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Abstract

Weak gravitational lensing is a powerful astronomical tool for constraining

cosmological parameters that is entering its prime. Lensing occurs because

gravitational fields deflect light rays and measuring this deflection through a

statistic known as cosmic shear allows us to directly measure the properties of

dark matter and dark energy on large scales. In principle, gravitational lensing

is a clean probe of the cosmology of the Universe, as it depends on gravity alone

and not on incomplete astrophysical models or approximations. In practice,

however, there are several factors that limit the accuracy and precision of lensing

measurements. These include accurate measurement of galaxy shapes, correctly

accounting for distortions to galaxy images due to the point spread function of

the telescope, the presence of intrinsic alignments (IAs) of galaxy shapes due

to physical processes, and inaccuracies in commonly-used galaxy photometric

redshift information. These effects may all introduce systematic errors in lensing

measurements which must be carefully accounted for to ensure that cosmological

constraints from lensing are unbiased and as precise as possible.

The Canada-France-Hawaii-Telescope Lensing Survey (CFHTLenS) is the

largest weak lensing survey completed to date, covering 154 square degrees of the

sky in 5 optical bands, with photometric redshift information for every survey

galaxy. With lensing measurements from more galaxies than ever before, the

statistical uncertainties on parameter estimates will be the lowest ever achieved

from weak lensing. If left unaccounted for, sources of systematic error would

dominate over the statistical uncertainty, potentially biasing parameter estimates

catastrophically. A technique known as tomography in which galaxies are sorted

into bins based on their redshift can help constrain cosmological parameters

more precisely. This is because utilising the redshifts of survey galaxies retains

cosmological information that would otherwise be lost, such as the behaviour
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of dark energy and the growth of structure over time. Tomography, however,

increases the demand for systematics-free galaxy catalogues as the technique is

strongly sensitive to the IA signal and photometric redshift errors. Therefore,

future lensing analyses will require a more sophisticated treatment of these

effects to extract maximal information from the lensing signal. A thorough

understanding of the error on lensing measurements is necessary in order to

produce meaningful cosmological constraints. One of the key features of cosmic

shear is that it is highly correlated over different angular scales, meaning that

error estimates must take into account the covariance of the data over different

angular scales, and in the case of tomography, between different redshift bins.

The behaviour and size of the (inverse) covariance matrix is one of the limiting

factors in such a cosmological likelihood analysis, so constructing an accurate,

unbiased estimate of the covariance matrix inverse is essential to cosmic shear

analysis.

This thesis presents work to optimise tomographic weak lensing analysis

and achieve the tightest parameter constraints possible for a CFHTLenS-like

survey. N-body simulations and Gaussian shear fields incorporating an IA model

(known as the ‘non-linear alignment’ model) with a free parameter are used to

estimate fully tomographic covariance matrices of cosmic shear for CFHTLenS.

We simultaneously incorporate for the first time the error contribution expected

from the non-linear alignment model for IAs and realistic photometric redshift

uncertainties as measured from the CFHTLenS. We find that non-Gaussian

simulations that incorporate nonlinearity on small scales are needed to ensure

the covariance is not underestimated, and that the covariance matrix is shot-noise

dominated for almost all tomographic correlations. The number of realisations

of the simulations used to estimate the covariance places a hard limit on the

maximum number of tomographic bins that one can use in an analysis. Given

the available number of lines of sight generated from CFHTLenS-like simulations,

we find that up to ∼ 15 tomographic bins may be utilised in a likelihood analysis.

The estimated tomographic covariance matrices are used in a least-squares

likelihood analysis in order to find the combination of both angular and

tomographic bins that gives the tightest constraints on some key cosmological

parameters. We find that the optimum binning is somewhat degenerate, with

around 6 tomographic and 8 angular bins being optimal, and limited by the
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available number of realisations of the simulations used to estimate the covariance.

We also investigate the bias on best-fit parameter estimates that occurs if IAs

or photometric redshift errors are neglected. With our choice of IA model, the

effect of neglecting IAs on the best-fit cosmological parameters is not significant

for a CFHTLenS-like survey, although this may not be true if the IA signal differs

substantially from the model, or for future wide-field surveys with much smaller

statistical uncertainties. Similarly, neglecting photometric redshift errors does

not result in significant bias, although we apply similar caveats.

Finally, we apply the results of this optimisation to the CFHTLenS cosmic

shear data, performing a preliminary analysis of the shear correlation function

to produce both 2D and optimal tomographic cosmological constraints. From

6-bin tomography, we constrain the matter density parameter Ωm = 0.419+0.123
−0.090,

the amplitude of the matter power spectrum σ8 = 0.623+0.101
−0.084 and the amplitude

parameter of the non-linear alignment model, A = −1.161+1.163
−0.597. We perform this

analysis to test the validity and limitations of the optimal binning on real data and

find that 6-bin tomography improves parameter constraints considerably, albeit

not as much as when performed on simulated data. This analysis represents

an important step in the development of techniques to optimise the recovery

of lensing information and hence cosmological constraints, while simultaneously

accounting for potential sources of bias in shear analysis.
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Chapter 1

Introduction to Cosmology

This thesis concerns the observation of weak gravitational lensing within the

context of cosmology. In this chapter I present an outline of the relevant

cosmological background to this work. The standard ΛCDM model of cosmology

will be described in terms of its key components, and a review of the evidence

for the model will be presented. The Hot Big Bang model is assumed, as to date

it is the widely-accepted paradigm describing the early Universe. This chapter

is intended to introduce the relevant background and concepts that are essential

in understanding the goals of this thesis. We extend this to an introduction to

weak lensing in Chapter 2.

1.1 The Standard Model

Cosmology as it stands today is characterised by the two main components of

our Universe: dark matter and dark energy, which make up ∼ 96% of the

Universe’s mass-energy content and are collectively known as the dark sector.

The discovery of these two components has led to the development of a model of

our Universe known as the standard, concordance or ΛCDM model. This model

is well supported by a large body of observational evidence but is, however,

phenomenological and one of the most pertinent challenges in modern cosmology

is that of trying to develop a testable theoretical model to explain the dark sector.

There are also many other puzzles facing cosmologists today, such as the nature

of inflation, the resolution of the coincidence problem and the reconciliation of the

energy of the cosmological constant (the ‘Λ’ in ΛCDM) and its predicted energy
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1.1. The Standard Model

from particle physics. In order to develop theories to solve these puzzles, high-

quality observations from a number of different cosmological probes are necessary

to allow us to test hypotheses and measure the underlying physics. The ability

to constrain cosmology using weak lensing is now a decade old, and with several

deep weak lensing surveys upcoming in the next decade which promise to be

wider than ever before, weak lensing measurement is becoming established as an

invaluable technique for understanding the nature of the cosmos.

1.1.1 The Inflationary Universe

One of the most important discoveries in cosmology was made by Edwin Hubble

in the 1920s when he deduced that the velocity of recession of distant galaxies

was directly proportional to their distance from us [1]. Through his observations,

Hubble not only proved that the Universe was bigger than previously thought

due to the determination of distances to other galaxies, but the velocity–distance

law showed that the entire Universe was expanding [2, 3]. Hubble’s work and the

discovery in 1964 by Penzias and Wilson of an almost uniform radio signal over

the whole sky — the cosmic microwave background (CMB) — led to the

acceptance of the Big Bang model of cosmology, in which the Universe expanded

from hot, dense initial conditions at some finite time in the past and is still

expanding today.

The CMB signal was discovered in 1964 by Penzias & Wilson [4] and is a

relic from the early Universe, which was initially filled with a plasma of charged

particles and radiation in thermal equilibrium [5]. As the Universe expanded, it

also cooled and once the temperature was low enough neutral atoms could form

from the charged particles in a epoch known as recombination. These atoms

were no longer able to absorb thermal radiation effectively, which allowed the

radiation to travel through the Universe unimpeded — the Universe became

transparent. The photons that were allowed to free-stream at the epoch of

recombination have been propagating through the Universe ever since, becoming

increasingly redshifted due to expansion until their blackbody temperature peaks

today in the microwave at 2.73 K. The CMB signal is remarkably uniform down

to scales of approximately 1 part in 105 (ignoring the well-understood dipole

anisotropy in the CMB due to the peculiar motion of the solar system) which

leads to the horizon problem in the standard Big Bang model.
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In order to understand why the horizon problem exists, we much first look at

the cosmological principle that the Big Bang model holds to be true: On the

largest scales, the Universe is both isotropic and homogeneous. Isotropy means

that the Universe looks the same in all directions for a given observer (Hubble’s

law for the recession velocity of galaxies supports this; the law holds whichever line

of sight is chosen) and homogeneity is satisfied if the statistical properties of the

Universe are the same everywhere. That is, there are no preferred observers and

a translation in space would not lead to a radically different view of the Universe.

Homogeneity cannot be proven correct as we cannot observe the Universe from a

cosmologically-significant distance away from the Milky Way galaxy1. Although

there are some cosmological models that do not assume homogeneity (such as

models that use the Lemâıtre, Tolman & Bondi metric to place observers in the

centre of voids), it is a necessary assumption to make if one wants to avoid giving

humanity a privileged position in the Universe2.

There is therefore a problem with the standard Big Bang model if one assumes

the cosmological principle holds: how can the CMB, and indeed the Universe in

general, look uniform over the entire sky if the Universe has a finite age? If the

CMB photons were emitted at the epoch of recombination, then any two areas of

sky separated by more than a small angle (∼ 2 ◦) will not have had time to have

causal contact3 with each other and should not be in equilibrium. The solution to

this horizon problem (and several others) is solved by the addition of inflation

to the Big Bang model. The hypothesised inflationary epoch was a period of

exponential expansion that occurred between t ∼ 10−35 to 10−33 seconds after

the initial singularity, leading to huge inflation of the then-causally connected

regions, meaning regions on all parts of the sky today can be in causal contact

and hence in equilibrium. Inflation also solves another cosmological problem

known as the flatness problem, which is described below in section 1.1.2. It

should be noted that despite its ability to neatly solve some key cosmological

problems, inflation as a theory has some significant issues. First, the inflationary

model is phenomenological in nature. The inflationary field does not correspond

1We can, however, test for violations of homogeneity for example through the Sunyaev-
Zel’dovich effect of clusters on CMB photons, see [6] for a review.

2This is the Copernican principle. If the Universe is isotropic and the Copernican principle
holds, then it is necessarily homogeneous.

3Causally connected regions are limited by the horizon scale, which is defined by the
maximum distance information can travel in time t, the age of the Universe.
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to any known physical field and theoretical models of inflation must be fitted

ad hoc to the data and fine-tuned to reproduce observations. Second, in order

for inflation to occur, the Universe is required to undergo a phase change to

bring an end to the inflationary period. Mechanisms for such a phase change

have been theorised, but as yet suffer from a lack of observational evidence to

support them. Additionally, inflationary theory exploits changes in the level of

the vacuum energy to work (see §1.3), but since the origin and behaviour of

the vacuum energy is not fully understood, any theory that depends on it is on

somewhat shaky foundations [7].

Inflation, despite its problems as a model, currently represents cosmologists’

‘best guess’ at the nature and conditions present in the very early Universe. Thus,

a cosmological model has emerged which ties together the initial state of the

Universe, an epoch of inflation, an era of recombination and ongoing expansion,

while also preserving the cosmological principle.

1.1.2 Cosmological Formalism

General Relativity

We describe in this section the mathematical formalism underpinning the

standard cosmological model. To define a spacetime metric that adequately

describes the cosmological model, we use the expression for a line element in

general relativity (GR),

ds2 = c2dτ 2 = gµνdx
µdxν (1.1)

where gµν is the metric tensor (see e.g. [7]). ds2 is the separation between two

points in spacetime. The metric is used to describe the curved space-time of GR.

In special relativity this must reduce to

c2dτ 2 = c2dt2 − dx2 − dy2 − dz2 (1.2)

in Minkowski coordinates, where τ is the proper time and t is the coordinate

time (see [8] for an explanation of proper and coordinate time in the context of

relativity).

A geodesic describes the shortest path between two spacetime events, which
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is the path which a freely-falling particle would take. The integrated path length

of a geodesic is, from Eqn. 1.1,

s =

∫
(gµνdx

µdxν)1/2. (1.3)

Geodesics are stationary paths, meaning that a small deviation from the path

does not cause any change in length (to first order) in s. The geodesic equation

can be rewritten using the Lagrangian, L, a function of the coordinates xµ and

their derivatives the velocities Uµ. Thus if δs = 0 for stationary paths, in its

most general form the geodesic equation is [9]

δ

∫
(gµνU

µUν)1/2dτ = 0. (1.4)

Different types of particles will follow different geodesics. Massless particles such

as photons (v = c) will follow null geodesics with
∫

ds2 = 0. Massive particles

will necessarily have v < c, and will follow time-like geodesics with
∫

ds2 >

0. Hypothetical particles with v > c would follow space-like geodesics, with∫
ds2 < 0. The physical interpretation of this is that particles moving along null

geodesics (at speed c) will experience no time passing, whereas massive particles

will experience a time interval. Space-like particles, if they were physical, would

effectively move backwards through time [8].

The energy-momentum tensor, or stress-energy tensor describes the

energy and momentum of spacetime in terms of its density ρ and flux,

T µν =
(
ρ+

p

c2

)
UµUν − pgµν . (1.5)

The energy-momentum tensor treats the components contributing to the energy

and density as perfect fluids (an inviscid fluid described only by its energy density

and isotropic pressure p). The importance of this will become clear later on

in section 1.3.1. The energy-momentum tensor vanishes in the absence of a

component with a pressure and/or a density.

In GR, the energy-momentum of spacetime is identified as the source of its

curvature. The Einstein Field Equation equates spacetime curvature with the
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energy-momentum within that spacetime,

Gµν = −8πG

c4
T µν . (1.6)

Here, the Einstein tensor Gµν incorporates the curvature information through a

tensor known as the Ricci curvature tensor, Rµν and the curvature scalar R,

Gµν = Rµν − 1

2
gµνR, (1.7)

with Rβγ = Rα
βγα and R = Rµ

µ = gµνRµν . The Ricci curvature tensor is a

contraction of the Riemann curvature tensor, which provides a full description of

the curvature of spacetime at each point compared to a Euclidean space [7].

The Robertson-Walker Metric

In order to describe an expanding, isotropic and homogeneous space-time we

may use the Robertson-Walker (RW) space-time metric, which can be written

in several different forms. Here we choose a form that makes the comoving

coordinates4 dimensionless, as in [7],

ds2 = c2dτ 2 = c2dt2 − a2(t)[dr2 + S2
k(r)dΩ2], (1.8)

where ds2 is the invariant space-time interval between two events, a(t) is the

time-dependent scale factor which is a dimensionless measure of the size of

the Universe (a(t0) is normalised to 1 at the present day) and r is the time-

independent comoving radial coordinate. Spherical symmetry allows the spatial

part of the metric to be decomposed into a radial and a transverse part (dΩ2 =

dθ2 + sin2 dφ2). Finally, we define the function

Sk(r) =


sin r (k = 1)

sinh r (k = −1)

r (k = 0).

4Comoving observers are at rest with respect to the matter in their vicinity and thus observe
an isotropically expanding conformal Universe. Comoving coordinates are useful distance
measures as they do not change over time and are defined by the worldlines of particles moving
with cosmic expansion (see later in this section).
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k corresponds to the curvature parameter of the Universe: k = +1 for a closed

Universe with positive spatial curvature, k = −1 for an open Universe with

negative spatial curvature and k = 0 for a flat Universe that has no curvature.

The Friedmann Equation

Einstein’s gravitational field equations (Eqn. 1.6) relate the evolution of the scale

factor to the pressure, p, and energy density, ρ, of the mass-energy components

of the Universe. The Friedmann equation is derived from this and describes the

evolution of the scale factor in relation to p and ρ from the field equations for a

Universe described by the RW metric [10, 11],(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
. (1.9)

Its derivative is the acceleration equation

ä

a
= −4πG

3

(
ρ+

3p

c2

)
. (1.10)

It should be noted that the energy density is the total energy density arising from

the matter, radiation and vacuum energy densities,

ρ = ρm + ρr + ρΛ. (1.11)

The significance of the vacuum energy will be discussed in section 1.3.

If the scale factor in Eqn. 1.8 satisfies the Friedmann equation, the RW metric

is known as the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. The

Friedmann equation can be used to define the Hubble parameter, H(t), which

describes the rate of change of the scale factor,

H(t) =
ȧ

a
. (1.12)

The value of the Hubble parameter at the present day is referred to as the Hubble

constant and is often written as H(t0) = H0. In the absence of peculiar velocities,

the Hubble parameter relates the velocity of recession of a galaxy, v, with its
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proper distance5 from the observer, Dprop,

H0Dprop = v. (1.13)

H0 has units of kms−1Mpc−1, so it is often useful to express the Hubble constant

in terms of the dimensionless Hubble parameter, h, such that

H0 = 100h0 kms−1Mpc−1. (1.14)

Recent observations suggest that h0 ∼ 0.74 [12]. Galaxies whose recession

velocities dominate over their peculiar velocities are said to be moving with the

Hubble flow.

With the definition of the Hubble parameter it is possible to rewrite the

Friedmann equation in the form

8πGρ

3H2
− kc2

ȧ2
= 1, (1.15)

such that there exists a critical density needed for a flat (k = 0) Universe,

ρc =
3H2

8πG
. (1.16)

This allows us to further define the density parameter as simply the ratio of

the density (of ρm, ρr, ρΛ or the total density ρ) to the critical density,

Ω ≡ ρx
ρc

=
8πGρx
3H2

. (1.17)

It is obvious that for a flat Universe the total density parameter will be given as

Ω ≡ Ωm + Ωr + ΩΛ = 1. (1.18)

A Universe with spatial curvature will have Ω 6= 1 and Ω will also contain a

contribution from the curvature, Ωc (Ωc = 0 if and only if k = 0).

5Proper distance is defined as the light travel time between two points multiplied by c (see
later in this section).
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Cosmological Redshift

The Universe is expanding as a consequence of the initial conditions (and more

recently the effect of dark energy, see section 1.3.1)6. Photons reaching us from

cosmological distances will have had their wavelengths stretched. This can be

shown from the RW metric for a null geodesic (ds2 = 0),

r = c

∫ to

te

dt

a(t)
, (1.19)

for a light ray emitted at time te and received at the later time to. The comoving

coordinate r is constant; altering the limits on the integral (equivalent to emitting

photons from r at later times) cannot alter the integral itself. This means that

the photons will undergo time dilation dependent on how much the Universe has

expanded between te and to, which leads to the condition

dte
dto

=
a(te)

a(to)
(1.20)

Redshift is usually denoted by z and is defined in terms of the ratio of the shift

in the frequency of light,

1 + z =
νe
νo
. (1.21)

Combining Eqn. 1.20 and Eqn. 1.21 gives us the Lemâıtre wavelength rule:

1 + z =
νe
νo

=
1

a(t)
(1.22)

since a(to) = 1. The redshift is essentially a measure of the scale factor at the

time of emission. It is useful to note that on small scales where v � c, redshift

can be expressed in terms of the recession velocity,

1 + z ≈ 1 +
v

c
(1.23)

6To state that space or spacetime itself is expanding is incorrect, since spacetime can always
be locally described by a flat, static Minkowski metric. Redshift is the result of the accumulation
of a series of infinitesimal Doppler shifts due to the recession of galaxies moving with the Hubble
flow. For a discussion see [13, 14].
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and equivalently the velocity-distance law approximates to the Hubble law,

H0Dprop = v ≈ cz. (1.24)

Currently, the highest redshift galaxies discovered to date have z ∼ 8.6 [15].

Cosmological Distance Measures

On cosmological scales, spacetime is curved and a measure of the ‘distance’

between two points becomes ambiguous. One must carefully define exactly what

is meant when discussing the separation of two objects to avoid confusion. The

most common distance measures in astronomy are described below.

Comoving distance is given in Eqn. 1.19 and is the distance between the

worldlines of two events measured at t = t0. It can be written

dDcom = dr =
cdt

a
=

cda

a2H(a)
(1.25)

so that

Dcom(z1, z2) =

∫ a2(z1)

a1(z2)

cda

a2H(a)
=

∫ z2

z1

cdz

H(z)
. (1.26)

For an observer at the origin (z1 = 0) the comoving distance to an object with

redshift z will be

Dcom(z) =

∫ z

0

cdz′

H(z′)
. (1.27)

The comoving distance has the useful property of being time-invariant through

its direct dependence on the scale factor.

The angular diameter distance relates an object’s actual size to its

apparent angular size,

Dang(z1, z2) =
dA

dΩ
, (1.28)

where dA is the cross-sectional area of an object and dΩ is the solid angle the

object subtends as seen by an observer. From the RW metric, for an object at

redshift z2, dA is equivalent to a sphere with radius R = a(z2)Sk[Dcom(z1, z2)],

surface area 4πR2 = 4πa2(z2)S2
k [Dcom(z1, z2)]; the angle subtended at z1 will be

4π so
dA

dΩ
=

4πa2(z2)S2
k [Dcom(z1, z2)]

4π
. (1.29)
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1.1. The Standard Model

Inserting this into Eqn. 1.28 tells us that for an observer at the origin, the angular

diameter distance is given by

Dang(z) =
Sk[Dcom(z)]

1 + z
. (1.30)

Another distance measure commonly used is the luminosity distance. This

is a measure of the distance an object would be at if the inverse-square law for

brightness always held. Luminosity distance is defined by the observed flux F

and luminosity L of a source:

Dlum =

(
L

4πF

) 1
2

. (1.31)

Luminosity distance can be written in terms of Dang and Dcom,

Dlum(z1, z2) =

[
a(z1)

a(z2)

]2

Dang(z1, z2) =
a(z1)2

a(z2)
Sk[Dcom(z1, z2)]. (1.32)

Eqn. 1.32 illustrates why the inverse-square law does not hold at all distances;

photons undergo a cosmological redshift of a(z1)/a(z2), and a shift due to time

dilation of the same magnitude. The expansion of the Universe also means

that any sphere receiving photons will increase in surface area by a factor of

[a(z1)/a(z2)]2, altering the flux by a factor of [a(z1)/a(z2)]4 and hence Dlum by

[a(z1)/a(z2)]2. Again, one can write this for an observer at the origin:

Dlum(z) = (1 + z)Sk[Dcom(z)]. (1.33)

Finally, the proper distance, dDprop, between two points is defined as the

light travel time (multiplied by c) between them,

dDprop = cdt = c
da

aH(a)
. (1.34)

Integrating this gives

Dprop(z1, z2) =

∫ z2

z1

cdz

H(z)(1 + z)
(1.35)

for two events at redshifts z1 and z2. This measure is not often used as it is
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1.1. The Standard Model

time-dependent and difficult to determine [7, 9].

Every distance measure depends on the underlying cosmology, leading to

inherent uncertainties in any cosmological distance measurement. For this reason,

it is common for astronomers to use the redshifts of objects to describe their

positions, as these depend only on the RW metric (and hence GR) being correct.

It is interesting to note that Taylor expanding any one of these distance measures

to first order yields D(z) = cz
H0

+O(z2), so locally the Hubble law applies.

The Flatness Problem

Combining Eqn. 1.9 with Eqn. 1.18 and rearranging gives us the following

expression for the density parameter:

Ω(t)− 1 =
kc2

H2(t)a2
. (1.36)

From this a fine-tuning problem is apparent. If the value of Ω is equal to 1

initially, then it will remain equal to 1 indefinitely. However, this is not the case

if Ω 6= 1 initially; using the solutions for a and H for matter and radiation in

section 1.3.1, Ω can be written

|Ω(t)− 1|r ∝ t

|Ω(t)− 1|m ∝ t2/3. (1.37)

One can see that in general, |Ω−1| is amplified with time. Initial values of Ω > 1

will cause Ω to increase with time, and vice versa. Another way to understand

the flatness problem is that unless k is exactly equal to 1 (i.e. the Universe is

initially perfectly flat), then in a Universe like ours with initially large fractions of

matter and/or radiation, any curvature will become more exaggerated over time,

driving the density to either a very large or very small value. Is it then cosmic

coincidence that we observe the total density parameter to be consistent with 1?

The inflationary model ensures that we do not have to rely on such a coincidence;

during the inflationary period the scale factor has the de Sitter form:

a(t) = e

(
ΛI
3

)1/2
t

(1.38)
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1.2. Structure Formation

meaning that at early times,

|Ω(t)− 1| ∝ e
−
(

4ΛI
3

)1/2
t
. (1.39)

ΛI is the approximate energy density of the Inflationary field, or the ‘Inflaton’.

This result has the effect of driving Ω extremely close to 1 at early times (as the

exponential expansion has the effect of smoothing out deviations from flatness),

meaning that subsequent expansion at late times has very little effect on the value

of |Ω−1| in comparison. Thus the addition of inflation to the Big Bang paradigm

ensures a solution to the flatness problem.

1.2 Structure Formation

Structure forms because of gravitational collapse. Inflation in the early Universe

grew quantum fluctuations to sizes larger than the horizon scale, producing ‘seed’

fluctuations from the initially homogeneous Universe, around which matter could

begin to collapse. Once a region begins to collapse, the relative density of that

region increases causing further collapse in a form of positive feedback [7, 16].

The density of a region compared to the mean density ρ̄ at space coordinate x

can be expressed as a density contrast,

δ(x) =
ρ(x)− ρ̄

ρ̄
. (1.40)

δ(x) is the dimensionless density perturbation of the underlying matter dis-

tribution. Two types of density perturbations can occur: adiabatic and

isocurvature [17, 7]. Adiabatic perturbations occur if a fluid is adiabatically

compressed in space, whereas isocurvature perturbations occur if the entropy

density is perturbed but the energy density is not. If δ(x)� 1, adiabatic density

fluctuations will grow due to the effect of gravity,

δ(a) ∝ a2, a < aeq

δ(a) ∝ a, a > aeq. (1.41)

Where aeq denotes the time of transition between radiation and matter dom-

ination, i.e. when matter and radiation densities are equal. This behaviour
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1.2. Structure Formation

is a consequence of the fact that energy densities of matter and radiation are

affected by adiabatic perturbations in different ways. The energy density for

radiation is ∝ T 4 ∝ a−4, whereas the number density is ∝ T 3 ∝ a−3 (See

§1.3.1). Poisson’s equation relates the Newtonian potential Φ to the density:

−k2Φ/a2 ∝ ρδ, meaning that Φ ∝ δ/a for matter and Φ ∝ δ/a2 for radiation

[7, 18]. This is valid for an Einstein-de-Sitter (EdS, matter dominated) model

with zero curvature and dark energy. For isocurvature perturbations, at early

times any expansion acts to preserve the initial density:

δ(a) ∝ constant, a < aeq

δ(a) ∝ a(t)−1, a > aeq. (1.42)

In both cases, the overall shape of the spectrum of perturbations is preserved, but

the amplitude changes. At later times, when a� aeq, the density perturbations

will behave according to some growth function g(a),

δ(a) = δ0a
g(a)

g(a0)
, (1.43)

where g(a) is defined in [19] as a function of the matter density parameters Ωm

and ΩΛ.

Before the era of matter domination, the expansion timescale is shorter than

the collapse timescale, meaning that the fast, radiation-driven ρr ∝ a−4 (see

section 1.3.1) expansion will prevent the growth of matter perturbations that are

within the horizon size, dH . Larger scale perturbations with λ > dH will remain

unaffected by this and will continue to grow [7, 20]. The growth of fluctuations

with λ < dH is suppressed by the factor

fsup =

(
aent

aeq

)2

, (1.44)

where aent is the time at which a perturbation enters the horizon.

As the horizon scale expands with time and more regions are causally

connected, more perturbations on larger scales enter the horizon and their growth

is stalled. Once matter domination begins, collisionless cold dark matter (see

section 1.3.2) can collapse under gravity (although baryonic matter is ionic

and still bound and oscillating with the photons). It is later, at the era
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1.2. Structure Formation

of recombination, that baryons can decouple from photons and fall into the

potential wells created by the dark matter collapse. This process gives rise to

a picture of structure formation in which baryonic galaxies form at the centre of

large dark matter haloes. As the horizon scale increases with time, larger and

larger fluctuations become causally connected, allowing superstructures such as

filaments to form [21]. This formation model relies on dark matter being cold

and non-relativistic and is known as ‘bottom-up’ formation; if dark matter were

hot and relativistic, the small scale fluctuations would be completely removed by

diffusion. This would result in only the largest scale fluctuations remaining, and a

‘top-down’ model of structure formation, which does not fit well with observations

[20, 22].

1.2.1 The Matter Power Spectrum

The cosmological principle ensures that the statistical properties of the density

field are homogeneous. The density field is assumed to be a Gaussian random

field since the Fourier modes of the initial quantum (seed) fluctuations are

uncorrelated. Such a field can be described by a 3D matter power spectrum

[23, 7],

Pδ(|k|) =

∫
d3xe−ix.kCδδ(|x|), (1.45)

where k is the wavenumber and is related to the comoving wavelength of

fluctuation λ by k = 2π/λ. Pδ(|k|) is often abbreviated to Pδ(k) where k = |k|.
We show how this equation is derived from the two-point correlation function of

a Gaussian field in §2.3.3.

The power spectrum is often quoted in a dimensionless form:

∆2(k) =
k3Pδ(k)

2π2
. (1.46)

To determine the shape and behaviour of the power spectrum, one must consider

the behaviour of the density fluctuations that give rise to it. For an EdS model,

a density fluctuation enters the horizon at time tent when

λ = dH(aent) =
c

aentH(aent)
. (1.47)

At matter-radiation equality, ρr = ρm and hence a−4
eq ΩR = a−3

eq ΩM (where capital
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1.2. Structure Formation

subscripts denote the values at t = t0), meaning that a fluctuation that enters

the horizon will have wavelength dependences on the scale factor as follows:

λ ∝ aent (tent � teq)

λ ∝
√
aent (teq � tent � t0). (1.48)

Given the primordial power spectrum Pi(k), the growth equation, Eqn. 1.41 shows

how the power spectrum has changed by tent:

Pδ,ent(k) ∝ a4
entPi(k) ∝ k−4Pi(k) (tent � teq)

Pδ,ent(k) ∝ a2
entPi(k) ∝ k−2Pi(k) (teq � tent � t0). (1.49)

The total power of the density fluctuations at tent is assumed to be scale

invariant; that is, k3Pent(k) = constant. This is the Harrison-Peebles-Zel’dovich

spectrum [24, 25]. It implies that the primordial power spectrum scales with k

as Pi(k) ∝ kns where ns is known as the slope of the primordial power spectrum

and is expected to be 1 [7]. CMB results find ns = 0.967± 0.014, consistent with

unity [26].

Eqn. 1.44 shows how the growth of a perturbation will be suppressed as a

function of scale factor. Defining k0 to be the wavenumber corresponding to the

horizon size at aeq, the suppression factor may be written

fsup =

(
k0

k

)2

. (1.50)

Since the matter power spectrum is related to the primordial power spectrum

through the suppression factor such that Pδ(k � k0) = f 2
supPi(k), the power

spectrum at the point of matter-radiation equality is therefore

Pδ(k) ∝ k k � k0

Pδ(k) ∝ k−3 k � k0. (1.51)

The general form of this can be seen in Fig. 1.1. After teq the shape of the

power spectrum is modified by non-linear effects (see section 1.2.2) and it grows

in amplitude according to the growth factor.

16



1.2. Structure Formation

1.2.2 The Non-Linear Power Spectrum

On small scales (at large k) the linear evolution of the power spectrum begins to

break down. Non-linearity corrections must be applied to take into account the

fact that collapsing structures do not go on collapsing forever and do, in fact,

stabilise. This has the effect of increasing the amplitude of the power spectrum

at large k (see Fig. 1.1). The modification to the power spectrum due to non-

linearities has been estimated from N-body simulations; [27] describe an analytic

function that relates the non-linear power spectrum to the linear one via a fitting

function fnl:

∆2
nl(knl) = fnl[∆

2
l (kl)]. (1.52)

where fnl is defined in Eqn. 21 in [27], l denotes ‘linear’ and nl denotes ‘non-

linear’. The linear wavenumber kl is related to the non-linear wavenumber knl

via

kl = [1 + ∆2
nl(knl)]

−1/3knl. (1.53)

More recently, the ‘halo model’ was developed by [28], in which the density

field is decomposed into clumps of matter with varying mass and some density

profile. Large-scale clustering of mass arises through correlations between

different haloes. The halo model non-linear power spectrum is defined as

∆2
nl(k) = ∆2

Q(k) + ∆2
H(k), (1.54)

where Q is a quasi-linear term that denotes the power generated from the

correlation of large-scale haloes with each other and H represents the power

resulting from self-correlation of dark matter haloes. The halo model has been

shown to be a better fit than the Peacock & Dodds formula in [27] when applied

to N-body simulations. The ‘halofit’ code is publicly available7 and can be used to

provide accurate halo model predictions of the non linear matter power spectrum.

Fig. 1.1 compares the expected linear power spectrum the the non-linear one

predicted by halofit.

7from http://www.roe.ac.uk/~jap/haloes/
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1.2. Structure Formation

Figure 1.1: The linear and non-linear matter power spectrum prediction for the
standard model from halofit.
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1.3. The ΛCDM Universe

1.2.3 Normalisation and σ8

To measure the amplitude of the power spectrum, the usual approach is to use

the normalised quantity σ8, defined as the rms variation of the density field in a

tophat sphere of radius 8h−1Mpc [29, 30, 31]. Generally this can be written

σ2(R, z) =

∫ ∞
0

dk

k
∆2(k, z)W 2(kR) (1.55)

where W is a weighting function defined as the Fourier transform of a spherical

tophat filter,

W (k,R) =
3J1(kR)

kR
. (1.56)

J1 is a first order Bessel function and σ8 = σ(8h−1 Mpc). σ8 describes the linear

clustering of matter and its amplitude can be measured with a number of methods

including weak lensing [9, 32].

1.3 The ΛCDM Universe

Until the 1990s, the cosmological formalism that we have developed in the

preceding section was thought to be more or less complete. The Universe was

thought to resemble an EdS model: matter-dominated at late times, inflationary,

flat8 and undergoing continued decelerating expansion. There are two main

components to the accepted paradigm that have been alluded to but not yet

described: dark energy and dark matter. Together, dark energy (‘Λ’) and cold

dark matter (‘CDM’) make up ∼96% of the density of the ΛCDM Universe.

The joint discoveries of [34] and [35] that distant type Ia supernovae (SNe

Ia) were fainter than expected changed our picture of the Universe. SNe Ia are

used as standard candles in astronomy because their light curves are very well

understood such that the observed magnitude of a SN Ia is dependent on its

luminosity distance. The SNe Ia observations in 1998 showed that at a given

luminosity distance, objects were more redshifted than would be expected for a

8The evidence for a flat Universe comes from probes such as the Wilkinson Microwave
Anisotropy Probe (WMAP) and the balloon-borne BOOMERanG, which measure temperature
anisotropies in the CMB. The size of these fluctuations is well–known from plasma physics,
allowing the angular scale of the anisotropies and hence the curvature of the Universe to
be measured. The WMAP 7-year results find the curvature density parameter to be Ωk =
−0.0057+0.0067

−0.0068 (68% confidence limit, CL), consistent with a flat Universe [26, 33].
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1.3. The ΛCDM Universe

decelerating expansion; the SNe Ia are receding at a higher velocity than expected

and the expansion of the Universe on cosmic scales must be accelerating. It is

dark energy that is posited to be the cause of the acceleration.

The identity of dark energy is as yet unknown, but the simplest explanation is

vacuum energy, or zero point energy, denoted by Λ. Vacuum energy arises from

quantum field theory and can be thought of as the potential energy of particle–

anti particle pairs that appear and annihilate in the quantum vacuum within

very short timescales limited by the Uncertainty Principle. Vacuum energy has

been shown to be real and measurable by the Casimir effect [36]. The energy of

the vacuum is constant throughout space and time hence its alternative name,

the cosmological constant. A convincing particle physics explanation for its

magnitude currently eludes us, however. The cosmological constant enters the

field equation (Eqn. 1.6) in the form

Gµν + Λgµν = −8πG

c4
T µν (1.57)

and is defined as [7]

Λ =
8πGρΛ

3c2
. (1.58)

Originally, Einstein included a cosmological constant term as a correction to

the geometric part of the field equation, as the GR formalism predicted a non-

static Universe whereas Einstein believed the Universe was static. Without Λ,

gravity would cause a universe initially in dynamic equilibrium to contract. Λ acts

to produce gravitational repulsion, allowing Einstein’s universe to remain static.

When evidence of cosmological redshift emerged (see section 1.1.1), Einstein

withdrew his support for the cosmological constant. However later scientists

such as Zel’dovich, Lemâıtre and Eddington began to associate the cosmological

constant with vacuum energy, leading to its continued use to represent vacuum

energy today [9].

1.3.1 Dark Energy & Expansion

In order to produce accelerated expansion at late times, dark energy must have

negative pressure. According to GR the pressure within a substance contributes

to its gravity just as its mass density does, hence the inclusion of a pressure term

in the Friedmann equation. If dark energy has a negative pressure sign then
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1.3. The ΛCDM Universe

it acts on cosmic scales to push objects apart; in the vacuum energy model, as

spacetime expands there will an increasing amount of dark energy between two

comoving objects and the cosmological expansion will be driven ever faster. The

amount of negative pressure that dark energy must have is determined by the

cosmological equation of state of dark energy, which can be derived if dark

energy is assumed to be a perfect fluid. We may treat the Universe as a closed,

adiabatic system and apply the first law of thermodynamics to it,

dU = −pdV, (1.59)

where U is the energy of the system of volume V and under pressure p. The

volume will simply scale as a3 since a has the dimensions of length, and U can

be written in terms of the energy density, U = ρc2V . Using these relations and

the first law we find the fluid, or continuity, equation [7, 37]

c2 dρ

da
+ 3

(
p+ ρc2

a

)
= 0. (1.60)

This describes how the density and pressure of a fluid are related to one another,

and how they will evolve over the age of the Universe. In the context of cosmology,

the equation of state for a perfect fluid is as

p = wρc2 (1.61)

in which w is known as the equation of state parameter and will vary for each

of the contributors to the mass–energy content of the Universe:

wm ≈ 0 (matter)

wr =
1

3
(radiation)

wΛ≈ −1 (cosmological constant). (1.62)

It is useful to treat the components of the Universe as separate fluids in this way,

as they are both physically and mathematically distinct; they represent different

physical phenomena whose densities evolve differently and independently.

For dark energy to have enough negative pressure to drive the acceleration

of the Universe, it must overcome the positive pressure from radiation such that
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1.3. The ΛCDM Universe

wΛ < −1
3
. Solving Eqn. 1.60 using the equation of state gives the scale-factor

dependence of the density of each component,

ρm ∝ a−3

ρr ∝ a−4

ρΛ = constant. (1.63)

So only a value of w = −1 gives us the constant energy density required for a

cosmological constant. Eqn. 1.63 tells us that in the early Universe, radiation

dominated the mass–energy density. As ρr falls faster than ρm by a factor of

a (due to the fact that radiation undergoes redshifting with the expansion of

the Universe and matter does not), eventually a time came when ρr = ρm and

the matter density began to dominate. Since a is always increasing, the matter

density eventually drops enough for ρm = ρΛ and dark energy begins to dominate

the mass–energy content of the Universe. It is this dark energy dominated era

that we occupy at the present day.

The time evolution of the density of each component can be found by

substituting the identities in Eqn. 1.63 into the Friedmann equation (assuming

flatness):

a(t) ∝ t2/3 (matter)

a(t) ∝ t1/2 (radiation)

a(t) ∝ e

(
8πGρΛ

3

)1/2
t

(cosmological constant). (1.64)

From this, using the definition of the Hubble parameter in Eqn. 1.12 one can

determine the behaviour of the Hubble parameter in universes dominated by

matter, radiation and dark energy respectively:

H(t) = 2/3t (matter)

H(t) = 1/2t (radiation)

H(t) = constant (cosmological constant). (1.65)

A matter-dominated universe behaves like an Einstein-de Sitter universe, and

would undergo decelerating expansion. A radiation-dominated universe would
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1.3. The ΛCDM Universe

Figure 1.2: Behaviour of the scale factor for different cosmologies. ΛCDM is
shown in red [38].

also experience decelerated expansion (as our early universe did). The solution

for the dark-energy dominated universe asymptotes towards a de Sitter solution;

in such a model the expansion of the universe accelerates exponentially. As dark

energy is the dominant contributor to the density in the present-day Universe,

it appears that our Universe will behave like a de Sitter universe in the future.

The combined effects of the different density components of our Universe on the

expansion rate can be seen in Fig. 1.2.

The Hubble Parameter

It is worth noting that a cosmological constant term will alter the Friedmann

equations: (
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λ

3
, (1.66)
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where

Ωde =
Λ

3H2
. (1.67)

The Friedmann equation can also be rewritten using Eqns. 1.63 and 1.64 as [39, 7]

H2(a) =
8πG

3
(ρma

−3 + ρra
−4 + ρdee

−3
∫ 1
a [1+w(a′)]d(ln a′))− kc2

a2
, (1.68)

where w(a) is a generic scale-dependent function for the dark energy equation

of state parameter that is dependent on the nature of dark energy. This can be

combined with Eqns. 1.17 and 1.36 to give

H2(a) = H2
0

[
Ωma

−3 + Ωra
−4 + Ωdee

−3
∫ 1
a [1+w(a′)]d(ln a′) + (1− Ω)a−2

]
. (1.69)

This can be expressed in terms of redshift:

H2(a) = H2
0

[
Ωm(1 + z)3 + Ωr(1 + z)4 + Ωdee

3
∫ z
0 [1+w(z′)]/(1+z′)dz′ + (1− Ω)(1 + z)2

]
.

(1.70)

These equations are useful as they relate the distance of an object to its

redshift. They also highlight how distance measures are dependent on the density

components and geometry of the Universe.

Evidence for Dark Energy

In addition to the SNe Ia observations of 1998, further evidence for the existence

of dark energy comes from follow up surveys of SNe Ia (from e.g. [40]) and

from CMB measurements. The most precise CMB measurements come from the

Wilkinson Microwave Anisotropy Probe. WMAP is a space-based NASA mission

that launched in July 2001 and has now stopped collecting data. WMAP was

launched to follow in the footsteps of the Cosmic Background Explorer (COBE)

and detect small anisotropies in the CMB. COBE had a large angular resolution

of 7 degrees, and was able to detect anisotropy in the CMB at the level of ∼ 1

part in 103. WMAP has much higher resolution (∼ 13′ ) and as a result has been

able to measure anisotropies of the order ∼ 10−5. Data releases and analyses have

been staggered at two year intervals, with the most recent data release (as of the

time of writing) being the WMAP 7-year results, which are the most precise yet.

Overall, WMAP data produce a consistently good fit to the ΛCDM paradigm with
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some of the most precise parameter estimates of any cosmological probe. WMAP

is superseded by the Planck spacecraft, launched in 2009, which will measure

the power spectrum of the CMB to even smaller scales (∼ 3 x WMAP). The

power spectrum of the CMB has been measured to unprecedented precision

by WMAP7 and used to show that the Universe is close to flat (Ω = 1.02± 0.02)

as well as constraining the matter density to be Ωmh
2 = 0.1345+0.0056

−0.0055 and the

baryon density to be Ωb = 0.0455± 0.0028 (all 68% CL) [26]. As a independent

probe, the CMB thus shows that there is a large amount of missing mass-energy

density that the matter content of the Universe cannot account for alone.

The integrated Sachs-Wolfe effect as measured from the CMB also points

to an accelerating Universe, since potential wells will decay in an accelerating

Universe. Large scale structure in the Universe creates potential wells in the

region of galaxy clusters. Photons that enter such a potential well will gain some

energy, but will not lose all that energy again upon leaving the potential well

if the well has been stretched out — made shallower — by the expansion of

the Universe. This leads to ‘hot spots’ and ‘cold spots’ on the sky depending

on whether the photon passes through a potential well or through a potential

hill (due to voids) respectively. This is the integrated Sachs-Wolfe effect and it

occurs on large angular scales in the CMB. At the present time, cosmological

measurements from the integrated Sachs-Wolfe effect are much less precise than

from the CMB [41].

WiggleZ9 [42], SDSS10 [43] and BOSS11 observations of hundreds of thousands

of galaxies have measured the growth rate of large scale structure and the

matter power spectrum (see section 1.2.1). These spectroscopic surveys allow the

redshift of each survey galaxy to be determined. Assuming the galaxies are a good

tracer for the underlying dark matter (as observations of galaxies and clusters

implies, see section 1.3.2), constraints can be placed upon the matter power

spectrum at different redshifts. WiggleZ find that Ωm = 0.27 ± 0.04(68%CL),

consistent with CMB measurements. Recent results from [44] combined BOSS

results with WMAP 7yr data to find Ωm = 0.298±0.017. Again, when combined

with measurements of the curvature of the Universe, this provides evidence that

the dark energy density is non-zero.

9http://wigglez.swin.edu.au/site/.
10Sloan Digital Sky Survey, http://www.sdss.org/.
11http://cosmology.lbl.gov/BOSS/.
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1.3. The ΛCDM Universe

Observing the effect of baryon acoustic oscillations (BAOs) on the CMB

power spectrum and the clustering of galaxies can constrain the density and

equation of state of dark energy. In the early Universe, before the surface of last

scattering that gave rise to the CMB, baryonic matter would have fallen into

the potential wells of the dark matter. As more baryons fell into the potential

wells, pressure within the wells would have accumulated to the point where the

infalling baryons would start to ‘bounce’ out of the wells. Since this early Universe

consisted of a relativistic plasma of particles, the sound speed was high and the

oscillations in the in-fall of baryons were analogous to sound waves. The growth

of these perturbations is governed by the Jeans scale: perturbations larger than

the Jeans length are free to grow through gravity and smaller perturbations are

prevented from collapse by pressure (as described in § 1.2). In the time between

the formation of these perturbations and the epoch of recombination when

photons can free-stream, modes of different wavelength can complete different

numbers of oscillation periods, producing a series of maxima and minima in

the CMB power spectrum [9, 45]. The density perturbations caused by BAOs

cause matter (both baryonic and dark matter, since dark matter and baryons are

coupled through gravitational interactions) to collect in a shell at the point where

the photons began to free-stream. The distance from the centre of an overdense

region to the radius at which photons free-stream is known as the sound horizon.

The sound horizon hence represents the characteristic length scale at which galaxy

pairs preferentially form. Since there are multiple superposed perturbations,

there will be multiple length scales at which we expect to see overdensities of

galaxy pairs. These length scales can be detected statistically by measuring the

correlation function at different scales - one compares the measured density of

galaxy pairs at a separation θ with that expected from randomly distributed

galaxies [46, 45]. BAOs have been detected by the SDSS-III programme [47]

and WiggleZ [48] who find that w < −1/3 (i.e. the Universe’s expansion is

accelerating) with 99.8% likelihood.

Finally, weak lensing is a relatively recently-exploited cosmological probe

which is sensitive to the amount and behaviour of dark energy as the weak lensing

distortions depend on the distance traveled and the growth of structure [49].

Weak lensing measurement is the focus of this thesis and will be discussed further

in Chapter 2. We briefly compare lensing and BAOs as probes of cosmology. Both
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1.3. The ΛCDM Universe

lensing and BAOs are sensitive to the redshift and hence have constraining power

on redshift-dependent parameters such as the dark energy equation of state. Both

phenomena are sensitive to inaccuracies in photometric redshift distributions (see

§2.3.5), although BAOs are particularly sensitive to this systematic [45]. The

accuracy of BAO measurements depend on the reliability of measurements of the

galaxy bias parameter b and the baryon density Ωb, which affect the predicted

BAO signal, whereas lensing arises solely as a consequence of general relativity

and does not rely on complex astrophysics, making it a somewhat ‘cleaner’ probe.

One key advantage of studying BAOs, however, is that nonlinearities in the signal

(from e.g. nonlinear clustering, which affect both the BAO and lensing signal

on small scales) induce predictable shifts in the oscillation scale. This means

that nonlinearities can be modelled both analytically and through numerical

simulations, allowing for accurate calibration of these effects. BAOs and weak

lensing both have the ability to provide useful cosmological constraints, and will

demand somewhat different survey configurations and analysis techniques.

Figs. 1.3-1.4 illustrate the complimentary of the different cosmological probes

discussed. Fig. 1.3 shows how orthogonal constraints from weak lensing are with

CMB constraints on the Ωm-σ8 contour. Although the joint Ωm-σ8 constraints

from lensing are substantially larger than that from the CMB, the degeneracy

in the results lies orthogonal to that of the CMB and hence combining the data

sets results in even more precise constraints than from either probe alone. Since

the lensing and CMB power spectra are independent of one another, comparing

the results directly allows us to check for consistency between them. A similar

result can be seen in Fig. 1.4 for the dark energy equation of state parameters, w0

and wa for a variety of cosmological probes; different cosmological probes produce

joint constraints that vary in both overall precision and degeneracy, allowing very

tight combined constraints to be established.

The Identity of Dark Energy

Recent observations suggest that ΩΛ = 0.725 ± 0.016 and −1.10 ≤ wΛ ≤ 0.14

[26], consistent with vacuum energy and the ΛCDM model. The nature of the

dark energy equation of state is unknown; it is often parametrised as w(a) = w0 +

wa(1− a), where wa is some time-dependent parameter [52, 26]. This formalism

is simply a first order Taylor expansion designed to describe any time evolution
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Figure 1.3: Typical 1 and 2σ constraints on the matter density parameter Ωm and
the amplitude of the matter power spectrum σ8 from CFHTLS weak lensing (see
§2.3.6, blue contours) and WMAP 3yr CMB measurements (green contours), as
well as the combined constraints from both data sets (yellow contours) [50]. The
constraints from lensing, while larger than those from the CMB, are orthogonal
to CMB constraints and hence can be used to further narrow the parameter
estimates. The weak lensing statistic used is the aperture mass statistic (see
§4.1.1) measured over scales of 2′ ≤ θ ≤ 230′.
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1.3. The ΛCDM Universe

Figure 1.4: Predicted 1σ Gaussianised constraints on the dark energy equation
of state parameters w0 and wa from SNe Ia (light blue, fills plot), Planck CMB
constraints (dark blue strip), weak lensing (green ellipse) and BAOs (orange
strip), with the combined constraint from all probes shown as the small red
ellipse [51]. The values of ∆w0 and ∆wa on the plot refer to the marginalised
uncertainties on the dark energy parameters from the combined constraint.
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1.3. The ΛCDM Universe

of the equation of state. In the case of a = a0 = 1 (present day), w(a) = w0.

There are alternatives to the cosmological constant which have been proposed

as an explanation for the accelerating expansion of the Universe. These models

include alternative gravity models (which explains accelerated expansion through

a breakdown of GR on larger-than-supercluster scales) and dynamical models in

which the dark energy density varies over time due to a time–dependent equation

of state parameter, w(t) (see e.g. [53, 54]). Such behaviour is not ruled out by

observations, especially when considering that very little is known about how w

varies with redshift (and hence time). For a comprehensive, recent review see e.g.

[55].

Even though there are many alternative theories to the cosmological constant,

the ΛCDM paradigm consistently stands up to observational tests. This model is

not without its problems, however. One such difficulty is the mismatch between

particle physics theory and astronomical observations; the predicted value for

the vacuum energy from quantum field theory is ∼ 10110 ergcm−3 but the dark

energy density from observations is just ∼ 10−10 ergcm−3 [7, 8]. This 120 order–

of–magnitude discrepancy is one of the largest problems facing the ΛCDM model.

Possible explanations for how the cosmological constant could be suppressed to

such a small, but crucially non–zero value include anthropic arguments (if the

cosmological constant were much higher, structure formation would have been

impossible due to extended inflation [56]) and predictions from string theory

(string theory is a framework that attempts to reconcile GR and quantum

mechanics by positing that fundamental particles are composed of 1-dimensional

oscillating ‘strings’ [57]; for an introduction see e.g. [58]). A further reason for

potentially doubting the validity of the concordance Universe is known as the

coincidence problem. The observed values of ΩΛ and Ωm are approximately

equal in the present era, yet we know that at some point in the past the matter

density would have dominated over the dark energy density by many orders of

magnitude, and in the future dark energy will dominate the energy density by

increasing orders of magnitude. The transition to dark energy domination has

occurred relatively recently in our Universe’s history (so recent, in fact, that it

is possible to observe SNe Ia that are distant enough that they appear to still

be decelerating in their recession [59]). This has led many to ask the question:

why are we observers at this special, transitional epoch? Is it random chance
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1.3. The ΛCDM Universe

that allows us to exist at a rare time in the Universe’s evolution when the

detection of dark energy is possible, or is there some underlying mechanism or

even new physics that leads to the current measurement of the energy density?

Many hypotheses have been put forward, including anthropic arguments [60, 61]

and alternative dark energy models like those mentioned above, but as yet a

fundamental physical explanation for dark energy eludes us.

1.3.2 Dark Matter

The final key component in the ΛCDM model is cold dark matter (CDM). From

the density parameter we know that around 30% of the mass–energy content of

the Universe is in the form of matter. It is now known, however, that the majority

of that matter is not baryonic12, but is an as–yet unknown type of non–baryonic

matter termed dark matter. As the name suggests, dark matter does not emit

radiation and its existence can as yet only be inferred from its gravitational effect

on baryons.

Evidence for Dark Matter

The first evidence for dark matter was discovered by Fritz Zwicky in 1933 during

a study of the Coma cluster [63] . Using the Virial theorem, it was shown that the

cluster had insufficient mass to hold itself together unless some invisible matter

was present in the cluster to contribute to its mass. More recently, observations

of a cluster that has come to be known as the Bullet cluster [64] combined X–

ray measurements of hot, intra-cluster gas (which acts as a good tracer of the

baryonic mass) and gravitational lensing measurements (which trace the total

cluster mass). The Bullet cluster actually consists of two galaxy clusters that have

just collided, and a measured offset between the X-ray gas and the total cluster

masses as a result of the collision indicates that there is a large component of

non-baryonic matter in the system. Additionally, gravitational lensing is directly

sensitive to the amount and distribution of the dark matter (see Chapter 2), and

lensing measurements of galaxies around galaxy clusters show that the lensing

effect is too strong to be caused by the visible baryonic matter alone [65, 66].

12A baryon is a massive particle made up of three fundamental particles known as quarks;
protons and neutrons are baryons, and they make up most of the mass of visible matter in the
Universe [62].
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1.3. The ΛCDM Universe

Evidence for dark matter associated with individual galaxies also exists and

comes primarily from the measured rotation curve of a galaxy, which profiles

the rotational velocity of visible matter as a function of radial distance from

the centre of the galaxy. From Newtonian physics (which is valid because the

gravitational field is weak), the expected shape of the rotation curve is

v(r) =

√
GM(< r)

r
, (1.71)

where v(r) is the velocity of an object orbiting at radius r and M(< r) is the

mass contained within that orbit. At large r, most of the mass of a galaxy will be

contained within the orbit and the velocity of stars in the region should decrease

as v ∝ r−1/2. Observations of globular clusters in galaxies show that v ∼ constant

with radius, suggesting that a dense outer halo of dark matter exists that extends

far beyond the visible edge of the galaxy. Galactic dark matter halos are typically

calculated to be around five to ten times the mass of the visible galaxy [7, 9].

Nucleosynthesis in the hot, early Universe restricts the baryon fraction of

the Universe to Ωbh
2 = 0.0224± 0.0009 [67]. Combined with measurements from

large scale structure that constrain Ωm ∼ 0.27, (see section 1.3.1), this provides

further evidence that the majority of matter in the Universe is non-baryonic.

BAOs also imply the existence of dark matter. The angular power spectrum

of the CMB contains information on the modes of these oscillations via their sound

speeds. By measuring the ratio of the amplitude of the peaks from different

modes it is possible to measure the baryon fraction [20, 68]. Currently, such

measurements have yielded a value for the baryon density parameter of Ωb ≈ 0.04.

The significance of this result is that only ∼ 15% (∼0.04/0.27) of the matter in

our Universe is baryonic; the nature of the other 85% is still very much unknown.

The Identity of Dark Matter

Three main types of non–baryonic dark matter have been proposed: hot dark mat-

ter (consisting of particles that decoupled from radiation when ultrarelativistic),

warm dark matter (decoupled when relativistic) and cold dark matter (decoupled

when non-relativistic). The standard model is based on cold dark matter because

its existence seems necessary to explain the formation of structure in the Universe,

as a hot dark matter Universe does not fit observations well. A warm dark matter
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Universe could be plausible and is an area worthy of future investigation [7].

A number of different dark matter candidates have been proposed. Dark

matter is believed to be a fluid that interacts with baryonic matter through

gravity only, and with itself only weakly. The leading candidates are known as

Weakly Interacting Massive Particles, or WIMPS. WIMPS have a large

mass, and hence are slow moving and ‘cold’. They interact with each other

through the weak nuclear force, and with all matter through gravity. The identity

of such a particle is as yet unknown, but particle physics suggests it may be a

stable supersymmetric particle such as a neutralino. Particles accelerators such

as the Large Hadron Collider may detect WIMPs indirectly if they are produced

in high-energy collisions [69]; direct detection may also be possible using deep

underground cryogenic detectors by looking for dark matter particles scattering

off atomic nuclei (distinguished from background particles which scatter off

electrons) [70, 71].

1.4 Summary

The hot big bang model and ΛCDM paradigm have been highly successful at

describing our Universe. Over the course of the twentieth century, a cosmological

picture has emerged that describes the evolution of the Universe and its major

constituents, and makes accurate, testable predictions. Multiple cosmological

probes have contributed complementary evidence towards validating the standard

model, however there are still components of the model - notably the identity

of dark matter and dark energy - that are not well understood. Solving these

mysteries is the driving force behind much of cosmological research today. Weak

gravitational lensing is one probe that cosmologists are using to constrain the

identities of dark matter and dark energy. Over the past decade, weak lensing has

begun to develop into a competitive tool for precision cosmology, complementing

observations made with other cosmological probes such as BAOs, SNe and the

CMB.

Precise and accurate measurements of cosmological parameters are an essen-

tial tool for discriminating between different cosmological models and unveiling

the identities of dark matter and dark energy. As we shall see in the following

chapters, weak lensing measurements are coming to the forefront of cosmology
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as a tool for precisely constraining these parameters. In order to make sure

the next generation of lensing telescopes are able to use their survey data as

effectively as possible and place tight constraints on cosmological parameters, we

must investigate ways to efficiently and optimally use the available data, as well

as ensure that such data is as free from systematic sources of error as possible.

The work in this thesis was therefore conducted with the intention of minimising

the uncertainty on estimates of key cosmological parameters measured from weak

lensing data, so that we might move one small step closer to a well-understood,

comprehensive model for our Universe. This thesis was conducted using weak

lensing data and simulations, and with this in mind, gravitational lens theory and

the principles of observing weak lensing will be discussed in the next chapter.
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Chapter 2

Cosmology with Weak

Gravitational Lensing

Photons propagating through an inhomogeneous density field will be deflected

such that their path is curved as seen by an observer. This is the phenomenon

known as gravitational lensing. It occurs because light rays follow null geodesics

in spacetime, and if spacetime is curved (non-Euclidean) then these geodesics are

no longer straight. The elegance and utility of lensing lies in the fact that it is

underpinned by the well-understood physics of general relativity, and observable

lensing quantities are easily relatable to cosmological parameters. In this chapter,

we introduce the concept of gravitational lensing and review the basic lensing

formalism with a focus on the weak lensing regime which is the topic of this

thesis. We also discuss some useful weak lensing statistics such as the shear

correlation function, and introduce the concept of tomography, which is central

to this thesis. Finally, we review some of the common sources of systematic

error in weak lensing data and review the status of some prominent current and

upcoming weak lensing surveys.

2.1 What is Lensing?

The deflection of light in a gravitational field is predicted by both Newtonian

dynamics and GR, and was used to test GR successfully in 1919 (GR predicts

twice the Newtonian deflection angle [7]). The theory of gravitational lensing is

eloquently described by GR and in the past three decades lensing has emerged
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as a powerful probe of cosmology. Part of the reason that gravitational lensing

is so useful to astronomers is because the deflection of light has no dependence

on the underlying nature of the lensing matter. This means that lensing can be

used to constrain cosmological parameters whilst making very few assumptions

about the nature of astrophysical objects, leading in principle to fewer sources of

uncertainty in our analysis.

The easiest way to understand why ‘mass bends light’ is to consider the

falling lift thought experiment. This experiment utilises the strong equivalence

principle1 and its application to inertial frames of reference. An inertial frame is

one in which Newton’s laws of motion are valid; particles which are not acted on

by any net external force move in straight lines with constant velocity. Consider

a lift in an inertial reference frame, S. If a person inside the lift shines a torch

horizontally, an observer in that frame would expect to see the beam of light

shine horizontally across the lift and reach a point at the same height on the

opposite wall (see the left hand side of Fig. 2.1). Since the frame we chose is

inertial, then an external observer in any inertial reference frame, S ′, will witness

the light beam travelling horizontally across the lift. Now consider repeating the

experiment in a lift that is in free fall under a gravitational acceleration g. The

equivalence principle tells us that a freely–falling frame is locally equivalent to

an inertial frame so an observer inside the lift would again see the light beam

tracing a straight, horizontal path. However an external observer in a different

frame will now see the light take a curved path relative to the lift (right hand side

of Fig. 2.1). The universality of free fall tells us that the lift could be falling in a

gravitational field or being accelerated by some other mechanism in the absence

of a gravitational field. An observer outside the freely–falling frame will thus

observe light rays being deflected as they pass through a gravitational field. This

is the effect known as gravitational lensing.

2.1.1 Lensing Regimes

Here we review the three different classes of gravitational lens, the last of which

forms the basis of this report.

1The strong equivalence principle applies to all the laws of physics, and states that: In a
locally inertial frame, all of special relativity applies. This can also be expressed by saying
that the laws of physics, and the outcome of any local experiment, are the same for all locally
inertial, freely–falling frames.
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Figure 2.1: Left : A light ray in a lift in an inertial frame will be seen to travel
along a straight line by observers in all inertial frames. Right : A light ray in a
lift that is in free–fall will appear to take a curved path as seen by observers in
inertial frames.

Microlensing

Microlensing events occur when a dark, massive object such as a brown dwarf

passes in front of a background star. If the alignment between observer, lens

and background star is precise, the star will be significantly magnified due to

the lensing effect (see §2.2.5). The magnification of the background object is

detectable with high-resolution telescopes such as the Hubble Space Telescope

(HST) by the characteristic high–kurtosis, sharp peak in its brightness [72].

Microlensing events are useful for exploring the non-luminous baryonic matter

in the galaxy since the mass of the lens can be determined from lensing theory

in the absence of any light from the lens itself. Microlensing has notably been

used to detect extrasolar planets: if the lens is a star with a planet in orbit, the

extra mass of the planet will produce a second smaller peak in the brightness

profile of the lensed star. This has led to the discovery of extrasolar planets with

masses as low as 1.7 times the mass of the Earth [73, 74]. Other objects that are

capable of inducing detectable microlensing events include white dwarfs, neutron

stars and black holes which in this context are sometimes known as MAssive

Compact Halo Objects (MACHOs). MACHOs were once proposed as a baryonic
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solution to the identity of dark matter, but microlensing observations by EROS2

have shown that MACHOs can account for at most ∼ 10% of the missing galactic

dark matter [75]. This number is further constrained by the peaks in the power

spectrum of the CMB that limit Ωb ∼ 0.04 (see §1.3.2).

Strong Lensing

Strong gravitational lensing occurs when massive objects such as clusters of

galaxies act as gravitational lenses. It is this lensing regime that produces

the most extreme distortions to astronomical images. An example of a galaxy

cluster strongly lensing background galaxies is shown in Fig. 2.2. The cluster lens

produces multiple sheared and magnified images of the background galaxies. The

number of multiple images can be used to estimate the volume of space between

the observer and the cluster, which is dependent on cosmological parameters and

in particular the cosmological constant. If a strongly lensed source varies with

time, then its image will vary with time as well. However, due to the curvature

of spacetime in the presence of mass the light rays that form the multiple images

will have different path lengths. This leads to time delays between the observed

images so that, provided the angles in the lens system are known (as they often

are), the exact distances between images and objects are known thus allowing an

estimation of h0 [76, 77]. The arcs in Fig. 2.2 can only be produced by massive

objects such as galaxy clusters, so the number, size and geometry of these arcs

can yield information on the massive lens. It is also possible to reconstruct

the mass distribution of the lens in order to improve constraints on the matter

density [78]. Strong lensing clusters can yield valuable cosmological information,

however detection of strong lensing events is rare and relies on chance alignments

of galaxies and massive clusters, thus limiting its use as a cosmological probe.

Weak Lensing

The final type of gravitational lensing is distinct from the other two as it does

not rely on the chance alignment of astrophysical objects to be detected and is

essentially ubiquitous. Weak lensing occurs when the lensing mass is much lower

than in the strong lensing regime so the resulting image distortions are much

2http://eros.in2p3.fr.
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Figure 2.2: Strong lensing by Abell2218 cluster produces arcs and multiple galaxy
images (NASA/STScI).

smaller and multiple galaxy images and visible arcs are not produced. Weak

lensing arises because any dark matter along the line of sight to a galaxy will

produce a small lensing effect. Since there will be some dark matter between

us and every other galaxy, weak lensing can be observed along any line of sight

to a galaxy. Individual light rays experience a series of tiny deflections as they

pass through the varying gravitational fields due to the dark matter distribution,

which sum to give a net distortion (this is the Born approximation, see §2.2.1).

The distortion of galaxy images due to weak lensing includes a change in their

observed ellipticities. This effect is known as cosmic shear and galaxy images

are typically sheared by only ∼1%. This makes such distortions impossible to

spot by eye and detailed statistical treatment of many galaxy images is needed

to accurately measure this effect. Fluctuations in the matter density in different

regions of space ensure that the weak lensing signal will vary over different parts

of the sky, so measuring cosmic shear can yield direct information on the matter

density, Ωm, and the matter power spectrum for which the amplitude at z = 0

can be parameterised by σ8. Weak lensing is sensitive to the combination of

Ωm and σ8, leading to a characteristic degeneracy in the measurement of these

two parameters. The degeneracy can be partially broken by measuring the

lensing signal at different redshifts (for example, by using a technique known
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as tomography; this will be discussed further in §2.3.7 and Chapters 4 & 5)

[79] or by comparing the lensing signal in the linear and non-linear regimes [80].

Combined with CMB measurements, strong constraints on Ωm and σ8 can be

achieved since the degeneracies in the parameters from each measurement are

almost orthogonal in the Ωm–σ8 plane [81, 82]. The measurement of cosmic shear

is well-established and has been used to measure the bias parameter b [83, 84]

and the 3D non–linear matter power spectrum Pδ(k) [85], and can be used to

probe dark energy [82, 86].

2.2 Gravitational Lens Theory

A full treatment of gravitational lensing can be described in the context of GR

in the space-time of the Robertson-Walker metric. However most astrophysical

situations permit a simpler, approximate treatment, called gravitational lens

theory, which we describe here.

2.2.1 The Lens Equation

A typical gravitational lensing situation is sketched in Fig. 2.3, where a mass

at distance Dd deflects light rays from a source at distance Ds. The distance

between the lens plane and the source plane is given by Dds and all distances

are angular diameter distances. In the absence of lensing, we would expect the

image to be located at β, but the deflection of angle α̂ caused by the mass at Dd

produces an image at θ. Since all the angles involved in typical lensing situations

are small, we can use the small angle approximation throughout. This allows us

to approximate the path of the photons as straight lines with a kink in the source

plane, as their true path will be smoothly curved by the lens3. From Fig. 2.3 we

can then write

θDs = βDs + α̂Dds. (2.1)

3In general in lensing theory we assume that the deflected light ray can be approximated
to a straight line in the neighbourhood of the deflecting mass. This is known as the Born
approximation and is valid as long as the deviation of the light ray from a true straight
line is small compared to the scale over which the mass distribution changes. The Born
approximation has been shown to be relatively robust in ray-tracing simulations for shear
measurement purposes [85, 87].
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Figure 2.3: Diagram showing the relevant angular diameter distances and angles
between the observer, the lens plane, and the source plane in a lensing system
[29].

We now define the reduced deflection angle, α = α̂Dds
Ds

so that the lens

equation is given by

β = θ −α. (2.2)

2.2.2 The Deflection Angle

The deflection angle describes the magnitude and direction of the deflection a

light ray when it is weakly lensed. There are several ways to derive the deflection

angle and in this section we adopt the approach of [88] and [89] to find the

deflection angle of a light ray by a point mass. We begin by considering Fermat’s

principle: light takes the path along which the travel time is extremal. This can
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be expressed mathematically,

δ

∫ B

A

n [xl]
dl

c
= 0, (2.3)

where n is the refractive index, x is the trajectory of the photon, dl is an

infinitesimal displacement along the ray and the gravitational field is assumed to

be weak and the lens small compared to cosmological distances. In the presence

of lensing the RW metric defined in Eqn. 1.8 must be weakly perturbed by the

gravitational potential, Φ, such that |Φ| � c2,

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
a2(t)

[
dr2 + S2

k(r)dΩ2
]
. (2.4)

For a photon, ds2 = 0. If we consider a photon travelling radially, dΩ2 = 0 and

we have (
1 +

2Φ

c2

)
c2dt2 =

(
1− 2Φ

c2

)
a2(t)dr2. (2.5)

The proper distance is just dx = a(t)dr which allows us to define an effective

speed of light in a weak gravitational field as

c′ =
|dx|
dt

= c

(
1 + 2Φ

c2

1− 2Φ
c2

) 1
2

≈ c

(
1 +

2Φ

c2

)
. (2.6)

It can be seen from Eqn. 2.6 that the index of refraction in the gravitational field

will be

n ≡ c

c′
≈
(

1− 2Φ

c2

)
. (2.7)

Since Φ ≤ 0, n will be greater than 1 and c′ ≤ c, meaning that light appears to

travel more slowly in a gravitational field4, analogously to light being slowed by

a medium with refractive index n.

Fermat’s principle can be used to find the angle of deflection between an

unperturbed ray and a ray perturbed by a gravitational field. If we consider the

4Note that light only appears to slow down in a gravitational field and actually always
travels locally at c, as otherwise both special and general relativity would be violated. Non-
relativistically, Fermat’s principle is a mathematical shortcut to the observed deflection angle,
although it can also be stated relativistically (see [90]). A relativistic derivation of the deflection
angle can be found in e.g. [91].
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unperturbed path distance, dl, then we can define a curve parameter, λ such that

dl =

∣∣∣∣dxdλ
∣∣∣∣ dλ = |ẋ| dλ. (2.8)

Using the Lagrangian for the system, L(x, ẋ) ≡ n [x(λ)] |ẋ| = n [x(λ)](ẋ2)
1
2 ,

Fermat’s principle can be expressed using the Euler Lagrange equation,

d

dλ

∂L
∂ẋ

=
∂L
∂x

, (2.9)

which yields

nė = ∇n− e.(∇.e), (2.10)

with e ≡ ẋ, the tangent vector to the light ray. Eqn. 2.10 is just the perpendicular

gradient of n, meaning

ė =
1

n
∇⊥n = ∇⊥ lnn = ∇⊥ ln

(
1− 2Φ

c2

)
≈ − 2

c2
∇⊥Φ (2.11)

and the total deflection angle is given by the integral of −ė along the light

path, that is

α̂ =
2

c2

∫ B

A

∇⊥Φ dλ. (2.12)

In weak gravitational fields, the deflection angle is very small, allowing us to use

the Born approximation and evaluate α̂ along the unperturbed (straight) path.

The result of Eqn. 2.12 and the Born approximation allow us to find an

expression for α̂ for deflection by a point mass. Fig. 2.4 illustrates such a

situation. The impact parameter, b, is the point of closest approach of the

unperturbed ray to the point mass M . The majority of the deflection occurs

within 4z ≈ ±b of the closest approach. Since the field is weak we can use the

Newtonian approximation for the gravitational potential of the lens,

Φ = −GM
r

= − GM

(x2 + y2 + z2)
1
2

= − GM

(b2 + z2)
1
2

. (2.13)

Thus we can calculate an expression for ∇⊥Φ,

∇⊥Φ =
GMb

(b2 + z2)
3
2

, (2.14)
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Figure 2.4: The path of a light ray (solid black line) near point mass M , deflected
by angle α̂. The impact parameter b is the point of closest approach of an
unperturbed ray (dashed grey line) [89].

and substitute this into Eqn. 2.12 to find the deflection angle for a point mass,

using the Born approximation such that dz ≈ dl:

α̂ =
2

c2

∫
∇⊥Φ dz =

4GM

c2b
=

2

b
Rs (2.15)

where Rs is the Schwarzschild radius for a point mass and b � Rs. Note that

the result derived here is exactly twice the deflection expected from Newtonian

physics.

2.2.3 Surface Density and the Thin Screen Approxima-

tion

A real lens will not be a point mass, but will have some finite mass distribution

in space. Since the gravitational field is weak, we follow the approach of [89] and

approximate the total deflection produced by a mass distribution as the sum of

the deflection angles produced by a series of point masses. We assign the two–

dimensional position vector of the light ray, (ξ, z). If each point mass occupies a
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small volume element dV with mass dm = ρ(r)dV (where ρ is the mass density),

then we can assign a position vector (ξ′, z′) to each point mass. At a mass

element, the light ray has impact parameter ξ− ξ′ and the total deflection angle

is given by the sum of each deflection,

α̂(ξ) =
4G

c2

∑
dm(ξ′, z′)

ξ − ξ′

|ξ − ξ′|2

=
4G

c2

∫
d2ξ′

∫
dz′ρ(ξ′, z′)

ξ − ξ′

|ξ − ξ′|2
. (2.16)

Since most of the light deflection occurs within 4z ≈ ±b of closest approach

and 4z � Dd, Dds this allows us to use the thin screen approximation: the

lens is thin compared to the path length of the light ray. This approximation

allows us to project the mass distribution of the lens as a thin mass sheet that

lies perpendicular to the line of sight. The surface density of such a mass sheet

is given as

Σ(ξ) =

∫ +∞

−∞
ρ(ξ, z) dz. (2.17)

This allows us to write the deflection angle as a two–dimensional vector in terms

of the surface density,

α̂(ξ) =
4G

c2

∫
d2ξ′Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2
. (2.18)

2.2.4 Convergence and the Lensing Potential

From Fig 2.3 we know that ξ = Ddθ and combining this with Eqn. 2.18 it is now

possible to write down a new expression for the reduced deflection angle,

α(θ) =
4G

c2

DdsDd

Ds

∫
d2θΣ(Dd(θ))

θ − θ′

|θ − θ′|2
. (2.19)

Defining a critical surface mass density, Σcr as

Σcr =
c2

4πG

Ds

DdsDd

, (2.20)

45



2.2. Gravitational Lens Theory

we can rewrite the reduced deflection angle as

α(θ) =
Σ

Σcr

θ. (2.21)

For Σ = Σcr, α = θ = θE and we see an Einstein ring if the lens is circularly

symmetric. An Einstein ring is formed when an image is deformed into a ring

around the lensing mass, with Einstein radius θE =
√

4GM
c2

Dds
DdDs

.

For a general lens, we define the convergence or dimensionless surface mass

density κ,

κ(θ) =
Σ(Ddθ)

Σcr

. (2.22)

The convergence distinguishes between the strong and weak lensing regimes; if

κ ≥ 1 then multiple images will be produced for some source positions as expected

in cases of strong gravitational lensing. A value of κ� 1 corresponds to the weak

lensing regime. It is now possible to relate the reduced deflection angle and the

convergence [89],

α(θ) =
1

π

∫
d2θ′ κ(θ′)

θ − θ′

|θ − θ′|2
. (2.23)

We can define the reduced deflection angle as the gradient of a scalar potential,

the effective lensing potential ψ, which is the two–dimensional analogue of

the Newtonian potential Φ of the lens,

α(θ) = ∇θψ(θ). (2.24)

then using the identity ∇ lnx = x/|x|2 we can write the lensing potential in

terms of the convergence,

ψ(θ) =
1

π

∫
d2θ′κ(θ′) ln |θ − θ′|. (2.25)

The inverse two–dimensional Laplacian operator δ−2 =
∫

d2θ′ ln |θ − θ′| gives

κ(θ) =
1

2
∇2
θψ(θ) (2.26)

=
1

2
(ψ,11 + ψ,22), (2.27)
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therefore the convergence is related to the reduced deflection angle by [29]

κ(θ) =
1

2
∇θ . α(θ). (2.28)

2.2.5 Magnification and Shear

The lens equation yields the angular positions of the images of a source at β. The

image shapes will be distorted because light bundles are deflected differentially;

that is, light bundles emerging from slightly different locations will pass through

slightly different potentials. To determine the shape of the image in general one

must solve the lens equation for all points within an extended source.

If the angular scale on which the lens properties change is much larger than the

angular size of the source, then the local imaging properties of the lens mapping

can be described by the lensing Jacobian matrix,

A =
∂β

∂θ
=

∂

∂θj
[θi − αi(θ)]

= δij −
∂αi(θ)

∂θj

= δij −
∂2ψ(θ)

∂θi∂θj
(2.29)

where δij is the kronecker delta. The Jacobian is symmetric and can also be

expressed as

Aij =

[
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

]
. (2.30)

Here we have introduced the concept of the shear, γ, a measure of the shape

distortion of the image. The shear is complex and is given by γ ≡ γ1 + iγ2 = e2iφ,

where

γ1 =
1

2
(φ,11 − φ,22) = γ cos(2φ)

γ2 = φ,12 = φ,21 = γ sin(2φ). (2.31)

Liouville’s theorem combined with the lack of emission or absorption of

photons in gravitational light deflection tells us that lensing conserves surface

brightness. Thus, if gravitational lensing increases the surface area of an image
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we will see a magnification µ where

µ =
image area

source area
=

∣∣∣∣ ∂θi∂βj

∣∣∣∣ . (2.32)

If photons are neither created nor destroyed by gravitational lensing, the net

magnitude can increase if photons on previously nearby trajectories are bent

towards us by the lensing mass (since the object is dilated while the surface

brightness stays constant). Gravitational lensing allows us to observe photons

that would have not otherwise reached us in the absence of the lens.

The magnification is related to the Jacobian and hence to the convergence

and shear through the determinant,

µ ≡ 1

detA
=

1

(1− κ)2 − γ2
. (2.33)

This tells us that gravitational lensing distorts images in both shape and size.

The shape distortion described by γ is due to the presence of a tidal gravitational

field, whereas it is a combination of κ and γ that lead to magnification through

isotropic and anisotropic focusing by the local matter density respectively. The

magnification of images means that in any flux-limited survey, magnification from

the effect of weak lensing will increase the number density of galaxy images.

2.3 Observing Weak Lensing

We have derived relationships between the convergence, κ, the lensing potential,

ψ, and the shear, γ. In this section, we will examine the relationship between

these quantities and those observable from weak lensing measurements, namely

the shapes of galaxies. We will discuss some methods to measure galaxy shapes,

and introduce some of the important sources of systematic error in lensing analysis

that shape measurement techniques must account for.

2.3.1 Ellipticity

In order to measure the shape of a galaxy, we must first define its centre, I0 =

I (θ = 0), such that it is centred on the origin. Lensing images are altered by

a change in size which is characterised by the monopole moment of the galaxy,
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and a translation on the sky that is characterised by the dipole moment. In weak

lensing the easiest-to-observe quantity is the ellipticity, which may be used to

estimate the shear5, which is related to the quadrupole moment of a galaxy. The

quadrupole moment will be

Qij =
1

A

∫
d2θ I (θ) ∆θi∆θj (2.34)

where A is the area, I (θ) is the surface brightness of the galaxy and ∆θ is the

angular separation between two points in the image. From this, the complex

ellipticity may be defined as ε = ε1 + iε2 = |ε|e2iφ, where ε is can be related to

Qij by

ε =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2 (Q11Q22 −Q2
12)

1/2
. (2.35)

For a circular image, Q11 = Q22, Q12 = Q21 = 0 and ε1 = ε2 = 0. We define the

reduced shear g to be

g(θ) =
γ(θ)

1− κ(θ)
(2.36)

and follow the approach of [29] to write down expressions for the intrinsic source

ellipticity,

εs =
ε− g

1− g∗ε
for |g| ≤ 1

=
1− g∗ε
ε∗ − g∗

for |g| > 1. (2.37)

In the weak lensing limit, |γ| � 1 so |γ| ≈ |g|. The inverse of Eqn. 2.37 is then

ε ≈ εs + g. (2.38)

Since we cannot separate the intrinsic ellipticity from the shear of individual

galaxies, we must treat them statistically and average a large number of galaxy

shapes. The measurement of weak lensing relies on the assumption that galaxies

are intrinsically randomly orientated on the sky. If this is the case, observing

5A third order effect known as flexion, which is responsible for skewed and arced galaxy
images, is beginning to prove useful. Flexion is routinely observed in strongly lensed images,
and has recently been detected in weak lensing images [92, 93]. Additionally, the magnification
has been detected through its effect on galaxy number density in flux-limited surveys [94, 95],
and may be used in conjunction with cosmic shear to improve cosmological constraints [96].
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enough galaxy images allows us to write 〈εs〉 = 0, where εs is the intrinsic

ellipticity of a galaxy6. Hence, in the weak lensing regime,

〈ε〉 = 〈g〉 . (2.39)

From this, an estimator for the shear is just

γ ≈ g ≈ 〈g〉 = 〈ε〉 . (2.40)

2.3.2 Measuring Galaxy Shapes

To measure cosmic shear, we must measure the shapes of galaxies through their

ellipticities. Obtaining accurate shape measurements is one of the key challenges

in weak lensing analysis, and we discuss in this section the methods used to do

this.

The Point Spread Function

The point spread function (PSF) describes the response of the imaging system

to a point source, such as a star, which causes the image to be spread out so

that it is no longer a point but a finite, two–dimensional shape. For ground

based telescopes, aberrations caused by atmospheric seeing are the dominant

contributor to the PSF, whereas for space telescopes the PSF comes mainly from

diffraction. Atmospheric seeing causes circular smearing and differences in optical

path length in the imaging system result in shearing of images. Galaxy images

are affected by the PSF in a similar way to stellar images, which alters their

observed shapes and contaminates shape measurements. Correcting for this effect

is possible by measuring the PSF using the stars in the image field and then

deconvolving this from the galaxy image. Multiple stars are needed since each star

gives a finite amount of information about the PSF due to noise and pixelation

by the optical system. In addition the PSF often varies across the field of view. A

minimal number of stars is therefore needed to characterise the PSF and there will

be a typical length scale associated with this number of stars. Galaxy correlations

on length scales smaller than this may be unreliable if the PSF does not vary

6We ignore the effect of any intrinsic galaxy alignments in this section as these complicate
our measurement of the shear. Intrinsic alignments are described in §2.3.5.
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smoothly, since there is not enough information available about the nature of the

PSF on such small scales [97]. Correcting the PSF precisely and reliable in order

to measure galaxy shapes is one of the main challenges in contemporary cosmic

shear measurements (see §2.3.2).

Shape Measurement Methods

The standard method used to measure galaxy shapes in lensing is the method

of Kaiser, Squires and Broadhurst (KSB) [98]. They prescribed a method

for measuring galaxy shapes by inverting the effects of the PSF smearing and

shearing. This was improved upon by [99] who introduced a seeing correction

and [100] who introduced an astrometric distortion correction. KSB has proved

useful for correcting the PSF and extracting shear measurements, however [101]

found a systematic error of 1-30% in the recovery of the shear signal using this

method. This is because the ellipticity parameters should ideally be inferred from

the PSF–corrected image, but we instead must find it from the observed, PSF–

distorted image which leads to noisy measurements. KSB has been found to be

unreliable when applied to CFHTLenS data due to inaccurate assumptions the

method makes about the PSF [102].

Due to the inaccuracy in recovering the lensing signal using KSB, other

methods of shape measurement have been utilised. These include the method

of [103] where the observed galaxy images are stacked and then fitted as PSF–

convolved, sheared circular sources. This relies on the assumption that, by

stacking the galaxy images, their net intrinsic ellipticity will sum to zero so

that the lensing signal will act as a shear on a circular shape. This method

is dependent on a well–measured PSF. [104] construct a ‘finite resolution shear

operator’ which gives the response of an observed image to a gravitational shear

before smearing by the PSF. The result is valid for any PSF and can be used

to calibrate the effect of any shear estimator. [105] propose a method of first

convolving images so that the resultant convolved PSF is isotropic and circular.

They then decompose the convolved galaxy images into a set of orthogonal, two–

dimensional Gaussian–based functions. There is no bias towards particular shapes

in this method because adaptive elliptical weights are used. This technique relies

on the assumed Gaussianity of the PSF, however, which if invalid could lead to

systematic underestimation of cosmological parameters such as σ8, the matter
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power spectrum.

[106] and [107] present a method in which the surface brightness profiles of

galaxy images are decomposed into a series of orthogonal basis functions, or

‘shapelets’ known as the Gauss–Hermite series. The PSF is first modelled

by decomposing stellar images into shapelets and interpolating the resultant

coefficients across the image. The galaxy images can then be decomposed into

shapelet coefficients, allowing one to construct a linear estimator for the shear.

This technique is robust to variations in the size and shape of the PSF, is unbiased,

and allows for the shape determination of even complex galaxy profiles. There

is, however, a danger of overfitting noise and the reconstruction of flat galaxy

profiles is sometimes inaccurate.

A series of shape measurement challenges known as the GRavitational lEnsing

Accuracy Testing (GREAT) challenges are ongoing to address the need for

accurate, unbiased galaxy shape measurements7 [108]. GREAT developed out

of the Shear TEsting Program (STEP) [101] which was a collaborative effort

within the lensing community to develop better shape measurement techniques.

GREAT invites experts in other fields such as statistical inference and computer

science to develop algorithms that improve upon previous shape measurement

techniques. STEP and GREAT arose because of the imminent need for more

accurate and reliable shape measurements from the next generation of wide–field

lensing surveys (see §2.3.6). In order for competitors to optimise their shape

measurement methods, simulations are provided with known shear values to test

their methods and calibrate their results. The algorithms can then be applied to

‘blind’ simulations where the shear in unknown. Each method is then assigned a

quality factor based on the error in the results. The method that best recovers

the shear from the ‘blind’ simulations will have the highest quality factor. These

challenges have resulted in the emergence of several new shape measurement

methods, which, once developed, may further be exploited in the future for weak

lensing analysis [101, 108, 109].

7http://www.greatchallenges.info/.
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LENSFIT

LENSFIT8 is a model–fitting approach to weak lensing shape measurement that

uses a Bayesian shape estimation method [110, 111]. Bayesian statistics are

chosen over likelihood functions as the input shear is recovered more successfully.

This technique consists of fitting model surface brightness profiles to individual

galaxies, which typically have six free parameters: central surface brightness,

size, ellipticity (e1 and e2) and celestial position. One can marginalise over the

parameters that do not influence the shear measurements in Fourier space (for

isolated galaxies only the ellipticity parameters and the scale length of the galaxy

are needed) and then perform a least-squares fit in Fourier space to determine the

best–fit shape of a galaxy. The algorithm incorporates an estimate of the PSF

into the model fits. LENSFIT has the advantage that it optimises the signal to

noise ratio and allows almost unbiased shape estimation. There is some bias in the

posterior probability distribution, however, due to the choice of prior; the prior

must contain zero shear and is ideally a perfect representation of the underlying

intrinsic ellipticity distribution.

The main drawback of the LENSFIT algorithm is that despite utilising fast

Fourier transforms to speed up computation times, it takes around one second per

galaxy to find the full posterior distribution. This could make LENSFIT unsuitably

slow for very large surveys with ∼ 108–109 galaxies. Close pairs of galaxies are

not treated by the algorithm, but a separate fitting algorithm could be applied

to such galaxies. However, since galaxies that are close together on the sky are

often sources of intrinsic alignments (see §2.3.5), they are often downweighted

and therefore measuring the shapes of isolated galaxies may be more important

in lensing analysis. LENSFIT has been tested with STEP and GREAT (and

has one of the highest quality factors of all the algorithms submitted) and has

been applied successfully to weak lensing measurements of X–ray underluminous

galaxy clusters [112]. LENSFIT is the shape measurement tool of choice for

CFHTLenS (see section 2.3.6) [113] and shows promise for application to future

wide-field lensing surveys.

The complicated issue of measuring accurate galaxy shapes is summarised in

Fig. 2.5 (image from the GREAT08 handbook [109]), which shows the series of

distortions a typical galaxy image undergoes.

8http://www.physics.ox.ac.uk/lensfit/.
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Figure 2.5: Top: the sequence of distortions a galaxy image is subjected to.
The galaxy image is sheared by the density field it passes through, smeared
and further sheared by the atmosphere and telescope optics (this is the PSF)
and then pixelised. Finally, a shot noise component due to Poisson noise in the
number of photons received and Gaussian noise from detector effects will also be
present. Bottom: Stellar sources undergo a similar procedure, although they are
not sheared by the density field [109].

2.3.3 The Correlation Function and Power Spectrum

We now define two useful observable statistics in weak lensing: the two-point

correlation function C(r) and the power spectrum P (k). Assuming a flat

sky9, the correlation function can be defined for a homogeneous, isotropic and

random field g(x), such as the matter density field, and is simply [7]

C(r) = 〈g(x)g∗(x′)〉 (2.41)

where r is the separation between two points in the field such that r = |x− x′|.
The power spectrum is the Fourier transform of the correlation function and we

9The flat sky approximation avoids the need for spherical harmonics, and works well for
high wavenumber k.
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can derive it by first considering the Fourier transform pair of g in n dimensions,

ĝ(k) =

∫
dnx g(x)eix.k

g(x) =
1

(2π)n

∫
dnk ĝ(k)e−ix.k. (2.42)

Therefore the correlation function in Fourier space is

〈ĝ(k)ĝ∗(k′)〉 =

∫
dnx eix.k

∫
dnx′ e−ix

′.k′

〈g(x)g∗(x′)〉 . (2.43)

Since x and x′ are independent, dnx′ = dnr and

〈ĝ(k)ĝ∗(k′)〉 =

∫
dnx eix.(k−k

′
)

∫
dn re−ir.k

′

C(r). (2.44)

The first integral in Eqn. 2.44 is the Fourier transform of the Dirac delta function,

δD; that is,
∫

dnx eix.(k−k
′
) = (2π)nδD(k − k′). Thus we can rewrite Eqn. 2.44

as

〈ĝ(k)ĝ∗(k′)〉 = (2π)nδD(k − k′)P (|k′|) (2.45)

where we have defined the power spectrum of g(x), Pδ(k), to be [29]

Pδ(k) =

∫
dn re−ir.k

′

C(| r|). (2.46)

This is the 3D power spectrum of mass fluctuations defined in Eqn. 1.45.

Pκ is the effective convergence power spectrum and is a measure of

the two–point statistics of weak gravitational lensing. It can be found in the

same way as Pδ(k) from the Fourier transform of the two–dimensional effective

convergence two–point correlation function, C12 = 〈κ̄eff,1(θ)κ̄eff,2(θ
′)〉, where κ̄eff is

the projection of the density fluctuations δ along the line of sight. It is related

to Pδ(k) by

Pκ(l) =
9H4

0 Ω2
m

4c4

∫
dw

W 2(w)

a2(w)
Pδ

(
l

fK(w)
, w

)
(2.47)

where fK is the comoving angular diameter distance out to radial distance w

defined by the curvature of the Universe K, l is the multipole moment and W is

a weighting function [114]. l and k are related through the Limber approximation;

k and l are the Fourier transforms of the radius and angular scale respectively,
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and k⊥ = l/χ, where k⊥ is the transverse component of k and χ is the comoving

angular diameter distance (see e.g. [115] for an explanation). The convergence

power spectrum may also be written in terms of the shear correlation functions,

ξ+ and ξ− (see §2.3.4),

Pκ(l) = π

∫
dθ θ [ξ+(θ)J0(lθ) + ξ−(θ)J4(lθ)] (2.48)

where J0 and J4 are Bessel functions. We refer the reader to [29] for a derivation

of Eqns. 2.47 and 2.48.

2.3.4 Shear Correlation

The shear correlation function 〈γγ〉θ can be measured from the ellipticities of

galaxy pairs at angular separations θ. It is possible to decompose the shear

correlation into tangential and radial components as follows. First, we consider

the tangential and radial ellipticity parameters, εt and εr, of a galaxy in a

coordinate frame defined by the line connecting the centroids of two galaxies,(
εt

εr

)
=

(
cos 2φ sinφ

− sin 2φ cos 2φ

)(
ε1

ε2

)
, (2.49)

where φ is the angle between the new frame and the original frame in which ε1

and ε2 were defined. From Eqn. 2.40 we know that the ellipticity and the shear

of a galaxy are easily interchangeable, so this allows us to re-write Eqn. 2.49 in

terms of the tangential shear γt and the radial shear γr,

(γ1 + iγ2)(cos 2φ− i sin 2φ) = γt + iγr = γe−2iφ (2.50)

where γ is the complex shear. The shear correlation functions are thus [116]

ξ± = 〈γtγt〉 ± 〈γrγr〉 =
1

2π

∫ ∞
0

dl lPκ(l)J0,4(lϑ). (2.51)

The power spectrum relates the observed lensing correlation functions to the

cosmological parameters through Eqn. 2.47. Practical estimators for the shear

correlation functions are given by [116] as
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ξ̂±(θ) =

∑
ij wiwj(εitεjt ± εirεjr)∆ϑ(|ϑi − ϑj|)

Np(θ)
. (2.52)

The sum runs over all galaxy pairs at angular positions ϑ. Np(θ) is the effective

number of pairs in the angular bin based on their weights wi, which reflect the

quality of the galaxy shape measurement. εit and εix denote the tangential and

cross components of the complex ellipticity of a galaxy i with respect to the line

joining it to galaxy j. The galaxy weights are normally defined by the quality of

the shape measurement. ∆θ(φ) = 1 if the angular separation θ of the galaxy pair

is centred on θ, and zero otherwise.

As discussed in §2.3.1, the observable ellipticity of a galaxy, εi, is a combination

of the intrinsic ellipticity εsi and the shear at that position in the weak lensing

regime where |γ| � 1. If the assumption that galaxy shapes are intrinsically

uncorrelated is correct, then 〈εsi εs∗j 〉θ = 0 and 〈γiγ∗j 〉θ = 〈εiε∗j〉θ. We can therefore

simply correlate galaxy shapes to directly estimate the shear correlation function

at a given angular separation.

2.3.5 Systematics

Gravitational lensing is a clean cosmological probe as it does not rely on

assumptions about the nature of the underlying matter distribution, in principle

making it easy to infer cosmological information from. However, with upcoming

telescope surveys providing better statistical constraints on the cosmic shear

signal than ever before (see §2.3.6), systematic errors in weak lensing data will

dominate the error contribution. It is therefore vitally important to understand

and account for these systematics if more accurate and precise cosmological

parameter estimates are to be made in the future. In this subsection, we discuss

the main sources of systematic error in cosmic shear measurements and how to

characterise them.

E and B modes

One way to characterise the measured distortions caused by gravitational lensing

is to decompose the shear field into divergence and curl components, known as

E– and B–modes. The scalar gravitational potential produces a curl-free shear

signal, i.e. only E–modes. B–modes are produced by significant curl components
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E mode

B mode

Figure 2.6: E–modes generated by an overdense region (top left) and an
underdense region (top right); below are the B–modes generated by systematics
in the same regions [30].

which are not allowed by weak lensing, so their presence is indicative of systematic

errors in the data10. Note, however, that the absence of B–modes does not imply

the absence of systematics, only that any remaining systematics are E-mode

only. Fig. 2.6 shows the shear pattern produced by E– and B–modes generated

in overdense and underdense regions [85]. Since the B–modes are a 45 ◦ rotation

of the E–modes, they can be detected by rotating the data by 45 ◦ and repeating

the lensing analysis. B–modes will now show up as a signal.

The E– and B– modes of the lensing potential ψE and ψB are defined by

ψ = ψE + iψB. (2.53)

The E– and B–mode power spectra can be found by decomposing the convergence

into E– and B–modes,

κ(θ) = κE(θ) + iκB(θ), (2.54)

where κE is due to lensing and systematic errors, κB is due to errors only and

10Weak lensing can generate B–modes due to a breakdown on the Born approximation [117] or
through the clustering of source galaxies [118], but they are typically small and only significant
on very small angular scales of θ . 1′.
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both κE and κB are real. In Fourier space with wavenumber l this is

κl = κ
E,l + iκ

B,l. (2.55)

Since κE and κB are real, κ∗
E,l = κ

E,−l and κ∗
B,l = κ

B,−l, so we can write

κ∗l = κ∗
E,l − iκ

∗
B,l = κ

E,−l − iκB,−l (2.56)

κ∗−l = κ
E,l − iκB,l. (2.57)

The corresponding correlation functions will be

〈κ̂(k)κ̂∗(k′)〉 = (2π)2δD(k − k′) [PE(k) + PB(k)] , (2.58)

〈κ̂(k)κ̂(k′)〉 = (2π)2δD(k − k′) [PE(k)− PB(k) + 2iPEB(k)] (2.59)

where PE(k) = Pκ(k), the convergence E–mode power spectrum, PB(k) is the

B–mode power spectrum and PEB(k) is the cross power spectrum. According to

[118], the B–mode power spectrum and the cross power spectrum can be written

in terms of the shear correlation functions, ξ+ and ξ− as

PB(l) = π

∫
dθ θ [ξ+(θ)J0(lθ)− ξ−(θ)J4(lθ)]

PEB(l) = 2π

∫
dθ ξx(θ)J4(lθ). (2.60)

Data systematics

In weak lensing measurements, the most significant systematics are data-related.

Lensing requires us to detect percent-level distortions to galaxy shapes, but

spatially- and temporally-varying distortions of the order of ∼ 10% are caused

by the atmosphere, the telescope and the detector. The PSF mentioned in

§2.3.2 encapsulates these artificial sources of distortion and if unaccounted for

will swamp the shear signal by an order of magnitude. Any errors in the

PSF modelling or deconvolution will lead directly to an error on the measured

ellipticity and hence the shear, which will produce biases in parameter estimates.
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Intrinsic Galaxy Alignments

The presence of significant B–modes in the shear field is indicative of a systematic

error. One of the main sources of systematic error in weak lensing data is the

presence of intrinsic galaxy alignments. Such alignments challenge the assumption

that galaxies are orientated randomly on the sky; whilst this assumption is

approximately true on large spatial scales, it is known that the shapes of galaxies

that are close together on the sky can be correlated. These correlations can mimic

the lensing signal.

For the purposes of weak lensing analysis there are two main types of

intrinsic alignments. The first, often referred to as the intrinsic–intrinsic (II)

alignment signal is important for galaxies that are physically close together in

space and arises as a consequence of galaxy formation mechanisms. As a galaxy

forms, its ellipticity will be determined by the shape of the dark matter halo in

which it forms. A halo experiencing gravitational collapse in a tidal field will

collapse asymmetrically, acquiring a torque. This torque will cause the halo to

become a thin, oblate disc orientated normal to its angular momentum vector.

Any galaxies forming within the halo will experience a very similar tidal field and

therefore will have a tendency to be aligned with one another. The contaminating

effect of II alignments is strongly dependent on the depth of the survey, since for

a given angular separation, galaxies that are at high redshift will be more widely

separated in real space than close-by galaxies [20, 85].

The second type of intrinsic alignment is the shear–shape correlation or

gravitational–intrinsic (GI) alignment. This effect is more subtle than the

II alignment and was not considered as a potential systematic until as recently as

2004 [119]. The effect arises from galaxies that lie at small angular separations

but at very different redshifts. A foreground galaxy will have an orientation

that is influenced by the local tidal field that it forms in, and an elliptical

galaxy will typically have its major axis orientated radially with respect to an

overdensity. The light from a background galaxy along a similar line of sight

will be tangentially sheared by the tidal field of the foreground so that the two

galaxy shapes are anti-correlated (See Fig. 2.7). This effect dampens the observed

lensing shear power spectrum [85].

The effect of the II and GI alignments is to alter the relation
〈
εiε
∗
j

〉
θ
'
〈
γiγ
∗
j

〉
θ
,

as the measured ellipticity correlation is no longer a clean measure of the shear
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δ>0 δ>0

Figure 2.7: The effect of the GI correlation on the shear power spectrum. The
overdense regions in the foreground (grey masses) induce a tidal field (arrows) that
causes the major axis of the foreground galaxy (solid ellipse) to become aligned
with the field. The distant galaxy (dashed ellipse) is gravitationally sheared
tangential to these masses, resulting in an anti-correlation between the shapes of
galaxies at different redshifts [119].

correlation, but will contain contributions from these systematics,

〈
εiε
∗
j

〉
θ

=
〈
γiγ
∗
j

〉
θ︸ ︷︷ ︸+
〈
εsiε

s∗
j

〉
θ︸ ︷︷ ︸+
〈
γiε

s∗
j

〉
+
〈
εsiγ
∗
j

〉
θ︸ ︷︷ ︸ . (2.61)

GG II GI

Here,
〈
εsiε

s∗
j

〉
θ

is the contribution to the lensing signal from the II alignments

and
〈
γiε

s∗
j

〉
+
〈
εsiγ
∗
j

〉
θ

is the contribution from GI alignments. If galaxy j is at

a higher redshift than galaxy i, then
〈
γiε

s∗
j

〉
is zero (except in the presence of

significant photometric redshift errors as we will see in Chapter 5). The effect of

these systematics is strongly dependent on both angular scale and redshift, and

the contamination to the lensing signal is not negligible. The effect of IAs on the

observed lensing signal, and various methods to take them into account in data

analysis are discussed in more detail in Chapter 5.

Photometric Redshifts

The deflection of light by large–scale structure depends on the three-dimensional

matter distribution, so in order to accurately measure cosmological parameters

from lensing surveys it is important to know the galaxy redshift distribution of

a survey. Currently, the uncertainty in the redshift distribution is one of the

main sources of error in measuring the amplitude of the matter power spectrum

σ8. For surveys without measurements of the redshift distribution, a model

distribution could be fitted to the data, but if the model is incorrect this will
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introduce errors which can bias cosmological constraints. For most contemporary

and future lensing surveys, the redshift distribution will be characterised by taking

photometric redshifts (photo-zs) of all the survey galaxies. Traditionally, redshifts

are obtained via spectroscopy from the redshift of emission lines in the spectra

of galaxies, but attaining spectra for all survey galaxies is unfeasibly slow at the

depths required for weak lensing surveys. Spectra take time to obtain, and the

number of galaxies expected in near–future lensing surveys is high (∼ 108–109)

meaning we typically only obtain spectra for a small subsample of survey objects

[20, 120].

Photometric redshifts are obtained through photometry using several broad–

band filters and relies on the detection of strong features (such as the Lyman break

at 4000 Å), which can be seen in relatively crude filters. As a result, photometric

redshifts are less precise than spectroscopic ones, but they can be obtained to

a fainter magnitude and much more quickly than spectroscopic redshifts. This

means that it is possible to obtain photometric redshifts for every galaxy in even

the largest weak lensing survey. Errors as small as ∆z/(1 + z) ≈ 0.03 have been

obtained with five broad–bands [121]. Greater photometric redshift accuracy

allows more accurate and precise measurement of the lensing signal, and allows

better determination of IA contaminants. One of the main sources of systematic

error on photometric redshift is ‘catastrophic outliers’, which are galaxies for

which the photometric redshift is very wrong. This occurs when, for example,

a break in the spectrum at one wavelength is mistaken for a different break at

another redshift. Even a small number of these outliers can significantly impact

cosmological parameter estimates. It is possible, however, to reduce the effect

of these outliers dramatically by calibrating the entire sample of photometric

redshifts with a smaller sample of spectroscopic redshifts for some of the survey

objects (typically ∼ 105–106), which can vastly increase the redshift accuracy

[122, 120].

2.3.6 Lensing Surveys

It is only in relatively recent times that weak gravitational lensing has been used

as a competitive probe of the cosmology of the Universe. As a result there are

a number of contemporary surveys designed to measure weak lensing, including
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the the Sloan Digital Sky Survey11 (SDSS), the Panoramic Survey Telescope

And Rapid Response System12 (Pan-STARRS), Hyper Suprime Cam on the

Subaru telescope13, and several wide-field surveys scheduled for release in the next

decade such as the Large Synoptic Survey Telescope14 (LSST), the Dark Energy

Survey15 (DES), the Kilo Degree Survey16 (KIDS), the Wide Field InfraRed

Survey Telescope17 (WFIRST) and Euclid18. The University of Edinburgh is

part of the science consortium for a contemporary lensing survey of relevance to

this thesis: the Canada–France–Hawaii Telescope Lensing Survey19 (CFHTLenS).

CFHTLenS uses data from the 3.6 m Canada–France–Hawaii Telescope

Legacy Survey (CFHTLS) in Hawaii collected between 2003 and 2004. It

consists of two surveys: the ‘Wide’ survey covering 154 square degrees, and

the ‘Deep’ survey which covers 4 square degrees, both used to measure weak

gravitational lensing. CFHTLenS uses five colour bands (u∗,g′,r′,i′,z′) with a

limiting magnitude of g′ = 26.6 in the Wide survey and g′ = 28.9 in the

Deep survey. This corresponds to a mean redshift of ∼ 0.81 and ∼ 1.10

respectively. Images were taken with the 1 sq. degree field-of-view MegaCAM

camera. Previous lensing data from telescopes such as Keck and the Hubble Space

Telescope, and the Blanco Cosmology Survey have typically covered several tens

of square degrees down to a magnitude of ∼ 25, making CFHTLenS the largest

and deepest weak lensing survey to date. The use of five filters means that

photometric redshifts have been obtained for every object, with a mean scatter

of ∆z = 0.04(1 + z) and a 4% catastrophic outlier rate. Early analysis of a

subset of CFHTLenS data has yielded constraints on the matter power spectrum

σ8 = 0.771 ± 0.029 and the matter density parameter Ωm = 0.248 ± 0.019 when

combined with WMAP3 results [50], the dark energy equation of state parameter

−0.10 < 1 +w < 0.06 from combined CFHTLenS–Wide, CFHTLenS–Supernova

Legacy Survey and WMAP5 data [86] and constraints on the neutrino masses of

0.03eV < Σmν < 0.54 eV to 95% confidence from a combination of probes [123].

11http://www.sdss.org.
12http://pan-starrs.ifa.hawaii.edu/public/home.html.
13http://www.naoj.org/Projects/HSC/index.html.
14http://www.lsst.org/lsst.
15https://www.darkenergysurvey.org/the-project.
16http://www.astro-wise.org/projects/KIDS/.
17http://wfirst.gsfc.nasa.gov/.
18http://sci.esa.int/euclid.
19http://www.cfhtlens.org.
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An early analysis was performed on several tens of square degrees of CFHTLenS

data using KSB and preliminary results have been released in [124, 50]. We

review the analysis of CFHTLenS and the cosmic shear results achieved in more

detail in Chapter 7.

The lessons learnt from CFHTLenS will be applied to upcoming astronomical

surveys that hope to constrain cosmology through weak lensing, such as KIDS,

DES and Euclid. All these surveys will use multiple astrophysical phenomena

to measure cosmological parameters. KIDS will study dark matter and dark

energy through weak lensing in addition to observing high redshift quasars, galaxy

clusters and studying galaxy evolution. DES will simultaneously use four probes

to better measure dark energy parameters - weak lensing, SNe Ia, BAOs and

galaxy clustering. These probes are complimentary and a comparison of the

results may give us unprecedented information about the dark energy equation

of state. Both KIDS ands DES are considerably larger than CFHTLenS and

represent the beginning of the next generation of wide-field astronomical surveys

that will observe more galaxies for lensing than ever before. Euclid is a space-

based European Space Agency mission due to launch at the end of this decade. It

will be optimised for weak lensing and BAO observations, but will also measure

galaxy clustering, redshift space distortions and the ISW effect, all with a focus

on measuring the accelerated expansion of the Universe to high precision. Some

of the key facts and figures for these surveys are shown in table 2.1.

2.3.7 Weak Lensing Tomography

Tomography is the process of imaging by sections, and in weak lensing analysis

it refers to the binning of data by redshift. Weak lensing tomography is

useful because it recovers some of the statistical information contained in galaxy

redshifts and can improve error estimation on cosmological parameters. Surveys

such as the completed CFHTLenS, and the upcoming KIDS, DES and Euclid

are capable of obtaining photometric redshift estimates for all survey galaxies,

allowing tomographic redshift binning of the data. Tomographic analyses recover

more of the statistical information leading to smaller parameter uncertainties

[82, 125, 126, 127, 128, 129, 130]. In addition, the growth of structure in the

Universe depends on the expansion history, meaning that a redshift-sensitive

analysis can put tighter constraints on the dark energy equation of state in
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2.4. Conclusion

particular [49, 131, 132, 133, 134]. Tomography is particularly useful in wide–

field imaging where most the lensing information is contained within the two

point correlation functions and their corresponding power spectra. This regime

is still largely unexplored, although surveys such as Euclid will change this. Weak

lensing tomography will be discussed further in Chapters 4 & 5.

2.4 Conclusion

Weak gravitational lensing has recently matured into a powerful cosmological

probe in its own right, and measurements of the parameters involved in structure

growth (Ωm, σ8) from lensing become ever more precise. However there exists

a degeneracy between these parameters that may be broken by combining two–

dimensional weak lensing results with other probes such as the CMB, baryon

acoustic oscillations and SNe Ia. To this end, accurate knowledge of the

redshift distribution through photometric redshift measurements is vital. The

degeneracies in weak lensing measurements tend to be orthogonal to those of

other probes, so combining results can lead to very tight cosmological constraints.

The upcoming generation of wide-field lensing surveys promises to better

measure cosmological parameters from lensing than ever before. We will be

able to probe the lensing power spectrum on larger angular scales, extending

measurements into the linear regime of structure formation. Weak lensing is

a very ‘clean’ probe of cosmology that relies on few assumptions, and as a

result the greatest challenge in measuring cosmic shear in the coming years will

be to reduce the systematic errors to below the level of the statistical errors.

Accounting for catastrophic outliers in the photometric redshift distribution,

accurately modelling the PSF, galaxy shape measurement and perhaps most

importantly the intrinsic alignments between galaxies remain the main difficulties

in shear analysis. Performing tomography by separating data into redshift slices

can aid the removal of intrinsic alignments, as well as recovering much of the

shear information contained in the redshift.
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Chapter 3

The Markov Chain Monte Carlo

Algorithm

3.1 Introduction

In this chapter, we discuss a statistical technique based on importance sampling

that was used to conduct the analysis presented in this thesis. Importance

sampling is the name for the general technique of determining the properties

of a distribution by drawing samples from another distribution. On the surface

of it, this seems like a strange thing to do — why would we want to sample from a

distribution that is different to the one under investigation? The answer is that in

many model selection or parameter estimation problems, we do not have a direct

way of determining the properties of the distribution of interest. By drawing from

a sample distribution which is (over a large enough sample size) representative of

the one under investigation, we can directly infer some of its properties.

Importance methods are widely used in statistical analysis because often one

does not have a direct way of determining the properties of the distribution

of interest. This is often the case in parameter estimation or model selection

problems where a Bayesian approach is needed (as is standard practice in

the field of cosmology). There are a multitude of techniques for producing

sample distributions, and one of the most commonly utilised techniques is the

Markov Chain Monte Carlo (MCMC) algorithm. The construction of an MCMC

algorithm is an important part of this thesis, and in this chapter we introduce the

concept of importance sampling by explaining in detail this sampling technique
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in a Bayesian statistical framework. We discuss the advantages of the technique

over traditional grid-based analyses, and highlight some of the considerations

that must go into constructing an MCMC. We mention some of the limitations

of the algorithm and some alternative importance sampling methods that aim to

circumvent some of these problems. Finally, we discuss the implementation of our

MCMC algorithm in preparation for the analysis presented in Chapters 4-7. The

MCMC constructed by the author was used throughout the analysis presented in

this thesis.

3.2 Bayes’ Theorem

The analysis presented in this thesis is based on Bayesian statistics, which holds

Bayes’ theorem central. For some data D with parameter(s) π, Bayes’ theorem

holds that [135, 136]

p(π)L(π) = E P(π). (3.1)

Here p(π) is known as the prior probability, or prior, representing how we

originally distribute the parameters’ probability (p(π) denotes the probability

of π). The prior should not depend on the data set D being investigated; it

characterises our degree of belief in a hypothesis. One must first decide on the

range of the parameters π which then defines a ‘hypothesis space’ over which the

prior probabilities must be distributed, with the only constraint that the sum of

the probabilities is normalised to unity. The choice of prior in a given analysis

is often debated, and is usually influenced by data from earlier experiments or

observations. In the absence of any previous data to inform our choice of prior,

one often uses a ‘flat prior’ — to assign an equal probability to every region of

parameter space.

L(π) = p(D | π) is the likelihood, or probability of the data D occurring

given the parameters π. It is often possible to calculate the data value expected

from known values of π, which allows us to calculate the likelihood of the data

D for any given point in parameter space. The ability to calculate the likelihood

in this way proves extremely useful in importance sampling as we will see in

section 3.4.

The evidence is given by E = p(D) =
∫

p(π)L(π)dπ. This represents how

well the priors managed to predict the data, or the average of the likelihood over
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the whole parameter space [136]. The evidence is the normalising constant in

Bayes’ theorem. It is most useful in the problem of model selection; that is, when

we have two or more models with different parameter sets. This is because the

evidence will be higher for a model if more of its parameter space has a high

likelihood, and lower for a model with large regions of its parameter space having

low likelihood. The evidence allows one to decide which of two models E0 and E1

better fits a given data set (with the assumed priors) through the Bayes factor

[137, 138],

B01 ≡
E0

E1

. (3.2)

The evidence naturally implements Occam’s razor, as simpler models with fewer

parameters will generally have larger evidence than more complicated models.

For the simpler problem of parameter estimation within a model (as is the case

with the analysis presented in this thesis), the evidence does not need to be

calculated explicitly. This is because often we are not interested in the absolute

likelihood of a set of parameters (which E gives us); rather, we are comparing

the goodness-of-fit of different combinations of parameter values with each other.

In this case, only L(π) for each parameter value is needed.

Finally, the posterior probability, or posterior, is given by P(π) = p(π |D).

The posterior represents the inferred distribution of probability among the models

in our parameter space, and it is this distribution that we seek to measure. The

posterior tells us the probability of a parameter set being true given the data

and can be used to determine which models are favoured over others, or which

parameter values are a better fit to the data than others.

These definitions allow us to express the posterior in the presence of any prior

information I as

p(π |DI) =
p(π | I) p(D |πI)

p(D | I)
. (3.3)

The focus of importance sampling is to determine as easily and accurately

as possible the properties of the posterior from a representative sample from a

second distribution. It is worth noting that with a new data set, the identities of

the terms in Bayes’ theorem can shift — for example, the posterior derived from

one data set can be used as the prior for a new data set.
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3.2.1 Using Bayes’ Theorem

Sometimes we may not wish to constrain every parameter in a model at once.

Marginalisation allows us to reduce the number of parameters we are constraining

by ignoring the values of those we are not interested in. For example, if our model

depends on two parameters (x, y) and we are only interested in x, the marginalised

posterior probability for x is [139]

p(π(x) |DI) =

∫ ∞
−∞

p(π(x, y) |DI) dy. (3.4)

The marginalised likelihood can therefore be expressed using some prior informa-

tion about y as

p(π(x) | I) p(D | π(x)I) =

∫ ∞
−∞

p(π(x, y)I) p(D |π(x, y)I) dy. (3.5)

Marginalisation is useful because it allows us to ignore parameters that are

unimportant for a particular analysis. For example, when determining best-fit

galaxy ellipticity parameters (ε1, ε2) we can marginalise over galaxy parameters

such as brightness, position and size. When performing a cosmological analysis,

marginalisation allows us to only fit the cosmological parameters of interest; if our

focus is on fitting Ωm and σ8 we may wish to marginalise over other cosmological

parameters that influence the lensing signal such as the dark energy parameters

w0 and wa [20].

Of particular use in a model-fitting analysis is the χ2 statistic. χ2 is defined

as the sum of the squares of the normalised residuals between some data D(xi)

and model π(xi) [140],

χ2 =
N∑
i=1

(
D(xi)− π(xi)

σi

)2

, (3.6)

where σi are the associated standard deviations assuming the data are indepen-

dent1. The lower the value of χ2, the better a fit to the data a parameter set is

(in the limit of χ2 = 0 for a perfect fit). Calculating χ2 for multiple parameter

combinations and comparing the results is known as least-squares fitting. If the

1If the data are not independent, as is the case for the shear correlation function, χ2 is
modified to include the covariances of the data (see Chapter 4).
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errors σi are Gaussian, χ2 has a known distribution, and it is possible to determine

if the parameters are a good fit to the data using the rule of thumb that a good

fit falls within χ2 = ν ±
√

2ν. ν is the number of degrees of freedom, determined

by ν = p − npar where p is the number of data points and npar is the number of

model parameters being fitted.

χ2 is related to Bayes’ theorem through the likelihood. In the limit of a large

number of observations where the central limit theorem applies2, the likelihood

L(π) = p(D |πI) is related to the χ2 distribution by

ln(L) = −1

2
χ2. (3.7)

Thus, the best fit parameter set (out of those tested) is given by the maximum

likelihood Lmax and credibility intervals around this peak likelihood can be found.

For example, the 68.3% confidence level, corresponding to 1σ errors (for Gaussian

distributed independent data) is assigned a specific ∆χ2 value dependent on ν.

If ν = 1, ∆χ2 = −2ln(L/Lmax) = 1 and for ν = 2, ∆χ2 = 2.3 [141].

Often, χ2 is quoted in terms of the reduced χ2, χ2
red = χ2/ν, which will be

close to unity for a good fit3 and so makes for an easy rule-of-thumb check of

the goodness-of-fit. In a Bayesian framework, however, we are often interested

in not just how good a fit to the data a particular parameter set is: rather, we

are concerned with comparing the goodness-of-fit of different parameter values

with each other. Comparing a single model or parameter value to the data and

accepting it as a good fit based on the fact that χ2
red ∼ 1 can mean that we

erroneously do not consider other values that may be an even better fit. Fitting

many parameter values to the data and drawing confidence limits around the best

fit ensures that we take into account inherent statistical uncertainty in the data.

The χ2 statistic has the advantages of being simple, easy to calculate from

data and relatable to the posterior distribution through the likelihood. It is the

statistic we choose to use in this thesis for sampling the posterior distribution

and determining confidence limits throughout. In the next section, we discuss

2The central limit theorem states that a sufficiently large number N of measurements of
an independent random variable (with finite mean and variance σ2) will tend to be normally
distributed about the expectation value for the mean with variance σ2/N .

3This is not the case for correlated data, where the effective number of degrees of freedom is
modified. In the presence of correlated data, absolute χ2 values are less useful but a Bayesian
model/parameter comparison can be employed to obtain constraints.
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Figure 3.1: Discrete, grid-based sampling of points in parameter space of x and
y. The blue crosses represent coordinates in the parameter space at which we
perform a least-squares fit to the data.

several algorithms constructed for this purpose.

3.3 Grid-based Analyses

For a given hypothesis or parameter space, the most obvious way to probe the

posterior distribution is to use a grid–based approach to calculating the likelihood.

Here, one calculates the likelihood of the data at discrete, evenly–spaced points in

the parameter space as shown in Figure 3.1 for the two–dimensional parameter

space of x and y. Although we have chosen to vary two parameters in this

example for ease of visual representation, in principle there is no constraint on

the number of dimensions in the analysis. We compare the theoretical prediction

of the measurement for a given set of model parameters (x1, y1) with the data

D to find the likelihood at point (x1, y1) and repeat for all points through to

(xn, yn). This will give an idea of the location of the best fit solution and the

shape and position of the likelihood contours.

This is a simple way to estimate the posterior, but it has some serious flaws.

The main problem with this method is that the number of grid points needed

scales exponentially with the number of dimensions (assuming we sample each

dimension the same number of times, i.e. n is constant for all parameters) and

computation times quickly become prohibitive. A further issue is the nature of

gridding itself — how does one decide where to sample the likelihood, and how
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finely spaced should the grid points be? We run the risk of missing peaks in the

likelihood or fine detail in the likelihood surface if it lies between grid points.

The gridded likelihood calculation by its nature samples all of the parameter

space evenly, meaning much of our computing resources are wasted probing low

likelihood regions of the parameter space. Statisticians thus need a tool to help

them sample multi–dimensional parameter spaces efficiently while building up a

faithful representation of the posterior. Importance sampling provides this tool.

In order to understand how importance sampling works, its advantages and its

limitations, in the next section we will consider one of the most widely–used

examples of the technique: the Metropolis–Hastings MCMC.

3.4 The Metropolis-Hastings MCMC Algorithm

A Metropolis-Hastings MCMC algorithm was constructed by the author for use

throughout this thesis. The Metropolis-Hastings MCMC is a simple yet powerful

method for importance sampling. In this section we will detail the construction

of the Metropolis-Hastings MCMC algorithm, highlighting some of the key issues

that need to be considered in its use. We will use ‘MCMC’ as shorthand for

Metropolis-Hastings MCMC throughout.

Returning to our (x, y) parameter space that we considered when discussing

a gridded likelihood analysis, we define a starting point for our algorithm. For

simplicity, we choose a starting point π1 = π(x1, y1) randomly anywhere within

our (x, y) parameter space, as shown on the left of Figure 3.2.

We calculate the likelihood of this point in parameter space, then step to a new

point, π2. This is done by drawing from a proposal distribution around π1 and

using a random number generator to select a position in the x and y directions for

the new point. For simplicity, it is possible to use a tophat distribution defined

by lengths ∆πx and ∆πy as shown in Figure 3.2 (middle). The size of the box is

decided by the user, and is something that can (and should) be optimised to make

the MCMC converge as quickly as possible. We discuss a technique for finding an

efficient proposal distribution in section 3.4.3. For now, we choose a box size that

is considerably smaller than our parameter space but not prohibitively small.

We then perform the crucial step in the MCMC – we either accept or reject

the new point. This is done by calculating the ratio of the likelihoods of π1 and π2,
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Figure 3.2: Left : The red cross defines the starting point π1 in (x, y) parameter
space. Middle: Stepping randomly from π1 to π2 within the tophat proposal
distribution defined by ∆πx and ∆πy. Right: Stepping from π2 to π3. The
proposal distribution has shifted so that it is centred around the most recently
accepted point.

such that if the new point has a higher likelihood than the old it will be accepted

with a probability of 1, otherwise the probability of the point being accepted is

equal to the ratio of the likelihoods. Formally this means that

P (πi, πi+1) = min

{
1,
L(πi+1)q(πi+1, πi)

L(πi)q(πi, πi+1)

}
(3.8)

where q(πi, πi+1) is the proposal density distribution. For the algorithm to be

Markovian we require that the proposal distribution does not change from one

iteration to the next (otherwise the output distribution will not accurately sample

the posterior) so q(πi, πi+1) = q(πi+1, πi) and therefore

P (πi, πi+1) = min

{
1,
L(πi+1)

L(πi)

}
. (3.9)

It is this selection criterion that gives the Metropolis-Hastings algorithm its name.

If π2 is rejected, then the chain moves back to π1 and selects another point within

the proposal distribution at random, calculates the new likelihood and applies

the selection criterion again and again until a point π2 is accepted. Then the

algorithm uses π2 as its new starting point and selects another point π3 in the

chain from the proposal distribution centred around π2, as shown in the right

hand side of Figure 3.2.
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The ‘Markov Chain’ in MCMC refers to this stepping behaviour; the steps

should be discrete and random in addition to the proposal distribution q(πi) being

a function of current position πi only. The ratio of points accepted vs. points

tried gives us our acceptance rate. If we are running a chain of n (accepted)

points, a higher acceptance rate will take us to our nth point faster. For example,

an acceptance rate of 50% means that we will have to perform 2n iterations to

achieve a total chain of length n. A flowchart summarising the steps taken by

the MCMC algorithm is shown in Fig. 3.3.

The MCMC proceeds in this way until we have built up a collection of points

in the parameter space that are sufficient to be used in a likelihood analysis (see

Figure 3.4 (left)). This is possible because of the elegant fact that the density

of points in a given region of parameter space is directly proportional to the

likelihood of that region, thanks the Metropolis-Hastings selection criterion. This

ensures that the MCMC is by nature ergodic, meaning that any state (point

in parameter space) is eventually reachable from any other with a probability

of greater than zero. Ergodicity is important because we need to do more

than just find the ‘best fit’ solution — we need to sample the area around the

likelihood peak(s) to accurately represent all of the posterior. Thus in principle

all of parameter space can be reached and the distribution of our MCMC points

should approximate the posterior distribution we are seeking. There are several

methods for drawing likelihood contours from the posterior, including using

standard χ2 values to determine contours, however one of the simplest and most

reliable ways is to bin the samples on a grid to produce a 2D histogram, and

draw contours around the grid points that contain the top (for example) 68.3%

and 95.4% of points to produce the standard 68.3% and 95.4% contours (see

Figure 3.4 (right)). This method works well assuming that the distribution of

points faithfully reproduces the posterior distribution. In order for this to be the

case, however, there are some additional checks that must be performed.

3.4.1 Convergence

To ensure that our MCMC chain is both robust and accurate, it must be

convergent. This means that the chain has been run long enough to generate a
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N = 1

N > 1

if N = Nmcmc

Exit

Add point to chain, increment N

accept

Add point to chain, increment N

accept

Pick starting point   

Pick new point from proposal distribution

reject (do not 
increment N)

Calculate        

Calculate               

Metropolis-Hasting Criterion:

if N < Nmcmc

Figure 3.3: Flowchart showing the steps taken by an MCMC algorithm as it steps
through the parameter space π. N indicates the current point in the chain, where
N = 1...NMCMC and NMCMC is the total number of desired points in the chain.
The first point (N = 1) is always accepted.
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Figure 3.4: Left : A chain of n points in parameter space from MCMC. Right :
Sketch of example likelihood contours from MCMC points.

distribution of independent points that closely match the posterior distribution.

There is however no single conclusive test that can be run on the results of an

MCMC that will tell us if we have achieved convergence, as it is a feature that is

asymptotically reached. One easy test that we can perform is to run multiple

chains, each with different random starting points, and compare the results.

The variance between the chains should be much smaller than the posterior

uncertainty on our measured parameter(s). This idea has been formalised in

the form of the Gelman-Rubin statistic R ≡ (variance between chains)/(mean

variance within the chains). Typically, R should be as close to 1 as possible;

preferably R < 1.03 [142, 143]. MCMC chains will take some time to ‘burn-in’

(see next section) so the Gelman-Rubin test is commonly performed on the last

half of the points in the chain. Alternatively, we can apply a Gelman-Rubin test

to a single chain by splitting up the chain and applying the statistic to each part.

One can also calculate the correlations between points in the chain as a function

of chain length. The distance over which the correlations between parameters

drops to 1/e gives a measure of the correlation length, which should be shorter

than the chain length if convergence is to be achieved.

The number of chains needed for stability and convergence is not set in stone.

It is possible to have several short chains or one long chain, as long as either

method can pass convergence tests. Ideally, we would run both a very long chain

and several shorter ones for the same data set and check that both methods give

equally reliable results.
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Figure 3.5: Example results from MCMC chain for a parameter x. The burn-in
can be clearly seen in the first ∼ 200 iterations [144].

3.4.2 Burn-in

MCMC chains typically suffer from a ‘burn-in’ at the start of the chain during

which the points will not trace the posterior distribution well. This is due to the

random nature of the starting point; there is a high chance that the chain will

start far from the peak of the likelihood and the first nb points in the chain will

be over–representing a region of lower likelihood. Furthermore, these early points

will be correlated (and therefore not independent), as the value of one point will

strongly affect the value of the next as they converge towards high likelihood

values. For this reason, it is common practice to discard these nb points from our

chain(s) to ensure that they do not bias our likelihood analysis. The question

remains as to how large nb should be made to safely ensure no contamination

from burn-in. nb may be as high as half the entire chain length, but often a

much shorter burn-in will suffice. Visual inspection of the data can give us strong

clues as to how much burn-in needs to be taken into account. For example, in

Figure 3.5 the chain begins to obviously converge on a value of x after about

200 iterations. Finding the optimum burn-in length may therefore require some

experimentation.
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It is also possible to set up an MCMC to have no burn-in. If we know

approximately where the peak of the likelihood surface is (either from knowledge

of priors from other data sets or from running a short MCMC ‘test chain’ to

determine the location of the peak first) then we can legitimately select a starting

point by centering our proposal distribution on the peak and selecting the first

point randomly from this [144].

3.4.3 The Proposal Distribution

In our example above we used a simple tophat proposal distribution, and

intuitively guessed an appropriate size for it from which to draw our points.

However, when testing an MCMC one soon discovers that the acceptance rate of

the algorithm is strongly dependent on the choice of proposal distribution and

hence there is much room for optimisation. We find that the optimal proposal

distribution is one which closely matches the posterior distribution [145, 136].

Why should this be so? Consider a situation in which we are investigating

two parameters that happen to be highly correlated. There may be a strong

degeneracy along a certain axis in parameter space, such as that between Ωm and

σ8 as shown in Figure 3.6 (left). Drawing a tophat distribution around a point in

the chain will make it hard for the MCMC to step away from this point, as the

probability that it will attempt to step to an area of lower likelihood is high. If we

are able to select a proposal distribution that closely follows the posterior in size,

shape and orientation (in this case, a bivariate Gaussian), this makes it much

easier to step to a new point with high likelihood, thus increasing the acceptance

rate of the algorithm (see Figure 3.6 (right)).

The size of our proposal distribution influences both the acceptance rate and

the ease with which a chain converges. A very small proposal distribution will only

allow the chain to make tiny steps, which means that although the acceptance

rate will be high as nearby points have very similar likelihood values, the chain

will take many iterations to explore the parameter space. Hence the chain will

take a long time to converge. Conversely, a very large proposal distribution will

allow the chain to step easily into different regions of the parameter space, but

as soon as the chain finds a point of high likelihood stepping away from it will

become very difficult. If L(πi) is relatively high and πi+1 is located far from

πi, then L(πi+1) will often be much lower than L(πi) and hence the new point
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Figure 3.6: Left : A tophat proposal distribution gives a poor acceptance rate
for the Ωm–σ8 degeneracy from weak lensing (Likelihood contours from [124]).
Right : A bivariate Gaussian distribution results in fewer rejections.

is unlikely to be accepted. Such a chain will therefore also take a long time to

run to convergence due to a lowered acceptance ratio. The optimum proposal

distribution size is something that must be determined by experimentation. It

is worth noting that since the choice of proposal distribution only influences the

acceptance rate, it does not bias the posterior in any way as long as the MCMC

is convergent.

If we are confident in our choice of priors and know the expected posterior,

it is easy to come up with an adequate proposal distribution. Otherwise, we can

run a short chain using a tophat distribution and use the posterior from this to

produce our improved proposal distribution for a much longer, convergent run.

The proposal distribution itself is often optimised in the form of a (multivariate)

Gaussian found from principal component analysis (PCA)4 of the posterior. A

Gaussian proposal distribution is often a good first order approximation to the

posterior, but is not always appropriate and in some cases exploration of the

parameter space may still be very slow.

4PCA is the procedure by which a set of correlated observations are converted into a set
of linearly uncorrelated variables using an orthonormal transformation. For an explanation of
principal component analysis, see for example [146] or §3.6.1.
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3.4.4 Priors

As we have thus far taken a Bayesian approach to importance sampling, our

investigation of the MCMC algorithm would not be complete without a word

about priors. For clarification, the priors chosen on x and y in Figures 3.2-3.4 are

simply flat and limited by the edges of the parameter space. As stated earlier,

this is a common starting point in parameter estimation if no other information

is known. The edges of the parameter space may be constrained by limitations

in simulations, or bound a region that encompasses all physical solutions.

Often, we may be attempting to constrain parameters x and y while at the

same time marginalising over other ‘nuisance’ parameters. For example we may

be interested only in constraining Ωm and σ8, but these depend on the values

of other cosmological parameters such as the dimensionless Hubble constant h0.

In this case, there are two possible courses of action. One is to let h0 vary

along with Ωm and σ8 and then simply ignore the values of h0 when plotting

our likelihood contours - this is marginalisation as describe in § 3.2.1. The other

is to set a prior on the nuisance parameter(s), if possible, from previous data

analyses. In this case, we might decide that h0 has already been well constrained

and assume a value of 0.738 (as in [12]). However, there will most likely be

very few accepted samples in our chain for which h0 = 0.71 precisely, and it

may be better practice to use a narrow prior of 0.730 < h0 < 0.745 instead.

This is equivalent to assigning a tophat distribution to h0 over a very small

region of parameter space. A more sophisticated approach would be to use

the Gaussian error on h0 of ±0.024 [12] instead of a top hat. One could use

full, non-Gaussian and covariant errors from WMAP on all the parameters being

constrained. Constraining nuisance parameters using priors will lead to tighter

constraints in our likelihood analysis, however we must be confident in our choice

of priors to ensure we are not sacrificing accuracy for false precision.

3.4.5 Caveats

While the number of points needed in a grid-based likelihood analysis scales

exponentially with dimension number, chain lengths required for convergence in

MCMC scale, at best, linearly with dimension number. This is assuming we have

an optimised proposal distribution; in reality the scaling will be somewhat worse.
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Despite its advantages over a grid-based approach, MCMC can be very slow to

converge for high dimensions. In addition, as we have already stated MCMC is

not robust to the choice of proposal distribution and this can further lengthen

the time taken to reach convergence.

Another limitation of the MCMC is its difficulty in both probing long tails of a

posterior and in dealing with multi-peaked distributions; although the Metropolis-

Hastings selection criterion is designed to allow the chain to pass through areas

of low likelihood, in practise the MCMC does not sample multiple peaks well.

A chain that does not happily sample the full posterior is said to be poorly

mixing. One possible solution to a poorly mixing chain is to run multiple chains,

each starting in different regions of parameter space in the hope that they will

collectively sample all the peaks and regions of the likelihood surface.

Despite its limitations, the Metropolis-Hastings MCMC is a powerful statis-

tical tool if used correctly. For this reason, we chose to construct and implement

an MCMC in order to perform the statistical analyses presented in Chapters 4-7.

A variety of other methods and algorithms exist, however, in order to overcome

some of the limitations of MCMC, and we will briefly mention some of these in

the next section.

3.5 Alternative Sampling Methods

In this section we briefly mention some other importance sampling methods that

are used in astronomy today, since the MCMC is not the only useful algorithm

for finding posterior distributions. We mention some of their strengths, as well

as explaining why we choose not to implement them over the MCMC algorithm.

3.5.1 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo, or Hybrid Monte Carlo (HMC) is a Monte Carlo

algorithm that addresses the low efficiency of the MCMC in high dimensions

and its low acceptance rate. In this method, each chain position xi is randomly

assigned a momentum ui, and we define a potential energy

U(x) = −lnP(x) (3.10)
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where P(x) is the posterior or target distribution we are attempting to sample

from [147]. As before, we approximate the form of P(x) with our proposal

distribution, which may be found in advance from, for example, running a short

MCMC chain and performing a principal component analysis on the resulting

cloud of points as described in section 3.4.3. We can then define the Quantum

Mechanical Hamiltonian, H(x,u) = U(x) + K(u) where K(u) = uTu/2 is

the kinetic energy. This is then used to draw samples from an extended target

distribution P(x,u) ∝ exp(−H(x,u)). With our assigned momentum vector,

we then follow a trajectory in (x,u) phase space, keeping H(x,u) constant. The

time evolution of the system is governed by the Hamiltonian equations of motion

ẋi = ui (3.11)

u̇i = −∂H
∂xi

.

In practise the algorithm proceeds by leap–frogging through a series of finite

steps in time. One can visualise the likelihood surface of the posterior as a

potential well, such that the higher the likelihood value at a given point, the

deeper the potential as given by Eqn. (3.10). The time evolution of the algorithm

takes it through a region of constant H(x,u) within that surface until a new point

in the chain is reached. Then a new, random momentum is assigned and the chain

proceeds on another path through phase space to ensure the chain does not get

trapped in an ellipse of constant H(x,u). In essence, the HMC is an MCMC with

a different proposal distribution and a phase space of 2npar dimensions instead

of npar due to the presence of the momentum term. To obtain the posterior

P(x) after a chain has been run, one simply marginalises over the momentum

coordinates in P(x,u) to obtain our desired real–space posterior P(x).

The HMC has the advantage that because the total energy of the system

H(x,u) is kept almost constant then for two points in the chain, the likelihoods

L(xi) and L(xi+1) will be almost identical and the acceptance ratio will be close to

one. The energy is not perfectly conserved from point to point, however, because

of the inexact, numerical nature of the leap–frogging behaviour. Conserving

H(x,u) also depends on having a full knowledge of the posterior, which is

what we are trying to measure with an approximation (the prior distribution).

Because the HMC can take relatively large step sizes in parameter space with a
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high acceptance rate, it can sample the space effectively and without doubling

back on itself as the MCMC does due to its random walk nature. Finally,

the efficiency of the HMC also scales well with dimension number, so it may

be well suited to multi–dimensional analysis. Although HMC is a promising

algorithm for importance sampling, the MCMC is simpler to implement and

optimise. Additionally, the parameter space we explore is only 3-dimensional

and the posterior distribution of the parameters we investigate single-peaked (see

§3.6), meaning that MCMC should perform well.

3.5.2 Population Monte Carlo

Population Monte Carlo (PMC) is an adaptive sampling technique that is growing

in popularity in the field of cosmology. In PMC, one chooses a sequence of

samples from a sequence of importance functions that progressively approximate

the posterior [148, 149]. An initial importance function q1 is chosen, and

a sample of points x1
1...x

1
n are generated within this importance function in

the parameter space. Next, corresponding importance weights w1
1...w

1
n are

assigned to the points based on their relative likelihood values. Finally, the

process starts again with the importance function q2 updated based on the

previous weighted sample until some stopping criterion is reached. PMC has

the advantage that is is easily parallelisable because many separate importance

functions can be generated independently at the same time and their outputs

combined. There is a publicly-available version of PMC called CosmoPMC5 [150]

that is in use by the CFHTLenS collaboration. PMC is a very new sampling

method that was not widely available when this thesis was started, so we do not

implement it. In addition, the choice of initial importance function(s) is critical in

producing convergent, well behaved chains, and research is still being conducted

to determine the optimal choice of importance functions for different cosmological

problems [150].

3.5.3 Nested Sampling

Nested sampling is a relatively new algorithm [136] and proceeds by generating

an array of n points (π1, π2, ..., πn) in the parameter space. The likelihood of each

5Martin Kilbinger, http://www2.iap.fr/users/kilbinge/CosmoPMC/.
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point is calculated, and the point with the lowest likelihood L(πi) is discarded.

Then, a new point π′i is generated by taking a random step from one of the

other points and is accepted iff L(π′i) is equal to or greater than the likelihood

of the discarded point. This ensures that over repeated iterations, the likelihood

contours from the n points move progressively inwards towards the peak of the

likelihood (hence the name). One calculates the cumulative evidence after each

iteration until some stopping criterion has been reached, then the posterior is

estimated by weighting each point according to its likelihood width (the width is

determined by the distance from a point’s nearest neighbour). Nested sampling is

a robust technique that copes well with ‘difficult’ posteriors, such as multi–peaked

or highly correlated distributions. It can be slow, however, especially with high

dimensions, so we choose not to implement this method in our analysis [151].

3.5.4 Simulated Annealing

‘Simulated Annealing’ is so named because of the parallel between the way in

which a metal cools and freezes into a minimum energy E crystalline structure

(the annealing process) and the search for a minimum in a system such as

our parameter space. By analogy, L = exp (−E). For a given energy and

‘temperature’, T , a perturbation is added and the change in energy calculated. If

the change in energy is negative, the new configuration is accepted; if it is positive,

it is accepted with a probability given by the Boltzmann factor exp (−dE/T ).

This process is repeated for multiple sampling points, then the temperature is

reduced and the process repeated until T = 0 is reached and the system has the

minimum possible energy (and hence the highest possible likelihood). Simulated

annealing has the advantage that it is good at avoiding become trapped on local

minima (likelihood peaks) due to the selection criterion. However, simulated

annealing cannot cope with log-likelihood surfaces that are not concave in shape

as the evidence cannot be calculated (an example of a concave surface is a

Gaussian) [136], meaning that one must know a priori about the shape of the

likelihood surface. For this reason, we do not use simulated annealing in our

analysis.
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3.6 Implementation

A key part of this thesis was the construction of an MCMC algorithm. As we

shall see in Chapters 6 & 7, our analysis involved the simultaneous measurement

of three parameters at once - Ωm, σ8, and the amplitude of a galaxy alignment

model used to model the intrinsic alignment signal, A, which will be described

in Chapter 5. We choose to constrain the cosmological parameters Ωm and σ8

because cosmic shear measurements are able to more precisely constrain this

parameter combination than any other, and it is likely that most future cosmic

shear analyses will investigate this joint constraint. The intrinsic alignment model

parameter is fitted in order to investigate the constraining power a CFHTLenS-

like survey will have on the amplitude of the intrinsic alignment signal, which is

an important step towards successfully accounting for this systematic. Since it

is only weakly dependent on cosmology, the inclusion of A does not significantly

degrade the constraints on Ωm and σ8. Preliminary analysis of the CFHTLenS-

like simulations described in Chapters 4 & 5 showed that there is very little

constraining power present on the Hubble parameter h0 or the dark energy

equation of state parameters, w0 and wa. Including these parameters in the

likelihood analysis would therefore add very little cosmological information at

the cost of longer run times to convergence and a loss of constraining power on

Ωm and σ8. For this reason, we do not include these parameters in our likelihood

analysis. To constrain the chosen parameters, an MCMC algorithm was written,

implemented and optimised. We perform this analysis on simulated cosmic shear

fields binned into different combinations of tomographic and angular bin numbers.

To obtain χ2 values for different models the input data were compared

with theoretical predictions of the shear correlation functions from the publicly-

available NICAEA code6. We apply a tophat prior to limit the parameter space.

The dimensions of the parameter space were set by the ranges over which NICAEA

had been tested and was known to predict the lensing signal accurately. A

significant amount of the posterior lies outside the observable parameter space

for some parameters, meaning that the MCMC attempts to step outside the

parameter space sometimes. This was dealt with by forcing the chain to reject any

points that lie outside the parameter space. These rejections were not included

in calculations of the acceptance ratio, as they are not failures of the Metropolis-

6Martin Kilbinger, http://www2.iap.fr/users/kilbinge/nicaea/.
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Hastings criterion. Simply rejecting points at the edges of the parameter space

in this way had no noticeable effect on the posterior distribution, meaning that

this treatment did not bias the analysis.

When analysing simulated data in Chapter 6, we negated the need for a burn-

in by selecting the first point in the chain from a proposal distribution centred

around the input cosmology of the simulations, which is known exactly.

3.6.1 Proposal Distribution

Our proposal distribution is determined using PCA. First, a short chain of ∼ 104

points was run using a tophat proposal distribution for each tomographic bin

combination nz (in this thesis we use 1 ≤ nz ≤ 15, see Chapter 4). From this,

the shape of the posterior is apparent as can be seen in the top part of Fig. 3.7

for the (Ωm, σ8) plane. Next, we select all points within χ2 = χ2
min + ∆χ2.

Since the likelihood contours are often degenerate, particularly in the case of the

(Ωm, σ8) plane, the value of ∆χ2 is chosen such that as many points are selected as

possible while the likelihood surface in the region looks approximately Gaussian

(close to the peak of the likelihood, the degeneracy is less obvious and an array

of points drawn from this region will tend to look more elliptical than those

drawn from the whole likelihood surface). From experimentation, for nz = 1 we

choose an optimal (unreduced) ∆χ2 of 0.25. The choice of ∆χ2 is based on the

shape of the posterior in the (Ωm, σ8) plane because the joint constraint on these

parameters is the tightest and also the most degenerate and hence non-Gaussian.

Therefore our choice of ∆χ2 is limited by the behaviour of these parameters.

The bottom part of Fig. 3.7 shows the points from the trial chain that lie above

χ2 = χ2
min + ∆χ2. Due to the strong degeneracy, even with such a small number

of points the likelihood surface is already beginning to look non-Gaussian and

we cannot raise the value of ∆χ2 further. We focus on the Ωm-σ8 contour when

optimising the proposal distribution because these parameters are correlated and

hence more non-Gaussian than the Ωm-A or σ8-A contours, and the optimal ∆χ2

value will be most sensitive to this combination.

Performing PCA on the array of points produces a rotation matrix that maps

the multivariate Gaussian onto the axes of the parameter space, and a set of

variances σ2
i that characterise it. This constitutes the Gaussianised proposal

distribution used throughout; to implement it, for each dimension i of the
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3.6. Implementation

Figure 3.7: Top: Positions of accepted points from a trial MCMC chain (with
nz = 1 and nθ = 6) of length ∼ 104 points in the (Ωm, σ8) plane. Bottom:
Approximately 300 points lying within χ2 = χ2

min + 0.25. The input cosmology is
shown with a pink cross in both plots.
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parameter space we select a random number from a Gaussian with variance σ2
i ,

and multiply this array of random numbers by the rotation matrix R. The

vector πmap has length i and contains the i-dimensional position of a random

point selected from the multivariate Gaussian. Thus for a point n in the chain

where n = 1...nchain we can define a new vector π,

[π]n = [Rπmap]n , (3.12)

which represents the position of the random point in the true parameter space.

In Fig. 3.8 (top) we examine the proposal distribution determined from PCA of

the trial chain in Fig. 3.7 by plotting nchain = 5 x 104 random numbers with zero

mean and variances σ2
i . Only two dimensions are shown; (π1, π2) maps to (Ωm,

σ8) once they are rotated by R, as shown in Fig. 3.8 (bottom). The rotated array

of points is a covariant Gaussian that resembles the distribution of points below

χ2 = χ2
min + 0.25 in Fig. 3.7 (bottom) in both orientation and scale, as expected.

The size of the proposal distribution can be altered by scaling the variances,

affecting the acceptance ratio; we find a strong dependence of the acceptance

rate on the number of tomographic bins being utilised due to the fact that the

credibility intervals shrink for higher bin tomography. This was dealt with by

running trial chains for every nz and producing unique proposal distributions

and variances for each, ensuring the acceptance rate is approximately constant

with nz. We choose not to repeat this for every potential combination of angular

bins in the analysis as the size of the contours is much less sensitive to changes

in the angular bin number than to changes in tomographic bin number, an effect

we investigate in Chapter 6.

3.6.2 Comparison with Population Monte Carlo

The MCMC algorithm developed for use in this thesis was tested on simulated

data from the CFHTLenS clone simulations7. For a 2-bin tomographic analysis

spanning 0.0 < z < 2.0 and ΛCDM cosmology, we perform a likelihood analysis

and obtain credibility intervals for Ωm and σ8. We compare our result to the

result from using a PMC algorithm in Fig. 3.9. Our results show good agreement

7The CFHTLenS clone is a set of ray-tracing simulations used by the CFHTLenS
collaboration for calibrating lensing analyses which we describe in detail in §4.2.
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3.6. Implementation

Figure 3.8: Top: 5 x 104 random numbers generated with zero mean and variances
σ2
i determined from PCA performed on the chain from Fig. 3.7. Plotted are

the relative positions of the points in 2 dimensions which we denote π1 and π2.
Bottom: The same array of points after each point has been rotated by R. The
points now correspond to relative positions in the (Ωm, σ8) plane.
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with PMC (although the contours do not exactly match due to the difference in

the sampling methods used). Both the 68.3% and 95.4% confidence intervals are

of a similar width and height from both analyses, although the PMC constraints

are slightly broader. This may be due to one or both chains showing a lack of

convergence, or differences in the method used to draw the confidence intervals

(e.g. the points have been binned on grids of slightly different resolution, see

§3.4). The contours from both analyses are centred around the same region,

indicating that neither analysis is biased. h0 was also allowed to vary but we

find little constraining power is present in the data set for this parameter, in

agreement with the PMC analysis, so we do not show it here.

3.7 Conclusion

In this chapter, we have introduced the concept of importance sampling

and illustrated its significance in Bayesian model selection and parameter

estimation. Importance sampling methods offer significant advantages over grid–

based analyses due primarily to their vastly improved computing times. By

describing the individual steps that make up one of the simplest and most widely-

used importance sampling methods, the Metropolis-Hastings MCMC, we have

highlighted the importance of one’s choice of priors and proposal distribution

and how it applies to the work presented in this thesis. We have introduced a

range of other sampling methods used in cosmology, and explained our choice of

the MCMC in light of these. We have detailed the construction of our MCMC

algorithm for use in this thesis. We have described the steps taken to optimise

the proposal distribution, leading to substantial gains in efficiency and computing

time in preparation for our analysis in Chapters 4-7. With a well-tested sampling

algorithm in place, we are prepared to analyse both simulated and real cosmic

shear data efficiently and accurately.
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3.7. Conclusion

Figure 3.9: Top: 68.3%, 95.4% and 99.0% likelihood contours from the MCMC
algorithm for a 2-bin tomographic analysis of simulated shear data from the
CFHTLenS clone simulations. Bottom: 68.3% and 95.4% likelihood contours
from PMC (courtesy of Fergus Simpson, IfA, University of Edinburgh).
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Chapter 4

Shear Covariance Matrices for

Tomography

4.1 Introduction

Weak lensing tomography was first investigated by [126] who utilised power

spectra to show that two or three bin tomography can recover most of the

cosmological information in a data set. The optimisation of tomographic analysis

of cosmic shear was investigated by [152] who found that parameter uncertainties

are reduced by a factor of up to 10 by binning the data into 4 redshift bins,

with the dark energy density parameter ΩΛ gaining the most. This is due to

the fact that dark energy influences the expansion rate and the growth rate over

time, so retaining redshift information allows us to constrain its behaviour at

different epochs. Tomographic techniques have been successfully applied to real

data utilising up to 6 tomographic bins and have been shown to produce tighter

parameter constraints than 2D analyses [153, 154, 155, 156]. We postpone a more

in-depth review of the most recent tomographic lensing results until Chapter 5,

where we discuss the authors’ treatment of intrinsic alignments and photo-zs and

compare their analysis techniques to the analysis presented in this thesis.

Different redshift bins will be correlated with each other, as the light from

all bins will pass through some common material. Thus to use tomographic

information most effectively, it is essential to measure the cross–correlations

between redshift bins as well as the shear correlations within each bin [85]. The

number and size of redshift bins needed for optimal tomography is limited by
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several factors. The first is shot noise — once the number of galaxies in a bin falls

to the level of the noise, depending on the statistic used there will be no further

gain from subdivision once the shot noise is reached. Additionally, redshift bins

cannot be narrower than the typical error on the photometric redshift estimates

of the survey objects. [126] found that the use of even just two redshift bins

means that much of the statistical information contained in the galaxy redshifts

is recovered and the errors on cosmological parameter estimates are improved by

up to a factor of twenty, which shows how powerful a tomographic approach can

be. This improvement is only possible, however, in the absence of IAs, and [157]

found that when IAs are included in tomographic analysis, the number of redshift

bins required to recover the full information available must be at least doubled.

We discuss and investigate the effect of IAs in Chapters 5 & 6.

Uncertainties in the redshifts of survey galaxies can be a source of systematic

error in tomographic lensing analysis. It is not normally possible to obtain highly

accurate spectroscopic redshift measurements for all galaxies in large surveys.

Instead, easy-to-obtain photometric redshifts are estimated for all survey galaxies,

and these may be either calibrated to a training set of spectroscopic redshifts

or fitted to a template-fitting algorithm to correct for bias and scatter in the

photo-z distribution [158]. Photo-z measurements have some scatter and are

also subject to ‘catastrophic outliers’ whereby the redshift of a galaxy can be

seriously misestimated due to degeneracies in the fit to spectroscopic redshifts

(for a review, see e.g. [159]). The presence of these types of errors in the

photo-z distribution, particularly if poorly accounted for, degrades parameter

estimates from weak lensing tomography [160, 161]. These uncertainties may arise

because the spectroscopic sample used to calibrate photo-z errors is incomplete

and unrepresentative, or because of inaccuracies in photo-z template algorithms.

4.1.1 The covariance matrix of the two-point shear corre-

lation function

Often, the limiting factor that determines the number of tomographic bins

possible in a lensing analysis is the behaviour of the covariance of the data.

This is because the nonlinear nature of the density field on small scales tends

to correlate modes that would otherwise be independent [162, 163]. This effect

manifests itself through statistics such as the shear power spectrum becoming
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highly correlated, meaning that the amplitude of the signal at one angular scale

depends on the amplitude of the signal at all other angular scales. Since lensing

data are typically highly correlated over the scales of interest, it is necessary to

construct a covariance matrix of the data to take these correlations into account in

a likelihood analysis. To perform a likelihood analysis, we require an estimate of

the inverse of the covariance matrix. Failure to account for correlations through

the off-diagonal terms of the covariance matrix and its inverse means that we

will appear to have more constraining power than is actually present, which can

lead to spuriously precise parameter constraints and biases in best-fit parameter

estimates.

When we split the data into tomographic bins, we introduce additional

correlations into the data vector. Not only will the signal at different angular

scales be correlated, but the signal at different redshifts will be correlated too.

This means we must be very careful when implementing a high number of

tomographic bins to ensure we have a well-behaved, non-singular and hence

invertible estimate of the covariance matrix with which to perform a likelihood

analysis.

[116] derive analytical expressions for the covariance matrices of several weak

lensing estimators for contiguous surveys with known mean redshift that can

in principle be calculated directly from the data. However, these expressions

assume gaussianity of the signal and underestimate the power on small scales.

An alternative, easy-to-implement approach is to measure an estimate of the

covariance from multiple realisations of simulated data [152, 164]. This approach

has the advantages of naturally accounting for cross-bin terms and is independent

of survey configuration, and hence more easily applicable to real data. It is also

possible to account for the full non-Gaussian covariance on small scales using

simulations. Ideally, one generates as many realisations of simulated lensing data

as computationally viable, using inputs (such as cosmological parameters and

redshift distribution) that are as closely matched to the real data as possible

to reduce the chance of biasing the covariance. Using multiple simulated lines

of sight results in a more stable estimate of the covariance than using the real

data, as we can often simulate a much larger area than the data covers, reducing

statistical uncertainties. This is the approach we use in this thesis.

The cosmic shear covariance can be decomposed into two parts: a statistical
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shot noise part (due to the uncertainty in galaxy shape measurements), and a

sampling variance part (due to the uncertainty in a data set that comes from only

sampling a small fraction of the Universe). The sampling variance contribution is

significant only on large scales; on small scales the shot noise term dominates. For

the shear correlation covariance, the statistical noise contribution comes mainly

from the intrinsic galaxy ellipticity distribution and is a consequence of the fact

that we cannot separate the cosmic shear and intrinsic ellipticity components of

an individual galaxy’s observed shape. We investigate the effect of galaxy shape

noise on the covariance in Chapter 5; in this chapter we concern ourselves with

the sampling variance term of the covariance matrix.

In this chapter, we construct estimators of the shear correlation function

covariance from tomographic weak lensing simulations. We investigate the effect

of varying the number of realisations of the simulations and the number of

tomographic bins on the stability and reliability of the covariance matrix. We

determine how many tomographic bins will be obtainable for a CFHTLenS-like

survey based on the covariance of the shear signal, and attempt to implement

and improve a fitting formula with the aim of increasing the number of viable

tomographic bins. This work is important because upcoming lensing surveys are

larger than ever before (see Chapter 2), and statistical errors on cosmic shear

measurements will be very small. Improper treatment of the covariance matrix

can result in imprecise and biased cosmological parameter estimates. We do not

want our estimator of the covariance to become a substantial source of systematic

error, so we attempt to construct as reliable an estimator as possible. The results

of this chapter will have a direct bearing on the analysis presented in Chapter

6, in which we attempt to optimise a tomographic analysis of realistic simulated

data.

Several statistics exist for measuring the two-point statistical information

contained in the lensing signal. These include the shear correlation functions,

the shear dispersion in circular apertures [165], and the aperture mass dispersion

[166]. The shear correlation functions ξ±, discussed in §2.3.4, are the easiest of

these two-point statistics to measure directly from data as they are not sensitive

to gaps or masked regions [116] and do not require knowledge of shear correlations

at small scales that cannot easily be measured from data, hence we utilise these

statistics in our analysis. In this thesis, we choose to focus solely on ξ+. This
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is motivated by the fact that the ξ+ signal is stronger than ξ− (for example, for

ΛCDM cosmology and a CFHTLenS-like redshift distribution, ξ+ is ∼ 8 times

larger than ξ− at an angular scale of 2′), but the noise is the same. Additionally,

including ξ− would double the size of the data vector, and as we will explain below

in §4.1.2, this would double the number of realisations of simulations needed to

construct an unbiased inverse of the covariance matrix. Since we only have a

limited number or realisations of simulations available to us (see §4.2), this is a

significant issue.

We denote the covariance matrix estimated directly from the mock data Ĉ.

Under the assumption that the data vector consists of statistically independent

components pi with Gaussian noise1, the maximum-likelihood estimator for the

covariance matrix inverse as described in [167] is

Ĉij =
1

N − 1

N∑
k=1

(
p

(k)
i − µi

)(
p

(k)
j − µj

)
. (4.1)

where Ĉ runs over i and j (the size of the data vector), µ is the mean estimated

from the data and N is the number of realisations of the data vector. The diagonal

of the covariance matrix is simply equal to the variance of the data points and

the off-diagonals are the covariances between data points. The more correlated

the data vector, the larger in amplitude the off-diagonal terms of the covariance

matrix will be.

The size of the covariance matrix does not grow linearly with the number

of tomographic bins nz; the cross correlations between redshift bins are also

taken into account. The total number of cross and auto correlation between

tomographic bins, ncorr, is given by

ncorr =
nz(nz + 1)

2
. (4.2)

The consequence of this is that as the number of tomographic bins increases,

the number of data points increases as a triangular number. For example, for

nz = 1, ncorr = 1, but for nz = 10, ncorr = 55. The data vector and corresponding

covariance matrix for a 10-bin tomographic analysis will be 55 times larger than

that of a 1-bin analysis. Therefore we will need 55 times as many realisations of

1The assumption of Gaussianity will be seen to be valid in §5.4 due to the inclusion of a
dominant shot noise term in the covariance.
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the covariance matrix to ensure it is non-singular (see next section).

The structure of the covariance matrix follows the structure of the data vector.

This is illustrated in Fig. 4.1 for 2-bin tomography for a data vector measured on

5 angular scales (nθ = 5). ξ̂+(θ, z) is constructed so that the first nθ values are

equal to the values of ξ̂+ arranged in ascending order of angular scale for the lowest

redshift bin auto-correlation (the 1-1 correlation). The next nθ values correspond

to the cross correlation between the lowest and highest tomographic bins (1-2).

The final nθ values represent the highest bin auto-correlation (2-2). The total

data vector is ncorr x nθ = 15 elements in length. The covariance matrix is then

just the two-dimensional extension of this. The highlighted squares represent the

terms

Ĉ3−2 =
1

N − 1

N∑
k=1

(
ξ̂

(k)
+,3 − ξ̄+,3

)(
ξ̂

(k)
+,2 − ξ̄+,2

)
Ĉ2−8 =

1

N − 1

N∑
k=1

(
ξ̂

(k)
+,2 − ξ̄+,2

)(
ξ̂

(k)
+,8 − ξ̄+,8

)
, (4.3)

where ξ̄+ represents the mean value of ξ̂+ from all N realisations of the

simulations. This structure holds for all values of nz and nθ. The covariance

matrix is symmetric about the diagonal such that Ĉij = Ĉji.

The importance of the covariance matrix in cosmological analysis becomes

clear through its central role in likelihood analysis. The covariance matrix enters

the likelihood calculation through the χ2 goodness-of-fit statistic, which can be

used to obtain best-fit cosmological parameters π0 and confidence regions as

described in Chapter 3. For correlated data, the definition of χ2 for a set of

model parameters π in Eqn. 3.6 is modified to include the covariance matrix

inverse,

χ2(π) =
∑
ij

(
ξ̄+ − ξ+(π)

)
i
Ĉ−1
ij

(
ξ̄+ − ξ+(π)

)
j
. (4.4)

4.1.2 The Anderson Correction

[168] and [169] (hereafter H07) found that if the length of the data vector, p,

exceeds the number of realisations N of simulated data used in calculating Ĉ then

the covariance matrix becomes singular and the likelihood cannot be calculated.

This constraint represents a fundamental limit on the number of tomographic bins
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Figure 4.1: A schematic showing the substructure of the covariance matrix for
nz = 2, nθ = 5. Figure modified from Fig. 2 in [152].
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one can construct from a given data set and it means that in order to reliably use

the covariance matrix, we must ensure that as many realisations of the simulations

as possible are employed to construct it. Generating large, realistic simulations

is computationally costly, so the number of tomographic bins obtainable may

be limited by computing power and our subsequent ability to generate sufficient

realisations.

In general, noise in the covariance matrix will cause a bias in the inverted

matrix even when the covariance matrix estimator Ĉ is unbiased itself. For this

reason, one should pseudo-invert the covariance matrix through e.g. singular

value decomposition (see §5.4.2) rather than attempt to invert it directly. H07

prove analytically that Ĉ is always singular when p > N , and that even when

using SVD a bias in the inverted matrix is present that is highly dependent on

the covariance model chosen, making the inverse unreliable. This is true even

for the case of p < N , meaning that any likelihood analysis involving the inverse

estimated directly from data or simulations must correct for this bias. In this

chapter we will refer to three different measures of the inverse of the covariance

matrix of ξ+; we list their definitions here for clarity:

Σ−1 = ‘True’ inverse of the covariance matrix of the data, found analytically.

Ĉ−1
∗ = Biased estimator of the inverse of Ĉ, where Ĉ is estimated directly

from data or simulations.

Ĉ−1 = (Relatively) unbiased estimator of the inverse, after applying a

correction factor to Ĉ−1
∗ .

Σ−1 often cannot be calculated directly from real surveys, so we must

approximate it. In the case of p < N , matrix inversion of the covariance matrix

estimator (estimated from multiple lines of sight as described in Eqn. 4.1) results

in an estimator of Σ−1,

Ĉ−1
∗ ≈ Σ−1. (4.5)

However Ĉ−1
∗ is biased and hence not equal to the unbiased estimator of the

inverse Ĉ−1. An unbiased estimator for Σ−1 is thus given in Anderson 2003 [170]

as
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Ĉ−1 =
N − p− 2

N − 1
Ĉ−1
∗ for p < N − 2 (4.6)

when the mean is estimated from the data. The ratio N−p−2
N−1

will hereafter

be referred to as the Anderson correction, and is necessary because the use of a

biased estimator Ĉ−1
∗ will produce serious underestimates in the sizes of parameter

credibility intervals, particularly in the limit p/N → 1. The Anderson correction

produces credibility intervals that more honestly reflect the precision attainable

with the data. The correction is derived based on the idealised case of Gaussian

shot noise and statistically independent data vectors.

4.2 Cosmic Shear Simulations

We use two types of lensing simulations to measure covariances of ξ̂+: N-body

simulations and Gaussian shear fields. We describe the characteristics of the two

simulations in this section, explaining why we use them both and how we measure

ξ̂+ from them.

4.2.1 N-body simulations

One of the most accurate and reliable ways to simulate lensing data is using N-

body simulations [163, 171, 172]. N-body ray-tracing lensing simulations contain

collisionless dark matter particles and rely on the assumption that the evolution

of large scale structure is mainly dependent on the dark matter distribution [162].

In such a simulation, one calculates photon geodesics through large scale structure

in three dimensions, starting at the observer and moving out towards the source

positions. The cumulative deformation of the light ray along each trajectory is

then calculated to produce pixelated shear fields at the desire redshifts. Once

shear fields have been generated, they may be populated with galaxies. Each

galaxy will have a complex shear assigned to it (and perhaps other parameters)

based on its position in the field.

One of the largest N-body dark matter structure simulation carried out to date

is the Millennium simulation [173], which was run in 20052. It has 21603 particles

2At the time of running, Millennium was the largest simulation of its kind. It has recently
been superseded in 2011 by the Horizon simulation, which has box sizes up to 1081.5h−1 Mpc
on a side [174].
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in a cubic region 500h−1 Mpc on a side. When the Millennium simulation was

generated, σ8 was not well constrained from observations and subsequently the

simulations were generated with an input σ8 = 0.9. We now know σ8 is closer to

∼ 0.8 [26]. Since the covariance matrix of ξ+ is cosmology-dependent (see §4.5),

we need to use simulations that more closely match the real Universe to ensure we

do not introduce biases. For this reason we do not use the Millennium simulation

in our analysis.

In this thesis, we utilise the N-body simulations of [163], which are in use by

the CFHTLenS collaboration as a tool to calibrate various lensing analyses. They

consist of 184 independent lines of sight each with an area of 12.38 square degrees

(10.80 square degrees once CFHTLenS masks are taken into consideration), with

10242 pixels and a pixel size of 0.21′. We refer to this suite of simulations as the

‘clone’ simulations, in which the positions of galaxies placed within the clones map

onto the galaxy positions measured from the CFHTLenS fields. 16 CFHTLenS

subfields (each of approximate area of 0.7 square degrees) are tiled onto each

clone field and the overlap discarded until all CFHTLenS subfields have been

used. The process is then repeated until all clone fields are populated. This

method means that galaxy positions in the CFHTLenS are used multiple times (in

different lensing fields), hence the name ‘clone simulations’. Due to this method

of population, the clustering of galaxies in the clone is not correlated with the

underlying density field as it would be in the real Universe (i.e. we would expect

to find more galaxies in overdense regions). However, this approach is statistically

no worse than placing galaxies randomly in the shear field, and source clustering

of this nature is expected be only a percent-level effect [175] and hence should

not bias the recovered shear signal significantly. The simulations have a particle

count of 10243 and a box size of between 147.0h−1 Mpc and 231.1h−1Mpc on side

depending on the redshift of the lens. The clones have a flat ΛCDM cosmology

with input parameters described in Table 4.1. For comparison, the most recent

cosmological constraints from WMAP7 are also shown. The clone cosmology

matches to WMAP7 to within 2σ. They incorporate secondary effects such as

source clustering, the effect of which on lensing measurements is not yet fully

understood.

The clone simulations have a small volume and high particle density, and are

thus well-positioned to probe small scales where nonlinear effects are important.
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Table 4.1: Key cosmological parameters from WMAP and the clone simulations.

Parameter WMAP 7yr mean Clone input

Ωm 0.266± 0.029 0.279
h0 0.704± 0.025 0.701
σ8 0.811+0.030

−0.031 0.817
w∗0 −0.93± 0.12 -1.0
w∗1 −0.38+0.66

−0.65 0.0
Ωb 0.0455± 0.0028 0.0460
ns 0.967± 0.014 0.960

WMAP constraints assume flat ΛCDM. ∗ indicates parameters for which the
combined results from multiple cosmological probes are shown (BAO+H0+D∆t+SN,

see Table 4 of [26]) instead of just the WMAP 7 year mean result.

They can accurately reproduce the lensing signal at sub-arcminute scales, which is

essential if we are to match the resolution of modern surveys and simulate realistic

estimators of ξ̂+ and Ĉ. However, dense simulations like this are computationally

expensive to create, so the number of lines of sight available to us is limited. For

this reason, we choose to cut each clone simulation into 4 on a 2 x 2 grid; this

gives us 736 quasi-independent lines of sight each with an area of 2.70 square

degrees (1.64 degrees on a side). This enables us to effectively quadruple the

number of measurements of ξ̂+ we are able to make and will allow us to use more

tomographic bins in a likelihood analysis. The drawback of this is that on large

angular scales ξ̂+ will begin to become unreliable as edge effects come into play

much sooner. However, most of the cosmological information contained within

ξ̂+ for a CFHTLenS-like survey is on small scales where the signal is strongest

(. 10′) so this approach is unlikely to effect our analysis. An important caveat to

our use of the clones is that they do not incorporate a model for intrinsic galaxy

alignments, whose effects must be taken into account when analysing data as

discussed in Chapter 2.

4.2.2 Gaussian simulations

N-body simulations are complex and time-consuming to produce. The lack of

intrinsic alignments and limited number of lines of sight available from the clones

are large drawbacks to their use in a realistic cosmic shear likelihood analysis.
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For this reason, we also consider a second set of simulations that addresses these

issues. An alternative to using full nonlinear N-body simulations is to simulate

Gaussian lensing fields which do not account for the non-Gaussianity of the lensing

signal on small scales.

In this thesis we use the Gaussian simulation code of Brown & Battye [176].

These simulations contain a model for IAs which will be discussed in Chapter 5.

To construct shear fields corresponding to a given cosmology, the simulation code

requires knowledge of the lensing (and IA) power spectra for every redshift auto-

and cross-correlation prediction for that cosmology. The power spectra are used

to generate flat, pixelated shear maps. More detail on the construction of shear

and IA fields from these simulations is given in §5.2.1.

Estimating ξ+ from Gaussian shear fields will cause us to underestimate the

error on small scales (. 10′), as nonlinear evolution of the density field in the real

Universe leads to stronger correlations between modes and hence higher variances

and covariances [162]. This is one of the main limitations of using Gaussian

simulations, and one we attempt to address in §4.4. However, generating Gaussian

fields is quick and straightforward, allowing us to generate many more realisations

of the shear field. This is important for reducing statistical errors and producing a

stable covariance matrix, and may allow us to use a higher number of tomographic

bins in cosmological analysis.

We modify the simulation code so that Gaussian shear fields may be generated

with any desired input cosmology and redshift distribution; we use NICAEA (see

§3.6) to determine input power spectra that match the clone simulations in both

these aspects. NICAEA is well-tested and requires the user to define the input

cosmological parameters and redshift distribution. It then calculates theoretical

shear correlation functions and power spectra for these inputs, for any number of

tomographic bins. All the shear fields for a given tomographic bin combination

must be generated simultaneously, incorporating the cross power spectra, to

ensure the tomographic fields are correlated correctly. We simulate 800 semi-

independent lines of sight of 18.20 square degrees. These are constructed from 50

truly independent simulations of 291.3 square degrees split into a 4x4 grid. We

utilise only 736 of these lines of sight in order to match the number of realisations

that are available from the clone simulations, however we are able to generate

more realisations as required. We set the resolution of the simulations to the
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4.2. Cosmic Shear Simulations

maximum value to reduce the effect of resolution issues, giving us fields with

20482 pixels and a pixel size of 0.5′ and lmax = 3000.

4.2.3 Constructing tomographic galaxy catalogues

Input tomographic redshift distribution

We describe how we produce mock galaxy catalogues for a number of tomographic

bins in the range 1 ≤ nz ≤ 15 from both the N-body and Gaussian simulations.

The N-body simulations consist of galaxy catalogues that mimic the CFHTLenS

in position and redshift distribution; we must apply tomographic cuts to these

catalogues to obtain galaxy catalogues corresponding to different redshift bins.

We must also determine the redshift distribution for each tomographic bin so that

we can produce Gaussian simulations that match the clones in input as closely

as possible.

The redshift distribution of the clone is established from the galaxies in all

CFHTLenS fields with a photo-z cut of 0.1 < zp < 1.3. [177] argue that this

is a safe range over which photometric redshift estimates are reliable. Each

galaxy in the catalogue has a probability distribution function (PDF) for its true

redshift associated with it found from the Bayesian Photometric Redshift (BPZ)

Estimation code of [178]. We used a catalogue manipulation tool called ldac3

to extract the relevant columns from the entire CFHTLenS galaxy catalogues,

namely the photometric redshift estimate and PDF of each galaxy, stored in

histogram form from 0 < z < 3.

The sum of the PDFs was used to produce a redshift distribution that

is thought to closely match the true redshift distribution of the sources. To

produce realistic tomographic redshift bins from the clone catalogues, we cut

the master galaxy catalogue by zp into nz different bins, ensuring that there are

the same number of galaxies in each bin. We then find the sum of the PDFs

for each nz bin. This can be done for any number of tomographic bins and some

examples are shown in Fig 4.2. Importantly, the distributions from the sum of the

PDFs overlap, as expected if there is contamination between bins due to photo-

z uncertainties. This means that the II and GI alignment signals (introduced

3Leiden Data Analysis Centre, see http://marvinweb.astro.uni-bonn.de/data_

products/THELIWWW/index.html.
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in Chapter 2) will be non-negligible in the cross and auto correlations between

redshift bins respectively, an effect that will be discussed in Chapter 5.

Next, input power spectra were generated using the clone simulation cosmol-

ogy and the derived PDF redshift distributions for 1 ≤ nz ≤ 15. Gaussian shear

fields were then produced from these power spectra, matching the clones (and

CFHTLenS) in input cosmology and redshift distribution.

Input galaxy distribution

We now have tomographic galaxy catalogues for the clone simulations that contain

a list of galaxy positions and ellipticities, with the positions determined from the

CFHTLenS data catalogues and the ellipticities determined from the simulated

3D shear field of the clone. We need to populate the Gaussian shear fields with

galaxies to produce a similar set of galaxy catalogues.

We must determine how many galaxies to populate the Gaussian fields with,

and also how they will be distributed. The N-body galaxy catalogues were

constructed to match the galaxy density of the CFHTLenS. The effective galaxy

density was determined directly from the CFHTLenS catalogues using each

galaxy’s assigned Lensfit weight. The galaxy density can be calculated by simply

summing the number of survey galaxies and dividing by total survey area, but by

using the Lensfit weights wi we can get an estimate of the more representative

effective galaxy number density, ng(eff),

ng(eff) =

Ngal∑
i=1

wi

2

Ngal∑
i=1

w2
i

. (4.7)

From all CFHTLenS fields, we find the mean effective galaxy density to be

13.34 per sq. arcmin (total over all tomographic slices). We therefore populate

the Gaussian shear fields with this galaxy density.

We assign galaxy positions in the Gaussian fields randomly. An improvement

to this approach would be to populate the fields with the CFHTLenS positions, as

in the clones, or to add some degree of source clustering as this would better mimic

real galaxy behaviour. However, intrinsic source clustering is only a percent-
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Figure 4.2: Top left : The total redshift probability distribution from CFHTLenS
galaxies for the raw photo-zs (0.1 < zp < 1.3, solid line) and from the sum of
the PDFs (z(PDF), dashed line) (redshift information from [177]). Vertical dotted
lines show where cuts in zp were performed to produce tomographic redshift
distributions for the case of nz = 3. Top right : The resulting z(PDF) distributions
for the nz = 3 cut. Bottom: z(PDF) for nz = 6 and 10. P (z) is scaled to sum to
1, as only the relative size and shape of the redshift bins within a tomographic
combination affects the shear correlation function. The y-axes have been rescaled
to better show the shape of the redshift distributions in each plot.

107



4.3. Estimating ξ+

level effect [175] and the signal is dominated by other effects such as pixelisation

(particularly on small scales; see §4.3).

We assign ellipticities to the galaxies in the Gaussian simulations by in-

terpolating between the shear values at the surrounding pixel positions in the

shear fields. This ensures that the galaxy ellipticities are accurate tracers of the

underlying shear field only and the effect of pixelation on galaxy ellipticity is

minimised. We do not include galaxy shape noise in any of the simulated galaxy

catalogues at this stage as we are only interested in the behaviour of the pure shear

covariance matrix in this chapter. Incorporating a realistic noise contribution in

simulations is necessary for a full cosmological likelihood analysis to be useful

and applicable to real data, and for this reason we measure and apply a shape

noise component in Chapter 5.

4.3 Estimating ξ+

We follow the same procedure to measure ξ̂+ from the clone and Gaussian

simulations. The publicly-available ATHENA code4 is used to calculate the shear

correlation functions from the mock galaxy catalogues. This is a tree code to

calculate second-order correlation functions over a range of angular scales. ATHENA

has been robustly tested for CFHTLenS and shown to be sufficient for the level

of accuracy required for this thesis. ATHENA correlates nodes of galaxies (a node is

defined as all galaxies closer than some open angle threshold, or OATH) with each

other over a range of angular scales, multiplying the mean, weighted ellipticites of

both nodes for a given binned barycentre distance. We set OATH=0.04 radians;

maximum node size is equal to the OATH multiplied by the separation between

nodes. This means that OATH=0.0 is equivalent to brute-force correlation of

every galaxy with every other galaxy, which is more accurate but slow. We

calculate the shear correlation function over a large number (∼ 1000) of angular

scales between θmin = 1′ and θmax = 85′, which we then re-bin more coarsely to

get nθ different angular bins. We set 3 ≤ nθ ≤ 15 and place the angular bins

evenly in logarithmic space to give a more uniform signal-to-noise ratio, which is

higher on small scales. The range for nθ is limited by the resulting size of the

covariance matrix; as the limiting case of p/N = 1 is reached at progressively

4Martin Kilbinger, http://www2.iap.fr/users/kilbinge/athena/.
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lower numbers of tomographic bins, for nθ & 15 we can use a maximum of only

9 tomographic bins (see Table 4.2).

The redshift of individual galaxies is not explicitly needed (and indeed is

not known for the Gaussian catalogues as the redshift distribution is already

incorporated into the power spectra used to generate the simulations). The auto

correlation functions are those found from galaxies within the same redshift bin

and the cross correlation functions are found from correlating galaxies in different

bins.

ξ̂+ is averaged over all 736 lines of sight for each tomographic and angular bin

combination for both suites of simulated data; we denote these estimators ξ̂+,NG

and ξ̂+,G as determined from the clone and Gaussian simulations respectively. In

principle, calculating ξ̂+ over a large number of fine bins will recover more of the

cosmological information and produce tighter parameter constraints than more

coarse sampling, but the data points are highly correlated and increasing nθ above

some optimum may have the unwanted effect of producing a covariance matrix

with strong off-diagonal terms that requires many lines of sight to estimate with

sufficient accuracy. It also increases the size of our data vector and hence the

number of lines of sight needed to calculate the covariance matrix.

Figs. 4.3 and 4.4 show the correlation functions obtained from the N-body

and Gaussian simulations respectively for a representative sample of nz = 1,

2, 3 & 6, and nθ = 10. The input theoretical shear correlation functions

were obtained using NICAEA, which calculates the expected value of the shear

correlation function for given angular scales based on the input cosmology and

redshift distribution. ξ̂+,NG begins to fall below the expected value on large scales

at all redshifts, starting at ∼ 30′. This is due to the finite box size of the N-

body simulations. Since N-body simulations necessarily simulate a finite volume,

density perturbations larger than the box length will be suppressed as they cannot

be simulated, leading to a suppression in the recovered shear correlation function

on scales considerably smaller than the box length [179].

The input cosmology of the Gaussian simulations are reproduced well by the

mock galaxy catalogues except at small angular scales of θ . 5′. This bias on

small scales is present in all nz combinations and is most likely due to the finite

resolution of the simulations (we do not see this effect in the clone simulations

because of their higher resolution). This issue affects our likelihood analysis in

109



4.4. Estimating the covariance matrix of ξ̂+

Chapter 6; we describe therein how it is dealt with. In general, ξ̂+(θ) is behaving

as expected at all nz; rising with the mean redshift of the slices being correlated.

This occurs because there is a greater volume of lensing material along our line

of sight to the most distant redshift bins. On all but the smallest scales (θ . 5′),

the Gaussian galaxy catalogues are a better match to the theory than the clone.

4.4 Estimating the covariance matrix of ξ̂+

We denote the covariance matrix estimator for the clone catalogues as ĈNG and

for the Gaussian catalogues as ĈG. In this section we produce estimators of

the covariance according to Eqn. 4.1 for the entire desired range of combinations

1 ≤ nz ≤ 15 and 3 ≤ nθ ≤ 15, and compare ĈNG and ĈG, investigating the

optimal treatment of the covariance matrix to ensure our estimator is as unbiased

and reliable as possible for cosmological analysis.

4.4.1 Area Scaling

We wish to construct a covariance matrix that is of use in the analysis of

CFHTLenS data which spans a total survey area of 154 square degrees. However,

the clone and Gaussian fields we use to construct our covariance estimators

are much smaller: 2.7 and 18.2 square degrees respectively. Clearly, the raw

covariance estimators ĈNG and ĈG cannot be directly compared since the larger

Gaussian fields will contain more galaxies, meaning our estimate of ξ̄+,G is more

reliable and the error on the measurement will be smaller.

Eqns. 32-34 in [116] show how the size of every component of the covariance

matrix is inversely proportional to survey area. It is therefore possible to scale

the entire covariance matrix to match the expected uncertainties in surveys of

different sizes. We therefore scale all covariance matrix elements by the ratio of

the area of the simulated fields to that of the CFHTLenS survey, that is by a

factor of 2.7/154 = 0.017 for ĈNG and 18.2/154 = 0.12 for ĈG. This produces

uncertainties in ξ̂+ and hence parameter constraints that are in line with those

expected from CFHTLenS and allowing us to directly compare the covariance

matrices from the non-Gaussian and Gaussian simulations.
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Figure 4.3: ξ̂+,NG(θ) estimated from the CFHTLenS clone simulations for nz = 1
(top left), 2 (top right), 3 (bottom left) and 6 (bottom right) with nθ = 10 (points),
plotted with the input theoretical correlation function ξth

+ (θ) (lines). Error bars
correspond to the standard deviation of all 736 lines of sight, scaled to the area
of the CFHTLenS. The legend in the top right of each plot corresponds to the
redshift bins being correlated. We omit the legend for nz = 6 to avoid crowding
the image.
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Figure 4.4: As in Fig. 4.3 but with ξ̂+,G(θ) calculated from the Gaussian
simulations.
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We plot the relative amplitude of the terms in ĈNG and ĈG for nz = 2,

nθ = 10 in Fig. 4.5 and Fig. 4.6 respectively, to illustrate the general behaviour of

the covariance matrix. As expected, the small scale terms are higher in amplitude

than the large scale terms since there are fewer galaxy pairs to correlate at small

θ. The covariance of high redshift correlations is larger than for low redshift

slices, because at high z, a given angular scale represents a larger real-space

distance and the sampling variance variance will be higher. In general, ĈNG

is higher in amplitude than ĈG, due to the contribution to the covariance from

nonlinearity (particularly at small scales). These plots illustrate the strong degree

of off-diagonality present in the covariance matrix and therefore the importance

of taking the covariance matrix into account in cosmological analyses.

4.4.2 Stability of the Covariance Matrix

A large number of lines of sight (and corresponding measurements of ξ̂+) are

needed to ensure our covariance matrix estimator is a reliable representation of

the ‘true’ covariance matrix Σ. If too few realisations of the simulations are used,

Ĉ may be noisy or biased. We investigate the behaviour of the covariance matrix

found from an increasing number of lines of sight for nz = 1 and nθ = 10. We

construct 1000 estimates of ĈNG for each N and nz by bootstrapping from all

736 lines of sight5. We then plot the mean of the trace of ĈNG as a function

of N in Fig. 4.7. We also plot the standard deviation from the 1000 estimates.

We plot only the results for nz = 1 and nz = 10 as we find that the mean and

variance is tomography-invariant. The mean and variance of the trace drop by

over an order of magnitude by N ∼ 100, after which there is comparatively little

improvement in the stability of the covariance with increasing N . By N ∼ 650,

the trace of the covariance is within ∼ 10% of the value for N = 736. This

plot shows that the number of lines of sight needed to construct an accurate

estimate of the covariance is solely a function of the sample variance (and hence

survey area and galaxy density) and is independent of how the data are binned,

although there is no clear cut-off above which we can be sure we have enough

5Bootstrapping is a process used to generate multiple equivalent realisations from a single
set of data. In this case, we select N random lines of sight from the full 736, and measure
their covariance. We repeat this to get 1000 measurements of ĈNG for a given N . These
1000 measurements will not be independent as a given line of sight will contribute to multiple
measures of the covariance, so one must choose carefully when it is appropriate to bootstrap.
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Figure 4.5: Contour plot of ĈNG with nz = 2, nθ = 10. Contour levels indicated
by the colour bar are arbitrary and chosen to best highlight the relative amplitude
of different terms in the covariance matrix. Each subsection corresponds to a
redshift cross or auto correlation and θ increases from top left to bottom right in
each subsection (as in Fig. 4.1). Red = highest amplitude terms, black = lowest
amplitude.

Figure 4.6: As above but for ĈG with nz = 2, nθ = 10. Contour levels match
those used in Fig. 4.5.
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Figure 4.7: The mean trace of 1000 bootstrapped ĈNG, constructed from N lines
of sight, as a fraction of the trace of the bootstrapped covariance matrix from 368
lines of sight for nz = 1, 10 and nθ = 15. Error bars are equivalent to the standard
error on the mean from all 1000 bootstraps, plotted for multiples of n = 50. The
errors from nz = 10 have been offset horizontally for an easier comparison to the
nz = 1 errors.

lines of sight to ensure stability. For this reason, further tests are required to

ensure the covariance matrix estimate is reliable, an issue which we address in

§5.4.2.

4.4.3 Testing The Anderson Correction

As any bias in parameter contours can impact directly on parameter estimation,

it is important to determine the validity of the Anderson correction in Eqn. 4.6

for this analysis. To do this, a large number (N = 3200) of Gaussian shear fields

of 18.2 square degrees were simulated and the covariance matrix of the shear

correlation functions of this set was estimated using Eqn. 4.1. Each simulated

sky patch consists of three arbitrary tomographic slices and ξ+ was measured at
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six angular scales ranging from 1′ ≤ θ ≤ 85′, meaning the data vector p contained

36 elements in total. Since N � p in this case, we can assume that

Ĉ−1
∗,N=3200 = Ĉ−1. (4.8)

New covariance matrices for different values of N were constructed by using

subsets of the simulated Gaussian fields. As many unique covariance matrices as

possible were generated for each N from the full 3200 fields. This ensures that

when N is small and the covariance matrix may not be stable and unbiased, there

are multiple covariance matrices to average over and improve the statistics. In

this analysis, the smallest value of N was set to 40, which is close to the limiting

case of N = p. This allowed us to compute 80 separate covariance matrices from

the 3200 fields. The Anderson correction was then applied to each covariance

matrix. The average of the trace of the covariance matrix for different N before

and after the Anderson correction is shown in Fig. 4.8.

This plot closely matches Fig. 1 in H07. We find that application of the

Anderson correction factor reliably removes this bias to within a few percent as

long as p
N

. 0.8. In the region 0.8 < p
N
< 1 the corrected matrix inverse Ĉ−1 is

still somewhat (unpredictably) biased, so it is prudent to ensure that the number

of realisations of the simulations used in our analysis outweighs the length of the

data vector by at least this factor.

The Anderson correction is especially pertinent in tomographic analyses, as

without it the addition of redshift bins into the analysis has the effect of spuriously

reducing the size of the credibility intervals on parameter estimates because the

inverse covariance is poorly estimated. There seems to be more constraining

power than there actually is. Without the Anderson correction, the contours are

spuriously small, thus its use allows more accurate but less precise determination

of cosmological parameters. It also reduces the precision that can apparently be

gained by cutting the data up into higher numbers of tomographic bins; adding

more bins will always increase the precision of the parameter estimates, but now

at a diminishing rate.
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Figure 4.8: The ratio of the traces of the ‘true’ covariance matrix inverse (C−1
true =

C−1
∗,N=3200) to the covariance matrix inverse estimated from N simulations (C−1

est =

Ĉ−1
∗ ) and the Hartlap-corrected matrix inverse (C−1

corr = Ĉ−1) for different ratios
of p/N measured from Gaussian simulations with shape noise. nz = 3, nθ = 6.
Only the trace of the matrix is considered as the Anderson correction scales every
element in the covariance matrix by the same amount.
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4.4.4 Correcting for Non Gaussianity

The Sato Correction

The cosmic shear signal-to-noise ratio is highest at small scales, which are affected

by nonlinear clustering [162]. As discussed earlier, ĈG is fully Gaussian on all

scales and hence does does not contain any nonlinear contributions and will

be lower in amplitude than ĈNG on scales where the nonlinear clustering is

significant. This is the main disadvantage in using Gaussian simulations to

analyse cosmic shear. If we can reliably correct for non-Gaussianity, then we

can use the Gaussian simulations instead of the clones in our cosmological shear

analysis (presented in Chapter 6). Since we can quickly generate Gaussian shear

fields, this means we could produce a more stable estimate of the covariance

matrix for use with higher-bin tomography.

To attempt to address the discrepancy between the two covariance matrices,

we follow the approach of Sato et al. 2011 [180] and apply a fitting formula to ĈG

to estimate the contribution that would be present from nonlinear effects. This

fitting formula (Eqn. 6 in [180]) defines a ratio F (θ, θ′, zm) between the Gaussian

and the non-Gaussian covariance matrices for median source redshift zm and the

correlation functions at two separations θ and θ′:

F (θ, θ′, zm) ≡ CNG[ξ+(θ)ξ+(θ′); zm]

CG[ξ+(θ)ξ+(θ′); zm]
. (4.9)

[180] use 1000 ray-tracing simulations to compute ĈNG and ĈG, then they derive

the calibration function F (θ, θ′, zm) by parametrising it with the form

F (θ, θ′, zm) =

(
a(zm) +

b(zm)

(θθ′)c(zm)

)
d(zm)|θ−θ

′|. (4.10)

The parameters a, b, c and d are then estimated from simulations with 6 different

source redshifts, zm to be

a(zm) = −za1
m exp(a2zm) + a3

b(zm) = b1z
b2
m + b3

c(zm) = c1z
c2
m + c3

d(zm) = d1z
d2
m + d3, (4.11)

118



4.4. Estimating the covariance matrix of ξ̂+

where (a1, a2, a3) = (−3.7683, 0.9752, 1.4048), (b1, b2, b3) = (10.7926,−2.0284,−0.2266),

(c1, c2, c3) = (−0.3664,−0.5733, 0.6863) and (d1, d2, d3) = (0.2450, 0.1218, 0.7076).

There are two problems with applying this correction to our analysis. First,

[180] assume a delta-function redshift distribution for each redshift slice, rather

than a realistic distribution such as that measured from CFHTLenS. Second, the

Sato correction was derived using non-tomographic simulations, so it may not be

applicable to the auto-correlations of tomographic bins, and even less so to cross-

correlations, which we require. Despite these limitations, we investigate whether

the Sato correction can perform well enough on a realistic tomographic analysis

to be of use in this thesis.

Since our source redshifts encompass a range of values, zm was taken to be

the median redshift of each tomographic bin (for cross correlations between bins,

we average the medians of the contributing bins). [180] only apply their fitting

formula below 10′ as the covariance matrix is largely Gaussian above this scale.

We apply the Sato correction to both the cross- and auto-correlations of the

covariance matrix. Figs. 4.9– 4.10 shows the effect of the fitting formula on the

discrepancy between ĈNG and ĈG for several tomographic combinations. We

apply the fitting formula to every element of our Gaussian matrix regardless of

angular scale (with the condition that F (θ, θ′, zm) ≥ 1), but find that correction

only has a significant effect below ∼ 10′, in good agreement with [180].

We find that on nonlinear scales below ∼ 10′ for zm & 0.34, the fitting formula

works well to correct the matrix for non-Gaussianity to a similar accuracy of

[180] of around 25% or better. At ∼ 10′, the fit ceases very quickly to have an

effect and the Gaussian and non Gaussian covariance matrices match well. It

is important to correct for nonlinearity properly on these scales, as systematic

errors are smaller in this range than at small scales of a few arcminutes or less.

Thus any discrepancy between the Sato correction and the N-body prediction

will act as a new source of systematic error, which could have implications for a

cosmological analysis.

Additionally we find that the Sato correction breaks down entirely for some

of the redshift slices and is unable to approximate the clone covariance from

the Gaussian. This is because at redshift zm . 0.34, the c(zm) coefficient

becomes negative and F (θ, θ′, zm) begins to increase with angular scale, instead of

decreasing. [180] use simulations with zm ≥ 0.6 to derive their fit, so they do not
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probe this low-redshift regime and encounter this problem. The effect becomes

significant when we include three or more tomographic bins in the covariance

matrix, since for our input redshift distribution we will always have at least one

redshift bin with zm . 0.34. Even above this critical redshift, we see the fit

performing poorly at zm ∼ 0.4 (for example in the 1-3 bin in Fig. 4.10) and for

many of the correlations involving the lowest redshift bin for nz ≥ 3 due to this

effect.

Improving the Sato Correction

Since the redshift distribution we use is that of the CFHTLenS galaxies, it is clear

that despite its success at correcting a 2D, high-redshift covariance, the Sato

correction in its present form is inadequate for correcting for non-Gaussianity

in tomographic simulations with realistic redshift distributions and narrow bins.

This is not surprising as we are pushing the method beyond what it was designed

for. For this reason, we attempt to modify the coefficients in the Sato fit to better

correct for non-Gaussianity over the redshift range spanned by the tomographic

bins in our analysis.

We use the MCMC algorithm described in Chapter 3 and the expression

for χ2 in Eqn. 4.4 to attempt to find better-fitting values of the coefficients in

Eqn. 4.10. We set the diagonal of ĈNG as the ‘data’ and the diagonal of ĈG plus

the Sato correction as the ‘model’. We obtain an estimate of the error on ĈNG

by constructing the covariance of the covariance matrix (which we denote the

co-covariance). This is done by constructing 8 estimators of the clone covariance

from 92 realisations each (since the covariance estimated from . 100 realisations

begins to become unstable, see Fig. 4.7). Since the Sato fit coefficients in Eqn. 4.11

are independent of angular scale and redshift, we do not explicitly perform a best

fit to the off-diagonals of the Gaussian covariance matrix.

We restrict the range of angular scales to which we apply the likelihood fit

to θ < 12′ since the Sato correction needed diminishes quickly above ∼ 10′. We

select nθ = p = 6, such that p/N = 0.8, the highest value for which the inverse

estimator of the covariance is stable. We must also ensure that there is at least 1

degree of freedom in χ2 (ν, equal to the number of data points minus the number

of fitted parameters, see Chapter 3). This means that we cannot fit all twelve

Sato coefficients, and instead choose to fit just c1, c2 and c3 since the Sato fit first
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Figure 4.9: The diagonal of the covariance matrix from the Gaussian simulations
with (blue triangles) and without (black diamonds) the Sato correction applied,
for nz = 1 and nθ = 15. Also plotted is the clone covariance diagonal (red
asterisks) for comparison. All covariance matrix terms are scaled to match the
sampling expected from a CFHTLenS-sized survey. The median redshift and bins
contributing to the plotted redshift correlation are shown in the top right of the
plot.
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Figure 4.10: Clone, Gaussian and Sato-corrected Gaussian covariance diagonal
for nz = 5, nθ = 15. Symbols are the same as in Fig. 4.9.
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fails when c(zm) becomes negative. We fix all other coefficients to the fiducial

values in [180].

We must fit just one redshift correlation at a time when nz > 1 to ensure

p = 6. We perform a χ2 fit on every auto- and cross-correlation for nz = 1 and 2,

and we also investigate correlations where either the total zm ≤ 0.34 and the fit

fails completely, or correlations where one of the contributing redshift slices has

zm ≤ 0.34 and the fit does poorly for nz = 5. This corresponds to all correlations

with the lowest redshift bin in them. Due to the way c(zm) is parameterised,

we find that the best-fit coefficients c1, c2 and c3 are highly degenerate. We

therefore restrict the range of parameter space we probe fairly narrowly to the

ranges shown in Figs. 4.11-4.12. We plot just the best fit results from nz = 1 and

the 1-1 auto-correlation from nz = 5. The results for redshift correlations with

total zm ≥ 0.34 are very consistent and resemble the results for nz = 1; the mean

coefficients from almost all fits for nz = 1, 2 and 5 are: c1 = −0.341, c2 = −0.470

and c3 = 0.619 which are very similar to the fiducial values. Fig. 4.12, however,

shows that when the total median redshift is lower than the threshold value of

0.34, the best-fit constraints are quite different. For the 1-1 and 1-2 correlations

for nz = 5 , the best-fit values are: c1 = −0.351, c2 = −0.488 and c3 = 0.840. The

main alteration is to the value of c3. The fact that the best-fit coefficients behave

very differently on either side of the limiting redshift tells us that we cannot use

just one set of coefficients to characterise non-Gaussianity over all redshift slices.

We re-plot Figs. 4.9 and 4.10 with our alternative coefficients to illustrate

the effect of these best-fit values. We use the best-fit values of c1 = −0.341,

c2 = −0.470 and c3 = 0.619 for the majority of bins where zm > 0.34 and the

alternative best-fit values of c1 = −0.351, c2 = −0.488 and c3 = 0.840 where

zm > 0.34. This allows us to retain the relatively good agreement we find at high

zm, while attempting to better account for non-Gaussianity at low zm. The results

are shown in Figs. 4.13-4.14. The best-fit coefficients for zm ≥ 0.34 perform well,

as expected. However, the best-fit coefficients for zm ≤ 0.34 still perform very

poorly and almost no non-Gaussian correction is being applied. This is most

likely due to the need for optimisation over all the coefficients in Eqn. 4.11, not

just c(zm). Additionally, the Sato correction was not calibrated to a tomographic

analysis. This means that there are cases where the fit does not perform as

expected even at high zm. For example, the 1-5 and 2-4 correlations in Fig. 4.14
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Figure 4.11: The 68.3%, 95.4% and 99.0% likelihood contours for c1, c2 and c3

in Eqn. 4.11 for nz = 1, nθ = 6. Crosses represent the fiducial coefficient values
from [180], the triangles mark the best-fit values from this analysis.
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Figure 4.12: The 68.3%, 95.4% and 99.0% likelihood contours for c1, c2 and c3 in
Eqn. 4.11 for the 1-1 redshift correlation of nz = 5, nθ = 6. Crosses represent the
fiducial coefficient values from [180], the triangles mark the best-fit values from
this analysis.
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have the same median redshift and hence the same Sato correction. This is clearly

not appropriate, since the non-Gaussian contribution measured from the clone

for the 1-5 correlation is lower than for the 2-4 correlation. Thus, to accurately

correct for non-Gaussianity in a tomographic analysis, the Sato correction is

not appropriate in its current form and would have to be reparametrised to

incorporate information on both redshift slices in a correlation.

4.5 Discussion

We have constructed estimators of the covariance matrix of the shear correlation

function measured from 736 lines of sight from Gaussian and N-body simulations.

Figs. 4.5-4.6 show that the covariance matrices from both simulations is highly

off-diagonal as ξ̂+ are very correlated. Within each redshift correlation, similar

angular scales are strongly correlated, and as the redshift increases, more widely-

separated angular scales become more correlated. This is because at high redshift,

a given angular scale corresponds to a smaller real-space separation than at low

redshift. These plots highlight the significance of incorporating the covariance

matrix into a likelihood analysis - we cannot assume that the variance of the shear

correlation function contains the majority of the error. It is therefore critical to

use the correct expression for χ2, which we express in Eqn. 4.4, in any likelihood

analysis.

The area scaling derived by [116] that we apply to our covariance matrices

works well to scale the errors to those expected from a CFHTLenS-like survey of

154 square degrees. This is evidenced in Figs. 4.9-4.10, as the clone and Gaussian

covariances (derived from simulations with different areas) match well at large

scales as expected. This large-scale (& 10′) agreement, as well as the success of

both simulations in recovering the shear correlation function (see Figs. 4.3-4.4), is

good evidence that both sets of simulations are performing well on the expected

scales. The covariance matrix becomes more stable and a better estimator of

the true covariance with increasing numbers of realisations, as shown in Fig. 4.7.

After around N & 100, the covariance matrix is relatively stable. Since we have

736 lines of sight from the clone simulations, we expect that the covariance matrix

is stable enough to perform a likelihood analysis. We find that the stability of the

covariance matrix is unaffected by the number of tomographic bins used. This is
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Figure 4.13: Clone, Gaussian and Sato-corrected Gaussian covariance diagonal
using c(zm) coefficients determined by an MCMC analysis (c1 = −0.341, c2 =
−0.470 and c3 = 0.619), for nz = 1, nθ = 15.
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Figure 4.14: Clone, Gaussian and Sato-corrected Gaussian covariance diagonal
using c(zm) coefficients determined by an MCMC analysis (c1 = −0.341, c2 =
−0.470 and c3 = 0.619 for zm ≥ 0.34; c1 = −0.351, c2 = −0.488 and c3 = 0.840
for zm < 0.34), for nz = 5, nθ = 15.
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most likely because our covariance matrix is sampling variance limited, which is

a function of survey area, configuration and galaxy density and is hence constant

with nz. The stability of the covariance matrix with nz may vary, however,

once other effects such as galaxy shape noise are included in its estimate. We

investigate this effect in the next chapter.

We investigate whether the non-Gaussianity of the shear covariance can be

accounted for by fitting the empirically-derived correction in [180] to the Gaussian

covariance. We show in Figs. 4.9-4.10 that the correction appears to work well

when the median redshifts of both bins contributing to a given redshift correlation

are above a critical redshift of zm & 0.34. If the median redshift of one of the bins

is below this, the fit tends to over-correct for non-Gaussianity and the resulting

covariance is too high. If the median redshift of both slices is below 0.34, the

fit fails completely as the c(zm) function introduced in Eqn. 4.9 and defined in

Eqn. 4.11 becomes negative. We attempt to correct this unsuccessfully. We

conclude that for a shear analysis that is both tomographic and involves low

redshift slices, the Sato fit is unable to correct for non-Gaussianity to a high

enough degree of accuracy to justify using Gaussian simulations.

Our test of the Anderson correction has shown that ideally we need p/N < 0.8

to enable us to produce a stable estimator of the inverse of the covariance matrix,

as shown in Fig. 4.8. We must keep this limit in mind when deciding on the

maximum number of tomographic and angular bins we wish to constrain in a

likelihood analysis. The total size of the data vector p is determined by the

number of correlations between redshift bins multiplied by the number of angular

scales used. Therefore we can somewhat increase the number of tomographic

bins obtainable by decreasing the number of angular scales we measure ξ̂+ on.

However, if we set nθ too low, we will have too few data points over which to

sample the shape of ξ̂+ and we will lose information and hence constraining power.

We calculate the minimum number of realisations of the covariance matrix, Nmin,

needed to satisfy the Anderson limit of p/N < 0.8 for all combinations of 1 ≤
nz ≤ 15, 3 ≤ nθ ≤ 5 in table 4.2.

Table 4.2 shows the number of lines of sight needed for different numbers

of tomographic bins. Bin combinations that result in 0.8 ≤ p/N ≤ 1.0 from

the 736 clones lines of sight are coloured in blue, and combinations for which
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Table 4.2: Minimum no. of realisations Nmin needed for various nz and nθ to
ensure p/N < 0.8.

→ nθ 3 4 5 6 7 8 9 10 11 12 13 14 15
↓ nz

1 4 5 7 8 9 10 12 13 14 15 17 18 19
2 12 15 19 23 27 30 34 38 42 45 49 53 57
3 23 30 38 45 53 60 68 75 83 90 98 105 113
4 38 50 63 75 88 100 113 125 138 150 163 175 188
5 57 75 94 113 132 150 169 188 207 225 244 263 282
6 79 105 132 158 184 210 237 263 289 315 342 368 394
7 105 140 175 210 245 280 315 350 385 420 455 490 525
8 135 180 225 432 315 360 405 450 495 540 585 630 675
9 169 225 282 338 394 450 507 563 619 675 732 788 844
10 206 275 344 413 482 550 619 688 757 825 894 963 1032
11 248 330 413 495 578 660 743 825 908 990 1073 1155 1238
12 293 390 488 585 683 780 878 975 1073 1170 1268 1365 1463
13 342 455 569 683 797 910 1024 1138 1252 1365 1479 1593 1707
14 394 525 657 788 919 1050 1182 1313 1444 1575 1707 1838 1969
15 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 2100 2250

p/N > 1.0 are coloured in red. We find that to be able to perform a 10-bin

tomographic likelihood analysis, one must use a minimum of 206 realisations of

the data vector to calculate the covariance matrix to ensure p/N < 0.8. Using

fewer realisations than Nmin for a given bin combination will result in a matrix

that is not stable even under pseudo-inversion and, in the case of p/N > 1, a χ2

calculation that breaks down. With the clone simulations, 10-bin tomography is

statistically feasible since we divide the clones into 2 x 2 subfields to produce 736

lines of sight in this analysis and are below the limiting value of p/N for nθ ≤ 13.

15-bin tomography is just on the edge of feasibility, although performing a 15-

bin tomographic analysis above nθ = 4 would take us into the unstable regime

where p/N > 0.8, and our (pseudo) inversion of the covariance matrix may be

unreliable. This table shows the fundamental limit from using only 736 lines of

sight which must be taken into account in a likelihood analysis.

If one is to use the clone simulations to perform a cosmological likelihood

analysis, it is statistically feasible to use up to ∼ 15 tomographic redshift

bins. However, the values derived in table 4.2 only tell us what the statistical

limitations on a tomographic analysis are. They do not take into account
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other effects that may limit the number of tomographic bins it is feasible to

analyse, such as photometric redshift errors, galaxy shot noise, the scale over

which the lensing signal changes or the strength of the correlations caused by

strongly overlapping redshift bins (such as the ones in this analysis, see Fig. 4.2).

Additionally, systematic errors due to IAs may limit the accuracy and precision of

a tomographic analysis, and prohibitive computing times for high nz combinations

may introduce a practical limitation to such an analysis. In Chapter 6, we

incorporate these effects into a likelihood analysis to investigate what tomographic

combinations are feasible and which is optimal for a CFHTLenS-like survey.

Gaussian statistics lead to an underestimate of the cosmic shear covariance

on small scales, and an ad hoc correction like the Sato correction in Eqn. 4.10 is

not easily applicable to all surveys as it must be calibrated to the cosmology of a

specific simulation and was not designed for tomography. A potential method for

producing covariance matrices that better approximate the N-body results in the

nonlinear regime would be the use of log-normal shear fields. With a log-normal

approximation, the logarithm of the shear values in the simulated shear fields

appears Gaussian distributed, instead of the shear values themselves. Log-normal

simulations produce more realistic covariance matrices and parameter credibility

intervals than Gaussian simulations do at a slightly increased computational cost

[181]. A future extension to this work would be to investigate the covariance

matrix generated from log-normal simulations compared to that from N-body

simulations, and their ability to recreate non-Gaussianty at small scales.

Most cosmic shear analyses assume that the covariance matrix of the shear

is constant with cosmology, however [182] find that this is not the case. They

calculate analytically covariance matrices for 2500 different cosmologies using the

approach described in [116], and find that likelihood intervals for Ωm and σ8 can

vary significantly in size and orientation with the choice of underlying cosmology.

The magnitude of the effect increases with the statistical precision of the survey,

meaning that this is an effect that future large-scale lensing surveys may have to

account for carefully.

In data analysis of real surveys where the full covariance matrix is estimated

from simulations, one would ideally calculate a covariance matrix for every point

in parameter space that we wish to probe. However, this would entail generating

a set of simulations from which to measure Ĉ for every cosmology, which
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would require a prohibitive amount of computational power. [182] recommend

determining approximate best-fit parameter values (perhaps through the use of

priors or running a trial MCMC chain as described in Chapter 3) and estimating

the covariance matrix of this point only. Since most of the likelihood is close to the

best-fit value(s), the covariance matrix estimate will hopefully not vary too much

over the regions of interest. A compromise between the two approaches might

be to use the results of such a trial MCMC chain to get an idea of the location

and size of the likelihood contours. Then, covariance matrices corresponding to

several cosmologies within e.g. the 99% likelihood contour could be estimated,

and one could interpolate between covariance matrices to get a better estimate

of the covariance corresponding to any point in the parameter space. This

would mean generating several sets of realisations of simulations (instead of

just one) using different input cosmologies, but one can use as many or as few

sets as computational and time resources allow to improve the accuracy of the

interpolation.

4.6 Conclusions

In this chapter we have described two types of shear simulations: N-body and

Gaussian. The clones include nonlinear structure and produce realistic error

estimates, but are expensive to compute and we only have 736 realisations of

2.70 square degrees. The Gaussian simulations are easy-to-generate, populated

Gaussian shear fields spanning 18.20 square degrees each that recover the mean

correlation function well but underestimate errors on small scales. We have

constructed and measured estimators for the shear correlation function and its

covariance from both suites of simulations. To perform a cosmological likelihood

analysis on cosmic shear data, as we will do in Chapter 6, one must have an honest,

reliable estimate of the covariance of the data from which to calculate parameter

constraints. We have investigated the number of realisations of simulations that

must go into constructing this estimator, and found that we have enough lines of

sight from both simulations to ensure stability. We investigate whether we can

reliably correct for nonlinearity that is missing from the Gaussian simulations, and

find that an empirical correction employed in [180] is insufficient. This means that

if we are to use a covariance matrix that best approximates the true covariance

132



4.6. Conclusions

from real data, we must use the clone simulations to estimate it and we are limited

to 736 lines of sight.

We investigated how many tomographic bins one can use in a cosmological

likelihood analysis using the covariance matrix. We find that the Anderson

correction of [169] works well in the limit of p/N < 0.8; that is, when the number

of realisations from which we measure the data vector outweigh the number of

elements in the data vector by a factor of 25%. This limit means as long as the

clone simulations are gridded up to produce the full 736 lines of sight, we can (in

theory) comfortably achieve 10-bin tomography and (uncomfortably) reach 15-bin

tomography in a cosmic shear likelihood analysis. The number of tomographic

bins that are optimal and even feasible may well be less than this, and we constrain

this in Chapter 6.
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Chapter 5

Intrinsic Alignments and Shape

Noise Covariance

5.1 Introduction

In the previous chapter, we estimated the shear correlation function and its

covariance matrix from N-body and Gaussian simulations, and concluded that we

could not account for non-Gaussianity in the covariance matrix without the use of

N-body simulations. The covariance matrix in Chapter 4, however, is a measure

of only the sample variance. Real lensing data also contains shot noise due to

the uncertainty inherent in galaxy shape measurements. Additionally, galaxy

ellipticities in the real Universe are intrinsically correlated with each other and

the density field, meaning that lensing measurements are contaminated by the II

and GI alignment signals introduced in §2.3.5 which contribute to the measured

shear correlation function and its covariance. Any realistic tomographic likelihood

analysis must therefore take into account the effect of both shot noise and IAs on

the shear correlation function and the covariance matrix.

There have been three key tomographic analyses of cosmic shear data to date.

A 2-bin analysis of CFHTLS -Deep data was carried out by [154]. Photo-zs

were obtained from survey galaxies, but the effects of catastrophic outliers are

not accounted for and could be significant. The fitting function of [183] is used

to approximate the true redshift distribution, which may not be accurate. The

authors ignore the effect of intrinsic alignments, but since the data are split

into only two broad tomographic bins, this approach is unlikely to introduce
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significant bias in the cosmological constraints. The constraining power of the

Deep survey is limited by its small area of ∼ 4 square degrees, however [154]

constrain σ8 to 0.86 ± 0.05 (68% CL, Ωm = 0.3, using the halo model of

[28]), showing that tomography has the power to produce useful cosmological

constraints. The authors produce confidence limits from the analytical covariance

matrix prescription of [116], which fails to take into account non-Gaussianity and

cross-bin correlations.

A 3-bin tomographic analysis of HST COSMOS data was later performed

by [155]. COSMOS has an effective survey area similar to the CFHTLS-Deep of

∼ 1.64 sq. degrees. [155] also neglect IAs and use photometric redshifts (obtained

from the ground). The authors deal with catastrophic outliers by excluding from

the analysis galaxies which have significantly double-peaked posteriors or any

probability in their PDFs above z = 1, since in this regime catastrophic outliers

could not be reliably identified. This approach, however, results in information

loss. The authors use a covariance matrix that includes a shot noise and a

sampling variance term to estimate the errors, however they do not take into

account the cross term(s) between the two. Despite the presence of a B-mode

on small scales, [155] achieve constraints on Ωm and σ8 that are consistent with

WMAP 3-year results [184], and they find that tomography can produce a factor

of three improvement in credibility intervals. A subsequent analysis of the same

data set by [156] improved on these results by performing 6-bin tomography.

Improved photo-z estimates from 30 bands were used, leading to B-modes that

are consistent with zero. The authors partially account for the presence of

IAs following the method of [185] by excluding auto-correlations between all

narrow redshift bins. This approach removes much of the II signal but at the

cost of heavy information loss. Luminous red galaxies (LRGs) are excluded in

an attempt to mitigate the GI signal, since these galaxies are known to carry

the strongest alignment signal [186, 187]. The covariance is estimated from the

Millennium Simulation, which naturally accounts for nonlinearity although it

may be inaccurate as σ8 is higher than the WMAP value (see §4.2). The authors

apply the Anderson correction discussed in Chapter 4 to the covariance. Their

cosmological constraints are consistent with those of [155] at the 1σ level, and

they find a similar improvement to credibility intervals as a result of tomography.

In addition to tomography, it is also possible to perform a full 3D lensing
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analysis. [188] perform a proof-of-concept 3D analysis of 0.78 sq. degrees

of COMBO-17 data. This involves using photometric redshift information

to estimate the shear field via a spherical harmonic expansion [128]. The

COMBO-17 dataset has good photometry and hence reliable photo-z estimates.

A Fisher matrix prediction for the errors is used, and the authors produce

cosmological constraints that are consistent with WMAP 3 results [184]. The

authors neglect IAs. 3D lensing has the advantage over tomography that it can

straightforwardly exclude nonlinear modes which are difficult to model, although

tomography is conceptually simpler and better for direct investigation of the

redshift dependence of the signal [189]. For these reasons, 3D lensing and

tomography are complimentary and future lensing analyses may benefit from

using both techniques.

Along with shape measurement errors and the characterisation of the point

spread function, IAs are known to be one of the main sources of systematic error

in weak lensing analysis [190, 191, 186, 157, 192]. Analysis of Sloan SDSS data by

[186] found that IAs can bias the lensing signal by ∼10%, hence it is extremely

important to model the effect of GI and II alignments as accurately as possible

in future weak lensing analyses. Our understanding of IAs is hindered by the

fact that galaxy formation is complicated by gas dynamics and the nonlinear

evolution of the matter density field on small scales [176]. We do not currently

have a robust, well-tested model of galaxy alignments that can be used to

accurately account for their effect on lensing measurements. Various methods

for correcting IA contamination have, however, been proposed. [193] and [191]

developed optimisation methods for downweighting close galaxy pairs to reduce

the II alignment contribution, which for a data set with realistic photometric

redshift errors involves assigning weights of zero to galaxy pairs closer than

some redshift difference α. The value of α depends on angular scale and survey

specification and is chosen to minimise the shear correlation function error. [194]

applied this method to COMBO-17 data, reducing a systematic II error of ∼10%

to a statistical error of ∼1%.

[195] employ a ‘nulling’ technique to reduce the IA signal, assigning nulling

weights to the shear signal in each low-redshift bin contributing to the shear

cross correlation function. Nulling can reduce the GI signal by a factor of ∼100

with respect to the lensing (GG) signal, and conveniently removes the II signal
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as well. As a result, parameter estimates are less biased, but since nulling is

redshift-dependent this comes at the price of a considerable loss in constraining

power amounting to an increase in the 1σ dark energy contour area by a factor of

two to three. Importantly, the nulling weights assigned are cosmology dependent,

and if the weights are incorrect, this may make parameter biases from IAs worse.

[157] (hereafter BK07) model IAs using a simplification of the linear alignment

model of [196] and [119], and extend this into the nonlinear regime by including

the full nonlinear matter power spectrum. This ‘nonlinear alignment’ (NLA)

model matches to superCOSMOS data slightly better than other models [197].

BK07 find that neglecting IAs can bias σ8 by up to ∼5% and the dark energy

equation of state by ∼50% if these are the only parameters being fitted; these

figures rise if there are more free cosmological parameters. Additionally, they

find that if IAs are accounted for, two or more times as many redshift bins

are required to recover 80% of the lensing information, degrading parameter

estimates. Current methods for dealing with IAs either result in information

loss or else rely on IA models that have been observationally constrained only at

low redshift (z . 0.3). It is important to test and develop accurate IA models,

particularly when accounting for the GI signal, in order to avoid significant

parameter constraint degradation or bias.

The effects of IAs are pertinent when using galaxy redshift estimates in a

tomographic analysis. Photo-z errors cause leakage of the IA signal between

tomographic bins - there will be a non-negligible II (GI) signal in cross- (auto-)

correlations between redshift bins which must be incorporated into any realistic

tomographic analysis. Such leakage may cause inaccuracies or biases in lensing

measurements unless we are able to accurately model the IA signal both within

and between bins. BK07 find that the IA signal is much more sensitive to

information loss in the presence of photo-z uncertainties than the GG signal,

thus the combined effect of photo-z errors and an inaccurate IA model may

considerably degrade parameter constraints.

Previous lensing analyses have been able to make simple assumptions about

IAs and photo-z errors because the surveys were small and the statistical errors

tended to dominate the analyses. In the future, however, large surveys with

billions of galaxies and progressively decreasing statistical errors will become the

norm. CFHTLenS has a survey area approximately two orders of magnitude
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larger than fields such as HST COSMOS and CFHTLS-Deep used in previous

tomographic analyses, and future surveys such as Pan-STARRS, KIDS, DES

and Euclid will have even larger deep imaging survey areas on the order of

thousands to tens of thousands of square degrees (see §2.3.6). In such large

data sets, systematic errors will be the limiting factor in parameter estimation if

unaccounted for, as high galaxy counts ensure the statistical errors will be small.

Tomography will be an invaluable technique in analysing such surveys as it is

particularly sensitive to dark energy parameters. However, IAs are also most

prominent in a tomographic analysis and care must be taken to account for their

effects [198]. The effect of uncertainties in the photometric redshift errors must

also be well-known in order to accurately predict parameters and avoid biases

in cosmological parameter constraints. The interplay between errors in lensing

analysis requires a more sophisticated treatment that includes a realistic photo-z

error distribution.

To produce a full and realistic covariance matrix that includes non-Gaussianity

and contributions from IAs and shot noise for every redshift correlation (with

realistic photo-z errors), we must estimate it from tomographic shear simulations.

Additionally, IAs are most significant on small scales where galaxies are close

on the sky. Most N-body simulations do not have high enough resolution to

incorporate an IA model on the scales of interest. Those that do are slow to

generate because of the higher particle density, meaning the number of lines

of sight available to us is low and our estimators may be noisy, hence high-

bin tomography will be difficult since the limiting ratio of p/N = 1 is reached

at lower nz (see §4.1.2). For these reasons, to investigate the effect of IAs

on the shear correlation function and the covariance we turn to the Gaussian

simulations of [176], which incorporate the NLA model. As with the shear from

these simulations, the errors on the IA signal will be Gaussian and hence almost

certainly underestimated. However, unlike the error on the shear, which is well

predicted by N-body simulations, we do not know how the error on the IA signal

behaves. Any modification to Gaussian errors would therefore be arbitrary, so we

use Gaussian covariances for the II and GI alignments in this analysis.

In this chapter, we alter the shear correlation function estimated from the

clone simulations in Chapter 4 to include a realistic contribution from shot noise.

We also use the Gaussian simulations to incorporate the expected II and GI
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alignment signals predicted from the NLA model. We investigate the relative

contribution to the total shear correlation function1, ξ̂TOT , of each of these

components. We construct covariance estimators for each correlation function

component and for the total covariance in preparation for the likelihood analysis

in Chapter 6. We also examine the contribution of each component to the

correlation function and the covariance. Finally, we investigate the invertibility

of the total covariance estimator, ĈTOT with tomography to determine whether

it is possible to use as many tomographic bins in our analysis as we concluded in

Chapter 4.

5.2 The Non Linear Alignment Model

In this analysis we utilise the nonlinear alignment model for IAs proposed in [119],

developed by BK07 and tested in [199]. This is a simplified version of the linear

alignment model proposed in [196]. The model is motivated by the assumption

that the intrinsic shear of a galaxy is proportional to the Newtonian potential

that it experiences when it forms, since halo ellipticities are perturbed by the local

tidal field produced by large scale structure. On large scales, correlations within

the intrinsic field are determined by large-scale potential fluctuations; if these

potential fluctuations are small then the intrinsic field will be a linear function of

the potential and higher-order terms will be negligible. BK07 use only the first

term of Eqn. 16 in [119], including the erratum in [200], to represent the II power

spectrum,

P lin
γ̃I (k) =

C2
1 ρ̄

2

D̄2
a4P lin

δ (k), (5.1)

as this term is approximately ten times larger than the second term, which is

ignored. Here, P lin
γ̃I (k) is the II power spectrum, C1 is a normalisation constant,

ρ̄ is the mean matter density of the Universe as a function of redshift, D̄ ≡
(1 + z)D(z) where D(z) is the growth factor of the Universe normalised to the

present day and P lin
δ (k) is the linear theory matter power spectrum. The NLA

model replaces P lin
δ (k) with the full nonlinear matter power spectrum Pδ(k) in

Eqn. 5.1,

P nl
γ̃I (k) =

C2
1 ρ̄

2

D̄2
a4Pδ(k). (5.2)

1As in Chapter 4 we will only refer to ξ+ in this chapter onwards, so for notational simplicity
we drop the ‘+’ subscript.
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Eqns. 5.1 & 5.2 show that the II power spectrum has a very strong dependence

on redshift; since a ∝ (1 + z)−1 and D̄ ∝ (1 + z), then P nl
γ̃I (k) ∝ (1 + z)−6. This

surprisingly strong redshift-dependence means that the II signal declines very

rapidly at high redshift. Equivalently for the GI power spectrum, [119] predict

P lin
δγ̃I (k) = −C1ρ̄

D̄
a2P lin

δ (k) (5.3)

which in the NLA model becomes

P nl
δγ̃I (k) = −C1ρ̄

D̄
a2Pδ(k). (5.4)

Here, the redshift dependence is P nl
δγ̃I (k) ∝ (1 + z)−3, which is the square root

of the II dependence. This is to be expected since it is the intrinsic field that

carries the strong redshift dependence, and the GI power spectrum comes from

correlating the shear and intrinsic fields, whereas the II power spectrum is the

result of correlating the intrinsic field with itself.

BK07 find that the NLA model matches better than the linear alignment

model to the model for II alignments in [190] and to the GI contamination found

in [186] and [187]. Importantly, the NLA model takes into account nonlinearity

in the power spectrum at small scales which are expected to arise if galaxies are

aligned within their own dark matter haloes (even in the absence of II alignments).

It assumes that the II and GI power spectra are independent of each other and

that the correlation of galaxy shapes using the component of the shear aligned

along the line connecting galaxy shapes is the same as the correlation at 45 degrees

to the line joining the galaxies.

BK07 estimate a fiducial value for C1 = 5 x 10−14 (h2M�/Mpc−3)−2 from

superCOSMOS data [119, 197]. We adopt the parametrisation of [199], who fix

C1 to its fiducial value and introduce a new dimensionless amplitude parameter,

A, so that

P nl
γ̃I (k) = A

C2
1 ρ̄

2

D̄2
a4Pδ(k)

P nl
δγ̃I (k) = −AC1ρ̄

D̄
a2Pδ(k). (5.5)
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A is equivalent to

A =
C1ρc

0.0134
(5.6)

since C1ρc ≈ 0.0134 for the fiducial value of C1 in BK07. ρc is the critical density

defined in Eqn. 1.17. Hence A = 1 for the fiducial value of C1, and A has

the advantage of being dimensionless. [199] considered different galaxy types in

MegaZ and SDSS and found that they are consistent with each other under a

three-parameter NLA model, however the best-fit amplitude of the normalisation

constant A varies with galaxy type, a result also found by [187] in 2SLAQ and

SDSS data. As a result, the authors fit the NLA model to the different galaxy

samples allowing for redshift and luminosity dependence. They find no redshift

evolution beyond that of the original NLA model and a trend towards increasing

IA amplitude with galaxy luminosity. Fig. 11 in [199] recovers the amplitude of

A for different galaxy types. For Luminous Red Galaxies (LRGs), the best-fit

value of A is as high as 16.09+2.75
−2.76 (1σ), however for non-LRG galaxies the best-

fit value of A is as low as 1.20+0.90
−0.88 (1σ) and hence consistent with the results

from BK07 and with zero at the 2σ level. LRGs are bright and large but rare,

and do not contribute significantly to the galaxy population of CFHTLenS. [201]

and [186] find that the IA signal from low-to intermediate redshift galaxies is

consistent with zero. It is possible that by recent times most galaxies have

lost their alignments due to mergers and other interactions, meaning the IA

signal from galaxies at high-z may be more substantial. We generate simulations

incorporating the fiducial value of A = 1 in the NLA model. If there is significant

tension in the likelihood contours for A when fitting to CFHTLenS data, this may

indicate that there has been significant evolution of galaxy alignments between

those measured at low redshift and those of the CFHTLenS median redshift.

5.2.1 Incorporating the NLA model in the Gaussian

simulations

We wish to measure the NLA II and GI alignment signals for a CFHTLenS-

like survey, in order to combine them with the shear signal. In this section,

we describe how the simulations of [176] are used to generate these signals. To

construct shear and IA fields corresponding to a given cosmology, the simulation

code requires knowledge of the lensing and IA power spectra for every redshift
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5.2. The Non Linear Alignment Model

auto- and cross-correlation prediction for that cosmology. NICAEA (see §3.6) was

modified to produce 2D power spectra and correlation function predictions for the

NLA model II and GI alignment signal (see §3.6). Power spectra were calculated

using NICAEA over a range of multipole moments, l, from l = 1 (equivalent to the

all-sky mode) up to a maximum of l = 3000. Setting l equal to the maximum

value of 3000 ensures better accuracy on small scales, but is more computationally

expensive. The input power spectra are then used to construct a global power

spectrum matrix for every multipole moment for redshift bins 1 to nz with the

following structure:

Cl =



G1G1 · · · G1Gnz G1I1 · · · G1Inz
...

. . .
...

. . .

GnzG1 GnzGnz GnzI1 GnzInz

I1G1 · · · I1Gnz I1I1 · · · I1Inz
...

. . .
...

. . .

InzG1 InzGnz InzI1 InzInz ,


(5.7)

where G represents the cosmic shear and I the intrinsic ellipticity.

In the NLA model, the G and I fields are 100% anti-correlated, which means

the 3D power spectra fulfil the condition that Pδγ̃I (k) = −
√
Pγ̃I (k)Pδ(k) [176].

In reality, this is unlikely to be the case due to the complicated nature of galaxy

formation processes, and this high degree of correlation can cause Cl to be non

positive-definite. If, at any multipole, Cl is not positive-definite, it is replaced

with the ‘closest’ matrix that is positive-definite to remove singular or close-to-

singular modes. This is done by replacing all below-machine-precision Eigenvalues

with ones equal to machine precision (see §5.4.2 for an explanation). Cl is then

Cholesky decomposed. This is the decomposition of a positive-definite matrix

into triangular matrices which can be used to solve a system of linear equations

and pseudo-invert a matrix [202]. We note that a non positive-definite Cl may be

physically permissible, but such a matrix can not be reliably inverted or Cholesky

decomposed, making the production of shear fields from such a matrix extremely

difficult. Decomposing Cl gives

Cxy
l =

∑
z

Lxzl L
yz
l (5.8)
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where x, y are the indices of Cl. The multipoles Lxyl are used to generate random

realisations of the spin-2 spherical harmonic coefficients of each field from a set

of random Gaussian deviates Gx
lm,

axl0 =
∑
y

Lxyl G
y
l0,

axlm =

√
1

2

∑
y

Lxyl G
y
lm. (5.9)

These are then transformed to real space via a spin-2 transform using the HEALPIX

package2, such that the fields lie in a strip spanning ±9 degrees around the

equator. The code then projects the simulation onto flat, pixelated shear maps.

The simulation output consists of one shear (G) and one intrinsic (I) field for each

redshift bin. The spin-2 transform ensures that the G and I fields are correlated.

In addition to the constraint on the 3D power spectrum due to the 100% anti-

correlation between G and I fields, [176] find that for the 2D projected power

spectra to be positive definite, the further constraint
∣∣CGI

l

∣∣ ≤ √CGG
l CII

l must

be met for every value of l. For certain redshift distributions this constraint is

not met, resulting in non positive-definite power spectrum matrices which cannot

be Cholesky decomposed. [176] introduce a 3D correlation coefficient to allow

one to decrease the degree of anti-correlation between I and G fields. We utilise

a 2D correlation coefficient 0 ≤ B ≤ 1, analogous to this (since we use the 2D

power spectra produced by NICAEA as input):

∣∣BCGI
l

∣∣ ≤√CGG
l CII

l . (5.10)

In the unaltered NLA model, B = 1, so we want B to be as close to this value

as possible to match the NLA model as closely as possible. We calculate the

maximum value of |B| that satisfies this relation for all tomographic redshift

distributions in this analysis to be 0.5. Therefore the G and I fields will be 50%

anti-correlated, meaning that the GI signal will be decreased by 50% relative

to the standard NLA model. Failure to do this would mean that Cl would be

replaced with the closest-positive-definite matrix for at least some modes and

2Hierarchical Equal Area isoLatitude Pixelization of a sphere, a package that produces
subdivisions of a spherical surface and can be used to produce (non-flat) sky maps. See
http://healpix.jpl.nasa.gov/.
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the power spectra used to generate the simulations would differ from the input,

which may cause us to misestimate both the resulting correlation function and its

covariance. This 50% anti correlation is used throughout the rest of this thesis,

and is used to calculate the theoretical amplitude of the GI correlation function

that we fit CFHTLenS data to in Chapter 7.

We create a suite of simulations using this technique and analyse the GG, II

and GI correlation functions by populating the simulations with galaxies, which

we describe in §5.3.3. Unfortunately we found that for the redshift distribution

used, there was a numerical limit to the accuracy of the code such that the

resulting GG and II correlation functions are slightly higher than the input theory

for that cosmology by around 10−7 at all angular scales. This effect is particularly

significant for the II signal as the amplitude of the II correlation function is of the

order 10−7 on the scales of interest. This problem occurs because when the GI

power spectra (and hence the GI components of Cl) are non-zero, the Cholesky

decomposition of Cl becomes unreliable. The power spectrum matrix contains

very small terms, and including a GI component means the matrix also becomes

strongly off-diagonal. The precision with which we are able to pseudo-invert the

matrix is not high enough (limited by machine precision), resulting in unreliable

values of the shear and IA amplitude in the pixelated fields. We find, however,

that the GI correlation function extracted from such fields is unaffected. This is

because the modification to the G fields by this effect is uncorrelated from that

of the I fields, so that when the fields are correlated together it does not affect

our measurements. Since the GG and II correlation functions are well behaved

in the absence of a GI signal in Cl (as we show in §5.3.4), we produce two runs

of the Gaussian simulations - one without and one with a GI power spectrum,

to enable us to measure the II and GI correlation functions respectively from the

separate runs.

5.3 The total shear correlation function

In lensing data, the presence of IAs will alter our measurement of the shear

correlation function and its covariance. Additionally, uncertainties in galaxy

shape measurements will increase many of the terms in the covariance matrix.

We describe in this section how we construct an estimate of the total correlation
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function from simulations that is equivalent to one measured from real data.

5.3.1 Constructing a realistic correlation function estima-

tor

To estimate the total shear correlation function, ξ̂TOT, we must understand the

different signals that contribute to it. In the weak lensing limit, the observed

ellipticity of a galaxy, εi will be a combination of the shear γi and the total

intrinsic ellipticity, εsTOT,i,

εi = γi + εsTOT,i . (5.11)

The total intrinsic ellipticity consists of two parts: an intrinsic ellipticity

component that is correlated with the density field, εsδ,i, and an uncorrelated

ellipticity component that incorporates the shape measurement error, ni. So the

observed ellipticity is

εi = γi + εsδ,i + ni. (5.12)

Of these terms, ni is the largest (of the order 10−1), the shear is of the order 10−3,

or ∼ 1% of this, and εsδ,i is smaller still on the order of 10−4.

The observed ellipticity correlation will be

〈εiε∗j〉θ = 〈(εsδ,i + γi + ni)(ε
s∗
δ,j + γ∗j + n∗j)〉θ

= 〈γiγ∗j 〉θ + 〈εsδ,iεs∗δ,j〉θ + 〈γiεs∗δ,j〉θ + 〈εsδ,iγ∗j 〉θ + 〈nin∗j〉θ
+〈γin∗j〉θ + 〈niγ∗j 〉θ + 〈εsδ,in∗j〉θ + 〈niεs∗δ,j〉θ. (5.13)

i and j correspond to galaxies in different tomographic redshift bins (i ≤ j).

Using the identity in Eqn. 2.51 we can equivalently write:

ξ̂TOT = ξ̂GG + ξ̂II + ξ̂GI + ξ̂IG + ξ̂NN +

ξ̂GN + ξ̂NG + ξ̂IN + ξ̂NI , (5.14)

where G, I and N refer to the shear, correlated intrinsic and uncorrelated noise

components of the total ellipticity respectively. We define our notation such that

e.g. ξ̂GI refers to the correlation between a low-z G field and an I field from the

same or higher redshift. Since the shot noise is uncorrelated, we expect all terms

in ξ̂TOT containing a shot noise component (an ‘N ’ term) to be consistent with
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zero. ξ̂IG may be non-zero due to the overlapping nature of the tomographic

redshift bins; some galaxies in the high-z bin may be at a lower redshift than

galaxies in the low-z bin, leading to an apparent reversal of the signal. We will

be able to estimate the value of ξ̂TOT if we are able to measure each of the

individual components in Eqn. 5.14.

5.3.2 Shot noise

The shot noise inherent in measuring galaxy shapes is an important component

of the uncertainty in lensing measurements. To ensure the shot noise is modelled

as realistically as possible, the average shot noise for the full 154 sq. degrees

of CFHTLenS data was used to determine the components of ξ̂TOT (and its

covariance) that contain a shot noise contribution. The shot noise was determined

for both ellipticity components ε1 and ε2 from the Ngal survey galaxies as

σ2
ε =

Ngal∑
j=1

w2
j ε

2
j

Ngal∑
j=1

w2
j

(5.15)

where w is the Lensfit weight assigned to each galaxy. The weights are related

to how reliably Lensfit can assign a shape measurement to a given galaxy, and

span an arbitrary range in the CFHTLenS catalogue from 0 to 15.6.

The average shot noise was found to be σε1 = σε2 = 0.28. Both ellipticity

components have identical shot noise, which is expected as the shot noise

is uncorrelated with direction. We also investigated dependence of σεi on

photometric redshift and found no significant redshift dependence. Since the shot

noise is uncorrelated, the value of σε represents the Gaussian standard deviation

in each intrinsic ellipticity component from CFHTLenS galaxies.

In lensing data, the total shot noise observed is due to the combined correlated

and uncorrelated intrinsic ellipticities, so that σε = εsδ+n. However, for simplicity

we assume σε = n and hence overestimate the size of the uncorrelated shot noise.

n is much larger in magnitude than εsδ (by a factor of ∼ 103 as measured from

the Gaussian I fields, see previous section) meaning that we can safely ignore its

contribution to the total noise in this way.
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5.3.3 Producing galaxy catalogues

As in Chapter 4, the lensing simulations and corresponding galaxy catalogues we

generate use the CFHTLenS PDF redshift distribution and galaxy density. We

generate n = 736 Gaussian shear and intrinsic fields as described in §4.2.2 and

§5.2.1 to match the N-body simulations in number and input cosmology. We use

only a portion of the fields with equivalent area to the clone lines of sight (after

dividing into subfields) of 2.70 square degrees, so that they match the clones in

area and number.

We produce galaxy catalogues in a similar manner to that described in §4.2.3.

We construct three separate galaxy catalogues: a shear catalogue which we

denote G, a correlated intrinsic ellipticity catalogue I and an uncorrelated shot

noise catalogue N . These three catalogues contain clone galaxy positions and

ellipticities corresponding to each of the three components of the total observed

ellipticity εi described in Eqn. 5.12 (γi for the G catalogue, εsδ,i for the I catalogue

and ni for the N catalogue). We have already constructed G catalogues from

the N-body and Gaussian simulations in the previous chapter. The N catalogues

contain galaxy positions that map exactly to the G catalogues, with randomly

assigned shot noise ni taken from a 1D Gaussian with width σεi = 0.28 per

ellipticity component. Gaussian intrinsic ellipticity fields are used to create the

I catalogues by measuring the strength of the intrinsic field at galaxy positions

corresponding to the G catalogues (from the Gaussian simulations). We use

the Gaussian G catalogues only to calculate the amplitude of the GI correlation

function; the clone G catalogues are used to calculate the GG correlation function

(see next section).

5.3.4 Measuring ξ̂TOT

We estimate all the correlation function terms in Eqn. 5.14 separately in order

to find ξ̂TOT. The estimator for ξ̂GG was measured from the clone simulations as

described in Chapter 4 . Every other term in Eqn. 5.14 was found by using ATHENA

(see §4.3) to measure the correlations between galaxies on different angular scales

within and between the G, I and N catalogues. Ensuring the galaxy positions in

the G, I and N catalogues are the same allows us to easily and reliably estimate

the cross terms in Eqn. 5.14. We note that to calculate ξ̂GI and ξ̂IG, it is necessary
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to measure the correlations from G and I fields that were created simultaneously

from the Gaussian simulation code, since the fields would then be correlated with

each other as described in §5.2.1.

We plot ξ̂TOT as well as some of the terms in Eqn. 5.14 for one and five

tomographic bins in Figs. 5.1-5.2. In general we find good agreement with theory

for ξ̂GG, ξ̂II , ξ̂GI and the total correlation function with the caveat that at large

scales the clones lose power as described in §4.3. ξ̂TOT is lower than ξ̂GG because

at all scales, the GI (and IG) correlation is negative. We do not plot ξ̂IG as this is

exactly equal to ξ̂GI in auto-correlation bins (also ξ̂GN = ξ̂NG, ξ̂IN = ξ̂NI). ξ̂NN

and all noise cross terms are consistent with zero at all scales, as expected since

the noise is uncorrelated in both angular scale and redshift. We only plot ξ̂NN

since the variance on this term is larger than for any of the noise cross terms.

For nz = 5, the IA signal is behaving as expected. ξ̂II is highest in auto-

correlation and in the lowest redshift bins (since at low z, a given angular scale

represents a smaller physical separation than at high z, hence the strength of the

alignment will be greater). The noise terms in the correlation function are still

consistent with zero, however the variance on them is large and hence dominates

our measure of ξ̂TOT for low-z correlations. This is because at low redshift, the

shear signal is low and difficult to detect in the presence of shot noise, which

is unaffected by redshift3. It is worth noting that ξ̂II (ξ̂GI) in cross (auto)

correlations is non-zero. This is because of the highly overlapping nature of the

redshift bins highlighted in Fig. 4.2. If two different tomographic bins overlap, it

is possible to get a significant II signal in the cross-correlation between them since

some of the galaxies in bin i will have similar redshifts to some of the galaxies in

bin j. Similarly, catastrophic photo-z errors mean that galaxies from within one

redshift bin can have quite different redshifts, leading to a significant GI signal

even in auto-correlation.

3Strictly, this is only true if the tomographic redshift bins contain the same number of
galaxies, as in this analysis. For tomographic bins with equal width, there will be more galaxies
in the high-z bins as they cover a larger volume so the shot noise will decrease.
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Figure 5.1: GG and NN correlation functions measured from the N-body
simulations, and GI and II measured from the Gaussian fields (with the same
redshift distribution, galaxy density and input cosmology) for nz = 1 and nθ = 15.
Points correspond to values measured from simulations, and error bars are found
from the standard deviation between all 736 fields rescaled to match the standard
deviation expected from a CFHTLenS-like survey (see §4.4.1). Theory curves
plotted as lines are found from NICAEA. Also plotted is ξ̂TOT and its theoretical
value (found from summing the individual components from NICAEA); the points
have been offset slightly to visually differentiate them from ξ̂GG.
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Figure 5.2: As in Fig. 5.1 for nz = 5, nθ = 15. ξ̂NN has been omitted for clarity.
The redshift correlation being plotted is shown in the top left of each subplot.
ξ̂II is highest in auto-correlations and ξ̂GI is strongest for far cross-correlations.
Except in the lowest bins, the cosmic shear correlation dominates over the IA
terms.
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5.4 The total covariance

As we have an estimate of the total correlation function, ξ̂TOT, we can construct a

covariance matrix which incorporates the uncertainty in every term in Eqn. 5.14

by simply modifying Eqn. 4.1 to include ξ̂TOT:

ĈTOT
ij =

1

N − 1

N∑
k=1

(
ξ̂

TOT,(k)
i − ξ̄TOT

i

)(
ξ̂

TOT,(k)
j − ξ̄TOT

j

)
. (5.16)

Here, i, j represent the dimension of the data vector. It is important to note

that ĈTOT is not equal to the sum of the covariance of the individual correlation

functions, that is

ĈTOT 6= ĈGG,GG + ĈII,II + ĈGI,GI + ĈIG,IG + ĈNN,NN +

ĈGN,GN + ĈNG,NG + ĈIN,IN + ĈNI,NI , (5.17)

where ĈGG,GG is the covariance of ξ̂GG and so on. This is because the

covariance matrix will also contain contributions from cross terms between the

correlation functions in Eqn. 5.14. For example, there will be a ĈGG,II term

that arises from the covariance between ξ̂GG and ξ̂II . There are 36 of these

covariance cross-terms, and it is simpler to calculate ĈTOT directly from ξ̂TOT,

which naturally accounts for the total covariance.

We plot the diagonals of the individual covariances of the correlation functions

in Eqn. 5.14 and ĈTOT for nz = 1, 5 and 10 in Figs. 5.3-5.5. All terms in the

covariance matrix are scaled to CFHTLenS area as described in §4.4.1. For

nz = 1, we find that the dominant contribution to the total covariance on scales

of . 30′ is the shot noise through the variance on ξ̂NN , as expected. Above this

scale, sample variance is the dominant contributor to the covariance through the

GG term. For higher bin tomography, however, the shot noise dominates in every

redshift correlation, and its amplitude is independent of redshift, as expected since

the number of galaxies per redshift bin is constant. This result is significant; the

covariance of the noise (and of the cross terms between the N and G catalogues)

is the largest contributor to the total covariance at all angular scales and in all

redshift bins, by up to two orders of magnitude. Thus, inclusion of a realistic

shot noise component in the covariance is vital if we are to construct a covariance

matrix that can be used to constrain cosmology.
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Terms containing a contribution from the I field have very low variance for

all nz. This means that explicit calculation of the covariance matrix contribution

from IAs may not be necessary as the shear and noise covariance terms are larger

by a factor of 101-104 in almost every redshift correlation, and the covariance

calculated from the sampling variance and the shot noise alone is a good

approximation to the total covariance. The caveat to this is that if the amplitude

of the normalisation constant A in the NLA model is significantly higher than

1, the I covariance terms may become significant. For example, if A = 10 (e.g.

for low-z LRGs as found in [199]), the amplitude of ξ̂II and its covariance will

increase by a factor of ∼ A2 = 100, making it a significant contributor to the total

covariance, particularly in low-z bins. As LRGs make up such a small fraction of

the galaxy population however, it is unlikely that A will be this high on average.

It is worth noting that since the amplitude of the covariance matrix scales

inversely with survey area, the relative amplitudes of each of the covariance terms

in Figs. 5.3-5.5 will be the same for surveys of different areas for a given redshift

distribution and galaxy density. This means that the results presented in this

thesis are applicable to future large-scale lensing surveys, if the galaxy density

and redshift distributions are similar.

In Figs. 5.6-5.7 we plot the ratio of the total covariance to that found from

the sum of the individual covariances in Eqn. 5.17 for nz = 1, 5 and nθ = 15.

Error bars are the 1σ standard deviation on ĈTOT and were estimated from

bootstrapping to generate multiple covariance matrices as described in §4.4.2.

This plot shows the significance of the cross terms in the covariance matrix

(ĈGG,II etc.). At angular scales above ∼ 7′, the ratio deviates from one, implying

that the cross terms are contributing significantly to the covariance matrix. At

high angular scales, the covariance matrix is boosted by up to ∼ 25% by these

terms. We find this trend for all values of nz. Figs. 5.3-5.4 show that most of the

covariance comes from the G and N correlations, so it is likely that the cross terms

from these correlations (such as ĈGG,NN , ĈGN,NN) are responsible for most of the

additional variance. [203] perform a similar 1-bin analysis of the clone simulations

(without IAs) and also find the cross terms between G and N to be subdominant
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Figure 5.3: Diagonal of the total covariance ĈTOT as a function of angular scale
for nz = 1, nθ = 15. Also plotted are some of the individual components of the
covariance as defined in Eqn. 5.17. Where the covariance terms are symmetric in
the auto-correlation, for example ĈIG,IG = ĈGI,GI , we plot only one of the two
terms. ĈII,II is of the order 10−18 and is not visible on the plot. The redshift
correlation being plotted is shown at the top of the plot.

154



5.4. The total covariance

Figure 5.4: As in Fig. 5.3 for nz = 5, nθ = 15. Legend is the same as in Fig. 5.3
and has been omitted to avoid crowding.
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Figure 5.5: As in Fig. 5.3 for nz = 10, nθ = 15. Legend is the same as in Fig. 5.3
and has been omitted to avoid crowding.
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to ĈGG,GG and ĈNN,NN , but still a potentially important contributor to the

total noise. The effect of these terms cannot therefore be neglected, and our

implementation of ĈTOT as an estimator for the total covariance is necessary.

Interestingly, for nz > 1, the cross terms contribute most significantly in high-z

auto-correlations. This is probably because both the shear signal and its variance

are highest in these correlations (see Fig. 5.4), so any covariance terms containing

a contribution from the G field are significant.

5.4.1 Noise-to-Signal Ratio

In Figs. 5.8-5.9 we plot the diagonal of the covariance components over the total

shear correlation function to investigate the relative noise contribution of each

term at different angular scales for nz = 1, 5 and nθ = 15. The noise-to-signal

ratio for the total covariance is lowest between ∼ 10′ and 50′. This means that it

is important to measure the shear covariance on these scales as the higher signal-

to-noise ratio may enable us to better constrain parameters through lensing. For

nz = 1, ĈNN,NN contributes proportionally the most to the noise on scales below

∼ 30′, and ĈGG,GG the most above these scales, which is consistent with the

behaviour of these covariance terms in Fig. 5.3. The other signals also behave as

expected based on Fig. 5.3.

For nz = 5, the low-z correlations behave somewhat less smoothly. In general,

ĈNN,NN contributes the most to the amplitude of ĈTOT, however the behaviour

with angular scale is erratic for the correlations involving the lowest redshift bin.

This is due to the high variance on the noise terms affecting the estimate of ξ̂TOT

as shown in Fig. 5.2. Although the components of the variance at low-z are

well behaved, as shown in Fig. 5.4, the noise-to-signal ratio is not since ξ̂TOT is

dominated by shot noise. The high-z correlations are well behaved, although we

do not see the crossover at ∼ 30′ between the NN,NN and GG,GG covariance

terms, as the noise dominates on all scales.

The relative contributions to the covariance matrix shown in these plots will be

the same for a lensing survey of any area, due to the fact that the covariance scales

inversely with area. This means that the results shown here are also applicable to
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Figure 5.6: The total covariance matrix ĈTOT measured from Eqn. 5.16 as a ratio
of the sum of all covariance terms in Eqn. 5.17, for nz = 1 and nθ = 15. The
redshift correlation being plotted is shown at the top of the plot.
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Figure 5.7: As in Fig. 5.6 for nz = 5, nθ = 15.
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future lensing surveys with larger survey areas, if the galaxy density and redshift

distributions are similar.

5.4.2 Invertibility of ĈTOT

To enable us to use the covariance matrices constructed in this chapter in a

likelihood analysis, we must ensure that they are non-singular and pseudo-

invertible. We use a technique known as Singular Value Decomposition (SVD)

to aid us in this section. SVD is a useful method for diagnosing and pseudo-

inverting singular or close-to-singular matrices. It is especially well suited to

linear least-squares fitting, a fact we exploit in Chapter 6. We may decompose a

square matrix A of dimensions Nu x Nu into

A = UVTW. (5.18)

Here, U, V and W are also necessarily Nu x Nu matrices. W is a diagonal matrix

with positive elements (the ‘singular values’) that are the eigenvalues of A. The

eigenvalues of a matrix are those that satisfy the equations AE = λE (E are

the eigenvectors of A). U and V are both unitary matrices (that is, the matrix

multiplied by its conjugate transpose equals the identity matrix, UUT = I) whose

columns form the left- and right-eigenvectors of the eigenvalues λ respectively. W

can be thought of as a scaling matrix and U and VT as rotation matrices which

together work analogously to the mapping vector πmap and rotation matrix R

used in principal component analysis in Eqn. 3.12. From Eqn. 5.18, the inverse

of A will be

A−1 = V

[
1

λ

]
UT (5.19)

Eqn. 5.19 will fail if any of the eigenvalues are negative which occurs if A is close

to singular; SVD provides a diagnostic of the invertibility of a matrix [141].

The condition number of the matrix is defined as the ratio of the largest to

the smallest eigenvalues, and a matrix with a condition number close to one (the

identity matrix has a condition number of 1) is said to be well-conditioned and

its inverse can be computed to a high degree of accuracy [204]. Conversely, a
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Figure 5.8: The variance-to-signal ratio for different terms contributing to the
total covariance nz = 1 and nθ = 15. σII/ξ̂TOT is of the order ∼ 10−13 and is not
visible. The redshift correlation being plotted is shown at the top of the plot.
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Figure 5.9: As in Fig. 5.8 for nz = 5, nθ = 15.
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singular matrix will have an infinite condition number. If the reciprocal of the

condition number is of the order of the level of computing precision available

(typically ∼ 10−6 for single precision calculations, ∼ 10−12 for double precision),

the accuracy required to produce an unbiased estimator of the inverse will not be

present and a likelihood analysis may result in biased or imprecise constraints.

We apply the Anderson correction to ĈTOT as described in §4.1.2. The

Anderson correction is applicable to any covariance matrix that has Gaussian

noise, so our inclusion of shot noise (which is Gaussian) in the total covariance

means that the correction is still valid. We then measure the condition number

of ĈTOT. for all nz and nθ to investigate whether the covariance will be (pseudo)

invertible and hence useable in a tomographic analysis. The results are shown in

Fig. 5.10. Note that for the higher bin tomography, the condition number cannot

be computed for high values of nθ since this violates the p/N ≤ 1.0 condition (i.e.

the number of data points must not exceed the number of realisations of the data).

The highest value of the condition number is ∼ 105 for nz = 15, nθ = 6, which

is unsurprising as this bin combination results in the largest possible covariance

matrix in our parameter set. In general, since we are able to compute using

double precision, the condition number is low enough to ensure that inversion of

the matrix is possible to a high enough degree of accuracy to avoid introducing

a bias. The condition number increases rapidly with both nz and nθ, since the

size of the covariance matrix grows. The increase in condition number with nz

for nθ = 15 becomes faster than exponential as the limiting case of p/N = 1.0 is

reached for nz = 9.

To obtain a more accurate estimate of the covariance, [203] generate an

additional ∼ 60 noise-only realisations of the clone catalogues. They then

calculate the noise covariance term for each of the 60 extra realisations, and

average to get a ‘smoothed’ covariance estimator. Such a method ensures that

any estimate of ĈTOT will indeed be closer to the true covariance, but it is

computationally expensive to generate many additional catalogues. A more

accurate estimate of ĈTOT does not necessarily translate into a less singular and

better-behaved matrix, since the true covariance itself may be close to singular. It

is, however, important to have enough lines of sight to ensure that the covariance

matrix estimate is close to the true value, as the use of just a few lines of sight

in the determination of the covariance could result in a noisy matrix that is very
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Figure 5.10: The condition number of ĈTOT for nz = 1 to 15 and nθ = 3, 6, 10
& 15.
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different from the true covariance. For this reason, we calculate the condition

number of ĈTOT for different numbers of lines of sight from subsets of the total

736 for 1 ≤ nz ≤ 15. The results are plotted in Fig. 5.11. We find that the

condition number converges well below the number of lines of sight available to

us for all low-bin tomographic covariance matrices. For nz = 1, the covariance

stabilises by N ∼ 200, consistent with the results presented in Fig. 4.7 where we

investigated the stability of the shear covariance matrix with N . As nz increases,

it takes ever more lines of sight to achieve a stable condition number. This is

simply a consequence of the fact that the covariance matrix for high nz contains

more elements than for low nz (if nθ = constant), meaning more lines of sight

are required to ensure we are in the regime where p/N < 1.0 and the covariance

matrix inverse is non-singular. For this reason, we also plot the condition number

for nz = 2, nθ = 5. The covariance matrix from this bin combination will have

the same dimensions as that of nz = 1, nθ = 15. The condition number for this

case is even more stable than for the nz = 1, nθ = 15 case, due to the stronger

diagonal component from the shot noise for higher nz. It is clear from this plot

that increasing the number of tomographic bins does not result in a less well-

conditioned matrix unless the size of the matrix itself also increases, indicating

that the additional (non GG,GG) terms in the total covariance matrix that we

have introduced in this chapter do not make it less stable or less invertible.

Since the covariance condition number in every tomographic and angular bin

combination we wish to run is well below machine precision, we can be confident

that ĈTOT is non-singular and pseudo-invertible, in preparation for the likelihood

analysis presented in Chapter 6.

5.5 Summary and Conclusion

In Chapter 4 we estimated the correlation function of cosmic shear only, while

incorporating a realistic galaxy redshift distribution and number density as

determined from CFHTLenS data. In this chapter, we have extended this work

to produce a covariance matrix that incorporates the effects of intrinsic galaxy

alignments and shot noise, which are present in any real shear data set. We have

then investigated the relative importance of each component of the covariance,
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Figure 5.11: The condition number of ĈTOT for 1 ≤ nz ≤ 5 and nθ = 15
(triangles). Also plotted is the condition number with N for nz = 2, nθ = 5
(diamonds); this covariance matrix has the same dimensions as for nz = 1,
nθ = 15.
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and the effect of the new covariance matrix on the number of tomographic bins

we can use in a likelihood analysis. To achieve this we:

• Generate correlated Gaussian cosmic shear and intrinsic fields incorporating

the NLA model for intrinsic alignments and the CFHTLenS redshift

distribution and cosmology as described in Chapter 4.

• Measure the shot noise r.m.s. source ellipticity per component from the

CFHTLenS as σe = 0.28.

• Construct cosmic shear (G), correlated intrinsic ellipticity (I) and un-

correlated shot noise (N) galaxy catalogues from both the N-body and

Gaussian simulations, using σe = 0.28 for the amplitude of the shot noise

and CFHTLenS galaxy density.

• Measure ξ̂ for every combination of the catalogues by correlating them with

themselves and each other, then summing to calculate ξ̂TOT.

• Estimate the total covariance, ĈTOT, from ξ̂TOT and the covariance of

individual components of the total correlation function (ĈGG measured

from ξ̂GG etc.), finding the shot noise to be the dominant contributor to

the covariance matrix and the IA covariance to be negligible in most cases.

• Determine the contribution of cross terms to ĈTOT, finding that they are

significant for some redshift correlations on large scales.

• Measure the noise-to-signal ratio and find a minimum between 10′ . θ . 50′

where the noise affects the signal the least.

• Calculate the condition number of the covariance matrix for different

tomographic and angular bin numbers and determine that it is stable under

pseudo-inversion in all considered cases.

One of the limitations of this analysis is the Gaussian nature of the IA

covariance. This could be improved upon if an IA model such as the NLA model

is included in N-body simulations, however the small-scale resolution required

to measure the IA signal accurately becomes computationally expensive. If IAs

were included in N-body simulations, it would then be possible to assign a realistic

observed ellipticity εi to each galaxy which incorporates the shear and IA signal
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for that galaxy and a shot noise component. If one is only interested in the

total covariance, then simply measuring ξ̂+ from such a catalogue will result in

an estimator for ĈTOT. This is computationally less expensive than correlating

separate G, I and N fields as we have done in this analysis. Since the IA signal in

this analysis comes from a different set of simulations than the shear signal, with

different galaxy positions (due to the fact that there are masks present in the

clone fields which are absent in the Gaussian fields), we were not able to estimate

ĈTOT in this way. Additionally, we have investigated the relative contributions

of different terms in the covariance matrix in this chapter, which is information

that would have been lost to us had we taken this approach.

Finally, we have investigated the invertibility of the covariance matrix in

preparation for the likelihood analysis in Chapter 6, and found that for all nz

and nθ that are permissible, the condition number inverse is lower than machine

precision and the matrix is non-singular (we note however that in the region of

p/N → 1, the condition number is much larger than for low values of p/N , which

may affect the relative accuracy of the covariance matrix inversion). This means

that the conclusion we drew in Chapter 4 - that 10-bin to 15-bin tomography

should be achievable with the clone simulations (for at least some values of nθ) -

is still valid.
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Chapter 6

Optimal Tomography with the

CFHTLenS Covariance

6.1 Introduction

In Chapter 2, we discussed how weak lensing can be used to constrain cosmological

parameters. Incorporating a least-squares fit into an importance sampling method

can provide estimates and corresponding credibility intervals of the cosmological

parameters that are sensitive to the dark matter distribution. We described

the construction of such an importance sampling method - the Markov Chain

Monte Carlo - in Chapter 3. In this chapter, we employ this algorithm to obtain

credibility intervals expected from a tomographic CFHTLenS-like survey for some

key cosmological parameters. Our aim is to determine which combination of

redshift and angular bins produces the tightest constraints on the parameters of

interest, and to explore the limitations of such a tomographic approach.

In the previous two chapters, we have described a method for estimating

covariance matrices for cosmic shear analysis from simulations. We now have

a realistic estimate of the covariance matrix for a tomographic CFHTLenS-like

survey that includes all redshift auto- and cross-correlations. The covariance

matrix represents the expected error on our measurements, and any likelihood

analysis involving correlated data (such as the shear correlation function) must

take it into account. The combined effect of IAs and realistic photo-z errors on

the optimal number of tomographic and angular bins for shear analysis has not

been investigated before, so in this chapter we incorporate the covariance matrix
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6.2. Least-squares fitting

estimated in the previous chapters into a likelihood analysis to investigate this.

Since we are using the redshift distribution and galaxy density from CFHTLenS,

the optimisation we perform in this chapter can be applied to the CFHTLenS

data, which we do in Chapter 7. We perform likelihood fits to estimate the

posterior distribution of some key cosmological parameters for every viable

combination of tomographic and angular bins. We then determine the optimal bin

combination that produces the tightest constraints on these parameters. We also

investigate the effect of neglecting IAs and photo-z errors on the size and position

of cosmological likelihood contours to see if this biases parameter constraints.

6.2 Least-squares fitting

The key calculation in the MCMC algorithm is the determination of the likelihood

through its dependence on χ2, as described in Eqn. 3.7 and Eqn. 4.4. However,

as we have discussed in §4.1.2, inverting a covariance matrix, especially one that

is close-to-singular, can result in a biased and unreliable estimator for the inverse.

This can lead to one incorrectly estimating the size of the credibility intervals one

would expect from a given covariance. A solution to this is to pseudo-invert the

covariance matrix through singular value decomposition. We introduced SVD in

§5.4.2 as a means to diagnose the invertibility of the covariance matrix through

its condition number. SVD can also be used to calculate an estimate of χ2; we

detail in this section how this is achieved.

We follow the method of [205] which exploits the properties of SVD described

in [141]. First, the covariance matrix is normalised such that the diagonal is

rescaled to unity and the off-diagonals fall between ±1. We define the variance

σi = Ci,jδi,j such that the normalised covariance is

CN =
C

σTσ
. (6.1)

CN is also known as the correlation matrix. SVD is a special case of eigenvalue

decomposition that produces a system of linear equations that satisfy

CNEi = λiEi i = 1...Nu , (6.2)

for a covariance matrix of dimensions Nu x Nu, where as in §5.4.2, λi and Ei are
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the eigenvalues and eigenvectors of the (normalised) covariance matrix, and some

eigenvalues are set to zero. The eigenvectors form a complete orthonormal basis,

and can be used to recover C.

With the eigenvectors and eigenvalues, one can redefine χ2 in Eqn. 4.4 to be

χ2 =
Nu∑
i=1

(yi − y(π)) (yi − y(π))T

λi

yi = ETσ−1ξ̄+. (6.3)

Summing every linear equation from 1 to Nu gives exactly the same result as

the standard χ2 expression, while circumventing the need to directly invert the

covariance matrix. It is possible to sum over fewer than Nu modes to calculate

χ2. This may be desirable in the case where the condition number is very high

(close to machine precision). This is because in such a scenario the last few

modes (corresponding to the smallest eigenvalues) will be corrupted by round-

off error, and the inclusion of these in the linear combinations of equations can

bias the solution we derive for the whole set. Therefore it can be beneficial to

construct χ2 from only those modes for which the condition number lies well

above machine precision. In §5.4.2 we found that the condition number is much

smaller than the machine precision available to us for every tomographic and

angular bin combination we can explore, so we do not impose a mode cutoff in

this analysis.

6.3 Optimisation

Our optimisation parameter space consists of every statistically viable combina-

tion of tomographic and angular bins in the region 1 ≤ nz ≤ 15 and 3 ≤ nθ ≤ 15

as determined from Chapters 4 & 5. We incorporate the Bayesian estimates of

the redshift distribution (z(PDF) in Chapter 4) into the theoretical prediction of

the total shear correlation function. We optimise on ξ̂TOT
+ , which incorporates the

expected signal from the II and GI alignment correlation functions. The lensing

signal is sensitive to multiple cosmological parameters, however we must choose

the parameters we wish to include in our likelihood analysis carefully, as there

is limited constraining power available to us with current lensing surveys such

as CFHTLenS. We choose to vary three parameters of interest: Ωm, σ8 and the
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NLA model amplitude parameter A. As described in §3.6, preliminary MCMC

chains showed that there is very little constraining power present for h0, w0 or

wa, so we choose not to constrain these parameters as this would vastly increase

the dimensions of the parameter space and hence the time to convergence, with

very little information return. h0 is well constrained from HST supernovae data

[12] to be 0.738 ± 0.024 (to 1σ), so we constrain it with this Gaussian prior in

our likelihood analysis. This is the approach used by [149] and [206] in similar

cosmological likelihood analyses. Practically, this means that we allow the MCMC

to step within the region that encompasses h0 = 0.738± 3σ = 0.738± 0.072, and

then multiply the likelihood at this point by its probability as determined from

a Gaussian distribution. This means we are truncating the Gaussian at the 3σ

level rather than letting the parameter space extend to ±∞ as it formally should,

however by definition only ∼ 1% of the MCMC points will attempt to step outside

this region so it is highly unlikely to affect our parameter estimates.

We assume flat ΛCDM cosmology to match the clone simulation, such that

Ωm + ΩΛ = 1 and the dark energy equation of state, parametrised as w(z) =

w0+wa(1−a), is set to w0 = −1.0 and wa = 0.0. All cosmological parameters that

we do not constrain are set to the fiducial values of the clone input as described

in Table 4.1. We assign tophat priors to the parameters we wish to constrain.

Ωm and σ8 are allowed to vary between 0.1 ≤ Ωm ≤ 1.0 and 0.1 ≤ σ8 ≤ 1.5 (the

ranges for which NICAEA has been tested and can reliably predict the correlation

function). We set a hard prior such that A > 0 as we wish to optimise on the

fiducial, positive value of A. We allow A to vary within the range 0 < A < 15;

this was determined from trial MCMC runs with nz = 1 and 10, where we find

there is very little posterior probability in the region A > 15.

6.3.1 Optimisation metrics

ξ+(θ) is relatively featureless and produces a highly degenerate, curved contour

for Ωm and σ8. This contour is, however, quite narrow, and almost orthogonal

to constraints from analysis of cosmic microwave background data. This makes

it possible to combine confidence regions from both data sources and lift this

degeneracy [81, 207]. For this reason, we measure the area of the Ωm – σ8 68.3%

contour with tomography as an optimisation metric (we denote this metric 1).

[152] find that two-bin tomography partially breaks the degeneracy between the
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two parameters, indicating that tomography has the potential to put tight limits

on the size of this contour. We also measure the width of the Ωm (metric 2) and

σ8 (metric 3) 68.3% likelihood contours around the fiducial values for different

bin combinations, to see if the optimal binning for these parameters differs.

We also investigate the effect of tomography on constraints achievable on the

NLA model normalisation constant A. We measure the 68.3% likelihood width

of A (marginalised over every cosmological parameter) for every tomographic

and angular bin combination (metric 4). It is unknown whether the optimal

combination that minimises the error on A will be the same as that which

minimises the optimisation metrics for Ωm and σ8; our analysis will determine if

this is the case.

6.3.2 The data vector

Since the input correlation functions are poorly recovered from the simulations

above ∼ 30′ for the clone and below ∼ 5′ for the Gaussian simulations (see

Figs. 4.3-4.4), using them in the likelihood calculation may result in a bias in

cosmological parameter estimates. Much of the constraining power of the shear

correlation function exists on these scales, so simply excluding these angular scales

will reduce the precision of our parameter estimates considerably. This would not

reflect the precision we can expect to achieve with real data, which is not limited

by pixel resolution or edge effects as simulations are. For this reason, we set

the mean of the data vector equal to the input correlation function calculated

from NICAEA, ξTOT
th (θ), on all angular scales (where the subscript ‘th’ denotes the

theoretical correlation function prediction for a given cosmology). This means

that ξ̂TOT = ξTOT
th , and for the fiducial cosmology we will measure χ2 = 0.

This represents an ideal measurement of the correlation function, but since we

are optimising the number of tomographic and angular bins in this chapter,

this enables us to avoid introducing biases in the likelihood contours and hence

drawing potentially erroneous conclusions about the optimum bin combination(s).

This approach also accounts for the fact that the WMAP prior we introduce on

h0 is slightly different from the value used in the N-body simulations, ensuring

that this does not introduce a bias into the cosmological constraints.

173



6.3. Optimisation

6.3.3 Running MCMC chains

We decide the minimum chain length using the Gelman-Rubin statistic R

mentioned in §3.4.1. R is formally defined as follows. For M chains of length Nc,

where chain elements are denoted yji and i = 1...Nc, j = 1...M , the mean of a

chain is

ȳj =
1

Nc

Nc∑
i=1

yji . (6.4)

The mean from all chains is

ȳ =
1

MNc

MNc∑
i,j=1

yji . (6.5)

Therefore the variance between chains is defined as

V =
1

M

M∑
j=1

(ȳj − ȳ)2, (6.6)

and the variance within a chain as

W =
1

M(Nc − 1)

MNc∑
i,j=1

(ȳji − ȳj)2. (6.7)

The Gelman-Rubin statistic is then defined as [142, 143]

R =
W
(
Nc−1
Nc

)
+ V

(
1 + 1

M

)
W

. (6.8)

The right hand side of Eqn. 6.8 contains two estimates of the variance. The

numerator in R is an estimator of the variance in the entire distribution that will

be overestimated if the chains are not convergent. Conversely, the denominator

will be an underestimate if convergence is not reached. From trial chains, we find

that we need between ∼ 2 x 105 and 5 x 105 points in total for each least-squares

fit to achieve an acceptable value of R ≤ 1.03 (see §3.4.1). The longest chains

are generally needed for bin combinations that result in the largest credibility

intervals; since the points are spread more thinly over the parameter space it

takes more points to ensure we are sampling representatively from the posterior.

An important factor to consider when using an iterative sampling method such
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as MCMC is the computing time needed. The largest computing overhead comes

from the calculation of theoretical shear correlation functions in NICAEA, which

must be calculated for each point in the MCMC chain. Increasing the number of

tomographic bins in the analysis results in a more complicated calculation and

slows down at a rate that is slightly worse than linear, i.e. for 10-bin tomography,

the calculation is ∼ 12 times slower than for 1-bin tomography (∼ 6 seconds on a

standard CPU vs. ∼ 0.5 s)1. Since many iterations of the MCMC are needed to

achieve convergence, we utilise multiple CPUs and run many chains in parallel.

We then recombine the resulting chains to produce long, convergent chains. We

can adopt this approach since we select a random starting point for each chain

that is close to the input cosmology, removing the need for burn-in as described

in §3.4.2.

We follow the procedure to determine an optimal proposal distribution as

described in §3.6.1. Once Gaussian proposal distributions were generated for

each value of nz, we ran some short trial chains to observe their behaviour. In

every case, the new proposal distributions resulted in a much higher acceptance

ratio than our prelimiary tophat distribution (& 50% compared to ∼ 25%). We

scaled the variances on each fitted parameter to ensure the acceptance rate for

each nz is approximately 50%, as this generally results in the shortest time to

convergence [136]. This also ensures that all our chains will need to be about the

same length to achieve convergence, as long as the shape of the posterior does

not change dramatically over the optimisation parameter space.

6.3.4 Credibility intervals

The output from the MCMC algorithm is a (combined) chain of length Nc,

consisting of χ2 values and their coordinates in cosmological parameter space. To

produce credibility intervals for all possible parameter combinations, we exploit

the characteristic of importance sampling mentioned in §3.4: the density of points

in a region of parameter space is directly proportional to the likelihood of that

region (assuming convergence is reached). Therefore we estimate the density of

points by gridding the multidimensional parameter space into fine bins. Next,

1The same slow-down does not apply for increased angular scales as NICAEA calculates ξth
on a wide range of scales simultaneously and interpolates to produce the required number of
angular scales.
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we count the number of MCMC points in each grid space. This produces a

3-dimensional density array (corresponding to Ωm, σ8 and A), which allows

us to estimate joint 2D likelihood contours for all combinations of parameters

by marginalising over the third parameter and drawing contours around the

first 68.3%, 95.4% and 99.0% of the grid spaces with the highest density of

points. Marginalisation means we simply ignore the value of the third parameter,

essentially collapsing this dimension of the gridded likelihood array down. This is

roughly equivalent to, but better than, using standard ∆χ2 values to determine

1, 2 and 3 σ credibility intervals as this is only accurate when applied to Gaussian

probability distributions [143]. Due to the strong degeneracy between parameters,

this assumption is not valid.

6.4 Optimal Binning

In Fig. 6.1 we show the predicted constrains on the three fitted parameters

achievable from a 2D analysis with nz = 1 and nθ = 8 as a result of the least-

squares MCMC fit. We find that the Ωm-σ8 contour is curved and degenerate

as expected, and the size of the 68.3% contour is smaller than the constraints

from the early analysis of CFHTLS data by [124] and [154], which we expect

since the total survey area of CFHTLenS is larger than the areas used in their

analyses (see §7.2). We predict 1D credibility intervals (marginalising over every

other parameter)2 of Ωm = 0.241+0.124
−0.080 and σ8 = 0.847+0.143

−0.188 (all values quoted are

68.3% CL). Our predicted constraints are similar to those achieved by [208] and

[209] who use the full CFHTLenS catalogues and which we will review in §7.2.

Additionally, we find that even a 2D analysis will have some constraining power

on the NLA amplitude parameter, predicting A = 0.746+1.426
−0.663 and a 68.3% upper

bound of 2.17 when marginalising over Ωm and σ8.

We plot the four optimisation metrics as a function of the number of

tomographic bins in Fig. 6.2 for a representative range of angular bin numbers

(nθ = 4, 8 & 12). There is a strong dependence on nz for all metrics. This shows

2We note that the means recovered are not exactly equal to the simulation inputs due to the
random stepping nature of the MCMC and the gridding procedure used to determine contour
intervals, but they are well within the tolerance of the error bars in every case.
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Figure 6.1: 68.3%, 95.4% and 99.0% contour intervals on Ωm, σ8 and A for nz = 1,
nθ = 8 from a chain of length ∼ 5 x 105. The input cosmology is indicated with
a cross.
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that the Ωm-σ8 contour and the NLA model amplitude are both highly sensitive

to tomography. For each nθ there is an optimum number of tomographic bins

that minimises the metrics. In every case, the size of the optimisation metrics

begins to increase rapidly at high nz as the data vector and covariance increase

in size. There is also a shift along the x-axis in the optimisation curve with nθ;

when nθ is high the data vector is large and hence the optimum tomographic bin

number is lower than for smaller nθ. This means that there is a partial degeneracy

between the optimal nz and nθ - increasing the number of tomographic bins will

decrease the number of angular bins needed to reach the optimal metric values,

and vice versa.

In Fig. 6.3 we plot the optimisation metrics as a function of the number of

angular bins for nz = 3, 6 & 9. We find in general that the metrics are much less

sensitive to the number of angular bins than to the number of tomographic bins.

This is to be expected since the addition of tomographic bins rapidly increases

the size of the data vector p and recovers a larger amount of information, whereas

adding additional angular bins increases p only linearly. The slight exception to

this trend is the behaviour of nz = 9, which rises steeply at high nθ because the

covariance matrix becomes prohibitively large.

Because of the limited statistical precision of the mock survey, we also

investigate the optimal size of p for each of the metrics, as shown in Fig. 6.4.

We find that there is a general trend for the metrics to reach a minimum at

100 . p . 200 for all bin combinations. The points from different values of nθ

follow the same trend, although the points from nθ = 4 sit slightly above those

from higher angular bins numbers. This is due to the fact that for such a low

number of angular bins, there is less overall constraining power present than for

higher angular bin numbers. These results indicate that middling values for both

nz and nθ minimise the overall amount of correlation in the data vector, so as

long as nθ is neither exceptionally small nor large (i.e. the combination of nz and

nθ is close the the optimum), the ideal binning is more strongly dependent on

the total number of data points used and hence the dimensions of the covariance

matrix than on the exact combination of nz and nθ used.
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Figure 6.2: The value of the four optimisation metrics as a function of nz, for
nθ = 4, 8 & 12. Top left : The area of the Ωm-σ8 68.3% likelihood contour. Top
right : The width of the Ωm 68.3% contour at the fiducial value of σ8. Bottom
left : The width of the σ8 68.3% contour at the fiducial value of Ωm. Bottom right :
The marginalised width of the A 68.3% contour. All units are dimensionless.
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Figure 6.3: The value of the four optimisation metrics as a function of nθ, for
nz = 3, 6 & 9. Top left : The area of the Ωm-σ8 68.3% likelihood contour. Top
right : The width of the Ωm 68.3% contour at the fiducial value of σ8. Bottom
left : The width of the σ8 68.3% contour at the fiducial value of Ωm. Bottom right :
The marginalised width of the A 68.3% contour. All units are dimensionless.
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Figure 6.4: The value of the four optimisation metrics as a function of p, for nz =
4, 8 & 12. Top left : The area of the Ωm-σ8 68.3% likelihood contour. Top right :
The width of the Ωm 68.3% contour at the fiducial value of σ8. Bottom left : The
width of the σ8 68.3% contour at the fiducial value of Ωm. Bottom right : The
marginalised width of the A 68.3% contour. All units are dimensionless.

181



6.4. Optimal Binning

Overall, the optimum bin combination is similar for the different optimisation

metrics. We summarise our findings in Table 6.1. Metric 1 reaches a minimum

(i.e. the gradient of the curve is approximately zero) for nz = 7, nθ = 7. Metric

2 is at a minimum at nz = 6, nθ = 8, metric 3 at nz = 6, nθ = 9 and metric 4

at nz = 6, nθ = 7. There is a factor of approximately 3 decrease in the size of

the Ωm-σ8 contour for the optimal case compared to the 2D constraint, and an

approximate 40% reduction in the width of the contour about the fiducial value.

This is a somewhat smaller improvement than that found by [126] and [152],

who find up to a factor of 10 decrease in parameter uncertainties with 3- and 4-

bin tomography respectively. However, their analyses do not incorporate realistic

photometric redshift bins, IAs or the Anderson correction into their results, which

most likely account for the difference in improvement. In agreement with [152], we

find that most of the additional constraining power from tomography is achieved

from splitting the data into two or three redshift bins, with only incremental

gains after this point. The constraint on A is improved by only around 30% by

tomography, indicating that it is slightly less sensitive to tomography than the

fitted cosmological parameters.

Table 6.1: Optimisation metrics

Metric Quantity Optimal value nz nθ p Fraction of 2D value

1 Ωm-σ8 area 1.01 x 10−2 7 7 196 0.338
2 Ωm width 5.00 x 10−2 6 8 168 0.581
3 σ8 width 8.09 x 10−2 6 9 189 0.565
4 A width 1.443 6 7 147 0.707

Since nz = 6, nθ = 8 is the optimal bin combination for one of the metrics

and sits in between two of the other optimal bin combinations, we show the

credibility intervals from this bin combination for the fitted parameters in Fig. 6.5.

We find marginalised predicted 1D credibility intervals for this binning of Ωm =

0.265+0.082
−0.048, σ8 = 0.809+0.090

−0.096 and A = 1.277+0.663
−0.796. Our results are considerably

more precise than the values achieved from previous tomographic analyses such as

the 6-bin analysis of COSMOS data in [156] who found Ωm = 0.32+0.34
−0.11 assuming

flat ΛCDM cosmology. The improvement is due to the substantial (∼ 102)
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increase in survey area of the CFHTLenS compared to COSMOS.

We note that with tomography and CFHTLenS uncertainties, there is

moderate constraining power on A such that very high values (e.g. A ∼ 10)

could be ruled out. This is promising as it shows that CFHTLenS may have

enough constraining power on A to detect the presence of a significant IA signal

and may yield information on the galaxy population that is thought to contribute

to IAs (see §5.2).

6.5 Effect of covariance matrix errors

We now turn to the issue of the upward trend at high bin values in Figs. 6.2-

6.4. This result is contrary to what one might expect from increasing the size of

the data vector; given a sufficiently accurate covariance, the optimisation metrics

would be expected to plateau at high nz and nθ since the addition of more data

points always mean there is more information even in the presence of degeneracies.

This is the result found by BK07 for power spectrum tomography. Many of our

results begin to plateau before rising again at high bin numbers when the error

in the covariance matrix becomes prohibitively large. Since the measurement of

tomographic correlation functions requires the estimation of a noisy covariance

matrix from a finite number of lines of sight, these plots show the limit at which

the clone covariance matrix estimate breaks down. This manifests as a sharp

increase in parameter uncertainties.

We verify that this is the cause of the upturn in Fig. 6.6, where we plot the

values of the optimisation metrics from a likelihood analysis that utilises only half

the available clone lines of sight to calculate the covariance for nθ = 8. When

using only 368 lines of sight, the optimisation metrics reach minimum values at

lower nz than when all 736 lines of sight are used. This is to be expected, since

the estimate of the covariance is less reliable and the limiting case of p/N = 1

is reached at a lower bin number. We see some plateauing behaviour for the

case of N = 368, although the plateau extends to higher nz when more lines

of sight are included in the covariance. Since we see partial plateaus for all the

optimisation metrics for N = 736, this indicates that the addition of more lines

of sight will probably not minimise the metrics any further, and will have the
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Figure 6.5: 68.3%, 95.4% and 99.0% contour intervals on Ωm, σ8 and A for the
optimal case of nz = 6, nθ = 8 from a chain of length ∼ 5 x 105. The input
cosmology is indicated with a cross.
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effect of extending the plateaus to higher bin numbers. Overall, the metrics for

the two cases reach similar minimum values, however the optimal value for metric

1 is higher for N = 368 than for N = 736 (1.23 x 10−2 for N = 368, nz = 4 as

opposed to 1.01 x 10−2 for N = 736, nz = 6), meaning that further analysis with

a greater number of simulation realisations is needed to test whether the plateau

has truly been reached or if there may be some further gain in the values of the

metrics with higher N .

6.6 Effect of neglecting IAs and photo-z errors

Now we have determined the optimal binning for a realistic CFHTLenS-like data

set we characterise the bias produced on cosmological parameter estimates by

neglecting IAs and photo-z errors in a tomographic analysis. To investigate

the bias from neglecting IAs, we perform a likelihood fit on the optimal bin

combination utilising ξ̂TOT as the data vector but neglecting the IA contribution

to the shear correlation function in the theoretical value we fit it to (i.e. we fit

to just ξGGth ). Similarly, to ignore photo-z errors, we perform another likelihood

analysis, this time fitting ξ̂TOT calculated using z(PDF) to the NICAEA prediction

of ξTOT
th for the raw photo-z distribution, zp (see §4.2.3).

We plot the resulting constraints on Ωm and σ8 in Fig. 6.7. On the left of

the plot, one can see the bias towards lower σ8 introduced in the position of the

credibility intervals for the case where IAs are neglected. The bias is small and

consistent with the fiducial cosmology to within 68.3%. The marginalised 68.3%

confidence limits are now Ωm = 0.272+0.066
−0.058, σ8 = 0.804+0.084

−0.096 (since our likelihood

fit has no constraining power on A in this case, we ignore it). The credibility

intervals have not changed in shape or size from those in Fig. 6.5, as is to be

expected since the covariance matrix is identical. This plot shows that, if the

NLA model is correct and A ∼ 1, the effect of IAs in a CFHTLenS-like survey

will be small. However, these are significant assumptions that may not be true.

Additionally, when fitting to the NLA model as we have done in Fig. 6.5, we

have the luxury of perfect knowledge of the IA model in the simulations; we will

not have this advantage when fitting to CFHTLenS data and hence additional,

unforeseen biases may occur in the real data due to our incomplete knowledge of
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Figure 6.6: The value of the four optimisation metrics as a function of nz, for
nθ = 8 for covariances constructed from 368 (solid black line) and 736 (dotted
red line) lines of sight. Top left : The area of the Ωm-σ8 68.3% likelihood contour.
Top right : The width of the Ωm 68.3% contour at the fiducial value of σ8. Bottom
left : The width of the σ8 68.3% contour at the fiducial value of Ωm. Bottom right :
The marginalised width of the A 68.3% contour. All units are dimensionless.
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IAs. Our result shows that for the CFHTLenS, an imperfect treatment of IAs is

unlikely to bias cosmological constraints catastrophically.

The right hand side of Fig. 6.7 shows the constraints achieved when neglecting

photo-z errors. The 1D constraints on the cosmological parameters are Ωm =

0.280+0.070
−0.065, σ8 = 0.784+0.101

−0.090. The credibility intervals and bias are very similar

to those from neglecting IAs. Again, the bias from neglecting photo-z errors is

within the 68.3% credibility interval from the fiducial case. We add the caveat

that we have used the covariance matrix estimated from the overlapping redshift

distributions (z(PDF)), however this is a simplification and the covariance

distribution measured from zp will be different. We would expect the covariance

from non-overlapping redshift bins to be smaller since the signal in different

bins will be less strongly correlated, hence the size of the credibility intervals

on this plot would decrease and the bias may become more significant. The plot

shows that photo-z errors in CFHTLenS are not large enough to significantly

bias constraints on the fitted cosmological parameters. Since the photo-z errors in

CFHTLenS are smaller than for previous surveys (see §7.2), this is not a surprising

result. It is unknown whether this conclusion holds for other cosmological

parameters, however; in particular strongly redshift dependent parameters such

as the dark energy equation of state parameters may be more strongly biased by

this effect. Future surveys with smaller statistical errors will be more sensitive to a

shift in best-fit parameters, since smaller credibility intervals mean that they may

exclude the true cosmology to a higher degree of significance than CFHTLenS if

such biases are not accounted for, meaning these effects may be significant for

upcoming lensing surveys.

6.7 Summary and Conclusion

In this chapter we have used the covariance matrix estimated in Chapter 5

to determine the optimum tomographic binning for cosmic shear analysis of

CFHTLenS data. To achieve this we have:

• Used singular value decomposition to construct a pseudo-inverse of the

covariance matrix.
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Figure 6.7: Left : Ωm-σ8 credibility intervals when the presence of IAs is ignored,
for the optimal bin combination of nz = 6, nθ = 8 from a chain of length ∼ 5 x
105. Right : credibility intervals for the same bin combination assuming the raw
zp distribution represents the underlying redshift redshift distribution.

• Performed a least-squares fit using the pseudo-inverse to the theoretical

prediction of the shear correlation function with the MCMC code described

in Chapter 3, for 1 ≤ nz ≤ 15 tomographic bins and 3 ≤ nθ ≤ 15 angular

bins. We use a Gaussian WMAP7 prior on h0 and allow Ωm, σ8 and A to

vary, fixing all other parameters to their fiducial values.

• Finely gridded the cosmological parameter space and summed the points in

each grid space to estimate the posterior directly from the relative density

of points.

• Determined the optimal bin combination to be degenerate and equal to

approximately nz = 6, nθ = 8 for the following metrics: the area of the

68.3% Ωm-σ8 likelihood contour, the width and height of the 68.3% Ωm-

σ8 contour at the fiducial cosmology, and the width of the marginalised A

68.3% likelihood contour.

• Additionally investigated the bias from neglecting IAs or photo-z errors in

the likelihood analysis, finding a statistically insignificant bias in parameter
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constraints for both cases (assuming a perfectly-known NLA model with

A ∼ 1).

A key result in this chapter is the dependence of the minimisation of the

metrics on the number of simulated lines of sight in the covariance matrix. The

‘optimal’ binning we present here is only optimal for N = 736 lines of sight. In

the future, it would be desirable to investigate the behaviour of the optimisation

metrics with a greater number of realisations to see if they clearly begin to plateau.

It is currently unknown whether the optimisation metrics can be significantly

minimised further, or what value of N is required to cause the metrics to plateau,

beyond which no further gain in precision occurs due to the finite area of a given

survey. One could also investigate the relationship between the desired precision

on a parameter (or combination of parameters) and the minimum number of lines

of sight needed to attain it, which may have relevance to future analyses that wish

to maximise information gain with minimal computing time.

The results we have presented in this chapter are calibrated to the CFHTLenS,

however it is not known whether we would find the same optimum binning for a

survey with different redshift distribution and/or galaxy distribution (we reiterate

that the optimum binning is, however, independent of survey area since the

covariance matrix scales inversely with area assuming a constant survey depth,

see §4.4.1). The covariance matrix from such a survey may be quite different from

the estimate we present in Chapter 5, which in turn will affect the behaviour of

the credibility intervals we measure. This is pertinent since upcoming wide-field

lensing surveys such as KIDS, DES and Euclid will have the power to place

tighter constraints on cosmological parameters than previous lensing surveys,

and tomography will be invaluable in making lensing a competitive cosmological

probe. With this in mind, an extension to this work would be to investigate how

the optimum binning changes with key survey parameters such as median redshift

or galaxy density.

Finally, we note that in this analysis we have only allowed three parameters

to vary, since these are the parameters of interest to us. We cannot say with

certainty that marginalising over other cosmological parameters does not affect

the optimisation. For this reason, an improvement to this work would be to

perform the optimisation over more cosmological parameters (such as the dark

energy equation of state parameters w0 and wa) although this approach will
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result in some loss of constraining power on Ωm and σ8, and since the parameter

space is larger, the MCMC chains would take longer to achieve convergence.

Additionally, one could fit different intrinsic alignment models to the data and

investigate whether the optimal binning is altered. Since Ωm and σ8 are only

weakly dependent on the choice of alignment model, however, it is likely that

only the constraints on the IA model itself would be substantially altered.

Overall we have found that tomography has the ability to substantially

improve cosmological constraints when applied to a realistic covariance matrix

from a contemporary lensing survey, although the improvement is not as large

as previous studies with simpler treatment of the redshift distribution and IA

contamination such as those by [126] and [152]. Even in the presence of IAs

and photometric redshift errors, we can expect a factor ∼ 3 improvement in

cosmological constraints using optimal binning, although this comes with the

caveat that the NLA model may be an incomplete one, and future tomographic

lensing analyses will have to ensure that any IA model used is as accurate and

well-tested as possible. In the next chapter, we test the results of this optimisation

on CFHTLenS data to produce preliminary tomographic parameter constraints.
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Chapter 7

Tomography with CFHTLenS

7.1 Introduction

In the previous chapter we used N-body weak lensing simulations to establish the

optimum combination of tomographic and angular bin numbers to best constrain

Ωm, σ8 and A. Using this optimum binning improved parameter constraints

by a factor of three compared to a 2D analysis. In this chapter, we apply the

result of this optimal tomographic binning to data from the CFHTLenS survey.

With a preliminary analysis of CFHTLenS data, we aim to examine whether the

optimisation derived in Chapter 6 performs as well on real data as it does on

simulated data.

We perform a least-squares fit as described in Chapter 6 on the CFHTLenS ξ̂+

data vector, measured over nz = 6 tomographic bins and nθ = 8 angular scales

for which the optimisation metrics are the smallest. Since we have developed

a covariance matrix that closely matches the error expected on CFHTLenS in

Chapters 4 & 5, we utilise this in the likelihood analysis. This covariance matrix

represents the closest estimate we have to the true tomographic covariance of

CFHTLenS. As in the previous chapter, we fit only the cosmological parameters

Ωm and σ8, as well as the normalisation constant for the NLA model, A. Since the

optimisation was performed on only these three parameters, a higher-dimensional

analysis may have a different bin combination as its optimum. We do not know

how well the NLA model represents IAs in a survey like CFHTLenS. Even if the

model is insufficient to accurately describe galaxy alignments, the constraints we

achieve on A will give us valuable information on the magnitude of the effect of
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IAs in CFHTLenS. A value of A that is significantly higher than 1, for example,

tells us that there is strong evolution between measures of A at low redshift and

at the redshift of the CFHTLenS galaxies (see §5.2) and may also mean that the

IA covariance terms investigated in Chapter 5 may not be negligible in all cases.

The analysis presented in this Chapter represents an important step towards a full

and accurate simultaneous treatment of IAs and photo-z uncertainties in cosmic

shear analysis.

In this chapter, we briefly review the status of CFHTLenS. We summarise the

effect of systematic errors in a lensing survey of such unprecedented size and the

steps the CFHTLenS collaboration have taken to minimise them. We discuss the

method used for measuring ξ̂+ from the data catalogues, and the usage of the

data vector in our MCMC least-squares algorithm. We then present cosmological

and IA constraints, and draw our conclusions.

7.2 CFHTLens Systematics

CFHTLenS is the largest lensing survey conducted to date, and the resulting

reduction in statistical errors that come from such a large survey area has

uncovered systematic sources of error in standard lensing analysis techniques.

These systematics are large enough to potentially cause catastrophic biases in

parameter estimates in both CFHTLenS and future wide-field surveys. For this

reason, the CFHTLenS collaboration was formed to develop improved analysis

techniques to reduce systematics down to an acceptable level, i.e. below the

level of the statistical errors. The CFHTLenS catalogues will be made publicly

available in November 2012, after the collaboration releases the results of its

analysis of the full 154 square degrees of data.

The upcoming release of CFHTLenS results represents the third in a series.

The first results were of the 4 square degrees of CFHTLS-Deep data [154]

and of ∼ 22 square degrees of CFHTLS-Wide data [124], in which joint 2D

constraints were placed on σ8. Both analyses found B-modes consistent with

zero, implying an absence of significant systematic errors. However, the analysis

of a later data release of 57 square degrees of CFHTLS-Wide data by [50] had

small enough statistical errors to uncover a significant B-mode on large angular

scales, which was the first hint that systematic errors would be a problem for the
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full CFHTLenS data set. Despite this, they did not find a bias in cosmological

constraints when compared to WMAP3 results. A subsequent analysis of the

same data by [86] found that there was significant variation in the shear signal

between different MegaCAM pointings, implying that there were problems with

the PSF calibration. Additionally, they found that the shear correlation function

did not properly scale with redshift when the data were combined with photo-z

information.

To correct for such systematics, CFHTLenS have re-developed every stage

of the data analysis pipeline. The THELI data reduction pipeline [210] was

first applied to CFHTLS data in [211] and several improvements were made for

CFHTLenS. THELI performs photometric and astrometric corrections to data, as

well as automating the masking process to identify saturated stars, satellite trails,

image ghosts and other artefacts. All CFHTLS fields were visually inspected

to ensure the masking was of sufficient quality. This was one of the main

data-related tasks undertaken by the author for the CFHTLenS collaboration.

A key development in THELI for CFHTLenS is the improvement of its cosmic

ray rejection algorithm to prevent a significant fraction of stars needed for PSF

measurement being wrongly masked as cosmic rays.

One of the key improvements in the lensing analysis is the more accurate

measurement of both the PSF and galaxy shapes. Previous CFHTLS analyses

have been conducted using the KSB+ shape measurement method (an improved

version of KSB discussed in §2.3.2) [50] and SHAPELETS [212, 155, 92]. CFHTLenS

use LENSFIT (see §2.3.2) to measure galaxy shapes, which is the only shape

measurement method that can be applied optimally to individual exposures rather

than to image stacks. Since the PSF varies from exposure to exposure, this

allows one to fit complex spatially- and temporally-varying PSFs to each galaxy

individually. LENSFIT was found to be the best shape measurement method for

reducing the exposure-to-exposure variation in the shear detected by [86]. The

LENSFIT algorithm has been improved for use with CFHTLenS; key improvements

include better size and ellipticity priors, the use of a two-component (bulge +

disk) galaxy model and the simultaneous analysis of individual exposures rather

than averaging on a stack [213, 102].

Another major improvement that the CFHTLenS collaboration have made to

the analysis pipeline is the determination of accurate photo-zs for every survey
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galaxy using multiband data. BPZ [178] is used to estimate photo-zs; [214] found

this to be one of the most accurate photo-z determination codes. Accounting

for the colour variation across each source through a new technique called PSF

homogenisation is key to improving the photo-z accuracy [177]. Calibration of

photo-zs with available spectroscopic redshifts show CFHTLenS has an outlier

rate of less than 4% and a scatter of σ ∼ 0.04(1 + z) [177, 102]. The scatter is on

a par with that measured from HST COSMOS and COMBO-17 and the outlier

rate is much lower (see Chapter 5).

The net effect of the CFHTLenS analysis is a slight residual bias to the shear

εtrue on the sub-percent level [213]. This takes the form of both a multiplicative

m and an additive c bias to the observed complex ellipticity,

εobs = (1 +m)εtrue + c+ n, (7.1)

where n is the shot noise term. The residual ‘m’ systematic was estimated by

least-squares comparison with the signal measured from simulations used in the

STEP and GREAT challenges (see Chapter 2). The multiplicative bias is thought

to be caused by a high fraction of small, noisy galaxies for which accurate shape

measurement is difficult. The additive bias, c, is likely caused by imperfect PSF

correction, and is very small since the PSF correction from LENSFIT is accurate

to a high degree. The CFHTLenS collaboration correct for the bias empirically

since its causes are currently not fully understood.

A 2D cosmic shear analysis of the full CFHTLenS catalogues is presented

in [208]. Several ΛCDM cosmological parameters are fitted with the Population

Monte Carlo code of [148] (see §3.5.2). Joint lensing and WMAP7 constraints

result in Ωm = 0.263+0.013
−0.012 and σ8 = 0.805+0.014

−0.016. Flatness is not assumed, but the

results are consistent with flat ΛCDM and WMAP7 results. The authors assume

that the IA signal will be subdominant to the shear in a 2D analysis and hence

neglect it. Another key difference between the analysis of [208] and this thesis is

the construction of the covariance matrix. [208] estimate ĈNN,NN from the clones

in a similar method to that presented in this thesis. They then ‘graft’ this on to an

analytically-determined Gaussian covariance CGG,GG. The cross term CGG,NN is

determined using the fitting formula of [182]. The Gaussian covariance terms can

be calculated exactly in this way, however as before no analytical expressions for

the tomographic covariance that include non-Gaussianity exist so this approach
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is not applicable in a tomographic analysis.

[209] present a 2-bin tomographic shear analysis of CFHTLenS using the full

photometric PDFs but neglecting IAs. They construct the covariance matrix

identically to [208]. The authors use PMC to fit parameters in a non-flat ΛCDM

paradigm. They find lensing-only constraints of Ωm = 0.23±0.08, σ8 = 0.80±0.15

and ΩΛ = 0.27± 0.26. Under a general ΛCDM model, the authors find the dark

energy density parameter is unusually low and not consistent with flat ΛCDM to

99% confidence. Overall, the 2-bin constraints are consistent with the 2D results

in [208], with tighter constraints on the joint Ωm-σ8 contour as one would expect

from a tomographic analysis.

The CFHTLenS systematic tests have been calibrated for both 2D and 2-

bin tomographic analysis. It is expected that high-bin tomography, although not

thoroughly tested, will be capable of producing accurate cosmological constraints.

However, it is possible that high-bin tomographic analysis of the data will

uncover redshift-dependent systematics that have previously been masked by

coarse redshift binning. If this is the case, we may see significant tension in best-fit

cosmological parameter estimates and their credibility intervals when compared

to the 2D and 2-bin constraints of [208] and [209] or with the independent WMAP

constraints of [26].

7.3 Measuring ξ̂+

All CFHTLenS galaxies with a LENSFIT shape with magnitude iAB < 24.7 (the

limiting magnitude for which spectroscopic redshifts are available for calibration,

[102]) are used to measure ξ̂+. The additive bias only affects ε2 and is removed by

subtraction. To account for the multiplicative bias, one does not simply divide

εobs by (1 + m). This could result in instabilities when (1 + m) → 0 and more

importantly such an approach relies on the estimate of m for each galaxy being

accurate and unbiased, an assumption which has not been verified. Instead,

we must calculate the uncalibrated shear correlation function as described in

Eqn. 2.52, where the number of pairs Np(θ) is replaced by the LENSFIT-weighted

pair sum,

ξ̂±(θ) =

∑
ij wiwj(εitεjt ± εirεjr)∑

ij wiwj
. (7.2)
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The correction due to the m is then estimated as [113]

1 +K(θ) =

∑
ij wiwj[1 +m (νSN,i, ri)][1 +m (νSN,j, rj)]∑

ij wiwj
. (7.3)

We omit the delta function from Eqn. 2.52 for clarity. m has the functional form

m(νSN , r) =
β

log (νSN)
exp−r νSNα, (7.4)

where νSN is the signal-to-noise, r is position and α and β are constants with best-

fit values of α = 0.057 and β = −0.37 [113]. The bias-corrected shear correlation

function estimator is then

ξcal
± (θ) =

ξ±(θ)

1 +K(θ)
. (7.5)

This approach is less likely to introduce new bias as it assumes that we can correct

the survey as an ensemble. Since simulations were used to calibrate the ensemble

through the shear correlation function, this is a good assumption. As we use the

bias-calibrated shear in the analysis, we will refer to ξcal
+ as ξ+ from now on. The

correlation function from each of the four Wide fields was calculated with ATHENA,

correlating every galaxy pair in the field on the same angular scales used in the

optimisation (1′ ≤ θ ≤ 85′). Since each field is a different size and has a unique

number density, the mean correlation function was found from the pair-weighted

average of all four fields,

ξ̄+(θ) =

∑
iNp(θ) ξ+,i(θ)∑

iNp(θ)
, (7.6)

for i = 1...4.

We produce tomographic catalogues for nz = 6 by cutting in zp as described

in §4.2.3. It is important to construct a data vector for which the covariance

matrix developed in Chapters 4 & 5 is a good estimate of the error. We therefore

measure ξ̂+ on the same angular scales as in previous chapter, for the optimal

case of nθ = 8.

Of the 171 MegaCAM pointings that make up the effective 154 sq. degrees of

CFHTLenS data, recent work by the CFHTLenS collaboration has determined

that only 139 of these (equivalent to ∼ 124 sq. degrees) are able to pass a range

of systematic tests and are hence of high enough quality for lensing analysis [102].
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The results presented in the previous three chapter include a covariance matrix

scaled to a survey area of 154 sq. degrees, meaning that the covariance matrices

and corresponding credibility intervals we have measured are underestimated.

To produce credibility intervals for the CFHTLenS, we must therefore rescale the

covariance matrix by a factor of 171/139 = 1.23. This will increase the size of

the credibility intervals measured in Chapter 6, but it will not change the results

of the optimisation.

To incorporate the CFHTLenS data into the χ2 calculation, we simply replace

the data vector from the previous chapter (the NICAEA prediction for the fiducial

cosmology) with the CFHTLenS data vector measured in this chapter. Since

the covariance is that used in the tomographic optimisation but rescaled for the

reduced survey area, we expect the likelihood contours from CFHTLenS to be

similar in shape and size for this analysis. The best-fit values of the measured

parameters may be different, and this will be the key result in this analysis.

7.4 Cosmological Constraints

In Fig. 7.1 we plot the 2D measurement of ξ̂+ from the CFHTLenS catalogues

measured on 8 angular scales. Error bars are 1σ variances as determined from

the covariance matrix estimated in Chapter 5 and rescaled by a factor of 1.23 to

take into account the fraction of fields that pass systematics tests (see previous

section). The results are consistent with the CFHTLenS estimate of ξ̂+ in Fig. 2

of [208], and can be seen to be slightly above the correlation function predicted

from WMAP 7-year mean parameters [26] and the nonlinear model for the power

spectrum of [28] (incorporating the NLA model intrinsic alignment signal with

A = 1). In Fig. 7.2 we show the tomographic correlation function from the

CFHTLenS when the data are split into 6 tomographic bins and measured over 8

angular bins. Again, the WMAP 7 + NLA model prediction is plotted, and the

points tend to lie slightly above the model prediction on average.

Our procedure for the likelihood analysis is identical to that in Chapter 6;

we again constrain only Ωm, σ8 and A, using the same priors. We use a WMAP
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Figure 7.1: The shear correlation function measured from CFHTLenS for the 2D
case of nz = 1, nθ = 8. Error bars are the (scaled) covariance determined from
the clone simulations in Chapter 5. Solid line represents WMAP7 cosmology [26]
incorporating the NLA model intrinsic alignment signal with A = 1.
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Figure 7.2: As in Fig. 7.1 for nz = 6, nθ = 8. The redshift correlation being
plotted is shown in the top right corner of each subplot.
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prior on h0 and fixing all other cosmological parameters to their fiducial values

as inputted into the clone simulations. In Fig. 7.3 we plot the constraints from

the 2D CFHTLenS shear correlation function with nθ = 8. The contours are

of similar shape and size to those presented in the tomography optimisation in

Fig. 6.1, as expected. We find marginalised constraints on the three parameters

of Ωm = 0.388+0.137
−0.129, σ8 = 0.728+0.157

−0.143 and A = 0.448+1.277
−0.415 (all 68.3% CL). Ωm and

σ8 are consistent to the WMAP 7-year means of Ωm = 0.266 ± 0.029 and σ8 =

0.811+0.030
−0.031 to within 68.3% likelihood. Fig. 7.3 shows that the joint constraint on

Ωm and σ8 favours a higher value than WMAP. It is currently unknown whether

this contour is accurate, or if there is some unforeseen systematic in the data or

simply tension in the fit due to assuming an incorrect prior for some parameter(s).

Since [209] find under a general ΛCDM model that the CFHTLenS data prefer

a low value of ΩΛ, it is possible that by assuming flatness, we have introduced

tension in the fit.

Our constraints on the size of the Ωm-σ8 contour broadly match the 2D

CFHTLenS results of [208], although their results prefer a slightly lower value

of Ωm. [208] measure both ξ̂+ and ξ̂− over a wider range of angular scales than

us, which may account for the difference in best-fit value. We note that our 2D

68.3% Ωm and σ8 constraints overlap with the 2-bin tomography constraints for

CFHTLenS from [209] for a flat ΛCDM universe. Our marginalised constraints

on Ωm and σ8 are similar in precision to those in Chapter 6, and the area of the

Ωm-σ8 contour is similar (2.95 x 10−2 compared to 2.66 x 10−2 in Fig. 6.1). The

small difference is likely due to the smaller final CFHTLenS survey area.

The constraining power present on A is similar to that in the optimisation in

Chapter 6. Even with a 2D analysis, very high values of A ∼ 10 are ruled out to

an extremely high degree of confidence. The asymmetrical confidence limits on A

are most likely a result of the prior value of A > 0, meaning that not only are our

constraints on A consistent with zero to 95.4% confidence, but it is possible that

there is substantial probability in the posterior below A = 0. If the data favour

a negative value of A, this means that galaxies are anti-correlated on average on

the scales probed.

In Fig. 7.4 we plot CFHTLenS constraints from the optimal bin combination

found in Chapter 6 of nz = 6, nθ = 8. The marginalised constraints are now
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Figure 7.3: 68.3%, 95.4% and 99.0% contour intervals on Ωm, σ8 and A for the
2D case nz = 1, nθ = 8 from a chain of length ∼ 5 x 105. WMAP 7 confidence
intervals are shown by black solid lines; the 68.3%, 95.4% and 99.0% contours are
shown in the Ωm-σ8 plane and the best fit and 68.3% interval are shown for the
Ωm-A and σ8-A planes as vertical lines. The peak of the likelihood surface from
CFHTLenS is indicated with a triangle.
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Ωm = 0.412+0.122
−0.094, σ8 = 0.643+0.106

−0.092 and A = 0.003+0.498
−0.003. The improvement in

constraining power is similar to that found in Chapter 6 between the 2D and

the optimal binning cases. 1D constraints on Ωm and σ8 have improved slightly

with the optimal binning, and the area of the Ωm-σ8 contour is 1.47 x 10−2, a

factor of ∼ 2 smaller than for the 2D case (compared to a factor of ∼ 3 for

the optimisation). This more modest improvement in constraining power may

be due to the fact that in the optimisation presented in Chapter 6, we fit to the

theoretical prediction of the shear correlation function rather than the correlation

function measured from data or simulations. This may alter the constraints in a

tomography-dependent way. A lower value of A is favoured compared to the 2D

case, however they are both consistent with zero IA signal under the NLA model.

The credibility intervals on A for nz = 6 are smaller than for the optimal contours

in Chapter 6. This may be caused by the truncation at A = 0 masking some of

the posterior and the true difference in constraining power present between the

two cases. The best-fit values of all fitted parameters are consistent to within

68.3% confidence of the 2D constraints, indicating that high-bin tomography has

not introduced or uncovered significant bias in the data.

7.4.1 Relaxing the prior on A

Since we see some tension in the 2D joint constraint on Ωm and σ8 when compared

to WMAP values, and since the data favour a low value of A that is consistent

with zero, we relax the hard prior on A to investigate whether this alters and

improves the constraints. We allow A to vary within the range −15 ≤ A ≤ 15

and re-run the analysis for nz = 1 and nz = 6. The results are plotted in

Figs. 7.5-7.6. The marginalised constraints for the 2D analysis in Fig. 7.5 are

now Ωm = 0.475+0.205
−0.183, σ8 = 0.528+0.219

−0.118 and A = 0.199+1.658
−2.488. The constraints on

the cosmological parameters are consistent with the constraints for the case of

A > 0, although the parameter estimates and joint credibility interval have been

degraded somewhat. This is to be expected since we have increased the size of

the parameter space. A is still consistent with zero to 68.3% confidence, although

there is a large amount of posterior in the region A < 0.

Fig. 7.6 shows the constraints for the optimal tomographic binning. From

this, Ωm = 0.419+0.123
−0.090, σ8 = 0.623+0.101

−0.084 and A = −1.161+1.163
−0.597. The constraints
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Figure 7.4: 68.3%, 95.4% and 99.0% contour intervals on Ωm, σ8 and A for the
optimal case nz = 6, nθ = 8 from a chain of length ∼ 5 x 105. WMAP 7 confidence
intervals are shown by black solid lines; the 68.3%, 95.4% and 99.0% contours are
shown in the Ωm-σ8 plane and the best fit and 68.3% interval are shown for the
Ωm-A and σ8-A planes as vertical lines. The peak of the likelihood surface from
CFHTLenS is indicated with a triangle.
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on Ωm and σ8 are consistent with the results that use the prior A > 0 for

the optimal binning (Fig. 7.4), within similar joint and marginalised credibility

limits. The degenerate 95.4% likelihood contour encompasses the WMAP 7-year

mean. Interestingly, the tomographic results now show a trend towards a slightly

negative value of A. This may explain the unexpectedly large improvement in

the constraint on A between Fig. 7.3 and Fig. 7.4; some of the posterior was

unavailable to us as it lay below A = 0. A more in-depth analysis will be needed

to determine whether the trend towards negative A is significant. Overall, we

note that the result shown in Fig. 7.6 may be interpreted to mean that we find

no significant detection of IAs under the fiducial NLA model. We also note that

the 2D and tomographic 68.3% credibility intervals for the case of −15 ≤ A ≤ 15

are still consistent with each other, indicating that the previous prior of A > 0

was not masking a tomography-specific systematic bias.

7.5 Conclusion

In this chapter, we have performed a preliminary analysis of the two-point

correlation function from CFHTLenS data to determine whether the optimisation

derived in Chapter 6 performs as well on data as it does on simulations. We have

discussed some of the early CFHTLS lensing analyses that hinted at the presence

of serious systematic errors in the data. We have briefly reviewed some of the key

improvements the CFHTLenS collaboration has made in an attempt to mitigate

these systematics, in anticipation of both the CFHTLenS full-survey results and

for future wide-field lensing surveys. We then described our method for extracting

the correlation function from the CFHTLenS catalogues and presented the shear

correlation functions for the 2D and optimal tomographic case. Finally, we

perform a linear least-square fit to the data using the MCMC algorithm developed

in Chapter 3 to produce constraints on Ωm, σ8 and the amplitude parameter of

the NLA model A for both the 2D and the optimal tomographic case, with and

without the hard prior A > 0, to determine whether the optimisation of Chapter

6 is capable of producing similar improvements in constraints on real data as it

is on simulated data.
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Figure 7.5: 68.3%, 95.4% and 99.0% contour intervals on Ωm, σ8 and A for the
2D case nz = 1, nθ = 8 from a chain of length ∼ 5 x 105, with −15 ≤ A ≤ 15.
WMAP 7 confidence intervals are shown by black solid lines; the 68.3%, 95.4%
and 99.0% contours are shown in the Ωm-σ8 plane and the best fit and 68.3%
interval are shown for the Ωm-A and σ8-A planes as vertical lines. The peak of
the likelihood surface from CFHTLenS is indicated with a triangle.
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Figure 7.6: 68.3%, 95.4% and 99.0% contour intervals on Ωm, σ8 and A for the
optimal case nz = 6, nθ = 8 from a chain of length ∼ 5 x 105, with −15 ≤ A ≤ 15.
WMAP 7 confidence intervals are shown by black solid lines; the 68.3%, 95.4%
and 99.0% contours are shown in the Ωm-σ8 plane and the best fit and 68.3%
interval are shown for the Ωm-A and σ8-A planes as vertical lines. The peak of
the likelihood surface from CFHTLenS is indicated with a triangle.
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When using the same priors as in Chapter 6, our results are generally

consistent with similar analyses of the CFHTLenS data by [208] and [209]. We

find that Ωm and σ8 are consistent with WMAP 7-year constraints to within

68.3% likelihood, although the joint credibility interval favours somewhat higher

values of these parameters than WMAP. Although it is important to let the

data ‘speak for themselves’ and not make assumptions about what we believe the

results ought to be, it is also important to check thoroughly for systematic errors

when one finds an unexpected result. It is possible that inaccuracies in the hard

priors we have assumed on other cosmological parameters are the cause of this

result. We attempt to investigate this by relaxing the prior on A to allow negative

values. This results in similar constraints on Ωm and σ8 as the values for the prior

of A > 0. In every case, both the 2D and tomographic case favour a value of A

that is consistent with zero to 95.4% CL, ruling out a significant IA signal under

the NLA model. We find that the improvement in parameter constraints when

going from 1 to 6 tomographic bins is somewhat smaller than the optimisation in

Chapter 6 predicts, but the factor of improvement in Ωm-σ8 contour area is still

substantial at ∼ 2. Importantly, we find that all the constraints we achieve for

both nz = 1 and nz = 6 are consistent with each other to within 68.3% likelihood,

meaning that there is no evidence of tomography- or redshift-specific systematics

in the CFHTLenS data.

The analysis presented in this chapter is preliminary, and further work will

investigate the limitations of high-bin tomography with this data set. This

will involve fitting more parameters to the data - in particular, highly redshift-

dependent ones such as the dark energy equation of state parameters - to see

how much constraining power CFHTLenS has over them, and to investigate how

much constraints on Ωm and σ8 are degraded by their inclusion. To investigate

the effect of different galaxy populations, the shear signal can be measured for

red and blue galaxies separately. Additionally, other IA models can be fitted to

the data, or the signal from IAs downweighted by one of the methods described

in §5.1 and the effect on cosmological parameters measured. It is clear that the

CFHTLenS data set has much to tell us about the nature of the Universe, and

only by carefully considering how we can jointly account for systematic sources

of error and optimise the analysis of the data will we realise the full potential of

both the CFHTLenS and future lensing surveys.
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Chapter 8

Conclusions

In this chapter, we summarise the importance of the work presented in this thesis

and outline the main results. We then discuss the future prospects for cosmic

shear studies and the current challenges faced by this field.

8.1 Weak lensing tomography

The observation of weak lensing is a field that is rapidly developing, with cosmic

shear measurements producing interesting and useful constraints on cosmological

parameters. In particular, weak lensing has the ability to put constraints on

the Ωm-σ8 contour that are orthogonal to those achieved from CMB data, which

shows its value as a cosmological probe that is complimentary to other established

techniques. As photometric redshift information is now available for every survey

galaxy as standard, it is possible to exploit the 3D information in the lensing

signal to tighten cosmological constraints. A tomographic analysis in which data

is sampled into discrete redshift bins recovers much of the statistical information

that is lost in a 2D analysis. This allows us to produce tighter constraints on

cosmological parameters, with highly redshift-dependent parameters such as the

dark energy equation of state parameters, w0 and wa and the Hubble parameter,

h0, gaining the most.

Tomography is a conceptually simple technique that is starting to be fully

exploited with the advent of CFHTLenS. It has been shown to be capable of

producing parameter constraints that are improved by up to a factor of ten for a

4-bin analysis [152]. The previous tomographic analyses of [154, 155, 156] were
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conducted on small fields of only a few square degrees. The statistical errors were

therefore large enough to mask any systematic bias caused by intrinsic alignments

or errors in the photo-z distribution. Surveys such as the CFHTLenS, with survey

areas around two orders of magnitude (or more) larger than previous tomographic

analyses, have diminishing statistical errors and will hence be affected by both

these systematic sources of error. However, if systematics can be kept under

control, tomography will be invaluable in producing tighter parameter constraints

from weak lensing than ever before.

8.2 Intrinsic alignment contamination

When conducting a tomographic analysis, intrinsic galaxy alignments become

one of the main sources of systematic error in weak lensing measurements.

Our current understanding of IAs is hindered by incomplete knowledge of gas

dynamics and the nonlinear evolution of the density field, which affect galaxy

formation. Failure to take IAs into account properly may bias the lensing signal

by up to ∼ 10% [186], hence it is vital that we deal with IAs as carefully and

accurately as possible. Currently, several methods exist to mitigate the effect of

IAs, falling into two broad categories: optimisation methods to downweight or null

the signal [191, 194, 195], which result in information loss and may not reliably

account for bias; and modelling techniques, which if incorrect or incomplete may

introduce further bias. Previous cosmic shear tomographic analyses have either

ignored IAs or only partially accounted for their effects. For example, [156]

attempt to account for IAs by downweighting the II signal by removing auto-

correlations between narrow redshift bins, however this treatment is inadequate

due to the heavy information loss incurred and the failure to remove the GI signal.

The non-linear alignment model of [119] and BK07 models IAs using an

extension of the linear alignment model of [196] into the nonlinear regime. This

model has been tested at low redshift by [199], who find constraints on the

amplitude of the NLA model that are consistent with BK07. BK07 find that

if IAs are accounted for, two or more times as many redshift bins are required to

recover 80% of the lensing information, which highlights the need to incorporate

their effects in a tomographic analysis. Current and upcoming lensing surveys like

CFHTLenS will have the power to constrain the amplitude of the NLA model,

210



8.3. Covariance matrix estimation

however we do not yet know how accurately the NLA model describes galaxy

alignments and a more sophisticated model for IAs may be needed for future

surveys to avoid systematic bias.

8.3 Covariance matrix estimation

In Chapter 4, we discussed the importance of measuring the covariance matrix

of the shear correlation function, since it is highly correlated. Any likelihood

analysis that aims to produce parameter constraints must use an estimator for

the covariance matrix inverse, Ĉ−1, and it is important that it is accurate and

unbiased or we risk wrongly estimating the precision of our parameter constraints.

In Chapters 4 & 5 we aimed to achieve two things: to investigate the behaviour

of the different terms in the correlation function covariance, and to construct a

stable estimate of the inverse for use in a likelihood analysis with as high a number

of tomographic bins as possible. Although exact analytical expressions for the

covariance of several weak lensing statistics exist [116], these do not account for

non-Gaussianity and are hence unfit for a realistic analysis. For this reason, we

used both Gaussian [176] and non-Gaussian [163] shear simulations to measure

the covariance of the two-point shear correlation function. We attempted to use

the empirical correction of [180] to add the contribution from non-Gaussianity

into the correlation function from the Gaussian simulations, but found that the

correction was not suitable for a tomographic analysis. This meant that the use

of non-Gaussian simulations is necessary for a realistic tomographic analysis.

We tested the validity of the Anderson correction [169], which places a hard

limit on the number of data points p (and hence tomographic bins) one can use in

a likelihood analysis, for a given number of realisations of the data N . We found

that the Anderson correction works well in the region where p/N ≤ 0.8, and that

it would be feasible to perform up to 15-bin tomography with the CFHTLenS

data if the covariance is estimated from all N-body simulations available at this

time.

In Chapter 5, we extended this analysis by incorporating both shot noise

and correlated intrinsic ellipticity components into the measurement of ξ̂+. The

intrinsic ellipticity was predicted from the NLA model for IAs of [119] and BK07.

We measured the covariance of each component of ĈTOT and found that in general
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the dominant contribution is the shot noise covariance ĈNN,NN (although ĈGG,GG

dominates on scales above ∼ 30′ for the 2D case). The relative amplitude

of the shot noise covariance increases with tomography since the number of

galaxies in each bin falls. The IA covariance terms contribute very little to

the total covariance, indicating that they can be neglected if the amplitude of

the NLA model is not significantly higher than the fiducial value. Finally, we

investigated the stability of the covariance matrix to inversion, and found that for

all tomographic combinations that we wish to investigate, the covariance matrix

has a low enough condition number to ensure it is invertible. The addition of shot

noise and an IA model does not degrade the stability of the matrix, and therefore

15-bin tomography is still possible with our estimate of the full covariance.

The N-body simulations are as close to the CFHTLenS in input as possible

- with galaxy positions, source clustering, galaxy density, shot noise and

photometric redshift estimates that match the CFHTLenS. This means that,

once scaled to the area of the CFHTLenS, the tomographic covariance matrix

we measure is as good an estimate of the covariance of the CFHTLenS as it is

currently possible to get. This ensures that the optimisation presented in Chapter

6, and the cosmological constraints from CFHTLenS we achieved in Chapter 7,

are as accurate and unbiased as possible.

8.4 Optimal tomography

The optimal tomographic binning and relative improvement in constraints over a

2D analysis for a survey such as CFHTLenS has not previously been investigated.

For this reason, we utilised the tomographic covariance matrix developed in

Chapter 5 to determine the optimum tomographic binning for the CFHTLenS.

To do this, we developed and tested an MCMC algorithm to efficiently explore

the parameter space, which we discussed in Chapter 3. We investigated the

behaviour of the Ωm-σ8 contour which is well constrained by cosmic shear and is

sensitive to tomography, as well as the amplitude of the NLA model through the

normalisation parameter A. We chose 4 values as our optimisation metrics - the

area of the 68.3% Ωm-σ8 likelihood contour, the height and width of this contour

about the fiducial value, and the width of the 1D 68.3% credibility interval on A.

We presented the results of this optimisation in Chapter 6. We found that
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there is an optimum number of data points p that minimises the metrics and hence

there is a partial degeneracy between the optimal nz and nθ. The optimisation

metrics minimise at slightly different values of nz and nθ, with the combination

nz = 6, nθ = 8 in the middle of this range. Hence we took this combination

as the overall optimum. We found that the limiting factor in determining

the optimum bin combination is the number of realisations of the simulations

used to calculate the covariance. This means that the optimum binning may

shift to higher nz and nθ with more lines of sight, and that there will be a

minimum number of realisations needed to achieve a desired degree of precision in

parameter estimates. We saw a factor of three improvement in the tomographic

area of the Ωm-σ8 contour compared to the 2D value, which is smaller than

the improvement found by [152] who neglect IAs and photo-z errors. We also

found that the data are precise enough to produce interesting constraints on A,

indicating that CFHTLenS (and future wide-field surveys) will have significant

constraining power on the NLA model. This in turn can tell us about the galaxy

population that contributes to IAs, and potentially compare IA models with

each other. Additionally, we investigated the biases in cosmological parameter

estimates caused by neglecting photometric redshift errors or IAs, and found no

statistically significant bias for a CFHTLenS-like survey. This is good news for

the CFHTLenS survey, although we add the caveat that future ultra wide-field

surveys with smaller statistical errors may find that this bias is more significant.

8.5 Cosmology with CFHTLenS and in the

future

CFHTLenS is currently the widest deep lensing survey for cosmology. Spanning

154 sq. degrees with a median redshift of zm = 0.75, CFHTLenS is ∼ 100

times larger than all previous surveys used for tomographic analysis. Due to the

large survey area and consequently small statistical uncertainties, preliminary

analyses of the data indicated the presence of systematic errors [50, 86]. To

remedy this, the CFHTLenS collaboration have redeveloped every stage of the

analysis pipeline, with significant improvements in particular in photo-z error

estimation, and galaxy shape and PSF measurement. CFHTLenS represents

a stepping stone between previous small-field lensing surveys such as HST
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COSMOS and CFHTLS-Deep and the next generation of ultra wide-field lensing

surveys covering thousands to tens-of-thousands of square degrees, such as KIDS,

DES and Euclid discussed in §2.3.6. The work undertaken by the CFHTLenS

collaboration has changed the standard methods for lensing analysis. The lessons

learned from CFHTLenS will be vital if we are to produce optimal constraints

from future lensing surveys.

In Chapter 7, we performed a preliminary least-squares analysis of the two-

point correlation function from CFHTLenS data. Using the MCMC algorithm

developed in Chapter 3 and knowledge of the optimal tomographic and angular

binning from Chapter 6, we produced constraints on Ωm, σ8 and A for both the

2D and the optimal tomographic case. The results were generally consistent

with similar analyses of the CFHTLenS data by [208] and [209]. We found

that although the marginalised constraints on Ωm and σ8 are consistent with

WMAP 7-year constraints to within 68.3% likelihood, a slightly higher value for

the joint constraint is preferred by the data. A is consistent with zero, ruling out

a significant IA signal under the NLA model for both the 2D and tomographic

cases. We found that the improvement in parameter constraints when going from

1 to 6 tomographic bins is slightly smaller than the optimisation in Chapter 6

predicts, but the factor of improvement in Ωm-σ8 contour area is quite substantial

at ∼ 2. Importantly, we find that all the constraints we achieve for both nz = 1

and nz = 6 are consistent with each other to within 68.3% likelihood, meaning

that there is no evidence of tomography- or redshift-specific systematics in the

CFHTLenS data. The results of Chapter 7 are interesting, highlighting some of

the gaps in our knowledge that are still present. We leave a deeper, more thorough

tomographic analysis of the data to the CFHTLenS collaboration, who will most

likely improve upon the constraints and analysis techniques in this thesis to move

lensing forward as a field.

Future lensing analyses will use a wide variety of techniques to maximise the

information recovered from data. In addition to the two-point shear correlation

function, other shear statistics may be used to constrain cosmological parameters,

each with different benefits. These include the aperture mass dispersion [166] and

the shear dispersion in circular apertures [165], as well as three-point statistics

of these in which three galaxies at a time are correlated instead of two [215].

Additionally, the magnification κ was recently detected for the first time and,
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since it is independent of the shear, may be used to break degeneracies between

cosmological parameters [216].

Although the CFHTLenS collaboration has made great strides forward in

reducing the effect of systematics in lensing data, some outstanding issues remain.

Shape measurement is an ongoing issue, and despite the improvements made to

LENSFIT by the CFHTLenS, it is important to develop better shape measurement

methods for future surveys. To this end, the GREAT challenge is ongoing (see

§2.3.2). More accurate photo-z estimation may also be required for ultra wide

surveys, and IA contamination is likely to become a substantial contributor to the

systematic errors until we better understand its cause. Despite these issues, weak

lensing has already proven to be a useful and independent cosmological probe,

and future ultra wide surveys will ensure it is a competitive one that can help

cosmologists discover vital and fascinating information about our Universe.
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