated with a decrease in 

the cutsize of D(i) + D(j) - 2ct(i, j), where ct(i, j) is the cost of the net (c, c) if 

that net exists, otherwise ct(i, j) = 0. In fact, if the two cells are interchanged, the 

nets that were connecting c, to cells in B, become internal interconnections and do 

not contribute to the cost function. However, the nets that interconnect c1  to cells in 

A, become external interconnections after the interchange and they now contribute 

to the cost of the partition. Note that the term 2ct(i, j) is subtracted from the cost 

function since the connections between ci  and c are counted twice as external 

connections in E(i) and E(j). 

Consider a simple example given in Figure 2.6. This network has 8 cells 

interconnected by 18 nets. A partition of a network is denoted by PT. Obviously the 

optimal solution of this network is PT01 , i.e., 

PT0 . S = {A;B} 

where A = { 1,2,3,4}, B = {5,6,7,8}. The cutsize of this partition is equal to 2. 
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Suppose a partitioning procedure starts with the initial partition PT 1  whose cutsize 

is equal to 8. To reduce the danger of being trapped in local minima, Kernighan and 

Lin select the pairs of cells whose exchange results in the largest decrease of the 

cutsize or the smallest increase, if no decrease is possible. 

PTopt 

A 	 : 	 B 

PT 1t  

Figure 2.6 A graph to be partitioned 

In Figure 2.6, such a pair is, for instance, the pair {4,5}, the corresponding exchange 

increases the cutsize by 2. The gain calculation is as follows: 

E(4)=2,I(4)=3 

D(4)=E(4)—I(4)=-1 

E(5)=2,I(4)=3 

D(5)=E(5)— I(5)=-1 

ct(4,5)=O 

D(4,5) = E(4) + E(5) - 1(4) —1(5) - 2ct(4,5) 

=2+2-3-3-0=-2 
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The new configuration of this network after exchange is shown in Figure 2.7. 

PT(45) ----- 

Figure 2.7 A new partition after cells swap 

This exchange is made only temporatory, however. The exchanged cells are now 

locked. This locking prohibits them from taking part in any further tentative 

exchanges. A search is then made for a second pair whose exchange improves the 

cut cost. In this example, a suitable pair is {2,7}. This procedure is continued, 

keeping a record of all tentative exchanges and the resulting cutsizes. The procedure 

finishes when all cells are locked. At this time, both side of the partition have been 

exchanged and are back to the original cutsize. Table 2.1 shows a possible choice of 

pairs of the example in Figure 2.7. The fifth column in the table displays the change 

in the cutsize, if the first corresponding exchanges in the table are perfonned. The 

third column of the table shows the gain with respect to the previous result and the 

fourth column contains the respective new cutsize. 

The final procedure is exchanging a sequence of pairs of cells from step 1 to the step 

that results a best cutsize. In this example, step 2 reaches a smallest cutsize, so that 

the cells in pairs {4,5} and {2,7} are exchanged, and this produces an optimal 

partition in this example. 
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Step No. Selected .pair Gain Cutsize Change 

0 - - 8 - 

1 {4,5} -2 10 2 

2 {2,7} 8 2 -6 

3 {1,8} -8 10 2 

4 {3,6} 1 	2 8 1 	0 

Table 2.1 The record of cell exchanges for Figure 2.6 

2.3.2. The Fiduccia-Mattheyses heuristic 

Fiduccia and Mattheyses improved Kernighan-Lin heuristic by introducing the 

following new elements: 

Only a single cell is moved across the cut in a single move, then it is locked 

following the move. 

The "cell gain" concept is introduced to help select the cell to be moved from 

one block of the partition to the other. 

The concept of the D value is extended to hypergraphs, this makes the 

algorithm able to handle hypergraphs. 

A minimum balance condition is maintained throughout the process. 

As before, the moves in a pass are tentative and are followed by locking the moved 

cell. They may increase the cutsize. However, just as in Kemighan-Lin heuristic, at 

the end of a pass, when no more moves are possible, the sequence of moves is 

realised only if it decreases the cutsize. Otherwise, the pass is ended. 
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The concept of the algorithm will now be detailed. The extension of the D value to 

hypergraphs is quite straightforward. It is only necessary to redefine the internal and 

external hyperedge costs as follows. 

Definition 2.8: (External and Internal Net Cost) 

For any partition S = {A,B } which is a network S = (C,N), the external net cost of 

cell c1  is defined as 

E(i) = E ct(n) 
eEN ex,j 

where 

Next ,i{fl ENI{c}=nrA} 

Analogously, the internal net cost of cell c1  is defined as 

ct(n) 
eEN1, 

where 

N 1 ={n€NIc,enandnnB=ø} 

With these provisions, the gain D(i) is again defined as 

D(i) = E(i) - 1(i) 

Intuitively, N ext ,j is the set of nets that is removed from the cut if c, changes sides, 

and Nin,j  is the set of nets that is added to the cut if c1  changes side. With these 

observations, it is obvious that, when moving c, from A to B, the cutsize changes by 

an amount of —D(i). The nets in Next j u Nintj  are also called critical nets for c1 . 

This will be explained later. 

By the definition above, the cell gain of a cell, which is denoted by D(i), means what 

results can be obtained due to moving a cell from one part to the other, i.e. , the 
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number of nets this moving reduces from or adds to the cutsize. Figure 2.8 shows an 

example of cell gain. 

A 	 B 

Cl  

I 
I 

III 
I 

I 

I 

II I  

I 

: 

I 
n 

6 

c5  +2 i o I c7  

Figure 2.8 An example of the cell gain 

D(c 1  )=2, after moving c 1  to B side, two nets, n 1  and n2 , are removed from the 

cutset. 

D(c2 )=1, after moving c2  to A side, one net, n 1 , is removed from the cutset. 

D(c3 )=O, after moving c3  to A side, a net n2  is removed from the cutset, but 

another net n3  is added to the cutset. 

D(c4 )=- 1, after moving c4  to A side, one net n3  is introduced to the cutset. 

D(c5 )=2, after moving c5  to B side, two nets, n4  and n5 , are removed from cutset. 

D(c6 )=O, after moving c6  to A side, net n5  is removed from the cutset, but another 

net n6  is added to the cutset. The net n4  incident to c6  is still in the 
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cutset. 

D(c7 )=-1, after moving c7  to A side, net n6  is added to the cutset. 

2.3.2.1. Data structure - Bucket list structure 

Clearly, the gain D(i) of cell(i) is an integer in the range -p(i) to +p(i), where p(i) is 

the number of pin on cell(i), so that each cell has its gain in the range -pmax  to 

where pmax  = max{p(i) I cell(i)}. 

To choose the next free cell to move, a sorted list of cell gains is maintained, this is 

done using an array Bucket[D], where D corresponds to the range -p, to +Pm, 

and whose entry contains a doubly-linked list of free cells with gains equal to 

- current D. Figure 2.9 shows the structure of this bucket list. Two such arrays are set 

up for each side of partition. Each array is maintained by quickly moving a cell to 

the appropriate bucket whenever its gain changes due to the movement of one of its 

neighbours. Also a cell array is required which allows each cell to be directly 

addressed in the bucket array. In addition, two lists, LockedA and LockedB, are 

maintained to accommodate locked cells which are moved from one side to the other 

side. 

For each Bucket array, a MAXGAIN index is maintained which is used to keep track 

of the bucket having a cell of highest gain. This index is updated by decrementing it 

whenever its bucket is found to be empty and resetting it to a higher bucket 

whenever a cell moves to a bucket above MAXGAIN. 
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Bucket[D] 

1 	2 	-------------------------C 

Figure 2.9 Bucket list structure 

2.3.2.2. Initialising the data structure 

Some input routines are needed to deal with real networks whose interconnections 

between cells are described in a text format. The principal function performed by the 

input routine is to construct two data structures from the text input which represents 

the network. The first structure is a CELL array, which for each cell contains a 

linked list of the nets that are incident to the cell. The second structure is a NET 

array, which for each net contains a linked list of the cells on the net. 

To compute and maintain cell gain, the notion of a critical net must be introduced. 

Consider an arbitrary net n. Given a partition S = {A;B}, define the number of cells 

on net n in side A as A(n), likewise the number of cells on net n in side B as 

B(n). A net is critical if there exists a cell on it which if moved would make the 

cutset increase or decrease. It is easy to see that net n is critical if and only if either 

A(n) or B(n 3 ) is equal toO or 1. Figure 2.10 shows an example of critical nets, and 
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A(n 1 ) = 1, B(n 1 ) = 2, A(n2 ) = 2 B(n2 ) = 1, A(n 3 ) = 4, B(n) = 0 A(n 4 ) = 2, B(n4) = 

3. In this example n 1 , n2 , and n3  are critical nets, and n4  is not a critical net. 

A 
	

B 

I 	I 	 I 

Figure 2.10 An example of critical nets 

It is now clear that the gain of a cell, previously defined in terms of its effect on the 

cutset, depends only on its critical nets. This means that if the net is not critical, its 

cutset cannot be affected by a move. What is more important, a net which is not 

critical either before or after a move cannot possibly influence the gains of any of its 

cells. 

To compute and manipulate D values, two more array A[n] and B[n] are 

constructed. A[n]  contains the number of cells on net n on side A. B[n] is 

defined analogously. Moreover, two net lists UnlockedA[n 1 ] and UnlockedB[n] are 

provided for each net containing unlocked cells of the net on side A and side B, 
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respectively. These two lists will be used for updating the D values in the next 

section. Then, D values are computed using a scan of the Net array. The following 

algorithm computes the initial gains of all free cells. 

FOR each free cell c, DO 
D[i] = 0 ; 
FOR each net n3  on cell c, DO 

IF A[n] = 1 THEN D[i] = D[i] + 1 ; 
IF B[n] = 0 THEN D[i] = D[i] 

END FOR 
END FOR 

2.3.2.3. Updating the bucket data structure 

Assume now that a cell c, on side A has been chosen. The cell is then locked— that 

is, its item is removed from its bucket list and is attached to the list LockedB, where 

it awaits the next iteration. 

Then, adjustments of D values become necessary, since during the move of cell c, 

the nets incident to cell c, may become or cease to be critical, or their contribution 

changes from positive to negative or vice versa. Let us call a net n for which this 

changing happens. For a net n to be changing in the move of cell c1 , it is necessary 

that cell c i  is on net n, otherwise the values A[n] and B[n] do not change. 

However, not all such nets are changing. A convenient way of viewing the changes 

is to think of the move of cell c, as two-phase procedure. First, cell c1  is deleted 

from side A, then it is added to side B. Figure 2.11 details the respective algorithm 

for changing the D values. In line 3, cell c1 , is effectively deleted from side A. 

Through this action, some nets become critical, but none of them cease to be critical. 

Line 4 to 6 process the nets that make a new negative contribution to the D values. 

Lines 8 to 10 process the nets whose new contribution to D values are positive. In 

line 14, cell c, is effectively added to side B, which causes some nets to cease to be 

critical. Lines 15 to 17 make the respective positive changes, and lines 19 to 21 
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make the respective negative changes, to D values. 

FOR net n3  such that cell c, on net n• DO 
remove cell c, from UnlockedA[n] 
A(n] = A(n 1 ] - 1 ; 
IF A[n] = 0 THEN 

FOR cell ck E UnlockedB(n] DO 
D[k] = D(k) - 1 ; 

END FOR 

ELSE IF A[n] = 1 THEN 
FOR cell ck a UnlockedA[n] DO 

D[k] = D[k] + 1 p 
END FOR 

END IF 

END IF 

B[n3 ] = B[n] + 1 p 
IF B[n] = 1 THEN 

FOR cell ck a UnlockedA(n 3 ] DO 
D[k] = D[k] + 1 p 

END FOR 

ELSE IF B[n] = 2 THEN 
FOR cell Ck € UnlockedB(n] DO 

D[k] = D(k) -1 p 
END FOR 

END IF 

END IF 

END FOR 

Figure 2.11 Updating the D values 

2.3.3. The Krishnamurthy heuristic 

One disadvantage that Fiduccia-Mattheyses heuristic share with the Kernighan-Lin 

heuristic is that there is a large amount of unresolved nondeterminism. The 

heuristics choose arbitrarily between cells that have equal gain. Krishnamurthy 

introduced a more look-ahead approach into heuristic. With this it is possible to 

distinguish among such cells with equal gain. 

If a net contains more than two cells, and if the net is in the cutset of the current 

partition, then moving one of the cells on this net will not necessarily remove the net 

from the cutset; however, it may make it possible to remove the net in a future 

iteration when another cell on that net is moved. Figure 2.12 shows a simple 
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example which has a net N connecting cells ci, c2, c3, c4, and c5, ci and c2 are in 

partition A while c3, c4, c5 are in partition B. All these five cells have equal 

conditions. Moving any one of these cells will not remove N from the cutset. 

However, moving cell ci or c2 would be better than moving the other cells, since in 

the next iteration c2 or ci might be moved to remove N from the cutset. Although 

this example is rather simplified (because in general the other nets the cells are 

connected to will also play a role in the choice of cell to be removed), it provides the 

motivation for the concept of Krishnamurthy's level gain. 

A 	i 	B 

Figure 2.12 An example to show the concept of Krishnamurthy's level gain 

Specifically, Krishnamurthy extends the cell gain value to the level gain which is a 

sequence of number <D1  Dk(i)>. This sequence number is referred to as the 

gain vector of order k of a cell i, denoted by Fk(i), as 

= < D 1 (i), . . . , Dk(i) > 

Here, D 1 (i) is the first level gain of cell i, i.e. the original cell gain of cell i, and the 

following numbers D2 0),..., Dk(i) define the second level gain and higher level gain 

for distinguishing cells with the same D 1  value. The gain vector <D1  Dk(i)> 

is compared according to the lexicographic ordering. This provision places the 
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highest priority on the value of D 1 (i), and successively lower priorities on the 

following components of the level gain. 

What could be the second level gain criterion for distinguishing cells with the same 

D 1  value? Consider Figure 2.13. Here, ci and c2 have the same gain D 1 (1) = D 1 (2) 

= 0. However, moving c2 increases the gain of c3 from 0 to 1, whereas moving ci 

does not change any gains. Therefore c2 should be preferred to ci as the next cell to 

be moved. Thus, D2 (2) should be larger than D2(i). 

Figure 2.13 An example that the cell gain concept cannot distinguish 

A generalisation of this concept to higher degrees of look ahead is based on the 

following definitions of gain. 

Definition 2.9: Binding Number 

The binding number f3A()  of a net n on side A of a partition is defined to be the 

number of unlocked cells of net n on side A, unless there is a locked cell of net n on 
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side A, in which case 8A() = °o. 

Definition 2.10: The kth-level Gain 

The kth-level gain of a cell c1  on side A of a partition is defined as 

Dk(i) = Z ct(n) - 	ct(n) 
flE NpØ.,,k(i) 	 n E Nneg,k() 

where 

Np(,s k(i) = { nENIcEn, flA() = k, 8(n) > 01 

Nneg,k() = { nENIcEn, PA(n) >0, f3B(n) = k - 1 } 

Figure 2.14 shows a concrete example of how to calculate the gain vector of order 

k=3 of a cell. 

Figure 2.14 An example to calculate the gain vector 
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k = 1, 	the number of nets with binding number equal to 1 in side A is naught, and 

the number of nets with binding number equal to k-i = 1-1 = 0 in side B is 

1 (i.e. ni), therefore, D 1 (1) = 0- 1 = -1. 

k = 2, 	the number of nets with binding number equal to 2 in side A is two (i.e. n2 

and n4), and the number of nets with binding number equal to k-i = 2-1 = 

1 in side B is 1 (i.e. n2), therefore, D2 (1) = 2 - 1 = 1. 

k = 3, 	the number of nets with binding number equal to 3 in side A is one (i.e. 

n3), and the number of nets with binding number equal to k-i = 3-1 = 2 in 

side B is 1 (i.e. n3), therefore, D2 (1) = 1 - 1 = 0. 

The gain vector of cell ci for order 3 is F' (ci) = <-1, 1,0>. 

2.4. Other partitioning techniques 

Constructive methods do not need an initial partition to be given. The starting point 

is in general the un-partitioned set. One of the most commonly used methods in this 

class follows an aggregation strategy, i.e., assigns one module at a time to a partition. 

Several versions of clustering techniques [61-62], [9-10] have been proposed over 

the years. This constructive algorithm is very fast, but the quality of the result is not 

good in general. It is in fact mostly used as a starting point for other methods such as 

iterative improvement. 

Simulated annealing [30], [33],  [34] is another technique of the iterative 

improvement variety. This algorithm starts at a random solution and makes 

stochastically chosen moves to modify that solution. Initially the moves which are 

accepted include a high proportion of moves which increase the solution's cost. As 

the algorithm progress, the proportion of such move is decreased until, finally almost 

no moves that increase are accepted. Simulated annealing usually needs much more 
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running time than the Kernighan-Lin heuristic, but has a smaller cutsize [2]. 

Ratio cut [6], [100] partitioning method adopts an approach termed "ratio cut" as a 

metric in order to locate natural clusters in the circuit. This approach removes the 

constraint on subset sizes, and lets the ratio cut produce the subsets which are 

natural clusters in the circuit. It is difficult to use when tight control on the subset 

size is required. 

2.5. Summary 

The partitioning techniques presented in this chapter do solve some partitioning 

problems in certain application areas. But these techniques do not satisfactorily 

handle a large, complex circuit which has buses, timing critical paths, structural 

architecture and long shift registers, for example. A merge algorithm which has a 

flexible data structure and can be readily modified to suit various circuit 

requirements, is introduced in the next chapter. 
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CHAPTER 3 

The Merge Algorithm 

The previous chapter reviewed the techniques available to produce a required 

partition. This chapter introduces a novel partitioning approach refened to as the 

"Merge Algorithm" which obtains a desired partition by merging cells into groups. 

The basic merge operations on two-terminal nets and multi-terminal nets are 

described. During the merge operations, some new cells will contain others cells and 

the nets incident to the new cells are changed. The configuration of a design will 

also be changed and the number of cells is reduced. 

The data structure needed for representing a design is briefly described. Following 

this description, some merging strategies are discussed. Finally, the merge algorithm 

for partitioning a design is detailed. 

3.1. Merge operation 

3.1.1. The primitive merge operation 

Before explaining the details of the primitive merge operation, it is worth 

emphasising some basic terms which were mentioned in the previous chapter and 

are illustrated below. 

A cell which does not contain any other cell is called a basic cell. All single cells 

including a basic cell can be viewed as a group. This means that a group consists of 

at least one basic cell. A basic cell contains itself, so it forms a group itself. 
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A net with only two cells on each end is called a two-terminal net, whereas a net 

with more than two cells on it is called a multi-terminal net. Figure 3.1 shows these 

two kinds of nets. 

ni, n2 are two-terminal nets 

n3 is a multi-terminal net 

Figure 3.1 Two-terminal and multi-terminal nets 

A net is called an external net to a cell when there are still other cells outside of this 

cell on the other ends of this net, otherwise it is called an internal net. Examples of 

external and internal nets are shown in Figure 3.2. 

The basic function of the merge operation is to make one cell contain another cell. 

The cell covered by another cell is called an implicit cell, whereas the containing 

cell is called an explicit cell. The property of the implicit cell will be represented by 

the explicit cell. In practice, after merging, the cell name of the explicit cell is used 

as the new cell name and the cell name of the implicit cell is not used anymore. An 

example shown in Figure 3.3 illustrates how the primitive mergc operation proceeds. 
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- ni is an external net to cell c_i 

n2 is an internal net to cell c_i, but is an external net to cell c_2 and c_3 

Figure 3.2 The external and internal net 

>c 
before merge 	 after merge 

- c_i is an explicit cell. 

- c_2 is an implicit cell. 

Figure 3.3 The primitive merge operation 
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3.1.2. The basic merge operation on two-terminal nets 

A graph with two-terminal nets only is shown in Figure 3.4. There are 6 cells and 

15 nets. It is obvious that the optimal solution for this graph will be, when it is 

divided into two groups, a cutsize of 1. 

Figure 3.4 A graph with two-terminal nets 

The main objective in merging cells is to look for the cells with the maximum inter-

connections and merge them. This will be demonstrated by the following merge 

steps: 

step(l) 

There are four possibilities in selecting cells to merge, which are 

merge c_3 to c_i. 

merge ci to c_3. 

merge c_4 to c_2. 

merge c_2 to c_4. 

For example, the possibility (i), i.e. merge c_3 to c_i, is taken. After merge, 3 

nets between c_i and c_3 are buried inside the new cell c_i, i.e., these 3 nets 

become internal nets of c_i. The result of this merge is shown in Figure 3.5. 
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Figure 3.5 The result of merge c_3 to c_i 

step(2) 

From the graph above, the next merge operation is going to be 

merge c_5 to c_i or 

merge c_i to c_S. 

Taking the first choice of merging c_5 to c_i, this time four nets become 

internal nets of c_i. The result is shown in Figure 3.6. 

Figure 3.6 The result of merge c_S to c_i 
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step(3) 

Following the same approach, the operation of merging c_4 to c_2 takes place. 

There are 3 nets which become internal nets of c_2. The resulting graph is 

shown in Figure 3.7. 

Figure 3.7 The result of merge c_4 to c_2 

step(4) 

Finally, the operation of merging c_6 to c_2 is processed. In this case four nets 

become internal nets of c_2. The final graph is a partition with an optimal 

solution, the cutsize of which is equal to one. In this partition group c_i 

contains c_i, c_3, c_5 and group c_2 contains c_2, c_4, c_6. The result is 

shown in Figure 3.8. 

Figure 3.8 The final partition 

3.1.3. The merge operation on multi-terminal nets 

A graph with mixed multi-tenninal nets and two-terminal nets is shown in Figure 

3.9. There are 6 cells and 11 nets, two of which are multi-terminal nets that are ni 

and n2. It can be easily identified that in this graph there is an optimal partition with 

cutsize equal to one if it is divided into two groups. 
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nc ilO 

Figure 3.9 A graph with multi-terminal nets and two-terminal nets 

The same approach to merging cells introduced in the above section is applied again 

to this graph. The step by step demonstrations are as follows: 

step(i) 

Merge c_3 to c_i. The two two-terminal nets (n9 and n7) between c_i and c_3 

become internal nets to c_i. The net n i, a multi-terminal net, still exists and is 

an external net to c_i and becomes a two-terminal net. The resulting graph is 

shown in Figure 3.10. 

110 

Figure 3. 10 The resulting graph after merge c_3 to c_i 

step(2) 

Merge c_4 to c_2. The two two-terminal nets (n8 and ni0) between c_2 and 

c_4 become internal nets of c_2. The net n2, a multi-terminal net, still exists 
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and is an external net to c_2, and becomes a two-tenninal net. The resulting 

graph after this merge is shown in Figure 3.11. 

n3 
	 n4 

ni 	
(c_5) 	

nil 	
(c_6") 	

fl 	(c_2 

n5 	 n6 

Figure 3.11 The graph after merge c_4 to c_2 

step(3) 

Merge c_5 to c_i. There are three two two-terminal nets (0, ni, n5) between 

c_i and c_5 which become internal nets to c_i. The resulting graph is shown 

in Figure 3.12. 

C Lf1En22  
Figure 3.12 The resulting graph after merge c_5 to c_i 

step(4) 

In this final step, merge c_6 to c_2. The nets n4, n2, and n6 become internal 

nets to c_2. The resulting graph shown in Figure 3.13 comes to an optimal 

partition with the cutsize equal to one. In this partition group c_i contains cells 

c_i, c_3 and c_5 and group c_2 contains cells c_2, c_4 and c_6. 

Figure 3.13 The resulting graph after merge c_6 to c_2 

When the merging sequence presented above is analysed, it is not difficult to observe 

two properties about nets which are explained below: 
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For two-terminal nets, after merging the nets between cells become internal 

nets to the explicit cell. Hence benefits arise from burying the number of nets 

between a pair of cells in the explicit cell indirectly reducing the cutsize. 

For multi-terminal nets, after merging the nets between cells are still external to 

the explicit cell. The merge does not imply the reduction of the number of nets 

between cells. This is a significant difference from two-terminal nets which 

needs further attention. 

3.2. Graph representation 

3.2.1. Using a matrix to represent a graph 

The most straightforward representation for graphs is the so-called matrix 

representation. The matrix representation for the graphs in Figure 3.4 and Figure 3.9 

is shown in Figure 3.14. Although these two graphs have different configurations, 

they have exactly the same matrix representation which shows the number of 

connections between each pair of cells in each entry of the matrix. 

c_i 	c_2 	c_3 c_4 	c_5 	c_6 

X 0 3 0 2 0 

0 X 0 3 0 2 

3 0 X 0 2 0 

0 3 0 X 0 2 

2 0 2 0 X 

0 2 0 2 1 X 

Figure 3.14 A matrix representation for the graphs in Figure 3.4 and Figure 3.9 

ci 

c2 

c3 

c4 

c5 

c6 
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This is a symmetric matrix where the data in the upper triangle contains all the 

connection information and the lower triangle can be considered as redundant. The 

matrix representation is satisfactory, only if the graphs to be processed are dense and 

of a reasonable size. When circuits become large, the matrix is usually large and 

sparse. 

3.2.2. Using a linked list to represent a graph 

Using a matrix to represent a graph is inefficient for large, sparse matrices since a 

huge amount of memory is wasted. 

There is another representation that is more suitable for graphs. This representation 

has both a list of cells (vertices) and, for each cell, another list of cells (edges) 

related to each cell. This can be easily implemented with linked lists. Figure 3.15 

shows the linked list for the above matrix. Note that at each cell in the list of 

vertices only cells having higher index number are shown as being connected to that 

cell. This corresponds to ignoring the lower triangle of the matrix representation. 

It is often necessary to associate other information with the vertices or edges of a 

graph to allow it to model more complicated objects or to save bookkeeping 

information in complicated algorithms. Extra information associated with each 

vertex and edge can be put in adjacency list nodes. 

The foremost advantage of using a linked list is its flexibility. Memory usage is 

efficient in a computer implementation. With dynamic allocation of memory for 

linked lists, they are much better suited to a computing solution than matrices. 
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Head of graph 

Figure 3.15 The linked list for a graph 
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3.3. Merging strategy 

The most common method of partitioning a system is to divide it into groups so that 

the total number of interconnections between groups is minimised. Conversely, 

maximising the number of connections between cells inside groups can achieve the 

same objective of minimising the interconnections between groups. 

The objective of merging in a system with a large number of cells is to obtain a 

successful partition by means of maximising the number of connections which are 

inside groups. The methods used to guide the merging operation into a partition are 

based on many factors including the size constraints (the maximum number of cells 

in the groups), the required number of groups in the final partition, and the balance 

of the partition. Partitioning techniques can be classified into four categories which 

are free merge, free merge with size constraint, merge in-turn, and merge in stages as 

will be discussed below. 

3.3.1. Free merge 

In this method the merge operation has the most degrees of freedom to make the 

choices of pairs of cells to merge. The merge will proceed according to the number 

of connections between cells, the pair of cells with the maximum connections is 

chosen to merge into a group which is viewed as a new cell in the system. No size 

limitation is applied to each group which may therefore grow large so long as the 

merge condition is satisfied. The same procedures are continued until the number of 

groups matches the number of blocks in a partition desired. 

In the final result, some blocks in a partition could contain a large number of cells 

while some others may contain a few cells. This is because, during the merge 

procedure, the groups containing more cells tend to have stronger relations with 

other cells, so that the larger groups keep absorbing cells and growing continuously 
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without giving opportunities to other groups to choose candidates to merge. This can 

easily happen if there is no constraint on the size of each group. 

3.3.2. Free merge with size constraint 

To solve the unbalanced partition problem arising from the free merge method 

described in the last section, a size limit to groups is applied. Once a group reaches 

this limit, no more cells are merged which gives a chance for the rest of the groups 

to select candidates to merge. This can prevent a group from dominating the whole 

merging process and produce a better balanced partition. 

3.3.3. Merge in-turn 

A perfectly balanced partition is when the cells are evenly distributed between each 

individual group. To achieve this goal, it is necessary to decide the number of 

groups, denoted by ng, which a system will be partitioned into, select the first ng 

different pairs of cells with the first ng maximum connection number to form the 

first ng leading groups, and then merge the rest of cells with closest relations with 

each of leading group in turn until no cells are left. A fairly evenly distributed 

partition can be obtained by using this technique. The drawback of this approach is 

that it constrains cells to be merged to leading groups and does not give other cells 

chances to establish other groups which could have good structures for later merging 

and so achieve a good final partition. 

3.3.4. Merge in stages 

In the real world, a system is usually organised in a hierarchical manner. It can be 

made up of several functional blocks which can be decomposed into more functional 

blocks in the next lower level, each of which can be further divided into even more 

functional blocks until the bottom of the system is reached. In such a hierarchical 
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system, cells inherently possess some degree of group-oriented characteristics. A 

number of cells may form a small group in the lowest level of a system, some small 

groups may construct a functional block in the intermediate level and a few 

functional blocks may form a partition of a system. This implies that a small size 

constraint may be applied to each group in the beginning, then the size constraint on 

each group is enlarged in each successive stage, until the desired partition is 

achieved. Figure 3.16 shows a merge in stages procedure. The merge can progress 

through several operating stages, each stage denoted by i, where 1 :! ~ i < L, and L is 

the maximum possible number of stages valid in a partition. 

START 

Free merge with constraint i 

Stage 	L 
	

Free merge with constraint L 

Figure 3.16 Diagram illustrating the merge in stages method 

Due to the small size constraint in the beginning, a lot of small groups will be 

formed, and the system arrives at a new configuration in which the small groups in 

the next merging stage have equal chances to compete with one another to decide 
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which pair of groups will be the next pair to be merged under the enlarged size 

constraint. This is the main advantage of the merge in-stakes method which prevents 

a group from growing unimpeded to the final size constraint, and allows closely 

related cells to be grouped in the early stages. 

3.4. Partitioning with a merging algorithm 

3.4.1. Data structures 

A linked list, called the cell-net list, is used. It lists nets connected to an individual 

cell and shows the number of cells on a net. This number is separated into two 

fields, one of which gives the number of cells included in this cell, and the other 

gives the number of cells outside of this cell. This cell-net list is used to control and 

calculate the interconnections between cells/groups during the merge operation and 

the merge operation includes merging cells in this list to keep the interconnections 

between cells correct. Figures 3.17 and 3.18 give the cell-net list for the circuit 

shown in Figure 3.9. 

Head of cell-net 

The net name attached to the current cell 
The number of cells inside of the current cell 

- - - - - The number of cells outside of the current cell 
- - Pointer to the next node related to the current cell 

The name of the current ceII( vertex) 

The head of the net nodes which attach to the current cell 

Pointer to the next cell( vertex) 

Figure 3.17 Diagram defining the cell-net list 
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A software representation of a circuit, called a graph, is established to define the 

connections between cells. Then a merge sequence is set up by listing cells in 

descending connection order from the maximum value. This descending order in 

connection number establishes the merging priority of cells. Figures 3.19 and 3.20 

give the graph and merging sequence for the circuit shown in Figure 3.9. 

Figure 3.18 Cell-net list for the circuit shown in Figure 3.9 
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- ------------- - Theheadoflistwith 
I 	 connection number "n" 

I 
 
-- - - - - - - - - - Pointertothenodewith 

I 	I 	 connection number 'n" 

Head of merge sequence 	
: 
-- - - - - - - - Pointer to the head of list with 

I 	I 	 connection number n-I 

Head of graph 

Cell name 

I 	I 

I 	I 

I 	I 

I 	I 

n+1I f I • I 	>Ic_51 n 

• Connection number 

Pointer to the node with 
connection number "n' 

II 

- - - - Pointer to the next node which 

relates to the current vertex 

c_2 F- - - - - - - Vertex name( cell name) 

• The head of cell list which relates to this vertex 

Pointer to the next vertex 

Figure 3.19 Diagram defining a graph and the merge sequence 
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Head of merge sequence 

Figure 3.20 Graph and merge sequence for the circuit shown in Figure 3.9 
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3.4.2. Merging algorithm 

The merging algorithm uses circuit information in the form of a netlist with a total 

number of basic circuit cells, C. The algorithm can be considered as four separate 

linked sections. The first section implements a free merging operation with size 

constraint which allows merging to proceed with a constraint only on the size of the 

resulting group of cells. The free merging operation progresses in stages with the 

size constraint on the merged group increasing as the stage number increases. An 

initial size constraint, S0 , and the number of stages to be used must be selected and 

L must be set. This is discussed further after the results illustrating the performance 

of the algorithm are presented below. An iteration at each stage is complete once all 

available cells have been merged. Figure 3.21 shows a flow chart of free merging 

with size constraint, the algorithm of which is defined in pseudo C code as follows: 

1* 
• C : The number of cells in the, currant circuit 
• ng: The required number of groups in the partition 
• So  Initial size constraint 
• Si  The ith-stage size constraint 
• C : The number of cells in cell_x 
• C, : The number of cells in cell,.,,y 
• Note : A merging stage corresponds to the merging of 
* 	all available listed cells. Let i be the stage 
* 	index and let i be L. Cells linked by 
* 	the largest number of connections are selected 
* 	for merging. 
*1 

read_data() ; 
create_cell-net () ; 
create_graph() ; 
setup_merge_sequence C) ; 
for( i=1;i:5L;i++ ){ 

Si  = 2S,_ 1  ; 
while( select_candidate( cell_x, cell_y ){ 

if( C:5ng 
break ; 

if( C + C< S i  
merge( cell_x, cell_y ) ; 

} 

} 

output() ; 1* output a reduced graph */ 
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1st 
phase) 

Input ng 

Input S 0  & L 

[ 	
Si = 

Select a pair of cells 
to merge from list 

End flist? 

N 

y S i  

Y  

C : The number of cells in the current circuit 

ng : The number of groups we want to partition into 

S 0  : Initial size constraint 

The ith stage size constraint 

C: The number of cells in cell_x 

c : The number of cells in cell_y 

Note: 

A merging stage corresponds to the merging of 
all available listed cells. Let i be the stage index 
and let i ma, be L. 

End 

1++ 

S i = 2S 11  

N 
i > L 

Merge the selected 

pair of cells 

Figure 3.21 The flow chart of free merging in stages 

A merge operation starts by merging a pair of cells into a group; the initial size 

constraint S 0  on this group will be at least 2. To test all possible constraints on a 
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partition it is necessary to set S 0  = 2. The subsequent size constraints are applied by 

using Si  = 2S1 _ 1  where i starts at 1. The maximum i (max)  is the total number of 

stages (L) to be used. To set an appropriate L the following inequality; 

C>2*2' 	 (3.1) 

is used to give; 

inC 
L<--1 	 (3.2) 

in 2 

In practice the maximum integer value of L satisfying this inequality is used. 

The netlist resulting from the free merge operation is presented to the second section 

and will be much shorter than the original circuit netlist. The second section of the 

merge algorithm proceeds in a similar way except that leading groups are selected to 

ensure that results from the next section will give an approximately equal share of 

cells in each of the groups in the final partition. A leading group is defined as being 

the first ng pair of cells selected on the basis of maximum number of connections. 

A flow chart for the selecting leading groups operation is shown in Figure 3.22 and a 

listing illustrating the second section algorithm is shown below: 

1* k : Leading groups index, S1  : Final size constraint / 

input() ; / using the output of section 1 as input data */ 

for(k=1;k:5ng;k++ ){ 
while( se].ect_candidate( cell_x, celly ) ){ 

if( C:!~ ng 
break ; 

if( C, + C)  < S ){ 
merge( cell_x, celLy ) ; 

leading_group[] = cell_x ; 

break p 

) 
) 

} 
output () p 

W. 



group index 

;ize constraint 
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Figure 3.22 The flow chart of the selecting leading groups operation 

59 



The Merge Algorithm 

The leading groups are used in the third section. In this section merging proceeds 

similarly except that the pair of cells to be merged must include a leading group. 

The flow chart of merging with leading groups is shown in Figure 3.23 and the 

listing illustrating the third section of the merge algorithm is shown below: 

input() ; 
while( select_candidate( cell_x, cell_y ) ){ 

if( C:5ng 
break ; 

if( C + C, > S1  
break ; 

if( cell_x = leading_group(] G celly = leading_group() 
inerge( cell_x, celly ) ; 
1* 	stands for exclusive OR *1 

} 

output () ; 

A final section has been included to account for unconnected cells where the number 

of connections is zero. The flow chart of merging the rest of cells is shown in Figure 

3.24 and the algorithm for this section is shown below: 

input() ; 
while( C>ng 

if( cell_x 1= leading_group[] 
merge( leading_group(], cell_x ) ; 

output () ; 

Me 
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Figure 3.23 The flow chart of merging with leading groups 
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4th 
phase 

Figure 3.24 The flow chart of merging the remaining cells 
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3.5. Constraints on merge algorithm 

The operation of the algorithm can be further constrained by other design parameters 

such as the number of pins and timing requirements. In the case of the number of 

pins a check is made before each merge operation to determine whether the resulting 

group of cells can be realised within the input and output pin constraints of the target 

architecture. To satisfy timing requirements it is necessary to know the critical paths 

in the source design and then ensure that cells on critical paths are merged. This is 

achieved in practice by an initial grouping operation before the merge algorithm is 

used. If area limitations prevent all critical paths from being dealt with in this way 

then any paths between partitioned groups that are in fact critical paths should be 

reserved for the fastest board wiring of the target system. 

If function blocks are defined for the target system the designer of the source circuit 

could formulate his design in terms of these function blocks. A drawback of this 

approach is that a circuit designed for ASIC implementation may perform •in a 

different way if reformulated to suit available function blocks. Alternatively the 

initial design could be flattened and then formulated in terms of function blocks. In 

this case the originally defined critical paths will remain as defined but new critical 

paths will appear in the flattened circuit and must be discovered to ensure the best 

performance can be achieved. An automatic technique for identifying critical paths 

is required. 

3.6. Parallel process on merge algorithm 

A feature of this merge algorithm is that its modularity can be used to create a 

pipeline of parallel operating algorithms with smaller graphs. The parallel algorithm 

can be implemented by a parallel language that enables the algorithm to execute in 

parallel in a multi-processor environment. Searching large amounts of data at one 
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time can be very slow. Processing data in smaller pieces helps to reduce searching 

time. Therefore it is necessary to write a data parallel program to allow smaller 

amounts of data to be distributed to each individual processor. This will result in a 

higher partitioning speed for large circuits. The details of a parallel implementation 

of the merge algorithm will be discussed in chapter 6. 

3.7. Summary 

This chapter has presented a set of merging strategies, namely: free merge, free 

merge with size constraint, merge in-turn, merge in stages. These strategies are all 

based on the simple concept that cells having the maximum number of connections 

should be the first to be merged. Applying different size constraints or giving the 

merge algorithm a different free degree of selecting candidates to merge can produce 

different results. 

The next chapter presents how the merge algorithm is implemented by means of a 

programming language. 
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CHAPTER 4 

Implementing the Merge Algorithm 

The merge algorithm discussed in the previous chapter has been implemented by 

means of the C progranmüng language (see Appendix D). This software was 

written to interface with the InCA Virtual ASIC [7]. All source netlists were initially 

converted to InCA netlist format referred to as "CIF" file format (see Appendix A 

for detail) which describes a circuit in a hierarchical manner and is different from 

the Caltech Intermediate Form (CIF) which is a standard machine readable form for 

representing integrated system layouts. 

The software for implementing the merge algorithm is separated into two parts. The 

first part is called "Data Preparation" (see Appendix C) which will flatten the circuit 

to acquire the detail connections between the basic gates, the flattened circuit will be 

passed to the parser to create a cell list and a net list which are used to create the 

cell-net list and the cell-net list is further used to generate the graph which represents 

the circuit. Figure 4.1 shows the data preparation flow chart. The second part is the 

implementation of the merge algorithm itself. The cell-net list and the graph will be 

used by the merge program under the size constraint on groups of cells, and the 

merge operations will continue until the desired partition is reached. Figure 4.2 

shows the flow chart of the implementation of the merge algorithm. 

The data stmcture for implementing the merge algorithm was introduced in chapter 

3. In this chapter the detailed data structure for implementing the merge algorithm 

will be described in Section 4.1, and the procedures for implementing the merge 

algorithm follow in Section 4.2. 
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Circuit netlist 

Flatten the design 

Parser 

Create 
cell list and net list 

Create 
cell-net list 

Create graph 

End 

Figure 4.1 The data preparation flow chart 
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Figure 4.2 Flow chart showing the use of the merge algorithm to partition a design 

4.1. The data structure for implementing the merge algorithm 

A cell list is required which is generated from the original circuit "CIF" file. This 

list describes how the components in the circuit are interconnected. The cell list 

consists of a head of cell list which points to where the circuit is, the cell nodes 

which represent the cells themselves and point to a list that shows what nets are 

incident to the cells, and the net nodes which contain information related to the nets 

and the cells. A descriptive diagram to illustrate the structure of the cell list is 

shown in Figure 4.3. A complete cell list of Figure 3.9 is shown in Figure 4.4. 

Figure 3.9 is reproduced in Figure 4.5 for convenience. The cells are listed in the 

vertical and the related nets are listed in the horizontal direction. 
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Head of cell list 

numi- ----------- The number of the cells in the circuit 

Pointer to the last cell of the cell list 

Pointer to the first cell of the cell list 

I ------------- Thenetnameattachedtothecurrentcell 

 -- - - - Pointer to the next net related to the current cell 

ni 	 H n2 

c2 -  - - - - - - - - - Thecurrentceiiname 

. - - - - - - - - - - Pointer to a list of nets attached to the current cell 

- Pointer to the next cell 

c6 

. 

Figure 4.3 A diagram showing the structure of cell list 
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Figure 4.4 A complete cell list of Figure 3.9 

nc ilO 

Figure 4.5 A copy of Figure 3.9 
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A net list is derived from the cell list. Basically it contains the same information as 

the cell list, the only difference is the nets are arranged in the vertical and the cells 

which are connected to the net are arranged in the corresponding horizontal list. Its 

main purpose is to facilitate generating another list called cell-net list which will be 

discussed later. The net list of Figure 3.9 is shown in Figure 4.6. 

A cell-net list is created from both cell list and net list. In this new list the cell is 

called band-cell and the net is called band-net, this choice is made because the cell 

node includes information about what nets are completely inside this cell and the net 

node includes information about the number of cells outside this cell on a certain net 

and the number of cells inside this cell on the same net. A descriptive diagram of 

the cell-net is shown in Figure 4.7. A complete cell-net list of Figure 3.9 is shown in 

Figure 4.8. 

A graph structure is needed to describe the number of connections between cells. 

This graph is generated from the cell-net list by counting the number of the same 

nets related to any pair of cells. After establishing this graph, a merge sequence list 

which arranges the nodes with the greatest number of connections at the front of the 

list can be set up by scanning through the whole graph. A descriptive diagram of 

these data structure is shown in Figure 4.9. 
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Figure 4.6 A complete net list of Figure 3.9 

71 



Implementing the Merge Algorithm 

Head of cell-net list 

The number of band-cell in the cell-net list 

Pointer to the last band-cell 

• I- -------Pointer to the first band-cell 

I 	i  -- - - - - - - - - - The band-net name attached to the current cell 

I 	I 	-
The number of cells inside of the current cell 

- - - - The number of cells outside of the current cell 
Pointer to the next node related to the current cell 

> n3 I 

c2 - - - - - - - - The name of current band-cell 

•  -- - - - - - Pointer to a list of band-nets attached to the current band-cell 

Pointer to a list of band-nets inside of the current band-cell 

I -- - - - - - - Pointer to the next band-cell 

c6 

• 

Figure 4.7 The structure of cell-net list 
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Head of cell-net 

Figure 4.8 A complete cell-net list 
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Head of merge sequence 

nuim 	

-   -- - - - - - - - - - - The head of list with 
I 	I 	I 

I 	 connection number 'n" 
I   -- - - - - - - - - Pointertothenodewith 

connection number "n' 
Head of graph 	 r - - - - - - - Pointer to the head ot with ____________ 	 I I I _______ 	 connection number "n- i" 

Inum2l 11,1 	6+iI,I'I 	>In kIsi 	>1 - - - - - - - - 

I 
 

-- - - 
 - -- - - - - -  

-Thecurrentcellname 

I  -- - -- - - - - - - TheCellnamerelatedtothecurrentcell 

I  
-- - - - - - - Connection number 

I 	I - - - - ----- Pointer to the node with 
ci 	 : 	: 	: 	 connection number "n" 

Pointer to the next node which 
relates to the current vertex 

- -.  

Pointer to the next cell in this group 
Cell name in this group 

c2 - 	Vertexname(cellname) 

• .  -- - - - - - - - - Theheadofcelllistwhichrelates to this vertex 

• - 	Thenumberofcellsinthecuffentgroup 

•  -- - - - - - - - - - Ponitertoalistofcellsinthisgroup 

•  - 
 

-- - - - - - - - - Pointer to the next vertex 

c6 

Figure 4.9 The data structure of the graph and merge sequence 

4.2. The routines for merge 

The objective of the merge operation is to combine a pair of cells as one cell, for 

instance, if the operation of merging cell c2 to cell ci as one cell ci is required, after 
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the merge the cell c2 is inside the cell ci, the number of connection between ci and 

other cells must have been changed due to this merge and the merge sequence may 

also change, therefore the graph and the linked list for merge sequence must be 

modified at the same time. Because c2 is buried in ci after merge, the nets incident 

to cell c2 become incident to cell ci, so the edges belonging to cell c2 are inserted 

into the list of edges belonging to cell ci in the graph. In addition, all other cells 

related to c2 before merge must be changed to be related to ci. 

There are two main procedures in the merge processes. One is cailed 

"merge_in_cell-net", another one is called "merge_in_graph". The procedure of 

merge_in_cell-net is to maintain an updated configuration of the circuit after the 

candidates for merging are merged. This will provide the precise number of 

connections between cells. The procedure of merge_in_graph is where the merge 

operations are realised. 

4.2.1. The merge_in_cell-net 

The graph in Figure 4.5 is used to demonstrate how the procedures of the 

merge_in_cell-net process. Assume that c3 will be merged to ci. A part of the cell-

net list of Figure 4.8 is shown in Figure 4.10 before merge. To merge c3 to ci, there 

are three common nets n9, n7 and n 1 between two cells, when the merging takes 

place, n9 and n7 become internal net of ci, and n i is still external to ci, therefore n9 

and n7 are removed from the list of band-net and inserted to the list of the internal 

band-net, the band-nets(ni and n5) incident to band-cell c3 and still external to ci 

are inserted to the list of band-net of ci. Finaliy,the band-cell c3 must be removed 

from the list of the band-cell. 

The cell-net list after merge is shown in Figure 4.11. It is necessary to decide which 

of the common band-nets become internal nets or remain external. This is 
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implemented by subtracting the number of the field inside of the implicit cell (6) 

from the number of the field outside of the explicit cell (ci), if the result of the field 

outside of the explicit cell (ci) is equal to zero, this means the corresponding band-

net becomes internal net, otherwise the band-nets are still external to the band-cell. 

Figure 4.10 A part of the cell-net list of Figure 4.8 

Figure 4.11 The cell-net list after merging c3 to ci 
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4.2.2. The merge_in_graph 

Again the graph in Figure 4.5 is used to illustrate the merging procedures. According 

to the merging sequence list, the pair of cells ci and c3 are the candidates to be 

merged, and c3 will be merged to ci, i.e. c3 is the implicit cell and ci is the explicit 

cell. Before the processes in the merge_in_.graph can be executed, the merging of ci 

and c3 in the cell-net list has to be processed first. 

The merge_in_.graph procedure is comprised of four sub-procedures which are 

called "removing", "re-ordering", "attaching" and "replacing". The procedure of 

removing is to remove the implicit cell in the list of vertices and the cells in the edge 

list of the implicit cell. The procedure of re-ordering is to re-arrange the order of the 

merge sequence when the connection number has been changed or the edge node 

removed. The procedure of attaching is to put the cells which are related to the 

implicit cell to the explicit cell. The procedure of replacing is to replace all the 

implicit cell names to explicit cell names. 

To merge c3 to ci, first of all, the edge node of c3 belonging to vertex ci must be 

removed. Figure 4.12 shows the results of removing edge node of c3. Because the 

edge node of c3 is in the merge sequence list, the procedure of re-ordering must be 

applied, which is to re-arrange the priority of the merge sequence. While removing 

the edge node of c3, the merge sequence for the connection number "3" has to be 

modified. Figure 4.13 shows the results of the re-ordering due to removing a node. 

Second, the cells related to the implicit cell (6) must be attached to the edge list of 

the explicit cell (ci). Therefore, c5 which is connected c3 must be attached to the 

edge list of ci. In the edge list of ci, there has been an edge of c5 existing, a visit to 

the cell-net list is required to acquire the new number of connections. After merging 

c3 to ci in the cell-net list, the number of connections between ci and c5 is "3". So 
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the number of connections of edge node c5 should be changed to 3. On the other 

hand, this node is in the wrong merge sequence listing due to the connection number 

change. The merge sequence must be modified. The edge node c5 is moved from 

the list of connection number "2" to the list of connection number "3". The results 

of this changing are shown in Figure 4.14. If there were other cells which were 

related to the implicit cell, but not related to the explicit cells, they should be 

inserted to the edge list of c 1 without visiting the cell-net list to obtain the new 

connection number. 

Third, the cell c3 has become a member of group ci and must be inserted to the 

group list of ci and the number of cells inside of cell ci is 2. Furthermore the 

implicit cell c3 should be removed from the vertex list and the cells in the list of 

edge node of c3 also have to be removed. The results of these actions are shown in 

Figure 4.15. 

Finally, in the replacing procedure, every edge node in the graph must be visited to 

check if there are other cells relating to c3, once the edge nodes of c3 are found, the 

name of the edge node must be changed to ci, and a visit to cell-net list has to be 

performed to acquire the new connection number, if this number is different with the 

old connection number, then the procedure of re-ordering has to be applied to re-

arrange the merge sequence. In this example, there is no c3 left in the graph, so the 

only actions that need to be carried out are visiting every edge node to check if c3 

appears in any edge node and to change c3 to ci when required. 
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Head of graph 

Figure 4.12 The result of removing edge node of c3 
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Head of merge sequence 

Figure 4.13 The result of re-ordering due to removing a node 
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Head of merge sequence 

Figure 4.14 The result of re-ordering due to connection number change 
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Head of graph 

Figure 4.15 The result of merging c3 to ci 
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4.3. Summary 

In this chapter the detailed data structure was developed which enabled the merge 

algorithm to operate effectively in creating "cell list" and "net list" from the source 

circuit netlist file. These two lists were used to create the cell-net list from which the 

graph of the circuit was derived. 

The merge algorithm was operating on the cell-net list and graph. The cell-net list 

was used to obtain the new number of connections between cells after merging. The 

graph was used to form a new configuration of the circuit after each merge. 

The next chapter exercises the merge algorithm on two test circuits, analyses the 

performance of the merge algorithm. 
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CHAPTER 5 

The Performance of Merge Algorithm 

This chapter uses two artificial circuits generated from the Random Circuits 

Generator (RCG) to test out the performance of the merge algorithm. Some 

representative results are presented. 

5.1. Experimental system 

5.1.1. Random circuits 

Random circuits are created by specifying the number of cells, the number of input 

pins and the number of output pins to the RCG program (described in Appendix B). 

The output of RCG program is a text form describing the circuit in InCA net list 

format. The circuits produced by the RCG program are not realistic and do not 

possess meaningful functionality. They just provide information about how the 

components in circuits are interconnected. These circuits will be used to compare 

the performance of the different partitioning strategies. 

5.1.2. Structural circuits 

In the real world, circuits are usually constructed in a hierarchical manner which 

makes circuits more structural. To make random circuits more realistic and obtain 

more information about the connections inside circuits, a semi-automatic method to 

generate circuits was used. First, the RCG program is used to automatically create 

some smaller size of random subcircuits and then these subcircuits are manually 
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interconnected to form a complete circuit. Constructing a circuit in this way allows 

circuits with known optimal cutsize to be created and used to assess the performance 

of the various partitioning algorithms. 

5.1.3. Test circuits 

To demonstrate the performance of the merge algorithm two test circuits were 

obtained from the random circuit generator. Test Circuiti (TC1) consisted of 100 

cells connected by 132 nets and 20 input/output pins. Test Circuit 2 (TC2) was 

constructed by manually interconnecting six different circuits derived from the 

random circuit generator. An example TC2 circuit is shown in Figure 5.1. The main 

features of six units used in Figure 5.1 are shown in Table 5.1. The netlist of the six 

units were sequentially combined to form the TC2 netlist. In fact 720 different 

circuits were obtained to cover all possible permutations of the six separate netlists. 

Unit Number of Cells 110 Number of Nets 

Ul 10 5 13 

U2 20 5 25 

U3 30 5 43 

U4 10 9 19 

U5 20 6 28 

U6 30 7 40 

Table 5.1 The features of Test Circuits 2 
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Figure 5.1 The block diagram of Test Circuit 2 (TC2) 
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5.2. Result 

A balance requirement between groups is important. If this condition were 

neglected during the merge operation, all the cells might be merged to one group. 

To judge if a result is balanced a balance factor, denoted by B, is defined by: 

ng-1 ICi  - avel 

ave 	 (5.1) 
2(ng - 1) 

where ave = C- , C, is the number of cells in the 
ng 

group i, C is the total number of cells 

and ng is the required number of groups. 

The range of B will fall between 0 and 1. If B = 0, the partition is perfectly 

balanced, while B = 1 indicates that all cells are merged to one group and the 

partition has totally lost balance. 

Test circuit 1 was partitioned into two groups. Figures 5.2 to 5.6 show the results of 

varying the initial constraint S o  and the number of stages L. The balance Factor B is 

also shown in each case to illustrate the way it can be used to monitor the balance of 

the results. 

A suitable L value for TC1 is obtained from equation (3.1) and (3.2) to be 5. L 

values from 1 to 5 were used with S0  values increasing from 2 by one for each 

partition until the value which makes all the cells in the circuit merge to one group. 

The cutsize and balance of the partition vary with initial constraint S o  for fixed L. 

From a general view of these figures (i.e. Figure 5.2 to Figure 5.6), the cutsize 

decreases as the initial constraint increases and the balance factor increases as the 

initial constraint increases. It is easy to see that a bigger initial constraint will 

generate a smaller cutsize for partitioning. However, small cutsize leads to a poor 
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final balance. From these figures it can also be seen that the cutsize varies little 

when the balance factor falls in a certain range, for example between 0 and 0.5. This 

means that a substantially constant cutsize result is obtained when the result of 

partitioning is required to be in a reasonable balance. 

A version of test circuit 2(TC2) having 720 possible implementations was designed 

to feature an optimal bi-partition cutsize equal to 1 in each case. The main purpose 

of this design was to test the ability of the merge algorithm to find this optimal 

solution. It was found that the merge algorithm found the optimal partition with 

100% success. Performing the same partition with the Kemighan-Lin based 

approach 478 circuits were successfully partitioned with cutsize equal to 1. The 

results of the partition of the other 242 circuits demonstrated a much bigger cutsize. 

A sample of the intermediate result of partitioning a TC2 is shown in Figure 5.7. 

5.3. Mapping a design to a target structure 

The merge algorithm (abbreviated as MA) can be applied to map a design to the 

following hardware architectures: 

fixed hardware target structure 

flexible hardware target structure 

The strategies and method used for partitioning a design for either of the above two 

possible hardware configurations may differ and depends on design architecture as 

well as the application purposes. 

M. 
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Figure 5.2 Cutsize and Balance versus initial size constraint, S0 . for L = 1 
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Figure 5.3 Cutsize and Balance versus initial size constraint, S0 , for L = 2 
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Figure 5.4 Cutsize and Balance versus initial size constraint, S0 . for L = 3 
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Figure 5.5 Cutsize and Balance versus initial size constraint, S0 , for L = 4 
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Figure 5.6 Cutsize and Balance versus initial size constraint, S0 , for L = 5 
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- -I-- Flattening the system... 

--I-- Creating cell-net list... 

--I-- creating graph... 

--I-- Scanning and setting up list of descending weight... 

The shrinked graph after L merging stages is defined by; 

0 0 60 4 0614 

6 6 60 2 6 30 2 

10 10 80 3 10 90 1 10 92 3 

30 

60 60 80 1 

80 80 90 4 

90 90 92 7 

92 

where the first column shows the group (or cell) identifier and each row 

shows the connections with other groups e.g. 0 60 4 indicates that group 

0 is connected to group 60 via 4 links. 

The following list shows at its first column the number of cells in each 

group. Each row starts with the group identifier followed by the other 

members of the group. 

18 0483512933405659473639495253 

20 673246344854375531355150424338575841 

45 
20 10 21 20 14 24 13 15 25 11 22 12 19 17 18 27 16 26 23 29 

28 

2 3044 
20 60 67 69 74 79 65 70 78 68 71 63 73 64 76 77 75 66 61 62 

72 

11 80 83 85 89 86 81 84 82 87 88 114 

20 90 91 96 116 105 95 103 104 113 115 93 98 108 109 94 99 101 111 102 

112 

9 	92 106 107 117 119 97 110 100 118 

The following lists show the final partition of this special circuit with 

groups 0 and 10 linked by 1 connection with each group containing 60 cells 

as listed. 

0 	0 10 1 

10 

60 04835129334056594736394952536 

7 32 46 34 48 54 37 55 31 35 51 50 42 43 38 57 58 41 45 60 

67 69 74 79 65 70 78 68 71 63 73 64 76 77 75 66 61 62 72 30 

44 
60 10 21 20 14 24 13 15 25 11 22 12 19 17 18 27 16 26 23 29 

28 80 83 85 89 86 81 84 82 87 88 114 90 91 96 116 105 95 103 104 

113 115 93 98 108 109 94 99 101 111 102 112 92 106 107 117 119 97 

110 100 118 

Figure 5.7 Listings demonstrating the bi-partition of a TC2 circuit. 
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5.3.1. Mapping a design to a fixed target structure 

A fixed target structure consists of several nondisjoint FPGAs, which are 

systematically connected. Typically these types of structures are used in situations 

where many different designs are to be compiled onto one general purpose hardware 

structure. The VA and Anyboard mentioned in chapter 1 are in this category of 

hardware structure. 

To fit the design into the fixed hardware target structure, the MA must be constrained 

by: 

Number of gates in a group not greater than G. 

Number of pins associated with a group not greater than P. 

Total interconnects between groups not greater than I. 

where G is the number of gates that an FPGA can accommodate without the 

difficulty of placement and routing, P is the number of interface pins, and I is the 

number of interconnects between FPGAs in the fixed hardware target structure. 

The partition which satisfies the gate counts and pin counts does guarantee enough 

internal resources to FPGAs, but does not guarantee there are enough external 

resource to FPGAs in the fixed hardware target structure. So that applying constraint 

on the interconnects between FPGAs is necessary. 

The twelve FPGA fixed hardware structure shown in Figure 1.2 is used as an 

example to illustrate how to apply a constraint on the resources of interconnects 

between FPGAs. The twelve FPGA is redrawn in Figure 5.8 with the dots 	- 

representing FPGAs which are arranged in a ring and eight of which are for 

functionality and connections , four of which are for connections only. Assume the 
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connections between groups only use pin to pin direct connections (28 wires in this 

case) or pass through the connection only FPGAs. To ensure a successful mapping 

in this particular hardware configuration , the following constraints must be 

observed. 

j-8 

Z cz(i, j) :!~ 92, where cz(i, j) is the cutsize of group i and group j, and 
j=I,j#i 

92 is composed of 28 pin to pin direct connection between adjacent FPGAs and 

4 interconnect FPGAs each with 16 connections to each of 8 functional 

FPGAs. 

one pair of groups must be adjacent on the physical target structure. 

C4 

C 

2 

Cl 

Cl 

8 

C7 
8 

do 

Figure 5.8 The ring structure 

5.3.2. Mapping a design to a flexible hardware target structure 
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A large design may be partitioned into a range of FPGAs while minimising 

connectivity between FPGAs and achieving high gate utilisation and system 

performance. Once an optimum partition for a given design is found then the 

required hardware must be constructed using the wiring specification generated by 

partitioning software. Such hardware architecture is referred to as "flexible hardware 

target structure". 

The main constraints for implementing the flexible hardware structure are the gate 

counts and pin counts in the variety of FPGAs. How to apply these constraints to the 

partitioning software depends on the user's situation. For example, if users have only 

a few types of FPGAs or limited number of FPGAs, then the above constraints must 

be applied to the partitioner which consequently will determine if the design is 

feasible or not in such situations. A better approach to achieving an optimum 

partition is finding a suitable partition from a solution space to suit user's 

requirements. 

The MA can offer a range of solution space by applying different parameters to the 

merging processes. The following parameters can be changed to obtain the possible 

partitions for a design. 

• 	the number of groups for the final partition 

• 	the initial size constraints S 0  

• 	the number of stages, L 

• 	the size of subcircuit 

By changing the individual parameter or combinational parameters, the MA will 

generate different results from which user may analyse them to find a feasible 

partition, if no promising results are found, go back to change the parameters again 
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that may produce a desirable partition. This process is repeated until users find a 

partition that suits their requirements. 

5.4. Summary 

Test circuit 1 (TC1), which is a random circuit with 100 cells, was thoroughly 

exercised by changing the initial size constraint S 0  and stage number L. This 

produced a large range of partitions. For practical applications, a designer may select 

a partition which suits his requirements. 

Test circuit 2 (TC2) is a circuit with known optimal partition and was used to test the 

ability of the merge algorithm to locate this optimal partition. The merge algorithm 

demonstrated an excellent potential to find this optimal partition. 

The merge algorithm has a flexible capability which facilitates the use of the 

software to suit various applications by meanings of modifying some minor 

procedures or changing some parameters. The important problems are identifying 

the requirements of the applications, then adjusting the merge algorithm to proceed 

under the specified constraints. 

Generation of a range of possible designs in response to a product specification is an 

essential feature of successful product development [18]. A pseudo-parallel version 

of the merge algorithm which has better speed performance, is presented in the next 

chapter. This gives a brief summary of partitioning methods that will facilitate rapid 

exploration of possible partition solutions. 
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CHAPTER 6 

The Pseudo Parallel Process for Merge Algorithm 

This chapter presents a pseudo-parallel (or serial-parallel) method for implementing 

the merge algorithm to enhance the performance of the merge algorithm when the 

designs become large. 

Two basic parallel processing methods are introduced which are pipeline processing 

and data parallelism. The latter method is used to implement the merge algorithm. 

The circuit is divided into several subcircuits which are sequentially passed to the 

merge algorithm, some synchronisation actions have to be carried out, then the size-

reduced subcircuits are combined as a full circuit. These procedures are repeated 

until the desired partition is reached. The associated C progranmiing code for the 

pseudo-parallel algorithm is listed in Appendix E. 

Five test circuits were generated to exercise fully the pseudo-parallel merge 

algorithm. Some promising outcomes are also presented. 

6.1. Parallel processing 

A conventional computer uses one processor which executes a set of instructions in 

order to produce a result. At any one time there is only one operation being carried 

out by the processor. -3 

Parallel processing is concerned with producing the same results using multiple 

processors. There are many approaches to parallel processing, two basic ways of 
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which are as follows: 

Divide the problem into a sequence of tasks, with each task operating on the 

results of the previous tasks. This approach is known as pipeline processing. 

Have many processors performing the same task simultaneously on different 

data sets. This approach is known as data parallelism. 

In the pipeline method, a problem is separated into a cascade of tasks, each of which 

is executed by an individual processor. Data is passed through each processor 

performing a different operation on each of the data elements. Since the program is 

distributed over the processors in the pipeline and the data moves from one 

processor to the next, no processor can proceed until the previous processor in the 

pipeline has completed its task and passed the data to it. Figure 6.1 shows the data 

flow and task distribution for a pipeline of processors. 

I  Data in 	Task 	Task 	I 	,-I Task 	I 	>1 Task 	
Data out 

_______ 

ii 	I 	2 	I 	I 	3 I 	I 

Figure 6.1 Task and data distribution for a pipeline of processors 

Data parallelism generally distributes all of the data to be processed equally over all 

of the processors in the computer. Each processor contains the same program 

operating on a subset of the data. This is in contrast to a pipeline approach, in which 

the program is distributed rather than the data. Figure 6.2 illustrates the distribution 

of data and program task over processors. 

Creating parallelism by distributing data is a popular approach because it largely 

avoids the difficulty of finding a way to decompose a problem into parallel pieces. 

Not only is program decomposition largely irrelevant, but distributing data by 

dividing it equally among the processors also provides automatic load balance. 
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Although the program decomposition becomes easier in data parallelism, the 

synchronisation between processes can become more difficult and complicated. 

Because each processor contains only a portion of the entire data set, any processor 

which requires other, nonlocal data, must obtain it by communicating with other 

processors. The difficulty of programming a processor network to communicate 

correctly and efficiently can more than compensate for the ease of program 

decomposition. Nevertheless, data parallelism is generally more flexible and easier 

to implement effectively than is pipeline parallelism [87-91]. 

All tasks 
	 All tasks 

	 All tasks 
	

All tasks 

Data set 
	

Data set 
	

Data set 
	

Data set 

1 
	

2 
	

3 
	

4 

Processor 1 	 Processor 2 	 Processor 3 	 Processor 4 

Figure 6.2 Task and data distribution for data parallelism 

6.2. A pseudo-parallel processing method for the merge algorithm 

The merge algorithm (abbreviated as MA) can be implemented as a data parallel 

algorithm. Such an implementation will lead to an increase in the speed of circuit 

partitioning. 

The data, i.e. the graph, will be divided into several portions which will be 

distributed to many processors which execute the MA on the subset of the graph. 

Some synchronisation programs must be written to update the local data. Three 

functions are needed to facilitate the implementation of the data parallel approach. 

They are "divider", "coordinator" and "constructor". The divider is used to divide 

the data into a number of data subsets. The coordinator is used to synchronise the 

data distributed among processors and the constructor is used to re-construct a new 

full data set. 
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The parallelism of the MA was investigated by sequentially using a single processor 

to implement the parallel process. It is found that this pseudo-parallel processing 

method also reduces the time required for circuit partitioning. 

6.2.1. The data parallel method 

The first task to be carried out in data parallel system is to actually divide the data. If 

the total number of data elements is a multiple of the number of processors, the data 

can be divided evenly among the processors. But in most cases the number of data 

elements is not a multiple of the number of processors, the data can not be evenly 

divided. The policy of dividing data adopted in this work is to divide the data evenly 

to the preceding subsets and any data leftover is allocated to the last subset. The 

number of the subsets is decided by the number of processors available and the size 

of the target system. 

The graph which represents the target system is divided into a number of sub-graphs 

which are passed to the MA which merges the pairs of cells in the same sub-graph. 

The candidates which are not in the same sub-graph are neglected. The merging is 

complete once all possible cells have been merged. This produces a number of 

reduced sub-graphs. 

During the process of merging, some cells become implicit cells in some sub-graphs 

and the cell names of of the implicit cells have been changed to the cell names of the 

explicit cells. Because these events happen at the local sub-graph level, other sub-

graphs are not informed that the names of those implicit cells having been changed 

if they exist in them. As a result, a coordinator is required to change the names of 

the implicit cells to the corresponding cell names of the explicit cells. 

After these reduced sub-graphs have been modified for their proper cell names, they 

are fed to the constructor to obtain a new full, but reduced, graph. 
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The goal of merging is to acquire a desired partition, so the new full reduced graph 

must be investigated to check if it meets the requirements of the desired partition. If 

not, the new graph is passed to the divider again and the next iteration starts. Figure 

6.3 shows the pseudo-parallel process for implementing the MA. 

For actual parallel processing, the sub-graphs are distributed each to an individual 

processor on which the MA is executed. After all of the processors complete the 

merging operation, the same number of processors are used to execute the program 

of the coordinator function. Figure 6.4 shows the tasks needed for the data parallel 

implementation of the MA. The iterations continue until the final partition is 

reached. During each iteration, the number of sub-graphs may become less, hence 

the number of the required processors is reduced, therefore it may release some 

processors to other tasks in the system. 

6.2.2. Functions required for the data parallel method 

6.2.2.1. Divider 

The responsibility of the divider is to prepare the well-divided subsets of data ready 

to be distributed to the available processors. A graph representing a circuit, the size 

of the sub-graph or the number of available processors will be the inputs of the 

divider. According to these inputs, the graph is divided into many sub-graphs with 

each one having the same number of cells, except the last-graph which contains the 

leftover in the graph. Figure 6.5 shows a simplified graph containing 2n cells. To 

divide this graph into two sub-graphs, which contain n cells each, two sub-graph 

heads are needed, the cells are sequentially allocated to a sub-graph until the 

required number of cells is reached, then the link between cell n and cell n+ 1 must 

be broken and the one in the front (i.e. cell n) is set to the end of one sub-graph, the 

one in the rear (i.e. cell n+1) is set to the start of another sub-graph. Figure 6.6 

103 



The Pseudo Parallel Process for Merge algorithm 

shows two sub-graphs obtained from the graph in Figure 6.5 by dividing itinto two 

parts. 

Figure 6.3 Flow chart of the pseudo-parallel merge algorithm 
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Figure 6.4 The flow chart of the parallel process implementation of the merge algorithm 
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Head of graph 

Figure 6.5 A simplified graph with 2n cells 
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Head of sub-graph! 

Head of sub-graph2 

Ef_~ 

n+I 

Figure 6.6 Two sub-graphs of Figure 6.5 
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6.2.2.2. A merge algorithm for parallel process method 

The MA used previously operates on the full graph by selecting the cells with the 

maximum number of connections as the candidates to merge. For the parallel 

process, the MA will be working on the sub-graphs, only the cells which are all 

within the same sub-graph are merged. The MA proceeds until no cells in the sub-

graph are available to merge. 

Because merging occurs within a small portion of the full graph, a record of the 

corresponding implicit cells and explicit cells is kept to enable the following process 

to effect synchronisation among sub-graphs. 

6.2.2.3. Coordinator 

When the parallel version is applied to sub-graphs, the normal actions for changing 

the names of the implicit cells to the names of the explicit cells are executed only 

inside the sub-graphs, therefore a routine called the coordinator is required to 

process the cells which were implicit cells in certain sub-graphs and still are left in 

other sub-graphs. The main goal of the coordinator is to change the names of these 

cells to their proper cell names after completion of the merge operations. 

The coordinator can be parallelized by loading this routine to a number of processor 

into which the sub-graph, the cell-net list and the record of the changed cell names 

are loaded. Every edge node in the sub-graph must be visited to investigate if the 

cell names have been changed. If they have been changed, then the cell-net list will 

be used to count the number of connections between the new pair of cells. Then the 

routine goes to the next edge node. This is continued until all the edge nodes in the 

sub-graph are exhausted. Figure 6.7 shows the flow chart of the coordinator 

function. 
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Figure 6.7 The flow chart of the coordinator 
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6.2.2.4. Constructor 

The constructor is a routine that collects all the sub-graphs resulting from the 

previous processes and combines them into a new reduced full graph. The 

constructor will re-build the full graph by cascading the sub-graphs sequentially, it 

starts from the the first sub-graph and always points to the last cell in the sub-graph 

to the first cell of the next sub-graph. These steps are iterated until the last sub-graph 

is reached. Finally, the head of the first sub-graph is used as the head of the full 

graph. Figure 6.6 is used to illustrate the combining of the two sub-graphs which is 

shown in Figure 6.8. 

Headofsub. '  

Headofsuph2 

I 
Figure 6.8 The re-construction of Figure 6.6 
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6.3. Performance of the pseudo-parallel MA 

6.3.1. Test circuits 

To demonstrate the performance of the pseudo-parallel process, the random circuit 

generator was used again to generate some test circuits which include one random 

circuit with 10,000 cells and four structural circuits with various numbers of cells 

which were constructed semi-automatically, i.e., every part in a circuit was generated 

automatically, but the connections between parts were defined manually. The main 

features of these test circuits are shown in Table 6.1. 

Test circuits #Cells #Nets #Modules #110 

ranOl 10,000 12,882 1 20 

struO 1 1,000 1,292 5 2 

stru02 2,000 2,578 5 2 

stru03 10,000 12,850 5 2 

stru04 12,000 15,471 6 8 

Table 6.1 The main features of test circuits 

The block diagrams of the four structural circuits (Figure 6.9 to 6.12) and the 

features of each part in the circuit (Table 6.2 to 6.5) are shown below. 

Figure 6.9 The block diagram of struOl 
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Units #Cells #Nets #110 

Ui 200 255 2 

U2 200 258 2 

U3 200 263 2 

U4 200 258 2 

US 200 258 2 

Table 6.2 The main features of struOi 

Figure 6.10 The block diagram of stru02 

Units #Cells #Nets #110 

Ui 400 510 2 

U2 400 520 2 

U3 400 518 2 

U4 400 514 2 

US 400 516 2 

Table 6.3 The main features of stru02 
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Figure 6.11 The block diagram of stru03 

Units #Cells #Nets #110 

Ui 2000 2571 2 

U2 2000 2565 2 

U3 2000 2564 2 

U4 2000 2580 2 

U5 2000 2561 2 

Table 6.4 The main features of stru03 

8 	 o 

Figure 6.12 The block diagram of stru04 
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Units #Cells #Nets #110 

Ui 1500 1937 8 

U2 3000 3848 8 

U3 1500 1925 8 

U4 1500 1945 8 

U5 3000 3849 8 

U6 1500 1967 8 

Table 6.5 The main features of stru04 

6.3.2. Results 

The five test circuits were processed by the pseudo-parallel merge algorithm which 

uses the "merge in stages" approach with a small initial size constraint. After each 

iteration the next size constraint is enlarged. The initial size constraint used here is 

formulated empirically as follows: 

I 
SOCscjçy1JJ 	 (6.1) 

where S0  is the initial size constraint, C, is the size of the sub-circuit, C is the total 

number of cells in the circuit and 100 is an empirical value. After each iteration the 

size constraint is doubled. This is repeated until no cells can be merged. 

The pseudo-parallel algorithm consists of four sequentially implemented tasks, 

namely: divider, MA for parallel process, coordinator and constructor. To assess the 

performance of these four tasks, they are clocked by the system c.p.u. timer to 

enable the c.p.u. time to be monitored and recorded at each iteration. 

The number of processors available in the system will decide how many divisions 
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the circuit can be divided into. All meaningful and possible number of processors 

were investigated when the pseudo-parallel merge algorithm was applied to these 

five circuits. A sample of result shown below is the result of the test circuit stru03 

which was run under the assumption of a system with 4 processors available. In the 

beginning the number of cells in the full circuit is shown; at each iteration the 

number of cells in the sub-circuit and the number of divisions are displayed, then the 

c.p.u. time for each task and each sub-circuit are recorded, finally the total run time 

and the number of cells left in the circuit are shown. In the first iteration, the divider 

divides the test circuit into four subcircuits each one of which contains 2,500 cells, 

these four subcircuits are sequentially run through the MA and coordinator, then the 

constructor combines the four reduced subcircuits into one. The new reduced circuit 

consists of 2,177 cells after combination. The size of the new circuit is less than 

2,500 cells, therefore there is only one division and only one processor is needed in 

the second iteration. Due to only one division left, there is no synchronisation 

needed, the coordinator and constructor are not executed and the final partition is 

obtained in this iteration. 

The first iteration: 

The size of the full circuit = 10,000 cells 
The size of the subcircuit = 2,500 cells 
The number of divisions = 4 

time_divider=0 .016667 secs 

time_merge(1)=73.949997 secs 
time_merge(2)=73.133331 secs 
time_merge(3)=58.500000 secs 
time_merge(4)=84.400002 secs 

time_coordinator(1)=0.300000 secs 
time_coordinator(2)2 .950000 secs 
time_coordinator(3) =1.966667 secs 
time_coordinator(4)=0.000000 secs 

time_constructor=0.000000 secs 
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The second iteration: 
********************************************************** 

The size of full circuit = 2,177 cells 
the size of subcircuit = 2,500 cells 
The number of division = 1 

time_divider=0 .000000 secs 

time_merge(l)=265.866669 secs 

The final: 
********************************************************** 

Total run time (pseudo parallel) = 561.450012 secs 
Predicted parallel run time = 353.21 secs 
The number of cells in the size-reduced circuit = 2 

The five test circuits are individually processed by changing the size of subcircuit 

and the c.p.u. time taken by each of the four procedures was recorded in the format 

of the above listing. In the last block the total run time (i.e. the pseudo-parallel run 

time) and the predicted parallel run time are calculated. The total run time is the 

time that only one processor is used by running the parallel MA in serial manner. 

The predicted parallel run time is assumed there are a number of processors running 

simultaneously, in each iteration the longest time a task takes is used as the net run 

time, because the other tasks which take shorter run time have to wait until the 

slowest task has been finished. The run time of the regular MA was also taken to 

compare with pseudo-parallel and predicted parallel. Figure 6.13 to figure 6.17 show 

the graph of the speed performance of these five test circuits with the horizontal axis 

as the size proportion in percentage and the vertical axis as the c.p.u. time the 

processes take. 

The Figure 6.13 shows the speed performance of the test circuit ranOl with respect 

to the various subcircuit size in percentage to the full size circuit. If the subcircuit 

size falls between 50% to 100% of the full size circuit, then two processors are 

required. The less percentage the subcircuit size is, the more the processors are 
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required. The run time of the pseudo-parallel MA with multiple processors was 

dramatically reduced. It was about three times as fast as the regular MA with one 

processor. When the number of processors increased beyond four, the run time 

increased abruptly. This is due to the test circuit ranOl being randomly connected, 

the connections between cells may be far away from each other in the netlist, it is 

not easy to find a pair of cells to merge in the subcircuit itself when the full circuit is 

divided into too many subcircuits, therefore the size of the full circuit after re-

construction does not reduce much, the program keeps looping until no further 

merge can be made, this makes the run time increase significantly. 

Figure 6.14 to figure 6.17 show the speed performance of structural circuits with 

different structures and various sizes. There are two kinds of curves which are the 

curve of pseudo-parallel and the curve of predicted parallel algorithm. All these 

curves in these four graphs have a similar shape which demonstrates the run time of 

the pseudo-parallel with multi-processor is always much less than the regular merge 

algorithm, and the run time of predicted parallel is less than the run time of pseudo-

parallel. There is a special situation when the size of the subcircuit matches the 

structure of the circuits and the run time is the shortest. For example, struOl with 

1000cells consisting of five blocks of circuits with 200 cells each has a shortest run 

time when the size of the subcircuit is 200. 

To assess the pseudo-parallel MA, the structural circuits have known optimal 

cutsize. The test circuits struO 1, stru02 and stru03 have optimal cutsize equal to 1 

when doing bi-partition. The test circuit stru04 has a bus with 8 wires passing 

through every unit of the circuit. Obviously, the optimal cutsize for bi-partition 

should be 8. Applying pseudo-parallel MA to the first three test circuits, the optimal 

solutions for bi-partition were always found. Applying pseudo-parallel MA to the 

stru04, the optimal solution was not found, most of the case the cutsize were greater 
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than 8. This is due to some pairs of cells in the different units having bigger 

connection number through the bus which were selected to merge, and this draw 

more wires which do not belong to the bus, passing through the boundary. When 

changing the size constraints, the results of the cutsize varied. One point that can be 

sure is that the cutset of the partition always contains the bus. 
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Figure 6.13 Speed performance of the pseudo-parallel merge algorithm when ranO 1 

is partitioned 
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Figure 6.14 Speed performance of the pseudo-parallel merge algorithm when struO 1 

is partitioned 
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Figure 6.16 Speed performance of the pseudo-parallel merge algorithm when stru03 

is partitioned 
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Figure 6.17 Speed performance of the pseudo-parallel merge algorithm when stru04 

is partitioned 
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6.4. Summary 

This pseudo-parallel MA presented in this chapter proved to have better performance 

than the regular MA while maintaining the same quality of the result. The 

performance of the predicted parallel MA is even better than the pseudo-parallel 

version. Both pseudo-parallel and real parallel can quickly let users explore a wide 

range of possible partitions. 
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CHAPTER 7 

Summary and Conclusions 

7.1. Summary 

Integrated circuits continue to grow in size and complexity. Correspondingly, the 

design process associated with these circuits has grown lengthy and expensive. A 

rapid prototype of an ASIC design is strongly needed to reduce time-to-prototype 

and expenses of the overall design cycle [20],  [92]. Typically designs cannot be 

implemented by a single device, hence how designs are partitioned into a set of 

PLDs that form a digital emulator so that the design's functionality can be evaluated, 

is an important problem. Therefore partitioning is one of the most important 

subtasks in preparing a design database for emulation. 

In this thesis techniques for partitioning problems were reviewed. These are drawn 

from the branch of mathematics known as "graph algorithms". In many cases, 

however, the solution techniques belong to a class of computational problem for 

which no exact solution may be generated in polynomial time. This limitation is 

overcome by the introduction of heuristics to constrain the solution space. The use 

of heuristics may obtain a solution within a reasonable time by compromising the 

solution quality. 

A merge algorithm for circuit partitioning was introduced. It is based on the simple 

concept that cells with the maximum number of connections should be the first to be 

merged. The merging operations are processed in several stages, having a predefined 
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initial size constraint on groups of cells specified at the first stage, the size constraint 

on groups is enlarged at the subsequent stages. By specifying the number of groups 

required and the size of each group in the final partition, a desired partition or 

suggested partition will be obtained. 

The merge algorithm was implemented by means of the C programming language. 

A well-defined data structure was developed which is capable of dealing with the 

circuits having multi-terminal nets and can be extended easily to incorporate other 

information from the circuit itself or user's specification. The cell-net list was set up 

for coping with the multi-terminal net problem and was used to acquire the new 

number of connections between cells after merging. The graph was used to form a 

new configuration of the circuit after each merging operation was completed. 

The merge algorithm was fully exercised on test circuits by giving various initial 

size constraint and associated number of stages which produced different results. A 

balance factor was introduced to judge if a result is in a reasonable balance. A poor 

balance usually leads to a small cutsize. When the balance factor falls in a certain 

range, the cutsize varies little. A structured circuit with known optimal partition was 

created to test the ability of merge algorithm to find this optimal partition. The 

results proved that the merge algorithm has a much better performance than the 

Kernighan-Lin based approach. 

The merge algorithm presented in this thesis was extended to a pseudo-parallel 

version. A set of procedures were developed which are the divider, merge algorithm 

for parallel implementation, coordinator and constructor. The divider divides a 

circuit into several subcircuits which are sequentially processed by the parallel 

merge algorithm which produces size-reduced subcircuits. The coordinator modifies 

these smaller subcircuits which are recombined into a size-reduced full circuit. This 

cycle is repeated until a final partition is reached. Five test circuits were created to 
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exercise the pseudo-parallel merge algorithm. The results showed the pseudo-

parallel version had better speed performance than the basic version of the MA. 

7.2. Conclusions 

A merge algorithm has been investigated and it has been shown to be an effective 

method for partitioning large circuits into a set of smaller circuits. A particular 

feature of the algorithm is its suitability for implementation by a parallel processor 

array. This parallel processing feature has been investigated by a pseudo-parallel 

technique which has itself been shown to offer practical advantages. The C 

programming language has been used to develop the experimental software 

implementation of the algorithm. So its development for use in future research 

should be straightforward. Further work is required to facilitate the practical 

applications of the MA. Some proposals follow. 

7.3. Further work 

This section suggests a number of potential research areas which extend and 

augment the work presented in this thesis. 

7.3.1. Partitioning for improving place and route 

The functionality and routing resources are limited in FPGA, and placement and 

routing is the most time-consuming part of the FPGA design process, therefore 

producing a design with higher routability is preferable than producing a design 

which is difficult to route [43]. Thus, making a good preparation in the partitioning 

stage for facilitating to execute "Place and Route" is important [11-12], [72-83]. 

In the partitioning stage, the partitioner will split a large network into several blocks 

to fit into the individual FPGAs. The next stage is the assignment of the network 

cells to physical cells on the Logical Cell Array in the FPGA [44] and the 
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configuration of routing structures to interconnect them as in the network (i.e. 

placement and routing). 

A partitioner is typically only concerned with the gate and pin counts that an FPGA 

can accommodate, and leaves the most time-consuming tasks of performing the 

actual placement and routing to the vendor software for individual FPGAs [45-46]. 

This makes automatic placement start with a random placement which may be 

difficult to route, or in the worse case unroutable. A good initial placement would 

increase the routability. 

Usually, the MA using the partitioning in stages strategy partitions a design into a 

number of large groups that fit the target devices. In the intermediate stage, the 

partition will consist of many small groups. The available of logic cells in an FPGA 

can be used as a constraint on the intermediate merging stage. This intermediate 

partition will provide a useful initial input to the automatic placement routine. In 

addition, the MA tends to merge more nets into a group and leave fewer nets 

between groups which will alleviate the problem of limited routing resources. 

Properly using the above two properties can give a good initial placement. 

7.3.2. Improving timing performance 

Many techniques can be used to improve the timing performance of a circuit. 

According to the design level applied, they can be divided into three categories [52]. 

At the structural level, the internal structures of gates and their interconnections in a 

circuit are modified to improve circuit performance. For example, the technique of 

converting a ripple-carry adder into a carry-lookahead adder belongs to this category 

[53]. This method will change the connections between the gates, even change the 

design. At the physical level, techniques of transistor sizing, buffering, and 

powering are used to improve gate speed [54-60]. These techniques result in 
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increased circuit size and circuit power consumption. It's improved performance 

carries a price. At the topological level, performance-driven placement of gates and 

performance-driven routing of wires are aimed at minimising the delay of the 

longest paths [52], [71], while the connections between components are retained. 

Generally speaking, a longer path will result in a longer time delay and external 

connections will cause a longer delay than internal connections. If the longer paths 

have the higher priority to route and the cells on the timing sensitive paths have the 

precedence to place, the timing performance of the design can be improved by 

taking these considerations into account. A timing-driven partition algorithm with a 

capability to pre-allocate timing critical cells onto a group and supply the necessary 

information about the critical paths to the software for place and route to optimise 

the timing performance, possesses the ability to retain the connections among cells 

in the design [47-49]. 

The merge algorithm can be guided by timing constraints to partition circuits with 

timing-performance problem. Timing analysis software [50-5 1] is needed to 

produce a timing data base which sequentially lists the critical paths and the cells 

along these paths. According to the timing data base, the processes of merging cells 

on the critical path into a group are taking place in advance. After the merge 

operation on the timing data base is finished, the MA is applied to the new 

configuration of the circuit. This technique can prevent the critical timing path 

travelling through to external connections, which will result in a longer delay. 

7.3.3. Equal weight 

In the merge algorithm, when there are several pairs of cells having the same number 

of connections the choice is made to select the first pair of cells in the list to be 

merged. How the merge algorithm differentiates the pairs of cells having the same 
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weight and provide information that can guide the merge algorithm to make the best 

choice of cells to merge, should be investigated. 

7.3.4. The methods for selecting candidates to merge 

The simple concept that cells with the maximum number of connections should be 

merged first, is adopted in the merge algorithm. There should be some other metrics 

that can be used to make a good cells selection and improve the results generated 

from the algorithm using simple concept. This is worth investigation. 

7.4. The benefits of the Merge Algorithm 

Although the Kernighan-Lin based approaches are popular in practical use, there are 

still some disadvantages. The merge algorithm presented in this thesis possesses a 

number of advantages which are stated as follows: 

No initial partition required. 

An excellent potential to find the optimal partition. 

A well-defined data structure that can easily incorporate the required 

information to suit various circuit requirements. 

A multi-way partitioning algorithm. 

A parallelizable algorithm which can be executed on a multi-processor 

computer to reduce processing time as circuit size increases. 
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Appendix A 

The InCA CIF Netlist Format 

In this appendix the InCA CIF netlist format is introduced. In order to form a netlist 

of a circuit, two kinds of netlist format are used, which are an "explicit" and 

"implicit" netlist format. 

An explicit netlist format connects nets to ports of a cell by explicitly naming each 

port. EDIF 200 is an example of an explicit netlist format, e.g. 

(net netname (joined (portRef A (instanceRef U 100)) 

(portRef A (instanceRef U200)))) 

An implicit netlist has each net connected to a port of a cell by position in the cell 

port list. The InCA CIF which is an example of an implicit format, e.g. 

INV(cell type) U300(instance) inputNet outputNet(associated nets) 

Pin order 

To write out an implicit netlist, the 'order' of the ports for each cell must be known. 

This information is usually obtained from an ASIC vendor's library databook and 

encoded into an ASCII file. The format of this file could be as follows: 

line 1: vendor_Pin_Order 
line 2: 
line 3: AND2 A B, Z ; 
line 4: AND3 A B C , Z; 
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note 1: 	the header 'Vendor_Pin_Order' is required. 

note2: 	one entry per cell in the library, delimited by a semi-colon. 

note3: 	each cell name and each port name per cell must be unique. 

note4: 	cell type and ports are delimited by whitespace. 

note5: 	input ports are followed by outports, delimited by a comma. 

note6: 	bidirectional ports denoted as output ports. 

note7: 	if a cell has an empty input (or output) list, then that list is denoted by a 

whitespace; the comma and semi-colon are still required. 

The InCA CIF netlist format 

An example of the CIF netlist format is as follows: 

linel : netnumber 0 ; 
line2 : entry TOPLEVELCELL ; 
line3 : library lib/libraryNante ; 
line4 : end 
line5 
line6 : part TOPLEVELCELL p 
line7 : Vendor_Independant_Format 
lineB : inputs INPUT]. INPUT2 INPUT3 p 
line9 : outputs OUTPUT]. OUTPUT2 p 
linelO: DFF U100 INPUT1 INPUT2 -- OUTPUT1 p 
line].].: sheet BOTTOMLEVELCELL U200 INPUT3 OUTPUT2 ; 
linel2: primary INPUT]. INPUT2 ; 
line13: primary INPUT2 INPUT2 p 
line].4: primary INPUT3 INPUT3 p 
linel5: primary OUTPUT]. OUTPUT]. p 
linel6: primary OUTPtJT2 OUTPUT2 p 
linel7: end 
linelB: 
linel9: part BOTTOMLEVELCELL ; 
line20: Vendor_Independant_Format 
line2l: inputs INPUT]. ; 
line22: outputs OUTPUT]. ; 
line23: INV U100 INPUT]. OUTPUT1 p 
line24: primary INPUT]. INPUT]. p 
11ne25: primary OUTPUT]. OUTPUT1 ; 
line26: end 
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The example given is a top level cell (TOPLEVELCELL) which contains two 

instances: U100 (library cell DFF) and U200 (hierarchical cell 

BOTTOMLEVELCELL), and the definition of the hierarchical cell. The following 

notes are valid for Concept Silicon v.1.1: 

	

note 1: 	the keyword 'netnumber' is always set to 0 (zero). 

	

note2: 	the keyword 'entry' denotes the name of the top level instance. 

	

note3: 	the keyword 'library' denotes the name of the 'VPO' file used to generate 

this CIF (the 'lib' sub-directory must always be included). 

	

note4: 	definitions of hierarchical cells are denoted by the keyword 'part' and 

instances of hierarchical cells are denoted by the keyword 

	

note5: 	the header 'Vendor_Independant_Format' is required per cell. 

	

- note6: 	the keyword 'primary' is a repeated list of each input and output, one per 

line. 

note7: the keyword 'end' (and the header 'Vendor_Independant_Format') are not 

delimited by a punctuation mark. 

	

note8: 	the keyword '--' is used to denote a no-connection, eg. in the example, if 

the DFF entry in the VPO file was: DFF D CLK , Q QB ; then the Q 

output port is not connected to a net. 
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Random Circuit Generator 

To obtain random circuits, routines are required capable of generating random 

number sequences. There are many methods available to generate random numbers. 

The best-known method which has been used extensively since it was introduced by 

Lehmer in 1951, is the so-called linear congruential method [14]. 

Different seeds will generate different random sequences. The range can be used to 

define the number of basic gates or the the number of possible nets in the circuit. A 

block diagram of this random number generator is shown in Figure B.1. 

seeds 	
Routines I  

random sequences 

for 
ranges 

Generating Random Numbers 

Figure B.1 The block diagram of Random Number Generator 

Digital logic gates are used as basic cells in the random circuit to make it more 

realistic. The logic components which were used are as follows; 
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NOT 

AND2 ---- with two inputs 

NAND3 	with three inputs 

0R2 ---- with two inputs 

NOR3 ---- with three inputs 

BDFF ---- D-type flip-flop 

BDFFSC ---- D-type flip-flop with "set" and "reset" 

If more logic components are needed, their associated pin lay-outs are entered into 

the library which accommodates the logic components. Obviously the parameter for 

the number of basic gates has to be changed to the correct one. 

Assumptions used to simplify the random circuit generation are as follows; 

Every pin on a basic cell must be connected to other cells, i.e. no empty pin 

left, except the pins of the components used as system inputs or outputs. 

No output pins connected together. 

The maximum number of fan-out is 10. This means the maximum number of 

basic cells on a net is 11. This number 10 is derived from the fact that the fan-

out of a CMOS gate is typically 10. 

The parameters which have to be input to the random circuit generator are seedi, 

seed2, the number of cells required in a circuit, the number of system inputs and the 

number of system outputs. The seed 1 is used to generate the random part-type 

sequence. The seed2 is used to generate the random nets sequence. Figure B.2 

shows the block diagram of a random circuit generator. 
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seed 1 

seed2 	I 	 Software 	
random circuit 

number of cells 	 for 
	 in InCA "cif" file format 

system inpit 
Generating Random Circuit 

system output 

Figure B.2 The block diagram of Random Circuit Generator 

The output is a text form describing the circuit in InCA "cif" file format. An example 

of random circuit which has been generated with seed 1 = 1, seed2= 2, number of 

cell= 10, system input= 5, system out= 5 is shown in the next page. 
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netnumber 0 

entry DESIGNS 

library 

lib/solo ; 

end 

part DESIGNSXO 

Vendor_Independent_Format 

inputs NO Ni N2 N3 Nd 

outputs Nil N12 N13 Nid N15 

NND3 cell_C N7 NB N9 N5 

NAND3 cell_i NiO N3 Nd N6 

NOR3 ceil_2 Nil N12 N13 N7 

?ND2 ceil_3 N14 N15 NB ; 

BDFFSCT cell_d N5 N2 N8 NO N9 NiO ; 

NOR3 cell_5 Ni Nd N2 Nil 

NOT ceil_6 N3 N12 ; 

NOT cell_7 Nd N13 

NAND3 cell_8 Ni N13 N5 N14 ; 

0R2 cell_9 N6 NO N15 p 

primary NO NO 

primary- Ni Ni 

primary N2 N2 

primary N3 N3 

primary Nd Nd 

primary Nil Nil 

primary N12 N12 

primary N13 N13 

primary Nid N14 

primary N15 N15 p 

end 

part DESIGNS 

Vendor_Independent_Format 

inputs NO Ni N2 N3 Nd 

outputs Nil N12 N13 Nid N15 p 

sheet DESIGNSXO cell_jO NO Ni N2 N3 Nd Nil N12 N13 N14 N15 p 

primary NO NO p 

primary Ni Ni 

primary N2 N2 

primary N3 N3 p 

primary Nd Nd 

primary Nil Nil p 

primary N12 N12 

primary N13 N13 

primary Nid Nid 

primary N15 N15 

and 
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The following is the C programming code for the random circuit generator which 

consists of a header file and a main program which contains four other functions: 

namely "ranxO" which generates random numbers, "ioO"  which returns the number 

of input and output pins on a component, "no_output_pinsO" which returns the total 

number of output pins, and "cifoutO" which creates the netlist in InCA CIF netlist 

format. The header file and program code are as follows: 

1* 

The Header File 

*1 

4tdefine NUM_BASIC_PART 7 

4tdefine FOR_NO_CELL 50000 

4#define FOR_TOTAL_PIN 50000 

1#dafine MAX_PIN_CELL 6 	/* BDFFSCT has 6 pins / 

#define FOR_SYSIN 500 

#define FOR_SYSOUT 500 

#define FOR_INTERNAL_OUT 2000 

#define TOTAL_NET 50000 

#define MAX_BIND_NUN 11 

1* 

The Main Program 

*1 

#include cstdio . h> 

#include "cnst.h" 

jut nocell, Si, GO ; 1* Si: flO. of system input 

so: no. of system output / 

float p 

main() 

jut part_type (FOR_NO_CELL] 

jut ran_net (FOR_TOTAL_PIN] 

mt bind(TOTAL_NET] 

mt M(FOR_NO_CELL] (MAX_PIN_CELL] 

jut single[FOR_NO_CELL] ; 

mt num_siugle = 0 ; 

mt flag 

jut tol_nets 

jut son, sof ; 1 son: system out only, sof: System out with feed */ 

jut ip, op, i, 3, k, in, temp 

jut cntr = 0 ; 

jut net_no 
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mt part = 0 

mt out_net 

mt sel = 0, b = 0 ; 

mt tol_input 

readin() ; 

raxix( part_type, NUN_BASIC_PART, nocell 

dsp_array( part_type, nocell 

tol_nets si + no_output..pins( part_type, nocell 

printf(°tol_netsd\n, tol_nets ) ; 

stop U; 
if( tol_nets > TOTAL_NET 

printf("TOTAL_NET is too small\n") ; 

printf("-I- Generating random circuit arrayn') 

out_net = si ; 1* initialise the first output net / 

son = so * p 

sof =so -son; 

tol_inputs = (tol_nats - son)/2 

ranx( ran_net, tol_nets - son, FOR_TOTAL_PIN 

for( i = 0 ; i < tol_nets ; i++ 

bind[i] = 0 ; 

for( i = 0 ; i < nocell ; i++ )( 

printf("row %d\n", i ) ; 

io( part_type[i], aip, &op ); 

for( 3 = 0 ; 3 < MAX_PIN_CELL ; J++ )( 

if( 3 < ip )( 
if( sel 9  2 I= 0 )( 1* eel is odd */ 

for(;; ) { 

if( bind[b] c MAX_BIND_NUN )( 

M(i] (3] = b ; 

Sel++ 

b++ 

bind(b]++ 

break 

} 1* if( bind[b] < MAX_BIND_NUN ) *1 

b++ ; 

if( b == tol_inputs 

b= 0; 

) 1* for(;;) *1 

} 1* if( eel 9  2 I= 0 ) *1 

else { 

net_no = ran_net( cntr++ 

if( net_no < tol_inputs )( 

if ( bind (net_no] < MAX_BIND_NUN ) ( 

MCi] [3] = net_no 
bind[net_no]++ 

break 

elee{ 
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if ( bind (b] < MAX_BIND_NUN 

break 

b++ 

if( b == tol_inpute 

b = 0; 

M(i][j] = b ; 

bind[b]++ ; 

b++ ; 

if( b == tol_inputs 

b = 0 

break 

} 1* if( nat_no < tol_inputs ) *1 

f or (; ; ) { 

if( bind(b] < MAX_BIND_NUN 

break 

b++ ; 

if( b == tol_inputs 

b= 0; 

- 	 } 

M(i][j] = b ; 

bind[b]++ ; 

b++ ; 

if( b == tol_inputs 

b0 ; 

break 

) 1* for(;;) I 

} / if( j < ip ) *1 

alse if( j >= ip && j < ip+op )( 

nat_no = out_net++ 

M[i][j] = net_no 

bind(net_noj++ ; 

/ TO prevent looping */ 

for( k = 0 ; k < ip ; k++ ){ 

if( M(i](k] == M(i](1] )( 

bind(M(i]Cfl]-- ; 

for(;fl( 

net_no = ran_net[ cntr++ 

if( net_no 1= M(i)(j] )( 

MCi] (k) = net_no 

bind[net_no]++ ; 

break 

} 1* for(n) / 

) 1* if( M(i] 1k] == M[i] Ci] ) / 

} / for( k = 0 ; k < ip ; k++ ) *1 

} 1* if( j >= ip && :j < ip+op ) *1 

else( 

M(i] (j] = l ; 

} 1* 2nd for */ 
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} /* 1st for */ 

for( i = si+son ; i < tol_nets ; i++ 

if( bindEi] == 1 

single[num_single++1 

k= 0; 

for( i = 0 ; i < nocell ; i++ ){ 

io( part_type(i], Edp, &op ) ; 

for( j = 0 ; i <ip; j++)( 

if( bind(M(i](J31 > 2 )( 

bind(MCil (j]J-- ; 

M[i](j3 = single[k++j ; 

bind(M(iJ[j]]++ ; 

if( k == num_single ){ 

flag = 1 

break 

) 

if( flag == 1 

break 

} 

1* 

To prevent pins on the same component have the seine net 
*************************************************************************** *1 

for( i = 0 ; i < nocell ; i++ )( 

for( j = 0 ; j < MAX_PIN_CELL ; j++ )( 

temp = M(i][] 

for( k = 0 ; k < MAX_PIN_CELL ; k++ )( 

if( M[i][k] 

break 

if( k == J 
continue 

if( temp == M[i](kJ )( 

net_no = ran_net [cntr++] 

if( bindEnet_no] < MAX_BIND_NUN )( 

for( m = 0 ; m < MAX_PIN_CELL ; m++ )( 

if( M[i] [m] == net_no 

break 

} 

if( in == MAX_PIN_CELL )( 

bindiMlilik]] --  I 

m[i] [k] = net_no 
bind(net_nol++ ; 

break 

) 

} 

} /* for(;;) / 

} 1* if( temp == M(i] [k] ) *1 

) 1* k *1 

} /* J */ 
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} 1* i *1 

cifout( M, part_type, bind, si, tol_nete, nocell, so, son 

a 

readin() 

f 
printf("How many cells in a circuit:") 

scanf ( "9d" , &nocell) ; 

printf("system input:") 

scanf("%d", &si ) ; 

printf("syst 	output:").; 

scanf("d", &so) ; 

printf("percentage of output_only( 0.0 -> 1.0 ):") 

scanf("%f", &p ) ; 

a 

1* 

This is the function to generate random numbers 

*1 

#include <stdio .h> 

#define iei 100000000 

#define Ml 10000 

4#define B 31415821 

4tdefine MAXTERM 1000 

#define MAXRZtN_NUN 5000 

static mt a 

extern mt znaxtertn 

mt N(MAXRAN_NUM] ; 

mt n ; 

void ranx( N , r, nocell 

mt r, nocell 

mt M(] ; 

( 

mt i, i ; 

mt N[MP.XR7N_NUN] ; 

printf("input seed a:") 

scanf("d", &a ) 

for ( i = 0 ; i < nocell 1 

M[L] = randcm( r ) ; 

a 

mt random( r ) 
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mt r ; 

( 
a = C mult( a, B ) + 1 ) % MM ; 

return (C a/Mi ) * r ) / Ml 

} 	 / To obtain different range of random */ 

1* numbers, change "10" which means the */ 

mt inuit ( p, q 

mt p, g 

mt p1, p0, qi, gO ; 

p1 = p/Mi 

p0 = p%M1 ; 

qi = q/M1 ; 

gO = q%Mi 

return ((( pO*qi+pi*qO) 6 Mi )* Ml + pO*qO ) % 

1* 

This function is used to return the number of input and output pins 

io( type, nm, nout ) 

mt type 

mt *nifl, *nout ; 

{ 

switch( type )( 

case 0 : *nin = 1 

*nout = 1 ; break 

/ 	NOT 	/ 

case 1 	*nin = 2 

*nout = 1 ; break 

/* ND2 *1 

case 2 : *nin = 3 1 

*nout = 1 ; break 

/ 	NAND 	/ 

case 3 : *nin = 2 

*nout = 1 ; break 

/* 0R2 *1 

case 4 	*nmn = 3 

*nOut = 1 ; break 

1* NOR3 */ 

case 5 : *nin = 2 

*nOut = 2 ; break 

I 	DDFF 	I 

case 6 	*njn = 4 
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*nout = 2 ; break 

1* DDFFSCT / 

} 

} 

1* 

This function is used to calculate the total nunber of output pins 

*1 

no_output_pins( part_type, size 

mt part_type (1 

mt size 

{ 

mt nm, nout ; 

mt tol, i ; 

tol = 0 ; 

for( i = 0 ; i < size ; i++ )( 

io( part_type(i), &nin, &nout ) 

tol = tol + flout 

return( tol ) ; 

1* 

This function is used to create the netlist in InCA "CIF' format 

*1 

#include <stdio .h> 

#include cnst.h" 

#define MAX_LENGTH 30 

char buf [MAX_LENGTH] 

cifout( M, part_type, bind, si, tol_nets, nocell, so, son 

jut M[] (MAX_PIN_CELL] 

jut part_type ( J ; 

mt biud(] ; 

jut si, so, son, nocell, tol_nets 

FILE *fp 

jut i, j ; 

fp = fopen("designs,w") ; 

fprintf( fp,"netnumber 0 ;\n" ) 

fprintf( fp,"entry DESIGNS ;\n" 

fprintf( fp,"library\n' ) ; 
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printf( fp,"lib/solo ;\n 

fprintf( fp,"end\n' ) 

fprintf( fp,"part DESIGNSXO ;\n ) ; 

fprintf( fp,"Vendor_Independant_Format\n" 

fprintf( fp,'inputs 	) ; 

for( i = 0 ; i c si ; i++ )( 

fprintf( fp,'NEThd  

fprintf( fp,;\n' 

fprintf( fp,"outputs 	) ; 

for( i = tol_nets-so ; i < tol_nets 

fprintf( Ep, NET96d ", i 

for( i = si ; i < tol_nets ; i++ ){ 

if( i >= si+son && i < si+so 

continue 

if( bind(i] == 1) 

fprintf( fp,"NET964 ", i ) ; 

} 

fprintf( fp,";\n" 

for( i = 0 ; i < nocell ; j++ )( 

part_namef( part_typa[i], buf ) ; 

fprintf( fp," 	 %e ce11_9 d ", buf, i 

for( J = 0 ; j < MAX_PIN_CELL ; j++ )( 

if( M(iJ(]  

break 

fprintf( fp,'NETd  

} 

fprintf( fp,";\n" ) ; 

} 

for( i = 0 ; i < si ; i++ )( 

fprintf( fp,"priinary NET%d NET9Gd ;\n",  

} 

for( i = tol_nets-so ; i < tol_neta ; i++ 

fprintf( fp,'primary NET9Gd NET'd ;\n',  

for( i = ci ; i < tol_nets ; i++ )( 

if( i >= si+son && i < si+so 

continue 

if( bind[i] == 1) 

fprintf( fp,°primary NET%d NET%4 ;\n, i, i 

fprintf( fp,"end\n" ) ; 

fprintf( fp,"part DESIGNS ;\n" ) 

fprintf( fp,"Vendor_Indepen6ant_FOrUlat\fl° ) ; 

fprintf( fp,"inputs 	) 

for( i = 0 ; i < ci ; i++ )( 

fprintf( fp,"NEPd ", i ) ; 

fprintf( fp,';\n" ) ; 
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fprintf( fp,outpUts ' ) ; 

for( i = tol_nets-BO ; i < tol_nets ; 

fprintf( fp, 'NETd 

fprintf( fp,";\n" ) 

fprintf( fp,"sheet DESIGNSXO cell_%d ", nocell ) 

for( i = 0 ; i < Si ; i++ ){ 

fprint( fp,'NETd  

for( i = tol_nets-so ; i < tol_nets ; j++ )( 

fprint( fp,°NET%d , i ) ; 

fprint( fp,";\n" ) ; 

for( i = 0 ; i < si ; i++ )( 

fprintf( p,"priinary NET%6 NZTd ;\n, i, i ) 

for( i = tol_nats-so ; I < tol_nets ; 

fprintf( fp,lprimary NET%ã NET%d ;\n",  

fprintf( fp,"end\n ) ; 

c1ose( fp 

} 

part_name( type, buf 

char buf(] 

mt type 

{ 

switch( type ){ 

case 0 	strcpy( buf,"NO'l"') ; break 

case 1 strcpy( buf,"AND2") ; break 

case 2 : strcpy( buf,"NAND3") ; break 

case 3 strcpy( buf,'0R2") ; break 

case 4 : strcpy( buf,"NOR3") ; break 

case 5 strcpy( buf,"BDFF") ; break ; 

case 6 : strcpy( buf,"BDFFSCT) ; break 

} 

} 

157 



Appendix C 

Appendix C 

Data Preparation 

C.1 A simple one-level netlist 

There are many ways to describe a circuit, a schematic circuit diagram is a graphical 

method for depicting the connections among cells, but it is difficult for a computer to 

read it. A text file which describes the connections among cells in a circuit is needed 

to let the computer scan through and acquire the necessary information associated 

with this circuit according to which the remaining analysis can be proceeded to 

achieve a successful design. Usually a text file representing a circuit is called a 

netlist file. The netlist format used is InCA CIF netlist format which is described in 

Appendix A. 

A simple example circuit is a two to four line decoder the schematic of which is 

shown in Figure C. 1. The inputs are two address lines, mO and in!, and an active 

low enable. The decoded outputs, again active low, are the lines outO to out3. The 

InCA CIF netlist of this decoder is shown in Listing C.1 and gives all the 

information. The schematic shows, such as, what are the inputs and outputs, what 

components are used and how they are connected. It is presented to illustrate the 

InCA CIF netlist format which is used as the netlist format of the test circuits in the 

"Merge Algorithm". 
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n IkTA 	 K!cr 
cell_4 	 ceII_O 

ceII_6 

Figure C. 1 Two to four line decoder schematic. 

netnumber 0 p 
entry DEC2TO4 

library 

lib/solo p 

end 
part DEC2TO4 p 

Vendor_Independant_ForlDat 

inputs 	IN1 INO EN p 

outputs OTJT3 013T2 OUT1 OUTO p 

NAND3 CELL_0 NET_0 NET_2 NET_i OUTO 

NAND3 CELL_i INO NET_2 NETi. OUT1 p 

NAND3 CELL_2 NET_0 NET_2 INi. OUT2 p 

NAND3 CELL_3 INO NET_2 INi OTJT3 ; 

NOT CELL_4 XNO NET_0 p 

NOT CELL_5 INi NET_i p 

NOT CELL_6 EN NET_2 p 

primary IN1 INi p 

primary INO INO p 

primary EN EN p 

primary OUT3 OUT3 p 

primary OUT2 OUT2 p 

primary OUTi OUT]. ; 

primary OUTO OUTO p 

end 

Listing C. 1 The netlist of two to four decoder in InCA CIF format. 
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C.2 Hierarchical structural netlist 

It would be difficult to create a large complex design as a one-level network full of 

basic cells. A hierarchical structure design is usually used to describe a large 

system. At the top level of the hierarchy, the whole design can be viewed as a single 

functional block. The next lower level would decompose the single block into 

several functional blocks each of which can be further decomposed into more 

functional blocks. The functional blocks in the lower level would specify more 

detailed operation than the higher level. At the very lowest level of hierarchy, the 

functional blocks are decomposed into basic cells. As a system is built up as a 

hierarchy in this way, it is easy to inspect its operation at any level required, from the 

top-level overall function down to the working of basic cells. 

A simple and trivial design hierarchy is illustrated in Figure C.2. This design 

(named DSGN_SAMPLE) consists of two identical parts (called SPEC_UNIT) 

which are made up of basic gates such as NAND and INVERTER, and shown in 

Figure C.3. In this hierarchical design, there are three levels, at the top level the 

whole design is a single functional block with four inputs and two outputs the 

schematic diagram of which is shown in Figure C.4. At the level below that, this 

single block is split into two functional blocks and the schematic diagram for this 

level is shown in Figure C.5. At the lowest level, the functional blocks of 

SPEC_UNIT are further decomposed into basic logic gates. 
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DSGN_SAMPLE 
	 Sample of Design 

ZZ 
SPEC_UNIT! 

NAND NAND INV ENV 

SPEC_UNIT2 

NAND NAND INV INV 

Array of Unit 

Basic Gates 

Figure C.2 The hierarchy for a design 

Figure C.3 The part of SPEC_UNiT 

cell7 

H! 

H2 

H3 

H4 

DSGN_SAMPLE 

Figure C.4 The design sample 

161 

H5 

H6 



Appendix C 

cell5 

M5 

M6 

Ml 

M2 

M3 

M4 

SPEC_UNIT 

Figure C.5 The schematic diagram for the array of SPEC_UNiTs 

C.3 Flattening a system 

To implement a design, the hierarchy has to be flattened into a series of basic cells. 

When flattening a system, it is needed to start from the top most level (i.e. system 

.level) and the following procedures are repeated. 

Substitute the input and output signal names of the next lower level units with 

the corresponding unit signal names in the current level, and make sure every 

different net of units with the same type has a unique net name in the next 

lower level. 

Repeat step(1), until lowest level is reached. 

The hierarchical CIF netlist of Figure C.2 is shown in the Listing C.2. This netlist is 

flattened to a series of basic logic gates according to the above flattening procedures. 

The Listing C.3 and C.4 show the intermediate stage and final flattened netlist whose 

schematic diagram consisting of basic gates is shown in Figure C.6. 
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part SPECJJNITI. 

inputs Li L2 L3 ; 

outputs L4 L5 ; 

HAND CELL1 Li L2 L6 ; 

INV CELL2 L6 L4 ; 

INV CELL3 L3 L7 ; 

HAND CELL4 L6 L7 L5 ; 

end 

part SPEC_UNIT2 

inputs Li L2 L3 ; 

outputs L4 L5 ; 

HAND CELL1 Li L2 L6 ; 

XNV CELL2 L6 L4 ; 

INV CELL3 L3 L7 ; 

HAND CELL4 L6 L7 L5 ; 

end 

part UNXT_AP.RAY 

inputs Mi M2 M3 M4 ; 

outputs M5 M6 ; 

SPEC_UNIT1 CELL5 Mi M2 M3 M7 M8 ; 

SPEC_UNIT2 CELL6 147 M8 ff4 M5 M6 ; 

end 

part DSGN_SANPLE 

inputs Hi ff2 H3 H4 ; 

outputs H5 H6 ; 

DSGN_SANPLE CELL7 Hi H2 ff3 H4 H5 H6 ; 

end 

Listing C.2 The hierarchical netlist of DSGN_SAMPLE 

part SPEC_UNIT1 

inputs Li L2 L3 ; 

outputs L4 L5 ; 

HAND CELL1 Li L2 L6 ; 

INV CELL2 L6 L4 ; 

INV CELL3 L3 L7 ; 

HAND CELL4 L6 L7 L5 ; 

end 

part SPEC_UNIT2 

inputs Li. L2 L3 ; 

outputs L4 L5 ; 

HAND CELL1 Li L2 L6 ; 

INV CELL2 L6 L4 ; 

INV CELL3 1.3 L7 ; 

HAND CELL4 L6 1.7 L5 ; 

end 

part uNIT_ARRAY 

inputs Hi ff2 ff3 ff4 ; 

outputs ff5 H6 ; 

SPEC_UNIT CELL5 Hi H2 ff3 M7X1 M8X1 ; 

SPEC_UNIT CELL6 M7X1 M8X1 ff4 ff5 H6 ; 

end 

Listing C.3 The intennediate stage flattening from the top to the next lower level 
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part DSGN_SANPLE 

inputs Hi ff2 H3 H4 ; 

outputs H5 ff6 ; 
HAND CELL1 Hi. H2 L6X1 ; 

INV CELL2 L6X1 M7X1 ; 
INV CELL3 ff3 L7X1 ; 
HAND CELL4 L6X1 L7X1 M8X1 ; 

HAND CELL5 M7X1 MBX1 L6X2 ; 

INV CELL6 L6X2 ff5 ; 
XNV CELL7 H4 L7X2 ; 
HAND CELL$ L6X2 L7X2 H6 ; 

Listing C.4 The final flattened netlist of DSGN_SAMPLE 

cell! 	 112 

cell3 	L7X1 L----_JM8X1 

H3 
	 cell8 

Appenchx C 

H6 
cell7 

H4 
L7X2 

Figure C.6 The flattened design consisting of basic gates 

C.4 A parser for CIF format netlist 

There are two procedures to deal with a netlist file which describes a real circuit. 

They are "processing the characters" and "building the results into a required data 

structure". The former is commonly called syntax analysis and the latter semantic 

analysis. A parser is the tool that processes characters in an input stream and emits 

function calls to a module that implements the semantic analysis and translates it to 

a form or a data structure suitable for further processing. The data structures needed 
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to be built will be discussed in the next section. 

C.5 The data structure for implementing the merge algorithm 

A cell list is required which is generated from the original circuit "CIF" file. This 

list describes how the components in the circuit are interconnected. The cell list 

consists of a head of cell list which points to where the circuit is, the cell nodes 

which represent the cells themselves and point to a list that shows what nets are 

incident to the cells, and the net nodes which contain information related to the nets 

and the cells. The exact structure and declaration in C language notation are shown 

below. Cells and nets are numbered sequentially and individually. 

struct net 

C 

mt name ; 	 1* net name 	 *1 

struct net *next ; 1* a pointer points to the next net 	I 

}; 

typedef struct net net_node ; 

struct cell 

C 
mt name ; 	 1* cell name 	 *1 

netnode *link ; 	1* a pointer points to a list of nets 

which is incident to this cell */ 

struct cell *next ; 1* a pointer to link the next cell 	*/ 

typedef struct cell cell_node ; 

struct cell_list 1* the head of the cell_list *1 

C 

mt number ; 1* the number of cells in the circuit *1 

cell_node * first ; 1* points to the first cell of the 
list of cells */ 

cell_node *last ; 1* points to the last cell of the 
list of cells */ 

typedef struct cell_list head_cell_list ; 

A net list is acquired from cell list. Basically it contains the same information as the 
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cell list, the only difference is the nets are arranged in the vertical and the cells 

which are connected to the net are arranged in the horizontal list corresponding to it. 

Its main purpose is to facilitate generating another list called cell-net list. 

A cell-net list is created from both cell list and net list. The data structure and the 

declaration are shown below. 

struct band-net 

{ 

mt name ; 	 1* the band-net name 	 *1 

mt inside ; 	 1* the number of the cells inside */ 

jut outside ; 	 1* the number of the cells outside */ 

struct band_net *next ; 1* points to the next band-net 	*1 

typedef struct band-net band_net ; 

struct band-cell 

{ 

mt 	name ; 
1* the band-cell name *1 

band_net 	*link ; 1* points to the list of band-net */ 

band_net 	*inlink ; 
1* points to a list of band-nets 

which are completely inside 

this band-cell, it initially 
points to null */ 

struct band-cell 	*next ; 	
1* points to the next band-cell */ 

typedef struct band-cell band_cell ; 

struct band_list 

{ 

mt 	number ; /* the number of the band_cell in 
the list */ 

baud_cell 	*first ; 1* points to the first band-cell 	*/ 

band_cell 	*last ; 1* points to the last band-cell 	*/ 

}; 

typedef struct band_list head_band_list ; 

A graph structure is needed to describe the number of connections between cells. 

This graph is generated from the cell-net list by counting the number of the same 

nets related to any pair of cells. After establishing this graph, a merge sequence list 

which arranges the nodes with the greatest number of connections at the front of list 
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is set up by scanning through the whole graph. The data structure of the graph and 

merge sequence list and their declarations are shown below. 

struct edge 

{ 
mt vname ; I the current cell name *1 

mt ename ; 1* the cell name relating to the 
current cell */ 

mt cntn ; / the number of connections between 

cell "vnaine" and cell "ename *1 

struct edge *sljnk ; 1* pointer to link the merging 
sequence *1 

struct edge *next ; 	1* points to the next cell relating 
to the current cell */ 

typedef atruct edge edge_node ; 

atruct grp_node 

C 
mt name ; 	 1* the cell name 	 *1 

atruct grp_node *next ; 1* points to the next cell */ 

typedef struct grp_node group_node ; 

struct vertex 

C 
mt name ; 	 1* the current cell name 	 *1 

edge_node *link ; 	1* points to a list of cells which 
relate to the current cell */ 

group_node *g].ink ; 1* points to a list of cells which 

are implicit cells of the current 
cell */ 

mt noc ; 	 1* the number of implicit cells in 
the current cell */ 

struct vertex *next ; 1* points to the next vertex 	 *1 

typedef struct vertex ver_node ; 

struct graph 

C 
mt number ; 	 1* the number of vertices in the 

graph */ 

ver_node *firgt ; 	1* points to the first vertex 	*1 

ver_node *last ; 	1* points to the last vertex 	 *1 

typedef struct graph head_graph ; 

struct big_node 
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{ 

mt noc ; 	 1* the number of connections 	*1 

edge_node *gjin]t ; 	1* points to a list of edge with 
the same •'noc 	/ 

struct big_node *next ; 1* points to the next big_node 	*/ 

typedef struct big_node bignode ; 

struct big 

{ 

mt number ; 	 1* the number of big_node 	 *1 

bignode *first ; 	1* points to the first big_node 

bignode *lagt ; 	 1* points to the last big_node 	*1 

typedef struct big head_big ; 

C.6 Creating cell and net list 

The circuit can be represented in two ways, one of which is through a list of cells for 

each net (i.e. net list), another of which is through a list of nets for each cell (i.e. cell 

list). The following input routine will deal with circuits described in "CIF" format to 

generate cell list and net list. The input of this routine is the circuit and the outputs 

are the cell list and net list. 

1* the routine for creating cell and net list */ 

clist_head() ; / create the head of cell list */ 

nlist_head() ; 1* create the head of net list *1 

FOR each cell DO 
jnsert_vertex(clist, cell) ; 
FOR each net incident to the current cell DO 

insert_edge (clist, cell, net) ; 
IF the current net is a new net 

THEN insert_vertex(nlist, cell) ; 
insert_edge (nlist,net, cell) ; 

ELSE 

insert_edge (nlist,net, cell) ; 
END FOR 

END FOR 

A sample of functions written in C language for creating the head of a list, insert a 

vertex and insert an edge is shown below. 
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1* 
* Creating a head of a list 
*1 

cellist *crthead() 

C 
cellist *fl; 

if((new = (cellist *) malloc(sizeof(cellist)) != NULL) 

C 
new -> number = 0 ; 
new -> first = new -> last = NULL 

} 

return ( new ) ; 

} 

1* 

* Insert a vertex to a list 
*1 

mt insert_vertex ( list, name 

cellist *list ; 
mt name ; 1* the name of a cell or a net *1 

C 
cellnode *new ; 

if ((new = (celinode *) malloc(sizeof(cellnode))) == NULL) 

return ( NOMEM ) ; 
else 

C 
new -> name = name ; 
new -> link = NULL ; 
new -> next = NULL ; 
list -> number++ ; 
if ( list -> number == 1) 

list -> first = list -> last = new ; 

else 

C 
list -> last -> next = new ; 
list -> last = new ; 

} 

return ( NOERR ); 
1 
-1 

) 

1* 

* Insert an edge to a list 
*1 

mt insert_edge( list, vertex, edge 

cellist *list; 
mt vertex 1 
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mt edge 3 

( 

cellnode *rver ; 
netnode *new ; 

r_ver = cell_exist C list, vertex ) ; 
if ( r_ver == NULL 

return (CELL_NEXIST) ; 
if((new = (netnode *) malloc(sizeof(netnode))) == NULL) 

return(NOMEM); 

new -> name = edge ; 
new -> next = NULL ; 
if ( r_ver -> link == NULL 

r_ver -> link = new ; 

else 

C 
new -> next = r_ver -> link ; 
r_ver -> link = new; 

) 

return ( NOERR ) ; 

} 

C.7 The routine for creating cell-net list 

The cell and net list representing the circuit are used to produce the cell-net list. The 

information contained in this list is the number of cells inside the current cell and the 

number of cells outside the current cell with respect to the net the cells are on. 

Initially, the cell can be viewed as if it is inside itself, so the number of cells inside 

the current cell for a certain net is one, the number of cells outside the current cell 

for the same net is one less than the total number of cells on this net. The following 

is the routine for generating cell-net list. 

/* routine for generating cell-net list */ 

crt_head() ; 1* create the head of cell-net list */ 

FOR each cell in cell list DO 

insert_bcell() ; 
FOR each net incident to the cell DO 

noc = num_of_cell(n].ist, net) ; 
insert_band(head, cell, net, 1, noc) ; 

END FOR 

END FOR 
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C.8 The routine for creating graph and merge sequence 

The cell-net list above is used to generate the graph of the circuit which contains 

information about the number of connection between any pair of cells in the circuit. 

Cells are sequentially numbered and listed as vertices, each cell in the vertices list 

points to another list of cells whose cell number are greater than the cell number of 

each cell in the vertices list and related to it. A routine scans through the whole 

graph to set up the merge sequence by arranging the edge nodes according to the 

number of connection between cells in descending order. The procedures for 

generating graph and merge sequence are as follows: 

1* routine for generating graph */ 

crt_graph () ; 
FOR each band-cell "ci" in the band-cell list DO 

insert_vertex() ; 
FOR each band-cell "c2" behind the band-cell "ci" 

in the outer loop in the band-cell list DO 
nurn = nofnet_betwbc(cl,c2) ; 
IF nuin # 0 THEN 

insert_edge() ; 
END FOR 

END FOR 

1* routine for generating merge sequence *1 

crt_seguence() ; 
FOR each edge node in the graph DO 

IF the number of connection is new THEN 
insert a node for the new connection number 
in descending order ; 
insert the edge node to the list pointed 
by the new node ; 

ELSE 
find the old node ; 
insert the edge node to the list pointed 
by the old node ; 

END FOR 
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Appendix D 

The C Programming Code for the Merge Algorithm 

This appendix contains the C programming code for the merge-in-stages algorithm. 

There are three header files named "graph.h", "band.h" and "list.h" which contain the 

data structure declarations for graph, cell-net list and cell list and net list (cell and 

net list using the same data structure), respectively. These declarations can be found 

in Appendix C. 

The following procedure is a function named merge_in_stages which executes the 

merge algorithm in four phases. It carries out the free merge operation in "L" stages 

under the stage size constraint in the first phase, selects the leading groups in phase 

2, merges cells with leading groups in the phase 3 and finally merges the remaining 

cells. This function includes three functions which are "check_gr_numO", 

"merge_bcO" and "mergeO". 

#include <stdio .h> 

ifinclude "graph.h" 

#include "band.h" 

#include "list.h" 

*define MAX_NO_SEED 10 

void merge_in_stages( graf, bighead, bust 

graph *graf I 

big *bjghead ; 

bandlist *bljst ; 

{ 

jut j, j,  k, cut = 0 

mt sO, si, 1, L 
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vernode 

edgenode *etemp, *ept ; 

bignode *pt ; 

jut seed_i, flag, flagi, fiag2 

mt seeds(MAX_NO_SEEDJ 

mt si_con[iO] ; 1* si_con : size constraint / 

mt teup, tei ; 

jut noceli(MAX_NO_SEED) ; 

for( i = 0 ; i < MAX_NO_SEED ; i++ 

seeds[i] = -1 ; 

seed_i = 0 

printf ("Input the number of group:") 

scanf ("%d", aug 

printf(" Input L 

scanf("d", aL) 

printf(" Input sO 

scanf("d", asO) ; 

si = sO ; 

for( 1 = 0 ; 1 < L ; l++ )( 

flag = 0 

do{ 

pt = bighead -> first 

if( pt == NULL )( 

printf("List of bighead is nuli\n") 

break ; 	1* Execution of program should be stopped */ 

ept = pt -> slink 

if( ept 1= NULL 

do{ 

vi = ept -> vnane ; 

v2 = ept -> enazne ; 

if( (check_gr_num( graf, vi 

+ check_gr_num( graf, v2 )) <= si )( 

merge_bc( blist, vi, v2 

merge( graf, blist, bighead, vi, v2 

break; 

ept = ept -> slink 

if( apt == NULL )( 

pt = Pt -> next 

if( pt == NULL 

break; 

ept = pt -> slink 

} while( apt 1= NULL ) 

} while( pt 1= NULL ) 

si = si * 2 ; 

} 1* for( 1 = 0 ; 1 < L ; l++ ) *1 
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printf("finished level mergingn") ; 

i=O ; 

for(;;) ( 

Pt = bighead -> first 

if( pt 1= NULL 

do{ 

ept = pt -> slink 

if( ept != NULL 

do ( 

flag = 0 

vi = ept -> vuame ; 

v2 = apt -> ename ; 

if( (check_gr_nuin( graf, vi 

+ check_gr_nuin( graf, v2 )) <= fsc )( 

for( j = 0 ; j < ng ; j++ ){ 

if( seeds[1] == vi II seeds[j] == v2 )( 

f lag = 1 ; 

break ; 

} 

if( flag == 0 ){ 

merge_bc( bust, vi, v2 

merge( graf, bust, bighead, vi, v2 

seeds(seed_i++] = vi ; 

flag = 2 

break ; 

ept = ept -> slink 

} while( apt 1= NULL 

if( flag == 2 

break 

pt = pt -> next 

} while( pt 1= NULl. 

if( i == ng 11 pt == NULL 

break 

) 

printf('ieading groups have been selected\n") 

pt = bighead -> first 

if( pt I= NULL 

do{ 

ept = pt -> slink 

if( ept I= NULL 

do( 

flag = 0 ; flagi = 0 ; flag2 = 0 

vi = apt -> vname 
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v2 = ept -> ename 

for( J = 0 ; j < ng ; j++ )( 

if( vi == seedslj] 

flagi = 1 ; 

if( v2 == seeds(JJ )( 

flag2 = 1 ; 

k = j; 1* take the index of seed for later use / 

) 

if( ( flagl + flag2 ) == 1 )( 

if( (check_gr_num( graf, vi 

+ check_gr_num( graf, v2 )) <= fsc ){ 

if( flag2 == 1 

seeds[k] = vi ; 

merge_bc( bust, vi, v2 ) 

merge( graf, bust, bighead, vi, v2 

flag++ ; 

break 

} 

ept = ept -> slink 

} while( ept I= NULL 

if( flag == 1 

break 

pt = pt -> next 

} while( pt 1= NULL 

if( flag I= 1 

break 

} 

printf(" finish merging with the leading groups\n") 

for( i = 0 ; i < MAX_NO_SEED ; i++ 

seeds(i] = -1 ; 

for( i = 0 ; i < MAX_NO_SEED ; 

nocell(i] = 0 ; 

if( graf -> number > ng H 

vtemp = graf -> first 

do( 

if( vtemp -> noc > nocailCO] )( 

seeds(O] = vtemp -> name 

noceul[O] = vtemp -> noc 

for( j = 0 ; j < ng ; j++ )( 

for( k = 1 ; k < ng ; k++ ){ 

jf( seeds[j] > seed[k] )( 

temp = seeds(k] ; 	tempi = nocell(k) 

seeds(kJ = seeds[j] ; noceii[k] = nocell[j] 

seeds[J] = temp ; 	noceul[j] = tempi 

) 

} 
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vtemp = vte -> next ; 

) while( vtemp 1= NULL 

} 

if( graf -> number c= ng 

break 

pt = bighead -> first 

if( pt != NULL 

do( 

ept = pt -> slink 

if( ept t= NULL 

do( 

flag = 0 

flagi = 0 ; 

vi = ept -> vnaine ; 

v2 = ept -> ename ; 

for( i = 0 ; i < ng ; i++ H 

if( vl == seeds[i] 11 v2 == seeds [i] 

fiagi++ ; 

if( flagi < 2)( 

merga_bc( blist, vi, v2 

merge C graf, bust, bighead, vi, v2 

flag++ ; 

break 

ept = apt -> slink 

) while( ept = NULL ) 

if( flag == 1 

break 

pt = pt -> next 

} whiie( pt != NULL 

if( flag != 1 

break 

} 

if( graf -> number > ng )( 

cnt = 0 

vtemp= graf -> first 

dof 

flag = 0 

for( i = 0 ; i < ng ; i++ 

if( vteinp -> name == seeds Ci] 

flag++ ; 

if( flag == 0 )( 

vi = vte -> name 

v2 = seeds Lcnt++J 

merge_bc( blist, vi, v2 

merge( graf, bust, bighead, vi, v2 

if( cnt == ng 

cnt = 0 ; 

} 
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vtelnp = vteinp -> next 

} while( vtemp t= NULL 

} 

} 

The following is the function "checL.gr_numQ" which is a short routine to return 

the number of cells in the group specified by the argument of the function. 

#include .cstdio.h> 

#include "graph.h 

mt chec)c_gr_num( graf, v 

graph *graf 

mt V 

vernode *vpt ; 

vpt = ver_exist( graf, v ) 

if( vpt == NULL 

return( VER_NEXIST) ; 

return( vpt -> noc ) 

The following function is "merge_bcQ" which carries out the merge operation in the 

cell-net list. The cells to be merged are specified in the function arguments. 

#include <stdio.h> 

1#include 'band.h" 

mt nerge_)3c( list, vi, v2 

bandlist *liSt ; 

mt vi, v2 ; 

( 

band *bptl, *bpt2, *bpt3 

bandceil *bcpti, *bcpt2 
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bcptl = bceii_exist( list, vi 

bcpt2 = bcell_exist( list, v2 

if ( bcptl == NULL 11 bcpt2 == NULL 

return( BANDCELL_NEXIST ) ; 

bpti = bcpti -> link 

bpt2 = bcpt2 -> link 

bpt3 = bcpt2 -> inlink 

if( bpt3 1= NULL 

do( 

insert_inlink(list,vi,bpt3->nae,bPt3>iflside,O,bPt3>i0) ; 

del_band( list, v2, bpt3 -> name 

bpt3 = bpt3 -> next 

) while ( bpt3 1= NULL 

if( bpt2 1= NULL 

for(;;) 

{ 

if( bptl 1= NULL 

do( 

if( bpt2 -> name == bpti -> name 

bpti -> inside += bpt2 -> inside 

bptl -> outside -= bpt2 -> inside 

bptl -> io += bpt2 -> io ; 

if( bpti -> outside == 0 

{ 

insert_inlink(list,vi,bpti->name,bPtl->inside,O,O) ; 

del_band( list, vi, bpti -> name 

break; 

bpti = bpti -> next 

} while ( bptl 1= NULL 

if ( bptl == NULL 

insert_band(list,vi,bpt2->name,bPt2->inside,bPt2>Outside, 

bpt2 -> io ) ; 

bpt2 = bpt2 -> next 

if( bpt2 == NULL 

break 

bpti = bcpti -> link 

} 

del_bandceli( list, v2 

) 

The following function is "mergeO" which merges cells in the graph. The cells to be 

merged are again specified in the function arguments. 

178 



Appendix D 

#include cetdio .h> 

#include 'graph.h 

ifinclude "band.h' 

jut merga( graf, list, bighead, ci, c2 

graph *graf ; 

bandlist *liBt I 

big *bjghead ; 

mt 	ci, c2 ; 

gnode *gtp 

vernode *verl, *ver2, *vtempi, *amp2 ; 

edgenode *etemp, *etampl, *etamp2 ; 

mt t ; 

mt cntn I 

verl = ver_exist( graf, ci ) ; 

ven2 = ver_exist( graf, c2 ) ; 

if C verl == NULL 11 ver2 == NULL 

return C VER_NEXIST 

del_edg C graf, bighead, ci, c2 ) ; 

1* Add the same edges in ver2 to yen 

1* if different edges, insert edges */ 

etemp2 = ver2 -> link 

etempi = yen -> link 

if( etemp2 I= NULL 

for(;,) 

if ( eteiupl != NULL 

do ( 

if ( etempi -> ename == etemp2 -> ename 

cntu = nofnat_betwbc( list, ci, etemp2 -> enema 

if( etempi -> cntn 1= cntn 

del_bigedge( bighead, eteupi, etempi -> cntn ) ; 

insert_)3igedge( bighead, etempi, cntn ) 

etempi -> cntn = cntn 

} 

break 

) 

else 
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ete3npl = etempl -> next 

} while ( etempl != NULL 

if ( etempl == NULL 

insert_edg ( graf, bighead, ci, eteixip2 ) ; 

ete2 = eteznp2 -> next 

if ( etemp2 == NULL 

break ; 

etempl = verl 	link 

} 

/* Change all c2 to ci *1 

vtempl = graf -> first 

etempi = etemp = vtempi -> link ; 

for(.t;) 

if ( etempl 1= NULL 

do( 

if ( etempi -> enema == c2 

do ( 

if( etemp -> ename == ci 

cntn = nofnet_betwbc(list,vtePi->flame,eteflen) 

if( etemp -> cntn 1= cntn 

del_bigedga( bighead, ete, ete -> cntn ) ; 

etemp -> cntn = cntn ; 

insert_bigedge( bighead, etemp, cntn 

del_edg( graf, bighead, vtenipl -> name, etempl -> enema ) 

break 

etemp = etemp -> next 

} while ( etemp I= NULL 

if( etemp == NULL 

if( atel -> vname > ci 

{ 

re_order( graf, list, bighead, etexl, ci ) ; 

del_edg(graf,bighead,Vti>name,atemP1>e11ma) 

else 

cntn = nofnet_betwbc( list, ci, etempi -> vname ) 

if( etempi -> cntn != cntn 

del_bigedge( bighead, atempi, etempi -> cntn ) ; 
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insert_bigedge( bighead, etempi, cntn ) ; 

etevipl -> cntn = cntn ; 

etempl -> ename = ci ; 

break 

} 

etei = etel -> next 

} while ( etenpi 1= NULL 

vtei = VtenPi -> next 

if ( vteznpl == NULL 

break 

etempi = etenip = vtenpl -> link 

) 

insert_grp ( graf, ci, c2 ) 

del_ver ( graf, bighead, c2 ); 

} 
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Appendix E 

The C Programming Code for Pseudo Parallel Merge Algorithm 

This appendix contains C programming code for the pseudo parallel merge 

algorithm. It has the same header file as the merge algorithm in the Appendix D. 

This software contains a main function named as "pseudo_parallelO", which further 

contains five other functions: namely "dividerQ", "coordinatorO", "constructorO", 

"parallel_mergeO", "changecellnameQ". The function "dividerQ" is used to divide 

the circuit into several subcircuits. The "coordinatorO" is used to change the 

implicit cell name to the corresponding explicit cell name. The "constructorO" is 

used to re-combine the size-reduced subcircuits to a size-reduced full circuit. The 

function "parallel_mergeQ" is used to merge cells in the graph. The 

"changecellnameO" is used to record the cells being needed to change the names. 

The following is the function "pseudo_parallelO". 

Itinclude <stdio .h> 

#include "graph .h" 

#include "bana.h" 

4*include "list.h" 

mt M(100] (100); 

mt oa11nae(90001] ; 

mt vi, v2 ; 

mt cnt = 0 

mt ng ; 

mt nameof sub ; 

mt sizeconstraint ; 
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mt fsc ; 1* final size constraint *1 

mt factor ; 

extern char net(] (50] 

void pseudo_.paraiiel( graf, bust, arri, arr2 

graph *graf 

bandlist *]j5t ; 

bandcell *arrl(] ; 

vernode *arr2(] ; 

( 

mt i, ii, i2, k, j, n, cnt = 0 ; 

mt sO, 51, 1, L, bottom 

graph *subcircuit(501] 

vernode *emp; 

adgenode *et, *ept ; 

gnode *gpt ; 
big *subseqhead(501], *bighaad 

bignode *pt 

mt iim,limi, ave ; 

mt seed_i, flag 

mt div=0, divi, divcnt=0, sizaofsub ; 

mt oldNumber ; 

for( i=0 ; i<90000 ; 

cellnaine[i] = i ; 

printf ("Input the number of group:") 

scanf ("9d", &ng ) ; 

for( i =1 ; i <= 500 ; i++ ){ 

subcircuit[i] = crt_graph() 

subseqhead[i] = crt_big() ; 

printf ("Input the size of subcircuit:") 

scanf ("%d", &sizeofsub ) 

printf ("Input final size constraint:") 

scanf ("9d", &fsc 

printf ("Input factor:") 

scanf ("9d", &factor ) 

sizeconstraint = sizeof sub * 1 / factor 

oldNumber = 0 1 

pat i_again: 

if( graf->number == oldNumber )( 

printf("No further merge\n") p 

div = divider( graf, subcircuit, graf->number 
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sub_seg( subcircuit(lJ, subsegheadtlj ) ; 

p_merge ( subcircuit(lhsubseqhead(lJ,l,blist,flg,Cnt,fBC,arrl,aXr2) ; 

goto finish 

} 

oldNumber = graf->number ; 

div = divider( graf, subcircuit, sizeof sub 

divi = div ; 

for( i=l ; ic=div ; i++ 

sub_seq( subcircuit(iJ, subseqhead(iJ ) ; 

cnt++ ; 

merge_rest 

for( i1 ; i<div ; i++ ){ 

p_merge(subcircuit(i] ,subseghead(i] ,i,blist,ng,cnt,sizeconstraiflt,arrl,arr2L 

if( div == 

if( subcircuit[1]->uumber > ng 

p_merge(suhcircuitLl],subseqhead(lJ,l,blist,flg,Cflt,fsC , arrl , arr2 ) ; 

goto finish 

} 

else 

for( i=l ; i<=div ; i++ )( 

change_cellname(subcirCUit [i], cellnaine) ; 

} 

for( i=l ; ic=div ; i++ ){ 

coordinator( subcircuit(i], celinane, bust, arri, arr2 ) ; 

coinbine( graf, subcircuit, div ) ; 

for( i=l ; i<=div ; i++ )( 

subcircuitFiJ-number = 0 ; 

subcircuit[i]->first = NULL 

subcircuit[i]->laBt = NULL 

subseqbead[i]->nuinber = 0 ; 

subseqhead(i]->first = NULL 

subseqhead(iJ->last = NULL 

) 

sizeconstraint = sizeconstraint * 2 ; 

goto pati_again ; 

finish: 

return 
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The following is the function "dividerO". 

4#include <stdio. h> 

#include "graph. h" 

mt divider( graf, subcircuit, sizeof sub 

graph *graf, *sjrcuit(J 

mt sizeof sub 

mt i cat, 1 
vernode *vpt ; 

m=o 

cut = 0 ; 

vpt = graf->first 

if( vpt 1= NULL ){ 

do{ 

cnt++ ; 

if( cut == 1 )( 

i++ ; 

subcircuit(il->first = vpt ; 

} 

if( cut == sizeofsub && vpt->next 1= NULL )( 

subcircuit(i]->laSt = vpt 

subcircuit(i]->number = cat ; 

cut=0; 

} 

if( vpt->next == NULL )( 

subcircuit(il->last = vpt 

subcircuit(i]->nuber = cut 

break 

} 

vpt = vpt->next 

} while( vpt I= NULL 

for( J=l ; :<=i ; j++ )( 

subcircuit[j]->last->fleXt = NULL 

returu(i) ; 

} 

The following is the function "coordinatorO". 

4tinclude cstdio .h> 

( 
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1*include 'graph.h" 

4$include "baud.h" 

void coordinator( graf, celiname, bust, arrl, arr2 

mt cellname(] ; 

graph *graf 

bandlist thlist ; 

bandcell *arrj(] ; 

vernode *arr2[] ; 

( 

vernode *vpt I 

edgenode *ept, *eptl ; 

mt last 

last = graf ->last -> name 

vpt = graf->first 

if( vpt != NULL )( 
do( 

ept = vpt->link 

if( ept 1= NULL )( 

do{ 

if( opt -> ename > last )( 

if( ept->ename 1= cellnamo(ept->ename] )( 

ept->enamo = callname(ept->enamel ; 

ept->cntn = nofnat_betwbc(blist,vpt->name,ePt->ename,arrl) ; 

epti = vpt->link 

do( 

if( eptl->enaine == ept->ename )( 

if( epti 1= ept )( 

dol_edg_para( graf, vpt->name, eptl->ename, arr2 ) ; 

break 

epti = eptl->next 

} while( eptl 1= NULL ) 
}/* if( ept->ename J= cell(ept->enamel ) *1 

) 

opt = ept->next ; 

} while( apt I= NULL 

} 1* if( opt I= NULL ) I 

vpt = vpt->next 

} while( vpt 1= NULL 

} I if( vpt 1= NULL ) I 

} 

The following is the function "constructorO". 
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ifinclude <tdio .h> 

4$include graph.h" 

constructor( graf, subcircuit, div 

graph *graf, *sjrcuit(] 

mt div ; 

( 

mt i, J; 

mt numO ; 

for( i=l ; i<=div-1 ; i++ ){ 

num = num + subcircuit(iJ->nuinber ; 

:J =i+l 
subcircuit(ij->last->next = subcircuit(fl ->first ; 

graf->firat = subcircuit(l]->first p 

graf->number = num + subcircuit(divl->number p 

graf->last = subcircuit[div]->last p 

The following is the function "parallel_mergeQ". 

#include <stdio.h> 

#include "graph.h' 

#include "band.h" 

parallel_merge(graf, subseghead, i,blist,ng,cnt, sizecontraint,arrl,arr2) 

graph *graf 

big *sgeqhead p 

bandlist *blist  p 

mt ng, i p / i: the name of subcircuit *1 

mt cut p 

mt sizeconstraint 

bamdcell *arrl(] p 

vernode *arr2[] ; 

( 

mt vi, v2, bottom p 

bignode *pt p 

edgenode *ept p 

jut flag p 

mt urn p 1* size constraint / 

bottom = graf->last->narne p 
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1* 

liin = ( graf_>nunlber/3)*Cflt ;. 

*1 

while( graf -> number , ng ){ 

pt = subseqhead -> first 

if( Pt 1= NULL 

do{ 

flag = 0 ; 

ept = pt -> slink ; 

if( ept 1= NULL ){ 

do{ 

vi = ept -> vname 

v2 = ept -> ename 

if( (check_gr_num( graf, vi, arr2 

+ check_gr_num(graf,v2,arr2)) <= sizeconstraint ){ 

merge_bc( bust, vi, v2, arri ) 

merge(graf,blist, subseqhead,vl,v2,bottom,arrl,arr2); 

flag = 1 

break 

} 

apt = apt -> slink 

} while( apt 1= NULL 

} 

if( flag == 1) 

break 

pt = pt -> next 

} while( pt 1= NULL 

if( pt == NULL 

break ; 

} 

The following is the function "changecellnameO". 

#include <stdio.h> 

*include "graph.h" 

void change_cellname(graf, celinama) 

mt cellname[] ; 

graph *graf ; 

{ 

varnoda *vpt ; 

gnode *gpt 

mt i; 

vpt = graf -> first 

if( vpt 1= NULL )( 
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do( 

gpt = vpt -> gunk 

if( gpt 1= NULL )( 

do ( 
cellnaine (gpt->name] = vpt->name 

gpt = gpt-)next ; 

} while( gpt I= NULL ) 

vpt = vt->next 

} while ( vpt != NULL ) 

} 

} 
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