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Abstract

We investigate a new approach for SMT system training withinthe streamingmodel

of computation. We develop and test incrementally retrainable models which, given

an incoming stream of new data, can efficiently incorporate the stream data online. A

naive approach using a stream would use an unbounded amount of space. Instead, our

online SMT system can incorporate information from unbounded incoming streams

and maintain constant space and time. Crucially, we are able to match (or even ex-

ceed) translation performance of comparable systems whichare batch retrained and

use unbounded space. Our approach is particularly suited for situations when there is

arbitrarily large amounts of new training material and we wish to incorporate it effi-

ciently and in small space.

The novel contributions of this thesis are:

1. An online, randomised language model that can model unbounded input streams

in constant space and time.

2. An incrementally retrainable translation model for bothphrase-based and grammar-

based systems. The model presented is efficient enough to incorporate novel

parallel text at the single sentence level.

3. Strategies for updating our stream-based language modeland translation model

which demonstrate how such components can be successfully used in a stream-

ing translation setting. This operates both within a singlestreaming environment

and also in the novel situation of having to translate multiple streams.

4. Demonstration that recent data from the stream is beneficial to translation per-

formance.

Our stream-based SMT system is efficient for tackling massive volumes of new

training data and offers-up new ways of thinking about translating web data and dealing

with other natural language streams.

iii



Acknowledgements

First I’d like to thank my family for their belief in me.

A big thanks to the Statistical Machine Translation group atthe School of Informat-

ics, University of Edinburgh for their support. Special thanks to Philipp Koehn, Phil

Blunsom, Trevor Cohn, Hieu Huang, Abhishek Arun, Alexandra Birch, David Talbot,

Barry Haddow, and David Matthews for their advice and assistance.

Most of all I thank my advisor, Miles Osborne, for his fantastic direction and encour-

agement throughout. Without his valuable advice this thesis would have been signifi-

cantly more difficult. As he showed me during my time under histutelage, “It’s all in

the game.”

iv



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Abby D. Levenberg)

v





Table of Contents

1 Introduction 1

1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Statistical Machine Translation . . . . . . . . . . . . . . . . . . .. . 5

2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Translation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Batch EM Algorithm . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Word-based TM . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Phrase-based TM . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 Hierarchical Phrase-based TM . . . . . . . . . . . . . . . . . 10

2.4 Suffix Array Phrase Tables . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Randomised Language Models . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.2 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.3 Bloom Filter LM . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.4 Bloomier Filter LM . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.5 RLM Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Data Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Text Streams: Utilizing Recency . . . . . . . . . . . . . . . . . . . . 28

2.8.1 Effect of Recency on Out of Vocabulary Rates . . . . . . . . 29

2.8.2 Effect of Recency on Perplexity . . . . . . . . . . . . . . . . 31

2.8.3 Effect of Recency on Machine Translation Performance .. . 34

vii



2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 A Stream-based Language Model 37

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Dynamic Bloomier Filter via Online Perfect Hashing . . . . .. . . . 38

3.3 Language Model Implementation . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Batch Bloomier Filter LM Comparison . . . . . . . . . . . . 49

3.3.3 ORLM in a Batch SMT Setting . . . . . . . . . . . . . . . . 50

3.4 ORLM Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Stream-based Translation Experiments . . . . . . . . . . . . . .. . . 55

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Multiple Stream-based Translation 59

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Multiple Stream Retraining Approaches . . . . . . . . . . . . . . .. 60

4.2.1 Naive Combinations . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Weighted Interpolation . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Combining Models via History . . . . . . . . . . . . . . . . . 63

4.2.4 Subsampling . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Baselines and Naive Combinations . . . . . . . . . . . . . . . 67

4.3.3 Interpolating Weighted Streams . . . . . . . . . . . . . . . . 69

4.3.4 History and Subsampling . . . . . . . . . . . . . . . . . . . . 71

4.4 Scaling Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 A Stream-based Translation Model 77

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Online EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Stepwise Online EM . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 Stepwise EM for Word Alignments . . . . . . . . . . . . . . 79

5.3 Dynamic Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Burrows-Wheeler Transform . . . . . . . . . . . . . . . . . . 81

5.3.2 Dynamic BWT and Suffix Arrays . . . . . . . . . . . . . . . 82

viii



5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2 Time and Space Bounds . . . . . . . . . . . . . . . . . . . . 86

5.4.3 Incremental Retraining Procedure . . . . . . . . . . . . . . . 88

5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Stream-based SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusion 93

Bibliography 95

ix





List of Figures

2.1 A toy suffix array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A hashing scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Populating and testing a Bloom filter. . . . . . . . . . . . . . . . . .. 20

2.4 Error rates of the Bloom filter. . . . . . . . . . . . . . . . . . . . . . 23

2.5 Populating and testing a Bloomier Filter LM. . . . . . . . . . . .. . 24

2.6 Ngram frequency variance . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Recency effects on OOV Rates . . . . . . . . . . . . . . . . . . . . . 31

2.8 Recency effects on Perplexity . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Recency effect on BLEU score . . . . . . . . . . . . . . . . . . . . . 34

3.1 Stream-based translation . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Inserting into the dynamic Bloomier filter . . . . . . . . . . . . .. . 41

3.3 ORLM error rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Overflow dictionary size . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 ORLM retraining time . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Multi-stream naive combination . . . . . . . . . . . . . . . . . . . .61

4.2 Multi-stream multiple LM approach . . . . . . . . . . . . . . . . . .62

4.3 Multi-stream adaptation with decoding history . . . . . . .. . . . . . 65

5.1 Example BWT and suffix array . . . . . . . . . . . . . . . . . . . . . 83

5.2 Streaming coverage conditions . . . . . . . . . . . . . . . . . . . . .84

5.3 Static vs. online phrase-based TM results . . . . . . . . . . . .. . . 87

5.4 Static vs. online grammar-based TM results . . . . . . . . . . .. . . 88

5.5 Example sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi





List of Tables

2.1 Google’s Trillion Word N-gram Corpus Statistics . . . . . . .. . . . 16

2.2 Training data set size versus recency . . . . . . . . . . . . . . . .. . 33

3.1 RLM comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Baseline BLEU scores . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Adaptation results in BLEU . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 RCV1 stream epoch dates . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Epochn-gram counts . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Stream-based LM translation results in BLEU . . . . . . . . . . .. . 56

4.1 Stream throughput variance . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Multi-stream naive combination results:RCV1 . . . . . . . . . .. . . 68

4.3 Multi-stream naive combination results:Europarl . . . .. . . . . . . 68

4.4 Multi-stream weighted interpolation: RCV1 . . . . . . . . . . . .. . 70

4.5 Multi-stream weighted interpolation: Europarl . . . . . .. . . . . . . 70

4.6 Multi-stream history+subsampling results: RCV1 . . . . . . .. . . . 71

4.7 Multi-stream history+subsampling results: RCV1 . . . . . . .. . . . 71

4.8 Random subsampling rate effect on BLEU . . . . . . . . . . . . . . . 72

4.9 Gigaword3 statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Scaling up results: RCV1 . . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Scaling up results: Europarl . . . . . . . . . . . . . . . . . . . . . .. 75

5.1 German-English Europarl statistics . . . . . . . . . . . . . . . .. . . 85

5.2 TM grammar rule statistics . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 TM results for German-English . . . . . . . . . . . . . . . . . . . . . 89

5.4 French-English TM+LM results . . . . . . . . . . . . . . . . . . . . 90

5.5 German-English TM+LM results . . . . . . . . . . . . . . . . . . . . 91

xiii





List of Algorithms

1 Batch EM for Word Alignments . . . . . . . . . . . . . . . . . . . . . 8

2 ORLM Perfect Hashing and Online Insert . . . . . . . . . . . . . . . . 43

3 ORLM Query Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Online EM for Incremental Word Alignments . . . . . . . . . . . . . .80

xv





Chapter 1

Introduction

Statistical Machine Translation (SMT) is driven by unsupervised learning from unla-

belled data. Currently there is already a lot of data freely available for training SMT

systems and since, as the saying goes, “there’s no data like more data”, there is a con-

stantly increasing amount of it being made available by the SMT community. In many

translation scenarios, new training data is available regularly and needs to be incor-

porated into an existing translation system. The standard algorithms for training the

models of a SMT system, however, are slow, require a lot of memory, and not amenable

to quickly incorporating new data into an existing system. This thesis proposes new

training algorithms that have the ability to learn quickly from unbounded amounts of

novel data while operating within bounded memory.

1.1 The Problem

Current training algorithms for SMT models are notoriously slow in practice and use

memory that grows with the amount of training data. Trainingtypically takes days

of CPU processing time for a single language pair using standard data sets provided

for SMT research competitions. A key feature of these SMT systems is their batch

nature; once the model has been trained no new data can be added to it without fully

retraining the model from scratch. While a plethora of research has been published

developing new state-of-the-art models, there has been little research in optimizing

existing techniques to allow for efficient (re)training.

This is surprising consider the amount of training data already being used and

which is constantly increasing. We have entered what has been coinedThe Petabye

1



2 Chapter 1. Introduction

Ageas the pool of data available for research is growing at exponential rates.1 2 In the

natural language domain tens of thousands of websites continuously publish news sto-

ries in more than 40 languages, every day many millions of multilingual blog postings

are posted, and there are over 30 billion e-mails sent daily and social networking sites,

including services such as Twitter, generate staggering amounts of textual data in real

time. All of this data provides the SMT community with a potentially extremely useful

resource to learn from but it also brings with it nontrivial computational challenges of

scalability and information extraction. The proliferation of data available means that

while there is a lot more of it to use, not all of it may be suitable for what is being

translated at the moment.

Besides all the data generated by the Web there are many situations where novel

domain-specific training data is continually becoming available. For any organisation

that is translating documents from some domain, we can view the incoming document

collection as adata streamof source text that is chronologically ordered and implicitly

timestamped. Each distinct domain comprises its own stream. As the recent part of the

source stream is translated it could easily (from a performance perspective) become

training data to aid in the translation for the next bit of thestream. This model of SMT

use is widespread but due to their batch nature the learning algorithms for SMT are

ill-suited for handling this type of streaming translationsystem effectively. Instead of

being able to add just the new data to the SMT system the full system must be entirely

retrained using all the old and new data combined.

In this thesis we address this problem by presenting novel streaming algorithms for

efficient retraining of SMT systems. These algorithms have the ability to add new data

to previously trained models while using space independentof the stream size. We list

the specific contributions of the thesis below.

1.2 Thesis Contributions

The ideas presented in this work follow from the theory of data stream algorithms in

the literature (Muthukrishnan, 2003). In the streaming translation scenario a given sta-

tistical model in the SMT pipeline is incrementally retrained by updating it arbitrarily

often with previously unseen training data from a known source. Since the source pro-

1Wired Magazine, June 2008, Issue 16.07. Athttp://www.wired.com/science/discoveries/
magazine/16-07/pb intro

2The Economist, February 2010, Volume 394 Number 8671. Athttp://www.economist.com/
node/15557443 .
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vides new data continuously (if at intervals) it is intuitively referred to as astream. A

stream can aggregate smaller streams within it and any one stream may bring in data

at a very high rate. A given stream may beunboundedand may continue to provide

data indefinitely.

These properties of streams, high rate of throughput and unboundedness, provide

the computational challenges tackled in this thesis. An online SMT system must be

able to produce translations quickly so retraining algorithms must be efficient. Of

more concern is building models whose space complexity is independent of the size

of the incoming stream. Using unbounded memory to handle unbounded streams is

unsatisfactory. In this work we tackle each of the major SMT models individually and

show how they can adapt quickly to an incoming stream within bounded space.

The major contributions of this thesis are as follows:

• We introduce a novel randomised language model (LM) which has the ability to

adapt to an unbounded input stream in constant space and timewhilst maintain-

ing a constant error probability. We analyze the error rate and runtime of the new

LM. Our experiments using the stream-based LM in a full SMT setup show that

not only can we update the model with new data efficiently but that using recent

n-grams from an in-domain stream improves performance when translating test

points from the stream. This work was published in the proceedings of EMNLP

2009 (Levenberg and Osborne, 2009).

• We show how to model multiple incoming streams when they are drawn from

variable domains and their throughput differs greatly. To do this we use simple

adaptation heuristics using the decoding history of prior test points to combine

the various streams into a single model in small space. This is the first online ran-

domised LM that can use unbounded input. Our associated adaptation schemes

are also novel. This work was previously reported in Levenberg et al. (2011).

• We present an incrementally retrainable translation model(TM) that has the abil-

ity to very quickly incorporate new parallel sentences. We describe application

of an online EM algorithm for word alignments and show how this can work

in conjunction with dynamic suffix arrays to produce an online TM for either

phrase-based or grammar-based translation. The algorithmis efficient enough

to allow incorporating new data at the single sentence level. This work was

presented at NAACL 2010 (Levenberg et al., 2010).
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• We put the stream-based LM and TM together to show how gains achieved by

each are additive. We describe a completely online SMT system that adapts effi-

ciently and in constant space to unbounded amounts of incoming data. This not

only provides the ability to add new data to existing models without requiring

the expense of full batch retraining but also improves translations for test docu-

ments which are drawn from a stream in chronological order which is the most

common use case of SMT. This work was also presented in Levenberg et al.

(2010).

• Demonstration that recency effects inherent in the stream improve translation

quality for that domain.

1.3 Outline

We first review background material and preliminary experiments in Chapter 2 includ-

ing an overview of SMT and its pipeline of models. We also review randomised LMs,

introduce data stream theory and report on initial natural language streaming exper-

iments. In Chapter 3 we present the novel stream-based LM withassociated single

stream experiments. We extend these experiments further inChapter 4 by describing

how we can adapt the stream-based LM to multiple incoming streams regardless of

domain and stream size.

In Chapter 5 we introduce the incremental, stream-based TM with the online EM

algorithm and describe the dynamic suffix arrays. We also report on using the full on-

line setup with both the online LM and TM together in Chapter 5.Finally we conclude

and offer directions for future work.



Chapter 2

Background

The work in this thesis draws on various fields in computer science including natural

language processing, randomised algorithms, and the theory of data streams. In this

chapter we review the background material necessary for understanding and relevant

to the thesis contributions. In particular we review the fields of SMT, randomised

LMs, and data streams. As well we discuss preliminary background experiments that

motivate the streaming setting for SMT.

2.1 Statistical Machine Translation

In this section we present a high level overview of SMT and thevarious models that

are touched upon in this thesis. This includes short reviewsof LMs and TMs. An

in-depth review of SMT is beyond the scope of this thesis and there are a number of

comprehensive examinations of the field in the literature. See, for example, Lopez

(2008a) and Koehn (2010) for a complete treatment.

2.2 Overview

In SMT natural language translation between two language pairs is treated as a data

driven machine learning problem. Instead of using linguistically motivated rules of

language production to translate between a source (foreign) sentencef to a target (En-

glish) sentencee, SMT uses statistical rules, learnt in an unsupervised manner from

unlabelled parallel corpora, to find the target sentence translatione that has the highest

model probability given the source sentencef. Learning word translations is cast as the

problem of finding the hidden alignments between source and target sentences. Since

5



6 Chapter 2. Background

word ordering differs greatly between languages, the wordsin the source sentence

may need to bereorderedin the target language sentence to create an understandable

translation.

SMT has been the dominant methodology in machine translation research since the

seminal work of Brown et al. (1993) introduced the so-called ‘IBM Models’. The IBM

models areword-basedmodels of translation. That is, each word in the source sentence

is aligned to one (IBM Model 1) or more (IBM Model 3) target words. Reordering is

handled based on absolute sentence position (IBM Model 2) or relatively based on

previous word translations in the source sentence (IBM Models 4 and 5). TheHMM-

basedalignment model is another word-based model where a translation is based only

on the previous word’s translation (Vogel et al., 1996).

Phrase-basedmodels were the next big step in SMT research and, instead of re-

stricting translations to single source words, moved to using consecutive sequences

of words as the primary translation unit (Koehn et al., 2003). Using phrases as the

basic unit of translation improves translation performance since local reorderings are

now implicitly accounted for. As well, phrase translation handles one-to-many word

mappings, idioms and expressions, word insertions and deletions, and other language

specific nuances that can be learnt from bitext phrases but may break down if trans-

lated at the single word level.Grammarandsyntax-basedmodels (see Lopez (2008a))

for SMT were developed as a mechanism to better handle long distance reordering. In

these models a translation equivalence is drawn not only between text on the source

and target side but also the grammatical structure that eachsentence pair is comprised

of. These models use synchronous context free grammars (SCFGs), grammars that

produce two output strings that represent terminals and nonterminals on both source

and target sides, of varying complexity that further improve translation reordering.

Model parametrization was initially formulated using the noisy-channel model

(Brown et al., 1990). Denoting the latent alignments asa and using Bayes’ decom-

position we have

Pr(e,a|f) := p(f,a|e)p(e) (2.1)

and we can ignore the denominatorp(f) since the source sentence stays constant for

all choices of the targetp(e). Here, p(f,a|e) are the translation/alignment choices

learnt for the TM andp(e) is a measure of fluency on the target output according to a

LM. This basic noisy-channel model was extended into a more flexible linear model

that allows for arbitrary feature functions that provide additional information to the
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translation system (Och and Ney, 2001). We can write

Pr(e,a|f) =
exp(∑M

m=1λmhm(e,a, f))
Z( f )

(2.2)

where there are a total ofM feature functionshm(e,a, f) each contributing to a transla-

tion’s score by a weighting ofλm with Z(f) the normalization term. In this setting the

TM p(f,a|e) and the LMp(e) are feature functionshm(e,a, f) that can be interpolated

with other dependencies such as the distortion or reordering, generation, lexicalised

translation, and part of speech and factored models.

In this thesis we deal primarily with the two main feature functions of any SMT

system: the TM and the LM. Below we give brief reviews of both.

2.3 Translation Model

As described above, the TM is the parametrisation ofp(f,a|e) which specifies the

translation probabilities between words or phrases in a training corpus. Here we limit

our descriptions to the specific algorithms and TM models used in this thesis.

2.3.1 Batch EM Algorithm

Phrases and grammar rules are traditionally extracted using heuristics over the learnt

word alignments between the source and target text. Traditionally the batch Expectation-

Maximisation (EM) algorithm is used to learn the latent alignment variable vectora.

We first review the batch EM algorithm and then explain how it is applied to inducing

the word alignments for SMT.

The general EM algorithm is a common way of inducing latent structure from

unlabeled data in an unsupervised manner (Dempster et al., 1977). Given a set of

unlabeled examples and an initial, often uniform guess at a probability distribution

over the latent variables, the EM algorithm maximizes the marginal log-likelihood of

the examples by repeatedly computing the expectation of theconditional probability

of the latent data with respect to the current distribution,and then maximizing these

expectations over the observations into a new distributionused in the next iteration.

Computing an expectation for the conditional probabilitiesrequires collecting the

sufficient statisticsSover the set ofn unlabeled examples. In the case of a multinomial

distribution,S is comprised of the counts over each conditional observation occurring

in then examples. In traditionalbatchEM, we collect the counts over the entire dataset
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Algorithm 1 : Batch EM for Word Alignments. The full parallel corpus is iterated

overT times and the sufficient statisticsSare cleared after each iteration.
Input : {( f ,e)} set of (source,target) sentence-pairs

Output : MLE θ̂T over alignmentsa

θ̂0←MLE initialization;

for iteration t= 0, . . . ,T do

S← 0; // reset counts

foreach ( f ,e) ∈ {( f ,e)} do // E-step

S← S+ ∑
a′∈a

Pr( f ,a′|e; θ̂t);

end

θ̂t+1← θ̄t(S) ; // M-step

end

of n unlabeled training examples via the current ‘best-guess’ probability modelθ̂t at

iterationt (E-step) before normalizing the counts into probabilitiesθ̄(S) (M-step). As

the M-step can be computed in closed form we designate it in this work asθ̄(S). After

each iteration all the counts in the sufficient statistics vectorSare cleared and the count

collection begins anew using the new distributionθ̂t+1.

2.3.2 Word-based TM

Batch EM is used in word-based SMT systems to estimate word alignment probabili-

ties between parallel sentences. From these word alignments more complex bilingual

rules such as phrase pairs or grammar rules can be extracted.Given a set of parallel

sentence pairs,{(f,e)s}s∈{1,...,n}, wheren is the total number of corresponding sen-

tence pairs(f,e)s with f the source sentence ande the target sentence, we want to find

the latent alignmentsa for a sentence pair(f,e)s that defines the most probable corre-

spondence between wordsf j andei such thata j = i in sentences. (We omit the set

subscript(f,e)s when it is clear from the context sentencesf andecorrespond.) We can

induce these alignments using anHMM-basedalignment model where the probability

of a word alignmenta j is dependent only on the previous alignment ata j−1 (Vogel

et al., 1996). We can write

Pr(f,a | e) = ∑
a′∈a

|f|

∏
j=1

p(a j | a j−1, |e|) · p( f j | ea j ) (2.3)

where we assume a first-order dependence on previously aligned positions.
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To find the most likely parameter weights for the translationand alignment prob-

abilities for the HMM-based alignments, we employ the EM algorithm via dynamic

programming. Since HMMs have multiple local minima, we seedthe HMM-based

model probabilities with a better than random guess using IBMModel 1 (Brown et al.,

1993) as is standard. IBM Model 1 is of the same form as the HMM-based model

except it uses a uniform distribution instead of a first-order dependency. WithJ = |f|

the length of the source sentence and the length of the targetI = |e|, IBM Model1 is

Pr(f,a|e) =
p(J | I)
(I +1)J ·

J

∏
j=1

p( f j |ea j ) (2.4)

and we have zero-dependency on word order. Although a seriesof more complex mod-

els are defined, IBM Models 2 to Model 6 (Brown et al., 1993; Och and Ney, 2003),

researchers typically find that extracting phrase pairs or translation grammar rules us-

ing Model 1 and the HMM-based alignments results in equivalently high translation

quality. In this thesis we only use the IBM Model 1 and the HMM-based alignment

models. Nevertheless, there is nothing in our approach which limits us to using just

Model 1 and the HMM model.

A high-level overview of the standard, batch EM algorithm applied to HMM-based

word alignment model is shown in Algorithm 1.

2.3.3 Phrase-based TM

For the reasons mentioned in the overview above, phrase-based models for SMT trans-

late using sequences of one or more words at a time. They produce better translation

performance generally than the IBM word-based models and areused widely in re-

search and industry.

In phrase-based SMT the word ‘phrase’ has no specific linguistic sense and it is

left up to the learning algorithms to discern what constitutes a phrase. From Lopez

(2008a), the translation process of phrase-based SMT takesthe following steps:

1. The source sentence is split into phrases of various length (from length one to

the maximum phrase length allowed by the model).

2. Each source phrase is translated separately into a set of candidate target phrases.

3. The target phrases are permuted into their final ordering to form a set of potential

target sentences.
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4. The target sentence with the highest model score is outputas the single-best

translation.

The phrases are (usually) extracted using various sets of heuristics that require

the phrases to be consistent with the previously acquired word alignments between

sentence pairs learnt using word-based models. Phrase probability is then estimated

based on normalised relative frequency.

2.3.4 Hierarchical Phrase-based TM

An extended variant of the phrase model that allows for longer distance reordering

is the hierarchical phrase model that incorporates both phrase-based translation along

with a simplified SCFG grammar (Chiang, 2007). As with the phrases from the phrase-

based model, the grammar is extracted via heuristics from word aligned sentence pairs

and does not make use of linguistically motivated syntacticrules. The grammar speci-

fies only a single nonterminal symbol for all productions. Further, the right-hand side

of each rule is restricted to a small number of nonterminal variables. Each rule is a

tuple of source to target translations with a mix of terminals and nonterminals. This

gives the model its hierarchical nature since the nonterminal symbols act as gaps in the

phrases that, when encountered by the decoder, are translated recursively. The order-

ing of nonterminals between the source and target productions can be exchanged so

arbitrary long distance reordering is possible during translation.

For sizable corpora the number of phrase pairs or grammar rules extracted quickly

becomes unwieldy in size. Below we discuss one of the methods developed for dealing

with this problem which we extend later in this thesis.

2.4 Suffix Array Phrase Tables

Extracted phrases and their probabilities are stored in aphrase tabledata structure to

be queried during test time by the decoder. For phrases extracted from moderately

sized training corpora the size of the resulting phrase table is often too big to fit in

any computer’s memory. Callison-Burch et al. (2005) and Lopez(2008b) show how to

bypass this problem and extract phrases or hierarchical syntax rules over large corpora

for SMT during decoding by directly storing the bitext corpora along with the word

alignments in memory via suffix arrays.Suffix arrays(Manber and Myers, 1990) are

space-efficient data structures for fast searching over large text strings. Treating the
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0:a 1:bizarre 2:cat 3:affection

Corpus (index:token)

Unsorted Suffixes

a bizarre cat affection

bizarre cat affection

cat affection

affection3

2

1

0s[0]

Suffix Array (unsorted)

s[1]

s[2]

s[3]

2

1

0

3s[0]

Suffix Array (sorted)

s[1]

s[2]

s[3]

Sorted Suffixes

a bizarre cat affection

bizarre cat affection

cat affection

affection

Figure 2.1: A toy example of a suffix array. The indexes of the lexically ordered corpora

are stored in the final suffix array. Suffix arrays can be used to encode phrase tables for

SMT.

entire corpus as a single string, a suffix array holds in lexicographical order (only) the

starting index of each suffix of the string. After construction, since the corpus is now

ordered, we can query the sorted index quickly using binary search to efficiently find all

occurrences of a particular token or sequence of tokens. Then we can easily compute

the statistics required such as translation probabilitiesfor a given source phrase. When

a phrase or rule is needed by the decoder, the corpora is first searched, all counts are

accumulated, and the rule probability is computed on the fly.Suffix arrays can also be

compressed, which make them highly attractive structures for representing potentially

massive phrase tables.

Later in the thesis (Section 5) we show how we can incrementally add new phrases
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to the TM by word aligning parallel sentences online and using a dynamic version of

the suffix array phrase tables to encode the phrase table.

2.5 Language Model

An n-gram LM is a statistical estimator that, given a sequence ofwords, returns a

measure of how probable those words with that ordering are based on the training data.

The true probability of a word in a sentence should be conditioned on all prior words.

Given the wordsw1, . . . ,wi, . . . ,wN, which we also write aswN
1 , then its probability is

Pr(wN
1 ) =

N

∏
i=1

p(wi |w
i−1
1 ). (2.5)

However, to handle sparsity,n-gram LMs use the Markov assumption that any wordwi

is conditioned only on some short history ofn−1 words wheren is called theorder of

then-gram. The above equation becomes

Pr(wN
1 ) =

N

∏
i=1

p(wi |w
i−1
i−n+1) (2.6)

and the full sequence of words is broken up into a product of shorter sequences. An

order of three to five is most commonly used in practice in SMT.

To parametrize the LM we could use maximum likelihood estimation (MLE) and

score eachn-gram based on the relative frequency of its occurrence in the training

corpus. Withc(.) a function that returns the frequency of ann-gram, the probability

for ann-gram (of order> 1) is

p(wi |w
i−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)

(2.7)

which is the relative frequency of how often a word appears after a specific history of

n−1 words.

However, the power-law distribution of natural language means only a tiny per-

centage of grammaticaln-grams in any language will appear in a given training set.

Using naive MLE in practice would assign many valid but unobservedn-grams a zero

probability which is undesirable. To allay this sparsity problem many sophisticated

smoothingalgorithms have been described in the LM literature that ensure some of the

distribution mass of the training data is reserved for unseen events. Key to LM smooth-

ing are the concepts ofbackoffandinterpolation. In backoff smoothing we make use
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of the less sparse lower-ordern-gram information to help smooth the probabilities of

higher-ordern-grams which may be unreliable. Formally we can write

p(wi |w
i−1
i−n+1) =

{

δp(wi |w
i−1
i−n+1) if c(wi

i−n+1)> 0

α(wi−1
i−n+1)p(wi |w

i−1
i−n+2) otherwise

(2.8)

whereδ is a discounting factor often based on history frequency andα(.) is a back-off

penalty parameter that ensures normalisation. Similarly,interpolation linearly com-

bines the statistics of then-gram through all the orders of the LM. The formula is

defined recursively as

p(wi |w
i−1
i−n+1) = λp(wi |w

i−1
i−n+1)+(1−λ)p(wi |w

i−1
i−n+2) (2.9)

and the final score for ann-gram is the interpolated probability of all higher and lower-

order grams in the LM. Below we describe two smoothing algorithms used in this

thesis. For a complete overview of LM smoothing see Chen and Goodman (1999).

2.5.0.1 Modified Kneser-Ney

Modified Kneser-Ney (MKN) was derived from Kneser-Ney (KN) smoothing (Kneser

and Ney, 1995). In the KN algorithm, the probability of a unigram is not proportional

to the frequency of the word, but to the number of different histories the unigram

follows.

A practical example best illustrates this concept. The bigram “San Francisco” may

be an extremely common bigram in a corpus gathered from, say,the San Francisco

Chronicle. If the bigram frequency is high, so too is the frequency of the words “San”

and “Francisco” and each word will have a relatively high unigram probability if we es-

timated probability solely from counts. However, this intuitively should not be the case

as the actual Pr(Francisco) maybe should be extremely small—almost zero perhaps—

except when it follows “San”. As the lower order models are often used for back-off

probabilities from the higher order models, we want to reserve the mass that would be

wasted on events like “Francisco” for more likely events.

First we define the count of histories of a single word as

N1+(•wi) = |{wi−1 : c(wi−1wi)> 0}|.

The termN1+ means the number of words that have one or more counts and the•

means a free variable. Instead of relative frequency countsas with the MLE estimate,
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here the raw frequencies of words are replaced by a frequencydependent on the unique

histories proceeding the words. The KN probability for a unigram is

PrKN(wi) =
N1+(•wi)

∑i′N1+(•wi′)

or the count of the unique histories ofwi divided by the total number of unique histories

of unigrams in the corpus.

Generalizing the above for higher order models we have:

PrKN(wi |w
i−1
i−n+2) =

N1+(•wi
i−n+2)

∑i′N1+(•wi′
i′−n+2)

where the numerator

N1+(•w
i
i−n+2) = |{wi−n+1 : c(wi

i−n+1)> 0}|

and the denominator is the sum of the count of unique histories of alln-grams the same

length ofwi
i−n+2. The full model of the KN algorithm is interpolated and has the form

PrKN(wi |w
i−1
i−n+1)=

max{c(wi
i−n+1−D,0}

∑i′ c(w
i′
i′−n+1)

+
D

∑i′ c(w
i′
i′−n+1)

N1+(w
i−1
i−n+1•)PrKN(w

i
i−n+2)

where

N1+(w
i−1
i−n+1•) = |{wi : c(wi−1

i−n+1wi)> 0}|

and is the number of unique suffixes that followwi−1
i−n+1.

The KN algorithm uses anabsolute discountingmethod where a single value,

0 < D < 1, is subtracted for each nonzero count. MKN enhances the performance

of KN by using different discount parameters depending on the count of then-gram.

The formula for MKN is

PrMKN(wi |w
i−1
i−n+1) =

c(wi
i−n+1)−D(c(wi

i−n+1))

∑i′ c(w
i′
i′−n+1)

+ γ(wi−1
i−n+1)PrMKN(wi |w

i−1
i−n+2)

where

D(c) =



























0 i f c = 0

D1 i f c = 1

D2 i f c = 2

D3+ i f c≥ 1

and

Y =
n1

n1+2n2
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D1 = 1−2Y
n2

n1

D2 = 2−3Y
n3

n2

D3+ = 3−4Y
n4

n3

whereni is the total number ofn-grams withi counts of the higher order modeln being

interpolated. To ensure the distribution sums to one we have

γ(wi−1
i−n+1) =

∑i∈{1,2,3+}DiNi(w
i−1
i−n+1•)

∑i′ c(w
i′
i′−n+1)

whereN2 andN3+ means the number of events that have two and three or more counts

respectively.

MKN has been consistently shown to have the best results of all the available

smoothing algorithms (Chen and Goodman, 1999; James, 2000).

2.5.0.2 Stupid Backoff

Google uses a simple smoothing technique, nicknamedStupid Backoff, in their dis-

tributed LM environment. The algorithm uses the relative frequencies ofn-grams di-

rectly and is

S(wi |w
i−1
i−n+1) =







c(wi
i−n+1)

c(wi−1
i−n+1)

if c(wi
i−n+1)> 0

αS(wi
i−n+2) otherwise

whereα is a penalty parameter and is recommended to be the constantα = 0.4. The

recursion ends once we’ve reached the unigram level probability which is just

S(wi) =
wi

N

whereN is the size of the training corpus. Brants et al. (2007) claimsthe quality of

Stupid Backoff approaches that of MKN smoothing for large amounts of data. Note

that S(.) is used instead of Pr(.) to indicate that the method returns a relative score

instead of a normalized probability.

2.6 Randomised Language Models

2.6.1 Overview

All else being equal, increasing the amount of in-domain training data often improves

performance of NLP tasks since sparsity is reduced and greater coverage of the target
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Number of tokens 1,024,908,267,229

Number of sentences 95,119,665,584

Number of unigrams 13,588,391

Number of bigrams 314,843,401

Number of trigrams 977,069,902

Number of fourgrams 1,313,818,354

Number of fivegrams 1,176,470,663

Table 2.1: Google’s Trillion Word N-gram Corpus Statistics. The compressed data set

is 24GB on disk.

domain is achieved. This is especially true for LMs for SMT. It is well known that

increasing the amount of LM training data can improve the quality of machine trans-

lation (Och, 2005). With large corpora being released and the general availability of

huge amounts of textual data, training a LM with a large amount of data is a necessary

requirement for state-of-the-art SMT systems. This, in turn, strains or exhausts com-

putational resources as processing these large data sets istime and memory intensive.

A number of data sets are already available that are far too large for any average com-

puter RAM—Table 2.1 shows the statistics for one of the large data sets released by

Google—and the trend toward more data is likely only beginning.

Building LMs efficiently (or at all) using such large corpora is a major challenge

researchers have been actively tackling. To reduce memory requirements, variousloss-

lessrepresentations of the data have been employed such as usinga trie (Stolcke, 2002),

the space efficient prefix tree structure, entropy-based pruning (Stolcke, 1998), or block

encoding (Brants et al., 2007). If we allow for a small measureof error in our model,

however, we can gain significantly greater space savings bylossyrepresentation and

encoding of the data. Making use of the improved coverage andestimation ability of

massive data sets motivated the research into randomised LMs (RLMs).

The Bloom filter (Bloom, 1970) and other randomised data structures based on

it support approximate representation of a setS drawn from some universeU and

enable queries of the sort “Is an itemx∈ S?”. For very large data sets, concise storage

is enabled by hash functions mapping between domainsh : U → [0,2w− 1] where

2w≪ |U |, the domain size of the underlying universe. The trade-off for the spectacular

space savings afforded by these data structures is a tractable measure of error obtained

when queried.
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In this section we review the work for RLMs. Since all RLMs use hashing as a

fundamental operation we begin by reviewing hash functions.

2.6.2 Hash Functions

A hash functionmaps data from a bit vector from one domain into another domain

such that

h : U×{0,1}b→{0,1}w

with w≪ b commonly. In our discussionw is a integer that represents the bit length

of a word on aunit-cost RAM model(Hagerup, 1998). The keys to be hashed comes

from a setS of sizen in a universeU such thatS⊆ U andU = {0,1}b. The key’s

representation in the smaller domain ofw-bits is called asignatureor fingerprintof the

data. The hash functionchopsandmixesthe keys ofSdeterministically to produce its

output. A hash function must be deterministic and reproducible: for equivalent keys it

must generate matching fingerprints and if the output of the hash function for two keys

differs then we know the keys are not equal.

A hash function used with its counterpart data structure, the hash table, is a spe-

cialised type ofdictionaryor associative array that stores key/value pairs. In the sim-

plest case, a keyx is stored in the hash table at the index generated by the hash function

h such that the outputh(x)→{0,1, . . . ,m−1}maps to a value in the range of an array

of sizem. An attractive property of a vanilla hash table is its constant look-up time in

the table regardless of the size of the data set in the hash table. Figure 2.2 illustrates a

simple hash table scheme.

An essential property of a good hash function isuniform distributionof its outputs.

Since we are using a binary base in the RAM model the number of unique values that

can be encoded intow-bits is 2w. If Sis large andw≪ b, then some of the elements inS

will collide when mapped into the smaller space.Collisionsare minimized by choosing

a hash function whose outputs are uniformly distributed over the space[0,w−1]. We

can view each possible value in[0,w−1] as abucketthat the hash function can “dump”

its value into. If the hash functions outputs are not uniformly distributed they will

cluster into a few buckets while many other buckets remain empty. This will lead to a

large number of collisions and poor performance.

A large body of research has been written on algorithms to reduce the probability

of collisions in hash tables.Perfect hashingis a technique that theoretically allows

no collisions in a hash table that can be created with probability 1/2 (Cormen et al.,
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Figure 2.2: The pairs of keys ki and the associated information ai of the set S are

mapped via the hash function h into cells of the table T. The keys ki are b-bit lengths

in Sand w-bit lengths in T. There is a collision between the elements k2 and k4 so the

value of ai for that cell in T is unknown.

2001). We give an example of a perfect hash function in the Bloomier filter LM de-

scription below. Other well known solutions for collision avoidance includechaining,

open addressing, andCuckoo hashing(Pagh and Rodler, 2001).

Universal Hashing:

One way we can minimize collisions in our hashing scheme is bychoosing a special

class of hash functionsH independent of the keys that are being stored. The hash

function parameters are chosen at random so the performanceof the hash functions

differ with each instantiation but show good performance onaverage. Specifically, if

H is a collection of finite, randomly generated hash functionswhere each hash function

hi ∈H maps elements ofS into the range[0,2w−1], H is said to beuniversalif, for all

distinct keysx,y∈ S, the number of hash functions for whichh(x) = h(y) ≤ |H|/2w.

That is, for a randomly chosen hash functionhi ∈ H we have the probability for a

collisionP(hi(x) = hi(y))≤ 1/2w for distinct keysx 6= y. Using theory from numerical

analysis we can easily generate a class of universal hash functions for which the above

is provable. (A detailed proof can be found in Cormen et al. (2001).)

Such a family of universal hash functions with these properties is defined in Carter

and Wegman (1977) so theith hash function is of the form

H i := ha[i],b[i](x) = (a[i]x+b[i]) modP,
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whereP is a prime chosen soP > n, anda, b are integer arrays whose values are

randomly drawn from the range 0, . . . ,P−1. All RLMs described and analyzed below

use universal hash function families of this type. Since throughout this thesis we are

only concerned with the hashing ofn-grams sox in the expression forH i above is

actually a sequence of words of length|x|. Hence we use a specific instantiation of a

universal hash function family such that for theith hash function we have

H i := ha[i],b[i](x) =
|x|

∑
j=1

(a[i][ j]∗x[ j]+b[i][ j]) modP

wherex[ j] is the jth word of then-gram being hashed and all numbersa[i][ j], b[i][ j] in

the doubly indexed arrays are randomly generated integers from the range[0,P−1].

2.6.3 Bloom Filter LM

The Bloom filter (BF) is a randomised data structure that supports queries for set mem-

bership that are widely used in industry. Applications include database applications,

network routing, and spell-checkers (Costa et al., 2006; Broder and Mitzenmacher,

2002). The nature of the encoding of the filter makes the original data irretrievable

which is a positive feature when used in security sensitive domains such as IP address

caching. It is also impossible to remove a key from a BF withoutthe chance of cor-

rupting other elements in the set. There have been more spaceefficient alternatives

proposed in the literature (Pagh et al., 2005) but the simplicity and overall perfor-

mance of the original Bloom filter has made it the essential randomised data structure

by which most others are compared.

Bloom Filter:

The BF has a unique encoding algorithm which gives it spectacular space savings

at the cost of a tractable, one-sided error rate. In the first complete model of its kind,

Talbot and Osborne (2007b) used a variation of the BF to encodea smoothed language

model which matched baseline translation performance using a fraction of the baseline

model’s memory. First we describe the basic data structure.

At the start the BF is an array ofm bits initialized to zero. To populate a BF we

needk independent hash functions drawn, for example, from a family of universal

hash functions described above. Each hash function maps itsoutput to one of them

bits in the array,h(x)→{0,1, . . . ,m−1}. Each elementx in the support setSis passed

through each of thek hash functions,h1, . . . ,hk, and the resulting target bits in the array
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Figure 2.3: Populating and testing a Bloom filter. To populate we “turn on” k bits in the

array for each item x∈ S. A test for membership fails if any index queried is zero. Else

assume membership.

are set to one. In other wordsk bits of the array are “turned on” for each itemx∈ S in

the support. While inserting a new item, any target bit already on from any previous

items stays so. The source of the fantastic space advantage the BF has over most other

data structures is the bit sharing between elements of the supportS.

To test an element for membership in the set encoded in the BF wepass it through

the samek hash functions and check the output bit of each hash functionto see if it

is turned on. If any of the bits are zero then we know for certain the element is not

a member of the set. Conversely, if each position in the bit array is set to one for all

k hash functions then we have a hit and assume the element is a member. However,

there is a chance for a test itemx′ /∈ Snot in the support that allk hash functions will

target random bits turned on for other elementsx∈ S. This a false positive error and is

obtained with the same probability that a random selection of k bits in the array are set

to one.

Assuming the hash functions are uniformly distributed, each index in them-bit

array is targeted with equal probability of 1/m. Givenn= |S| as the size of the support

S, the probability any bit is not one after execution of a single hash is

1−
1
m
.

The probability that a bit is still zero after alln elements in the support set have passed
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through thek hash functions is
(

1−
1
m

)kn

so the probability, then, that a bit is one is therefore

1−

(

1−
1
m

)kn

.

If an element were not a member ofS, the probability that it would return a one for

each of thek hash functions, and therefore return a false positive, is

(

1−

(

1−
1
m

)kn
)k

.

Rewriting using the limit of the base of the natural log gives

(

1−exp

(

−
kn
m

))k

and taking the derivative, setting to zero to minimize the error probability and solving

for k gives the optimal number of hash functions

k= ln2
(m

n

)

which implies half the bits of the BF array should be set to one.This gives a false

positive probability of
(

1
2

)k

≈ 0.6185m/n

For a givenn the probability of false positives decreases asm increases and more space

is used. For a staticm the error rate increases asn increases.

Log-frequency Bloom filter LM:

The work in Talbot and Osborne (2007a) and Talbot and Osborne(2007b) first

reported a complete randomised LM using a BF encoding. The BF supports only

member queries, but a LM requires storing key/value pairs where the key is then-gram

and the value its count or smoothed probability.

To use the BF as a dictionary, alog-frequencyencoding scheme was used. Then-

gram counts were first quantized using a logarithmic codebook so the true countc(x)

was represented as a quantized countq such that

q= 1+ ⌊logbc(x)⌋
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with b the base of the log. The quantised frequency value of eachn-gram was “ap-

pended” to it and the composite event was entered into the BF. The accuracy of the

codebook relies on the Zipf distribution of then-grams. Few events occur frequently

and most occur only a small number of times. For the high-end of the Zipf distribution

the counts in the log-frequency Bloom filter LM are exponentially decayed using this

scheme. However, the large gap in distribution of these events means that a ratio of the

likelihood of the model is preserved in the log-frequency encoding.

To allow retrieval of its value, eachn-gram was inserted into the filterq times.

That is, for each levelq′, q′ ∈ [1,q], is appended to then-gram andk random bits are

turned on for that event. Each quantisation levelq′ ∈ [1,q] has a unique hash function

associated with it so in totalqk bits are set for eachn-gram. During testing the process

is repeated until a query encounters a zero bit or the maximumcount is reached. The

highest value returned is used as the log-frequency of the test event. Since the majority

of n-grams in a distribution have low counts, for most queries this process is repeated

only once or twice because of the log-frequency scheme. The one-sided error rate of

the BF ensures the returned frequency is never underestimated. The original count is

then approximated by the formula

E(c(x))≈
bq−1+bq−1

2

where hereq represents the quantised count returned by the BF andb is the base of the

logarithm used for the logarithmic codebook.Run-time smoothingis then performed

to retrieve the smoothed probability. The statistics needed for the smoothing algorithm

are also encoded in the BF bit array with the exception of singleton events. In this case,

the proxy that an event was a singleton was the event itself.

The Bloom filter LM was tested in an application setting via a SMT system with

the Moses decoder (Koehn and Hoang, 2007) trained on the Europarl corpus (Koehn,

2003). Using a 7% fraction of the 924MB lossless LM space, theBLEU scores for

translations done using the Bloom filter LM matched those for translations done with

a lossless LM. However, because of the log-frequency encoding and therefore the ne-

cessity of multiple queries to the bit array for each testn-gram, the Bloom filter LM is

slow in practice. A faster variant of the Bloom filter LM is described below. Note also

the bit sharing of the BF means that deleting anyn-gram from a populated filter may

potentially corrupt othern-grams. And, given an incoming stream of data, continual

insertion ofn-grams into the BF without deletions would result in increasing higher

error as more and more bits are set. This is shown in Figure 2.4
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events they encode. Shown are the observed and expected (theoretical) false positive

error rates.

2.6.4 Bloomier Filter LM

The BF can only encode and test set membership. TheBloomierfilter from Chazelle

et al. (2004), a dictionary extension of the BF, was used in Talbot and Brants (2008) to

encode a RLM of a different strain. It usesperfect hashingto map each elementx∈ S

to an index in a large associative arrayA to encode key/value pairs(x,v(x)) where the

valuev(x)≤V, the largest value encountered in the support.

Using a universal hash functionH := {hi : i ∈ [1,k]}, k possible locations are cho-

sen inA but only one locationhi(x) is used to store(x,v(x)). Before encoding the

n-grams in the arrayA, a greedy randomised algorithm first finds an ordered matching

of n-gramsx ∈ S to locationsA[hi(x)]. The ordered matching means that we have a

perfect hash of the supportS in the Bloomier filter LM. However, due to the random

hash functions, the perfect hash algorithm is not guaranteed to find an ordered match-

ing after one attempt and hence may need to be repeated many times until a suitable

ordering is reached.

Once each key has a unique cell associated with it eachn-gramx is associated with
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Figure 2.5: Populating and testing a Bloomier filter with k= 3 hash functions. To insert

an item x∈ S,v(x)≤V, XOR the value v(x), a fingerprint f (x), and the values of k−1

indexes in the array A[hi(x)] ∀{i|i ∈ [1,k]∧ i 6= j} where A[h j(x)] is the pre-matched

index for x. To test item x′, XOR the fingerprint f (x′) and the k values A[hi(x′)] ∀{i|i ∈

[1,k]}. If the value g(x′)≤V we assume a hit.

a fingerprint generated by another hash functionf (x) : x∈ S→ [0,2w−1] wherew is

the number of bits allocated to each cell ofA. To set an index for ann-gramx is

A[hi(x)] = v(x)⊗ f (x)⊗





k⊗

j=1∩ j 6=i

A[h j(x)]





where⊗ represents the binary exclusive-bitwise OR (XOR) operator.When testing,

the value returned for a testn-gramx′ is

g(x′) = f (x′)⊗

(

k⊗

j=1

A[h j(x
′)]

)

.

A good property of the Bloomier filter LM is the perfect hash guarantees for anyx∈ S

there is no error returned for the corresponding valuev(x) during test time. (This

is unlike the BF LM which can return an over-estimate for events in the support.)

However there is still a chance for false positives. An erroroccurs when a test item

x′ /∈ S is assigned a valueg(x′) ∈ [0,V]. Sinceg(.) is distributed uniformly at random

the probability of a false positive error is

Pr(g(x′)≤V|x′ /∈ S) =V/2r .

Despite this, in large-scale SMT tests a major saving in space was achieved with neg-

ligible loss to performance.
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The Bloomier filter trades off space for time compared againstthe Bloom filter. The

Bloomier filter is word-based (operations are performed overmultiple bits) so it uses

more space than the Bloom filter which operates on only a singlebit per operation. The

native support for key/value pairs means there is no need to encoden-grams multiple

times in the filter. This makes it faster to query since the number of queriesk to the

Bloomier filter is constant and independent of the counts associated with then-grams.

However, finding the ordered matching necessary for the encoding of the LM is both

resource and time consuming. This makes the Bloomier filter LMill-suited for stream-

based translation since frequent retraining is required.

2.6.5 RLM Conclusion

We have shown how RLMs achieve significant space savings compared to their lossless

counterparts. By exploiting hash functions and sharing the bits of the data structure

between members of the support during encoding, Bloom and Bloomier filter LMs

achieve matching translation quality for SMT while using little memory. The trade-off

for the memory saved is the false positives rates that were analyzed.

However, neither the Bloom or Bloomier filter allow for online adaptation of the

n-grams in the model. This means that to add any newn-grams to an existing model

the LM must be fully retrained. Frequent batch retraining incurs a high computational

footprint in both resources and time and is not optimal for a stream-based SMT system.

Later in this thesis we investigate an online version of the batch Bloomier filter LM

that supports incremental retraining suitable for stream-based processing. In the next

section we describe the theory behind the data streams approach to computation.

2.7 Data Streams

Research on data streams evolved from the need to analyse massive throughput of

dynamic data on systems with limited resources. Data streams are defined in Muthukr-

ishnan (2003) as

“input data that comes at a very high rate [which] means it stresses
communication and computing infrastructure so it may be hard to trans-
mit...compute...and store.”

Application domains such as network and router monitoring,financial, and database

systems can generate terabytes of data each day with millions or billions of updates
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hourly. Data streaming algorithms and their randomised data structures, calledsketches,

provide theoretically well founded mechanisms to glean statistics from huge amounts

of data while keeping computation and space bounds tractable.

It is of interest to natural language tasks to note the prohibitive use of memory a

raw data stream demands stems not primarily from the sheer amount of incoming data

but rather the domain size of the universe the underlying signal of the data stream rep-

resents. For example, suppose we received masses of tuples representing all peoples

on Earth and their current weight in kilos and we wished to calculate some distri-

bution over the set of weights. Although the number of updates would be large it

would be fairly trivial to manage a stream of this nature in memory as we have a fairly

constrained signal size of, say, one to 500. Compare this to the universe size of IP

addresses, which is potentially 264, or the set of uniquen-grams we may encounter

from an unbounded text web stream, which may be unbounded. Unlimited RAM is

infeasible and storing and processing this amount and type of data on disk is not feasi-

ble for real time applications as disk I/O is expensive. Datastreams provide a way to

efficiently select and incorporate new, relevant data into our models online without the

requirement for full batch retraining.

In the rest of this section we examine the basic model of data streams and review

the relevant literature.

2.7.1 Basic Model

As described in Cormode and Muthukrishnan (2005), the basic data stream model

begins with an dimension vector~a initialized at timet = 0 to 0, the zero vector. At a

given timet we have a current state of~a(t) = [a1(t), . . . ,ai(t), . . . ,an(t)] that describes

some underlying space or signal at that moment. Updates to entries in~a are received

as a stream ofm pairs(it ,ct) whereit is an index of~a at timet with datact . There are

three models of updates to~a listed below from least to most general:

• Time Series. Each update(it ,ct) replaces the value inai soait = ct .

• Cash Register. Updates are strictly positive increments,ait ≥ 0 so~a is monoton-

ically increasing.

• Turnstile. Updates can be either positive or negative so the value in any a[i]

can both increase or decrease. There are two variations on this model. Astrict
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Turnstile model has∀t, ait ∈R
+. A non-strictmodel has entriesait ∈R so values

can be negative.

To place these models in context, imagine the input signal was a stream of text that

represented document statistics over which different NLP tasks were to be performed.

If the task at hand was single-document topic detection, it would make sense to use

a variant of the Time Series model and for each new document, replace the entries

in the underlying vector. For language modeling the Cash Register model is more

appropriate as we want to account for the full distribution of the input over time. The

tuples in the stream would be frequencies of words in the textand we would increase

each n-gram count in the vector as it was encountered. The Turnstile model with

decrements is not one that would usually be encountered in anNLP setting as most

models of language are based on word or context counts. The occurrence of words,

patterns, and other information is either present and counted or, if it is absent, has a

zero count and therefore isn’t reported. One possible scenario in which a Turnstile

model would be employed is if the stream statistics were comparisons to a previously

known oracle distribution. In this case the counts would indicate how much the events

differed in value from the oracle’s frequency distribution.

For the rest of this section we analyse and describe only the more general Cash

Register and Turnstile models. For these models thetth update means:

ait = ait (t−1)+cit

ai′ = ai′(t−1) ∀i′ 6= it

At a given timet we would like to compute functions of interest over the signal ~a

but the stream input brings in masses of updates quickly and the size and domain of~a

is potentially very large. Classic storage and compute solutions which use trade-offs

of space or time linear to the data are infeasible; space and time linear to the input is

still prohibitive for practical use. Data stream algorithms have the desiderata that the

space used for storage is sublinear, preferably poly-logarithmic, in n and what would

be needed to store~a explicitly, and the per item processing time and overall compute

functions are fast, preferably (but not necessarily) of thesame order as the storage.

We can use space sublinear in input size by making linear projections of the input

stream into structures that hold only summaries or asketchof the data and approxi-

mating the functions desired. We approximate the correct answer, however, with some

guarantee to the accuracy of the result. Typically the accuracy depends on two ad-

justable parameters,ε andδ. We say the approximation returned is within a(1± ε)
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factor of the true result with probabilityδ of failure whereδ is the level of randomness

allowed in the query functions. The compute time and storagerequired will commonly

depend onε andδ. When both parameters are used in an algorithm the resulting query

result is called a(ε,δ)-approximation (Cormode, 2008).

There are three statistical formulations commonly used to prove the(ε,δ)-approximation

guarantees hold. LetX be a random variable with expectationE(X) := µ and variance

σ2 andk> 0 be a positive real. ThenMarkov’s inequalitystates:

Pr(|X| ≥ k)≤
µ
k
.

Chebyshev’s inequalityholds that

Pr(|X−µ| ≥ kσ2)≤
1
k2 .

A Chernoff boundapplies the above Markov inequality to the moment generating func-

tion of X to get tighter bounds on tail probabilities (Motwani and Raghavan, 1995).

If the variableX = ∑n
i=1Xi represents the summation over the i.i.d random variables

Xi ∈ [0,1], a (restricted)Chernoff boundhas

Pr(X−µ≥ k)≤ e−2k2/n.

2.8 Text Streams: Utilizing Recency

Suppose we have an incoming stream of today’s newswire stories in a foreign language

that we would like to translate into English. It is natural tothink that having up-to-date

English news available during the translation task will ease and possibly improve the

final translation. The stories between language pairs will overlap and the translator may

get a better idea of how to express the foreign sentences in English. We can extend the

same concept to a streaming (online) translation system which is constantly employed

to translate current news and other documents. Intuitivelyusing relevant data will still

be beneficial to such a system. The question then is which of the massive amount of

available data is potentially relevant and how can we find anduse it efficiently.

In this section we motivate how we utilized NL streams in the SMT experiments

reported in this thesis. We describe our initial backgroundexperiments and demon-

strate that, given an incoming stream with its implicit timeline, recency, a well known

property of natural language, can be used to improve performance of test points within

the stream.
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To motivate this work we initially investigated the time-dependent variability of

NL distributions. Our experiments were primarily done using both the Europarl corpus

(Koehn, 2003), a collection of parallel sentences in many European languages contain-

ing the spoken proceedings of the European Parliament spanning over a decade, and

the RCV1 corpus (Rose et al., 2002), a time-stamped, chronological corpus of one

year’s worth of multilingual newswire data from Reuters. Forexample, Figure 2.6

shows how the distribution, shown via raw counts here, of themost frequentn-grams

in the RCV1 corpus varies monthly compared against the normalized distribution for

the full year. As is evident, then-gram counts are bursty even for documents within

the same domain. The bursty nature of natural language was shown too in Curran and

Osborne (2002).

Given this well known phenomenon and adding to it the fact that there will always

be more training data available than we are able to store in its entirety moved us to

investigate how, given a restriction on available memory, we could choose a better

than random subset of the full set of training data for a giventask. One fairly obvious

initial approach for training data selection is to use recency, a well established property

of natural language where chronologically more recent language has higher relevance

to the present. Recency is both explicitly and implicitly prevalent in NLP from HMMs

conditioning on only a short history of prior events (those that are recent to the current

point being analyzed) to the effect of priming in spoken conversation. We ran a number

of preliminary experiments with an enforced memory constraint and, given a time-

stamped test document, used a “sliding window” of chronological, overlapping subsets

of the training data. We tested using various tasks and associated metrics which we

describe in the sections below.

2.8.1 Effect of Recency on Out of Vocabulary Rates

An example of the effect of recency on the out of vocabulary (OOV) rate is shown

in the plots in Figure 2.7. The OOV rate is the percentage of words, orn-grams, in

a test set that do not appear in the training data. For Figure 2.7 we used a sliding

window along the chronologically ordered data’s timeline to create multipleepochs

of sentences from the French section of the Europarl corpus and tested the OOV rate

against a document held-out from the end of the Europarl timeline. Europarl is a

parallel corpus and any French phrases in the test document that do not occur in the

training data means no translation is available for them. Clearly a higher OOV rate
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Figure 2.6: A look at the distribution of the most frequent items in the RCV1 corpus

for different orders of n-grams. The numbers along the x-axis represent the ith most

frequent n-gram in the corpus. The solid line represents the normalised distribution.

For many n-grams the variance is large.
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(a) Example Unigram OOV Rates (b) Example Bigram OOV Rates

(c) Example Trigram OOV Rates (d) Example 4-gram OOV Rates

Figure 2.7: For a given test document and a memory restriction on the number of

sentences allowed per epoch, the OOV rates for phrases of length 1-4 are reduced by

using sentences drawn from training data that is chronologically more recent to the test

date.

impacts performance translation. As is clearly seen from the plots in Figure 2.7, forn-

grams of orders one to four there is a consistent downward trend in the OOV rate as the

sentences are drawn from times closer to the held-out test point with the epoch closest

to the test point having the lowest OOV rate amongst all epochs for eachn-gram order.

2.8.2 Effect of Recency on Perplexity

We also ran preliminary investigations using perplexity asa metric. Perplexity is a

transformation of the entropy or cross entropy of a distribution and is the primary

evaluation metric for LMs in the literature. In evaluating LMs, with n test states for a

random variablex drawn from an unknown distribution, the per-word perplexity of the
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Figure 2.8: Perplexity decreases as the training data is drawn from times closer to the

test data. The points on the slope indicate the last week of training data for each subset

LM.

proposed modelq is

2−∑n
i=1

1
n logq(xi).

The lower the per-word perplexity returned the better the proposed model accounts

for the test data. Using the entire English RCV1 as a baseline, we again imposed a

memory bound within which we build the models and test subsets of the data. The

strict memory bound mimics our inability to store unlimiteddata. We treat the full

RCV1 corpus as “all” the data and then test using subsets of the training data. Our

goal is to find that subset by which we get closest to the performance of the baseline.

For these experiments we made use of the sliding windows approach over the

RCV1 training data timeline. Since the documents are timestamped and chronolog-

ically ordered we can mimic stream-based processing for theRCV1 corpus. As an or-

acle baseline a LM was built using data from the full timelinethat spanned 51 weeks.

We then trained multiple LMs of much smaller sizes, coinedsubset LMs, to simulate

memory constraints. For a given date in the RCV1 stream, these subset LMs were

trained using a fixed window of previously seen documents up to that data. For each
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LM240MB
10−02−97 LM465MB

10−03−97 LM240MB
14−04−97 LM303MB

11−08−97

11-02-97 194.121 N/A N/A 200.494

15-04-97 235.297 218.221 185.059 N/A

12-08-97 263.937 236.634 251.6 169.434

Table 2.2: Comparison of perplexity on different test dates. Column title subscripts

are dates corresponding to the last day of the training data for that LM. Column title

superscripts are the size of each LM in RAM as reported by SRILM. Cells with “N/A”

are so because the LM training data includes the test data for that day.

subset LM we slid the window forward by three weeks and then obtained perplexity

results for each subset LM against a static held out test set.

Figure 2.8 shows an example. For this experiment subset LMs were trained using a

sliding window of 20 weeks with the window advancing over a period of three weeks

each time. The two arcs correspond to two different test setsdrawn from different

days. The arcs show that recency still has a clear effect: populating LMs using ma-

terial closer to the test data date produces improved perplexity performance. The LM

chronologically closest to a given test set has perplexity closest to the results of the

significantly larger baseline LM which uses all the stream. As expected, using all of

the in-domain data yields the lowest perplexity.

It happens that the RCV1 corpus has more data on average per day towards the

final months of the year it spans. A subset LM from the beginning of the year will

contain less data than one built from an equal time span at theend of the year. To test

whether the improvements came from a temporal relation to the test data or because the

later models contained more training data we crossed checked subset LMs of various

sizes with test data occurring directly after each. The results of this experiment are

shown in table 2.2. We see that LMs of considerably larger size still do not match the

performance of smaller LMs that are trained from data directly prior to the test date.

We note that this is a robust finding, since we also observe it in other domains. For

example, we conducted the same tests over a stream of 18 billion tokens drawn from 80

million time-stamped blog posts downloaded from the web with matching results. The

effect of recency on perplexity has also been observed elsewhere (see, for example,

Rosenfeld (1995) and Whittaker (2001)).
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Figure 2.9: Recency effects on SMT performance. Depicted are the differences in

BLEU scores for multiple test points decoded by a static baseline system and a system

batch retrained on a fixed sized window prior to the test point in question. The results

are accentuated at the end of the timeline when more time has passed confirming that

recent data impacts translation performance.

2.8.3 Effect of Recency on Machine Translation Performance

Given an incoming stream of parallel text, we gauged the extent to which incorpo-

rating recent sentences into a TM affects translation quality as measured by BLEU.

BLEU is an automatic evaluation metric that measures the precision of the transla-

tion by calculating matches ofn-grams of length 1 ton between sentences of a given

machine translated document and (possibly multiple) reference translations (Papineni

et al., 2001).

We used the Europarl corpus with the French-English language pair using French

as source and English as target. Europarl is released in the format of a daily parliamen-

tary session per time-stamped file. The actual dates of the full corpus are interspersed

unevenly (they do not convene daily) over a continuous timeline corresponding to the

parliament sessions from April,1996 through October, 2006, but for conceptual sim-

plicity we treated the corpus as a continual input stream over consecutive days.



2.9. Conclusion 35

As a baseline we aligned the first 500k sentence pairs from thebeginning of the

corpus timeline. We extracted a TM for and translated 36 heldout test documents that

were evenly spaced along the remainder of the Europarl timeline. As seen in Figure 2.9

these test documents effectively divided the remaining training data into epochs and we

used a sliding window over the timeline to build 36 distinct,overlapping training sets

of 500k sentences each.

We then translated all 36 test points again using a new set of grammar rules for each

document extracted from only the sentences contained in theepoch that was before it.

To explicitly test the effect of recency on the TM all other factors of the SMT pipeline

remained constant including the language model and the feature weights. Hence, the

only change from the static baseline to each epoch’s performance was the TM data

which was based on recency. Note that at this stage we did not use any incremental

retraining.

Results are shown in Figure 2.9 as the differences in BLEU scorebetween the

baseline TM versus the translation models trained on material chronologically closer to

the given test point. The consistently positive deltas in BLEU scores between the static

model that is never retrained and the models that are retrained show that we achieve

a higher translation performance when using more up-to-date TMs that incorporate

recent sentence pairs. As the chronological distance between the initial, static model

and the retrained models increases, we see ever-increasingdifferences in translation

performance.

These preliminary experiments show that a possible way to tackle data selection

in the streaming translation setting is to always focus the attention of the model being

updated on the most recent part of an incoming stream of training data. To maintain

constant space we must remove data from the model that came from the receding

parts of the stream and replace it with the present. However,current algorithms for

(re)training the models of an SMT system are computationally expensive in terms of

both time and space and so not appropriate for this type of stream-based translation

where we often update the system with small batches of novel training data.

2.9 Conclusion

In this chapter we reviewed the background theory, models, and experiments for our

work. We described the basic elements of a SMT system and described in detail RLMs.

We introduced data streams and described how we are able to use the recency inherent
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in a text stream to improve our models. For the rest of this thesis we describe data

structures and streaming algorithms that allow for efficient retraining of a SMT system.

Our approaches allow for quick updates to the models of an SMTsystem in bounded

space eliminating the need for batch retraining.
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A Stream-based Language Model

In this chapter we introduce a stream-based, randomised LM that operates within

bounded memory. This is the first LM of its kind in the literature and constitutes

one of the foremost contributions of the thesis. The online LM presented extends

the Bloomier filter LM (Talbot and Brants, 2008) from Chapter 2.6. Like the batch

Bloomier filter LM, the online model is randomised and stores the set ofn-grams it

encodes in small space. Instead of computing a time consuming perfect hash function

offline, however, the stream-based LM uses a fast,online perfect hashingscheme. Due

to these properties we refer to the LM as theonline randomised LM(ORLM). The

ORLM and its basic properties were described previously in Levenberg and Osborne

(2009).

3.1 Overview

The stream-based translation scenario considered is as follows: we assume a source

stream that each day brings any number of new documents that need translation. We

also assume a separate stream of in-domain documents in the target language. Intu-

itively, since the concurrent streams are from the same domain, we can use the con-

texts provided in the target stream to aid in the translationof the source stream. This is

shown pictorially in Figure 3.1.

The goal is to accurately model the stream’s distribution atthe current point in the

timeline. Crucially, however, over time the stream’s domainor its underlying distribu-

tion may change. Since the entirety of the unbounded stream cannot be represented in

constant space whilst maintaining a constant error rate, weare forced to throw some

old information away to free space in the model for new, currently pertinent text. As

37
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Figure 3.1: Stream-based translation. The ORLM uses data from the target stream and

the last test point in the source stream for adaptation.

described previously in Section 2.6, deletions cannot be done using the current crop

of RLMs from the literature due to their inherent bit sharing.To accomplish this we

introduce a new data structure, the dynamic Bloomier filter, described in detail in the

next sections.

3.2 Dynamic Bloomier Filter via Online Perfect Hashing

In this section we describe the online perfect hash functionwhich is the core mecha-

nism of the ORLM. The online perfect hash algorithm was first introduced and ana-

lyzed by Mortensen et al. (2005) in which the authors target problems that

“ are typical of data stream computation, where one needs to support
a stream of updates and queries, but does not have space to hold the entire
state [in] the data structure.”

The original intention of their data structure was to achieve linear space for a dy-

namic range reporting task but the resulting dynamic Bloomier filter can be applied to

any problem which can be formulated (implicitly or explicitly) as an incoming stream

of key/value pairs. Specifically, given such a stream of incoming key/value pairs, the
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dynamic Bloomier filter uses a family of universal hash functions to support online

inserts and deletes. This is unlike the batch Bloomier filter which does not support

online adaptation. Using deletions, the dynamic Bloomier filter can maintainconstant

memorythroughout its usage. As with the batch Bloomier filter, the keys in the support

set from the incoming stream are represented as random fingerprints generated from

hash functions. As such, there is a small probability for generating false positives when

a collision occurs in the hash space for the stream keys. Thisis discussed in detail later

in this chapter. Here we describe the algorithm for the online perfect hash function.

Let U be a universe of arbitrary size andS⊂ U be an incoming stream of key/-

value pairs drawn fromU that we wish to model. The perfect hash function and data

structures that comprise the dynamic Bloomier filter consists of the following parts:

1. A collection ofr randomised dictionaries,{d}= {d0, . . . ,dr−1}, that hold a large

subsetS⊆Sof the keys as fingerprints. The randomised dictionaries{d} are the

primary storage mechanism for the dynamic Bloomier filter andhold a large

percent of the data from the stream.

2. An exact (lossless) dictionarȳd that holds a small subsetS′ =S\Sof the stream.

It serves as an overflow dictionary for the set of keys in the streamS that collide

in the randomised dictionaries.

3. A deterministic top level hash functionφ : φ(x)→ [0, r−1] wherex∈ S is a key

from the stream. This hash function is used to distribute keys from the stream

into the set{d} of r randomised dictionaries.

4. A family of deterministic universal hash functions{h} = {h0, . . . ,hr−1} where

the hash functionhi , 0≤ i < r is associated with theith randomised dictionary

di. This set of hash functions is used to generate random fingerprints for the keys

in the stream.

Conceptually we can view the randomised dictionaries{d} as a set of independent

“buckets” that each store some unique subset of the stream (Figure 3.2). Toinserta key

x from the incoming data streamS the top level hash functioni = φ(x) assigns a keyx

to one of the bucketsdi ∈ {d}, the set of randomised dictionaries. If the dictionarydi is

full then the keyx is stored in the overflow dictionarȳd. Else, ifdi is not full, the bucket

di uses its associated hash functionhi to generate the fingerprinthi(x) for the keyx.

Then the bucketdi is searched to determine if the fingerprinthi(x) already resides in it.

If so, there is a collision and the keyx is redirected to the overflow dictionarȳd where
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it is stored exactly. Otherwise the fingerprinthi(x) is stored indi. Values attached

to the keys are stored accordingly; either in the randomisedbuckets or the overflow

dictionary.

To querythe dynamic Bloomier filter for a test itemx′ and potentially retrieve its

corresponding value, we first check whether the test itemx′ is in the overflow dictionary

d̄. If it is, the value is returned and we are finished. If it is not, the test elementx′

passes through the top level hash functioni = φ(x′) to get the target bucketdi and

the corresponding hash function to generate the fingerprinthi(x′). We then search the

bucketdi for that fingerprint. If the fingerprinthi(x′) is found then with high probability

we have a match of the test itemx′. If the fingerprint is not found we know with

certainty that the elementx′ is not a member of the support.

Deletionsare done in similar fashion. Given an itemx′ to delete, first the overflow

dictionary is searched and, ifx′ is found, it is removed. If the keyx′ is not found in

the overflow dictionary than the randomised dictionaries are consulted. If the key’s

fingerprint is found then we assume a match and the key is removed from the bucket

di . Again there is a chance that we have a false positive and willtherefore delete the

wrong element.

A variation of deletion (and insertion) is anupdatewhere the count of an element

that is already contained within the dynamic Bloomier filter is modified. When updat-

ing the model we essentially follow the algorithm for deletions in the paragraph above

but adjust the associated value of the key if it is found instead of removing. (This is

unlike inserts where we assume a collision if the element is already contained within

the randomised dictionaries). There is still probability that an update will occur on the

wrong element due to a false positive error.

3.3 Language Model Implementation

In the above section we described the dynamic Bloomier filter with no reference to

language modeling. In this section we show how a dynamic Bloomier filter LM can

use an unbounded input stream of pairs ofn-grams and their counts in small space.

(We use the terms dynamic Bloomier filter and ORLM interchangeably henceforth.)

Before any online updating is done, the (empty) ORLM is initialized with a stream

of n-grams and counts extracted from a large corpus as with a traditional LM. This is

called “seeding” the LM. When seeding the ORLM we follow the insertion procedure

described in the proceeding section. Duplicate fingerprints in the randomised buckets
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Figure 3.2: Inserting an n-gram into the dynamic Bloomier filter. Above: an n-gram is

hashed to its target bucket. Below: the fingerprint for the n-gram is generated and the

target bucket is scanned. If a collision occurs that n-gram is diverted to the overflow

dictionary; otherwise the fingerprint is stored in the bucket.

are consideredcollisionsand then-gram causing the collision is passed along to the

overflow dictionary. After seeding we have a perfect hash of the seed corpus and no

errors can occur during test time forn-grams in the ORLM.

During seeding a perfect hash is possible since it is known a priori eachn-gram

in the initial stream is unique and all collisions are handled accordingly. Collisions,

though, are produced by the same mechanism that generates the false positive errors—

duplicate fingerprints generated by the hash functions for nonmatchingn-grams. Hence

when we have no uniqueness guarantees and update the ORLM witha batch of recent

n-grams from the stream, identical fingerprints are taken to ben-gram matches instead

of collisions. This means we may update the wrongn-gram. We describe in detail how

we handle stream updates to the ORLM in Section 3.4. The remainder of this section

deals with the base properties of the ORLM. Here we describe the implementation

choice for the data structures used for the randomised and overflow dictionaries and

how they are used.

For the randomised dictionariesd0, . . . ,dr−1 we simply used a large bit array that

is divided intor sub-arrays. Each sub-arraydi, i ∈ [0, r−1] forms a single bucket that
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contains a constant and equal number of array cells. The sizeof each cell, the number

of bits used for eachn-gram fingerprint, we denote byw. w is the primary parameter

for memory used by the ORLM and also determines the error rate as we will show. The

hash functions{h} andφ for fingerprint generation and target bucket allocation respec-

tively are from random universal hash function (UHF) families described in Chapter

2.6.

The details for inserting ann-gram into our array-based model are shown in pseu-

docode in Algorithm 2. As described above, initially we havethe empty data structures

d = {d0, . . . ,dr−1}, an empty array conceptually divided intor buckets,d̄ for the over-

flow dictionary,V for the associated value array, andBCnt is an array of sizer that

keeps track of the number of bucket cells in eachdi , i ∈ [0, r−1]. Each bucketdi con-

tainsB cells. We instantiate random hash function familiesφ andh= {h0, . . . ,hr−1}.

To insert ann-gramx into the ORLM, we first find the target bucket ind using the top

level hash functioni → φ(x). Then then-gram’s fingerprintf p→ hi(x) is generated

using the hash functionhi attached to the bucketdi . This produces a fingerprintf p

whose value is in the rangehi(x)→ [0,2w−1]. If the bucketdi is already full, which

we can find by checkingBCnt[i], we store then-gramx in the overflow dictionaryd̄.

Otherwise we find thef irstRowandlastRowof the target bucketdi and linearly scan

each cell. If the fingerprinthi(x) is already in the bucketdi the originaln-gramx is

stored exactly in the overflow dictionarȳd. After searching, if the bucketdi does not

already contain the fingerprinthi(x) it is inserted into into the first available empty cell

found during the traversal ofdi . In Algorithm 2 we denote this cell using theindexvari-

able. We insert the fingerprintf p into the empty cell atd[index] and the corresponding

valuev in V[index]. Finally we increment the bucket counter arrayBCnt[i].

Note that any dynamic data structure can be employed for the overflow dictionary

d̄. A good choice for this is a sparse hash map that can be queriedin constant time and

requires little space.1

The choice of an array implementation for the randomised dictionaries is intuitive

and useful for a few reasons. An array is simple to implement,space efficient, uses

constant memory, and operations over it are fast. This is important since, when insert-

ing, we are required to scan all cells of a bucket to ensure no othern-gram encoded in

that bucket has a matching fingerprint. Since the fingerprints are unordered, using an

array requires a linear scan of each cell in the bucket. Searching over all the cells in

1We make use of an open source implementation of a space efficient hash table that can be found at
http://code.google.com/p/google-sparsehash/ .
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Algorithm 2 : ORLM Online Insert
input : S(stream with keysx, valuesv)

d← empty set of buckets;

V← empty values;

d̄← empty overflow dictionary;

φ, {h0, . . . ,hr−1}← universal hash functions;

B← bucket size;

BCnt← empty bucket counter array;

forall (x,v) ∈ Sdo

i← φ(x); // bucket hash

f p← hi(x); // finger hash

index=−1;

if BCnt[i] == B then // db full

d̄[x]← v;

return;
end

f irstRow= i×B;

lastRow= f irstRow+B;

for b← f irstRowto lastRowdo

if d[b] == f p then
d̄[x]← v;

return;
end

if d[b] == 0 and index==−1 then
index= b;

end

end

d[index] = x;

V[index] = v;

BCnt[i] = BCnt[i]+1

end

a bucket takes worst-case constant time where the constant is measured by how many

cells are allocated to each bucket. Using an array also mimics the implementation of

the batch-based Bloomier filter LM which makes it feasible to directly compare the

extra memory required for the overflow dictionarȳd (Figure 3.4).
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LM Expected Observed RAM

Lossless 0 0 7450MB

Bloom 0.0039 0.0038 390MB

Bloomier 0.0039 0.0033 640MB

ORLM 0.0039 0.0031 705MB

Table 3.1: Example false positive rates and corresponding memory usage for ran-

domised LMs. The table compares expected versus observed false positive rates for the

Bloom filter, Bloomier filter, and ORLM obtained by querying a model of approximately

280M events with 100K unseen n-grams. We see the bit-based Bloom filter uses sig-

nificantly less memory than the cell-based alternatives and the ORLM consumes more

memory than the batch Bloomier filter LM for the same expected error rate.

As with other RLMs, before being stored the counts associatedwith the n-grams

are first quantized via a log-based quantization codebook. When queried, the original

counts are recovered to their nearest binned value. Storingthe quantized counts can

be done by the overlaying technique used in the batch Bloomierfilter LM (Section

2.6) However, as we will show in the analysis below, overlaying the quantised val-

ues on their keys results in significantly higher error than storing the keys and values

separately. Hence we get better performance by allocating distinct bits for then-gram

values at the expense of using slightly more memory.

Simplified pseudocode for querying the dynamic Bloomier filter is shown in Al-

gorithm 3. Given the structures initialized in Algorithm 2,we first check where a test

n-gramx′ is in the overflow dictionaryd̄. If so, we return the associated value and are

finished. Else, we repeat the procedure from Algorithm 2 and select a target bucket

i→ φ(x′) using the top level hash function, generate a fingerprint using the hash func-

tion associated with theith bucket, f p→ hi(x′), and scan each cell of the bucketdi

from f irstRow to lastRow. If we find the fingerprintf p we return its corresponding

value from the associated value arrayV. Else, when we reach thelastRowentry of the

bucketdi we know that then-gramx′ is not currently encoded in the model.

In practice, as with the other RLMs described in Section 2.6 weusesubsequence

filtering to provide sanity checks and further reduce the error rate of the model. Essen-

tially, this technique breaks the testn-gram into smaller parts and queries the model

for each part separately. Once it is known independently which parts of then-gram are

encoded in the model the existence of the fulln-gram is established. The more pieces
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Algorithm 3 : Querying for an-gramk in the ORLM during test time.
input : keyx′

output: valuev or 0

have : d, d̄,V,φ,h,BCnt (from Algorithm 2)

v= 0;

if x′ ∈ d̄ then
v← value associated with̄d[k];

else

i← φ(x′); // bucket hash

f p← hi(x′); // finger hash

v= 0;

f irstRow= i×B;

lastRow= f irstRow+B;

for b← f irstRowto lastRowdo

if d[b] == f p then
v=V[b];

break;
end

end

end

return v;

the originaln-gram is split into the more strenuous the checks and, consequently, the

lower the level of error. In the simplest case we knowa priori that a trigram(x0,x1,x2),

for example, is in the model only if the bigram(x0,x1) and the unigram(x0) exist in the

model already. Typically smoothing algorithms start with the full n-gram and query for

shorter histories only if the originaln-gram is not found. However, by reversing this

and querying the model starting with the unigram and building up to the full trigram

we avoid unnecessary false positive errors.

3.3.1 Analysis

Here we analyze the performance and space requirements of our instantiation of the

ORLM. We examine the false positive error rate as well as the memory requirements

of the full model. Specifically, since the main difference indata structures between

the batch Bloomier filter LM and the ORLM is the addition of the overflow dictionary
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necessary for the online perfect hashing, we are especiallyinterested in the trade-off

between the space used by the array that comprises the randomised dictionaries and

that used by the overflow dictionary.

False Positive Error Rate:

Suppose we create a new ORLM and provide parameters for the total memory

for all randomised dictionaries{d}, the number of cells in each bucketc = |di|, and

w, the number of bits each cell contains. Intuitively, the false positive error (and,

subsequently, the collision) rates are a function of the parametersc andw since they

are caused by duplicate fingerprints in a given bucketdi . Given a fingerprinthi(x) of w

bits, there arec cells indi which may potentially already encode the same fingerprint

hi(y)= hi(x), y 6= x. As described in Section 2.6.2, the probability for a UHF generating

a pairwise collision is well known to be 2−w. To get the false positive error rate of the

ORLM we must multiple that probability by the number of cells in each bucketc since

each cell comparison is another independent chance for a fingerprint match. Hence,

for n-gramsx andy with x 6= y we have the simple formulation for the false positive

probability as

Pr(hi(x) = hi(y)|c,w) = min(
c

2w ,1). (3.1)

The effect of the number of cells per bucketc on the false positive rate is shown in

Figure 3.3. The tests in this figure were conducted over a stream of 1.25Bn-grams from

the Gigaword corpus (Graff, 2003). We set our space usage to match the 3.08 bytes per

n-gram reported in Talbot and Brants (2008) and held out just over 1M unseenn-grams

to test the error rates.

Memory Usage:

At the highest level, the perfect hash function succeeds online by associating each

n-gram with onlyonecell in the randomised dictionaries rather than having it depend

on cells (or bits) which may be shared by othern-grams as with other RLMs. Since

eachn-gram’s encoding in the model uses its own set of distinct bits it is independent

of all other events contained within the model. This means ann-gram cannot corrupt

othern-grams when inserted, updated or deleted. This also means that we provably re-

quire more space for the ORLM than for the static Bloomier filterLM which shares its

bits between elements (Chazelle et al., 2004; Mortensen et al., 2005). Thespaceused

by the dynamic Bloomier filter is comprised (primarily) of thespace used for the ran-

domised dictionaries to storen-grams and their values as well as the additional space
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Figure 3.3: The ORLM error rises in correlation with the number of cells per bucket.

required by the overflow dictionary, the hash functions and the quantisation codebook.

There is a potentially a very large amount of memory needed for the hash functions

when setting up the vanilla dynamic Bloomier filter. As stated, each bucketdi , i ∈

[0, r−1] in ther randomised dictionariesd0, . . . ,dr−1 requires its own associated hash

functionhi to generate the fingerprints of then-grams that reside in it. The number of

hash functions required for the family{h} is r if we naively set up the hash functions to

be one-to-one with the randomised buckets. Ifr is reasonably large the hash functions

will consume substantial memory.

To see this recall from Section 2.6 that the universal hash function formulation for

n-grams ishi(x) = ∑n
j=1a[i][ j]∗x[ j]+b[i][ j] (modP) where j ranges over each word

of then-gramx, P is prime, anda andb are double arrays of randomly generated four

byte integers. Clearly, given the maximum size of ann-gram isn, the space needed

for the hash function familyH is Ω(8nr) bytes since our space usage is linear in the

bytes required for each hash function’s arraysa andb, which must be able to handlen

words each, and the number of bucketsr. We can reduce the memory necessary for the

hash functions by instantiating a much smaller numberr ′≪ r of hash functions and

associate hash functionhi′ , i′ ∈ [0, r ′−1] to bucketdi wherei = φ(x) is the assignment
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from the bucket hash function andi′ = i mod r ′. This bit of engineering decreases the

space usage for the hash functions by factor ofr− r ′. Since each bucket is independent

of all others this has no effect on the analysis.

Overflow Dictionary:

The false positive/collision probability directly affects the size of the overflow dic-

tionary d̄. Recall that we storeS′ = S\S in the overflow dictionaryd̄ whereS′ is the

set of alln-gramsSfrom the stream which generate fingerprint collisions withn-grams

previously encoded in the randomised buckets. The probability for generating such a

collision is the same as the probability for a false positive. To see this clearly we can

view a false positive error as a type of collision with a testn-gramx∈ U\S that is not

in the support. We can bound the size of the overflow dictionary with high probability

by bounding the expected number of collisions. This expectation is also the expected

number of items in the overflow dictionary and an upper bound on the expected mem-

ory needed can be drawn. Assuming truly random hash functions, Mortensen et al.

(2005) use a Chernoff bound for random variables with limitedindependence to show

that the space required by the overflow dictionary isO(s) bits with high probability

wheres= |S| is the number ofn-grams in the stream. Of course the exact memory

used depends on the data structure used for the overflow dictionary but, to put this into

perspective, if we were encoding an ORLM with one billionn-grams then we could

expect to use a minumum of 120MB of extra space for the overflowdictionary.

Another practical factor that affects the size of the overflow dictionary is the rela-

tionship between the number of bucketsr and the number of cellsc per bucket. Given

a constant number of total bits for all the randomised dictionaries there is an obvious

tradeoff betweenr andc. Making the number of bucketsr large means that the num-

ber of cells per bucketc = |di | must be small and, since it is a multiplicative factor

in our error probability, we would like to keepc as small as possible. However, due

to the hash functions not being perfectly random in practice, Figure 3.4 shows what

happens if we make the cells per bucketc too small. Many of the buckets fill up early

on which diverts all othern-grams the bucket hash functionφ sends to them to the

overflow dictionaryd̄. This is less space efficient.
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Figure 3.4: Too few cells per bucket causes a higher percentage of the data to be stored

in the overflow dictionary due to full buckets. The tests in this figure were conducted

with the same data as in Figure 3.3

3.3.2 Batch Bloomier Filter LM Comparison

Here we compare the ORLM with the batch Bloomier filter LM from Talbot and Brants

(2008). As discussed, one of the main differences is that theORLM requires more

space than the batch Bloomier filter LM due to the space required by the overflow dic-

tionary (Figure 3.3). However the batch Bloomier filter is notable to be incrementally

retrained. This means to add any recentn-grams from the stream the batch Bloomier

filter LM must be fully retrained. Obviously this is far slower than adding the newn-

grams from the stream as they are encountered. Figure 3.5 compares the time needed

to incrementally retrain the ORLM with varying amount ofn-grams from the input

stream compared to the time needed for batch retraining.

The false positive probability in Equation 3.1 is valid for the array-based ORLM

setup when eachn-gram fingerprint uses bits distinct from the bits used to store thatn-

gram’s value. This is unlike the Bloomier filter where, as described in Section 2.6, each

value is overlaid atop its attachedn-gram by use of the XOR function. False positives

occur in this setup when a testn-gram that was not encoded in the model returns a
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random value that is less than the maximum encoded valueV seen during training.

We can use the same formulation for the ORLM which requires less space than using

distinct bits to store the fingerprints and their corresponding values. This means for

each testn-gramx we XOR the bucket-specific fingerprinthi(x) with each cell indi

until we have a value less thanV, the maximum value observed. This negatively effects

the error rate/collision probability since, unlike the batch Bloomier filter, for eachn-

gram tested we query multiple times.

For each bucketdi , givenc andw as before and takingV as the maximum encoded

value in the model, we have an error chance of

Pr(hi(x)⊗{di}<V|c,w) = min(
cV
2w ,1) (3.2)

with {di} denoting the set of cells contained in the bucketdi. Since the maximum

valueV may be large, using this technique may seriously effect the overall error rate.

Note we also introduce a new error type and lose the strict one-way error allowed by

the model. As we scan a bucket we could encountermismatchesbetweenn-grams that

are members of the support when, for two random fingerprints,the value returned by

the XOR operation returns a valuev≤V. The means we could potentially return the

wrong values for existentn-grams in the model as well. Both of these reasons, higher

error rates plus the introduction of mismatches, make the overlay technique used by

the batch Bloomier filter for further space savings ill suitedto the ORLM.

3.3.3 ORLM in a Batch SMT Setting

In this section we establish that the ORLM works as a traditional LM for SMT. We

compare the translation performance of the ORLM against results from a lossless LM

built using SRILM (Stolcke, 2002) and the batch Bloomier filterLM as described in

Section 2.6.

For our experimental setup we use only publicly available resources. For decod-

ing we used Moses (Koehn and Hoang, 2007). Our parallel data for the translation

model was taken from the Spanish-English section of Europarl. For test material, we

manually2 translated 63 documents of roughly 800 sentences from threerandomly

selected dates (January 2nd, April 24, and August 19) spacedthroughout the RCV1

corpus (Rose et al., 2002) timeline (Chapter 1). We held out 300randomly selected

2As RCV1 is not a parallel corpus we translated the reference documents ourselves. This parallel
corpus is available from the author.
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Test Date Lossless Bloomier ORLM

Jan 40.01 39.67 39.22

Apr 38.11 37.59 37.97

Aug 32.55 32.39 32.78

Avg 36.89 36.55 36.65

Table 3.2: Baseline comparison translation results (in BLEU) using data from the first

stream epoch with a lossless LM (4.5GB RAM), the batch Bloomier filter LM and the

ORLM (300MB RAM). All LMs are static.

sentences for minimum error rate training (Och, 2003) and optimised the parameters

of the feature functions of the decoder for each experimental LM run.

Our initial tests consist of training the LMs using the data contained in the first

stream epoch (Table 3.5) and then, mimicking batch LM behavior, translating all three

test points in the stream with the static LMs. All the LMs wereunpruned 5-gram

models which used backoff interpolated smoothing. ModifiedKnesser-Ney smooth-

ing (Chen and Goodman, 1999) was used for the lossless LM, which stores then-

gram probabilities and their backoff weights in memory, while both the Bloomier filter

and ORLM, which store the quantised counts of then-grams, used Stupid Backoff

smoothing (Section 2.5.0.2). We set no space restriction onthe lossless LM and the

randomised LMs each had an error rate of 1/28. Results are shown in Table 3.2.

The translation results show the ORLM performs adequately asa batch LM since the

results between all LMs are comparable. The lossless LM achieves slightly better per-

formance overall due to the more sophisticated smoothing used.

So far in this section we analyzed the properties and compared the performance

of the ORLM as a stand-alone LM. However, we have not as yet discussed how the

ORLM is used for its designated purpose—to model and adapt online to an unbounded

input stream. We survey our adaptation methods in the next section.

3.4 ORLM Adaptation

Now that we can adapt a LM in constant memory we discuss some simple adaptation

approaches to adapting the ORLM with noveln-grams from the incoming data stream

while keeping the probability and backoff models well-formed. There are many ways

to do LM adaptation and we stress the methods we use in this section are only illustra-
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Test Date Severe Random Conservative

Jan 36.44 36.44 36.44

Apr 35.87 31.08 35.51

Aug 29.00 19.31 29.14

Avg 33.77 29.11 33.70

Table 3.3: Adaptation results measured in BLEU. Random deletions degrade perfor-

mance when adapting a ORLM with error = 90
212 .

tive of what can be done using the ORLM.

In Chapter 1 we established that, given a memory constraint, using recent data is

useful for language modeling in terms of perplexity when compared to a static model.

However, we cannot hold the full, unbounded input stream in memory at any one time.

We do not have access to the full stream at any given point and,as well, it is infeasible

to allow unbounded memory for our model. Since we have the criteria of the ORLM

operating within constant memory, to add new, potentially useful n-grams into the

model from the incoming stream means we need a structured scheme for deleting old

(preferably useless)n-grams to free space in the ORLM forn-grams from the incoming

stream.

When processing the stream, we aggregate data for some consecutive portion, or

epoch, of the input stream. We can vary the size of stream window. For example

we might batch-up an hour or week’s worth of material. Intuitively, smaller windows

produce results that are sensitive to small variation in thestream’s distribution while

larger windows (corresponding to data over a longer time period) average out local

spikes. Then we free bits in the ORLM for the most recent set ofn-grams being

considered for entry into the model. We considered the following update strategies:

1. Conservative. For each newn-gram encountered in the stream, insert it in the

ORLM and remove one or more previously insertedn-gram which was never re-

quested by the decoder. To preserve consistency we do not remove prefix grams:

lower-order grams that are needed to estimate backoff probability for higher-

order smoothing. If ann-gram from the incoming stream is already encoded in

the ORLM, we keep then-gram and add the new count to the previous one.

2. Severe. Differs from the conservative approach above only in that wedelete

all unusedn-grams (i.e. all those not requested by the decoder in the previous
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Epoch Stream Window

1 20/08/1996 to 01/01/1997

2 02/01/1997 to 23/04/1997

3 24/04/1997 to 18/08/1997

Table 3.4: The RCV1 stream timeline is divided into the windowed epochs shown in this

table for our translation experiments.

translation task) from the ORLM before adapting with data from the stream.

This means the data structure is sparsely populated for all adaptation runs.

3. Random. Randomly sample the incoming stream and for each previously un-

seenn-gram encountered, insert it and remove some previously insertedn-gram.

Deletion occurs randomly and irrespective of whether the old n-gram was ever

requested by the decoder or is a prefix. This approach corrupts the well-formedness

of the underlying model.

Table 3.3 shows translation results in BLEU for these strategies. (We will describe

the stream-based translation experiment details further in the next section.) Clearly, by

using the random sampling strategy we take a significant performance hit whereas both

the conservative and severe approaches have approximatelythe same performance. We

describe the novel techniques that allow for high performance LM adaptation below.

The above conservative and severe strategies rely heavily on keeping the ORLM

well-formed by not removing lower ordern-grams that comprise prefixes for higher-

ordern-grams. As the random deletions demonstrated, removing prefix n-grams indis-

criminately eventually corrupts the model. In addition, since we employ subsequence

filtering to lower the error rates, by removing prefixes ofn-grams we may begin to re-

turn false negatives for goodn-grams. Since the highest order grams comprise the bulk,

by far, of the total number of elements in any LM, we can keep all n-gram prefixes and

still remove enoughn-grams to free space for new stream data.

To keep track of the prefixes of the model we add a bit array to the ORLM. Each

bit of the prefix array has a one-to-one correspondence with acell in the array of

randomised dictionaries. When inserting into the ORLM whilstadapting, we verify

that all prefixes of ann-gram are encoded in the model. If not, we add the fulln-gram

sequence and, for each prefix of then-gram we set its corresponding bit in the prefix

bit array. Then when deleting we do not remove anyn-grams which have their prefix
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bit set. By adding the prefix bit array we use slightly more memory but at one bit

per n-gram it is trivial overall and we can keep the ORLM well-formed throughout

adaptation.

While adapting with the conservative and severe methods we also do not delete any

n-grams that have been requested by the decoder. This feedback helps ascertain what

part of the incoming stream has value to each test points. To keep track of decoder

requests we again employ a bit array that has a one-to-one correspondence with the

cells of the randomised buckets. During test time, if the decoder requests ann-gram

that is encoded in the model, we “turn on” the bit associated with thatn-gram to track

this. During the deletion stage while adapting we now have a small subset of then-

grams in the model marked for their usefulness. We do not delete these. After each

adaptation period we clear the bit array and continue tracking decoder requests afresh.

In this way we can keep the pertinent set of oldn-grams that were useful in the last test

point since they may be potentially useful in the next decoding run.

When a particularn-gram is targeted for an update its quantised value in the current

model is retrieved, the old count updated with the new count,and then the new value

quantised again before being encoded back into the ORLM. Since the quantisation

scheme from Section 2.6.3 serves as bucketing function to group all values within

some range, the interaction between the quantisation used for encoding the associated

values of eachn-gram and the stream-based updates may, at first, seem to counteract

each other unless the new count from the stream for an-gram is large. In fact this

is not the case since we can specify our quantisation function to allow nearly exact

representation of low counts and only to bucket ranges of higher counts. Hence, when

we receive an update for an-gram residing in the model with a low count it will always

jump quantisation levels when updated and incremented by any value, even just a count

of one. Only a tiny percentage of then-grams in the model with very high counts (those

at the head of the encoded Zipf distribution) will remain in the same quantisation level

when updated with a new count that is small.

In summary, by using minimally more space (two bits pern-gram specifically) we

can ensure the ORLM stays well-formed throughout adaptationand retains the set of

n-grams shown to be useful to translating the source stream. The distribution of the

incoming stream is taken into account despite the quantisation. We show now that

these exceptionally simple techniques for adaptation produce surprisingly good results

for stream-based translation.
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Order Full Epoch 1 Epoch 3

1 1.25M 0.6M 0.7M

2 14.6 M 6.8M 7.0M

3 50.6 M 21.3M 21.7M

4 90.3 M 34.8M 35.4M

5 114.7M 41.8M 42.6M

Total 271.5M 105M 107.5M

Table 3.5: Distinct n-grams (in millions) encountered in the full stream and example

epochs.

3.5 Stream-based Translation Experiments

In this section we demonstrate the usefulness of the ORLM for stream-based transla-

tion. Our target language text stream was generated from theRCV1 corpus and we use

the same three test points from the initial translation experiments described in Section

3.3.3. These test dates effectively divided the stream intothreeepochsbetween them.

The windowed timeline for these epochs is shown in Table 3.4.

After each test point in the stream we adapt the ORLM to the set of n-grams in the

next epoch using the severe adaptation heuristic (Section 3.4). All n-grams from the

stream and their counts are incorporated into the ORLM and then the next test point

in the stream is translated. For comparison, for each test point we also batch retrained

the Bloomier filter LM with the data contained in the epoch prior. Results are shown

in Table 3.6.

As expected, since they use identical training data, performance is about equal be-

tween the Bloomier LM using batch retraining and the ORLM usingthe online perfect

hash function. The key difference is that each time we batch retrain the Bloomier filter

LM we must compute, offline, a perfect hash of the new trainingset. This is com-

putationally demanding since the batch perfect hashing algorithm uses Monte Carlo

randomisation which fails routinely and must be repeated often. To make the batch

algorithm tractable the training data set must be divided into lexically sorted subsets as

well which requires multiple extra passes over the data.

In contrast, the ORLM is incrementally retrained online and the order of the data is

irrelevant. This makes it significantly more resource efficient since we find bits in the

model for then-grams dynamically without using more memory than we intially set.
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Batch Retrained Bloomier ORLM

Date BLEU Delta BLEU Delta

Jan 39.67 0 39.22 0

Apr 40.43 +2.84 40.63 +2.66

Aug 38.53 +6.14 38.26 +5.48

Avg 39.54 +2.99 39.37 +2.71

Table 3.6: Translation results for stream-based LMs in BLEU. The batch retrained

Bloomier filter LM and the stream-based ORLM use 300MB each with equal error rates

of 1
28 . The Delta columns show the differences in BLEU score between the static models

from Table 3.2 and the streaming LMs.
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Retraining time differences between the batch and online LMsis shown in Figure 3.5.
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3.6 Conclusion

In this chapter we introduced and analyzed our stream-basedLM. We have shown

the dynamic Bloomier filter can be used to encode an ORLM that effectively mod-

els an unbounded data stream over time in small space. Experiments show that the

ORLM is efficient to retrain incrementally and alleviates thecomputational burden

of frequent batch retraining while maintaining comparative translation performance

with batch-based LMs. By adapting the LM we achieve significantly better streaming

translation performance compared to a static LM. In Chapter 5we describe a stream-

based algorithm for the translation model and show how we cancombine the ORLM

and an online translation model for improved stream translation performance. In the

next chapter we focus on how we can extend the ORLM to multiple incoming streams

instead of restricting adaptation to a single in-domain input stream.





Chapter 4

Multiple Stream-based Translation

In the last chapter we introduced the ORLM, a stream-based LM,that is capable of

adapting to an unbounded input data stream. Our experimentswith the ORLM show

that we can increase translation performance using an online LM that has access to

recent data in the stream (potentially) relevant to the nexttest point. However, a

drawback of the experiments reported in the previous chapter was the oversimplified

scenario that all training and test data was drawn from the same distribution using a

single, in-domain stream. In a real world scenario multipleincoming streams are read-

ily available and test sets from dissimilar domains will be translated continuously. In

this chapter we extend our work with the ORLM and consider the problem ofmul-

tiple stream translation. We explore various strategies to modelmultiple unbounded

streams within a single SMT system. The challenges in multiple-stream translation

include dealing with domain differences, variable throughput rate of streams (the size

of each stream per epoch), and the need to maintain constant space. Importantly, we

impose the key requirement that our model match translationperformance reached us-

ing the single stream approach on all test domains. The work presented in this chapter

was previously published in Levenberg et al. (2011).

4.1 Overview

Recall that any source that provides a continuous sequence ofnatural language docu-

ments over time can be thought of as anunbounded streamwhich is time-stamped and

access to it is given in strict chronological order. The ubiquity of technology and the

Internet means there are many such text streams available already and their number

is increasing quickly. For SMT, multiple text streams provide a potentially abundant

59
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source of new training data that may be useful for combating model sparsity.

In Chapter 3 we described the streaming translation scenariowhere the LM is in-

crementally retrained by updating it arbitrarily often with previously unseen training

data from a single stream. Then, when translating a recent test document drawn from

an in-domain source stream, the LM contains potentially useful n-grams that aid in

the translation. It is a gross oversimplification to assume that all test material for a

SMT system will be from a single domain. In this chapter we report on using multi-

ple incoming streams from variable domains to incrementally retrain our stream-based

SMT system. Still of primary concern is building models whose space complexity is

independent of the size of the incoming stream since allowing unbounded memory to

handle unbounded streams is unsatisfactory. When dealing with more than one stream

we must also consider how the properties of single streams interact in a multiple stream

setting.

Every text stream is associated with a particular domain. For example, we may

draw a stream from a newswire source, a daily web crawl of new blogs, or the output

of a company or organisation. Obviously the distribution over the text contained in

these streams will be very different from each other. As is well-known from the work

on domain adaptation throughout the SMT literature, using amodel from one domain

to translate a test document from another domain would likely produce poor results.

Each stream source will also have a different rate of production, or throughput,

which may vary greatly between sources. Blog data may be received in abundance

but the newswire data may have a significantly lower throughput. This means that the

text stream with higher throughput may dominate and overwhelm the more nuanced

stream with less data in the LM during decoding. This is bad ifwe want to translate

well for all domains in small space using a single model. These properties of multiple

streams—high rate of throughput, unboundedness, and domain differences—and how

they interact in a stream-based translation setting are what we tackle in the following

sections.

4.2 Multiple Stream Retraining Approaches

In a stream-based translation setting we can expect to translate test points from vari-

ous domains on any number of incoming streams. Our goal is a single LM that obtains

equal performance in less space then when using a separate LMper stream. The under-

lying LMs could be exact, but here we use randomised versionsbased on the ORLM.
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Figure 4.1: In the naive approach all K streams are simply combined into a single LM

for each new epoch encountered.

Given an incoming numberK of unbounded streams over a potentially infinite

timeline T, with t ⊂ T an epochor windowed subset of the timeline, the full set of

n-grams in allK streams over allT is denoted withS. By St we denoten-grams from

all K streams andSkt, k∈ [1,K], as then-grams in thekth stream over epocht. Since

the streams are unbounded, we do not have access to all then-grams inS at once.

Instead we selectn-grams from each streamSkt ⊂ S. We define the collection ofn-

grams encoded in the LM at timet over allK streams asCt . Initially, at timet = 0 the

LM is composed of then-grams in the stream soC0 = S0.

Since it is unsatisfactory to allow unbounded memory usage for the model and

more bits are needed as we see more noveln-grams from the streams, we enforce a

memory constraint and use an adaptation scheme to deleten-grams from the LMCt−1

before adding any newn-grams from the streams to get the currentn-gram setCt .

Below we describe various approaches of updating the LM with data from the streams.

4.2.1 Naive Combinations

Approach The first obvious approach for an online LM using multiple input streams

is to simply store all the streams in one LM. That is,n-grams from all the streams are

only inserted into the LM once and their stream specific counts are combined into a

single value in the composite LM.

Modelling the Stream In the naive case we retrain the LMCt in full at epocht using
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stream 1 LM 1
stream 1 LM 2

stream 1 LM 3

input stream 1

stream 2 LM 1
stream 2 LM 2

stream 2 LM 3

input stream 2…
stream K LM 1

stream K LM 2
stream K LM 3

input stream K

Multiple LM Approach

new epoch new epoch

Figure 4.2: Each stream 1. . .K gets its own stream-based LM using the multiple LM

approach.

all the new data from the streams. We have simply

Ct =
K⋃

k=1

Skt (4.1)

where each of theK streams is combined into a single model and then-grams counts

are merged linearly. Here we carry non-grams over from the LMCt−1 from the previ-

ous epoch. The space needed is the number of uniquen-grams present in the combined

streams for each epoch.

Resulting LM To query the resulting LMCt during decoding with a testn-gram

wn
i = (wi , . . . ,wn) we use Stupid Backoff (Section 2.5.0.2). Each stream provides a

distribution over then-grams contained in it and, for SMT, if aseparateLM was con-

structed for each domain it would most likely cause the decoder to derive different

1-best hypotheses than using a LM built from all the stream data. Using the naive

approach blurs the distribution distinctions between streams and negates any stream

specific differences when the decoder produces a 1-best hypothesis. It has been shown

that doing linear combinations of this type produces poor performance in theory (Man-

sour et al., 2008). In our experiments we demonstrate that naive combination does not

perform well in practice. Given that the throughput of the streams differ greatly naive

combination will degrade the translation performance for test domain from a stream

with a much lower rate since the returned probabilities fromthe LM are dominated by

the higher rate stream.
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4.2.2 Weighted Interpolation

Approach An improved approach to using multiple streams is to build a separate

LM for each stream and using a weighted combination of each during decoding. Each

stream is stored in isolation and we interpolate the information contained within each

during decoding using a weighting on each stream.

Modelling the Stream Here we model the streams by simply storing each stream at

time t in its own LM soCkt = Skt for each streamSk. Then the LM after epocht is

Ct = {C1t , . . . ,CKt}.

We use more space here than all other approaches since we muststore eachn-

gram/count occurring in each stream separately as well as the overhead incurred for

each separate LM in memory.

Resulting LM During decoding, the probability of a testn-gramwn
i is a weighted

combination of all the individual stream LMs. We can write

Pt(w
n
i ) :=

K

∑
k=1

fkPCkt(w
n
i ) (4.2)

where we query each of the individual LMsCkt to get a score from each LM using

Stupid Backoff and combine them together using a weightingfk specific to each LM.

Here we impose the restriction on the weights that∑K
k=1 fk = 1. (We discuss specific

weight selections in the next section.)

By maintaining multiple stream specific LMs we can maintain the particular distri-

bution of the individual streams and keep the more nuanced translations from the lower

throughput streams available during decoding without translations being dominated by

a stream with higher throughput. From the learning perspective, interpolating multiple

LMs can be seen as a type ofensemble learningwhere each of the individual LMs

is considered a “weak” learner to the final combined LM used for the SMT system.

However using multiple distinct LMs is wasteful of memory.

4.2.3 Combining Models via History

Approach We want to combine the streams into a single LM using less memory than

but still achieving at least as good a translation for each test point as when storing each

stream separately. Naively combining the streams removes stream specific translations

but, from Chapter 3, using the history ofn-grams selected by the decoder during the
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previous test point in the single stream case obtained good results. This is applicable

to the multi-stream case as well.

Modelling the Stream For multiple streams and epocht > 0 we model the stream

combination as

Ct = fT(Ct−1)∪
K⋃

k=1

(Skt). (4.3)

where for each epoch a selected subset of the previousn-grams in the LMCt−1 is

merged with all the newly arrived stream data to create the new LM set Ct . The pa-

rameterfT denotes a function that filters over the previous set ofn-grams in the model.

It represents the specific adaptation scheme employed and stays constant throughout

the timelineT. In this work we consider anyn-grams queried by the decoder in the

last test point as potentially useful to the next point. Since all of then-gramsSt in the

stream at timet are used the space required is of the same order of complexityas the

naive approach.

Resulting LM Since all then-grams from the streams are now encoded in a single LM

Ct we can query it using Stupid Backoff during decoding. The goalof retraining using

decoding history is to keep usefuln-grams in the current model so a better model is

obtained and performance for the next translation point is improved. Note that making

use of the history for hypothesis combination is theoretically well-founded and is the

same approach used here for history based combination. (Mansour et al., 2008)

4.2.4 Subsampling

Approach The problem of multiple streams with highly varying throughput rates can

be seen as a type of class imbalance problem in the machine learning literature. Given

a binary prediction problem with two classes, for instance,the imbalance problem

occurs when the bulk of the examples in the training data are instances of one class

and only a much smaller proportion of examples are availablefrom the other class.

A frequently used approach to balancing the distribution for the statistical model is to

userandom under samplingand select only a subset of the dominant class examples

during training (Japkowicz and Stephen, 2002).

This subsampling approach is applicable to the multiple stream translation problem

with imbalanced throughput rates between streams. Insteadof storing then-grams

from each stream separately, we can apply a subsampling selection scheme directly to

the incoming streams to balance each stream’s contributionin the final LM. Note that

subsampling is also related to weighting interpolation. Since all returned LM scores
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Figure 4.3: Using decoding history all the streams are combined into a unified LM.

are based on frequency counts of then-grams and their prefixes, taking a weighting on

a full probability of ann-gram is akin to having fewer counts of then-grams in the LM

to begin with.

Modelling the Stream To this end we use the weighted function parameterfk from

Equation 4.2 to serve as the sampling probability rate for accepting ann-gram from

a given streamk. The sampling rate serves to limit the amount of stream data from a

stream that ends up in the model. ForK > 1 we have

Ct = fT(Ct−1)∪
K⋃

k=1

fk(Skt) (4.4)

where fk is the probability a particularn-gram from streamSk at epocht will be in-

cluded inCt . The adaptation functionfT remains the same as in Equation 4.3. The

space used in this approach is now dependent on the ratefk used for each stream. Ob-

viously lower acceptance rates require less space since fewer n-grams are (randomly)

included in the final LM.

Resulting LM Again, since we obtain a single LM from all the streams, we use

Stupid Backoff smoothing to get the probability of ann-gram during decoding.

The subsampling method is applicable to all of the approaches discussed in this

section. However, since we are essentially limiting the amount of data that we store in

the final LM we can expect to take a performance hit based on therate of acceptance

given by the parametersfk. In the next section we show that by using subsampling
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Stream 1-grams 3-grams 5-grams

EP 19K 520K 760K

GW (xie) 120K 3M 5M

RCV1 630K 21M 42M

Table 4.1: Sample statistics of unique n-gram counts from the streams from epoch 2 of

our timeline. The throughput rate varies a lot between streams.

with the history combination approach we obtain good performance for all streams in

small space.

4.3 Experiments

Given the approaches for multiple stream combination just described we show via

experiments here how each affects translation performanceand describe the system

requirements in practice. We begin by showing that naively combining streams from

different domains produces poor average results but also show that using information

from an out-of-domain stream can help in the translation of astream with low through-

put. After establishing this we aim to get the same improved results with minimal space

requirements.

4.3.1 Experimental Setup

The SMT setup we employ is standard and all resources used arepublicly available.

We translate from Spanish into English using phrase-based decoding again with Moses

(Koehn and Hoang, 2007) as our decoder. Our parallel data came from Europarl.

We use three streams (all are timestamped): RCV1, Europarl (EP), and Gigaword

(GW) (Graff et al., 2007). GW is taken from six distinct newswire sources but in our

initial experiments we limit the incoming stream from Gigaword to one of the sources

(xie). GW and RCV1 are both newswire domain streams with high rates of incoming

data whereas EP is a more nuanced, smaller throughput domainof spoken transcripts

taken from sessions of the European Parliament. As described previously, the RCV1

corpus only spans one calender year from October, 1996 through September, 1997 so

we selected only data in this time frame from the other two streams so our timeline

consists of the same full calender year for all streams.



4.3. Experiments 67

For this work we used the ORLM from the previous section. Recallthe crux of

the ORLM is an online perfect hash function that provides the ability to insert and

delete from the data structure. Consequently the ORLM has the ability to adapt to

an unbounded input stream whilst maintaining both a constant error rate and memory

usage. The ORLMs were all 5-grams with the training data coming from the streams

discussed above and Stupid Backoff smoothing used forn-gram scoring. Here again

our results are reported using the BLEU metric.

For testing we held-out three random test points from both the RCV1 and EP

stream’s timeline for a total of six test points. This divided the streams into three

epochs, and we updated our online LM using the data encountered in the epoch prior

to each translation point. Then-grams and their counts from the streams are combined

in the LM using one of the approaches from the previous section. 1

Using the notation from Section 4.2 we have the RCV1, EP, and GW streams de-

scribed above andK = 3 as the number of incoming streams from two distinct domains

(newswire and spoken dialogue). Our timelineT is one year’s worth of data split into

three epochs,t ∈ {1,2,3}, with test points at the end of each epocht. Since we have no

test points from the GW stream it acts as a background stream for these experiments.2

4.3.2 Baselines and Naive Combinations

In this section we report on our translation experiments using a single stream and the

naive linear combination approach with multiple incoming data streams from Section

4.2.1.

Using the RCV1 corpus as our input stream we tested single stream translation

first. Here we are replicating the experiments from Section 3so both training and

test data comes from a single in-domain stream. Results are inTable 4.2 where each

row represents a different LM type.RCV1 (Static)is the traditional baseline with

no adaptation where we use the training data for the first epoch of the stream.RCV1

(Online)is the online LM adapted with data from the in-domain stream.For the reasons

previously described we get improvements when using an online LM that incorporates

recent data against a static baseline.

1A note on the significance of the results in this chapter. Our aim here is tomatchsingle-stream
baselines while combining streams from multiple domains into a single succinct LM. In the context of
significance testing the baselines are the null hypothesis and, since we are not trying to achieve gains
against these, significance testing is out of context for ourgoals. Any improvement to translation (as
measured in BLEU) is incidental to our approaches.

2A background stream is one that only serves as training data for all other test domains.
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LM Type Test 1 Test 2 Test 3

RCV1 (Static) 39.30 38.28 33.06

RCV1 (Online) 39.30 40.64 39.19

EP (Online) 30.22 30.31 26.66

RCV1+EP (Online) 39.00 40.15 39.46

RCV1+EP+GW (Online) 41.29 41.73 40.41

Table 4.2: Results for the RCV1 test points. RCV1 and GW LMs are in-domain LMs

and EP is out-of-domain. Translation results are improved using more stream data since

most n-grams are in-domain to the test points.

LM Type Test 1 Test 2 Test 3

EP (Static) 42.09 44.15 36.42

EP (Online) 42.09 45.94 37.22

RCV1 (Online) 36.46 42.10 32.73

EP+RCV1 (Online) 40.82 44.07 35.01

EP+RCV1+GW (Online) 40.91 44.05 35.56

Table 4.3: EP results using in-domain and out-of-domain streams. The last two rows

show the naive combination approach and get poor results compared to single stream

approaches since the large amount of out-of-domain data hurts translation performance

for the EP test points.

We then ran the same experiments using a stream generated from the EP corpus. EP

consists of the proceedings of the European Parliament and is a significantly different

domain than the RCV1 newswire stream. We updated the online LM using n-grams

from the latest stream epoch before translating each in-domain EP test set. Results

are in Table 4.3 and follow the same naming convention as Table 4.2 (except now

in-domain is EP and out-of-domain is RCV1).

Using a single stream we also cross tested and translated each test point using

the online LM adapted on the out-of-domain stream. As expected, translation per-

formance decreases (sometimes drastically) in this case since the data of the out-of-

domain stream are not suited to the domain of the current testpoint being translated.

We then tested the naive approach and combined both streams into a single LM by

taking the union of then-grams and adding their counts together. This is theRCV1+EP
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(Online)row in Tables 4.2 and 4.3 and clearly, though it contains moredata compared

to each single stream LM, the naively combined LM does not help the RCV1 test points

much and degrades the performance of the EP translation results. This translation hit

occurs as the throughput of each stream is significantly different. The EP stream con-

tains far less data per epoch than the RCV1 counterpart (see Table 4.1) hence using a

naive combination means that the more abundant newswire data from the RCV1 stream

overrides the probabilities of the more domain specific EPn-grams during decoding.

When we added a third newswire stream from a portion of GW, shown in the last

row of Tables 4.2 and 4.3, improvements are obtained for the RCV1 test points due to

the addition of in-domain data but the EP test performance still suffers.

This highlights why naive combination is not satisfactory.While using more in-

domain data aids in the translation of the newswire tests, for the EP test sets, when

we naively combine then-grams from all streams, the hypotheses the decoder selects

are weighted heavily in favour of the out-of-domain data. This is because the out-of-

domain streams throughput is significantly larger and swamps the model.

4.3.3 Interpolating Weighted Streams

Straightforward linear combinations of the streams into a single LM results in degrada-

tion of translations for test points whose in-domain training data is drawn from a stream

with lower throughput than the other data streams. We could maintain a separate MT

system for each streaming domain but intuitively some combination of the streams may

benefit average performance since using all the data available should benefit those test

points from streams with low throughput. To test this we usedan alternative approach

described in Section 4.2.2 and used a weighted combination of the single stream LMs

during decoding.

We tested this approach using our three streams: RCV1, EP and GW(xie). We used

a separate ORLM for each stream and then, during testing, the result returned for an

n-gram queried by the decoder was a value obtained from some weighted interpolation

of each individual LM’s score for thatn-gram. To get the interpolation weights for each

streaming LM we minimised the perplexity of all the models onheld-out development

data from the streams.3 Then we used the corresponding stream specific weights to

decode the test points from that domain.

Results are shown in Tables 4.4 and 4.5 using the weighting scheme described

3The lossy nature of the encoding of the ORLM means that the perplexity measures were approxi-
mations. Nonetheless the weighting from this approach had the best performance.
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Weighting Test 1 Test 2 Test 3

1.0R+0.0E +0.0G 39.30 40.64 39.19

.33R+ .33E + .33G 38.97 39.78 35.66

.50R+ .25E + .25G 39.59 40.40 37.22

.25R+ .50E + .25G 36.57 38.03 34.23

.70R+0.0E + .30G 40.54 41.46 39.23

Table 4.4: Weighted LM interpolation results for the RCV1 test points where E = Eu-

roparl, R= RCV1, and G= Gigaword (xie). The first row is the single-stream baseline

and we compare the results using perplexity based weight optimization in the final row

with various other random weightings.

Weighting Test 1 Test 2 Test 3

1.0E + .0.0R+0.0G 42.09 45.94 37.22

.33E + .33R+ .33G 40.75 45.65 35.77

.50E + .25R+ .25G 41.46 46.37 36.94

.25E + .50R+ .25G 40.57 44.90 35.77

.70E + .20R+ .10G 42.47 46.83 38.08

Table 4.5: EP results in BLEU for the interpolated LMs. We easily match single-stream

results (first row) using some information from the OOD stream and an optimal weight-

ing between the LMs (final row). We show other random weightings for comparison.

above plus a selection of random parameter settings for comparison. Using the notation

from Section 4.2.2, a caption of “.5R+ .25E+ .25G”, for example, denotes a weighting

of fRCV1 = 0.5 for the scores returned from the RCV1 stream LM whilefEP and fGW =

0.25 for the EP and GW stream LMs.

The weighted interpolation results suggest that while naive combination of the

streams may be misguided, average translation performancecan be improved upon

when using more than a single in-domain stream. Comparing thebest results in Tables

4.2 and 4.3 to the single stream baselines in Tables 4.4 and 4.5 we achieve compara-

ble, if not improved, translation performance forbothdomains. This is especially true

for test domains such as EP which have low training data throughput from the stream.

Here adding some information from the out-of-domain streamthat contains a lot more

data aids significantly in the translation of in-domain testpoints.
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LM Type Test 1 Test 2 Test 3

Single-stream 39.30 40.64 39.19

Multi- fk 41.19 41.73 39.23

Multi- fT 41.29 42.23 40.51

Multi- fk+ fT 41.19 42.52 40.12

Table 4.6: RCV1 test results using history and subsampling approaches. The top row

is the single-stream baseline.

LM Type Test 1 Test 2 Test 3

Single-stream 42.09 45.94 37.22

Multi- fk 40.91 43.50 36.11

Multi- fT 40.91 47.84 39.29

Multi- fk+ fT 40.91 48.05 39.23

Table 4.7: Europarl test results with history and subsampling approaches.

However, the optimal weighting scheme differs between eachtest domain. For

instance, the weighting that gives the best results for the EP tests results in much poorer

translation performance for the RCV1 test points requiring usto track which stream

we are decoding and then select the appropriate weighting. This adds unnecessary

complexity to the SMT system. And, since we store each streamseparately, memory

usage is not optimal using this scheme.

4.3.4 History and Subsampling

For space efficiency we want to represent multiple streams non-redundantly instead of

storing each stream/domain in its own LM. Here we report on experiments using both

the history combination and subsampling approaches from Sections 4.2.3 and 4.2.4.

Results are in Tables 4.6 and 4.7 for the RCV1 and EP test sets respectively with

the column headers denoting the test point. The rowMulti- fk shows results using only

the random subsampling parameterfk and the rowsMulti- fT show results with just

the time-based adaptation parameter without subsampling.The final rowMulti- fk+ fT

uses both thef parameters with random subsampling as well as taking decoding history

into account.
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RCV1 Test Points EP Test Points

RCV1 fk Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

10% 40.51 41.64 39.51 41.05 44.19 35.82

30% 41.19 41.73 39.23 40.91 43.50 36.11

50% 41.43 41.59 39.52 40.86 43.73 35.66

100% 41.29 41.73 40.41 40.91 44.05 35.56

Table 4.8: Variation in translation quality caused by changing the subsampling rate over

the streams with high data rates.

Multi- fk uses the random subsampling parameterfk to filter out higher ordern-

grams from the streams. Alln-grams that are sampled from the streams are then com-

bined into the joint LM. The counts ofn-grams sampled from more than one stream are

added together in the composite LM. The parameterfk is set dependent on a stream’s

throughput rate, we only subsample from the streams with high throughput, and the

rate was chosen based on the weighted interpolation resultsdescribed previously. In

Tables 4.6 and 4.7 the subsampling ratefk = 0.3 for the combined newswire streams

RCV1 and GW and we kept all of the EP data.

We also tested various other values for thefk sampling rates and found translation

results only minorly impacted as shown in Table 4.8. Note that the subsampling is

random sampling so two adaptation runs with equal subsampling rates may produce

different final translations. Nonetheless, in our experiments we saw expected perfor-

mance, observing slight variation in performance for all test points that correlated to

the percentage of in-domain data residing in the model. So wetake a slight hit on

performance for the RCV1 test points when the subsampling rateis lower since more

stream data is better since it is all in-domain to the test. For the EP test domain we

see largely the opposite effect. We also see that the newswire streams still act only

as noisy data and negatively effect the translation for the EP test sets. Consequently

results still do not match the performance of translations based solely on an EP-stream

specific ORLM.

The next row in Tables 4.6 and 4.7,Multi- fT , uses recency criteria to keep poten-

tially usefuln-grams but uses no subsampling and accepts alln-grams from all of the

streams into the LM. Here we get better results than naive combination and plain sub-

sampling at the expense of using more memory for the same error rate for the ORLM.

The final row in the tables,Multi- fk + fT uses both the subsampling functionfk
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and fT so maintains a history of then-grams queried by the decoder for the prior test

points. This approach achieves significantly better results than naive adaptation and

compares to using all the data in the stream. Combining translation history as well as

doing random subsampling over the stream means we match the performance of but

use far less memory than when using multiple online LMs whilst maintaining the same

error rate. This is simply because, when we subsample, our LMcontains less data and

therefore can achieve the same false positive rate using less bits overall. By simply

storing fewern-grams we are able to achieve space savings while still improving the

translation results by using recent data from the stream. For the sampling the exact

amount of memory is of course dependent on the sampling rate used. For the results

in Tables 4.6 and 4.7 we used significantly less memory (300MB)but still achieved

comparable performance to approaches that used more memoryby storing the full

streams separately (600MB).

4.4 Scaling Up

The experiments described in the proceeding section used combinations of relatively

small (compared to current industry standards) input streams. The question remains

if using such approaches aids in the performance of translation if used in conjunction

with large static LMs trained on large corpora. In this section we describe scaling

up the previous stream-based translation experiments using a large background LM

trained on a billionn-grams.4

We used the same setup described in Section 4.3.1. However, instead of using only

a subset of the GW corpus as one of our incoming streams, we trained a static LM

using thefull GW3 corpus of over three billion tokens and used it as a background

LM. As then-gram statistics for this background LM show in Table 4.9, itcontains far

more data then each of the stream specific LMs (Table 4.1). We tested whether using

streams atop this large background LM had a positive effect on translation for a given

domain.

Baseline results for all test points using only the GW background LM are shown in

the top row in Tables 4.10 and 4.11. We then interpolated the ORLMs with this LM.

For each stream test point we interpolated with the big GW LM an online LM built

4Special thanks to David Matthews who assisted with some of the computationally expensive ex-
periments reported in this section by running them under hislogin and reporting the results back to the
author.
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Order Count

1-grams 3.7M

2-grams 46.6M

3-grams 195.5M

4-grams 366.8M

5-grams 454.2M

Total 1067M

Table 4.9: Singleton-pruned statistics of unique n-gram counts (in millions) for the Gi-

gaword background LM.

LM Type Test 1 Test 2 Test 3

RCV1 39.30 40.64 39.19

GW 41.69 42.40 35.48

GW+RCV1 42.44 43.83 40.55

GW+RCV1+EP 42.80 43.94 38.82

Table 4.10: Test results for the RCV1 stream using the large background LM (GW) along

with the stream-based incremental LMs (RCV1 and EP). Using stream data benefits

translation.

with the most recent epoch’s data. Here we used separate models per stream so the

RCV1 test points used the GW LM along with a RCV1 specific ORLM. We used the

same mechanism to obtain the interpolation weights as described in Section 4.3.3 and

minimised the perplexity of the static LM along with the stream specific ORLM. In-

terestingly, the tuned weights returned gave approximately a 50-50 weighting between

LMs and we found that simply using a 50-50 weighting for all test points resulted had

no negative effect on BLEU. In the third row of the Tables 4.10 and 4.11 we show the

results of interpolating the big background LM with ORLMs built using the approach

described in Section 4.2.4. In this case all streams were combined into a single LM

using a subsampling rate for higher ordern-grams. As before our sampling rate for the

newswire streams was 30% chosen by the perplexity reductionweights.

The results show that even with a large amount of static data adding small amounts

of stream specific data relevant to a given test point has an impact on translation quality.

Compared to only using the large background model we obtain significantly better
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LM Type Test 1 Test 2 Test 3

EP 42.09 45.94 37.22

GW 40.78 44.26 34.36

GW+EP 43.94 47.82 38.71

GW+EP+RCV1 43.07 47.72 39.15

Table 4.11: EP test results using a static, large background GW LM plus adding domain

specific information using ORLMs trained on the EP and RCV1 streams.

results when using a streaming ORLM to compliment it for all test domains. However

the large amount of data available to the decoder in the background LM positively

impacts translation performance compared to single-stream approaches (Tables 4.2 and

4.3). Further, when we combine the streams into a single LM using the subsampling

approach we get, on average, comparable scores for all test points. Thus we see that

the patterns for multiple stream adaptation seen in previous sections hold in spite of

big amounts of static data.

4.5 Conclusion

In this chapter we have reported various approaches for multiple stream based transla-

tion for SMT. We have shown that using data from multiple streams benefits SMT per-

formance. Our experiments demonstrate that naive linear combinations of the streams

can hurt performance for some test domains if the input streams have significantly dif-

ferent incoming rates of data but some combination of the individual streams aids in

translation quality for all test points. However, the interpolated multiple LM approach

is unnecessarily complex and uses the most memory since thisrequires all overlapping

n-grams in the streams to be stored separately.

Our best approach, using history based combination along with subsampling, com-

bines all incoming streams into a single, succinct LM and obtains translation perfor-

mance equal to single stream, domain specific LMs on all test domains. Crucially we

do this in bounded space, require less memory than storing each stream separately, and

do not incur translation degradations on any single domain.As well, these results can

be additive. Even when using large amounts of additional background data, adding

stream specific data continues to improve translation.





Chapter 5

A Stream-based Translation Model

Since the TM is the starting point by which possible translations are selected by the de-

coder, arguable the data available in the TM affects the performance of an SMT system

more than any other model in the pipeline. In this chapter we extend our stream-based

SMT system from the LM to include the TM. This allows it to be incrementally up-

dated with new, useful parallel data efficiently without incurring the substantial com-

putational cost associated with batch training. The onlineTM presented here is the

first reported in the literature and represents another contribution of this thesis. We ex-

tend the traditional EM algorithm approach for word alignments to operate online. We

also make use of dynamic suffix arrays to incorporate the novel parallel sentences that

have been received from the stream. Finally we demonstrate that the ORLM and in-

cremental TM compliment each other in a stream-based SMT system that significantly

outperforms a traditional batch-based approach. The stream-based TM was previously

reported in Levenberg et al. (2010).

5.1 Overview

There is more parallel training data available today than there has ever been and it

keeps increasing. For example, the European Parliament1 releases new parallel data

in 22 languages on a regular basis. Project Syndicate2 translates editorials into seven

languages (including Arabic, Chinese and Russian) every day.Existing translation

systems often get ‘crowd-sourced’ improvements such as theoption to contribute a

better translation to GoogleTranslate3. In these examples and many other instances,

1http://www.europarl.europa.eu
2http://www.project-syndicate.org
3http://www.translate.google.com
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the data can be viewed as an incoming unbounded stream of parallel sentences since

the bitext corpus grows continually with time.

Recall in Chapter 1 that we showed the effect of recency on OOV rates and SMT

translation performance by using more recent data to train TMs that outperformed

batch based models. However, TMs for SMT systems are typically batch trained,

often taking many CPU-days of computation when using large volumes of training

material. Incorporating any new sentence pairs into these models forces us to batch

retrain entirely from scratch. Clearly, this makes the standard approach infeasible for

streaming translation where we desire to rapidly add new parallel sentences into the

TM.

Here we introduce an adaptive training regime that uses an online variant of the EM

algorithm that is capable of incrementally aligning new sentences without incurring

the burdens of full retraining. After a new sentence has beenword aligned it needs to

be added to the current corpus from which translation probabilities are extracted and

measured. Instead of reestimating translation probabilities offline for the full corpus

we employ dynamic suffix arrays to allow incremental updatesto the parallel data

available to the decoder and compute needed statistics on the fly. The dynamic suffix

arrays allow deletions of old sentences so the incremental TM presented here has the

ability to operate within bounded memory.

5.2 Online EM

In this section we describe the online EM algorithm employed, stepwise online EM

(SOEM), and how it is used for stream-based incremental wordalignments in our

streaming SMT system.

5.2.1 Stepwise Online EM

When we move from batch training to processing an incoming data stream, the batch

EM algorithm’s (Section 2.3) requirement that all data be available for each iteration

becomes impractical since we do not have access to alln examples at once. Instead we

receive examples from the input stream incrementally. For this we make use of online

EM algorithms that update the probability modelθ̂ incrementally without needing to

store and iterate through all the unlabeled training data repeatedly.

Various online EM algorithms have been investigated (see Liang and Klein (2009)
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for an overview) but our focus is on thestepwise onlineEM (sOEM) algorithm (Cappe

and Moulines, 2009). Instead of iterating over the full set of training examples, sOEM

stochastically approximates the batch E-step and incorporates the information from

the newly available streaming observations in smaller steps. Each step is called amini-

batchand is comprised of one or more new examples encountered in the stream. For

each mini-batch of an arbitrary sizemof new examples, 1≤m≤ n, we use the current

model’s distribution to inform the new observations and then update the model with

the newly obtained evidence from the incoming data.

Unlike in batch EM, in sOEM the expected counts are retained between EM itera-

tions and not cleared. That is, for each new example we interpolate its expected count

with the existing set of sufficient statistics. For each stepwe use astepsizeparameterγ
which mixes the information from the current example with information gathered from

all previous examples.

As we are updating the model with the sufficient statistics ofonly m sentences, if

m≪ n the statistics collected for just the current mini-batch will be a bad approxima-

tion of the true distribution over alln. To account for this we interpolate, based on

stepsize parameterγt , the set of sufficient statistics from the current mini-batch with

the counts from all previous observations. If ¯stm represents the most recent sufficient

statistics for the last mini-batch ofm examples, then we interpolate the new sufficient

statistics ¯stm asS← (1− γt)S+ γt s̄tm. Over time the sOEM model probabilities begin

to stabilize and are guaranteed to converge to a local maximum (Cappe and Moulines,

2009).

Note that the stepsizeγ has a dependence on the current mini-batch. As we observe

more incoming data the model’s current probability distribution is likely closer to the

true distribution so the new observations receive less weight. From Liang and Klein

(2009), if we set the stepsize asγt = (t +2)−α, with 0.5 < α ≤ 1, we can guarantee

convergence in the limit asn→ ∞. If we setα low, γ weighs the newly observed

statistics heavily whereas ifγ is low new observations are down-weighted.

5.2.2 Stepwise EM for Word Alignments

Application of sOEM to HMM (Equation 2.3) and IBM Model 1 (Equation 2.4) based

word aligning is straightforward. The process of collecting the counts over the ex-

pected conditional probabilities inside each iteration loop remains the same as in the

batch case. However, instead of clearing the sufficient statistics between the iterations
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Algorithm 4 : sOEM Algorithm for Incremental Word Alignments
Input : mini-batches of sentence pairs{m : m⊂ {( f (source),e(target))}}

Input : stepsize weightα
Output : MLE θ̂T over alignmentsa

θ̂0←MLE initialization;

S← 0; k= 0;

foreachmini-batch{m} do

for iteration t= 0, . . . ,T do

foreach ( f ,e) ∈ {m} do // E-step

s̄← ∑
a′∈a

Pr( f ,a′|e; θ̂t);

end

γ = (k+2)−α;k= k+1; // stepsize

S← γs̄+(1− γ)S; // interpolate

θ̂t+1← θ̄t(S) ; // M-step

end

end

we retain them and interpolate the last set of statistics with the batch of counts gathered

in the next iteration.

Algorithm 4 shows high level pseudocode of our sOEM framework for HMM-

based word alignments. We have an unbounded input stream of source and target

sentences pairs{(f,e)} which we observe as a stream of mini-batches{m} comprised

of chronologically ordered strict subsets of the full stream. To word align the sentences

for each mini-batchm, we use the probability assigned by the current model parame-

ters and then interpolate the newest sufficient statistics ¯s with our full count vectorS

using an interpolation parameterγ. The interpolation parameterγ has a dependency

on how far along the input stream we are processing. We can choose our interpolation

parameter so that new statistics gathered are weighted strongly or weakly compared to

previous observations. An in-depth analysis of the interpolation parameter as applied

to word alignments is given in Liang and Klein (2009).
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5.3 Dynamic Suffix Arrays

We can implement a sOEM based alignment algorithm to incrementally align an in-

coming stream of parallel sentences in mini-batches. However, we still need to con-

sider how to insert newly aligned sentences, along with the associated new or adjusted

translation probabilities, into the grammar or phrase table so they become quickly

available to the decoder for translation. Continuous batch recomputing of phrase or

grammar rule probabilities is slow and resource heavy and sois ill-suited for stream-

based SMT systems. We may also need to bound the space used forthe TM when

processing (potentially) unbounded streams of parallel data. Dynamic suffix arrays

allow us to update the data in a TM online and provide fast access to it to compute

statistics needed by the decoder.

Recall from Section 2.4 that we can use a suffix array to compactly represent a

phrase table implementation for either phrase-based or hierarchical phrase-based TMs.

The suffix array phrase tables store the set of source and target sentences and compute

the translation probabilities needed by the decoder on demand. Standard suffix arrays

are static, store a fixed corpus and do not support online adaptation that allow insertions

or deletions. In our stream-based approach we make use of a dynamic variant of the

suffix array (Salson et al., 2009). This allows us to incorporate new sentence pairs into

the phrase table by inserting them into the suffix array and, if we need to maintain

constant space usage, we can delete an equivalent number.

Recall that the suffix array phrase table keeps the suffixes of asorted list of the

source and target corpus. To make a suffix array dynamic, we need to be able to

insert the new incoming sentence pairs while keeping the suffix array lexicographically

ordered. If we have a constrained memory we may also need to beable to delete

sentences from but still maintain the ordering of the suffix array so we are able to

reconstruct the original sentences to retrieve the necessary phrases and lexical rules.

We describe how to accomplish this below.

5.3.1 Burrows-Wheeler Transform

To accomplish this ordered dynamism we introduce theBurrows-Wheeler transform

(BWT) (Schindler, 1997), a well studied transformation that reorders the characters or

words of a text to allow for better compression. Given a text corpusT = T[0. . .n], we

add a special stop symbol atT[n+1] to the text and then build a conceptual matrix of

lexically ordered cyclic shifts of the text. Each row beginswith the word in the text at
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some indexTi and ends with the word prior at indexTi−1 so each row is of the form

T[i . . .n+1]T[0. . . i−1]. The output of the BWT is the last columnL of the matrix

consisting of a complete reordering of the original text butsince the BWT matrix is

sorted, the first columnF contains the words of the text that the suffix array represents

as integers in its corresponding rows. Since we keep only thetransformed last column

L we need a formula to reconstruct the original text after the BWT. We can use the

fact that there is a one-to-one correspondence between the rank of a word inL and

that word’s ranking inF . That is, the first occurrence of a word type inL corresponds

to the first occurrence of the equivalent word type inF , the second occurrence inL

with the second inF and so forth. We can use this relationship and create a mapping

function,LF , that provides us with the next row to visit. Since we added a special stop

symbol to the original text, we can start with the stop symboland use theLF function

to reconstruct our original text (backwards) by visiting the cycle built during the BWT.

5.3.2 Dynamic BWT and Suffix Arrays

To allow the BWT and the entailed suffix array to adapt to new textonline, when

inserting a word into (or deleting from) our corpusT we find the correct insertion (or

deletion) point for the BWT via aninverse suffix array(ISA), a mapping of indexes

Ti in the original text to their location in the suffix array. Then we increment (or

decrement) all indexes in the suffix array and ISA greater than the insertion point to

handle the changes introduced by the text modifications. Finally, we compare the

“expected”LF value against the “actual”LF value and reorder until they match. We

can compute the expectedLF value by using sub-functions thatrank the number of

occurrences of a word in the rangeT[0. . . i] andcountthe index of the first row where

the word is found in the arrayF . Here we are only interested in a dynamic suffix

array but to keep the lexical ordering intact we must borrow the dynamic BWT. Thus,

besides the suffix array itself, we also need to store the BWT’sL array to make use of

theLF function and correspondingrank andcountsub-functions4. When we append

new sentences into the suffix array, we add each word backwards based on the location

given by the ISA beginning with the final index in the corpus. Deletions are done

similarly starting with the first index (if we are deleting the oldest sentences). Then

we use an algorithm that reorders the indexes in the dynamic suffix array until the

4StoringL means we no longer need to store the original corpus in memorysince we can reconstruct
this fromL and theLF function.
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Figure 5.1: Example BWT and suffix array. The LF function (bottom right) is used to

reorder the text when inserting new sentences into the dynamic suffix array.

expected and actualLF function values match. While we used the dynamic suffix array

in the experiments reported in this section, the technical details of the reordering for

the dynamic suffix array algorithm is extremely involved. Its description here would

add no clarity to stream-based SMT which is the scope of this thesis. We refer the

interested reader to the full algorithm description in Salson et al. (2009).

5.4 Experiments

We have described the sOEM algorithm for incremental word alignments and an effi-

cient data structure that can incorporate new sentence pairs quickly. The question still

remains whether using such an online TM is worthwhile for translation performance.

In this section we describe the experiments conducted comparing various batch trained
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Figure 5.2: Streaming coverage conditions. In traditional batch based modeling the

coverage of a trained model never changes. Unbounded coverage operates without

any memory constraints so the model is able to continually add data from the input

stream. Bounded coverage uses just a fixed window and deletions are required to

maintain a strict memory bound.

TMs versus online, incrementally retrained TMs in a full SMTsetting with different

conditions set on model coverage.

5.4.1 Experimental Setup

We used publicly available resources for all our tests. Our parallel input stream was

generated from the German-English and French-English language pairs of Europarl

with English as target for both pairs. For testing we dividedeach input stream into 10

evenly spaced epochs and held out a total of 22k test sentences in total from each source

stream. Stream statistics for three example epochs in the German-English language

pair are shown in Table 5.1. For each stream, we held out 4.5k sentence pairs from

each language pair as development data to optimize the feature function weights using
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Ep From–To Sent Pairs Words (source/target)

00 04/1996–12/2000 580k 15.0M/16.0M

03 02/2002–09/2002 70k 1.9M/2.0M

06 10/2003–03/2004 60k 1.6M/1.7M

10 03/2006–09/2006 73k 1.9M/2.0M

Table 5.1: Date ranges, total sentence pairs, and source and target word counts en-

countered in the German input stream for example epochs. Epoch00 is baseline data

that is also used as a seed corpus for the online models.

minimum error rate training (Och, 2003).

We used a 5-gram, Kneser-Ney smoothed LM trained on the initial segment of the

target side parallel data used in the baseline as described further in the next subsection.

As our initial experiments aim to isolate the effect of changes to the TM on overall

translation system performance, our in-domain LM remains static for every decoding

run.

We used the open-source toolkit GIZA++ (Och and Ney, 2003) for all word align-

ments. We modified IBM Model 1 and the HMM model in GIZA++ to use the sOEM

algorithm for the online experiments. Batch baselines were aligned using the stan-

dard version of GIZA++. We ran the batch and incremental versions of Model 1 and

HMM for the same number of iterations each in both directions. We used Joshua (Li

et al., 2009), a syntax-based decoder with a suffix array implementation, and rule in-

duction via the standard Hiero grammar extraction heuristics (Chiang, 2007) for the

grammar-based TMs. For the standard phrase-based models weused the Moses de-

coder. For both decoders we implemented a dynamic variant ofthe suffix arrays.

Both the German-English and French-English language pairs were translated using

the modified Joshua (with a Heiro grammar) and Moses (using phrase-based transla-

tion) decoders. Equivalent results were seen regardless ofthe TM formalism used. In

the results below we only report on the German-English results using Heiro and the

French-English using phrases.

We considered how to process a stream along two main axes: by bounding time

(batch versus incremental retraining) and by bounding space (either using all the stream

seen so far, or only using a fixed sized sample of it).
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Baseline/Bounded Unbounded

Epoch Test Date Test Sent.Train Sent. Rules Train Sent. Rules

03 23/09/2002 1.0k 580k 4.0M/4.2M 800k 5.0M

06 29/03/2004 1.5k 580k 5.0M/5.5M 1.0M 7.0M

10 26/09/2006 3.5k 580k 8.5M/10.0M 1.3M 14.0M

Table 5.2: Translation model statistics for example epochs and the next test dates

grouped by experimental condition. ’Test and Train Sent.’ is the number of sentence

pairs in test and training data respectively. ’Rules’ is the count of unique Hiero grammar

rules extracted for the corresponding test set.

5.4.2 Time and Space Bounds

For both batch and sOEM we ran a number of experiments listed below corresponding

to the different training scenarios diagrammed in Figure 5.2.

1. Static: We used the first half of each input stream, approximately 600k sen-

tences and 15/16 million source/target words, as parallel training data. We then

translated each of the 10 test sets using the static model. This is the traditional

approach and the coverage of the model never changes.

2. Unbounded Space: Batch or incremental retraining with no memory constraint.

For each epoch in the stream, we retrained the TM using all thedata from the

beginning of the input stream until just before the present with respect to a given

test point. As more time passes our training data set grows soeach batch run

of GIZA++ takes more time. Overall this is the most computationally expensive

approach.

3. Bounded Space: Batch and incremental retraining with an enforced memory

constraint. Here we batch or incrementally retrain using a sliding window ap-

proach where the training set size (the number of sentence pairs) remains con-

stant. In particular, we ensured that we used the same numberof sentences as the

baseline. As the window slides, old sentence pairs from earlier in the timeline

are deleted from the dynamic suffix array to make room for newly observed data

incoming from the stream. Each batch run of GIZA++ takes approximately the

same time.
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Figure 5.3: Static vs. online TM phrase-based performance. Gains in translation perfor-

mance measured by BLEU are achieved when recent German-English sentence pairs

are automatically incorporated into the TM. Shown are relative BLEU improvements for

the online models against the static baseline.

The time for aligning in the sOEM model is unaffected by the bounded/unbounded

conditions since we always only align the mini-batch of sentences encountered in the

last epoch. In contrast, for batch EM we must realign all the sentences in our training

set from scratch to incorporate the new training data.

Similarly space usage for the batch training grows with the training set size. For

sOEM, in theory memory used is with respect to vocabulary size (which grows slowly

with the stream size) since we retain count history for the entire stream. To make

space usage truly constant, we filter for just the needed wordpairs in the current epoch

being aligned. This effectively means that online EM is morememory efficient than

the batch version. As our experiments will show, the sufficient statistics kept between

epochs by sOEM benefits performance compared to the batch models which can only

use information present within the batch itself.
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Figure 5.4: Static vs. online grammar-based TM performance. As in Figure 5.3, shown

are the deltas in BLEU score achieved when adding recent sentence pairs to the stream

using the stream-based TM described in this chapter.

5.4.3 Incremental Retraining Procedure

Our incremental adaptation procedure was as follows: afterthe latest mini-batch of

sentences had been aligned using GIZA++ and the sOEM algorithm we added all

newly aligned sentence pairs to the dynamic suffix arrays. For the experiments where

our memory was bounded, we also deleted an equal number of sentences from the

suffix arrays before extracting the phrase probabilities orthe Hiero grammar for the

next test point. For the unbounded coverage experiments we deleted nothing prior to

decoding. Table 5.2 presents statistics for the number of training sentence pairs and

phrase/grammar rules extracted for each coverage condition for various test points in

the German-English pair.

5.4.4 Results

Figures 5.3 and 5.4 shows the results of the static baseline against both the unbounded

and bounded online EM models. We can clearly see that the online models outper-

form the static baseline. For the grammar-based translation results we found that, on
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Static Baseline Retrained (Unbounded) Retrained (Bounded)

Epoch Test Date Batch Batch Online Batch Online

3 23/09/2002 26.10 26.60 26.43 26.19 26.40

6 29/03/2004 27.40 28.33 28.42 28.06 28.38

10 26/09/2006 28.56 29.74 29.75 29.73 29.80

Table 5.3: Sample BLEU results for all German-English baseline and online EM model

conditions. The static baseline is a traditional model that is never retrained. The batch

unbounded and batch bounded models incorporate new data from the stream but re-

training is slow and computationally expensive (best results are in bold text). In contrast

both unbounded and bounded online models incrementally retrain only the mini-batch

of new sentences collected from the incoming stream so quickly adopt the new data

(best results are italicized).

average, the unconstrained model that contains more sentence pairs for rule extrac-

tion slightly outperforms the bounded condition which usesless data per epoch as in

Figure 5.3. As evident in Figure 5.4, this was not the case forthe phrase-based sys-

tem results where the opposite occurs and the bounded model slightly outperforms

the unbounded model. This is due to the fact that the bounded model produces more

nuanced phrase and lexical probabilities for the given testpoint compared to the un-

bounded model which returns probabilities based on the whole corpus whereas the

default Hiero extraction heuristics employ rigid pruning so more local context rules

are ignored. However, in all conditions we see there is a clear gain by incorporating

recent parallel sentences made available by the stream.

Table 5.3 gives explicit BLEU scores of the online German-English models com-

pared to batch retrained models. That is, for completeness we compared the results

of batch retrained word alignments using the same training data sets from the stream

epochs that were used for the sOEM aligned TMs. For presentation clarity we show

only a sample of three of the full set of ten test points shown in Figure 5.3. For the

same coverage constraints not only do we achieve comparableperformance to batch

retrained models using the sOEM method of incremental adaptation, we are able to

align and adopt new data from the input stream orders of magnitude quicker since we

only align the mini-batch of sentences collected from the last epoch. Interestingly, in

the bounded condition we also see that sOEM models slightly outperform the batch

based models due to the online algorithm employing a longer history of count-based
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Epoch Test Date Static Unbounded Bounded

3 24/09/2002 29.99 31.55 31.58

6 29/03/2004 35.74 38.11 38.30

10 12/10/2006 34.78 37.50 37.64

Table 5.4: Unbounded LM coverage improvements for the French-English phrase-

based translation experiments. Significant gains in translation quality are achieved by

using recent data in both the TM and the LM.

evidence to draw on when aligning new sentence pairs.

Figure 5.5 shows two example test sentences that benefited from the online TM

adaptation. Translations from the online model produce more and longer matching

phrases for both sentences (e.g., “creation of such a”, “well known”) leading to more

fluent output as well as the improvements achieved in BLEU scores. As well we are

able to incorporate new vocabulary into the phrase table (“occupying forces”) that is

missing from the static baseline model that affects translation quality.

We experimented with a variety of interpolation parameters(see Algorithm 4) but

found no significant difference between them with the biggest improvement gained

over all test points for all parameter settings was less than0.1% BLEU.

5.5 Stream-based SMT

A natural and interesting extension to the experiments above is to use the target side

of the incoming stream to extend the LM coverage alongside the TM. It is well known

that more LM coverage (via larger training data sets) is beneficial to SMT performance

(Brants et al., 2007) so we investigated whether recency gains for the TM were additive

with recency gains afforded by a LM.

Here we combined the ORLM from Chapter 3 with the stream-based TM to create

a fully online, stream-based SMT system. We added all the target side data from the

beginning of the German and French streams to the current epoch into the LM training

set before each test point for the given pair. We then used thenew LM with greater

coverage for the next decoding run. We tested with the same coverage conditions

imposed on the TM – bounded and unbounded amounts of streaming data.

Example results are reported in Tables 5.5 and 5.4. We can seethat increasing

LM coverage is indeed complimentary to adapting the TM with recent data. Compar-
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Static: The commission is prepared, in the creation of a legal framework, taking account of 
            four fundamental principles them.

Online: The commission is prepared to participate in the creation of such a legal framework, 
             based on four fundamental principles.

Reference: The commission is willing to cooperate in the creation of such a legal framework 
                    on the basis of four essential principles.

Source: Die Kommission ist bereit, an der Schaffung eines solchen Rechtsrahmens unter 
              Zugrundelegung von vier wesentlichen Prinzipien mitzuwirken.

Static:  Our position is clear and we all know: we are against the war and the occupation of Iraq by the 
             United States and the United Kingdom, and we are calling for the immediate withdrawal of the 
             besatzungsmächte from this country.

Online: Our position is clear and well known: we are against the war and the occupation of Iraq by the 
             United States and the United Kingdom, and we demand the immediate withdrawal of the occupying 
              forces from this country .

Reference: Our position is clear and well known: we are against the war and the US-British occupation 
                    in Iraq and we demand the immediate withdrawal of the occupying forces from that country.

Source: Unser Standpunkt ist klar und allseits bekannt: Wir sind gegen den Krieg und die Besetzung 
              des Irak durch die USA und das Vereinigte Königreich, und wir verlangen den unverzüglichen 
              Abzug der Besatzungsmächte aus diesem Land.

Figure 5.5: Example sentences and improvements to their translation fluency by the

adaptation of the TM with recent sentences. In both examples we get longer matching

phrases in the online translation compared to the static one.

Epoch Test Date Static Unbounded Bounded

3 23/09/2002 26.46 27.11 26.96

6 29/03/2004 28.11 29.53 29.20

10 26/09/2006 29.53 30.94 30.88

Table 5.5: Unbounded LM coverage improvements for the German-English translation

experiments. Shown are the BLEU scores for each experimental conditional when we

allow the LM coverage to increase.

ing Tables 5.3 and 5.5, for the bounded condition, adapting only the TM achieved an

absolute improvement of +1.24 BLEU over the static baseline for the final test point.

We get another absolute gain of +1.08 BLEU by allowing the LM coverage to adapt

as well. Using an online, adaptive model gives a total gain of+2.32 BLEU over a

static baseline that does not adapt. We gain similar translation improvements using the

phrase-based model with the French-English pair.
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5.6 Conclusion

We described a stream-based TM that allows for incremental updates. Our results show

that, like the stream-based LM, using recent data from an incoming stream reduces

sparsity in the models and leads to improved translation performance when translating

test points in the stream. The sOEM algorithm and dynamic suffix arrays presented

allow online updates to be done efficiently so that even a single sentence pair can be

added quickly.
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Conclusion

This thesis presented original work on stream-based algorithms for building a com-

plete online SMT system that has the ability to efficiently adapt to high rates of novel,

incoming training data without the need for expensive batchretraining. This is the first

complete system of its kind reported in the literature. We have presented a stream-

based LM via the ORLM —a dynamic randomised LM that allows for incremental on-

line adapation to unbounded unilingual text streams—and the stream-based TM which

has the ability to incorporate bilingual sentence pairs incrementally into the SMT sys-

tem very quickly. The translation experiments reported show that making use of recent

incoming data from the stream is indeed beneficial to stream-based translation per-

formance. We have looked at some heuristics for online adaptation from the streams

and showed how to combine multiple, domain diverse streams in a single system with-

out taking a hit on, in fact improving, translation performance for all streaming test

domains.

The contribution of this thesis is two-fold. First we have introduced a novel way of

viewing translation as a streaming problem where the training data in the SMT models

should be related to the next test point being translated. The algorithms described,

however, could also be applied to traditional SMT systems asa way of quickly updating

the models with new training data from any source and therebysaving computational

resources, time, and energy in contrast with full batch retraining.

The algorithms described here are efficient enough to allow even single-sentence

updates to the models. Besides the potential impact this has for large-scale SMT sys-

tems in industry, recently published literature has shown the usefulness of such small

updates within the context of interactive, computer-aidedtranslation systems. In this

setting an automatically translated document is used as thebasis for a human translator

93
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who then post-edits the sentences to correct the SMT system’s errors so the translation

reads fluently in the target language. Using similar techniques as presented here, Ortiz-

Mart́ınez et al. (2010) showed the potential usefulness of onlinelearning for an inter-

active SMT system. Hardt and Elming (2010) further showed that updating a phrase

table using within-document sentences increases the BLEU score of that document sig-

nificantly compared with a baseline model that does not incorporate within-document

translations. Our approach makes it feasible for the human translator to update the TM

with a novel translation whilst editing and for that improved translation to be prop-

agated throughout the remainder of the document quickly. Further work is currently

being conducted to apply our stream-based TM within a computer-aided translation

system.

Consider also the following related scenario for a company that either provides

professional translation as their main service or one that uses translators in-house and

would like to use a SMT system to improve turnover. The documents being translated

are domain specific, e.g., patents or legal documents, and little in-domain training

data is available initially. Beginning with a system built using out-of-domain data,

the techniques in this thesis can be directly applied to efficiently update the in-house

SMT system continually with focused training data taken from the human translated

documents. Over time automatic translation would improve as more domain specific

data is input into the SMT system. The work in this thesis has already been sought

after and applied by various companies to accomplish just this.

The demand for SMT is growing rapidly. So too is the amount of textual data being

churned out daily. In many cases, attempting to improve translation quality in SMT

will only become increasingly unweidly if the focus remainssolely on acquiring huge

amounts of context inspecific data and computers to distribute computation across.

This thesis provides a foundation for investigating SMT systems that can tailor them-

selves online to provide accurate, quality translations. The streaming SMT framework

provided here begs further work in more advanced learning algorithms for selecting

stream data, learning from prior translations, and building better models online.
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