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Abstract

Purpose: The magnitude of maximum/minimum centre of mass (CM)

velocity (V) and V fluctuation have been linked to freestyle swimming performance.
Other kinematic parameters thought to be associated with performance are the body
roll of the trunk and the maximum angular flexion of the elbow (MEF) and knee

(MKF) joints. However, the uncertainty with respect to the accuracy of the methods
for the calculation of the above parameters in the extant literature limits the value
and generalisability of the reported data. Moreover, no studies have examined

changes in these parameters across an event. Therefore, the main purpose of this

study was to determine accurately, in three directions, the intracycle variations of the
V of the CM during a 200 m maximum freestyle swim and to examine whether the V
maxima/minima and the magnitude of V fluctuations are associated with

performance. A second purpose of the study was to determine accurately the

magnitude of shoulder and hip roll, MEF and MKF, and to assess whether these

parameters are associated with performance. A third purpose was to assess whether
the magnitude of bilateral asymmetries in each parameter is linked to performance.

Methods: Eleven male swimmers of national/international level performed a

maximum 200 m freestyle swim in a 25 m indoors pool. Performance was recorded
with four below and two above water synchronised cameras. A 6.75m purpose-built
frame was used to calibrate the above and below water space. Anthropometric data
were calculated with the use of the elliptical zone method. Four stroke cycles (SCs)
were analysed for the 200 m (one for each 50 m). The following parameters were

calculated: intracycle V of the CM for all directions, shoulder and hip roll, MEF and,
MKF.

Results: Average V decreased as the swim progressed, with the exception of
SC4 in which some swimmers maintained or increased V. Performance was strongly
associated with maximum V throughout the swim, but was only associated with
minimum V in SC3 and SC4. There was no association between performance and

any other parameters. Large fluctuations in V were found in all directions, with the

only significant change across the test recorded for horizontal V fluctuation which
was higher in SC3 than in SC2 and SC4. This increase was mostly linked to a
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reduction in minimum V. The magnitude of V fluctuation was positively correlated
with maximum V in most SCs. Swimmers rolled their shoulders considerably more

than the hips, with shoulders and hips rolling towards the same direction during the
SC. Hip roll increased and shoulder roll did not change during the swim. There were

bilateral asymmetries in all parameters, with the magnitude of asymmetries not

linked to performance. All swimmers had higher V during the right arm underwater

phase (UWP) and rolled the shoulders more to the left (with one exception in each
case showing overall symmetry). Maximum V occurred approximately at the same

time as shoulder/hip roll maxima, while minimum V occurred at approximately the
same time as MEF.

Discussion and conclusion: The ability of swimmers to achieve high
maximum V seemed to be the main factor discriminating between faster and slower
swimmers. High maximum V seemed to be associated with the generation of large
resistive forces that possibly caused large reduction in the V of the faster swimmers
at the early stages of the swim. However, the ability of faster swimmers to limit the
decrease in V improved with each SC, with performance having a stronger

correlation with the minimum than the maximum V in the last 50 m. The increase in

horizontal V fluctuation in SC3 was associated with a reduction in V minima during
UWP of the non-dominant arm. Swimmers should focus on the improvement of the
effectiveness of the non-dominant arm, in order to establish symmetry in technique
and improve performance. The decrease in the differences between shoulder and hip
roll during the 200 m suggested that swimmers tended to adopt more hydrodynamic

positions as the swim progressed. Analysis of intracycle V variations provided useful
information for the balance between propulsive/resistive forces during a SC. In view
of the results of this study, further understanding of freestyle swimming technique
could be gained by examining parameters such as: orientation of the upper and lower
extremities during the application of propulsive and resistive forces; relationships
between performance and kinematic parameters for a larger range of velocities and

analysis of net forces by examining intracycle accelerations of the CM.
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1. Introduction

The introduction is presented in two sections. The first section refers to the

intracycle velocity of the centre of mass (CM) of a swimmer. The second refers the
kinematic parameters that are related to the intracycle velocity of the CM of the
swimmer.

1.1 Intracycle velocity
The amplitude of velocity (V) variation of the CM during certain phases of

the swimming stroke cycle (SC) has been linked to swimming performance (e.g.

Takagi et al., 2004). Togashi & Nomura (1992) stated that faster swimmers have
lower V fluctuations than slower swimmers. Cappaert et al. (1995) suggested that
elite swimmers minimise the reduction in V caused by resistive forces during the

decelerating phases of a stroke. The calculation of intracycle horizontal V variation
would enable the determination of the extent to which different phases of the SC are

propulsive and improve the understanding of swimming technique.
For the aforementioned reasons, researchers have studied the intracycle

horizontal V fluctuations of swimmers during freestyle (e.g. Maglischo et al., 1989;
Keskinen & Keskinen, 1997), backstroke (Maglischo et al., 1989), butterfly (e.g.

Sanders, 1996b; Barbosa et al., 2003) and breaststroke swimming (e.g. Colman et al.,

1998; D'Acquisto & Costill, 1998). There was a general agreement that swimming V

constantly changes during a SC for all four swimming strokes, with marked periods
of acceleration and deceleration identified in some strokes. Comparative data
between faster and slower swimmers have not been adequately reported, especially
for freestyle and backstroke. However, some studies in butterfly and breaststroke
showed that faster swimmers have higher V maxima/minima and lower V
fluctuations than slower swimmers (e.g. Maglischo et al., 1989; Togashi & Nomura,

1992; Sanders, 1996b; D'Acquisto & Costill, 1998; Takagi et al., 2004).
Limitations in the studies conducted in this area reduce the validity and do

not allow generalisation of the reported data. One of the major limitations is
associated with the V calculation methods. Horizontal swimming V has been
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measured as the V of either a fixed point on a swimmer's body (such as the hip) or
the CM. However, the motion of the hip joint is also dependent on an individual's

differing trunk rotations, and inertial effects created by forward or backward leg or

arm movements, even when no propulsion or resistance is generated (Colman et al.,

1998). Additionally, Barbosa et al. (2003) reported that the hip did not represent

accurately the intracycle behaviour of the kinematic variables of the CM in butterfly

swimmers, as the former presented a higher intracycle variation than the latter, with
weak correlations between the values obtained from the two calculation methods.

Furthermore, there have been very few studies of the V of the CM in which
three dimensional (3D) methods have been used. In the vast majority of studies, two
dimensional (2D) data were collected on one side of the body and bilateral symmetry
was assumed. However, recent studies have revealed technique asymmetries and
lateral dominance in V patterns (e.g. Keskinen & Keskinen, 1997; Tomkinson &

Olds, 2000; Arellano et al., 2003).

In addition to the limitations described above, there is a plethora of

parameters that still remain to be investigated in this area. For example, researchers
have examined just the horizontal component of V. Consequently, there is no

information about the V fluctuations in the vertical and lateral directions, and their

association with performance. Another area to be investigated is the V changes

occurring between different SCs across the course of a race, since all existing studies
have limited their analysis to V fluctuations for one SC. Research conducted during
incremental tests (e.g. Keskinen & Komi, 1993; Psycharakis et al., 2002) and

throughout competitive swimming events (e.g. Chatard et al., 2001a; 2001b; 2001c)
has shown that basic kinematic parameters, such as stroke rate (SR) and stroke length

(SL), change with V throughout an event. Thus, the intracycle V pattern of the CM

may also change. Investigation of changes in intracycle V during an event would
further improve the understanding of swimming technique.

As discussed above, knowledge of more specific changes within the SCs in
all three directions remains limited. Further, the uncertainty with respect to the

accuracy of the methods of calculating intracycle V in the extant literature limit the
value and generalisability of the reported data. Therefore, there is a need to assess

accurately the 3D intracycle V pattern of the CM in three directions. This would
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facilitate the assessment of the extent to which intracycle V fluctuations and V
maxima/minima are associated with swimming performance. Calculation of

intracycle V throughout a swimming event would provide useful information

regarding the magnitude of possible variations and the association with the

performance level of the swimmers. Such information can be used as a guide to

swimmers, coaches and researchers, for the purpose of identifying/correcting errors

and improving swimming performance.

1.2 Other kinematic parameters related to velocity
1.2.1 Kinematic parameters of the trunk

Given that freestyle horizontal swimming V changes constantly during a SC,
it is expected that other kinematic parameters related to a swimmer's body position
in the water would also change. Researchers have studied intracycle changes in
various kinematic parameters related to the motion of the trunk and the upper and
lower extremities. For example, Cappaert et al. (1995) reported that body roll of the
trunk and the maximum flexion angles of the elbow and the knee are associated with

changes in V.

Body roll, defined as the rolling action of the trunk around its longitudinal

axis, appears to have important functions in freestyle swimming and to be linked to

swimming performance. It has been suggested that body roll facilitates the breathing
action (Yanai, 2001), reduces the risk of developing shoulder injuries (Ciullo &

Stevens, 1989), and influences the hand displacement relative to the water thereby

contributing to the hand V (Payton et al., 2002). In view of the possibility that body
roll may play an important role in improving swimming performance, some

investigators have tried to determine the effect of body roll on freestyle kinematics
with the use of computer simulation models (Hay et al., 1993; Payton & Mullineaux,

1996; Payton et al., 1997), or during experimental studies (Liu et al., 1993; 1999a;

Payton et al., 1999b; Yanai, 2001; Castro et al., 2003; Yanai, 2003) and competition

analyses (Cappaert et al., 1995; 1996; Cappaert, 1999).
The models used in computer simulation studies showed that body roll

influences hand V and displacement in various ways. However, the validity of these
models has not been established and, additionally, some of the assumptions made in
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these studies were proved to be incorrect by later investigations. For example, Payton
et al. (2002) indicated that the investigators in the computer simulation studies
assumed incorrectly that the trunk rolls away from the neutral position and that the
arm rotates laterally relative to the rolling trunk for the duration of the insweep.

Most studies conducted during swimming tests showed that body roll
influences the V and displacement values in freestyle (Liu et al., 1993; Payton et al.,

1999a; 1999b; Yanai, 2001). It was reported that the body roll angles of competitive
swimmers decreased with increasing V and also that swimmers rolled less to the non

breathing side than the breathing side. However, except the studies of Yanai (2001;

2003), body roll in these studies was measured for the whole trunk, by attaching a

wooden fin on swimmers' backs and calculating its deviation from the vertical axis.

Cappaert et al. (1995), proved that the assumption that the whole trunk rolled as a

rigid segment is not tenable because the shoulders and hips roll to different extents
and in some cases with different phase. Thus, body roll needs to be re-examined with
methods that do not rely on that assumption.

The analyses by Cappaert et al. (1995; 1996) using video data obtained from
swimmers during competition and Yanai's studies (2001; 2003) on university

swimmers, appear to have been the only studies conducted in 3D and to quantify

separately the shoulder and hip roll of swimmers. Cappaert et al. indicated that elite
swimmers rolled the shoulders and hips in phase, that is, both moving in the same

direction at the same time despite having differing magnitudes of roll. Subelite

swimmers, on the other hand, appeared to have similar ranges of shoulder and hip
roll to elite swimmers but the hip and shoulder roll were not in phase. Cappaert et al.
stated that the opposite roll between the shoulders and the hips of the subelite group

might have increased active drag by increasing frontal surface area. Cappaert (1999)
also reported that sprint freestyle swimmers (200 m and below) have less shoulder
roll during certain phases of the SC than distance freestyle swimmers (above 200 m).
The competition analyses implied that faster swimmers use body roll more

effectively than slower swimmers (reducing the active drag and therefore improving

performance) and that body roll might be related to freestyle swimming V. Yanai

(2001), although focusing on kinetic parameters, reported nearly equal phase angles
but different magnitudes of shoulder and hip roll among university swimmers.
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Finally, Yanai (2003) reported that shoulder roll decreased when swimming V
increased.

While the above studies provided some useful data on body roll, more

research must be conducted. Improved methods are required to reduce errors

associated with: not considering the influence of breathing actions; extrapolating

beyond small calibration volumes; reduced reliability of digitising due to a limited
number of cameras; adjustments made for combining above and below water data

and; image distortion and refraction. Moreover, there remains a lack of information

regarding bilateral asymmetries in the magnitude of roll and their association with

performance. Further, these studies were limited to the analysis of one SC. Therefore

changes that occur in shoulder/hip roll throughout the course of a race and the

relationship of these changes to performance remain unknown.

1.2.2 Kinematic parameters of the upper and lower extremity
There are only a few studies of the changes in kinematic parameters related to

the motion of upper and lower extremities, with the majority being of the freestyle
stroke. The main kinematic parameters that have been reported to affect V (and,

therefore, swimming performance) are the magnitude of maximum angular flexion of
the elbow (e.g. Cappaert et al., 1995; Cappaert, 1999; Duclos et al., 2003) and the
knee (e.g. Sheeran, 1978; 1980; Cappaert et al., 1995; Cappaert, 1999).

Cappaert et al. (1995) reported that elite swimmers had significantly larger
values (p<.05) than subelite swimmers for angles of maximum elbow flexion (MEF)

during the underwater phase (UWP) of the stroke. Duclos et al. (2003), following an

analysis of some parts of the SC, reported that elite swimmers had greater angular

range of motion (ROM) at the elbow than subelite swimmers..

Only a few other upper extremity kinematic parameters, such as the
maximum vertical displacements of the elbow and wrist, have been examined in
relation to freestyle swimming V. These parameters, however, have not been found
to be directly associated with changes in V. For example, Cappaert et al. (1995) after

normalising the values according to anthropometric characteristics, found no

differences between elite and subelite swimmers for the underwater stroke depth

(vertical wrist and elbow displacement).
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However, the elbow angle/time patterns have not been adequately studied,

particularly with respect to changes across a race distance. In addition,

methodological limitations have reduced the accuracy and reliability of the reported
data. These limitations have arisen from: insufficient number of cameras used; lack

of calibration procedures and methods' reliability/error assessment and; inadequate
statistical analysis and reporting. Further, no researchers have attempted to quantify
bilateral asymmetries in MEF and their association with performance.

The angle of maximum knee flexion (MKF) is the only lower extremity
kinematic parameter that has been found to be related to swimming performance.

Cappaert (1999) found that elite and sprint swimmers have higher MKF than subelite
and distance swimmers, respectively. A larger MKF appears to be beneficial as it

gives the foot a larger ROM to produce propulsive forces. However, similar to the
studies of upper extremity parameters, these studies were limited by the methods
used. In addition to the methodological limitations, there is a lack of data regarding
bilateral differences in MKF and changes in MKF values throughout the course of an
event.

1.3 Purpose of the study
The main purpose of the study was to determine accurately, in three

directions, the intracycle variations of the V of the CM in male freestyle swimmers,

throughout a 200 m maximum swim. Moreover, to examine if the V maxima/minima
and the magnitude of V fluctuations are associated with performance (as indicated by

average horizontal V). A second purpose of the study was to determine accurately
the magnitude of shoulder and hip roll and maximum elbow and knee flexion, and to

assess whether these parameters are associated with average swimming V. A third

purpose was to calculate bilateral asymmetries in all parameters, and to identify if the

magnitude of bilateral asymmetries is associated with performance.

Introduction 6



2. Literature Review

This thesis focuses on the kinematics of competitive swimming. Therefore,
literature was reviewed to explore the existing scientific knowledge and to identify

any gaps and/or limitations in this area. The review is presented in three sections: the
first section briefly introduces research on the generic kinematic parameters that
describe performance (SR, SL and average swimming V); the second section

presents studies on the main kinematic parameter of interest with regard to

swimming V, the intracycle V fluctuations; the third section refers to other kinematic

parameters related to the motion of the trunk, and upper and lower extremities that
have been found to be associated with V and/or performance.

2.1 Average swimming velocity, stroke rate and
stroke length

Swimming V has been defined as the product of SR and SL (Craig et al.,

1985). SR (cycles/min) refers to the number of complete cycles of one arm in a

minute (or any other given unit of time), while SL (m/cycle) is the distance the
swimmer moves forward per stroke cycle (SC) (Keskinen & Komi, 1988). However
the definition is valid only for mid-pool swimming V, since the average V of a

swimming event is influenced by other factors, such as the time spent during starts

and turns.

As SR and SL are kinematic parameters related directly to swimming

performance, several authors have underlined their importance in swimming training

(e.g. Maglischo, 1993; Thompson et al., 2000). Furthermore, these parameters have
been the subject of numerous studies. Researchers have studied the variations in SR
and SL according to:

Increasing V (e.g. Craig & Pendergast, 1979; Keskinen & Komi, 1988; Weiss et

al., 1988; Keskinen & Komi, 1993; Psycharakis et al., 2002).

Anthropometric characteristics (e.g. Grimston & Hay, 1986; Kennedy et al.,

1990; Chengalur & Brown, 1992; Pelayo et al., 1996).
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Different swimming strokes (e.g. Pai et al., 1984; Kennedy et al., 1990;

Chengalur & Brown, 1992).
Race distance (e.g. Craig et al., 1985; Kennedy et al., 1990; Chengalur & Brown,

1992; Arellano et al., 1994; Pelayo et al., 1996).

Progress of an event (throughout the course of the race) (e.g. Letzelter & Freitag,

1983; Sidney et al., 1999; Chatard et al., 2001a; 2001b; 2001c; 2001d).
The main research findings in this area could be summarised as follows:

The SR and SL combination for achieving a given V varies between and within
swimmers.

Swimmers generally increase V by increasing SR and decreasing SL, regardless
of the stroke, age or sex of the swimmers. Due to the reduced time of the SC
when stroke frequency increases, SL decreases.
Faster swimmers have generally longer SL and similar SR to slower swimmers.
Different combinations of SR and SL have been shown to be equally successful

during 200 m events.

As the event distance increases SR and V decrease, while SL increases with

increasing race distance up to 200 m and decreases from 200m as race distance
increases.

Competition data regarding SR, SL and average V are often available on the
internet following the end of a competition (e.g. Haljand, 2006). Nevertheless, such

analyses are generally limited to reporting the values for these parameters, without

describing and/or assessing the accuracy and reliability of the methods used.

Moreover, no further analysis or evaluation of the reported data is usually attempted.

Therefore, despite the considerable number of investigations carried out in this area,

the SR, SL and average V relationships have not been sufficiently studied (in the
form of published scientific papers) for all strokes and distances. For example, there
is a lack of data for 50 m events (other than freestyle), for 800 m and 1500 m

freestyle events, as well as for within event differences (with the exception of 200 m

events). Furthermore, several limitations exist in the conducted studies. First, many
studies have limited the analysis to just one SC, therefore restricting the reliability
and ability to generalise the results. Second, the method and test designs used in

experimental studies have been limited and are thereby unlikely to provide such
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information that would be applicable to swimmers of most strokes and distances.
Another major limitation has been the methods employed for calculation of
kinematic parameters, such as: calculation of V by dividing the distance swam by the
time spent; calculation of SR with the use of stopwatches and calculation of SL by

dividing the distance swam by the number of SCs measured for that distance (details

regarding methods employed for the calculation of stroke parameters by the studies
discussed in this section are shown in Table A.l, Appendix A). As shown by Chollet
and Pelayo (1999), different methods of calculation produce different errors in

measurements, the magnitude of which depend on various factors such as inter- and

intra-operator reliability, stroke and distance of the swimming test. Considering that
researchers have used several methods for the calculation of kinematic parameters

without, in many cases, providing any error estimates or correction factors, any data

generalisation or between studies comparisons are limited by the accuracy and

reliability of the reported data.
In addition to the limitations described above, the vast majority of the studies

discussed in this section have used 2D approaches with a single camera. However,
such approaches restrict the calculation of other variables that might be more

beneficial to elite swimmers. For example, Sanders (1999) stated that the
measurement of SR and SL might be informative with respect to performance and

performance potential, but limited with respect to providing a better understanding of
the efficiency of the swimming technique, identifying factors that influence

swimming performance and developing strategies for improving the performance of
individual swimmers.

2.2 Intracycle velocity
Increasing recognition of the limitations of quantifying only race parameters

such as SR and SL has led to the evolution of biomechanical equipment and analysis

methods, and more frequent quantification of other kinematic parameters related to

swimming performance. The intracycle V of swimmers has been one of the main
kinematic parameters of interest. Intracycle V is directly related to swimming

performance and its analysis could provide valuable information for swimmers and

coaches, and a better understanding of swimming technique. For example, Maglischo
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et al. (1989) stated that the measurement of horizontal V throughout a SC is of great
value because changes reflect differences between the propulsive and resistive
forces. Togashi & Nomura (1992) stated that faster swimmers have lower V
fluctuations than slower swimmers. These investigators claimed that a large
fluctuation in horizontal V causes a swimmer to use a greater amount of energy for

propulsion and is, therefore, inefficient. D'Acquisto and Costill (1998) reported that
faster swimmers are characterised by higher maximum and minimum intracycle
velocities than slower swimmers.

For the purpose of detecting more specific V changes within a SC and

assessing the causes and effects of these changes, many research teams have studied
the intracycle variation of swimmers' velocities in all four strokes. The following
two sections present the general intracycle V patterns and the magnitude of

intracycle V fluctuations in all strokes. The limitations associated with the methods
used for data collection and analysis, as well as the identified gaps in this area are

presented in sections 2.2.3 and 2.2.4.

Finally, precise analysis of kinematic parameters of the CM requires accurate

anthropometric data, such as the mass, volume and CM location of individual body

segments and the whole body. As these parameters cannot be measured directly for

living subjects, a method that estimates these parameters must be employed.

Considering that the accurate analysis of CM V fluctuations was one of the main

purposes of this study, section 2.2.5 reviews the anthropometric measurement

methods for estimation of a body's CM.

2.2.1 Velocity patterns
There are only two studies that have described the intracycle V variations in

freestyle swimming. Maglischo et al. (1989) tested 18 male and female Olympic
level swimmers who were swimming at maximum speed. The investigators identified
marked periods of acceleration and deceleration within each SC. Swimmers had V

patterns with two distinct maxima, even though other V maxima -smaller in

magnitude- existed in some swimmers' patterns. However, the illuminating work of

Maglischo et al. on the patterns of all four competitive strokes limited the analysis to

qualitative evaluation of the graphs presented for some swimmers, without
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attempting any quantitative analysis. Figure 2.1 shows the V patterns presented in
this manuscript for two freestyle swimmers.
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Figure 2.1: Horizontal V patterns for two freestyle swimmers

(Adapted from: Maglischo eta!., 1989)

In the only other study conducted in freestyle, Keskinen and Keskinen (1997)

examined the intracycle V patterns of a group of 16 male national level athletes (8
swimmers and 8 triathlonists), during the first and the last 20 m of a maximum 100 m

swim. Rather than reporting instantaneous velocities, the investigators divided the
SCs into two phases ('pull' and 'push') and compared the average velocities of each

phase. The results showed lower velocities during the pull than the push phases for
both arms (with the exception of the first 20 m for the left arm). The patterns of V

during the pull and push phases for swimmers and triathlonists are presented in
figure 2.2.
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Figure 2.2: Average swimming V in different phases of the SCs during parts of a
100 m maximum freestyle swim

(Adapted from: Keskinen and Keskinen, 1997)

Intracycle V patterns in backstroke swimming have been described only in
the study by Maglischo et al. (1989). The analysis showed that swimmers reached
maximum V at the point that the arm was flexed approximately 90 degrees and/or
when the arm was completely extended and below their thigh. The investigators

reported distinct periods of V changes in each SC, with two distinct V maxima and
minima observed in many swimmers. However, there were differences in the
between swimmer V patterns, such as that some swimmers had four V maxima of
similar magnitude. Considering that this is the only study conducted in backstroke, it
is evident that further research is needed to improve the understanding regarding

intracycle V variations in backstroke swimming. Figures 2.3 and 2.4 show the two V

patterns presented for the swimmers participating in this study.
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Figure 2.3: Horizontal V pattern in backstroke swimming

(Adapted from: Maglischo eta!., 1989)
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Figure 2.4: Horizontal V pattern in backstroke swimming, using the second
upsweep for propulsion

(Adapted from: Maglischo etai, 1989)

Intracycle V patterns in butterfly have been described in only a few studies

(e.g. Maglischo et al., 1989; Sanders, 1996b; Barbosa et al., 2003). Maglischo et al.

(1989) reported that butterfly swimmers showed great variability in the range of V
fluctuation. It was also shown that the number of V maxima and minima in a SC

varied largely among swimmers. Even though these patterns could have been

partially explained by changes in the breathing patters, the latter were not taken into
account for the data analysis. Sanders' (1996b) findings were generally in agreement

with those of Maglischo et al. (1989). Sanders tested seven international level

swimmers (four male and three female) and reported that the V maxima and minima
differed among swimmers. Figures 2.5 and 2.6 illustrate V profiles for two butterfly
swimmers tested in each one of the above studies.
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Figure 2.5: Horizontal V patterns for two butterfly swimmers
(Adapted from: Maglischo et at., 1989)

Barbosa et al. (2003) attempted to advance the knowledge in intracycle V

patterns by investigating whether the intracycle profiles for the hip and CM V were

associated for a group of male butterfly swimmers (national and international level,
N = 7). These investigators reported that the hip and CM V variations were

significantly different, with the magnitude of difference varying according to the

breathing actions of the swimmers (lateral/frontal breathing, non-breathing). Both

patterns presented large intracycle V fluctuations during the SC. Figure 2.7 shows
the intracycle V variations of the hip and the CM of one of the swimmers tested in
this study.
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Figure 2.6: Intracycle V profiles for two butterfly swimmers

(Adapted from: Sanders, 1996b)
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Figure 2.7: Intracycle V profiles of the hip and the CM for a male butterfly swimmer

(Adapted from: Barbosa etai, 2003)

Due to the high variability among swimmers in the personal styles used for
breaststroke, the intracycle V variation in breaststroke swimming has attracted the
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interest of many researchers (e.g. Maglischo et al., 1989; Manley & Atha, 1992;
Sanders, 1996a; Colman et al., 1998; Takagi et al., 2004). Researchers agreed that
there were many periods of accelerations and decelerations in a SC. Swimmers

generally had two distinct V maxima (corresponding to the arm pull and leg kick)
and one distinct minimum V (corresponding to the arm and leg recovery phase).

Maglischo et al. (1989) stated that forward V decelerated markedly during the arm

and leg recovery phases. Although this deceleration was unavoidable, world-class
breaststrokers seemed to spend less time and have a smaller V fluctuation during the

recovery phase than lower level breaststrokers. Moreover, faster swimmers seemed
to reach higher minimum intracycle velocities than slower swimmers. Maglischo et

al. also reported greater intracycle variability in breaststroke, in comparison to the
other three strokes. Figure 2.8 shows a typical intracycle V pattern for one of the
participants of the latter study.

TIME IN SECONDS

Figure 2.8: Horizontal V pattern in breaststroke swimming
(Adapted from: Maglischo et al., 1989)

2.2.2 Velocity fluctuations
Only a few investigators have calculated the magnitude of V maxima/minima

and V fluctuations in butterfly and breaststroke, while the magnitudes of these

parameters in freestyle and backstroke remain unknown. Quantitative analysis of the

intracycle V in butterfly swimming was first attempted by Togashi and Nomura

(1992). These researchers recorded the performance of 25 novice swimmers and
indicated that faster swimmers had significantly lower V fluctuations than slower
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swimmers. The fluctuation in horizontal velocities for all swimmers ranged from
0.19 to 0.43 m-sec"1, for average velocities that ranged from 0.95 to 1.60 m-sec"1.
However, the highest average velocities reported by Togashi and Nomura were

similar to those reported for the fastest elite swimmers at a later study (Sanders,

1996b). This should be regarded somewhat surprising, as elite swimmers are

expected to have much higher average velocities than novice swimmers. Thus,

unexpected differences between the values reported in the two studies could be
attributed to differences in the methods used for the calculation of V (as discussed in

section 2.2.3).

Manley and Atha (1992) attempted to advance the existing knowledge by

calculating intracycle V fluctuations under different pacing conditions. Four male
and four female competitive swimmers were tested while swimming at: 50 % of race

pace, 100 % of race pace and, increasing from 50 % to 100 % of race pace. Figure
2.9 shows a typical SC pattern for a swimmer during the three testing conditions.

Manley and Atha reported that faster swimmers had higher V maxima than slower
swimmers. Moreover, swimmers increased V maxima when average V increased.
The instantaneous velocities ranged from 0.08 to 0.20 m-sec"1 for minimum and from
1.16 to 2.97 m-sec"1 for maximum velocities. The average velocities ranged from
0.86 to 1.38 m-sec"1. However, the values reported in this study for maximum
velocities were much higher than those reported by Sanders (1996a) for swimmers of
a higher level. Moreover, the V minima/maxima seemed to be extremely low (close
to zero) and high (almost 3 m-sec"1) respectively, something that seems rather

unlikely given the stroke and level of the participants. A possible explanation could
be the method for V calculation. Manley and Atha developed and used a swimming
tachometer device. Although the investigators reported several calibration procedures

performed for this device, suggesting that the V calculations were accurate, it is

possible that the values calculated for V did not represent accurately the true motion
of the CM.

Sanders (1996b) conducted the first analysis on elite butterfly swimmers

(N = 7) and reported large intracycle fluctuations that varied among swimmers. The

range of V fluctuations varied from 0.92 to 1.40 m-sec"1, for average velocities

ranging from 1.32 to 1.63 m-sec"1. Instantaneous velocities ranged from 0.52 to
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2.33 m-sec"1. When calculated as percentages of the average SC horizontal V, the
fluctuation values represented 56.8 % to 106.1 % of the swimmers' average SC V.
Sanders reported that the two slowest swimmers had the largest intracycle
fluctuations and the smallest minimum instantaneous velocities, while the second

fastest swimmer had the lowest V fluctuation.

Figure 2.9: Intracycle V profiles for three different pace conditions

(Adapted from: Manley and Atha, 1992)

Sanders (1996a) attempted to improve the understanding of breaststroke
kinematics by analysing the intracycle V fluctuations of international level swimmers

(three male and three female). High V fluctuations were found, regardless of the

gender or the wave action technique (flat or undulating style) of the swimmers.

Intracycle V fluctuations ranged from 0.76 (60.3 % of average V) to 1.12 m-sec"1
(95.7 % of average V), for average velocities varying from 1.01 to 1.26 m-sec"1. The
values for instantaneous V of the CM ranged between 0.45 to 0.86 m-sec"1 for
minimum and 1.57 to 1.77 m-sec"1 for maximum velocities, respectively. The fastest
swimmer had the smallest intracycle V fluctuation and the highest minimum V.

Colman et al. (1998) attempted to advance further the existing knowledge on

intracycle breaststroke V variations, by analysing data for two groups of competitive
swimmers with flat and undulating styles (N = 20). Colman et al. calculated 2D

average V (rather than instantaneous CM V) of stroke phases and reported the mean

percentage group fluctuations. The results indicated great intracycle V fluctuation
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that varied among groups and swimmers, as illustrated in figure 2.10. In agreement

with Sander's study (1996a), Colman et al. showed that the fluctuations between the
V maxima and minima of the body's CM in the most undulating styles (53 % of the

average V) were less than in the flattest style (76 % of the average V). However,
Vilas-Boas (1996) reported different findings after testing nine national level
swimmers in sub-maximal breaststroke velocities (slower than the 200 m race pace).
Vilas-Boas showed that the undulating style with above water recovery of the arms

might produce higher intracycle V fluctuations than the flat style. Nevertheless, the
differences between normal undulating style (with underwater arm recovery) and the
flat style were not significant. The latter investigator attributed the discrepancies
between the findings of the above studies to possible differences in kinematic and
kinetic characteristics between slower and faster breaststroke velocities.

D'Acquisto and Costill (1998) tested 17 trained breaststroke swimmers and

investigated the relationships between intracycle V maxima/minima and average V.
These investigators stated that better breaststroke sprinters were characterised by
their ability to reach higher V maxima and minima during the SC. D'Acquisto and
Costill stated that these findings suggested a better streamlined body position and/or

timing between the propulsive phases of the stroke for faster swimmers. The

relationships between average V and V maxima/minima were also explored in a

recent study by Takagi et al. (2004). These investigators analysed the performance of
81 male and female swimmers participating in the 50 m, 100 m and 200 m

breaststrokc events during the 2001 World Swimming Championships. Faster
swimmers had significantly higher V minima than slower swimmers. The V maxima
did not differ significantly, but the authors reported that faster swimmers showed a

tendency to reach higher V maxima. However, there were no significant differences
between events or sexes. Although the overall V fluctuations were not correlated
with average V, Takagi et al. stated that slower swimmers tended to have larger

intracycle V fluctuations than faster swimmers.
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Figure 2.10: Percent horizontal V per phase of the body's CM and the percent
duration of the phases, for 5 swimmers with the most undulating and flattest styles,
women and men separately

(Adapted from: Colman eta!., 1998)

2.2.3 Limitations of the existing studies
Several limitations were identified with regard to the data collection and

analysis methods for the studies in this area. This section presents the main
limitations of these studies, as well as the areas that remain to be investigated. As

explained throughout the section, the existing limitations reduce the usefulness of the

reported data and, together with the identified gaps, emphasize the need for further,
more sophisticated analysis approaches.
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2.2.3.1 Methods for velocity calculation
The most important limitations in this area are associated with the methods

employed for the calculation of intracycle V. First, some studies calculated average

rather than instantaneous Y values for certain phases of the SC (Keskinen &

Keskinen, 1997; Colman et al., 1998), limiting the usefulness of the reported data.

Second, the horizontal component of the intracycle V of swimmers has been
measured as either the V of a fixed point (usually the hip) or the CM. However,
several limitations exist when a fixed point is used for V calculations, as discussed in
section 2.2.3.1.1 below. In addition to these limitations, most of the studies that

examined the V of the CM collected 2D data and calculated the CM based on the

assumption of bilateral symmetry. The main limitations of the use of the bilateral

symmetry assumption are presented in section 2.2.3.1.2. Furthermore, even though
2D methods might be easier and faster to use in most aquatics laboratories, they do
have limited analysis possibilities compared to 3D methods. The advantages of 3D

against 2D techniques are described in section 2.2.3.1.3.

2.2.3.1.1 Use of a fixed point
A fixed point on the swimmer's body was used for V calculation in the

majority of the studies conducted in this area (Maglischo et al., 1989; Togashi &

Nomura, 1992; Vilas-Boas, 1996; Keskinen & Keskinen, 1997; Colman et al., 1998;

D'Acquisto & Costill, 1998; Takagi et al., 2004). However, several limitations exist
when a fixed point such as the hip is used as indication of CM kinematic parameters,

such as V and displacement. For instance, the motion of the hip joint is also

dependent on an individual's differing trunk rotations and inertial effects, created by
forward or backward leg or arm movements even when no propulsion or resistance is

generated (Colman et al., 1998). Furthermore, the 2D calculation of hip kinematics
in freestyle and backstroke ignores the rotations of the hips and does not allow
calculation of V in directions other than the horizontal.

Barbosa et al. (2003) conducted a study to examine whether the V,

displacement and acceleration of the hip can represent with validity the kinematics of
the CM in butterfly swimming, for three different breathing conditions (frontal,
lateral and no inspiration cycles). The hip V had higher intracycle variation than the
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V of the CM (e.g. Figure 2.7, section 2.2.1), with the magnitude of difference

varying between swimmers and breathing techniques. Barbosa et al. emphasised that,
even though some correlations were significant, the r values were quite low and, in
some cases, negative. The latter finding suggested that for some parts of the SC the

trajectories of the hip and CM were not only different but were also moving in
different directions. Moreover, the high individual differences between conditions, as
well as between swimmers, underlined the reduced validity and reliability of using a

fixed point for V calculations. It was concluded that the hip did not represent with

validity the intracycle behaviour of the kinematic variables of the CM.
Based on the limitations discussed in this chapter and the findings of Barbosa

et al. (2003), it could be concluded that a fixed point on a swimmer's body should
not be used as an indication of the kinematic parameters of the CM. If this is not

possible due to time, equipment or other constraints, researchers wishing to associate

any calculated values with those for the CM should report the magnitude of errors for
each swimmer, stroke and breathing condition.

2.2.3.1.2 Bilateral symmetry assumption
Some investigators calculated the V of the CM by collecting 2D data and

assuming bilateral symmetry (Sanders, 1996a; 1996b). However, the assumption of
bilateral symmetry in swimmers' bodies might increase considerably the errors in
measurements. Firstly, even if a swimmer's body is perfectly symmetrical, it is still

possible for the swimmer to have asymmetries in technique. For example, differences
in strength and flexibility between the left and the right body parts may occur during
or after periods of injuries. If one extremity is stronger and/or more flexible than the

other, then it might follow a different path (or a similar path with different timings
for given phases) during the SC. Other factors such as the breathing patterns or

individual technique idiosyncrasies might also affect the symmetry in swimming

patterns.

• Asymmetry in anthropometric characteristics and relationships with

performance and with technique asymmetry
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Tomkinson et al. (2003) stated that many anthropometric traits in humans
show a consistent side bias (i.e. directional asymmetry). Based on previous research,
these investigators stated that directional asymmetries consistently show a right side
bias in the upper limbs. The results of their study supported this argument, as (in a

group of 52 athletes) three upper limb girths showed significant right side bias with
the left handed athletes representing just the 12% of the group. These results were in

agreement with other studies that measured the same anthropometric traits (Laubach
& McConville, 1967; Tomkinson & Olds, 2000).

However, asymmetries in anthropometric characteristics are not always
associated directly with asymmetric technique patterns and/or performance. McBride

(1993) tested 10 asymptomatic runners (diagnosed with a leg length differential) and

reported that, regardless of structural status, some runners demonstrated functional

equality while others were characterized by functional asymmetry. McBride stated
that the prediction of symmetrical/asymmetrical technique pattern was not possible

despite the known structural status of the participants. This emphasized the need for
the use of 3D methods for accurate analysis of athletes' motion patterns. Tomkinson
and Olds (2000) attempted to determine the relationship between symmetry and
health-related physiological characteristics in a group of 46 males and females. The
data showed no pattern of consistent significant correlations between fluctuating

asymmetry and the physiological variables across all traits, failing to confirm the

hypothesis that symmetric individuals were physiologically fitter when compared to

their asymmetric counterparts. Tomkinson et al. (2003) reported no significant
differences in variance in fluctuating asymmetry between the 52 male athletes from
two sports (basketball and football), competing at two different standards

(professional league and semi-professional state league). The investigators stated that

asymmetry does not appear to be linked to performance and/or to body size.

• Technique asymmetries in swimming

Technique asymmetries and/or lateral dominance have been frequently

reported in swimming studies. Arellano et al. (2003) identified the asymmetric stroke

synchronisation as the second most frequent mistake (observed in about 60 % of the

participants) in a group of 177 national level junior swimmers who were studied

Literature Review 23



longitudinally for a period of four years. The qualitative technique analyses of these
researchers also showed asymmetric body roll in about 38 % of the swimmers tested.

Higher V values during the right than the left arm stroke have been reported
for freestyle and backstroke (Maglischo et al., 1989; Keskinen & Keskinen, 1997).
Keskinen and Keskinen (1997) reported that freestyle swimmers and triathlonists had
different magnitudes of V fluctuations for certain phases of the left and the right arm
strokes. These investigators stated that lateral dominance in arm strength, even

though not measured in their study, might have been the principal factor causing the
bilateral asymmetries. They also stated that high swimming V during the right arm
UWP was most likely connected to the breathing movements, which were to the right
in most cases. They also assumed that a non-optimum realignment of the swimmers'
bodies after the breathing actions could have resulted in loss of some propulsive
force. Payton et al. (1999b) indicated that the breathing actions might influence the
stroke kinematics in freestyle. In backstroke, as there are usually no major technique
modifications while breathing, it is likely that the asymmetries are related to higher

strength of the right arm. However differences between right and left side could be
caused by several factors, such as: kinematic parameters related to the motion of the

upper and lower extremities, body roll and differences in flexibility and co¬

ordination between body segments.

• Conclusion on the bilateral symmetry assumption
The results of the studies discussed in this section indicated that

anthropometric asymmetries do not seem to be associated with performance and/or

technique asymmetries. However, it was also shown that, regardless of the

magnitude of directional asymmetry, technique asymmetries appear frequently in

sports movements and vary among individuals. Therefore, it can be concluded that
the bilateral symmetry assumption would lead to errors of different magnitudes
between participants and could cause important limitations in the analysis and

interpretation of the results of a study. Hence, a 3D analysis would be more

appropriate for the purpose of minimising such errors, assessing accurately the stroke
kinematics and increasing the reliability of a research study.
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2.2.3.1.3 Advantages of 3- against 2-D analysis

Although 2D analysis is simpler and cheaper (as fewer cameras and other

equipment are needed, less digitising time is required and fewer methodological

problems are present), it requires movements to be in a pre-selected movement plane
and ignores movements out of the chosen plane (Bartlett, 1997). Yeadon and Challis

(1993) stated that this limitation can be important even for events which might

appear essentially two-dimensional, such as the long jump. As discussed above, the
use of 3D analysis minimises the errors that occur in the calculation of variables such
as the V of the CM and, therefore, increases the accuracy and reliability of a study.
3D recording and analysis methods also enable perspective errors to be minimised
for any film measurement (Dainty & Norman, 1987). According to Bartlett (1997),
further advantages of the 3D analysis are:

It can show the body's true spatial motions and is closer to the reality of the
movements studied.

It allows inter-segment angles to be calculated accurately, without viewing
distortions. It also allows the calculation of other angles which cannot be easily
obtained from a single camera view in many cases.

It enables the reconstruction of simulated views of the performance other than
those seen by the cameras (Figure 2.11), an extremely useful aid to movement

analysis and evaluation.

Figure 2.11: Stick figure sequences of a skier: a) front, b) side, c) top view

(Adapted from: Bartlett, 1997)
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As 2D appears to have several limitations compared to 3D analysis,
researchers should favour the latter whenever possible in conducting a biomechanical

study. In particular when the objective is the accurate and detailed investigation of
movements that occur in more than one plane (such as swimming), the use of 3D

analysis techniques is of vital importance for the accuracy, reliability and validity of
a study.

2.2.3.2 Other sources of experimental error
In addition to the limitations in the V calculation methods discussed above,

experimental errors in the existing studies could have been caused by several other
factors. A main source of error was associated with differences in breathing
conditions. No studies in this area have considered the influence of breathing actions
on the parameters measured and/or the evaluation of the results. However, Barbosa et

al. (2003) reported that different breathing patterns resulted in large within swimmer
differences in V. Other investigators (Payton et al., 1999b; Castro et al., 2003) have
also reported differences between breathing and non-breathing conditions for

parameters such as body roll and SL. Experimental evidence in the above studies
confirmed that the breathing actions (frontal/lateral/non breathing) of swimmers

might influence the intracycle kinematics. Therefore, the asymmetries reported in
some studies and/or some characteristics in the V patterns could be related to, or

partially explained by, the influence of the breathing actions. The latter has to be
taken into consideration when discussing or attempting to interpret the results of
studies in this area.

Another possible source of errors in studies is the accuracy and reliability of
the equipment and analysis methods used. Investigators in this area have only rarely

assessed/reported errors associated with the accuracy and reliability of the

methodological procedures. Sources of possible accuracy and reliability errors in the

existing studies include among others: manual panning of cameras and differences

occurring in the 2D viewing angles relative to the swimmers (e.g. Keskinen &

Keskinen, 1997); the use of stopwatches for measurement of a test's criterion
velocities (e.g. Maglischo et al., 1989); the use of self-constructed devices for V
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calculations (e.g. Manley & Atha, 1992) and the calibration procedures followed (not

reported in most studies).

2.2.4 Areas still to be investigated
One of the main areas that remain to be investigated is the V changes

occurring between different SCs throughout the course of a race. Since parameters

such as SR, SL and average V are expected to change during a race (e.g. Chatard et

al., 2001a; 2001b; 2001c; 200Id), there might be changes in other kinematic

parameters related to swimming performance, such as intracycle V fluctuations and
V maxima/minima. However, the vast majority of the studies in this area have
limited their analysis to one SC. Therefore, it would be of interest to examine any

changes that might occur in intracycle V maxima/minima and V fluctuations

throughout the course of an event and to assess the whether the magnitude of any

changes is linked to swimming performance.
Another major gap in the existing studies was that only the horizontal V

component has been examined. Therefore, there is no information about the V
fluctuations of the CM in the other two directions. It would be useful to calculate V

fluctuations for the vertical and lateral directions and to examine if these fluctuations

are associated with performance (as indicated by average V) and/or with fluctuations
in the horizontal direction. It would also be of great interest to examine whether the
V fluctuations in the vertical/lateral directions change during the course of a race.

Finally, accurate 3D analysis would allow the examination of possible
bilateral asymmetries in V patterns (especially in freestyle/backstroke) and
identification of the extent to which the magnitude of any asymmetries is associated
with the performance level of the swimmers.

2.2.5 Methods for the calculation of the centre of mass

One of the main purposes of this thesis was the accurate calculation of
kinematic parameters of the CM. For a precise analysis of human movement,

especially for 3D calculations, accurate anthropometric data are required. Such

anthropometric data include the mass, volume and CM location of individual body

segments and the whole body. As the above cannot be measured directly for living
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subjects, a method that estimates these parameters must be employed. In order to

accurately determine body segment parameters, researchers have used data from
studies of cadavers, regression equations, in situ measuring methods, mathematical
models or combinations of those. The following sections (2.2.5.1 to 2.2.5.4) present
the advantages and disadvantages of the most important methods developed in this
area.

2.2.5.1 Cadaver data

Only a few investigators have reported cadaver anthropometric data (e.g.

Dempster, 1955; Liu et al., 1971; Becker, 1972; Chandler et al., 1975), with

Dempster's data (1955) being the most widely used among researchers. However, a

major limitation in all the cadaver studies is that they were conducted on limited
numbers of elderly adult males. Therefore, the application of such data to different

samples (such as athletes) can be a potential source of errors. Considering the latter,
both Dempster (1955) and Chandler et al. (1975) pointed out that the data could not

be construed to reflect population parameters and should be used with caution.

2.2.5.2 Regression equations
Several researchers have developed regression equations to estimate inertial

parameters of the human body. Earlier studies were based on simple measures such
as stature and body weight, ignoring differences in other anthropometric parameters

such as body shape and mass distribution (e.g. Barter, 1957). Clauser et al. (1969)

developed multiple regression equations by taking into account subject

proportionality differences. Zatsiorsky and Seluyanov (1983; 1985) developed more

than 150 regression equations to determine the inertial characteristics and body

segments parameters data (weight, location of the CM and radii of gyration) with the
use of a gamma-scanner method.

Although these procedures seem to provide accurate anthropometric data on

living subjects, several limitations exist. For example, the last two methods (Clauser
et al., 1969; Zatsiorsky & Seluyanov, 1983; 1985) require a large number of

anthropometric measures for each participant (e.g. 67 measures plus 89 calculations
of different indices for the gamma-scanner method), which are time consuming and
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might cause great inconvenience to the participants. Moreover, the gamma-mass

scanning technique involves the use of radiation and, therefore, it has to be
established that the procedure is safe for both the participants and the researchers.

Furthermore, the use of the latter technique requires sophisticated equipment, which
is not available in the vast majority of biomechanics laboratories.

2.2.5.3 In situ measuring techniques
Many research groups have developed measuring devices and methods to

estimate in situ the moments of inertia of individual segments (e.g. Bouisset &

Pertuzon, 1968; Hatze, 1975; Allum & Young, 1976; Stijnen et al., 1983). The main
limitation of these studies was the inaccessibility of many of the body segments and

axes, as well as the establishment of accuracy and reliability of the developed
methods/devices. Other investigators have used computed tomography to estimate
the segment density and mass distribution (e.g. Huang & Suarez, 1983; Mungiole &

Martin, 1986; Ackland et al., 1988). This method estimates small increments of

volume and tissue density from 3D computer images. A major limitation of

computed tomography is that it has not been used yet to provide complete estimates
of inertial characteristics. Moreover, the complexity of the method and the need for

sophisticated equipment makes its application difficult, time consuming and

impractical.

2.2.5.4 Mathematical models

2.2.5.4.1 Early models
Mathematical models of the human body are based on the representation of

the segments by standard geometric shapes. The models can vary in the number of

segments they contain and can be 2D or 3D. A simple approach that was used in
earlier studies (Whitsett, 1963; Hanavan, 1964) assumed that each segment is a

single homogenous solid such as a right elliptical cylinder or a frustum of a right
circular cone. Anthropometric measures on the subjects provided the dimensions of
the shapes, while the segment mass was estimated with the use of regression

equations based on cadaver studies (Barter, 1957). Whitsett (1963) developed a

mathematical model for a 14-segment body, while Hanavan (1964) developed a 15-
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segment body model. While Whitsett's model was not validated against a known set

of data, Hanavan validated his model against the data of Santschi et al. (1963) (66

subjects) and reported that the location of the CM was within ±1.8 cm,

approximately, of experimental values. However, Hanavan recognised in his report

(1964, p.39) that the single homogenous solid assumption fails to take into
consideration the shape fluctuations throughout the length of each segment. Chandler
et al. (1975) also examined the Hanavan model against the data for six cadavers,
after using some modifications made to the model by Tieber and Lindemuth (1965).
Chandler et al. found errors that ranged from 4.4 to 112.5 % for the moments of

inertia, and stated that the ellipsoidal head, the elliptical cylinder trunk and the

spherical hands were least acceptable. Even though further modifications improved
the accuracy of the predictions of the model, Chandler et al. concluded that the

shapes used to model the segments were not adequate. In support of the latter, Jensen

(1978) stated that such models are of questionable accuracy because of the extensive

geometrical and mass distribution assumptions.

2.2.5.4.2 The elliptical zone method
The assumption that the human body is composed by elliptical zones was

originally made by Weinbach (1938). Weinbach calculated the volume of some

segments and of the whole body and, assuming a fixed body density, estimated the

body weight. Dempster (1955) evaluated the accuracy of Weinbach's method and
found it to be very good with the exception of the shoulders. Jensen (1976)

developed a mathematical model in which the body was divided into 16 segments.

Each segment was considered to be composed of elliptical zones two centimetres

wide, in order to follow effectively the shape fluctuations of the segment (Figure

2.12). The axes of the elliptical zones were obtained using photographic records of
the side and front view of the participants, taken simultaneously while the

participants assumed the basic anatomical position. Segment densities were taken
from the literature and were assumed to be uniform for each segment. Segment mass,

volume, CM location, total body mass and CM location are the main parameters that
can be calculated with this method.
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Figure 2.12: Elliptical zone representation of the segments with the body in the
reference configuration

(Adapted from: Jensen & Nassas, 1988)

Ackland et al. (1988) investigated the validity of the uniform density

assumption for the leg segments and indicated that, even though density was not

uniform throughout the segments, the adoption of this assumption when modelling
the human body produced only minor errors. Wei and Jensen (1995) constructed

segment density profiles and compared segment inertias calculated when uniform
densities and profile densities were used in a mathematical model. The latter

investigators stated that neither method was shown to produce more accurate results
than the other.

Jensen (1978) stated that when both the elliptical zone and the Hanavan

method were used to estimate body mass of 12 children, the mean errors were -

0.68 % and -12.36 % for the elliptical zone and the Hanavan method, respectively.
This finding indicated that the former method was more accurate for the tested

sample. Jensen also stated that the accuracy of the estimates in total body mass was

high (considering the possible sources of error due to both segment volume and the
assumed segment density) and that variations in the error of the estimates between

subjects were low.
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The accuracy of the elliptical zone method was established for different

samples in numerous research studies. Yokoi et al. (1985) investigated the
differences in body segment parameters of 91 children and reported average

differences between estimated and measured values of 1.14 % for the body mass and
1.82 % for the location of the body's CM. Finch (1985) reported mean errors in total

body mass of 0.77 + 0.29 % for a sample of college females. Jensen (1986a)

investigated the effect of growth on selected segmental size for 12 boys over a 3-year

longitudinal study. The mean error in the estimated total mass was 0.20 + 2.30 % and
the method was shown to be better than other techniques. Sanders et al. (1991)

reported errors of 0.35 + 3.00 % in body mass estimates, and stated that the

discrepancy between the actual whole body mass and the calculated whole body
mass was redistributed to the segments on a proportional basis. Jensen and Fletcher

(1994) reported a mean error of 0.05 ±2.96% for body mass estimation, for a

sample of 19 elderly subjects.
A recent study by Wicke and Lopers (2003) attempted to determine the

accuracy of the elliptical zone method for identifying segment volumes in male and
female university students of various morphologies. No significant differences were

found between sexes in the volume estimation, confirming that the elliptical zone
method was sensitive to variations in shape. The results showed that the volumes of
several segments and the whole body can be accurately measured using the elliptical
zone method. The use of a larger image ratio (1:5) decreased significantly the mean

volume errors recorded for a 1:10 ratio. The investigators recommended the use of

larger image sizes for increased accuracy in segmental volumes.
In view of the results of the studies discussed in this section, the elliptical

zone method appears to have a number of advantages compared to other methods and

techniques used for the calculation of body segment parameters. First, the elliptical
zone method appears to be accurate regardless of the sample tested, and to produce
smaller errors than other methods. Second, it effectively follows body shape
fluctuations and minimises the inconvenience to the subject, as the marking and

filming time is very short. In addition, in many cases the marking of the participants
is the same as the marking used for the experimental part of a study, increasing
therefore the accuracy and reliability of the research. Finally, the calculation of the
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anthropometric parameters requires standard filming equipment and biomechanical

techniques that are available in most biomechanical laboratories.

2.3 Other kinematic parameters related to velocity
As discussed in the previous sections, it has been indicated that swimming V

changes constantly during a SC. Therefore, it would be reasonable to expect that
there would be intracycle changes in other kinematic parameters that are associated
with V. The following three sections present the kinematic parameters that have been
linked to the changes in V and are related to the motion of the trunk (section 2.3.1),
the upper (section 2.3.2) and the lower extremity (section 2.3.3). The methodological
limitations and the gaps in the studies conducted in this area are also presented in
these sections.

2.3.1 Kinematic parameters of the trunk: body roll
The main kinematic parameter of the trunk that has been linked to freestyle

swimming performance is body roll. Body roll can be defined as the rolling action of
the trunk around its longitudinal axis. Counsilman (1968) suggested that body roll
has a number of important functions in swimming, as it could: make the recovery of
the arm easier and permit a shorter radius of rotation of the recovery arm; place the

strongest part of the arm pull more directly under the CM; place the hips in such

position that the feet can be thrust partially side-wards, thus cancelling the side¬
wards way of the torso possibly created by the forward swing of the recovery arm;

facilitate the breathing action etc. Moreover, studies in the area of sports medicine

suggested that body roll reduces the risk of developing shoulder injuries (Richardson
et al., 1980; Ciullo & Stevens, 1989; McMaster et al., 1989).

In view of the possibility that body roll may play an important role in

freestyle swimming performance, researchers attempted to determine the effect of

body roll on some kinematic parameters with the use of computer simulation models

(Hay et al., 1993; Payton & Mullineaux, 1996; Payton et al., 1997). Other

investigators tried to measure and assess the influence of body roll in stroke
kinematics and swimming performance during tests (Liu et al., 1993; Payton et al.,
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1999a; 1999b; Yanai, 2001; Castro et al., 2003; Yanai, 2003) and competitions

(Cappaert et al., 1995; 1996; Cappaert, 1999).

2.3.1.1 Computer simulation studies
Hay et al. (1993) developed the first simulation model to examine the effect

of body roll on hand path during the pull phase in freestyle swimming. The trunk and

right arm were modelled as two rigid segments, joined at the shoulder by a simple

hinge joint (Figure 2.13). The rigid arm segment was assigned a pre-selected elbow
flexion angle and the hand was made to move in a plane through the shoulder parallel
to the sagittal plane of the rotating trunk. Based on the results, the investigators

suggested that when body roll exceeds the amount necessary to produce the desired
medial deviation of the hand, the swimmers must move the arm away from, rather
than towards to, the trunk's midline.

Figure 2.13: Overhead view of the two-segment model

(Adapted from: Hay et al., 1993)
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In more recent computer simulation studies (Payton & Mullineaux, 1996;
Payton et al., 1997), investigators attempted to improve the rigid arm model

developed by Hay et al. (1993), by modelling the right arm as two rigid segments

hinged at the elbow to enable flexion and extension (Figures 2.14 and 2.15). The arm

was also linked to a rigid trunk with a joint capable of shoulder extension and
shoulder abduction/adduction. These studies showed that body roll seemed to assist
in the development of propulsive forces and, therefore, the improvement of

swimming performance. Nevertheless, the investigators underlined that the validity
of these studies had yet to be established and the results should only serve as

preliminary indications of the influence of body roll in kinematic parameters of

swimming.

Figure 2.14: Body roll model viewed from above

(Adapted from: Payton etal., 1997)
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Figure 2.15: Body roll model viewed from behind

(Adapted from: Payton etal., 1997)

2.3.1.2 Experimental studies
Body roll was measured for the whole trunk in the majority of studies in this

area (Liu et al., 1993; Payton et al., 1999a; 1999b; Castro et al., 2003). A balsa wood
fin mounted on a curved aluminium base was strapped to the back of each subject
and body roll was defined as the angle between the rear end of the fin and the vertical

(Figure 2.16). Liu et al. (1993) conducted one of the first experimental studies to

calculate body roll, in an attempt to determine the influence of body roll on the
medial-lateral component of the path followed by the hand during the propulsive

phase of swimming. The maximum body roll angle for the ten male university
swimmers ranged between 51.5° and 66.0° (mean: 60.8 ±4.4°). It was reported that
the contribution of body roll to the actual hand path was nearly equal to the
contribution of the medial-lateral motions of the hand relative to the trunk.

Payton et al. (1999a) attempted to advance the knowledge with regard to

body roll in swimmers of higher level, after testing six male competitive swimmers.
It was shown that body roll had a negative contribution to hand speed during the

insweep phase and that swimmers would have reached 46 % (± 15 %) higher hand V
on average for that phase. Nevertheless, the investigators underlined that this should
not be interpreted as meaning that the swimmers would achieve higher hand speeds
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by rolling less, as any changes in body roll are likely to be accompanied by

compensatory changes at the shoulder and the elbow.

Figure 2.16: Method used for body roll calculation

(Modified from: Payton et al., 1999b)

Payton et al. (1999b) investigated body roll differences according to

breathing conditions, for six male competitive swimmers tested during preferred side

breathing and breath-holding freestyle swimming. The researchers reported that the
swimmers' body was rolling on average 9° more when breathing (66 ± 5° for

breathing and 57 ± 4° for the non-breathing conditions). It was suggested that the
additional body roll would assist the turning of the head and help bring the mouth
clear of the water, without the swimmer having to lift or turn the head excessively
relative to the shoulders.

Castro et al. (2003) conducted further analyses in competitive male
swimmers (N = 10), attempting to investigate the relationship between body roll and

average swimming V. These investigators examined the performance of swimmers at

three different velocities (warming up, 1500 m and 50 m pace) and two different

breathing conditions (breathing to the preferred side and no breathing). It was

generally indicated that the body roll of swimmers decreased with increasing V and
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during the non-breathing (compared to the breathing) condition. As expected,
swimmers rolled less to the non breathing side.

For the purpose of improving the understanding of body roll kinematics in

freestyle, Yanai (2001; 2003) calculated separately the shoulder and hip roll of
eleven male university swimmers. Shoulder roll was defined as the angle between the
line connecting the shoulder joint centres projected onto transverse plane of the trunk

(the plane perpendicular to the long axis of the trunk) and the line intersecting the
transverse plane and the horizontal plane. Similarly, the line connecting the hip joint
centres was used for the calculation of hip roll. Yanai (2001) reported mean angles of
58° (confidence intervals: 52° to 65°) for shoulder and 36° (confidence intervals: 29°

to 43°) for hip roll. However, Yanai (2001) did not calculate the average V of the
swimmers and, therefore, the relationship between V and shoulder/hip roll was not

assessed. In the more recent study (2003), Yanai reported that swimmers decreased
shoulder roll by 9° when swimming V increased from 1.3 to 1.6 m-sec"1.

2.3.1.3 Competition analyses
Body roll was calculated separately for hips and shoulders in three studies

(Cappaert et al., 1995; 1996; Cappaert, 1999) conducted during major swimming

competitions (1992 and 1996 Olympic Games; 1991 World Championship). In all
three studies the shoulder joints were digitised for both the above and below water

views and adjustments were made where appropriate to combine the data. It was

reported that elite 100 m freestyle swimmers [participating in the finals of the events

(N = 5)] rolled their shoulders and hips towards the same direction, but the shoulders
rolled considerably more than the hips (Cappaert et al., 1995; 1996). Nevertheless,
two elite swimmers (including the gold medallist) had equal amounts for shoulder
and hip roll. Subelite swimmers [participating in the preliminary heats of the events,

(N = 7)] appeared to have similar values to elite swimmers for shoulder and hip roll,
but the hips were rolling to the opposite direction of the shoulders. The mean values

reported for shoulder and hip roll were 34.4 + 1.7° and -17.8 + 1.5° for the subelite

group and 35.4 + 2.5° and 8.3 + 1.5° for the elite group. Cappaert (1999) also

reported that sprint freestyle swimmers (200 m and below, N = 5) have less shoulder
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roll during the catch phase than distance freestyle swimmers (above 200 m, N = 4)

(20.9° and 36.9°, respectively).

Body roll patterns were reported for some 100 m and 200 m backstroke
swimmers (Cappaert et al., 1996; Cappaert, 1999). Similar to freestyle, elite
swimmers were rolling the shoulders and hips in phase, whereas the subelite
swimmers were not. According to the researchers, opposite body roll has two

potential disadvantages: 1) it adversely affects the streamlining of the body and, 2)
this body position tends to decrease the use of the trunk muscles during the pulling

pattern. However no values were reported for the shoulder and hip roll in either of
the above studies.

Cappaert et al. (1995) stated that the competition analyses implied that faster
swimmers use body roll more efficiently than slower swimmers, reducing the active

drag and therefore improving performance. Moreover, it was suggested that the

opposite roll between the shoulders and hips of the subelite group might have
increased active drag, as the downward motion of the hip increased frontal surface
area. The competition data emphasised that for accurate identification of the rolling

parameters of the trunk, roll has to be calculated separately for shoulders and hips.

2.3.1.4 Limitations of the existing studies
2.3.1.4.1 Computer simulation studies

Several limitations existed in the methodology of the computer simulation
studies. First, Hay et al. (1993) assigned a fixed value for the elbow angle, something
that was shown to be incorrect by later studies (e.g. Cappaert, 1999; Duclos et al.,

2003). Moreover, Liu et al. (1993) demonstrated that it was unrealistic to constrain

the hand to move in the parasagittal plane described in the above study, because the
swimmers move their hands laterally relative to this plane. Second, all simulation
models were based on the assumption that the trunk moves as a rigid part during

freestyle swimming. However, other investigators (e.g. Cappaert et al., 1995; Yanai,

2001) proved that the assumption that the whole trunk rolls as a rigid segment is not

tenable because the shoulders and hips roll to different extents and in some cases

with different phase. Finally, the computer simulation models assumed that the trunk
rolls away from the neutral position and that the arm rotates laterally relative to the
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rolling trunk for the duration of the insweep. However, these assumptions were also

proved to be incorrect by later studies (e.g. Payton et al., 1999b; 2002).

2.3.1.4.2 Experimental and competition studies
While the studies in this area provided some useful data on body roll and

suggested that it is associated with swimming performance, important limitations in
the methodological procedures reduce the usefulness and applicability of the reported
data. A major limitation in most studies conducted during swimming tests (Liu et al.,

1993; Payton et al., 1999a; Payton et al., 1999b; Castro et al., 2003), was that body
roll was measured for the whole trunk. However, as discussed above (section

2.3.1.4.1), the assumption that the trunk moves as a rigid part ignores differences in
the magnitude and phase of shoulder and hip roll (e.g. Cappaert et al., 1995).

Another major limitation in most experimental (Liu et al., 1993; Payton et al.,

1999b; Yanai, 2001; 2003) and in all competition studies (Cappaert et al., 1995;

1996; Cappaert, 1999) was that the breathing actions of the swimmers were not taken
into account for the subsequent calculations of the parameters and the interpretations
of the findings. The latter limitation reduces the accuracy and reliability of the

reported data, as it has been shown that the breathing action influences body roll
values in freestyle swimming (Payton et al., 1999b; Castro et al., 2003).

Moreover, all studies reported average roll values assuming bilateral

symmetry, despite the fact that asymmetries in body roll (Arellano et al., 2003) and
other kinematic parameters (Maglischo et al., 1989; Keskinen & Keskinen, 1997)
have been reported frequently in swimming studies.

Furthermore, the small number of below water cameras used in most studies

reduces accuracy, due to the potentially large number of non-visible body landmarks
that would require the operator's guessed estimation for their location. Reliability of
kinematic parameters calculation might also be a source of experimental error.

Nevertheless, reliability calculations have been reported only in a few studies (SD in

hip roll calculation was 2.5° in the following studies: Payton et al., 1999a; 1999b;

2002).

Challis (1995) reported that extrapolations beyond the calibrated space

produced errors up to three times (or up to 14.5 mm) larger than errors produced for
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the space normally calibrated. The length of the calibrated space in all competition

analyses in this area was just 2 m. However, during a SC a swimmer would cover a

distance that would be equal to the length of their body when the arm is extended

plus the length covered during the SC. Therefore, it is certain that extrapolations well

beyond the pre-calibrated space were required for considerable parts of the analysed

SCs, thus reducing the accuracy and reliability of the studies. Although Cappaert et
al. (1995) accepted that extrapolations beyond the 2 m horizontal calibrated space in
their study could have caused inaccuracies, the magnitudes of these errors were not

estimated.

Further sources of errors were identified in some experimental studies (Yanai,

2001; 2003). As stated by Yanai et al. (1996), the periscope system used in the
former studies could have resulted in image distortion and light refraction errors

caused by the structure of the lens of the camcorder and the refraction at the interface
of water. Furthermore, the adjacent volumes calibrated for the multiphase calibration

procedure did not overlap. In practice, the latter meant that when the panning
orientations of the pairs of cameras fall in adjacent volumes, then only one calibrated
volume could be used and extrapolations beyond this volume would increase

digitising errors (Challis, 1995). Finally, inter-operator differences in the panning

speeds and orientations of the two periscope cameras resulted in camera orientations

falling into different calibration volumes for a certain field, decreasing therefore the

reliability of the calculated parameters due to differences in the reliability of adjacent
calibrated volumes.

2.3.1.5 Areas still to be investigated
Similar to the intracycle V studies, body roll has been calculated only for one

SC. Therefore, there is a lack of information regarding changes that might occur in
shoulder and/or hip roll throughout the course of an event. Moreover, shoulder and

hip roll need to be calculated for both sides, as bilateral asymmetries might exist and
could influence the interpretation of the results of a study. Furthermore, it would be
of interest to examine whether the magnitude of bilateral asymmetries is associated
with the performance level of the swimmers.
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2.3.2 Kinematic parameters of the upper and lower extremity
2.3.2.1 Kinematic parameters of the upper extremity

Only a few investigators have examined the changes in kinematic parameters

of the upper extremity in relation to swimming V. The main parameter that has been
found to be associated with swimming V was the angle of MEF during the UWP of
the stroke. Cappaert et al. (1995) reported statistically significant differences (p<.05)
between elite and subelite swimmers for MEF angles, suggesting that MEF is
associated with swimming V. The minimum elbow angles (representing MEF)

reported during the UWP of the stroke were 91.5 ± 4.9° for elite and 114.3 ± 5.1° for
subelite swimmers. The importance of the elbow angle in swimming performance
was emphasised by Cappaert (1999), who reported that the elbow angle had the

highest impact on the freestyle stroke and that a straighter arm was associated with a

longer pulling pattern and slower SR.
Similar patterns were reported by Duclos et al. (2003), who compared two

groups of elite (Olympic Games finalists, N = 4) and subelite (competing at the
French national championship, N = 3) swimmers performing a 200 m maximum

freestyle swim. Elite swimmers pronounced the flexion of the elbow more than
subelite swimmers. The investigators stated that elite swimmers did not change their

joint angles significantly during the last length of the race, while subelite swimmers
exhibited erratic coordination of their upper limbs. The angular variations reported
for some parts of the SC in the first and the last 50 m for the elbow joint were: 28.9°
and 38.7° (elite) and, 17.4° and 2.2° (subelite).

Changes in the angular ROM of the elbow have not been adequately studied
in backstroke and breaststroke. In butterfly, Togashi and Nomura (1992) reported
that faster swimmers tended to have smaller angles for the elbow joint during the
catch phase. However, in addition to the limitations of this study (discussed in
section 2.2.4), the values reported for the range of elbow angles (128.0° to 240.6°,
SD = 2.8°) suggested errors in the calculation or the presentation of the data.

Only a few other upper extremity kinematic parameters, such as the

displacements of the elbow and wrist, have been examined in relation to freestyle

swimming V. However, these parameters have not been found to be associated with

changes in V. For example, Cappaert et al. (1995) found that elite swimmers had a
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deeper pulling pattern than subelite swimmers, which, however, was due to the

greater stature of the former group. No differences were found in the vertical

displacements of elbow and wrist when the values were normalised according to the

anthropometric characteristics.

2.3.2.2 Kinematic parameters of the lower extremity
Very few investigators have examined the changes that occur in kinematic

parameters of the lower extremity and their influence in freestyle swimming V. The
main parameter that has been found to be associated with swimming V was the MKF

angle. Early studies in this area (Gollnick & Karpovich, 1964; Sheeran, 1978; 1980)
used the electrogoniometer (a device that measures continuous changes in degrees of

joint angles during motion), which was developed by Karpovich and Karpovich

(1959). Golnick and Karpovich (1964) reported a range of motion (ROM) of 45° for

freestyle kick (130° to 175°), 60° for butterfly kick (120° to 180°) and 120° for
breaststroke kick (55° to 175°). However, just one subject was tested for the above

study, with no information regarding his/her swimming level and stroke

specialisation, the SCs selected for analysis, the test used etc. Thus, the reported data
could only be considered as a first indication of possible knee angles in swimming.

Sheeran (1978; 1980) provided the first set of data on MKF for a group of
swimmers. Sheeran examined the knee ROM differences between butterfly,
backstroke and freestyle kicks analysed for 10 (1978) and 14 (1980) university
swimmers. It was generally shown that the knee movement was similar for freestyle
and backstroke, but different for butterfly. Sheeran reported significant differences
for some pairs of variables between and within studies. Moreover, large differences
in MKF were found between the two studies. Possible explanations could be
differences in the level of the participants, the SCs selected for analysis, the kicking
V and/or the kicking pattern used by swimmers in the two studies, none of which
were specified by the investigator.

Cappaert et al. (1995) advanced the knowledge with regard to MKF by

testing a sample of competitive swimmers. Cappaert et al. indicated that elite 100 m

freestyle swimmers had a higher ROM (58.2 ± 5.9°) compared to subelite swimmers

(49.3 ± 5.2°). Similar patterns have been reported for backstroke, as the mean value
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for knee ROM of elite backstroke swimmers was 61.0°, compared to 43.6° for
subelite swimmers (Cappaert et al., 1996). The results in both studies suggested that

higher MKF is associated with faster swimming V. That was in agreement with a

later study by Cappaert (1999), who compared sprint (up to and including 200 m

events, N = 5) and distance (above 200 m events, N = 4) freestyle swimmers and

reported that sprinters were characterised by more MKF. The minimum knee angles
were 100.8° and 139.7° for sprint and distance freestyle swimmers, respectively. The

investigators claimed that a larger MKF would be beneficial as it will give the foot a

larger ROM to produce propulsive forces.

2.3.2.3 Limitations of the existing studies
The studies presented in the last two sections showed that the maximum

flexion angle of the elbow (during the UWP of the stroke) and the knee seem to be
associated with swimming performance. Nevertheless, limitations in the existing
studies reduce the accuracy and reliability of the reported data.

First, as discussed before, the breathing action has been found to alter

swimming kinematics. However, similar to the limitations reported for the studies

measuring intracycle V and body roll, the breathing actions of the swimmers were

not taken into account when collecting and analysing the data for all studies in this
area. Second, despite the possibility of bilateral asymmetries (e.g. Maglischo et al.,

1989; Arellano et al., 2003), all studies in this area calculated values for only one

side, assuming bilateral symmetry. Moreover, despite the angular motion of the
elbow and knee joints requiring a multi-planar analysis, some studies restricted their

analysis to 2D (e.g. Duclos et al., 2003). Furthermore, the 3D studies (Cappaert et

al., 1995; 1996; Cappaert, 1999) were prone to errors due to extrapolations beyond
the small volume of the calibrated space, as discussed in section 2.3.1.4.2.

Further sources of experimental error were identified in some studies. For

example, Duclos et al. (2003) tested only the national level swimmers, while the data
for elite swimmers were obtained from television broadcasts of Olympic Games.

Despite the investigators claiming the use of a protocol 'simulating the Olympic
Games competition', the practise of combining and comparing data obtained in
different pools, with different equipment and under different conditions, is
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potentially problematic. Moreover, the angular patterns were not calculated for the
full SC and, therefore, did not reflect the complete elbow angular patterns during the
UWP of the stroke.

2.3.2.4 Areas still to be investigated
Likewise intracycle V and body roll, MKF and MEF angles have been

calculated just for one SC in all studies conducted in this area. It would be of interest
to calculate any changes in these parameters throughout an event and examine
whether the MKF and MEF values are associated with swimming V. In addition,

analysis of MKF and MEF for the left and right sides could be informative in terms

of identifying bilateral asymmetries and their association with swimming V.

2.4 Summary
The following sections summarise the main research findings, limitations and

gaps in the scientific areas reviewed in this chapter.

2.4.1 Intracycle velocity
• Main findings of the existing research

For the purpose of detecting more specific V changes within a SC and their
association with performance, many research teams have studied the intracycle
fluctuation of swimming V. The review of the literature showed that:

Swimming V changes constantly during a SC.
For butterfly and breaststroke, faster swimmers appear to have lower V
fluctuations and higher V maxima/minima than slower swimmers.

Technique asymmetries have been found for the aquatic phases of the left and

right arm in freestyle.

• Limitations of the existing research
The most important limitations of studies in this area are as follows:

Calculation of the V of a fixed point, despite not reflecting accurately the V of
the CM.
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Adoption of the bilateral symmetry assumption, despite the asymmetrical

technique patterns identified in many studies.
Other experimental limitations such as: limited number of cameras and/or

participants used; insufficient presentation of calibration procedures, error

estimation and methods' reliability assessments.

• Areas to be investigated
The major gaps in the existing literature are the following:

Only the horizontal component of V has been examined.
The relationships between V fluctuation/maxima/minima and swimming

performance have not been studied for freestyle and backstroke.
The changes that might occur in intracycle V fluctuations during the course of the
race remain to be investigated.
Researchers have not attempted to calculate possible bilateral asymmetries and
their influence on swimming performance.

2.4.2 Other kinematic parameters related to velocity
The review of the literature showed that several kinematic parameters related

to the motion of the trunk, the upper and the lower extremity, are associated with

changes in swimming V.

2.4.2.1 Kinematic parameters of the trunk
• Main findings of the existing research

Body roll is the main kinematic parameter of the trunk to be linked to

swimming V. The effect of body roll on some kinematic parameters has been
examined with the use of computer simulation models. In addition, the influence of

body roll in swimming performance has been measured during tests and

competitions. The major findings of the existing research are the following:

Body roll influences hand V and displacement, and might assist in the generation
of propulsive forces in freestyle.
The magnitude of body roll is affected by the breathing action.
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Elite swimmers roll their shoulders and hips towards the same direction, contrary
to subelite swimmers.

Shoulders appear to roll considerably more than the hips.

Analysis of some phases of the SC showed that sprint freestyle swimmers have
less shoulder roll than distance freestyle swimmers.
Swimmers seem to increase shoulder roll when V decreases.

Faster swimmers appear to use body roll more effectively than slower swimmers,

reducing the active drag and therefore improving performance.

• Limitations of the existing research
Several limitations in the existing studies reduced the validity and

applicability of the reported data:
The computer simulation models had limited reliability and applicability.
In many studies, body roll was measured for the whole trunk. However, the

assumption that the trunk moves as a rigid part during freestyle is tenable as the
shoulders and hips roll to different extents and in some cases with different

phase.
In studies that shoulder and hip roll were calculated separately, methodological
limitations and insufficient amount of reported data reduce the reliability and
usefulness of the results.

• Areas to be investigated
The identified gaps in this area are as follows:

No studies have examined the changes that might occur in shoulder and/or hip
roll throughout the course of an event.
The relationships between shoulder/hip roll and swimming V have not been
studied adequately.

Investigators have not explored the possibility of bilateral asymmetries in roll
values and their association with swimming performance.
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2.4.2.2 Kinematic parameters of the upper and lower extremity
• Main findings of the existing research

The MEF (during the UWP of the stroke) and MKF appear to be the main

upper/lower extremity parameters associated with swimming performance. The
review of the literature showed that:

Faster freestyle and backstroke swimmers are characterised by higher MEF and
MKF than slower swimmers.

Swimmers of sprint events are characterised by more MKF than swimmers of
distance events.

A larger MKF appears to be beneficial as it gives the foot a larger ROM to

produce propulsive forces.
No other upper extremity kinematic parameters have been associated directly
with swimming V.

• Limitations of the existing research and areas to be investigated
The influence of elbow/knee angular motion in swimming V has not been

adequately studied, with important limitations reducing the accuracy and reliability
of the reported data. Such limitations were: small number of cameras used; lack of
information regarding statistical significance and meaningfulness, calibration

procedures, error estimation and methods' reliability etc. In addition, no studies have
calculated bilateral asymmetries in MEF/MKF values or the changes in these values

throughout the course of an event.

2.4.3 Conclusion

The review of the scientific literature and the identified gaps/limitations
underlined the need for advancement of the existing knowledge by employment of
more sophisticated data collection/analysis methods that would enable the accurate

and reliable investigation of freestyle kinematic parameters. Such methods should
include among others: 3D data collection and analysis techniques; accurate

anthropometric data; a large number of above and below water cameras that would
increase the digitising accuracy; calibration of large volumes to minimise errors from

extrapolations beyond these volumes etc.
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With respect to the kinematic parameters, the review of the literature

emphasised the importance of the calculation of intracycle variations for the V of the
CM. The examination of the V maxima/minima and the magnitude of V fluctuations
and their association with performance (as indicated by average horizontal V) also

appeared to be of great interest. Moreover, the understanding of freestyle swimming

technique could be improved by exploring the association between performance and
kinematic parameters of the trunk and the upper and lower extremity, such as:

shoulder and hip roll, MEF and MKF. Finally, a clearer and more complete picture of

swimming kinematics can be gained by the calculation of kinematic parameters for
both the left and right sides and the examination of any relationships between
bilateral asymmetries and performance.
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3. Methods

3.1 Test protocol
3.1.1 Participants

The participants in this study were 11 British male freestyle swimmers of
national and international level. The descriptive characteristics of the group

[expressed as mean ± standard deviation (SD)] were as follows: age: 16.9+1.1

years; stature: 180.3 + 5.6 cm; body mass: 71.7 + 5.9 kg. The personal best

performance for the 200 m freestyle event tested in this study was 123.5 ± 5.6 sec.

To ensure participants' anonymity, code numbers were used to replace their names
for any individual references made throughout this thesis.

Swimmers participated in this test only if their fitness, health and training
status were appropriate. If there were any concerns (from the investigator/ swimmer/

coach) regarding the above in a test date, the test would be postponed to a later date.
For example, swimmers would not participate in the test during or following periods
of under- and/or over- training, injury or illness.

To minimise any over-training effects on the test performance, swimmers and
coaches were instructed to avoid any stressful training the days before the test day.
Research has shown that caffeine might cause significant changes in performance

(e.g. Collomp et al., 1992; Macintosh & Wright, 1995). Therefore swimmers were

instructed to abstain from food and beverages containing caffeine, as well as alcohol,
and to follow a normal high carbohydrate/low fat diet, the days before and on the

testing day. The level and experience of the participants in this study ensured that

they had a sound knowledge and understanding of nutritional and hydration aspects.

Further discussions with the participants and their coaches confirmed that the
swimmers were adequately hydrated prior to and during the test day.

Due to the nature of the data collection in this study (video recordings of the
swimmers' performance) and to the fact that all the tests were carried out in a safe,
controlled pool environment, the ethical and risk considerations were minimal. The
test procedures were approved by the University of Edinburgh Ethics Committee.
Tests requiring maximum effort from participants involve a risk of possible muscular
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injuries. However, considering that the participants were national and international
level swimmers and, therefore, hard training and performing in maximal effort was

part of their daily training routine, the possibility of any muscular injuries occurring
was considered negligible. Prior to the test date, all participants were given an

information sheet (Appendix B) explaining the procedure of the experiment,

including possible risks and anticipated benefits from the analysis of the data and
feedback of the findings. The form was written in non-scientific language to be

easily understandable by the participants. On the testing day the investigator

explained to each participant all the procedural details and responded to any

questions and concerns. Before the start of the test, each swimmer participating in the

study was asked to sign an informed consent form (Appendix B).

3.1.2 Swimming test
Swimmers performed a 200 m freestyle swim with maximum effort. Each

swimmer performed a personalised warm up before the test. This warm up consisted
of low to moderate intensity aerobic swimming, with elements of kick and drills, as
well as short race pace sets totalling approximately 1000 m.

Swimmers were asked to perform the 200 m maximum freestyle swim using
their exact competition pacing and strategy. A push start was used instead of a dive
start to eliminate any influence of the dive on the kinematics of the SC analysed for
the first length. To ensure that the test performance would be at a level similar to

competition performance, taking into consideration the effect of the use of the push
start on the final time, a test would be considered acceptable if a swimmer's time for
the 200 m was less than 105 % of his personal best performance of the season. If this
was not achieved, the test would be repeated on a different day.

Research has shown that the breathing action in freestyle swimming might
affect kinematic parameters such as intracycle V and body roll (e.g. Payton et al.,

1999b). Such differences would be expected to vary between, and possibly within

swimmers, complicating any comparisons between and within SCs. To eliminate the
effect of breathing on kinematic parameters, swimmers were instructed to avoid

breathing while swimming through the pre-calibrated space (once for each 50 m).

Considering the level and swimming experience of the participants, similar breathing

Methods



restrictions were common practice in training and certain parts of competition events.

Therefore, these breathing restrictions were not expected to alter the pacing strategy

and/or kinematics of the 200 m swim. Nevertheless, for test-specific familiarisation

purposes, swimmers were instructed to practise the non-breathing swimming through
the pre-calibrated space during their warm-up.

All tests were conducted in a six-lane, 25 m indoors pool at Edinburgh

University, which was used exclusively by the investigator and the swimmers during
all testing sessions. Each swimmer's performance was recorded with a total of six

synchronised JVC KY32 CCD cameras. Four cameras were placed below and two

cameras above the water. The camera operating frequency was 50 Hz and the shutter

speed 1/120 seconds. The data for each camera were stored in digital format in

separate hard drives, which were all connected to a main unit located in a poolside
control room. All the camera functions (e.g. shutter speed, gain, zoom, focus, pan/tilt

etc) were adjusted at the main unit.

Figure 3.1 illustrates the camera and calibration frame positions in the pool

throughout the recordings (for details regarding the constructed calibration frame see

section 3.2.2) and the directions of movement (as defined in this study). All cameras
remained stationary during the recordings. The below water cameras were fixed at

depths varying from 0.5 to 1.5 m under the water surface, to avoid errors due to the
camera axes being in the same planes as the reference planes of the calibration frame.
The above water cameras were fixed at a height between 2.5 to 3 m. The underwater
cameras were approximately 8 m and the above water 12 m away from the centre of
the calibrated space. The angle between the two above water camera axes was

approximately 100°, while the angles between axes of adjacent below water cameras

varied from approximately 75° to 110°. The camera settings were adjusted so that
each camera recorded a space 6.5 m long, extending 1 m beyond each side the 4.5 m

long calibration frame for the horizontal axis. The latter setting would ensure that at
least one complete SC would be recorded and a large swimmer image would be

3.2 Experimental set up for data collection
3.2.1 Camera set up
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available for data processing and digitising purposes. Figure 3.2 illustrates the field
of view recorded by each one of the six cameras.
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Figure 3.1: Camera and calibration frame set up used for 3D analysis
X / Y/ Z: Horizontal / Vertical / Lateral direction
(Below water: cameras 1 to 4; Above water: cameras 5 and 6)
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Figure 3.2: Cameras' field of view
(Below water: cameras 1 to 4; Above water: cameras 5 and 6)

3.2.2 Calibration

3.2.2.1 Calibration of the 3D space

Filming underwater is problematic and introduces errors additional to those
associated with analyses of motion in air (Kwon, 1999). One of the pre-requisites for
accurate quantification of the variables of interest is accurate calibration of the 3D

space as part of the process of 3D coordinate reconstruction by the direct linear
transformation (DLT) method. No calibration frame for 3D swimming analysis was

available either at Edinburgh University or commercially. Therefore, the first project
of this thesis was the construction of a calibration frame that would be used for the

subsequent 3D swimming analysis. Furthermore, the accuracy and reliability of this
frame for calculation of points in the space above and below water was calculated.
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Preliminary data of this project were presented at the XIII International Symposium
of Biomechanics in Sports (Beijing, China, 22-27 August 2005) and were published
as a full paper in the conference proceedings (Psycharakis et al., 2005). The full

paper is presented in Appendix B.
Due to the limited number of 3D studies conducted in swimming, only a few

papers reported 3D calibration frames used and their specifications. Cappaert et al.
(1995; 1996) used a 5.6 m3 calibration frame (2 x 2 x 1.4 m, for the X, Y and Z axes

respectively). Payton et al (1999a; 2002) used a 1.1 m3 (1.3 x 0.88 x 0.93 m) and
Barbosa et al. (2003) a 9 m3 (3 x 3 x 3 m) calibration frame. In all studies, similar to
the present study, one SC was analysed. However, extrapolations beyond the
calibrated space might cause inaccuracies (e.g. Challis, 1995). Therefore, one of the
objectives of this project was to calibrate a space with sufficient length to minimise
the possibility that parts of the SC would fall outside that calibrated space.

The constructed 3D calibration frame was a rectangular prism of 4.5 m

length, 1.5 m height and lm width, enabling the calibration of a space of 6.75 m3 in
total (Figure 3.3). All details regarding the construction process of this frame are

presented in Appendix B (section: 'Construction process of the calibration frame').

Figure 3.3: The calibration frame constructed for 3D analysis

Before each recording session, the calibration frame was placed into the

swimming pool and monitored simultaneously by the four below and two above
water cameras. The camera set up was identical to the one used for the subsequent
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recordings (as described in section 3.2.1 and shown in Figures 3.1 and 3.2).

Following that, the calibration frame was removed from the pool, and each

participant's performance was recorded while swimming through the pre-calibrated

space. Figures 3.4 and 3.5 show a below and an above water view of the frame.

Figure 3.4: Below water view of the calibration frame

Figure 3.5: Above water view of the calibration frame
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3.2.2.2 Accuracy and reliability of coordinate reconstruction
As discussed in the previous section, the accuracy and reliability of the

calibration frame were assessed. The preliminary data presented at the XIII
International Symposium of Biomechanics in Sports (Psycharakis et al., 2005) as

well as the extended analyses performed for the purposes of this thesis (section:
'Validation process of the calibration frame') are presented in Appendix B. Table 3.1
shows the mean differences (+ SD) and RMS errors between the calculated and real

coordinates (for X, Y and Z directions) for the 20 markers used for calibration in

each view (below and above water).

Table 3.1: Mean values and root mean square (RMS) errors for the differences
between calculated and real values for the coordinates of 3D calibration markers

Markers Location Mean Differences (±SD) (mm) RMS errors (mm)
X Y Z X Y Z

Above water (N=20) 3.5 (±1.7) 3.3 (±1.8) 3.8 (±1.8) 3.9 3.8 4.2

Below water (N=20) 2.3 (±1.4) 2.4 (±1.5) 4.5 (±1.8) 3.3 3.6 5.2

The average RMS errors for both the above and below water points

represented 0.1 %, 0.5% and 0.5% (0.4% for the above water points) of the
calibrated space for the X, Y and Z directions respectively. The digitising reliability
indicated by 10 repeated digitisations of one marker (with the use of 10 control

points) were + 0.4 mm, ± 0.5 mm and + 0.4 mm, for the X, Y and Z axes

respectively.
The reconstruction accuracy and reliability in the present study was in general

similar or better compared to other studies (for details of accuracy and reliability
calculations in other studies see section 'Validation process of the calibration frame',

Appendix B). In addition, the large volume of the calibrated space (6.75 m3)
minimised the possibility of extrapolation beyond that space, increasing further the

accuracy of the measurements. Therefore, the errors in the system reconstruction

accuracy and reliability in this study were considered to be low and acceptable.
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3.2.3 Acquisition and calculation of anthropometric data
3.2.3.1 Elliptical zone method

The elliptical zone method maximises accuracy of CM calculation by taking
into account the morphology of individual segments of individual subjects. A version
of Jensen's (1978) elliptical zone method developed by Deffeyes and Sanders (2005,
abbreviated from this point onwards as eZone) was used to calculate body segment

parameter data for subsequent calculation of whole body CM. The Deffeyes and
Sanders version was written in MATLAB for use on a PC.

3.2.3.2 Camera set up

Two digital Canon Ixus 400 cameras (4.0 mega pixels) were fixed to tripods,
one for the side view and one for the front view of the participants. Even though
2 mega pixels digital cameras would be considered adequate for such calculations

(Deffeyes & Sanders, 2005), the aforementioned higher resolution Canon cameras

were preferred in order to allow for larger image-to-actual-body-size ratios and
minimise errors during the digitising process. The camera axes were perpendicular to
each other with the height of the centre of their lenses set to 1 m. To minimise image

distortion, the cameras were positioned 12 m away from the participants with the
maximum optical zoom (108 mm) being used to ensure large image sizes of the
swimmers. The camera shutter speeds and apertures were set to 1/60 seconds and
f5.5 respectively. The ISO equivalent speed of 200 was used. To optimise picture

quality, the investigator ensured there was adequate lighting and the background

provided sufficient contrast with the body segments.

3.2.3.3 Participant preparation
The participants wore the swimming suits and caps they used for the

subsequent swimming test. The stature and body mass of the participants were then
recorded with a use of a stadiometer (Seca 225-1821009) and a set of pre-calibrated

laboratory scales (Seca 712-1321009). Black water-proof body paint was used to

mark the participants' anatomical landmarks of interest for the eZone method and

subsequent swimming test. These anatomical landmarks and the respective marker
locations are shown in Table B.4 (Appendix B).
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3.2.3.4 Filming procedures
Before photographing the participants, a reference scale of known distances

of both the vertical and horizontal axes was photographed with both cameras and
served as a calibration (Figure 3.6). The scale was placed at the same plane as the

participants' mid-frontal and mid-saggital planes would be positioned for the

subsequent pictures. The reference frame was then removed and the participant stood
at the same point, adopting the anatomical reference position.

Figure 3.6: Side view of the calibration scale used for eZone calculations

Swimmers were instructed to adopt the anatomical reference position with
feet plantar flexed, the neck slightly extended with the jaw parallel to the ground and
the palms facing forwards with the fingers straight. Inclined blocks were used to

facilitate plantar flexion of the feet without bending the toes. Each swimmer was

photographed from the frontal and lateral views simultaneously. Figure 3.7 shows a

front and a side view picture of participants tested in this study.
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Figure 3.7: Front and side view pictures of participants, used for eZone calculations

3.2.3.5 Mass and centre of mass calculation

The pictures of the reference scale and the participants were saved as 'jpeg'
files and input to the MATLAB eZone programme running on a PC. Research has
shown that large image-to-actual-body-size ratios tend to reduce the mean digitising
errors (Wicke & Lopers, 2003). Therefore, for all digitising operations the images
were zoomed in to ensure sizes of a 1:5 ratio or larger.

In response to the prompts from the eZone programme the operator digitised
the reference scale and all the anatomical landmarks for each swimmer (as shown in

Table B.4, Appendix B) in both views. Then, the outlines of the following segments

were digitised for each view: head and neck; trunk (thorax and abdomen); upper limb

(upper arm, forearm and hand); lower limb (thigh, shank and foot). Figure 3.8 shows
the front and side views of the model displayed in eZone upon completion of the

digitising process.
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Figure 3.8: Front and side views of the model displayed in eZone programme upon

completion of the digitising process

Note: These models only served as operator's confirmation references and did not perfectly
represent the participants' calculated anthropometric data

3.2.3.6 Accuracy and reliability of eZone method
As an indication of accuracy, the differences between the obtained (calculated

with eZone) and real (measured with the use of pre-calibrated laboratory scales)

body mass values were calculated for all 11 participants. The mean and SD of the
values, as well as the percentages of the mean differences were then calculated. In

addition, similar to the accuracy calculations conducted for the 3D calibration frame,
the RMS errors were calculated, as they provide a rigorous assessment of accuracy

(Challis, 1997). Moreover, this measure represents the error bounds within which
68 % of measures would fall and is the combined effect of accuracy and reliability.
The RMS errors were calculated by squaring the errors for all participants, and then

taking the square root of the average of the squares of the errors.

The mean (+SD) differences (for the group of swimmers) between calculated
and real values for the whole body mass were -0.2 + 0.9 kg or -0.3 ± 1.3 %

(expressed as percentage of the real body mass values). The RMS errors for the
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absolute and percentage differences were respectively 0.9 kg and 1.3 %. The mean

errors and SD of the errors found in this study were in general smaller than those

reported in most studies in which the eZone method has been used (Jensen, 1978;

Finch, 1985; Yokoi et al., 1985; Jensen, 1986a; 1986b; Sanders et al., 1991; Jensen

& Fletcher, 1994), indicating that the eZone method used in this study had high

accuracy. The mean errors reported in other studies ranged from 0.1 + 3.0 % (Jensen
& Fletcher, 1994, N=19) to 1.4 ± 0.4 % (Jensen, 1978, N=3).

Reliability of the eZone calculations and the digitising procedure was

assessed by repeated digitising of the same participant. The same operator (to
eliminate inter-operator errors and to use the same operator as in the data analysis of
the thesis) repeated the procedure 10 times. The SD for the body mass values across

all digitisations was calculated as an indication of reliability.
The reliability calculations indicated low SD values for both the body mass

calculations and the differences between calculated and real body mass values. The
SD for the whole body mass was 0.4 kg, which represented 0.3 % of the mean mass

value of this participant. These values were considered low and acceptable.

However, no other studies have reported digitising reliability for the eZone method.

3.3 Data treatment and analysis
3.3.1 Selection of stroke cycles and analysis parameters

To address the purposes of this study the following kinematic variables were

analysed for all participants:

Intracycle V of the CM, for the horizontal, lateral and vertical directions.
Trunk kinematics: shoulder and hip roll.

Upper and lower extremity kinematics: MEF during the underwater arm phase of
the stroke; MKF.

In addition to the above, the generic kinematic parameters that describe

performance were calculated for each SC. These were the average V, SR, SL and
time for each SC. Calculation methods for all the aforementioned variables are

presented in section 3.3.3.
Swimmers were monitored while swimming through the pre-calibrated space

and one complete SC was analysed for each 50 m of the 200 m freestyle. The SCs
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recorded were those for which swimmers were swimming in the direction shown in

Figure 3.1, to eliminate any influence of the turns and underwater swimming on

stroke kinematics. A SC was defined as the period between and including the video
field corresponding to hand entry to the video field corresponding to the next hand

entry of the same hand.

3.3.2 Digitising procedure
The Ariel Performance Analysis System (APAS) was used to digitise the

body landmarks for each field during the period of interest and for each camera view
and to calculate the 3D coordinates of each body landmark. The calculation of 3D
coordinates relies on the Direct Linear Transformation (DLT) method (Abdel-Aziz &

Karara, 1971) incorporated in the APAS software. The accuracy of locating

submerged markers was maximised by having four cameras. This meant that for the
vast majority of the digitised frames each marker was clearly visible by at least two
different cameras, minimising the incidence of 'guessed points' being used in the
DLT calculation.

Prior to digitising, the synchronised files obtained for all six cameras were

trimmed to the SCs of interest, using the APAS 'Trim' software function. Accurate

trimming was ensured by using the time codes displayed on the top left corner of
each camera frame (e.g. see Figure 3.4). Two sequence files were then created in the
APAS 'Digitise' software function, one for the below and one for the above water

views. For all the recorded frames in the SC and for each camera, the following
reference points were manually digitised for each swimmer: vertex; shoulder, elbow,

wrist, hip, knee, ankle and metaphalangeal joints; the end of the middle fingers and
the big toes. These were the same anatomical reference points marked and digitised

during the data collection for the eZone method. For each camera, all the visible

points were digitised for each frame. APAS software allows skipping non-visible

points, rather than having to digitise an estimated point on the screen. For subsequent

transformations, APAS uses only the input data for the digitised points for each
camera.

The number of calibration points to be used was based on the results of the

accuracy comparison between different numbers of control points, as described in
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Appendix B (section: 'Validation process of the calibration frame'). The calibration
frame position (described in section 3.2.2.1) allowed the use of coordinates from the
same reference system for both below and above water views. This eliminated the
need for adjustments in the raw data obtained for all body landmarks digitised on

each swimmer.

When digitising was completed, the above and below water sequences were

separately transformed into 3D coordinates using the APAS 'Transform' function
based on the method of Abdel-Aziz and Karara (1971). The raw displacement data
for all the digitised landmarks and for both views was then obtained in the APAS

'Display' software function. The above and below water data were then combined
into a single file representing the continuous coordinates throughout the SC for each
landmark and saved in 'text' files. These data were used for the calculation of the

parameters of interest as described in section 3.3.3.

3.3.3 Calculation of variables

A MATLAB programme developed by Sanders (2005) was used for all
variable calculations in this study. The investigator input the text files with the

anthropometric (as described in section 3.2.3) and raw displacement data for all the
landmarks of interest (as described in section 3.3.2) for each SC and each swimmer.

A Fourier transform and inverse transform were used to filter and smooth the data by

retaining harmonics at 6 Hz in the inverse transform. For swimming movements,

smoothing frequencies of 6 Hz or less are considered acceptable and are commonly
used by researchers (e.g. Cappaert et al., 1995; Payton et al., 2002). Data were output

as 101 points representing percent points (0 to 100) of the SC by setting the loop size
to 101 in the inverse Fourier transforms. Real time values corresponding to the

percent points were also calculated and output.
All the parameters presented below were calculated four times (once for each

recorded SC) during the 200 m freestyle test, to allow for within as well as between

participant analyses of the variable. Mean values for each parameter of interest in
each SC were calculated by adding the scores for all swimmers and dividing by the
number of swimmers. Mean 200 m values were also calculated by adding the mean

group values for the four SCs and dividing by four. Finally, the values and variation
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for each kinematic parameter of interest were examined in relation to average V of
the CM throughout the 200 m.

• Intracycle velocity and velocity fluctuation
The CM displacement (cm) was determined by the standard procedure of

summing moments of the segment centres of mass about the X, Y, and Z reference
axes. The V of the CM (m-sec"1) was then obtained by differentiating the CM

displacement data using the first central difference formula. The distinct minimum
and maximum instantaneous velocities were obtained from the intracycle V data. The

timings of V maxima/minima in each SC were calculated as a percentage of the
overall SC time. The fluctuation of the CM velocities (m-sec"1) in each direction was

calculated by subtracting the minimum from the maximum instantaneous V in each
SC. Finally, the V fluctuation for each direction was also calculated as a percentage

of the average horizontal V of the CM.

• Average velocity, stroke rate and stroke length
The average horizontal swimming V (m-sec"1) for each swimmer was

calculated by taking the mean of the CM horizontal V for one complete SC. SR

(cycles-min1) was calculated by dividing one (representing one complete SC) with
the time (in minutes) required to complete a given SC. Finally, SL (m-cycle1) was

calculated by dividing the horizontal displacement of the CM during a SC by one

(representing one complete SC).

• Shoulder and hip roll
The trunk vector was defined by connecting a line from the midpoint of the

shoulder to the midpoint of the hip joints. The normal to the shoulder/trunk plane
was defined as the cross product of the trunk unit vector and the unit vector in the
direction of the line connecting the shoulder joints. The shoulder roll angle (degrees)
was calculated as the angle between the vertical and the projection of the normal
onto the YZ plane. The hip roll angle (degrees) was calculated in the same manner as

the shoulder roll except that the normal to the hip/trunk plane rather than the normal
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to the shoulder/trunk plane was projected onto the YZ plane. The unit vector

representing the line of the hips was in the direction of the line joining the hip axes.

The peak shoulder and hip roll to each side were calculated to identify

possible technique asymmetries. Rolling to the right was defined as the rolling of the

shoulders/hips during the phase of the stroke that the right shoulder/hip was higher
than the left shoulder/hip, and vice-versa. Timings of appearance of peak shoulder
and hip roll angles were calculated for both sides as a percentage of the overall SC
time.

• Angular motion of the elbow and knee joints
The elbow angular displacement (degrees) was calculated as the arctangent of

the dot product of the unit vectors of the lines connecting the shoulder and elbow

joints and the elbow and wrist joints. Similarly, the knee angle (degrees) was

calculated as the arctangent of the dot product of the unit vectors of the lines

connecting the hip and knee joints and the knee and ankle joints. Both angles were

calculated separately for the left and right elbow/knee joints. The MEF and MKF

corresponded to the minimum elbow (during the UWP) and knee angles,

respectively. The timing of MEF during the underwater phase of the stroke was

calculated for both arms as a percentage of the overall SC time. Similarly, the timing
of MKF in a SC was calculated for both knees as a percentage of the overall SC time.

• Criteria for bilateral analyses of kinematic parameters
As discussed above, all kinematic parameters in this study were calculated for

both right and left sides to identify any bilateral asymmetries in swimmers'

techniques and to examine whether the magnitude of any asymmetries was

associated with swimming V. The investigation of the cause of any asymmetries was

beyond the scope of this thesis and, therefore, the research design did not include the
measurement of any parameters that could be related to possible technique

asymmetries. Nevertheless, personal communication with the swimmers and coaches

throughout the testing period revealed that all swimmers tested were right handed.
This meant that all swimmers favoured the right hand/arm for one-handed tasks (e.g.

writing) as they felt it was superior to the left in terms of strength and co-ordination.
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In view of this fact and in addition to the analysis of the overall bilateral asymmetries

(absolute values), it was decided to compare the values of the right and left sides.
The latter would allow the identification of any side dominance and the extent to

which any such dominance would be associated with the right-handedness of the
swimmers.

• Reliability of kinematic parameters calculation
The influence of digitising reliability on the kinematic parameters measured

in this study was assessed with the same methods used for assessment of digitising

reliability of the calibration frame and eZone method. Thus, one complete SC of one
swimmer was digitised 10 times for all six cameras (four below and two above

water). For each parameter of interest, the SD across all digitisations was calculated
as an indication of reliability.

3.3.4 Statistical analysis
The results for all variables were presented in graphs and tables for the whole

group (mean values + SD) as well as for some individual swimmers. To identify

significance of changes in variables across the stages of the swim, repeated measures

analysis of variance (ANOVA) was performed between SCs 1, 2, 3 and 4. Repeated
measures ANOVAs were also used to address significance of the differences
between scores of the left and right side for each parameter of interest. To assess the
nature and strength of correlations between variables for each of the race stages, the
Pearson's product moment correlation coefficient (r) was calculated. This meant that
there were 11 scores (one for each participant) for each variable for each race stage

(SCs 1 to 4 and mean 200 m scores). The exact p values were calculated and
statistical significance was accepted for p<.05.

As one of the main statistical assumptions is that characteristics of the normal
curve can be applied (Vincent, 2005), in all statistical calculations in this study
skewness and kurtosis were assessed for each data set. Skewness is a description of
the direction of the peak of the curve of distribution of data and the nature of the tails
of the curve, while kurtosis is description of the shape of the curve of the distribution
of data (Thomas et al., 2005). According to Vincent (2005), data are considered to be
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within acceptable limits of skewness and kurtosis if the Z values (raw scores

expressed in SD units) do not exceed ± 2.0. Since no data sets in this study violated
the assumption of skewness and kurtosis, no data adjustments were required.

For all the repeated measures ANOVAs performed in this study, the

assumption of sphericity was tested. Thomas et al. (2005) stated that in repeated
measures designs the pooled data (across all participants) must exhibit sphericity (the

assumption that repeated measures are uncorrelated and have equal variance). For the

present study, the Greenhouse-Geisser adjustment was applied for correction of the
values when the sphericity assumption was violated (Vincent, 2005).

In addition to the original repeated measures ANOVA for the four SCs, post
hoc tests were conducted to identify the significance of the findings for different

pairs of SCs. However, further statistical measurements increase the probability of

type I errors (differences found that in reality do not exist). To eliminate the

possibility of type I errors, a Bonferroni adjustment to reduce the alpha level was

applied, as described by Vincent (2005).
All ANOVA measurements, as well as the tests for data skewness and

kurtosis and sphericity, were conducted with the use of the Statistical Package for
Social Sciences (SPSS) 14.0 software. The Microsoft Office Excel 2003 software

was used for the calculations of Pearson's correlation coefficient.
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4. Results

4.1 Reliability of kinematic parameters calculation
Table 4.1 shows the reliability calculations for each kinematic parameter of

interest. The values were in general low and acceptable, indicating reliable 3D data
calculations in this study.

Table 4.1: Reliability of kinematic parameters
Parameter Standard Deviation

Average horizontal V (m-sec'1) 0.002

Stroke rate (cycles-min1) 0.002

Stroke length (m-cycle1) 0.00

Maximum/minimum horizontal V (m-sec1) 0.03

Timing of maximum/minimum horizontal V 1.29

(% of SC time)
Horizontal V Fluctuation (m-sec"1) 0.03

% Horizontal V fluctuation (% of average V) 1.59

Vertical V fluctuation (m-sec'1) 0.02

% Vertical V fluctuation (% of average V) 1.42

Lateral V fluctuation (m-sec"1) 0.03

% Lateral V fluctuation (% of average V) 1.70

Shoulder roll (degrees) 2.40

Hip roll (degrees) 2.00

Timing of shoulder/hip maximum roll (% of SC time) 1.12

Maximum elbow flexion (degrees) 2.23

Timing of maximum elbow flexion (% of SC time) 0.55

Maximum knee flexion (degrees) 1.69

Timing of maximum knee flexion (% of SC time) 1.33

4.2 Average velocity, stroke rate and stroke length
One of the conditions for considering a test acceptable was that a swimmer's

performance would be less than 105 % of his personal best time of the season. Since
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all swimmers' performance satisfied these criteria when first tested, no swimmers
had to repeat the test on a different day. Swimmers were 2.0 ± 2.9 % slower than
their best performance of the season. The relatively high SD was due to the fact that
some swimmers' performances were faster than their season's best.

Figure 4.1 illustrates the average horizontal V of the CM, for each swimmer
and for all four SCs of the 200 m freestyle (numerical data are shown in Table C.l,

Appendix C). Table 4.2 shows the changes in SR, SL and time of the SC throughout
the 200 m (individual data are shown in Table C.2, Appendix C). Table 4.3 shows
the significance levels obtained from the repeated measures ANOVA performed for

V, SR, SL and time.
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Figure 4.1: Average horizontal V of the CM for all swimmers

Table 4.2: Stroke rate, stroke length and time of each SC
SC1 SC2 SC3 SC4 Mean

Stroke Rate 47.79 42.85 44.04 43.39 44.52

(cycles-min1) (±5.37) (±5.69) (±5.41) (±4.74) (±4.84)
Stroke Length 2.11 2.14 2.02 2.01 2.07

(m-cycle1) (±0.24) (±0.28) (±0.28) (±0.22) (±0.24)
Stroke Cycle Time 1.27 1.42 1.39 1.40 1.37

(sec) (±0.15) (±0.20) (±0.21) (±0.17) (±0.17)
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Table 4.3: Significance levels of the repeated measures ANOVA tests for average
horizontal V, SC time, SR and SL

Average V Stroke Rate Stroke Length Time

Overall F3,30=104.5 Fu,17=8.7 F1.5,15=4.0 F3,30=8.0

(p<0.001)* (p=0.004)* (p=0.052) (p<0.001)*
SC1 / SC2 <0.001* <0.001* 1.000 <0.001*

SC1 / SC3 <0.001* 0.148 1.000 0.181

SC1/SC4 <0.001* <0.001* 0.005* 0.001*

SC2/SC3 0.008* 1.000 0.506 1.000

SC2/SC4 0.014* 1.000 0.008* 1.000

SC3/SC4 0.808 1.000 1.000 1.000

*: significant at p<.05

In general, the average horizontal V of swimmers' CM decreased with each

SC, with the exception of SC4, where some swimmers increased V in relation to

SC3. The average horizontal V was significantly higher in SCI than in the other
three SCs. Horizontal V was also significantly higher in SC2 than SC3 and SC4. The
mean V for the group throughout the 200 m was 1.52 ± 0.06 m-sec"1.

The reduction in horizontal V from SCI to SC4 was 0.23 ± 0.05 m-sec"1.

When expressed as a percentage of the initial average V (V for SCI), the V reduction
was 13.50 ± 3.03 %. The correlation between the mean 200 m horizontal V and the

reduction in horizontal V (V for SCI minus V for SC4) was very low and not

significant (r=0.11, p=0.748). Similarly, there was a very low correlation (r=-0.01,

p=0.977) between mean 200 m V and the V reduction expressed as a percentage of
the initial V.

SR was significantly higher and SC time was significantly lower in SCI than
in SC2 and SC4. SL was significantly lower in SC4 than in SCI and SC2. The lack
of significant differences between SCI and SC3 in all parameters was probably due
to variability in the SR/SL combinations used by some swimmers.

There was no significant correlation between V and SR (0.23 < r < 0.42,
0.198 < p < 0.496) or V and SL (-0.10 < r < 0.09, 0.779 < p < 0.977) throughout the
test. However, SR and SL were significantly correlated for all SCs and the mean

200 m values (-0.95 < r < -0.91, pcO.001).
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4.3 Intracycle velocity of the centre of mass
4.3.1 Horizontal velocity
4.3.1.1 Velocity patterns

The intracycle horizontal V of the CM varied greatly both within and
between swimmer SCs. There were two distinct V maxima for all SCs for each

swimmer, associated with the left and the right underwater arm phases. There were

two distinct V minima associated with the underwater arm phases for most

swimmers. In some cases, instantaneous V values similar in magnitude to these
minima existed in other parts of the SC (e.g. see Figure 4.2, SC4, second V trough).

The V profiles of most swimmers indicated bilateral asymmetries for both
maximum and minimum values in each SC, with the magnitude of difference
between sides varying between swimmers and occasionally across cycles within
swimmers. The magnitude of V maxima/minima and their timing of appearance in
each SC are presented in sections 4.3.1.3 and 4.3.1.4. Figures 4.2 and 4.3 illustrate
the horizontal V patterns of the CM for the swimmer with the most symmetrical and
the swimmer with the most asymmetrical maximum V pattern.

— SC1 — SC2 SC3 — SC4

Figure 4.2: Pattern of horizontal V of the CM for swimmer 1
The pattern is symmetrical with regard to the magnitude of the two V maxima
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Percentage of Stroke Cycle Time
— SC1 —SC2 SC3 - SC4

Figure 4.3: Pattern of horizontal V of the CM for swimmer 5
The pattern is not symmetrical with regard to the magnitude of the two V maxima

4.3.1.2 Velocity fluctuations
Figure 4.4 shows the magnitude of intracycle horizontal V fluctuations

(absolute and percentage) for the group of swimmers for each SC (individual
swimmer data are shown in Table C.3, Appendix C). Figure 4.5 shows the changes in
overall maximum and minimum V throughout the test. Table 4.4 shows the

significance levels obtained from the repeated measures ANOVA performed for
absolute and percentage fluctuations and maximum/minimum V.
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Figure 4.4: Magnitude of intracycle fluctuations of the horizontal V of the CM
Values in the left y-axis represent average V and V fluctuation. Values in the right y-axis
represent percentage V fluctuation.
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Figure 4.5: Minimum and maximum intracycle horizontal V of the CM
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Table 4.4: Significance levels of the repeated measures ANOVA tests for horizontal
V fluctuations and minimum/maximum V of the CM

V Fluctuations Instantaneous V

Absolute % Maximum Minimum

Overall F3,3o=6.2 F3,3o=4.8 F2,2o=35.2 F3i3o=29.0

(p=0.002)* (p=0.008)* (p<0.001)* (p<0.001)*
SC1 / SC2 0.087 1.000 <0.001* 0.002*

SC1/SC3 1.000 0.265 0.001* <0.001'1

SC1/SC4 0.145 1.000 <0.001* 0.001*

SC2 / SC3 0.044* 0.017* 1.000 0.004*

SC2 / SC4 1.000 1.000 0.223 0.166

SC3 / SC4 0.005* 0.009* 0.443 1.000

*: significant at p<.05

The absolute and percentage fluctuation values were significantly higher in
SC3 than SC2 and SC4. There were no significant differences in V fluctuations for

any other pairs of SCs. The percentage fluctuation values were similar in SCI, SC2
and SC4 (differences smaller than the reliability calculations shown in Table 4.1,
section 4.1). The data also showed between and within swimmer differences in

fluctuation values for a given average V.
The maximum/minimum velocities were significantly higher in SCI than in

the other three SCs. There were no significant differences in maximum/minimum V
for any other pairs of SCs, with the exception of minimum V that decreased

significantly from SC2 to SC3.
Table 4.5 shows the correlations between average V of the CM and the

following variables: maximum/minimum V, absolute/percentage fluctuation of V.
There were no significant correlations between the average horizontal V and the

magnitude of V fluctuation. Average V was significantly correlated with maximum
V. The correlations with the minimum V for the same phases were either lower or
not significant (with the exception of SC4).

Table 4.6 shows the correlations between maximum/minimum V and

absolute/percentage V fluctuation. Maximum V was significantly correlated with
both the absolute (with the exception of SC4) and percentage (with the exception of
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SC3 and SC4) V fluctuation. Minimum V was significantly correlated only with the

percentage fluctuations in SCI and SC4. Finally, the correlations between maximum
and minimum V were not significant (0.15 < r < 0.56, 0.080 < p < 0.660).

Table 4.5: Correlations between average V of the CM and the following variables:
maximum/minimum V, absolute/percentage V fluctuation

Correlations with Average V
SC1 SC2 SC3 SC4 Mean

V 0.29 0.42 0.43 -0.07 0.34

Fluctuation (0.387) (0.198) (0.187) (0.838) (0.306)
% V 0.14 0.20 0.13 -0.34 0.10

Fluctuation (0.681) (0.555) (0.703) (0.306) (0.770)
Maximum 0.79 0.80 0.86 0.71 0.81

V (0.004)* (0.003)* (<0.001 )* (0.014)* (0.003)*
Minimum V 0.49 0.58 0.72 0.83 0,64

(0.126) (0.061) (0.013)* (0.002)* (0.034)*

p values are shown in the parentheses
*: significant at p<.05

Table 4.6: Correlations between maximum/minimum V and absolute/percentage V
fluctuation

Correlations with Absolute V Fluctuation

SC1 SC2 SC3 SC4 Mean

VMax 0.71 0.85 0.72 0.56 0.75

(0.014)* (<0.001 )* (0.013)* (0.073) (0.008)*
VMin -0.58 -0.33 -0.16 -0.50 -0.37

(0.061) (0.322) (0.638) (0.117) (0.263)
Correlations with % V Fluctuation

SC1 SC2 SC3 SC4 Mean

VMax 0.61 0.72 0.50 0.34 0.60

(0.046)* (0.013)* (0.117) (0.306) (0.050)*
VMin -0.68 -0.50 -0.42 -0.70 -0.55

(0.021)* (0.117) (0.198) (0.017)* (0.080)

p values are shown in the parentheses
*: significant at p<.05
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4.3.1.3 Analysis of velocity fluctuations for the underwater phases
of the left and right arms
4.3.1.3.1 Appearance of distinct maxima and minima

Both the minimum and maximum velocities for each arm's UWP were

observed when the opposite arm was not contributing to propulsion. In the case of

every swimmer, maximum V occurred during the first half of the UWP of the arm

(after performing the 'catch'), while the hand was moving downwards and
backwards (elbow ahead of shoulder on the horizontal axis). At the same time the

opposite arm was above water, at the early stages of the recovery phase. Minimum V
occurred at the second half of the UWP of the arm, when the hand was moving
backwards and upwards (elbow behind the shoulder on the horizontal axis). During
the appearance of minimum V the opposite arm was either at the end of the recovery

phase (before entering the water) or at the glide phase of the UWP (hand gliding
forward without applying any propulsive forces), before performing the 'catch'.

4.3.1.3.2 Changes throughout the test

Figure 4.6 illustrates the V maxima/minima and the V fluctuations during the
UWP of each arm (numerical data are shown in Tables C.4 to C.7, Appendix C).
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Figure 4.6: Minimum (Min) and maximum (Max) instantaneous V and magnitude of
V fluctuations (Flue) corresponding to the UWP of the left and right arms
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Table 4.7 shows the significance levels obtained from the repeated measures

ANOVA performed for the V maxima/minima and V fluctuations for the left and

right sides. The minimum and maximum velocities for both arms' UWPs were

significantly higher in SCI than in the other three SCs. There were no significant
differences in any other pairwise V comparisons, with the exception of the minimum
V and the V fluctuation for the left arm UWPs, which decreased from SC2 to SC3.

Table 4.7: Significance levels of the repeated measures ANOVA tests for V
maxima/minima and V fluctuations for the right and left sides

RVMax LVMax RVMin LVMin

Overall F2.1,21=32.1 F3,30=28.7 F3,30=26.2 F3,30=31 .1

(p<0.001)* (p<0.001)* (p<0.001)* (p<0.001)*
SC1 /SC2 <0.001* 0.002* 0.001* 0.001*

SC1/SC3 0.002* 0.001* <0.001* <0.001*

SC1 / SC4 <0.001* <0.001* <0.001* 0.001*

SC2/SC3 1.000 0.187 1.000 0.015*

SC2/SC4 0.312 0.071 0.256 0.110

SC3/SC4 0.554 1.000 0.975 1.000

RF LF % RF % LF

Overall ^3,30=1 -2 Fl.7,17=1 -6 F3,30=0-8 F3,30=3-4

(p=0.339) (p=0.230) (p=0.528) (p=0.030)*
SC1/SC2 0.638 1.000 1.000 1.000

SC1/SC3 1.000 1.000 1.000 0.167

SC1 / SC4 1.000 1.000 1.000 1.000

SC2/SC3 1.000 0.022* 1.000 0.013*

SC2/SC4 1.000 1.000 1.000 1.000

SC3/SC4 1.000 0.078 1.000 0.125

RVMax / RVMin: Maximum / minimum V during right arm UWP
LVMax / LVMin: Maximum / minimum V during left arm UWP
RF / LF: V fluctuation during right / left arm UWP
*: significant at p<.05
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4.3.1.3.3 Bilateral asymmetries
• Asymmetries in minimum and maximum velocity and velocity fluctuation

Table 4.8 shows the bilateral asymmetries in V maxima/minima and V
fluctuations. There were no significant changes throughout the test for the magnitude
of bilateral asymmetries in minimum/maximum V (0.072 < p < 1.000) and V
fluctuation (0.423 < p < 1.000).

Table 4.8: Bilateral asymmetries in V maxima/minima and V fluctuations
Bilateral Asymmetries SC1 SC2 SC3 SC4 Mean

Max V 0.15 0.10 0.13 0.11 0.12

(m-sec"1) (±0.11) (±0.06) (±0.10) (±0.07) (±0.07)
Max V - R side bias 0.14 0.09 0.13 0.11 0.12

(m-sec"1) (±0.13) (±0.07) (±0.10) (±0.07) (±0.08)
Min V 0.14 0.09 0.15 0.08 0.11

(m-sec1) (±0.12) (±0.10) (±0.11) (±0.06) (±0.09)
Min V - R side bias 0.07 0.06 0.13 0.08 0.08

(m-sec"1) (±0.17) (±0.12) (±0.14) (±0.09) (±0.12)
V Fluctuation 0.17 0.12 0.12 0.11 0.12

(m-sec1) (±0.13) (±0.07) (±0.10) (±0.10) (±0.09)
V Fluctuation - R side bias 0.07 0.04 0.00 0.06 0.04

(m-sec"1) (±0.21) (±0.14) (±0.16) (±0.14) (±0.15)
% V Fluctuation 10.57 8.07 8.33 7.71 7.77

(% of Average V) (±8.00) (±4.77) (±6.89) (±6.77) (±6.00)
% V Fluctuation - R side bias 4.23 2.58 0.02 4.18 2.80

(% of Average V) (±12.92) (±9.34) (±11.13) (±9.59) (±9.68)

Right (R) side biases were calculated by subtracting the left from the right side values and
taking the mean. Asymmetries were then calculated by taking the absolute values for these
subtractions and estimating their mean.

The maximum V for the right arm UWP was 0.12 ± 0.08 m-sec"1 and the
minimum 0.08 ± 0.12 m-sec"1 higher than the respective velocities for the left arm
UWP. With regard to maximum V, all swimmers displayed consistently the above

pattern, with the exception of swimmer 4 who had overall symmetry. However the
trend was slightly different for minimum V. Although the group mean of the 200 m

V was higher for the right arm UWP, three swimmers had overall symmetry and
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another two swimmers had higher minimum velocities during the left arm UWP.
Maximum V was significantly higher for the right than the left arm UWP in all SCs

(0.001 <p <0.005). Nevertheless, minimum V was significantly higher for the right
than the left arm UWP only in SC3 (p=0.017).

There were no significant differences in V fluctuations between the left and

right arm UWPs for any SCs (0.320 < p < 0.971), with the between swimmers values

showing no consistent side bias. The individual data showed that seven swimmers
maintained the dominant side (side displaying more fluctuation) throughout the
200 m test, while the remaining four swimmers maintained the dominant side for
three of the four SCs.

• Correlations between variables

Table 4.9 shows the correlations between average V and the magnitude of

asymmetries in V fluctuation and V maxima/minima. There were no significant
correlations for any pairs of variables.

Table 4.9: Correlations for CM average V and asymmetries in V fluctuation and V
maxima/minima

Variables SC1 SC2 SC3 SC4 Mean

Average V - Maximum V -0.36 -0.19 -0.22 -0.04 -0.34

asymmetries (0.277) (0.576) (0.516) (0.907) (0.306)

Average V - Minimum V -0.07 0.08 -0.18 0.20 0.01

asymmetries (0.838) (0.815) (0.596) (0.555) (0.977)

Average V -V fluctuation -0.29 -0.16 -0.29 0.02 -0.16

asymmetries (0.387) (0.638) (0.387) (0.954) (0.638)

Average V - % V -0.10 0.16 -0.38 0.59 -0.21

fluctuation asymmetries (0.770) (0.638) (0.249) (0.056) (0.535)

p values are shown in the parentheses

Table 4.10 shows the coefficients for correlations between the left and right
sides for the V maxima/minima and V fluctuations. There were positive and

significant correlations in the V maxima throughout the 200 m. However, minimum
velocities of the left and right arm UWPs were significantly correlated only in SC4.
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There were no significant correlations between the right and left side values for
absolute and percentage V fluctuations. Moreover, the correlation between maximum
and minimum V for the same side showed no significant relationships for either side

(0.15 < r < 0.53, 0.094 < p < 0.660).

Table 4.10: Correlations between left and right sides for V maxima/minima and V
fluctuations

Variables SC1 SC2 SC3 SC4 Mean

Maximum V 0.62 0.87 0.80 0.74 0.81

(0.042)* (<0.001 )* (0.003)* (0.009)* (0.003)*
Minimum V -0.19 0.15 0.04 0.61 0.04

(0.576) (0.681) (0.930) (0.046)* (0.930)
V Fluctuation 0.08 0.56 0.36 0.14 0.31

(0.815) (0.073) (0.277) (0.681) (0.354)
% V Fluctuation -0.01 0.50 0.20 0.24 0.23

(0.977) (0.117) (0.555) (0.477) (0.496)

p values are shown in the parentheses
*: significant at p<.05

4.3.1.4 Timing of velocity maxima and minima
The timings for the two distinct maxima and minima were defined as Maxl,

Max2, Mini and Min2, with the order of appearance in the SC used as a criterion.
The side of appearance of V maxima/minima was not used as a criterion for the
above definitions, due to between swimmer differences in SC start/end side (i.e. the

analysed cycles were defined as left-to-left hand entry for some swimmers and right-

to-right hand entry for others, due to calibrated volume restrictions).

Figure 4.7 shows the mean values for the timings of maxima/minima for each
SC (numerical data are shown in Table C.8, Appendix C). Maxl occurred

significantly earlier in SCI than SC2 (p=0.011), SC3 (p=0.004) and SC4 (p=0.009).
Min2 occurred significantly earlier in SCI than SC3 (p=0.023) and SC4 (p=0.047).
There were no significant differences in the timings of Mini and Max2 throughout
the 200 m (0.108 < p < 1.000). The differences in timings of maxima/minima
between SCI and SC4 varied from 3.0% to 8.7%. The timings for both V
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maxima/minima were not correlated with average V for any SCs (-0.25 < r < 0.58,
0.061 < p < 0.458).

□ SC1 ESC2 DSC3 DSC4

Figure 4.7: Timings of the intracycle horizontal V maxima and minima

4.3.2 Vertical and lateral velocity
4.3.2.1 Velocity patterns

The average V for both lateral and vertical directions was approximately zero

as expected (due to swimmers swimming in the middle of a lane, on the water

surface), so an analysis of average velocities for these directions would be

meaningless.
Noticeable intracycle variations were recorded for the V of the CM in both

the lateral and vertical directions. There were no distinct between swimmer patterns

in either direction. Nevertheless, individual swimmers were consistent in both the

lateral and vertical V patterns across the four SCs. Figures 4.8 to 4.11 show the
vertical and lateral V patterns of the CM for different swimmers across the four SCs.
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Percentage of Stroke Cycle Time
— SC1 — SC2 SC3 — SC4

Figure 4.8: Pattern of vertical V of the CM for swimmer 2

Percentage of Stroke Cycle Time
— SC1 — SC2 SC3 — SC4

Figure 4.9: Pattern of vertical V of the CM for swimmer 5
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Percentage of Stroke Cycle Time
— SC1 — SC2 SC3 —SC4

Figure 4.10: Pattern of lateral V of the CM for swimmer 2

Percentage of Stroke Cycle Time
— SC1 —-SC2 SC3 —SC4

Figure 4.11: Pattern of lateral V of the CM for swimmer 4

4.3.2.2 Velocity fluctuations
Table 4.11 shows the absolute and percentage fluctuations in intracycle

vertical and lateral V of the CM for each SC. Swimmers appeared to have higher V
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fluctuations for the vertical than the lateral direction, with fluctuations in both

directions being lower than those in the horizontal direction.

Table 4.11: Fluctuations of the V of the CM in the vertical and lateral directions

Direction of V Fluctuation (m sec1)
Fluctuations SC1 SC2 SC3 SC4 Mean

Vertical 0.59 0.53 0.51 0.51 0.54

(±0.11) (±0.09) (±0.10) (±0.08) (±0.09)
Lateral 0.43 0.40 0.39 0.38 0.40

(±0.10) (±0.07) (±0.11) (±0.10) (±0.07)
% Fluctuation (% of Average Horizontal V)

SC1 SC2 SC3 SC4 Mean

Vertical 35.57 35.29 35.03 35.58 35.37

(±5.85) (±5.92) (±6.40) (±5.82) (±5.16)
Lateral 25.73 26.42 26.67 26.19 26.25

(±5.99) (±4.27) (±6.42) (±6.35) (±4.30)

Table 4.12 shows the significance levels obtained from the repeated measures

ANOVA performed for V fluctuations in the vertical and lateral directions. There
were no significant differences in the mean absolute and percentage values for any

pairs of SCs in both the lateral and vertical directions. Nevertheless, the individual
swimmer data showed changes of varying magnitude among swimmers (Tables C.9
and C.10, Appendix C).

Lateral fluctuations were significantly correlated with average V in SC3

(r=0.81, p=0.003 for the absolute and; r=0.71, p=0.014 for the percentage

fluctuation). There were no other significant correlations between vertical/lateral
fluctuations and horizontal V of the CM (0.01 < r < 0.57, 0.067 < p < 0.977).

Table 4.13 shows the correlations between all pairs of V fluctuations in all
directions. There were positive significant correlations for the mean 200 m

fluctuations in most pairs of directions, as well as for some pairwise comparisons for
a few SCs.
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Table 4.12: Significance levels of the repeated measures ANOVA tests for V
fluctuations of the CM in the vertical and lateral directions

V Fluctuations

Vertical Lateral

Absolute % Absolute %

Overall F3,30=6.5 F3,30=0.1 F3,30=0.9 F3,30=0.1

(p=0.002)* (p=0.980) (p=0.449) (p=0.967)
SC1/SC2 0.093 1.000 1.000 1.000

SC1 / SC3 0.077 1.000 1.000 1.000

SC1/SC4 0.075 1.000 0.569 1.000

SC2/SC3 1.000 1.000 1.000 1.000

SC2/SC4 1.000 1.000 1.000 1.000

SC3/SC4 1.000 1.000 1.000 1.000

*: significant at p<.05

Table 4.13: Correlations between V fluctuations of the CM in the three directions

Fluctuation Correlations

SCI SC2 SC3 SC4 Mean

HF/VF 0.54(0.086) 0.48(0.135) 0.31(0.354) 0.43(0.187) 0.60(0.050)*
HF/LF 0.69(0.019)* 0.66(0.027)* 0.44(0.176) -0.09(0.792) 0.67(0.024)*
VF/LF 0.37(0.263) 0.13(0.703) 0.67(0.024)* 0.37(0.263) 0.71(0.014)*

% Fluctuation Correlations

SCI SC2 SC3 SC4 Mean

HF/VF 0.49(0.126) 0.39(0.236) 0.17(0.617) 0.44(0.176) 0.49(0.126)
HF/LF 0.68(0.021)* 0.57(0.067) 0.23(0.496) -0.19(0.576) 0.60(0.050)*
VF/LF 0.32(0.337) -0.05(0.884) 0.55(0.080) 0.26(0.440) 0.64(0.034)*

HF/VF / LF: Horizontal / Vertical / Lateral fluctuation of CM
p values are shown in the parentheses
*: significant at p<.05

4.4 Kinematic parameters of the trunk: shoulder and

hip roll
4.4.1 Overall roll changes

Figure 4.12 shows the range of shoulder and hip roll for the group of
swimmers throughout the 200 m test. Swimmers rolled their shoulders considerably
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more than their hips. The mean roll values for the 200 m were 105.5 + 0.9° and
50.0 ± 5.0° for the shoulders and hips, respectively. Individual data are shown in
Table C.l 1 (Appendix C).

104.5 104.9 106.2 106.4

43.3
49.7 52.7 54.9

2 3

Stroke Cycle

□ Shoulder Roll M Hip Rol[

Figure 4.12: Range of overall shoulder and hip roll

Table 4.14 shows the significance levels of the repeated measures ANOVA
tests for shoulder and hip roll. There were no significant changes in shoulder roll
between any pairs of SCs. The mean shoulder roll values increased by 1.9° from SCI
to SC4, which falls within the reliability limits shown in Table 4.1 (section 4.1).

However, the mean increases in hip roll from SCI to SC4 (11.6°) were greater than
that of shoulder roll. Hip roll was significantly lower in SCI than the other three SCs.

Table 4.15 shows the correlation between average V and shoulder/hip roll, as
well as between shoulder roll and hip roll. The correlations between shoulder/hip roll
and average V were negative and not significant. Ranges of shoulder and hip roll
were positively correlated in all SCs, but the correlations were significant only in
SC2 and SC4.
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Table 4.14: Significance levels of the repeated measures ANOVA tests for shoulder
and hip roll

Shoulder Roll Hip Roll
Overall F3,30=0.4 (p=0.731) F1.7,17==8.5 (p=0.004)*

SC1 /SC2 1.000 0.004*

SC1/SC3 1.000 0.046*

SC1 / SC4 1.000 <0.001*

SC2/SC3 1.000 1.000

SC2/SC4 1.000 0.305

SC3/SC4 1.000 1.000

*: significant at p<.05

Table 4.15: Correlations between shoulder/hip roll and CM average V
SC1 SC2 SC3 SC4 Mean

Shoulder Roll / -0.29 -0.21 -0.50 -0.38 -0.40

Average V (0.387) (0.535) (0.117) (0.249) (0.223)

Hip Roll / -0.31 -0.17 -0.57 -0.48 -0.40

Average V (0.354) (0.638) (0.067) (0.135) (0.223)
Shoulder Roll / 0.33 0.62 0.48 0.60 0.57

Hip Roll (0.322) (0.042)* (0.135) (0.050)* (0.67)

p values are shown in the parentheses
*: significant at p<.05

4.4.2 Roll patterns
Shoulder and hip roll patterns were sinusoidal in appearance for all swimmers

throughout the test. There were two distinct maximum roll values for both shoulders
and hips, corresponding to maximum roll on the left and right sides. The results
showed asymmetries in the magnitude of shoulder and hip roll for the left and right
sides. These asymmetries are presented in section 4.4.3. Moreover, the analysis of
the timings of shoulder and hip roll maxima (presented in section 4.4.4) showed non¬

significant differences. The latter, together with intracycle analysis of roll, indicated
that swimmers were generally rolling the shoulders and hips towards the same

direction during the SC. Figures 4.13 and 4.14 illustrate the rolling patterns of two
swimmers that displayed symmetrical (Figure 4.13) and non-symmetrical (Figure

4.14) magnitude of roll between the left and right sides for both shoulders and hips.
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Percentage of Stroke Cycle Time

——SRI —SR2 SR3 —SR4 --HR1 - - HR2 HR3~ HR4

Figure 4.13: Patterns of shoulder (SR) and hip (HR) roll for swimmer 7
Positive/negative roll values represent roll to the right/left side, respectively
Shoulder/hip roll patterns were symmetrical with regard to roll magnitude on each side

Percentage of Stroke Cycle Time

"—SR1 SR2 ¥R3 — SR4 —■ HR1 --HR2 HR3 — HR4

Figure 4.14: Patterns of shoulder (SR) and hip (HR) roll for swimmer 4
Positive/negative roll values represent roll to the right/left side, respectively
Shoulder/hip roll patterns were non-symmetrical with regard to roll magnitude on each side
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4.4.3 Analysis of roll for the left and right sides
4.4.3.1 Changes throughout the test

Figure 4.15 shows the mean shoulder/hip roll values for the left and right
sides throughout the 200 m test. Individual swimmer data are shown in Tables C.12
and C.13 (Appendix C).
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Figure 4.15: Range of shoulder and hip roll to the left (SR Left, HR Left) and right

(SR Right, HR Right) sides

Table 4.16 shows the significance levels obtained from the repeated measures

ANOVA for the right and left side values for shoulder/hip roll. Similar to the trends
in the overall roll values (section 4.4.1), mean group values showed only minor

changes (up to 1.9°) in shoulder roll between any two SCs for each side, which fall
within the reliability limits shown in Table 4.1 (section 4.1). There were larger

changes in hip roll (up to 5.9°) than shoulder roll for pairs of SCs in both sides. Hip
roll for both sides was significantly less in SCI than SC2 and SC4. The lack of

significance between SCI and SC3 was probably due to larger variability in
individual swimmer values. The changes in shoulder/hip roll were not significant for

any other pairs of SCs.
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Table 4.16: Significance levels of the repeated measures ANOVA tests for shoulder
and hip roll for the left and right sides

Roll

Left side Right side
Shoulder Hip Shoulder Hip

Overall F3,30=1 .0 F3,30=5.7 F3,30=0-8 F3,30=6.1

(p=0.429) (p=0.003)* (p=0.973) (p=0.002)*
SC1 /SC2 1.000 0.039* 1.000 0.013*

SC1/SC3 1.000 0.167 1.000 0.108

SC1/SC4 1.000 0.002* 1.000 0.002*

SC2/SC3 1.000 1.000 1.000 1.000

SC2/SC4 1.000 0.348 1.000 0.760

SC3/SC4 1.000 1.000 1.000 1.000

*: significant at p<.05

4.4.3.2 Bilateral asymmetries
• Asymmetries in shoulder and hip roll

Table 4.17 summarises the bilateral asymmetries in shoulder/hip roll

throughout the test. There were no significant changes throughout the test in the

magnitude of bilateral asymmetries in shoulder (0.667 < p < 1.000) and hip roll

(p=1.000). All swimmers (with the exception of swimmer 2, who showed overall

symmetry) had overall left side dominance in shoulder roll. Shoulder roll values were

significantly higher on the left than the right side for all SCs and the mean 200 m

values (0.001 <p <0.013). On the contrary, there were no significant differences
between hip roll on the left and the right sides (0.374 < p < 0.828). There was no

common trend with regard to the side having larger hip roll values, with four
swimmers displaying overall symmetry, another four having left side dominance and
the remaining three showing right side dominance. Finally, all swimmers with lateral
dominance in shoulder and/or hip roll were consistent throughout the 200 m with

respect to the side that had larger roll.
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Table 4.17: Bilateral asymmetries in shoulder and hip roll
Roll Asymmetries (degrees) SC1 SC2 SC3 SC4 Mean

Shoulder 6.8 6.9 7.8 9.6 7.8

(±5.7) (±5.2) (±3.9) (±6.8) (±4.6)
Shoulder - Left side bias 6.7 5.9 7.8 8.2 7.2

(±5.9) (±6.4) (±3.9) (±8.6) (±5.1)

Hip 5.1 6.2 5.4 5.7 5.6

(±4.8) (±4.3) (±3.8) (±4.9) (±3.8)

Hip - Left side bias -1.5 -2.1 -0.5 -1.6 -1.4

(±7.0) (±7.5) (±6.8) (±7.5) (±6.6)
Left side biases were calculated by subtracting the right from the left side values and taking
the mean. Asymmetries were calculated by taking the absolute values for these subtractions
and estimating their mean.

• Correlations between variables

Table 4.18 shows the correlation coefficients between CM average V and the

following: shoulder/hip roll in the right and left sides, shoulder/hip roll asymmetries.
The correlations between right and left side values for roll and average horizontal V
were not significant (with the exception of two values). There was no significant
correlation between average V and the magnitude of asymmetries in roll.

Table 4.19 shows the correlations between shoulder and hip roll for the left
and right sides. Shoulder/hip roll at the left side were significantly correlated with

shoulder/hip roll at the right side only in SC3. For the left side, there was a positive
and significant correlation between shoulder and hip roll for SC2, SC4 and the mean

200 m values.
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Table 4.18: Correlations between CM average V and the following variables:

shoulder/hip roll in the right and left sides, shoulder/hip roll asymmetries
SC1 SC2 SC3 SC4 Mean

Shoulder Roll Left -0.05 -0.19 -0.50 -0.28 -0.40

(0.884) (0.576) (0.117) (0.404) (0.223)

Hip Roll Left -0.17 -0.15 -0.47 -0.19 -0.26

(0.617) (0.660) (0.145) (0.576) (0.440)
Shoulder Roll Right -0.37 -0.18 -0.44 -0.22 -0.30

(0.263) (0.596) (0.176) (0.516) (0.370)

Hip Roll Right -0.39 -0.14 -0.60 -0.72 -0.47

(0.236) (0.681) (0.050)* (0.013)* (0.145)
Shoulder Roll 0.39 0.01 -0.07 -0.05 0.03

Asymmetries (0.236) (0.977) (0.838) (0.884) (0.930)

Hip Roll 0.22 -0.03 -0.34 -0.26 -0.06

Asymmetries (0.516) (0.930) (0.306) (0.440) (0.861)

p values are shown in the parentheses
*: significant at p<.05

Table 4.19: Correlations between shoulder and hip roll for the left and right sides
SC1 SC2 SC3 SC4 Mean

Shoulder Roll Left / 0.43 0.50 0.72 0.28 0.47

Shoulder Roll Right (0.187) (0.117) (0.113)* (0.404) (0.145)

Hip Roll Left / 0.47 0.53 0.68 0.46 0.54

Hip Roll Right (0.145) (0.094) (0.021)* (0.155) (0.086)

Shoulder Roll Left / 0.31 0.64 0.53 0.77 0.67

Hip Roll Left (0.354) (0.034)* (0.094) (0.006)* (0.024)*
Shoulder Roll Right / 0.46 0.61 0.27 0.34 0.46

Hip Roll Right (0.155) (0.046)* (0.422) (0.306) (0.155)

p values are shown in the parentheses
*: significant at p<.05

4.4.4 Timing of roll maxima
As described in section 4.4.2, both shoulder and hip roll had a single

maximum, on each side. With the order of appearance in the SC as a criterion, these
maxima were defined as SR-Maxl, SR-Max2, HR-Maxl and HR-Max2. Figure 4.16
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shows the timings for all maxima throughout the 200 m test. Individual swimmer
data are shown in Tables C.14 and C.15 (Appendix C).
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Figure 4.16: Timings of the two shoulder (SR-Max1 and SR-Max2) and hip roll (HR-
Max1 and HR-Max2) maxima

Table 4.20 shows the significance levels of the repeated measures ANOVA
tests for the timings of shoulder and hip roll for the left and right sides. All maxima
occurred significantly earlier in SCI than SC2, SC3 and SC4 (with the exception of
HR-Max2 in SC2). There were no significant differences in the timings of any roll
maxima between SC2, SC3 and SC4. Swimmers had some differences between the

timings of SR-Maxl and HR-Maxl, as well as the timings of SR-Max2 and HR-
Max2. However, these differences were very small (ranging from 1.7 % to 4.1 % of
SC time) and not significant for any pairs of maxima in all SCs (0.2165 < p < 0.523).

Finally, the timings of shoulder/hip roll were not correlated with average swimming
V (-0.42 < r < 0.48, 0.135 < p < 0.930).
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Table 4.20: Significance levels of the repeated measures ANOVA tests for the

timings of shoulder and hip roll for the left and right sides
Roll Maxima

Shoulder Hip
1 2 1 2

Overall F3,30=14.7 F3,30=9.4 F3,30=1 1 .1 F3,30=6-3
(p<0.001)* (p<0.001)* (p<0.001)* (p=0.002)*

SC1 /SC2 0.030* 0.018* 0.013* 0.185

SC1/SC3 0.021* 0.025* 0.019* 0.046*

SC1 /SC4 0.001* 0.048* 0.021* 0.040*

SC2/SC3 1.000 0.922 1.000 0.632

SC2/SC4 0.082 1.000 1.000 0.469

SC3/SC4 0.727 0.624 1.000 1.000

*: significant at p<.05

Interestingly, the mean values for shoulder/hip roll maxima and the two

horizontal V maxima suggested that swimmers reached maximum horizontal V and
maximum shoulder/hip roll at the same part of the SCs. There were no significant
differences between the timings for V maxima and shoulder/hip roll maxima

(0.088 < p < 0.963). The differences in timing between maximum V and maximum
shoulder roll ranged from 0.1 % to 2.6 %, while the differences between maximum V
and maximum hip roll ranged from 0.1 % to 5.4 %.

4.5 Kinematic parameters of the upper and lower

extremity
4.5.1 Elbow angular motion during the underwater phases
4.5.1.1 Angular patterns

Figure 4.17 illustrates a typical pattern for the angular ROM of the elbow for
one of the swimmers tested in this study (discontinued parts in the figure correspond
to the above water arm recovery). In general, swimmers' arms displayed the

following pattern during the UWP of the stroke: entered the water slightly flexed and

glided forward (until the 'catch') to stretch to almost 180°, then started flexing until

reaching the MEF and, finally, stretched again until exiting the water. The elbow
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pattern presented one distinct MEF value (minimum elbow joint angle) for all
swimmers throughout the test. MEF in all swimmers occurred during the second half
of the UWP of the stroke (elbow behind the shoulder on the horizontal axis), when

the hand was moving backwards and upwards.

Percentage of Stroke Cycle Time
— L1 —L2 L3—L4 — R1 — R2 R3 — R4

Figure 4.17: Angular motion throughout the four SCs for the left (L1, L2, L3, L4) and
the right elbow joints (R1, R2, R3, R4) during the UWP of the stroke for swimmer 5
Discontinued parts correspond to above-water arm recovery.

4.5.1.2 Analysis of maximum flexion for the left and right elbows
4.5.1.2.1 Changes throughout the test

Figure 4.18 shows the mean values for minimum right/left elbow angle

(corresponding to MEF) for the whole group throughout the 200 m test (individual
swimmer data are shown in Table C.16, Appendix C). Swimmers flexed their left
elbows significantly less in SCI than SC2 (p=0.046), SC3 (p=0.014) and SC4

(p=0.011). The smaller variation in the right MEF values resulted in significant
differences only between SCI and SC4 (p=0.035). There were no significant
differences for either MEF angle between SC2, SC3 and SC4 (0.101 < p < 1.000).
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Figure 4.18: Minimum angle (maximum flexion) during the UWP of the stroke for the
left and right elbows

4.5.1.2.2 Bilateral asymmetries
• Bilateral asymmetries in maximum underwater elbow flexion

Table 4.21 summarises the bilateral asymmetries for MEF during the UWP of
the stroke. There were no significant changes throughout the test for the magnitude
of bilateral asymmetries in MEF (0.189 <P<1 .000). Moreover, there was no

consistent side bias in the side (right or left) for which there was greater MEF. From
the eleven swimmers tested, five had more MEF in the right elbow and two in the left

elbow, with the remaining four showing overall symmetry (mean difference less than
the calculated reliability values). The differences between left and right MEF were

not significant for any SCs (0.074 < p < 0.896). Despite the small magnitude of
bilateral asymmetries, the within swimmer patterns showed that swimmers who had
overall side dominance maintained the side bias in MEF throughout the 200 m (with
the exception of swimmer 7).
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Table 4.21: Bilateral asymmetries in MEF during the UWP of the stroke
Bilateral Asymmetries SC1 SC2 SC3 SC4 Mean

(degrees)
Maximum Elbow Flexion 4.0 5.9 5.4 4.7 5.0

(±3.2) (±3.8) (±5.2) (±3.3) (±2.2)
Maximum Elbow Flexion 2.7 0.8 0.3 1.4 1.3

- Right side bias (±4.5) (±7.2) (±7.7) (±5.8) (±5.1)

Right side biases were calculated by subtracting the right from the left side values and taking
the mean. Asymmetries were calculated by taking the absolute values for these subtractions
and estimating their mean.

• Correlations between variables

Table 4.22 shows correlations between different pairs of the following

parameters: right and left side values for MEF, MEF asymmetries and, average V.
There were positive correlations between MEF for the left and right sides, but were

significant only for SCI and the mean 200 m values. There were no significant
correlations between right/left side values for MEF and average V. Finally, the

magnitude of bilateral asymmetry in MEF was not correlated significantly with

average CM V.

Table 4.22: Correlations between pairs of the following variables: right and left side
values for MEF, MEF asymmetries and, average V

SC1 SC2 SC3 SC4 Mean

MEF Left / 0.81 0.33 0.21 0.51 0.61

MEF Right (0.003)* (0.322) (0.535) (0.109) (0.046)1
MEF Left / 0.21 0.20 -0.33 -0.40 -0.07

Average V (0.535) (0.555) (0.322) (0.223) (0.838)
MEF Right/ 0.20 0.05 0.36 -0.55 0.09

Average V (0.555) (0.884) (0.277) (0.080) (0.792)
MEF Asymmetries / 0.26 0.48 0.40 -0.42 0.55

Average V (0.440) (0.135) (0.223) (0.198) (0.080)

p values are shown in the parentheses
*: significant at p<.05
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4.5.1.3 Timing of maximum elbow flexion
According to order of appearance in the SC, the two timings of MEF (one for

each elbow) were defined as MEF1 and MEF2. Figure 4.19 shows these timings

throughout the 200 m test. Individual swimmer data are shown in Table C.17

(Appendix C).

0T6 1

Maximum Elbow Flexion 1

51.0
53.8 55.7 55.4

Maximum Elbow Flexion 2

□ SC1 HSC2 DSC3 DSC4

Figure 4.19: Timings of the two maximum flexions of the elbows

There were no significant changes in the timings of either MEF for any pairs
of SCs (0.074 < p< 1.000). Average V in SCI was significantly correlated with the

timings of MEF1 (r = 0.67, p=0.024) and MEF2 (r = 0.79, p=0.004). However, there
were no other significant correlations between average V and timings of MEF for

any SCs (0.07 < r < 0.46, 0.155 < p < 0.838).
The mean values for the timings ofMEF and the two minima for horizontal V

of the CM suggested that swimmers had minimum horizontal V and MEF at the
same part of the SC. There were no significant differences between the timings for V
minima and elbow flexion maxima for any SCs (0.120 < p < 0.926). The differences
in timing between minimum V and MEF ranged from 0.3 % to 4.2 %.
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4.5.2 Knee angular motion
4.5.2.1 Angular patterns

Most swimmers employed a six-beat kicking pattern for each SC throughout
the 200 m. However, the between and within swimmer kicking patterns presented
some variations. For example, swimmer 5 had a four-beat kicking pattern while
swimmers 10 and 11 started with a six-beat and switched to a two-beat kicking

pattern in SC3 and SC4. Figures 4.20 and 4.21 illustrate the left and right knee

angular patterns for a swimmer who used a six-beat kicking pattern throughout the

test, while Figure 4.22 shows the left knee patterns for a swimmer who switched
from a six-beat (in SCI and SC2) to a two-beat kicking pattern (in SC3 and SC4).

Percentage of Stroke Cycle Time
— SC1 —SC2 SC3 —SC4

Figure 4.20: Angular motion of the left knee for swimmer 8
This swimmer used a six-beat kicking pattern
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Figure 4.21: Angular motion of the right knee for swimmer 8
This swimmer used a six-beat kicking pattern
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Figure 4.22: Angular motion of the left knee for swimmer 11
This swimmer switched from a six-beat to a two-beat kicking pattern in SC3
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4.5.2.2 Analysis of maximum flexion for the left and right knees
4.5.2.2.1 Changes throughout the test

Figure 4.23 shows the minimum angle (representing MKF) for the left and

right knees throughout the 200 m test (individual swimmer data are presented in
Table C.18, Appendix C). There were no significant changes in maximum flexion
between any pairs of SCs for both knees (0.214<p< 1.000). Swimmers reached
MKF values of similar magnitude several times during each SC, depending on the

kicking pattern used (e.g. see Figures 4.20 to 4.22, section 4.5.2.1).

± X
132.6 128J

■ i
132.8 131.2 133.6 131.0

136.1 133.7

2 3

Stroke Cycle

□ Left Knee ■ Right Knee

Figure 4.23: Minimum angle (maximum flexion) for the left and right knees

4.5.2.2.2 Bilateral asymmetries
• Bilateral asymmetries in maximum knee flexion

Table 4.23 shows the bilateral asymmetries in MKF throughout the test.

There were no significant differences in the magnitude of bilateral asymmetries in
MKF throughout the test (p=1.000). There was high between swimmer variability in
the side having more MKF, with six swimmers displaying more MKF for the left and
five swimmers more MKF for the right knee. The differences between left and right
MKF were not significant for any SCs (0.245 < p < 0.668). Finally, the majority of
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swimmers (with the exception of swimmers 5 and II) maintained the side bias in
MKF throughout the 200 m.

Table 4.23: Bilateral asymmetries in MKF
Bilateral Asymmetries SC1 SC2 SC3 SC4 Mean

(degrees)
Maximum Knee Flexion 8.5 9.3 8.4 8.1 8.6

(±6.5) (±7.0) (±5.5) (±6.3) (±5.5)
Maximum Knee Flexion 3.8 1.6 2.6 2.3 2.6

- Right side bias (±10.3) (±11.9) (±10.0) (±10.3) (±9.9)

Right side biases were calculated by subtracting the right from the left side values and taking
the mean. Asymmetries were then calculated by taking the absolute values for these
subtractions and estimating their mean.

• Correlations between variables

Table 4.24 shows the correlations between pairs of the following parameters:

right and left side values for MKF, MKF asymmetries and, average V. The
calculated coefficients between the left and right side MKF values were significant

only in SC3. There were no significant correlations between average V and right/left
side values of MKF. Finally, average V was not correlated significantly with the

magnitude of bilateral asymmetry in MKF.

Table 4.24: Correlations between pairs of the following parameters: right and left
side values for MKF, MKF asymmetries and, average V

SC1 SC2 SC3 SC4 Mean

MKF Left / 0.50 0.16 0.62 0.56 0.48

MKF Right (0.117) (0.638) (0.042)* (0.073) (0.135)
MKF Left / 0.23 0.09 0.30 -0.03 0.19

Average V (0.496) (0.792) (0.370) (0.930) (0.596)
MKF Right/ 0.01 0.10 0.35 -0.08 0.15

Average V (0.977) (0.770) (0.291) (0.815) (0.660)
MKF Asymmetries / -0.16 0.17 -0.30 -0.36 -0.27

Average V (0.638) (0.617) (0.370) (0.277) (0.422)

p values are shown in the parentheses
*: significant at p<.05
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4.5.2.3 Timing of maximum knee flexion
As described in section 4.5.2.1, the kicking patterns varied both between and

within swimmers. Moreover, there were between and within swimmer differences in

the appearance ofMKF during a SC. For example, Figure 4.24 shows the right knee

kicking pattern of a swimmer who had MKF during the second kick in SC3, rather
than in the first kick as in the other three SCs.

w
(D
<u

o>
a)

2,
a>
o>
c
<
a>
CD
c
*

190

180

170

160

150

140

130

120

110

0 20 40 60 80 100

Percentage of Stroke Cycle Time
— SC1 — SC2 SC3 — SC4

Figure 4.24: Angular motion of the right knee for swimmer 9
This swimmer had inter-cycle differences in appearance of maximum knee flexion

The between and within swimmer differences described above suggested that
an analysis of the timings of MKF in all kicks for the group of swimmers would be
of limited importance and usefulness. Nevertheless, for the purposes of obtaining an

indication regarding the timings of one MKF, the changes in the timings of the same

MKF (using the timing of MKF in SCI as a criterion) throughout the 200 m were

calculated for both the left and right knees. There were no significant changes in the

timings of the left (0.056 <p<0.696) and right (0.060 <p< 1.000) MKF for any

pairs of SCs (with the exception of SC1/SC2 for the right knee, p=0.009).
Differences in the mean values for different pairs of SCs ranged from -1.3 % to

6.2 % (individual data are shown in Table C.19, Appendix C).
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5. Discussion

The purpose of this thesis was to examine the intracycle variations in
kinematic parameters throughout a 200 m maximum freestyle test. Moreover, the

relationships between performance and the magnitude and bilateral asymmetries of
these parameters were investigated. The discussion is presented in four sections. The
first section discusses briefly the changes in average V and the generic kinematic

parameters that are associated with performance (SR and SL). The next three
sections discuss the magnitude and the relationships with performance for the

following parameters: intracycle V maxima/minima and V fluctuations; shoulder and

hip roll; MEF and MKF.

5.1 Test performance, average horizontal velocity,
stroke rate and stroke length

The performance times and pacing strategy (as indicated by comparison of

average CM velocities for the test with elite competition data, as discussed below)
for the 200 m suggested that swimmers simulated successfully a competitive race.

Swimmers generally decreased average V throughout the event, with the exception
of some swimmers that increased V from SC3 to SC4. The reduction in swimming V
is possibly related to the aerobic/anaerobic limitations and fatigue-related changes in

physiological parameters. The increase in V of some swimmers in the last 50 m of
the event may be related to changes in pacing strategies. During the course of a

200 m race, swimmers would swim at sub-maximal rather than maximal pace, as the

physiological effects of the latter would rapidly produce fatigue levels that could
cause an early deterioration of swimming technique. Nevertheless, when the end of
the race is approaching, swimmers usually switch to maximal effort and, therefore,
sometimes produce higher V than in other parts of the race. The focus of this study
was on changes in kinematic characteristics of swimming technique during a 200 m

maximum freestyle swim, with acknowledgement of the effect of fatigue without

quantifying it. Given the paucity of kinematic data in the extant literature such an

investigation was warranted. With this knowledge as a foundation, future research
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could involve interdisciplinary approaches to examine relationships between
biomechanical and physiological variables.

The magnitude of reduction in V was not related to the performance level of
the swimmers. Given that all swimmers produced performances that were very close

to, or even better than, their best competition performance of the year, any negative
effects of training/conditioning status could have had only a small influence in the
test. However, the relationship between average V and the reduction in V may be
affected by factors such as individual pacing strategies. Moreover, it is possible that
the range of average velocities was not large enough to provide an indication of such
a relationship. Even though faster swimmers have been found to have a smaller
decrease in V than slower swimmers in some previous studies (e.g. Chatard et al.,

2001a; 2001b), other studies have shown no differences between faster and slower

swimmers (e.g. Chatard et al., 2001c; 2001d). Also, the calculated reduction in V

might not always represent accurately changes in performance across a race. For

example, if a swimmer maintains a high average V during the first 150 m but

experiences a dramatic decrease in the last 50 m of the race, then the large reduction
in V from the first to the last 50 m would not fully reflect the swimmer's

performance for that race.

Many researchers have calculated average V changes during 200 m freestyle
events. For example, Chatard et al. (2001c) measured in 2D the mid-pool average V
for the male 200 m freestyle final and semi-final events during the 2000 Olympic
Games. The results were very similar to the present study, with swimmers decreasing

average V throughout the test, with the exception of some swimmers that maintained
or increased V in the last 50 m. However, Girold et al. (2001) reported slightly
different patterns for the female 200 m freestyle event. Although the V changes of
the semi-finalists were similar to those discussed above, the finalists had only minor
differences (0.01 m-sec"1) in average V between the second, third and fourth 50 m

lengths. However, it must be noted that the semi-finalists' data were obtained from a

different race (semi-final, rather than final of the event) and some of the between-

group differences might be related to race-specific differences in pacing strategies.
The results of these race analyses suggested that pacing strategies might vary even

for elite level swimmers.
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The SR and SL changes in the present study were also in agreement with data

reported for competitions. Similar to the study of Chatard et al. (2001c), swimmers
in the present study had the highest SR in SCI and the lowest SL in SC4. Changes
between subsequent SCs were not always significant, but such variation in the SR
and SL combinations has been frequently reported in other studies (e.g. Sidney et al.,

1999). The SR/SL relationship in this study confirmed the findings of existing
research (e.g. Arellano et al., 1994), with SR and SL having a strong negative
correlation. Nevertheless, neither SR nor SL were significantly related to average V.

However, this finding should not be surprising, since competition data have indicated
that the influence of SR and SL in performance might vary between swimmers (e.g.
Girold et al., 2001; Chatard et al., 200Id). Therefore, the lack of association between

average V and SR/SL might be attributed to differences between the influence of
these parameters on the average V of individual swimmers.

5.2 Intracycle velocity
Several authors have underlined the importance of maximum/minimum

intracycle horizontal V and of the magnitude of V fluctuations in swimming

performance. However, methodological limitations in previous studies have not

allowed the accurate calculation of the intracycle horizontal V of the CM. Moreover,
no other studies have investigated the intracycle V fluctuations for the vertical and
lateral directions in any swimming stroke. Therefore, one of the main purposes of the

present study was to improve understanding of freestyle swimming kinematics by

calculating accurately the intracycle V in all three directions and identifying any

relationships with performance.

5.2.1 Magnitude of horizontal velocity maxima and minima
and relationships with performance

One of the purposes of this study was to calculate accurately the horizontal V
maxima and minima and to examine whether they are associated with swimming

performance. Both the maximum and minimum V were significantly higher in SCI
than the other three SCs. Minimum V was also significantly higher in SC2 than SC3.

Swimming performance was associated predominantly with maximum V, as high
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average V was linked mainly to swimmers' ability to produce high maximum V (as
indicated by the strong correlations throughout the test), rather than maintain high
minimum V (strong correlations only in SC3 and SC4). Nevertheless, the stronger

correlation between average and minimum V (as opposed to maximum V) in SC4,

implied that (contrary to the first three SCs) during the last SC of the race swimmers
maintained a high average V mainly by increasing (or minimising the reduction in)
minimum V.

It would be logical to expect swimmers to produce higher maximum and
minimum V at the early stages of the race. As the race progresses, the ability of a
swimmer to produce high maximum V decreases due to factors such as fatigue,
which would lead to application of smaller propulsive forces. It is also possible that
deterioration of swimming technique would have a negative effect on the ability of a
swimmer to minimise resistive forces within a SC. Furthermore, it would be

reasonable to assume that SCs of smaller duration are associated with less time of

application of resistive forces. Therefore, the higher minimum V in SCI may be

partially explained by the smaller duration of SCI than the other three SCs.

Nevertheless, despite the durations of SC2 and SC3 being similar, minimum V was

significantly smaller in SC3, while no change was recorded for maximum V. The
latter implied that a deterioration of swimming technique in SC3 affected the ability
of swimmers to minimise resistive forces and/or produce high propulsive forces

primarily during the slowest parts of the SC.
Minimum V and performance were not significantly correlated in SCI and

SC2. However, resistive forces (active drag) in swimming are expected to be

proportional to the square of Y (e.g. Toussaint et al., 1988). The latter could partially

explain the discrepancies (for the correlation between minimum V and performance)
between the first two and the last two SCs. The high maximum velocities reached by
the fastest swimmers in SCI would generate large resistive forces, which could be
associated with the large reduction in V during this SC. When the maximum V of the
swimmers decreased, then the strength of the relationship between minimum V and

performance increased. Therefore, the ability of faster swimmers to limit the V
reduction seemed to increase with decreasing maximum/average V. The latter was
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confirmed by the values of the correlation coefficients (between minimum V and

performance), which increased with each SC.

Moreover, it has been suggested that propelling efficiency is directly related
to the power applied by the swimmers to overcome drag and give the masses of
water pushed away a kinetic energy change (e.g. Toussaint & Beek, 1992). However,

power is a function of V cubed (e.g. Barbosa et al., 2005). Considering that the

ability of a swimmer to produce high V maxima/minima is expected to be associated
with their power and, therefore, the effectiveness in the application of propulsive
forces and their ability to minimise resistive forces, it would be of interest to explore
in future studies whether strong associations between intracycle V changes and

performance exist when the V changes are normalised to take into account the non¬

linear relationship between V and propulsive/resistive forces. However, there is some

experimental evidence suggesting that the linear approach might be a better indicator
of the relationship between energy expenditure (which parallels power) and V (e.g.
Barbosa et al., 2005; 2006). Barbosa et al. (2005; 2006) stated that the higher

adjustment of the linear compared to the cubic relationship could be associated to the
decrease of internal mechanical work to compensate the hydrostatic torque at higher
velocities and/or to an increase in efficiency with increasing V.

Other breaststroke and butterfly studies in this area have shown also that
maximum and minimum velocities are associated with performance, with faster
swimmers reaching higher V maxima/minima than slower swimmers (e.g. Manley &

Atha, 1992; D'Acquisto & Costill, 1998; Takagi et al., 2004). Nevertheless, the

magnitude of V maxima/minima has not been reported in other freestyle or in
backstroke studies. Lower V minima/maxima have been reported in the literature for
breaststroke and butterfly (with the exception of maximum V in butterfly) than the

freestyle values found in the present study. Sanders (1996a; 1996b) reported
instantaneous velocities ranging from 0.52 to 2.33 m-sec"1 for butterfly and from 0.45
to 1.77 m-sec"1 for breaststroke (0.97 to 2.20 m-sec"1 for freestyle in the present

study). Higher maximum V in freestyle than breaststroke/butterfly is expected as the

propulsive phases of the arms overlap (i.e. one arm starts pulling before the opposite
arm exits the water) and, together with the leg actions, maintain continuity in the

production of propulsive forces. However, in butterfly and breaststroke both arms
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recover at the same time and both legs kick simultaneously. Thus, phases with small
or zero propulsive forces during certain parts of the SC would result in low minimum
velocities.

Similarly, larger maximum intracycle velocities in butterfly could be

expected due to higher propulsive forces produced when both arms and legs
contribute to propulsion (as opposed to freestyle). Nevertheless, these propulsive
forces are applied simultaneously only for a small period of time during a SC.

Considering that these forces need to accelerate a swimmer's CM that has probably
reached a smaller minimum V than in freestyle, the maximum V will be dependent
on several factors, such as magnitude and duration of application of propulsive
forces. Taking into account possible differences in the level of swimmers between
the above studies and that bilateral symmetry was assumed for the butterfly analysis,
one cannot state with confidence that maximum intracycle horizontal V in butterfly
is expected to be higher than in freestyle. An analysis on participants of the same

level who would be tested with the same research protocol might be informative with

regards to differences in instantaneous V and magnitude of V fluctuations between
these strokes.

5.2.2 Magnitude of velocity fluctuations
5.2.2.1 Fluctuations in all directions and relationships with

performance
V fluctuations in the horizontal direction are expected due to the variation in

the magnitude and direction of forces during a SC. Fluctuations in vertical and lateral
V would be caused by resultant propulsive and resistive forces having components

other than along the horizontal line in the direction of intended travel. Fluctuations in
vertical V can also be due to changes in the relative magnitude of the buoyancy and

gravitational forces. Therefore, fluctuations in vertical and lateral V occur as segment

movements within a SC constantly change the magnitude and direction of the forces

acting on the swimmer. The movements of the segments are associated with the
swimmer's attempts to generate propulsion and to maintain the most efficient

hydrodynamic position.
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Even though one would expect some V fluctuations in directions other than
the horizontal, it is probably surprising that noteworthy fluctuations of the magnitude
of 0.40 m-sec"1 (26.25 % of average horizontal V) and 0.54 m-sec"1 (35.37 % of

average horizontal V) were calculated for the lateral and vertical V of the CM for the
200 m. These values were close to the horizontal V fluctuations (0.65 m-sec"1 or

42.81 % of average horizontal V). The mean 200 m values indicated that large
fluctuation values in one direction were associated with large fluctuation values in
the other two directions. Nevertheless, the correlations for each SC showed a high
variation in the strength and significance of the relationships between fluctuations in
different directions, suggesting that the magnitude of V fluctuation in one direction is
not always strongly associated with the magnitude of fluctuation in another direction.

One of the main purposes of this study was to examine the extent to which
the magnitude of intracycle V fluctuation was linked to performance. It was shown
that the absolute and percentage V fluctuations in all directions were not associated
with performance (as indicated by average V). However, high maximum intracycle
velocities were associated with large horizontal fluctuation values in most SCs. High
minimum velocities were positively associated only with percentage horizontal
fluctuations and only for two SCs. As discussed above (section 5.2.1) large V
maxima would be expected to generate large resistive forces, which could cause

large reduction in V and, thus, large intracycle V fluctuation. The latter could

partially explain the positive relationships found for horizontal V fluctuations and V
maxima in most SCs.

The results of this study were not in agreement with previous studies, which

reported that faster swimmers had smaller horizontal V fluctuations (e.g. Togashi &

Nomura, 1992; Sanders, 1996a; 1996b; Takagi et al., 2004). A possible explanation
could be that previous studies examined the V fluctuations in breaststroke and

butterfly only. Considering the larger range of V fluctuations in these strokes, it

might be possible that the expected relationship was not found in freestyle due to the
smaller range of V fluctuations or due to differences between breaststroke/butterfly
and freestyle in the propulsive and resistive periods of the SCs. Moreover, the
limitations of previous studies in this area, such as the use of the hip or the bilateral
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symmetry assumption for V calculations (see section 2.2.3), might also be associated
with the disagreement in the findings.

Similar to the discussion for the relationship between performance and V

maxima/minima, it is also possible that the relationship between V fluctuation and

average V does exist but is not linear. For example, in a recent study by Barbosa et

al. (2006) it was reported that the polynomial produced a better adjustment than the
linear approach for the relationship between V fluctuation and average V.

Nevertheless, despite the significant correlations found in all strokes (p < 0.05)

except breaststroke (p=0.06), the calculated coefficients did not show a very strong

relationship (0.47 < r < 0.65). These investigators stated that the parabolic curve

could possibly be explained by the curve between force and V for neuromuscular

activity. Barbosa et al. added that the data suggested that the neuromuscular
activation of several muscles in a multi-segment and multi-joint movement follows
the force-velocity relationship pattern for a single joint system. However, it must be
noted that the study design was different to the present study. Barbosa et al. (2006)
tested 4-5 swimmers on each stroke for a range of incremental velocities, and

performed the statistical analysis on each stroke after pooling the data of all the tests

for each swimmer.

The fluctuations in the V of the CM are directly related to the V
maxima/minima reached by the swimmers. As discussed in section 5.2.1, the
maximum and minimum velocities reached during a SC are affected by the resistive
and propulsive forces, which are expected to have a non-linear relationship with V.

Therefore, it would be of interest to explore in future studies whether V fluctuations
are associated with average V in a non-linear manner. Moreover, the resistive forces

experienced during a SC are influenced by a number of factors, such as the cross-

sectional area exposed to flow, the V of body segments in the direction of travel and
the alignment and shape of body segments (Sanders, 2002). Therefore, the influence
of these factors on the magnitude of intracycle V fluctuations could also be explored,
as it could improve further the understanding of the causes of V fluctuations during a

SC.

The present study also showed that there were some between and within
swimmer variations in the magnitude of fluctuation for a given V. It would be
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reasonable to assume that swimming with less V fluctuations for a given average V
would be more economical and require less energy expenditure. Thus, it would be of
interest to identify the differences in the kinematic characteristics between SCs of
different fluctuations for a given average V. Such information would be useful for
swimmers and coaches as it could provide a guidance for the most effective

technique for a given V, minimising therefore the energy demands. Finally, it must
be noted that the swimmers participating in this study were tested during the middle

part of the season. A longitudinal study throughout the season would also be of

interest, as it would allow the investigation of the influence of training and/or

conditioning status on any changes in the efficiency of swimmers' technique.
The magnitude of horizontal V fluctuations has not been calculated for

freestyle and backstroke. Nevertheless, horizontal V fluctuation values have been

reported in some butterfly and breaststroke studies. For example, Sanders (1996a;

1996b) found V fluctuations that ranged from 0.92 to 1.40 m-sec"1 (56.8 to 106.1 %
of average V) for butterfly and from 0.76 to 1.12 m-sec"1 (60.3 to 95.7 % of average

V) for breaststroke swimmers (0.40 to 0.96 m-sec"1 or 27.1 to 64.4 % for freestyle in
the present study). In general, intracycle V fluctuations reported in the breaststroke
and butterfly literature were larger than those calculated for freestyle in the present

study. As discussed above (section 5.2.1), it would be reasonable to expect larger
fluctuations in butterfly/breaststroke than in freestyle, due to the differences in the

propulsive actions of arms and legs and the resistive forces experienced during the
SC.

Although fluctuations in the lateral and vertical directions have not been
considered as being very important (given the lack of attention to these parameters in

swimming texts and the fact that they have not been calculated for any stroke), this

study indicated fluctuations of considerable magnitude for both directions. Despite
these fluctuations not being significantly correlated with performance, future
research needs to investigate more closely the causes of these fluctuations and the

possibility of a non-linear relationship between lateral/vertical fluctuations and

average V. Identification of the influence of such fluctuations on swimming
kinematics could provide important information to swimmers and coaches that would
facilitate the improvement of swimming performance.
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5.2.2.2 Changes throughout the test
The present study was the first to test V fluctuation changes across an event.

The results indicated that horizontal fluctuations were significantly higher in SC3
than in SC2 and SC4. On the contrary, fluctuations in the lateral/vertical directions
remained constant throughout the test. Therefore, the high increase in horizontal V
fluctuation in SC3 was not associated with similar changes in the other directions.

Moreover, the changes recorded for horizontal fluctuation in SC3 were not linked to

changes in SR, SL or SC time.
As discussed in section 5.2.1., there were no changes in maximum V between

SC2 and SC3, but there was a significant decrease in minimum V, implying that the

ability of swimmers to minimise resistive forces and/or produce high propulsive
forces (in SC3) decreased mainly during the slowest parts of the SC. Although
maximum V decreased subsequently in SC4, swimmers increased minimum V

reducing, thus, the overall fluctuation. The latter phenomenon could be associated
with pacing-related technique strategies (e.g. swimming SC4 at maximum effort due
to it being in the last 50 m of the race, as opposed to saving energy during SC3).

However, it is also possible that swimmers were able to maintain higher minimum V
in SC4 because the resistive forces causing the reduction in V were smaller in

magnitude than in SC3 (due to lower maximum velocities achieved).

5.2.3 Velocity patterns and timing of appearance of horizontal
V maxima and minima

The intracycle V patterns differed between the horizontal, lateral and vertical
directions. The horizontal V had two distinct maxima and in the majority of the cases

minima in each SC, with one maximum and one minimum value associated directly
with the left and right arm UWPs. In contrast to the patterns for horizontal V, no
distinct pattern existed with regard to the timing or the number of maxima and
minima for vertical and lateral intracycle V. For all directions, intracycle
accelerations/decelerations resulted in several V increases/decreases of smaller

magnitude, which varied between and sometimes within swimmers.

Despite methodological limitations, previous swimming studies have

provided some indication of V patterns in all four strokes. In the only other study
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describing freestyle V patterns, Maglischo et al. (1989) also identified distinct
maxima and minima for the horizontal V. Despite some similarities with the patterns

reported in the present study, the qualitative analysis of the former study did not

involve further investigation on the timing of appearance of V maxima/minima

during the SC. Backstroke swimmers seem to have similar V patterns with freestyle

swimmers, with distinct V maxima and minima associated possibly with the UWPs
of the arms (e.g. Maglischo et al., 1989). Butterfly swimmers appear to reach
maximum V during the first or the second kick, with breaststroke swimmers reaching
maximum V during the pull phase of the arms or after the first kick (e.g. Sanders,

1996a; 1996b). In view of the findings of the present study and the advances in

swimming analysis methods, researchers should be encouraged to calculate

accurately the intracycle V patterns of backstroke, butterfly and breaststroke in all
three directions (in consideration with the associated swimming actions) to improve
the understanding on these strokes.

5.2.3.1 Analysis of the timings and association with body segment

positions
This study contributed to the improvement of the understating of freestyle

swimming by identifying the timing of V maxima/minima in a SC and their
association with the positions of body segments. It was shown that swimmers

produced maximum intracycle V when the arm that contributed to propulsion was at

the first half of the UWP, with the hand moving downwards and backwards (elbow
ahead of shoulder on the horizontal axis). At this time the opposite arm (being at the

early parts of the recovery phase) did not contribute to propulsion. Minimum

intracycle V occurred when the arm was at the second half of the UWP, while the
hand was moving backwards and upwards (elbow behind the shoulder on the
horizontal axis). At the same time, the opposite arm was either at the end of the

recovery phase (before entering the water) or at the glide phase of the UWP (hand

gliding forward without applying any propulsive forces), before performing the
'catch'. It was also shown that freestyle swimmers reached maximum V at the same

part of the SC that they had maximum shoulder and hip roll values. Moreover, it was
noted that the MEF and minimum V occurred at the same part of the SC.
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The calculation of intracycle horizontal V of the CM provides an indication
of the net force associated with parts of the SC. When V increases, the propulsive
forces are higher than the resistive forces, while the opposite is true when V
decreases. Considering that resistive forces are expected to increase proportionally
with the square of V, the appearance of V maxima coincided with the largest
resistive forces experienced by the swimmer during the SC.

As discussed above, minimum V occurred at the same part of the SC as MEF.
The latter implied that the positioning of the elbow relative to the body might be
more effective (with regard to the production of propulsive forces) after the point of

MEF, when the hand moves backwards and upwards and the elbow is extending. It is
also possible that the larger cross-sectional area exposed to the flow at this part of the
SC (as both arms are in the water) is associated with higher water resistance.

However, despite the emphasis that has been given by some researchers to the

positive relationship between the magnitude of MEF and swimming performance,
MEF did not appear to be a factor of differentiation between faster and slower
swimmers (as discussed in section 5.4.1.2). Nevertheless, this should not be

interpreted as that the MEF is not important for successful performance in freestyle.

Although MEF is not linked to the production of high net forces in a SC as it occurs
at the same part as V minima, this study showed that faster swimmers are in some

cases characterised by higher minimum V than slower swimmers, with this

relationship becoming stronger as the race progressed. The latter finding emphasised
that swimmers can improve performance by maximising propulsive forces (and

minimising resistive forces) when the elbow is close to maximum flexion, as this
would minimise the reduction in V and fluctuation of V and, therefore, facilitate the

improvement of performance. Given that V minima of similar magnitude appeared in
other parts of the SC for some swimmers, the degree of association of arm strength
with the production of maximum/minimum V could also be investigated by including
measurements of arm strength for the positions of interest.

Considering that V maxima coincided with hip/shoulder roll maxima (and
that after this point in the SC resistance was greater than propulsion), it is possible
that the change in direction of shoulder/hip roll was associated with resistive forces
on the vertical and lateral directions, which could have influenced the V of the CM.
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Further parameters that might be related to the magnitude and timings of intracycle V
maxima/minima include among others: the hand V and orientation throughout the
UWP of the stroke; the rotational movements and the angular V of the elbow and the

wrist; the vertical and horizontal displacement of the shoulder, elbow and wrist

joints; the propulsion generated by the kicking actions etc.

As discussed above, the net force is dependent on the relationship between

propulsive and resistive forces, with the intracycle V analysis providing an indication
of the balance between these forces. Exploration of the acceleration data could be
informative in improving the understanding of the relationships between propulsive
and resistive forces, by enabling the identification of the extent to which certain

phases of the SC are propulsive. Analysis of acceleration data was beyond the scope

of this thesis. Nevertheless, for the purpose of providing an indication of such data
and facilitating the discussion of the net force patterns, the acceleration of the CM
was calculated for the fastest and the slowest swimmer of this study. Figures 5.1 and
5.2 show the V and acceleration of each swimmer during SCI. Figures 5.3 and 5.4
show the acceleration for each swimmer throughout the four SCs.

20 40 60 80

Percentage of Stroke Cycle Time

Velocity —Acceleration

Figure 5.1: Pattern of horizontal V and acceleration of the CM during SC1 for
swimmer 1
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Figure 5.2: Pattern of horizontal V and acceleration of the CM during SC1 for
swimmer 11
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Figure 5.3: Pattern of horizontal acceleration of the CM for swimmer 1

Discussion 118



20 40 60 80

Percentage of Stroke Cycle Time
— SC1 — SC2 SC3 — SC4

Figure 5.4: Pattern of horizontal acceleration of the CM for swimmer 11

The intracycle acceleration pattern for swimmer 1 had four distinct maxima
and four distinct minima. The analysis of the performance of swimmer 1 and the data
in Figure 5.1 showed that the first maximum value of acceleration occurred shortly
after hand entry and while the opposite hand was moving backwards and upwards.
This suggested that the opposite arm might be effective in the production of

propulsive forces at this position. However, in freestyle swimming, the hand usually
enters the water before the elbow and shoulder. Therefore, the submersion of the

elbow and shoulder (and the associated resistance) may be related with the decrease
in acceleration after the first peak.

The first minimum value of acceleration (maximum deceleration) was

recorded approximately at the instant of 'catch' (opposite hand still moving
backwards and upwards). No propulsive forces are applied by the swimmer's arm

when the hand is gliding forward (between hand entry and 'catch'). Given that at the

period between the first maximum and minimum accelerations both arms were in the

water, the deceleration could be linked to the increased cross sectional area exposed
to flow which would be expected to increase water resistance.

The second (greater in magnitude than the first) maximum acceleration value
occurred after the 'catch' (while the hand was moving backwards and downwards)
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and just before the opposite hand exited the water. This is reasonable, since both
arms were contributing to propulsion. In addition, considering that the opposite
shoulder started the recovery phase before the hand, it is possible that the smaller
cross-sectional area of the swimmer (as one shoulder was above the water) was

associated with a more hydrodynamic shape and resulted in smaller resistive forces

(as opposed to both shoulders being in the water). These findings suggest that
swimmers could increase the maximum V by extending the length of the period that
both arms contribute to propulsion. This could possibly be achieved by an earlier
'catch' and by ensuring that the hand continues its backwards movement in the water

until the arm is fully stretched.
The second minimum acceleration value was observed when the hand was

still at the first half of the UWP, moving downwards and backwards. At the same

point, the opposite arm was at the middle of the recovery phase. Given that in the

periods before and after the second minimum acceleration the opposite arm is

recovering, it is possible that the pulling arm is not very effective in the application
of propulsive forces in the associated positions (and/or the swimmer is not very

effective in minimising resistive forces). The shift in the acceleration curve at that

point (maximum deceleration) may be partially explained by the change in the

position of the recovering arm, which could have contributed to the forward shift of
the CM. Finally, after the entry of the opposite hand the acceleration patterns were

similar to those described above.

A comparative evaluation of Figures 5.1 and 5.2 suggested that the slowest

swimmer, despite having a similar pattern to the fastest swimmer during the first half
of the SC, had a different pattern during the second half of the SC. The slowest
swimmer didn't replicate the pattern of the first half during the second half of the SC,
with the maximum and minimum acceleration being smaller in magnitude and less
distinct than in the first half. This suggested that the number and magnitude of

changes in acceleration (and, therefore, the balance of propulsive and resistive

forces) might be related to swimming performance. However, it must be noted that

patterns similar to those of swimmer 11 were also observed for faster swimmers (e.g.
swimmer 5, as shown in Figure 4.3, section 4.3.1.1). Moreover, Figures 5.3 and 5.4

suggested that the number and magnitude of changes in V and acceleration might
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change during a race. Therefore, it would be of interest to conduct further analysis in
order to assess whether such differences exist between faster and slower swimmers

and if they change during a course of the race.

Figures 5.1 and 5.2 also showed that swimmer 1 had much higher
acceleration and deceleration values than swimmer 11 in SCI. This indicated that

swimmer 1 was producing larger propulsive forces (and/or was able to minimise
resistive forces) during the propulsive parts of the stroke. Nevertheless, the larger
resistive forces created from the higher velocities achieved by swimmer 1, resulted in
a much greater deceleration of the CM (during the slowest parts of the SC) than
swimmer 11. However, Figures 5.3 and 5.4 suggested that the ability of the faster
swimmer to minimise the V reduction improved in SCs 2, 3 and 4. Indeed, swimmer
11 experienced a greater deceleration (despite reaching much lower maximum V)
than swimmer 1 in SC4. These patterns were in agreement with the correlations
between performance and minimum V (discussed in section 5.2.1), which indicated
that the ability of faster swimmers to limit the decrease in V improved for lower
velocities.

Although some investigators have attempted to calculate the acceleration of
the hand (e.g. Rouboa et al., 2006), accurate 3D data on the acceleration of the CM
have not been reported. In the above discussion, an association of the intracycle
maxima/minima in the net forces (as indicated by acceleration data) with the
movements of the arms and the trunk was attempted. Moreover, a qualitative
evaluation of acceleration data of the fastest and the slowest swimmer throughout the

200 m was attempted, for the purpose of obtaining an indication of possible
differences in acceleration patterns. However, the net force is influenced by other

parameters, such as the timing and duration of application of propulsive forces, the

segment positions and orientation, the propulsive actions of the legs and changes in
the shape of the body (streamlined or not-streamlined) caused by factors such as the
vertical movements of the head. Considering that the acceleration data can provide
further information with respect to specific changes in net forces occurring during a

SC, future analyses should explore the intracycle acceleration patterns (e.g.

magnitude and duration of accelerations) and examine their association with

swimming performance.
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5.2.3.2 Changes throughout the test
There were no clear trends between faster and slower swimmers with regard

to the timing of appearance of V maxima/minima in a SC. However, some V maxima
and minima occurred earlier in SCI than the following SCs. In view of these

changes, a subsequent analysis of the relative timings of the underwater and recovery

phases was conducted for each SC. This showed that, in general, the relative duration
of the left arm UWP (and, therefore, the ratio between the duration of the UWP and

the recovery phase) was significantly less in SCI than in the other three SCs (see
Table D.l Appendix D). Despite the duration values for the right arm UWP being of
similar magnitude to those for the left arm, there were no significant differences
between the SCs, possibly due to high between swimmer variability. Nevertheless,
these results suggested that swimmers were spending less time for the UWP of the
stroke in SCI than in the other three SCs. Therefore, the observed shifts in some V

maxima and minima may be partially explained by the changes in the relative
durations of the aforementioned phases.

The reasons that changes in the duration of stroke phases did not affect

significantly all intracycle V minima/maxima remain to be investigated. For future

research, the analysis of two consecutive SCs is suggested, as it will enable
calculation of the timings of V maxima and minima relative to each arm's UWP.
This would allow investigators to examine whether any changes are related to the
increase in the relative duration of the UWP of each arm. If similar changes exist in
the appearance of V maxima and minima relative to the UWP each arm, then the
influence of other parameters should be considered. For example, although the

separation of the UWP of the stroke into different phases was beyond the scope of
this thesis, it was observed that some swimmers tended to spend more time between
hand entry and 'catch' as the race progressed. The latter would delay the initiation of
the application of propulsive forces (and extend the period of application of resistive

forces) and could be associated with changes in the relative timings of V maxima and
minima. Therefore, another focus of future studies could be the separation of distinct

parts of the UWP of the stroke and the comparative analysis of the variation in
kinematic parameters between these parts.
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5.2.4 Bilateral asymmetries
Qualitative analyses have indicated the existence of bilateral asymmetries in

V patterns. The present research attempted to advance the existing knowledge by

quantifying the bilateral asymmetries in intracycle V and identifying the underlying

relationships. The analysis of V minima/maxima and V fluctuations for the UWP of
the left and the right arms indicated asymmetries in all parameters. Nevertheless, the

magnitude of bilateral asymmetries was not associated with the performance level of
the swimmers. High V maxima for the left were associated with high V maxima for
the right side, but no similar relationship existed for the V minima or V fluctuations.

Moreover, V maxima for each side were not associated with V minima for the same

side. As discussed in section 5.2.1, these findings could possibly be explained by the

larger forces created for higher V maxima, which seem to cause a large reduction in

intracycle V.

Interestingly, with the exception of one swimmer who presented overall

symmetry, all swimmers reached higher maximum V during the UWP of the right
arm. Although, no consistent side bias was found for the asymmetries in V minima
and fluctuations, most swimmers that presented lateral dominance (in any of the
above parameters) maintained the dominant side throughout the 200 m. Although the

study design did not include any upper limb strength or skill-related measurements,

personal communication with the swimmers revealed that all participants were right
handed. Therefore, it is possible that the left arm was not as effective as the right arm

during the propulsive phase of the stroke, resulting in lower maximum V. For the

purposes of testing the latter hypothesis and identifying the cause of such

asymmetries, a future study could examine the differences between groups of left and

right handed swimmers. Strength measurements of the upper limbs might also be
informative with regard to the extent that possible asymmetries are associated with
the strength of the arms. Nevertheless, dry-land strength is not always translated into
effective swimming technique, and asymmetries might be dependent on other factors
such as effectiveness of the application of propulsive forces by the arms, body

position and propulsive forces of the legs. Finally, further analysis of data of the

present study could also be informative in terms of technique differences that might
have caused the asymmetries. Hand V and arm orientation during the UWP of the
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stroke are some of the parameters that could improve the understanding of the cause

of these asymmetries.
The present study provided a strong indication that the swimmer applies

greater force with the dominant arm and/or possibly adopts such a body position that
minimises the resistive forces. Even though bilateral asymmetries were not

associated directly with performance, it would be reasonable to assume that if a

swimmer manages to produce maximum V of equal magnitude during the UWP of
the non-dominant arm, then the average V of the SC would increase, providing that
the swimmer would be equally effective in minimising the resistive forces during the
UWP of the non-dominant arm. A separate analysis of the UWP of each arm would
be illuminating with regard to differences in average V between the UWPs of the two
arms.

The changes across the test in V maxima/minima/fluctuations for the left and
the right arm UWPs were in general similar to those for the overall values. However,
the results showed that the significant decrease in overall minimum V and V
fluctuation in SC3 was linked to a significant decrease of the same values for the left
arm UWP, while the values for the right arm UWP did not change. Moreover, the V
maxima for the left and right arms did not change significantly between SC2 and
SC3. These findings suggested that the technique deterioration in SC3 was associated

predominantly with a decrease in the ability of swimmers to produce high propulsive
forces and/or minimise the effect of resistive forces during the slowest part of the
UWP of the non-dominant arm. The above changes in the V minima may also be
related to changes in the timing and/or the duration of application of propulsive
forces by the swimmers.

The above findings underlined the importance of technique improvement on
the non-dominant side of the swimmers. Therefore, coaches could focus on

additional strength and endurance training on the non-dominant arm. Despite the

present study restricting the analysis to non-breathing SCs, it would be reasonable to

expect bilateral asymmetries of similar or higher magnitude during breathing cycles.

Therefore, swimmers and coaches should give emphasis not only to ensuring similar

strength, endurance and flexibility between the left and right sides, but also to
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establishing bilateral symmetry in swimming technique during both breathing and

non-breathing cycles.

5.3 Kinematic parameters of the trunk: shoulder and

hip roll
A main purpose of this study was to calculate accurately the shoulder and hip

roll to the left and the right sides of competitive swimmers throughout the course of a
race. Moreover, this research aimed to examine whether the magnitude of roll and/or

asymmetries in roll were associated with swimming performance.

5.3.1 Roll patterns and timing of roll maxima
The results showed that both shoulders and hips had two distinct maxima

corresponding to maximum roll to the left and right sides. In general, the shoulders
and hips rolled towards the same direction during the SC. Moreover, the timings of
shoulder and hip roll maxima (indicating a change in rolling direction) had no

significant differences during the test. It must be noted that these patterns represent

non-breathing SCs. However, there are some indications in the existing literature that

breathing patterns might affect the rolling actions of the trunk in freestyle swimming

(e.g. Payton et al., 1999b; Castro et al., 2003). Therefore, it would be of interest for
future studies to assess the influence of breathing actions on the rolling patterns of
shoulders and hips.

The calculations of the timings of shoulder and hip roll maxima showed that
all maxima occurred significantly earlier in SCI compared to the other three SCs. As
discussed in section 5.2.3.2, the relative duration of the UWP of the stroke and the

overall SC time were significantly lower in SCI than SCs 2, 3 and 4. Thus, the later

appearance of roll maxima could be associated with the longer relative duration of
the UWP of the stroke and the longer time spent for SCs 2, 3 and 4. There was no

indication of differences between faster and slower swimmers in the timings of
shoulder/roll maxima. Finally, the present study showed that the timings of

shoulder/hip roll maxima occurred at the same part of the SC as maximum V. This

phenomenon was discussed in section 5.2.3.1.
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Similar roll patterns have been found in some previous studies. For example,
Yanai (2001) reported sinusoidal patterns and nearly equal phase angles for shoulder
and hip roll of university swimmers tested at sub-maximal V. Cappaert et al. (1995)
also reported that elite swimmers rolled the shoulders and hips towards the same

direction during a 100 m freestyle race. However, subelite swimmers rolled the
shoulders and hips in opposite directions. Personal communication with the main

investigator of the latter study revealed that subelite swimmers were selected on the
basis of the poorest technique, with many of them participating in the Olympic
Games due to countries' entitlement of entering a small number of participants with
no requirement for achieving the qualification time. Cappaert stated that the status of
these swimmers could be considered much lower than competitive swimmers.

Therefore, the opposite rolling directions for the shoulders and hips of subelite
swimmers could possibly be explained by the low performance level of that group.

Presumably, subelite swimmers expected that the opposite rolling directions would

provide a more balanced body position throughout the SC. Finally, similar patterns
were reported by Cappaert et al. (1996) for some female backstroke swimmers, with
elite swimmers rolling shoulders and hips towards the same direction and subelite
swimmers having opposite directions for shoulder and hip roll.

5.3.2 Magnitude of roll, changes throughout the test and

relationships with performance
A number of experimental studies in this area (e.g. Liu et al., 1993; Payton et

al., 1999a; Castro et al., 2003) have calculated the body roll for the whole trunk.

However, in agreement with other studies (e.g. Cappaert et al., 1995; Yanai, 2001),
this study confirmed that freestyle swimmers have shoulder and hip roll values of

considerably different magnitude, as swimmers were found to roll the shoulders
about twice as much as the hips. Considering the increased accuracy of the 3D
methods used in the present study, these findings indicated that the measurement of

body roll for the whole trunk does not represent with validity the rolling
characteristics of the trunk.

There was no clear indication that the magnitude of shoulder/hip roll was

associated with the performance level of the swimmers, as no significant
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relationships were found for the vast majority of the correlations between

shoulder/hip roll and average V. However, even though swimmers maintained the
shoulder roll values throughout the test, they rolled their hips significantly less in
SCI (where V was significantly faster) than the other three SCs. It was also shown
that there was a tendency for swimmers with large shoulder roll values to have large

hip roll values. Moreover, swimmers with large shoulder/hip roll values for the left
side sometimes presented large shoulder/hip roll values for the right side.

Nevertheless, neither of the last two trends presented consistently strong

relationships throughout the 200 m.

Cappaert et al. (1995) stated that body roll might decrease active drag by

reducing the frontal surface area. Thus, large differences in the magnitude of
shoulder and hip roll would increase the frontal surface are and create large resistive
forces. In view of the fact that the increase in hip roll throughout the test resulted in
smaller differences between the magnitudes of shoulder and hip roll, it appears that

freestyle swimmers tended to roll to more hydrodynamic positions as the race

progressed. The increase in SC time after SCI might have facilitated the additional

hip roll of the swimmers.

Swimmers are often instructed to increase the magnitude of roll for the

purpose of improving performance. However, the present study found no strong

indication of significant differences in the magnitude of roll between faster and
slower swimmers and, moreover, swimmers were generally rolling the hips less
when swimming faster. In line with the latter, Yanai (2001) stated that the
recommendation for increased body roll seems paradoxical, as a complex mechanical
association with propulsion (which will be hard to accomplish without reducing V)
would be required for a swimmer to increase body roll at a given speed. Yanai added
that such mechanical propulsion would include arms and legs producing forces in

non-propulsive directions, thus reducing the efficiency of propulsive forces at the

swimming direction. Therefore, if positions of greater magnitude in hip roll are

found to be more effective in terms of minimising resistive forces (due to smaller
differences in the magnitude of shoulder and hip roll), swimmers could be instructed
to try to achieve such positions perhaps by using the highest possible SL for a given

V, rather than increasing the forces applied to non-propulsive directions. However,
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an increase in SL for a given V would probably be associated with an increase in SC
time. Therefore, swimmers should practise maximising the SL for a given V by

extending the time of the most propulsive parts of the SC, such as the parts when
both arms contribute to propulsion.

Previous studies showed that swimmers had less roll in hips (Cappaert, 1999)
and shoulders (Yanai, 2001) when tested in faster velocities. Even though the hip roll
calculations across the test in the present study were in agreement with Cappaert's

study, the shoulder roll changes and the correlations of shoulder/hip roll with average

V did not show any significant relationships. A possible explanation could be that the

range of velocities in the present study was smaller than that in the study of

Cappaert. In addition to this, all the calculated correlation coefficients between

shoulder/hip roll and V were negative (with only two significant values), implying
that there might be an underlying relationship (similar to the one reported in the
former studies) between V and the magnitude of shoulder/hip roll. Cappaert (1999)

compared sprint (200 m and below) and distance freestyle swimmers (above 200 m).

Therefore, if swimmers are tested in different events it might be possible that

relationships between performance and the magnitude of roll would exist. Yanai

(2003) compared a moderate (1.3 m-sec"1) with a sprint pace (1.6 m-sec"1), suggesting
that there might be similar relationships if a group of swimmers is tested in moderate
and maximum velocities. Nevertheless, discrepancies between the above studies and
the present investigation might also be partially explained by methodological
limitations of these studies (as discussed in section 2.3.1.4).

Separate shoulder and hip roll values have been reported in two other

freestyle studies (Cappaert et al., 1995; Yanai, 2001). Both the shoulder (35.4 + 2.5°
for elite and 34.4 ± 1.7° for subelite swimmers) and hip roll values (8.3 + 1.5° for
elite and -17.8 ± 1.5° for subelite swimmers) reported by Cappaert et al. (1995) were
much lower than those found in the present study (shoulder roll: 49.2 ± 5.3° for the

right and 56.3 ± 4.5° for the left side; hip roll: 25.7 ± 5.7° for the right and
24.3 ±7.7° for the left side). On the contrary, Yanai (2001) reported shoulder roll
values (mean value of 58°, confidence intervals: 52 - 65°) that were close to the

higher values recorded in the present study, with the hip roll values (mean value of
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36°, confidence intervals: 29 - 43°) being clearly higher than those in the present

study.
The discrepancies observed between studies in the magnitude of roll could be

attributed to a number of factors, such as: the level of the swimmers tested; the

velocities of the tests; the influence of breathing actions (not accounted in other

studies) and errors caused by methodological limitations of the studies. Nevertheless,
the subelite swimmers in the study by Cappaert et al (1995) had similar shoulder roll

range to the elite swimmers. Moreover, the participants in Yanai's study appeared to

achieve velocities (mean: 1.6 m-sec"1) within the range of the velocities calculated in
the present study (1.37 to 1.77 m-sec"1). However, even for horizontal velocities of
similar magnitude, participants of different levels could be expected to have
differences in kinematic characteristics of their swimming technique.

As discussed in section 5.2.3, future research could adopt a kinetic approach
and examine the extent to which changes in shoulder/hip roll are associated with

changes in the amount of propulsive and resistive forces. Furthermore, other factors
such as the effectiveness of arm forces at different rolling positions and the influence
of these positions on the orientation and application of kicking forces should also be
considered.

5.3.3 Bilateral asymmetries
The qualitative analysis of Arellano et al. (2003) provided an indication of

body roll asymmetries in freestyle swimming. Despite the findings of Arellano et al.
and other research evidence on technique asymmetries (e.g. Maglischo et al., 1989;
Keskinen & Keskinen, 1997) the roll values for the left and right sides have not been

calculated separately. This study attempted to advance the scientific knowledge by

examining the shoulder and hip roll for both sides and quantifying the bilateral

asymmetries. There were noteworthy bilateral asymmetries of up to 25.4° for
shoulder (mean: 7.8 + 4.6°) and 13.4° for hip roll (mean: 5.6 + 3.8°), emphasizing
further the need for calculation of these kinematic parameters for both the right and
left sides. Nevertheless, the magnitude of asymmetries was not associated with

swimming performance.
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This study also indicated left side dominance in shoulder roll, as all
swimmers presented larger shoulder roll values to the left (with the exception of one
swimmer that had overall symmetry). There was no consistent side bias in hip roll.
The left side dominance in shoulder roll might be related to the handedness of
swimmers. Since all swimmers participating in this study were right handed, it is

possible that higher flexibility and/or coordination in the right shoulder joint was
associated with larger vertical range of motion of this joint during the UWP of the
stroke (and therefore deeper pulling patterns), resulting to the calculated

asymmetries. Future research should include upper limb flexibility, strength and
coordination measurements, for the purpose of assessing their interrelationships with
bilateral asymmetries in shoulder roll values and other related kinematic parameters,

such as the shoulder vertical displacement during the UWP of the stroke.
Maximum shoulder roll to the left side occurred during the UWP of the right

arm and coincided with the appearance of maximum V. Moreover, the right arm was

the dominant arm for all swimmers, with swimmers having higher V maxima during
the UWP of the right than the left arm (with the exception of one swimmer that had
overall symmetry). These findings implied that the higher roll values on the left side

might be associated with the higher V maxima of the right arm. Yanai (2001; 2004)
showed that the magnitude of body roll is dependent on internal and external forces

applied during a SC. Considering that the higher V maxima during the right arm
UWP were possibly associated with higher propulsive forces of this arm (as opposed
to the left arm), it is possible that these forces had vectors acting in the vertical and
lateral directions. Therefore, it would be reasonable to assume that the larger forces

(during the right than the left arm UWP) in the vertical and lateral directions could

partially explain the larger shoulder roll values for the left side.
Another possible cause of shoulder roll asymmetries could be the influence of

breathing preference. Although the swimmers in the present study were instructed to

refrain from breathing while swimming through the pre-calibrated space, it might be

possible that asymmetries in kinematic characteristics of breathing cycles could still
influence the technique used during non-breathing cycles. For example, it would be

expected for swimmers to have larger shoulder roll towards the breathing side during
a breathing cycle. Therefore, it would be of interest to examine whether swimmers
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would maintain that asymmetry during non-breathing cycles, if they would adopt a

symmetrical pattern or (while trying to compensate for the breathing cycle

asymmetry) even display larger roll values to the non-breathing side.
Even though the present study was not designed to examine the influence of

parameters such as those described above, post-test communication with the

participants revealed that the group consisted of eight swimmers with right side and
two with left side breathing preference, with the remaining swimmer breathing

bilaterally. The swimmer who had shoulder roll symmetry had right side breathing

preference. Considering the shoulder roll asymmetries and the breathing preferences
of the group, there was no clear indication of association between the two. However,
the number of swimmers with bilateral breathing and left side breathing preference in
the present study was very small and insufficient to lead to any valid conclusions.
Further analysis is required to investigate the breathing side influence on the rolling
values of freestyle swimmers. A future study could be designed to test differences
between three groups (i.e. right and left side breathing preference and bilateral

breathing) of a sufficient number of swimmers, who would be tested during non-

breathing as well as during right and left side breathing cycles.

5.4 Kinematic parameters of the upper and lower

extremity
Methodological limitations could have introduced errors to the measurement

of MEF and MKF in existing studies. Moreover, no studies in this area have
calculated these parameters for both the left and the right sides. Therefore, one of the

purposes of the present study was to calculate accurately the magnitude of MEF and
MKF throughout 200 m freestyle and to examine their relationships with V.

5.4.1 Elbow angular motion during the underwater phases
5.4.1.1 Angular patterns and timing of maximum flexion

The analysis of this study showed that swimmers' arms entered the water

slightly flexed at the elbow and glided forward (stretching to almost 180°) without

applying any propulsion until commencement of the 'catch'. The elbow then started
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flexing until MEF (minimum elbow joint angle), which was followed by another
extension of the elbow until the hand exited the water. One distinct MEF value was

recorded for each elbow. It was also shown that freestyle swimmers had MEF during
the second half of the UWP of the stroke, when the hand was moving backwards and

upwards (elbow behind the shoulder on the horizontal axis). MEF occurred at the
same part of the SC as minimum horizontal V of the CM. The latter phenomenon
was discussed in section 5.2.3.1.

Even though the timing of MEF did not change significantly throughout the
200 m, faster swimmers attained MEF significantly later than slower swimmers in
SCI. It is possible that these differences in the timing of MEF were associated with

longer pulling patterns of the faster swimmers for the part between hand entry and
MKF.

In other freestyle studies, Payton et al. (2002) reported that elbow flexion

continuously increased during the insweep phase ('from the instant the hand reached
its most lateral to the instant it reached the most medial position'). However, these

investigators did not analyse the complete UWP of the stroke due to restrictions in
the methodologies used and, therefore, it was not possible to estimate the exact

timing of underwater MEF.

5.4.1.2 Magnitude of maximum elbow flexion, changes throughout
the test and relationships with performance

The mean minimum elbow angle values (representing MEF) were 98.1 ± 5.8°
for the left and 96.8 ± 5.2° for the right elbow. There were low correlations between

average horizontal V and MEF for the right and left sides, showing no particular
trend between faster and slower swimmers and suggesting no association between

performance and the magnitude of MEF. However, swimmers flexed their elbows
less in SCI, when V was significantly faster than the other three SCs.

These findings implied that there might be an underlying relationship
between the magnitude of MEF and average swimming V, but it was not evident for
the comparisons between faster and slower swimmers for each SC due to the small

range of velocities. The changes observed across the test suggested that swimmers
would tend to swim with a straighter arm in higher velocities. These relationships
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could be explored by testing swimmers on different event distances or for a range of
moderate to maximum velocities. Moreover, to identify the parameters that

distinguish between faster and slower swimmers, future studies should focus on other

aspects of the underwater motion of the upper extremities, such as: the angular V and
the internal/external rotations of the elbow, the orientation of the different segments

of the arm, the relative displacements of the shoulder/elbow/wrist joints and the

propulsive forces associated with different parts of the UWP of the stroke (and the

respective arm positions).
In other studies, Cappaert et al. (1995) reported angles of 91.5 ± 4.9° for the

elite and 114.3 + 5.1° for the subelite swimmers participating in men's 100 m

freestyle race. The values for the elite swimmers were slightly lower and for the
subelite swimmers clearly higher than those calculated in the present study. As
discussed in previous sections, differences between the present study and the study

by Cappaert et al. could be attributed to factors such as: the V and the level of the
swimmers tested, the influence of breathing actions (not accounted in the latter

study) and the calculation ofMEF values for just one elbow.

5.4.1.3 Bilateral asymmetries
The bilateral asymmetries in MEF were 5.0 + 2.2°, with no consistent side

dominance identified between swimmers. Nevertheless, the vast majority of
swimmers who had lateral dominance in MEF maintained the side bias throughout
the 200 m. It was also shown that large MEF values on the left side were sometimes
associated with large MEF values on the right side. Finally, the magnitude of

asymmetry in MEF values was not associated with performance.

Despite that the magnitude of bilateral asymmetries not being linked to

performance, the analysis of MEF for the left and right sides could still provide

important information for swimmers and coaches. For example, it was shown that
MEF coincides with V minima. Therefore, if a swimmer has bilateral asymmetries in

both the magnitude of MEF and V minima, then the analysis of the left and right side
values could be informative with respect to the MEF value that is associated with the

higher minimum V value. The latter, together with consideration of other parameters
of interest (e.g. body positions that minimise resistive forces for these parts of the
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SC), could provide a guidance to swimmers for ways of establishing technique

symmetry and, at the same time, improving performance.

5.4.2 Knee angular motion
5.4.2.1 Angular patterns and timing of maximum flexion

This study showed between and within swimmer variation in the kicking

patterns employed throughout the test, with two-, four- and six-beat kicking patterns

used by swimmers. The angular motions of the knees were sinusoidal in appearance.

The results showed that MKF values appeared as many as three times during the SC

(depending on the kicking pattern) for each knee. Due to within-swimmer similarities
in the magnitude of these values, the timing of appearance of the overall maximum
value in a SC varied throughout the test. Finally, the analysis of the timing of

appearance of one maximum flexion for each knee showed no significant changes

throughout the test.

Qualitative analysis of freestyle swimming technique has also shown that
swimmers use two-, four- and six-beat kicking patterns (e.g. Maglischo, 2003).

Maglischo (2003) stated that swimmers tend to use the two-beat kicking pattern for
distance events, as it presumably requires less energy expenditure, with the vast

majority of swimmers using a six-beat pattern for sprint events. The latter could

probably explain the change from a six- to a two-beat kicking pattern observed for
the two slowest swimmers during the test. Nevertheless, Maglischo also stated that
the six-beat kick can not be recommended for every swimmer, as the effectiveness of
the kicking actions might be influenced by factors such as: anthropometric

characteristics, muscular weakness and joint flexibility. The influence of such

parameters on the efficiency of kicking patterns and on swimming performance
remains to be investigated.

5.4.2.2 Magnitude of maximum knee flexion, changes throughout
the test and relationships with performance

The mean minimum knee angle values (representing MKF) were 133.8 ± 9.2°
for the left and 131.2 ± 10.1° for the right knee. There were no significant changes in
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MKF throughout the 200 m. Moreover, there was no significant correlation between

performance and the magnitude ofMKF.
Some authors have reasonably suggested that larger MKF values would be

beneficial as they would give the leg a larger ROM to produce propulsive forces

(Cappaert et al., 1995). However, this notion was not reflected in the relationships
between magnitude of MKF and performance in the present study. Possible

explanations could be associated with the position of the leg segments (mainly the

thigh and the shank) during the appearance ofMKF angles. For example, a low knee

position during the upwards movement of the foot (possibly associated with a large

angle on the hip joint) would increase the frontal surface area and, therefore, increase
water resistance and generate propulsive forces (mainly from the motions of the

thigh segment) on the opposite direction than the desired motion. Such forces could
cancel out some of the effect of the propulsive actions applied during the downwards
movement of the foot. Moreover, a high position of the knee during the upwards
movement of the foot could result in the foot coming above the water surface, thus

reducing the ROM that the shank is producing propulsive forces. The latter was

observed frequently among swimmers in the present study. Another possible cause

for the lack of association between magnitude of MKF and performance could be the
orientation of the kicking actions during the SC. Excessive hip roll and/or technique
deterioration could be associated with application of propulsive kicking forces in
directions other than the desired direction of motion. For the above reasons and for

the purpose of identifying the factors that influence the propulsive efficiency of the

kicking actions, further analysis could explore parameters such as: the angular
motion of the hip joint, the vertical displacement of the knee and the ankle joints and
the orientation of the kicking actions.

In other studies, Cappaert et al. (1995) reported angular ROM of 58.2 ± 5.9°
for elite and 49.3 ± 5.2° for subelite swimmers. Assuming that the maximum knee

angle for all swimmers was 180°, the reported values represented minimum knee

angles of 121.8° for the elite and 130.7° for the subelite group. Another study by the
same investigators (1996) reported minimum knee angles of 100.8° for sprint (up to

200 m events) and 139.7° for distance freestyle swimmers (above 200 m events).
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Despite some of the reported values being similar to those found in the present study,
differences ofmore than 30° existed in some cases.

The results of both of the above studies suggested that faster swimming
velocities were linked to larger values for MKF. However, the present study found
no indication of differences in the magnitude of MKF between slower and faster
swimmers. The discrepancy between this study and the studies by Cappaert et al.

(1995; 1996) could be related to factors such as differences in the level of swimmers

tested and the smaller range of velocities in the present study. Therefore, it would be
of interest to investigate whether any correlation would exist if swimmers are tested
in different events (e.g. sprint and distance events) and for a larger range of
velocities. Furthermore, future studies could explore the influence of other

parameters of the lower extremities on performance, such as: the angular V of the
knee and the angular ROM and V of the ankle.

5.4.2.3 Bilateral asymmetries
The mean bilateral asymmetries in MKF were 8.6 ± 5.5°, with individual

differences as high as 25.6°. Nevertheless, the magnitude of asymmetry in MKF did
not seem to be linked to CM horizontal V. There was no consistent side dominance

in MKF. However, the vast majority of swimmers who had lateral dominance in
MKF maintained the side bias throughout the 200 m. Finally, MKF values for the left
and right sides were generally not correlated.

As discussed above, it would be reasonable to assume that larger MKF values
would be beneficial by giving the leg a larger ROM to produce propulsive forces.

However, given that the magnitude of MKF was not associated with performance,
research should investigate other kinematic characteristics of the lower extremities,
such as the orientation of the leg actions, the vertical displacement and the angular V
of the knee and ankle joints. Consideration of these factors and the magnitude of
MKF could be informative with respect to performance improvement. Following

that, researchers could explore the bilateral asymmetries and provide guidance to

swimmers with regard to the technique changes required to establish symmetry and

improve swimming performance.
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6. Conclusion

6.1 Summary of the main findings
The main purpose of this thesis was to determine accurately, in three

directions, the intracycle variations of the V of the CM throughout a 200 m

maximum freestyle swim. Moreover, it also sought to examine if the V
maxima/minima and the magnitude of V fluctuations are associated with

performance. A second purpose was to determine accurately the magnitude of
shoulder and hip roll and maximum elbow and knee flexion, and to assess whether
these parameters are associated with average swimming V of the CM. Finally, the
bilateral asymmetries in all parameters and the association between the magnitude of

asymmetries and performance were investigated. The main findings of this study are

summarised below.

• Intracycle velocity
Swimmers decreased average V from SCI to SC2 and from SC2 to SC3, but had
no significant changes in V from SC3 to SC4.

Intracycle horizontal V had two distinct maxima and minima, with one maximum
and one minimum value associated with the UWP of each arm. V maxima

occurred during the first half (hand moving backwards and downwards) and V
minima during the second half (hand moving backwards and upwards) of the
UWP of each arm, while the opposite arm was not contributing to propulsion.
V maxima occurred at approximately the same time of the SC as shoulder/hip roll

maxima, while V minima coincided approximately with MEF.

Faster swimmers achieved higher average V than slower swimmers mainly by

reaching higher V maxima, rather than increasing V minima. However, the

ability of faster swimmers to limit the decrease in V improved with each SC.

Noteworthy fluctuations in V were found in all directions, with the magnitude of
fluctuations not linked to performance. Nevertheless, horizontal V fluctuations
were positively associated with maximum V in most SCs.
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The fluctuation of horizontal V was greater in SC3 than in SC2 and SC4. This
increase was mostly associated with a reduction in minimum V.

• Shoulder and hip roll
Swimmers rolled their shoulders considerably more than their hips.
Shoulders and hips rolled towards the same direction and reached a maximum at

similar times during a SC.
There were two distinct maxima in shoulder and hip roll, one on each side.
The timings of roll maxima occurred significantly earlier in SCI than in SCs 2, 3
and 4.

Hip roll was significantly less in SCI (when V was higher) than the other three
SCs. There were no differences in shoulder roll across SCs.

The magnitude of shoulder/hip roll was not associated with performance.

• Maximum elbow and knee flexion

Swimmers had less MEF in SCI than in the other three SCs. The magnitude of
MKF did not change significantly during the test.

The magnitudes ofMEF and MKF were not associated with performance.
Swimmers used two- to six-beat kicking patterns throughout the test. Differences
in kicking patterns existed between and within swimmers.

• Bilateral asymmetries

Noteworthy bilateral asymmetries existed in all kinematic parameters. The

magnitude of asymmetries was not associated with performance
All swimmers had higher V during the right arm UWP and rolled the shoulders
more to the left (with one exception in each case showing overall symmetry).

6.2 Practical implications
The analysis of intracycle V variations provided useful information for the

balance between propulsive/resistive forces during a SC. Swimming performance
can improve if swimmers increase the duration of the most propulsive and decrease
the duration of the most resistive periods within a SC. In view of the findings of this
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study, swimmers could be instructed to extend the length of the period that both arms

are under water (after the catch is performed and while both arms contribute to

propulsion), as this period is associated with the highest net forces during the SC.
This could possibly be achieved by an earlier 'catch' and by swimmers taking full

advantage of the horizontal ROM of the hand and pushing backwards until the hand
exits the water (early hand exit is a common mistake among swimmers). Moreover,

considering that resistance is higher than propulsion before the 'catch', an early
'catch' could possibly lead to an earlier initiation of the propulsive phase of the
stroke. To facilitate an early 'catch', swimmers should enter their arms in the water

in a way that minimises the resistive forces created in the transition between the
above and the below water phases, but also ensure that the arms enter the water in
such a position and orientation that the forward glide (where the arm applies no

propulsion and the cross sectional area exposed to the flow increases) is minimised.
There was a strong indication that swimmers apply greater forces with the

dominant arm and/or possibly adopt such body positions that minimise the resistive
forces. It would be reasonable to assume that if a swimmer produces maximum V of

equal magnitude during the UWP of the non-dominant arm, then the average V of the
SC would increase (providing that the swimmer would be equally effective in

minimising the resistive forces during the UWP of the non-dominant arm).

Moreover, when fluctuation in horizontal V increased significantly during the test (in

SC3), the part of the SC that was mostly affected was the one associated with the V
minima of the non-dominant arm. The latter implies that swimmers and coaches
should focus on the improvement of effectiveness of the non-dominant arm, in order
to establish symmetry in technique and improve performance. Increased propulsive
effectiveness of the non-dominant arm could be facilitated by strength-specific dry¬
land exercises followed by appropriate technique drills. For the swimmers tested in
this study, the calculation of bilateral asymmetries in V maxima/minima and MEF
can be informative with respect to the MEF value that is associated with the higher
minimum V, therefore providing an indication of the appropriate combination of
kinematic parameters that could lead to performance improvement.

The present study showed within swimmer variations in the magnitude of
fluctuation for a given V. However, swimming with less V fluctuations for a given
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average V should be expected to be more economical and require less energy

expenditure. Thus, for the purposes of reducing the energy demands for a given V
and maximising swimming efficiency, researchers and coaches should identify the
differences in the kinematic characteristics between SCs of different fluctuations for

a given average V. Swimmers could then employ the technique that minimises V
fluctuations for a given average V.

The present study showed that an increase in the magnitude of hip roll
resulted in smaller differences between shoulder and hip roll, which decrease the
frontal surface area and are possibly associated with less water resistance. Moreover,
research has shown that large SL values might be good indicators of technique

efficiency, while large SR values seem to be associated with high energy cost (e.g.
Costill et al., 1985). Therefore, if positions of greater magnitude of hip roll are found
to be more effective in terms of minimising resistive forces, swimmers could be
instructed to try to achieve such positions perhaps by using the highest possible SL
for a given V, rather than increasing the forces applied to non-propulsive directions.

However, an increase in SL for a given V would probably be associated with an

increase in SC time. Therefore, swimmers should practise maximising the SL for a

given V by extending the time of the most propulsive parts of the SC, such as the

parts that both arms contribute to propulsion.
Swimmers should seek the appropriate magnitude of MKF that would

provide the leg with the optimum ROM to produce propulsive forces. However,
swimmers must ensure that the feet do not exit the water during the upwards motion
of the shank, as this would increase resistance and reduce the effective ROM for

application of propulsive forces. Moreover, when the swimmers bend their knees
towards MKF they should place the thighs in such positions that would minimise the
resistive forces generated by the increase in the frontal area and the forward motion
of that segment. Although further research is required to identify the optimum MKF
values for a given V and the associated thigh and shank positions, swimmers and
coaches could seek the combinations that produce higher velocities by using surface

kicking and swimming drills and assessing the differences in performance.

Conclusion 140



6.3 Recommendations for future research

The present thesis advanced the knowledge on the biomechanics of freestyle

swimming by employing an analysis of intracycle and across-event changes in
kinematic parameters during a maximum 200 m swim. In light of the findings and
the limitations of this thesis, this section presents directions for future research that
would improve further the understanding of swimming technique.

This thesis focused on kinematic aspects of freestyle swimming. In view of
the advances in swimming analysis methods, investigators should be encouraged to

calculate accurately (in 3D) the biomechanical characteristics of backstroke, butterfly
and breaststroke swimming. Moreover, an interdisciplinary approach would allow
the examination of interrelationships between biomechanical and physiological
variables and could provide a clearer and more complete picture of swimming

technique. Furthermore, it is possible that a 200 m maximum freestyle swim might
incur different physiological demands when performed in a 50 m than a 25 m pool.
Given that differences in physiological parameters might affect stroke kinematics, it
would be of interest to investigate possible differences between tests held in a 25 m

and a 50 m pool.
There was a lack of association between performance and many of the

parameters calculated in this study. This may be related to the small range of
velocities for the group of swimmers tested. Therefore, it would be of interest to

investigate whether any correlations would exist if swimmers are tested in different
events (e.g. sprint and distance events) and for a larger range of velocities.

The magnitude of V fluctuations and the ability of a swimmer to produce

high V maxima/minima are associated with the applied propulsive and resistive
forces. However, the propulsive and the resistive forces acting during swimming are

expected to have a non-linear relationship with V. Nevertheless, only the linear

relationships between average V and V fluctuations/maxima/minima were examined
in this study. Thus, it would be of interest to explore in future studies whether strong
associations between intracycle V changes and performance exist when the V

changes are normalised to take into account the non-linear relationship between V
and resistive forces. Moreover, other factors that influence the magnitude of resistive
forces experienced by swimmers could be explored, such as the cross-sectional area
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exposed to flow, the V of body segments in the direction of travel and the alignment
and shape of body segments.

The analysis of intracycle kinematics of the CM was limited to V patterns.

However, acceleration data would be informative with regard to the extent that
different phases of the SC are propulsive and could improve further the

understanding of swimming technique.
The magnitude of MEF and MKF were not associated with performance.

Therefore, for the purpose of identifying the parameters that distinguish between
faster and slower swimmers, future studies could focus on other aspects of the
underwater motion of the upper and lower extremities, such as: internal/external
rotations of the elbow; angular V of the elbow, wrist, knee and ankle; orientation of
the segments of the upper and lower extremities; relative displacements of the
shoulder/elbow/wrist joints and propulsive/resistive forces associated with different

parts of the UWP of the stroke (and the respective segment positions).
This study showed that swimmers decreased the differences between shoulder

and hip roll when V decreased, suggesting a tendency to use a more hydrodynamic

posture. In addition to the investigation of these relationships for other events and

distances, future research could adopt a kinetic approach and examine the extent to

which changes in shoulder/hip roll are associated with changes in propulsive and
resistive forces and the production of torques about the longitudinal axis.

Furthermore, other factors such as the effectiveness of the arms for different rolling

positions and the influence of these positions on the orientation and application of

kicking forces should also be considered.
Lateral dominance was identified in shoulder roll and V maxima. Future

studies could explore the causes of these asymmetries by comparing groups of
swimmers according to the handedness (right and left handed) and the breathing

preference (breathing bilaterally, left side and right side breathing preference).
Moreover upper limb flexibility, strength and coordination measurements could be
informative for the purpose of assessing their interrelationships with bilateral

asymmetries and swimming performance. Following that, researchers could calculate
the bilateral asymmetries and provide guidance to swimmers with regard to the
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technique changes required to establish symmetry and improve swimming

performance.
Another area that was not addressed in this thesis and could be explored in

future studies is the separation of distinct parts of the UWP of the stroke and the

comparative analysis of the variation in kinematic parameters between these parts.

Finally, this study restricted the analysis to non-breathing cycles. However,
swimmers breathe frequently during a race (with the exception of some sprint events)
and the breathing actions are expected to alter the kinematic characteristics of

swimming. Therefore, it would be of interest to explore the differences between

breathing and non-breathing cycles and to assess the influence of breathing actions
on swimming performance.
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Data Tables

Table A.1: Methods used for the calculation of SR, SL and average V in swimming
Studies Stroke rate Velocity Stroke length

Method Method Method

1 2 3 1 2 1 2 3

Psycharakis et al., 2002 V V V

Chatard et al., 2001 a, b, c & d V V V

Girold et al., 2001a & b V V V

Chollet and Pelayo, 1999 V V V V V V V

Sidney et al., 1999 V V V

Pelayo et al., 1996 V V V

Arellano et al., 1994 V V V

Keskinen and Komi, 1993 V V V

Chengalur and Brown, 1992 V V V

Kennedy et al., 1990 V V V

Weiss et al., 1988 V V V

Craig et al., 1985 V V V

Pai et al., 1984 V V V

Letzelter and Freitag, 1982 Not reported
Stroke rate: Method 1: The number of stroke cycles realised in the whole distance divided
by the time needed to swim the same distance. Method 2: Calculation of the average SR for
a number of complete stroke cycles, while swimming in the midsection of the pool.
Measurements performed with the use of stopwatches. Method 3: Same procedure to
Method 2, with measurements performed with the use of a computer digitising system.
Velocity: Method 1: The whole distance swam divided by the time spent. Method 2: A
specific distance swam in the midsection of the pool divided by the time spent for this
distance.
Stroke length: Method 1: The whole distance swam divided by the number of stroke cycles
measured for that distance. Method 2: The average V divided by the average SR (measured
with the use of stopwatches). Method 3: Same procedure to Method 2, with measurements
performed with the use of a computer digitising system for data collected during swimming in
the midsection of the pool.
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Participant information sheet
Dear swimmer,

The test in which you are invited to participate is a single 200m freestyle swim at

maximum effort. No changes in your normal training routine are required for your

participation in this test, which will take place in the St Leonard's Swimming Pool.

Before the test, your height and weight will be measured. Moreover, two pictures

(one from the front and one from the side) will be taken simultaneously, to be used
for calculation of anthropometric characteristics such as the centre of mass. After

that, you will do a warm-up of around 1000m, followed by the 200m freestyle swim.
For the purposes of the test, your performance will be recorded with underwater and
above water cameras. You will start from inside the water by pushing off the wall,
and you will be asked to swim with maximum effort, similar to your normal race

pace for that event.

The aim of this research study is analyse the swimming technique. In order to assess

the fatigue-related changes in your technique and their influence on performance,

parameters such as the following will be calculated: velocity of the centre of mass,
stroke rate, distance per stroke, body roll, angle and displacement of the elbows and
knees etc. The results of these analyses will become available to you and your coach
as soon as they have been completed, while a CD with the recorded views of your

performance (from all the different cameras) will be given to you as soon as the test

is finished.

Your participation in this research is completely voluntary and if you choose to

participate you may withdraw at any time. You understand that you accept to take

part in this research in your own responsibility and that the researchers have no

liability for anything that may happen during the research procedure.

The researchers will be willing to answer any further questions that you may have.
We are truly thankful for your co-operation.
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Informed consent form

(Delete as appropriate)
1. I have read the Participant Information Sheet Yes / No

2. I have received enough information about this

study

Yes / No

3. I have had the opportunity to ask questions
and discuss the research study

Yes / No

4. I understand that I am free to withdraw from

the study at any time without giving a reason

Yes / No

5. I do grant permission for the video recordings
to be shown to others for educational purposes,

for example on the world wide web

Yes / No

6. I agree to take part in this research study Yes / No

Signature of the participant:

(or parent/guardian of participating child)

Date:

Name:

Signature of the investigator: Date:

Name:
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Published paper for the calibration frame project

Paper presented at the XIII International Symposium of Biomechanics in Sports,

Beijing, China, 22-27 August 2005) and published in the Conference Book of

Proceedings.

Reference: Psycharakis S G, Sanders R & Mill F, (2005). A calibration frame for 3D

swimming analysis. In, Wang Q (Ed.): Proceedings of the XVII International

Symposium on Biomechanics in Sports. Beijing, China. Pp.: 901-905.

A CALIBRATION FRAME FOR 3D SWIMMING ANALYSIS

Stelios G. Psycharakis1, Ross Sanders1 and Frank Mill2

Centre for Aquatics Research and Education, University of Edinburgh, UK
institute for Materials and Processes, University of Edinburgh, Edinburgh, UK

The purpose of this study was to construct a calibration frame for
accurate three- dimensional analysis of swimming and to assess its

accuracy and reliability. A 6.75m3 frame was constructed. The frame was

positioned in a 25m pool so that half was above and half below the water

surface and recorded with four underwater and two above water

synchronised cameras. Direct linear transformation methods were used to

estimate marker locations on the frame. Comparison among different
numbers of control points showed the set of 20 points to produce the
most accurate results. Selection of the most accurate control points

improved the accuracy of the measurements even when only 10 control

points were used. The frame was found to have high accuracy (mean
errors: 3.3mm, 2.6mm and 4.0mm; root mean square errors: 3.9mm,
3.8mm and 4.8mm) and reliability (SD: 0.4mm, 0.5mm and 0.4mm).

KEY WORDS: Biomechanics, underwater, three-dimensional, accuracy, reliability
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INTRODUCTION: Most studies of swimming have been limited to two-

dimensional (2D) analysis techniques. Errors associated with 2D analysis can be

great because swimming is not a planar activity for any of the major strokes.

Therefore, a single-camera 2D analysis does not enable accurate quantification of the
motion of the whole body. The assumption of bilateral symmetry is also untenable
due to asymmetric patterns in the technique (Arellano et al., 2003) and asymmetries
in the anthropometric characteristics (Tomkinson et al., 2003).

Therefore, accurate analysis of swimming technique requires three-dimensional (3D)

analysis methods. The application of such methods in swimming is complicated due
to several factors including the need to digitise body landmarks that move across two

media. In addition, filming underwater is problematic and introduces errors

additional to those associated with analyses of motion in air (Kwon, 1999).
One of the pre-requisites for accurate quantification of the variables of interest is
accurate calibration of the 3D space as part of the process of 3D coordinate
reconstruction by the direct linear transformation (DLT) method. Therefore, the

purpose of this study was to construct a calibration frame for 3D swimming analysis
and to assess the accuracy and reliability of this frame for calculation of points in the

space below water.

METHODS: A 3D calibration frame was constructed comprising three parts with
the following dimensions: 1.5 m (length) x 1.5 m (height) x 1 m (width). The parts

were designed to join to form a rectangular prism of 4.5 m length, 1.5 m height and
1 m width, enabling the calibration of a space of 6.75 m in total. Each side of each

part was a 12 mm diameter aluminium tube. This material was selected on the basis
of its high flexural stiffness relative to its weight to minimise distortion of the frame

during research or storage in a pool environment. Joints were formed by inserting
tubes into holes that had been drilled with fine tolerances into solid cubes of

aluminium (sides of 51 mm length). Lengths of 2 mm wire were used to triangulate
each part of the frame to minimise distortion and adjusted according to the readings
of the surveying tools to ensure that the adjoining sides of the frame were orthogonal.
The frame was supported on 8 aluminium tubes with circular bases of 64mm
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diameter attached to the bottom eight joints of the frame. The supporting tubes were

adjustable to enable the frame to be positioned with half above and half below the

surface of the water. Figure 1 shows an underwater view of the frame.
A total of 92 (46 above and 46 below water) polystyrene spheres, 3 cm in diameter,
were drilled through the centre and arbitrary placed on the tubes and wires as control
points. The spherical shape ensured that their centres were easily identified from any

viewing perspective. The exact co-ordinates of each marker (using a fixed point in
the frame as a reference) were measured with the use of surveying techniques and

specialist equipment such as square edges, centre finders, spirit levels, and steel
rulers. Additional calculations took into account minor alterations in marker

locations due to slight bowing of the tubes due to tension. These methods enabled the

calculation of the actual values of the coordinates for each marker to an accuracy of
±lmm.

Figure 1: Underwater view of the calibration frame

The calibration frame was placed into a 25 m swimming pool and videoed
simultaneously by 4 under and 2 above water synchronised JVC KY32 CCD video
cameras. The underwater cameras were approximately 8 m and the above water 12 m
away from the centre of the frame. The cameras were at depths varying from 0.5 to
1.5 m below the water surface to avoid errors due to the camera axes being in the
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same planes as the reference planes of the frame. The angle between the axes of the
two above water camera axes was approximately 100°, while the angles between
axes of adjacent below water camera axes varied from approximately 75° to 110°.
The camera settings were adjusted so that each camera was recording a space 6.5 m

long, that is, 1 m each side beyond the frame.
The following procedure was applied to assess the number of control points required
to maximise the accuracy of 3D co-ordinate reconstruction for the below water

calibration: 10 markers in the calibrated space were digitised over 10 fields for each
underwater camera view. Five series of digitising were performed for this set of 10

markers, using 10, 15, 20, 25 and 30 control points respectively. To avoid

overestimating accuracy the 10 markers selected for these comparisons were not

included in any set of calibration points (Challis & Kerwin, 1992). The 3D
coordinates were obtained using the DLT equations based on the data of all four
underwater cameras. The differences between the obtained and the known values

were calculated for the X, Y, and Z coordinates of each point for each of the 10 video
fields. The absolute values of the average differences for each marker were then
summed across the 10 markers and divided by 10 to obtain a mean measure of

accuracy for each reference axis. In addition, root mean square (RMS) errors were

calculated (Bartlett, 1997). This measure represents the error bounds within which
68% of measures would fall and is the combined effect of accuracy and reliability.
To improve accuracy and reduce digitising time for future research, control points
that reduced overall accuracy were eliminated. A set of 10 markers was selected and

accuracy estimated for 30 markers (independent of the control markers). Mean
differences and RMS errors were calculated for the set of 30 markers using the

procedures described above.
To obtain an estimate of reliability, one marker (as well as a set of 10 control points)
was digitised over 10 fields. The same operator (in order to avoid any inter-operator

errors) repeated the procedure 10 times. The reliability measure was the SD across

all digitisations of the marker.

Finally, the underwater cameras at the Centre for Aquatics Research and Education
are in the water, rather than viewing through external windows. This may reduce
errors due to distortion and refraction (Kwon, 1999). However, the cameras are
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shielded from the swimming public by removable perspex transparent screens. It was

of interest to assess whether recording through the perspex screens would increase
errors. Therefore, 10 markers in the calibrated space recorded with and without the
screens were digitised over 10 fields (with the use of an independent set of 10 control

points) and accuracy and reliability assessed in the same manner as described above.

RESULTS AND DISCUSSION:

Table 1 shows the mean difference and the mean RMS errors for the X, Y and Z

coordinates of the set of 10 markers, for different numbers of control points.

Generally, accuracy increased as the number of control points increased from 10 to

20. A further increase to 25 and 30 points did not improve the accuracy of the
measurements.

For the calculations performed following the selection of a set of 10 control points,
the mean difference for the set of 30 digitised points was 3.3 mm, 2.6 mm and
4.0 mm, for the X, Y and Z axes respectively. The average RMS error for these

points was 3.9 mm, 3.8 mm and 4.8 mm for the X, Y and Z directions respectively,

representing 0.1%, 0.2% and 0.5% of the calibrated space. These values were lower
than the values found for all the sets of different numbers of control points described
above. Thus, by careful selection of control points the accuracy of the measurements

can be improved even when only 10 control points are used. Considering the volume
of the calibrated space (6.75m ), the errors in this study were similar or lower than
those reported in other studies. Payton et al. (2002) reported mean errors of 1.5 to

3.1mm for a 1.1m3 volume (representing 0.2%, of the calibrated space for each

direction). Using a similar volume to this study for a study of the golf swing,
Coleman and Rankin (2005) reported RMS errors of 5.1 to 9.8mm (representing

0.4%, 0.5% and 0.3% of the calibrated space, for the X, Y and Z directions

respectively).
The reliabilities indicated by repeated digitisations of one marker were ±0.4mm,
±0.5mm and ±0.4 mm, for the X, Y and Z axes respectively. No reference has been
made to the reliability of calibration frames used in other swimming studies.
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The mean differences and the RMS errors with and without screens are shown in

Table 2. These calculations revealed that the screens had only a small effect on the

accuracy of the measurements.

Table 1: Mean difference and mean RMS errors for the X, Y and Z co-ordinates of a

set of 10 markers, for sets of 10, 15, 20, 25 and 30 control points

Number of Mean difference (mm) Mean RMS errors (mm)
control points X Y Z X Y Z

10 7.6 5.4 6.3 7.8 6.2 6.7

15 6.1 6.0 4.9 6.3 6.9 5.4

20 4.5 5.7 4.7 4.8 6.5 5.2

25 4.3 6.8 5.8 4.7 7.3 6.4

30 5.4 6.4 5.6 5.7 6.9 6.1

Table 2: The mean differences and RMS errors are shown without screens and with

screens

Without Screens With Screens

Differences RMS errors Differences RMS errors

(mm) (mm) (mm) (mm)
XYZXYZXYZXYZ

3.6 2.9 5.3 4.1 3.8 6.1 4.2 3.3 5.1 4.6 3.7 6.0

CONCLUSION: The use of 20 control points was shown to provide the most

accurate results among sets of various numbers of control points. Nevertheless, a

selection of the most accurate markers to serve as control points improved the

accuracy of the measurements even with the use of 10 control points. In general, the
calibration frame constructed in this study appeared to have good accuracy and

reliability relative to others reported in the literature. There was no obvious increase
in errors caused by light refraction due to the presence of transparent screens in front
of the camera lenses. Based on these results it was concluded that the constructed

frame could be used for 3D swimming analysis.
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Construction process of the calibration frame

The 3D calibration frame was constructed comprising three parts with the

following dimensions: 1.5 m (length) x 1.5 m (height) x 1 m (width). The parts were

designed to join to form a rectangular prism of 4.5 m length, 1.5 m height and 1 m

width, enabling the calibration of a space of 6.75 m3 in total (Figure 3.3, section

3.2.2.1). Each side of each part was a 12 mm diameter aluminium tube. This material
was selected on the basis of its high flexural stiffness relative to its weight to
minimise distortion of the frame during research or storage in a pool environment.
Joints were formed by inserting tubes into holes that had been drilled with fine
tolerances into solid cubes of aluminium (sides of 51 mm length) (Figure B.l).

Figure B.1: Aluminium tubes used to form calibration frame joints

To further minimise distortion, lengths of 2 mm wire were used to triangulate
each part of the frame, with each of the top four joints of each part connected to the

diametrically opposite joint. The wire connecting every pair of joints was attached to

a flexible construction made by wire rope grips, wire rope thimbles and turnbuckles

(Figure B.2). These wire constructions enabled and facilitated the precise adjustment
of the wires at equal lengths. The latter, together with adjustments made with the use

of surveying tools, ensured that the adjoining sides of the frame were orthogonal.
Once the adjustments had been finalised, the wires were glued at their ends

(turnbuckle connections) and the tubes were firmly screwed to the respective joints,
to eliminate any internal movement that could alter the geometry of the frame.
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Figure B.2: Wire connection used to triangulate and minimise distortion of the
calibration frame

When placed in the pool for calibration purposes, the frame was supported on

eight aluminium tubes with circular bases of 64 mm diameter, which were attached
to the bottom eight joints of the frame. These supporting tubes were of adjustable

lengths, to enable the positioning of half the frame above and half below the water

surface. Adjustability was further facilitated by marking the mid-points of all the
vertical tubes and aligning these markings with the water surface each time the frame
was used for calibration. Figures 3.4 and 3.5 (section 3.2.2.1) show an underwater
and an above water view of the frame.

A total of 92 (46 above and 46 below water) polystyrene spheres, 3 cm in
diameter, were drilled through the centre and placed in random positions on the tubes
and wires to serve as calibration points. The spherical shape ensured that their
centres were easily identified from any viewing perspective. For the purpose of
marker identification, each joint was named after a letter (from A to I, 16 joints) and
each marker was given a code consisting of two letters (those of the adjacent joints)
and a number. The number represented the position of a marker in relation to other
markers on the same tube/wire, with reference to the first of the two adjacent joints

(represented by the first of the two letters in the marker's code). For example, the
marker AB1 was the first marker (the one closest to joint A) on the tube connecting

joints A and B.
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The exact coordinates of each marker (using a fixed point in the frame as a

reference) were measured with the use of surveying techniques. For these

measurements, specialist equipment (obtained from the School of Engineering and

Electronics, Institute of Material and Processes, University of Edinburgh) was used,
such as: square edges, centre finders, spirit levels and steel rulers. Additional
calculations were made to take into account any slight alterations that could have
been caused to the coordinates of the markers from factors such as: bowing of the
tubes due to tension; offsets of the markers positions at the tubes/wires and offsets of
the joints estimated positions. The methods and equipment used for the
aforementioned measurements allowed the calculation of the real values of the

coordinates for each marker to an accuracy of + 1 mm. The values for all markers are

shown in Table B.3 (Appendix 2).
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Validation process of the calibration frame

To be worthwhile, any coordinate reconstruction technique needs to be
accurate and reliable (Challis, 1997). This includes the calibration methods and

techniques being used for any image-based motion analysis. For estimation of

accuracy and reliability, the calibration frame was placed in the pool and recorded
with all six cameras. The calibration frame position and the camera set up and

settings were identical to those used for subsequent data collections (as described in
sections 3.2.1 and 3.2.2.1).

• Accuracy and reliability of coordinate reconstruction

Accuracy is the difference between the true locations of the control points
and their predicted values (Challis, 1997). Accuracy in this study was assessed by

digitising the calibration frame markers and obtaining the 2D coordinates for each
camera view. The 3D coordinates where then calculated for each marker using the
Direct Linear Transformation (DLT) method (Abdel-Aziz & Karara, 1971).

Accuracy was calculated as the difference between the markers calculated coordinate
locations and the known (real) values.

For both the above and below water parts of the frame, accuracy was

estimated for all markers that were perfectly visible from all (two and four,

respectively) cameras. A set of 10 calibration points on the frame that did not include

any of those markers was used to determine the coefficients of the DLT equations, as
it has been shown that the use of the same markers for calibration and accuracy

assessment overestimates accuracy (Challis & Kerwin, 1992). The markers were

digitised over 10 fields for each view and the 3D coordinates were obtained using the
DLT equations with the combination of all cameras. Differences between the
obtained and the known values were calculated for the X (horizontal), Y (vertical),

and Z (lateral) coordinates of each point and for all 10 fields. The absolute values of
the average differences for each marker were then summed across all markers and
divided by 10 to obtain a mean measure of accuracy for each reference axis. The SD
of the differences was also calculated, as it gives a good estimation of precision.
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In addition, in line with Challis' (1997) recommendations, the root mean

square (RMS) errors were calculated, as RMS errors give a rigorous assessment of
reconstruction accuracy. Moreover, this measure represents the error bounds within
which 68 % of measures would fall and is the combined effect of accuracy and

reliability. The RMS errors were calculated by squaring the errors for the coordinates
of all digitised markers and for each of the 10 video frames, and then taking the

square root of the average of the squares of the errors.

The accuracy calculations for the above and below calibration points used in
this study showed mean errors of 2.6 to 4.5 mm and RMS errors of 3.3 to 5.2 mm,

representing 0.1 to 0.5 % of the calibrated space in each direction. Not all swimming
studies using 3D calibration frames have reported reconstruction accuracy values.

Payton et al. (1999a; 1999b; 2002) reported mean errors of 2.0 mm, 1.5 mm and
3.1 mm for the X, Y and Z axis respectively, without however mentioning the RMS
errors. The calibrated volume in these studies was 1.06 m3 (1.30 x 0.88 x 0.93 m),

meaning that the corresponding percentage errors (expressed relative to the
dimensions of the calibrated volume) were 0.2 % in each dimension. However the

latter calculations were performed for the mean reconstruction errors, as opposed to

the mean RMS errors used in this study, decreasing therefore the magnitude of the

corresponding percentage errors. Despite the low reconstruction errors reported for
these studies, Cappaert et al. (1995) stated that a small calibrated volume increases
the possibility of inaccuracies and larger errors caused by extrapolations beyond the
calibrated space. This was confirmed by Challis (1995) who, after comparing a

conventional with a multiphase DLT procedure, found that extrapolation beyond the
calibrated space produced errors up to three times (or up to 14.5 mm) larger than
errors produced when the space was normally calibrated.

In a golf swing study, Coleman and Rankin (2005) used a cubical (1.875 m in
■j

each dimension) calibration frame of similar volume (6.59 m ) to the one for the
•5

present study (6.75 m ). These investigators reported RMS errors of 7.1 mm, 9.8 mm

and 5.1 mm for the X, Y and Z axis respectively (representing 0.4 %, 0.5 % and
0.3 % of the calibrated space for the respective directions).

Challis (1995) presented a multiphase calibration procedure that enabled the
calibration of a 3.6 m3 volume with a calibration frame of just 0.6 m3. The RMS
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errors for each position of the multiphase calibration ranged from 6.1 to 8.5 mm. A
similar multiphase calibration procedure was used in a swimming study (Yanai,

2001), where the 2.4 m3 calibration frame (1.20 x 2.00 x 1.00 m) was placed at eight
successive positions along a test section of 8.4 m length. The investigator reported
resultant errors (average errors for the three dimensions) ranging from 8.7 to

17.5 mm for eight digitised points (four above and four below water), but did not

calculate the corresponding percentage errors for each dimension.

Considering the magnitude of the calculated mean, RMS and corresponding

percentage errors (see section 3.2.2.2), the reconstruction accuracy in the present

study was in general similar or better than other studies. In addition, the large volume
of the calibrated space (6.75 m3) minimised the possibility of extrapolation beyond
that space, increasing further the accuracy of the measurements. Therefore, the errors
in the system reconstruction accuracy in this study were considered to be low and

acceptable.

• Reliability of coordinate reconstruction
Precision (or reliability) is the repeatability with which a measurement can be

made. It has been suggested that the main operator should digitise one or more

sequences at least twice to obtain an estimate of precision (Challis, 1997). For

reliability assessment of the digitising process (and in addition to the calculation of
the SD of the differences, mentioned above), the positions of one underwater marker
as well as of a separate set of 10 control points were digitised over 10 video fields.
The same operator (to eliminate inter-operator errors and to use the same operator as

in the data analysis of this thesis) repeated the procedure 10 times. The SD across all

digitisations of the marker was calculated as an indication of reliability.
The reliability measures showed differences of the magnitude of ± 0.4 mm,

± 0.5 mm and ± 0.4 mm, for the X, Y and Z axes respectively. These values were

considered very small and any effect on the parameters measured in this study would
have been negligible, suggesting high reliability of the calibrated frame. No reference
has been made to the digitising reliability of calibration frames used in other

swimming studies. In non-swimming studies, Challis (1995) reported a difference of
±0.8 mm between two sets of measurements for a 0.6 m3 calibration frame, without
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however clarifying the axis/axes used for these calculations and the number of

digitised and calibration points.

• Errors due to distortion and refraction

Kwon (1999) stated that filming underwater is problematic and introduces
errors additional to those associated with analyses of motion in air. Kwon added that
since a water/glass/air interface is always involved in underwater recordings of

swimming, light refraction causes image deformation and, therefore, errors occurring
due to this factor should be calculated and reported in all studies involving
underwater swimming analysis. The underwater cameras at the Edinburgh University

pool were in the water, rather than viewing through external windows, which would
be expected to reduce errors due to distortion and refraction. However, the cameras

were shielded from the swimming public by removable Perspex transparent screens.

It was of interest to assess whether recording through the Perspex screens would
increase errors. Therefore, 10 markers in the calibrated space were recorded with and
without the screens. These markers were digitised over 10 fields (with the use of an

independent set of 10 calibration points) and accuracy was assessed in the same

manner as described above.

The mean differences and the RMS errors with and without screens are

shown in Table B.l. The accuracy for the two conditions was similar, with the
calculated errors ranging from 0.1 to 0.6 mm. Given the reliability calculations
mentioned above, the screens did not seem to affect the accuracy of the
measurements. Repeated measures ANOVA confirmed that no significant
differences existed between the two conditions. Nevertheless, for the purposes of

maximising the clarity and visibility of the recorded images, it was decided to

remove the screens during each recording session for this study.
The RMS errors caused by light refraction ranged from -0.1 to 0.5 mm,

falling within or close to the reliability calculations and indicating that the screens

could have had only a negligible effect on the measurements. Light refraction errors

have not been reported in the vast majority of swimming studies. Kwon (1999)

reported RMS errors in the range of 3.7 to 87.7 mm for a series of different

conditions, including alteration of camera-to-interface distance, interface-to-control
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object distance, camera angle etc. The larger errors observed in Kwon's study could

possibly be explained by differences in the methodological procedures, such as the

following: 2D DLT method used (as opposed to 3D DLT in this study); cameras

positioned in dry rooms behind underwater windows (as opposed to cameras fixed in
the water in this study) and theoretical refraction model used to obtain the

comparator coordinates of the control points (as opposed to digitising in the present

study).

Table B.1: Mean differences and RMS errors calculated with and without screens in

front of the underwater cameras

Without Screens With Screens

Differences (mm) RMS errors (mm) Differences (mm) RMS errors (mm)
X Y Z X Y Z X Y Z X Y Z

3.6 2.9 5.3 4.1 3.8 6.1 4.2 3.3 5.1 4.6 3.7 6.0

• Assessment of the number of calibration points used for analysis
For camera calibration, DLT methods require a minimum of six non-coplanar

points in each camera view, with up to 20 points often used in studies (Hamill &

Selbie, 2004). For example, Cappaert et al. (1995; 1996) used 24 calibration points

(12 above and 12 below water) for a 5.6 m calibration frame, while Payton et al

(1999b; 2002) used 25 points for a 1.1 m3 calibration frame. Given the lack of
information with respect to the number of calibration points required to maximise the

accuracy of reconstruction, researchers tend to arbitrary choose the number of
calibration points used in studies. Nevertheless, it would be of interest to identify
which number of calibration points (between sets of different numbers) would
minimise reconstruction errors. For that reason, 10 below water markers in the

calibrated space were digitised five times (over 10 fields), using 10, 15, 20, 25 and
30 calibration points respectively. The markers selected for these comparisons were

not included in any set of calibration points, to avoid any overestimations in accuracy

(as suggested by Challis & Kerwin, 1992). The procedure for accuracy estimation
was followed for these comparisons (as described above). Thus, the mean difference,
SD and RMS errors were calculated for the coordinates of all 10 markers and for

each different set of calibration points.
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Table B.2 shows the mean difference and the mean RMS errors for the X, Y

and Z coordinates of the set of 10 markers, for different numbers of calibration

points. The lowest errors were found for the set of 20 calibration points. However,
the mean differences and RMS errors between sets of calibration points were small
and not significant (0.434 < p < 1.000).

Table B.2: Mean differences and RMS errors between calculated and real values

for the coordinates of a set of 10 markers, digitised with the use of different numbers
of calibration points

Number of Mean difference (mm) Mean RMS errors (mm)
control points X Y Z X Y Z

10 7.6 5.4 6.3 7.8 6.2 6.7

15 6.1 6.0 4.9 6.3 6.9 5.4

20 4.5 5.7 4.7 4.8 6.5 5.2

25 4.3 6.8 5.8 4.7 CDCO

30 5.4 6.4 5.6 5.7 6.9 6.1

Psycharakis et al. (2005) showed that with selection of the most accurate

calibration markers accuracy can be improved even when only 10 points are used.

However, the 10 most accurate calibration points used for these preliminary analyses
assessed the accuracy of a set of 30 digitised points (as opposed to 10 digitised points
used for the comparisons shown in Table B.2) Therefore (taking into account the
data shown in Table B.2), it was of interest to assess the differences between the sets

of 10, 15, 20 and 25 most accurate points (of the 30 points originally used) on the
same set of digitised points and for both above and below water. The comparison
showed lower errors (differences ranging from 0.2 to 1.4 mm for all axes) when 20
calibration points were used. Nevertheless, the differences between different sets of
control points were not significant (0.358 <P<1 .000). For the purposes of ensuring
a big number of calibration points that would be evenly scattered and would cover a

considerable part of the volume of the large digitised space without decreasing
measurement accuracy, it was decided to use 20 calibration points for the subsequent

swimming analyses. The average errors (and RMS errors) for the 20 below water

calibration points used in this study were: 2.6 mm (3.3 mm) for the X, 2.4 mm
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(3.6 mm) for the Y and 4.5 mm (5.2 mm) for the Z axis. For the 20 above water

calibration points the errors were: 3.5 mm (3.9 mm), 3.3 mm (3.8 mm), and 3.8 mm

(4.2 mm) for the X, Y and Z axes respectively. The average RMS errors for both the
above and below water points represented 0.1%, 0.5% and 0.5% (0.4% for the above
water points) of the calibrated space for the X, Y and Z directions respectively.
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Data Tables

Table B.3: Calculated coordinates (mm) of the markers of the 3D calibration frame
Marker X Y Z Marker X Y Z

AB1 -1 295 -5 PK2 1498 501 1008

AB2 0 598 -11 PK3 1505 1201 1009

AB3 4 1098 -15 OL1 2997 198 997

AH1 400 1 1 OL2 3006 1000 1005

AH2 797 0 4 NM1 4511 498 1006

AH3 1197 -3 3 NM2 4507 1303 998

HG1 2002 -1 2 JB1 5 1500 792

HG2 2403 -1 -4 JB2 7 1500 387

HG3 2838 1 -4 IA1 2 -1 600

GF1 3296 -1 -6 IA2 3 0 198

GF2 4099 1 -2 PH1 1503 3 856

FE1 4500 399 1 PH2 1502 7 351

FE2 4499 1201 -4 KC1 1508 1500 655

DE1 3309 1502 -2 KC2 1508 1503 255

DE2 3910 1507 2 OG1 3004 6 594

CD1 1764 1502 5 LD1 3006 1500 692

CD2 2288 1503 -3 NF1 4504 2 398

CD3 2738 1501 -3 ME1 4511 1501 396

BC1 257 1499 -9 AK1 274 240 189

BC2 660 1495 -3 AK2 495 462 335

BC3 1160 1501 1 AK3 1101 1122 734

HC1 1500 356 0 HJ1 1164 307 230

HC2 1505 904 -3 HJ2 865 630 426

HC3 1506 1355 1 HJ3 500 1022 664

GD1 3002 299 -10 IC1 308 278 792

GD2 3004 1105 -10 IC2 849 854 440

IP1 297 2 1002 IC3 1173 1198 231

IP2 594 4 1005 PB1 1039 440 690

IP3 997 4 1005 PB2 596 926 387

P01 1707 0 1005 PB3 382 1150 248
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P02 2043
. -1 1000 HL1 1771 238 187

P03 2720 0 997 HL2 2316 818 539

0N1 3495 1 997 GK1 2882 74 80

0N2 4296 -1 1001 GK2 2066 952 627

JK1 456 1497 998 PD1 1985 467 675

JK2 907 1494 1002 PD2 2549 1067 304

JK3 1356 1498 1007 OC1 2354 641 567

KL1 1794 1504 1007 OC2 1868 1165 249

KL2 2497 1501 1003 GM1 3445 423 293

KL3 2758 1502 998 GM2 4167 1191 764

LM1 3507 1500 996 FL1 4222 247 191

LM2 4109 1501 996 FL2 3595 922 600

IJ1 -2 504 1002 OE1 3588 574 604

IJ2 -3 848 1000 OE2 4100 1117 273

IJ3 5 1350 997 ND1 4163 309 770

PK1 1495 98 1004 ND2 3534 987 352
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Table B.4: Anatomical markers and marker locations for the eZone method

Anatomical Side View Marker Location Front View Marker Location

Landmark

Vertex Highest point of head in line
with auditory meatus

Midline of head at highest point

C2 Mandible Angle Centre of chin

C7 At level of C7 but in centre of

neck segment

Adam's apple

AC Joint AC Joint Same marker as side view

Head of humerus Head of humerus On the midline of the arm at

same level as side marker

Elbow Elbow Elbow

Wrist Wrist Wrist

Finger Tip of longest finger Same marker as side view

Xiphoid On the midline of the trunk at

same level as front marker

Base of sternum

Pubic Not required Applied by the subject
Greater Greater trochanter of femur On the midline of the thigh at

trochanter same level as side marker

Knee axis Knee axis On the midline of the knee at

same level as side marker

Ankle axis Ankle axis On the midline of the ankle at

same level as side marker

Metatarsal Metatarsal phalangeal joint Same marker as side view

phalangeal joint
Toe Tip of the longest toe Same marker as side view

(Adapted from: Deffeyes and Sanders, 2005)
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Data tables

Table C.1: Individual swimmer data for the average horizontal V of the CM

Average Horizontal V of the CM (m sec1)
Swimmer SC1 SC2 SC3 SC4 200 m

Mean

Decrease from

SC1-SC4

(% SC1 V)
1 1.77 1.61 1.60 1.53 1.62 13.63

2 1.70 1.61 1.60 1.55 1.61 9.11

3 1.69 1.56 1.52 1.43 1.55 15.16

4 1.72 1.50 1.47 1.48 1.54 13.55

5 1.69 1.55 1.48 1.45 1.54 14.41

6 1.69 1.54 1.49 1.37 1.52 18.96

7 1.62 1.45 1.42 1.45 1.48 10.57

8 1.62 1.47 1.40 1.45 1.48 10.53

9 1.66 1.47 1.38 1.40 1.48 16.18

10 1.63 1.44 1.40 1.37 1.46 15.85

11 1.53 1.37 1.37 1.37 1.41 10.52

Mean 1.66 1.50 1.47 1.44 1.52 13.50

SD 0.06 0.07 0.08 0.06 0.06 3.03
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Table C.2: Individual swimmer data for SR and SL

Stroke Rate Stroke Length

(cycles-min"1) (m-cycle"1)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 51.73 45.46 47.62 47.62 48.11 2.05 2.12 2.01 1.92 2.03

2 49.18 43.48 42.86 44.12 44.91 2.07 2.22 2.23 2.10 2.16

3 41.66 37.97 50.85 38.46 42.24 2.43 2.45 1.80 2.23 2.23

4 48.39 43.48 44.78 45.46 45.53 2.13 2.07 1.97 1.96 2.03

5 54.55 50.85 49.18 48.39 50.74 1.86 1.82 1.80 1.79 1.82

6 46.88 41.09 43.48 40.00 42.86 2.16 2.25 2.06 2.05 2.13

7 46.88 42.86 44.12 46.15 45.00 2.07 2.03 1.93 1.88 1.98

8 42.86 40.00 40.00 41.09 40.99 2.26 2.20 2.09 2.11 2.17

9 55.55 52.63 46.88 46.88 50.49 1.79 1.68 1.77 1.78 1.75

10 37.97 31.91 30.61 32.97 33.37 2.57 2.71 2.74 2.49 2.63

11 50.00 41.66 44.12 46.15 45.48 1.84 1.96 1.87 1.78 1.86

Mean 49.18 43.48 42.86 44.12 44.91 2.11 2.14 2.02 2.01 2.07

SD 5.37 5.69 5.41 4.74 4.84 0.24 0.28 0.28 0.22 0.24
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Table C.3: Individual swimmer data for the horizontal fluctuation of the V of the CM

Absolute Fluctuation % Fluctuation

(m-sec"1 ) (% of Average V)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 0.65 0.64 0.69 0.65 0.66 36.62 40.00 43.15 42.86 40.66

2 0.88 0.83 0.86 0.67 0.81 51.81 51.91 53.79 43.05 50.14

3 0.75 0.58 0.64 0.51 0.62 44.59 37.20 41.74 35.71 39.81

4 0.60 0.57 0.65 0.56 0.59 34.84 38.12 43.95 37.66 38.64

5 0.65 0.55 0.58 0.61 0.60 38.21 35.88 39.02 42.27 38.85

6 0.74 0.79 0.96 0.79 0.82 43.88 51.36 64.42 57.89 54.39

7 0.59 0.43 0.66 0.52 0.55 36.31 29.84 46.38 36.00 37.13

8 0.51 0.40 0.55 0.48 0.48 31.55 27.13 39.48 33.12 32.82

9 0.87 0.65 0.68 0.58 0.70 52.45 44.52 49.34 41.81 47.03

10 0.92 0.74 0.74 0.67 0.77 56.52 51.20 52.64 48.71 52.27

11 0.52 0.56 0.59 0.53 0.55 33.69 41.11 42.95 38.92 39.17

Mean 0.70 0.61 0.69 0.60 0.65 41.86 40.75 46.99 41.64 42.81

SD 0.15 0.14 0.12 0.09 0.11 8.55 8.42 7.59 6.93 6.98

Appendix C 184



Table C.4: Individual swimmer data for the V maxima during the UWP of the left and

right arms
Maximum V at Right Arm Maximum V at Left Arm
Underwater Phase (m sec1) Underwater Phase (m sec1)

Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 2.20 1.94 1.99 1.97 2.02 2.18 1.97 1.97 1.77 1.97

2 2.12 2.05 2.06 1.91 2.04 2.00 1.95 1.93 1.85 1.93

3 2.10 1.90 1.88 1.73 1.90 1.97 1.79 1.77 1.71 1.81

4 2.00 1.84 1.84 1.82 1.88 2.08 1.79 1.88 1.78 1.88

5 2.09 1.88 1.83 1.77 1.89 1.81 1.66 1.57 1.54 1.65

6 2.11 2.01 2.06 1.83 2.00 1.84 1.90 1.84 1.68 1.82

7 1.89 1.65 1.73 1.73 1.75 1.82 1.57 1.51 1.62 1.63

8 1.85 1.67 1.64 1.70 1.71 1.85 1.66 1.59 1.63 1.68

9 2.15 1.80 1.65 1.75 1.84 1.93 1.69 1.58 1.65 1.71

10 2.12 1.87 1.78 1.72 1.87 1.94 1.78 1.70 1.68 1.78

11 1.88 1.70 1.75 1.71 1.76 1.57 1.51 1.48 1.52 1.52

Mean 2.05 1.85 1.84 1.78 1.88 1.91 1.75 1.71 1.68 1.76

SD 0.12 0.13 0.15 0.09 0.12 0.16 0.15 0.18 0.10 0.15
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Table C.5: Individual swimmer data for the V minima during the UWP of the left and

right arms

Minimum V at Right Arm Minimum V at Left Arm
Underwater Phase (m sec1) Underwater Phase (m-sec1)

Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 1.59 1.34 1.34 1.35 1.40 1.55 1.33 1.30 1.31 1.37

2 1.54 1.49 1.48 1.47 1.49 1.24 1.22 1.20 1.24 1.23

3 1.35 1.32 1.24 1.23 1.29 1.45 1.39 1.28 1.22 1.33

4 1.49 1.27 1.24 1.27 1.32 1.52 1.30 1.35 1.27 1.36

5 1.48 1.36 1.30 1.16 1.33 1.53 1.33 1.26 1.24 1.34

6 1.37 1.22 1.30 1.04 1.23 1.49 1.22 1.09 1.10 1.23

7 1.54 1.38 1.29 1.26 1.37 1.31 1.22 1.08 1.21 1.20

8 1.34 1.31 1.25 1.30 1.30 1.39 1.27 1.09 1.22 1.24

9 1.62 1.40 1.35 1.28 1.41 1.28 1.15 0.97 1.16 1.14

10 1.44 1.18 1.18 1.20 1.25 1.20 1.16 1.05 1.06 1.12

11 1.37 1.14 1.22 1.19 1.23 1.41 1.20 1.16 1.17 1.23

Mean 1.47 1.31 1.29 1.25 1.33 1.40 1.25 1.17 1.20 1.25

SD 0.10 0.10 0.08 0.11 0.08 0.12 0.08 0.12 0.07 0.09
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Table C.6: Individual swimmer data for the absolute fluctuations of the horizontal V

of the CM during the UWP of the left and right arms
Fluctuation at Right Arm Fluctuation at Lett Arm
Underwater Phase (m sec1) Underwater Phase (m sec1)

Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 0.61 0.60 0.64 0.62 0.62 0.63 0.64 0.67 0.46 0.60

2 0.58 0.56 0.58 0.44 0.54 0.76 0.73 0.73 0.60 0.71

3 0.75 0.58 0.64 0.50 0.62 0.52 0.40 0.49 0.49 0.48

4 0.51 0.57 0.60 0.55 0.56 0.56 0.49 0.54 0.51 0.53

5 0.61 0.52 0.53 0.61 0.57 0.29 0.34 0.32 0.31 0.31

6 0.74 0.79 0.75 0.79 0.77 0.36 0.67 0.74 0.59 0.59

7 0.35 0.26 0.44 0.46 0.38 0.51 0.36 0.43 0.42 0.43

8 0.51 0.36 0.38 0.40 0.41 0.46 0.39 0.51 0.41 0.44

9 0.53 0.41 0.30 0.46 0.43 0.65 0.54 0.61 0.48 0.57

10 0.68 0.68 0.60 0.52 0.62 0.74 0.62 0.65 0.62 0.66

11 0.51 0.56 0.53 0.52 0.53 0.16 0.31 0.32 0.35 0.28

Mean 0.58 0.54 0.55 0.53 0.55 0.51 0.50 0.55 0.48 0.51

SD 0.12 0.15 0.13 0.11 0.11 0.19 0.15 0.15 0.10 0.13
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Table C.7: Individual swimmer data for the percentage fluctuations of the horizontal
V of the CM during the UWP of the left and right arms

% Fluctuation at Right Arm % Fluctuation at Left Arm

Swim- SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 34.49 37.13 40.40 40.52 38.01 35.57 39.91 42.15 30.09 36.97

2 34.41 35.11 36.06 28.72 33.63 44.68 45.36 45.84 38.97 43.77

3 44.59 37.20 41.74 34.90 39.80 31.04 25.80 32.11 34.31 30.75

4 29.84 38.12 41.06 37.18 36.29 32.91 32.89 36.49 34.55 34.15

5 36.10 33.52 35.97 42.27 36.87 16.93 21.83 21.35 21.12 20.20

6 43.88 51.36 50.54 57.89 50.55 21.03 43.65 49.77 42.78 38.69

7 21.80 18.19 31.05 32.07 25.63 31.64 24.70 30.34 28.88 28.96

8 31.55 24.66 27.57 27.65 27.95 28.31 26.33 36.48 28.10 29.69

9 32.00 27.71 22.06 33.07 28.86 38.90 36.72 43.85 34.63 38.51

~T0 41.79 47.36 43.25 37.89 42.60 45.45 43.06 46.72 45.05 45.07

11 33.11 41.11 38.63 37.64 37.49 10.53 22.82 22.97 25.31 20.12

Mean 34.87 35.59 37.12 37.25 36.15 30.64 33.01 37.10 33.07 33.35

SD 6T56 9^58 7^91 8^23 TU 10.98 9^07 9?59 7^30 8.38

Appendix C 188



Table C.8: Timings for the two V maxima (Max1, Max2) and minima (Mini, Min2)
SC1 SC2 SC3 SC4 Mean

Mini 0.9 (±8.4) 2.1 (±5.7) 5.0 (±6.5) 7.4 (±5. 5) 3.8 (±4.6)

Max1 26.6 (±7.7) 32.4 (±6.8) 33.6 (±6.1) 35.3 (±5.0) 32.0 (±5.8)
Min2 46.8 (±8.4) 49.1 (±7.1) 52.1 (±5.9) 52.5 (±5.2) 50.1 (±5.8)

Max2 80.8 (±7.3) 81.6 (±4.7) 84.4 (±4.0) 83.8 (±3.3) 82.7 (±4.4)
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Table C.9: Individual swimmer data for the vertical fluctuation of the V of the CM

Swim- SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 063 056 060 054 058 35.61 34.80 37.90 35.43 35.94

2 071 058 061 061 063 41.54 35.84 38.01 39.66 3876

3 070 053 050 057 058 41.59 34.17 32.82 39.61 37.05

4 062 059 053 042 0.54 36.19 39.47 36.20 28.55 35.11

5 043 048 051 053 049 25.15 30.97 34.34 36.61 31.77

6 066 056 051 055 057 38.82 36.54 34.39 40.22 37.49

7 045 038 0~40 045 042 27.54 25.98 28.15 31.11 28.20

8 060 057 057 053 057 36.90 38.63 40.88 36.77 38.30

9 072 064 057 055 062 43.22 43.46 41.48 39.41 41.89

"TO 055 061 057 057 058 34.05 42.65 41.13 41.30 39.78

il 047 035 027 031 035 30.69 25.71 20.02 22.73 24.79
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Table C.10: Individual swimmer data for the lateral fluctuation of the V of the CM

Absolute Fluctuation % Fluctuation

(m-sec1) (% Average Horizontal V)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 0.53 0.40 0.54 0.47 0.49 30.16 24.70 33.87 30.90 29.91

2 0.58 0.52 0.58 0.52 0.55 34.15 32.38 36.31 33.98 34.20

3 0.30 0.40 0.52 0.34 0.39 17.98 25.57 34.30 24.01 25.47

4 0.31 0.26 0.33 0.38 0.32 17.88 17.02 22.35 25.49 20.68

5 0.37 0.42 0.33 0.28 0.35 21.84 27.06 22.14 19.35 22.60

6 0.44 0.51 0.38 0.22 0.39 26.03 33.01 25.25 15.95 25.06

7 0.37 0.37 0.35 0.27 0.34 23.00 25.66 24.63 18.65 22.98

8 0.34 0.36 0.32 0.44 0.36 21.00 24.18 22.77 30.11 24.51

9 0.56 0.42 0.40 0.47 0.46 33.94 28.67 28.90 33.95 31.37

10 0.51 0.37 0.39 0.43 0.43 31.59 25.99 28.08 31.45 29.28

11 0.39 0.36 0.20 0.33 0.32 25.41 26.38 14.79 24.22 22.70
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Table C.11: Individual swimmer data for the range of overall shoulder and hip roll
Shoulder Roll (degrees) Hip Roll (degrees)

Swim SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

-mer

1 94.6 94.9 101.3 101.2 98.0 37.1 52.8 47.7 43.8 45.4

2 107.8 106.8 101.4 103.4 104.9 43.0 50.4 44.9 49.0 46.8

3 102.2 98.0 92.1 96.7 97.3 38.7 45.0 37.2 46.4 40.3

4 90.6 92.4 99.8 97.8 95.2 41.5 42.9 58.4 59.8 50.6

5 110.0 107.4 113.4 114.8 111.4 38.5 40.2 47.0 52.7 44.6

6 96.9 98.5 99.7 101.2 99.1 38.7 46.8 40.7 53.5 44.9

7 108.9 110.9 118.7 112.8 112.8 34.0 38.8 36.8 47.3 39.2

8 112.3 119.2 106.0 106.1 110.9 50.2 60.4 64.6 56.6 57.9

9 115.6 107.3 111.3 106.8 110.3 34.9 37.0 66.9 49.9 47.2

10 114.7 126.6 124.3 120.6 121.5 75.0 84.1 80.6 87.8 81.9

11 96.1 92.1 100.4 108.4 99.3 44.5 48.0 55.1 57.8 51.4

Mean 104.5 104.9 106.2 106.4 105.5 43.3 49.7 52.7 54.9 50.0

SD 8.8 11.1 9.6 7.4 8.4 11.5 13.3 13.8 12.0 11.8
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Table C.12: Individual swimmer data for the range of shoulder roll to the left and the

right sides
Shoulder Roll Left (degrees) Shoulder Roll Right (degrees)

Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 51.5 51.1 53.0 54.1 52.4 43.1 43.8 48.3 47.1 45.6

2 53.5 51.8 53.9 50.4 52.4 54.3 55.1 47.5 53.0 52.5

3 56.6 51.8 50.6 54.4 53.4 45.6 46.3 41.5 42.3 43.9

4 54.6 56.0 55.3 61.6 56.9 35.9 36.4 44.5 36.2 38.3

5 56.3 54.0 62.9 61.6 58.7 53.8 53.4 50.5 53.2 52.7

6 53.4 54.1 53.8 48.2 52.4 43.5 44.4 45.9 53.0 46.7

7 56.5 58.3 59.6 56.1 57.6 52.4 52.6 59.1 56.6 55.2

8 62.3 63.3 58.7 60.0 61.1 50.0 55.9 47.3 46.1 49.8

9 58.9 55.5 57.5 56.7 57.2 56.7 51.8 53.7 50.1 53.1

10 59.8 68.7 68.4 66.8 65.9 54.9 57.9 55.9 53.7 55.6

11 48.3 44.9 53.6 60.1 51.7 47.8 47.2 46.8 48.3 47.5

Mean 55.6 55.4 57.0 57.3 56.3 48.9 49.5 49.2 49.1 49.2

SD 4.0 6.4 5.2 5.4 4.5 6.4 6.5 5.2 5.9 5.3
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Table C.13: Individual swimmer data of the range of hip roll to the left and the right
sides

Hip Roll Left (degrees) Hip Roll Right (degrees)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 17.7 27.0 24.5 22.8 23.0 19.4 25.8 23.2 21.0 22.4

2 21.8 22.3 23.3 26.2 23.4 21.3 28.1 21.6 22.8 23.4

3 21.1 23.6 16.4 21.2 20.6 17.6 21.4 14.8 25.2 19.7

4 27.2 28.1 33.0 34.5 30.7 14.3 14.8 25.4 25.3 19.9

5 12.2 16.0 19.4 24.2 17.9 26.3 24.2 27.7 28.5 26.7

6 14.8 16.4 14.3 18.0 15.9 23.9 30.4 26.4 35.5 29.1

7 16.2 17.5 17.7 19.8 17.8 17.8 21.3 19.1 27.4 21.4

8 22.9 27.4 28.4 25.0 25.9 27.2 33.0 36.2 31.6 32.0

9 16.8 17.8 37.6 25.5 24.4 18.1 19.2 29.3 24.3 22.7

10 38.8 44.9 43.6 47.5 43.7 36.2 39.2 37.0 40.3 38.2

11 20.4 20.7 26.3 28.8 24.0 24.2 27.3 28.8 29.0 27.3

Mean 20.9 23.8 25.9 26.7 24.3 22.4 25.9 26.3 28.3 25.7

SD 7.3 8.3 9.2 8.2 7.7 6.1 6.8 6.7 5.7 5.7
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Table C.14: Individual swimmer data for the timings of the first shoulder (SR-Max1)
and hip roll (HR-Max1) maxima

SR-Max1 HR-Max1

(% of SC time) (% of SC time)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 33.3 30.2 33.3 40.4 34.3 16.2 17.2 18.2 19.8 17.8

2 18.2 21.2 22.2 26.3 22.0 31.3 32.3 36.4 33.3 33.3

3 22.2 26.3 28.3 27.3 26.0 25.3 27.3 21.2 28.3 25.5

4 30.3 30.3 30.3 31.3 30.6 33.3 37.4 35.4 33.3 34.8

5 34.3 40.4 40.4 40.4 38.9 20.2 23.2 24.2 23.2 22.7

6 34.3 39.4 33.3 38.4 36.4 37.6 43.4 43.4 43.4 42.0

7 33.3 35.4 40.4 40.4 37.4 18.2 22.2 25.3 24.2 22.5

8 20.2 24.2 29.3 26.3 25.0 16.2 20.2 26.3 23.2 21.5

9 20.2 26.3 26.3 27.3 25.0 18.2 29.3 27.3 28.3 25.8

10 22.2 32.3 38.4 38.4 32.8 25.3 39.4 40.4 45.5 37.6

11 23.2 34.3 34.3 36.4 32.1 17.2 23.2 25.3 25.3 22.7

Mean 26.5 30.9 32.4 33.9 30.9 23.5 28.6 29.4 29.8 27.8

SD 6.5 6.1 5.8 6.2 5.7 7.6 8.5 8.2 8.4 7.8
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Table C.15: Individual swimmer data for the timings of the second shoulder (SR-

Max2) and hip roll maxima (HR-Max2)
SR-Max2 HR-Max2

(% of SC time) (% of SC time)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 81.8 83.8 94.9 89.9 87.6 72.7 74.7 74.7 74.7 74.2

2 77.8 79.8 83.8 76.8 79.5 84.8 82.8 90.9 86.9 86.4

3 85.9 91.9 91.9 92.9 90.6 72.7 72.7 94.9 76.8 79.3

4 83.8 84.8 84.8 84.8 84.6 78.8 80.8 81.8 82.8 81.1

5 86.9 91.9 91.9 89.9 90.1 95.1 99.0 96.0 96.0 96.5

6 85.9 85.9 83.8 84.8 85.1 90.9 92.9 90.9 91.9 91.7

7 84.8 86.9 88.9 89.9 87.6 70.7 74.7 76.8 74.7 74.2

8 67.7 72.7 74.7 73.7 72.2 73.7 74.7 77.8 74.7 75.2

9 72.7 76.8 81.8 78.8 77.5 70.7 76.8 77.8 82.8 77.0

10 70.7 83.8 88.9 86.9 82.6 74.7 88.9 91.9 89.9 86.4

11 81.8 88.9 83.8 84.8 84.8 69.7 71.7 76.8 77.8 74.0

Mean 80.0 84.3 86.3 84.8 83.9 77.7 80.9 84.6 82.6 81.4

SD 6.8 6.0 5.7 6.1 5.6 8.7 9.1 8.3 7.6 7.8
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Table C.16: Individual swimmer data for the minimum angle (maximum flexion) of
the left and right elbows during the UWP of the stroke

Left Elbow Minimum Angle Right Elbow Minimum Angle

(degrees) (degrees)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 107.4 108.6 105.3 106.1 106.9 105.2 100.0 88.6 101.3 98.8

2 97.4 89.3 94.9 95.8 94.3 92.5 98.3 97.5 97.6 96.5

3 111.1 103.1 92.5 102.3 102.2 101.3 94.5 89.4 98.2 95.8

4 96.5 87.8 90.4 91.9 91.6 103.7 100.9 98.7 97.2 100.1

5 104.6 95.3 97.0 95.9 98.2 99.1 101.5 98.1 95.6 98.6

6 90.5 93.5 93.0 92.8 92.5 89.8 91.9 82.9 80.4 86.2

7 115.8 107.8 102.1 103.9 107.4 107.8 100.1 101.0 98.7 101.9

8 105.8 98.1 91.1 94.5 97.4 105.0 96.1 100.8 99.4 100.3

9 94.2 91.0 87.0 90.7 90.7 92.5 88.2 87.7 90.1 89.6

10 100.3 98.1 94.3 95.3 97.0 98.3 96.0 93.8 89.4 94.4

11 104.8 105.3 98.9 95.6 101.1 103.5 102.2 104.6 102.0 103.1

Mean 102.6 98.0 95.1 96.8 98.1 99.9 97.2 94.8 95.4 96.8

SD 7.6 7.4 5.4 5.1 5.8 6.0 4.4 6.8 6.4 5.2
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Table C.17: Individual swimmer data for the timing of the two MEF angles
Maximum Elbow Flexion 1 Maximum Elbow Flexion 2

(% of SC time) (% of SC time)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 5.9 7.9 8.9 7.9 7.7 55.4 56.4 58.4 57.4 56.9

2 1.0 1.0 2.0 1.0 1.2 51.5 55.4 58.4 57.4 55.7

3 1.0 2.0 8.9 6.9 4.7 53.5 52.5 56.4 56.4 54.7

4 10.9 10.9 11.9 12.9 11.6 61.4 62.4 60.4 60.4 61.1

5 2.0 5.0 5.0 5.0 4.2 48.5 48.5 47.5 48.5 48.3

6 1.0 12.9 7.9 10.9 8.2 58.4 63.4 61.4 63.4 61.6

7 -3.0 -4.0 1.0 -2.0 ■N> o 48.5 47.5 54.5 53.5 51.0

8 1.0 1.0 2.0 4.0 2.0 44.6 47.5 52.5 51.5 49.0

9 -7.9 -4.0 -3.0 -4.0 -4.7 49.5 51.5 54.5 53.5 52.2

10 1.0 9.9 15.8 13.9 10.1 47.5 61.4 67.3 65.3 60.4

11 -5.9 -2.0 -8.9 -6.9 -5.9 42.6 45.5 41.6 41.6 42.8

Mean 0.6 3.7 4.7 4.5 3.4 51.0 53.8 55.7 55.4 54.0

SD 5.1 6.0 7.0 6.9 5.9 5.7 6.4 7.0 6.8 6.0

Note: Negative values correspond to modified SC percentage values (negative value = real
value - 100 %), which were transformed to give a better indication of mean and SD for the
group.
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Table C.18: Individual swimmer data for the minimum angle (maximum flexion) of
the left and right knees

Left Knee Minimum Angle

(degrees)

Right Knee Minimum Angle

(degrees)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 127.0 129.9 133.0 137.9 131.9 129.4 133.4 133.2 142.6 134.6

2 137.2 140.8 127.9 139.3 136.3 130.6 134.3 113.1 131.5 127.4

3 126.1 139.1 131.7 131.0 132.0 113.8 116.7 120.5 121.0 118.0

4 142.2 133.5 148.0 153.4 144.3 151.3 147.8 149.3 151.7 150.0

5 117.6 113.7 113.6 118.5 115.9 116.5 120.0 116.9 118.4 118.0

6 127.6 128.7 135.2 135.3 131.7 132.0 138.4 141.6 140.2 138.1

7 118.2 118.3 120.1 118.1 118.7 127.9 127.1 129.8 130.9 129.0

8 134.2 139.6 140.3 139.1 138.3 127.5 134.2 133.5 134.2 132.3

9 142.4 143.6 139.2 144.2 142.4 116.8 122.7 121.1 120.9 120.4

10 146.0 137.9 141.5 139.0 141.1 137.2 134.1 131.9 129.2 133.1

11 139.7 135.6 139.2 141.0 138.9 132.9 134.6 150.1 150.6 142.0

Mean 132.6 132.8 133.6 136.1 133.8 128.7 131.2 131.0 133.7 131.2

SD 9.9 9.5 10.0 10.4 9.2 10.6 8.9 12.5 11.5 10.1
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Table C.19: Individual swimmer data for the timing of two MKF angles
Maximum Left Knee Flexion Maximum Right Knee Flexion

(% of SC time) (% of SC time)
Swim¬ SC1 SC2 SC3 SC4 Mean SC1 SC2 SC3 SC4 Mean

mer

1 19.8 20.8 20.8 21.8 20.8 33.7 34.7 35.6 36.6 35.1

2 68.3 69.3 73.3 73.3 71.0 18.8 22.8 23.8 24.8 22.5

3 38.6 41.6 46.5 41.6 42.1 54.5 57.4 66.3 58.4 59.2

4 14.9 15.8 15.8 16.8 15.8 99.0 100.0 100.0 100.0 99.8

5 69.3 70.3 71.3 71.3 70.5 97.0 100.0 100.0 100.0 99.3

6 60.4 62.4 62.4 63.4 62.1 74.3 77.2 76.2 77.2 76.2

7 50.5 52.5 55.4 53.5 53.0 31.7 34.7 36.6 33.7 34.2

8 83.2 86.1 89.1 88.1 86.6 1.0 5.9 8.9 7.9 5.9

9 86.1 95.0 100.0 94.1 93.8 2.0 7.9 10.9 10.9 7.9

10 72.3 86.1 92.1 89.1 84.9 23.8 36.6 46.5 44.6 37.9

11 1.0 4.0 2.0 2.0 2.2 50.5 53.5 49.5 50.5 51.0

Mean 51.3 54.9 57.2 55.9 54.8 44.2 48.3 50.4 49.5 48.1

SD 29.0 30.9 32.8 31.6 31.0 34.4 33.1 32.0 32.0 32.8
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Data tables

Table D.1: Duration of UWP and recovery phase of each arm during a SC
UWP Duration Ratio of UWP/Recovery Duration

(% of SC time) (% of SC time)
SC1 SC2 SC3 SC4 SC1 SC2 SC3 SC4

Left 72.3 75.3 75.9 76.4 2.7 3.1 3.2 3.3

Arm (0.050)* (0.061) (0.002)* (0.075) (0.035)* (0.001)*

Right 72.5 76.1 76.0 77.1 2.7 3.2 3.2 3.4

Arm (0.137) (0.479) (0.115) (0.327) (0.732) (0.178)
The p values shown in the parentheses represent significance levels between SC1 and each
one of the other three SCs. There were no significant differences between SC2, SC3 and
SC4 (0.305<p< 1.000)
*: significant at p<.05
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