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Abstract

Combinatorial optimization problems arise throughout science, industry, and
commerce. The demonstration that analogue neural networks could, in prin-
ciple, rapidly find near-optimal solutions to such problems — many of which
appear computationally intractable — was important both for the novelty of the
approach and because these networks are potentially implementable in parallel
hardware. However, subsequent research, conducted largely on the travel-
ling salesman problem, revealed problems regarding the original network’s
parameter sensitivity and tendency to give invalid states. Although this has
led to improvements and new network designs which at least partly overcome
the above problems, many issues concerning the performance of optimization
networks remain unresolved.

This thesis explores how to optimize the performance of two neural networks
current in the literature: the elastic net, and the mean field Potts network, both
of which are designed for the travelling salesman problem. Analytical methods
elucidate issues of parameter sensitivity and enable parameter values to be
chosen in a rational manner. Systematic numerical experiments on realistic size
problems complement and support the theoretical analyses throughout.

An existing analysis of how the elastic net algorithm may generate invalid
solutions is reviewed and extended. A new analysis locates the parameter
regime in which the net may converge to a second type of invalid solution.
Combining the two analyses yields a prescription for setting the value of a key
parameter optimally with respect to avoiding invalid solutions. The elastic net
operates by minimizing a computational energy function. Several new forms
of dynamics using locally adaptive step-sizes are developed, and shown to
increase greatly the efficiency of the minimization process. Analytical work
constraining the range of safe adaptation rates is presented.

A new form of dynamics, with a user defined step-size, is introduced for the -
mean field Potts network. An analysis of the network’s critical temperature
under these dynamics is given, by generalizing a previous analysis valid for a
special case of the dynamics. Understanding the parameter dependence of this
temperature clarifies an earlier problem in the use of synchronous updating
dynamics, and is vital in choosing values for the network’s free parameters. A
variety of mathematical methods are developed to set the optimal values of the
two free coefficients in the system’s energy function . Finally, the experimental
solution quality for Euclidean and non-Euclidean problems is contrasted, and an
explanation, using arguments about the structure of the free energy landscape,
proposed to account for the poorer performance on non-Euclidean problems.
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CHAPTER 1

Combinatorial Optimization

1.1 Introduction

Unlike many topics in modern theoretical physics, that of optimization is some-
thing with which we are all familiar in our everyday lives, be it through finding
the shortest route home from the office, or arranging a diary to accommodate
competing demands on our time each day. A vast number of such problems,
in which the task is to find the optimal solution amongst a space -of possible
solutions subject to external constraints on that choice, arise throughout sci-
ence, engineering, and industry. Problems in which the possible solutions form
a finite set are termed combinatorial optimization problems. For this class of
problems the standard function max(min)imization techniques of differential
calculus are clearly not applicable. Since the 1940s however, new developments
in mathematics e.g. linear programming and advances in graph theory, have
led to a large body of knowledge — termed operations research — concerning

these problems and methods for their exact or approximate solution.

The need for efficient approximate solution techniques remains acute, for two

main reasons. Firstly, in real-world optimization problems (e.g. as arise in VLSI

1



CHAPTER 1. COMBINATORIAL OPTIMIZATION 2

design) the nﬁmber of variables N may be as high as 10%, leading to enormous
search spaces. Secondly, research in computational complexity theory during
the 1970s revealed a set of equally ‘hard’ problems, the ‘NP-complete’ set, for
which it is unlikely that any algorithm guaranteeing the exact solution and
running in a time polynomial in N, will exist. As many of the most important
combinatorial optimization problems lie within this set, much effort has been
directed at developing heuristic methods which settle for finding near-optimal

solutions but run in low order polynomial time.

During the last decade, it was realised — by regarding solution costs as ener-
gies — that the solution spaces of large combinatorial optimization problems
often share similarities with the configuration spaces in the spin glass models of
disordered systems so intensively studied in statistical mechanics. This remark-
able connection, between two such apparently disparate fields, has led both to
fresh insights into the nature of the optimization problems themselves and to
two radically new approaches for finding approximate solutions, viz, simulated

annealing and neural networks.

Briefly, simulated annealing searches for the optimal solution (the ground state
in physics terminology) through Monte Carlo thermalization at decreasing val-
ues of an appropriately defined ‘temperature’, on the grounds that at low tem-
perature the Boltzmann distribution will select out the lowest cost solutions. The
neural network methods differ from most of the operations research methods
and simulated annealing, in that whereas the latter approaches are restricted to
searching within the finite set of feasible solutions, the neural methods explore
a continuous search space en route to picking out a solution. Another distinctive
feature of the neural methods is that most of them are inherently parallel in
operation. Thus they are ideally placed to exploit the trend towards parallel
architectures in current high performance computing. Some of them are also

potentially implementable in hardware.
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Given their theoretical novelty and potential benefits, it is no surprise that the
performance and behaviour of neural optimization algorithms have been, and
continue to be, topics of active research. There has, however, been a slight
tendency for researchers each to invent their own algorithms rather than to
explore fully aspects of existing algorithms. This thesis presents a study of
two neural network algorithms current in the literature, both of which are de-
signed to find approximate solutions to the travelling salesman problem — the
most widely studied combinatorial optimization problem. The two algorithms
are the elastic net [Durbin & Willshaw 1987] and the mean field Potts algorithm
[Peterson & Soderberg 1989]. A combination of analytical techniques and nu-

merical simulations is used to investigate three key issues in these algorithms:

e parameter sensitivity and optimal parameter choice
e choice of suitable dynamics

e limitations on performance

All of the simulations were performed on powerful parallel computer systems,
which facilitated extensive experimental studies on non-trivial sized problems.
Progress has been made with respect to each of the issues above, though, in-

evitably, some open questions remain.

Layout of the Thesis

Chapter 2 defines the elastic net algorithm and studies the sensitivity of its
performance to the ratio of its two key free parameters, looking in particular at
how this ratio affects the likelihood of convergence to invalid solutions. Stability

analyses correctly account for the observed simulation trends.



CHAPTER 1. COMBINATORIAL OPTIMIZATION 4

Chapter 3 focuses on optimizing a second aspect of the elastic net algorithm,
namely the way its dynamics locate energy minima. Self-adaptive dynamics
are developed and shown to increase greatly the efficiency of the algorithm.
Analytical work constraining the range of robust adaptation rates is presented

and verified experimentally.

Chapter 4 studies the parameter dependence of an important characteristic tem-
pefature in the mean field Potts network for the travelling salesman problem.
An existing analysis for iterative dynamics is generalized to the case of dynam-
ics with an arbitrary step-size, 4. This reveals a critical valué of v, above which
the algorithm fails to have the correct scaling behaviour for large problems
when using synchronous dynamics. In testing the theory against experimental
data, the sensitivity of the network’s behaviour to various secondary factors is

demonstrated and discussed.

Finally, chapter 5 studies further issues in the mean field Potts network. A
variety of mathematical methods to set the optimal values of the two coefficients
in the system’s energy function are developed, and shown to be in decent accord
with simulation data. The quality of the tours found for Euclidean and non-
Euclidean problems is then investigated and contrasted, for problems with up
to 200 cities. An explanation is proposed to account for the poorer performance

on non-Euclidean travelling salesman problems.

The remainder of this chapter provides the context and background information
for the four research chapters just outlined. Section 1.2 defines some important
combinatorial optimization problems and attempts to motivate their study with
reference to applications. The important computational complexity results are
then summarized in section 1.3. Section 1.4 briefly surveys the solution methods
developed from operations research, concentrating on the travelling salesman
problem (TSP). Section 1.5 surveys the novel methods, focusing naturally on

the neural network TSP approaches, and the final section summarizes relevant
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theoretical results concerning the TSP.

1.2 Combinatorial Problems and Applications

This section gives a generic definition of combinatorial optimization problems,
followed by three specific examples, with a brief mention of applications for
each. The three problems are graph partitioning (GPP), the travelling salesman
problem (TSP), and the knapsack problem (KP). The purpose is to place the
later work, which focuses exclusively on the TSP, into a wider context, but no
attempt will be made to survey the full range of combinatorial problems — for

that the reader can refer to [Garey & Johnson 1979], and references therein.

There is no absolutely agreed definition of what constitutes a combinatorial opti-
mization problem, but the following statements (after [Garey & Johnson 1979])
capture the essential elements. Without loss of generality they refer to mini-

mization problems.

DEFINITION
A combinatorial optimization problem has three properties:

1. a set D of instances, each of which can be considered as input data.
2. for each instance ¢ € D, there is a finite set S of possible solutions.

3. a mapping which, for each instance ¢ and w € S, assigns a positive real

number C(w), the cost of solution w.

The task is then to find, for instance ¢, the solution(s) of minimal cost, such sc;lu-

tion(s) being referred to as optimal or exact (and having cost C,y).
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(@ (b)

Figure 1.1: Graph Bisection example. The graph is displayed in part (a) and the
optimal bisection, with cut-size 1, is shown in (b). All edge weights equal.

Algorithms which guarantee the exact solution for every instance are termed

optimization algorithms , the rest are deemed approximation algorithms .

1.2.1 The Graph Partitioning Problem

Consider an undirected graph G = (I/, E), where V is the set of N vertices and
each edge e € E has an associated (positive integer) weight /(e¢). Given some
integer K > 2 which is a divisor of N, the problem is to partition V into K
disjoint sets V; - - - Vk of equal cardinality such that, letting E’' C E denote the
set of edges which connect vertices in different sets V;, the cut-size 3" . g I(e) is

minimal.

Figure 1.1 shows a simple example for K = 2. Basic combinatorics leads to the
number of distinct partitions (W) being

1 K-2 defN

!
wherem ® = ¢t & U (1.1)

N—jm
¢ K’ K- k)

= ?'- m ’

3=0

w

For the graph bisection case (K = 2), this implies that as N — oo, W — 2N-1,
Thus for large graphs the number of possible solutions becomes exponentially

large.
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Graph partitioning-like problems often arise in VLSI design. For example, if
the number of components in a circuit is such that they must be split over
several chips, then it is imperative to keep regions of the circuit with a high in-
terconnection density within a chip, so as to minimize the number of expensive
chip-to-chip wires. Such problems can clearly be mapped onto the GPP. In prac-
tice, it is often desirable to allow slight violations of the equipartition constraint;
this can be dealt with by defining a new cost function comprising the cut-size

term plus an equipartition violation term proportional to (TK, |Vi|? — Km?).

1.2.2 The Travelling Salesman Problem

The TSP is the problem of finding the shortest closed path around a number
of points. Formally, each instance is specified by a set of N points (the ‘cities’)
labelled ¢ =1... N, and an N x N matrix of positive inter-city ‘distances’ d;.
Each tour round the cities can be represented by a permutation 7 of the N points,
with the tour-length given by
N
Lr= ;d«(i)w(iﬂ) (1.2)

where 7(N + 1) = n(1). The task is to find the tour with the minimal L.

For symmetric TSPs, i.e. those where d;; = d;; V1, j, there are (N — 1)! distinct
tours, indicating that an exhaustive search strategy is untenable for large N.
The symmetric class can usefully be broken down into the Euclidean and non-
Euclidean subclasses. In the former, cities are Specified by coordinates and the
di; are computed in a Euclidean metric, whereas in the latter class each instance

is specified purely by a matrix of d;; terms. 4

A large number of practical optimization problems can be framed as TSPs,
either directly or indirectly. The 2-D Euclidean TSP, for example, describes a

goods distribution problem in which a truck must deliver items to a number
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of locations and then return to the depot, using the shortest route. Similarly,
the question of optimizing the route of a drill which must produce thousands
of holes in a circuit board can also been seen as a 2-D geometrical TSP. On the
other hand, simple scheduling problems can be represented by non-Euclidean
TSPs. Consider for example the problem of scheduling N jobs,:=1...N, to
run sequentially on a single machine in the shortest time. Job : requires time ¢;,
plus a lag-time d;; in which the machine is altered to allow execution of job :
after the previous job j. The initial (and final) state can be regarded as a dummy
job, indexed by 0, with ¢, = 0. Representing a schedule by a permutation 7 of
jobs 0... N, with 7(N + 1) = = (0), the total run time T equals
T = i(d«(i)r(wl) + ta(i))

1=0

N N
= D deynG+) + Dt

1=0 1=0
As Y t; is independent of 7, minimizing T is equivalent to an (N + 1)-city

non-Euclidean TSP (which may be either symmetric or asymmetric).

Further applications, extensions and variations of the basic TSP formulation

can be found in the standard text on the subject [Lawler et al. 1985].

1.2.3 The Knapsack Problem

Given a set of objects, each with a certain size and utility, and a knapsack of
finite size, the problem arises as to how to maximise the utility of objects placed
in the knapsack. Formally, consider N types of object labelled : =1... N. Let
s; and u; denote the size and utility respectively of type : objects, and S the
knapsack size, with S, s;, u; € Z*Vi. The problem is to find the set of integers z;

such that }_; z;u; is maximised, subject to the size constraint }°; z;s; < S.

As in the GPP and TSP, the configuration space explodes for large N. For exam-
ple, in the special case in which the z; are also constrained by 0 < z; < K — 1, V3,



CHAPTER 1. COMBINATORIAL OPTIMIZATION 9

the total number of configurations is clearly KV, though in general not all of

these will satisfy the global size constraint.

As a general example of constrained resource utilisation, the knapsack prob-
lem (KP) has found a wide range of applications throughout industry and

business.

1.3 AN P-Complete and N'P-Hard Problems

To date, no optimization algorithm running in polynomial time is known for any
of the three problems just discussed. Furthermore, in light of some remarkable
computational complexity theorems due to Cook and others in the 1970s, it
is widely believed that such algorithms are unlikely to exist. This section will
cover only the main points of this important topic; for further details and history
consult [Garey & Iohnson 1979] and references therein.

The starting point is the idea that problems can be regarded as either ‘easy’ or
‘intractable’, depending on whether they can always (i.e. for every instance) be
solved by an algorithm with running time polynomial in the input data size.
For technical reasons, the theory explores this classification scheme primarily
for ‘decision’ problems, i.e. problems with Yes/No answers, rather than opti-
mization problems. Howevér, an optimization problem ¥ often has a decision
version ¥p (e.g. TSPp asks whether there exists a tour of length < L), and this
allows optimization results to be derived too. This will become clearer as we
proceed. |

-4

Let P denote the set of easy decision problems. Many problems are known to lie
in P, the assignment and minimal spanning tree decision problems being just
two examples. There are also problems proven to be in P’": these being either

undecidable (i.e. incapable of being solved by any algorithm), or, decidable but
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requiring run times worse than exponential for some instances. Then there
is a third class of problems, those whose status with respect to P is currently
uncertain. Such problems are apparently intractable, though this has never been
proven. To filter out these interesting problems from those which are provably
intractable, the abstract (and unphysical) notion of a nondeterministic algorithm
was introduced. Roughly speaking, such algorithms can branch off several
parallel decision processes and execute these concurrently. If the algorithm
can always produce a correct response to every ‘yes’ instance of ¥p within
a polynomially bounded number of levels in the tree, then ¥p is said to be

solvable in nondeterministic polynomial time, and is a member of the set N'P.

Although it is clear that P C NP, the issue of whether P # AP remains
open. This question can be cast into sharper relief by consideration of the
‘N'P-complete’ set (VPC) — the subset of NP containing the hardest problems.
Formally, ¥p € NPC, if i) ¥p € NP, and, ii) every ¥, € NP is polynomially
transformable to ¥p. Polynomial transformability means that ¥7, can be solved
by an algorithm which calls up a ¥p ‘subroutine’ once, and whose running

time, excluding this call, is polynomially bounded.

Many hundreds of important decision problems, including TSPp, GPPp and
KPp, have now been proven to be NP-complete. The importance of the N'P-

complete set is that, by construction
3Vp e NPC: ¥p e P <= P =NP. (1.3)

Thus the failure so far to find a polyriomial time algorithm for any N'"P-complete
problem, despite strenuous efforts, is the main reason for the folk-belief that

P # NP and hence that all N’P-complete problems are inherently intractable.

These results can be applied to optimization problems through the concept of the
‘N'P-hard’ class, containing all the problems “at least as hard as those in N'PC.”
Formally, a problem is /P-hard if there is an N’P-complete problem which is
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polynomial time reducible to it.! Many optimization problems can be proven
N'P-hard by consideration of the polynomial reducibility of the corresponding
decision problem. By construction, P = NP is a necessary condition for any
N'P-hard problem to be solvable in polynomial time. Furthermore, for TSP, GPP,
KP and many other optimization problems V¥, it can also be proven that ¥p, is
polynomially reducible to ¥, and hence that these problems are of equivalent

computational complexity to their decision versions.

Polynomial-time Approximation Schemes

In the expectation that P # AP, it is tempting to ask whether, in return for
abandoning the goal of true optimization algorithms, one can devise methods
for N'P-hard problems which guarantee solutions within a certain range of the
optimum, and which run in polynomial time. Specifically, for an optimization
problem V¥, is there an algorithm A such that for some arbitrary input parameter

¢ > 0, the cost of the solution found by A on each input instance ¢, Cﬁ, satisfies

¢ _ o
Ca—Copt <e (1.4)
c¢
opt

and for which the running time is polynomial in both the problem size and 1/e.
A ‘“fully polynomial-time approximation scheme’ such as this is in fact known
for the knapsack problem. Thus KP, though N'P-hard, is “well-behaved” from
the viewpoint of finding approximate solutions. Alas the same cannot be said
of the TSP and many other A"P-hard problems. Even for TSPs in which the
distances obey the triangle inequality, the best-known performance guarantee
— from the Christofides’ algorithm [Lawler et al. 1985, chapter 5] — only gives
a fixed ¢, value 1.5, with O(NV?) running time. Furthermore, a fully polynomial-
time approximation scheme for the TSP is unlikely in principle, since it has

been proven (in the above reference) that its existence would imply P = N'P.

!Where polynomial reducibility is a relaxation of polynomial transformability, allowing a
polynomial number of subroutine calls.
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Hence the interest in TSP heuristics which, even if they carry no (or very weak)

worst-case guarantees, might be more fruitful paths to approximate solutions.

1.4 Conventional Methods

Despite the ostensibly negative news from the computational complexity front
regarding the TSP, a variety of approaches has been developed which usually of-
fer a trade-off between solution quality and running time for practical problems.
This reflects the fact that the complexity results just discussed are worst-case re-
sults, which may, of course, be unrelated to the average-case behaviour. This
section briefly sketches the three main types of approach commonly cited in
the operations research literature. Although these comments specifically con-
cern the TSP, the solution methods for many other combinatorial optimization

problems have a similar taxonomy.

1.4.1 Integer Programming Methods

These are powerful, highly sophisticated techniques dedicated to searching for
optimal or very nearly optimal solutions, at the expense of long run times and
complex software requiring thousands of lines of code. Their starting point is a
tour representation in terms of bond variables z,;, where (for symmetric TSPs)
z;; = 1 if cities 7 and j are adjacent in the tour, and is 0 otherwise. The problem

is to minimize
2 Z x.-jd;j (15)
T 5>

subject to constraints

Z:B,'J'-f-zzj; = 2 Yz (1.6)

>4 i<i
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o> = < UI-1 VUCV,U#0 1.7)

i€U jeU,j>i

where V is the set of city vertices and |A| denotes the cardinality of set A. The
first constraint requires each city to be connected to two others, and the second
ensures that subtours — in which a group of less than N cities are connected in
a closed loop — are prevented. The {z;;} sets which satisfy the constraints can
be viewed as points in an O(N?)-dimensional space. If a sufficient number of
constraint equations are used, a polyhedron can be specified in this space, the
vertices of which correspond to tours. Linear programming methods could then
be used, in principle, to determine the optimal tour. Unfortunately there are
an exponential number of the subtour elimination constraints (1.7), so a smaller
number of more powerful inequalities are sought instead, through exploiting
the relationship between the TSP and some tractable optimization problems.
Such ‘polyhedral’ techniques are often combined with ‘branch and bound’ pro-
cedures, which essentially prune the search space in an intelligent fashion; a
review of these techniques can be found in [Lawler et al. 1985, chapters 8-10].

Although not guaranteed to work on every TSP instance, these methods typi-
cally find very high quality solutions, and furthermore, unlike any of the other
methods discussed later, are often capable of proving the optimality of their
solutions. Experiments reviewed in the reference above found the optimal
solutions for several symmetric 100 city problems in only a few minutes of
supercomputer time, and the optimal solution of a 2392 city instance in only
a few hours has been reported in [Padberg & Rinaldi 1988]. Methods for the
asymmetric TSP are less advanced, but for some distance distributions large

instances can still be solved to optimality [Miller & Pekny 1991].



CHAPTER 1. COMBINATORIAL OPTIMIZATION 14

1.4.2 Tour Construction Heuristics

In contrast to polyhedral methods, tour construction heuristics are usually trans-
parent, simple to program, and generate tours in low order polynomial time.
It comes as no surprise therefore that their performance is almost invariably
far from optimal. As the name suggests, these heuristics start with a structure
which is not currently a tour e.g. a single city, a set of edges or a cycle, and
then sequentially add edges (according to some rule) until a tour is constructed.
The ‘nearest neighbour’ heuristic, for example, starting at some arbitrary city,
builds up a path by adding, at each step, the (as yet unselected) city nearest
the city currently at the end of the path. After N — 1 such steps the path is
closed by returning to the initial city. The empirical perfdrmance of this and
ten other tour construction heuristics was investigated in [Johnson 1990]. With
respect to optimal tour-length lower bounds derived using the reputable Held-
Karp method [Held & Karp 1970], the heuristics produced tours ranging from
10% to 60% longer than the bound, on uniformly random Euclidean TSPs with
N = 10°-10°. Nearest neighbour, for example, typically runs up a tour-length
percentage excess of between 20 and 30 across this range of problems.

Tour construction heuristics have arguably three uses:

o the quality-level of their tours serves as a threshoid which any new TSP
algorithms, and neural network approaches specifically, must cross before

they can expect to receive any credibility.

o for extremely large problems in which running time minimization is im-
portant and a large degree of sub-optimality in the tour is acceptable, as

is sometimes the case in engineering applications. ‘

e as sources of initial tours for local optimization methods.
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1.4.3 Local Optimization Heuristics

These algorithms take some existing solution and search over a set of ‘neigh-
bouring’ solutions, looking for solutions of lower cost. If one is found, then
the algorithm adopts it as the new state, and performs another neighbourhood
search centred on it. This procedure is repeated until no further improvements
are found i.e. until the solution is a local minimum with respect to the particular
neighbourhood structure used. For the TSP, the most successful neighbour-
hoods are those defined in terms of r-edge exchange operations, in which a
tour’s neighbours are those tours which could be formed from it by deleting r
edges in the tour and exchanging them with r edges currently not in the tour,
subject to the result still being a valid tour. Local minima with respect to r-edge

exchange are termed ‘r-opt’ tours.

The first serious study of these methods was undertaken by [Lin 1965], who in-
vestigated the 2-Opt and 3-Opt algorithms. This led to the development of the
celebrated Lin-Kernighan algorithm (LK) [Lin & Kernighan 1973], in which the
fixed r search idea is extended to yield a powerful variable depth partial search
technique. LK and 3-Opt are very widely used, as they typically give good tours
in acceptable time and, for 3-Opt at least, can be implemented relatively easily.
[Johnson 1990] reports empirical values for the excess over the Held-Karp lower
bound, on uniformly random Euclidean instances with N = 10?-10°, of approx-
imately 6%, 3%, and 2%, for 2-Opt, 3-Opt and LK respectively. Empirically,
all three heuristics appear to run in O(/N?) time. Note however that this result
has no theoretical underpinning: although the neighbourhood search time is
polynomially bounded for low r (as the neighbourhood set is of size O(N") for
r-edge exchange), there is no guarantee that the number of searches needed to

reach a local optimum is also polynomially bounded.

The Or-opt algorithm utilises a restricted 3-opt search to find good tours rapidly
[Lawler et al. 1985]. The neighbourhood is defined by the ‘k-city insertion’
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operation, in which an edge (i, j) in the tour is deleted and a randomly selected
segment of k cities currently elsewhere in the tour is inserted between cities ¢
and j (and closing up the tour at the point of segment excision). Or-opt finds
a local optimum with respect to three city insertion, then uses this as the initial
state for two city insertion optimization, followed by a similar process using a
single city. A variant of this method, Or*-opt, was developed and used in the
current study to. provide benchmark data for the neural network approaches.
Or*-opt generalizes this to the case k, = N — 2 rather than 3, and furthermore
repeats the whole sequence of k-city insertion optimizations until the tour is

locally optimal for all values of k.

1.5 Novel Methods

During the last decade several radically new approaches to tackling optimiza-
tion problems have emerged. They are novel in that they are all inspired by
optimization principles active in natural systems. Of the three approaches
— genetic algorithms, simulated annealing, and neural networks — we shall
cover only the key points of the first two, before concentrating on the neural
algorithms. Whilst there are (to the author’s knowledge) as yet no neural TSP al-
gorithms incorporating concepts from genetic algorithms (GAs), the latter have
recently been combined with both local optimization and simulated annealing

to good effect, and so a few comments on GAs are warranted.

1.5.1 Genetic Algorithms

Genetic algorithms are attempts to abstract and utilise the key mechanisms
operating in the evolution of biological systems. Through natural selection,
nature has developed a robust and powerful technique for maximising the
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‘fitness’ of populations. GAs mimic this by evolving a population of solutions,
generating new solutions by a ‘mating’ procedure in which parents are chosen
probabilistically according to their fitness, i.e. solution cost. The offspring
incorporate elements of their parents’ solutions, and so after many generations
the solutions in the population tend to improve. To maintain diversity in
the population, a low level of random ‘mutation’ is also incorporated. (See

[Goldberg 1989] for a proper introduction to the subject.)

Although there have been some TSP studies using the pure GA method, ar-
guably better results have been obtained using hybrid GA systems incorporat-
ing r-opt local search moves [Brady 1985, Miihlenbein et al. 1988]. Not surpris-
ingly, such systems can perform as well as local optimization methods, indeed
the technique of [Miihlenbein et al. 1988] has found tours within only a few
percent of the optimal length, for large instances. In other research, the concept
of an interacting population of solutions has been wedded to the simulated
annealing technique to produce an interesting TSP algorithm [Rujdn 1988], and
this concept may have wider applicability in search problems.

1.5.2 Simulated Annealing

In computational experiments studying the equilibrium statistical mechan-
ics of many-particle systems, the Metropolis algorithm is used as a standard
method for generating the Boltzmann distribution of microstates characteristic
of thermal equilibrium. [Kirkpatrick et al. 1983] proposed that the Metropolis
algorithm could also be applied to combinatorial optimization problems, by
viewing the set of possible solutions as the microstates, solution cost replacing
energy, and introducing an appropriately defined ‘temperature’ T. Lowering
T towards zero in a sequence of steps, whilst ensuring thermal equilibrium is
maintained throughout, the system will increasingly tend to sample configu-

rations of low cost, in accordance with the Boltzmann distribution sharpening
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around the ground state as T — 0. The name of the new method is a reference
to the similar process of slowly cooling a melt so that the resulting crystalline

structure is of low energy, with few random defects.

A comprehensive discussion of the theoretical and practical details of simulated
annealing is given in [van Laarhoven & Aarts 1987]. It suffices here to say that
the elementary operation in the Metropolis method for the TSP is the generation
of some new candidate configuration (usually via a 2-opt or 3-opt move), which
is then automatically accepted if it lowers the solution cost, or is accepted with
probability exp(—AC/T) if it would increase the cost by AC. Thus the technique
is essentially a generalization of the local optimization strategy, where, at non-

zero temperatures, thermal excitations can facilitate escape from local minima.

Simulated annealing is a robust technique and has been applied with success
both to standard combinatorial optimization problems and to some ‘messy’
problems in VLSI design. However, to obtain good results the annealing runs
often require a great deal of computer time. [Johnson et al. 1989] criticised much
of the earlier research for only comparing simulated annealing with the sim-
pler local optimization heuristics (i.e. those using r-opt style moves) and not
with the more competitive LK-style heuristics. They undertook a systematic
comparison of the above three methods’ performance on the graph bisection
problem, for low degree random and random geometric graphs. When assessed
using equivalent amounts of computer time, simulated annealing emerged a
clear winner over simple local optimization for both types of graph. Against
the LK-style algorithm however, the new technique was only slightly better
for random graphs and worse for the random geometrical class. A similar in-
vestigation is currently underway for the TSP [Johnson et al. 1992]; preliminary
results [Johnson 1990] suggest that, matched for run-time, simulated anneafing
beats 3-Opt but is worse than LK.

In summary, simulated annealing appears competitive with, but probably
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no better than, the best local optimization methods. Its major drawback is
the requirement for long run times. Furthermore, the inherently serial na-
ture of the approach in general precludes any obvious parallel implemen-
tation, though several attempts have been made to overcome this problem
[van Laarhoven & Aarts 1987, chapter 8]. '

1.5.3 Neural Network Algorithms

These algorithms draw their inspiration from idealised models of the dynamical
behaviour of richly interconnected networks of nonlinear neurons. Here, and
throughout this thesis, the emphasis will be on the mathematical rather than
biological aspects of these networks. Much of the work in this area has centred
on understanding and improving on the Hopfield-Tank TSP algorithm (HT)
[Hopfield & Tank 1985]. We shall first examine HT and its problems, then
introduce the Potts style method which largely overcomes these problems, and
finally discuss topographic mapping TSP algorithms.

The Hopfield-Tank TSP Algorithm

In two seminal papers, Hopfield first investigated the asynchronous dynamics
of an interconnected network of discrete two-state ‘neurons’ [Hopfield 1982]
and then extended this study to nonlinear analogue neurons with continuous-
time dynamics [Hopfield 1984]. Under certain conditions on the connectivity
matrix T, it was shown that in each model the local computations of the neurons
collectively act to minimize some global ‘energy’ function. Specifically, for the
analogue case, the evolution of the network is governed by a set of nonlinear

coupled differential equations

du; =
Et:— =—u;+ Y T;V;+ L (1.8)

i=1
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where V; € [0, 1], the output of neuron j, is computed as a monotonically in-
creasing function g(u;) of its input (or ‘potential’) u;. The sigmoid function
gr(z) = (1 + e72*7)~1 is conventionally used as the input-output function. No-
tice that for large ) (i.e. high ‘gain’) g, approximates a step function, forcing the
V; to tend to either O or 1.

Hopfield proved that for symmetric T the above dynamics have an associated
Lyapunov function

1 1 vi
E' = ('_5 STV =Y I.-V.~) +3 Z/o grea (V)AV. (1.9)
ij i i

Denoting the network stateby V= (V; ... V;,), we therefore have an energy func-
tion defined throughout V¢ [0, 1]* and dynamics which guarantee convergence
to minima. For suitable T, the minima of the first term lie at hypercube vertices.
The second term is minimized at the hypercube centre but has negligible impact
in the high A regime because of the 1 /A prefactor. For other values of A it acts to
pull the E’ minima slightly away from the vertices.

[Hopfield & Tank 1985] proposed that combinatorial optimization problems
could be solved using such analogue networks. To achieve this, one needs
a representation of the problem in which the feasible solutions lie at hypercube
vertices, and a quadratic energy function (to be mapped onto term 1 of (1.9)) for
which the minima correspond to solutions and the depth of each minimum re-
flects the solution quality. Aside from its intellectual interest, this approach also
offers potentially great practical benefits, as (1.8) can also describe the behaviour
of a network of interconnected electrical amplifiers, and hence hardware cicuits
might be capable of solving hard optimization problems in real time. In practice
however, even at a software level of implementation, considerable difficulties

have been encountered carrying this program out for the TSP.

HT uses a permutation matrix representation of TSP tours. In this represen-

tation, V;, = 1/0 means that city 7 is/(is not) the ath city visited in the tour.
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Regarding : and a as row and column indices respectively, tours are repre-
sented by [V;,] matrices with exactly one 1 in each row and column, i.e. they are

permutation matrices.

The energy function (below) consists of four terms. The first three are restraint
terms which penalize all states which are not tours; their joint sum is zero if and
only if the system is at a vertex representing a tour. Only the last term contains
instance-specific information; given that the restraint term is zero, it gives the
length of the tour (where a + 1 is evaluated modulo N).
E = gzzgjv,-avm gzz_:;wma+g(zm ~ Ny
i a a a i j# ia
+§ Z Z ; di;Via(Vias1 + Vja-1)
J (1.10)

Mapping E onto the bracketed term in (1.9) yields a prescription for the T;; and
I; terms to be used in the dynamics (1.8). That leaves values for the parameters
A, B,C, D, and ) plus the initial state to be specified. Taking an unbiased initial
state Vi, = 1/N V¢, a and setting B = A were two obvious steps taken by Hop-
field and Tank. After setting the other parameters by “anecdotal exploration”
they reported that, using multiple runs with different initialization noise, 80% of
the runs converged to tour states for an N = 10 Euclidean TSP. Other researchers,
notably [Wilson & Pawley 1988], found far lower levels of convergence to tours.
An empirical study of the A — C parameter plane [Hegde et al. 1988] also found
that the region in which valid tour states were produced decreased as N grew,
and even at N = 8 was very small. Of course, it is always possible to force
the network into tour states, simply by setting A,C > D, but this means that
the tour-length term has negligible impact, which results in randomly chosen

4

tours.

Given the strong evidence that the original HT algorithm was ineffective, several

amendments were proposed. [Brandt et al. 1988] for example argued that the
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three restraint terms should be replaced by two terms: ¥ ;(T, Via —1)* and
5(Z; Via — 1)?, and found that this consistently gave valid solutions for up to
32 cities. Even so, it seems unlikely that this completely cures the ills of HT, given
that the average 32 city solution was some 20% longer than that found by human
eye. Aiyer has given a theoretical analysis of how the network dynamics are
influenced by the eigenvalues of T [Aiyer 1991, Aiyer et al. 1990]. That analysis
gives a prescription for how T can be altered so that the network is confined
to a subspace of the hypercube corresponding to valid solutions. Simulations
confirmed that valid solutions were always obtained. Again however, the final
tours (for N = 30) were of poor quality, being roughly comparable to those from

the nearest neighbour heuristic.

Further work within the basic HT framework, such as that above, will possi-
bly yield further improvements to the method. A more promising approack

however, is described in the next section.

Normalized Networks: the Potts Approach

Clearly the original HT algorithm had difficulty constraining the network into
valid solutions. One way forward is therefore to lessen the computational
burden being placed on the network. This can be done by constraining each
city to be ‘on’ only once, by enforcing ¥, Vi, = 1V, rather than relying on an
energy penalty term to try and do this (as in HT). This idea was first utilised in the
TSP by [van den Bout & Miller 1988], with equivalent normalization séhemes
for HT style networks for the GPP analysed in [van den Bout & Miller 1990],
[Hérault & Niez 1989], and [Peterson & Soderberg 1989], with the last paper
being the only one also analysing the TSP case. For the TSP it greatly enhances

the degree of convergence to valid solutions.

In all of these papers the normalization occurs in the context of a ‘mean field
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annealing’ approach. This generally yields the same final network equations as
the ‘neuronal circuit’ approach of [Hopfield 1984], but the exposition is clearer,
as it is laid out in a statistical mechanics framework.? The idea is to regard
each hypercube vertex as a configuration, with an associated E value. The
partition function is then formed by summing the Boltzmann factors of the
admissible configurations. (For example, in the HT algorithm, all of the 2M°
configurations are admissible, whereas if each city is restricted to being visited
only once, then only NV vertices are admissible.) After taking a mean field
approximation, saddlepoint equations are derived, the solutions of which pick
out the dominant states of the network at the current temperature T'. For the HT
model, these saddlepoint equations are equivalent to the network equations 1.8,
with E' in (1.9) identified as the free energy and the gain A acting as an inverse
temperature. Analogous correspondences hold for other networks. The mean
field method will be covered more fully in chapter 4.

This statistical mechanics characterisation gives a clearer understanding of why
the normalized model (which corresponds to a type of Potts model [Wu 1982]
in physics, in that each city is represented by a spin which can be in only one of
N states) ought to perform better than the HT model. As [Peterson & Séderberg
1989] indicated, the HT algorithm’s partition function sums over a vast number
of configurations which are nothing like tour states, and even though these
offenders have small Boltzmann weights their large number inevitably affects
the thermal average quantities. This effect, though not entirely eliminated, is
much reduced in the Potts network. A second advantage of this derivation is
that, by introducing a temperature, the concept of annealing i.e. reducing T
during a run, can be justifiably employed.

Chapters 4 and 5 study the mean field Potts TSP algorithm introduced and first
studied by [Peterson & Soderberg 1989]. Dynamical issues, parameter choice
and performance are all investigated. We shall find that although the net-

2This equivalence was also noted in [Hopfield & Tank 1985].
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work’s behaviour is quite complex, the key relationships between the various
free parameters can be elucidated. However, questions still remain about the

algorithm'’s scalability for very large problems.

Topographic Mapping TSP Algorithms

These methods are derived from algorithms which construct topographic —
i.e. neighbourhood preserving — maps between different geometrical spaces,
possibly of different dimensionality. As such, they are only applicable to the Eu-
clidean TSP (or other geometrical optimization problems), a drawback partially
compensated for by the fact that the progress of the algorithms can be visu-
alised. The methods have a common ancestry in that they are all derived from
original research on the theory of topographic mapping. This was concerned
with understanding how, in biological systems, connections could develop from
a sensory feature ‘space’ e.g. the retina, onto a cortical (or mid-brain) space (typ-
ically of equal or lower dimension than the presynaptic sensory space), so that
neighbouring points in the cortex are tuned to points close together in the

sensory space.

One such neurobiological model is the ‘“Tea Trade model’ [Willshaw & von
der Malsburg 1979], in which a 2D space maps onto another 2-D space.
[Durbin & Willshaw 1987] simplified it, reduced the target dimensionality to
1, and showed how it could be applied to the 2-D TSP. The 1-D structure is
a closed loop of points which can be viewed superimposed upon the 2-D city
space. The loop points, which ultimately define the tour, move in parallel, under
dynamics which gradually pull them towards the cities whilst simultaneously
trying to keep the neighbouring loop points close together. This so-called ’eias-
tic net’ method found better tours than the original HT algorithm, as well as
exhibiting far less sensitivity to parameter choice.
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Three further features of the method are its inherent parallelism, the existence
of an energy function mimimisedby the dynamics, and a complexity of usu-
ally O(N?) per update, compared to O(N?) for HT. Further detail on the elas-
tic net TSP algorithm and relevant research is given at the start of the next
chapter, which studies. parameter choice issues in the algorithm. In other
related research, [Frean 1990] made an ingenious attempt to adapt the elas-
tic net to deal with non-Euclidean TSPs, with partial success; and [Aue 1990]
adapted it to another A'’P-hard probiem, the Euclidean Steiner Problem. Finally,
[Goodhill 1992] has taken the method and applied it back into neurobiology, in
an attempt to model the joint development of topographic and ocular domi-

nance maps in the cortex.

Another group of mapping algorithms, commonly referred to as ‘self orga-
nizing feature maps’ or ‘Kohonen-style’ algorithms, share some aspects with
the elastic net; see for example, the algorithms of [Angéniol et al. 1988] and
[Fritzke & Wilke 1991]. Algorithms of this sort are usually derived from the
self-organizing mapping specified in [Kohonen 1988], which was itself inspired
by the ‘Tea Trade model’. They are similar to the elastic net in that they also
evolve a loop of points towards the cities but differ in that they operate by
selecting single cities at random and then moving the bead nearest to that city
towards the city. To keep the loop tight, the winning bead’s neighbours also
move in sympathy with it; with the width of the neighbourhood decreasing
over time somewhat analogously to an annealing temperature. These serial dy-
namics preclude the existence of any simple energy function for the model, and
would also make parallel implementation problematic. This latter point may
not be important however, given that the run time complexity is usually low:
[Fritzke & Wilke 1991] reports tours of 2-Opt quality, obtained in linear time.
Whether such impressive time complexity can also be carried over into algo-
rithms for other combinatorial optimization problems, or indeed whether any

such problems can be tackled at all by the self-organizing algorithms, remains
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to be seen.

1.6 Theoretical Results on the TSP

A great many mathematical results are known about the distribution of tour-
lengths for certain types of TSP — for example, results on the average, worst,
and optimal tours, as well as asymptotic N results. Only one will be quoted
here however. Most of the experimental testing of new algorithms is carried out
first on a class of Euclidean instances in which the N points are independently
chosen from the uniformly random distribution on [0, 1]¢, i.e. the d-dimensional
unit cube. Under these conditions [Beardwood et al. 1959] proved that, letting
Ly denote the length of the optimal tour through any such set of N points, there
is a constant ¢4 such that with probability 1

Jim Ly = cgNt~1/d (1.11)

Although proving the convergence to a constant is hard (see e.g., [Beardwood et
al. 1959], or the ‘simplified” proof in [Steele 1990)), it is quite easy to understand
the scaling relationship, simply by noting that if the points were arranged in
a regular lattice, the spacing would be N-'/¢ and hence N'-'/¢ would be a
lower bound on the optimal tour. Although the exact values of the c; terms
remain unknown, many bounds have been deduced (see e.g., [Steele 1990]
and references therein). Numerical studies [Bonomi & Lutton 1984] show that
c; ~ .75. This value will be used to derive estimates for optimal tour-lengths

(for unit square problems) whenever necessary in the rest of the thesis.

Statistical Mechanics Studies

This thesis focuses on optimizing the performance of neural networks designed

to find low cost solutions to specific TSP instances. Statistical mechanics tech-
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niques, on the other hand, allow investigation of the average properties of
systems in the N — oo limit. Despite this distinction, results from statisti-
cal mechanics are still of considerable interest in interpreting and potentially
improving the performance of optimizatibn neural networks. The following
remarks serve briefly to cover some of the main results and references from

statistical mechanics.

Ideally we would like a complete understanding of the Ising and Potts style spin
systems which underly the Hopfield-Tank and Potts optimization networks,
with, for example, results on the existence or otherwise of phase transitions,
and how the near-optimal solutions are distributed in configuration space. To
achieve this however, would require the use of a Hamiltonian comprising sev-
eral additive terms, one being the solution cost for valid configurations, with the
others serving to penalize spin configurations which do not satisfy the prob-
lem’s constraints. There are considerable difficulties in the analysis of such
systems [Fu & Anderson 1986], and to the current author’s knowledge such an
analysis has not yet been achieved for any network designed for an N'P-hard
optimization problem. An analytical treatment has proved possible however
for a Hopfield-Tank system for the easier ‘assignment’ problem [Kastella 1992].

More progress can be made if the possible states of the system are restricted
to being valid solutions of the optimization problem, so that the Hamiltonian
simply gives the solution cost. This case is clearly of direct relevance to simu-
lated annealing algorithms, which can also be used to test the resulting analysis.
For geometric unit square TSPs, [Bonomi & Lutton 1984] gave an annealed ap-
proximation analysis and demonstrated that it gave an excellent description of
experimental data (on the internal energy, specific heat, and entropy as functions
of temperature) for a 400 city problem at all but very low temperatures. 'i'he
breakdown of the approximation in the low temperature regime is unfortunate,
as this is the regime of prime interest with respect to near-optimal tours. The

transition between the high and low temperature regimes, in which the average
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tour-length changes its scaling behaviour with N, appears to occur gradually
rather than through a phase transition.

[Kirkpatrick & Toulouse 1985] performed a similar analysis, with similar re-
sults, for the case of symmetric non-Euclidean TSPs in which the distances are
random variables drawn uniformly from [0,1]. Non-Euclidean problems are
theoretically easier to work with than Euclidean ones, as the inter-city distance
terms are uncorrelated. Even for this class though, attempts to analyse the low
temperature regime using replica methods have met with only limited success
[Baskaran ef al. 1986]. Nevertheless, [Krauth & Mézard 1989] have managed to
show — through a non-replica zero temperature analysis — that random [0, 1]
problems have optimal length ~ 2.014 in the thermodynamic limit, a result

which we shall use later in chapter 5.



CHAPTER 2

Parameter Sensitivity of the Elastic
Net Algorithm

This chapter deals with the elastic net [Durbin & Willshaw 1987], a connectionist
algorithm for the Euclidean TSP. This algorithm is capable of finding good
solutions, however, for certain ranges of parameter values, it can converge into
local energy minima which do not correspond to valid tours. The key parameter
is the ratio governing the relative strengths of the two compeﬁhg terms in the
elastic net energy function. Building on recent work [Durbin et al. 1989], the
parameter regime in which the net may visit some cities twice is first examined.
Further analysis predicts the regime in which the net may fail to visit some
cities at all. Understanding these limitations allows one to select the parameter
value most 'likely to avoid either type of problem. Simulation data supports the

theoretical work.

29
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2.1 Introduction

The elastic net can be visualised as a rule for deforming an imaginary elastic
band placed in the city plane by attractive, distance dependent forces from the
cities and by elastic forces within the band itself. A scale parameter controls the
effective range of the city forces. It is initially set high, then gradually reduced;
" thus it plays a role comparable in some respects to ‘temperature’ in simulated
annealing. In practice, the net is modelled by a finite number of points (‘beads’)
and the algorithm reduces to an iterative procedure for updating the bead

positions.

Let =; denote the fixed position of the ith city, 1 < < N, and y, the variable
position of the jthbead, 1 < j < M, M > N. At each iteration all of the beads
are updated in parallel by:

Ay; = azwij(a’i—yj) + KB(Yj41 — 295t ;1) (2.1)

where o and S are the constants governing the strengths of the city and tension-
like forces respectively and K is the scale parameter. w;; — the normalized

‘weight’ of the connection between the ith city and jth bead — is defined by

v = Uz —y;l, K)
7 Ted(lzi - il K)

where ¢(d, K) = e~%/?K*_ This update rule performs gradient descent on an

(2.2)

energy function E defined below. Alternative minimization methods and their

corresponding update rules are analysed in chapter 3.
E = —QKZIDZ¢(|“’i—yj|,K) + g‘z|yj+1 —!lj|2 2.3)
i J J

Note that the second term has coefficient /2, and not 3, as is stated in the
original and several subsequent papers. For net configurations corresponding
to tours, the energy reduces to the second term in (2.3) as K — 0. This term

is approximately related to the square of the total tour-length, so that in the
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limit of K — 0, the deepest minima in the energy landscape tend to represent
the shortest tours. The algorithm attempts to find one of these minima by first
finding a minimum at high K, where the energy landscape is smoother, then

trying to track it as K is reduced.

As [Simic 1990] pointed out, summing over the inter-bead distance-squares
rather than over the distances in the second energy term is not ideal. Minimiza-
tion of the former sum only corresponds to minimization of the tour-length in
the limit M/N — oo, when, assuming the M beads are equally spaced, the sum
is proportional to the square of the tour-length. This drawback was alluded to

in the original paper but was not stressed therein.

2.2 A Brief Review of Previous Elastic Net Work

[Simic 1990} and [Yuille 1990] independently demonstrated that the elastic net
and the method due to [Hopfield & Tank 1985] are related through a common
underlying framework, Simic through statistical mechanics and Yuille from

work on stereo vision models.

Durbin, Szeliski and Yuille [Durbin et al. 1989] (referred to as DSY hereafter)
investigated how the energy landscape changes as K is reduced, and deduced
several results. Firstly, that for E to remain bounded, every city requires at
least one bead within a distance of O(K'/?) of it; secondly, a condition on 8/«
is needed to prevent two neighbouring beads converging on the same city.
Thirdly, they derived an implicit expression for the critical value of K, K.,
above which the energy function has a minimum corresponding to all the beads
lying at the centre of the city distribution, and they proposed using K. and
this configuration as the initial state. Finally, DSY discussed how the system’s
dynamics are influenced by the Hessian of E, and concluded that the algorithm
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cannot guarantee to find the global minimum, even when the initial state is

chosen in this way.

The elastic net algorithm contains few parameters and so it might be possible to
understand through analysis what the good parameter settings are, as, for ex-
ample, DSY did for the initial value of K. One of the most important parameters
is the ratio 3/, referred to as « in this and the following chapter, which controls
the relative strength of the tension-like forces to the city forces. This chapter
builds upon the work of Durbin et al. on selecting the value of 7. I prove that, as
K — 0, there exist local energy minima in which some cities remain unvisited,
i.e. minima corresponding to configurations that are not tours. The range of
v values for which the algorithm is liable to find one of these minima (and
therefore fail) is then derived. This information, combined with the earlier DSY
condition, gives a good prescription for choosing + as a function of the typical

separation (denoted by p) between neighbouring beads in a tour configuration.

2.3 Sensitivity to the Value of 5/c

DSY investigated the parameter conditions needed to guarantee that,as K — 0,
there would be only a single bead at each city. They analysed the stability of
equilibrium configurations of two beads close to a single city; K was considered
small enough such thatonly these beads interact significantly with the city. From
their work, the condition for instability (hence for only one bead at the city) can
be expressed as .

where A; = (y;,, + y;., — 2y;) and w; is the weight between the city and ‘jth
bead. They then considered only the case in which the two beads are immediate
neighbours in the net. This allows |A;| to be interpreted approximately as the
distance separating a bead converging on the city from its neighbour which is
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Figure 2.1: Example of spiking. Open squares denote cities, dots beads. (a) Net
configuration showing a spike caused by two non-neighbouring beads converg-
ing onto one city. (b) and (c) show the two possible city orderings obtainable
by effectively ‘deleting’ one of these beads.

not attracted to the city. Thus the |A4;| terms can be approximated by x. Now,
the minimum of (ﬁ’% + 32), subject to (w; + wz) = 1 (which follows from the
above assumptions and equation 2.2) is 4; it can be inferred therefore that to
prevent two neighbouring beads converging onto a single city, « and 8 should
be chosen such that

B, 1 (2.5)
a 2

However, preventing the convergence of neighbouring beads onto the same
city is not strictly necessary, since such a configuration still defines a perfectly
valid tour. Suppose however that the beads are not neighbours: equation 2.4
still holds but the |A;| terms can now become arbitrarily small, depending on
the relative locations of the beads and their neighbours. Hence £ may need to
be arbitrarily large to prevent the convergence of both beads and subsequent

formation of a ‘spike’ in the net (see Fig.2.1).

A tour configuration containing a spike is, strictly speaking, an illegal tour,
since the city at the spike’s base is visited twice, but a simple post-processing
operation can recover a legal tour (see Fig.2.1). Indeed, such an operation occurs

naturally in the procedure detailed in section 2.5 to extrapolate a city tour from
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the final network state.

In summary, satisfying v > 5‘; should ensure that no city will have two neigh-
bouring beads close to it as K — 0, but it is no guarantee against spikes in the
net. All that can be predicted from this analysis about the spike problem, is
that their frequency should be a decreasing function of 7. The issue of how to
estimate u for any particular problem will be discussed at the end of section2.4.1.

2.4 Stable Non-Tour Configurations in the K — 0

Limit

The previous section suggested that to avoid spikes v should be chosen ‘large’.
This section will demonstrate that such a policy can cause other problems. To
motivate what follows, observe that even in simple situations the algorithm can
fail to find a net configuration which visits every city (see Fig.2.2). Such failures
can occur in situations where two (or more) cities lie close together. An insight
into why this may happen can be gained using the result from DSY that, for E to
remain bounded, every city requires at least one bead within a distance O(K/?)
of it. During the early stages of the algorithm a close pair of cities may not be
resolvable on a length scale of O(K'/2). Thus the system may only commit one
bead to the region yet still be able to keep the energy contribution of both cities
bounded. Later as K — 0 and the cities become resolved, the bead converges

to the point midway between the cities. Figure 2.3 is a rough sketch of this.

To prove the stability of the midpoint configuration, consider the situation of
Fig.2.3cin detail. Let the cities lie at (+A, 0) and consider the component E’ of E
due to these cities as K — 0. The contribution of the second term in the energy
function (2.3) can be ignored since, being only of O(f), it will be shown below
to be negligible compared to the other term as K — 0. Let the closest bead lie at
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(a) (b)

Figure 2.2: Failure of the algorithm on N = 4. Squares represent the cities (with
coordinates of (.3, .7), (.7, .6),(.47, .3) and (.53, .3)), dots represent the beads. (a)
Final configuration found using 10 beads, a = .05, 8 = 1.0, with an initial state
having K > K. and the beads configured in a small ring around the centre
of the cities; K was reduced by 1% every 20 updates. A slower K reduction
schedule (1% every 100 updates) also found the same configuration. (b) Final
configuration found using the same parameters as (a), except that here o = 0.1.

(z,y); the other more distant beads can be ignored since these have negligible
weights with the two cities in the K — 0 limit, a fact easily established from
(2.2). Thus

)2 442 A 4y2
E' = —aK ln(e v )+ln(e e )

alA? «

K Tk

(2 +y?)
(2.6)

This shows that the bead lies in a radially symmetric quadratic well, the mini-
mum of which is midway between the cities, and that the energy of the (stable)
equilibrium configuration rises without bound as K — 0.

This disproves the previous claims of [Durbin et al. 1989] that in the limit of
small K all minima correspond to valid tours, since it shows the existence of

energy minima corresponding to configurations in which some cities remain
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(@) (b) (©)

Figure 2.3: Resolution argument to account for failure on a close pairs of cities.
Squares denote cities, dots beads and the shaded disks are schematic representa-
tions of the O(K'/?) zones of each city (see main text for details). K; > K; > Ka.
(a) Situation at K, cities not resolvable. (b) Situation at K;. (c) K3, cities are
resolved. The neighbouring beads cannot move in because as K — 0 their
weights with the cities become negligible.

unvisited (a city is considered ‘visited’ if, for any small distance ¢, some bead(s)
can be found within ¢ of it in the K — 0 limit).

It might be suggested, notwithstanding the plausibility argument sketched in
Figure 2.3, that the trajectory leading to the Figure 2.2a configuration would
only be selected if the cooling was too rapid for the system to pick out the
‘proper’ path leading to the Figure 2.2b configuration. Such an optimistic view
would, however, be misguided: as mentioned in the Fig. 2.2 legend, cooling
more slowly yields the same results. Furthermore, this reflects the observation
that at intermediate K the Fig. 2.2a trajectory has the lower energy. This x;ras
seen by repeating the Fig. 2.2 simulations with values of a just above and below
the value (~ 0.825) demarcating the transition between the two types of final

state (so that the energy functions are comparable), and examining the two
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E vs.K plots. Thus the problem of non-tour minima is fundamentally due
to the energy function, and not to any problems in the dynamics or cooling
schedule.

24.1 Avoiding Non-Tour Minima — 3/« Revisited

There is a straightforward way to avoid such minima: simply use so many
beads that the typical spacing between neighbouring beads is much less than
the minimum inter-city spacing. This strategy is, however, inefficient, since
the computational complexity per iteration is O(NM). Instead, the analysis
presented below will show that non-tour minima can be avoided by choosing

v such that vy < 1/2p.

Consider the stability of an equilibrium configuration in which two beads (la-
belled 1 and 2, though this does not imply that they are neighbours) lie near a
close pair of cities, for small K. If the configuration remains stable as K — 0
then each city can attract a bead to it; instability, however, leaves just one bead
with the cities and subsequently the system becomes trapped in a non-tour en-
ergy minimum. Let the equilibrium distances from the beads to the cities be s,
and s, respectively, with corresponding weights w; and w,. The analysis below
considers the general case in which these weights are not necessarily equal,
though eventually it will become clear that the w, = w, case is the most relevant
one. Several simplifying assumptions shall be made here. Firstly, these beads
interact significantly only with these two cities. Similarly, these two cities inter-
act significantly only with these beads. Secondly, the two cities are assumed to
be coincident; this simplifies the analysis and also represents the ‘hardest-case’
local scenario for the algorithm in its attempts to have every city visited by a

unique bead.

We seek the conditions for which this equilibrium system is a local minimum,
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by examining the change in energy induced by local perturbations of the beads.
Without loss of generality, let s; + §; and s; + 6, denote the distances between
the cities and beads 1 and 2 respectively, in the perturbed state. It will be
helpful here to write E = E; + E; with E; = —aK ¥;In 3, 1%~ ¥F/2K* ang
E; = B/2%; |y;41 — y;|* Toderive AE,, thechangein E;, letC = ln(i ehlontin)’),
and observe that C' can be expressed as -
C = In [ehsg eh61+20181) | ohsd eh(622+23262)]
— hsf +1n [eh(612+23161) + th(522+23262)]
= hs?+1n(1 + Q)+ In(1 +¢),
(2.7)

where
b = 2h(ssd & Qsaby) + h(8] + Q87) + 2h%(s16} + Qs363) + O(83)

1+9Q ’ 28

with §, and Q denoting max(|&;|,|82|) and e**3~*1)(= w,/w,) respectively. Ex-

panding In(1 + ) to second order in é, and gathering like terms gives

C = hs?+In(1+9Q)

+———l— 2_};2(_2_( 61 — $262)° + h(8] + Q62) + 2h(5161 + Ns282) ¢ + O(82)

1+ |1+ 1 2% 1+ 380 $161 + Q526 :
(2.9

Setting h = —1/2K? and noting that at equilibrium (2.1) implies sy = YAz K /2wy

(where Ay = | Ax|), therefore gives A E; correct to second order as

AEI =

b (4 _Qrdsy ot [P (A k) g
140 \wy wo K1+9Q) [414+ Q) \uy wo "
(2.10)

where the perturbation has been parameterised by writing 6, = §, 6, = —ré.
Noting that, by definition, the first order component of AE vanishes at an
equilibrium state, and, by inspection of the E, definition, that the second order

component of AE, will contain no K dependence, we find

ab?
AL~ T K1+9) [

fy" (Al 4 A

41+ Q) )2 -+ Qr2)] @10

un wa
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as K — 0. Thus AE is positive provided + satisfies

2 _ 4Q(1 + r2Q)
TS 0+ 0)(QA; +rA)?

Differentiating with respect to r, the r.h.s. is found to have a single minimum at

(2.12)

r = A;A7'Q72. Evaluating the rh.s. at this point gives the condition for stability
against the whole range of perturbations as

. 402
TS A+ )P4 + A%)

Switching from the Q notation back into that of the weights, noting that

(2.13)

w; + wp =1 and writing w; as w, we can therefore guarantee that AF is al-
ways positive, and hence that the configuration is stable, in the low K limit, by
choosing « to satisfy

4w (] — w)? ’
‘)’A, < \[gz%(—?)—ww—:_l ) A = max(|A1|, |A2|) (2.14)

The right hand term of this inequality is a single-humped function, symmetrical
about w = 1/2. As w — 0 or 1 this function goes to zero, implying that v may
unfortunately need to be chosen arbitrarily small to prevent instability. This
is just a formal expression of the idea in Figure 2.3, that, once a single bead
begins to dominate the interaction with the pair of cities this dominance tends
to grow, so that és K — 0 this bead is the only one close to the cities. The crucial
point therefore is to prevent the emergence of a single dominant bead in the
first place, by ensuring that configurations having two beads with comparable
weights remain stable down to the K — 0 limit.! Thus the case of s; = s (i.e.
w = 1/2) is the most relevant one for getting a constraint on 7. In this case (2.14)
gives the stability condition as v < 1/A’. When the two beads are immediate
neighbours in the net | A,| is approximately y, whereas for cases in which the
beads are not neiéhbours | Ak | can clearly range from approximately 2 down
to zero, where p is as defined in section 2.2. Thus, the prediction of this analysis

is that all non-tour minima can be avoided by selecting v such that v < 1/2p.

10r, in the case of a close but non-coincident pair of cities, stable down to the K value at which
each bead converges to a specific city.
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Two remarks should be made about the above energy analysis and its result.
Firstly, equation 2.14 can also be derived by modifying DSY’s eigenvalue anal-
ysis of the two beads/one city configuration to the current two beads/two
cities case. Similarly, an energy analysis of the two beads/one city case yields
the instability condition found by the earlier DSY eigenvalue analysis. This
correspondence arises since, whereas the energy analysis determines directly
whether the equilibrium state is a local minimum, DSY’s analysis does this
indirectly, essentially by investigating the eigenvalues of the Hessian. Sec-
ondly, the fact that 1/2u is an upper bound on v for the stability of the two
beads/two cities case as well as the lower bound for the instability of the one
city /two (neighbouring) beads case is largely explicable in that these two cases

are clearly mathematically related.

In summary, 5. emerges as an important value for the parameter v (or /o).
Choosing vy below 3. risks creating spikes in the net as well as the lesser problem
of neighbouring beads converging on the same city; whilst setting 7 above =
though it decreases the likelihood of spikes, risks the system finding a non-tour

Since u is the average separation between neighbouring beads, it can be esti-
mated given some prior estimate of the tour-length. For instance one can use
the result of [Beardwood et al. 1959], discussed in section 1.6 — that for N cities
drawn randomly from the unit square, the optimal tour has length cV/'N in the
N — oo limit, with ¢ ~ .75 — to give a crude tour-length estimate for TSPs of
that class, even for non-asymptotic N. For TSPs in which the spatial distribution
of cities is not homogeneous, p will also likely show spatial variation. So in
this case, assuming some tour-length estimate, to achieve a consistently optimal
value of v, the value of S would need to vary between different parts of the n;t, a
possibility originally noted by Durbin and Willshaw though in a looser context
than here. However, TSPs with cities drawn from inhomogeneous distributions

have not been investigated experimentally in the current study.
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2.5 Simulations and Discussion

Simulations were performed to test whether the algorithm’s behaviour varied
with v in the predicted manner. The simulations were carried out on an AMT
DAP, a SIMD style array processor; a brief discuésion of how the algorithm
was mapped onto this parallel computer is given in Appendix A. Ten TSPs
with N =50 and ten with N = 200 were studied; with all the cities drawn
randomly from within the unit square. Every city set was run with a range
of v values, and the number of spike defects and ‘frozen bead’ defects (i.e.
single beads trapped in high energy, non-tour minima) present at the end of
each run recorded; the results are presented in Figure 2.4. The values of v were
chosen relative to 4/, where 4’ denotes the value of 1/2u using the Beardwood
tour-length estimate plus the further assumption that p is invariant over the net
(i.e. ¥ = 2M N-/2/3). Based on the analysis of DSY, the initial value of K was

chosen to be K, where K_ is the positive root of
4K3ysin® & + K>’N/M — A\[M =0 (2.15)

and ) is the principal eigenvalue of the city distribution’s matrix of second order
moments. Note that this differs from the original K. prescription of DSY due
to several algebraic errors in that reference. K was reduced by 1% every ten
updates. Further technical details, including formal definitions of spike and
frozen bead defects, are given in the legend to Figure 2.4.

The plots in Figure 2.4 give consistent support to the analytical predictions.
Spike and frozen bead defects dominate the low v and high v regimes respec-
tively, ﬁm 1/2p marking the approximate boundary between the two regimes;
note that, as expected, some spikes still occur above 1/2u (Fig.2.4d). Qualita-
tively, the division into two regimes can be understood from the rdles of o and
B as the coefficients of competing terms in the energy function. A low value of

B/a emphasises moving the beads closer to the cities rather than minimizing
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Figure 2.4: Frequency of tour defects as a function of v/+'. Each data point repre-
sents the mean number of defects (of one type) found in a final net configuration,
averaging over ten TSP instances, with the associated standard deviation as the
error bar. In all the simulations, § was fixed at 1.0 and the beads were initially
placed in a ring of radius 0.05 around the centre of the cities (starting with all the
beads exactly at the centre causes problems, because when K is slightly below
K. the gradients there are very small and so the system requires a large number
of iterations before settling into an energy minimum). Simulations were ter-
minated when either of two criteria were satisfied: (i) if, Vi, max;(w;;) > 0.95;
followed by a further reduction of K by a decade to allow final settling, or (ii)
when K < 0.01x, ¢ calculated using the Beardwood estimate discussed in the
main text. A spike occurs where a city has significant interactions (here taken
to mean w;; > 0.3) with two or three, non-contiguous beads. A bead k is frozen
if it is the bead nearest to two or more cities, i.e. if there are two or more cities ¢
for which max;(w;;) = wix.
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the net length, hence it may lead to cities being visited by more than one bead;
a high value of 3/a does the opposite, so may lead to some cities remaining
unvisited. Figures 2.4(a-c) show that increasing the number of beads M, for
fixed N, substantially reduces the number of frozen beads. This trend is under-
standable since, as mentioned in section 2.4.1, what influences whether a close
pair of cities develops a frozen bead defect is not the inter-city distance itself but
rather this distance relative to the typical spacing between beads. Increasing
M/N appears to have little effect on spiking, except at very low v where it
helps slightly. Finally, the size of the error bars in this figure reflects the fact
that although the variation in defect frequency with ~ is fairly smooth for any
particular TSP, different city sets have differing absolute numbers of defects.

The analyses given here and in DSY plus the discussions of Fig.2.2, strongly
suggest that many defects develop because of the intrinsic structure of the
energy landscape, and therefore will not just disappear by annealing more
slowly. This was confirmed by runs reducing K ten times more slowly than
in the Figure 2.4 simulations showing no significant change in the number of
defects produced (data not shown). Of course if K is reduced so rapidly that
the network has insufficient time ever to relax into local minima (the physical
analogy here is of a system cooled too rapidly to allow equilibration at any
temperature) then naturally many more defects develop, including frozen beads
for v < 1/2p. This is a point demonstrated in the following chapter.

In summary, to avoid defects v is best chosen to be approximately 1/2y, or
perhaps slightly above this if the ratio of beads to cities M/N is large. If legal
tours can be successfully recovered from net configurations with defects using
post-processing, then other properties, most obviously the tour-length, may
conceivably be optimized by some other choice of 4. No analytical work‘ on
this issue was conducted in the current study however. Nevertheless, intuition
strongly suggests that nets with many defects (of either variety) will — after

post-procesing — give longer tours than those with no, or few, defects, because
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in the former case the network has solved a problem different from the TSP. In
other words, defects indicate a mismatch between the energy function being
minimized and the target problem we wished to solve, making high quality
tours unlikely. This contention is supported by Figure 2.5, which shows a mea-
sure of relative tour quality against v/+’, using the following post-processing

procedure.

This robust scheme extrapolates from a final elastic net state to a tour. First,
construct the set of beads {k;};, where bead &; is picked out by the rule
w;x, =max;(w;;). If this set is non-degenerate i.e. there are no frozen beads,
then the reduced net comprising the beads in this set can be trivially extrap-
olated to a unique tour of the cities.? If there is a frozen bead however, then
we must somehow construct an ordering around the cities competing for that

bead. A simple, random ordéring scheme was used in this study.

Figure 2.5 demonstrates empirically that 4’ also locates the optimal region of
v with respect to tour-length; the regions either side of +' giving longer tours,
particularly below v’ where spike defects exist. Thus, even if we permit a post-
processing stage to remove defects from the net, the analysis begun by DSY
and completed herein to determine the optimal parameter setting with respect
to avoiding defects is still of value, as the v value it prescribes also gives short

tours.

This work also ties in with Simic’s observation [Simic 1990] that the elastic net
only solves the ‘correct’ problem when M > N. We see here that the conse-
- quences of not having M > N can include not just sub-optimal tours, but also
the possibility (in a particular region of parameter space) of finding net config-
urations which do not correspond to valid tours at all. The elastic net algorithm
is not unique in regard to the possibility of convergence to non-tour configura-

tions — this also happens in the original Hopfield-Tank algorithm (as discussed

?Notice that this scheme automatically deals with spike defects.
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Figure 2.5: Post-processed relative tour quality as a function of v/v'. These
curves were derived from the Figure 2.4 fifty cities simulation data, using the
post-processing scheme detailed in the main text. Letting £ denote the fraction
by which the length of the tour obtained for city set s at parameter ratio y exceeds
the length of the best-known tour, the ordinate y., represents <m87@> where
the averaging is over the instances indexed by s. Thus, a value of y,, close to unity
indicates that this value of 4 gives tours which are as long as the longest found
at any other values of 4. Lower values of y, indicate reductions in the average
tour-length excess over optimal, relative to that found at the worst value(s) of
4. The normalization step is appropriate because there are sample-to-sample
variations in the size of the £ measures. The standard deviations associated
with the y., terms are still substantial but have been omitted for clarity. The
‘best-known’ tour is that found over fifty independent trials using the Or*-opt
serial algorithm detailed in section 1.4.3. In one case the elastic net tour was
shorter than the best Or*-opt tour, and so the former was used as the best-known
tour.
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in section 1.5) as well as in Peterson and Sdderberg’s improved Potts version of
it, studied in chapters 4 and 5. It should be noted though that the problem is
generally less acute in the elastic net and Peterson and Soderberg algorithms,
than in Hopfield and Tank’s. This is because the Hopfield-Tank energy function
has fewer constraints built into it than the energy functions used by the other
two algorithms [Peterson & Siderberg 1989, Simic 1990, Yuille 1990]. Although
there are reformulations of Hopfield-Tank that do generally converge to tour
states (see section 1.5), the resulting tours are of barely acceptable quality even
for low N, whereas, as we shall see in the next chapter, the elastic net can

generate acceptable tours even for N = 200.

2.6 Conclusions

Three particular issues regarding the performance of the elastic net algorithm
on the TSP have been addressed here. Firstly, by extending the analysis of
[Durbin et al. 1989], the problem of cities being visited twice by non-neighbouring
beads was examined. Secondly, it was proved that, in the K — 0 limit, there
exist high energy local minima in which some cities remain unvisited by the net.
Thirdly, the parameter regime in which the algorithm might find one of these
non-tour minima was derived. This allowed a decent prescription to be given
for the value of the 3/a parameter ratio most likely to produce valid tours.
For a testbed set of uniformly random square TSPs, simulations were found to
support the details of the analysis in all of these areas. Finally, it was argued
that even when post-processing to remove defects from the final elastic net state
is allowed, the parameter regime which minimizes the number of defects ought
also to yield the shortest tours. This idea was also supported by simulation
data.

The next chapter investigates other issues regarding the elastic net algorithm, in



CHAPTER 2. PARAMETER SENSITIVITY OF THE ELASTIC NET 47

particular the use of more sophisticated minimization methods and how these,

plus the rate at which K is reduced, affect solution quality.



CHAPTER 3

Enhanced Minimization Methods

for the Elastic Net

The original elastic net paper empioyed the steepest descent method to find
minima of the energy function. One could however use one of the many
other techniques developed for seeking minima in functions of many variables.
Therefore, in assesssing the performance of the elastic net method, it is appro-
priate to consider whether alternative minimization engines might yield better
performance. This chapter examines the performance of the elastic net method
when coupled with a variety of minimization schemes which, in keeping with
the spirit of connectionism, are self-adaptive and largely local in character. We
shall see that by incorporating knowledge about the energy function into the
adaptation process these methods can be made robust, as well as giving better

performance than steepest descent.
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3.1 Introduction

In deciding which minimization methods to investigate, we shall draw inspi-
ration from similar research in the field of learning algorithms for multi-layer
perceptrons, the back-propagation algorithm in particular. The use of locally
adaptive step-size methods, for example, is quite common in current back-
propagation implementations, and it is perhaps surprising that these (or other
improved methods) have not so far been used by researchers developing neural

network algorithms for combinatorial optimization problems.

Most of the simulations in this chapter were carried out on TSPs with cities
located at points in a square lattice. This was done for two reasons: these grid
TSPs have known optimal solutions, and secondly, because they do not have
any close pairs of cities, the algorithm will not be prone to the defects studied in
the last chapter. Thus these grid TSPs provide an ideal laboratory for studying
the tour-length performance aspects of the algorithm. Section 3.2 discusses two
simple improvements over steepest descent, namely, the energy monitoring and
momentum methods. Section 3.3 studies locally adaptive step-size methods on
grid TSPs, whilst section 3.4 looks at their performance on random TSPs of the
sort used in section 2.5, the difficulties encountered and one possible strategy
for amelioraﬁng them. The remainder of this section explains the drawbacks of

the original steepest descent method.

3.1.1 The Original Dynamics

The original update rule (2.1) is equivalent to Ay; = —K ;—i for the energy
function defined in (2.3). A coefficient of O(K) is required to keep the dynamics
controlled in the K — 0limit. As mentioned in the previous chapter, the elastic
net method seeks an energy mxmmum at high K, then tries to track it (or
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one of its offspring) as K is reduced. However, it is far from certain that
the original implementation, which allows a fixed number of iterations per K
value, will realize this aim. The problem is that no attempt is made to ascertain
whether the system has actually reached a local minimum before reducing K.
In certain types of landscape, steepest descent can have a very slow rate of
convergence (see, for example [Jacobs 1988]), so convergence problems should
not be unexpected. Problems can occur if K is reduced before the system
has relaxed into a minimum. For example, the change in K may lead to the
minimum bifurcating; if the system lies on the ‘wrong’ side of the bifurcation, it
will then have no opportunity of entering the deeper minimum on the other side
(as the algorithm is deterministic). Drawing on the similarity with simulated
annealing, thlS issue is like that of how to design an annealing schedule that
ensures thermal equilibrium is approximately maintained throughout cooling.
Studies have shown that schedules which properly monitor the degree to which
the generated distribution matches the Gibbs distribution at each temperature
are more successful than naive schedules which simply spend a fixed amount of
time at each temperature [van Laarhoven & Aarts 1987]. This experience ought

to be translated into the elastic net method, in the context of finding mimima.

One broad strategy for improving the algofithm is to allow a dynamically de-
termined number of iterations per value of K, reducing K only when some
convergence criterion is satisfied. Anol;her is to retain a fixed number of iter-
ations per K, but somehow alter the dynamics within this constraint in order
to maximize the convergence. We shall be concerned only with methods in the
latter category, one reason being that methods using the former strategy have

differing run times, which complicates performance comparisons.

The previous chapter discussed the ratio 4/a, but did not cover setting appro-
priate absolute values for a and 3. As these values set the scale of E, variations

in these will alter the rate of convergence. Alternatively, steepest descent dy-
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Figure 3.1: Sketch of a net fragment displaced from equilibrium. Filled circles
denote beads, with lines connecting neighbouring beads. The arrows indicate
the direction of the tension force acting on each bead. If the step-size exceeds a
certain value then the oscillation grows, as described in the main text.

namics of the form Ay, = —nK :Ti; where 7 shall be called the step-size, have
the same effect, and this is the framework in which the dynamics will be dis-
cussed in this chapter. Generally speaking, we want7 to be big enough to enable
the system to take large steps downhill on the energy surface, but small enough
to ensure that the changes in y; are below the scale of significant features on
the surface. An upper bound on the feasible values of 7 can be derived by
considering the situation at an early stage of the procedure, below K. but before
any detailed structure develops in the net.! At this stage the city forces are still
fairly diffuse, so the dynamics of a small fragment of the net are determined
primarily by tension forces, since beads within a small fragment are subject
to nearly identical sets of city forces. Figure 3.1 sketches such a fragment, in
which the beads are shown slightly displaced from their equilibrium positions.
Using the 7 steepest descent dynamics (and ignoring both the city forces and
end-effects in the fragment) it is relativély simple to deduce that if 298K > 1,
successive iterations will cause the kinks to oscillate and grow in amplitude,
i.e. the net will become unstable. Simulations undertaken in the current study
bear testimony to the importance of this bound, and show that this instability
almost always destroys the net, in the sense of bead positions changing betw;en

successive iterations on the scale of the city distribution’s diameter.

'Thanks are due to Marcus Frean for discussions on this point.
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The above result places a tight restriction on the values of 7 that are feasible if n
must remain constant throughout a run. However, as the condition 278K <1
was derived assuming large K, there is no apparent reason why larger values
of 5 violating this condition cannot be used at lower K. Thus it is natural to
consider dynamics in which 7 is varied in some fashion as K is reduced. The
key issue is then deciding what rule(s) to use in varying 7, and this constitutes

the central theme of the following two sections.

3.2 Energy and Momentum Methods

Rather than keeping n constant or forcing it to vary as a pre-determined function
of other parameters (whether derived theoretically or on an ad-hoc basis), the
energy monitoring method allows it to vary dynamically, in response to the
change in energy between successive iterations. The idea here is that if a
steepest descent step lowers E, on the next step we use a slightly larger 7 to try
to accelerate the progress towards the minimum. Of course, if unchecked, this
mechanism will lead to overshooting of the minimum. So if a step is found to
have increased E, that step is rejected,  decreased, and a new step attempted
(using the gradients calculated after the last accepted step). Computation of
AEFE does not impose a significant overhead because most of the calculation
overlaps that of the gradient terms. A multiplicative scheme is used to adapt 7
i.e. n— n4nor n— n_y, for negative and positive AE respectively (the choice
of a multiplicative rather than linear rule being motivated by the trio of papers
cited in section 3.3). The 5, and n_ constants are chosen so thatn, > 1,7 <1,
with 1/9_ > 5 in order to facilitate rapid 5 reduction when necessary. Values
of n, = 1.2 and 1.5 were studied; n- was fixed at 0.5. To test this method,
simulations were performed on lattice TSPs and the degree of tour-length sub-
optimality recorded; the data are shown in Table 3.1. Before discussing the data,
some remarks about lattice TSPs and terminology are apposite.
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basic steepest descent energy monitoring steepest descent

ny = 1.2 Ny = 1.5
N|K, =9 |K, =9 | K,=.95| K,=.9| K, =.95| K, =.99
64 5.2 0.0 52 0.0 0.0 0.0
121 6.1 54 6.1 3.4 4.8 2.0
196 4.2 4.2 34 1.7 1.3 08
289 7.7 52 57 2.6 3.1 1.7
400 6.6 4.1 41 0.8 25 27
Mean 6.0% 3.8% 4.9% 1.7% 2.3% 1.4%

Table 3.1: Tour-length performance data for energy monitoring and original
steepest descent methods.. The data items are the percentages by which the
final tour-lengths exceed the optimal lengths. Technical details: M = 2.5N,
B/a =1/2u(= MN~-Y2/2), B = 2.0, initial state having the beads in a ring of
radius .1 and K = .2, ten steps per epoch, termination criteria as in section 2.5.

Lattice TSPs have cities at every node of a p x p square lattice of spacing 1/p,
where p? = N. Basic geometry shows the tour-length to be bounded below
by V'N or VN + (V2 - 1)/V'N for p even or odd respectively, and it is a sim-
ple matter to construct tours for any p which achieve the appropriate bound.
Henceforth, the time spent at a single value of K will be termed an epoch, and
the original = 1 basic steepest descent dynamics employing a fixed number
of updates per epoch as BSD. For the energy monitoring scheme each epoch
comprises a fixed number of attempted updates. At the end of each epoch, K is
reduced: K — K, K, where K, is a constant (< 1) controlling the cooling rate.
As the energy surface is deformed each time K is lowered, it is clearly unwise
to assume that the value of 7 at the end of one epoch will be appropriate at the
beginning of the next. Therefore 7 was reset to unity at the start of each epoch

for the experiments summarized in Table 3.1.

Table 3.1 shows that the new scheme, compared to BSD, gives substantial reduc-
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tions in the average percentage by which the tour-lengths exceed the optimal
values. This measure of tour sub-optimality will be used throughout this thesis,
being called the ‘tour percentage excess’, or simply ‘percentage excess’. There
are, however, at least two objections to the use of the energy monitoring scheme.
Firstly, explicit evaluation of E is a global computation, which therefore goes
against the grain of the connectionist paradigm. Whilst not adopting a funda-
mentalist stance on the necessity of purely distributed processing,? this is still
an undesirable feature, in that one could then argue that other minimization
techniques using global computations should also be considered. Our more
modest goal is simply to consider how far performance can be enhanced using
only local techniques. The second objecfion is that adapting 7 on the sign of AE
alone is quite crude: an overall decrease in energy might mask several localized
regions of the net which are developing poorly. A more locally sensitive adap-
tation technique is required. We shall see in the following sections that local
methods can give comparable, and indeed better, performance than the energy

monitoring scheme.

The Momentum Strategy

The momentum technique was originally proposed in the context of the back-
propagation learning algorithm for multi-layer perceptrons, by [Rumelhart et al.
1986]. However, the technique is gerierally applicable to any minimization prob-
lem on which steepest descent can be deployed. For the elastic net algorithm,
it corresponds fo an update equation of the form

E
(Ay,)™ = —K g; +v(Ay,)™D  Vj (3.1)

2

’In its usage here, the elastic net method is not modelling any biological or cognitive pro-
cess, therefore such a stance is not warranted. Furthermore, it is arguable that the weight
normalization in (2.2) already involves an element of global computation.
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momentum value
N|v=0|v=3|v=6|v=.9]|v=.99
64| 52| 52| 52| 52 5.2
121 6.1 6.1 6.1 6.1 6.1
196 42| 42| 25| 42 42
289 77| 57| 57| 57 5.2
400| 66| 41 41 4.1 5.6

Table 3.2: Tour-length performance data for the momentum method. The data
items are the percentages by which the final tour-lengths exceed the optimal
lengths. K, was set at .95; the other parameters were as used for the BSD runs
in Table 3.1. At the start of each epoch the (Ay;)"~! terms are regarded as zero.

where 5 is fixed, n labels the update number, and » — the momentum parameter

— is a constant in the range [0, 1).

Adding in a component of the previous update helps convergence in two sit-
uations: it dampens out oscillations which steepest descent often generates
when narrow ‘ravines’ are encountered in the energy surface, and it allows
the effective step-size to grow for dimensions in which the partial derivative
sign remains constant over a wide range. A more detailed discussion of the

momentum technique can be found in [Jacobs 1988].

Table 3.2 displays the performance using momentum. The v = 0 case recovers
BSD. The momentum term has negligible impact, except for cases in which
both N and v are high, when it has a slightly beneficial effect. One possible
explanation of this result might be that the types of landscapes for which mo-
mentum helps may not be present in these grid TSPs. Alternatively, it may be
that the particular (n, v) values studied were far from the optimal one(s) (with

regard to convergence). In back-propagation, it was empirically demonstrated
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by [Tollenaere 1990] that for any fixed value of v there is a small range of step-
sizes which give rapid convergence. The location of this range varies with v, the
problem type, and the problem size. In the absence of any analytical guidance
in setting (n,v), researchers have developed methods which attempt to find
suitable parameters self-adaptively, rather than via brute force parameter space
searching. The techniques in the next section were largely inspired by this work
in back-propagation.

3.3 Local Step-Size Adaptation Methods

The fundamental idea of these methods is that every dimension of the space
on which the energy function is defined should have its own individual vari-
able step-size (or learning rate, in the back-propagation terminology), which
adapts in some fashion according to whether the associated partial derivative
changes sign between successive updates. Several such methods were dis-
cussed by [Jacobs 1988], leading to the refined heuristics of [Tollenaere 1990,
1991] and [Silva & Almeida 1990]. The techniques developed here are closest to
Tollenaere’s SuperSAB algorithm. SuperSAB combines the momentum strategy,
local step-sizes which adapt exponéntiqlly according to the sign of the product
between the current and previous partial derivative, and a step rejection mech-
anism. Only the second of these three elements was utilised in the techniques
developed here. In the first such locally adaptive technique studied (termed
‘fast adaptation’, or FA), the beads were updated in parallel according to:

"  (OEN” .
Al = —Kn) (52"-) Vi, 1 (3.2)
7

where, for the 2D geometric TSPs considered here, | € {u, v}, with y; = (u;, v;)

the position of the j th bead. The superscript n labels the update number. The
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step-sizes adapt in the following manner:

(n—l) if (2E (n) 3E (n-1)
= { m”ﬁ,_l) _ (Zg)(n) g (Zg)(n—l) =9 A (3.3)
i 6 (5) x (3)" <o

As in section 3.2, the n, and 7_ terms are constants > 1 and < 1 respectively,
though of course now they are applied on the basis of purely local partial
derivative information. A change in the partial derivative sign indicates that
the system is in the vicinity of a local minimum for that dimension, and the
above rule responds to this by proceeding more ‘cautiously’ in that dimension,
i.e. by reducing the step-size. Following the reasoning in section 3.2, the {5;}

are reset to unity at the start of every epoch.

Data on the performance of the FA method on the usual lattice TSPs are pre-
sented in the left hand column of Table 3.3. Comparing its average performance
with that obtainable using BSD (see Table 3.1), not only does FA produce shorter
tours than BSD at the same K, it also outperforms BSD runs employing a much
slower cooling schedule. Furthermore, the values of the 7,,_ adaptation rates
used in these runs were not arrived at by extensive parameter space tuning:
further exploration would likely yield even better results. Thus the FA strategy

is clearly of merit.

- How can the FA strategy be improved upon? There are two related criticisms

of the method that point to the answer.

Firstly, the {7, } are currently all reset to one at the start of each epoch.. However,
this reset value was chosen only so as to bring FA into line with BSD at the start
of each epoch; other choices are possible. As it sets the absolute scale for the
step-sizes, the reset value does need to be chosen carefully. Although it is' no
longer strictly valid, the nAK < 0.5 condition derived in section 3.1.1 can be
used for guidance here. Alternatively, one can select a reset value higher than

suggested by the 78K condition and rely instead on the adaptation mechanism
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N| FA | sA | TLA(=FA +5A4)
64 || 00 | 26 13
121 41 | 34 2.7
196 | 17 | 34 04
289 || 43 | 4.0 26
400 || 31 | 33 0.6
Mean || 2.6% | 3.3% 1.5%

Table 3.3: Tour-length performance data for locally adaptive step-size methods.
The data items are the tour percentage excess values. Runs using FA had
settings of n, = 1.2and n_ = 0.5, the SA runs settings of §, = 1.05and 4_ = 0.95.
K, = .95; other parameters as in the Table 3.1 BSD runs. When updating the
{n;1} at the start of each epoch, the previous partial derivative terms are regarded
as being zero. See main text for definitions of FA, SA and TLA.

to keep the system stable. Exploratory runs employing the latter idea show a
slight improvement when resetting to 2.0 but a sharp deterioration when the
reset value is pushed to 5.0: in such a high 5 regime the adaptation mechanism
is overburdened, rather than accelerating convergence it is spending the high K
iterations merely trying to prevent ihstability. Searching for the optimal (fixed)
reset value using such semi ad-hoc methods is evidently a problem in the FA
method.

Secondly, resetting the {n;} at the start of every epoch discards potentially
valuable information about the energy landscape built up during the previous
epoch. For examplé, in a particular dimension, if the system spent the whole
epoch moving in the same direction towards, but never reaching, a minimum,
this information would be reflected in the associated 7;; variable having maximal
value (through (3.3)). The problem is how — or whether — to utilise this
information, given the complication that the energy landscape itself changes
between epochs. The FA reset method denotes one extremal response to this
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problem. The other is simply to let the adaptation scheme in (3.3) proceed
unhindered by epoch boundaries, ignoring the problem mentioned earlier that
the optimal step-sizes will likely be mismatched across an epoch boundary.
Simulations letting the step-sizes adapt continuously in this manner do give
slightly better results than FA for grid TSPs up to 289 cities, but unfortunately

become unstable on the 400 city instance (data not shown).

3.3.1 The Twin Level Adaptation Method

Evidently, the source of the drawbacks just discussed in the FA method is
the fact that the energy function changes during annealing, so that we are
actually performing a series of adaptive minimization procedures (one at each
K value) using the final state in one as the initial state in the next. This is a
more complex situation than that encountered in the earlier adaptive step-size
backpropagation studies, where adaptation occurred in the context of a constant
energy surface. The natural improvement is to allow adaptation on two levels:
fast adaptation within a particular epoch (as in FA), plus slow adaptation (SA)
of a step-size scaling factor once per epoch. This twin level adaptation (TLA)
strategy involves generalizing the (3.2) dynamics to

. o (OENT .
AP = —Ko®n (W) Vi, 1 (3.4)
2

where, as before, the {5;;} adapt according to (3.3) and are all reset to one at the
start of each epoch. The superscript k labels the epoch number. Given that the n

terms evolve using partial derivative sign information, this was also considered

appropriate in the § adaptation rule, detailed below:

(k=1) ¢ (3E o i
o) _ { 0.0} if (Wj) has constant sign in epoch (k-1). Vil 35)
6

e 05D if (g—{f) changes sign in epoch (k-1).

The 6, ,_ terms are analogues of the 7,,_ terms, and 05-?) =1.0Vj,L.
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As shown in Table 3.3, TLA performs better than FA alone, giving a mean
percentage excess almost half that found by FA. To check whether the TLA
performance is perhaps due solely to the slow § adaptation, control runs using
SA on its own (i.e. using the above dynamics but clamping the {n;;} terms to
1.0 throughout) were performed: the data, also shown in Table 3.3, strongly
suggests that this is not the case. Thus, though either FA or SA will outperform
BSD, a combination of the two strategies, TLA, is even more effective than either
oneonitsown. Although the absolute differences in performance (characterised
here by the mean percentage excess) between these methods may appear small,
itis vital toremember that the arena in which successful TSP algorithms compete
against one another is typically the set of tours possessing lengths within about
10% of the optimal length.? Finally, note that for comparable K,, TLA also beats
the energy monitoring scheme discussed earlier, even though the latter utilises

global information, unlike the former.

These runs used values of 0.95 and 1.05 for 6_ and 6, respectively, with K, = .95,
and 10 updates per epoch. A higher value of K, would produce less change
in the energy surface per epoch, which would suggest that the 0 variables
need only change by a smaller amount than before, and hence that suitable
6,,- values will be K,-dependent. This intuition is supported by the finding
that TLA runs still employing the above 4,,_ values but with a slower cooling
schedule (K, = .99), develop some very large § values, oscillate and become
unstable. To avoid resorting to a trial-and-error approach for finding suitable
0.,-, we would like to have a mathematical rule for setting these rates as a

function of K,. The following section provides this.

3As mentioned in section 1.4, even fairly naive algorithms can find 20% suboptimal tours.
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Stability Constraints on the 6 Adaptation Rates

For the case of global 7, steepest descent dynamics, it was shown in sec-
tion3.1.1 thatathigh K the system would be stable against oscillations, provided
78K < 0.5. The high K requirement, recall, implied that the city forces were
constant over a small region of the net and so could be ignored in exploring the
dynamics within that region. Another interesting scenario concerns those beads
lying between cities at low K values: as they have negligible interaction with
the cities, their dynamics are also driven purely by tension forces. However, as
a typical net is constructed with only two to three times as many beads as cities,
the analysis should now assume that the bead in question has neighbour(s)
closely bound to cities. Remaining for the moment with the simple case of
global 7 dynamics, Figure 3.2a shows that a bead with both neighbours bound
to cities will be stable to transverse fluctuations in the low K limit, provided that
nBK < 1.0. A similarly simple calculation shows that this is also the stability

condition with respect to lateral fluctuations.

To summarize, in the high K and low K regimes i.e., at the beginning and
end of the annealing process, simplifications in the dynamics allow one to
deduce, for beads in certain situations, a stability condition of n3K < §, where
2 is of O(1). The intermediate K regime, in which a small group of beads
interacts with a small number of cities, would be far harder to analyse. Despite
the absence of any such analysis, it is reasonable to conjecture that the above
condition might still be roughly valid for intermediate K. Furthermore, there is
the additional complication that these results were derived assuming a global
1, whereas in TLA each bead has its own pair of effective step-sizes. We shall
ignore this complication here and simply suggest that the corresponding 'I:LA
stability requirement is essentially n6SK < f2, with the various indices on § and
n being implicitly understood. Thus stability can be guaranteed throughout a
simulation by ensuring both that the initial parameter set respects the above
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Figure 3.2: Low K scenarios. These sketches show different segments of the net
at K low enough such that each city interacts only with the nearest bead. Squares
denote cities, dots beads. (a) Shows bead j displaced from the equilibrium
position (o). With global  dynamics, the restoring force will dampen the
oscillation provided 2nBKh < 24, ie., if nBK <1.0. (b) At equilibrium, the
separation s equals 27Ky cos A, with y and p as defined in chapter 2. Assuming
that the system reaches equilibrium by the end of an epoch, at the start of
the next one, bead j will lie in a gradient field pushing it towards the new
equilibrium position nearer the city. An approximate stability condition can
then be derived by requiring the change in the bead’s position during the first
update, Au, to be at most O(As). For concreteness let us require Au < As. With
global n dynamics — and taking the simple case in which beads j + 1 remain
fixed relative to bead j — this is equivalent to the inequality: n < 1/a.

condition, and that the 6 variables can not grow at a rate faster than that at
which K decreases, i.e,, max 8, = 1/ K,. This result is in accord with the earlier
discussion: it formalises the idea that gentler cooling should be accompanied
by gentler 0 adaptation. As K, is typically close to 1.0, 1/K, =~ (2 — K, ), and
this is the 8, expression used in all subsequent TLA simulations. §_ was chosen
— somewhat arbitrarily — equal to K,. In summary then, in the TLA method

the adaptation rates 6, and _ are given by
0, =2—K,, 0. = K,. (3.6)

Before presenting TLA data gatheréd using this rule, it should be noted Ehat
there is a class of beads for which the above restriction on 0, is insufficient to
explicitly guarantee stability. These are the beads ‘captured” by the cities at
low K. As shown in Figure 3.2b, these beads need a local step-size condition

70 < 1/a for stability. Now, for parameter sets following the minimal defect
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prescription, 8/a = 1/2u, and respecting (3.6), one can calculate that in the
low K regime (roughly, .01y < K < K.), 1/a < 1/BK, so justifying the earlier
statement about the 8, rule not guaranteeing stability. The cost of explicitly
guaranteeing stability for both classes of bead, via a more stringent 4, rule,
would be a narrowing of the potential dynamic range of the § variables for
beads in the previous class. This was considered unacceptable, for two reasons.
Firstly, the 8 values of such beads generated in simulations show that they do
exploit the dynamical range allowed under the 6, rule above, so this presumably
contributes to the efficacy of TLA. Secondly, the 1/a condition was derived
assuming K sufficiently low that each city has already captured a single bead;
but by this stage the tour decision is complete. Of more importance is the high

and intermediate K behaviour, for which the 1/a condition is inapplicable.

Thus TLA a la (3.6) explicitly guarantees stability for those beads between
cities, but relies on the ability of the adaptation mechanisms to maintain stable
evolution of those beads nearest to cities. In practice this seems to be a successful
policy. No stability problems were encountered with grid TSPs over a wide
range of K,. Furthermore, for all the grid TSPs, scrutiny of the mean final ¢
values of beads bound to cities showed them to be similar to, but always below,
1/a; indicating that these beads’ step-sizes had adaptively tuned themselves to

the maximum safe value.

3.3.2 Performance vs. Cooling Rate for Lattice TSPs

To compare the original steepest descent dynamics (BSD) with the best of the
locally adaptive step-size techniqueé, namely TLA, the tour-length performance
of both minimization methods was assessed on the standard set of lattice prob-
lems for several cooling rates, ranging from a very fast to an extremely slow
cool. The results are shown in Figure 3.3. The cooling rate measure used is

1/7, where 7 denotes the number of epbchs required for K to fall by an order of
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Figure 3.3: Plot of performance against cooling rate, comparing the BSD and
TLA techniques on lattice TSPs. The ordinate denotes the tour percentage excess
averaged over the five grid sizes used throughout this chapter, error bars the
associated standard deviations. With the exception of one data point (filled),
none of the runs generated spike or frozen bead defects. For the exceptional
point, four out of the five grids required post-processing to remove frozen
bead(s). BSD is defined in section 3.2, TLA by equations 3.4-3.6, with n, = 1.2
and . = 0.5. The other technical details are as listed in the legend to Table 3.1.

magnitude, i.e. 7 = —1/log,, K;. There are several features to note here:

e BSD is unable to avoid generating nets with frozen bead defects when the

cooling is very rapid, despite - being set in accordance with the analysis of
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the previous chapter. Thesize of the error bar on the 1/7 = .097 point is due
to systematic growth in the number of frozen beads (with a corresponding
decrease in post-processed tour-length quality) as the number of cities

increases.

o Throughout the range of practicable cooling rates TLA produces shorter
tours than BSD. In other words, TLA finds tours of a particular quality
in less computer time than BSD; e.g. TLA is an order of magnitude faster
than BSD in finding 5% sub-optimal tours (averaged over the set of grids).

¢ Only in the limit of extremely slow cooling is the BSD performance com-
parable to that of TLA. In this regime an adaptive step-size minimization
method is unnecessary, as the changes in the energy surface are so gradual
that even steepest descent has time to converge properly at each value of
K. Notice however, that even in this limit typically the elastic net algo-
rithm fails to find tours of optimal length — only for the N = 64 grid does
the algorithm manage this. This point is considered further in the next

section.

3.4 Performance on Random Euclidean TSPs

Although none of the techniques discussed so far in this chapter was explic-
itly dependent on the city distribution, all of the numerical explorations were
conducted on regular lattice TSPs. It is therefore sensible to check whether the
main conclusions also hold for other, harder, types of Euclidean TSP. This is the
purpose of the current section.

TSPs in which the cities are scattered randomly within the unit square were
studied, with six instances each for N =50 and N = 200. In the 50 city
group, the first five sets are those studied by [Durbin & Willshaw 1987] and
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the sixth is from [Peterson 1990] (as is the sixth 200 city set). In order to
estimate the optimal tour-lengths, the Or*-opt algorithm was run fifty times
on each TSP using a different random initial tour each trial. The best final
tour in each case was then regarded as ‘optimal’. These tours agree with
the best-known tours from previous studies (referenced below) for five of the
N = 50 sets. For the remaining set plus the one N = 200 set previously stud-
ied, the procedure yielded tour-lengths within 1% of the best-known (from
[Durbin & Willshaw 1987, Ahgéniol et al. 1988, Peterson 1990] and Frean (per-

sonal communication)).

3.4.1 Performance vs. Cooling Rate

Of the various adaptive minimization techniques, we shall consider only the
final TLA strategy, as this looked the most promising on grid problems, and
compare it against BSD. Simulations analogous to those in Figure 3.3 were

conducted. The results are displayed in Figure 3.4.

The trends seen in Figure 3.4 are génerally consistent with those seen for the
grids. TLA gives better tours over most cooling rates, is far less prone to produce
nets with frozen bead defects, and is only matched by steepest descent in the
limit of slow cooling. Furthermore, the disparity in performance between BSD
and TLA grows with the problem size. Regarding the average tour percentage
excess over ‘optimal’, the slow cooling values of 3% and 5% for N = 50 and
200 respectively, are lower than those obtained on comparable problems by any
of the eleven conventional tour construction heuristics evaluated in a recent
review paper [Johnson 1990], though higher than those for decent iterative
improvement algorithms such as Lin-Kernighan.

This raises the issue of what fundamentally limits the capability of the elastic net
algorithm to find short tours. We saw in chapter 2 the importance of choosing the
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Figure 3.4: Plot of performance against cooling rate, comparing the BSD and
TLA techniques on random TSPs. The ordinate denotes the tour percentage
excess averaged over six TSP instances, error bars the associated standard de-
viations. Filled symbols denote points where three or more of the instances
produced frozen beads. The 1/7 = .097 BSD data point lies off the scale and
has been omitted. In graph (a) the deterioration at very low 7! may welf be
spurious, as in both cases it is due purely to diminished performance on only
one of the six instances. See the Figure 3.3 legend for definition of the BSD and
TLA techniques. Other technical details: M = 25N, B/a = v'(= 2MN~1/2/3),
B = 1.0, initial state being a ring of radius .05 and K = K., ten steps per epoch.
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key ratio A/« correctly, and in the current chapter how an efficient minimization

strategy can boost performance through accelerating convergence (o energy

minima. However, it will be argued here that even if the above two issues

can be dealt with satisfactorily, there is another factor, namely the deterministic

nature of the algorithm, which limits its capabilities. Recall that the scale factor

K in the energy function (2.3) acts to give a smooth energy landscape with few
minima at high K, and a rugged landscape with many minima — some related

to tours, others not — at low K. The algorithm operates by trying to find a
deep minimum at high K and tracking it as K decreases. There is however no
guarantee that the global energy minimum at any particular value of K will be

accessible by descent dynamics from the region of phase space containing the

global minimum at some higher value of K. Once in a certain minimum (or

‘basin of attraction’), the system is bound to remain in that minimum, or one

of its descendants through bifurcation, by virtue of the deterministic descent
dynamics. Thus, it is argued that if the system enters an inappropriate basin
early on, then no amount of slow cooling or parameter tuning will be able to
compensate for this. Informal suppdrt for this claim can be found in Figure 3.5,

which compares the best elastic net tour against the ‘optimal’ tour, for the six 50

city instances. Notice that the least optimal elastic net tours (those for instances

4 and 5, numbering from the left) show substantial differences in gross scale

structure from their ‘optimal’ counterparts, presumably traceable to the high K

period.

3.4.2 The Stochastic Elastic Net

It is perhaps not surprising that the deterministic nature of the standard elastic
net algorithm causes problems, given that many of the other successful TSP
heuristics e.g. edge-exchange algorithms, simulated annealing, genetic and self-

organizing map algorithms, all make use of random variables. Randomness
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Best Or'—opt Tours

Zr 7a Sindicaln

Best Elastic Net Tours

AR LAAL I

A=2.67% A=0.47% A=2.17% A=3.17% A=4.87% A=0.77

Figure 3.5: Comparison of the best 50 city tours. The upper row of tours
are those regarded as quasi-optimal in this study. The lower row displays
the corresponding best extrapolated tours found in the elastic net simulations
summarized in Figure 3.4. A is the percentage by which these tours exceed the
quasi-optimal tours in length.

| can be utilised to allow variation in the initial state and, more powerfully, as an
intrinsic component in the search dynamics. In both cases it aids the exploration
of different regions of tour space. It is possible to incorporate randomness of
‘the former variety into the elastic net method, simply by varying the initial
configuration of beads. For example, rather than initializing the beads in a
small ring centred on the cities’ centroid (as in this study so far), the ring centre
could be randomly displaced from the centroid. However, in practice, repeated
runs using this initialization generated very little variation in the final tour.
Although other schemes might be marginally more productive, the general
policy of employing initialization noise will probably be ineffectual for the

elastic net. The reason is that if the initial value of K is K. or greater, the
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dominant energy minimum in which the beads all lie at the centroid of the
cities has a large basin of attraction, so that many initially different states flow

towards the same initial minimum, thereby dampening the effect of the noise.

Adding Dynamic Noise

In light of the above comments, we shall now turn to the use of random-
ness within the annealing process itself. It is instructive to examine first how
noise is utilised in self-organizing map TSP algorithms, for example those of
[Angéniol et al. 1988] and [Fritzke & Wilke 1991], as these also operate geomet-
rically by adapting a loop of beads towards the cities. In these algorithms,
the basic step involves selecting a single city at random and then moving the
section of the loop closest to that city even closer to it. The city selection order
is random, and can be either quenched or dynamic. Either way the key point
is that noise affects the evolution of the network throughout a run, enabling

multiple runs to sample different regions of phase space.

This contrasts with the elastic net method, in which at every step the net effec-
tively ‘sees’ all of the cities. A natural first step is therefore to present only some
randomly selected fraction of the cities at each step. This, however, leads to
highly unstable behaviour at low K. This problem arises because the elastic net
has an explicit tension term to minimize the netlength: the equilibrium location
of the bead nearest to a particular city is determined by the balance between
the tension force from its neighbours and the attraction of the city. If the city’s
influence is suddenly removed, the unbalanced tension force leads to a violent
change in the bead’s position. By contrast, the self-organizing methods rely on

a neighbourhood adaptation mechanism to minimize the net length.

A more sensitive approach to varying the influence of the cities, particularly at

low K, is required. This can be achieved by replacing, in the update equations,



CHAPTER 3. ENHANCED MINIMIZATION METHODS 71

the true weights by auxiliary weights , {w};}, defined by
wi; = wii(1 + &) (3.7)

where the ¢; are independent random variables drawn from a Gaussian distri-
bution of mean 0 and variance o2. The ¢; are held fixed during an epoch but vary
between epochs. The dynamical rules discussed before now perform descent,

not on the energy function itself but on a randomly distorted version of it, E'.
B = —aK Y0 +E) T dlei -yl K) + § S lun - w69
t J J

This enables the system to ‘climb over’ barriers probabilistically in the true
energy landscape. Regarding the setting of o, the earlier problems of instability
at low K suggest that o ought to vanish as K — 0. To accomplish this and still
allow exploration early on in the high K region, o can be set high initially and
then decreased exponentially, as with K in the elastic net and temperature in

simulated annealing.

A limited number of simulations were performed to test the feasibility of this
'stochastic elastic net’ method. For each of the twelve testbed random TSPs, 20
runs were undertaken using quick cooling (K, = .95), so that the total run time
roughly matched that for a single very slow cool (K, = .9975). The noise level
o was initially set to 5, then decreased at the same rate as K. TLA minimization
was used, with the other parameters as in Figure 3.4. Calculating the percentage
excess of the best run in each ensemble and then averaging over the six TSPs
for each N value gives an aggregate measure of tour percentage excess for each
problem size. This can then be compared with the corresponding figure for the
best tours found in the Figure 3.4 experiments. For the N = 50 suite these figures
are 1.7% and 2.2% respectively; for N = 200: 3.8% and 4.4% respectively. So
adding dynamic noise can improve the performance of the elastic net. Further
work optimizing the noise level and how this decreases, plus early pruning out
of runs driven by the noise into poor regions of the energy landscape, would

likely yield more gains.
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In summary, the problem of determinism in the original elastic net method can

be overcome by incorporating noise in a controlled fashion into the dynamics.

3.5 Conclusions

This chapter has focused on defining dynamics for the elastic net that allow it to
converge rapidly into minima in the energy landscape. After a discussion on the
problems of the original steepest descent dynamics, various adaptive descent
strategies were proposed and investigated. The most successful strategies were
those employing local step-sizes which adapt on the basis of changes in the
partial derivatives. Such methods were first developed for backpropagation
networks, in which the energy function remains constant. As the elastic net’s
energy landscape changes throughout a run, the original scheme was extended
to allow adaptation on two timescales to exploit fully the power of the local step-
size adaptation idea. Analytical work cohstraining the range of safe adaptation
rates was presented. Extensive numerical experiments on two classes of TSP
demonstrated that, for practicable run times, the new minimization technique
generates shorter tours and fewer defects than the original steepest descent
technique. Finally, problems due to the deterministic nature of the elastic net
approach were discussed and a new ‘stochastic elastic net’ method proposed to

ameliorate them. Exploratory experiments show the method to have potential.

Although developed in the context of the TSP, these local acceleration tech-
niques could also be used to enhance the efficiency of the elastic net method
in other applications, for instance in the cortical development model proposed
in [Goodhill & Willshaw 1990, Goodhill 1992]. On a wider level, the local TLA
heuristic could be employed to aid cbnvergence on energy functions which vary

regularly over time, such as those in mean field annealing algorithms.



CHAPTER 4

Potts TSP Network Dynamics

This and the following chapter study the mean field Potts algorithm for the TSP,
introduced in section 1.5.3. The chapter is organized as follows. Section 4.1
summarizes and discusses the formalism of the method as originally introduced
by [Peterson & Soderberg 1989] (PS hereafter), before describing in section 4.1.3
the general step-size dynamics which the algorithm employs in the current
work. Sections 4.2-4.4 analyse the parameter dependence of an important
characteristic temperature (7.) under the new dynamics, for both parallel and
serial updating modes. After accounting for the influence of certain secondary
parameters, the theoretical T, expressions are found to be in good agreement
with the trends found in numerical experiments. The functional form of T. is
shown to strongly constrain the choice of suitable step-size values for parallel

updating dynamics.

4,1 Formalism ‘

As usual, we let N denote the number of cities and {d;;} the NxN matrix of
intercity distances. The TSP is first mapped onto a spin system, through a matrix

73
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representation scheme. Each city i is associated with N spin (decision) variables
Sia € {0,1},1 <1< N,1 < a < N. The index a labels the position, or partition
number, in the list of cities defining a tour; the latter terminology arising from the
the TSP’s close relationship with the graph partitioning problem. The condition
Sis = 1 represents the decision that the ath position in the tour is occupied by
city i. Conversely, if S;, is ‘off’, i.e. zero, city i does not occupy position a. Thus
the spin matrix matrix represents a tour if and only if it is a permutation matrix,

ie iff ;S =1,>,S5i=1V1,a.

41.1 Energy Functions

The spin system is defined by a quadratic energy function containing penalty
terms which attempt to restrain the system into a tour state, and a cost term

which yields the solution cost (here tour-length) when the state is a valid solu-

tion. One such energy mentioned in PSis E;.,. = E;”" + E.%.", where
E"™ =3 di; Y SiaSiatimodN) (4.1)
1] a
E:::: = %Z(Z Sia — 1)2 + gz Z SiaSip 20 4.2)
e i ib a#b

Clearly E7 is zero if and only if the matrix represents a tour. Rather than

relying on a restraint term to ensure that every city is ‘on’ exactly once, as above,

PS explicitly constrained the network to do this, by enforcing the condition
Y Sia=1 Vi (4.3)

Each city : now has an associated spin vector, $; = (Si1,. .. Sin) constrained to
be one of the principal unit vectors, hence the analogy (pointed out in PS) to the
Potts model [Wu 1982] in statistical mechanics. Under this Potts condition, £

is strictly equal to £(32,(Z; Sia)? — N). However, by rewriting the second part
as ;a0 SiaSin—Y_ia S%, and enforcing (4.3) only on the J;,, sum, E,":g transforms
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to EX , given (disregarding constant terms) by

Potts’
Ep = 3.d53 SiaS;(at1moan) + g >3 Si)? - g YSE (44
1J a a ) ia

The reasons for retaining a term in g are discussed later in section 5.2.

4.1.2 The Mean Field Equations

spin

The next step is to find the dominant states of the system defined by E_ .,
by studying the partition function Z. The following remarks sketch the key
~ steps in this procedure, see PS or the earlier work [Peterson & Anderson 1987]
for more details. Regarding notation, V; denotes the set {V;, : 1 < a < N}, and
unsubscripted V' denotes the set {V;:1 < i < N} (similarly for U; and U).
Rather than attempting an explicit summation over the NV states which rnspéct
(4.3), PS first expressed Z as a multidimensional integral:

z=CJ] /R dv; /I dU; exp(=E'(V, U)) 45)
where

E’ = E&-’%—(-V—) + E (U,’.V,' —_ lnz eU"") ’ (46)
and

EPo:u = z dij E Via V},(a+1modN) + g‘ E(z ‘/ia)z - g Z V;z (47)
1) a a s ia

Here, T is the temperature and C an unimportant constant. These equations

can be derived by noting that a function g¢(s), for real s, can be written as

A}

1
g9(s) = -2—7r—z'./ndv./zdu g(v)ert) (4.8)

through é-function manipulations, then generalizing to the caseof g = e~Erorts/T.
A mean field (MF) approximation is then made, which amounts to replacing the
other spins by their average values when calculating the contribution to the inte-
grand due to one particular spin. This allows the integrals to be decoupled, and
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then evaluated by the saddlepoint method. The saddlepoint equations 22~ = 0

and g‘(% = 0 generate a set of self-consistency equations in the MF variables:

1 0Fpos
Vo = ~7 v
1
= —= |2 dii(Vitas1) + Via-1)) + @D Vja — BVia | ,
T J J
exp(Uia)
' —— 2 (= fi)- 4.9
Via > exp(Uss) (= fa) (4.9)

At a saddlepoint, denoted (U, V), one can identify TE’ as an estimate of the

free energy, Er....(V) as the thermal average of E.”.",, and identify the entropy
Sas

§=-% (ffff\ —mY eﬁ\) . (4.10)

Henceforth £ will refer to the quantity E,..., (4.7), with E comprising compo-
nents E,, E, and Ej (in the obvious decomposition). Ishall also take the liberty
of calling T E’ the free energy (F), even at states which are not solutions of the

mean field equations.

Observe from (4.9) that at a MF solution the variables respect a continuous
version of the Potts condition (4.3), i.e. |

Y Vie=1 Vi ataMF solution. (4.11)

a

For a related system [Peterson & Anderson 1987] showed that Vi, was the ex-
pectation value of the spin §;, within the MF approximation. Thus, given the
normalization above, V;, can be interpreted naturally as the probability that
city ¢ is in the ath tour position. An alternative derivation of this result can
be constructed by generalizing an analogous proof for the Ising model given
in [Parisi 1988, Section 3.2]. This méthod also yields the mean field equations,
though with a slightly different expression for Uy,; this is due to the diagonal

‘self-interaction’ terms being handled differently.
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4.1.3 The Mean Field Annealing Algorithm

Athigh temperatures F' ~ —T'S, and so the mean field solutions will tend to be
states near to the (symmetrical) maximum entropy state: V;, = 1/N Vi,a. Con-
versely atlow T, F =~ E, so finding a MF solution will be equivalent to using a
local optimization method on the internal energy — a procedure highly sensi-
tive to the initial conditions and known to be ineffective [Hopfield & Tank 1985,
p.149]. '

These characteristics are similar to those of simulated annealing, which is no
surprise since both it and the MF method compute thermal averages over Gibbs
distributions of discrete states, the former stochastically and the latter through
a deterministic approximation. It is therefore natural to couple the mean field
method with the concept of annealing from high to low temperatures, keeping
to solutions of the MF equations at each intermediate temperature. The re-
sulting mean field annealing method is a powerful and general technique which
has found applications both in combinatorial optimization (e.g. for the GPP
[van den Bout & Miller 1990]) and also in image restoration/edge detection

(see, for example [Bilbro ef al. 1992] and references therein).

In addition to the structure of the energy function, there are three major inter-
dependent issues which arise in completely specifying a mean field annealing
algorithm for an optimization problem:

e the values of the coefficients of terms in the energy function.
o the type of dynamics used to find solutions of the MF equations at each T'.

o the annealing schedule details, i.e. the initial temperature (7,), the rﬁles
for deciding when to reduce T and by how much, and the termination

criteria.
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Elements of all three issues will be addressed in this study. Before defining
the dynamics, a few preliminary remarks concerning terminology and initial

conditions are in order.

The symmetrical state, denoted by V*¥™, with components V;;'" = 1/N Vi,a,
is a trivial solution of the MF equations at all temperatures. In the high T
phase V*¥™ is a stable fixed point. Below a critical temperature, T, this state
turns unstable and the system undergoes a transition in which for each city ¢
the V,, variables begin to cluster, representing the emergence of the large scale
structure of the tour. As the system is annealed below T the clustering process
proceeds until (ideally) Vi,3a;: Via = .0, With a; = a; iff ¢ = j, indicating that
each city has chosen a unique partition, i.e. the state unambiguously represents

a tour. PS introduced a quantity called saturation, ¥, defined as
- % S V2 (4.12)

to characterise the degree of clustering;! clearly £, = 1/N and Zpax = 1. They
also suggested, understandably, setting T, ~ T, and the initial state to be near
to, but displaced by some noise from, the symmetric state; the same will be
~ done throughout most of this study:

4.1.4 Dynamics for Finding Mean Field Solutions

In PS, an iterative mapping method was used to evolve the V;, variables towards
a self-consistent solution of (4.9): at each iteration the V;, were set equal to
the corresponding f;, terms, the procedure being stopped when the |V, — fi,|
terms become ‘small’. The cities could be updated either serially or in parallel.
It is implicit in this method that the U,-a are essentially just auxiliary variables,

computed as functions of the V;, according to the solution form in (4.9) in order

10ther measures could also do this, e.g. an entropy measure — ¥, Vs In Vis, but X shall be
used here for consistency with the original work.
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to calculate the f;, values. Notice that we could equally well define dynamics
which evolve the U;, variables, whilst treating the V, terms as auxiliary variables
computed as functions of the U;, via the solution form V;, = e¥«/ T, e, Such
dynamics on U;, will not be further elaborated on, except to say that in neural
terms they correspond to updating the potentials, whilst V;, dynamics refer to
updating the firing rates.

In the current work, the iterative dynamics used in PS are generalized to the

form:
Vit = Vi (faa = V), 0<7 <1 «.13)

with the U;, terms acting as auxiliaries, as above. Setting v = 1 recovers the PS
dynamics, whilst the v — 0 limit gives the first order Euler integration method
for the differential equation dV,/dt = fi. — Vis, the fixed points of which con-
stitute MF solutions. The reasons for studying these differential dynamics are
threefold:

e contrary to the claims in the original paper, simulations (reported in sec-
tion 4.4.3) employing parallel update V™" = f;, dynamics do not give
satisfactory performance. Specifically, the network converges into a low
¥ state rather than a high ¥ tour state. Similar problems in a mean field
network for graph bisection were previously overcome by using the (4.13)
dynamics with a small step-size v [Peterson & Anderson 1988], though no
analysis was presented to accdunt for why this should help.

e as will be discussed later, the scaling behaviour of g implies that it is
desirable for T to be as low as possible. Therefore one wants to understand

how, if at all, T, depends on ~.

o the differential equation solved by the continuous time limit of (4.13) is
of a similar form to that which would govern the dynamics of a hard-
ware electrical circuit designed to implement this algorithm. Technically,
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the division operation required for the f;, terms would make the circuit
more complex than that for the Hopfield-Tank network discussed in sec-
tion 1.5. Nevertheless, it is of interest to study the network using small +,

to examine the potential circuit behaviour.

One attractive feature of the v = 1 dynamics, remarked in PS, is that the V,,
variables automatically satisfy the normalization in (4.11), even at states which
are not solutions. A similar property holds under the general v dynamics. To
see this, form the sum over partitions a of both sides in equation 4.13 for any
city ¢. This leads to

AP = (1 — YA + v 419

where A{™ denotes }_, Vi, at timestep n. Thus the V;, remain normalized if they
were normalized at the previous timestép. Furthermore, the dynamics ensure
that any city having A # 1 will relax exponentially towards A = 1, since, writing
A™ =1 — ", it follows from (4.14) that "+ /™ = (1 — v). This is clearly a

necessary property, as E, recall, was defined assuming Potts normalization.

Finally, there is the issue of whether the dynamics have an associated Lyapunov
function in the continuous time limit. As the fixed points are, by construc-
tion, minima of the free energy function, it is natural to conjecture that F will
be a Lyapunov function, as indeed it is for classic analogue neural networks
[Hopfield 1984] employing potential dynamics. Skipping over the algebraic de-
tails, it can be shown that the continuous time dynamics, i.e. dV,,/dt = f,-a — Vias

imply .
d_F _ _Tz d‘/c'a dUia
dt ~ "4 dt dt

It is not clear whether the rh.s. here is always < 0 (even after expanding the

(4.15)

dU;, /dt terms). Therefore it remains an open question whether the Lyapunov
function is F' or some other function, or indeed whether such a fuhction exists
for this system. Incidentally, U;, dynamics also give (4.15), with expansion of
dV.,/dt similarly leading to no clearcut answer for the sign of dF'/dt. However,
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although the existence of a Lyapunov function is clearly a desirable property (as
it gives some guarantee that the system will be ‘well behaved’), it can be argued
that for algorithms employing annealing it is not crucial. To understand why,
first note that the locations of minima in the free energy landscape will typically
only change by small amounts between two adjacent values of temperature
in the annealing sequence. Thus, if the system has converged into one such
minimum, it will only need to move a short distance through phase space in

order to track the minimum. Relaxational dynamics will suffice for this task.

This contrasts with analogue Hopfield networks, where the system evolves
along the whole trajectory from the initial state to a vertex, at a single tempera-
ture. In this case the system only ever reaches a MF solution at the very end of
the trajectory. It is therefore imperative to have some understanding of what the
dynamics are doing along the trajectory: the knowledge that F' is a Lyapunov
function for these networks provides that.

Analysis was presented in PS which estimated T as a function of the {d;;} dis-
tribution and parameters a and S, for both parallel and serial updating versions
of the V;, — fi, dynamics. In the following two sections, the original T, analysis
is generalized to the (4.13) dynahﬁcs (for both the parallel and serial cases).
The basic structure of the new analysis remains that employed by Peterson and
Soderberg; introducing the y parameter brings additional complexity to the

analysis but does not alter its basic structure.

4.2 Parallel Updating T.(3,y) Analysis

Using parallel updating, consider a state at iteration n, perturbed slightly from
the symmetric fixed point:

Vi = V™ +el, el < 1Vi,a. (4.16)
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Our goal is to find the conditions under which the dynamics of (4.13) cause the

fluctuation terms ¢;, to grow and hence for V*¥™ to become unstable. Using

(n+1)

equations 4.13 and 4.16, ¢;;"" can be expressed as

g(n D)
la

= Yintn) _ yoym
= e2(1—7) =V + v fi (4.17)

Performing a Taylor expansion of f;, around V**™ we have, to first order

n n n a ia
Ea+l) ( ) 1 B 7) + 726'(’6) a‘f;b Vo
J

(4.18)

which, using (4.9), gives

eat = X1 -+ v [ > dij(€5a + 3"2-1)—a26""+ﬂe‘"’] (4.19)

Following Peterson and Soderberg, this can be recast in terms of Fourier coeffi-

—2mika

cients & = N~1/2 e~ N g, to give the matrix equation
n 24 ~(n
) — ((1 I+ ﬁM(’=)) & (4.20)

where the matrix M® is defined by M}’ = —2cos (2rk/N) d;; — & + B6;;, and
Iis the N x N identity matrix. Note here that superscripts on the fluctuation
terms label the iteration number, whereas on the evolution matrices and asso-
ciated eigenvalues they label Fourier modes. From (4.20), the evolution of the
€ and hence the ¢;, variables depends upon the dominant eigenvalues of the
symmetric matrix M(*¥). Letting 6%, and 6%, denote the extremal eigenvalues
of M¥), and defining fmay = Maxizo(0%,,), Omin = mMing4o(8%; ),> we see that T,
the temperature below which at least one of the Fourier fluctuation coefficients
will grow, hence turning the symmetric state V*¥™ unstable, is given by

1 Y
The Y0min/(y — 2) case here corresponds to the situation &;*" = —&{? at T, ¥’

being the Fourier mode giving 0. If the transition does proceed through this

2As €9 = N~Y/23 €is and the normalization (4.11) implies ¥, €is = 0, clearly & = 0, Vi,

therefore the eigenvalues for mode k = 0 are irrelevant.
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channel, then at T, e{;*" ~ —&!?; in other words the dynamics will cause the Vi,
variables to oscillate about V,;'™ on successive updates, rather than to evolve
smoothly, as they do when the transition proceeds through 6,,... Showing how
to use the parameter J to avoid this troublesome oscillatory transition was one
of Peterson and S6derberg’s major contributions. Their first step was to analyse
the eigenvalue spectrum in order to estimate yax / min in terms of a, B and three
parameters characterising the TSP instance, namely the number of cities N,
plus the mean (d) and standard deviation (o4) of the off-diagonal elements in
the {d;;} matrix. Their key results, summarized below, can be imported directly

into the current work:

e By defining a matrix A(*) with elements
AY = g(k)di; — a(1 - &;), (4.22)
where g(k) = —2cos(2rk/N), the matrix M%) can be written

M® = (8 - a)I + AP, (4.23)

Bmax /min = (B — @) + Amax / min (4.24)
where Apax = Maxzo(A,. ), Amin = MiNgzo(AL,)), the A* being eigenvalues

of AR,

e Using perturbation analysis, to first order, A*%) has two distinct eigenval-
ues:
— AF = (N —1)(g(k)d — a), with eigenvector (1,1,1,---).
- M = —(g(k)d — a); this is an (N — 1) fold degenerate group, with

eigenvectors orthogonal to (1,1,1,- - ).

e At second order there is a negligible correction to Af but the degener-

acy of the A\ is lifted, with the eigenvalues .spread over a range with
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limits —(g(k)d — a) & g(k){V/Nos. ( is a term which characterises the
width of the A, range, its value was found empirically by PS to be
xV' N with x = .65 for uniformly random square distributions of cities.

e At this stage PS made implicit assumptions that Amin = mingzo(Af) and
Amax = Maxgxo(AX ). Basic algebra shows that the first assumption is valid
provided d > o4x which, as will be discussed shortly, should be true for
most reasonable {d;;}. For large values of N, the second assumption is
valid only when

a > 2(d — ogx)- (4.25)

We will assume here that « is chosen to satisfy this inequality (the issue of
setting o is dealt with more fully in section 5.1). So finally, the PS estimates

for A\n.x and A\, are

Amin = —(N —1)(2d + @),  Amax = @ + 2d + 2V No,. (4.26)

Incorporating (4.24) into the current analysis through (4.21) gives:

1 T (B et
TC_N ax(ﬂ a+)\w,(7_2)(,3 a+/\mm)). (4.27)

Noting that v/(y —2) < 0 for 0 < v < 1, the oscillatory transition can thus be
avoided by setting g : 8 > f3,, where

o= o= 2 YOhmin = M) + Zhena] (4.28)
Simple algebra yields:? |
- — A
T.(B,) = 2 N(Amax Amin) (4.29)
Tc(ﬂ) — Tc(ﬂo) + (,B - ﬂo)/N if ﬂ > ﬂo (430)
TC(:BO) + .0_7\,227_1_2 lf ,B S .Bo-

Using the estimates in (4.26) gives f,, in the large N limit, as

Bo = Nd[y(xoa/d + 1 + a/2d) — 2x04/d) . (4.31)

3Note that these equations reduce to the corresponding PS equations when v = 1.
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This is a key result, showing how for parallel updating, the sign of 3, depends

on three factors:

1. The particular problem instance {d;;}, through the product of ¢,/d and
X- 0a/d is readily computable from the {d;;} matrix and can also be
calculated analytically (in the N — oo limit) for simple distributions. For
example, a uniformly random distribution in a square box of side L has
d = 0.521L [Bonomi & Lutton 1984], and by a simple integral (d7;) = L?/3.
Hence o4/d = 0.478 for this distribution. Rectangular distributions cause
04/d to rise, with the limiting 1-D case having o4/d = 1/+/2. Calculations
performed for model distributions in which the cities are equally divided
amongst several distinct clusters suggest that o4/d is usually a constant
(< 1) for this class too. The x factor is less transparent. Itis not clear which
property of the city distribution it depends on; third order perturbation
analysis may be one approach worth future exploration in this regard.
However, empirically, the x values for the three distributions discussed

above are approximately 0.62, 0.8 and < 1 respectively, for large N.*

2. The value of o; ostensibly a is a free parameter, but, as will be discussed
in section 5.1, the form of the energy function leads to 2d being a suitable

value for a. Thus the value of « is determined by the problem instance.

3. The updating step-size, ~.

Thus for any given TSP, the only way to control §, is through the parameter
v. If v is fixed at 1.0, as in PS, then this degree of control is lost, with adverse
consequences on the algorithm’s performance: for the types of distributions
discussed above, xoa4/d <1, so from equation 4.31 S, will increase linedrly
with N. But with this scaling on £, and hence also on 3 as we require 8 > £,,

“Distributions that contain a small number of very distant outlying cities have o4/d ~ VN
and { ~ N*, 0 < k < 1/2— such distributions will not be considered further.
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the tour-length energy term will effectively be ignored, since the changes in
energy in going from an initial ¥,,;, state to a final £,,, state will be such
that AEg/AE; ~ N. The likely result is either a poor quality tour, or a state
which does not represent any valid tour at all. Thus a step-size value of 1 is

inappropriate for dynamics updating the cities in parallel.

To avoid 3 being forced to scale with NV, ¥y must be chosen so that 5, < 0. From
(4.31) this can be done by choosing v below a critical value, ~.:

_ 4xo4
C 2x04+2d+a’

Ye (4.32)

The work so far has centred on how the choice of #is governed by two objectives:
first, to keep f as low as possible 50 as to maximize the influence of the tour-
length term in the energy function, and second, to satisfy 3 > 3, so that the
transition at T. proceeds smoothly rather than through the oscillatory mode.
The analysis so far implies that 5 may safely be allowed to fall to zero, provided
that v < v.. However, we shall see later that, irrespective of the updating rule’s
form, in order for low cost tours to be self-consistent solutions of the mean field
equations, 8 must be a small but non-zero O(1) term. Using (4.26) and (4.27)
it is straightforward to check that this additional constraint on | B does not alter
the range of satisfactory v values — ~, still defines the upper limit of the range.

In summary, the problem with parallel updating using Vi, = f;,, is that in order
to ensure that the system evolves smoothly at the critical temperature, the coef-
ficient 3 must be of O(N), which destroys the algorithm’s ability to find decent
tours. With reference to (4.26) and (4.28), this arises fundamentally because, for
the types of city distributions discussed earlier, the dominant eigenvalue over
the set of matrices A*) is ., rather than An.., and 8 must be taken large to
compensate for this. By moving to incremental dynamics of the form in equa-
tion 4.13 and taking v small, the effect of the negative eigenvalue’s dominance
can be overcome, essentially by weighting the new V;, values to be close to the

old ones, rather than by using an unacceptably high 3.
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4.3 Serial Updating T,(3,v) Analysis

Serial updating involves applying the dynamical rule of (4.13) to each city in turn
until all have been updated. The order in which the cities are updated is random.
Whether this order remains constant or varies throughout a run does not alter

the T, analysis. A fixed order is employed in the software implementation.

The early steps of the analysis, i.e. writing the full equation for the evolution of
fluctuations around the symmetry point, linearizing it, and then transforming
into Fourier space, are very similar to those in the parallel updating case, and
so will not be detailed here. However, as the calculation of each Vi will
in general involve using some variables from the previous iteration, plus those
already updated during this sweep, the serial analogue of equation 4.20 is given
by

B = (1— I + 1z (LW + (U + D)) (4.33)
where the cities have been relabelled to match the updating order. The matrices
U®, L*) and D are respectively the upper triangular, lower triangular and
diagonal components of the matrix M(¥) used in the parallel updating analysis.

Gathering like terms yields
(NTT —yLW)e* = [NT(1 — )1 +4(U® + D)) & (4.34)
and hence

&t =W, WO = (NTT-yL®)™ [NT(1 - 7)I ++(U® + D)].
(4.35)
W® is in general non-Hermitian, and will therefore possess complex eigenval-
ues. T, is the temperature at which the first eigenvalue (in the set of W(*) matri-
ces) touches the unit circle. Following the method of Peterson and Séderberg,
consider the two distinct cases for an eigenvalue x of unit modulus, namely

p=+1and u = e¥% ¢ # 0.
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In the former case we have &{**" = &}”, which, upon substitution into (4.34),
yields

g — 1 — . (k)] 2(m)

& [(1 DI+ = MO) & (4.36)

implying that the matrix operator in this line has eigenvalue +1. But this is just
the evolution operator found for the parallel updating case. Hence the u = +1
mode causes instability at T = Opax/N.

Substituting 1 = % into (4.34) and multiplying through by e~*¢, leads to

(e U + #LONED = [NT(e® — (1~ 7)) — e #(6 — a)] &, 437)

The left hand matrix operator is Hermitian, and so the imaginary part of the right
hand numerical term must vanish. This implies that T' = v(a — B)/(2N — N¥).
Thus T for the case of serial updating is given by

1.(67) = mox (T2 (5 - a-+ A 38

From this resultone can go on toderive the serial versions of equations 4.28—4.30.
The key point however, is that the types of city distributions discussed earlier
have Amay ~ N, so 8, — the value of § above which the leading W) matrix
has a dominant eigenvalue of +1 at 7. — is negative for all 4. Thus, for the
B values of practical concern i.e. those > 0, T, is (8 — @ + Amax)/N, as it also
is for parallel updating, provided that 4 < 4. in the latter case. Indeed it is
straightforward to show that, in the limit of ¥ — 0, the analytical T, values for
the serial and parallel updating cases become equivalent across the entire g
range, for any city distribution. This provides a consistency check on the serial
and parallel T,(3,v) analyses: from (4.13) the change in any of the mean field
variables during an update is O(y), thus in serial updating the effect of using
some variables which have already been updated during this sweep, rather than
their values at the previous sweep, becomes negligible as v — 0. Therefore the

two updating modes ought to be equivaient in this limit.
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In summary, for practical values of 3, generalizing the dynamics to the form of
(4.13) should have no effect on the critical temperature if the MF variables are
updated serially. With parallel updating however, the situation becomes more
interesting; for low values of 3, T, is expected to become independent of ~ only
if 4 falls below a certain critical value. Because of the parallel case’s greater
complexity, the numerical experiments in the following section focus almost

exclusively on this updating mode.

4.4 Numerical Tests of the T,(3,v) Analysis

The foregoing analysis of the transition temperature’s parameter dependence
was tested through extensive numerical experimentation with a software imple-
mentation of the algorithm. This work was performed on a Meiko Computing
Surface, a message-passing multicomputer system. Using either parallel, or
(perhaps surprisingly) serial updating, the algorithm can be efficiently mapped
onto this parallel architecture; the parallelization strategy is discussed in Ap-
pendix A.

Before presenting the T¢(f3, v) data, some technical details of how the algorithm
was actually implemented will be covered. This is an important — though
often neglected — issue in neural networks research. The path from a theo-
retically clean model to a robust software implementation often involves the
introduction of new parameters to specify or control secondary aspects of the
algorithm, such as the initial conditions, convergence and termination criteria.
Sensitivity to the values of these ‘secondary’ parameters complicates the task
of interpreting the algorithm’s behaviour as a function of its ‘primary’ parainé
ters, viz, the coefficients of the terms in the energy function and the dynamical
timestep. In the implementation of the Potts TSP algorithm used here there are

several secondary parameters, the values of which can affect markedly both the
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measured transition temperature and final performance. It is therefore clearly
necessary to understand these issues, at least qualitatively, before one can make

any sensible comparison with the analytical results.

4.4.1 Implementation Details

The general approach is to initialize the system close to the symmetric state at
a temperature near T, then, allowing the system to converge to a fixed point at
each temperature, anneal (i.e. reduce 7) until either the system reaches a stable
high saturation state or some other termination criterion is satisfied. Specifically,

the implementation used here has the following ingredients:®

initial state V*=° = (1 + &;,)/N, with the &, being random variables drawn
uniformly from [—¢, €]. Clearly £ should be < 1.

convergence At each temperature the V,, variables are updated by the rule in
equation 4.13 until they reach — to a certain tolerance — a fixed point,
which, as discussed earlier, represents a free energy minimum. The degree
of convergence is monitored through the quantity A***, denoting the sum
ia [Via — fia]- If A%t < A’, where A’ = A(0.05/N), the system is deemed
to have reached a fixed point and the temperature is reduced. A will

henceforth be called the tolerance parameter.

annealing schedule A simple exponential scheme is used, i.e. after reaching a
fixed point at T, T — T x T,, where T, € (0,1) controls the cooling rate.
Roughly speaking, T, should be set to at least 0.9.

termination criteria Three criteria are employed, the first being that the satura-
tion ¥ exceeds some threshold near to . at a fixed point; a threshold of
0.9 was used in this study. The others are designed to trap rogue runs, by

5These broadly follow the method used in PS but with some additions and improvements.
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terminating runs which either fail to reach a fixed point within a certain
 number (M) of sweeps at some temperature (a sweep being one update
for every city), or which allow T to fall below Timin, (Trmin < T.), without

ever satisfying the £ > ttresh criterion. T was set to 1073,

tour extrapolation A robust procedure for generating a likely tour from any
final {V..} configuration was developed. First, for each city i, find the
partition i’ visited by that city, under the rule: Vi = max,(Vi.). If every
partition has exactly one visit, then the mapping onto a city ordering,
i.e. tour, is trivial. If this is not the case, then strictly speaking no tour is
defined. In practice however, a tour can still be generated from such states
through a modest amount of post-processing to order the cities which have
visited a common partition. In the current implementation, for partitions
visited by two cities the better of the two possible orderings is chosen. For

partitions visited by three or more cities, a random order is chosen.

44.2 Influence of the Secondary Parameters on 7,

Sections 4.2 and 4.3 developed expressions for T, the value of the temperature
below which the symmetric state turns unstable. This section demonstrates
that the effect of the secondary paraineters is typically to drive the experimental
values of T, below those predicted, and presents arguments to account for why
this should happen.

Defining the experimental transition temperature, T, to be the temperature
at which X first exceeds Xn,in(= 1/N) by 1%, a series of runs were performed to
investigate the dependence of T:*** on the tolerance (A), level of initialization
noise (¢), initial temperature (7,), and cooling rate parameter (7;). Two TSPs
with cities from a uniformly random unit-square distribution were studied,

having N =50 and N = 200. Ten trials using different initialization noise for
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the {V{"="} state were run at each parameter point; data points and their corre-
sponding error bars in the graphs represent the mean and standard deviation
values over the ten trials. These procedures were used for all the experiments
throughout this chapter, unless stated otherwise. The runs reported in this

section were performed using parallel updating dynamics.

The values of the primary parameters (a, 3,~) were fixed at (1.0,0.5,0.2) and
the values of the secondary parameters (A, ¢, T,,T,) varied. Figure 4.1 shows
the variation of T*?* with A and ¢ across a range of T, values, for fixed T, at
N = 50; the N = 200 data show similar trends. Temperatures are normalized to
the predicted transition temperature, T'**, calculated from equations 4.26 and
4.29-4.31, using the continuum values of d and o (i.e. 0.52 and 0.25) and a x
value of 0.65, typical for TSPs of this size. The theoretical profiles in Figures
4.1 and 4.2 are constructed on the simple assumption that the transition is

immediate for all 7T, values up to T**°, and occurs at T*<° for T, > T'*he°.

The main feature of Figure 4.1 is that, for T, ~ Tk¢°, T** js usually substan-
tially lower than T'*h°, with the difference increasing as 7,/T*¢° grows further.
Furthermore, the T** values are higher, i.e. closer to the theoretical values, for
high values of the initialization noise (¢), or low tolerance (A). These results can
be qualitatively explained by the following arguments. Consider the dynamics
at T, ~ T***°, with low ¢ and/or high A: the V*¥™ state is unstable, therefore
the noise causes A*** to grow (as the system moves away from that state).
However, if A is so large that, despite its growth, A**?* at T, is still quickly < A’,
then by the convergence criterion defined in section 4.4.1, the system will be
deemed to be at a fixed point and T will be reduced. In this manner, T may fall
quite far below T?***° before the systém has time to move far enough away from
the symmetric state to register a transition under the ¥ > 1.01/N rule. Thus
Te=?* will be lower than T, even if the eigenvalue analysis which gave the

Thee expression is correct.
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Figure 4.1: T plotted against T,, with both quantities normalized to Tte;
T, = 0.95 for both plots. (a) collective plot showing the effect of varying ¢ with
A fixed at 1.0. (b) collective plot showing the effect of varying A with £ fixed at
0.1.

Similarly, a very low ¢ value for T, ~ T***° requires many sweeps before the
instability can grow to any extent. But unless A is commensurately low, the
‘implementation rules will declare the fixed point reached (and hence reduce
T) long before the system has had sufficient sweeps to move far away from
the unstable equilibrium point at that 7. The behaviour for T, > T?*A*° can also
be understood in these terms: above T'**° the symmetric state is stable, so
any initial noise will be reduced or even extinguished by the dynamics. Thus,
once T has fallen to =~ Tt the effective noise level will be very small, and the

argument above becomes applicable again.

In essence, this account argues that the T:*** values in Figure 4.1 are less than
T?he> because the secondary parameters used did not allow the system sufficient
sweeps to relax fully at temperatures close to T**«°. This phenomenon is rem-

iniscent of the ‘critical slowing down’ observed in simulations of certain spin
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Figure 4.2: T2 plotted against T,, with both quantities normalized to T*<.
Collective plot showing the effect of varying the annealing rate, with A = 1 and
£ = 0.01. Circles denote N = 50 data, triangles N = 200; the error bars are of
order 0.01 or less, and so have been omitted for clarity.

systems, in which the equilibration times grow as a second-order phase transi-
tion is approached. Behind this similarity however, the underlying causes are
different. In the spin systems this behaviour is due to divergence of the correla-
tion length, whereas in the current system it results from the leading eigenvalue
in (4.20) only just exceeding unity for T just below T, thereby requiring a large
number of sweeps before the system is driven along the associated eigenvector

and towards the new free energy minimum displaced from the symmetry point.

One simple way to test this idea is to anneal more slowly, thereby allowing
the system more time to relax across all temperatures. Figure 4.2 shows the
effect of varying the annealing rate (7;): the T:*?* values do indeed rise as T,
rises. Furthermore, notice the convergence to the theoretical profile as 7, — 1
and the lack of any significant dependence on N in the data. These points are
important, because the earlier interpretation of the Figure 4.1 data first assumed
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the underlying T. analysis to be correct and then argued why typical choices
of the secondary parameters lead to a systematic reduction in T:***. Figure 4.2
provides direct support for the veracity of the T, analysis, albeit strictly only for
this particular («, 3, v) point. However, using extremely slow annealing and /or
low A leads to unacceptably long run times. Hence in the experiments reported
in section 4.4.3 checking the functional form of T,(3, ), no attempt has been
made to show convergence to the theoretical profile. Instead, practical settings
of the secondary parameters were employed and the existence of a systematic

reduction factor (for 7.) assumed.

Finally, it éhould be noted that the secondary parameter settings (particularly
T, and A) not only complicate the issue of checking the T analysis, but they also
have a strong influence on the quality of tours found by the algorithm. Since
the mean field approach can be viewed as a deterministic form of simulated an-
nealing, it is not surprising that, as in simulated annealing, the solution quality
improves as T, — 1. A can also be viewed as a cooling schedule parameter, as it
determines the number of sweeps performed at each temperature — in general
the lower A is, the better the quality.® The interesting point, brought out in
Figure 4.3, is that T, influences the quality chiefly through determining 757*.

As T is lowered through T?%*, first one and then more eigenvalues of the
{(1 — 7)1+ % M ®} set of matrices in equation 4.20 exceed unity in magnitude,
opening up eigenvectors along which the system can move away from the sym-
metry point. In pictorial terms one can think of a growing number of ‘downhill’
paths in the free energy surface leading away from the symmetry point. Thus a
configuration V lying close to the symmetric point V*¥™ (such that £ < 1.01/N)
at a temperature far below T*** is likely to be driven by the dynamics into the
nearest free energy valley — the choice of which will be governed by the pertur-

bation variables ¢;, — rather than having any chance of moving into a deep free

SVery stringent A values (e.g. < .001) may, however, prevent the system ever converging to a
ery g g Y, P ys rging

fixed point, causing premature termination of the run into a low X state.
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Figure 4.3: Tour-length performance plotted against T***. The y axis plots the
mean tour percentage excess over the best Or*-opt tour for this TSP. All data
points refer to N = 50, using the same range of T,/T "¢ values as in figures 4.1
and 4.2, with A = 1 and M = 500. The error bars are omitted for clarity.

energy minimum. So, runs in which T¢? is significantly below T*¢ (whether
through having T, < T ** or through the secondary parameters’ impact) tend

to find poor free energy minima and hence generate low quality tours.

4.4.3 Experimental T.(3,~) Behaviour

From equation 4.30, the parallel dynamics analysis predicts that T..(3) is a piece-
wise linear function, having a positive gradient for 8 > 3, and a negative
(y dependent) gradient for g < f,, where f, is positive if ¥ > 7. (from equa-
tions 4.28-4.32). For the two TSP instances used in section 4.4.2, the analysis
was tested by conducting runs over a range of 3 values for several v settings,
and measuring T¢*?. Taking, as before, 04/d = 0.478 and x = 0.65, gives (from
equation 4.32) the predicted value of v, as 0.27; data was collected at vy values
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Figure 4.4: T plotted against 3/N, for y = 1.0, 0.6, 0.2, and 0.05, in graphs (a)—(d)
respectively. Solid lines represent the theoretical profiles, dotted lines the data,
the error bars are negligible and have been omitted. Parameter settings: a =1,
T, = 1.2T%e, T, = 995, A =1, £ = .01, M = 5000.

above and below +.. Figure 4.4 shows the results for N = 50. The N = 200 data
overlies the N = 50 data almost exactly, and so has not been plotted.

Modulo the systematic scaling down from the secondary parameters discussed
in section 4.4.2, the data is consistent with the theory.” Notice that the discrep-
ancy between T°?* and T'*¢° grows as vy decreases. This trend is explicable

"Further runs at a few selected (3, ) points using more stringent (A, T;.) settings produced
Te=P! /T2he® values climbing towards unity, thereby also lending sapport to the numerical
accuracy of the analytical T.(3, v) function.
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Figure 4.5: T. plotted against v for 3 set to zero. (a) N = 50 and A = 0.001,
(b) N =200 and A = 0.01. All other parameters are as in Figure 4.4.

through an argument similar to those given in the previous section: assuming
that the system is near to V™™ at a temperature just below T, the dynamics will
attempt to move the system out from that point towards a new local minimum.
Initially, because the symmetric point V°*¥™ has only just turned unstable, A7
will be small, smaller than the A’ threshold. Thus the implementation will only
perform one sweep per T value until T has fallen some way below T*¢, rather
than allowing a full relaxation at each temperature. Clearly a small step-size
further restricts the system’s ability to move far through phase space in these
conditions, small values of ~y therefore accentuate the difference between T**?*

theo
and T,

In addition to giving the transition temperature, the foregoing analysis also
showed that the type of transition should change at 8 = f3,, being oscillatoryfor
B < B, and smooth for § > f,. The numerical studies support this. For 8 < S,,
the runs terminate through lack of convergence to a fixed point at, or just below,
T:***, into states in which ¥ is still only O(N~'). For B > ,, the algorithm
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succeeds in generating high ¥ states, though, as discussed earlier in section 4.2,
if ¥ > ~. these states will only correspond to low quality tours, e.g. for N = 50
and v = 1, the tours are about twice the optimal length.

A complementary way of assessing the T(3, v) theory is to vary y whilst keeping
B constant. The results of this test are shown in Figure 4.5, for 3 = 0. The
theoretical profile (dérived from equations 4.26—4.32) shows T falling non-
linearly as v is reduced from 1 to 4., and reaching a plateau below 7.. From
equations 4.29-4.31, the value of T. on the plateau is 2yo4s. Comparison with
experimental data is complicated by the variation in size of the scaling factor for
different values of v, as seen in Figure 4.4. Very small A values were employed
for the Figure 4.5 runs, in order to try and minimize the reduction factor over the
whole v range. The N = 50 data is in reasonable agreement with the theoretical
profile, particularly for low v — the T, curve flattens out close to the expected
7. position, with a value also close to that predicted. In the N = 200 plot, the
‘plateau’ region is less well defined; this is probably because these runs had to
be performed with A = 0.01 rather than 0.001, due to the very long run times
using A = 0.001.

All of the experiments reported so far were for the case of parallel dynamics.
Some experiments were also conducted to check the serial 7. analysis in the
B > 0 range. As in the parallel case, the experimental values of T. were found
to be depressed by secondary paramefer effects, but again, modulo this (y-
dependent) scaling down factor, in agreement with the analytical predictions.
Furthermore, as predicted earlier, for very small 4, e.g. ¥ < .05, serial updating
runs behave almost identically to those employing parallel updating, not just
in regard to T, but also in the final configurations and the number of sweeps
required to find them.
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4.5 Conclusions

This chapter has considered the behaviour of the mean field Potts TSP net-
work under dynamics which implement an Euler integration scheme for an
appropriate differential equation, with a user-defined step-size 4. The earlier
iterative dynamics studied by [Petefson & Soderberg 1989] are a special case of
these new dynamics. An analysis by the above authors of the network’s critical
temperature, i.e. the temperature at which the symmetric maximum entropy
state turns unstable, was generalized to the case of the new dynamics, for both
serial and parallel updating modes. Understanding the parameter dependence
of this temperature is vital in choosing values for the network'’s free parameters,
o, B, and v. For example, the analysis revealed a critical step-size value, above
which the algorithm has inappropriate scaling behaviour for large problems

when using parallel dynamics.

Testing of the predictions for the critical temperature against simulation data
was complicated by the simulations’ sensitivity to various secondary parame-
ters, e.g. the annealing rate, the level of initialization noise, and the convergence
criterion. Systematic numerical study of these effects, which also have a strong
influence on the final tour quality, led to an understanding of their causes.
Armed with that knowledge, it was possible to verify the theoretical expres-
sions both qualitatively with regard to the functional forms, and also, to a

reasonable degree, quantitatively.



CHAPTER 5

Potts TSP Network: Parameter

Optimization and Performance

Building on the work presented in the previous chapter, this chapter examines
further issues in the use and performance of mean field Potts TSP networks.
The chapter is organized as follows. Sections 5.1 and 5.2 present analytical
methods for optimizing the values of the two free coefficients in the system’s
energy function. Data from numerical experiments supports the theoretical
work. As well as being of practical benefit, these analyses also indicate that the
energy function remains properly balanced in the limit of very large problems.
Section 5.3 discusses the quality of the tours generated by the algorithm, both
for Euclidean problems as well as for instances from the much harder class
of non-Euclidean random metric problems. The simulations were performed
using non-trivial problem sizes, i.e. TSPs with 50 or 200 cities. An explanation

for the poor performance on random metric problems is proposed.

101
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5.1 Choosing the Value of Coefficient o

From section 4.1, recall that the energy function for the Potts spin model is
of the form: E = E; + E, + Ej, where E, = ¢ 3°,(¥; Sia)?. The role of E, is to
encourage the system into a configuration in which every partition a is occupied
by exactly one city, because only such configurations represent well defined
tours. It does this through penalizing any non-uniformity in the distribution of
the 3°; S, terms across the space of partitions. In the mean field Potts model,
where now E, = §3°,(Z; Via)?, E. naturally plays a similar role. The strength
of this restraint term is clearly governed by the value of the coefficient, a. In the
original paper on the mean field Potts model, randomly distributed unit square
Euclidean TSPs with N = 50, 100, and 200 were all studied with a set to 1. The
authors acknowledged that the appropriate value of a would be dependent
on the intercity distance scale. However, a rationale for the precise manner in
which a should depend on the {d;;} matrix was not given, nor was any non-
empirical justification presented for the choice of a =1 in the particular case
of unit square TSPs. This section provides a theoretical basis for choosing an

appropriate value of ¢, valid for both serial and parallel updating dynamics.

The general principle guiding the choice of « is that it should be chosen as small
as possible, yet large enough for the E, term to provide an effective restraint.
Excessively large values allow the network effectively to ignore the tour-length
term in E, with the result that the network will produce configurations which
do satisfy the problem’s constraints (i.e. configurations which represent tours)
but which are profligate in their tour-length cost. Conversely, if « is too low, it
becomes energetically favourable for the network to settle into a configuration
which does not represent a tour. The task therefore is to develop analytical
understanding of conditions which bound the value of a from below, through
the requirement that a be just sufficient to generate an effective E, restraint term.

Three distinct, but complementary approaches to this task are now presented,
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followed by a numerical investigation.

5.1.1 The AF Approach

Consider the behaviour during the initial stages of the algorithm, when T' = T,
and the network is either in, or close to, the symmetric fixed point V*¥™, defined,
recall, by V;, = 1/N Vi, a.

For simplicity, let us take the network to be at the symmetry point. The energy

components can then be written (trivially) as:
E" = (N -1)d, EJ" =aN/2, EF™ =-/2, (5.1

where d, recall, is the mean inter-city distance. Note here that, given the Potts
constraint (4.11), E3™ is the minimal value of E,. For sufficiently low o,
clearly E;*™ > E3¥™, so the system will place more emphasis on reducing E,
than on maintaining E, at its floor value. As E; only involves pairwise spin
products between adjacent partitions, observe that any configuration in which
the 3°; Vi, terms alternate in a 0-2-0-2.. .. pattern over the partitions has E; = 0,
the minimum possible value of E;. Such a pattern would, hoWever, cause F,
to rise to aN. Consider in particular the configuration, henceforth termed the
‘0-2-0-2’ state, which is defined by:

ia —

{ 2/N for e = (2k) mod N, keZ, Vi 52)

| 0 fora=(2k+1)mod N, k€ Z, Vi

The net change in E (ignoring A Ez which is of a lower order) in shifting from
the symmetric state to the “0-2-0-2’ state would be

AE = N(¢/2 —d)+d = N(a/2 - d) (5.3)

where the approximation is valid for large N. So provided that > 2d, the sym-

metric state will have a lower internal energy than the ‘0-2-0-2" state. However,
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one must remember that self consistent solutions of the mean field equations
are minima, not of the internal energy but of the free energy, F. Therefore
the entropies of the two states must also be considered. Rather than using the
expression identified in equation 4.10 as the entropy, it is simpler to exploit the
connection between statistical mechanics and information theory [Jaynes 1957],
by using the information-theoretic entropy measure, — 37 p; Inp;. This mea-
sures the amount of uncertainty associated with a process having n possible

outcomes, where p; is the probability of outcome s.

By interpreting V,, as the probability of city : being in partition a, the uncertainty
about the position in the tour of city : can be written as — 3, Vi, In V;,, and
hence the total uncertainty about which tour is represented by the configuration

written as:
S= —Zzwaln‘/}a (5-4)

This leads to S values of NIn N and (NIn N — N In2) for the symmetric and
0-2-0-2' states respectively. So a transition from the symmetric state to the
‘0-2-0-2’ state will increase the free energy, provided a > 2(d — T'In2). Thus
this A F argument suggests that 2d is a safe choice for a. The reasons why the
‘0-2-0-2’ state must be avoided are twofold. Firstly, because as T is lowered they
do not produce valid tours — alternate partitions are left unvisited by any city.
However, as indicated in section 4.4.1, it is always possible to infer a possible
tour from any configuration. But evén if this is done, the length of the resulting
tour will still be far from optimal, because with E; minimized to zero early on,

there is nothing subsequently to drive the system towards a low cost tour.

One must, however, be cautious in drawing conclusions from this argument.
Whether the network will actually move to a state of lower free energy depends
on the dynamics. Recall from section 4.1.4 that we were unable to prove that F
was decreased by the dynamics in the y — 0 limit, even though minima of F are

fixed points of the dynamics. Therefore there is no guarantee that the network
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will evolve into a nearby state of lower F, even if there is no intervening energy
barrier between the two states.

5.1.2 The Self-Consistency Approach

The AF approach found the parameter conditions under which the unwelcome
‘0-2-0-2’ state was energetically unfavourable. The second approach, detailed
below, seeks a bound on o through asking the question: under what conditions

is the ‘0-2-0-2’ state a self-consistent solution of the mean field equations 4.9?

From the definition in (5.2), the corresponding set of U;, variables, defined by
(4.9), are given (for all i) by

- { (28/N —2a)/T fora=(2k)mod N, ke Z 55

—4d;/T fora=(2k+1)mod N, ke Z
where d; denotes }°; d;;/N. d; will henceforth be approximated by d in this

section. To be a self-consistent solution of the MF equations, the variables must

satisf
y eUia
Zb el

Because of the periodicity in the ‘0-2-0-2’ state defined in (5.2), one need only
consider the validity of (5.6) for a single V;, term. Picking a term with value

=Vi. Via. (5.6)

2/N, and assuming that § has been chosen so as to scale at most sub-linearly

with N, then for large N the left hand side can be exprlessed as

' eU.', e—2a/T
Eb eUi - N/2 (e—2a/T + e—4d/T)
= Via (1 + eP-tdi7)™ (5)

Thus there is self-consistency, for fixed T, only if o < 2d. Notice incidentally,
that when & = 2d, the above equation yields e¥is/ 3, e = 1/N, indicating that
the ‘0-2-0-2" state would revert to the symmetric fixed point under y = 1 parallel

dynamics.
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In summary, by choosing a > 2d the free energy landscape can be engineered
so that the troublesome ‘0-2-0-2’ state is neither a self-consistent solution of the

MF equations nor is it of lower free energy than the symmetric state.

5.1.3 The T¢c Mode Approach

This third method considers the consequences when one of the assumptions

made in reaching the Ap.,/min estimates of (4.26), no longer holds.

Recall that Ay is maxizo(A% ) provided the (4.25) inequality, i.e. o > 2(d — a4x),
is satisfied. If « is too low for this inequality to hold, then ).« becomes A7
In this case, assuming that J is taken larger than j,, as T is lowered through T,
€ny2 Will be the first Fourier perturbation vector to grow. It will grow parallel
to the (1,1, 1,...) eigenvector associated with the ), eigenvalue. Transforming
back to the real ¢;, variables, this means that for every city i, the {¢;,} form a
wave pattern over the partition space, with wavelength equal to Aa = 2. As the
Via variables are subject to the Potts constraint there is a limit to the amplitude of
the wave, so that the limiting state has the V;, alternating ina 0, 2/N, 0, 2/N ...
fashion. But this is just equivalent to the state defined by (5.2), i.e. the ‘0-2-0-2’
state.

Thus, using either parallel or serial updating in the a < 2(d — x04) region re-
quires the previously explored T theory to be modified so as to take account
of the different Ay, value. This section has shown that one consequence of
an appropriate T analysis for such low q, is that the transition away from the
symmetry point leads directly into the ‘0-2-0-2’ state. Again, choosing a value
of 2d for a should enable the system to avoid this problematical fate. 2



CHAPTER 5. POTTS: OPTIMIZATION AND PERFORMANCE : 107

Yy Yy
3.0 ; 3.0 1
| --- N=50 data : --- N=50 data
2.5 - \ = N=200 data 2.5 1 \4 """ N=200 data
\
2.0 | ---"‘*‘ -------------------- - 2.0 - Py eoee e -
b t.
15 % 15 - y
% Y
1.0 f-o-eeeees — 1.0 4---eoeeee .
0.5 T 0.5 1
0.0 ————————— 0.0 ———
0.0 0.5 o' 1.0 1.5 2.0 0.0 0.5 o’ 1.0 1.6 2.0
o/2d o/2d

(a) (b)

Figure 5.1: Plot of restraintenergy against a. The ordinate, y, denotes (2E,/aN).
The dotted lines highlight the y values of 1 and 2, corresponding to the minimal
E, value and the value for 0-2-0-2 type states, respectively. o’ denotes the point
a = 2(d — xo4), computed using the values in section 4.4.2. Parameter settings:
B=1,v=01, T,=12Tte, T, =0.95, A=1, £ =0.01, M =100. (a) Serial
updating case (y = 1 gives a similar plot, data not shown). (b) Parallel updating
case; the « value is low enough to ensure that the oscillatory transition mode is
avoided throughout the o range.

5.1.4 Numerical Study of Low o Behaviour

All three of the approaches just examined suggest that at some value below 2d,
a ceases to be able to generate an effective E, restraint term. Thus 2d emerges
as a natural theoretical choice for a. To test this, runs were performed over a
range of « values, and the final values of E,, E; and the tour-length recorded.
Figure 5.1 shows the final E, data for both types of updating scheme. Within
the flat region, E, is at its floor value, indicating that the restraint term is béing
effective. Below a/2d ~ 0.8, E, rises sharply, indicating that o is too small
to be effective. The data points with y values between one and two reflect
configurations with only a partial 0-2-0-2 pattern in the (; Vi,) sums, likewise
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those of value greater than two are due to a mixture of 0-2-0-2 and 0-3-0-0-3
patterns. Other measures, such as the tour-length and final value of E;, show

similarly sharp changes below a = 2d.

Notice that the boundary between the two o regimes lies, as predicted, some-
what below a = 2d, and close to o/, the value at which the critical temperature
analysis predicted a change in the behaviour. In conclusion, for optimal perfor-
mance the value of o needs tobe tied to the {d;; } matrix through the relationship:

a = 2d, where d is the mean inter-city distance.!

5.2 Choosing the Value of Coefficient 3

As with ¢, it is clearly a sensible policy to set the g coefficient small, in order to
emphasise the importance of the tour-length term (E;) within the overall energy
function. However, whereas with a there was a principle guiding its choice,
i.e. that it should be just large enough to generate an effective E, restraint term,
with 3 this is not so. The reason is that the Es term, originally introduced
in the Hopfield-Tank type networks to reward configurations in which each
city is located in exactly one partition (as in equation 4.2), is strictly speaking
redundant in Potts type models, where this property is enforced as a constraint
(by imposing 3", Sia = 1or 3, Vi, = 1). Consider the Ez expression for the Potts
spin model (equation 4.4): —£5,, S2. As the S;, € {0, 1}, any state respecting
the Potts constraint will have a constant Eg value (= —N3/2). However, rather
than simply discarding Ej altogether, Peterson and Séderberg retained it, and
demonstrated that a particular § regime (typically § ~ N) avoids the oscillatory
transition mode at T, for v = 1 parallel dynamics (as detailed in section 4.2).
Unfortunately, although in the Potts spin model Ej is constant, in the mean

This accounts for the suitability of Peterson and Soderberg’s choice of a = 1, since the
uniformly random unit square TSPs they studied have d = 0.521 in the N — oo limit.
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field Potts model, where S;, — Vi, € [0,1] and Eg = —£ ;. V2, E; is no longer
constant — it is related to the saturation through Ez = —NSX/2. So during a
complete run, AEgis O(N ), compared to a AE, of typically O(N). Thus, using
B in the above manner is impractical: although it does select the better T, mode,
the energy function is dominated by Eg, which results in very poor tour-length
performance. A new, rational, approach to the issue of avoiding the oscillatory
T. mode with parallel dynamics, by selection of the step-size 7 rather than j,

was presented in section 4.2.

So Eg, in both the spin and mean field versions of the Potts model, is redundant,
in the sense that the property it was originally designed to enforce is now
contained as an explicit constraint. But whereas in the Potts spin model Ejg
also remains constant, in the mean field model it can vary. Thus the value of
(3 does matter in this case, because it affects the balance of terms in the energy
function. Ideally therefore, we would like to set 3 to zero, reducing FE to just
two terms: the tour-length cost term (E;) and a genuine restraint term (E,). The
oscillatory transition mode could still be avoided, by setting v < +. for parallel
dynamics (for serial dynamics this mode is irrelevant). So should 3 just be set to
zero? In their work, Peterson and Soderberg kept 3 at 0.5 (with serial dynamics)
without justifying this choice, though they did state that the presence of g had
a “constructive balancing effect in solving the MFT equations” [Peterson &
Soderberg 1989, page 14]. Further numerical work to be presented later broadly
supports this choice: if 8 is chosen any smaller, or zero, the system is unable
to evolve into (high X) states representing well defined tours. The analysis in
the following sections, based on an examination of self-consistency in the MF
equations, accounts for this behaviour, in both qualitative and semi-quantitative

terms.
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5.2.1 Basic Self-Consistency Argument for 3

Consider a configuration which represents a perfectly defined tour, i.e. one
in which Vi,3a; : V;; = 6,4, with a; = a; iff i = j. Our goal is to discover the
parameter conditions under which this tour state constitutes a solution of the

MF equations 4.9.

The argument is valid for both Euclidean and non-Euclidean {d;;} distributions.
It does however make two assumptions. Firstly, it will only consider self-
consistency within the set of mean field variables associated with a single city.
Therefore the validity of the results will depend on the extent to which this single
city is ‘typical’ of the cities in the problem. For simple city distributions this
is not a serious problem, but for TSPs containing irregular clusters or outlying
cities this caveat must be borne in mind. Secondly, it is implicitly understood

that o has been chosen sufficiently large such that E, is at its minimal value.

- For notational convenience let the cities be relabelled such that the desired tour
isrepresented by the above configuration, with ¢; = ¢ Vi. Fromequation 4.9, the
MF components for city : are completely self-consistent if exp(U;;) = ¥, exp(Us)-
It is more useful however, to consider complete self-consistency as the limit:
p — oo, where p is defined by

eUsi

Yoz Ve

Thus p should be regarded as gauging the degree of self-consistency. So to

P (5.8)

achieve a particular value of p, the following equation must be true (using

equation 4.9):
e(—24'+8)/T _ p E e(—dii-1-di;41)/T (5.9)
J#
where the bondlengths within the tour, i.e. the distances between adjacent cities
in the tour, have been modelled by a single term, d’. Denoting the 3°;; sum by

G, itis clear that for large N, G is bounded as follows: Ne~2P/T < G < N, where
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D' = max;;(d;;). Combining this with the above equation leads to the following

conditions on g in order achieve a particular p for this tour:
TInNp—2D'+2d < 8 <TInNp+2d (5.10)

This result, though derived from a simple argument, contains several important

features.

e For any particular tour state, the degree (p) to which that state is self-
consistent is related (exponentially) to 3. This is consistent with the obser-
vation from numerical studies that the system cannot evolve into states

resembling tours if 3 is too low.

e The quality of the tour enters (5.10) through the term 2d’ since, recall, the
tour-length is being modelled by Nd'. Thus, for fixed 3, (5.10) implies that
short tours are more self-consistent than longer ones, and therefore more
liable to be found by the algorithm. This is a very useful property: rather
than relying solely on the E; term to select out low cost tours, the presence
of 3 also contributes to this process, by tending to prevent high cost tours
from being self-consistent solutions of the mean field equations. A sim-
ilar positive role for the J coefficient was previously found for a related
mean field Potts model [Gislén et al. 1989] designed for scheduling prob-
lems, though the justification was not given in terms of a self-consistency

argument, as here.

¢ [ needs to scale as In N7. This is a potentially worrying trend, since
it leads to the A E/AE,; ratio being of O(In NT), implying a diminishing
importance for the tour-length term in the overall energy function for large
N. Replacing T by T, gives one upper bound on the trend (section 5.2.4
discusses another bound). For the classes of city distributions discussed
in section 4.2, using parallel dynamics with 4 < «, or serial dynamics, T.
is given by 2xo4 + (8 — 2d)/N. Using this in the right hand inequality of
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(5.10), and retaining only the leading term in 3, leads to an absolute upper
bound on B of 2xo4ln Np + 2d’. For the uniformly random unit square
TSPs used as testbeds in this smdy, 2x0q =~ 0.32, indicating that even in
this worst case, the growth of 3 with N would be quite modest. In practice,
configurations representing tours only develop after the temperature has
been annealed some way below T.. Empirically, for the testbed TSPs, high
¥ tour states tend to freezeout at T' =~ 0.1, independent of N; this suggests
that, at least for this class of TSP, the growth in § with N may not be
practically significant.

This simple analysis is clearly of value in identifying the key qualitative effects
of the parameter 3 and how it needs to scale in order for tours to be solutions
of the MF equations. However, because of the relatively crude nature of the
G bounds, (5.10) only manages to pin 8 down to within a window of width
2D'. As D' is the maximum inter-city spacing, the analysis evidently has only
limited value in suggesting what value g should be given in order for good
tours to be possible solutions. A more refined method for estimating G, and

hence selecting g, is now presented.

5.2.2 Refined Self-Consistency Argument for 3

This argument follows the previous one up to equation 5.9. The problem is
that exact evaluation of G requires foreknowledge of the city ordering in a
particular tour. For large TSPs with distances obeying the triangle inequality
(e.g. Euclidean TSPs) this problem can be avoided, as follows. First, note that
the triangle inequality gives® o *

dijyr + djjp1 2 dij 2> d;i j41 — dj i (5.11)

?Recalling that this notation labels the cities in their order on the tour.
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and a similar condition for d;;_,. Restricting ourselves to near-optimal tours,
in which the mean bondlength (d') within the tour is generally of a lower order
than the mean inter-city spacing (d), these inequalities imply that d; ;+, ~ d;;
for a typical city i. Thus G can be approximated by 3=, exp(—2d;;/T), which
does not include any dependence on a particular tour. G can then be estimated
numerically for any particular TSP (given a sensible estimate for T). If, however,
the cities have been drawn from — or can be feasonably modelled by — a

distribution function, or, in the case of non-geometrical TSPs which still obey
' the triangle inequality, if there is a distribution function for the d;; terms, then the
above approximation to G can be evaluated as an integral in the limit of N — co.
This continuum result can then be taken as an estimate for finite N problems.
The validity of this approach will clearly depend on N being large and the
distribution function being accurate. (For TSPs which do not obey the triangle
inequality the method just outlined is not applicable; Appendix B includes a
different approach for one class of TSPs in this category). This section illustrates
the integral approach, for the case of Euclidean TSPs with cities drawn from a

uniformly random distribution in a square of side 1.

Letting w denote the location of city 4, z = (z,y) that of city j, and d(w, z) the
distance between them, G is given by NZ, where

I-= /0 ' /0 ' exp[—2d(w, z)/T)dzdy. (5.12)

By choosing w to lie at the centre of the square and exploiting the ensuing

symmetry, T can be expressed in polar form as

.d c 8
— 4 2 -2r/T
I=38 /0 do /0 re=2/Tdp. (5.13)

After integrating by parts and making the substitution z = sec¥, Z is given by
(xT?%/2 — C), where

c=or [ uior / Vel g (5.14)
=2 et et :
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T
Nl 01} 02( 0.3
50 [ 0.42 |1 0.90 | 1.49
- 100 | 0:43 | 0.98 | 1.64
500 | 0.50 | 1.22 | 2.04
1000 | 0.55 | 1.34 | 2.22

Table 5.1: Values of 8* for various N and T, computed for p = 10, taking a value
of 0.75/+/N for d (following the discussion in section 1.6).

Although these integrals cannot be computed analytically, they are obviously
positive and can be shown to be bounded above by:

Cos. =2Te T (In(V2+1) + 7T/4) . (5.15)

In the appropriate temperature range® i.e. T < T,(= .32), 7#T?%/2 exceeds Cyp.
— only by a factor of five at T;, but by over an order of magnitude in the
more relevant T’ ~ 0.1-0.2 range. Thus the C term can be dropped, giving
G = N=T?/2 and hence the final expression for 3* — the value of 8 which will

allow near-optimal tour states to have a self-consistency p — using (5.9), as

2
=T (ln Np+In %) +2d'. (5.16)

Table 5.1 lists some values for §*. Observe that for low T the rise in 8* with N

is very small, and secondly that the values at low T are close to 0.5, Peterson
and Soderberg’s choice for 3.

There are several minor problems in using equation 5.16 directly to select 3:

e It was derived from a consideration of the self-consistency within the MF

components for a particular city, located at the centre of the distribution.

3Approximating T in the low S regime by T.(8 = 0), assuming either serial dynamics, or
parallel dynamics with v < v.. ‘
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Repeating the derivation for the other extremal case, i.e. a city at a box
corner, gives a similar result but with a In § term, rather than In Z. 3 should

therefore be chosen between these two expressions for *.

o Whatis an appropriate value for p? By definition, absolute self-consistency
only holds in the p — oo limit. In practice howevér, what matters is
whether tour states are self-consistent enough to be found by the algorithm;
thus p values of say 10 or 100 might suffice. Fortunately, as p enters (5.16)

logarithmically, 3* is fairly insensitive to the precise value of p.

¢ The analysis was based on applying a self-consistency criterion to clean
(T = 1) tour states. In practice though, the algorithm is terminated before
the saturation becomes one, because the tour structure is essentially fixed
by the tirﬁe ¥ reaches about 0.8 or 0.9. Ideally therefore, the analysis
should be performed on states having such values of ¥. However, the
calculations are messier in that case, so the original analysis will be used

here as an approximation to it.

These points lead to some uncertainty in setting the absolute value of 8 but do
not alter the scaling behaviour with N. As was implied both in section 4.2 and
at the start of the current section, for the algorithm to be properly energetically
scalable the value of 3 ought to be O(1). Therefore the analytical In N7 scaling
appears problematical. However, the low empirical final temperatures suggest
that this scaling will be fairly benign, a view supported by the numerical experi-
ments reported next, and underpinned by further work on the final temperature

presented in section 5.2.4.

5.2.3 Numerical Study of Low 3 Behaviour

To test these predictions, runs were performed over a range of low 3 values,

and the final saturation (X) values recorded. As usual, the TSP instances were
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Figure 5.2: Final saturation value ¥ plotted against 8. The fact that the curves
flatten out above 0.9 rather than at 1.0 is an artefact due to the termination
criteria used (see section 4.4.1 for details). Due to the long run times, each
N = 400 data point represents the average over five trials rather than the usual
ten. Parameter settings: « =1,y = 0.2, T, = 1.2Th°, T, = 0.95,A = 1, £ = 0.01,
M = 200, parallel updating.

from unit square random distributions, with N = 50, 200, 400 (one instance of
each).

Figure 5.2 shows some of the data. Observe in the 50 city case the sharp tran-
sition between values of 8 which are able to generate high saturation states,
and those (lower) values which are not. This is consistent with the prediction
that the self-consistency of a tour state (and hence its likelihood of being found)
should vary rapidly with 3. For N = 200 and 400, the transition is not so sharp,
and occurs at an increasingly large g value, contrary to the predictions. This
is, however, an artefact due to an implementation decision (see section 4.4.1) to
terminate runs which fail to converge within M sweeps at any particular tem-
perature. Upon inspection, runs terminating into intermediate (i.e. =~ 0.2 - 0.8)

¥ states were found still to be evolving — albeit slowly — towards high T
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Figure 5.3: Comparison between the experimental and theoretical low £ results.
The data points represent the experimental 4’ values and their associated un-
certainties. Except for M, the parameter values are the same as in Figure 5.2
(serial updating runs used v = 1). §* values (using p = 10, T = 0.1) for cities at
the centre and corner of the box are shown by the upper and lower dotted lines
respectively.
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configurations at the time of their premature termination. Increasing the M
cutoff threshold both sharpens up the transition and brings it down to a lower
p range, as demonstrated by Figure 5.3. This figure plots the minimum value
of B (denoted 3’) found capable of generating final states with mean ¥ = 0.9,
against N, for several M values. Also shown are 3* theoretical trend lines.
The parallel updating runs using low M values deviate markedly from the g*
predictions. But this is not a valid test of the 5* analysis, since the experimental
results are being influenced by an artificial dynamical cutoff, whereas 3* was
derived from a purely static analysis. As the cutoff becomes less important
(i.e. as M increases), so the experimental trend moves towards the * range,
suggesting that the two might indeed coincide in the large M limit. Support for
this comes from the runs performed using serial updating; these give 8’ values

consistent with the 8* predictions.

The difference here between runs using serial rather than parallel updating
is largely due to the necessity of using small step-sizes in the latter scheme.
As explained in section 4.4.3, low « runs typically only move away from the
symmetry point at temperatures substantially below T**°, by which time the
free energy minima are located in medium-high ¥ regions. Thus, to reach one
of these minima the system has to move a large distance through phase space;
this, coupled with the small step-size, leads to the necessity of large M values

for parallel updating runs to succeed.

As well as supporting the self-consistency predictions for 3, numerical exper-
iments also confirm the complementary suggestion, that for optimal perfor-
mance [ ought to be chosen no larger than is necessary to satisfy the self-
consistency requirement. Increasing B from 0.5 to only 1.5 causes a marked
deterioration in the quality of the tours found, e.g: for 50 cities the average tour

percentage excess rises from 7% to 23% (T, = .995, serial v = 1 updating).

“Calculated using a simple linear interpolation scheme on plots of I vs. g, such as Figure 5.2.
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Thus the issue of choosing appropriate values of § appears to be rather more
complex than suggested in PS. Numerically, there is definitely a fairly narrow
range of § values which gives ‘optimal’ performance, in the sense that values
below this range cannot generate tour states whereas values above this range
generate increasingly long tours. The analytical work in the previous two
sections accounted for the existence of this optimal 3 regime and also located

its value reasonably accurately.

5.2.4 Dependenceof SonT

The final temperature, T}, is clearly relevant to any discussion of suitable values
of 3, for two reasons. Firstly, using the methods developed in sections 5.2.1 and
5.2.2 for setting S requires an estimate of Ty. Secondly, on the theoretical side,
information about the expected values of T is vital to understanding whether
the required InN7T scaling of 8 will be harmful to the algorithm’s performance

on very large problems.

Until now, we have either used T; as a crude upper bound on T}, or taken
empirical values for T} (as in the previous section); clearly these approaches are
somewhat unsatisfactory. Study of the free energy landscape reveals another
characteristic temperature, T'*, which, as well as defusing the InN7T scaling issue
and giving an improved T; upper bound for many types of TSP, also helps in
understanding why the mean field Potts algorithm performs very poorly on
certain types of TSP.

Consider the relative values of the free energy at the maximum entropy sym-
metric state V*¥™ and at a hypercube vertex representing a tour of length L.

Using equations 4.6 and 4.7, it is straightforward to deduce that the tour vertex
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has the lower free energy for T satisfying

d+p/2—-L/N
In N

T < (5.17)

The highest such temperature, denoted T, occurs for those vertices representing
the optimal tour.> Assuming that the d;; terms have been scaled to be O(1), £,,:
is certainly O(N), thus T™* is O(1/In N). Two cases now arise:

T* < T. In this case T* can be used to give an improved upper bound on 7.
To see this, consider how the system evolves as T is annealed. As T is
brought below T., V*¥™ turns unstable and the system flows towards a
new minimum with lower free energy and entropy; during subsequent
annealing the system tracks this minimum as it shifts towards the hyper-
cube vertex. Assuming that both £ and S are non-increasing quantities
over this trajectory (a reasonable conjecture supported by experiments),
it can be shown that throughout the trajectory the system'’s free energy is
less than or equal to that at the state V**™. Thus, tour vertices only be-
come accessible at temperatures below T*, hence this is an upper bound
on Ty. (The types of Euclidean TSPs considered in section 4.2 fall into this
category).

T* > T In this case T. — which must also be O(1/1n N) — gives the bet-
ter bound on T. (The non-Euclidean random metric TSPs discussed in
Appendix B lie in this category).

The key point here, is that in both cases T; has been shown to be O(1/1n N),
thereby revealing the In N7 component of 3 to be a harmless O(1) term. This
is an important result, as it implies that the terms in the energy function (4.7)

remain well balanced in the thermodynamic limit.

SRecall that there is a 2N-fold degeneracy, due to redundancy in the problem representation.
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5.3 Performance

This section discusses the quality of the solutions found by the algorithm, how
the quality depends on the annealing s&edde and possible modifications to
enhance the performance. In the original PS paper, the mean field Potts algo-
rithm was tested on uniformly random Euclidean problems (N = 50, 100, 200)
and found to generate tours which were on average only 8% longer than av-
erage simulated annealing tours. However, in a subsequent benchmark study
[Peterson 1990] the Potts method was pitted against, amongst others, a sophis-
ticated genetic algorithm. In this case, the differences in performance were
19%, 16% and 21% for N = 50, 100 and 200 respectively; indicating that the
early optimism was perhaps due to a poor simulated annealing implementa-
tion. One of the motivations behind the current study was to clarify the issue
of the algorithm’s potential and actual performance.

Two very different types of TSP were studied: the ‘classic’ Euclidean TSPs used
throughout this chapter, and non-Euclidean random TSPs. For both types of
problem, the optimal tour-length was estimated through the same procedure
as used for the elastic net performance study in section 3.4, i.e. the shortest tour
found over fifty runs of the Or*-opt algorithm was deemed ‘optimal’. Clearly
this typically overestimates the optimal length, particularly for large N, but it

still gives a useful basis for comparison.

With a computational complexity of O(N?) per sweep, software implementations
of the mean field Potts algorithm are unlikely to be competitive with coﬁven-
tional serial algorithms such as 3-opt and Lin-Kernighan, which empirically
have overall O(N?) running times [Johnson 1990). This would change however
if the Potts algorithm could be implemented in analogue hardware. Ideally
therefore one would like to study the likely hardware performance through nu-

merical simulations using a small step-size v to approximate continuous time
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dynamics. Howevér, this is computationally very expensive: not only do the
simulation times grow as 1/+, but there is also the problem mentioned in sec-
tion 4.4.3, that low 7 runs tend to depress 7% artificially and thereby degrade
solution quality. The latter point can be compensated for by more stringent
annealing schedule parameters, but only at the cost of longer simulation times.
Because of these problems, no attempt has been made to check the solution qual-
ity for low 4. All of the data presented in the following sections was obtained

using v = 1 with serial updating.

5.3.1 Uniformly Random Euclidean Metric TSPs

The six examples each for N = 50 and N = 200 studied in section 3.4 for the elas-
tic net were again used here. Tables 5.2 and 5.3 show the average percentages
by which the solutions found by the algorithm exceed the ‘optimal’ tour-length,
for a range of annealing schedules. For both values of N the solution quality
improves substantially with slower cooling, though of course this entails an in-
creased number of sweeps. Counting only the sweeps after T2, this number
grows from typically about 60-80 for T, = 0.95 to approximately 250 and 2500
for T, = 0.995 and 0.9995 respectivély. Whilst the quality of the N = 50 tours
is quite acceptable (being only slightly worse than the TLA-optimized elastic
net tours), the same is not true for the NV = 200 sets. Why the solution quality
degrades as the problem size increases, remains an open question. Even slower
cooling would very likely further improve the quality. However, the running
times on these, and larger instances, would become prohibitive for software
implementations. Furthermore, it remains unclear to what extent very slow
annealing can bring the system close to finding the optimal tour. Whereas sim-
ulated annealing, given certain conditions, guarantees convergence to the op-
timal solution for asymptotically slow annealing [van Laarhoven & Aarts 1987,
chapter 3], such a result is not true for mean field annealing algorithms, because
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N =50 Annealing rate, T}
Sets 0.95 0.995 [ 0.9995
iff 92+5.1| 71+36|25+£0.0
i) 11.9+£25] 80+£20|57+1.7
iii | 83+£50| 46+1.8]|2.5+.07
ivff 90+3.0| 57+14]55+1.1
v|11.8+36(11.5+057.1+1.0
vilf 81£63| 50+48|0.7+.07
Mean 9.7% 7.0% 4.0%

Table 5.2: Tour-length percentage excess data for N = 50. Entries denote the
mean and standard deviation values over ten trials for each set. Parameter
settings: a =1, =05,vy=1,T, = 1.2T**, A =1, £ = 0.01, M = 100.

N =200
Sets

Annealing rate, T,

0.95

0.995

0.9995

30.1 +4.2
32.1 +£3.8
36.4 +4.8
30.2 + 3.2
30.6 +4.4
33.8+8.1

21.6 £2.5
21.7+ 3.0
248+ 34
22.7+2.6
20.0+ 3.4
22.0+2.0

16.3 £1.2
15.3 2.3
169+ 1.6
129+ 1.7
14.0£1.8
16.0 +£1.2

Mean

32.2%

22.1%

15.2%

Table 5.3: Tour-length percentage excess data for N = 200. Other details are as
in Table 5.2, but with only five trials per set for 7, = 0.9995.

the mean field method is an approximation.

Various modifications to the algorithm were experimented with in order to try
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and enhance performance. For example, the a and 3 parameters were allowed
to adapt during a run, the rationale guiding the choice of adaptation rules
being that these parameters should be as low as possible, whilst still respecting
the various conditions on them, as discussed in sections 5.1 and 5.2. Another
approach was to adépt dynamically the annealing schedule parameters, T, and
A, with the aim of allowing rapid cooling through uninteresting sections of the
free energy landscape but slower cooling in critical sections, such as around the
critical temperature. Whilst these approaches were found to produce shorter
tours, this was usually at the cost of increased running times. Comparison
between these modified methods and the original vanilla variety, when matched

for run times, typically showed little or no net improvement.

5.3.2 Non-Euclidean Random TSPs

These TSPs are generated by drawing each d;; element independently from a
random [0, 1] distribution, but retaining symmetry and zero diagonal elements.
The appropriate T, a and § analyses for this class of TSPs are summarized in
Appendix B. The optimal tours are known to be of length 2.014 in the asymptotic
N limit [Krauth & Mézard 1989]; the best Or*-opt tours for the problem sizes
studied here are typically within 15% of this. Table 5.4 shows the raw tour-
lengths obtained by the mean field Potts algorithm using suitable parameters,
for a single annealing schedule. Even for small N the average tours are poor,
and for large N they typically exceed the optimal tours by a factor of at least four.
The key to understanding why the performance is so poor is the relationship
between T, and T™ for this class.

As shown in Appendix B, T*° scales as N~!/2, so that for large N, by the time
the symmetry point turns unstable, there are already hypercube vertices lying
lower in the free energy landscape. Itis therefore reasonable to conjecture that, at

T. for large N, the dominant minima will be located increasingly far away from
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Sets N=50| N=100| N =200
if3.52+0.2}5.51+03)10.3+0.8

ii | 3.77+£0.2 | 5.35+0.5 | 10.6 £1.3

iii || 3.57+0.4 | 5.60+£0.2 | 10.3 0.6
iv || 3.23+03 | 51802 9.2+0.7
vi|346+03|553+04|11.2+£1.9

125

Table 5.4: Tour-length data for the random metric case. Entries denote the mean
and standard deviation values of the tour-lengths found over ten trials for each
N = 500r 100 instance, five trials for each NV = 200 instance. The optimal tours
are approximately of length 2; see main text for details. Parameter settings:
a=11,=04,v=1,T, = 1.2T*%*, T, = 0.9995, A =1, ¢ =0.01, M = 100.

the symmetry point, towards the vertices, i.e. at states with ¥ — 1. This differs
from the Euclidean case, where the minima appear to move away smoothly
from the symmetry point as T is lowered through T.. For these non-Euclidean
random metric TSPs, or more generally any TSP for which T* > T,* it is being
suggested that the system is unable to track a minimum smoothly as it moves
out to a hypercube vertex, because there are discontinuities in the dominant
fixed point values of the free energy and ¥ at T.. Inspection of numerical runs
provides strong support for this idea: after leaving the symmetric state at T, the
system does not find another fixed point until ¥ has risen substantially towards

one, increasingly so for large N.

This discontinuity in ¥ values of solutions of the mean field equations at T, is
similar in certain respects to a first-order phase transition, just as the continuous
change in ¥ at T for Euclidean problems is similar to a second-order transition
(see e.g. [Mouritsen 1984] for a discussion of phase transitions). The fact tha‘t T,

is associated with a phase transition was realised by Peterson and Soderberg;

SFor large instances with well behaved d and ¢, this inequality is essentially equivalent to the
condition that the ¢ factor scales slower than O(v/N/In N), by equations 4.26, 4.27 and 5.17.
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the contribution of the current work is the identiﬁcaﬁon of different types of
transition, how the type depends — through T*/T. — on the class of TSP,
and why first order-like transitions-should lead to poor performance. Finally,
whilst the analogy is certainly useful, there is at least one respect in which the
behaviour exhibited by the current system is significantly different from phase
transition behaviour, as it is usually defined. Whereas in genuine first-order
transitions T, denotes the temperature at which the global minimum switches
to a different solution branch, in our system it denotes the T at which the
symmetric state turns unstable, this being an important temperature because
by design the system is initially placed in that state. Hence if T* lies above
T, then between these two temperatures the algorithm is de facto forcing the
system into a metastable state, something which of course would not happen

to a physical system in thermal equilibrium.

It would be interesting to know to what extent the difficulties with the non-
Euclidean problems are due to the inhe_rent configuration space of tours, and
how much is due to the neural network formulation. To the author’s knowl-
edge there have been no other reliable studies of Potts, or HT networks being
applied to the case of non-Euclidean TSPs, with which to compare the obser-
vations made here. Although [Xu & Tsai 1991] did report data on these TSPs,
obtained using the bond variable representation (as in section 1.4) mapped onto
an analogue Hopfield network, there are several questionable aspects to their
study. Firstly, they report that the LK algorithm finds tours typically at least
50% worse than their network, and secondly, that LK is also beaten by 2-Opt.
Given that [Johnson 1990] found LK’s percentage excess on TSPs of this sort,
with N = 10, to be only 5.8%, these results are very surprising. Furthermore,
Xu and Tsai claim that their excellent results are due to their algorithm being a
neural implementation of the typically near-optimal ‘assignment and patching’
algorithm; but this claim is specious, since assignment and patching, though
indeed an excellent algorithm, is only so for asymmetric TSPs [Lawler et al. 1985,
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chapter 6].

Future work on these non-Euclidean TSPs could attempt to confirm (either em-
pirically, or, ideally, analytically) that the dominant free energy minima at and
above T, do indeed lie at increasing ¥ for increasing N. If so, then that would
suggest that the symmetry point is an unsuitable initial state. Alternatively,
it may be that, in light of the section 4.1.4 discussion, this is one occasion in
which the lack of a Lyapunov function for the dynamics is troublesome, since
the system has to move a long way through phase space at a single temperature.

Different network dynamics may therefore be worth exploring.

54 Conclusions

This chapter first examined the issue of how to set optimal values for the two
weighting coefficients in the energy function. For the coefficient o, three distinct
analyses led to the common conclusion that its value should be set to twice the
mean inter-city distance. Setting the value of the second coefficient, 3, turns
out to be slightly more complex. An initial analysis suggested that it needs to
increase logarithmically with the number of cities, a trend which would have
negative implications for the algorithm'’s scalability. However, further analysis
revealed that the In N term had a counter-balancing({in N)-! coefficient. For both
a and §, numerical simulation data obtained using non-trivial problem sizes,
i.e. 50 and 200 cities, was in reasonable accord with the theoretical predictions

regarding their optimal settings.

Secondly, the algorithm’s performance on Euclidean and non-Euclidean TSPs
was assessed. For the former class, average tour-lengths are within 10% of those
of the best known tours for N = 50 butin the range 15% to 32% for N = 200 (15%

being for the slowest annealing schedule). Why the performance deteriorates
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for increasing system size remains unclear. For the random non-Euclidean
TSPs, a well known difficult case, the tours were highly sub-optimal for all N
values probed. An explanation for this poor result, based on arguments about
the structure of the free energy landscape, was proposed.



CHAPTER 6

Conclusions

This thesis has explored several issues in the task of optimizing the perfor-
mance of neural network algorithms designed to find good solutions to hard
optimization problems. Much of the previous research on such networks has
paid insufficient attention to the delicate matter of choosing suitable parameter
values. That deficit, coupled with a lack of simulations on large scale problems,
has led to uncertainty both about the actual performance of such networks on
medium-sized problems, and also over their ability in principle to cope with

the very large problems that arise in real applications.

The current study has contributed to the clarification of these issues in the con-
text of the elastic net and mean field Potts algorithms for the travelling salesman
problem. Central to both of these methods is the concept of a computational en-
ergy function comprising of two or more conflicting terms. Analyses showing
how the relative and absolute weights of the competing terms influence the fi-
nal network performance have been presented. The network dynamics, which
specify how the system attempts to minimize the energy, also have a strong
influence on the performance. New forms of dynamics have been successfully

developed and analysed for both algorithms.
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The analytical work on the elastic net has given a clear explanation of how
the method may converge into invalid solutions for certain parameter ranges.
This led to an accurate prescription for the value of the ratio of energy term
coefficients most likely to give valid solutions. By developing self-adaptive
descent dynamics, the quality of solutions obtainable within a fixed amount
of computer time was dramatically improved. The new dynamical technique,
of local step-size adaptation occurring on two levels, should also be widely
applicable, for minimization of energy functions that change slowly over time.
Regarding scalability, only a slight deterioration in the quality of tours occurred
as the number of cities was increased from fifty to two hundred, with the tours

being within 5% of those obtained using an efficient local optimization heuristic.

For the mean field Potts network, the dynamics specified by the original authors
were generalized, as was their eigenvalue analysis of the network’s critical
temperature under those dynamics. The new temperature analysis given here
reveals many relationships between the network’s key parameters which help
in assigning them suitable values. More detailed analyses were presented for
deriving the optimal values of the two coefficients in the energy function. The
methods developed may also be of use for parameter setting in other mean field
networks. Regarding scalability, there is a marked deterioration in the tours for
increasing numbers of cities in Euclidean problems, despite the energy function
remaining well balanced in the thermodynamic limit. Why this should be so
was not resolved. The failure of the algorithm on non-Euclidean problems has,
however, been accounted for. In summary, the mean field Potts algorithm for
the TSP is a well defined model on which a considerable degree of analytical
work concerning parameter issues can be undertaken. Whether the method is
truly scalable to very large Euclidean problems remains an open issue, and one
which, given that the method” s computational complexity is O(N?) per update,
will probably best be resolved analytically via statistical mechanics.



APPENDIX A

Parallel Implementation Strategies

Software implementations on powerful parallel computer systems of the elastic
net and Potts algorithms facilitated the extensive numerical studies reported
in this thesis. This appendix summarizes the key aspects of how the neural
algorithms were mapped onto parallel architectures. A basic version of the
elastic net implementation was developed as part of an Honours year project
by the author.

DAP Implementation of the Elastic Net Algorithm

As the beads which model the elastic net are all updated in parallel, the algo-
rithm is naturally suitable for implementation on Single-Instruction- Multiple-
Data (SIMD) computers, such as the AMT-DAP or other massively parallel array
processors. The DAP can be considered as a 2-D lattice of processors connected
by nearest neighbour communications links, with each processor having a small
amount of local memory. From equations 2.1 and 2.2, the computation of‘the
city-bead force terms is clearly the dominant operation in each update. There-

fore, an efficient mapping should be optimized with respect to the computation
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of the city-bead distance terms and the weight terms derived from these.

There are basically two ways to map the algorithm onto this architecture. Ei-
ther by associating each bead with a particular processor, storing the set of city
coordinates in each local memory, or by associating each city with a particular
processor, the local memory of each processor holding the net coordinates. With
regard to the important issue of minimizing costly inter-processor communica-
tions, neither strategy is clearly superior, since the update operation involves
global summation steps over both the cities (equation 2.1) and the beads (equa-
‘tion 2.2). However, the former strategy emerges as the more efficient one with

respect to another criterion, namely, minimizing memory requirements.

In the ‘beads mapping’, the displacement of the net due to a single city is
computed in parallel for every bead (processor). Each processor maintains
a pair of variables which act as accumulators for the coordinate components
of the ¥°; w;;(2; — y;) sum for the bead ( j). that processor is responsible for.
In the alternative ‘cities mapping’, all of the un-normalized city force terms
acting on a single bead are computed in parallel. However, because of the
normalization step (equation 2.2), each processor requires an extra 2M words
of memory temporarily to store the components of the M city-bead force terms

it computes, prior to normalization.

In its original form, the beads mapping fully utilises the available processors
only when their number matches the number of beads. For the TSPs studied
here, having at most 200 cities, it would have been inefficient, since the DAPs
used for this work had either 1024 or 4096 processors. The mapping was
generalized to overcome this problem, by associating each bead with a small
number (roughly the ratio of processors to beads) of processors, each processor
now being responsible for the interactions of that bead with a subset of the cities.
Interprocessor communication steps gather the partial sums for each bead, and

scatter the updated position back to the appropriate processors.
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Transputer Implementation of the Mean Field Potts Algorithm

The mean field Potts TSP network was implemented on a Meiko Computing
Surface, a configurable array of T800 transputers. Each transputer is a fairly
powerful processor in its own right, capable of executing its own programme
independent of the other transputers. A small number of fast communica-
tions links (for the T800, four) are designed into each transputer. This enables a
group of transputers to cooperate, via message-passing, in running a single pro-
gramme. The user is free to configure the links such that the resulting processor
topology suits the pattern of inter-processor communications required by the
particular application. In general terms, efficient implementations distribute
the workload evenly across the processors whilst keeping inter-processor com-

munications to a minimum.

To programme the dynamics specified by equations 4.9 and 4.13, each transputer
is assigned to update a distinct subset of the V;, variables. The key implemen-
tation decision is whether each transputer’s dataset should correspond to all of
the variables associated with a subset of the cities, or all those associated with a
subset of the partitions. Let us consider the first approach. The dominant step
in the update of V,, is the evaluation of 3°; d;(Vj(+1) + Vj(a-1)). With the cities
(indexed by j) distributed over the processors, a considerable amount of inter-
processor communications would be required to gather the relevant data into
the processor, suggesting that this would be an inefficient mapping. Further-
more, this mapping would be inappropriate for dynamics in which the cities
are updated serially, since, unless one resorted to some complex programming,

only one processor would be doing computation at any time.

The second strategy, distributing the mean field variables associated with a
single city across all the processors, has neither of the above drawbacks. The
processors are configured in a ring and adjacent processors assigned to ad-

jacent groups of partitions. Formally, processor k(k=0...P — 1) updates
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{Viu:1<i<N, kN/P+1<a< (k+1)N/P}, where — for simplicity — it
is assumed that /N is a multiple of P. Under this mapping each processor can
compute almost all of its U;, terms by operating on local data — only for its
extremal a values does a processor require data from other processors, and even
then only from its immediate neighbours. Thus the dominant computational
step is carried out efﬁciehtly. The subsequent normalization operation to derive
the f;, terms (see equation 4.9) requires global communication on the ring. How-
ever, the time spent on these communications is small relative to the time spent
on calculations, thus they do not seriously impair the programme’s efficiency.
This statement can be formalised by considering the “fractional communication
overhead’ measure, fc, introduced by [Fox et al. 1988]. f; is the ratio of the time
spent doing communications to that spent on useful calculations by a parallel

programme.

Analysis of the algorithm'’s key steps allowed fc expressions to be derived for
both the serial and parallel updating modes. The results quoted below are in
terms of the (problem size)/(machine size) ratio (i.e. N/P), denoted by m.

Serial Dynamics fo =~ bm~2 (4 +1 )
Parallel Dynamics fo =~ bm~2 (% + %)

band c are O(1) terms dependent on details of the implementation and certain
machine constants (specifically, the time for a floating point operation and times
characterising the performance of the communications links). These results
imply that for both types of dynamics this implementation is scalable, in the
sense that increasing the problem size does not increase the fraction of time
spent doing concurrent communications, provided the growth in N is matched
by growth in the machine size such that m is kept constant. Indeed, for 1he
parallel dynamics code fc actually tends to 0 as N — oo, for constant m.
Finally, a less demanding efficiency scaling criterion, namely that fc should
vanish as N — oo for constant P, is easily satisfied by either type of dynamics.
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Theory For Random Metric TSPs

The ‘distance’ matrix for this class of problems contains symmetric off-diagonal
elements, each of which is a random variable drawn independently from a
flat [0,1] distribution. Clearly the ‘cities’ are no longer embedded in some
geometrical space, nor in fact does the triangle inequality generally hold. These
properties make this random metric class of TSP a severe test for all heuristic
methods: even the renowned Lin-Kernighan algorithm shows performance

degradation for increasing N [Johnson 1990].

Although the T analyses presented in both Chapter 4 and in PS concentrated on
a particular class of Euclidean TSPs, much of that work is sufficiently general
to apply to random metric TSPs as well. The key difference betweeen the
two cases concerns the eigenvalue spectrum of A®). For the random metric
problems, the { parameter characterising the spread of the A% eigenvalues is
empirically found to be independent of N, whereas previously, recall, it scaled
as vVN. A numerical study of many random TSP matrices indicates that in
the large N limit, { lies in the range 1.95-2.02. A value of 1.9 was used in the
section 5.3.2 simulations, as that is a typical value for TSPs of the size studied

therein. Analytic evaluation of the mean (d) and standard deviation (o,) of the
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off-diagonal elements in the {d;;} matrix is straightforward in the N — oo limit,
since the elements are then uncorrelated with each other. The values are 0.5 and
1/(2v/3)= .289 respectively. With these values for ¢, d and g, the expressions
given in (4.26) for Amax and Ay, still hold, with the usual caveat that the Apax

expression is valid provided that o exceeds some threshold, o/, where now

o« = 2(d-{as/VN)
— 2d  forlarge N.

The synchronous updating 7. equations (4.27—4.30) remain valid, though of
course 3, now has a different scaling. The result of this is that 7., the maximum
feasible step-size when using parallel updating, is now (correct to leading terms)
given by

4¢aa

VN(2d + a) + 204
— 0 as N — oo.

Yo =

This result has been verified in numerical studies similar to those performed for
Figure 4.4. It indicates that the computational burden of using small 4 rules out
using parallel updating dynar'nics for large random metric TSPs. T for serial

updating (and the parallel case, provided v < 4.) with practical 3 values, is

B+2d+2(vVNoy
N

So T.. is expected to scale as N~'/2 for random distance TSPs.

T, =

Regarding suitable o, the arguments presented in sections 5.1.1 and 5.1.2 are
essentially independent of the distance matrix, and the section 5.1.3 argu-
ment now suggests that a ought to be taken larger than 2d, for large N.
For B, section 5.2.1 suggested a value of (T'lnpG + 2d’), where G denotes
2j#i €xp((—dij-1 — dij41)/T). Because the d;; are drawn independently, it is
possible to evaluate G exactly in the N — oo limit, by

1,1
lm § = N/(; /o e~ (wt)/Tqy, d 2

N-—oo
= NT*(1-¢7)°
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This result is of limited practical use for finite N (where small correlations in-
evitably creep into the distance matrix), but we shall ignore this, as we are only
interested in the large NV scaling behaviour. By plugging this result into the
B expression above, taking T" = T, (reasonable in light of the argument in sec-
tion 5.3.2 that suggested 7'y would be close to T, for random TSPs), simplifying,
and keeping only the dominant term, we find

cln pc?

VN

Thus S may be chosen increasingly small as N grows large, so from an energetics

B =

where ¢ = 2(0,.

perspective the algorithm is definitely scalable for random non-Euclidean TSPs.
The § expression above has not been thoroughly tested experimentally, but a
brief investigation did suggest that the minimal value of 3 required to give

convergence to tours decreases as IV grows.
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