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Abstract 

Combinatorial optimization problems arise throughout science, industry, and 
commerce. The demonstration that analogue neural networks could, in prin-
ciple, rapidly find near-optimal solutions to such problems - many of which 
appear computationally intractable - was important both for the novelty of the 
approach and because these networks are potentially implementable in parallel 
hardware. However, subsequent research, conducted largely on the travel-
ling salesman problem, revealed problems regarding the original network's 
parameter sensitivity and tendency to give invalid states. Although this has 
led to improvements and new network designs which at least partly overcome 
the above problems, many issues concerning the performance of optimization 
networks remain unresolved. 

This thesis explores how to optimize the performance of two neural networks 
current in the literature: the elastic net, and the mean field Potts network, both 
of which are designed for the travelling salesman problem. Analytical methods 
elucidate issues of parameter sensitivity and enable parameter values to be 
chosen in a rational manner. Systematic numerical experiments on realistic size 
problems complement and support the theoretical analyses throughout. 

An existing analysis of how the elastic net algorithm may generate invalid 
solutions is reviewed and extended. A new analysis locates the parameter 
regime in which the net may converge to a second type of invalid solution. 
Combining the two analyses yields a prescription for setting the value of a key 
parameter optimally with respect to avoiding invalid solutions. The elastic net 
operates by minimizing a computational energy function. Several new forms 
of dynamics using locally adaptive step-sizes are developed, and shown to 
increase greatly the efficiency of the minimization process. Analytical work 
constraining the range of safe adaptation rates is presented. 

A new form of dynamics, with a user defined step-size, is introduced for the 
mean field Potts network. An analysis of the network's critical temperature 
under these dynamics is given, by generalizing a previous analysis valid for a 
special case of the dynamics. Understanding the parameter dependence of this 
temperature clarifies an earlier problem in the use of synchronous updating 
dynamics, and is vital in choosing values for the network's free parameters. A 
variety of mathematical methods are developed to set the optimal values of the 
two free coefficients in the system's energy function. Finally, the experimental 
solution quality for Euclidean and non-Euclidean problems is contrasted, and an 
explanation, using arguments about the structure of the free energy landscape, 
proposed to account for the poorer performance on non-Euclidean problems. 
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CHAPTER 1 

Combinatorial Optimization 

1.1 Introduction 

Unlike many topics in modern theoretical physics, that of optimization is some-

thing with which we are all familiar in our everyday lives, be it through finding 

the shortest route home from the office, or arranging a diary to accommodate 

competing demands on our time each day. A vast number of such problems, 

in which the task is to find the optimal solution amongst a space of possible 

solutions subject to external constraints on that choice, arise throughout sci-

ence, engineering, and industry. Problems in which the possible solutions form 

a finite set are termed combinatorial optimization problems. For this class of 

problems the standard function max(min)imization techniques of differential 

calculus are clearly not applicable. Since the 1940s however, new developments 

in mathematics e.g. linear programming and advances in graph theory, have 

led to a large body of knowledge - termed operations research - concerning 

these problems and methods for their exact or approximate solution. 

The need for efficient approximate solution techniques remains acute, for two 

main reasons. Firstly, in real-world optimization problems (e.g. as arise in VLSI 
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design) the number of variables N may be as high as 106, leading to enormous 

search spaces. Secondly, research in computational complexity theory during 

the 1970s revealed a set of equally 'hard' problems, the 'HP-complete' set, for 

which it is unlikely that any algorithm guaranteeing the exact solution and 

running in a time polynomial in N, will exist. As many of the most important 

combinatorial optimization problems he within this set, much effort has been 

directed at developing heuristic methods which settle for finding near-optimal 

solutions but run in low order polynomial time. 

During the last decade, it was realised - by regarding solution costs as ener -

gies - that the solution spaces of large combinatorial optimization problems 

often share similarities with the configuration spaces in the spin glass models of 

disordered systems so intensively studied in statistical mechanics. This remark-

able connection, between two such apparently disparate fields, has led both to 

fresh insights into the nature of the optimization problems themselves and to 

two radically new approaches for finding approximate solutions, viz, simulated 

annealing and neural networks. 

Briefly, simulated annealing searches for the optimal solution (the ground state 

in physics terminology) through Monte Carlo thermalization at decreasing val-

ues of an appropriately defined 'temperature', on the grounds that at low tem-

perature the Boltzmann distribution will select out the lowest cost solutions. The 

neural network methods differ from most of the operations research methods 

and simulated annealing, in that whereas the latter approaches are restricted to 

searching within the finite set of feasible solutions, the neural methods explore 

a continuous search space en route to picking out a solution. Another distinctive 

feature of the neural methods is that most of them are inherently parallel in 

operation. Thus they are ideally placed to exploit the trend towards parallel 

architectures in current high performance computing. Some of them are also 

potentially implementable in hardware. 
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Given their theoretical novelty and potential benefits, it is no surprise that the 

performance and behaviour of neural optimization algorithms have been, and 

continue to be, topics of active research. There has, however, been a slight 

tendency for researchers each to invent their own algorithms rather than to 

explore fully aspects of existing algorithms. This thesis presents a. study of 

two neural network algorithms current in the literature, both of which are de-

signed to find approximate solutions to the travelling salesman problem - the 

most widely studied combinatorial optimization problem. The two algorithms 

are the elastic net [Durbin & Willshaw 19871 and the mean field Potts algorithm 

[Peterson & Soderberg 19891. A combination of analytical techniques and nu-

merical simulations is used to investigate three key issues in these algorithms: 

. parameter sensitivity and optimal parameter choice 

choice of suitable dynamics 

. limitations on performance 

All of the simulations were performed on powerful parallel computer systems, 

which facilitated extensive experimental studies on non-trivial sized problems. 

Progress has been made with respect to each of the issues above, though, in-

evitably, some open questions remain. 

Layout of the Thesis 

Chapter 2 defines the elastic net algorithm and studies the sensitivity of its 

performance to the ratio of its two key free parameters, looking in particular at 

how this ratio affects the likelihood of convergence to invalid solutions. Stability 

analyses correctly account for the observed simulation trends. 
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Chapter 3 focuses on optimizing a second aspect of the elastic net algorithm, 

namely the way its dynamics locate energy minima. Self-adaptive dynamics 

are developed and shown to increase greatly the efficiency of the algorithm. 

Analytical work constraining the range of robust adaptation rates is presented 

and verified experimentally. 

Chapter 4 studies the parameter dependence of an important characteristic tem-

perature in the mean field Potts network for the travelling salesman problem. 

An existing analysis for iterative. dynamics is generalized to the case of dynam-

ics with an arbitrary step-size, 'y. This reveals a critical value of -y, above which 

the algorithm fails to have the correct scaling behaviour for large problems 

when using synchronous dynamics. In testing the theory against experimental 

data, the sensitivity of the network's behaviour to various secondary factors is 

demonstrated and discussed. 

Finally, chapter 5 studies further issues in the mean field Potts network. A 

variety of mathematical methods to set the optimal values of the two coefficients 

in the system's energy function are developed, and shown to be in decent accord 

with simulation data. The quality of the tours found for Euclidean and non-

Euclidean problems is then investigated and contrasted, for problems with up 

to 200 cities. An explanation is proposed to account for the poorer performance 

on non-Euclidean travelling salesman problems. 

The remainder of this chapter provides the context and background information 

for the four research chapters just outlined. Section 1.2 defines some important 

combinatorial optimization problems and attempts to motivate their study with 

reference to applications. The important computational complexity results are 

then summarized in section 1.3. Section 1.4 briefly surveys the solution methàds 

developed from operations research, concentrating on the travelling salesman 

problem (TSP). Section 1.5 surveys the novel methods, focusing naturally on 

the neural network TSP approaches, and the final section summarizes relevant 
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theoretical results concerning the TSP. 

1.2 Combinatorial Problems and Applications 

This section gives a generic definition of combinatorial optimization problems, 

followed by three specific examples, with a brief mention of applications for 

each. The three problems are graph partitioning (GPP), the travelling salesman 

problem (TSP), and the knapsack problem (KP). The purpose is to place the 

later work, which focuses exclusively on the TSP, into a wider context, but no 

attempt will be made to survey the full range of combinatorial problems - for 

that the reader can refer to [Carey & Johnson 19791, and references therein. 

There is no absolutely agreed definition of what constitutes a combinatorial opti-

mization problem, but the following statements (after [Carey & Johnson 1979]) 

capture the essential elements. Without loss of generality they refer to mini-

mization problems. 

DEFINITION 

A combinatorial optimization problem has three properties: 

a set V of instances, each of which can be considered as input data. 

for each instance 0 E V. there is a finite set S of possible solutions. 

a mapping which, for each instance 0 and w E S, assigns a positive real 

number C(w), the cost of solution w. 

The task is then to find, for instance ç, the solution(s) of minimal cost, such solu-

tion(s) being referred to as optimal or exact (and having cost 
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(a) 
	

(b) 

Figure 1.1: Graph Bisection example. The graph is displayed in part (a) and the 
optimal bisection, with cut-size 1, is shown in N. All edge weights equal. 

Algorithms which guarantee the exact solution for every instance are termed 

optimization algorithms, the rest are deemed approximation algorithms. 

1.2.1 The Graph Partitioning Problem 

Consider an undirected graph G = (V, E), where V is the set of N vertices and 

each edge e E E has an associated (positive integer) weight 1(e). Given some 

integer K > 2 which is a divisor of N, the problem is to partition V into K 

disjoint sets V1  .. Vic of equal cardinality such that, letting E' C E denote the 

set of edges which connect vertices in different sets 1/,, the cut-size >eEE'  1(e) is 

minimal. 

Figure 1.1 shows a simple example for K = 2. Basic combinatorics leads to the 

number of distinct partitions (W) being 

K-2 	
(1.1) Cjç dcl 	1! 

W = 	fl ctn 	 del N , where m 
= 	= k !(l — k) ! j=o 

For the graph bisection case (K = 2), this implies that as N —' oo,W 2 1
. 

Thus for large graphs the number Of possible solutions becomes exponentially 

large. 
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Graph partitioning-like problems often arise in VLSI design. For example, if 

the number of components in a circuit is such that they must be split over 

several chips, then it is imperative to keep regions of the circuit with a high in-

terconnection density within a chip, so as to minimize the number of expensive 

chip-to-chip wires. Such problems can clearly be mapped onto the GPP. In prac-

tice, it is often desirable to allow slight violations of the equipartition constraint; 

this can be dealt with by defining a new cost function comprising the cut-size 

term plus an equipartition violation term proportional to I V  
J= - Km 2 ). 

1.2.2 The Travelling Salesman Problem 

The TSP is the problem of finding the shortest dosed path around a number 

of points. Formally, each instance is specified by a set of N points (the 'cities') 

labelled i = 1. . . N, and an N x N matrix of positive inter-city 'distances' d13 . 

Each tour round the cities can be represented by a permutation ir of the N points, 

with the tour-length given by 

N 
Ic,r = 	 (1.2) 

where ir(N + 1) = r(1). The task is to find the tour with the minimal L. 

For symmetric TSPs, i.e. those where d13  = d31  Vi,j, there are 1  (N - 1)! distinct 

tours, indicating that an exhaustive search strategy is untenable for large N. 

The symmetric class can usefully be broken down into the Euclidean and non-

Euclidean subclasses. In the former, cities are specified by coordinates and the 

dij  are computed in a Euclidean metric, whereas in the latter class each instance 

is specified purely by a matrix of d, terms. 4 

A large number of practical optimization problems can be framed as TSPs, 

either directly or indirectly. The 2-D Euclidean TSP, for example, describes a 

goods distribution problem in which a truck must deliver items to a number 
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of locations and then return to the depot, using the shortest route. Similarly, 

the question of optimizing the route of a drill which must produce thousands 

of holes in a circuit board can also been seen as a 2-D geometrical TSP. On the 

other hand, simple scheduling problems can be represented by non-Euclidean 

TSPs. Consider for example the problem of scheduling N jobs, i = 1... N, to 

run sequentially on a single machine in the shortest time. Job i requires time t1 , 

plus a lag-time d3 , in which the machine is altered to allow execution of job i 

after the previous job j. The initial (and final) state can be regarded as a dummy 

job, indexed by 0, with t0  = 0. Representing a schedule by a permutation 7r of 

jobs 0.. . N, with 7r(N + 1) = ir(0), the total run time T equals 
N 

T = >2(d1r(i)1r(i+l) + tir(j)) 

= 	 + E t 
i=O 	 i=O 

As E ti is independent of ir, minimizing T is equivalent to an (N + 1)-city 

non-Euclidean TSP (which may be either symmetric or asymmetric). 

Further applications, extensions and variations of the basic TSP formulation 

can be found in the standard text on the subject [Lawler et al. 19851. 

1.2.3 The Knapsack Problem 

Given a set of objects, each with a certain size and utility, and a knapsack of 

finite size, the problem arises as to how to maximise the utility of objects placed 

in the knapsack. Formally, consider N types of object labelled i = 1. . . N. Let 

s, and ui denote the size and utility respectively of type i objects, and S the 

knapsack size, with 5, Si, ui E ZVi. The problem is to find the set of integers x 

such that >, x iui is maximised, subject to the size constraint E i  x :5 S. 

As in the GPP and TSP, the configuration space explodes for large N. For exam- 

pie, in the special case in which the x 1  are also constrained by 0 < x :5 K - 1, Vi, 
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the total number of configurations is clearly KN,  though in general not all of 

these will satisfy the global size constraint. 

As a general example of constrained resource utilisation, the knapsack prob-

lem (KP) has found a wide range of applications throughout industry and 

business. 

1.3 NP-Complete and./VP-Hard Problems 

To date, no optimization algorithm running in polynomial time is known for any 

of the three problems just discussed Furthermore, in light of some remarkable 

computational complexity theorems due to Cook and others in the 1970s, it 

is widely believed that such algorithms are unlikely to exist. This section will 

cover only the main points of this important topic; for further details and history 

consult [Carey & Johnson 19791 and references therein. 

The starting point is the idea that problems can be regarded as either 'easy' or 

'intractable', depending on whether they can always (i.e. for every instance) be 

solved by an algorithm with running time polynomial in the input data size. 

For technical reasons, the theory explores this classification scheme primarily 

for 'decision' problems, i.e. problems with Yes/No answers, rather than opti-

mization problems. However, an optimization problem W often has a decision 

version WD (e.g. TSPD asks whether there exists a tour of length < L), and this 

allows optimization results to be derived too. This will become dearer as we 

proceed. 

Let P denote the set of easy decision problems. Many problems are known to lie 

in P. the assignment and minimal spanning tree decision problems being just 

two examples. There are also problems proven to be in P': these being either 

undecidable (i.e. incapable of being solved by any algorithm), or, decidable but 
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requiring run times worse than exponential for some instances. Then there 

is a third class of problems, those whose status with respect to P is currently 

uncertain. Such problems are apparently intractable, though this has never been 

proven. To filter out these interesting problems from those which are provably 

intractable, the abstract (and unphysical) notion of a nondeterministic algorithm 

was introduced. Roughly speaking, such algorithms can branch off several 

parallel decision processes and execute these concurrently if the algorithm 

can always produce a correct response to every 'yes' instance of 'J!D within 

a polynomially bounded number of levels in the tree, then XF D  is said to be 

solvable in nondeterministic polynomial time, and is a member of the set HP. 

Although it is clear that 7' C ALP., the issue of whether P 54.1VP remains 

open. This question can be cast into sharper relief by consideration of the 

'HP-complete' set (H'PC) - the subset of HP containing the hardest problems. 

Formally, XFD E HPC, if ) WD e HP, and, ii) every E HP is polynomially 

transformable to WD.  Polynomial transformability means that W' )  can be solved 

by an algorithm which calls up a WD 'subroutine' once, and whose running 

time, excluding this call, is polynomially bounded. 

Many hundreds of important decision problems, including TSPD, GPPD and 

KPD, have now been proven to be HP-complete. The importance of the HP-

complete set is that, by construction 

PJWDEHPC:WDEP'=P=HP. 	 (1.3) 

Thus the failure so far to find a polynomial time algorithm for any HP-complete 

problem, despite strenuous efforts, is the main reason for the folk-belief that 

P 0 HP and hence that all./VP-complete problems are inherently intractable. 

These results can be applied to optimization problems through the concept of the 

'HP-hard' class, containing all the problems "at least as hard as those in HPC." 

Formally, a problem is HP-hard if there is an HP-complete problem which is 
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polynomial time reducible to it.' Many optimization problems can be proven 

HP-hard by consideration of the polynomial reducibility of the corresponding 

decision problem. By construction, P = HP is a necessary condition for any 

HP-hard problem to be solvable in polynomial time. Furthermore, for TSP, GPP, 

KP and many other optimization problems 'P, it can also be proven that WD is 

polynomially reducible to W, and hence that these problems are of equivalent 

computational complexity to their decision versions. 

Polynomial-time Approximation Schemes 

In the expectation that P 4 HP, it is tempting to ask whether, in return for 

abandoning the goal of true optimization algorithms, one can devise methods 

for HP-hard problems which guarantee solutions within a certain range of the 

optimum, and which run in polynomial time. Specifically, for an optimization 

problem W, is there an algorithm A such that for some arbitrary input parameter 

c> 0, the cost of the solution found by A on each input instance 0, C, satisfies 

CAO  
~ f. 	 (1.4) 

co,pt  

and for which the running time is polynomial in both the problem size and 1/f. 

A 'fully polynomial-time approximation scheme' such as this is in fact known 

for the knapsack problem. Thus I(F', though HP-hard, is "well-behaved" from 

the viewpoint of finding approximate solutions. Alas the same cannot be said 

of the TSP and many other HP-hard problems. Even for TSPs in which the 

distances obey the triangle inequality, the best-known performance guarantee 

- from the Christofides' algorithm [Lawler et al. 1985, chapter 51 - only gives 

a fixed €, value 1.5, with 0(N3 ) running time. Furthermore, a fully polynomial-

time approximation scheme for the TSP is unlikely in principle, since it has 

been proven (in the above reference) that its existence would imply P = HP. 

'Where polynomial reducibility is a relaxation of polynomial transformability, allowing a 

polynomial number of subroutine calls. 



CHAPTER 1. COMBINATORIAL OPTIMIZATION 	 12 

Hence the interest in TSP heuristics which, even if they carry no (or very weak) 

worst-case guarantees, might be more fruitful paths to approximate solutions. 

1.4 Conventional Methods 

Despite the ostensibly negative news from the computational complexity front 

regarding the TSP, a variety of approaches has been developed which usually of -

fer a trade-off between solution quality and running time for practical problems. 

This reflects the fact that the complexity results just discussed are worst-case re-

sults, which may, of course, be unrelated to the average-case behaviour. This 

section briefly sketches the three main types of approach commonly cited in 

the operations research literature. Although these comments specifically con-

cern the TSP, the solution methods for many other combinatorial optimization 

problems have a similar taxonomy. 

1.4.1 Integer Programming. Methods 

These are powerful, highly sophisticated techniques dedicated to searching for 

optimal or very nearly optimal solutions, at the expense of long run times and 

complex software requiring thousands of lines of code. Their starting point is a 

tour representation in terms of bond variables x, where (for symmetric TSPs) 

xij  = 1 if cities i and j are adjacent in the tour, and is 0 otherwise. The problem 

is to minimize 

(1.5) 
i j>i 

subject to constraints 

= 2 	Vi 	 (1.6) 
j>i 	i.(i 
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VU'cV,UO 	(1.7) 
iEU jEU,j>i 

where V is the set of city vertices and I A I denotes the cardmality of set A. The 

first constraint requires each city to be connected to two others, and the second 

ensures that subtours - in which a group of less than N cities are connected in 

a closed loop - areprevented. The {x 83 } sets which satisfy the constraints can 

be viewed as points in an O(N 2  )-dimensional space. If a sufficient number of 

constraint equations are used, a polyhedron can be specified in this space, the 

vertices of which correspond to tours. Linear programming methods could then 

be used, in principle, to determine the optimal tour. Unfortunately there are 

an exponential number of the subtour elimination constraints (1.7), so a smaller 

number of more powerful inequalities are sought instead, through exploiting 

the relationship between the TSP and some tractable optimization problems. 

Such 'polyhedral' techniques are often combined with 'branch and bound' pro-

cedures, which essentially prune the search space in an intelligent fashion; a 

review of these techniques can be found in [Lawler et al. 1985, chapters 8-101. 

Although not guaranteed to work on every TSP instance, these methods typi-

cally find very high quality solutions, and furthermore, unlike any of the other 

methods discussed later, are often capable of proving the optimality of their 

solutions. Experiments reviewed in the reference above found the optimal 

solutions for several symmetric 100 city problems in only a few minutes of 

supercomputer time, and the optimal solution of a 2392 city instance in only 

a few hours has been reported in [Padberg & Rinaldi 19881. Methods for the 

asymmetric TSP are less advanced, but for some distance distributions large 

instances can still be solved to optimality [Miller & Pekny 19911. 
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1.4.2 Tour Construction Heuristics 

In contrast to polyhedral methods, tour construction heuristics are usually trans-

parent, simple to program, and generate tours in low order polynomial time. 

It comes as no surprise therefore that their performance is almost invariably 

far from optimal. As the name suggests, these heuristics start with a structure 

which is not currently a tour e.g. a single city, a set of edges or a cycle, and 

then sequentially add edges (according to some rule) until a tour is constructed. 

The 'nearest neighbour' heuristic, for example, starting at some arbitrary city, 

builds up a path by adding, at each step, the (as yet unselected) city nearest 

the city currently at the end of the path. After N - 1 such steps the path is 

dosed by returning to the initial city. The empirical performance of this and 

ten other tour construction heuristics was investigated in [Johnson 19901. With 

respect to optimal tour-length lower bounds derived using the reputable Held-

Karp method [Held & Karp 19701, the heuristics produced tours ranging from 

10% to 60% longer than the bound, on uniformly random Euclidean TSPs with 

N = 102_105 . Nearest neighbour, for example, typically runs up a tour-length 

percentage excess of between 20 and 30 across this range of problems. 

Tour construction heuristics have arguably three uses: 

the quality-level of their tours serves as a threshold which. any new TSP 

algorithms, and neural network approaches specifically, must cross before 

they can expect to receive any credibility. 

. for extremely large problems in which running time minimization is im-

portant and a large degree of sub-optimality in the tour is acceptable, as 

is sometimes the case in engineering applications. 

. as sources of initial tours for local optimization methods. 
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1.4.3 Local Optimization Heuristics 

These algorithms take some existing solution and search over a set of 'neigh-

bouring' solutions, looking for solutions of lower cost. If one is found, then 

the algorithm adopts it as the new state, and performs another neighbourhood 

search centred on it. This procedure is repeated until no further improvements 

are found i.e. until the solution is a local minimum with respect to the particular 

neighbourhood structure used. For the TSP, the most successful neighbour-

hoods are those defined in terms of r-edge exchange operations, in which a 

tour's neighbours are those tours which could be formed from it by deleting r 

edges in the tour and exchanging them with r edges currently not in the tour, 

subject to the result still being a valid tour. Local minima with respect to r-edge 

exchange are termed 'r-opt' tours. 

The first serious study of these methods was undertaken by [Lin 19651, who in-

vestigated the 2-Opt and 3-Opt algorithms. This led to the development of the 

celebrated Lin-Kernighan algorithm (LK) [Lin & Kernighan 19731, in which the 

fixed r search idea is extended to yield a powerful variable depth partial search 

technique. LK and 3-Opt are very widely used, as they typically give good tours 

in acceptable time and, for 3-Opt at least, can be implemented relatively easily. 

[Johnson 1990] reports empirical values for the excess over the Held-Karp lower 

bound, on uniformly random Euclidean instances with N = 102_105, of approx-

imately 6%, 3%, and 2%, for 2-Opt, 3-Opt and LK respectively. Empirically, 

all three heuristics appear to run in 0(N2 ) time. Note however that this result 

has no theoretical underpinning: although the neighbourhood search time is 

polynomially bounded for low r (as the neighbourhood set is of size 0(N') for 

r-edge exchange), there is no guarantee that the number of searches needed to 

reach a local optimum is also polynomially bounded. 

The Or-opt algorithm utilises a restricted 3-opt search to find good tours rapidly 

[Lawler et al. 19851. The neighbourhood is defined by the 'k-city insertion' 
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operation, in which an edge (i,j) in the tour is deleted and a randomly selected 

segment of k cities currently elsewhere in the tour is inserted between cities i 

and j (and dosing up the tour at the point of segment excision). Or-opt finds 

a local optimum with respect to three city insertion, then uses this as the initial 

state for two city insertion optimization, followed by a similar process using a 

single city. A variant of this method, Ore-opt, was developed and used in the 

current study to. provide benchmark data for the neural network approaches. 

Or* opt generalizes this to the case k0  = N - 2 rather than 3, and furthermore 

repeats the whole sequence of k-city insertion optimizations until the tour is 

locally optimal for all values of k. 

1.5 Novel Methods 

During the last decade several radically new approaches to tackling optimiza-

tion problems have emerged. They are novel in that they are all inspired by 

optimization principles active in natural systems. Of the three approaches 

- genetic algorithms, simulated annealing, and neural networks - we shall 

cover only the key points of the first two, before concentrating on the neural 

algorithms. Whilst there are (to the author's knowledge) as yet no neural TSP al-

gorithms incorporating concepts from genetic algorithms (GAs), the latter have 

recently been combined with both local optimization and simulated annealing 

to good effect, and so a few comments on GAs are warranted. 

1.5.1 Genetic Algorithms 
Fj 

Genetic algorithms are attempts to abstract and utilise the key mechanisms 

operating in the evolution of biological systems. Through natural selection, 

nature has developed a robust and powerful technique for maximising the 
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'fitness' of populations. GAs mimic this by evolving a population of solutions, 

generating new solutions by a 'mating' procedure in which parents are chosen 

probabilistically according to their fitness, i.e. solution cost. The offspring 

incorporate elements of their parents' solutions, and so after many generations 

the solutions in the population tend to improve. To maintain diversity in 

the population, a low level of random 'mutation' is also incorporated. (See 

[Goldberg 19891 for a proper introduction to the subject.) 

Although there have been some TSP studies using the pure GA method, ar -

guably better results have been obtained using hybrid GA systems incorporat-

ing r-opt local search moves [Brady 1985, Mühlenbein et al. 19881. Not surpris-

ingly, such systems can perform as well as local optimization methods, indeed 

the technique of [Mühlenbein et al. 1988] has found tours within only a few 

percent of the optimal length, for large instances. In other research, the concept 

of an interacting population of solutions has been wedded to the simulated 

annealing technique to produce an interesting TSP algorithm [Ruján 19881, and 

this concept may have wider applicability in search problems. 

1.5.2 Simulated Annealing 

In computational experiments studying the equilibrium statistical mechan-

ics of many-particle systems, the Metropolis algorithm is used as a standard 

method for generating the Boltzmann distribution of microstates characteristic 

of thermal equilibrium. [Kirkpatrick et al. 19831 proposed that the Metropolis 

algorithm could also be applied to combinatorial optimization problems, by 

viewing the set of possible solutions as the microstates, solution cost replacing 

energy, and introducing an appropriately defined 'temperature' T. Lowering 

T towards zero in a sequence of steps, whilst ensuring thermal equilibrium is 

maintained throughout, the system will increasingly tend to sample configu-

rations of low cost, in accordance with the Boltzmann distribution sharpening 
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around the ground state as T - 0. The name of the new method is a reference 

to the similar process of slowly cooling a melt so that the resulting crystalline 

structure is of low energy, with few random defects. 

A comprehensive discussion of the theoretical and practical details of simulated 

annealing is given in [van Laarhoven & Aarts 19871. It suffices here to say that 

the elementary operation in the Metropolis method for the TSP is the generation 

of some new candidate configuration (usually via a 2-opt or 3-opt move), which 

is then automatically accepted if it lowers the solution cost, or is accepted with 

probability exp(—LC/T) if it would increase the cost by A C. Thus the technique 

is essentially a generalization of the local optimization strategy, where, at non-

zero temperatures, thermal excitations can facilitate escape from local minima. 

Simulated annealing is a robust technique and has been applied with success 

both to standard combinatorial optimization problems and to some 'messy' 

problems in VLSI design. However, to obtain good results the annealing runs 

often require a great deal of computer time. [Johnson et al. 1989] criticised much 

of the earlier research for only comparing simulated annealing with the sim-

pler local optimization heuristics (i.e. those using r-opt style moves) and not 

with the more competitive LK-style heuristics. They undertook a systematic 

comparison of the above three methods' performance on the graph bisection 

problem, for low degree random and random geometric graphs. When assessed 

using equivalent amounts of computer time, simulated annealing emerged a 

clear winner over simple local optimization for both types of graph. Against 

the LK-style algorithm however, the new technique was only slightly better 

for random graphs and worse for the random geometrical class. A similar in-

vestigation is currently underway for the TSP [Johnson et al. 19921; preliminary 

results [Johnson 19901 suggest that, matched for run-time, simulated annealing 

beats 3-Opt but is worse than LK. 

In summary, simulated annealing appears competitive with, but probably 
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no better than, the best local optimization methods. Its major drawback is 

the requirement for long run times. Furthermore, the inherently serial na-

ture of the approach in general precludes any obvious parallel implemen-

tation, though several attempts have been made to overcome this problem 

[van Laarhoven & Aarts 1987, chapter 81. 

1.5.3 Neural Network Algorithms 

These algorithms draw their inspiration from idealised models of the dynamical 

behaviour of richly interconnected networks of nonlinear neurons. Here, and 

throughout this thesis, the emphasis will be on the mathematical rather than 

biological aspects of these networks. Much of the work in this area has centred 

on understanding and improving on the Hopfield-Tank TSP algorithm (Hi) 

[Hopfield & Tank 19851. We shall first examine HT and its problems, then 

introduce the Potts style method which largely overcomes these problems, and 

finally discuss topographic mapping TSP algorithms. 

The Hopfleld-Tank TSP Algorithm 

In two seminal papers, Hopfield first investigated the asynchronous dynamics 

of an interconnected network of discrete two-state 'neurons' [Hopfièld 19821 

and then extended this study to nonlinear analogue neurons with continuous-

time dynamics [Hopfield 19841. Under certain conditions on the connectivity 

matrix T, it was shown that in each model the local computations of the neurons 

collectively act to minimize some global 'energy' function. Specifically, for the 

analogue case, the evolution of the network is governed by a set of nonlinear 

coupled differential equations 

= 	+ E T•2 V3  +11 	 (1.8) 
dt 	j=1 
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where 173  E [0, 11, the output of neuron j, is computed as a monotonically in-

creasing function g(u3 ) of its input (or 'potential') u,. The sigmoid function 

gA (x) = (1+ e 2 ) 1  is conventionally used as the input-output function. No-

tice that for large .A (i.e. high 'gain') g approximates a step function, forcing the 

V1  to tend to either 0 or 1. 

Hopfield proved that for symmetric T the above dynamics have an associated 

Lyapunov function 

E' 
= (-

>T1.,VV1 - 11171 ) + >2!' g 1 (V)dV. 	(1.9) 

Denoting the network state by V (V 1  . . . Vs ), we therefore have an energy func-

tion defined throughout yE [0, 1]n and dynamics which guarantee convergence 

to minima. For suitable T, the minima of the first term lie at hypercube vertices. 

The second term is minimized at the hypercube centre but has negligible impact 

in the high X regime because of the 1/A prefactor. For other values of A it acts to 

pull the E' minima slightly away from the vertices. 

[Hopfleld & Tank 19851 proposed that combinatorial optimization problems 

could be solved using such analogue networks. To achieve this, one needs 

a representation of the problem in which the feasible solutions lie at hypercube 

vertices, and a quadratic energy function (to be mapped onto term 1 of (1.9)) for 

which the minima correspond to solutions and the depth of each minimum re-

flects the solution quality. Aside from its intellectual interest, this approach also 

offers potentially great practical benefits, as (1.8) can also describe the behaviour 

of a network of interconnected electrical amplifiers, and hence hardware cicuits 

might be capable of solving hard optimization problems in real time. In practice 

however, even at a software level of implementation, considerable difficulties 

have been encountered carrying this program out for the TSP. 

HT uses a permutation matrix representation of TSP tours. In this represen- 

tation, Vi,, = 1/0 means that city i is/(is not) the a th city visited in the tour. 
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Regarding i and a as row and column indices respectively, tours are repre-

sented by [Via] matrices with exactly one 1 in each row and column, i.e. they are 

permutation matrices. 

The energy function (below) consists of four terms. The first three are restraint 

terms which penalize all states which are not tours; their joint sum is zero if and 

only if the system is at a vertex representing a tour. Only the last term contains 

instance-specific information; given that the restraint term is zero, it gives the 

length of the tour (where a ± 1 is evaluated modulo N). 

E = 
a bi4a 	 a 	i ji 	 ia 

+>2EdijVia(Vj,a+i + l',a—i) 

(1.10) 

Mapping E onto the bracketed term in (1.9) yields a prescription for the T 1, and 

I, terms to be used in the dynamics (1.8). That leaves values for the parameters 

A, B, C, D, and A plus the initial state to be specified. Taking an unbiased initial 

state Via  1/N V i, a and setting B = A were two obvious steps taken by Hop-

field and Tank. After setting the other parameters by "anecdotal exploration" 

they reported that, using multiple runs with different initialization noise, 80% of 

the runs converged to tour states for an N = 10 Euclidean TSP. Other researchers, 

notably [Wilson & Pawley 19881, found far lower levels of convergence to tours. 

An empirical study of the A - C parameter plane [Hegde et al. 19881 also found 

that the region in which valid tour states were produced decreased as N grew, 

and even at N = 8 was very small. Of course, it is always possible to force 

the network into tour states, simply by setting A, C >> D, but this means that 

the tour-length term has negligible impact, which results in randomly chosen 

tours. 

Given the strong evidence that the original HT algorithm was ineffective, several 

amendments were proposed. [Brandt et al. 19881 for example argued that the 
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three restraint terms should be replaced by two terms: j(Ea  V - 1) 2  and 

>a(E 1i - 1)2 , and found that this consistently gave valid solutions for up to 

32 cities. Even so, it seems unlikely that this completely cures the ills of FIT, given 

that the average 32 city solution was some 20% longer than that found by human 

eye. Aiyer has given a theoretical analysis of how the network dynamics are 

influenced by the eigenvalues of T [Aiyer 1991, Aiyer et al. 19901. That analysis 

gives a prescription for how T can be altered so that the network is confined 

to a subspace of the hypercube corresponding to valid solutions. Simulations 

confirmed that valid solutions were always obtained. Again however, the final 

tours (for N = 30) were of poor quality, being roughly comparable to those from 

the nearest neighbour heuristic. 

Further work within the basic FIT framework, such as that above, will possi-

bly yield further improvements to the method. A more promising approach 

however, is described in the next section. 

Normalized Networks: the Potts Approach 

Clearly the original FIT algorithm had difficulty constraining the network into 

valid solutions. One way forward is therefore to lessen the computational 

burden being placed on the network. This can be done by constraining each 

city to be 'on' only once, by enforcing E. Va = 1 V i, rather than relying on an 

energy penalty term to try and do this (as in FIT). This idea was first utilised in the 

TSP by [van den Bout & Miller 19881, with equivalent normalization schemes 

for FIT style networks for the GPP analysed in [van den Bout & Miller 19901, 

[Hérault & Niez 19891, and [Peterson & Soderberg 19891, with the last Parr 

being the only one also analysing the TSP case. For the TSP it greatly enhances 

the degree of convergence to valid solutions. 

In all of these papers the normalization occurs in the context of a 'mean field 
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annealing' approach. This generally yields the same final network equations as 

the 'neuronal circuit' approach of [Hopfleld 19841, but the exposition is clearer, 

as it is laid out in a statistical mechanics framework.' The idea is to regard 

each hypercube vertex as a configuration, with an associated E value. The 

partition function is then formed by summing the Boltzmann factors of the 

admissible configurations. (For example, in the FIT algorithm, all of the 2N2 

configurations are admissible, whereas if each city is restricted to being visited 

only once, then only NN  vertices are admissible.) After taking a mean field 

approximation, saddlepoint equations are derived, the solutions of which pick 

out the dominant states of the network at the current temperature T. For the FIT 

model, these saddlepoint equations are equivalent to the network equations 1.8, 

with E' in (1.9) identified as the free energy and the gain ,\ acting as an inverse 

temperature. Analogous correspondences hold for other networks. The mean 

field method will be covered more fully in chapter 4. 

This statistical mechanics characterisation gives a clearer understanding of why 

the normalized model (which corresponds to a type of Potts model [Wu 19821 

in physics, in that each city is represented by a spin which can be in only one of 

N states) ought to perform better than the FIT model. As [Peterson & Soderberg 

19891 indicated, the FIT algorithm's partition function sums over a vast number 

of configurations which are nothing like tour states, and even though these 

offenders have small Boltzmann weights their large number inevitably affects 

the thermal average quantities. This effect, though not entirely eliminated, is 

much reduced in the Potts network. A second advantage of this derivation is 

that, by introducing a temperature, the concept of annealing i.e. reducing T 

during a run, can be justifiably employed. 

Chapters 4 and 5 study the mean field Potts TSP algorithm introduced and first 

studied by [Peterson & Soderberg 19891. Dynamical issues, parameter choice 

and performance are all investigated. We shall find that although the net- 

2TJ1iS equivalence was also noted in [Hopfield & Tank 19851. 
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work's behaviour is quite complex, the key relationships between the various 

free parameters can be elucidated. However, questions still remain about the 

algorithm's scalabiity for very large problems. 

Topographic Mapping TSP Algorithms 

These methods are derived from algorithms which construct topographic - 

i.e. neighbourhood preserving - maps between different geometrical spaces, 

possibly of different dimensionality. As such, they are only applicable to the Eu-

clidean TSP (or other geometrical optimization problems), a drawback partially 

compensated for by the fact that the progress of the algorithms can be visu-

alised. The methods have a common ancestry in that they are all derived from 

original research on the theory of topographic mapping. This was concerned 

with understanding how, in biological systems, connections could develop from 

a sensory feature 'space' e.g. the retina, onto a cortical (or mid-brain) space (typ-

ically of equal or lower dimension than the presynaptic sensory space), so that 

neighbouring points in the cortex are tuned to points dose together in the 

sensory space. 

One such neurobiological model is the 'Tea Trade model' [Wilishaw & von 

der Malsburg 19791, in which a 2-D space maps onto another 2-D space. 

[Durbin & Willshaw 19871 simplified it, reduced the target dimensionality to 

1, and showed how it could be applied to the 2-D TSP. The 1-D structure is 

a dosed loop of points which can be viewed superimposed upon the 2-D city 

space. The loop points, which ultimately define the tour, move in parallel, under 

dynamics which gradually pull them towards the cities whilst simultaneously 

trying to keep the neighbouring loop points dose together. This so-called 'elas-

tic net' method found better tours than the original HT algorithm, as well as 

exhibiting far less sensitivity to parameter choice. 
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Three further features of the method are its inherent parallelism, the existence 

of an energy function mimimised by the dynamics, and a complexity of usu-

ally 0(N 2 ) per update, compared to 0(N 3 ) for FIT. Further detail on the elas-

tic net TSP algorithm and relevant research is given at the start of the next 

chapter, which studies parameter choice issues in the algorithm. In other 

related research, [Frean 19901 made an ingenious attempt to adapt the elas-

tic net to deal with non-Euclidean TSPs, with partial success; and [Aue 19901 

adapted it to another Jv'P-hard problem, the Euclidean Steiner Problem. Finally, 

[Goodhill 19921 has taken the method and applied it back into neurobiology, in 

an attempt to model the joint development of topographic and ocular domi-

nance maps in the cortex. 

Another group of mapping algorithms, commonly referred to as 'self orga-

nizing feature maps' or 'Kohonen-style' algorithms, share some aspects with 

the elastic net; see for example, the algorithms of [Angeniol et al. 19881 and 

[Fritzke & Wilke 19911. Algorithms of this sort are usually derived from the 

self-organizing mapping specified in [Kohonen 19881, which was itself inspired 

by the 'Tea Trade model'. They are similar to the elastic net in that they also 

evolve a loop of points towards the cities but differ in that they operate by 

selecting single cities at random and then moving the bead nearest to that city 

towards the city. To keep the loop tight, the winning bead's neighbours also 

move in sympathy with it; with the width of the neighbourhood decreasing 

over time somewhat analogously to an annealing temperature. These serial dy-

namics preclude the existence of any simple energy function for the model, and 

would also make parallel implementation problematic. This latter point may 

not be important however, given that the run time complexity is usually low: 

[Fritzke & Wilke 1991] reports tours of 2-Opt quality, obtained in linear time. 

Whether such impressive time complexity can also be carried over into algo-

rithms for other combinatorial optimization problems, or indeed whether any 

such problems can be tackled at all by the self-organizing algorithms, remains 



CHAPTER 1. COMBINATORIAL OPTIMIZATION 	 26 

to be seen. 

1.6 Theoretical Results on the TSP 

A great many mathematical results are known about the distribution of tour-

lengths for certain types of TSP - for example, results on the average, worst, 

and optimal tours, as well as asymptotic N results. Only one will be quoted 

here however. Most of the experimental testing of new algorithms is carried out 

first on a class of Euclidean instances in which the N points are independently 

chosen from the uniformly random distribution on [0, 1]', i.e. the d-dimensional 

unit cube. Under these conditions [Beardwood et al. 19591 proved that, letting 

£N denote the length of the optimal tour through any such set of N points, there 

is a constant Cd such that with probability 1 

urn £N = CdNul 'd 	 (1.11) 
N—too 

Although proving the convergence to a constant is hard (see e.g., [Beardwood et 

al. 19591, or the 'simplified' proof in [Steele 1990]),  it is quite easy to understand 

the scaling relationship, simply by noting that if the points were arranged in 

a regular lattice, the spacing would be NV'  and hence Ni_l/d  would be a 

lower bound on the optimal tour. Although the exact values of the Cd terms 

remain unknown, many bounds have been deduced (see e.g., [Steele 19901 

and references therein). Numerical studies [Bonomi & Lutton 1984] show that 

C2 .75. This value will be used to derive estimates for optimal tour-lengths 

(for unit square problems) whenever necessary in the rest of the thesis. 

4 

Statistical Mechanics Studies 

This thesis focuses on optimizing the performance of neural networks designed 

to find low cost solutions to specific TSP instances. Statistical mechanics tech- 
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niques, on the other hand, allow investigation of the average properties of 

systems in the N - 00 limit. Despite this distinction, results from statisti-

cal mechanics are still of considerable interest in interpreting and potentially 

improving the performance of optimization neural networks. The following 

remarks serve briefly to cover some of the main results and references from 

statistical mechanics. 

Ideally we would like a complete understanding of the Ising and Potts style spin 

systems which underly the Hopfleld-Tank and Potts optimization networks, 

with, for example, results on the existence or otherwise of phase transitions, 

and how the near-optimal solutions are distributed in configuration space. To 

achieve this however, would require the use of a Hamiltonian comprising sev-

eral additive terms, one being the solution cost for valid configurations, with the 

others serving to penalize spin configurations which do not satisfy the prob-

lem's constraints. There are considerable difficulties in the analysis of such 

systems [Fu & Anderson 19861, and to the current author's knowledge such an 

analysis has not yet been achieved for any network designed for an 

optimization problem. An analytical treatment has proved possible however 

for a Hopfleld-Tank system for the easier 'assignment' problem [Kastella 19921. 

More progress can be made if the possible states of the system are restricted 

to being valid solutions of the optimization problem, so that the Hamiltonian 

simply gives the solution cost. This case is clearly of direct relevance to simu-

lated annealing algorithms, which can also be used to test the resulting analysis. 

For geometric unit square TSPs, [Bonomi & Lutton 19841 gave an annealed ap-

proximation analysis and demonstrated that it gave an excellent description of 

experimental data (on the internal energy, specific heat, and entropy as functions 

of temperature) for a 400 city problem at all but very low temperatures. The 

breakdown of the approximation in the low temperature regime is unfortunate, 

as this is the regime of prime interest with respect to near-optimal tours. The 

transition between the high and low temperature regimes, in which the average 
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tour-length changes its scaling behaviour with N, appears to occur gradually 

rather than through a phase transition. 

[Kirkpatrick & Toulouse 19851 performed a similar analysis, with similar re-

suits, for the case of symmetric non-Euclidean TSPs in which the distances are 

random variables drawn uniformly from [0, 1]. Non-Euclidean problems are 

theoretically easier to work with than Euclidean ones, as the inter-city distance 

terms are uncorrelated. Even for this class though, attempts to analyse the low 

temperature regime using replica methods have met with only limited success 

[Baskaran et al. 1986]. Nevertheless, [Krauth & Mézard 19891 have managed to 

show - through a non-replica zero temperature analysis - that random [0,1] 

problems have optimal length 2.014 in the thermodynamic limit, a result 

which we shall use later in chapter 5. 



CHAPTER 2 

Parameter Sensitivity of the Elastic 

Net Algorithm 

This chapter deals with the elastic net [Durbin & Willshaw 19871, a connectionist 

algorithm for the Euclidean TSP. This algorithm is capable of finding good 

solutions, however, for certain ranges of parameter values, it can converge into 

local energy minima which do not correspond to valid tours. The key parameter 

is the ratio governing the relative strengths of the two competing terms in the 

elastic net energy function. Building on recent work [Durbin et al. 19891, the 

parameter regime in which the net may visit some cities twice is first examined. 

Further analysis predicts the regime in which the net may fail to visit some 

cities at all. Understanding these limitations allows one to select the parameter 

value most likely to avoid either type of problem. Simulation data supports the 

theoretical work. 

29 
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2.1 Introduction 

The elastic net can be visualised as a rule for deforming an imaginary elastic 

band placed in the city plane by attractive, distance dependent forces from the 

cities and by elastic forces within the band itself. A scale parameter controls the 

effective range of the city forces. it is initially set high, then gradually reduced; 

thus it plays a role comparable in some respects to 'temperature' in simulated 

annealing. In practice, the net is modelled by a finite number of points ('beads') 

and the algorithm reduces to an iterative procedure for updating the bead 

positions. 

Let m i  denote the fixed position of the ith city, 1 <i < N, and y, the variable 

position of the jth bead, 1 < j < M, M > N. At each iteration all of the beads 

are updated in parallel by: 

Ly 3  = 	 + K13(y+1-2y+y_1) 	(2.1) 

where a and 3 are the constants governing the strengths of the city and tension-

like forces respectively and K is the scale parameter. w - the normalized 

'weight' of the connection between the ith city and jth bead - is defined by 

0(1  m i -  y2 1,K) wij = (2.2) 
k0(IiYkI,K)  

where (d, K) = e/2,2. This update rule performs gradient descent on an 

energy function E defined below. Alternative minimization methods and their 

corresponding update rules are analysed in chapter 3. 

E = —aK in> q(Ii - y, K) + 	- 	(2.3) 

Note that the second term has coefficient /3/2, and not 9, as is stated in the 

original and several subsequent papers. For net configurations corresponding 

to tours, the energy reduces to the second term in (2.3) as K - 0. This term 

is approximately related to the square of the total tour-length, so that in the 



CHAPTER 2. PARAMETER SENSITIVITY OF THE ELASTIC NET 	31 

limit of K -p o the deepest minima in the energy landscape tend to represent 

the shortest tours. The algorithm attempts to find one of these minima by first 

finding a minimum at high K, where the energy landscape is smoother, then 

trying to track it as K is reduced. 

As [Simic 19901 pointed out, summing over the inter-bead distance-squares 

rather than over the distances in the second energy term is not ideal. Minimiza-

tion of the former sum only corresponds to minimization of the tour-length in 

the limit MIN -p 00, when, assuming the M beads are equally spaced, the sum 

is proportional to the square of the tour-length. This drawback was alluded to 

in the original paper but was not stressed therein. 

2.2 A Brief Review of Previous Elastic Net Work 

[Simic 1990] and [Yuille 1990] independently demonstrated that the elastic net 

and the method due to [Hopfleld & Tank 1985] are related through a common 

underlying framework, Simic through statistical mechanics and Yuille from 

work on stereo vision models. 

Durbin, Szeliski and Yuille [Durbin et al. 19891 (referred to as DSY hereafter) 

investigated how the energy landscape changes as K is reduced, and deduced 

several results. Firstly, that for E to remain bounded, every city requires at 

least one bead within a distance of 0(K 112 ) of it; secondly, a condition on 8/a 

is needed to prevent two neighbouring beads converging on the same city.  

Thirdly, they derived an implicit expression for the critical value of K, K, 

above which the energy function has a minimum corresponding to all the beds 

lying at the centre of the city distribution, and they proposed using K and 

this configuration as the initial state. Finally, DSY discussed how the system's 

dynamics are influenced by the Hessian of E, and concluded that the algorithm 
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cannot guarantee to find the global minimum, even when the initial state is 

chosen in this way. 

The elastic net algorithm contains few parameters and so it might be possible to 

understand through analysis what the good parameter settings are, as, for ex-

ample, DSY did for the initial value of K. One of the most important parameters 

is the ratio /3/a, referred to as -y in this and the following chapter, which controls 

the relative strength of the tension-like forces to the city forces. This chapter 

builds upon the work of Durbin et al. on selecting the value of y. I prove that, as 

K -p o there exist local energy minima in which some cities remain unvisited, 

i.e. minima corresponding to configurations that are not tours. The range of 

values for which the algorithm is liable to find one of these minima (and 

therefore fail) is then derived. This information, combined with the earlier DSY 

condition, gives a good prescription for choosing as a function of the typical 

separation (denoted by ) between neighbouring beads in a tour configuration. 

2.3 Sensitivity to the Value of 31a 

DSY investigated the parameter conditions needed to guarantee that, as K - 0, 

there would be only a single bead at each city They analysed the stability of 

equilibrium configurations of two beads dose to a single city; K was considered 

small enough such that only these beads interact significantly with the city. From 

their work, the condition for instability (hence for only one bead at the city) can 

be expressed as 
	

12 
(C,)2 < (

IAi l 2  + fIA2,2) 	 (2.4) 

where A3 = (y31  + y1 - 2y,) and w3  is the weight between the city and jth 

bead. They then considered only the case in which the two beads are immediate 

neighbours in the net. This allows IA J I to be interpreted approximately as the 

distance separating a bead converging on the city from its neighbour which is 
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(a) 
	

PR 
	

(c) 

Figure 2.1: Example of spiking. Open squares denote cities, dots beads. (a) Net 
configuration showing a spike caused by two non-neighbouring beads converg-
ing onto one city. (b) and (c) show the two possible city orderings obtainable 
by effectively 'deleting' one of these beads. 

not attracted to the city. Thus the IAJ I terms can be approximated by u. Now, 

the minimum of ( + ), subject to (w i  + w2 ) = 1 (which follows from the 

above assumptions and equation 2.2) is 4; it can be inferred therefore that to 

prevent two neighbouring beads converging onto a single dty, a and /3 should 

be chosen such that 
/3 	1 
->- 
a 	2 

(2.5) 

However, preventing the convergence of neighbouring beads onto the same 

city is not strictly necessary, since such a configuration still defines a perfectly 

valid tour. Suppose however that the beads are not neighbours: equation 2.4 

still holds but the IA,I terms can now become arbitrarily small, depending on 

the relative locations of the beads and their neighbours. Hence may need to 

be arbitrarily large to prevent the convergence of both beads and subsequent 

formation of a 'spike' in the net (see Fig.2.1). 

A tour configuration containing a spike is, strictly speaking, an illegal tour, 

since the city at the spike's base is visited twice, but a simple post-processing 

operation can recover a legal tour (see Fig.2.1). Indeed, such an operation occurs 

naturally in the procedure detailed in section 2.5 to extrapolate a city tour from 
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the final network state. 

In summary, satisfying 7> should ensure that no city will have two neigh-

bouring beads close to it as K -* 0, but it is no guarantee against spikes in the 

net. All that can be predicted from this analysis about the spike problem, is 

that their frequency should be a decreasing function of . The issue of how to 

estimate p for any particular problem will be discussed at the end of section 2.4.1. 

2.4 Stable Non-Tour Configurations in the K - 0 

Limit 

The previous section suggested that to avoid spikes 	be chosen 'large'. 

This section will demonstrate that such a policy can cause other problems. To 

motivate what follows, observe that even in simple situations the algorithm can 

fail to find a net configuration which visits every city (see Fig.2.2). Such failures 

can occur in situations where two (or more) cities lie close together. An insight 

into why this may happen can be gained using the result from DSY that, for E to 

remain bounded, every city requires at least one bead within a distance 0(K 112 ) 

of it. During the early stages of the algorithm a dose pair of cities may not be 

resolvable on a length scale of 0(K 112 ). Thus the system may only commit one 

bead to the region yet still be able to keep the energy contribution of both cities 

bounded. Later as K -p 0 and the cities become resolved, the bead converges 

to the point midway between the cities. Figure 2.3 is a rough sketch of this. 

To prove the stability of the midpoint configuration, consider the situation of 

Fig.2.3c in detail. Let the cities lie at (±, 0) and consider the component E' df E 

due to these cities as K - 0. The contribution of the second term in the energy 

function (2.3) can be ignored since, being only of 0($),  it will be shown below 

to be negligible compared to the other term as K - 0. Let the closest bead lie at 
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(a) 	 (b) 

Figure 2.2: Failure of the algorithm on N = 4. Squares represent the cities (with 

coordinates of (.3, .7), (.7, .6),(.47, .3) and (53,3)), dots represent the beads. (a) 
Final configuration found using 10 beads, a = . 05, ,3 = 1.0, with an initial state 

having K > K and the beads configured in a small ring around the centre 

of the cities; K was reduced by 1% every 20 updates. A slower K reduction 
schedule (1% every 100 updates) also found the same configuration. (b) Final 
configuration found using the same parameters as (a), except that here a = 0.1. 

(x, y); the other more distant beads can be ignored since these have negligible 

weights with the two cities in the K - 0 limit, a fact easily established from 

(2.2). Thus 

(x-)2-fy2 	 _____ 
= —crK [In (e _2K2 ) + ln(e 	

___2K2 

aL 2  a 
= 

(2.6) 

This shows that the bead lies in a radially symmetric quadratic well, the mini-

mum of which is midway between the cities, and that the energy of the (stable) 

equilibrium configuration rises without bound as K - 0. 

This disproves the previous claims of [Durbin et al. 19891 that in the limit of 

small K all minima correspond to valid tours, since it shows the existence of 

energy minima corresponding to configurations in which some cities remain 
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I 
(a). 	 (b) 	 (c) 

Figure 23: Resolution argument to account for failure on a close pairs of cities. 
Squares denote cities, dots beads and the shaded disks are schematic representa-
tions of the 0(K 112 ) zones of each city (see main text for details). K1  > K 2  > K3 . 

(a) Situation at K1 , cities not resolvable. (b) Situation at K2 . (c) K3, cities are 

resolved. The neighbouring beads cannot move in because as K - 0 their 

weights with the cities become negligible. 

unvisited (a city is considered 'visited' if, for any small distance E, some bead(s) 

can be found within € of it in the K - 0 limit). 

It might be suggested, notwithstanding the plausibility argument sketched in 

Figure 2.3, that the trajectory leading to the Figure 2.2a configuration would 

only be selected if the cooling was too rapid for the system to pick out the 

'proper' path leading to the Figure 2.2b configuration. Such an optimistic view 

would, however, be misguided: as mentioned in the Fig. 2.2 legend, cooling 

more slowly yields the same results. Furthermore, this reflects the observation 

that at intermediate K the Fig. 2.2a trajectory has the lower energy. This was 

seen by repeating the Fig. 2.2 simulations with values of o just above and below 

the value Oti 0.825) demarcating the transition between the two types of final 

state (so that the energy functions are comparable), and examining the two 
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E vs.K plots. Thus the problem of non-tour minima is fundamentally due 

to the energy function, and not to any problems in the dynamics or cooling 

schedule. 

2.4.1 Avoiding Non-Tour Minima - ,81a Revisited 

There is a straightforward way to avoid such minima: simply use so many 

beads that the typical spacing between neighbouring beads is much less than 

the minimum inter-city spacing. This strategy is, however, inefficient, since 

the computational complexity per iteration is O(NM). Instead, the analysis 

presented below will show that non-tour minima can be avoided by choosing 

-y such that -y < 1/2t. 

Consider the stability of an equilibrium configuration in which two beads (la-

belled 1 and 2, though this does not imply that they are neighbours) lie near a 

close pair of cities, for small K. If the configuration remains stable as K -* 0 

then each city can attract a bead to it; instability, however, leaves just one bead 

with the cities and subsequently the system becomes trapped in a non-tour en-

ergy minimum. Let the equilibrium. distances from the beads to the cities be s 1  

and respectively, with corresponding weights w 1  and w2. The analysis below 

considers the general case in which these weights are not necessarily equal, 

though eventually it will become clear that the w 1  = w 2  case is the most relevant 

one. Several simplifying assumptions shall be made here. Firstly, these beads 

interact significantly only with these two cities. Similarly, these two cities inter -

act significantly only with these beads. Secondly, the two cities are assumed to 

be coincident; this simplifies the analysis and also represents the 'hardest-case' 

local scenario for the algorithm in its attempts to have every city visited by a 

unique bead. 

We seek the conditions for which this equilibrium system is a local minimum, 



CHAPTER 2. PARAMETER SENSITIVITY OF THE ELASTIC NET 	38 

by examining the change in energy induced by local perturbations of the beads. 

Without loss of generality, let s i + Si and S2 + 82 denote the distances between 

the cities and beads 1 and 2 respectively, in the perturbed state. It will be 

helpful here to write E = E1  + E2  with E1  = —cxK Ej  in Ej  e YI2/2K2 and 

E2 = /3/2 >1, I+ - z', 1 2 . To derive zE1 , the change in E1 , let C = In(E e'(81S1c 
)2), 

and observe that C can be expressed as 

C = in [e4e(612428161)  +e heh(622+23262)} 

= hs + in [eh(612+23161) + 1eh622+28262)] 

= 

(2.7) 

where 
2h(s 1 61  + f1s2 82 ) + h(6 + 18) + 2h2 (s6 + 1ls6) + O(6 ) 

1 	1 	
(2.8) 

with 6  and denoting max( Si I 162 1) and 	4) ( w2  /w i ) respectively. Ex- 

panding in(1 + /') to second order in 8 and gathering like terms gives 

C = hs+in(l+1) 

	

1 	(2h2  

	

+ + 
	1 + 

(si8i - 82 82 ) 2  +h(6 + 8) + 2h(s i öi  + s282)} + O(8) 

(2.9) 

Setting h = —1/2K 2  and noting that at equilibrium (2.1) implies sk = -yAkK/2wk 

(where Ak = IAkI), therefore gives 1E1  correct to second order as 

AE, = 
cry8(

w,
Ai - 1rA2 - 	52 	I1ly 	Al + 	- (1 + clr2)] 

	

i+ci 	2 ) —K(1+ Q) [4(l+) \wl W2) 

(2.10) 

where the perturbation has been parameterised by writing Si = 5, b2 = —rS. 

Noting that, by definition, the first order component of A E vanishes at an 

equilibrium state, and, by inspection of the E2  definition, that the second order 

component of LE2  wifi contain no K dependence, we find 

AE 	
a452 	I_ 	(! + 	- ( 1 + 11r2)J 	(2.11) 

K(1+1l) 4(1+1) w1 	w2 
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as K - 0. Thus AE is positive provided y satisfies 

41(1 + r211) 	 (2.12) 
< (1 + )(A 1  + rA2 ) 2  

Differentiating with respect to r, the r.h.s. is found to have a single minimum at 

= A2A 1 1 2 . Evaluating the r.h.s. at this point gives the condition for stability 

against the whole range of perturbations as 

4f' 2 	
(2.13) 

Switching from the Q notation back into that of the weights, noting that 

W1 + w2  = 1 and writing w 1  as w, we can therefore guarantee that LE is a!-

ways positive, and hence that the configuration is stable, in the low K limit, by 

choosing -y  to satisfy 

1A' < 4w
2 (1 - w)2 

; A' = max(IA 1 I, IA2  I) 	(2.14) 
3w 2 -3W+l 

The right hand term of this inequality is a single-humped function, symmetrical 

about W = 1/2. As W -p 0 or 1 this function goes to zero, implying that -y may 

unfortunately need to be chosen arbitrarily small to prevent instabifity. This 

is just a formal expression of the idea in Figure 2.3, that, once a single bead 

begins to dominate the interaction with the pair of cities this dominance tends 

to grow, so that as K -' 0 this bead is the only one close to the cities. The crucial 

point therefore is to prevent the emergence of a single dominant bead in the 

first place, by ensuring that configurations having two beads with comparable 

weights remain stable down to the K --+ 0 limit.' Thus the case of s 1  = s2  (i.e. 

= 1/2) is the most relevant one for getting a constraint on . In this case (2.14) 

gives the stability condition as 'y < 1/A'. When the two beads are immediate 

neighbours in the net IAkI is approximately p, whereas for cases in which the 

beads are not neighbours J Ak J can dearly range from approximately 2p  down 

to zero, where p is as defined in section 2.2. Thus, the prediction of this analysis 

is that all non-tour minima can be avoided by selecting y such that -y < 1/2p-  

'Or, in the case of a close but non-coincident pair of cities, stable down to the K value at which 

each bead converges to a specific city. 
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Two remarks should be made about the above energy analysis and its result. 

Firstly, equation 2.14 can also be derived by modifying DSY's eigenvalue anal-

ysis of the two beads/one city configuration to the current two beads/two 

cities case. Similarly, an energy analysis of the two beads/one city case yields 

the instability condition found by the earlier DSY eigenvalue analysis. This 

correspondence arises since, whereas the energy analysis determines directly 

whether the equilibrium state is a local minimum, DSY's analysis does this 

indirectly, essentially by investigating the eigenvalues of the Hessian. Sec-

ondly, the fact that 1/2p is an upper bound on -y  for the stability of the two 

beads/two cities case as well as the lower bound for the instability of the one 

city/two (neighbouring) beads case is largely explicable in that these two cases 

are dearly mathematically related. 

In summary, emerges as an important value for the parameter -y  (or f3/). 

Choosing -y below risks creating spikes in the net as well as the lesser problem 

of neighbouring beads converging on the same city; whilst setting y above 

though it decreases the likelihood of spikes, risks the system finding a non-tour 

minimum. 

Since j.i is the average separation between neighbouring beads, it can be esti-

mated given some prior estimate of the tour-length. For instance one can use 

the result of [Beardwood et al. 19591, discussed in section 1.6 - that for N cities 

drawn randomly from the unit square, the optimal tour has length cv'Fi in the 

N - 00 limit, with c .75 - to give a crude tour-length estimate for TSPs of 

that class, even for non-asymptotic N. For TSPs in which the spatial distribution 

of cities is not homogeneous, j.i will also likely show spatial variation. So in 

this case, assuming some tour-length estimate, to achieve a consistently optimal 

value of 'y, the value of 3 would need to vary between different parts of the net, a 

possibility originally noted by Durbin and Willshaw though in a looser context 

than here. However, TSPs with cities drawn from inhomogeneous distributions 

have not been investigated experimentally in the current study. 
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2.5 Simulations and Discussion 

Simulations were performed to test whether the algorithm's behaviour varied 

with 'y in the predicted manner. The simulations were carried out on an AMT 

DAP, a SIMD style array processor; a brief discussion of how the algorithm 

was mapped onto this parallel computer is given in Appendix A. Ten TSPs 

with N = 50 and ten with N = 200 were studied; with all the cities drawn 

randomly from within the unit square. Every city set was run with a range 

of 'y values, and the number of spike defects and 'frozen bead' defects (i.e. 

single beads trapped in high energy, non-tour minima) present at the end of 

each run recorded; the results are presented in Figure 2.4. The values of -y  were 

chosen relative to 'y', where -y' denotes the value of 1/2p using the Beardwood 

tour-length estimate plus the further assumption that p is invariant over the net 

(i.e. -y' = 2MN 112 /3). Based on the analysis of DSY, the initial value of K was 

chosen to be K. where K is the positive root of 

4K 3 'y sin2  + K 2 N/M - 	= 0 	 (2.15) 

and ,\ is the principal eigenvalue of the city distribution's matrix of second order 

moments. Note that this differs from the original K prescription of DSY due 

to several algebraic errors in that reference. K was reduced by 1% every ten 

updates. Further technical details, including formal definitions of spike and 

frozen bead defects, are given in the legend to Figure 2.4. 

The plots in Figure 2.4 give consistent support to the analytical predictions. 

Spike and frozen bead defects dominate the low 'y and high 'y regimes respec-

tively, with 1/2p marking the approximate boundary between the two regimes; 

note that, as expected, some spikes still occur above 1/2p (Fig.24d). Qualita-

tively, the division into two regimes can be understood from the roles of a and 

/3 as the coefficients of competing terms in the energy function. A low value of 

/3/a emphasises moving the beads closer to the cities rather than minimizing 
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Figure 2.4: Frequency of tour defects as a function of-y/-y ' . Each data point repre-
sents the mean number of defects (of one type) found in a final net configuration, 
averaging over ten TSP instances, with the associated standard deviation as the 
error bar. In all the simulations, 3 was fixed at 1.0 and the beads were initially 
placed in a ring of radius 0.05 around the centre of the cities (starting with all the 
beads exactly at the centre causes problems, because when K is slightly below 
K the gradients there are very small and so the system requires a large number 
of iterations before settling into an energy minimum). Simulations were ter -
minated when either of two criteria were satisfied: (i) if, Vi, maxi(w 3 ) > 0.95; 
followed by a further reduction of K by a decade to allow final settling, or (ii) 
when K < 0.01 j,  calculated using the Beardwood estimate discussed in the 
main text. A spike occurs where a city has significant interactions (here taken 
to mean wij > 0.3) with two or three, non-contiguous beads. A bead k is frozen 
if it is the bead nearest to two or more cities, i.e. if there are two or more cities i 
for which max 3 (w 1 ) = Wik. 
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the net length, hence it may lead to cities being visited by more than one bead; 

a high value of 61a does the opposite, so may lead to some cities remaining 

unvisited. Figures 2.4(a-c) show that increasing the number of beads M, for 

fixed N, substantially reduces the number of frozen beads. This trend is under-

standable since, as mentioned in section 2.4.1, what influences whether a close 

pair of cities develops a frozen bead defect is not the inter-city distance itself but 

rather this distance relative to the typical spacing between beads. Increasing 

MIN appears to have little effect on spiking, except at very low -y  where it 

helps slightly. Finally, the size of the error bars in this figure reflects the fact 

that although the variation in defect frequency with -y is fairly smooth for any 

particular TSP, different city sets have differing absolute numbers of defects. 

The analyses given here and in DSY plus the discussions of Fig.2.2, strongly 

suggest that many defects develop because of the intrinsic structure of the 

energy landscape, and therefore will not just disappear by annealing more 

slowly. This was  confirmed by runs reducing K ten times more slowly than 

in the Figure 2.4 simulations showing no significant change in the number of 

defects produced (data not shown). Of course if K is reduced so rapidly that 

the network has insufficient time ever to relax into local minima (the physical 

analogy here is of a system cooled too rapidly to allow equilibration at any 

temperature) then naturally many more defects develop, including frozen beads 

for -y < 1/2i. This is a point demonstrated in the following chapter. 

In summary, to avoid defects -y is best chosen to be approximately 1/2iz, or 

perhaps slightly above this if the ratio of beads to cities MIN is large. If legal 

tours can be successfully recovered from net configurations with defects using 

post-processing, then other properties, most obviously the tour-length, may 

conceivably be optimized by some other choice of -y. No analytical work on 

this issue was conducted in the current study however. Nevertheless, intuition 

strongly suggests that nets with many defects (of either variety) will - after 

post-procesing - give longer tours than those with no, or few, defects, because 
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in the former case the network has solved a problem different from the TSP. In 

other words, defects indicate a mismatch between the energy function being 

minimized and the target problem we wished to solve, making high quality 

tours unlikely. This contention is supported by Figure 2.5, which shows a mea-

sure of relative tour quality against -y/ -y', using the following post-processing 

procedure. 

This robust scheme extrapolates from a final elastic net state to a tour. First, 

construct the set of beads {k1}1, where bead 1c1  is picked out by the rule 

=max3 (w,). If this set is non-degenerate i.e. there are no frozen beads, 

then the reduced net comprising the beads in this set can be trivially extrap-

olated to a unique tour of the cities.' if there is a frozen bead however, then 

we must somehow construct an ordering around the cities competing for that 

bead. A simple, random ordering scheme was used in this study. 

Figure 2.5 demonstrates empirically that ' also locates the optimal region of 

'y with respect to tour-length; the regions either side of -y' giving longer tours, 

particularly below -y'  where spike defects exist. Thus, even if we permit a post-

processing stage to remove defects from the net, the analysis begun by DSY 

and completed herein to determine the optimal parameter setting with respect 

to avoiding defects is still of value, as the 'y value it prescribes also gives short 

tours. 
J 

This work also ties in with Simic's observation [Simic 1990] that the elastic net 

only solves the 'correct' problem when M>> N. We see here that the conse-

quences of not having M >> N can include not just sub-optimal tours, but also 

the possibility (in a particular region of parameter space) of finding net config-

urations which do not correspond to valid tours at all. The elastic net algorithm 

is not unique in regard to the possibility of convergence to non-tour configura-

tions - this also happens in the original Hopfield-Tank algorithm (as discussed 

'Notice that this scheme automatically deals with spike defects. 
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Figure 2.5: Post-processed relative tour quality as a function of '-y/-y'. These 
curves were derived from the Figure 2.4 fifty cities simulation data, using the 
post-processing scheme detailed in the main text. Letting E.. denote the fraction 
by which the length of the tour obtained for city set s at parameter ratio 'y exceeds 

the length of the best-known tour, the ordinate y  represents (Ifl2.X.))  where  6-8  

the averaging is over the instances indexed by s. Thus, a value of y1,  dose to unity 
indicates that this value of -,' gives tours which are as long as the longest found 
at any other values of y.  Lower values of y1  indicate reductions in the average 
tour-length excess over optimal, relative to that found at the worst value(s) of 

. The normalization step is appropriate because there are sample-to-sample 
variations in the size of the £ measures. The standard deviations associated 
with the y1,  terms are still substantial but have been omitted for darity. The 
'best-known' tour is that found over fifty independent trials using the Ore-opt 
serial algorithm detailed in section 1.4.3. In one case the elastic net tour 'was 
shorter than the best Or*opt  tour, and so the former was used as the best-known 
tour. 



CHAPTER 2. PARAMETER SENSITIVITY OF THE ELASTIC NET 	46 

in section 1.5) as well as in Peterson and Soderberg's improved Potts version of 

it, studied in chapters 4 and 5. It should be noted though that the problem is 

generally less acute in the elastic net and Peterson and Soderberg algorithms, 

than in Hopfield and Tank's. This is because the Hopfield-Tank energy function 

has fewer constraints built into it than the energy functions used by the other 

two algorithms [Peterson & Soderberg 1989, Simic 1990, Yuille 19901. Although 

there are reformulations of Hopfield-Tank that do generally converge to tour 

states (see section 1.5), the resulting tours are of barely acceptable quality even 

for low N, whereas, as we shall see in the next chapter, the elastic net can 

generate acceptable tours even for N = 200. 

2.6 Conclusions 

Three particular issues regarding the performance of the elastic net algorithm 

on the TSP have been addressed here. Firstly, by extending the analysis of 

[Durbin et al. 19891, the problem of cities being visited twice by non-neighbouring 

beads was examined. Secondly, it was proved that, in the K - 0 limit, there 

exist high energy local minima in which some cities remain unvisited by the net. 

Thirdly, the parameter regime in which the algorithm might find one of these 

non-tour minima was derived. This allowed a decent prescription to be given 

for the value of the 81cr parameter ratio most likely to produce valid tours. 

For a testbed set of uniformly random square TSPs, simulations were found to 

support the details of the analysis in all of these areas. Finally, it was argued 

that even when post-processing to remove defects from the final elastic net state 

is allowed, the parameter regime which minimizes the number of defects ought 

also to yield the shortest tours. This idea was also supported by simulation 

data. 

The next chapter investigates other issues regarding the elastic net algorithm, in 
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particular the use of more sophisticated minimization methods and how these, 

plus the rate at which K is reduced, affect solution quality. 



CHAPTER 3 

Enhanced Minimization Methods 

for the Elastic Net 

The original elastic net paper employed the steepest descent method to find 

minima of the energy function. One could however use one of the many 

other techniques developed for seeking minima in functions of many variables. 

Therefore, in assesssing the performance of the elastic net method, it is appro-

priate to consider whether alternative minimization engines might yield better 

performance. This chapter examines the performance of the elastic net method 

when coupled with a variety of minimization schemes which, in keeping with 

the spirit of connectioriism, are self-adaptive and largely local in character. We 

shall see that by incorporating knowledge about the energy function into the 

adaptation process these methods can be made robust, as well as giving better 

performance than steepest descent. 
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3.1 Introduction 

In deciding which minimization methods to investigate, we shall draw inspi-

ration from similar research in the field of learning algorithms for multi-layer 

perceptrons, the back-propagation algorithm in particular. The use of locally 

adaptive step-size methods, for example, is quite common in current back-

propagation implementations, and it is perhaps surprising that these (or other 

improved methods) have not so far been used by researchers developing neural 

network algorithms for combinatorial optimization problems. 

Most of the simulations in this chapter were carried out on TSPs with cities 

located at points in a square lattice. This was done for two reasons: these grid 

TSPs have known optimal solutions, and secondly, because they do not have 

any close pairs of cities, the algorithm will not be prone to the defects studied in 

the last chapter. Thus these grid TSPs provide an ideal laboratory for studying 

the tour-length performance aspects of the algorithm. Section 3.2 discusses two 

simple improvements over steepest descent, namely, the energy monitoring and 

momentum methods. Section 3.3 studies locally adaptive step-size methods on 

grid TSPs, whilst section 3.4 looks at their performance on random TSPs of the 

sort used in section 2.5, the difficulties encountered and one possible strategy 

for ameliorating them. The remainder of this section explains the drawbacks of 

the original steepest descent method. 

3.1.1 The Original  Dynamics 

The original update rule (2.1) is equivalent to Ay, = _Kj for the energy 

function defined in (2.3). A coefficient of 0(K) is required to keep the dynamics 

controlled in the K - 0 limit. As mentioned in the previous chapter, the elastic 

net method seeks an energy minimum at high K, then tries to track it (or 
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one of its offspring) as K is reduced. However, it is far from certain that 

the original implementation, which allows a fixed number of iterations per K 

value, will realize this aim. The problem is that no attempt is made to ascertain 

whether the system has actually reached a local minimum before reducing K. 

In certain types of landscape, steepest descent can have a very slow rate of 

convergence (see, for example [Jacobs 19881), so convergence problems should 

not be unexpected. Problems can occur if K is reduced before the system 

has relaxed into a minimum. For example, the change in K may lead to the 

minimum bifurcating; if the system lies on the 'wrong' side of the bifurcation, it 

will then have no opportunity of entering the deeper minimum on the other side 

(as the algorithm is deterministic). Drawing on the similarity with simulated 

annealing, this issue is like that of how to design an annealing schedule that 

ensures thermal equilibrium is approximately maintained throughout cooling. 

Studies have shown that schedules which properly monitor the degree to which 

the generated distribution matches the Gibbs distribution at each temperature 

are more successful than naïve schedules which simply spend a fixed amount of 

time at each temperature [van Laarhoven & Aarts 19871. This experience ought 

to be translated into the elastic net method, in the context of finding mimima. 

One broad strategy for improving the algorithm is to allow a dynamically de-

termined number of iterations per value of K, reducing K only when some 

convergence criterion is satisfied. Another is to retain a fixed number of iter-

ations per K, but somehow alter the dynamics within this constraint in order 

to maximize the convergence. We shall be concerned only with methods in the 

latter category, one reason being that methods using the former strategy have 

differing run times, which complicates performance comparisons. 

The previous chapter discussed the ratio [3/cr, but did not cover setting appro- 

priate absolute values for a and P. As these values set the scale of E, variations 

in these will alter the rate of convergence. Alternatively, steepest descent dy- 
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Figure 3.1: Sketch of a net fragment displaced from equilibrium. Filled circles 
denote beads, with lines connecting neighbouring beads. The arrows indicate 
the direction of the tension force acting on each bead. if the step-size exceeds a 
certain value then the oscillation grows, as described in the main text. 

namics of the form Ay 3  = —iiKj, where 17 shall be called the step-size, have 

the same effect, and this is the framework in which the dynamics will be dis-

cussed in this chapter. Generally speaking, we want ri to be big enough to enable 

the system to take large steps downhill on the energy surface, but small enough 

to ensure that the changes in y j  are below the scale of significant features on 

the surface. An upper bound on the feasible values of rj can be derived by 

considering the situation at an early stage of the procedure, below K but before 

any detailed structure develops in the net.' At this stage the city forces are still 

fairly diffuse, so the dynamics of a small fragment of the net are determined 

primarily by tension forces, since beads within a small fragment are subject 

to nearly identical sets of city forces. Figure 3.1 sketches such a fragment, in 

which the beads are shown slightly displaced from their equilibrium positions. 

Using the Ti  steepest descent dynamics (and ignoring both the city forces and 

end-effects in the fragment) it is relatively simple to deduce that if 277(3K> 1, 

successive iterations will cause the kinks to oscillate and grow in amplitude, 

i.e. the net will become unstable. Simulations undertaken in the current study 

bear testimony to the importance of this bound, and show that this instability 

almost always destroys the net, in the sense of bead positions changing between 

successive iterations on the scale of the city distribution's diameter. 

'Thanks are due to Marcus Fman for discussions on this point. 
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The above result places a tight restriction on the values of ii that are feasible if q 

must remain constant throughout a run. However, as the condition 271/3K < 1 

was derived assuming large K, there is no apparent reason why larger values 

of 77 violating this condition cannot be used at lower K. Thus it is natural to 

consider dynamics in which i is varied in some fashion as K is reduced. The 

key issue is then deciding what rule(s) to use in varying q, and this constitutes 

the central theme of the following two sections. 

3.2 Energy and Momentum Methods 

Rather than keeping 17 constant or forcing it to vary as a pre-determined function 

of other parameters (whether derived theoretically or on an ad-hoc basis), the 

energy monitoring method allows it to vary dynamically, in response to the 

change in energy between successive iterations. The idea here is that if a 

steepest descent step lowers E, on the next step we use a slightly larger 77 to try 

to accelerate the progress towards the minimum. Of course, if unchecked, this 

mechanism will lead to overshooting of the minimum. So if a step is found to 

have increased E, that step is rejected, Ti  decreased, and a new step attempted 

(using the gradients calculated after the last accepted step). Computation of 

EE does not impose a significant overhead because most of the calculation 

overlaps that of the gradient terms. A multiplicative scheme is used to adapt Ti 

i.e. r, Ti+T1  or Ti '- Ti'7 for negative and positive AE respectively (the choice 

of a multiplicative rather than linear rule being motivated by the trio of papers 

cited in section 3.3). The , and j constants are chosen so that Ti+ > L Ti- <1, 

with 1/7e > in order to facilitate rapid Ti  reduction when necessary. Values 

of Ti+ = 1.2 and 1.5 were studied; ,... was fixed at 0.5. To test this method, 

simulations were performed on lattice TSPs and the degree of tour-length sub-

optimality recorded; the data are shown in Table 3.1. Before discussing the data, 

some remarks about lattice TSPs and terminology are apposite. 
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basic steepest descent energy monitoring steepest descent 

K, 	.95 K, 	.99 K, 	.95 K, 	.99 N K,- 	.95 X. 	.99 

64 5.2 0.0 5.2 0.0 0.0 0.0 

121 6.1 5.4 6.1 3.4 4.8 2.0 

196 4.2 4.2 3.4 1.7 1.3 0.8 

289 7.7 5.2 5.7 2.6 3.1 1.7 

400 6.6 4.1 4.1 0.8 2.5 2.7 

Mean 6.0% 3.8% 4.9% 1.7% 2.3% 1.4% 

Table 3.1: Tour-length performance data for energy monitoring and original 
steepest descent methods. The data items are the percentages by which the 
final tour-lengths exceed the optimal lengths. Technical details: M = 2.5N, 

f3/c = 1/2(= MN-1 /2 /2), /9 = 2.0, initial state having the beads in a ring of 

radius .1 and K = .2, ten steps per epoch, termination criteria as in section 2.5. 

Lattice TSPs have cities at every node of a p x p square lattice of spacing lip, 

where p2  = N. Basic geometry shows the tour-length to be bounded below 

by /N--  or V'7 + ( v,'2--  1)/V'  for p even or odd respectively, and it is a sim-

ple matter to construct tours for any p which achieve the appropriate bound. 

Henceforth, the time spent at a single value of K will be termed an epoch, and 

the original r, = 1 basic steepest descent dynamics employing a fixed number 

of updates per epoch as BSD. For the energy monitoring scheme each epoch 

comprises a fixed number of attempted updates. At the end of each epoch, K is 

reduced: K -+ KK, where Kr  is a constant (< 1) controlling the cooling rate. 

As the energy surface is deformed each time K is lowered, it is clearly unwise 

to assume that the value of Ti  at the end of one epoch will be appropriate at the 

beginning of the next. Therefore Ti  was reset to unity at the start of each epoch 

for the experiments summarized in Table 3.1. 

Table 3.1 shows that the new scheme, compared to BSD, gives substantial reduc- 
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tions in the average percentage by which the tour-lengths exceed the optimal 

values. This measure of tour sub-optimality will be used throughout this thesis, 

being called the 'tour percentage excess', or simply 'percentage excess'. There 

are, however, at least two objections to the use of the energy monitoring scheme. 

Firstly, explicit evaluation of E is a global computation, which therefore goes 

against the grain of the connectionist paradigm. Whilst not adopting a funda-

mentalist stance on the necessity of purely distributed processing,' this is still 

an undesirable feature, in that one could then argue that other minimization 

techniques using global computations should also be considered. Our more 

modest goal is simply to consider how far performance can be enhanced using 

only local techniques. The second objection is that adapting r on the sign of LE 

alone is quite crude: an overall decrease in energy might mask several localized 

regions of the net which are developing poorly. A more locally sensitive adap-

tation technique is required. We shall see in the following sections that local 

methods can give comparable, and indeed better, performance than the energy 

monitoring scheme. 

The Momentum Strategy 

The momentum technique was originally proposed in the context of the back-

propagation learning algorithm for multi-layer perceptrons, by [Rumeihart et al. 

19861. However, the technique is generally applicable to any minimization prob-

lem on which steepest descent can be deployed. For the elastic net algorithm, 

it corresponds to an update equation of the form 

(Ay) ()  = –ijK— + 	 Vj 	 (3.1) 
al/i 

'In its usage here, the elastic net method is not modelling any biological or cognitive Pro-

cess, therefore such a stance is not warranted. Furthermore, it is arguable that the weight 

normalization in (2.2) already involves an element of global computation. 
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N 

momentum value 

v=O v=.3 v=.6 v=.9 v=.99 

64 5.2 5.2 5.2 5.2 5.2 

121 6.1 6.1 6.1 6.1 6.1 

196 4.2 4.2 2.5 4.2 4.2 

289 7.7 5.7 5.7 5.7 5.2 

400 6.6 4.1 4.1 4.1 5.6 

Table 3.2: Tour-length performance data for the momentum method. The data 
items are the percentages by which the final tour-lengths exceed the optimal 
lengths. Kr  was set at .95; the other parameters were as used for the BSD runs 
in Table 3.1. At the start of each epoch the (Ay)' - ' terms are regarded as zero. 

where r, is fixed, n labels the update number, and ii - the momentum parameter 

-isa constant in the range [0, 1). 

Adding in a component of the previous update helps convergence in two sit-

uations: it dampens out oscillations which steepest descent often generates 

when narrow 'ravines' are encountered in the energy surface, and it allows 

the effective step-size to grow for dimensions in which the partial derivative 

sign remains constant over a wide range. A more detailed discussion of the 

momentum technique can be found in [Jacobs 1988]. 

Table 3.2 displays the performance using momentum. The ii = 0 case recovers 

BSD. The momentum term has negligible impact, except for cases in which 

both N and v are high, when it has a slightly beneficial effect. One possible 

explanation of this result might be that the types of landscapes for which mo-

mentum helps may not be present in these grid TSPs. Alternatively, it may be 

that the particular (Tip  v) values studied were far from the optimal one(s) (with 

regard to convergence). In back-propagation, it was empirically demonstrated 
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by [Tollenaere 19901 that for any fixed value of ii there is a small range of step-

sizes which give rapid convergence. The location of this range varies with ii, the 

problem type, and the problem size. in the absence of any analytical guidance 

in setting (j, ii), researchers have developed methods which attempt to find 

suitable parameters self-adaptively, rather than via brute force parameter space 

searching. The techniques in the next section were largely inspired by this work 

in back-propagation. 

3.3 Local Step-Size Adaptation Methods 

The fundamental idea of these methods is that every dimension of the space 

on which the energy function is defined should have its own individual van-

able step-size (or learning rate, in the back-propagation terminology), which 

adapts in some fashion according to whether the associated partial derivative 

changes sign between successive updates. Several such methods were dis-

cussed by [Jacobs 19881, leading to the refined heuristics of [Tollenaere 1990, 

19911 and [Silva & Almeida 19901. The techniques developed here are closest to 

Tollenaere's SuperSAB algorithm. SuperSAB combines the momentum strategy, 

local step-sizes which adapt exponentially according to the sign of the product 

between the current and previous partial derivative, and a step rejection mech-

anism. Only the second of these three elements was utilised in the techniques 

developed here. In the first such locally adaptive technique studied (termed 

'fast adaptation', or PA), the beads were updated in parallel according to: 

L1 = 

 

(TI) 

—K71(- )
(

OE ) 
	

Vj, 1 	 (3.2) 
 aij 

where, for the 2D geometric TSPs considered here, 1 e {u, v}, with y, (u3 , v3 ) 

the position of the j th bead. The superscript n labels the update number. The 
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step-sizes adapt in the following manner: 

( 	(n-i) 
(n) - •J 71+ 111, 	if 

()(n) 
< ( 
	

(n-i) 

) 	> 0 
n—i) 	 Vj, 1 	(3.3) 

if i'l—ij ) 

As in section 3.2, the i and terms are constants > 1 and <1 respectively, 

though of course now they are applied on the basis of purely local partial 

derivative information. A change in the partial derivative sign indicates that 

the system is in the vicinity of a local minimum for that dimension, and the 

above rule responds to this by proceeding more 'cautiously' in that dimension, 

i.e. by reducing the step-size. Following the reasoning in section 3.2, the {,j,,} 

are reset to unity at the start of every epoch. 

Data on the performance of the FA method on the usual lattice TSPs are pre-

sented in the left hand column of Table 3.3. Comparing its average performance 

with that obtainable using BSD (see Table 3.1), not only does PA produce shorter 

tours than BSD at the same K, it also outperforms BSD runs employing a much 

slower cooling schedule. Furthermore, the values of the adaptation rates 

used in these runs were not arrived at by extensive parameter space tuning: 

further exploration would likely yield even better results. Thus the FA strategy 

is clearly of merit. 

How can the PA strategy be improved upon? There are two related criticisms 

of the method that point to the answer. 

Firstly, the {z } are currently all reset to one at the start of each epoch. However, 

this reset value was chosen only so as to bring FA into line with BSD at the start 

of each epoch; other choices are possible. As it sets the absolute scale for the 

step-sizes, the reset value does need to be chosen carefully. Although it is no 

longer strictly valid, the 71f3K < 0.5 condition derived in section 3.1.1 can be 

used for guidance here. Alternatively, one can select a reset value higher than 

suggested by the 71(3K condition and rely instead on the adaptation mechanism 



CHAPTER 3. ENHANCED MINiMIZATION METHODS 	 58 

N I FA SA TLA(EFA+SA) 

64 0.0 2.6 1.3 

121 4.1 3.4 2.7 

196 1.7 3.4 0.4 

289 4.3 4.0 2.6 

400 3.1 3.3 0.6 

Mean 2.6% 3.3% 1.5% 

Table 33: Tour-length performance data for locally adaptive step-size methods. 
The data items are the tour percentage excess values. Runs using FA had 
settings of ih = 1.2 and i.. = 0.5, the SA runs settings of 0+  = 1.05 and 0_ = 0.95. 

K,. = .95; other parameters as in the Table 3.1 BSD runs. When updating the 

177j, } at the start of each epoch, the previous partial derivative terms are regarded 
as being zero. See main text for definitions of FA, SA and TLA. 

to keep the system stable. Exploratory runs employing the latter idea show a 

slight improvement when resetting to 2.0 but a sharp deterioration when the 

reset value is pushed to 5.0: in such a high r regime the adaptation mechanism 

is overburdened, rather than accelerating convergence it is spending the high K 

iterations merely trying to prevent instabffity. Searching for the optimal (fixed) 

reset value using such semi ad-hoc methods is evidently a problem in the FA 

method. 

Secondly, resetting the {b'} at the start of every epoch discards potentially 

valuable information about the energy landscape built up during the previous 

epoch. For example, in a particular dimension, if the system spent the whole 

epoch moving in the same direction towards, but never reaching, a minimum, 

this information would be reflected in the associated ij, variable having maximal 

value (through (3.3)). The problem is how - or whether - to utilise this 

information, given the complication that the energy landscape itself changes 

between epochs. The FA reset method denotes one extremal response to this 
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problem. The other is simply to let the adaptation scheme in (3.3) proceed 

unhindered by epoch boundaries, ignoring the problem mentioned earlier that 

the optimal step-sizes will likely be mismatched across an epoch boundary. 

Simulations letting the step-sizes adapt continuously in this manner do give 

slightly better results than FA for grid TSPs up to 289 cities, but unfortunately 

become unstable on the 400 city instance (data not shown). 

3.3.1 The Twin Level Adaptation Method 

Evidently, the source of the drawbacks just discussed in the FA method is 

the fact that the energy function changes during annealing, so that we are 

actually performing a series of adaptive minimization procedures (one at each 

K value) using the final state in one as the initial state in the next. This is a 

more complex situation than that encountered in the earlier adaptive step-size 

backpropagation studies, where adaptation occurred in the context of a constant 

energy surface. The natural improvement is to allow adaptation on two levels: 

fast adaptation within a particular epoch (as in FA), plus slow adaptation (SA) 

of a step-size scaling factor once per epoch. This twin level adaptation (TLA) 

strategy involves generalizing the (3.2) dynamics to 

(k) (n) 'aE (n) 

= —K031 	 Vj, 1 	 (3.4) 

where, as before, the {i1} adapt according to (3.3) and are all reset to one at the 

start of each epoch. The superscript k labels the epoch number. Given that the 77 

terms evolve using partial derivative sign information, this was also considered 

appropriate in the 0 adaptation rule, detailed below: 

71 0(k) 	I o+ 	. 
9 (k_1) 	(BE)  has constant sign in epoch R-1).

(3.5) 
.f (BE)  = 00_1) z 	- changes sign in epoch R-1).-i). 

The 8.,_ terms are analogues of the i,_ terms, and o )  = 1.OVj, I. 
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As shown in Table 3.3, TLA performs better than FA alone, giving a mean 

percentage excess almost half that found by FA. To check whether the TLA 

performance is perhaps due solely to the slow 0 adaptation, control runs using 

SA on its own (i.e. using the above dynamics but clamping the {i}  terms to 

1.0 throughout) were performed: the data, also shown in Table 3.3, strongly 

suggests that this is not the case. Thus, though either FA or SA will outperform 

BSD, a combination of the two strategies, TLA, is even more effective than either 

one on its own. Although the absolute differences in performance (characterised 

here by the mean percentage excess) between these methods may appear small, 

it is vital to remember that the arena in which successful TSP algorithms compete 

against one another is typically the set of tours possessing lengths within about 

10% of the optimal length. 3  Finally, note that for comparable K,., TLA also beats 

the energy monitoring scheme discussed earlier, even though the latter utilises 

global information, unlike the former. 

These runs used values of 0.95 and 1.05 for 0_ and 0+  respectively, with K,. = .95, 

and 10 updates per epoch. A higher value of K, would produce less change 

in the energy surface per epoch, which would suggest that the 0 variables 

need only change by a smaller amount than before, and hence that suitable 

0. values will be K,.-dependent. This intuition is supported by the finding 

that TLA runs still employing the above 0. values but with a slower cooling 

schedule (K,. = .99), develop some very large 0 values, oscillate and become 

unstable. To avoid resorting to a trial-and-error approach for finding suitable 

0_, we would like to have a mathematical rule for setting these rates as a 

function of K,.. The following section provides this. 

3As mentioned in section 1.4, even fairly naïve algorithms can find 20% suboptimal tours. 
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Stability Constraints on the 6 Adaptation Rates 

For the case of global 77 steepest descent dynamics, it was shown in sec-

tion 3.1.1 that at high K the system would be stable against oscillations, provided 

7/3K <0.5. The high K requirement, recall, implied that the city forces were 

constant over a small region of the net and so could be ignored in exploring the 

dynamics within that region. Another interesting scenario concerns those beads 

lying between cities at low K values: as they have negligible interaction with 

the cities, their dynamics are also driven purely by tension forces. However, as 

a typical net is constructed with only two to three times as many beads as cities, 

the analysis should now assume that the bead in question has neighbour(s) 

closely bound to cities. Remaining for the moment with the simple case of 

global 77 dynamics, Figure 3.2a shows that a bead with both neighbours bound 

to cities will be stable to transverse fluctuations in the low K limit, provided that 

7/3K < 1.0. A similarly simple calculation shows that this is also the stability 

condition with respect to lateral fluctuations. 

To summarize, in the high K and low K regimes i.e., at the beginning and 

end of the annealing process, simplifications in the dynamics allow one to 

deduce, for beads in certain situations, a stability condition of 71/3K < 1, where 

11 is of 0(1). The intermediate K regime, in which a small group of beads 

interacts with a small number of cities, would be far harder to analyse. Despite 

the absence of any such analysis, it is reasonable to conjecture that the above 

condition might still be roughly valid for intermediate K. Furthermore, there is 

the additional complication that these results were derived assuming a global 

i, whereas in TLA each bead has its own pair of effective step-sizes. We shall 

ignore this complication here and simply suggest that the corresponding 1LA 

stability requirement is essentially 710/3K < ci, with the various indices on 0 and 

rj being implicitly understood. Thus stability can be guaranteed throughout a 

simulation by ensuring both that the initial parameter set respects the above 
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Figure 3.2: Low K scenarios. These sketches show different segments of the net 

at K low enough such that each city interacts only with the nearest bead. Squares 
denote cities, dots beads. (a) Shows bead j displaced from the equilibrium 
position (o). With global 71 dynamics, the restoring force will dampen the 
oscillation provided 277J3Kh < 2h, i.e., if 71/3K < 1.0. (b) At equilibrium, the 

separation s equals 2-yKjA cos X, with -y  and it as defined in chapter 2. Assuming 
that the system reaches equilibrium by the end of an epoch, at the start of 
the next one, bead j will lie in a gradient field pushing it towards the new 
equilibrium position nearer the dty. An approximate stability condition can 
then be derived by requiring the change in the bead's position during the first 
update, Au, to be at most O(Ls). For concreteness let us require Au < As. With 
global ri dynamics - and taking the simple case in which beads i ± 1 remain 
fixed relative to bead j - this is equivalent to the inequality: TI < 1/a. 

condition, and that the 0 variables can not grow at a rate faster than that at 

which K decreases, i.e., max O = 11K,.. This result is in accord with the earlier 

discussion: it formalises the idea that gentler cooling should be accompanied 

by gentler 0 adaptation. As K, is typically close to 1.0, 11K,. (2 - K,.), and 

this is the 0+  expression used in all subsequent TLA simulations. O_ was chosen 

- somewhat arbitrarily - equal to K,.. In summary then, in the TLA method 

the adaptation rates 0 and 0_ are given by 

0+  = 2 - K,., 	 = K,.. 	 (3.6) 

Before presenting TLA data gathered using this rule, it should be noted that 

there is a class of beads for which the above restriction on is insufficient to 

explicitly guarantee stabffity. These are the beads 'captured' by the cities at 

low K. As shown in Figure 3.2b, these beads need a local step-size condition 

ijO < 1/a for stability. Now, for parameter sets following the minimal defect 
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prescription, /3/o = 1/2z, and respecting (3.6), one can calculate that in the 

low K regime (roughly, .01p < K <<Ks), 1/cr <1/fiK, so justifying the earlier 

statement about the 6 +  rule not guaranteeing stabffity. The cost of explicitly 

guaranteeing stability for both classes of bead, via a more stringent O rule, 

would be a narrowing of the potential dynamic range of the 6 variables for 

beads in the previous class. This was considered unacceptable, for two reasons. 

Firstly, the 0 values of such beads generated in simulations show that they do 

exploit the dynamical range allowed under the 0+  rule above, so this presumably 

contributes to the efficacy of TLA. Secondly, the 1/a condition was derived 

assuming K sufficiently low that each city has already captured a single bead; 

but by this stage the tour decision is complete. Of more importance is the high 

and intermediate K behaviour, for which the 1/a condition is inapplicable. 

Thus TLA a la (3.6) explicitly guarantees stability for those beads between 

cities, but relies on the ability of the adaptation mechanisms to maintain stable 

evolution of those beads nearest to cities. In practice this seems to be a successful 

policy. No stability problems were encountered with grid TSPs over a wide 

range of Kr. Furthermore, for all the grid TSPs, scrutiny of the mean final 0 

values of beads bound to cities showed them to be similar to, but always below, 

1/a; indicating that these beads' step-sizes had adaptively tuned themselves to 

the maximum safe value. 

3.3.2 Performance vs. Cooling Rate for Lattice TSPs 

To compare the original steepest descent dynamics (BSD) with the best of the 

locally adaptive step-size techniques, namely TLA, the tour-length performance 

of both minimization methods was assessed on the standard set of lattice prob-

lems for several cooling rates, ranging from a very fast to an extremely slow 

cool. The results are shown in Figure 3.3. The cooling rate measure used is 

1/r, where r denotes the number of epochs required for K to fall by an order of 
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Figure 3.3: Plot of performance against cooling rate, comparing the BSD and 
TLA techniques on lattice TSPs. The ordinate denotes the tour percentage excess 
averaged over the five grid sizes used throughout this chapter, error bars the 
associated standard deviations. With the exception of one data point (filled), 
none of the runs generated spike or frozen bead defects. For the exceptional 
point, four out of the five grids required post-processing to remove frozen 
bead(s). BSD is defined in section 3.2, TLA by equations 3.4-3.6, with , 1.2 
and ij... = 0.5. The other technical details are as listed in the legend to Table 3.1. 

magnitude, i.e. r —1/log 10  Kr. There are several features to note here: 

. BSD is unable to avoid generating nets with frozen bead defects when the 

cooling is very rapid, despite -y being set in accordance with the analysis of 
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the previous chapter. The size of the error baron the 1/r =.097 point is due 

to systematic growth in the number of frozen beads (with a corresponding 

decrease in post-processed tour-length quality) as the number of cities 

increases. 

• Throughout the range of practicable cooling rates TLA produces shorter 

tours than BSD. In other words, TLA finds tours of a particular quality 

in less computer time than BSD; e.g. TLA is an order of magnitude faster 

than BSD in finding 5% sub-optimal tours (averaged over the set of grids). 

• Only in the limit of extremely slow cooling is the BSD performance com-

parable to that of TLA. In this regime an adaptive step-size minimization 

method is unnecessary, as the changes in the energy surface are so gradual 

that even steepest descent has time to converge properly at each value of 

K. Notice however, that even in this limit typically the elastic net algo-

rithm fails to find tours of optimal length - only for the N = 64 grid does 

the algorithm manage this. This point is considered further in the next 

section. 

3.4 Performance on Random Euclidean TSPs 

Although none of the techniques discussed so far in this chapter was explic-

itly dependent on the city distribution, all of the numerical explorations were 

conducted on regular lattice TSPs. it is therefore sensible to check whether the 

main conclusions also hold for other, harder, types of Euclidean TSP. This is the 

purpose of the current section. 

TSPs in which the cities are scattered randomly within the unit square were 

studied, with six instances each for N = 50 and N = 200. In the 50 city 

group, the first five sets are those studied by [Durbin & Willshaw 19871 and 
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the sixth is from [Peterson 1990] (as is the sixth 200 city set). In order to 

estimate the optimal tour-lengths, the Or*opt  algorithm was run fifty times 

on each TSP using a different random initial tour each trial. The best final 

tour in each case was then regarded as 'optimal'. These tours agree with 

the best-known tours from previous studies (referenced below) for five of the 

N = 50 sets. For the remaining set plus the one N = 200 set previously stud-

ied, the procedure yielded tour-lengths within 1% of the best-known (from 

[Durbin & Willshaw 1987, Angeniol et al. 1988, Peterson 19901 and Frean (per-

sonal communication)). 

3.4.1 Performance vs. Cooling Rate 

Of the various adaptive minimization techniques, we shall consider only the 

final TLA strategy, as this looked the most promising on grid problems, and 

compare it against BSD. Simulations analogous to those in Figure 3.3 were 

conducted. The results are displayed in Figure 3.4. 

The trends seen in Figure 3.4 are generally consistent with those seen for the 

grids. TLA gives better tours over most cooling rates, is far less prone to produce 

nets with frozen bead defects, and is only matched by steepest descent in the 

limit of slow cooling. Furthermore, the disparity in performance between BSD 

and TLA grows with the problem size. Regarding the average tour percentage 

excess over 'optimal', the slow cooling values of 3% and 5% for N = 50 and 

200 respectively, are lower than those obtained on comparable problems by any 

of the eleven conventional tour construction heuristics evaluated in a recent 

review paper [Johnson 19901, though higher than those for decent iterative 

improvement algorithms such as Lin-Kernighan. 

This raises the issue of what fundamentally limits the capability of the elastic net 

algorithm to find short tours. We saw in chapter 2 the importance of choosing the 
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Figure 3.4: Plot of performance against cooling rate, comparing the BSD and 
TLA techniques on random TSPs. The ordinate denotes the tour percentage 
excess averaged over six TSP instances, error bars the associated standard de-
viations. Filled symbols denote points where three or more of the instances 
produced frozen beads. The 1/r = .097 BSD data point lies off the scale and 
has been omitted. In graph (a) the deterioration at very low r 1  may welT' be 
spurious, as in both cases it is due purely to diminished performance on only 
one of the six instances. See the Figure 3.3 legend for definition of the BSD and 
TLA techniques. Other technical details: M = 2.5N, /3/a = 'y'(= 2MN 1 /2 /3), 

/3 = 1.0, initial state being a ring of radius .05 and K = K, ten steps per epoch. 
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key ratio /3/a correctly, and in the current chapter how an efficient minimization 

strategy can boost performance through accelerating convergence to energy 

minima. However, it will be argued here that even if the above two issues 

can be dealt with satisfactorily, there is another factor, namely the deterministic 

nature of the algorithm, which limits its capabilities. Recall that the scale factor 

K in the energy function (2.3) acts to give a smooth energy landscape with few 

minima at high K, and a rugged landscape with many minima - some related 

to tours, others not - at low K. The algorithm operates by trying to find a 

deep minimum at high K and tracking it as K decreases. There is however no 

guarantee that the global energy minimum at any particular value of K will be 

accessible by descent dynamics from the region of phase space containing the 

global minimum at some higher value of K. Once in a certain minimum (or 

'basin of attraction'), the system is bound to remain in that minimum, or one 

of its descendants through bifurcation, by virtue of the deterministic descent 

dynamics. Thus, it is argued that if the system enters an inappropriate basin 

early on, then no amount of slow cooling or parameter tuning will be able to 

compensate for this. Informal support for this claim can be found in Figure 3.5, 

which compares the best elastic net tour against the 'optimal' tour, for the six 50 

city instances. Notice that the least optimal elastic net tours (those for instances 

4 and 5, numbering from the left) show substantial differences in gross scale 

structure from their 'optimal' counterparts, presumably traceable to the high K 

period. 

3.4.2 The Stochastic Elastic Net 

It is perhaps not surprising that the deterministic nature of the standard elastic 

net algorithm causes problems, given that many of the other successful TSP 

heuristics e.g. edge-exchange algorithms, simulated annealing, genetic and self-

organizing map algorithms, all make use of random variables. Randomness 
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Best 0r—opt Tours 

Best Elastic Net Tours 

=2.17. 	=3.1% 	=4.8% 

Figure 3.5: Comparison of the best 50 city tours. The upper row of tours 
are those regarded as quasi-optimal in this study. The lower row displays 
the corresponding best extrapolated tours found in the elastic net simulations 
summarized in Figure 3.4. E is the percentage by which these tours exceed the 
quasi-optimal tours in length. 

can be utilised to allow variation in the initial state and, more powerfully, as an 

intrinsic component in the search dynamics. In both cases it aids the exploration 

of different regions of tour space. it is possible to incorporate randomness of 

the former variety into the elastic net method, simply by varying the initial 

configuration of beads. For example, rather than initializing the beads in a 

small ring centred on the cities' centroid (as in this study so far), the ring centre 

could be randomly displaced from the centroid. However, in practice, repeated 

runs using this initialization generated very little variation in the final tour. 

Although other schemes might be marginally more productive, the general 

policy of employing initialization noise will probably be ineffectual for the 

elastic net. The reason is that if the initial value of K is K or greater, the 
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dominant energy minimum in which the beads all he at the centroid of the 

cities has a large basin of attraction, so that many initially different states flow 

towards the same initial minimum, thereby dampening the effect of the noise. 

Adding Dynamic Noise 

In light of the above comments, we shall now turn to the use of random-

ness within the annealing process itself. it is instructive to examine first how 

noise is utilised in self-organizing map TSP algorithms, for example those of 

[Angeniol et al. 19881 and [Fritzke & Wilke 19911, as these also operate geomet-

rically by adapting a loop of beads towards the cities. in these algorithms, 

the basic step involves selecting a single city at random and then moving the 

section of the loop closest to that city even closer to it. The city selection order 

is random, and can be either quenched or dynamic. Either way the key point 

is that noise affects the evolution of the network throughout a run, enabling 

multiple runs to sample different regions of phase space. 

This contrasts with the elastic net method, in which at every step the net effec-

tively 'sees' all of the cities. A natural first step is therefore to present only some 

randomly selected fraction of the cities at each step. This, however, leads to 

highly unstable behaviour at low K. This problem arises because the elastic net 

has an explicit tension term to minimize the net length: the equilibrium location 

of the bead nearest to a particular city is determined by the balance between 

the tension force from its neighbours and the attraction of the city, if the city's 

influence is suddenly removed, the unbalanced tension force leads to a violent 

change in the bead's position. By contrast, the self-organizing methods rely on 

a neighbourhood adaptation mechanism to minimize the net length. 

A more sensitive approach to varying the influence of the cities, particularly at 

low K, is required. This can be achieved by replacing, in the update equations, 
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the true weights by auxiliary weights, {w 3 }, defined by 

tj = w 3 (1 + 	 (3.7) 

where the are independent random variables drawn from a Gaussian distri-

bution of mean 0 and variance a2 . The are held fixed during an epoch but vary 

between epochs. The dynamical rules discussed before now perform descent, 

not on the energy function itself but on a randomly distorted version of it, V. 

E' = 	 + 0  E Iy +1 _yI 2 . 	(3.8) 

This enables the system to 'climb over' barriers probabilistically in the true 

energy landscape. Regarding the setting of a, the earlier problems of instability 

at low K suggest that a ought to vanish as K - 0. To accomplish this and still 

allow exploration early on in the high K region, a can be set high initially and 

then decreased exponentially, as with K in the elastic net and temperature in 

simulated annealing. 

A limited number of simulations were performed to test the feasibility of this 

'stochastic elastic net' method. For each of the twelve testbed random TSPs, 20 

runs were undertaken using quick cooling (K,. = .95), so that the total run time 

roughly matched that for a single very slow cool (K,. = .9975). The noise level 

a was initially set to 5, then decreased at the same rate as K. TLA minimization 

was used, with the other parameters as in Figure 3.4. Calculating the percentage 

excess of the best run in each ensemble and then averaging over the six TSPs 

for each N value gives an aggregate-measure of tour percentage excess for each 

problem size. This can then be compared with the corresponding figure for the 

best tours found in the Figure 3.4 experiments. For the N = 50 suite these figures 

are 1.7% and 2.2% respectively; for N = 200: 3.8% and 4.4% respectively. So 

adding dynamic noise can improve the performance of the elastic net. Further 

work optimizing the noise level and how this decreases, plus early pruning out 

of runs driven by the noise into poor regions of the energy landscape, would 

likely yield more gains. 
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In summary, the problem of determinism in the original elastic net method can 

be overcome by incorporating noise in a controlled fashion into the dynamics. 

3.5 Conclusions 

This chapter has focused on defining dynamics for the elastic net that allow it to 

converge rapidly into minima in the energy landscape. After a discussion on the 

problems of the original steepest descent dynamics, various adaptive descent 

strategies were proposed and investigated. The most successful strategies were 

those employing local step-sizes which adapt on the basis of changes in the 

partial derivatives. Such methods were first developed for backpropagation 

networks, in which the energy function remains constant. As the elastic net's 

energy landscape changes throughout a run, the original scheme was extended 

to allow adaptation on two timescales to exploit fully the power of the local step-

size adaptation idea. Analytical work constraining the range of safe adaptation 

rates was presented. Extensive numerical experiments on two classes of TSP 

demonstrated that, for practicable run times, the new minimization technique 

generates shorter tours and fewer defects than the original steepest descent 

technique. Finally, problems due to the deterministic nature of the elastic net 

approach were discussed and a new 'stochastic elastic net' method proposed to 

ameliorate them. Exploratory experiments show the method to have potential. 

Although developed in the context of the TSP, these local acceleration tech-

niques could also be used to enhance the efficiency of the elastic net method 

in other applications, for instance in the cortical development model proposed 

in [Goodhill & Willshaw 1990, Goodhill 19921. On a wider level, the local TLA 

heuristic could be employed to aid convergence on energy functions which vary 

regularly over time, such as those in mean field annealing algorithms. 



CHAPTER 4 

Potts TSP Network Dynamics 

This and the following chapter study the mean field Potts algorithm for the TSP, 

introduced in section 1.5.3. The chapter is organized as follows. Section 4.1 

summarizes and discusses the formalism of the method as originally introduced 

by [Peterson & Soderberg 19891 (PS hereafter), before describing in section 4.1.3 

the general step-size dynamics which the algorithm employs in the current 

work. Sections 4.2-4.4 analyse the parameter dependence of an important 

characteristic temperature (Ta) under the new dynamics, for both parallel and 

serial updating modes. After accounting for the influence of certain secondary 

parameters, the theoretical T expressions are found to be in good agreement 

with the trends found in numerical experiments. The functional form of T is 

shown to strongly constrain the choice of suitable step-size values for parallel 

updating dynamics. 

4.1 Formalism 

As usual, we let N denote the number of cities and {d,} the NxN matrix of 

intercity distances. The TSP is first mapped onto a spin system, through a matrix 

73 
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representation scheme. Each city i is associated with N spin (decision) variables 

Si, E {O, 1), 1 i < N, 1 < a < N. The index a labels the position, or partition 

number, in the list of cities defining a tour; the latter terminology arising from the 

the TSP's close relationship with the graph partitioning problem. The condition 

Si. = 1 represents the decision that the ath position in the tour is occupied by 

city i. Conversely, if S1 0  is 'off', i.e. zero, city i does not occupy position a. Thus 

the spin matrix matrix represents a tour if and only if it is a permutation matrix, 

i.e. iff >ji  Si. = 1, E. Si. = 1, V i, a. 

4.1.1 Energy Functions 

The spin system is defined by a quadratic energy function containing penalty 

terms which attempt to restrain the system into a tour state, and a cost term 

which yields the solution cost (here tour-length) when the state is a valid solu-

tion.  One such energy mentioned m PS is  E,""' sing  = E
spin 

+ Erest  where 

E: ' 	i: d12 >: Sia Sj,(a+lmodN) 	 (4.1) 
12 	0 

trcst 	 >2(S10 
- 1)2 + 	Si. Sib ~! 0 	 (4.2) 

lb o:Ab 

Clearly E is zero if and only if the matrix represents a tour. Rather than 

relying on a restraint term to ensure that every city is 'on' exactly once, as above, 

PS explicitly constrained the network to do this, by enforcing the condition 

E Sia 	Vi. 	 (4.3) 

Each city i now has an associated spin vector, Si = (S11,.. 
. SIN) constrained to 

be one of the principal unit vectors, hence the analogy (pointed out in PS) to the 
E's 

Potts model [Wu 19821 m statistical mechanics. Under this Potts condition, 

is strictly equal to 22 (>12(>12 S10)2 - N). However, by rewriting the second part 

iab S1b — >J10 S20 ,2  and enforcing (4.3) only on the >liab sum, EJ as >1 ung transforms 
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to 	given (disregarding constant terms) by 

spin 

E 05  > d3 > Sia Sj,( a+lmocIpi) + 	(E Sja) 2  - 	s 	(4.4) 
ii 	a 	 2 a 	i 	2  i 

The reasons for retaining a term in /3 are discussed later in section 5.2. 

4.1.2 The Mean Field Equations 

The next step is to find the dominant states of the system defined by E 5 , 

by studying the partition function Z. The following remarks sketch the key 

steps in this procedure, see PS or the earlier work [Peterson & Anderson 19871 

for more details. Regarding notation, Vi denotes the set {Vsa  1< a  < N}, and 

unsubscripted V denotes the set {V : 1 < i < N} (similarly for U, and U). 

Rather than attempting an explicit summation over the NN  states which rPspect 

(4.3), PS first expressed Z as a multidimensional integral: 

Z = C Hf dV f dUj exp (—E' (V, U)) 	 (4.5) 

where 

	

(V) > (U1.v - in > 	 (4.6) E' 	
T 	 a 

and 

Edjj 	Via 1',(a+lmocIjV)  + 	1a)2 - 	V. 	(47) 
ij 	a 	 a 	i 	 Ia 

Here, T is the temperature and C an unimportant constant. These equations 

can be derived by noting that a function g(s), for real s, can be written as 

g(s) = -- In 
dv I du g(v)&s(3_t) 	 (4.8) 

z 	Jr 

through 6-function manipulations, then generalizing to the case of g ePottsIT. 

A mean field (MF) approximation is then made, which amounts to replacing the 

other spins by their average values when calculating the contribution to the inte-

grand due to one particular spin. This allows the integrals to be decoupled, and 
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then evaluated by the saddlepoint method. The saddlepoint equations 11-  = 0 avil  
and f- = 0 generate a set of self-consistency equations in the MF variables: 

	

- 	1 aE 03  
Us0 - 

= - dij 	+ Vj,(a-l)) + aE 	- T j 	 ) I  

	

V10 

= 	exp(U10) 	
( f0). 	 (4.9) 

>b exp(UIb) 

At a saddlepoint, denoted (U, ), one can identify TE' as an estimate of the 

free energy, E 05 8() as the thermal average of EZJ,  and identify the entropy 

Sas 

(4.10) 
i ( 	 a 

Henceforth E will refer to the quantity Ep055, (4.7), with E comprising compo-

nents E, E,, and E (in the obvious decomposition). I shall also take the liberty 

of calling TE' the free energy (F), even at states which are not solutions of the 

mean field equations. 

Observe from (4.9) that at a MT solution the variables respect a continuous 

version of the Potts condition (4.3), i.e. 

= 1 V i at a MF solution. 	 (4.11) 

For a related system [Peterson & Anderson 19871 showed that Via was the ex-

pectation value of the spin S 0  within the MF approximation. Thus, given the 

normalization above, Via  can be interpreted naturally as the probability that 

city i is in the ath tour position. An alternative derivation of this result can 

be constructed by generalizing an analogous proof for the Ising model given 

in [Parisi 1988, Section 3.21. This method also yields the mean field equations, 

though with a slightly different expression for U 0; this is due to the diagonal 

'self-interaction' terms being handled differently. 
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4.1.3 The Mean Field Annealing Algorithm 

At high temperatures F —TS, and so the mean field solutions will tend to be 

states near to the (symmetrical) maximum entropy state: Via = 11N Vi, a. Con-

versely at low T, F E, so finding a MF solution will be equivalent to using a 

local optimization method on the internal energy - a procedure highly sensi-

tive to the initial conditions and known to be ineffective [Hopfield & Tank 1985, 

p.1491. 

These characteristics are similar to those of simulated annealing, which is no 

surprise since both it and the MF method compute thermal averages over Gibbs 

distributions of discrete states, the former stochastically and the latter through 

a deterministic approximation. it is therefore natural to couple the mean field 

method with the concept of annealing from high to low temperatures, keeping 

to solutions of the MF equations at each intermediate temperature. The re-

sulting mean field annealing method is a powerful and general technique which 

has found applications both in combinatorial optimization (e.g. for the GPP 

[van den Bout & Miller 1990]) and also in image restoration/edge detection 

(see, for example [Bilbro et al. 19921 and references therein). 

In addition to the structure of the energy function, there are three major inter-

dependent issues which arise in completely specifying a mean field annealing 

algorithm for an optimization problem: 

. the values of the coefficients of terms in the energy function. 

. the type of dynamics used to find solutions of the MF equations at each T. 

the annealing schedule details, i.e. the initial temperature (T0), the rules 

for deciding when to reduce T and by how much, and the termination 

criteria. 
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Elements of all three issues will be addressed in this study. Before defining 

the dynamics, a few preliminary remarks concerning terminology and initial 

conditions are in order. 

The symmetrical state, denoted by V 3 m, with components V'm  = 1/N Vi, a, 

is a trivial solution of the MF equations at all temperatures. In the high T 

phase V 8 m is a stable fixed point. Below a critical temperature, T, this state 

turns unstable and the system undergoes a transition in which for each city i 

the V (  variables begin to cluster, representing the emergence of the large scale 

structure of the tour. As the system is annealed below T the clustering process 

proceeds until (ideally) Vi, aa: Via = 5aa with ai  = a2  iff i = j, indicating that 

each city has chosen a unique partition, i.e. the state unambiguously represents 

a tour. PS introduced a quantity called saturation, E, defined as 

ia 
	 (4.12) 

to characterise the degree of clustering;' clearly Emin =  1/N and E. = 1. They 

also suggested, understandably, setting T. T and the initial state to be near 

to, but displaced by some noise from, the symmetric state; the same will be 

done throughout most of this study. 

4.1.4 Dynamics for Finding Mean Field Solutions 

In PS, an iterative mapping method was used to evolve the Via  variables towards 

a self-consistent solution of (4.9): at each iteration the Vi a  were set equal to 

the corresponding ha  terms, the procedure being stopped when the IVa 
- fial 

terms become 'small'. The cities could be updated either serially or in parallel. 

It is implicit in this method that the Uja are essentially just auxiliary variables, 

computed as functions of the Via  according to the solution form in (4.9) in order 

10ther measures could also do this, e.g. an entropy measure - 	V,, in V, but E shall be 

used here for consistency with the original work. 
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to calculate the f10 values. Notice that we could equally well define dynamics 

which evolve the U0 variables, whilst treating the V terms as auxiliary variables 

computed as functions of the U 0  via the solution form V = eLia / >Ib eU$L. Such 

dynamics on Uja will not be further elaborated on, except to say that in neural 

terms they correspond to updating the potentials, whilst Via  dynamics refer to 

updating the firing rates. 

In the current work, the iterative dynamics used in PS are generalized to the 

form: 

= Vt to y(f - so 	0 <y < 1 	 (4.13) I' to  

with the U0 terms acting as auxiliaries, as above. Setting -y = 1 recovers the PS 

dynamics, whilst the - 0 limit gives the first order Euler integration method 

for the differential equation dV10 /dt = fi0 - V, the fixed points of which con-

stitute MF solutions. The reasons for studying these differential dynamics are 

threefold: 

• contrary to the claims in the original paper, simulations (reported in sec-

tion 4.4.3) employing parallel update ,1) = fi. dynamics do not give 

satisfactory performance. Specifically, the network converges into a low 

J state rather than a high > tour state. Similar problems in a mean field 

network for graph bisection were previously overcome by using the (4.13) 

dynamics with a small step-size -y [Peterson & Anderson 19881, though no 

analysis was presented to account for why this should help. 

as will be discussed later, the scaling behaviour of 3 implies that it is 

desirable for T to be as low as possible. Therefore one wants to understand 

how, if at all, T depends on . 

the differential equation solved by the continuous time limit of (4.13) is 

of a similar form to that which would govern the dynamics of a hard- 

ware electrical circuit designed to implement this algorithm. Technically, 
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the division operation required for the f0 terms would make the circuit 

more complex than that for the Hopfield-Tank network discussed in sec-

tion 1.5. Nevertheless, it is of interest to study the network using small y, 

to examine the potential circuit behaviour. 

One attractive feature of the 'y = 1 dynamics, remarked in PS, is that the Via 

variables automatically satisfy the normalization in (4.11), even at states which 

are not solutions. A similar property holds under the general -y dynamics. To 

see this, form the sum over partitions a of both sides in equation 4.13 for any 

city i. This leads to 

= (1 - )A + 	 (4.14) 

where 	denotes & Vi. at timestep n. Thus the Via remain normalized if they 

were normalized at the previous timestep. Furthermore, the dynamics ensure 

that any city having A L  1 will relax exponentially towards A = 1, since, writing 

= 1 - ('), it follows from (4.14) that f(T4.1)/E(T) = ( 1 - ). This is dearly a 

necessary property, as E, recall, was defined assuming Potts normalization. 

Finally, there is the issue of whether the dynamics have an associated Lyapunov 

function in the continuous time limit. As the fixed points are, by construc-

tion, minima of the free energy function, it is natural to conjecture that F will 

be a Lyapunov function, as indeed it is for classic analogue neural networks 

[Hopfleld 19841 employing potential dynamics. Skipping over the algebraic de-

tails, it can be shown that the continuous time dynamics, i.e. dV10 /dt = fia - Via, 

imply 

(4.15) 

It is not clear whether the r.h.s. here is always :5 0 (even after expanding the 

dUia /dt terms). Therefore it remains an open question whether the Lyapunov 

function is F or some other function, or indeed whether such a function exists 

for this system. Incidentally, lila  dynamics also give (4.15), with expansion of 

dV 0 /dt similarly leading to no clearcut answer for the sign of dF/dt. However, 
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although the existence of a Lyapunov function is clearly a desirable property (as 

it gives some guarantee that the system will be 'well behaved'), it can be argued 

that for algorithms employing annealing it is not crucial. To understand why, 

first note that the locations of minima in the free energy landscape will typically 

only change by small amounts between two adjacent values of temperature 

in the annealing sequence. Thus, if the system has converged into one such 

minimum, it will only need to move a short distance through phase space in 

order to track the minimum. Relaxatioñal dynamics will suffice for this task. 

This contrasts with analogue Hopfleld networks, where the system evolves 

along the whole trajectory from the initial state to a vertex, at a single tempera-

ture. In this case the system only ever reaches a MF solution at the very end of 

the trajectory. it is therefore imperative to have some understanding of what the 

dynamics are doing along the trajectory: the knowledge that F is a Lyapunov 

function for these networks provides that. 

Analysis was presented in PS which estimated T as a function of the {d13 } dis-

tribution and parameters a and /3, for both parallel and serial updating versions 

of the V. -* f, dynamics. In the following two sections, the original T analysis 

is generalized to the (4.13) dynamics (for both the parallel and serial cases). 

The basic structure of the new analysis remains that employed by Peterson and 

Soderberg introducing the 'y parameter brings additional complexity to the 

analysis but does not alter its basic structure. 

4.2 Parallel Updating T(3, 'y) Analysis 

Using parallel updating, consider a state at iteration n, perturbed slightly from 

the symmetric fixed point 

- V 	*a 

	

8 'm  -- 	 c 1 Vi, a. 	 (4.16) 
- 	 I  
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Our goal is to find the conditions under which the dynamics of (4.13) cause the 

fluctuation terms Eja  to grow and hence for V 8 m to become unstable. Using 

equations 4.13 and 4.16, can be expressed as ta 

= - v8m ta 	 Via 

= 	- -1) - -yV 8m  + Via 	 (4.17) 

Performing a Taylor expansion of f,. around V 8 'm we have, to first order 

	

e1) =to 	so 	- 'y) + 'ye ofial (4.18) ' 

j,b 	OT/,b Ivvm 

which, using (4.9), gives 

= 

	

- i') + 	 d13 (4'+i + 4') - a e + 	(4.19) 

Following Peterson and Soderberg, this can be recast in terms of Fourier coeffi-

dents Esk  N 112  L e 
—2,rika6 

to give the matrix equation 

- ((1 - 7)1 + _Tf__M(k))  
NT 	

(4.20) 
-  

where the matrix M(k)  is defined by k9 = — 2 cos (2ir/c/N) d1, - a + /3&,, and 

i is the N x N identity matrix. Note here that superscripts on the fluctuation 

terms label the iteration number, whereas on the evolution matrices and asso-

ciated eigenvalues they label Fourier modes. From (4.20), the evolution of the 

6ik and hence the e, variables depends upon the dominant eigenvalues of the 

symmetric matrix M(k).  Letting OL and Ok j. denote the extremal eigenvalues 

of and defining O = maxk,60 (OL), Omin = flUflk,60 (OL),2  we see that T, 

the temperature below which at least one of the Fourier fluctuation coefficients 

will grow, hence turning the symmetric state V unstable, is given by 

Te. =  max (o 	o 	 (4.21) max, 	mm I 
7 — 	I 

The 7Onthi/(y  —2) case here corresponds to the situation 	1) = 	at T, k' 

being the Fourier mode giving 0min.  If the transition does proceed through this 

2As o = N- 1/2 E. ci. and the normalization (4.11) implies E. ej. = 0, clearly E1 0 = 0, Vi, 
therefore the eigenvalues for mode k = 0 are irxlevant. 
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channel, then at T, e' —e; in other words the dynamics will cause the Via 

variables to oscillate about V1m  on successive updates, rather than to evolve 

smoothly, as they do when the transition proceeds through O. Showing how 

to use the parameter 3 to avoid this troublesome oscillatory transition was one 

of Peterson and Soderberg's major contributions. Their first step was to analyse 

the eigenvalue spectrum in order to estimate o / ."in  in terms of a,,8 and three 

parameters characterising the TSP instance, namely the number of cities N, 

plus the mean (d) and standard deviation (od)  of the off-diagonal elements in 

the {d1} matrix. Their key results, summarized below, can be imported directly 

into the current work: 

By defining a matrix A(k)  with elements 

- g(k)d 3  - a(1 - 	 (4.22) 
Ii - 

where g(k) = —2 cos(2irk/N), the matrix M(c)  can be written 

M(k) = ( 3 - a)I + A(k). 	 (4.23) 

Thus 

Omax/min = ( i3 - a) + 	 (4.24) 

where A = maxk#o(A), A 1  = minko ), the k  being eigenvalues 

of A('. 

• Using perturbation analysis, to first order, A(c)  has two distinct eigenval-

ues: 

- 	= (N—l)(g(k)d—a), with eigenvector(1,1,1,...). 

- 	= —(g(k)d - a); this is an (N - 1) fold degenerate group, with 

eigenvectors orthogonal to (1, 1, i,. 

• At second order there is a negligible correction to A k but the degener-

acy of theis lifted, with the eigenvalues spread over a range with 
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limits —(g(k)4 - a) ± g(k)(/Rad. (is a term which characterises the 

width of the A.L  range, its value was found empirically by PS to be 

xv'N with x .65 for uniformly random square distributions of cities. 

• At this stage PS made implicit assumptions that )i = minkO o(,\) and 11 

Amax  = maxk,00()j. Basic algebra shows that the first assumption is valid 

provided d> °dX  which, as will be discussed shortly, should be true for 

most reasonable {d, }. For large values of N, the second assumption is 

valid only when 

a >2(d—crdX). 	 (4.25) 

We will assume here that a is chosen to satisfy this inequality (the issue of 

setting a is dealt with more fully in section 5.1). So finally, the PS estimates 

for A m  and Amin  are 

Xmjfl  = —( N - 1)(2d + a), 	Amax = a + 2d + 2(V'7Qcrd. 	(4.26) 

Incorporating (4.24) into the current analysis through (4.21) gives: 

Tc= 
	
max (/3_a+)x(2)(/3_a+  Amin ) ). 	(4.27) 

Noting that -y/(-y —2) <0 for 0 < -y :5 1, the oscillatory transition can thus be 

avoided by setting /3 : /3> /3, where 

= a - [y(Amjn - Xmax) + 2\max1. 	(4.28) 

Simple algebra yields:' 

T(/30) = 	- Amin) 	 (4.29) 

T(i3)=I T(/3
0)+(/3—/30)/N if/3>f30 	

(4.30) 
if/3_</30 . 

Using the estimates in (4.26) gives /3, in the large N limit, as 

= Nd [y(xod/d + 1 + a/2d) - 2Xad/d]. 	 (4.31) 

'Note that these equations iduce to the corzsponding PS equations when -= 1. 
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This is a key result, showing how for parallel updating, the sign of /3 depends 

on three factors: 

The particular problem instance {d,,}, through the product of cl-did and 

X- 0'd1d is readily computable from the {d} matrix and can also be 

calculated analytically (in the N —* 00 limit) for simple distributions. For 

example, a uniformly random distribution in a square box of side L has 

d = 0.521L [Bonomi & Lutton 1984], and byasimple integral (d,) = L2 13. 

Hence cl-did = 0.478 for this distribution. Rectangular distributions cause 

cl-did to rise, with the limiting 1-13 case having ad/d = 1/V'. Calculations 

performed for model distributions in which the cities are equally divided 

amongst several distinct clusters suggest that cl-did  is usually a constant 

(<1) for this class too. The x factor is less transparent. It is not clear which 

property of the city distribution it depends on; third order perturbation 

analysis may be one approach worth future exploration in this regard. 

However, enpirically, the x values for the three distributions discussed 

above are approximately 0.62, 0.8 and < 1 respectively, for large N.4  

The value of a; ostensibly a is a free parameter, but, as will be discussed 

in section 5.1, the form of the energy function leads to 2d being a suitable 

value for a. Thus the value of a is determined by the problem instance. 

The updating step-size, 'y. 

Thus for any given TSP, the only way to control P. is through the parameter 

. If -1 is fixed at 1.0, as in PS, then this degree of control is lost, with adverse 

consequences on the algorithm's performance: for the types of distributions 

discussed above, xo-d/d < 1, so from equation 4.31 8 will increase linearly 

with N. But with this scaling on 8,, and hence also on /3 as we require /3> /3, 

4Distribufions that contain a small number of very distant outlying cities have od/d 

and 	NIC, 0 <ic < 1/2 - such distributions will not be considered further. 
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the tour-length energy term will effectively be ignored, since the changes in 

energy in going from an initial Emin  state to a final E m,, state will be such 

that N. The likely result is either a poor quality tour, or a state 

which does not represent any valid tour at all. Thus a step-size value of 1 is 

inappropriate for dynamics updating the cities in parallel. 

To avoid /3 being forced to scale with N, -f must be chosen so that f3 < 0. From 

(4.31) this can be done by choosing 'y below a critical value, 'y e : 

4xad (4.32) 
•fc2+2d+•  

The work so far has centred on how the choice of 8 is governed by two objectives: 

first, to keep 3 as low as possible so as to maximize the influence of the tour-

length term in the energy function, and second, to satisfy /3 > f3 so that the 

transition at T proceeds smoothly rather than through the oscillatory mode. 

The analysis so far implies that /3 may safely be allowed to fall to zero, provided 

that 'y <'ye. However, we shall see later that, irrespective of the updating rule's 

form, in order for low cost tours to be self-consistent solutions of the mean field 

equations, /3 must be a small but non-zero 0(1) term. Using (4.26) and (4.27) 

it is straightforward to check that this additional constraint on 8 does not alter 

the range of satisfactory 'y values - 'y still defines the upper limit of the range. 

In summary, the problem with parallel updating using V = ha, is that in order 

to ensure that the system evolves smoothly at the critical temperature, the coef-

ficient /3 must be of 0(N), which destroys the algorithm's ability to find decent 

tours. With reference to (4.26) and (4.28), this arises fundamentally because, for 

the types of city distributions discussed earlier, the dominant eigenvalue over 

the set of matrices AM is A min  rather than .A, and 8 must be taken large to 

compensate for this. By moving to incremental dynamics of the form in equa-

tion 4.13 and taking 'y small, the effect of the negative eigenvalue's dominance 

can be overcome, essentially by weighting the new V values to be close to the 

old ones, rather than by using an unacceptably high /3. 
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4.3 Serial Updating T(,i3, 'y) Analysis 

Serial updating involves applying the dynamical rule of (4.13) to each city in turn 

until all have been updated. The order in which the cities are updated is random. 

Whether this order remains constant or varies throughout a run does not alter 

the T analysis. A fixed order is employed in the software implementation. 

The early steps of the analysis, i.e. writing the full equation for the evolution of 

fluctuations around the symmetry point, linearizing it, and then transforming 

into Fourier space, are very similar to those in the parallel updating case, and 

so will not be detailed here. However, as the calculation of each j,41)  will 

in general involve using some variables from the previous iteration, plus those 

already updated during this sweep, the serial analogue of equation 4.20 is given 

by 
(n+i) = (1 - -y)'$ + j 

(L(k)T ~ 1 + (U(k)  + D)5) 	(4.33)  

where the cities have been relabelled to match the updating order. The matrices 
U(k ) , L(c)  and D are respectively the upper triangular, lower triangular and 

diagonal components of the matrix used in the parallel updating analysis. 

Gathering like terms yields 

(NTI - 	 = [NT(l - y)I + y(U + D)J 	(4.34) 

and hence 

(n+1) 
- W(k), W(k) (NTI - yL') 1  [NT(1 - y)I + y(U + D)] 

(4.35) 
W(v) is in general non-Hermitian, and will therefore possess complex eigenval-

ues. T is the temperature at which the first eigenvalue (in the set of w(k)  matri-

ces) touches the unit circle. Following the method of Peterson and Söderberg, 

consider the two distinct cases for an eigenvalue p of unit modulus, namely 

p = +1 and it = e 	 0. 
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In the former case we have è$1 	, which, upon substitution into (4.34), 

yields 

= [(1 _,Y)1 + 
	
M(k)] C ) 	 (4.36) 

implying that the matrix operator in this line has eigenvalue +1. But this is just 

the evolution operator found for the parallel updating case. Hence the p = +1 

mode causes instability at T = Om /N. 

Substituting p = 2'4' into (4.34) and multiplying through by e', leads to 

+= [NT(et4 - - 7)) - e'y(/9 - a)] (437) 

The left hand matrix operator is Hermitian, and so the imaginary part of the right 

hand numerical term must vanish. This implies that T = 7(a - /3)1(2N - N7). 

Thus T0  for the case of serial updating is given by 

(i'(a 
max 2-7 (fl_a+A)). 	(4.38) 

From this result one can go on to derive the serial versions of equations 4.28-4.30. 

The key point however, is that the types of city distributions discussed earlier 

have A. N, so 8 - the value of /3 above which the leading W(k)  matrix 

has a dominant eigenvalue of +1 at T. - is negative for all . Thus, for the 

/3 values of practical concern i.e. those > 0, T is (3 - a + Amax)/N, as it also 

is for parallel updating, provided that <70 in the latter case. Indeed it is 

straightforward to show that, in the limit of - 0, the analytical T0  values for 

the serial and parallel updating cases become equivalent across the entire /3 

range, for any city distribution. This provides a consistency check on the serial 

and parallel T0(/3, 7) analyses: from (4.13) the change in any of the mean field 

variables during an update is 0(7), thus in serial updating the effect of using 

some variables which have already been updated during this sweep, rather than 

their values at the previous sweep, becomes negligible as -p 0. Therefore the 

two updating modes ought to be equivalent in this limit. 
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In summary, for practical values of /3, generalizing the dynamics to the form of 

(4.13) should have no effect on the critical temperature if the MF variables are 

updated serially. With parallel updating however, the situation becomes more 

interesting; for low values of /3, T is expected to become independent of y only 

if -y  falls below a certain critical value. Because of the parallel case's greater 

complexity, the numerical experiments in the following section focus almost 

exclusively on this updating mode. 

4.4 Numerical Tests of the T(f3,  7) Analysis 

The foregoing analysis of the transition temperature's parameter dependence 

was tested through extensive numerical experimentation with a software imple-

mentation of the algorithm. This work was performed on a Meiko Computing 

Surface, a message-passing multicomputer system. Using either parallel, or 

(perhaps surprisingly) serial updating, the algorithm can be efficiently mapped 

onto this parallel architecture; the parallelization strategy is discussed in Ap-

pendix A. 

Before presenting the T(/3, ) data, some technical details of how the algorithm 

was actually implemented will be covered. This is an important - though 

often neglected - issue in neural networks research. The path from a theo-

retically clean model to a robust software implementation often involves the 

introduction of new parameters to specify or control secondary aspects of the 

algorithm, such as the initial conditions, convergence and termination criteria. 

Sensitivity to the values of these 'secondary' parameters complicates the task 

of interpreting the algorithm's behaviour as a function of its 'primary' parafne-

ters, viz, the coefficients of the terms in the energy function and the dynamical 

timestep. In the implementation of the Potts TSP algorithm used here there are 

several secondary parameters, the values of which can affect markedly both the 
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measured transition temperature and final performance. It is therefore clearly 

necessary to understand these issues, at least qualitatively, before one can make 

any sensible comparison with the analytical results. 

4.4.1 Implementation Details 

The general approach is to initialize the system dose to the symmetric state at 

a temperature near T. then, allowing the system to converge to a fixed point at 

each temperature, anneal (i.e. reduce T) until either the system reaches a stable 

high saturation state or some other termination criterion is satisfied. Specifically, 

the implementation used here has the following ingredients:' 

initial state 1' °  = (1 + i.)/N, with the 	being random variables drawn 

uniformly from [-a, .]. Clearly should be < 1. 

convergence At each temperature the V variables are updated by the rule in 

equation 4.13 until they reach - to a certain tolerance - a fixed point, 

which, as discussed earlier, represents a free energy minimum. The degree 

of convergence is monitored through the quantity denoting the sum 

>ia M. - ft°I. if  AeXpt < ix', where L' L(0.05/N), the system is deemed 

to have reached a fixed point and the temperature is reduced. A will 

henceforth be called the tolerance parameter. 

annealing schedule A simple exponential scheme is used, i.e. after reaching a 

fixed point at T, T i-' T x T, where T,. E (0,1) controls the cooling rate. 

Roughly speaking, T,. should be set to at least 0.9. 

termination criteria Three criteria are employed, the first being that the satiira-

tion E exceeds some threshold near to E., at a fixed point; a threshold of 

0.9 was used in this study. The others are designed to trap rogue runs, by 

'These broadly follow the method used in PS but with some additions and improvements. 
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terminating runs which either fail to reach a fixed point within a certain 

number (M) of sweeps at some temperature (a sweep being one update 

for every city), or which allow T to fall below T, (Tmin  < Ta), without 

ever satisfying the E> Elhr,,h  criterion. Tmin  was set to iO. 

tour extrapolation A robust procedure for generating a likely tour from any 

final {Vsa } configuration was developed. First, for each city i, find the 

partition i' visited by that city, under the rule: V = max,,, (Vi.). if every 

partition has exactly one visit, then the mapping onto a city ordering, 

i.e. tour, is trivial, if this is not the case, then strictly speaking no tour is 

defined. In practice however, a tour can still be generated from such states 

through a modest amount of post-processing to order the cities which have 

visited a common partition. In the current implementation, for partitions 

visited by two cities the better of the two possible orderings is chosen. For 

partitions visited by three or more cities, a random order is chosen. 

4.4.2 Influence of the Secondary Parameters on T 

Sections 4.2 and 4.3 developed expressions for T, the value of the temperature 

below which the symmetric state turns unstable. This section demonstrates 

that the effect of the secondary parameters is typically to drive the experimental 

values of Tc  below those predicted, and presents arguments to account for why 

this should happen. 

Defining the experimental transition temperature, TCC7)t, to be the temperature 

at which E first exceeds j(= 1/N) by 1%, a series of runs were performed to 

investigate the dependence of TPt  on the tolerance (Lx), level of initialization 

noise (c), initial temperature (T0), and cooling rate parameter (T7). Two TSPs 

with cities from a uniformly random unit-square distribution were studied, 

having N = 50 and N = 200. Ten trials using different initialization noise for 



CHAPTER 4. POTTS TSP NETWORK DYNAMICS 	 92 

the { Vcr °  } state were run at each parameter point; data points and their corre-

sponding error bars in the graphs represent the mean and standard deviation 

values over the ten trials. These procedures were used for all the experiments 

throughout this chapter, unless stated otherwise. The runs reported in this 

section were performed using parallel updating dynamics. 

The values of the primary parameters (a, 3, -y) were fixed at (1.0, 0.5,0.2) and 

the values of the secondary parameters (Lx, , T0 , Tr) varied. Figure 4.1 shows 

the variation of TPt  with A and across a range of T0  values, for fixed T, at 

N = 50; the N = 200 data show similar trends. Temperatures are normalized to 

the predicted transition temperature, T0,  calculated from equations 4.26 and 

4.29-4.31, using the continuum values of d and 0d (i.e. 0.52 and 0.25) and a X 

value of 0.63, typical for TSPs of this size. The theoretical profiles in Figures 

4.1 and 4.2 are constructed on the simple assumption that the transition is 

immediate for all T0  values up to T0,  and occurs at T0  for T0  > T°. 

The main feature of Figure 4.1 is that, for T.  T 0, TI XP is usually substan-

tially lower than T°, with the difference increasing as T0/T° grows further. 

Furthermore, the TPt  values are higher, i.e. closer to the theoretical values, for 

high values of the initialization noise (c),  or low tolerance (L). These results can 

be qualitatively explained by the following arguments. Consider the dynamics 

at T0  T°, with low and/or high : the V 8 m state is unstable, therefore 

the noise causes zXe2Pt  to grow (as the system moves away from that state). 

However, if E is so large that, despite its growth, zXPt  at T0  is still quickly < LV, 

then by the convergence criterion defined in section 4.4.1, the system will be 

deemed to be at a fixed point and T will be reduced. In this manner, T may fall 

quite far below Tteo before the system has time to move far enough away from 

the symmetric state to register a transition under the E > 1.01/N rule. Thus 

TPt will be lower than Tiheo,  even if the eigenvalue analysis which gave the 
7theo expression is correct. 
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Figure 4.1: Tc"Pl  plotted against T0, with both quantities normalized to T0;  

T,. = 0.95 for both plots. (a) collective plot showing the effect of varying with 
A fixed at 1.0. (b) collective plot showing the effect of varying A with fixed at 
0.1. 

Similarly, a very low value for T0  T"° requires many sweeps before the 

instability can grow to any extent. But unless A is commensurately low, the 

implementation rules will declare the fixed point reached (and hence reduce 

T) long before the system has had sufficient sweeps to move far away from 

the unstable equilibrium point at that T. The behaviour for T. > T0 can also 

be understood in these terms: above T0  the symmetric state is stable, so 

any initial noise will be reduced or even extinguished by the dynamics. Thus, 

once T has fallen to T0  the effective noise level will be very small, and the 

argument above becomes applicable again. 

In essence, this account argues that the TPt values in Figure 4.1 are less than 
7theo because the secondary parameters used did not allow the system sufficient 

sweeps to relax fully at temperatures dose to T°. This phenomenon is rem- 

iniscent of the 'critical slowing down' observed in simulations of certain spin 
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Figure 4.2: 	plotted against T0, with both quantities normalized to T0. 

Collective plot showing the effect of varying the annealing rate, with A = 1 and 

= 0.01. Circles denote N = 50 data, triangles N = 200; the error bars are of 
order 0.01 or less, and so have been omitted for clarity 

systems, in which the equilibration times grow as a second-order phase transi-

tion is approached. Behind this similarity however, the underlying causes are 

different. In the spin systems this behaviour is due to divergence of the correla-

tion length, whereas in the current system it results from the leading eigenvalue 

in (4.20) only just exceeding unity for T just below T, thereby requiring a large 

number of sweeps before the system is driven along the associated eigenvector 

and towards the new free energy minimum displaced from the symmetry point. 

One simple way to test this idea is to anneal more slowly, thereby allowing 

the system more time to relax across all temperatures. Figure 4.2 shows the 

effect of varying the annealing rate (Tv): the TC Pt  values do indeed rise a T 

rises. Furthermore, notice the convergence to the theoretical profile as 7',. 1 

and the lack of any significant dependence on N in the data. These points are 

important, because the earlier interpretation of the Figure 4.1 data first assumed 
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the underlying T analysis to be correct and then argued why typical choices 

of the secondary parameters lead to a systematic reduction in T, 11P1. Figure 4.2 

provides direct support for the veracity of the T analysis, albeit strictly only for 

this particular (a, 0, ) point. However, using extremely slow annealing and/or 

low A leads to unacceptably long run times. Hence in the experiments reported 

in section 4.4.3 checking the functional form of T(/3, '), no attempt has been 

made to show convergence to the theoretical profile. Instead, practical settings 

of the secondary parameters were employed and the existence of a systematic 

reduction factor (for T) assumed. 

Finally, it should be noted that the secondary parameter settings (particularly 

T and ) not only complicate the issue of checking the T analysis, but they also 

have a strong influence on the quality of tours found by the algorithm. Since 

the mean field approach can be viewed as a deterministic form of simulated an-

nealing, it is not surprising that, as in simulated annealing, the solution quality 

improves as T,. - 1. A can also be viewed as a cooling schedule parameter, as it 

determines the number of sweeps performed at each temperature - in general 

the lower A is, the better the quality' The interesting point, brought out in 

Figure 4.3, is that T, influences the quality chiefly through determining TPt. 

As T is lowered through T0,  first one and then more eigenvalues of the 

{ (1 - M(k)} set of matrices in equation 4.20 exceed unity in magnitude, 

opening up eigenvectors along which the system can move away from the sym-

metry point. In pictorial terms one can think of a growing number of 'downhill' 

paths in the free energy surface leading away from the symmetry point. Thus a 

configuration V lying close to the symmetric point V 811m (such that E < 1.011N) 

at a temperature far below T0  is likely to be driven by the dynamics into the 

nearest free energy valley - the choice of which will be governed by the pertur-

bation variables 61a - rather than having any chance of moving into a deep free 

6Veiy stringent A values (e.g. <.001) may, however, prevent the system ever converging to a 

axed point, causing premature termination of the run into a low E state. 
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Figure 4.3: Tour-length performance plotted against 	The y axis plots the 
mean tour percentage excess over the best Or*opt  tour for this TSP. All data 
points refer to N = 50, using the same range of T0/T0  values as in figures 4.1 
and 4.2, with A = 1 and M = 500. The error bars are omitted for clarity. 

energy minimum. So, runs in which TP  is significantly below 	(whether 

through having T0  <T° or through the secondary parameters' impact) tend 

to find poor free energy minima and hence generate low quality tours. 

4.4.3 Experimental T(/3, y) Behaviour 

From equation 4.30, the parallel dynamics analysis predicts that T(/3) is a piece-

wise linear function, having a positive gradient  for 6 > P. and a negative 

(-y dependent) gradient for /3 <[3d,, where 8,, is positive if - > -y (from equa-

tions 4.28-4.32). For the two TSP instances used in section 4.4.2, the analysis 

was tested by conducting runs over a range of /3 values for several 'y settings, 

and measuring TPt.  Taking, as before, od/d = 0.478 and x = 0.65, gives (from 

equation 4.32) the predicted value of as 0.27; data was collected at -y  values 
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To 	 T
. 

To 	 T. 

Figure 4.4: T plotted against ,8/N, for -y = 1.0, 0.6,0.2, and 0.05, in graphs (a)-(d) 
respectively. Solid lines represent the theoretical profiles, dotted lines the data, 
the error bars are negligible and have been omitted. Parameter settings: a = 1, 
T0  = 1.2T 0, Tr  = . 995, A = 1, = .01, M = 5000. 

above and below . Figure 4.4 shows the results for N = 50. The N = 200 data 

overlies the N = 50 data almost exactly, and so has not been plotted. 

Modulo the systematic scaling down from the secondary parameters discussed 

in section 4.4.2, the data is consistent with the theory. 7  Notice that the discrep-

ancy between TPt  and TO  grows as decreases. This trend is explicable 

'Further runs at a few selected (/3, ') points using more stringent (z, Tr) settings produced 

TexPt/rheo values climbing towards unity, thereby also lending support to the numerical 

accuracy of the analytical T(/3, y) function. 
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7 	 7 

(a) 	 (b) 
Figure 4.5: T plotted against 'y for 3 set to zero. (a) N = 50 and A = 0.001, 
(b) N = 200 and A = 0.01. All other parameters are as in Figure 4.4. 

through an argument similar to those given in the previous section: assuming 

that the system is near to V'' at a temperature just below T, the dynamics will 

attempt to move the system out from that point towards a new local minimum. 

Initially, because the symmetric point V'm has only just turned unstable, 

will be small, smaller than the A '  threshold. Thus the implementation will only 

perform one sweep per T value until T has fallen some way below T0,  rather 

than allowing a full relaxation at each temperature. Clearly a small step-size 

further restricts the system's ability to move far through phase space in these 

conditions, small values of therefore accentuate the difference between TP' 

and Theo
., . 

In addition to giving the transition temperature, the foregoing analysis also 

showed that the type of transition should change at /3 = /3, being oscillatory4or 

/9 < /3 and smooth for /3> /3(,. The numerical studies support this. For /3 < /3,, 

the runs terminate through lack of convergence to a fixed point at, or just below, 

into states in which E is still only O(N'). For 8 >,8,,, the algorithm 
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succeeds in generating high E states, though, as discussed earlier in section 4.2, 

if -y > 1c these states will only correspond to low quality tours, e.g. for N = 50 

and y = 1, the tours are about twice the optimal length. 

A complementary way of assessing the T(i3 , -y) theory is to vary -y whilst keeping 

/3 constant. The results of this test are shown in Figure 4.5, for 8 = 0. The 

theoretical profile (derived from equations 4.26-4.32) shows T falling non-

linearly as 'y is reduced from 1 to 'Ic,  and reaching a plateau below 'Yc•  From 

equations 4.29-4.31, the value of T on the plateau is 2xad.  Comparison with 

experimental data is complicated by the variation in size of the scaling factor for 

different values of 'y, as seen in Figure 4.4. Very small A values were employed 

for the Figure 4.5 runs, in order to try and minimize the reduction factor over the 

whole -y range. The N = 50 data is in reasonable agreement with the theoretical 

profile, particularly for low - the Tc  curve flattens out close to the expected 

Yc position, with a value also close to that predicted. In the N = 200 plot, the 

'plateau' region is less well defined; this is probably because these runs had to 

be performed with A = 0.01 rather than 0.001, due to the very long run times 

using A = 0.001. 

All of the experiments reported so far were for the case of parallel dynamics. 

Some experiments were also conducted to check the serial T analysis in the 

/3> 0 range. As in the parallel case; the experimental values of T were found 

to be depressed by secondary parameter effects, but again, modulo this (-y-

dependent) scaling down factor, in agreement with the analytical predictions. 

Furthermore, as predicted earlier, for very small , e.g. ^1 :5 .05, serial updating 

runs behave almost identically to those employing parallel updating, not just 

in regard to T.exPl, but also in the final configurations and the number of sweeps 

required to find them. 
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45 Conclusions 

This chapter has considered the behaviour of the mean field Potts TSP net-

work under dynamics which implement an Euler integration scheme for an 

appropriate differential equation, with a user-defined step-size y. The earlier 

iterative dynamics studied by [Peterson & Soderberg 19891 are a special case of 

these new dynamics. An analysis by the above authors of the network's critical 

temperature, i.e. the temperature at which the symmetric maximum entropy 

state turns unstable, was generalized to the case of the new dynamics, for both 

serial and parallel updating modes. Understanding the parameter dependence 

of this temperature is vital in choosing values for the network's free parameters, 

a, /3, and -y. For example, the analysis revealed a critical step-size value, above 

which the algorithm has inappropriate scaling behaviour for large problems 

when using parallel dynamics. 

Testing of the predictions for the critical temperature against simulation data 

was complicated by the simulations' sensitivity to various secondary parame-

ters, e.g. the annealing rate, the level, of initialization noise, and the convergence 

criterion. Systematic numerical study of these effects, which also have a strong 

influence on the final tour quality, led to an understanding of their causes. 

Armed with that knowledge, it was possible to verify the theoretical expres-

sions both qualitatively with regard to the functional forms, and also, to a 

reasonable degree, quantitatively. 

4 



CHAPTER 5 

Potts TSP Network: Parameter 

Optimization and Performance 

Building on the work presented in the previous chapter, this chapter examines 

further issues in the use and performance of mean field Potts TSP networks. 

The chapter is organized as follows. Sections 5.1 and 5.2 present analytical 

methods for optimizing the values of the two free coefficients in the system's 

energy function. Data from numerical experiments supports the theoretical 

work. As well as being of practical benefit, these analyses also indicate that the 

energy function remains properly balanced in the limit of very large problems. 

Section 5.3 discusses the quality of the tours generated by the algorithm, both 

for Euclidean problems as well as for instances from the much harder class 

of non-Euclidean random metric problems. The simulations were performed 

using non-trivial problem sizes, i.e. TSPs with 50 or 200 cities. An explanation 

for the poor performance on random metric problems is proposed. 

101 
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5.1 Choosing the Value of Coefficient a 

From section 4.1, recall that the energy function for the Potts spin model is 

of the form: E = E + Ear  + E,, where Ear  = E. Sia)2.  The role of Ear  is to 

encourage the system into a configuration in which every partition a is occupied 

by exactly one city, because only such configurations represent well defined 

tours. It does this through penalizing any non-uniformity in the distribution of 

the >, Sia terms across the space of partitions. In the mean field Potts model, 

where now Ear  = 22 >1a(>j Va) 2, Ear  naturally plays a similar role. The strength 

of this restraint term is clearly governed by the value of the coefficient, a. In the 

original paper on the mean field Potts model, randomly distributed unit square 

Euclidean TSPs with N = 50,100, and 200 were all studied with a set to 1. The 

authors acknowledged that the appropriate value of a would be dependent 

on the intercity distance scale. However, a rationale for the precise manner in 

which a should depend on the {d,} matrix was not given, nor was any non-

empirical justification presented for the choice of a = 1 in the particular case 

of unit square TSPs. This section provides a theoretical basis for choosing an 

appropriate value of a, valid for both serial and parallel updating dynamics. 

The general principle guiding the choice of a is that it should be chosen as small 

as possible, yet large enough for the E. term to provide an effective restraint. 

Excessively large values allow the network effectively to ignore the tour-length 

term in E, with the result that the network will produce configurations which 

do satisfy the problem's constraints (i.e. configurations which represent tours) 

but which are profligate in their tour-length cost. Conversely, if a is too low, it 

becomes energetically favourable for the network to settle into a configuration 

which does not represent a tour. The task therefore is to develop analytical 

understanding of conditions which bound the value of a from below, through 

the requirement that a be just sufficient to generate an effective Ear  restraint term. 

Three distinct, but complementary approaches to this task are now presented, 
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followed by a numerical investigation. 

5.1.1 The IF Approach 

Consider the behaviour during the initial stages of the algorithm, when T 

and the network is either in, or close to, the symmetric fixed point V 8 m, defined, 

recall, by Via  = 1/N Vi, a. 

For simplicity,let us take the network to be at the symmetry point. The energy 

components can then be written (trivially) as: 

E m  = (N - 1)d, Em = aN12, E7m  = —0/2, 	(5.1) 

where d, recall, is the mean inter-city distance. Note here that, given the Potts 

constraint (4.11), Em is the minimal value of Ea . For sufficiently low a, 

clearly Et"" >> so the system will place more emphasis on reducing E 

than on maintaining Ea  at its floor value. As Et  only involves pairwise spin 

products between adjacent partitions, observe that any configuration in which 

the >. V(  terms alternate in a 0-2-0-2... pattern over the partitions has Et  = 0, 

the minimum possible value of E. Such a pattern would, however, cause Ea  

to rise to aN. Consider in particular the configuration, henceforth termed the 

'0-2-0-2' state, which is defined by: 

' 21N for a = (2k) mod N, 	k E Z, Vi 
Vi a  = 

	

	 (5.2) 
for a=(2k+1) mod N,kZ, Vi 

The net change in E (ignoring EE,9 which is of a lower order) in shifting from 

the symmetric state to the '0-2-0-2' state would be 

AE = N(a12 - d) + d st5 N(a12 - d) 
	

(5.3) 

where the approximation is valid for large N. So provided that a> 2d, the sym- 

metric state will have a lower internal energy than the '0-2-0-2' state. However, 
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one must remember that self consistent solutions of the mean field equations 

are minima, not of the internal energy but of the free energy, F. Therefore 

the entropies of the two states must also be considered. Rather than using the 

expression identified in equation 4.10 as the entropy, it is simpler to exploit the 

connection between statistical mechanics and information theory [Jaynes 19571, 

by using the information-theoretic entropy measure, — p, In p. This mea- t 

sures the amount of uncertainty associated with a process having n possible 

outcomes, where p1  is the probability of outcome i. 

By interpreting Via  as the probability of city i being in partition a, the uncertainty 

about the position in the tour of city i can be written as - Via in Vi a, and 

hence the total uncertainty about which tour is represented by the configuration 

written as: 

$ = - 	Via in Vi. 	 () 

This leads to S values of N in N and (N in N — N in 2) for the symmetric and 

'0-2-0-2' states respectively. So a transition from the symmetric state to the 

'0-2-0-2' state will increase the free energy, provided a> 2(d - Tin 2). Thus 

this AF argument suggests that 2d is a safe choice for a. The reasons why the 

'0-2-0-2' state must be avoided are twofold. Firstly, because as T is lowered they 

do not produce valid tours - alternate partitions are left unvisited by any city. 

However, as indicated in section 4.4.1, it is always possible to infer a possible 

tour from any configuration. But even if this is done, the length of the resulting 

tour will still be far from optimal, because with Et  minimized to zero early on, 

there is nothing subsequently to drive the system towards a low cost tour. 

One must, however, be cautious in drawing conclusions from this argument. 

Whether the network will actually move to a state of lower free energy depends 

on the dynamics. Recall from section 4.1.4 that we were unable to prove that F 

was decreased by the dynamics in the -y —* 0 limit, even though minima of F are 

fixed points of the dynamics. Therefore there is no guarantee that the network 
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will evolve into a nearby state of lower F, even if there is no intervening energy 

barrier between the two states. 

5.1.2 The Self-Consistency Approach 

The AF approach found the parameter conditions under which the unwelcome 

'0-2-0-2' state was energetically unfavourable. The second approach, detailed 

below, seeks a bound on a through asking the question: under what conditions 

is the '0-2-0-2' state a self-consistent solution of the mean field equations 4.9? 

From the definition in (5.2), the corresponding set of Uja variables, defined by 

(4.9), are given (for all i) by 

	

Uja = I (2/31N - 2cr)/T for a = (2k) mod N, 	k E Z 

 —4d/T 	fora=(2k+1)modN, kEZ 

where di denotes >, d, /N. di will henceforth be approximated by d in this 

section. To be a self-consistent solution of the MF equations, the variables must 

satisfy 

Yb eU 
= 	v i, a. 	 (5.6) 

Because of the periodicity in the '0-2-0-2' state defined in (5.2), one need only 

consider the validity of (5.6) for a singleVia term. Picking a term with value 

21N, and assuming that 8 has been chosen so as to scale at most sub-linearly 

with N, then for large N the left hand side can be expressed as 

e 2 x/T 

b eU,b = N12 (e_2/T + e_4d/T) 

	

= v (i + e(2_4d)/T). 	 (5.7) 

Thus there is self-consistency, for fixed T, only if a < 2d. Notice incidentally, 

that when a = 2d, the above equation yields >b eUib = 11N, indicating that 

the '0-2-0-2' state would revert to the symmetric fixed point under 'y = 1 parallel 

dynamics. 
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In summary, by choosing a > 2d the free energy landscape can be engineered 

so that the troublesome '0-2-0-2' state is neither a self-consistent solution of the 

MF equations nor is it of lower free energy than the symmetric state. 

5.1.3 The Tc Mode Approach 

This third method considers the consequences when one of the assumptions 

made in reaching the 	estimates of (4.26), no longer holds. 

Recall that A. is maxk,00())  provided the (4.25) inequality, i.e. a > 2(d - cdx), 

is satisfied. If a is too low for this inequality to hold, then A. becomes j2• 

In this case, assuming that /3 is taken larger than /3, as T is lowered through T, 

N/2 will be the first Fourier perturbation vector to grow. It will grow parallel 

to the (1, 1,1,...) eigenvector associated with the A p  eigenvalue. Transforming 

back to the real 6ia  variables, this means that for every city i, the {&i a} form a 

wave pattern over the partition space, with wavelength equal to La = 2. As the 

Via variables are subject to the Potts constraint there is a limit to the amplitude of 

the wave, so that the limiting state has the Via  alternating in a 0, 21N, 0, 2/N... 

fashion. But this is just equivalent to the state defined by (5.2), i.e. the '0-2-0-2' 

state. 

Thus, using either parallel or serial updating in the a <2(d - xcd) region re-

quires the previously explored T theory to be modified so as to take account 

of the different A. value. This section has shown that one consequence of 

an appropriate T analysis for such low a, is that the transition away from the 

symmetry point leads directly into the '0-2-0-2' state. Again, choosing a value 

of 2d for a should enable the system to avoid this problematical fate. 



CHAPTER 5. POTTS: OPTIMIZATION AND PERFORMANCE 
	

107 

13! 

	

3.0 
	

3.0 
N=50 data 
	 N=50 data 

	

2.5 
	

N=200 data 
	 2.5 \i 	 N=200 data 

	

2.0 
	

2.0 -- s 7 --------------------- 

	

1.5 
	

1.5 

	

1.0 
	

b— - - - 	 1.0 -I ---------- 

	

0.5 
	

0.5 

0.5 &, 1.0 	1.5 

a/2ci 

(a) 

	

0.0 1 	. 	..f 

	

0.0 	0.5 a'1•0 	1.5 	2.0 

a/2d 

(b) 

Figure 5.1: Plot of restraint energy against a. The ordinate, y, denotes (2Ea  /aN). 

The dotted lines highlight the y values of I and 2, corresponding to the minimal 

E, value and the value for 0-2-0-2 type states, respectively, a' denotes the point 
a = 2(d - xad), computed using the values in section 4.42. Parameter settings: 

Ih /3 = 1, -y = 0.1, T0  = 1.2T°, Tr = 0.95, A = 1, = 0.01, M = 100. (a) Serial 
updating case (-y = 1 gives a similar plot, data not shown). (b) Parallel updating 
case; the -y value is low enough to ensure that the oscillatory transition mode is 
avoided throughout the a range. 

5.1.4 Numerical Study of Low a Behaviour 

All three of the approaches just examined suggest that at some value below 2d, 

a ceases to be able to generate an effective Ea  restraint term. Thus 2d emerges 

as a natural theoretical choice for a. To test this, runs were performed over a 

range of a values, and the final values of Ea, Et  and the tour-length recorded. 

Figure 5.1 shows the final Ea  data for both types of updating scheme. Within 

the flat region, & is at its floor value, indicating that the restraint term is being 

effective. Below a/2d 0.8, Ea  rises sharply, indicating that a is too small 

to be effective. The data points with y values between one and two reflect 

configurations with only a partial 0-2-0-2 pattern in the (>11 Vi.) sums, likewise 
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those of value greater than two are due to a mixture of 0-2-0-2 and 0-3-0-0-3 

patterns. Other measures, such as the tour-length and final value of E, show 

similarly sharp changes below a = 2d. 

Notice that the boundary between the two a regimes lies, as predicted, some-

what below a = 2d, and close to a', the value at which the critical temperature 

analysis predicted a change in the behaviour. In conclusion, for optimal perfor-

mance the value of a needs to be tied to the {d, } matrix through the relationship: 

a 2d, where d is the mean inter-city distance.' 

5.2 Choosing the Value of Coefficient 0 

As with a, it is clearly a sensible policy to set the 3 coefficient small, in order to 

emphasise the importance of the tour-length term (E1 ) within the overall energy 

function. However, whereas with a there was a principle guiding its choice, 

i.e. that it should be just large enough to generate an effective Ea restraint tenn, 

with 8 this is not so. The reason is that the E0 term, originally introduced 

in the Hopfleld-Tank type networks to reward configurations in which each 

city is located in exactly one partition (as in equation 4.2), is strictly speaking 

redundant in Potts type models, where this property is enforced as a constraint 

(by imposing E. Si,, = 1 or >Jo Vi. = 1). Consider the E,3 expression for the Potts 

spin model (equation 4.4): - Ei. S. As the Si. € 10, 1}, any state respecting 

the Potts constraint will have a constant E, value (= —N/312). However, rather 

than simply discarding Ep altogether, Peterson and Soderberg retained it, and 

demonstrated that a particular 9 regime (typically /3 N) avoids the oscillatory 

transition mode at T for -y = 1 parallel dynamics (as detailed in section 4.2). 

Unfortunately, although in the Potts spin model Ep is constant, in the mean 

'This accounts for the suitability of Peterson and Soderbei's choice of a = 1, since the 

uniformly random unit square TSPs they studied have d = 0.521 in the N -+00 limit. 
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field Potts model, where Si,, ' -4  V E [0,1] and Efi = -f 	V, E '6 is no longer 

constant - it is related to the saturation through Ep = —N/3E/2. So during a 

complete run, EE,3 is 0(Nf3), compared to a AEt  of typically 0(N). Thus, using 

/3 in the above manner is impractical: although it does select the better T mode, 

the energy function is dominated by E, which results in very poor tour-length 

performance. A new, rational, approach to the issue of avoiding the oscillatory 

T mode with parallel dynamics, by selection of the step-size rather than 8, 

was presented in section 4.2. 

So E, in both the spin and mean field versions of the Potts model, is redundant, 

in the sense that the property it was originally designed to enforce is now 

contained as an explicit constraint. But whereas in the Potts spin model Efi 

also remains constant, in the mean field model it can vary. Thus the value of 

/3 does matter in this case, because it affects the balance of terms in the energy 

function. Ideally therefore, we would like to set 8 to zero, reducing E to just 

two terms: the tour-length cost term (Es) and a genuine restraint term (Ea). The 

oscillatory transition mode could still be avoided, by setting -y  :5  -y  for parallel 

dynamics (for serial dynamics this mode is irrelevant). So should 3 just be set to 

zero? In their work, Peterson and Soderberg kept /3 at 0.5 (with serial dynamics) 

without justifying this choice, though they did state that the presence of /3 had 

a "constructive balancing effect in solving the MFF equations" [Peterson & 

Soderberg 1989, page 141. Further numerical work to be presented later broadly 

supports this choice: if /3 is chosen any smaller, or zero, the system is unable 

to evolve into (high ) states representing well defined tours. The analysis in 

the following sections, based on an examination of self-consistency in the MF 

equations, accounts for this behaviour, in both qualitative and semi-quantitative 

terms. 
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5.2.1 Basic Self-Consistency Argument for /3 

Consider a configuration which represents a perfectly defined tour, i.e. one 

in which Vi,a: Via = Saa , with ai  a3  iff i = j. Our goal is to discover the 

parameter conditions under which this tour state constitutes a solution of the 

MF equations 4.9. 

The argument is valid for both Euclidean and non-Euclidean { di,} distributions. 

It does however make two assumptions. Firstly, it will only consider self-

consistency within the set of mean field variables associated with a single city. 

Therefore the validity of the results will depend on the extent to which this single 

city is 'typical' of the cities in the problem. For simple city distributions this 

is not a serious problem, but for TSPs containing irregular clusters or outlying 

cities this caveat must be borne in mind. Secondly, it is implicitly understood 

that c has been chosen sufficiently large such that Ea  is at its minimal value. 

For notational convenience let the cities be relabelled such that the desired tour 

is represented by the above configuration, with ai = i Vi. From equation 4.9, the 

MF components for city i are completely self-consistent if exp(U1 ) = >b exp(U,b). 

It is more useful however, to consider complete self-consistency as the limit: 

p—p oo, where pis defined by 

e 1" 

= >bi eUib 
(5.8) 

Thus p should be regarded as gauging the degree of self-consistency. So to 

achieve a particular value of p, the following equation must be true (using 

equation 4.9): 

= 	
)/T 	 (5.9) 

where the bondlengths within the tour, i.e. the distances between adjacent cities 

in the tour, have been modelled by a single term, d. Denoting the Ejoi  sum by 

, it is clear that for large N, G is bounded as follows: Ne_2DI1T < c < N, where 
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D' maxjj (d13 ). Combining this with the above equation leads to the following 

conditions on /3 in Order achieve a particular p for this tour: 

Tin Np - 2D' + 2d < #.< T in Np + 2d 	 (5.10) 

This result, though derived from a simple argument, contains several important 

features. 

• For any particular tour state,, the degree (p) to which that state is self-

consistent is related (exponentially) to P. This is consistent with the obser-

vation from numerical studies that the system cannot evolve into states 

resembling tours if 8 is too low. 

• The quality of the tour enters (5.10) through the term 2d since, recall, the 

tour-length is being modelled by Nd'. Thus, for fixed 3, (5.10) implies that 

short tours are more self-consistent than longer ones, and therefore more 

liable to be found by the algorithm. This is a very useful property: rather 

than relying solely on the E1  term to select out low cost tours, the presence 

of 3 also contributes to this process, by tending to prevent high cost tours 

from being self-consistent solutions of the mean field equations. A sim-

ilar positive role for the /3 coefficient was previously found for a related 

mean field Potts model [Gislén et al. 19891 designed for scheduling prob-

lems, though the justification was not given in terms of a self-consistency 

argument, as here. 

• 0 needs to scale as in NT.  This is a potentially worrying trend, since 

it leads to the AE/LE ratio being of O(ln NT),  implying a diminishing 

importance for the tour-length term in the overall energy function for large 

N. Replacing T by T gives one upper bound on the trend (section 5.2.4 

discusses another bound). For the classes of city distributions discussed 

in section 4.2, using parallel dynamics with y  <y, or serial dynamics, T 

is given by 2xcrd + (3 - 2d)/N. Using this in the right hand inequality of 
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(5.10), and retaining only the leading term in /3, leads to an absolute upper 

bound on /3 of 2XcYd  in Np + 2d. For the uniformly random unit square 

TSPs used as testbeds in this study, 2Xd  0.32, indicating that even in 

this worst case, the growth of 8 with N would be quite modest. In practice, 

configurations representing tours only develop after the temperature has 

been annealed some way below T. Empirically, for the testbed TSPs, high 

tour states tend to freeze out at T 0. 1, independent of N; this suggests 

that, at least for this class of TSP, the growth in 8 with N may not be 

practically significant. 

This simple analysis is clearly of value in identifying the key qualitative effects 

of the parameter /3 and how it needs to scale in order for tours to be solutions 

of the MF equations. However, because of the relatively crude nature of the 

bounds, (5.10) only manages to pin 6 down to within a window of width 

2D'. As D' is the maximum inter-city spacing, the analysis evidently has only 

limited value in suggesting what value /3 should be given in order for good 

tours to be possible solutions. A more refined method for estimating 9 , and 

hence selecting /3, is now presented. 

5.2.2 Refined Self-Consistency Argument for /3 

This argument follows the previous one up to equation 5.9. The problem is 

that exact evaluation of g  requires foreknowledge of the city ordering in a 

particular tour. For large TSPs with distances obeying the triangle inequality 

(e.g. Euclidean TSPs) this problem can be avoided, as follows. First, note that 

the triangle inequality gives 2 
 

4 

d•,1 1  + d3,,+1  ~: d1, ~! d,31  - d,,31 	 (5.11) 

2Recalling that this notation labels the cities in their oMer on the tour. 



CHAPTER 5. PO77S: OPTIMIZATION AND PERFORMANCE 	113 

and a similar condition for 	Restricting ourselves to near-optimal tours, 

in which the mean bondlength (d') within the tour is generally of a lower order 

than the mean inter-city spacing (d), these inequalities imply that d1, 

for a typical city i. Thus can be approximated by Ejoi  exp(-2d 13 /T), which 

does not include any dependence on a particular tour. 9 can then be estimated 

numerically for any particular TSP (given a sensible estimate for T). If, however, 

the cities have been drawn from — or can be reasonably modelled by — a 

distribution function, or, in the case of non-geometrical TSPs which still obey 

the triangle inequality, if there is a distribution function for the d1, terms, then the 

above approximation to 9 can be evaluated as an integral in the limit of N -+ oo. 

This continuum result can then be taken as an estimate for finite N problems. 

The validity of this approach will clearly depend on N being large and the 

distribution function being accurate. (For TSPs which do not obey the triangle 

inequality the method just outlined is not applicable; Appendix B includes a 

different approach for one class of TSPs in this category). This section illustrates 

the integral approach, for the case of Euclidean TSPs with cities drawn from a 

uniformly random distribution in a square of side 1. 

Letting to denote the location of city i, z (x, y) that of city j, and d(w, z) the 

distance between them, 9 is given by NI, where 

1= [
1 I 1 

exp[-2d(w,z)/Tjdxdy. 
Jo jo 

(5.12) 

By choosing to to he at the centre of the square and exploiting the ensuing 

symmetry, I can be expressed in polar form as 

sec  I 8f d8 j 2  re_ 2nh/Td r.  (5.13) 

After integrating by parts and making the substitution x = sec 0,1 is given by 

(7rT2/2 - C), where 

rv' e/T 	

ri 
	e/T 

C 2T 2  I 	dx + 2T 	dx. 	(5.14) ./i x/x 2 - 1 	 v'x2 - 1 
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N 

T 

0.1 0.2 0.3 

50 0.42 0.90 1.49 

100 0A3 0.98 1.64 

500 0.50 1.22 2.04 

1000 0.55 1.34 2.22 

Table 5.1: Values of 3*  for various N and T, computed for p = 10, taking a value 
of 0.75/i/N for d' (following the discussion in section 1.6). 

Although these integrals cannot be computed analytically, they are obviously 

positive and can be shown to be bounded above by: 

C 	= 2Te_1T (1n(/+ 1) + irT/4). 	 (5.15) 

In the appropriate temperature range  i.e. T < T(= .32), 7rT2/2 exceeds C.8. 

- only by a factor of five at T. but by over an order of magnitude in the 

more relevant T 0.1-0.2. range. Thus the C term can be dropped, giving 

= NirT2 12 and hence the final expression for /3* - the value of 3 which will 

allow near-optimal tour states to have a self-consistency p - using (5.9), as 

,8' =T (in Np + in irT2 + 2d. 	 (5.16) 
2 ) 

Table 5.1 lists some values for 8*.  Observe that for low T the rise in 3*  with N 

is very small, and secondly that the values at low T are close to 0.5, Peterson 

and Söderberg's choice for P. 

There are several minor problems in using equation 5.16 directly to select /3: 

. It was derived from a consideration of the self-consistency within the MF 

components for a particular city, located at the centre of the distribution. 

3Appmximating T in the low j3 regime by T, (9 = 0), assuming either serial dynamics, or 

parallel dynamics with-y < - ye. 



CHAPTER 5. P011'S: OPTIMIZATION AND PERFORMANCE 	115 

Repeating the derivation for the other extremal case, i.e. a city at a box 

corner, gives a similar result but with a in s term, rather than in . /3 should 

therefore be chosen between these two expressions for 3*. 

• What is an appropriate value for p? By definition, absolute self-consistency 

only holds in the p -p 00 limit. In practice however, what matters is 

whether tour states are self-consistent enough to be found by the algorithm; 

thus p values of say 10 or 100 might suffice. Fortunately, as p enters (5.16) 

logarithmically, /3*  is fairly insensitive to the precise value of p. 

• The analysis was based on applying a self-consistency criterion to clean 

(E = 1) tour states. In practice though, the algorithm is terminated before 

the saturation becomes one, because the tour structure is essentially fixed 

by the time E reaches about 0.8 or 0.9. Ideally therefore, the analysis 

should be performed on states having such values of E. However, the 

calculations are messier in that case, so the original analysis will be used 

here as an approximation to it. 

These points lead to some uncertainty in setting the absolute value of 8 but do 

not alter the scaling behaviour with N. As was implied both in section 4.2 and 

at the start of the current section, for the algorithm to be properly energetically 

scalable the value of /3 ought to be 0(1). Therefore the analytical in NT  scaling 

appears problematical. However, the low empirical final temperatures suggest 

that this scaling will be fairly benign, a view supported by the numerical experi-

ments reported next, and underpinned by further work on the final temperature 

presented in section 5.2.4. 

5.2.3 Numerical Study of Low /3 Behaviour 

To test these predictions, runs were performed over a range of low /3 values, 

and the final saturation (E) values recorded. As usual, the TSP instances were 
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Figure 5.2: Final saturation value E plotted against /3. The fact that the curves 
flatten out above 0.9 rather than at 1.0 is an artefact due to the termination 
criteria used (see section 4.4.1 for details). Due to the long run times, each 
N = 400 data point represents the average over five trials rather than the usual 

he ten. Parameter settings: ce  = 1,7 = 0.2, T0  = 1.2T 0,T = 0.95, A = 1, = 0.01, 
M = 200, parallel updating. 

from unit square random distributions, with N = 50, 200, 400 (one instance of 

each). 

Figure 5.2 shows some of the data. Observe in the 50 city case the sharp tran-

sition between values of 8 which are able to generate high saturation states, 

and those (lower) values which are not. This is consistent with the prediction 

that the self-consistency of a tour state (and hence its likelihood of being found) 

should vary rapidly with P. For N = 200 and 400, the transition is not so sharp, 

and occurs at an increasingly large /3 value, contrary to the predictions. This 

is, however, an artefact due to an implementation decision (see section 4.4.1) to 

terminate runs which fail to converge within M sweeps at any particular tem-

perature. Upon inspection, runs terminating into intermediate (i.e. 0.2 — 0.8) 

states were found still to be evolving - albeit slowly - towards high 
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Figure 53: Comparison between the experimental and theoretical low /3 results. 
The data points represent the experimental /3' values and their associated un-
certainties. Except for M, the parameter values are the same as in Figure 5.2 
(serial updating runs used -y = 1). 3*  values (using p = 10, T = 0.1) for cities at 
the centre and corner of the box are shown by the upper and lower dotted lines 
respectively. 
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configurations at the time of their premature termination. Increasing the M 

cutoff threshold both sharpens up the transition and brings it down to a lower 

/3 range, as demonstrated by Figure 5.3. This figure plots the minimum value 

of 6 (denoted /31 found capable of generating final states with mean E = 0 • 9,4 

against N, for several M values. Also shown are 8* theoretical trend lines. 

The parallel updating runs using low M values deviate markedly from the 3* 

predictions. But this is not a valid test of the /3*  analysis, since the experimental 

results are being influenced by an artificial dynamical cutoff, whereas 9*  was 

derived from a purely static analysis. As the cutoff becomes less important 

(i.e. as M increases), so the experimental trend moves towards the /3*  range, 

suggesting that the two might indeed coincide in the large M limit. Support for 

this comes from the runs performed using serial updating; these give 9' values 

consistent with the /3*  predictions. 

The difference here between runs using serial rather than parallel updating 

is largely due to the necessity of using small step-sizes in the latter scheme. 

As explained in section 4.4.3, low y runs typically only move away from the 

symmetry point at temperatures substantially below by which time the 

free energy minima are located in medium-high E regions. Thus, to reach one 

of these minima the system has to move a large distance through phase space; 

this, coupled with the small step-size, leads to the necessity of large M values 

for parallel updating runs to succeed. 

As well as supporting the self-consistency predictions for /3, numerical exper-

iments also confirm the complementary suggestion, that for optimal perfor-

mance /9 ought to be chosen no larger than is necessary to satisfy the self-

consistency requirement. Increasing 6 from 0.5 to only 1.5 causes a marked 

deterioration in the quality of the tours found, e.g. for 50 cities the average tour 

percentage excess rises from 7% to 23% (T,. = .995, serial = 1 updating). 

4Calculated using a simple linear interpolation scheme on plots of E vs. /3, such as Figure 5.2. 
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Thus the issue of choosing appropriate values of 8 appears to be rather more 

complex than suggested in PS. Numerically, there is definitely a fairly narrow 

range of 6 values which gives 'optimal' performance, in the sense that values 

below this range cannot generate tour states whereas values above this range 

generate increasingly long tours. The analytical work in the previous two 

sections accounted for the existence of this optimal 3 regime and also located 

its value reasonably accurately. 

5.2.4 Dependence of 3 on T 

The final temperature, T, is clearly relevant to any discussion of suitable values 

of /3, for two reasons. Firstly, using the methods developed in sections 5.2.1 and 

5.2.2 for setting 3 requires an estimate of T1. Secondly, on the theoretical side, 

information about the expected values of T1 is vital to understanding whether 

the required 1nNT  scaling of 0 will be harmful to the algorithm's performance 

on very large problems. 

Until now, we have either used T as a crude upper bound on T1, or taken 

empirical values for T1 (as in the previous section); clearly these approaches are 

somewhat unsatisfactory. Study of the free energy landscape reveals another 

characteristic temperature, T*,  which, as well as defusing the InNT  scaling issue 

and giving an improved T1 upper bound for many types of TSP, also helps in 

understanding why the mean field Potts algorithm performs very poorly on 

certain types of TSP. 

Consider the relative values of the free energy at the maximum entropy sym- 

metric state V 3 m and at a hypercube vertex representing a tour of length C. 

Using equations 4.6 and 4.7, it is straightforward to deduce that the tour vertex 
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has the lower free energy for T satisfying 

T< 
d+/3/2 —,C/N 

in N 
(5.17) 

The highest such temperature, denoted Tt, occurs for those vertices representing 

the optimal tour.' Assuming that the d1, terms have been scaled to be 0(1), 

is certainly 0(N), thus T* is 0(1/ In N). Two cases now arise: 

T* <T In this case T*  can be used to give an improved upper bound on T1. 

To see this, consider how the system evolves as T is annealed. As T is 

brought below T, V'm turns unstable and the system flows towards a 

new minimum with lower free energy and entropy; during subsequent 

annealing the system tracks this minimum as it shifts towards the hyper-

cube vertex. Assuming that both E and S are non-increasing quantities 

over this trajectory (a reasonable conjecture supported by experiments), 

it can be shown that throughout the trajectory the system's free energy is 

less than or equal to that at the state V'. Thus, tour vertices only be-

come accessible at temperatures below T*,  hence this is an upper bound 

on Tf. (The types of Euclidean TSPs considered in section 4.2 fall into this 

category). 

T* > T In this case T - which must also be 0(1/ in N) - gives the bet-

ter bound on T1. (The non-Euclidean random metric TSPs discussed in 

Appendix B he in this category). 

The key point here, is that in both cases T1 has been shown to be 0(1/ In N), 

thereby revealing the in NT  component of /3 to be a harmless 0(1) term. This 

is an important result, as it implies that the terms in the energy function (4.7) 

remain well balanced in the thermodynamic limit. 

'Recall that there is a 2N-fold degeneracy, due to idundancy in the problem representation. 
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5.3 Performance 

This section discusses the quality of the solutions found by the algorithm, how 

the quality depends on the annealing schedule and possible modifications to 

enhance the performance. In the original PS paper, the mean field Potts algo-

rithm was tested on uniformly random Euclidean problems (N = 50, 100, 200) 

and found to generate tours which were on average only 8% longer than av-

erage simulated annealing tours. However, in a subsequent benchmark study 

[Peterson 19901 the Potts method was pitted against, amongst others, a sophis-

ticated genetic algorithm. In this case, the differences in performance were 

19%, 16% and 21% for N = 50, 100 and 200 respectively; indicating that the 

early optimism was perhaps due to a poor simulated annealing implementa-

tion. One of the motivations behind the current study was to clarify the issue 

of the algorithm's potential and actual performance. 

Two very different types of TSP were studied: the 'classic' Euclidean TSPs used 

throughout this chapter, and non-Euclidean random TSPs. For both types of 

problem, the optimal tour-length was estimated through the same procedure 

as used for the elastic net performance study in section 3.4, i.e. the shortest tour 

found over fifty runs of the Or*opt  algorithm was deemed 'optimal'. Clearly 

this typically overestimates the optimal length, particularly for large N, but it 

still gives a useful basis for comparison. 

With a computational complexity of 0(N3 ) per sweep, software implementations 

of the mean field Potts algorithm are unlikely to be competitive with conven-

tional serial algorithms such as 3-opt and Lin-Kernighan, which empirically 

have overall 0(N 2 ) running times [Johnson 19901. This would change howewer 

if the Potts algorithm could be implemented in analogue hardware. Ideally 

therefore one would like to study the likely hardware performance through nu-

merical simulations using a small step-size -y to approximate continuous time 
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dynamics. However, this is computationally very expensive: not only do the 

simulation times grow as 1/-y, but there is also the problem mentioned in sec-

tion 4.4.3, that low -y runs tend to depress T artificially and thereby degrade 

solution quality. The latter point can be compensated for by more stringent 

annealing schedule parameters, but only at the cost of longer simulation times. 

Because of these problems, no attempt has been made to check the solution qual-

ity for low 'y. All of the data presented in the following sections was obtained 

using -y = 1 with serial updating. 

5.3.1 Uniformly Random Euclidean Metric TSPs 

The six examples each for N = 50 and N = 200 studied in section 3.4 for the elas-

tic net were again used here. Tables 5.2 and 5.3 show the average percentages 

by which the solutions found by the algorithm exceed the 'optimal' tour-length, 

for a range of annealing schedules. For both values of N the solution quality 

improves substantially with slower cooling, though of course this entails an in-

creased number of sweeps. Counting only the sweeps after T.exPl, this number 

grows from typically about 60-80 for T,. = 0.95 to approximately 250 and 2500 

for 7',. = 0.995 and 0.9995 respectively. Whilst the quality of the N = 50 tours 

is quite acceptable (being only slightly worse than the TLA-optimized elastic 

net tours), the same is not true for the N = 200 sets. Why the solution quality 

degrades as the problem size increases, remains an open question. Even slower 

cooling would very likely further improve the quality. However, the running 

times on these, and larger instances, would become prohibitive for software 

implementations. Furthermore, it remains unclear to what extent very slow 

annealing can bring the system dose to finding the optimal tour. Whereas sim-

ulated annealing, given certain conditions, guarantees convergence to the op-

timal solution for asymptotically slow annealing [van Laarhoven & Aarts 1987, 

chapter 31, such a result is not true for mean field annealing algorithms, because 
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N =50 Annealing rate, 7',. 

0.95 0.995 0.9995 Sets 

i 9.2 ± 5.1 7.1± 3.6 2.5 ± 0.0 

II 11.9 ± 2.5 8.0 ± 2.0 5.7±1.7 

iii 8.3 ± 5.0 4.6 ±1.8 2.5 ± .07 

iv 9.0±3.0 5.7±1.4 5.5±1.1 

v 11.8 ± 3.6 11.5 ± 0.5 7.1±1.0 

vi 8-1± 6.3 5.0 ± 4.8 0.7 ± .07 

Mean 9.7% 7.0% 4.0% 

Table 5.2: Tour-length percentage excess data for N = 50. Entries denote the 
mean and standard deviation values over ten trials for each set. Parameter 
settings: c = 1, 0 = 0.5,'y = 1, T0 = 1.2T 1e0, A = 1, = 0.01, M = 100. 

N = 200 Annealing rate, 1',. 

0.95 0.995 0.9995 Sets 

i 30.1 ± 4.2 21.6 ± 2.5 16.3 ± 1.2 

ii 32.1 ± 3.8 21.7 ± 3.0 15.3 ± 2.3 

iii 36.4 ± 4.8 24.8 ± 3.4 16.9 ± 1.6 

iv 30.2 ± 3.2 22.7 ±2.6 12.9 ±1.7 

v 30.6 ± 4.4 20.0 ± 3.4 14.0 ±1.8 

A 33.8 ± 8.1 22.0 ± 2.0 16.0 ± 1.2 

Mean 32.2% 22.1% 15.2% 

Table 53: Tour-length percentage excess data for N = 200. Other details are as 
in Table 5.2, but with only five trials per set for 7'. = 0.9995. 

the mean field method is an approximation. 

Various modifications to the algorithm were experimented with in order to try 
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and enhance performance. For example, the a and /3 parameters were allowed 

to adapt during a run, the rationale guiding the choice of adaptation rules 

being that these parameters should be as low as possible, whilst still respecting 

the various conditions on them, as discussed in sections 5.1 and 5.2. Another 

approach was to adapt dynamically the annealing schedule parameters, T,. and 

, with the aim of allowing rapid cooling through uninteresting sections of the 

free energy landscape but slower cooling in critical sections, such as around the 

critical temperature. Whilst these approaches were found to produce shorter 

tours, this was usually at the cost of increased running times. Comparison 

between these modified methods and the original vanilla variety, when matched 

for run times, typically showed little or no net improvement. 

5.3.2 Non-Euclidean Random TSPs 

These TSPs are generated by drawing each d, element independently from a 

random [0,1] distribution, but retaining symmetry and zero diagonal elements. 

The appropriate T, a and 13  analyses for this class of TSPs are summarized in 

Appendix B. The optimal tours are known to be of length 2.014 in the asymptotic 

N limit [Krauth & Mézard 19891; the best Or*opt  tours for the problem sizes 

studied here are typically within 15% of this. Table 5.4 shows the raw tour-

lengths obtained by the mean field Potts algorithm using suitable parameters, 

for a single annealing schedule. Even for small N the average tours are poor, 

and for large N they typically exceed the optimal tours by a factor of at least four. 

The key to understanding why the performance is so poor is the relationship 

between T and T*  for this class. 

As shown in Appendix B, T0  scales as N 1 /2, so that for large N, by the time 

the symmetry point turns unstable, there are already hypercube vertices lying 

lower in the free energy landscape. it is therefore reasonable to conjecture that, at 

T for large N, the dominant minima will be located increasingly far away from 
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Sets N=50 N=100 N=200 

i 3.52 ± 0.2 5.51 ± 0.3 10.3 ± 0.8 

ii 3.77 ± 0.2 5.35 ± 0.5 10.6 ±1.3 

iii 3.57 ± 0.4 5.60 ± 0.2 10.3 ± 0.6 

iv 3.23 ± 0.3 5.18 ± 0.2 9.2 ± 0.7 

v 3.46 ± 0.3 5.53 ±0.4 11.2 ±1.9 

Table 5.4: Tour-length data for the random metric case. Entries denote the mean 
and standard deviation values of the tour-lengths found over ten trials for each 
N = SOor 100 instance, five trials for each N = 200 instance. The optimal tours 
are approximately of length 2; see main text for details. Parameter settings: 
a = 1.1, /3 = 0.4, = 1, T0  = 1.2Tth, T 0.9995, = 1, 0.01, M = 100. 

the symmetry point, towards the vertices, i.e. at states with E - 1. This differs 

from the Euclidean case, where the minima appear to move away smoothly 

from the symmetry point as T is lowered through T. For these non-Euclidean 

random metric TSPs, or more generally any TSP for which T* > T,6  it is being 

suggested that the system is unable to track a minimum smoothly as it moves 

out to a hypercube vertex, because there are discontinuities in the dominant 

fixed point values of the free energy and E at T. Inspection of numerical runs 

provides strong support for this idea: after leaving the symmetric state at T, the 

system does not find another fixed point until E has risen substantially towards 

one, increasingly so for large N. 

This discontinuity in E values of solutions of the mean field equations at T is 

similar in certain respects to a first-order phase transition, just as the continuous 

change in E at T for Euclidean problems is similar to a second-order transition 

(see e.g. [Mouritsen 1984] for a discussion of phase transitions). The fact that T 

is associated with a phase transition was realised by Peterson and Soderberg; 

6For large instances with well behaved d and 0 d, this inequality is essentially equivalent to the 

condition that the (factor scales slower than 0(/71 in N), by equations 4.26,4.27 and 5.17. 
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the contribution of the current work is the identification of different types of 

transition, how the type depends - through T*/TC - on the class of TSP, 

and why first order-like transitions should lead to poor performance. Finally, 

whilst the analogy is certainly useful, there is at least one respect in which the 

behaviour exhibited by the current system is significantly different from phase 

transition behaviour, as it is usually defined. Whereas in genuine first-order 

transitions T denotes the temperature at which the global minimum switches 

to a different solution branch, in our system it denotes the T at which the 

symmetric state turns unstable, this being an important temperature because 

by design the system is initially placed in that state. Hence if T*  lies above 

T, then between these two temperatures the algorithm is de facto forcing the 

system into a metastable state, something which of course would not happen 

to a physical system in thermal equilibrium. 

It would be interesting to know to what extent the difficulties with the non-

Euclidean problems are due to the inherent configuration space of tours, and 

how much is due to the neural network formulation. To the author's knowl-

edge there have been no other reliable studies of Potts, or HT networks being 

applied to the case of non-Euclidean TSPs, with which to compare the obser-

vations made here. Although EXu & Tsai 19911 did report data on these TSPs, 

obtained using the bond variable representation (as in section 1.4) mapped onto 

an analogue Hopfield network, there are several questionable aspects to their 

study. Firstly, they report that the LK algorithm finds tours typically at least 

50% worse than their network, and secondly, that LK is also beaten by 2-Opt. 

Given that [Johnson 19901 found LK's percentage excess on TSPs of this sort, 

with N = 104 , to be only 5.8%, these results are very surprising. Furthermore, 

Xu and Tsai claim that their excellent results are due to their algorithm being a 

neural implementation of the typically near-optimal 'assignment and patching' 

algorithm; but this claim is specious, since  assignment and patching, though 

indeed an excellent algorithm, is only so for asymmetric TSPs [Lawler et al. 1985, 
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chapter 61. 

Future work on these non-Euclidean TSPs could attempt to confirm (either em-

pirically, or, ideally, analytically) that the dominant free energy minima at and 

above T, do indeed lie at increasing E for increasing N. If so, then that would 

suggest that the symmetry point is an unsuitable initial state. Alternatively, 

it may be that, in light of the section 4.1.4 discussion, this is one occasion in 

which the lack of a Lyapunov function for the dynamics is troublesome, since 

the system has to move a long way through phase space at a single temperature. 

Different network dynamics may therefore be worth exploring. 

5.4 Conclusions 

This chapter first examined the issue of how to set optimal values for the two 

weighting coefficients in the energy function. For the coefficient a, three distinct 

analyses led to the common conclusion that its value should be set to twice the 

mean inter-city distance. Setting the value of the second coefficient, 3, turns 

Put to be slightly more complex. An initial analysis suggested that it needs to 

increase logarithmically with the number of cities, a trend which would have 

negative implications for the algorithm's scalability. However, further analysis 

revealed that the in N term had a counter-balancing(En N)1  coefficient. For both 

a and /3, numerical simulation data obtained using non-trivial problem sizes, 

i.e. 50 and 200 cities, was in reasonable accord with the theoretical predictions 

regarding their optimal settings. 

Secondly, the algorithm's performance on Euclidean and non-Euclidean TSPs 

was assessed. For the former class, average tour-lengths are within 10% of those 

of the best known tours for N = 50 but in the range 15% to 32% for N = 200(15% 

being for the slowest annealing schedule). Why the performance deteriorates 
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for increasing system size remains unclear. For the random non-Euclidean 

TSPs, a well known difficult case, the tours were highly sub-optimal for all N 

values probed. An explanation for this poor result, based on arguments about 

the structure of the free energy landscape, was proposed. 



CHAPTER 6 

Conclusions 

This thesis has explored several issues in the task of optimizing the perfor-

mance of neural network algorithnts designed to find good solutions to hard 

optimization problems. Much of the previous research on such networks has 

paid insufficient attention to the delicate matter of choosing suitable parameter 

values. That deficit, coupled with a lack of simulations on large scale problems, 

has led to uncertainty both about the actual performance of such networks on 

medium-sized problems, and also over their ability in principle to cope with 

the very large problems that arise in real applications. 

The current study has contributed to the clarification of these issues in the con-

text of the elastic net and mean field Potts algorithms for the travelling salesman 

problem. Central to both of these methods is the concept of a computational en-

ergy function comprising of two or more conflicting terms. Analyses showing 

how the relative and absolute weights of the competing terms influence the fi-

nal network performance have been presented. The network dynamics, which 

specify how the system attempts to minimize the energy, also have a strong 

influence on the performance. New forms of dynamics have been successfully 

developed and analysed for both algorithms. 

129 
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The analytical work on the elastic net has given a clear explanation of how 

the method may converge into invalid solutions for certain parameter ranges. 

This led to an accurate prescription for the value of the ratio of energy term 

coefficients most likely to give valid solutions. By developing self-adaptive 

descent dynamics, the quality of solutions obtainable within a fixed amount 

of computer time was dramatically improved. The new dynamical technique, 

of local step-size adaptation occurring on two levels, should also be widely 

applicable, for minimization of energy functions that change slowly over time. 

Regarding scalability, only a slight deterioration in the quality of tours occurred 

as the number of cities was increased from fifty to two hundred, with the tours 

being within 5% of those obtained using an efficient local optimization heuristic. 

For the mean field Potts network, the dynamics specified by the original authors 

were generalized, as was their eigenvalue analysis of the network's critical 

temperature under those dynamics. The new temperature analysis given here 

reveals many relationships between the network's key parameters which help 

in assigning them suitable values. More detailed analyses were presented for 

deriving the optimal values of the two coefficients in the energy function. The 

methods developed may also be of use for parameter setting in other mean field 

networks. Regarding scalability, there is a marked deterioration in the tours for 

increasing numbers of cities in Euclidean problems, despite the energy function 

remaining well balanced in the thermodynamic limit. Why this should be so 

was not resolved. The failure of the algorithm on non-Euclidean problems has, 

however, been accounted for. In summary, the mean field Potts algorithm for 

the TSP is a well defined model on which a considerable degree of analytical 

work concerning parameter issues can be undertaken. Whether the method is 

truly scalable to very large Euclidean problems remains an open issue, and one 

which, given that the method's computational complexity is 0(N3 ) per update, 

will probably best be resolved analytically via statistical mechanics. 



APPENDIX A 

Parallel Implementation Strategies 

Software implementations on powerful parallel computer systems of the elastic 

net and Potts algorithms facilitated the extensive numerical studies reported 

in this thesis. This appendix summarizes the key aspects of how the neural 

algorithms were mapped onto parallel architectures. A basic version of the 

elastic net implementation was developed as part of an Honours year project 

by the author. 

DAP Implementation of the Elastic Net Algorithm 

As the beads which model the elastic net are all updated in parallel, the algo-

rithm is naturally suitable for implementation on Single-Instruction- Multiple-

Data (SIMD) computers, such as the AMT-DAP or other massively parallel array 

processors. The DAP can be considered as a 2-D lattice of processors connected 

by nearest neighbour communications links, with each processor having a small 

amount of local memory. From equations 2.1 and 2.2, the computation of the 

city-bead force terms is clearly the dominant operation in each update. There-

fore, an efficient mapping should be optimized with respect to the computation 
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of the city-bead distance terms and the weight terms derived from these. 

There are basically two ways to map the algorithm onto this architecture. Ei-

ther by associating each bead with a particular processor, storing the set of city 

coordinates in each local memory, or by associating each city with a particular 

processor, the local memory of each processor holding the net coordinates. With 

regard to the important issue of minimizing costly inter-processor communica-

tions, neither strategy is clearly superior, since the update operation involves 

global summation steps over both the cities (equation 2.1) and the beads (equa-

tion 2.2). However, the former strategy emerges as the more efficient one with 

respect to another criterion, namely, minimizing  memory requirements. 

In the 'beads mapping', the displacement of the net due to a single city is 

computed in parallel for every bead (processor). Each processor maintains 

a pair of variables which act as accumulators for the coordinate components 

of the > - y,) sum for the bead (j) that processor is responsible for. 

In the alternative 'cities mapping', all of the un-normalized city force terms 

acting on a single bead are computed in parallel. However, because of the 

normalization step (equation 2.2), each processor requires an extra 2M words 

of memory temporarily to store the components of the M city-bead force terms 

it computes, prior to normalization. 

In its original form, the beads mapping fully utilises the available processors 

only when their number matches the number of beads. For the TSPs studied 

here, having at most 200 cities, it would have been inefficient, since the DAPs 

used for this work had either 1024 or 4096 processors. The mapping was 

generalized to overcome this problem, by associating each bead with a small 

number (roughly the ratio of processors to beads) of processors, each processor 

now being responsible for the interactions of that bead with a subset of the cities. 

Interprocessor communication steps gather the partial sums for each bead, and 

scatter the updated  position back to the appropriate processors. 
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Transputer Implementation of the Mean Field Potts Algorithm 

The mean field Potts TSP network was implemented on a Meiko Computing 

Surface, a configurable array of T800 transputers. Each transputer is a fairly 

powerful processor in its own right, capable of executing its own programme 

independent of the other transputers. A small number of fast communica-

tions, links (for the T800, four) are designed into each transputer. This enables a 

group of transputers to cooperate, via message-passing, in running a single pro-

gramme. The user is free to configure the links such that the resulting processor 

topology suits the pattern of inter-processor communications required by the 

particular application. In general terms, efficient implementations distribute 

the workload evenly across the processors whilst keeping inter-processor com-

munications to a minimum. 

To programme the dynamics specified by equations 4.9 and 4.13, each transputer 

is assigned to update a distinct subset of the Via variables. The key implemen-

tation decision is whether each transputer's dataset should correspond to all of 

the variables associated with a subset of the cities, or all those associated with a 

subset of the partitions. Let us consider the first approach. The dominant step 

in the update of Via is the evaluation of >j, dij(l'(a+l) + V(a-l)). With the cities 

(indexed by j) distributed over the processors, a considerable amount of inter-

processor communications would be required to gather the relevant data into 

the processor, suggesting that this would be an inefficient mapping. Further-

more, this mapping would be inappropriate for dynamics in which the cities 

are updated serially, since, unless one resorted to some complex programming, 

only one processor would be doing computation at any time. 

The second strategy, distributing the mean field variables associated with a 

single city across all the processors, has neither of the above drawbacks. The 

processors are configured in a ring and adjacent processors assigned to ad-

jacent groups of partitions. Formally, processor k (k = 0.. . P - 1) updates 
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{: 1 	kN/P+1_<a<(k+1)N/P}, where—forsimplicity—it 

is assumed that N is a multiple of P. Under this mapping each processor can 

compute almost all of its Uja  terms by operating on local data - only for its 

extremal a values does a processor require data from other processors, and even 

then only from its immediate neighbours. Thus the dominant computational 

step is carried out efficiently. The subsequent normalization operation to derive 

the ha  terms (see equation 4.9) requires global communication on the ring. How-

ever, the time spent on these communications is small relative to the time spent 

on calculations, thus they do not seriously impair the programme's efficiency.  

This statement can be formalised by considering the 'fractional communication 

overhead' measure, fc,  introduced by [Fox et al. 19881. fc  is the ratio of the time 

spent doing communications to that spent on useful calculations by a parallel 

programme. 

Analysis of the algorithm's key steps allowed Ic  expressions to be derived for 

both the serial and parallel updating modes. The results quoted below are in 

terms of the (problem size)/(machine size) ratio (i.e. NIP), denoted by m. 

Serial Dynamics 	 fc 	-2  (4 + 

Parallel Dynamics 	 fc 	-2 
 ( 

+ 

b and c are 0(1) terms dependent on details of the implementation and certain 

machine constants (specifically, the time for a floating point operation and times 

characterising the performance of the communications links). These results 

imply that for both types of dynamics this implementation is scalable, in the 

sense that increasing the problem size does not increase the fraction of time 

spent doing concurrent communications, provided the growth in N is matched 

by growth in the machine size such that m is kept constant. Indeed, for the 

parallel dynamics code fc  actually tends to 0 as N - 00, for constant m. 

Finally, a less demanding efficiency scaling criterion, namely that fc  should 

vanish as N -, oo for constant F, is easily satisfied by either type of dynamics. 



APPENDIX B 

Theory For Random Metric TSPs 

The 'distance' matrix for this class of problems contains symmetric off-diagonal 

elements, each of which is a random variable drawn independently from a 

flat [0,1] distribution. Clearly the 'cities' are no longer embedded in some 

geometrical space, nor in fact does the triangle inequality generally hold. These 

properties make this random metric class of TSP a severe test for all heuristic 

methods: even the renowned Lin-Kernighan algorithm shows performance 

degradation for increasing N [Johnson 19901. 

Although the T analyses presented in both Chapter 4 and in PS concentrated on 

a particular class of Euclidean TSPs, much of that work is sufficiently general 

to apply to random metric TSPs as well. The key difference betweeen the 

two cases concerns the eigenvalue spectrum of AM. For the random metric 

problems, the C parameter characterising the spread of the A eigenvalues is 

empirically found to be independent of N, whereas previously, recall, it scaled 

as \/iA. A numerical study of many random TSP matrices indicates that in 

the large N limit, C lies in the range 1.95-2.02. A value of 1.9 was used in the 

section 5.3.2 simulations, as that is a typical value for TSPs of the size studied 

therein. Analytic evaluation of the mean (d) and standard deviation () of the 
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off-diagonal elements in the {d3 } matrix is straightforward in the N —p oolimi 

since the elements are then uncorrelated with each other. The values are 0.5 and 

1/(2/) .289 respectively. With these values for (, d and 0d,  the expressions 

given in (4.26) for Am. and Amin  still hold, with the usual caveat that the A.  

expression is valid provided that a exceeds some threshold, a', where now 

a' = 2(d—(cTd/,/7) 

	

2d 	for large N. 

The synchronous updating T equations (4.27-4.30) remain valid, though of 

course /3 now has a different scaling. The result of this is that Ic,  the maximum 

feasible step-size when using parallel updating, is now (correct to leading terms) 

given by 

4Cod 
'Ic 

— \/N(2d+a)+2C0d 
—* 0 	as N — oo. 

This result has been verified in numerical studies similar to those performed for 

Figure 4.4. It indicates that the computational burden of using small 'y rules out 

using parallel updating dynamics for large random metric TSPs. T for serial 

updating (and the parallel case, provided -y :5 'ye)  with practical 3 values, is 

/3+2d+2CV'Nod 
N 

So T is expected to scale as N 112  for random distance TSPs. 

Regarding suitable a, the arguments presented in sections 5.1.1 and 5.1.2 are 

essentially independent of the distance matrix, and the section 5.1.3 argu-

ment now suggests that a ought to be taken larger than 2d, for large N. 

For /9, section 5.2.1 suggested a value of (Tin p + 2d'), where 9 denotes 

Ejoi  exp((—d_ 1  — d 3+1)/T). Because the d 3  are drawn independently, it is 

possible to evaluate g exactly in the N —* oo limit, by 

urn g = N
1 1

dw d..,
N—+oo 	 Jo 

= NT  (i - e_11T)2 
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This result is of limited practical use for finite N (where small correlations in-

evitably creep into the distance matrix), but we shall ignore this, as we are only 

interested in the large N scaling behaviour. By plugging this result into the 

/3 expression above, taking T = T (reasonable in light of the argument in sec-

tion 5.3.2 that suggested T1  would be close to T for random TSPs), simplifying, 

and keeping only the dominant term, we find 

/3 clnpc2 	
where c 

Thus /3 may be chosen increasingly small as N grows large, so from an energetics 

perspective the algorithm is definitely scalable for random non-Euclidean TSPs. 

The /3 expression above has not been thoroughly tested experimentally, but a 

brief investigation did suggest that the minimal value of 0 required to give 

convergence to tours decreases as N grows. 
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