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Abstract 

Global climate change is one of the greatest challenges of the twenty-first century. 
Rising temperatures and alteration of weather patterns are anticipated to result 
from increased atmospheric concentrations of greenhouse gases, caused, in part, by 
the use of fossil fuels for electricity generation. 

Climate change is predicted to have major impacts on many aspects of human society 
from agriculture to water supply. The process of limiting the extent of climatic 
change began with the Kyoto Protocol, committing industrialised nations to modest 
cuts in their emissions. To achieve these and in the longer term, much greater cuts, 
electricity production must reduce its reliance on fossil fuels, by the increased use 
of renewable resources. Hydropower is currently the only major renewable source 
contributing to energy supply, and its future contribution is anticipated to increase 
significantly. However, the successful expansion of hydropower is dependent on the 
availability of the resource and the perceptions of those financing it. 

Increased evaporation, as a result of higher temperatures, together with changes in 
precipitation patterns may alter the timing and magnitude of river flows. This will 
affect the ability of hydropower stations to harness the resource, and may result in 
reduced energy production, implying lower revenues and poorer financial returns. 
The continuing liberalisation of the electricity industry implies that, increasingly, 
profitability and the level of risk will drive investment decision-making. As such, 
investors will be concerned with processes, such as climatic change, that have the 
potential to alter the balance of risk and reward. 

This thesis describes a methodology to assess the potential impact of climatic change 
on hydropower investment, and details the implementation of a technique for quan-
tifying changes in profitability and risk. A case study is presented as an illustration, 
the results of which are analysed with respect to the implications for future provision 
of hydropower, as well as our ability to limit the extent of climatic change. 
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Chapter 1 

Introduction 

1.1 Thesis Background 

Global climate change is one of the most serious threats to the Earth and the greatest 

challenge facing human society in the twenty-first century. Rising temperatures and 

changes in precipitation patterns are expected to be the result of an enhanced green-

house effect caused by excess atmospheric concentrations of carbon dioxide and other 

greenhouse gases. The enhancement has been caused by anthropogenic emissions 

since the Industrial Revolution, and currently around one third of emissions are at-

tributed to fossil-fuelled electricity generation. With the accelerating industrial and 

economic development of many countries, electricity demand is expected to increase 

rapidly. If this occurs using conventional fossil-fuel technologies, the consequences 

for greenhouse gas levels may be significant. 

The possibility of global temperature rise of between 1 and 4.5°C has led to consid-

erable research effort into the effects of changes in temperature and other climatic 

variables. Studies suggest a wide range of detrimental impacts from rising sea levels, 

spread of vector borne diseases, increased storm activity and damage, and changes 

in the availability of water. The potential for significant disruption and losses to 

human activities have prompted unprecedented levels of activity from international 

agencies in order to find solutions to and agreement on the carbon problem. 

The landmark agreement, the Kyoto Protocol, committed most Industrialised na-

tions to modest cuts in their carbon emission levels by 2010, and forms the basis 

for reducing emissions beyond. The increased use of renewable energy sources is 

one of the key options available to mitigate climate change, and one of the many 

advantages is that they depend on natural climate for their fuel sources. However, 

changing climate will alter the quantity and availability of the resource and this will 

impact on energy production. 

11 
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Hydropower is one such resource that could experience climatic feedback. This 

will occur through the alteration of river flow regimes by changes in precipitation 

together with increased water loss through evapotranspiration as temperatures rise. 

Reductions in river flow may lower production and consequently impact on electricity 

sales revenue and financial performance. 

The increasing use of private capital in the electricity industry has altered the focus of 

electricity supply from the provision of a service to the need to make profits from the 

production and sale of a commodity. As such, the nature of generation investment 

appraisal has become concerned primarily with the balance between investment risk 

and reward. Therefore, processes such as climate change, that have the potential to 

alter this balance will be of importance to investors. 

The possibility of lower expected financial performance as a result of climate change 

may make hydropower schemes less attractive, particularly given the large capital 

requirement relative to fossil-fuelled plant. 

Where this leads to the postponement or abandonment of potential schemes, then 

other technologies will have to be used. If these are fossil-fuel based, then additional 

carbon dioxide will be released, potentially worsening the global warming impact. 

Given that hydropower capacity is expected to increase threefold over the next 

century, and that some predictions implicitly rely on this, the effect of lower than 

anticipated investment in hydropower could have significant consequences. 

1.2 Project Objectives and Scope 

The project had several distinct objectives: 

To gain an understanding of the climate change process, the evidence for it, 

and the projected future climate that may result. 

To examine hw electricity production contributes to global warming, and 

with reference to trends in electricity demand, supply and industry structure, 

to infer its future contribution, and the resultant climatic changes. 

To explore the nature of climatic feedbacks on the electricity industry and in 

particular on hydropower. 

To determine the current state of research into climate change impacts on 

hydropower, to identify key limitations and research needs and to devise a 

suitable methodology to be implemented in software form. 

5. To use the software to explore and quantify the risk that climate change poses 

to hydropower production and particularly on its investment performance. 
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6. To indicate how changes in risk and perceptions of hydropower affect future 

provision worldwide, and the ability to constrain global emissions and green-

house gas levels. 

1.3 Thesis and Contribution to Knowledge 

Overall, the project will test the hypothesis that: 

climate change will adversely affect production from hydropower schemes 

and consequently deter investment in them. 

While considerable attention has been paid to the impact of climatic change on 

hydrology, and to a lesser extent on the operation of hydropower schemes, there is 

no corresponding investigation of impacts on profitability and investment viability. 

Secondly, the relationship between climate and investment is not well understood, 

and this thesis goes some way towards correcting that. 

It is anticipated that the techniques and analysis presented here will be understood 

and welcomed by those involved in climate change research, in energy policymaking, 

by investors, insurers, engineers and others involved in the planning, design and 

operation of electricity systems. 

1.4 Thesis Outline 

The thesis consists of eight chapters, together with necessary appendices. 

Chapter 2 introduces the issue of climate change, its scientific basis and the evidence 

that climate change is both probable and underway. The means of modelling and 

projecting future changes are examined along with their limitations. Current 'best 

guess' projections are considered along with brief descriptions of potential climate 

change impacts. 

Chapter 3 highlights the environmental impacts of electricity generation. The link 

to climate change and the means of mitigating the problem are examined. The 

determinants and form of future electricity demand is considered prior to a discussion 

of recent changes in the nature of the electricity supply industry (ESI) due to the 

re-introduction of private capital. The method and scope for private finance is 

analysed, before a description of the implications of the new industry structure for 

the provision of renewable energy. 
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Chapter 4 details the impact of climatic changes on the hydrological cycle and in 

particular on river flows. The resultant effects on hydropower potential and opera-

tion are also detailed. Limitations of existing studies in the literature are highlighted 

and a proposal made to examine, quantitatively, the impact on investment in hydro-

electric power. Current methods of investment appraisal are noted and suggestions 

made as to their limitations in light of climatic change. 

Chapter 5 specifies the analytical approach to be encapsulated in a software tool. 

Potential approaches are considered with a view to data availability, software com-

plexity and modelling practicality. 

Chapter 6 presents the theoretical and mathematical basis of the 'HydroCC' software 

tool, together with a detailed description of its structure, features and operation. 

Chapter 7 describes the case study used to validate the methodology and software. 

The performance of the software in simulating the hydrology, operation and finan-

cial analysis is examined, prior to the presentation of the results from a variety of 

analyses. 

Finally, Chapter 8 examines the results of the case study, their validity and their 

implications for a variety of issues on a regional and global basis. Several aspects of 

hydropower developments are considered in a series of strategies for dealing with the 

issue of climatic change. Lastly, conclusions are drawn regarding climate change, the 

future of the electricity industry and the role of hydropower, and several suggestions 

are presented as to possible future work on this subject. 



Chapter 2 

Global Climate Change 

Global climate change or global warming was one of the key scientific and political 

challenges of the 20th century and will become increasingly so in the 21st. Accord-

ingly, the Intergovernmental Panel on Climate Change (IPCC) was established in 

1988 by the World Meteorological Organisation (WMO) and the United Nations 

Environment Programme (UNEP). It was set several key tasks: 

to assess scientific information relating to climate change, 

to assess its environmental and socio-economic consequences, 

to formulate response strategies for the management of the issue. 

Working Groups were formed to deal with each area. Working Group I reported in 

1990 as part of the First Assessment (FAR) and featured state of the art research 

from key experts in fields relevant to the science of climate and climatic change [1]. 

In its 1995 report the IPCC significantly stated: 'the balance of evidence suggests a 

discernible human influence on the climate system' [2]. 

This chapter summarises the key ideas and evidence that led the IPCC to this 

conclusion. Several distinct topics are covered: the linkage between carbon dioxide 

and other gases and global climate change; observational evidence for such change; 

methods and limitations of predicting future climates; predictions of future climate 

and the resulting impacts; and finally how the issue of climate change is being dealt 

with. 

5 
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2.1 The Science of Climate Change 

2.1.1 The Climate System 

Climate is defined as average weather over a period of time for a particular geograph-

ical region. Climate variations are caused by the interaction of the atmosphere with 

other components of the climate system, which include the oceans, land, snow and 

ice, and hydrological systems. 

The Earth's climate is driven by the output of the Sun, and variations in its output, 

together with the rotation and orbit of the Earth, influence climate. The average 

incident solar energy on the Earth is 342 W/m 2 . Around 31% of this is scattered or 

reflected back to space by the atmosphere, leaving the remainder to heat the surface 

and atmosphere. To balance this, the Earth radiates longwave infra-red energy. 

The amount of infra-red energy emitted depends on the temperature of the emitting 

body. For an absorbing surface to emit 236 W/m2 , its temperature would have to 

be around -19°C. As the Earth's surface is on average 33°C warmer, the atmosphere 

is artificially warming the Earth. This blanketing effect, known as the 'Greenhouse 

Effect' was first recognised by Fourier in 1827 [3]. 

Whilst the atmosphere consists mainly of nitrogen and oxygen (99%), it is the pres-

ence of small quantities of certain 'greenhouse' gases that are responsible for the 

blanket effect. These gases are transparent to the incoming shortwave solar ra-

diation, but absorb and re-emit longwave radiation such as that emanating from 

the Earth's surface. The re-emission occurs in all directions, with some downwards 

warming air, land and water below. The process is natural and has been occurring 

for at least two billion years, with small quantities of mainly water vapour and car-

bon dioxide (CO 2 ) trapping sufficient heat to allow water to exist in the liquid phase 

and creating conditions suitable for life. 

Since the 1950s concern has been expressed about rising atmospheric concentrations 

of CO2 and other gases, together with increasing global mean temperatures. The 

possibility of an 'enhanced' greenhouse effect has led to an unprecedented investig-

ation into the cause and possible effects of the rises [3]. 

Since pre-industrial times, around 1750, there has been a 27% increase in atmo-

spheric concentrations of CO2, rising from 280 ppmv to 366 ppmv in 1998. As 

shown in Figure 2.1, measurements from air trapped in Antarctic ice, together with 

direct measurements from Mauna Loa in Hawaii indicate an exponential growth rate 

in CO2  concentrations, particularly in the latter half of the twentieth century. 
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Figure 2.1: Atmospheric CO 2  increase over the past 250 years, indicated by air 
trapped in Antarctic ice (up to 1953) and by direct measurement 
at Mauna Loa, Hawaii from 1958 onwards [4, 5]. 

2.1.2 The Carbon Cycle 

Carbon, in the form of CO 2 , carbonates and organic compounds, is continuously 

exchanged between a number of reservoirs: atmosphere, oceans, living organisms, 

and over long time scales, sediments and rocks. Figure 2.2 illustrates this. The 

largest fluxes are between the atmosphere and land vegetation, and the atmosphere 

and the ocean surface. The exchanges between carbon reservoirs are quite small 

compared to the size of the reservoirs themselves, with the atmosphere, soil, surface 

ocean and deep ocean estimated to hold 750, 2,190. 1,020 and 38,100 gigatonnes of 

carbon (GtC) respectively [6]. Whilst the anthropogenic fluxes of fossil fuel corn bus-

tion and deforestation are significantly smaller than the natural ones, their effects 

are sufficient to alter the balance. 

Fossil Fuel Emissions 

Since 1751 the combustion of fossil fuels has released over 265 GtC into the atmo-

sphere, with half of the emissions occurring since the mid 1970s. The 1996 CO 2  

emissions estimate was 6.5 GtC, at that stage the highest ever, and showed a small 

(1.7%) increase over the 1995 total. Figure 2.3 shows the exponential growth since 

1820, which averaged 4% a year despite interruptions due to both World Wars and 

the Great Depression. The oil crisis of the 1970s saw growth fall to 2%, with no 
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increase from 1979-1984. 1990-1993 saw declining emissions, interrupting the trend 

of modest growth [8, 9]. 

Figures for 1996 indicate that liquid and solid fuels accounted for 77.5% of the 

emissions from fossil-fuel burning in 1996, with gas fuels representing 18.37o, the 

balance caused by cement production and gas flaring. The share of gas is gradually 

growing as natural gas use increases (e.g. electricity generation) [9]. Chapter 3 

details the energy related emissions in more detail. 
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Figure 2.3: Global carbon emissions from fossil fuel combustion and cement 
production. MtC/yr over 1820-1996 [9] 

Land-use Change 

The second most important anthropogenic effect has been due to changing land-use, 

particularly in tropical regions. The soil and vegetation of natural (or unmanaged) 

forests are estimated to hold between 20 and 100 times the amount of carbon per 

unit area than agricultural land. The demand for agricultural land has followed 

increasing population. Until the middle of the twentieth century this was the prime 

driver behind deforestation, but more recently, the exploitation of minerals and 

timber have seen the clearance of enormous areas of forest. 

It is estimated that since 1850 the cumulative release of carbon to the atmosphere 

through changing land-use, and in particular deforestation, has been in the region 

of 115±35 CtC [10]. Releases have occurred due to burning (e.g. slash-and-burn in 

the Amazon), decay of biomass on-site, the oxidation of wood products, for example 

in paper making, and the oxidisation of carbon in the soil. The regrowth of trees 
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and the replacement of organic material have partly offset the releases. 

The pattern of change has altered, as during the nineteenth and early twentieth 

century most of the releases came from temperate regions, whilst from 1950 onwards 

the major source is deforestation in the tropics. The clearance of large swathes of 

the Amazon basin for grazing and mineral exploitation is well documented [11]. The 

severe smogs seen over much of south-east Asia in the late 1990s were the result of 

deliberate land clearances in Indonesia [12]. 

Missing Carbon Sink 

The releases from anthropogenic sources have increased the atmospheric concen-

trations of carbon dioxide. However, the increase from 288 ppmv in 1850 to 366 

ppmv in 1998 does not represent the accumulation of the cumulative releases. In 

fact, only around 48% of the releases have added to atmospheric concentrations. 

The IPCC First Assessment described how simulations using historic emissions es-

timates tended to overestimate the atmospheric concentrations. This represented a 

'missing carbon sink' and could not be accounted for by the uptake of carbon in the 

oceans [8]. Additional work on this aspect has identified several sinks, not least the 

uptake by Northern Hemisphere forest regrowth, but also enhanced forest growth 

due to CO2 fertilisation, nitrogen deposition and potentially response to changes 

in climate. There is some uncertainty surrounding the magnitude of the sinks [6]. 

Table 2.1 shows the average Carbon Budget for the 1980s and the imbalance term 

represents the 'missing' sinks excluding the forest regrowth which is identified ex-

plicitly. 

CO2  Flow 	 GtC/yr 

Sources: 
Fossil fuel combustion and cement production 5.5 + 0.5 
Deforestation and land-use change 	 1.6 ± 1.0 

Sinks: 
Storage in the atmosphere 	 3.3 + 0.2 
Ocean uptake 	 2.0+ 0.8 
Uptake by Northern Hemisphere regrowth 	0.5 ± 0.5 

Net imbalance: 	 1.3 + 1.5 

Table 2.1: Average annual budget of CO 2  flows for 1980-1989 [8, 6] 
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2.1.3 Linking Carbon and Climate 

The discussion of increasing atmospheric carbon concentrations is based on the 

premise that increased CO2 implies increased temperatures. Instrumental records 

indicate rising temperatures and CO 2  concentrations, however, some commentators 

argue that this may simply be a coincidence, or a result of other factors (e.g. Sun's 

cycle). A conclusion as to whether a correlation exists cannot be made on the basis 

of data from the past few hundred years; it is necessary to look at long term indices 

of CO2 and temperature. The key evidence is contained in the Antarctic ice. Re-

cent cores taken at Vostok allow the measurement of CO2 concentration from air 

trapped in the ice which dates back over 400 thousand years and incorporates 4 

glacial periods. In addition, by sampling the deuterium concentrations an estimate 

of temperature can be made [13, 14]. 

Figure 2.4 shows both sets of data from the last 160 thousand years, and indicates a 

correlation between Antarctic temperature, inferred from deuterium concentrations, 

and CO 2  concentrations. It can be seen that sharp changes in temperature are 

generally accompanied by similar changes in CO 2 . 

2.1.4 Key Greenhouse Gases 

Although the discussion has so far concentrated on carbon dioxide, it is by no means 

the only greenhouse gas. In addition to water vapour, other natural and man-made 

compounds have potential to enhance the greenhouse effect. Different compounds 

absorb radiation in particular wavelength bands, so increasing concentrations of 

compounds that are radiatively active in the infrared range will decrease the radi-

ation leaving the Earth, consequently warming it. The properties of some of the 

most important are shown in Table 2.2. 

Atmospheric Parameter CO2 CH4  CFC-12 HCFC-22 N2 0 

Concentration (ppbv): 
Pre-industrial 280,000 700 0 0 275 
Current (1992) 355,000 1,714 0.503 0.105 311 

Accumulation rate (%/yr) 0.4 0.8 4 7 0.25 
Lifetime (years) 50-200 12-17 102 13 120 

Table 2.2: Summary of key greenhouse gases [15] 

Methane (CH 4 ) is produced naturally, but anthropogenic sources including fuel pro-

duction, cattle farming, landfill and deforestation (biomass burning and decay), 

are increasing its atmospheric concentrations by around 0.8% annually. Methane 

has a much shorter atmospheric residence time and is removed from the atmosphere 
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through reactions with the hydroxyl radical (OH). As many hydro- and halo-carbons 

also react with OH, increasing methane concentrations reduces the ability of the at-

mosphere to remove greenhouse gases, and around 30% of increases in methane 

concentration can be attributed to this. 

Nitrous Oxide (N 2 0) is naturally occurring, but its concentrations have also risen 

through fertiliser use and fossil fuel combustion. 

Chlorofluorocarbons (CFCs) are entirely man-made and were used in refrigeration 

and as a propellant. The two most important, in terms of their warming contribu-

tion are CFC-11 and CFC-12. Their ability to trap radiation is tens of thousands 

of times greater than CO 2 . They were banned by the Montreal Protocol due to 

evidence of damage to the ozone layer, and their concentrations have now begun to 

fall. However, concentrations of hydrofluorocarbons (HCFCs) introduced to replace 

CFCs, are increasing and these have similar radiation trapping properties, although 

they do not damage the ozone layer [16]. 

Water vapour is a key greenhouse gas. As the atmosphere warms its ability to hold 

water increases, so the natural quantity of water vapour will increase and create a 

positive feedback. 

Aerosols are particles suspended in the atmosphere that alter the energy balance 

by absorbing or scattering incoming radiation and tend to cool the atmosphere. 

Natural sources include dust blown from the land surface, from forest fires, and 

occasionally from volcanic eruptions. Man-made sources include biomass burning 

(e.g. forest clearance), but are dominated by sulphate particles resulting from the 

formation of sulphur dioxide (SO 2 ) from fossil fuel combustion. The short residence 

time means that the effect tends to be regional rather than global. The net effect 

of anthropogenic sulphates is estimated to reduce global radiation by around 0.5 

W/m2 , partially offseting the CO 2  increases [3]. 

Aerosols also affect climate indirectly, through their effect on cloud formation. The 

presence of large numbers of aerosol particles during cloud formation produces clouds 

that are more reflective to sunlight and increase the global energy loss by 0-1.5 

W/m2 . Despite rising coal use, particularly in Asia, SO 2  emissions are expected to 

fall as reduction measures first used in Western countries are extended worldwide. 

As a result, it is expected that there will be fewer sulphate particles to offset the 

CO2 increases [3]. For detailed treatment of aerosols see Houghton et al [15]. 

2.1.5 Radiative Forcing 

Radiative forcing is the term used to describe the imbalance between absorbed solar 

energy and radiation emitted to space by the Earth. Any process that has the ability 
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to create a radiative imbalance is known as a radiative forcing agent. In addition 

to changing concentrations of greenhouse gases, radiative forcing agents include 

solar radiation, direct and indirect aerosol effects, and surface albedo (reflectivity). 

Radiative forcing can be defined as the change in net radiation and is measured in 

W/m2 . Positive values indicate warming, and vice versa. 

The radiative forcing due to each gas is calculated with radiative transfer mod-

els, which account for the complicating factor of overlapping absorption spectra. 

The existing concentration of a gas determines how additional molecules will af-

fect radiative forcing. Abundant gases require a greater increase in concentration 

to cause additional forcing, whilst scarce gases (e.g. HCFCs) have a near linear 

concentration-forcing relationship. As such, the forcing effect of CO2 is found to be 

related logarithmically to the concentration. 

Carbon dioxide has a relatively low radiative forcing effect, but as it is by far the 

most abundant greenhouse gas, it is convenient to measure the forcing potential 

of other gases relative to it. This can be on a molecular basis or in terms of unit 

mass, and is shown, for several key gases, in Table 2.3 (note the high forcings of 

the halocarbons). The relative warming effect of greenhouse gases depends on the 

time frame used. A gas with a strong radiative effect but short lifetime will have 

a greater effect in the short term, than a weaker but longer-lived gas. Over time 

however, the weaker gas will have more of an effect. Overall, since pre-industrial 

times CO 2 , CH4 , N2 0 and halocarbons are estimated to contribute a forcing of 2.45 

W/m 2  [6]. 

CH4  N2 0 CFC-11 CFC-12 HCFC-22 

Per Molecule 	21 	206 	12,400 	15,800 	10,700 
Per Unit Mass 	58 	206 	3,970 	5,750 	5,440 

Table 2.3: Radiative forcing relative to CO 2  per unit molecule and per unit 
mass change in 1990 concentrations [16] 

Global Warming Potential 

Global Warming Potential (GWP) is defined as the time integrated commitment to 

climate forcing from the instantaneous release of unit mass of a trace gas relative 

to unit mass of carbon dioxide [16]. It is intended as a simple means of describing 

the relative ability of trace gas emissions to affect radiative forcing. However, there 

are difficulties in determining trace gas GWPs, primarily uncertainty over atmo-

spheric lifetimes. Their use is limited as application to unevenly distributed gases or 

aerosols is difficult, they do not consider feedbacks and reflect global averages only 

[15]. Despite these problems, and as Table 2.4 shows, they are quite illustrative in 
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explaining the relative effect of different gases on global warming. Other gases pos-

sess even greater GWPs, for example, sulphur hexafluoride (SF 6), used in electrical 

circuit breakers, is estimated to have a GWP of 23,900 and an atmospheric lifetime 

of 3200 years [6]. 

CO2 CH4  N2 0 CFC-11 CFC-12 HCFC-22 

100 Year GWP 	1 	21 	310 3,500 7,300 1,700 
Emissions (Mt/yr) 	26,000 	300 	6 0.3 0.4 0.1 
Percentage Effect 	61 	14 	4 2 7 0.4 

Table 2.4: Summary of key greenhouse gas Global Warming Potentials [16] 

2.1.6 Climate Feedback 

There are several feedback mechanisms that complicate the issue of climate change, 

and how to predict it. These are the water vapour, snow-ice albedo, cloud and 

ocean-circulation feedbacks. 

A warmer atmosphere can hold more water vapour, which is itself a greenhouse gas, 

and creates a positive feedback. In addition, as water vapour absorbs incoming solar 

radiation the increased quantity provides an additional heating effect. Estimates and 

satellite measurements suggest that for a warming of 1.2°C, these effects increase 

warming by a factor of 1.6 (to 1.9°C) [17]. Although the water vapour feedback 

is well understood in general terms, the precise nature of it is difficult to model, 

especially in respect to processes in tropical regions [18]. 

A warmer planet has less snow and ice cover which results in a lower albedo or 

reflectivity, and hence an increased absorption of solar radiation. The positive feed-

back due to the reduction in snow and ice cover would, on its own, amplify the 

average temperature rise due to a doubling of CO2 by 20% [3]. 

Although the presence of clouds creates a cooling of the atmosphere, a number of 

different processes contribute to the effect. The clouds inhibit infra-red re-emission 

(cloud radiative forcing) compared to clear skies, creating a warming similar to 

greenhouse gases. Conversely, they cool the atmosphere by reflecting solar radiation, 

and this effect predominates. Cloud feedback mechanisms are extremely complex, 

and changes in cloud amount, altitude and water content are possible effects of 

global warming. It is overly simplistic to suggest that, for example, an increase in 

cloud cover would help offset greenhouse gas warming, as the interplay of the two 

processes may result in a fall in net cooling (i.e. a warming effect) [17]. There 

have been improvements in the understanding of many of the component processes 

involved but there are still differences between modelling groups concerning the 
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magnitude and sign of the overall feedback effect [181. 

The oceans are key in determining the Earth's climate, and will have an important 

role in determining the effect of anthropogenic climate change. They are the main 

source of atmospheric water vapour which, due to latent heat released in cloud con-

densation, is the largest heat source for the atmosphere. The large heat capacity 

tends to smooth the extremes and will control the rate of change. Ocean circulation 

redistributes heat from the equator to polar regions, and slight changes in distri-

bution could have profound effects on climate [3]. Evidence suggests that during 

the last ice age, the circulation of the Gulf Stream, which moderates the climate of 

western Europe and the UK in particular, was altered [19]. Climate warming could 

result in the Gulf Stream moving to the south and causing regional cooling in the 

UK. 

2.2 Observational Evidence for Climate Change 

Some of the key questions in examining observational evidence for climate change 

are: has the climate warmed, become wetter, more variable or extreme, and is 20th 

century warming unusual? 

The answers to these questions are dependent on the availability of quality data, and 

to this end there has been a large increase in the quantity and variety of climate data 

being measured, terrestrially, from satellites and from the oceans. The principal 

reason is to detect climate change due to global warming through an increase in 

temperature and changes in other climate variables in the instrumental record. The 

requirement is to detect the global warming 'signal' among all the noise. 

2.2.1 Temperature Rise 

Global Temperatures 

Globally averaged surface air and sea temperature has risen by between 0.3 and 

0.6°C since 1850 [1, 20]. Over the 40 years to 1995, when data is more credible 

(with improved measurement coverage), the increase has been 0.2 to 0.3°C, with 

greater warming over the continents in the Northern Hemisphere. The warming is 

not uniform, and some regions have cooled. There has also been a reduction in 

the diurnal difference between maximum and minimum temperatures, mostly due 

to rising night-time minimum temperatures [21]. 

Figure 2.5 shows the combined global land and marine surface temperature record 

from 1856 to 1999. Compiled jointly by the Climatic Research Unit (CRU) and the 
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UK Meteorological Office (UKMO), the record is being continually up-dated and 

improved. The 1990s was the warmest decade in the series. The warmest two years 

of the entire series were 1997 and 1998, with the latter the warmest at 0.57°C above 

the 1961-90 mean. The six warmest years globally have now occurred in the 1990s. 

They are, in descending order, 1998. 1997, 1995, 1990, 1999 and 1991 [22]. 
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Figure 2.5: Measured temperature anomaly over last 150 years relative to 
1961-90 mean. Solid line represents 10 year running mean [22] 

Central England Temperature 

The Central England Temperature (CET) is a record of temperatures which repres-

ent the average of an area between Manchester, Bristol and London. Measurements 

began in 1659 and it is the longest running instrumental record available. Originally 

complied by Manley in 1973 [23], it is now continually updated by the UK Met-

eorological Office. Recent data suggests that 1999 was 1.16°C above the 1961-90 

average, the warmest year recorded in 341 years. 

Millennial Data 

Analyses of proxy climate series (from trees, coral, ice cores and historical records) 

show that the 1990s is the warmest decade of the millennium and the 20th century 

the warmest century. The warmest year of the millennium was 1998. Figure 2.6 

shows the Northern Hemisphere temperature reconstructed from proxy sources and 

indicates the level of climate variability over the last Millennium. Temperatures in 
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the early part of the Millennium are similar to mean 20th century, but the temper-

atures of the late 20th century are considerably higher. The warming since 1850 is 

in marked contrast to the prior trend of cooling of around 0.02°C/century, which 

is reputed to be due to changes in the Sun's output. However, despite the extens-

ive variety of proxy sources, more widespread high-resolution data will be required 

before the conclusions can be relied on [24]. 
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Figure 2.6: Northern Hemisphere temperature anomaly over last Millennium 
reconstructed from proxy sources (relative to 1902-1980 mean) [24] 

Indirect Measures 

Indirect measures provide support for the notion of rising temperatures, but as they 

are influenced by other factors, they cannot individually confirm the trend. Evidence 

includes: glacial retreat in the 20th century is of the scale expected for warming of 

0.6-1.0°C; records dating from 1870 suggest that coral reef bleaching has been more 

prevalent from 1979 (bleaching is associated with high temperatures as well as other 

environmental factors like pollution): and an analysis of the CET indicated a phase 

shift in the annual temperature cycle, but this was not confirmed by later studies 

[21]. 
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2.2.2 Precipitation Change 

Precipitation has increased in the mid to high latitudes of the Northern Hemisphere, 

whilst for the tropics and mid-latitudes of the Southern Hemisphere precipitation 

has fallen. Such changes are associated with rising temperatures since the 1970s. 

Overall there has been a 1% increase in global precipitation over land during the 

20th century, although precipitation has been low since 1980 [21]. The changes in 

precipitation are more complex than temperature changes, and as such, it is difficult 

to draw more detailed conclusions. 

Lack of long-term data on snow cover and snowfall has limited the study of changes 

in snow. Satellite data shows that snow cover on land in the Northern Hemisphere 

has decreased on average by 10% from 1988 to 1994. Spring cover is particularly 

affected, autumn and summer less so, whilst winter cover decrease is small. The 

decreases are strongly linked to rising temperature, and this is reflected by earlier 

spring thaws and a smaller percentage of precipitation falling as snow. Changes in 

snow cover are particularly important as snow is an important radiation reflector, 

and it is suggested that loss of snow cover may account for half of the springtime 

warming in the Northern Hemisphere since the 1970s [21]. 

2.2.3 Variability and Extremes 

There is no consistent trend in temperature variability, and few regions have been 

examined for rainfall variability. Rainfall intensity trends are not consistent except 

in some areas, like the USA, where evidence suggests increases in intensity and 

extreme event frequency. There is no evidence of an overall increase in extreme 

weather or variability during the last century, but such evidence exists on a regional 

level. 

2.2.4 Was Warming During the 20th Century Unusual? 

Evidence presented in this section suggests that temperature is increasing, and that 

temperatures are the warmest seen for at least the last 1000 years. Whilst rapid 

climatic changes can occur naturally, in the last 10,000 years temperatures have been 

far less variable, and as such the recent warming appears anomalous. Whether or not 

the warming can be considered as a 'footprint' of climate change is currently under 

debate [25]. It seems likely that as more and more evidence indicating warming 

becomes available over the next decade or so, it will be possible to conclude that 

Man is to blame. 

A more detailed description and discussion of observed climate variation can be 

found in Folland et al [26] and Nicholls et al [21], among others. 
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2.3 Predicting Climate Change 

So far the discussion has been related to how climate change could be caused, and 

whether we can already see evidence of it. To be able to deal with it effectively 

we need quantitative information of how it could manifest itself. It is necessary 

to understand how to predict - or more accurately, project - climatic changes; to 

consider the strengths and weaknesses of various approaches and to examine the 

current consensus concerning future temperature rise. 

Several methods have been used to predict future climate: 

palaeo-analogue methods which estimate future climate change from past cli-

mates using proxy data, 

simple global-average models, 

simulations with General Circulation Models (GCMs). 

The first method attempts to determine the sensitivity of climate to CO2 concentra-

tions from estimates of CO2 concentrations and global average temperatures during 

periods in the past. Adjustments in prevailing temperature have to be made to ac-

count for differences in the Sun's radiance and in the Earth's albedo due to altered 

land-ocean proportions. One study suggested that the sensitivity was 3+1°C, which 

is comparable to results from GCMs. If the palaeo-climatic reconstructions are ac-

curate and extensive, then they may provide reasonable estimates of spatial patterns 

of change, but the method is weakened due to factors that include: uncertainties in 

climate reconstruction, limited areal coverage and influences of other factors involved 

in past climatic change [17]. 

The second method uses simple global-average models of the carbon cycle to determ-

ine future concentrations of CO 2  [27]. At present this is the standard method used 

in the IPCC assessments to indicate future temperature rise [28, 20, 29]. However, 

despite the use of simpler methods in the IPCC assessments, the more promising 

method in the long-term is the use of General Circulation Models. 

2.3.1 General Circulation Models 

General Circulation Models are complex numerical models of the atmosphere (AGCM) 

and the oceans (OGCM). Derived from weather forecasting models, they use the 

laws of conservation of momentum, heat and mass to describe the behaviour of the 

atmosphere and ocean. The horizontal variation of the variables in each layer is de-

termined either at particular grid points defined by latitude and longitude (for finite 

difference models), or by a number of mathematical functions in spectral models 
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(which use Fourier Series expansions). The time step required to ensure the solu-

tion is stable must be smaller than a value specified either by the fastest moving 

disturbance or wave, or the grid size. The greater the spatial resolution the smaller 

the required time step, and the greater the computing load. Current models use the 

fastest computers available and operate at over 1012  floating-point operations per 

second (flops) [3]. Table 2.5 shows the resolution of the current generation of ocean 

and atmosphere GCMs. The spatial resolution of the UKMO model is one of the 

best but still represents a region at the Equator of 260 by 400 km. 

Group Country 	AGCM Resolution 	OGCM Resolution 
Horizontal Vertical Horizontal Vertical 

CCC Canada 3.70  x 3.7 0  10 1.80  x 1.8 0  29 
CSIRO Australia 5.60  x 3.2 0  9 3.20  x 5.6 0  12 
GISS USA 40  x 5 0  9 40  x 5 0  16 
MPI Germany 5.6 0  x 5.6° 19 2.80  x 2.8 0  9 
NCAR USA 4.50  x 7.5 0  9 1 0  x 1 0  20 
UKMO UK 2.50  x 3.8 0  19 2.50  x 3.8 0  20 

Table 2.5: Coupled atmosphere-ocean General Circulation Models [30] 

The limited resolution of AGCMs means that a number of important processes are 

not determined explicitly. Their effects are incorporated by relating them to the 

key variables which are wind, temperature, humidity and surface pressure. Para-

meterisation of the processes is based on observation and theory, and is one of the 

limiting factors in GCMs. Parameterisation schemes vary between models and are 

one of the major targets for criticism. Processes that are parameterised include ra-

diation and cloud effects, land surface processes (e.g. soil moisture and river flow), 

and sub grid-scale heat, momentum and mass transport. Ocean models are similar 

to atmospheric ones except that water vapour balance is replaced by salinity. Mod-

els of oceanic carbon dioxide transfer are already used, and atmospheric chemistry 

are also expected to be used in GCMs in the near future, for example in the UKMO 

model [31]. 

AGCMs and OGCMs have tended to be operated separately, but a more realistic 

simulation can be carried out by coupling them. This has only really become possible 

with the increase in computing resources. However, there are still limitations. Apart 

from the computing load, the time mismatch between the atmosphere and ocean 

models (which have longer time steps) is problematic. Additionally, when the models 

are coupled, each tends to 'drift' to an erroneous state, as there is no constraint from 

ocean surface observations. Whilst 'flux correction' aims to stop drift, this is not 

guaranteed and the corrections are based on present-day conditions. 

More detail on GCM structure, their processes and parameters and their caveats 
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can be found in Cubasch and Cess [17] and Dickinson et al [18]. 

2.3.2 The Use of General Circulation Models 

Whilst climate models have significant limitations, they are an extremely powerful 

means of studying climate and changes in it. They are used for determining climate 

sensitivity to various factors and more importantly in providing 'predictions', or 

more accurately 'projections' of future climate. The first step is to perform a 'control' 

simulation with parameters chosen to suit current climate. This allows a reference 

climate to be established and its statistical properties to be determined. These can 

be used to evaluate model performance against observations and to examine the 

response of the climate to altered parameters, for example, CO 2  concentration. The 

response must be compared with the 'natural' variability and an assessment made 

of whether the changes are due to change in climate, or the natural variability of 

the model. Two types of responses are considered: 'equilibrium' and 'transient'. 

Equilibrium experiments compare the difference between simulations of climate with 

current levels of CO2 and doubled CO2, respectively called 1 x CO2 and 2 x CO2  

scenarios. The resulting temperature difference between the two simulations is re-

ferred to as the model's climate sensitivity, and is defined as the temperature rise 

for a doubling of CO 2 . The range of sensitivities exhibited by GCMs is from 2.1 to 

4.6°C [29]. The simulations are run for a length of time sufficient for an equilibrium 

to be achieved. For a fully coupled GCM the equilibrium response time would be 

around 1000 years, but simpler models allow convergence in decades. 

Whilst equilibrium response is suitable for model comparison, the results may be 

misleading as CO2  concentrations will not undergo a step change. To get more 

realistic projections transient or time-dependent experiments are performed. These 

use gradually changing CO2 concentrations, which enable the slow process of ocean 

heating to determine the timing of the response [17]. 

2.3.3 Model Evaluation 

Differences in simulation may be due to the relative importance of different para-

meterisations, or relative strength of feedback mechanisms. Two GCMs that give 

seemingly similar equilibrium changes may do so for entirely different reasons. Un-

derstanding and modelling of climate processes have improved greatly in the five 

years between the IPCC assessments, and as a result the inter-model parameter dif-

ferences are smaller. Despite that, some aspects of the climate mechanism are still 

not well modelled, in particular those related to clouds [17]. 

Many examples of individual climate model evaluation exist in the literature, al- 
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though attempts to standardise their comparison has occurred only recently. Gener-

ally, the ability of climate models (especially AGCMs) to simulate mean distributions 

of climate variables has increased steadily. The IPCC Second Assessment Report 

(SAR) described comparisons between different coupled and component atmosphere 

GCMs in simulating current climate. 

Coupled models, on average, simulated the large scale seasonal distribution of surface 

air temperature very well. Compared to observations, the discrepancies were largest 

over land and in particular over mountainous regions. The lack of aerosol forcing may 

account for some of the differences. The globally averaged mean model temperature 

agrees well with observations (12.2°C against 12.4°C for December-February), with 

Table 2.6 indicating that the range of values from the models was around 5°C. 

Precipitation is less well simulated, but the basic pattern is reproduced. The largest 

model differences occur in the tropics, and this is reflected in the spread of globally 

averaged model means, again shown in Table 2.6. Higher mean temperatures appear 

to be associated with increased precipitation rates. Coupled models simulate mean 

sea level pressure well, but appear to have difficulty reproducing seasonal snow and 

ice cover, which has implications for the snow-ice feedback mechanism [21]. 

Group 	 Surface air 	Precipitation 
temperature (°C) 	(mm/day) 
DJF 	JJA 	DJF JJA 

CSIRO 12.1 15.3 2.73 2.82 
GFDL 9.6 14.0 2.39 2.50 
GISS 13.0 15.6 3.14 3.13 
NCAR 15.5 19.6 3.78 3.74 
UKMO 12.0 15.0 3.02 3.09 
Observed 12.4 15.9 2.74 2.90 

Table 2.6: Coupled model simulated global average temperature and precipit-
ation (DJF = Dec-Feb, JJA = Jun-Aug) [30] 

Coupled model reproduction of regional climate is affected by the coarse spatial 

resolution of GCMs which prevents realistic modelling of mountains and coastlines. 

In the mean-time reasonable regional climate reproduction can be gained with a 

high-resolution model 'nested' within a limited part of the globe, and driven by 

boundary conditions gleaned from observation or from GCMs. This implies that as 

GCM resolution increases improved regional performance will result [21]. 

The IPCC Second Assessment presents the results of a comparative study of at-

mospheric models carried out for the Atmospheric Model Intercomparison Project 

(AMIP) [32]. All models used standard conditions of CO 2  concentrations and other 

factors. Table 2.7 provides a summary of several key climatic variables. It can 
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be seen that the models simulation of pressure is accurate, whilst temperature and 

precipitation are less so. Once again the simulation of clouds is shown to be a 

problem. 

DJF 
North 	South 

JJA 
North 	South 

Mean sea level pressure (mb) 1.4 1.4 1.3 2.4 
Surface air temperature (°C) 2.4 1.6 1.3 2.0 
Precipitation (mm/day) 0.80 0.71 0.62 0.77 
Cloudiness (% 10 21 14 16 

Table 2.7: Root mean square error between observed variables and mean 
AGCM simulation [30] 

Treatment of clouds, the hydrological cycle and land surface processes are the source 

of the greatest uncertainty in climate models, and are responsible for most of the 

differences between models. ConfIdence in the results of climate models depend on 

their ability to simulate current climate and on realistic models of physical processes, 

and it is believed that the development of more representative and accurate coupled 

models offer the best method for understanding and predicting future climate [30]. 

2.3.4 Projections of Future Climate 

Scenarios of Change 

To be able to determine the timescale of future climate change from climate models 

it is necessary to supply projections of future emissions in greenhouse gases. Future 

emissions of CO 2  and other greenhouse gases will depend on rates of economic 

growth, population growth, energy resource availability, technology and the climate 

policies of national governments and international institutions. 

The IPCC First Assessment used four emissions scenarios to evaluate the effect of 

different technology use and changes in emissions. Developed by Working Group 

III, the economic and population growth rates were the same for all four. The 

first was named the Business-as-Usual (BaU) scenario (or scenario A) and indicated 

emissions growth under policies and practices similar to those existing around 1990. 

Energy supply was assumed to be predominantely coal-based and there would be 

little improvement in efficiency, deforestation would continue apace and CFCs would 

be only partially phased out. Under this scenario CO 2  emissions would be over 20 
GtC/yr by 2100. Scenario B assumed far lower emissions ('-40 GtC/yr) as a result 

of a shift to natural gas use and large efficiencies, afforestation and full phase out of 

CFCs. Scenario's C and D were better still, representing a shift towards renewables 
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and nuclear in the late or early parts of the 21st century, respectively. Scenario D 

rou ld see emissions at half their 1985 level by 2050 [1]. 

The IPCC Supplementary Report of 1992 [20] updated the scenarios. Their num-

ber was increased to six (a-f) and different and updated population. economic and 

technological assumptions were used for each one. Figure 2.7 shows the six CO2 

emissions scenarios until 2100, and similar ones were constructed for other green-

house gases. Scenario IS92a is similar to the 1990 scenario A (SA90), and shows 

the result of existing climate policies together with medium economic growth (aver-

aging 2.3%), medium population growth (11.3 billion by 2100) and medium energy 

resource availability (12,000 EJ and 13,000 EJ of oil and gas respectively). By 2100 

the annual emission of CO 2  is equivalent to around 20 GtC. The lowest emissions 

growth occurs under IS92c, which assumed low resource availability and growth, and 

suggests carbon emissions of 4.8 GtC in 2100. The most severe case, IS92e, assumed 

high economic growth and resource availability, and implies carbon emissions of 36 

CtC. For detailed information on the scenarios see Houghton et al [20]. 
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Figure 2.7: IPCC 1992 Emission Scenarios (a-f) and 1990 IPCC BaU [20] 

The IPCC scenarios have recently been revised and are available in Nakicenovic and 

Swart [33]. 

Change in Radiative Forcing 

To be able to determine the temperature changes that result from each scenario, 

there is a requirement to first find the radiative forcing due to the greenhouse gases. 
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The emissions scenarios are used to drive climate models to indicate the change 

in concentrations and radiative forcing. Greater emissions imply a higher realised 

concentration of gases, and hence the degree of forcing. The forcings that result from 

the IPCC 1992 scenarios follow the pattern of the emissions with the greatest forcing 

resulting from IS92e, the least from IS92c and the BaU (IS92a) lying in between. 

The change in forcing resulting from the 1992 scenarios are shown in Table 2.8. The 

effect of aerosols was considered for the SAR [29], and whilst they reduce overall 

radiative forcing, the overall pattern of forcing for each scenario is unchanged. The 

forcings can be seen to be larger than the change in forcing since pre-industrial times 

of 2.45 W/m 2  (from Section 2.1.5), and together with the 1592e case would imply 

a change in radiative forcing of around 9 W/m 2  over the period from pre-industrial 

times to 2100. 

Scenario 	IS92a 	IS92b 	IS92c 	IS92d 	1592e 	1592f 

LF(W/m2 ) 	5.44 	5.26 	2.98 	3.84 	6.74 	6.26 

Table 2.8: Radiative forcing change over 1990-2100 for IPCC scenarios [27, 29] 

Temperature Change 

The degree of warming will depend on the sensitivity of the climate to increased 

forcing, and as the sensitivity is uncertain (along with the effect of aerosols) a range 

of warming scenarios tend to be presented. IPCC assessments have so far used 

simple upwelling-diffusion-energy balance models (UD/EB), rather than the more 

sophisticated global circulation models, to indicate the scale of temperature change. 

Although GCMs could be used to produce global mean temperature changes, this is 

not possible for a number of reasons. Firstly, each GCM has its own climate sensit-

ivity and therefore cannot produce the desired range to take account of uncertainty 

in this variable. Also, the computing load required to carry out detailed studies 

of the numerous uncertainties is at present too great. However, by calibrating the 

simpler UD/EB models they can produce similar global mean results to GCMs [29]. 

For the 1592a scenario, the closest to a business-as-usual, we could expect a tem-

perature rise of between 1.6°C and 3.5°C for low to high climate sensitivity. The 

inclusion of aerosol effects tends to reduce the temperature rise by around 0.5°C. 

For this scenario the realised temperature rise is expected to be around 2°C by 2100 

[29]. 

Figure 2.8 shows the range of rises for a medium climate sensitivity, and indicates 

the relative certainty of a rise by 2050, but lesser certainty as the scenario paths 

diverge. For 2100, the range (including aerosols) is 1.3°C to 2.5°C for a medium 
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climate sensitivity. The divergence is due to the long time lag between both emissions 

and concentration change and radiative forcing and eventual climate response. The 

extreme range of projections is from 0.8°C for scenario lS92c with a low climate 

sensitivity, to 4.5°C for scenario IS92e with a high climate sensitivity. 
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Figure 2.8: Temperature Rise from IPCC 1992 Scenarios for mecliuni climate 
sensitivity [29] 

It is notable that the estimates of temperature rise under a BaU scenario have fallen 

since 1990 and 1992, when the best guesses were 3.5°C and 2.5°C respectively [1, 20]. 

This due to a number of factors: differences in the emissions scenarios, improvements 

in the carbon cycle models used and the inclusion of aerosol effects [29]. 

Whilst the estimates presented here are for 2100, climate change is unlikely to halt 

then. In fact most of the curves in Figure 2.8 indicate rapid temperature rises in 

2100, and it is likely that temperatures will continue to rise for some centuries, 

despite the stabilisation of greenhouse gas concentrations [34]. 

2.4 Potential Impacts 

Of the large number of potential impacts resulting from climate change, there are a 

number of key areas where major impacts could be expected. 
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2.4.1 Sea Level Rise 

On a geological time scale, the variation in sea level has been considerable, and is 

almost entirely related to changes in climate. Before the onset of the last ice age 
('-s' 

120,000 years ago) when the global temperature was slightly above the present, sea 

level was around 6 m higher, whilst at the maximum extent of the ice age ( 18,000 

years ago), sea level was around 100 m lower and the UK was connected to mainland 

Europe [3]. Over the last century, global mean sea level has risen 10-25 cm, and it 

is likely that this is due to the increase in global temperature. The factors possibly 

responsible are the thermal expansion of the oceans, and the melting of glaciers, ice 

caps and ice sheets. Changes in surface and ground water storage may also have 

affected sea level. The contribution of thermal expansion and glacier and ice cap 

melting to the rise are believed to be 2-7 cm and 2-5 cm, respectively. There is 

uncertainty as to whether the Antarctic or Greenland ice sheets have contributed 

to the rise. It is expected that mean sea level will rise by 50 cm by 2100 (with an 

uncertainty range of 20-86 cm), with most of the rise coming from thermal expansion 

[35]. 

2.4.2 Water Resources 

Water is the most precious resource on the Earth despite 70% of the surface being 

covered in it. There are major variations in its availability, and ever increasing de-

mands from rising populations and the desire for higher standards of living. Climate 

change will alter the availability of water: increased temperature implies greater 

evaporation, whilst precipitation levels will fall in many areas. The net effect is 

that in some areas less water will be available for agriculture, industry and domestic 

consumption. This will have serious impacts for many areas of water supply, and 

in particular for hydroelectric power provision. The impact on water supply and 

hydropower will be dealt with in detail in Chapter 4. 

2.4.3 Agriculture and Food Supply 

Once again the impacts are complex, and inter-related with social and economic 

change. Whilst crops can probably be matched fairly successfully with changing 

climates, plants and trees that take longer to mature may find themselves unsuited 

to the climate consequently suffering from stunted growth or increased vulnerab-

ility to pests [3]. Detailed studies of the effect of climate change on world food 

supply [36, 37] found that with appropriate adaptation, the effects would not be 

likely to impact on total food supply by a great deal. The negative effects would be 

partially compensated for by the effect of CO2 fertilisation (where higher concentra-

tions stimulate photosynthesis and hence plant growth). However, there would be 
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an increased disparity between developed and developing nations, and cereal prices 

would be likely to increase, placing more of the population at risk of hunger. 

2.4.4 Human Health 

There are a number of direct and indirect impacts on human health. The most im-

portant is that climate change is likely to cause increased incidence of infectious and 

vector-borne diseases. The relationships between the environment and human health 

are extremely complex, and the effects will vary regionally. Mosquitoes are sensitive 

to changes in temperature and precipitation and tend take advantage of conditions 

favourable to them [38]. Higher temperatures could affect the incidence of malaria, 

dengue and yellow fever and types of encephalitis. Increases in winter temperatures 

may allow mosquitos to survive in temperate regions or higher altitudes, as cold tem-

peratures often dictate survival. Transmission frequency may increase due to the 

effect of higher temperatures on mosquito and disease life cycles. Changes in pre-

cipitation may increase the availability of mosquito breeding grounds. The greatest 

impacts will be felt where malaria is introduced to areas where the population has 

no immunity. 

Other factors may increase mortality and reduce quality of life: rising temperatures 

may lead to greater mortality through heat stress, although there will be partial 

compensation by a reduction in cold weather deaths; changing atmospheric compos-

ition and in particular increased low-level ozone, could well increase the incidence 

and severity of respiratory ailments. Changes in precipitation patterns may lead 

to longer and more severe drought and related starvation, increased flood incidence 

and increased storm intensity (e.g. tropical cyclones). A detailed consideration of 

health impacts and adaptation is given by McMichael [39]. 

2.4.5 Other Impacts 

Overall, climate change impacts may cost annually between 1.5 and 2% of global 

gross national product (GNP). However, the level of impact and inherent cost will 

vary geographically and be very much dependent on economic development. Estim-

ates for developed countries are similar to that for the United States at 1.1-1.5% 

per annum, whilst the developing world may suffer up to 9% losses. These figures 

are based on impacts on today's economies and generally do not take into account 

future demographic, economic or environmental trends, and extend to the middle of 

the 21st century only. Such studies do not include losses that cannot or are difficult 

to quantify in monetary terms, for example, loss of bio-diversity. Other impacts in-

clude environmental migration as people dispossessed by rising sea level or drought, 

migrate to avoid the effects. There could be as many as 150 million displaced by the 
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year 2050 with major relocation cost as a result. The key feature of climate change 

impacts is that they appear to affect those in developing regions disproportionately, 

and such regions are less well placed to take adaptive or remedial measures. The 

political and social costs of an increasing poverty gap could be substantial [3]. 

2.5 Strategies for Dealing with Climate Change 

This section explains how climate change is being tackled, potential problems with 

it, and how the problems could limit success. 

2.5.1 Stabilising Emissions 

Given the uncertainty surrounding climate change, there is an argument that sug-

gests that the evidence is insufficiently strong to warrant taking action. Rather it 

would be better to research the issue and obtain precise information before taking 

suitable action. However, such an approach is dangerous, and incorrect. Many de-

cisions have to be made in absence of certain information, often in a limited time 

frame, and decisions concerning climate change are no different. 

The evidence summarised in the preceding sections of this chapter suggests that 

climate change is already underway and is likely to accelerate. The risks are large 

and taking action is the only option. The question is about how quickly we should 

act. The long time scales associated with carbon dioxide concentrations at first 

suggest that the speed of human response will not have an effect. In fact, the 

opposite is true. 

Figure 2.9 shows a series of paths that CO 2  concentrations could follow on their way 

to stabilisation at a range of values higher than present, and the required emissions 

pathways to do this. By applying the wait and see approach, emissions keep on 

rising and so do concentrations, until action is taken. The action required at that 

stage to stabilise emissions is more drastic than that required by the approach that 

involves earlier action to reduce emissions. 

2.5.2 Dealing with Climate Change 

The United Nations Framework Convention on Climate Change (UNFCCC) was 

negotiated at the 'Earth Summit' in Rio de Janiero in 1992, and entered into force 

in 1994. The Parties to the Convention committed themselves to stabilising green-

house gas concentrations 'at a level that would prevent dangerous anthropogenic 

interference with the climate system'. The main commitment of the Convention is 
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Figure 2.9: Stabilisation Pathways: (a) CO 2  concentration pathways leading 
to stabilisation. (b) emissions corresponding to (a) and IS92a 
scenario. Dashed lines allow emissions to follow IS92a in early 
21st century [3] 

for industrialised nations (referred to as Annex I countries) to return their emissions 

to 1990 levels, and to show declining emissions by 2000 [40]. Annual meetings of 

the Conference of Parties (COP) deal with issues relating to the Convention, and 

the sixth COP in the Hague November 2000 will continue to fill in the details of 

the more famous third meeting which delivered the Kyoto Protocol. The Protocol 

is examined in Section 2.5.3, but other milestones in the study of and action against 

climate change are listed in Table 2.9. 

Time 	 Milestone 

1957 International Geophysical Year 
1972 Stockholm Conference 
1985-87 IJNEP/WMO Workshops 
October 1988 IPCC Founded 
November 1990 IPCC First Assessment Report. 
June 1992 UNFCCC Rio Earth' Summit 
March/April 1995 Conference of the Parties (COP), Berlin 
December 1995 IPCC Second Assessment Report 
December 1997 3rd COP. Kyoto 
November 2000 6th COP. Hague 

Table 2.9: Milestones in climate study and strategy 
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2.5.3 Kyoto Protocol 

The Kyoto Climate Treaty or Protocol has several key points [41, 42]: 

• Binding commitments for greenhouse gases for each industrialised nation, 

defined for first commitment period of 2008-2012, 

. Emissions based on 'basket' of six gases, plus allowances for sinks, land-use 

change and forestry, 

• Collective commitment to reduce levels by 5% below 1990 levels, 

• Removal of subsidies to energy use, 

• Specific commitments to technology transfer, 

• Joint Implementation, 

• Tradable Emissions Permits. 

The Protocol provides a collective commitment to reducing emissions by 5% below 

1990 levels. Each industrialised nation, collectively known as Annex I countries, 

committed themselves to a specific reduction target for 2010, with developing nations 

not required to reduce theirs. Since 1990 the US, the EU and Japan have had roughly 

constant emissions, but have agreed to reductions of 7, 8 and 6% respectively [43]. 

In the UK's case, CO2 emissions have fallen mainly as a result of the 'Dash for Gas' 

following the privatisation of the electricity industry, and the UK has gone further 

by committing itself to 12.5% by 2010 [44]. 

Following the collapse of the 'Iron Curtain' the economies of the former USSR have 

encountered virtual collapse. As a result, Russia and the Ukraine were emitting 30% 
less in 1996 than in 1990 [42]. Their flat emissions target at 1990 levels, gives them a 

large surplus of emissions that they can either absorb by rebuilding their economies 

or sell through the proposed market in emissions permits. 

The six gases to be controlled are CO2, CH 4 , N2 0, HFCs, Perfiuorocarbons (PFCs) 
and SF6 . The inclusion of gases allows their overall climate effect to be reduced at a 

lower cost than with carbon dioxide on its own. An example would be that for little 

cost or a small cost saving, leakage of methane from pipelines could be reduced and 

be a useful contribution to the overall reduction [3]. 

The 'Joint Implementation' (or 'Clean Development Mechanism') component of the 

treaty allows Annex I countries to provide investment in clean technology in a de-

veloping country and claim a 'credit' for the reduced emissions. 

Developed as a mechanism for combating acid rain by reducing emissions [45], emis- 
sions permit trading is one of the provisions of the treaty. It is more efficient than 
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traditional 'command and control' techniques and taxation. Each polluter, in this 

case a nation, is allocated or bids for permits to emit a given quantity of pollutant, in 

this case CO 2 . The principle is that a polluter will fund abatement measures whilst 

the marginal cost of the measure is lower than the market price of the permits. If 

their cost is greater they will purchase from a vendor with lower abatement costs, 

and the trade in emission permits forms the least cost solution to the emissions 

problem. For information on the economics of tradable emissions permits refer to 

Chapman [42] or Tietenberg [46]. 

2.5.4 After the Protocol 

The Kyoto Protocol has been signed by 84 countries to date. However, for it to 

come into force requires 55 Parties to ratify it, of which Fiji, Tuvalu and Trindad 

and Tobago are the only ones to do so. It is quite possible for the agreement to 

come into force without US ratification, but that step is regarded as crucial for its 

success [40]. At present there appears to be little likelihood of that as the partisan 

US Senate opposes it, unless Russia does so and shames the US into action. 

Although the Kyoto treaty is a major global agreement, it will not have a major 

impact on limiting growth of emissions or atmospheric CO 2  concentrations. This 

is because it limits growth where growth is static, but does not place limits where 

emissions are growing rapidly (in developing nations). There are positive signs 

that developing nations will voluntarily commit themselves to emission limits (e.g. 

Argentina). One of the reasons for this is the attraction of joining the trading 

mechanism and earning hard currency, although selecting the appropriate target is 

a difficult task [40]. 

The Protocol is rather flexible, and there are a number of inherent dangers with 

its mechanisms. Firstly, whilst the large difference between actual and permitted 

emissions from Russia and the Ukraine could form the basis of trading of CO2 

permits by the US and other Annex I countries, it is a serious problem. The danger 

is that if Russia and the Ukraine sell a large portion of their excess the world price 

will be low and the US in particular will avoid having to reign in its emissions. The 

other extreme is where they supply so little that the price is too high and they lose 

much needed revenue. It may be difficult to strike a balance between Russia's need 

to increase its wealth and improve its economic and political stability, and limiting 

the ability of US and others to pollute. Secondly, the Clean Development Mechanism 

may allow Annex I countries to import a large portion of their reduction, and as a 

result they could actually increase their emissions rather than reduce them [40]. 

The level at which CO2 concentrations are stabilised will depend partly on the speed 

of response from countries and the degree to which the developing world follows the 
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lead of the Industrialised nations ('spillover'). To stabilise CO2 emissions in the 

450-550 ppmv range a number of things must occur [41]: 

Kyoto should be in force (by around 2002) but with a degree of market 

flexibility, 

Annex I nations need to demonstrate strong and credible domestic action, 

United States must ratify by 2005 at the latest, 

Open negotiations held in 2005 for the second period with more emission 

controls, 

Strengthen technology development and international transfer to improve 

'spillover'. 

Despite the problems with it, the Kyoto Protocol is the benchmark for future agree-

ment on 'substantive goals and economic incentives' [42]. If the Kyoto commitments 

can be achieved in the Industrialised nations then it places a moral obligation on 

the rest. 

2.6 Summary 

Atmospheric concentrations of CO 2  are rising faster than any period in recent his-

tory. The cause of the increase is anthropogenic emissions of carbon dioxide from 

deforestation and fossil fuel combustion. There is a correlation between concentra-

tion of greenhouse gases and global temperatures, supported by ice core data. The 

effect of continuing rises in greenhouse emissions will be temperature rise and altered 

climate. 

Evidence suggests that climate change is underway. Global mean temperature has 

risen by around 0.6°C since pre-industrial times. 1998 was the warmest year and 

the 1990s were the warmest decade on record and of the last millennium. 

The most promising method of indicating future temperature rise and other cli-

matic changes is the use of General Circulation Models, although they are limited 

in their application by incomplete understanding of physical processes, in particular 

of feedbacks from clouds, and computer power. Despite this they are reproducing 

the broad pattern of current climate reasonably well, with some variables better 

correlated than others, but regional patterns are not well represented. 

Projections of future climate are based on scenarios of greenhouse gas emissions. 

Between 1990 and 2100 temperature is expected to rise by around 2°C. Precipitation 

change is more uncertain, but an increase in global mean of up to 15% is expected. 
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The impacts of climatic change will be many and varied. Effects on sea level, agricul-

ture and food supply, human health, ecosystems, and water resources are forecast. 

The economic impact is expected to be around 1.5% of global gross world product, 

with developing nations more badly affected. 

The UN Framework Convention on Climate Change was created to form the basis 

for global action on climate change. The preferred method is to limit emissions of 

greenhouse gases. The sooner this occurs the less of an impact it will have on the 

global economy. 

The Kyoto Protocol is a key agreement that commits industrialised nations to lim-

iting emissions, and whilst the agreement itself is limited, it will form the basis for 

future emissions cuts. 



Chapter 3 

Electricity Supply and Change 

In addition to familiarity with the issues surrounding climate change, it is essential 

to understand how the future development of the electricity supply industry (ESI) 

will impact on climate change. This chapter summarises the environmental impact 

of emissions from fossil-fuelled power stations, and indicates measures for their mit-

igation, in particular the emissions of carbon dioxide. The relationship between 

economic development and electricity generation is examined, together with their 

effect on future greenhouse gas emissions. A brief history of the ESI sets the scene 

for the discussion of deregulation and liberalisation of the industry. The trends 

and impacts are explored with particular reference to the role of renewable energy 

sources. 

3.1 Environmental Impacts of Electricity Generation 

The vast majority of the World's electricity is produced from the burning of fossil 

fuels, which have been shown to be the major cause of increasing atmospheric con-

centrations of greenhouse gases. Other impacts include acid rain, radioactivity and 

particulates. 

3.1.1 Greenhouse Gas Emissions 

In 1997 UK emissions of CO 2  totalled 155 Mt of carbon equivalent (MtC). Table 3.1 

shows that 26% of carbon emissions were from power stations, down from 32% in 

1990. Despite the fact that the biggest growth has been seen in emissions from road 

transport, it is the energy sector and electricity in particular that are considered 

here. 

The UK is responsible for 2.5% of global CO 2  emissions, with 92% of emissions due to 

36 
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Sector MtC % 

Power stations 40 26 
Domestic 23 15 
Commercial and public service 9 6 
Industrial combustion 39 25 
Land use change and forestry 8 5 
Road transport 32 20 
Other transport 2 1 
Others 3 2 
Total 155 100 

Table 3.1: UK CO 2  emissions by sector for 1997 [47] 

energy consumption. There was a decrease of 8% (13 Mt C) between 1990 and 1997, 

with emissions from power stations falling by 14 Mt C. Since 1970, CO 2  emissions 

from power stations have fallen by 29%, electricity generation has increased by 44% 

whilst the emissions per unit have declined by 43%. The fuel type strongly influences 

the emission of carbon dioxide. On average, coal creates 25 kg of carbon per GJ, 

and oil and gas releasing 19 kg and 14 kg respectively [47]. Nuclear and renewable 

sources release little or no CO 2 . These differences along with improved efficiencies 

account for the fall in carbon dioxide emissions from UK power stations. 

In addition to CO2, fossil fuels release other greenhouse gases, including methane. 

Direct emissions as a result of combustion in power stations are responsible for 

around 1% of the UK methane emissions. However, 28% of the total is caused by 

coal, oil and gas extraction, and as electricity generation uses these fuels, it accounts 

for a significant fraction of the indirect emissions. Other greenhouse gases emitted 

include carbon monoxide, SO2, and nitrogen oxides. 

Methods for the mitigation of carbon dioxide emissions from fossil-fuelled power 

stations are discussed in Section 3.2. 

3.1.2 Acid Rain 

Sulphur dioxide is created by the combustion of sulphur-containing fuels, like coal 

and oil. Once in the atmosphere it forms aerosol particles that create a cooling effect. 

Whilst this tends to offset the warming from greenhouse gases, these particles do not 

remain in the atmosphere for long and are precipitated over a wide area downwind 

of their source. The SO 2  is deposited as sulphuric acid and there is a great deal 

of evidence that 'Acid Rain' damages plants, lakes and ecosystems, with the UK 

causing damage as far afield as Scandinavia. 
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In 1970 around 6.5 Mt of SO 2  was emitted in the UK, of which 45% was from from 

power stations. Legislation, including the 1988 European Commission (EC) Large 

Combustion Plant Directive has imposed limits on emissions. The UK is required 

to lower emissions to 60% of 1980 levels by 2003 [48]. By 1997, UK emissions had 

fallen to 1.7 Mt, with the majority (62%) of remaining pollutant attributed to power 

generation. The emissions from power stations were slowly declining up to 1990, but 

have since seen a marked decline [47], due to lower coal use and the use of sulphur 

removal technologies. 

Methods of sulphur removal include treating coal before ignition, combustion pro-

cesses that collect sulphur in the ash, and removing SO2 from the combustion gases 

before entry into the atmosphere, known as Flue Gas Desulphurisation (FGD). Al-

though effective, FGD is expensive and reduces station efficiency [48]. 

The oxides of nitrogen, or NON, also contribute to acid rain. The major source of 

NO in the UK is road transport, but power stations account for around one-fifth. 

Emissions can be reduced by introducing alkalis to the flue gas, and whilst such 

practices are carried out elsewhere, no scrubbing methods have been applied in the 

UK [49]. The overall level of UK emissions is now around half that for 1970. Once 

again a marked decline since 1990 is attributed to greater usage of gas plant, and 

the retro-fitting of low NO x  burners to existing coal-fired stations [47]. 

3.1.3 Radiation 

Nuclear power is subject to public concern about its safety and in particular about 

releases of ionising radiation into the environment, from the use, reprocessing and 

storage of nuclear fuel. While much of this fear stems from catastrophic releases 

due to reactor faults or failures, such as the 1987 Chernobyl disaster, others are 

concerned about releases from contaminated reactor coolant or discharges during 

reprocessing. The long term problem for nuclear power is how to store the waste 

fuel and contaminated equipment as well as how best to decommission the stations 

in a cost-effective manner. Table 3.2 indicates that fossil-fuelled plant also emit 

radioactive particles, mainly as a result of trace elements in the fuel. Public exposure 

to these radioactive particles is similar to that from nuclear stations [49]. 

The radiation dosage received by the public is due mainly to cosmic radiation (85%), 

whilst nuclear and coal fired stations are responsible for 0.01% and 0.004% respect-

ively, and so do not contribute significantly to public exposure. Even close to a 

nuclear installation local residents are deemed unlikely to receive doses more than 

1% above natural radiation levels [49]. 

The effects of radiation exposure include increased probability of cancer, and very 

large doses can lead to radiation sickness and death, although the risk is dose depend- 
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ent. Whilst the average lifetime risk of cancer is increased by 0.1%, the hereditary 

impact has not been ruled out. One of the most heavily reported effects of nuclear 

installations is the apparently high incidence of leukaemia in populations nearby, al-

though the rarity of the disease makes statistical treatment difficult. Some findings 

indicate that exposure of the father to radiation in the period around the child's 

conception increased the risk of the disease of 6 to 8 times [49]. 

3.1.4 Other Pollutants 

Carbon monoxide emissions resulting from incomplete combustion are dominated 

by road transport, with power generation creating around 1%. Particulates, linked 

with respiratory ailments are also emitted from power stations (in particular coal) 

which contribute 6-12%. The incidence of both types of atmospheric pollution is 

decreasing [47]. Coal stations create large quantities of ash which must be disposed 

of either in landfill or reclamation schemes; a typical 2,000 MW coal station will 

produce 840,000 tonnes of ash per year [49]. A summary of the emissions from 

typical fossil-fuelled plant is given in Table 3.2. 

3.2 Mitigation of Carbon Emissions 

There are a wide range of technological and policy options available to counter the 

carbon problem, and they can be broadly classified as: 

• Fuel switching, 

• Increased use of renewable energy, 

• Increased use of nuclear energy, 

• Increased generation, transmission and end use efficiencies, 

• Decarbonisation and CO 2  sequestration. 

3.2.1 Fuel Switching 

Altering the fuel type in favour of lower or zero carbon fuels is the key method of 

reducing CO 2  emissions. Natural gas which is predominantly methane, produces 

40% less carbon dioxide per unit mass consumed than coal, and oil creates 20% less. 

Other benefits accrue from switching to natural gas, as Table 3.2, which summarises 

the key pollutants from fossil-fuelled plant, indicates. It can be seen that coal is 

the worst polluter in terms of gaseous and solid emissions. Switching to natural gas 
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from coal and oil lowers CO2 emissions by 45% and 33% respectively, reduces NO, 

and eliminates SO2, solid waste and particulates. 

The use of combined cycle gas turbine (CCGT) stations raises the conversion effi-

ciency from a typical 30% to around 45-50%, further lowering the unit emissions. 

Pollutant 	 Coal 	Oil 	CCGT 

Carbon dioxide 5,500,000 
Sulphur dioxide 75,000 
Nitrogen oxides 22,500 
Particulates 3,500 
Solids 420,000 
lonising radiation (Bq) 10 11  

4,500,000 	3,000,000 
• 	 85,000 

16,000 5,000 
1,500 

109  1012  

Table 3.2: Typical emissions from 1000 MW Fossil Fuel Stations, in t/yr [50] 

Whilst switching to a lower carbon fuel like natural gas will produce less CO2, the 

increased demand for methane would result in increased pipeline and processing 

leakage. The greater global warming potential of methane means that this would 

tend to partially offset the benefit of lower carbon emissions [50]. Despite this, the 

environmental benefits of fuel switching are clear. 

3.2.2 Renewables 

Renewable energy currently supplies around 20% of world primary energy, with 

hydropower and biomass dominant [51]. As Table 3.3 indicates, the potential con-

tribution of renewables is great, and could supply current primary energy needs, 

with policies that encourage their usage. The long-term technical potential is large 

enough to meet energy needs in the future. All are driven by the Sun's energy, so 

as long as it is still shining, they should be available. The advantages of renewable 

sources are that unlike fossil fuels they are infinite (over time), and that they have 

low (if any) greenhouse gas emissions, although they do require finite resources to 

be used to harness them (e.g. land, copper, etc.). 

Hydropower 

Hydropower is the l.rgest renewable energy source and contributes 2,200 TWh an-

nually, or around 18% of world electricity generation [52]. The energy source tapped 

is the gravitational potential of falling water, as it makes it way back to the oceans 

after being evaporated and precipitated onto the land. The technical potential is 

around 14,000 TWh annually [53], but the economically exploitable potential is 
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Consumption 
1860-1990 	1990 

Potential 
2025 	Technical 

Hydro 560 21 35-55 > 130 
Wind - - 7-10 > 130 
Geothermal - < 1 4 > 20 
Solar - - 16-22 >2,600 
Biomass 1,150 55 72-137 > 1,300 
Total 1,710 77 130-230 >4,200 

Table 3.3: World renewable energy potentials by 2025, EJ [51] 

between 40 and 65% of that, and much of the more economic plant has already been 

built. The contribution varies between nations with some like Norway deriving 99% 

of their electricity from it [54], and others little or none. 

Although hydro is a versatile source of power, it is not free of environmental impacts. 

The flooding of vegetation by the reservoir produces methane and other greenhouse 

gases as the vegetation decays, and in some tropical sites the emissions can be similar 

to those from fossil fuel stations during this time [55]. Negative impacts include 

removal of agricultural land, relocation of populations, and effects on ecosystems 

[56]. A positive impact is that the infrastructure required to construct a large dam 

tends to stimulate regional economies [57]. A fuller discussion of the potential and 

problems with hydropower is to be found in Chapter 4. 

Biomass 

Currently, large amounts of energy from biomass are consumed, mainly for cooking 

and heating in developing countries. It is carbon neutral, i.e. there is no net increase 

in atmospheric CO 2 , as any released during combustion is balanced by that taken up 

during growth. The real potential is in the use of 'modern' biomass to create usable 

energy and in particular electricity. Sources include municipal waste, industrial 

or agricultural residues, forests and energy plantations. Biomass could be used to 

generate electricity for rural villages or to fire large power stations, where similar 

technologies to coal could be used. Negative aspects include the need to remove 

hazardous contaminants from municipal waste [52]. 

Wind 

Harnessing the wind is an age old activity, and modern wind turbine technology is 

mature. Sited alone or grouped in 'farms', most turbines are rated up to 1 MW. 

Current farms are on-shore but greater output can be gained siting them offshore, 
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as the potential is greater. The UK is well suited to producing wind energy and 

could generate up to 30 TWh from on-shore sites by 2025, but the technical and 

financial difficulties of offshore facilities is likely to limit their supply to a fraction 

of the potential 140 TWh [49]. 

UK capacity is presently around 360 MW, but other European countries are invest-

ing heavily, in particular Denmark which is aiming at generating around half its 

electricity from wind by 2030 [58]. In Europe as a whole, current capacity is 8,500 

MW [59], and the target for 2020 is 100 GW [60]. 

The intermittent nature of wind energy implies that on a large grid system, the 

acceptable contribution of wind is around 15-20%, in order to avoid compromising 

system security [52]. However, the provision of significant levels of storage would 

allow wind to supply base load. 

The negative impacts of the turbines include visual intrusiveness, aerodynamic and 

mechanical noise, interference with communication and TV, and in some cases the 

export from the wind farm may lead to local voltage violations in supply quality in 

the distribution network. These problems have led to refusal of planning permission 

and have seriously limited the growth of wind energy in the UK, when compared 

with other European counties. 

Solar 

The Sun's energy can be harnessed directly through photo-voltaic (PV) cells or 

solar-thermal systems. PV cells convert sunlight directly into electricity, with an 

efficiency of around 15-20%, but they are currently too expensive to compete with 

fossil fuels. Solar-thermal systems concentrate the Sun's rays onto a collector that 

heats a working fluid, and drives a turbine to create electricity. They are best located 

in areas of high sunlight intensity, and as such California has an installed capacity of 

350 MW of co-fired solar collector plants. More development will be required before 

such plant can replace fossil fuels [52]. 

Other Sources 

Geothermal energy uses heat stored in the Earth's crust to generate power. The 

technology and practice of pumping hot water from underground has been around 

since the 1960s, and current installed capacity is 6 GW. The use of 'hot dry rock' 

technology is still experimental and involves passing cold water down a deep shaft 

and extracting hot water from one nearby to drive a steam turbine. The UK is 

estimated to have a technical potential of 210 TWh annually, although only a small 

proportion is likely to be exploited [49]. Globally, around 2% of energy requirements 
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are likely to be met with the technology [52]. 

The oceans could provide large amounts of energy by harnessing the tides, waves, and 

thermal and saline gradients. Tidal barrages could generate a significant proportion 

of energy especially in the UK. The proposed Severn Barrage could have an installed 

capacity of 7.2 GW [61], although the output would be cyclical and would have to 

be supplemented by other stations. The required civil engineering works would be 

costly and this is reflected in the cost of the energy. Developments on this scale 

would require significant input from Governments. Often the better sites are ones 

of environmental beauty [52], although in some cases, like the Mersey barrage, the 

environment may be improved. Shore-based wave energy stations exist but are 

small-scale and have limited potential. Greater scope lies in offshore devices but 

their developers must overcome significant engineering and cost problems before 

they can be implemented. 

Problems with Renewables 

The intermittent nature of many renewable sources is a problem, whether it is the 

short term variations in wind output or the cycles associated with tidal or solar. 

On occasion the rising output coincides with high demand, but this cannot be guar-

anteed, and reasonably accurate predictions may only be available a few hours in 

advance. 

Most sources are remote from the high voltage transmission grid system, and must 

be 'embedded' in distribution systems, which were not designed to export power to 

the grid. This can create difficulties in maintaining voltage within statutory limits, 

and the operator may insist on a line upgrade, adding to the capital cost. This is 

one of the reasons why many renewables projects consented in the UK under the 

Non-Fossil Fuel Obligations and others were never pursued. 

Many renewable technologies are relatively new or unproven, and as a result have not 

had the benefit of commercial development. Many are in hazardous environments, 

and require technology that is currently expensive to ensure their successful applic-

ation. With continued development, many of the difficulties should be overcome. 

Technologies, such as wind, that can be batch produced may deliver significant cost 

efficiencies, however, many site specific technologies (e.g. hydropower) will still bear 

the costs of heterogeneity. 

Although most renewable sources have no fuel costs, and low variable operations 

and maintenance (O&M), the capital outlay can be considerable, especially where 

substantial civil works are required (e.g. tidal and hydropower). This puts them 

at a disadvantage in terms of investment risk, as the debt repayment is longer. 

Experience with wind power suggests that the unit cost of renewables falls over 
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time, and implies that most technologies are likely to approach current production 

costs of fossil fuels within the next few decades. If fossil fuel prices increase as a 

result of supply and demand changes, or fiscal measures to limit greenhouse gas 

emissions, then many forms of renewable energy will become competitive. 

3.2.3 Nuclear Energy 

Current nuclear technology requires fissionable materials such as uranium to raise 

stream and drive turbines. The fuels are available in sufficient quantities as not to 

pose a problem for expansion, although uranium alone could not be relied upon. 

In common with hydropower, the capital costs of nuclear power are high, whilst the 

fuel cycle costs are relatively low. Storage in a repository is expected to add around 

20% to the total lifetime cost, whilst discounting reduces the percentage further. 

Current costs are in the region of $25-60 per MWh [52]. 

Proliferation of nuclear materials for use in weapons is a serious concern. A 1000 

MW light water reactor produces around 200 kg of plutonium each year, and a bomb 

with the same power as that dropped on Nagasaki could be produced with 4-10 kg. 

In theory any separated plutonium can be used for bomb-making although the use 

of reactor-grade material complicates the exercise. 

Although runaway in reactors is not likely with correct maintenance and operation, 

some designs are inherently more safe. The use of gas cooled reactors with graphite 

moderators, and more passive safety features are ways of achieving safer operation. 

Removing plutonium or reducing its quantity in waste is perhaps the best way 

of reducing, the proliferation risk. Thorium could provide the fuel for an 'Energy 

Amplifier' driven by a proton accelerator, and would be sub-critical and assist in 

the reduction of waste [62]. 

Long term, nuclear fusion is the key technology, and would provide a virtually un-

limited supply of energy. 

3.2.4 Improving Efficiency 

Efficiency gains are a key approach in reducing carbon emissions. The overall effi-

ciency of an energy system depends on the individual process efficiencies, the struc-

ture of supply and conversion, and end-use patterns. While losses in one particular 

component of the generation-consumer chain may be relatively small, when con-

sidered as a whole, the losses can be considerable. Overall energy-use efficiencies 

worldwide are estimated to be between 15 and 30% [51]. Estimates suggest that a 

1% increase in the efficiency of power generation will result in a 2.5% fall in CO2 
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emissions. Therefore, measures to improve the efficiency of generation, transmission 

and end-use of electricity could yield significant savings in emissions. 

Generation 

Thermal stations, including nuclear are fundamentally limited by their Carnot ef-

ficiency. Two thermodynamic cycles are used for power generation: the Rankine 

cycle for steam turbines and the Joule cycle for gas turbines, and typical efficiencies 

are around 35-40% [63]. The steam cycle uses fuel to raise steam in a boiler and 

creates power by allowing it to expand in a turbine, and it is used in traditional 

coal, oil and nuclear plant. The gas cycle compresses air, mixes it with gaseous 

fuel, ignites it and again allows the hot gas to expand through the turbine. The 

efficiency of the gas turbine cycle is determined by the pressure ratios of the turbine 

and compressor, and the temperature. The maximum cycle temperature is limited 

by the material limitations of the turbine blades, which are under great mechanical 

stress. Modifications to both cycles (e.g. steam super-heating and multiple turbine 

stages) can improve efficiency, but incurs increased complexity and capital cost. 

By combining the two cycle types additional efficiencies can be achieved. Combined 

cycle gas turbine plants are currently achieving efficiencies of over 46%, with an 

expectation of 52-55% within a few years [52], and use the hot exhaust gases from a 

gas turbine to raise steam and drive a steam turbine. All new gas plant in the UK 

has been CCGT, and this has been due to a number of factors: low capital cost, 

short installation periods and the potential for operating flexibility. 

The efficiency of coal plant can be improved with so-called 'clean coal' technologies. 

Pressurised fluidised bed combustion features air blown upwards through a bed of 

hot sand and ash, which allows more efficient ignition of coal fed into the bed. 

Emissions of SO2 can be reduced if limestone is added to the bed and reacted. 

This works even for high-sulphur fuels and could be suitable for parts of the Third 

World [49]. Increased efficiency and reduced emissions result from the 'gasification' 

of coal, its scrubbing and use in a gas turbine. The extension of this, the Integrated 

Gasification Combined Cycle (IGCC) operates in a similar way to CCGT plant, and 

could achieve efficiencies of 42-46% [51]. 

Transmission 

Losses in electricity transmission systems, which are typically around 2-5%, tend to 

amplify the effect of changes in demand. If, for example, losses are 3% then a 100 

MW increase in demand requires an increase in generation output of 103 MW, and 

an increase in fuel consumption and emissions. High voltage grids are designed to 

allow efficient use of all generation sources, and secure, reliable electricity supplies. 
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If the generation and loads are geographically balanced then the transmission losses 

are close to zero. However, if generation is predominantly and increasingly located 

away from the load centres and closer to the fuel source, then losses will increase. 

This is the case in the UK, with generation in the North and load in the South 

creating large flows of active and reactive power. Careful siting of plant assists with 

containing losses, as can the use of higher operating voltages, the use of high voltage 

DC on long transmission lines, and the use of reactive power compensation (e.g. 

static VAr compensation) which reduces reactive power flows [64]. 

Use 

Domestic energy use in the UK now represents 29% of the total, second only to 

transport. The pattern of domestic energy use has changed considerably over the 

past 30 years. While overall energy use had increased by 22%, electricity use has 

increased at around twice the rate, due mainly to the increase in domestic appli-

ances. In 1998, cold storage appliances and lighting together accounted for around 

47% of domestic demand. While the efficiency of lighting has improved, the switch 

to more efficient fluorescent bulbs has been slow and there has been a tendency to-

wards multiple light source lighting. The scope for electricity savings from efficient 

appliances is considerable, but will be hampered by the low proportion of household 

income spent on energy. Industry takes around a quarter of its energy in the form 

of electricity, and this proportion has been grown steadily with usage increasing 

by 31% since 1970. The service sector takes around a third as electricity, and the 

transport sector less than 1%, mainly for rail transport [47]. 

Overall, there is a great deal of scope for electrical efficiency gains, from better 

design and more considerate usage. 

3.2.5 Carbon Removal, Storage and Sequestration 

The long term goal of energy supply is to move away from a carbon economy towards 

one using hydrogen, either by using it as a combustible fuel or through nuclear fusion. 

Until then, if the climate impacts of fossil fuels are to be contained, then a means 

of capturing and storing CO2 must be implemented. As power stations are large 

and stationary CO 2  point sources, then the available technologies must be applied 

to them first. 

Decarbonisation 

Decarbonisation removes the primary objection to the use of fossil fuels, and would 

allow their continued use, and effectively allow the use of the energy contained 
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in carbon fuels with lower emissions of CO2. Two approaches are possible: fuel 

decarbonisation or flue gas decarbonisation. Both require that the CO2 removed is 

prevented from reaching the atmosphere either by use or storage. 

Removal of CO2 from the flue gases incurs direct financial costs of operating the 

removal process, as well as lost energy through a lowering of overall station effi-

ciency. The efficiency loss could be up to 10 percentage points, depending on the 

proportion of the carbon being removed, the fuel, and the scheme. Several schemes 

have been proposed including amine or sea water absorption, molecular sieves and 

the use of refrigeration [65]. The use of a flue capture scheme of these varieties is 

expected to increase electricity prices by 50-80%, equivalent to $150-210 per tonne 

of carbon avoided. Another scheme being investigated using oxygen rather than air 

for combustion, would make removal easier as the flue gas would be virtually pure 

CO2. This scheme is estimated to cost around $80 per tonne of carbon avoided [66]. 

Fuel decarbonisation requires the conversion of the fossil fuel into CO 2  and hydrogen, 

which are then separated. The H 2  rich fuel is then used in combined cycle plant, 

releasing around one-sixth of the CO 2  compared to the fossil fuel. The efficiency 

drops are expected to be around 6 percentage points, raising the electricity price 

by around 30-40%, equivalent to $80 per tonne of carbon removed [66]. Greater 

efficiencies could be achieved with the use of fuel cells [67]. 

Storage 

For any decarbonisation scheme to succeed, the CO2 must be stored securely and 

isolated from the atmosphere. Table 3.4 indicates conservative estimates of the 

potential for several storage options. 

Scheme 	 Capacity 

Enhanced Oil Recovery > 20 
Exhausted Gas Wells > 90 
Exhausted Oil Wells > 40 
Saline Aquifers > 90 
Ocean Disposal > 1,200 

Table 3.4: Global CO 2  Storage Potentials, in GtC [52] 

CO2  is already used in the United States for enhanced oil recovery (EOR), which 

uses the pressurised CO 2  to force increased quantities of oil from the well. At current 

oil prices, only natural sources of CO 2  are economically viable, and these are tapped 

and piped [52]. 

Storage in exhausted oil and gas wells is a good option, as the carbon storage capacity 
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of the fields is believed to be twice that contained in the original gas. Depending on 

the quantity of recoverable oil and gas the potential storage capacity ranges from 

130 to 500 GtC. Storage in on-shore gas fields is expected to cost less than $11 per 

tonne [66]. 

The oceans are the greatest potential carbon storage scheme. They currently store 

38,000 GtC, and will eventually absorb a high proportion of the anthropogenic CO 2  

released into the atmosphere [1]. Even though some of the CO 2  pumped directly 

into the deep ocean will reach the atmosphere, it estimated that this will take several 

centuries. Disposal at a depth of one kilometre is viable, although the greatest cost 

will be transportation. Large releases of carbon direct into the ocean are likely to 

have environmental effects, particularly on marine life. These effects are expected 

to be localised around the release site, and would represent a negligible fraction 

of the total ocean. Increased CO2 concentrations will acidify the oceans, and the 

expectation is that around 1,200 GtC would raise the pH level by around 0.2 [52]. 

Sequestration 

The major means of sequestrating CO2 is to allow vegetation to remove it from 

the atmosphere. Deliberate reforestation could go some way to offsetting emissions. 

Estimates of the cost per tonne of carbon stored as forest growth range from $3.50 

to $30, and with high levels of reforestation costs would increase [68]. The land 

requirement is huge, requiring an area of 1,700 km2  to offset the emissions from a 

500 MW coal station [52]. 

One scheme under consideration is based on the development of a methanol economy, 

prior to or instead of a hydrogen based one [69]. Methanol is easier to handle 

being liquid at room temperature and could use existing petroleum infrastructure. 

The scheme uses hydrogen produced from electrolysis, to convert CO2 from power 

station flues into methanol. The system would allow the energy to be released from 

fossil stations, use renewable or nuclear energy for electrolysis, as well as creating 

a source of methanol, which would allow the emissions problems of road vehicles to 

be addressed. 

3.3 Development and Electricity Demand 

The electricity sector contributes £11 billion to the UK's economy, which is around 

1.3% of GDP, and just over a third of the total contribution from the energy industry. 

In recent years, the average annual increase has been around 10% [47]. The share of 

atmospheric pollution attributed to electricity generation appears out of proportion 

with its contribution to national wealth, implying that it is overly polluting for the 
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benefit that is derived [70]. That, however, neglects the indirect economic and social 

benefits created by electricity availability and use. 

Electricity availability is one of the key determinants of wealth creation, as shown 

by a recent study of the G7 countries [70]. It concluded that electricity use, rather 

than energy use as a whole, was significantly correlated to wealth creation, and that 

the share of final energy consumed in the form of electricity tends to increase with 

development. In the UK, the proportion of energy used in the form of electricity 

doubled between 1962 and 1990 [47]. Energy use is also correlated with higher life 

expectancy, and lower infant mortality or illiteracy [53]. 

Although capital intensive, the electricity supply industry is a major employer. In 

the UK it employs around 66,000 people, and although this is a far cry from the 

150,000 employed in 1980, the ESI is now the major employer in the energy industry. 

It has replaced coal mining, which employed 297,000 in 1980, now around 5,000. The 

fall in employment in the ESI is due to greater 'efficiencies' following privatisation. 

Modern society relies heavily on electricity. It is required for lighting, motive power, 

water supply, communications and information technology, medical care, and im-

proving quality of life. 

Inaccessibility to energy is a major cause of poverty, hardship and a contributory 

factor in rural-urban migration which causes urban stresses [53]. More than a billion 

people have no energy source other than simple fuel-wood, and a further two billion 

have supplies that can barely meet their basic needs. Energy demand is increasing 

rapidly in the developing world, at a rate similar to economic growth. In 1990, 

developing countries (DCs), accounting for 75% of World population, consumed 

around 33% of total energy. In 2020, the same countries will account for 85% of 

population and 55% of energy use [53], with world energy demand expected to be 

65% higher than in 1990 [71]. Limitations in energy supply will constrain their social 

and economic development [72]. 

3.3.1 Future Demand 

The primary driving forces of energy demand are population, the requirement to 

satisfy basic needs, the need for services that energy provides, and material expect-

ations and desires. The strong correlation between economic growth and electricity 

demand implies that as electricity use is a proxy for economic development, electri-

city demand will rise faster than overall energy demand. It is therefore particularly 

important to project future electricity demand. However, the complexity of the rela-

tionships between development, economic growth and electricity use and availability 

make this very difficult. 
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In the short term, it is normally relatively straight forward for utilities to project 

likely electricity demand, with the expectation that the trends of the last few years 

will continue. Over the medium term it becomes more difficult, particularly in 

liberalised industries, and assumptions of future economic and political conditions 

must be taken into account. In the UK, the National Grid Company publishes 

its best guess of likely demand and investment opportunities for up to seven years 

ahead in its Seven Year Statement [73]. It expects UK electricity demand to grow 

by approximately 1.5% a year, to around 327 TWh in 2004/5, with peak demand 

growing at the same rate to around 56 GW. 

Over the long term and beyond, more sophisticated methods must be used. In a 

similar manner to the IPCC emissions scenarios, the World Energy Council (WEC) 

defined several scenarios of energy demand up to 2020 in their 1993 report 'Energy 

for Tomorrow's World' [53]. Further work [74] with the International Institute for 

Applied Systems Analysis (IIASA) has extended the scope of the study to the end of 

the 21st century. An increased number of scenarios (shown in Table 3.5) considered 

different cases of resource availability and energy policy. Complex and interlinked 

models of demographics, economics, engineering and climate were used to project 

energy demand and supply into the future. 

Scenario Definition 

B 	Middle Course 
Al 	High growth, ample oil and gas 
A2 	High growth, return to coal 
A3 	High growth, fossil phase out 
Cl 	Ecologically driven, new renewables with nuclear phase out 
C2 	Ecologically driven, renewables and new nuclear 

Table 3.5: IIASA/WEC Global Energy Scenario Definitions [74] 

All scenarios show considerable growth in annual electricity demand, up from around 

12,000 TWh in 1990 to between 16,200 and 18,500 TWh in 2020, in line with the 

expectations of the International Energy Agency (lEA) [71]. By the end of the 21st 

century the scenarios indicate electricity demand levels of 3.6 to 8.3 times the 1990 

levels. Figure 3.1 shows the demand growth for 4 of the six scenarios. The greatest 

demand levels occur with high growth and adequate oil and gas to sustain the large 

increase. The ecologically driven scenario Cl shows growth around half that of the 

high growth scenarios, particularly after 2050. 
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Figure 3.1: IIASA/WEC Electricity Supply Scenarios to 2100. in TWIi [7.1] 

3.3.2 Fuel Type 

Of more note is the difference in future fuel sources between the scenarios. In 1990, 

electricity supply was dominated by coal which accounted for 38% of the global 

total. Hydropower and nuclear took 18% and 17% respectively, and gas and oil were 

responsible for 14% and 10%. The balance was supplied by renewables [74]. Each 

technology's future share will depend on environmental policy and legislation, fuel 

security, and availability, but most importantly on the relative costs of the supply 

method. To illustrate the effects of these factors, the future supply sources for 

WEC/IIASA scenarios Al, B and Cl are shown in Figures 3.2 to 3.4. 

Scenario B sees coal renlain the primary fuel until around 2040. Its share increases 

until 2010, before declining steadily to 8% in 2100. The peak usage occurs between 

2020-2030, and lies 30% above its 1990 level in 2100. Oil use declines to less than 

10% of the 1990 level. Nuclear use increases by over 17 times and supplies nearly 

half of the electricity in 2100. Hydropower's share falls from 18% to just under 

10% whilst the energy supplied increases threefold. The energy supplied by newer 

technologies (solar, biomass, etc.) will represent 30% in 2100, an increase of 71 

times! Overall the energy increase is some 6 times. 

The high growth scenario (Al) sees a major expansion in natural gas use, particularly 

in the second half of the century, as ample supplies keep the prices down. By 2100, 
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Figure 3.2: Middle course WEC/LIASA electricity supply scenario B [74] 

gas use will have risen by 14 times. Coal use is projected to be lower than scenario 

B, and its final contribution is around 40% of 1990 levels. Nuclear, gas and the 

renewable sources will each account for around 30% of supply, with the balance 

being mainly hydropower. 

The ecologically-driven scenario (Cl) sees hydropower maintain its percentage share 

and increase production by 3.6 times. Oil use is virtually eliminated by 2050, whilst 

coal and nuclear decline and all but disappear by 2060. Natural gas use increases 

five-fold, with it share peaking in 2050 and falling to 21% by 2100. The balance of 

supply comes from renewable resources which increase by 4 times by 2020, 30 times 

by 2050 and 80 times by 2100. Its share at the end of the forecast period is almost 

60%. The achievement of three quarters renewable energy is achieved by a lower 

demand growth, limited to 3.6 times over the period. 

3.3.3 Regional Growth 

Although the 2100 production varies from 3.6 to 7 times 1990 levels, this disguises 

the marked regional differences. For Industrialised nations the production level in 

2100 lies between being slightly below and 3.3 times base year production. For 

the reforming nations of the former Soviet Union and Eastern Europe, growth is 

projected to be between 1.5 and 4.8 times, and for the Developing World the increases 

are 12.5-19.0 times base year. 

In terms of shares of global demand, Industrialised nations lose their dominance 
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falling from 60% to 17-28% over the study period. Reforming nations also lose share 

(from 18% to 8-13%), whilst the developing nations rise from 22% to 59-76%. 

Fuel supply is perhaps even more regionally varied, reflecting indigenous resources 

and technology differentials. Dependent on the scenario, coal use in developing 

countries could be expected to increase by 1.7-4.1 times by 2100, or if the ecological 

approach is implemented, could fall to 18% of the 2000 level. The dominance of 

nuclear energy use in the industrialised nations appears likely to end under the 

non-ecological scenarios. By 2100 industialised countries nuclear production could 

represent only 20% of the total although overall production would increase by 180-

390%. Such growth in developing countries would clearly be dependent on successful 

developments on the issue of weapons proliferation. 

The key issues in regional growth are the thermo-electric efficiency of operation and 

the pricing strategies in developing nations. The World Bank estimates that effi-

ciency is around 50-65% of best practice in the developed world [75]. Part of the 

problem lies with electricity subsidies, either for development reasons such as ensur-

ing that many can afford it, or to secure political support. On average, electricity 

in developing countries is sold at 40% of its cost. This wastes capital and energy 

resources, making the subsidies economically and environmentally inefficient. The 

low prices create excessive demand, and undermine the utility's revenue base, redu-

cing its ability to provide and maintain supplies. As a result, developing countries 

use 20% more energy than they would under marginal cost pricing. There is a tend-

ency for low prices to discourage investment in new, cleaner technologies and more 

efficient processes. 

3.3.4 Investment 

The large increases in electricity demand imply a correspondingly large investment 

requirement. With a forecast 3.1% annual growth in electricity demand up to 2020, 

the requirement for additional generating capacity is high. Global installed capacity 

in 1996 was around 3,000 GW, with around 2% in the UK. The TEA estimate 

that around 1,535 GW of new capacity will be required by 2020, in addition to 

replacement capacity of 150 GW. This amounts to around 100 GW per year [71], 

and is consistent with other estimates of 117-125 GW per year [76]. 

The capital requirements for investment on this scale are considerable, around $100 

billion a year for generation alone with a further $100 billion for associated infra-

structure, up to 2020. The investments are likely to account for around 0.1-0.2% 

of GDP in OECD countries, 0.6-1.0% in Africa and 1.0-1.6% in South Asia. The 

long term TIASA/WEC scenarios suggest a range of investment requirements: $6.6-

10.6 trillion over 1990-2020, $9.8-18.3 trillion 2020-2050 and $34.1-78.6 trillion for 
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2050-2100. These represent annual investments of $220-350 billion, $326-610 billion 

and $682-1,572 billion, respectively. For the EU alone, the European Commission 

estimate that a 1.2-1.7% annual growth in electricity demand will require investment 

in new and replacement generation capacity of 419-502 GW by 2020 [77]. This will 

cost around 542-660 billion ECU, in constant 1993 ECUs, equivalent to $490-600 

billion (at US$0.9 = 1 ECU/EURO). 

The achievement of these investment amounts depends on the success of attracting 

private capital into the electricity supply industry. 

3.4 Private Capital in the ESI 

Electricity generation has traditionally been undertaken by large vertically integ-

rated and often state-owned utilities. Over the last 20 years there have been efforts 

in many countries to introduce non-utility generation with private capital and to 

reduce state involvement. The processes involved, are termed 'privatisation', 'de-

regulation' and 'liberalisation' and are key terms in the modern electricity supply 

industry. The UK is one country that has undergone all of these processes. 

3.4.1 UK Privatisation 

The 1987 Conservative Party election manifesto included a promise to privatise the 

industry. The Central Electricity Generating Board (CEGB) was perceived to be 

inefficient, forcing electricity prices to be too high. Specific criticisms included poor 

productivity, over-manning, unnecessary ordering of plant, and the effective subsid-

ising of British Coal and British Rail [78]. The Government had tried to encourage 

private generation through the 1983 and 1985 Energy Acts but these failed. CEGB 

exploitation of its monopoly position and Government interference were cited as the 

reasons for their failure [79]. Despite these criticisms the Monopolies and Mergers 

Commission concluded that the CEGB was not operating against the public interest 

and indeed carried out its duties well [80]. 

The previous and apparently successful privatisation of other public monopolies, 

coupled with the Thatcherite bias against public entities [81] led the Government 
to view privatisation as the only way of achieving a number of goals. The Govern-

ment claimed that privatisation would remove the CEGB's monopoly power, curb 

Government interference and provide benefits to the customer (and shareholders) by 

removing the inefficiencies. Competition, the Government said, would force players 

to lower costs and the benefits would be passed on to consumers in the form of 

lower electricity bills. Conveniently, the break-up of the industry would also serve 

to remove the remaining power of the National Union of Mineworkers [78], and the 
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revenue from privatisation would finance the Government's promised income tax 

cuts. 

The New Industry 

On the first of April 1990 the Electricity Supply Industry (ESI) in the United King-

dom was privatised. The generation and transmission monopoly the .CEGB was 

broken up into separate companies. The twelve former Area Boards that were re-

sponsible for the distribution and supply to consumers became the Regional Elec-

tricity Companies (RECs). 

Initially, the CEGB's generation capability was to be split approximately 60:40 

between two private companies: National Power and PowerGen. National Power 

was to own the nuclear stations in order to achieve a balance. Public concern 

about the safety of nuclear stations, together with the inability of the Government's 

advisers to quantify confidently the future nuclear liabilities, threatened the sale. 

This forced the Government to retain the nuclear stations in the public sector [79]. 

The Government claimed that a competitive market was the only way of ensuring 

an efficient industry. However, simple economic theory suggests that the benefits 

claimed occur only if the market is perfectly competitive. That is, where the market 

consists of a large number of companies each with a small market share and no 

ability to set prices [82]. In fact, at vesting, the Government had created a private 

duopoly with an inherent danger of collusion between the two companies. 

The twelve Area Boards were next to be privatised, with competition to be intro-

duced in phases. Firstly, customers with a demand greater than 1 MW were able 

to contract to purchase from any supplier; and this was followed four years later for 

those with a demand of over 100 kW. The process was due to be completed in 1998 

with a complete franchise break for all customers. In the event, this was phased 

in for a number of reasons, partly logistical but mainly to guarantee the sale, as 

until full deregulation took place the RECs would have regional monopolies, giving 

an opportunity to gain excessive profits. To some extent this view has been proved 

correct, as the lifting of the ownership restriction in 1995, led to a rash of take-overs 

of the cash rich RECs. 

The operation and ownership of the high voltage grid was vested in the National 

Grid Company (NGC). NGC was initially owned by the RECs to act as a counter 

to the generation duopoly [79]. The RECs sold their shares at flotation in late 1995 

forming the National Grid Company plc. As a monopoly NGC is closely scrutinised 

by the Office of Electricity Regulation (OFFER), now OFGEM. 
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The Impact of Privatisation 

The major change that resulted from the privatisation was the change in fuel type, 

with coal losing its dominant position, and nuclear and particularly natural gas 

gaining ground, as Figure 3.5 indicates. In 1990, coal provided the primary energy 

for nearly two-thirds of UK electricity, but since then it has steadily lost ground. 

Data for 1999 indicates that its share has fallen below one third and is now second 

to natural gas. The share from nuclear power rose from 18% in 1990 to 25% in 

1994, where it has since remained. At privatisation, there was virtually no natural 

gas use in power stations except for a small number of open cycle gas turbines used 

for peaking duty. By 1994, the proportion had risen to 15%, and by 1999, gas-fired 

stations accounted for just over one third of the electricity production. Oil use has 

declined to a position where it produces less than 1% of the total, and the contribu-

tion of other thermal generation methods (e.g. orimulsion) are declining. Renewable 

energy including hydro contribute around 2-3% of UK electricity at present. 

The enormous increase in natural gas use had been termed the 'dash for gas' and 

occurred for a number of reasons. The UK abandoned the EC Directive restricting 

the burning of gas for electricity generation. The financial benefits of CCGTs were 

recognised and the result was that almost all new plant ordered was of this type. The 

lower fuel and operational costs allowed the CCGT plant to displace the large coal-

fired stations from base load into mid-merit. As such their load factors fell and the 

energy supplied by coal as a whole declined. Boiler driven plant is not particularly 

well suited to being operated intermittently, due the minimum time required to raise 

steam. As such, the operational costs rose and they lost more ground, resulting in a 

significant fraction of coal-fired capacity being moth-balled or closed since 1990. The 

'dash for gas' is hailed as a direct result of privatisation. However, it is conceivable 

that the CEGB would have followed the same path if it had been given freedom to 

reduce coal burn [83]. 

The UK generation market is becoming increasingly competitive, as more companies 

enter the market. In 1990, there were six major power producers, but by 1996 

this had grown to 27. A number of competition measures indicate the increase in 

competition. One measure suggests a near halving of market concentration from 

1992 to 1998, whilst the number of producers setting the market price has increased 

[47]. 

Competition and the use of natural gas have led to falling domestic and industrial 

electricity prices. Since 1990, domestic prices have fallen by 15.5% in real terms, or 

nearly 20% if taxes are excluded, whilst industry has seen its electricity prices fall 

by 24% in the same period. Competition in domestic supply is anticipated to lower 

costs by several percent [47]. 
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Figure 3.5: UK electricity generation by fuel source 1990-98 (TWh/yr) [84, 851 

3.4.2 Electricity Markets 

Other than the UK, much of the EU, Norway, Chile, Argentina, Australia, New 

Zealand and the USA, have seen or are undergoing a drive towards deregulation 

and privatisation. The primary aims of the privatisation of the ESI in the UK 

were to ensure competition and the involvement of private capital in the industry. 

The European Union is following suit, with a 1997 Directive requiring that member 

states move towards corn petition, and as an initial step ensure that 25% of energy is 

generated by non-state enterprises. In the US, private capital has long been involved 

with electricity supply, and is dominated by around 200 private utilities covering 

72% of the market [83]. The dominance of the utilities was partially addressed in 

the 1978 Public Utilities Regulatory Policy Act (PURPA) [86]. The act required, 

among other things, that utilities purchase power from smaller generators at the 

price equal to the utility's own avoided cost. The aspect of UK privatisation that 

has been adopted and implemented by other countries undergoing deregulation is 

the creation of an Independent System Operator to operate the transmission system 

as a common carrier. 

Perfectly competitive markets ensure that producers sell when the market price is 

at least equal to their marginal cost [82]. With electricity generation, if no player 

is able to influence the market price, then all generators will offer energy for sale 

(or bid) at their marginal cost. To ensure competition in all or part of the ESI, 

electricity markets have been introduced. A number of distinct models are in use or 

under consideration. 
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Wholesale Pool 

This model was first implemented in England and Wales, and all energy is traded 

between generators and suppliers through the 'Pool'. The market clearing price is 

set in advance on the basis of the merit order schedule. Bids from generators are 

invited a day ahead, and an unconstrained schedule is created from them, lowest 

first, until the expected demand level is satisfied. The bid price of the last generator 

scheduled in any period is the system marginal price, and all generators receive 

this energy price [87]. The effect of transmission constraints are then examined, 

resulting in some cheaper generators being asked to not generate, and some more 

expensive ones required to do so. The costs of compensating the cheaper generator, 

and use of the expensive generator are shared between the suppliers, and this known 

as 'uplift'. Many suppliers sign 'contracts for difference' (CfDs) with generators, to 

hedge against the volatile pool price and adjust prices to an agreed strike price. 

Another key aspect of competitive markets is that the customer should be able to 

choose their supplier. Termed as the 'franchise break', the local monopolies of the 

RECs have been slowly dismantled and from November 1999 (albeit 18 months late) 

all UK domestic customers have been able to select their own electricity supplier. 

The RECs are still responsible for their distribution grids, but are now required to 

give open access. 

There is a tendency for Pool prices to rise considerably at times of high demand. 

This is partly as a result of the capacity payments paid to generators to encourage 

them to make plant available at these times. The capacity element is based on the 

loss of load probability (LOLP), and there is evidence that the larger Generators 

have been abusing their market power by restricting the availability of their marginal 

plant, pushing up the system marginal price and the capacity payment [88, 89]. 

The wholesale pool tends to create a globally optimum schedule and lower overall 

costs, but requires competition to be perfect. The abuse of market power and the 

perceived lack of competition have led to the New Electricity Trading Agreement 

(NETA), scheduled for implementation in October 2000. This is based on a system 

of bilateral trading. 

Bilateral Trading 

Energy is traded directly between Generators and Suppliers through bilateral con-

tracts, and residual supply and demand imbalances are settled in a net pool. The 

contracts are not made public and the system is therefore criticised as not being fully 

competitive [83]. In Norway and the future UK system, a trading market resembling 

that of the financial markets are used for day-ahead contracts and futures trading 
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to allow hedging. The overall solution is unlikely to be optimal, although individual 

players may achieve this, and overall system costs are likely to be higher. 

Single Buyer 

A nominated authority, often called the Purchase Authority (PA), acts on behalf of 

consumers, to buy energy from generators. The system has a number of advantages; 

competition exists in generation, the consumers should receive an optimal price, and 

generation and transmission development can be coordinated ensuring a reasonably 

high level of system security. However, the purchasing authority is a monopoly, and 

should be prevented from owning a generator. The approach is suitable for mixed 

state and privately owned generation and is favoured in France and Italy as well as 

being implemented in a number of developing countries [83, 57]. 

Market Comparison 

The choice of market structure is dependent on the development of the system in 

question. Developing countries require a stable environment in which to fund major 

generation and transmission schemes. As such, the state may be required to play a 

major role in the running of the utility to underwrite the contracts. More developed 

systems can probably support competition in order to improve operating efficiency. 

A monopoly utility's greatest embarrassment would be a supply failure, and this in 

part accounts for the apparent over-investment. Single Buyer systems avoid most of 

the monopoly's inefficiency, albeit at the expense of security. The fully competitive 

pool systems have low system security relative to the monopoly. Competition in 

generation is estimated to lower costs by around 10% through more efficient genera-

tion cycles, but the integrated planning approach saves around the same percentage 

in avoidable interest by ensuring ideal plant margin and generation mix [83]. 

3.5 Private Investment 

Traditionally, the supply of electricity was viewed as a service, but now with dereg-

ulation it is viewed much more as a commodity to be bought and sold, and as a 

means of making money. With integrated utilities the provision of electricity was 

concerned with its supply in a secure manner and at least cost. In the state sector 

other targets included ensuring security of supply and job preservation by the use of 

indigenous fuels. Money was important but the profit was not an over-riding goal. 

State utilities, like the CEGB, had to meet an overall rate of return on their assets, 

so asset re-valuations would occur on a regular basis to ensure this. 
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The introduction of private capital shifted the focus, and a suitable profit on the 

investment became the primary concern. Other than the companies formed from 

the break-up of former state utilities, most of the new capacity added in the UK and 

elsewhere has been from Independent Power Producers (IPPs) who have entered the 

market when new capacity was required. Often project specific, the ownership of 

the IPP depends on the market in which they are operating. In developed countries 

with adequate capacity and minimal state intervention and control, most IPPs are 

wholly owned. In developing countries, projects normally require a sponsor, which is 

usually the government or one its agencies. In many countries, and particularly for 

hydropower projects, the sponsor will not want to allow the developer full control 

over national resources [57]. In this case, the agreement will feature the ownership of 

the facility reverting to the public after a specified period, as in build-own-operate-

transfer (BOOT) schemes. 

3.5.1 Project Finance 

Most power projects are project financed, with the investors often creating a new 

company for the purpose, which limits their risk. As the company has no track record 

to support its financing request, lenders and investors must look to the anticipated 

cash flow of the project to indicate repayment of the loan principal and interest, and 

a return on the investment. They are supported by a series of complex contracts 

between the parties to the project. In the event of a default, the project's assets are 

used as collateral, but generally there is no claim on the assets of the parent company 

or project sponsors, which is termed non-recourse financing. Alternatively, they may 

be able to lay claim up to project completion (limited recourse). Risk assessment 

therefore plays a large part in the lender's analysis. Project financing is split between 

equity and debt, with the majority as debt. Typically, the debt proportion is around 

70%, and varies with the lender's perception of the risk [90]. 

The necessary debt finance can be sourced from export-credit agencies, multilateral 

organisations like the Investment Finance Corporation (the World Bank's commer-

cial arm), commercial banks or international bond markets [76]. The equity com-

ponent comes from the sponsors, from others parties to the project or international 

institutions. 

3.5.2 Corporate Finance 

Many of the larger, and in particular oil, companies finance electricity projects from 

their balance sheets. The debt-equity ratio is much lower, with debt representing 

only 30% of the total. Clearly, the company is putting itself at risk by financing in 

this manner, but there are a number of important advantages. Firstly, the company 
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can use its reputation and past performance to raise debt more cheaply than for 

project finance, and as the risk is diversified its cost of equity is also lower. Secondly, 

the transaction costs are lowered as the complexity of contract negotiation is avoided 

[91]. Finally, outside lending is more likely as corporate financing is less risky to 

lenders as the risks are more diversified [90]. 

One way of reducing the risks are for developers to 'pool' the assets of different 

projects, and as such the equity and debt providers are financing more than one 

plant. It can also mitigate country specific risk, and for those with operational 

plant, the revenue stream will assist in repaying debt and paying dividend. Larger 

companies are also at an advantage with their greater access to capital and more 

experience, and this accounts for the increase in mergers and acquisitions in the 

sector. There is a trend towards generation investment being financed on this basis 

[91]. 

3.5.3 Contracts and Power Purchase Agreements 

Contracts are key to ensuring the correct spread of risk and in creating conditions 

in which investment in electricity supply will thrive. The Contacts for Differences 

(CfDs) used in the UK Pool are a form of financial instrument known as a 'swap'. 

With the bilateral trading system, increased use will be made of financial instruments 

including options, as well as futures to hedge the price of energy. 

One particularly important contract is the Power Purchase Agreement (PPA). This 

is a contract for the sale of energy, availability and ancillary services from an IPP. The 

buyer is dependent on the market structure. In single buyer systems the buyer will 

be the power purchasing authority, whilst in more deregulated systems the suppliers 

will often contract to purchase electricity from a number of different IPPs in order 

to supply their customers [92]. Tendering for energy supplies can be carried out 

competitively or through negotiations with a single bidder, with the former deemed 

to result in lower costs to the purchaser [93]. 

The PPA will specify an agreed price for energy. Early contracts relied on the 

energy price to cover all the costs of the plant, and were fixed at a price equal to 

their average cost or the purchaser's avoided cost (as in PURPA agreements), for a 

specified level of output. As long as the this level was reached, all the costs were 

covered. However, such contracts do not ensure efficient operation of the plant. 

Assuming that the energy price agreed is greater than the IPP's variable cost, then 

there is little incentive to dispatch it efficiently. The owner of the IPP will wish 

to operate at all times and this will tend to displace cheaper plant. Alternatively, 

the inflated price implies that the system operator will dispatch it at times of high 

demand, and as such the plant will be displaced by more expensive alternatives [92]. 
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More efficient operation occurs if the energy price is set at the marginal cost of 

generation, which includes the variable component of operations and maintenance 

expense. The 1FF will bid and be dispatched at their marginal cost, in a similar 

manner to a perfectly competitive market. The energy price could be simply a 

price per unit of energy, but it is more likely to be related to the level of output, 

for example start-up. Figure 3.6 shows an example of the variation in generation 

marginal costs with output, and is in the form required for generation bids into the 

UK Pool. The energy price may be fixed or linked to fuel prices, to prevent the 

owner being exposed to significant risk when the fuel price rises. If no fuel cost 

link is agreed then a rise in fuel price will lead to the plant making a loss on all 

production [92]. 
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Figure 3.6: Thermal generation marginal cost curve, Willans' Line [73] 

If the energy price reflects the marginal cost of the energy, then there must be some 

payment to assist in covering the fixed charges (e.g. interest). This payment is 

termed an availability payment, and not only covers the fixed costs but provides an 

incentive to be available when system demand is high. This is most important to 

mid-merit and peaking plant, that whilst they are more expensive are still vital to 

meet demand. 

The availability payment normally agrees a target level of availability in terms of 

the power output and the hours in a particular period (year, month, etc.), as well as 

an annual payment to cover non-variable costs and a normal profit. The agreement 

would also specify a system of bonuses and penalties for exceeding or missing the 

target. In some systems, like the UK Pool, it is the system operator that partly 

pays the generator for availability. These are in the form of capacity payments and 

reflect the value of the generator to the system as a whole [83]. 

Some power purchase agreements, particularly those between the generator and the 

system operator specify the remuneration, if any, for providing ancillary services, 
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such as frequency control, spinning reserve, reactive power support and black start 

capability. These are generally covered by lump sum payments although the UK 

has been moving towards a market in reactive power [94]. 

Power purchase agreements tend to stabilise the revenue of the IPP, and as such 

reduce the price risks to both the IPP and the buyer. Virtually all new plant built 

by IPPs in the UK following privatisation was covered by a long-term PPA with a 

REC [76], as it formed the basis for securing loan capital, by ensuring a predictable 

revenue stream with which to repay the loan. 

With the trend towards corporate financing, there is less need to undertake a long 

term power purchase agreement. Building and operating on this basis is termed 

merchanting and it is increasingly common in developed markets [57]. Despite this 

the operators will generally enter into contracts to limit the price risk. 

3.5.4 Scope for Private Finance 

Given the enormous increase in electricity production expected over the next 100 

years, and the requirement for massive increases in generating capacity, finding the 

investment required may not be possible for state-owned utilities, particularly those 

in developing countries. Restrictions on public finances and public borrowing, limits 

the ability of the state-owned company to fund expansion. The result is that private 

investors are expected to provide the finance for much of the new and replacement 

generating plant over the next century. The range of estimates for the proportion 

of capacity addition from private sources varies [76]. 

Siemens estimate that 32% of their future fossil-fuelled plant sales will be to IPP's 

and a further 23% to privatised and commercial utilities. Cambridge Energy Re-

search Associates think that between one quarter and one third of all new capacity, 

outside North America will be for IPP's. InterGen estimate that 191-617 GW of 

new Asian capacity installed between 1997 and 2010 will be IPP. However, others 

suggest that, due to slow progress towards liberalisation, only 18% of total capacity 

addition over the period 1990-2020 would be from IPPs [95]. 

During 1991-1994 private investment accounted for only 11% of new capacity, so a 

range of 16% to 33% for private investment is not unreasonable, and would represent 

investment in around 17-41 GW of new capacity each year. The penetration in 

developing countries is likely to vary considerably, with Chile expected to be nearly 

all privately financed and China only around 11% [76]. 
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3.6 Implications for Renewablès 

Given the drive towards liberalisation and deregulation of electricity supply, private 

power will affect the ability to reduce environmental burdens. 

3.6.1 Short-termism 

The key outcome of market systems and in particular private finance, is that invest-

ment decisions are based purely on the trade off between risk and reward. Methods 

that are quickly implemented, with lower capital costs, and result in a faster payoff, 

are favoured over those with higher capital costs and longer debt repayment periods. 

Payoff period is considered as a proxy for investment risk, despite the fact that the 

method does not take into account the time value of money. When discounting tech-

niques are used, the higher capital cost projects are often proven to be the better 

long-term investment. 

So called 'short-termism' is common with capitalist economies but is particularly 

apparent in the UK and is considered to be one of the key reasons for its economic 

failings [81]. When applied to electricity supply it results in great interest in gas-fired 

plant that return a quick profit, but only limited interest in renewables. This means 

that most renewable energy technologies are not covered by the same development 

effort concentrated on making CCGT plant cheaper and faster to build and operate. 

As a result, the potential decline in the cost of renewable energy is held back, and 

it continues to be unable to compete. 

3.6.2 Externalities 

Although fully competitive markets do allocate resources efficiently, and tend to 

produce at lowest cost, they do not include social costs or benefits. The result of the 

failure to include externalities or external costs is that the social market outcome is 

not optimal. 

The environmental effects of electricity generation (summarised in Section 3.1) are all 

external costs, while improved life expectancy would be an external benefit. These 

factors are not included in the price of electricity and as such result in different 

quantities and sources of electricity than would occur if a true social market equi-

librium occurred. This omission has serious implications for the use of renewable 

energy. 

The internalisation of these external costs is an issue of intensive research effort. 

The ExternE study by the EC was a major attempt to quantify, in monetary terms, 

the environmental impacts of electricity generation [96]. For each major energy 
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resource, including hydro and wind power, damage costs were assigned to particular 

aspects of their impacts, including health and the environment. Those damages that 

do not have a direct and measurable impact, for example, the loss of visual amenity 

due to the construction of a wind farm, are estimated on the basis of the contingent 

valuation method (CVM). This estimates the value of the damage by considering 

individuals' 'Willingness to Pay' (WTP) to avoid the damage, or a price required 

for them to accept it, called 'Willingness to Accept' (WTA). This methodology 

and others are fraught with problems, and resulted in a wide range of estimates of 

damage for each fuel cycle. 

With careful development and consensus on damage costs, such valuations of impact 

could be used to correct the market failure by adding the external costs to the 

financial costs of electricity generation. This would raise the price of the electricity 

for each fuel cycle and would tend to improve the overall position for some fuel 

cycles, such as renewables, and worsen others, particularly coal. This system could 

work to directly alter the marginal cost functions of different generators, and hence 

scheduling could be on the basis of least marginal social cost. This would result in 

an increased interest in fuel cycles with low social costs, effectively forcing investors 

to take account of environmental impacts in their financial decision-making. 

The current UK system of bidding on the basis of marginal cost would be ideally 

placed for such a system. However, the incoming NETA would be less well suited, 

and as such the UK may have lost an opportunity to improve its environmental 

record. 

3.6.3 Financial Support 

In the absence of internalisation of social costs, the financial position of less damaging 

forms of generation can be improved through: 

• direct subsidy, 

• taxation, 

• renewable obligations, or 

• tradable emissions permits. 

Although the World Bank and others appear opposed to subsidies for power gen-

eration, due to the market distortion effect, much of their opposition is related to 

subsidies for fossil-fuel use. Subsidies such as 'green power', or the use of taxation 

would assist in moving the market allocation towards the social optimum. However, 

both tend to lead to inefficiencies [46]. 
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Renewable obligations such as the UK NFFO were successful to an extent, although 

many projects failed due to lack of planning consent or the cost of line upgrades. Un-

til renewable energy projects are accepted more fully by the public and the problem 

of mandatory upgrades are tackled, obligations may not be overly successful. 

Tradable emissions permits could be the most suitable method for stimulating in- 

terest in non-polluting energy sources, by in effect, requiring the fossil-fuelled sta- 

tions to subsidise the renewable forms, and giving them a valuable source of income. 

3.6.4 The Future for Renewable Energy 

The tendency towards short-termism is a serious problem for renewables. In the 

absence of full-cost pricing, other methods are required to move towards a social 

market. In the longer term, renewable energy is likely to be in demand as per-

ceived shortages of fossil fuels result in higher fuel costs and a renewed effort to find 

alternatives. 

3.7 Summary 

The electricity supply industry is a major contributor to regional and global envir-

onmental damage, and it is right that attention has been focussed on the industry 

to reduce its impact. While many of the pollutants are relatively simple to mitigate 

it is the emissions of CO 2  that are the major difficulty, not least that the majority 

of electricity is derrived from fossil fuels. A variety of methods are described with 

how to reduce carbon emissions, of which increased use of hydropower is one. 

Electricity demand and economic development are strongly linked, and as the devel-

oping nations try and reach Western standards of living, the demand for electricity 

is set to grow enormously over the next century. One of the consistent features of 

scenarios of future electricity generation is the continued expansion of hydropower 

production, which is forecast to grow by at least three times by 2100. 

The massive investment required to meet the demand is such that it appears to be 

possible only with the assistance of private capital. Privatisation and liberalisation, 

two processes featuring heavily in the late twentieth century are set to be repeated 

throughout the world. However, the consequent treatment of electricity as a com-

modity is not without risks. In particular, the tendency towards quick financial 

returns does not favour renewable energy sources such as hydropower. As such, the 

needs of private investors may run contrary to the need for emissions reductions. 



Chapter 4 

Climate Change and 

Hydropower 

The chapter commences with an overview of the relationships between climate, cli-

mate change and the electricity supply industry. It then focuses on potential cli-

matic change impacts on the hydrological cycle before examining the implications 

for hydroelectric power provision. Available literature is reviewed, key studies ex-

amined, and the limitations of existing approaches identified. Finally, the preceding 

two chapters will be brought together in a detailed consideration of the potential 

impacts on hydropower investment. 

4.1 The Electricity Sector and Climate Change 

The preceding two chapters describe how, through the use of fossil fuels in generating 

electricity in order to satisfy consumer demand, the electricity supply industry is 

contributing to the global warming problem. As with all complex systems, the 

interaction between electricity supply and climate are not restricted to simple cause-

effect processes. In fact, second-order effects are numerous and affect the whole of 

the ESI from generation to demand. 

4.1.1 Climate Feedback 

Electricity Demand 

Electricity demand is sensitive to climatic fluctuations and in particular temperature 

change. Rising temperature resulting from climatic change will have two effects: it 

will tend to lower the requirement for space heating, but raise the demand for cooling. 
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Whether electricity demand rises or falls as a result of temperature rise depends on 

the type of climate and the relative importance of electricity in providing heating 

and cooling services. Areas with a summer peak demand will find demand rising, 

while those with a winter peak, may find demand falling. It is uncertain which will 

be the stronger pressure, but some regions may undergo a shift in peak demand 

from winter to summer. A number of studies have considered such changes either in 

exclusion or as part of a supply-demand comparison [97, 98, 99] and a good review 

of methods is given by Jager [100]. Irrespective of the pattern of change, a rise in 

electricity demand is likely to increase carbon emissions if fossil fuels are used to 

meet the shortfall. 

Investment 

Rising demand implies a need for investment in generation and transmission facil-

ities, but few studies have examined this aspect. Linder and Inglis considered the 

demand requirement for the United States for temperature rises of 3-5°C by 2055. 

They concluded that peak demand would increase by 13% above the baseline pro-

jection, requiring commissioning of 5-7 GW of capacity at an increased cost of 5-7% 

The requirement would be for peaking plant rather than base load, altering 

the fuel mix. The differing regional impacts could increase the requirement for re-

gional energy transfers. Overall, the increased construction and fuel use would lead 

to greater environmental damage. 

Extreme Weather Effects 

Climate change is anticipated to lead to increased incidence of extreme weather and 

therefore increased transmission system disruption due to storm damage. Situations 

similar to that experienced by New England and south-eastern Canada in January 

1998 could become more frequent. Then, over three million people were without 

power for almost a week after ice storms brought down transmission lines. 

Thermal Generation 

A rise in ambient temperature will reduce steam and gas cycle efficiencies slightly. 

Stations sited on the coast may be threatened by sea level rise and could require 

expenditure on protection facilities. Also, thermal stations sited inland may be 

vulnerable to output restrictions enforced by reduced water availability or thermal 

pollution. Situations similar to this occurred during droughts in France and the US 

However, the widespread use of CCGT stations should lessen vulnerability as 

their cooling requirements are lower [103]. 
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Renewables 

Impacts on renewable energy resources represent another important climate-energy 

feedback, and they constitute changes in resource availability, operational perform-

ance and therefore the willingness to develop resources. A brief description of key 

impacts follows but a fuller discussion can be found elsewhere [100, 102]. 

Wind energy depends partly on the temperature gradient between equatorial regions 

and higher latitudes. The relatively greater warming of higher latitudes predicted 

by GCMs suggests that the wind resource may reduce. Fortunately the effect of 

local geography in determining the wind regime may limit the sensitivity of sites to 

warming. The cubic relationship between power output and wind speed means that 

changes in wind speed are amplified, with one estimate suggesting that a 10% change 

in wind speed could alter energy output by 13-25% [104]. A change in prevailing 

wind direction could be problematic for existing installations dependent on the array 

orientation. 

The performance of direct solar technologies are sensitive to atmospheric conditions, 

and increases in humidity or cloudiness due to climate change may lower their output. 

Although there are few projects planned, ocean energy systems would be susceptible 

to storm damage and would need to take account of rising sea levels. 

Rising temperature and changes in precipitation patterns will alter river flow regimes 

and consequently affect hydropower production. 

4.1.2 Analysis Requirements 

The high economic value of the electricity supply industry, but more importantly, 

the now essential requirement for dependable power supplies, suggests that changes 

or threats to the future means of production and distribution of electricity need to 

be assessed effectively. 

To this effect, and given the current significant contribution of hydro-electricity 

to global electricity production, the remainder of this chapter is given over to an 

analysis of the potential impacts of climatic change on hydropower. 

4.2 Changes in the Hydrological Cycle 

The hydrological cycle (Figure 4.1) is closely interlinked with the climate system, 

and, as such, alteration of the climate through increasing greenhouse gas concentra-

tions, will lead to changes in hydrological systems. 
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Figure 4.1: Climate and the hydrological cycle 

4.2.1 Precipitation 

Precipitation is the primary variable in determining hydrological characteristics, 

and changes in quantity, timing and intensity will have a profound effect on many 

aspects of the hydrological cycle including the alteration of river flows. Current 

predictions from General Circulation Models are that global mean precipitation will 

increase by 3-155c for a temperature rise of 1.5-4.5°C (see Chapter 2). Some areas 

will see increases, others decreases and there is little agreement as to the quantity or 

regional distribution of the changes. However, higher latitude regions are expected 

to experience more precipitation especially in winter, but there is no consensus on 

the pattern for the tropics. 

4.2.2 Evapotranspiration 

Potential evapotranspiration (PET) is the maximum possible rate of moisture re-

moval from soils and is determined by meteorological conditions and plant physiology. 

PET is made up of evaporation from surfaces and plant transpiration. 

Potential evaporation (PE) is determined primarily by net radiation and temperat-

ure but also by the moisture-holding capacity of the air and other factors (e.g. wind 

speed). Increased temperature will lead to more evaporation, although the effect is 

complicated by an increase in the moisture holding capacity of air, which further 
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enhances the evaporative effect, particularly where humidity is the limiting factor 

[105]. In such a region, a rise of 2°C could raise potential evaporation by up to 40%, 

although this would be lower for an arid climate [106]. 

Plant physiology controls the rate of transpiration, with the aerodynamic resistance 

affecting airflow across the plant, and stomatal resistance restricting the release 

rate. Plant properties are expected to alter with climate change, leading to changes 

in the PET rates. These include changes in the timing and rate of plant growth, 

the vegetation mix and the effects of CO 2  enrichment. Experiments suggest that 

stomatal resistance may change and that some plants will experience higher growth 

rates, although it is difficult to generalise the conclusions [107]. 

Overall, PET rates have been found to increase 34% per degree Celsius of temper-

ature rise [108, 109], however, the increase in the actual evapotranspiration (AET) 

rate is likely to be lower. As its definition suggests PET determines the quantity 

that could evaporate with an unlimited supply of water. In practice, moisture avail-

ability is limited, and so the actual rate is lower. As such if moisture levels decline, 

AET could follow suit even though the PET has risen. Either way, changes in PET 

and AET will alter catchment water balance. 

4.2.3 River Flows 

The balance between water entering the catchment as precipitation and leaving 

through evapotranspiration determines the quantity and timing of catchment run-

off which ultimately becomes river flow. Changes in both precipitation and PET 

are expected as a result of climate change, and so changes in river flows are also 

anticipated. Whether runoff increases or decreases will be decided by the relative 

magnitude of the changes and other factors including the ability of the soil to absorb 

and hold moisture. As such, even with the projected global precipitation increases, 

river flows may decrease [105]. 

Rising temperatures will alter precipitation and evaporation patterns which, mainly 

through changes in soil moisture, force changes in river flow regimes and groundwater 

storage levels. Ecosystems will affected by changing climate and increased CO 2  levels 

which, in turn, alter the water balance and quality of the catchment. 

Changes in the mean values of precipitation and temperature will alter not only 

mean river flows, but also their variability. Catchments exhibit varying degrees of 

non-linear behaviour and it is this that leads to alterations in variability. Similarly, 

altered variance could well imply a change in the mean output [107]. Figure 4.2 
shows both effects, although the actual response will depend on the characteristics 

of the catchment. Small mountainous catchments will be more affected by changes 

in storm rainfall, while large river basins, which tend to average-out short term 
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fluctuations, will respond to changes in prolonged rainfall. 
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Figure 4.2: Effect of altered precipitation mean and variance on river flow 
distributions [107] 

Many catchments are dominated by snow cover or glaciers, where the snow stores 

water over the winter, releasing it slowly and augmenting summer low flows. Higher 

temperatures will lead to increased winter runoff as more precipitation falls as rain, 

reducing the quantity of water stored in the snowpack and reducing the amount 

available in spring and summer [105]. As Chapter 2 highlighted, glaciers worldwide 

are retreating and this process is expected to continue and accelerate. This is pre-

dicted to lead to artificially high river flow as the glaciers are 'mined', although they 

would reduce considerably once depletion is complete. Detailed assessments of the 

potential for change are difficult, particularly in the developing world, as monitoring 

of mountainous regions is currently inadequate [110]. 

The following section introduces the means of estimating future river flows and 

indicates the nature of the changes implied by previous studies. 

4.3 Projections of Future River Flow 

A wide range ofstudies have considered the impact of climatic change on river flows, 

either by the direct estimation of hydrological changes or through the use of hydro-

logical models. The vast majority of studies in the literature rely on hydrological 

models to convert changes in climate into estimates of river flows. However, there 

are some notable examples of direct estimation, which have the advantage of being 

relatively simple to apply over large areas. Both used the runoff data from GCMs 

to determine flows in specific rivers. The first study considered changes in annual 

runoff for over thirty major world rivers using the the GISS model [111], whilst 

the US Environmental Protection Agency (EPA) examined future US river flows as 
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indicated by a range of models [112]. 

The studies generally consider the differences between a base case, assumed to be 

the 'current' climate, and a future climate as specified by either arbitrary changes 

in climate variables or from the output of GCMs. The base period normally used 

is 1961-1990, as specified by the World Meteorological Organisation (WMO). This 

period could be seen to already incorporate some degree of warming, including the 

warm 1980s, and therefore it is not strictly an indication of the change before and 

after climate warming, rather it is a practical compromise given the availability of 

data. 

4.3.1 Annual Flows 

The change in river flows brought about by changing climate can be illustrated 

most simply by the use of annual river flow volumes. Almost all studies have con-

sidered this aspect, but despite the differences between study methods, models or 

catchments, there are two notable findings: 

. Annual runoff is relatively more sensitive to changes in precipitation than 

potential evapotranspiration; 

• Changes in precipitation lead to proportionately greater changes in runoff. 

The relative sensitivity of runoff to precipitation change is higher than for temper-

ature, and the differential increases in drier catchments. At the very least a 10% 

increase in annual precipitation offsets the effects of increased PET caused by a 2°C 

temperature rise [107]. 

Changes in mean flows tend to alter by a greater proportion than mean precipita-

tion, implying some form of amplification. The amplification effect is more apparent 

in arid climates, and arises as the difference between precipitation and PET changes 

to a greater extent than precipitation alone [113]. The existence of the greater hy-

drological 'elasticity' of arid Basins is confirmed in a study by Reibsame et al. of 

five major rivers across three continents [114]. Figure 4.3 shows a stylised relation-

ship between the runoff coefficient (runoff (R)/precipitation (P)) and dryness index 

(PET/P) of the basins, and the wide range of hydrological responses. Overall, cli-

mate sensitivity increases with lower runoff coefficient and higher dryness index and 

accordingly the Nile is found to be most sensitive. 

The sensitivity of a catchment to both temperature and precipitation change can 

be determined by the application of uniform hypothetical changes to the climate 

variables. Table 4.1 indicates the range of sensitivities of annual runoff volumes to a 

temperature rise of 2°C and precipitation change of up to 20%. The variations can 
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Figure 4.3: Relative dryness of five major rivers [114] 

be accounted for by the differences in climate types and the methods of determining 

potential evapotranspiration. Again the greatest sensitivity is seen in the catch ments 

with the lowest runoff coefficients (i.e. Nzoia). 

River 	 Reference. 	 % Change in Precipitation 
-20 -10 	0 	10 	20 

Saskatchewan, Canada Cohen (1991) [1151 -51 -28 -15 	11 40 
Yalong, China Deng & Hou (1996) [116] -20 -6 	7 
Mesohora, Greece Mimikou et al. (1991) [117] -32 -18 -2 	11 25 
Nzoia, Kenya Nemec & Schaake (1982) [118] -65 -44 -13 	17 70 
Indus, Pakistan Reibsame et al. (1995) [114] -19 -1 18 
Delaware, USA Wolock et al. (1996) [119] -23 -5 12 
Upper Colorado, USA Nash & Gleick (1991) [120] -23 -12 	1 

Table 4.1: Runoff changes for hypothetical 2°C temperature rise and percent-
age change in precipitation 

While uniformly applied changes give some indication of the sensitivity of catchments 

to changes in climate variables it does not allow projections of future conditions. 

GCM scenarios or those derived from them, give a more useful idea of future river 

flows. 

Studies using the UK Climate Change Impacts Review Group (CCIRG) climate 

scenarios have indicated marked regional differences in runoff change [121]: regions 

north of Manchester experience increased runoff of at least 5% with some areas, 

particularly the Scottish Highlands estimated to see increases of 15 and above; 
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areas to the south of a line between the Severn and the Humber would see decreases 

of at least 5%, and the south east would see reductions of 25%. 

GCM scenarios also indicate the amplification effect and the sensitivity to precipit-

ation change (Table 4.2). 

GCM Precipitation Temperature Runoff 
(%) 

( 
°C) (%) 

GISS -3 4.5 -12 
GFDL 19 3.6 22 
UKMO 4 5.6 6 

Table 4.2: Runoff scenarios for the Uruguay River for three GCMs [114] 

4.3.2 Monthly Flows 

Although changes in annual flows are a useful measure of catchment sensitivity, 

they tend to disguise seasonal changes. A climate scenario may result in mean flows 

similar to current observed flows but exhibiting a different flow regime [122]. Studies 

in the literature have found that a certain amount of seasonal change occurs, the 

extent depending on the characteristics of the catchment as well as the scenario of 

change. 

The major change to flow regimes appears to be due to a change in the amount 

of precipitation falling in the form of snow (e.g. [123, 117, 124]). In regions where 

winter precipitation is at present dominated by snow, rising temperatures will tend 

to increase the proportion of rainfall, which will consequently lower the volume of the 

snowpacks. This will lead to a smaller spring melt and an increase in the proportion 

of flows occurring in winter, although the change in volume follows the change in 

precipitation. 

Studies of the Mesohora basin in central Greece illustrate the effect [117, 125]. Figure 

4.4 shows the alteration of the runoff regime for a temperature rise of 4°C and a 

10% decrease in precipitation. Although annual flows decrease 21%, spring flows 

decrease by over a third, and summer flows more than halve (55%). The proportion 

of flow in the winter increases from 38 to 50%, and spring flows decrease to 31% of 

the total. 

A second important determinant of change is the ability of the catchment to store 

moisture. Permeable catchments tend to be able to store water during periods of 

high availability and release it during periods of lower precipitation. Less permeable 

catchments will turn the extra winter rainfall directly into runoff, and consequently 
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Figure 4.4: Monthly runoff in the Mesohora basin, Greece, for current and 
altered (A P = -10%, A T = 4°C ) climates [117] 

will experience lower flows during the summer months. Climate scenarios that pro-

ject precipitation to be higher in the winter and lower in the summer will tend to 

amplify the winter/summer differences. Catchments in south east England are ex-

pected to follow this pattern and could experience reductions of summer flows of 

more than 50% [121]. Such changes in seasonal flow are expected to lead to changes 

in the characteristics of floods or droughts. 

4.3.3 Extreme Flows 

Alterations of the flow regimes of rivers will alter the frequency of exceeding par-

ticular discharges. Of particular interest is the effect of climate change on low and 

flood flows. 

Increases in drought or low river flows are often cited as a possible outcome of climate 

change. However, rainfall is only one determinant, with catchment storage and other 

characteristics playing a major part. Studies in the UK indicate a mixed response 

from catchments, although the majority experienced a fall in the flow exceeded 95% 

of the time, and several catchments saw their low flow values halved [121]. 

Climatic change is expected to increase flood occurrences and consequent damage. 

However, relatively few studies have considered flood frequency and magnitude, 

mainly due to difficulties in creating sound scenarios for changes in flood-producing 

climatic events (rainfall or snowmelt) [126]. 
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The quantity of rainfall required to create flooding is dependent on the characteristics 

of the catchment (e.g. permeability) and the state of the catchment at the time of 

rainfall. Wet or saturated soil requires much less rainfall to create flooding. The 

size of the catchment is also a factor, with flooding in larger catchments sensitive 

to longer-duration rainfall, and small catchments ones susceptible to intense rainfall 

events. 

Rainfall intensity is expected to increase, or rather the frequency of intense events 

will increase, due partly to an increase in convection. Snowmelt flooding charac-

teristics will be altered by the temperature increase, and smaller snow packs may 

indicate smaller spring floods. However, the increased winter rainfall may simply 

create an earlier flood season. These predictions feature in many studies (e.g. [54]). 

A study of the potential change on the flood characteristics of the Thames and 

Severn rivers found both increasing flood frequency and magnitude as a result of 

the application of results from the HadCM2 GCM [127]. Three methods for altering 

rainfall characteristics were used to determine the flood effects: (1) proportional 

changes in rainfall volume, (2) alteration of the number of days in which rainfall 

occurred and (3) the use of an 'enhanced storm' procedure which intensified the 

high rainfall events. The flood peaks increased for all three methods but especially 

for the storm procedure. Overall, the magnitude of the fifty year flood was expected 

to increase by 20% and 15% for the Severn and Thames respectively. 

While it is difficult to prove beyond reasonable doubt that the recent flooding in 

England and Wales was linked to climate change, such events could well become 

more common. 

4.4 Implications For Water Resources and Hydropower 

Climate change is anticipated to have serious implications for water resource availab-

ility and use. It is expected to increase water demand for agricultural and municipal 

purposes, alter navigation potential and affect recreational and fisheries usage [128]. 

For the purposes of this study the potential changes in river flows and their effect 

on hydropower production will be examined in detail. 

4.4.1 Hydropower Potential 

Water has been used to generate power for many thousands of years, originally 

in the form of water-wheels used to grind cereals, and later, during the Industrial 

Revolution to drive textile mills. Over the past century its main use has been to 

produce electricity, by passing the water through turbine-generators. Hydro now 
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accounts for around 20% of world electricity production [53], and as Chapter 3 

indicated its absolute energy contribution is expected to increase threefold by the 

end of the century [74]. 

The hydroelectric potential energy (E, J) is given by the volume of water (Q, m) 

falling through a vertical distance often referred to as the hydraulic head (H, rn) 

according to: 

F = ggHQ 	 (4.1) 

where p the density of water (1,000 kg/rn 3) and g the acceleration due to gravity 

(9.81 m/s2 ). 

Power can be generated by allowing water to flow through the turbines, as with 

run-of-river schemes (RoR), but there are benefits to the construction of a darn. 

Increased storage reduces variability, which allows more of the water to be used 

to generate power than in RoR schemes. Foot-of-dam generating stations allow an 

increased head which enables larger power output, and while this effect is also true 

for installations involving long penstocks, it is of a lesser extent. Design of hydro 

installations is generally based on the river flow duration curve which determines 

the type and capacity of turbines. Reservoirs are. normally designed to provide a 

dependable flow of energy, by providing carry-over storage between seasons of high 

and low flows. The necessary storage is determined from mass-curve analysis for 

target levels of reliability [129]. 

Reservoir-based hydropower schemes are generally built to satisfy other requirements 

in addition to energy production. For example, the Hoover Darn on the Colorado 

River, was built in the 1920s to provide drinking and irrigation water to the and 

south-west US, and the Three Gorges project on the Yangtze River in China is 

being constructed primarily to alleviate the devastating flooding that periodically 

affects the region [130]. The trade-off required to satisfy each purpose means that 

the reservoirs are operated in a manner that is non-optimal from the point of view 

of energy production alone. 

Climate change has two primary effects on hydroelectric potential. Firstly, alteration 

of the flow distribution will affect power potential, although the impact on schemes 

with storage is influenced by the degree of storage available. The second effect is 

the increase in reservoir evaporation rates which will remove water before it can be 

used for generation. 

River Flows 

The limited hydraulic head in run-of-river plant implies that hydropower potential 

is linearly dependent on river flow. However, changes in the frequency of flows 
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that lie outside the capabilities of the installed turbines means that there may be 

more occasions when the plant cannot generate because of low flows, or alternatively 

cannot take advantage of higher than rated flows. 

For schemes with impoundments, generation potential is governed by the operating 

procedures of the reservoir. These are generally based on rules that relate the 

allowable release through the turbines to the current storage, and/or current or 

predicted inflows. Many are developed using stochastic techniques that account for 

expected variations in flow. However, changes in the volume and timing of river 

flows, as a result of climate change, may render the operating rules sub-optimal 

consequently lowering production levels. 

An example would be the scenario of a rainfall shift from summer to winter with 

an overall increase in rainfall. Insufficient storage would force spillage of much of 

the extra winter flows preventing carry over to augment the low summer flows. In 

this case, the overall hydroelectric production would be likely to decrease. Similar 

results have been reported for water supply reservoirs: for some UK reservoirs altered 

climate was found to reduce the water yield (or volume supplied) by 8-15%, or 

alternatively require storage increases of 10-21% to maintain current yield [131]. 

The requirement for flood control storage tends to complicate hydropower analysis, 

but if increased winter flows imply a greater risk of flooding, it is likely that addi-

tional flood control storage will be allocated, reducing the available storage. This 

has the effect of reducing the reservoir level, the head available for generation and 

consequently the hydroelectric potential as the energy density of the water falls. 

Reservoir Evaporation 

Given that hydropower reservoirs are some of the worlds largest lakes, there can 

often be considerable evaporation from them. Despite this, it is quite common for 

evaporation losses to be ignored in many reservoir studies, or alternatively, assumed 

that evaporation net of precipitation is zero. Given that evaporation from open 

water is generally at or close to potential evaporation levels then more studies of the 

impact are necessary. 

4.4.2 Power Production 

A relatively small proportion of the literature concerning climate impacts on water 

resources deal with hydroelectric power production. However, in general, hydro-

power production tends to follow changes in runoff. For example, the application 

of three GCM scenario to the Nile river indicated very different changes in runoff 

and production [114]. The UKMO scenario lowered runoff by 12%, forcing produc- 
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tion to decline by 21%, while the wetter conditions predicted by the GISS model 

increased both river flow and power production by around 27%. The GFDL scenario 

resulted in an extreme 77% fall in runoff which reduced power production by over 

94%. Other rivers and regions are forecast to experience similar changes in power 

production (Table 4.3). 

Region/River 	Scenario 	Energy Impact 

Scandinavia [54] GCM +2-6% 
Zambezi [114] GCM Dry Season: -18% 
California [132] LP -20% Winter: -50% 
Upper Colorado [133] LP -20% -49% 
Lower Colorado [133] zP -20% -65% 

Table 4.3: Examples of change in energy production due to GCM scenarios 
and arbitrary changes in precipitation (i.P) 

While climate change appears to have a detrimental effect on power production in 

many areas, the projections are that Scandinavian hydropower potential will increase 

slightly [54]. Most areas in the Nordel region could experience increases in runoff 

of up to 5% for a period around 2030, and up to 15% increase by 2100. Overall, 

the system potential increases by 2 and 6% respectively. The simulated annual 

production increase is of similar magnitude, rising from 188 TWh to 192 TWh. In 

most of the basins studied, winter runoff increased, spring snowmelt was earlier and 

lower and summer and autumn flows were reduced. The increased winter flows and 

reduced spring reservoir spillage are responsible for the increase in power production. 

An assessment using the World Bank Indus Basin model found that the GCM scen-

arios applied indicated increased precipitation of 10-20%, resulting in an 11-16% rise 

in runoff and consequently a 19-22% rise in hydropower production [114]. A uniform 

20% decrease in precipitation resulted in 17% lower production. 

Another study on behalf of the US EPA found that power production in the upper 

and lower sections of the Colorado basin exhibited different sensitivities to precipit-

ation [133]. For the upper basin (above Lake Powell) the power production declines 

to a lesser degree than the average storage, and a 10% fall in precipitation leads 

to a 15% decrease in runoff. This results in 30% lower storage and 26% lower pro-

duction. In the lower basin, a 10% reduction in precipitation causes a 12% fall in 

runoff, which lowers storage volumes by 30% and hydropower production by 36%. 

The limited power storage in Lake Mead (held back by the Hoover Dam) is cited 

as the reason for the increased sensitivity of power production to changes in runoff, 

as the degree to which the the reservoir can be drawn down to meet demand is re-

stricted. These examples indicate that it is not only the hydrological characteristics 

of the catchment that determine the sensitivity of hydroelectric power production, 
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but also the features of the generating facilities themselves, and the robustness of 

the operating procedures. The apparent difference in sensitivity between scenarios 

of increased or reduced precipitation levels are related to the ability of the operating 

procedures to maintain power levels as well as take advantage of additional flows. 

The vulnerability of water resource systems to changes in climate is one area that 

has attracted much attention. Most commonly, the system vulnerability is given in 

terms of how frequently generation fails to meet a target of some description. For 

example, the risk of not meeting predefined energy targets was examined for the 

Polyfyto scheme in central Greece [134]. For each of the GCM scenarios applied, 

the risk of failure in generating the mean annual guaranteed energy of 515 GWh 

increased. Conditions projected for 2050 by the equilibrium UKMO model found 

that risk increased from 1.3% to over 16%, and the transient scenario predicted 

an increased risk of 25% by 2080. An increase in storage of 20-30% was found to 

mitigate the risk. 

4.4.3 System Operations 

All electricity systems exhibit some degree of seasonal demand variation. In warmer 

climates the peak demand tends to occur in summer months, and the opposite occurs 

in colder regions. Most studies indicate significant seasonal changes in hydro energy 

production and this could have implications for the ability of electricity systems to 

meet demand. 

In Scandinavia peak load is dominated by heating requirements over the winter 

months. Given that currently Norway sources over 97% of its electricity from hy-

dropower, reductions in hydro energy production could limit the ability to meet 

demand. The projections presented earlier suggest that winter production will in-

crease, which will be beneficial as it coincides with peak demand. A further benefit 

would be the lowering of the peak demand as temperatures rise [54]. 

A supply-demand study of the New Zealand hydro sector suggested major changes 

in the availability and consumption of electricity [99]. Currently, hydro production is 

lowest in winter, when demand is highest. However, for a 10% precipitation increase 

accompanying a 2°C temperature rise, annual runoff would rise by 12% and increase 

hydro potential by 1,700 GWh. Together with a fall in demand of over 4% the 

annual energy mismatch would be reduced by 2,800 GWh, requiring less reliance on 

other generation sources. A second scenario with a 10% fall in precipitation resulted 

in similar potential production during the winter months but a large fall in summer 

potential caused by a 68% reduction in runoff. The rise in temperature appears to 

benefit the country by reducing the winter snowpack volumes and allowing its use 

during the peak demand period. 
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Figure 4.5: Mean monthly hydro potential energy production and consurup-
tion in New Zealand. (Scenario zP + 20, AT + 2°C) [99] 

Robinson examined hydropower availability for several catchments in the eastern US 

[98]. Reservoir drawdown was used to indicate the potential to meet a proportion of 

temperature sensitive energy deniands. It was found that drawdown was sensitive 

to the timing of dry periods, and that the most severe depletions occurred during 

summer hot dry spells. For a uniform 10% fall in precipitation and a 2°C rise, the 

minimum reservoir level fell by 50% although the decline was normally in the region 

of 9-17%. No analysis on the impact of such changes on energy production was 

provided. 

A similar study was carried out for the Grande Dixence scheme in Switzerland 

[135]. The glacier dominated runoff is greatest in the spring and summer, and 

under conditions predicted by the UKMO GCM annual runoff would increase by 

35%, although most this would arrive in the summer. This raises the reservoir level 

significantly and leads to significant spillage, as the reduced summer load (and the 

assumption of supplying a fixed proportion of demand) prevents its conversion into 

energy. 

Changes in hydroelectric potential will vary geographically It is possible that changes 

in the energy potential of hydro schemes, coupled with weather sensitive demand, 

will lead to non-optimal use of generation, as transmission and dispatch constraints 

prevent merit order scheduling. 
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4.4.4 Economic Impacts 

The precise impact of changes in hydropower energy production will depend very 

much on the market situation. At the basic level it implies changes in electricity 

sales and therefore project income. In addition the utility may have to generate 

replacement energy, and where this involves additional fuel use or purchases from 

other parties this will incur costs. 

Revenue 

In a cost-benefit analysis of a cascade of hydro reservoirs on the Mekong, Reibsame 

et al found that for the GCM scenarios applied (which indicated reduced flows), 

the benefits from power production were lowered by around $1 billion [114]. An 

alternative case with a 20% increase in precipitation created an additional $10 billion 

of benefits. 

The optimal design for a hydroelectric scheme in Quebec, Canada was found to 

alter with climatic change [136]. Using a least cost criterion, changes in river flows 

increased the marginal costs of the scheme and reduced the guaranteed or 'firm' 

energy production. 

Whittington and Gundry note that although revenue will tend to follow changes 

in production, there will be little effect on the predominantly fixed capital and 

operational expenses [137]. As such, these costs will have to be met from the possibly 

reduced revenue stream. For existing installations, revenue lower than expected will 

result in lower profit, and if the changes are sufficiently severe an operating loss. 

Sustained losses would risk the financial future of the operation, as its capacity to 

cover debt servicing costs will be reduced, although the scheme could continue to 

run for strategic reasons. 

The possibility of reduced profitability may have a more serious impact on proposed 

hydropower schemes. Hydropower developers will have to alter their estimates of 

runoff used in project appraisal, and it is possible that proposed schemes will not 

proceed, or will be altered in some manner [137]. 

Replacement Energy 

To avoid demand curtailment, lost hydroelectric production must be replaced either 

by increasing output from other plant or by importing energy via inter-connectors. 

These actions impose additional costs on the system, particularly if the losses occur 

during peak-load periods. In liberalised markets, hydro generators may have to 

purchase energy from other players to secure any shortfall. 
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Reductions in hydropower potential in northern California were found to significantly 

affect the operating costs of the Pacific Gas and Electricity Company [138]. One 

scenario saw annual production fall by nearly 4%, and by 20% during the peak-load 

summer months. The loss of hydro potential required additional natural gas use 

costing $145 million (1993 prices) increasing annual system costs by 12.5%. 

Reibsame et al examined the impact of altered climate on the cost of replacement 

energy in the Uruguay River hydro system [114]. Two GCM scenarios indicated 

that annual energy production would fall relative to the base case by around 486-

1,800 GWh per year. The authors noted that to make up the shortfall could require 

an additional 375 MW of plant capacity, costing in the region of $375 million. An 

alternative scenario implied a 22% increase in runoff resulting in an additional 4,850 

GWh/yr of production and yielding an additional $1 billion in revenue. However, 

the lack of a detailed systems simulation prevented the estimation of spillage and 

therefore there was uncertainty regarding power (and revenue) losses. 

4.5 Research Analysis 

The previous sections in this chapter have covered the broad range of potential 

impacts of climate change on river flows, hydropower production, system operation 

and to a limited degree the economics of hydropower schemes. While these impacts 

are important they do not allow a full consideration of the research hypothesis. This 

section examines the limitations in previous studies, before considering the primary 

study focus on hydropower investment which allows the hypothesis to be addressed. 

Finally, the potential impact of changes in hydropower investment levels will be 

examined. 

4.5.1 Limitations of Existing Studies 

There are a number of key limitations with studies of climate change impacts on 

hydrology and hydropower. 

Scenarios 

The many different scenarios used to assess hydrological impacts creates difficulties 

for comparing studies. The hypothetical changes are simpler to compare, but they 

are unlikely to provide a realistic scenario of future conditions. The uncertainty 

surrounding the projected impacts is an important consideration. The current state 

of hydrological and hydropower operations modelling implies that their contribu-

tion to overall uncertainty is minor, dominated as it is by the results of the global 
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circulation models. 

Hydrological Models 

It is important to take care when comparing the results of hydrological studies. Hy-

drological studies use different models of varying complexity which results in a wide 

variation of sensitivity to climate variables and in particular, changes in variables 

[139]. Some may not be suitable for the type of climate, and accurate reproduction 

of current river flow regimes does not necessarily imply accurate prediction of future 

flows, although careful statistical analysis can reduce the risk [107]. 

Many models require estimates of potential evapotranspiration, applied directly as 

an input or calculated using one of the many methods available. Methods differ in 

their complexity, data requirements and performance in specific climates. The result 

is that estimates differ considerably for current and future climates, and those with 

a sound physical basis are recommended [140]. 

Hydropower Representation 

For studies involving hydropower several limitations are apparent, particularly with 

respect to the modelling of reservoir operations and hydropower production. The 

assumption of a fixed hydraulic head or the failure to account for spillage leads to 

over-estimates of power production. The future validity of statistical relationships 

between historic hydro production and river flow (e.g. [132]), or the assumption 

of zero net evaporation are questionable. The use of non-standard terminology 

relating to energy potential (e.g. [98, 135]), makes comparisons difficult. As with 

the hydrological models, the plethora of reservoir models makes direct comparison 

difficult. 

Study Scope 

Climate change is expected to have impacts on three aspects of renewable energy 

provision: the availability of the resource, its operational performance and the 'will-

ingness to develop' resources [102]. Most of the research to date has been concerned 

with assessing the potential impacts on the hydroelectric resource; fewer still have 

considered the operational performance of schemes; and while the question of will-

ingness to develop has been addressed qualitatively by Whittington and Gundry 

[137], there has been no quantitative analysis. 
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4.5.2 Study Focus on Hydropower Investment 

A more complete picture of the impact of climate change on hydropower will be 

gained by a quantitative analysis of the effects on the 'willingness to develop'. The 

analysis will be improved if the shortcomings of previous studies can be addressed, 

by for example, the use of physically sound hydrological models and operationally 

accurate reservoir models. 

'Willingness to develop' will now be defined and the factors that currently influence 

it will be examined. The potential effects of climatic change on willingness will then 

be assessed in a qualitative manner. 

'Willingness to Develop' 

'Willingness to develop' could be considered as the desire to expend human and 

financial capital in the pursuit of particular goals, in other words the attractiveness 

of investment in a project. The goals could be the universal supply of electricity, 

avoidance of environmental damage, achieving a financial return or a combination 

of all three and others. The decision as to whether an electricity generation scheme 

represents an attractive investment depends partly on the goals of the investor and 

partly on alternative opportunities. The likely alternative to hydropower projects is 

fossil-fuelled plant, and so comparisons will be made in a number of areas. Some of 

the important issues are summarised in Table 4.4. 

Positive 	 Negative 

Long lifetime 
Renewable resource 
No fuel costs 
No fuel/import price risk 
Few emissions 
Operational characteristics 

Long payback period 
Hydrological risk 
High capital costs 
Exchange rate risk 
Community relocation 

Table 4.4: Positive and negative aspects of hydroelectric developments 

The most important consideration is the ability of the installation to recoup capital 

costs from its revenue stream. This is true for market economies, particularly in light 

of the increasing contribution of private capital in the ESI (illustrated in Chapter 3). 

In the past it may have been less so for developing countries or those with command 

economies, where schemes have been justified on strategic or political grounds [141]. 

The high capital cost of hydropower schemes tends to disadvantage them relative 

to fossil-fuelled plant. This is apparent as the standard technique of comparing 
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different technologies considers their discounted unit energy cost [142]: 

Et  
(l+d)t / 	(l+d)  

where d is the discount rate, Et  is energy production and (Ii),  (Me ) and (Fe ) are the 

costs of investment, operations and maintenance and fuel, respectively. 

Although hydro has no fuel costs and therefore is not susceptible to changes in fuel 

(and import) prices, the calculation weights the capital cost more than recurrent fuel 

costs and therefore biases the analysis in favour of the lower capital cost technologies. 

This is especially true if high discount rates, consistent with higher-risk liberalised 

industries, are used. It also ignores the long lifetime, and the fact that electricity 

costs reduce to virtually zero once the capital is repaid. Another difficulty is that 

many of the most economic sites have already been developed, implying more costly 

schemes in the future. For example, new capacity built in in developing countries 

during the 1990s was estimated to have cost around 7.8 US cents per kWh [143], 

well above historically low hydro costs. 

Climate change will alter the energy estimates used for the calculation and could 

increase the unit cost. In instances where generation investment is determined on a 

least cost basis this could force a change in the investment plan. For more liberalised 

systems, investment will be based on projections of future revenue, and profitability, 

both of which could be adversely affected by climate change. It is possible that in 

some cases investment will not proceed, and this will have impacts of both regional 

and global nature. 

Regional Impacts 

The abandonment or reduction in capacity of hydro schemes would have a number of 

important impacts. Firstly, an alternative source of energy would be required, and 

if fossil fuels are used, then this implies an increase in the carbon burden. Secondly, 

the balance of payments of the host country would deteriorate if fuel importation 

was necessary. Finally, it is possible that the transmission network would have to 

be reinforced [137]. These impacts imply additional costs, particularly over the long 

term. 

Alternatively, if the effects of climatic change are not included in the investment 

decision, then the impact could be equally serious. Large dam projects have con-

tributed to the debt burden of many developing countries. The high capital cost 

prevents purely domestic financing, and the long term loans from international insti-

tutions require repayment in hard currency, exposing the relatively weak economies 
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to long term currency risk. Exchange rate shifts have reduced or prevented re-

payment of the loans from electricity sales revenue. Reductions in revenue due to 

climatic changes would increase the length of time for financial break-even, possibly 

to such an extent that the scheme never does. This will make the debt problem 

more serious. 

International Impacts 

These effects are not just a problem for the host country, but for the international 

community too. Overall, the resources for financing investment in energy are lim-

ited, and so an investment rendered sub-optimal by climate change represents an 

opportunity cost to society as a whole. The debt burden is not just a problem for 

those suffering from it, but also to the rest of the globe. 

One of the ways of developing hydropower is through investment by foreign compan-

ies. The Clean Development Mechanism (CDM) of the Kyoto Protocol will allow 

these companies and hence their host countries to claim carbon credits to set off 

against their emissions. Lower production than expected would lower the carbon 

credits available to the investor, effective increasing the cost per unit of CO 2  avoided. 

As hydropower is one of the methods of easing the carbon dioxide problem, abandon-

ment of potential schemes or reductions in production will tend to reinforce global 

warming (Figure 4.6). 

Co 2 	 Precipitation etc. 

Energy 
lnvestment 	Production 4- 	Iver Flows 

Figure 4.6: ('liniate feedback through hydroelectric energy resources 
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4.6 Investment Appraisal 

In order to provide the basis for a quantitative analysis of the impact of climatic 

change on investment, it is necessary to detail how feasibility studies currently ap-

praise projects. 

4.6.1 Feasibility Studies 

The standard feasibility study considers many aspects of the potential scheme: tech-

nical, engineering, economic, and environmental. However, it is the financial ap-  
- 

praisal that is most important for the project sponsors, investors and lenders, and 

it aims to provide information that allows the parties to the scheme to determine if 

it will be able to repay the debt incurred and provide a suitable return. 

For electricity generation projects, likely energy output and revenue is assessed and 

compared with capital and operation and maintenance costs over the planned life-

time of the plant. Hydropower appraisal is slightly different in that its fuel source 

is not guaranteed, and therefore focuses on the availability of the water resource, 

through an examination of historic river flows at the site in question. Whilst the 

plant is designed on the basis of the river fiow-exceedance probabilities, estimates 

of output are determined by a time series simulation of the plant with assumed 

operating procedure defining the output. Using pricing information relevant to the 

current or likely future market structure, revenue can be estimated, and various 

measures can be used to determine the likely financial health of the project. Figure 

4.7 illustrates the process schematically. 

Available river flow data is traditionally assumed to contain most of the hydrological 

variability of the catchment, including periods of drought. Project vulnerability to 

drought conditions can be assessed by applying a sequence of historic river flow 

data that contains the 'critical' period. Improved analyses use synthetic flow data 

to determine the robustness of the project to differing sequences of river flows. The 

synthetic flow data can be created by the use of Markov models, which use the 

regression relationships between seasonal flows [144]. 

4.6.2 Appraisal Measures 

There are a number of different calculations used in the economic appraisal of pro-

jects including hydropower schemes. 
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Figure 4.7: Standard financial appraisal for hydropower schemes 

Simple Measures 

Payback' measures the length of time expected to recover the original costs of a pro-

ject. It is often used as a screening method to eliniinate proposals with unacceptably 

long payback periods. However, it ignores the fact that some projects take inher-

ently longer than others, and therefore is an arbitrary means of decision making. 

It ignores the cash flows after the payback time and can result in perverse choices. 

It also ignores the value of the money over time. Often payback is considered as a 

proxy for risk, in that it can be preferable to recover costs in the shortest period of 

time. However, projects with short payback times may in fact be more risky as high 

rates of return are generally associated with increased risk [145]. 

The return on investment (ROl) method is another relatively simple calculation 

used. Alternatively known as return on capital employed (ROCE) it represents an 

average rate of return determined from average profit and average capital employed, 

and generally uses profit after depreciation. Projects tend to be selected on the 

basis of higher ROl values. It is simple to apply and is useful where management is 

judged on the overall company ROCE. Although it takes account of cashflows after 

the point of payback, there are numerous methods of defining ROl. and it does not 

differentiate between the size of investment decisions. 

Payback and ROl are frequently used to assess investment opportunities. Their 

simplicity is advantageous but can produce misleading results as they ignore the 

timing of cashflows. 
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Discounting Methods 

The previous measures are limited by the fact that they do not take account of 

the time value of money. The preference can attributed to a number of factors: 

that investing money now will allow it to appreciate; that consumption is preferred 

now rather than later; the erosion of purchasing power by inflation; and given the 

chance of misfortune over time it is better to have the money now. In many ways 

the rate at which money loses value, the 'discount rate', reflects the perception of 

risk. As such, investments sponsored by government attract a lower, or 'social', 

discount rate than private projects. The theory of discounting is useful in assessing 

long term capital projects through several methods: discounted payback which uses 

discounted cashflows; net present value analysis and internal rate of return analysis. 

The net present value (NPV) of a project is the difference between the costs and the 

worth of a project. It is the present value of all cash flows (CF) connected with the 

project discounted at rate reflecting the accepted discount rate (d), and the project 

is deemed acceptable if the NPV is positive: 

CF 
NPV= (4.3) 

(1 + d)t 

The internal rate of return (IRR) is the discount rate that would deliver a NPV of 

zero. The project will be accepted if the IRR exceeds the project's cost of capital. 

Although the NPV and IRR analyses appear to be the same there are differences 

between their results. The IRR is often favoured as it is rather intuitive and avoids 

the need to preselect a a project minimum acceptable rate of return. The methods 

agree when projects are independent and conventional: independent in the sense 

of not precluding another, and having a conventional cash flow profile of net cash 

outflow, followed by net inflows. It is possible for a project to have more than one 

IRR, reflecting the reversal in sign of net cash flows, and the choice of the correct one 

can be problematic [146]. Overall, the net present value is the more robust method 

to follow [145]. 

Annual Coverage Tests 

In addition to measures that assess the overall worth of projects a number of meas-

ures are used to indicate financial performance over time. As well as numerous profit 

measures and liquidity ratios commonly used by accountants, lenders commonly rely 

on two indicators to gauge the capacity of a project to support debt [147]. 

The 'interest coverage ratio' expressed as the ratio of profit and interest payments 
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measures the project's ability to cover interest charges. The profit measure is nor-

mally earnings before interest and taxes (EBIT). An interest coverage ratio greater 

than one indicates that interest charges can be covered, however, to account for 

uncertain cash flows the threshold is often set higher (e.g. 1.25). 

The 'debt service coverage ratio' includes the principal as well as the interest. Prin-

cipal repayments are not tax-deductible so these must be made from after-tax profits. 

However, depreciation charges in the profit and loss account are available to repay 

the principal. Debt can be fully serviced when the ratio is greater than one, oth-

erwise borrowing or equity contributions will be required to cover the difference. 

Again a margin of security is often required. 

4.6.3 Risk and Return 

The discounting methods require a discount rate to allow assessment of project value, 

and the theoretical basis is outlined here. The discount rate is regarded as the rate 

that could be received from the most comparable alternative investment, in other 

words the opportunity cost. The rate is known as the firm's 'minimum acceptable 

rate of return' (MARR), and a project will only be accepted if it provides a return 

equal to or greater than this rate. In the absence of a comparable opportunity it is 

possible to determine the required rate of return from an examination of the capital 

structure of the project. 

The discount rate can be calculated from the firm's weighted average cost of capital 

(WACC). WACC is the average of both debt and equity rates of return weighted by 

their contribution to the capital of the company: 

WACC= (19)C e +9(17- ) Cd 	 (4.4) 

where Cd, Ce are the costs of debt and equity, 9 the proportion of debt and r the 

marginal tax rate. 

The debt and equity rates are estimated in different ways. The cost of debt is 

simply the interest rate at which lending can be secured. However, the difficulty 

lies in estimating the the cost of equity. Debt involves payment obligations and 

often involves claim over assets, but equity does not. The equity purchaser will only 

purchase a risky asset if they expect a rate of return that compensates for this risk, 

with the expected return increasing with risk. 

Projects or companies have two components to their risk profile: 'systematic risk', 

shared by all market participants, and 'specific risk', particular to the entity. The 

assumption is that a rational investor will minimise their exposure to the specific 

risk, and as such do not require rewarding for it. Accordingly it is the systematic 
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risk that determines the required rate of return to be paid by the company. 

Capital markets provide a standard in measuring the trade-off between expected 

return and risk. The return provided by default-free government bonds is regarded 

as risk-free. The market itself has an expected return given by the mean return of a 

portfolio of all stocks in equal proportion, and its risk is measured by its standard 

deviation. This risk is regarded as the standard systematic risk of an individual 

security. The relative risk of a particular security compared to the market risk is 

termed its beta (13e)  coefficient. A beta of 1 means that the security carries the same 

risk as the market, while beta's greater than or less than one indicate a more or less 

risky investment respectively. Betas tend to range between 0.75 and 1.5. 

The relationship between risk and return can be determined by the application of 

the capital asset pricing model (CAPM), which states that assets with the same risk 

should have the same rate of return. The CAPM states that the expected rate of 

return on a portfolio should exceed the risk free rate by an amount proportional to 

the beta coefficient of the portfolio. For a single security this gives 

re  = rf + /3e ( m  - rf) 	 (4.5) 

where rf, rm  and r6  are the risk-free, market and individual equity rates of return. 

4.6.4 Implications of Climate Change 

The preceding sections detail the process of the traditional feasibility study, some of 

the economic measures used, and how project risk and return are linked. However, 

the prospect of climatic change necessitates that a number of factors require re-

examination. 

Appraisal Process Adjustments 

Potential climate change suggests that past river flows can no longer be relied upon 

to indicate future flows, implying that the traditional investment appraisal is inad-

equate and must be altered. Relatively recent studies do not take account of it. For 

example, the Three Gorges study was published in 1988, only two years before the 

IPCC First Assessment, but it contained no reference to climatic change. However, 

some studies are beginning to take account of climate change but it appears to be 

only in a very rudimentary manner, for example by reducing river flows by 10% for 

public schemes, or a more conservative 20% for commercial projects [148]. Unfortu-

nately, simply altering river flows in a uniform fashion does not take account of the 

complex interactions between precipitation and evapotranspiration, and therefore 

may ignore the precipitation amplification effect or seasonal changes. 
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The requirement therefore is to remove the reliance on historic river flows in favour 

of the use of climatic variables that ultimately determine river flow. 

Increased Risk 

The economic viability of a scheme depends on the cost of capital and this can 

be altered by climate change. Although the market equity rate is unlikely to be 

affected by climate change alone, the equity beta reflects the risk and so it will tend 

to increase the required rate of return for the equity. With project finance, the 

majority of the capital is in the form of debt so the effect on debt cost is important. 

The lender will determine the lending rate based on their assessment of the risk of 

not receiving the money back. An increased risk (i.e. hydrological risk) will tend to 

increase the lending rate to compensate. 

The increased cost of capital will alter the discount rate used, and possibly render the 

project as unsuitable for investment. At the very least it will make hydropower less 

attractive than other generation methods. It is uncertain how great this (secondary) 

effect will be, and therefore it must be examined through the assessment of future 

river flows. 

4.7 Summary 

This chapter details the impact of climatic changes on the hydrological cycle and in 

particular on river flows. The resultant effects on hydropower potential, and opera-

tion are also detailed. Limitations of existing studies in the literature are highlighted 

and a proposal made to examine quantitatively, the impact on investment in hydro-

electric power. Current methods of investment appraisal are noted and suggestions 

made as to their limitations in light of climatic change. 

The key questions to be answered are: 

What impact will climate change have on the financial performance and risk 

of hydro schemes? 

How will this affect the terms for financing and the financial returns deemed 

acceptable by investors? 

What will be the knock-on impact on the provision of hydropower worldwide 

and the ability to meet carbon emission targets? 



Chapter 5 

Modelling Change 

This chapter defines the specifications for a piece of software suitable for analysis 

of the impact of climate change on hydropower investment. The methodologies 

required to quantify changes in the economic feasibility of hydropower schemes are 

then examined, different approaches are investigated and recommendations made. 

5.1 Objectives 

The previous chapter indicated the need to examine the impact of climatic change 

on three key areas. The first aspect requires analysis of the effect of change on 

a range of measures used to determine investment suitability, while removing the 

current reliance on historic river flow patterns. The second and third aspects follow 

directly from this. 

5.1.1 Analysis Methodology 

Estimates of the impact of climatic change may be gathered from climate change 

impact assessments. To be useful they must be based on a rigorous, well-documented 

methodology and each stage must be credible and scientifically supportable [149, 

150]. They follow one of three possible methods: impact assessments are generally 

the least complex and model the cause and effect of a specified change; the interactive 

approach includes the effect of feedbacks and other non-climate changes; finally, the 

integrated approach examines the interactions of different sectors of society under 

changing climates, and models developed for this purpose are called 'Integrated 

Assessment Models'. For this application, the primary need is to examine the effect 

of changes in climate on financial performance suggesting that the study is an impact 

study. However, the extrapolation of the analysis to attitudes and requirements of 

investment, means that overall, the study could be described as both an impact and 

96 
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interactive assessment. 

Analysis of the impact on hydropower financial performance is limited in scope to 

individual hydropower schemes rather than entire systems (as was the implicit focus 

of the last chapter). There are a number of reasons for this: time constraints, the 

need to gain an in-depth understanding of the processes at work, and the hetero-

geneous nature of hydropower schemes. The nature of the analysis necessitated the 

selection or development of suitable software in order to provide a means of rap-

idly assessing scheme sensitivity to climate change and to allow examination of its 

impacts. The software would be used to allow an initial inspection of individual 

schemes, to indicate whether the issue requires closer consideration. 

The basic goal of the prototype software is to facilitate academic consideration of 

the issues surrounding climatic change, although further development has not been 

ruled out. Ideally, the software would be able to cope with any hydropower scheme 

or system, but due to the large variety evident in existing or planned hydropower 

schemes, a number of restrictions were necessary to limit the magnitude of the task. 

Firstly, that schemes should consist of a single reservoir with limited or no upstream 

regulation in order to avoid problems with the coordination of cascaded systems. 

Secondly that power generation should be a major aim of the scheme, to simplify 

the project economics. Despite these restrictions this should allow most schemes 

worldwide to be successfully modelled. 

To satisfy the first key research question, the software has to perform a financial 

appraisal of the given scheme. The key difference with the traditional approach is 

the replacement of river flow by climate information as the primary data source. 

To facilitate this, a hydrological model forms the bridge between climate and river 

flow. The effect of this additional component on the appraisal structure is shown 

schematically in Figure 5.1. 

5.1.2 Software Considerations 

The key requirement was that the software should encapsulate the entire financial 

appraisal process or at the very least a significant portion of it. This arises from 

the need to perform the financial analysis quickly and efficiently, with a minimum 

of external data transfer. A thorough examination of available commercial and 

academic software concluded that none could be applied generally or featured most 

or all the necessary components. Integrated software models of large river basins 

that could simulate much of the process do exist (e.g. Indus [114]), but would not 

be suitable for transfer to other river basins. 

The possibility of connecting separate pieces of software to create a coherent unit was 

also investigated. The advent of the Microsoft Windows component object model 
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Figure 5.1: Financial appraisal for hydropower schemes adapted for climate 
change 

(COM) has made the process simpler and allows particular pieces to be controlled 

by others. However, the variety of platforms used and other compatibility problems 

suggested that some software models would have to be rewritten, and as such it was 

deemed more effective to produce a single piece of bespoke software. Additional 

benefits of a stand-alone package would include control over software operation and 

scope. Some of the software models examined are detailed in the next section. 

5.2 Available Modelling Methodologies 

In this section, the constituent parts of the new feasibility study model are examined 

in terms of possible approaches and their suitability for the current purpose. 

5.2.1 Climate Change Scenarios 

Impact studies aim to provide a comparison between conditions with and without 

climate change. Other than a baseline' scenario representing a specific (and usually 

current) period of time, scenarios of plausible future climate conditions are required. 

There are several distinct methods for doing this: 
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Arbitrary .  Scenarios 

Specified and arbitrary (or hypothetical) changes in climate can be used to either 

investigate the implications of change or examine the sensitivity of a hydrological 

system. The method is useful in assessing the vulnerability of catchments or water 

resources systems to changes in climate inputs, but is not useful for estimating future 

conditions [107]. As the preceding chapter notes, the majority of studies fall into 

this category. 

Analogue Techniques 

It is possible to define scenarios based on temporal or spatial analogues. Temporal 

analogues use information from historic periods to provide an illustration of, for 

example, a warmer period. Information can be gained directly from instrumental 

records or from palaeoclimatic reconstruction, but both methods are limited in their 

application. The instrumental approach relies on the assumption that differences 

between historic warm and cool periods are a good analogue for warming under 

climate change. This may not be the case as the causes are different, particularly if 

past differences are due to random fluctuations. Other issues include the short record 

length, and perhaps an insufficiently large temperature difference between the ana-

logue periods. Despite these, historic information may be useful for examining how 

systems fare under extreme conditions. The use of paleoclimatic analogues is limited 

primarily by the fact that quantitative information is difficult to obtain. However, 

their major application appears to be in flood reconstruction or in indicating how 

the fiuvial system responds to changes in climate [121]. 

Spatial analogues use the current climate of one location to represent the future in 

another. This often is unrealistic as climate is influenced by the local features such 

as the terrain. Hydrological information is even more difficult to transfer, as the 

characteristics of the catchment (e.g. geology) determine the regime. Accordingly, 

attempts to investigate future conditions in southern England using south-western 

France as an analogue failed because of this [151]. 

General Circulation Models 

As examined in Chapter 2, the most effective method of estimating future climate 

is the use of General Circulation Models. Current GCMs not only simulate atmo-

spheric variables, but through their land-surface models can simulate runoff. There-

fore, the simplest method of determining changes in runoff is to use these values 

directly. Miller and Russell determined the change in annual runoff for over thirty 

major rivers directly from the GISS model [111], while the US Environmental Pro- 
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tection Agency (EPA) considered the runoff indicated by a range of models [112]. 

There are a number of reasons for the lack of suitability of this approach and prob-

lems associated with GCMs in general. Firstly, the land-surface models employed in 

the GCMs are very simple, and therefore unlikely to represent runoff in a physically 

sound manner. Secondly, regional climate is not particularly well simulated, as ex-

plained in Chapter 2. Finally, the spatial resolution of GCMs is presently too coarse 

for direct application to hydrological purposes, with the best GCMs operating at 

scales of iO km 2 , rather than the 10 3  km2  required. This prevents the accurate 

representation of local or regionally important patterns. The temporal resolution of 

GCMs is in the order of minutes, and whilst this can be aggregated into daily time 

steps preferred for most hydrological purposes the spatial resolution prevents any 

meaningful use of the shorter time step data [107]. 

While these factors restrict the direct use of GCM output they can be used to create 

scenarios by using the climate data directly, or by applying the implied change to his-

toric data. It is assumed that the GCM reliably simulates current climate, and that 

the indication of change is reliable, for the direct and change cases respectively. Ap-

plying changes to historic data ('perturbation') can be done by altering the historic 

data by the relevant amount, although this does not alter the temporal structure. 

Alternatively a stochastic weather generator can provide time series of climate vari-

ables based on the statistical properties of the variables [152]. This approach suffers 

because it is difficult to create a model that can correctly simulate climate and be 

able to alter the statistical properties. The second major consideration is how best 

to overcome the spatial scale problem. 

Downscaling 

Reduction of the spatial scale from the GCM to that useful for hydrological and 

other purposes requires the use of 'downscaling' techniques. The simplest approach 

is through interpolation either subjectively or using a statistical method, and values 

for each area are inferred from the larger-scale pattern [153]. 

Another method is to use circulation patterns or weather types by defining them to 

indicate surface conditions. This uses atmospheric pressure patterns to determine 

weather conditions, and this method is particularly suited to GCM application as 

they have been shown to reproduce pressure patterns very well. This method has 

been used in the assessment of future water resources in the Anglia Water region 

[154]. However, the method assumes that the empirical relationships between cir-

culation type and local weather variables remains constant, which may not be the 

case. 

The greatest potential appears to lie in the use of regional high resolution climate 
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models embedded or 'nested' within the GCM. The GCM provides boundary con-

ditions and the smaller model provides a more detailed simulation including terrain 

and coastline information. The indications are that such models produce more real-

istic simulations and suggest different climate changes than the driving GCM alone 

[155]. They are however, dependent on the quality of the larger GCM simulation. 

Recommendations 

It is apparent that analogue techniques are not suited to this application. While 

downscaling CCM output is likely to deliver improved hydrological representation, 

the necessary investment in time and resources is beyond the scope of this ap-

plication. Moreover, it would contravene the requirement for 'simple' approaches. 

Otherwise, the use of CCM output, particularly the perturbation technique appears 

to be satisfactory, as does the use of uniform change scenarios. 

5.2.2 Hydrological Models 

Hydrological models convert climate inputs into runoff and other hydrological out-

puts, and are in use in water resources design, operation and forecasting. They have 

been proposed, developed and refined over many years, and the complexity of indi-

vidual models tends to reflect the available knowledge and processing power [156]. 

This is reflected in Figure 5.2, which illustrates how variations in spatial and tem-

poral characteristics influence model complexity. These factors will be considered in 

the following sections. The differing complexity of models allows them to be clas-

sified as empirical, process-based or conceptual [157], although other descriptions 

exist (e.g. see Todini [156]). 

Empirical 

Empirical models use statistical relationships to link climate variables and runoff. 

Most use regression techniques although many recent studies have examined the 

suitability of artificial neural networks (ANN) for modelling hydrological processes 

[159, 160]. Empirical models have been applied to predict long term average run-

off and flood levels, and although they implicitly reflect the physical relationship 

between the dependent and independent variables, there are issues with their use. 

Model sensitivity is influenced by structure and the period used to develop the rela-

tionship. Comparisons between models have found that output varies significantly 

[161]. Additionally, the implied relationship may not apply to altered climates, and 

therefore the use of such models in conditions or locations different from that used 

for their generation is criticised [157]. 
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Figure 5.2: Influence of spatial and temporal characteristics on hydrological 
model complexity [158] 

Process-Based 

The most complex process-based models use physical laws to determine water flow 

in the catchment, and a growing number are available [157]. Normally spatially 

distributed, some operate down to the metre scale, and have a time step of minutes. 

The aim of such models is to determine the parameters based on measurements 

but in practice some of them are determined through calibration. Although they 

tend to produce realistic simulations of hydrological processes, their use in climate 

impact assessments has been limited. This is due to the large data requirement, and 

the requirement to define climate scenarios at very short time steps, which is not 

possible presently. There is also concern as to whether small-scale physical processes 

apply at the grid scales used in the models [162]. 

Conceptual 

Conceptual models lie midway between the two previous types of hydrological model 

in terms of their ability to produce realistic simulations and of data intensity. They 

represent the catchment as a series of storage zones and describe water flows between 

them, and all employ some form of water balance approach to account for the flows. 

The capacity of each store and the parameters controlling the flows have some phys-

ical basis, and can sometimes be determined explicitly, but they mostly require 

calibration using historic stream flow data. The catchment can be represented as a 

single area or as a series, and this distinction refers to models as 'lumped or 'dis-

tributed'. They can be operated on a variety of time scales, from monthly to hourly 
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depending on the application, data availability and catchment size. As catchment 

size increases, short-term variations in runoff tend to be smoothed out, allowing 

more simple lumped models to suffice. However, simpler models tend to poorly 

account for storm runoff on shorter time scales [157]. Some of the better known 

models are listed in Table 5.1. 

Model and Origin (if not US) 	 Type 	Parameters 

Stanford Watershed Distributed 34 
Sacramento Lumped 17 
Hydrocomp Simulation Program (HSP) Distributed - 

USDAHL Lumped 166 
UBC (Canada) Lumped 9 
HBV (Sweden) Distributed - 

HYYROM (UK) Lumped 15 

Table 5.1: Examples of conceptual hydrological models [157, 163] 

The advantages of conceptual models have led to them being widely adopted in 

climate change impacts assessments. The Sacramento Soil Moisture Accounting 

Model has been used in a number of climate impact assessments in the United States 

[113, 120, 118], Greece [164] and elsewhere. Although the models shown in Table 

5.1 tend to allow relatively detailed assessments of the magnitude and timing of 

hydrological response to climate changes, difficulties arise due to the large number 

of parameters that must be estimated or calibrated, as well as the quantity and 

variety of data required [157]. As a result a wide range of more simplistic water 

balance models have been developed and applied to the climate change problem. 

Originally developed by Thornthwaite in 1948 [165], water balance models effect-

ively account for the movement of water from the time it enters a catchment as 

precipitation until it leaves as runoff. Differences tend to be in detail rather than 

concept, with the main variations in the input data requirements, the nature and 

number of moisture storages, and the representation of hydrologic processes [166]. 

They have been applied on a range of time-scales from daily to annual time steps, 

but most climate studies have used a monthly step (e.g. [167, 117, 161]). 

Hydrological Model Calibration 

Despite the relatively simple nature of many conceptual models, there still exists 

a need to calibrate them, or rather to adjust their parameters such that simulated 

runoff closely matches the observed record. A large body of literature relates to the 

calibration of hydrological models. Many different types of techniques have been 

applied. 

Exhaustive or blind search is one of the simplest methods, and searches until a solu- 
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tion is found. However, as the number of parameters requiring estimation increases, 

the search-space grows exponentially, as does the computational effort. A heuristic 

search provides direction and avoids sampling of the whole space, whilst larger num-

bers of parameters can be fitted with genetic algorithms (GA), which rely on the 

principles of Darwinian Evolution to select the optimum parameter set [168]. Other 

parameter estimation techniques have been summarised by Singh [169]. 

Calibration consists of selecting different parameter sets until the closest fit is found. 

The suitability of a particular parameter set is determined by the objective function 

which compares the river flow series simulated by the model to the observed series. 

The objective function can take many forms including many standard statistical 

measures (e.g. coefficient of determination, R 2 ). However, specific measures are 

often recommended with, for example, the American Society of Civil Engineers 

(ASCE) advising the use of the Nash-Sutcliffe efficiency criterion (NS) [170]: 

ç-N (. 	s 
NS = 1 - L.i=1' 2 - .'j2 

 (5.1) 
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where Oi and Si are the observed and simulated flows and O is the observed mean 

flow. This measure tends to bias results towards high flows, so other methods, such 

as the use of the logarithms of flows may be more suitable [107]. 

Recommendations 

Empirical models are precluded by their transferability issues, while process-based 

models are ruled out through excessive data requirements. Within the ranks of the 

alternative, water balance models offer the best combination of simplicity, perform-

ance and transferability. The use of exhaustive searches for model calibration is 

likely to be impractical for other than a very small number of parameters. 

The advantages of water balance models over more complex conceptual or process-

based models are significant, and are the clear choice for this application. However, 

there are a number of aspects for consideration. 

Model complexity is important as a larger number of parameters requires additional 

information in advance and creates difficulties for calibration. There is also the pos-

sibility of over-parameterisation, where redundant parameters reduce the physical 

significance of the model, such that it becomes 'little better than a statistical black 

box' [171]. However, three to five parameters should be sufficient to reproduce most 

of the information in the hydrological record [162]. 

The spatial and temporal scale also has a bearing on model complexity, with relat-

ively simple models performing equally well on larger temporal and spatial resolu- 
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tion. This is due to parameters losing some of their significance, and suggests that 

the choice of model should reflect the size of basin in which it is to be used. 

The process of calibration invariably means that the model becomes less physically 

based and more stochastic in nature [156]. However, the minimisation of the number 

of parameters determined by calibration will reduce this risk. 

Irrespective of the complexity of the model, there will be some distortion of reality, 

particularly if, as is true for climate change assessments, data is sparse. 

5.2.3 Hydropower Simulation 

Chapter 4 noted several limitations in the representation of reservoir operations 

and hydropower production in climate impact assessments. Many of these can be 

addressed by the use of a reservoir operations model that allows hydropower produc-

tion to be simulated in a physically sound manner. The simulation aims to operate 

the reservoir/hydro station in a similar manner to a station operator. 

The basic aim is to account for water flows into and out of the reservoir, and this is 

generally achieved by the solution of the continuity equation that controls the level 

of reservoir storage 

Inflow - Outflow = Change in Storage 	 (5.2) 

The outflow consists of all flows of water out of the reservoir, controlled or otherwise, 

and includes: releases through the turbines resulting in generation; spillage; seepage 

or leakage into the surrounding soil or through the dam, and evaporation. The 

change in storage is the difference (if any) between the storage volume at the start 

and end of the period in question. 

Solution of the continuity equation is non-trivial, as many components are inter-

dependent. Storage and surface area are both functions of the water level (or eleva-

tion), and as they are determined by the topography of the land, the functions are 

rarely linear. The relationships can be determined by examination of contour maps 

or from digital terrain models, and dependent on the complexity, are used in either 

piecewise-linear form or as a continuous function. Storage is complicated by the 

existence of dynamic storage, where water flowing from the reservoir entry towards 

the impoundment creates a shallow wedge of water. Whilst important for short time 

scales, dynamic storage is often ignored. 

The losses are also related to the reservoir level: seepage is influenced by the water 

pressure; evaporation is a function of reservoir area; and energy production is a 

function of available head. 
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Operating Rules 

In operating reservoirs a trade off must take place between using the water for pro-

duction in the current period and possibly being short in later periods, or postponing 

its use with the possibility of too much water and subsequent spillage. Operational 

policies must be tailored to allow optimal use of this limited resource. This is gen-

erally achieved through the use of rule curves. 

Rule curves define the desired storage volumes and discharges at any time of the 

year as a function of existing storage volumes, demand for water or hydropower and 

possibly expected inflows [172]. Policies include one or more of four components: 

Target storage levels. 

Multiple zoning where rules define storage allocation. 

Flow ranges providing a relationship between storage and releases. 

Conditional rule curves. 

Multiple zoning is common where there are multiple demands for water use or the 

need for flood control. As Figure 5.3 indicates, the reservoir is split into storage 

zones. The storage level will be within a particular zone and that will determine 

how the reservoir is operated and the magnitude of releases. The uppermost zone 

is the flood control zone which is empty except when regulating floods, and below 

that the conservation storage zone, which stores water to meet demand for power, 

irrigation or other. The dead storage zone represents the lowest level for power 

generation and provides space for sedimentation. The conservation zone is often 

split into two or more parts where differing levels of demand fulfilment can occur, 

with the lower buffer zone reserved for minimum operational purposes. The flood 

control allocation can be fixed throughout the year if floods can be expected at any 

time. Where floods follow more seasonal patterns, storage is allocated according to 

flood magnitude and probability, and such 'joint-use' schemes tend to provide more 

efficient use of available space. The buffer zone storage can also vary throughout 

the year. 

The other common method of operating reservoirs is to develop relationships between 

releases and storage. Often linear, releases can be a function of storage alone, or 

inflow and other factors. Relationships relying on storage alone (e.g. ReVelle [174]) 

are likely to be relatively inefficient, so conditional rules which define releases on 

the basis of expected inflows improve matters. Figure 5.4 shows an operating rule 

that determines releases on the basis of available water, with the release satisfying 

the target energy fixed over a wide range of availabilities. The ramp on the right 

aims to prevent spillage as the reservoir nears capacity, while the decline to the left 

would reflect lower releases as availability falls. 
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Figure 5.3: USACE defined reservoir storage zones and levels [173] 
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Figure 5.4: Standard reservoir operating rule [175] 
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Operational Strategy 

The reservoir rules are determined on the basis of the desired operational objective, 

of which a number are possible [176, 1771: 

. Maximise firm energy - production that can be met under the most adverse 

conditions. 

. Maximise annual energy - under average water conditions. 

. Maximise energy benefits - if energy values vary monthly, production will focus 

on higher value periods. 

o Maximise dependable capacity - storage maintained at or above the rated head. 

• Variable draft - storage is drafted for energy production based on the market 

value. 

The first strategy is the classical approach to storage regulation, and applies mostly 

in hydropower dominated-systems where there is no alternative resource to make up 

the deficit. Originally determined by mass curve analysis, it is now more common 

to use sequential stream flow routing [129, 177]. While it is possible to meet the 

firm (or 'primary') energy target alone, this will waste valuable 'secondary' energy. 

To ensure good use of this additional energy, and flexibility towards non-power uses, 

rule curves are developed to determine reservoir operation. 

The alternative strategies trade lower reliability for increased flexibility or increased 

benefit. Variable draft operation is increasingly common and relies on the creation 

of an economy guide similar to Figure 5.5. The economy guide relates long term 

thermal generation cost to the system energy in storage, and is normally computed 

by stochastic dynamic programming (SDP) methods. The optimal water use will 

allow the storage to fall to the level associated with the thermal cost in a given 

period. Using too much water results in a lower storage than optimal resulting in 

a high current 'cost', and vice versa. The logical basis for this is that any water 

spilled has no value, while close to the dead storage level the value is high. Origin-

ally developed for combined hydro-thermal systems, variable draft operation lends 

itself well to liberalised markets, where the optimisation can be applied to indi-

vidual generating companies. Liberalised systems allow alternative water valuation 

approaches, including the use of historic earnings [178]. The uncertainties surround-

ing long-range thermal costs and demand means variable draft guides generally do 

not apply beyond a year ahead, and will be continually updated. 
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Figure 5.5: Marginal value of water in storage [179] 

Foresight 

The use of information is an important consideration for hydropower simulation, and 

if the model is to operate in a realistic manner, it should use the same level of inform-

ation available to a real-life operator. This avoids problems with foresight' where 

the model has more information available than the operator, or 'short-sight', where 

the opposite is true [180]. Several approaches are possible. Perfect information 

assumes prior knowledge of inputs and demands, and will deliver the theoretically 

optimal operation. This is generally unobtainable and may result in under-designed 

systems. Good forecasts are generally available for system demands and river flows, 

and so modelling on this basis will produce reasonably realistic operation. In the 

absence of a forecast, corrective action can make use of information as it becomes 

available in order to optimise operations. The commitment to the meeting of a fixed 

requirement without regard for conditions or opportunities is likely to result in the 

greatest inefficiencies. Overall, the reliance on forecasts will avoid both fore- and 

short-sight and provide the most accurate simulation of reality. 

Computer Packages 

A wide variety of reservoir simulation tools are available. The US Army Corps 

of Engineers have developed some of the industry standard packages including the 

HEC-3 reservoir system analysis for conservation model [181], and the larger HEC-5 

flood and conservation model [173]. Commercially available software includes the 
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Hydrocomp Forecast and Modelling package and a real-time operational simulation 

model from Hydrosoft Energie [182]. 

The complexities of operating multiple hydropower schemes has forced the devel-

opment and use of designated models. Most authorities responsible for hydropower 

production will have their own, for example, the Tennessee Valley Authority model 

[183] and HYDROSIM used by the Bonneville Power Administration [177]. 

Operating Rule Optimisation 

Much of the water resources literature is devoted to the design, application and 

assessment of optimisation techniques. In addition to classical or Lagrangian op-

timisation, reservoir rules have been developed by linear programming, dynamic 

programming (DP) and non-linear programming. 

Linear programming methods are common in many problems relating to the electri-

city industry. The key assumption is that relationships between variables and the 

constraints imposed are linear, and these are generally solved using matrix meth-

ods. Both deterministic and stochastic approaches have been employed, as have 

so-called 'ch ance-const rained' methods which reflect the probability conditions on 

constraints [184]. The literature contains many examples of linear decision rules 

that guide release quantities as a function of storage and other variables (similar to 

Figure 5.4). 

Dynamic programming was originally formulated to optimise multi-stage decision 

processes, and much of its popularity stems from its ability to deal with the non-

linear and stochastic characteristics of real systems. Large problems can be reduced 

to sub-problems that can then be solved recursively. The solution follows from the 

'principle of optimality' which allows the decision tree to be reduced to a series of 

single-step decisions. A number of DP techniques are available but the standard 

approach for water resources is the use of stochastic dynamic programming (SDP). 

SDP employs the serial correlation of inflows to develop a conditional probability 

matrix, and this requires that both state (storage) and decision (release) variables 

are discretised. Effective discretisation is important to balance accuracy and compu-

tational effort. Stochastic techniques tend to produce more conservative operating 

procedures but higher reliabilities than deterministic ones [175]. 

The application of non-linear programming to reservoir operation has previously 

been limited by computation and a lack of effective algorithms for large scale op-

timisation [184]. They have advantages over other techniques in that non-linear 

constraints and non-separable objective functions can be handled, but the inclusion 

of the stochastic nature of inflows is problematic. A wide variety of search algorithms 

have been applied to problems, including the use of genetic algorithms [185]. 
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Most of the above techniques are optimised on the basis of the value of an objective 

function. The objective function normally consists of terms that measure the bene-

fits of reservoir operations as well as penalties for breaking 'soft' constraints (e.g. 

encroachment into the flood-control zone). Reviews of optimisation approaches and 

the necessary objective functions are available in Yeh [184], Mays and Tung [186], 

and Wunderlich [180]. 

Recommendations 

Reservoir operations modelling is well defined and documented, with the industry 

standard HEC-5 approach particularly so. Accordingly, HEC-5 will be used as the 

basis for modelling the reservoir and hydropower station. The correct choice of 

operating rules is highly dependent on the operating strategy, the reservoir purpose 

and in particular the market type. These factors are considered in the next section. 

5.2.4 Electricity Market Model 

The continuing trend towards electricity market deregulation and liberalisation has 

led to a great deal of commercial and academic research activity on the effective 

modelling of electricity markets. This has primarily been due to the need of mar-

ket participants to gain competitive advantage or understand their risks, and for 

regulators in understanding and determining strategies for increased competition. 

Market modelling is used for production planning, contract negotiation and invest-

ment appraisal. In this application the requirement is to create a revenue stream 

from production estimates by determining the selling price in each period. The 

nature of the revenue stream depends on the type of market, the type and availab-

ility of contracts and the type of generating plant. 

Market Simulation and Contracts 

Energy prices in traditional systems are generally set by purchase tariffs determined 

by the Utility. In well regulated systems, prices rises are often restricted to the level 

of inflation or less, and as such are relatively easy to project forward in the short 

and medium term. The real difficulty is the prediction of inflation rates, which often 

leads to the use of the long term average. 

For liberalised markets, prices vary according to the demand level and generator 

availability, and accordingly are more difficult to predict. The system marginal 

price for any period can be determined from the least cost schedule determined by 

a variety of different methods. In the UK the unconstrained least-cost schedule is 
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currently created by the Generator Operation and Loading program, which ranks 

Generator's bids in ascending order [73]. In the long run the bids are expected to 

reflect the marginal cost functions for each plant (Chapter 3), as would occur with 

perfect competition. As such, it is possible to create estimates of market price based 

on these marginal cost functions [87]. 

In reality the bids do not perfectly reflect marginal costs, and can vary considerably 

from period to period. The ability for a Generator's bid to depart from the marginal 

cost could reflect the fact that a perfectly competitive market is not in place, and 

that 'gaming' is occurring. This could be through setting prices artificially high or by 

restricting capacity to force up the capacity payment component [88, 89]. There has 

been some consideration of non-perfect or oligopolistic competition in the literature 

[187, 188, 189]. 

An alternative approach to scheduling approaches is to develop statistical models 

of actual price movements. The standard method in financial markets is to use a 

log-normal model, but this does not work well with electricity markets, partly due 

to differing short and medium term behaviour. Mean-reversion models have been 

proposed as an alternative [83]. 

Whichever method is used to predict market prices, they can often only be relied on 

in the short term. With the timescales involved in investment appraisal there are 

considerable uncertainties surrounding fuel prices, regulatory involvement and plant 

mix. These all have the capacity to fundamentally alter the price regime, and pose 

a significant risk to the investor and lenders. The use of contracts for reducing risk 

is common and has a major effect on market pricing and participation. 

Hydropower Operation 

The traditional use of hydro in mixed hydro-thermal systems is to minimise thermal 

production costs [190]. With liberalised systems the use of cost alone as a decision 

variable is inadequate, given the primary objective of profit maximisation. Given the 

very low variable cost of hydropower production, it could conceivably be scheduled 

to operate in any time period, and in fact is only limited by the resource. Assuming 

that the hydro company cannot influence prices (i.e. it is a 'price taker'), the 

limitation requires that hydro is used in the highest price periods, which normally 

are the peak demand periods. Therefore, the optimal operational strategies in both 

coordinated and competitive systems are the same [191]. 

Accordingly, a knowledge of demand should allow scheduling on the basis of available 

water, but the issue of price determination still exists. Average prices are possible, 

but this implies that production can occur across all sub-periods which may not be 

the case. The assumption of hedging contracts could be useful in that it allows a 
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single price to be used. However, difficulties arise regarding how to treat energy 

in excess or deficit of contracted quantity. Irrespective of the market, or simplify-

ing assumptions, the simulation of the revenue stream and the creation of optimal 

scheduling is non-trivial, as the weight and variety of available literature shows (e.g. 

Diaz and Fontane [192], Maceira and Pereira [193], among others). 

Recommendations 

Many of the locations suitable for new hydropower schemes lie within underdevel-

oped electricity systems which are unlikely to move towards deregulation in the 

foreseeable future. As such, and given the considerable difficulties with simulating 

prices in liberalised systems, as well as the widespread use of power purchase agree-

ments, it was deemed unnecessary to consider market price modelling other than 

price regimes resulting from tariffs or power purchase agreements. 

Generators derive some revenue from activities other than the supply of active en-

ergy. This is particularly true in liberalised systems, where ancillary services attract 

payments from the system operator, and opportunities exist for hydro plant to en-

gage in spot contracting. As such payments are (mostly) independent of climate 

change, and represent a relatively small proportion of income they therefore will not 

be considered further. 

5.2.5 Financial/Economic Model 

Although financial and economic modelling is fairly standard and the use of UK 

accounting standards is assumed, a number of points require qualification: 

. As depreciation reflects the contribution of the investment to the profit and 

loss account, the reducing balance approach is more appropriate. 

• Separate depreciation rates for different plant types are common, but this 

analysis assumes a single depreciation rate, and no plant replacements. 

• Loan interest rates and inflation can vary over the economic lifetime of a 

generating station, but for simplicity fixed rates will be assumed. 

• Although it is common for feasibility studies to incorporate foreign exchange 

into the financial analysis, the nature of this study suggests that such consid-

eration is too detailed. 
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5.3 Data Requirements and Availability 

The structure and scope of the software model is strongly influenced by the avail-

ability and quality of input data. This section examines the type of data required, 

and the type and quality of available data. Guidelines for data needs and use are 

then outlined. 

5.3.1 Requirements 

For the adapted feasibility study approach a series of different types of data will be 

required. Although similar to those required by the standard approach, it includes 

climate and climate change data, among others: 

• time-series of climate data, 

• time-series of river flow data, 

• technical and operational details of the hydropower scheme, 

• current and future market conditions and prices, and 

• economic projections and financial information. 

5.3.2 Availability 

Observed Climate and Climate Change Scenarios 

Standard feasibility studies tend to limit the use of climate data to identifying wet 

and dry years for use in testing the robustness of operational methods. At the lowest 

level, weather stations can provide a range of data from individual locations, and 

this can be gained from the meteorological office of the country in question, or from 

the archives of the WMO (either of which may attract a fee). The type of data will 

vary by station as will the measurement interval (i.e. daily, monthly etc.) and the 

quality of the data. 

The climate change issue has led to the development of a variety of global and 

regional datasets of observed climate variables. Leemans and Cramer constructed 

one of the first and provide monthly mean values for a range of climate variables on 

a 0.5° latitude by 0.5° longitude terrestrial grid [194]. A more recent version was 

created at the Climatic Research Unit, University of East Anglia (CRU) and consists 

of two datasets: a mean monthly climatology for 1961-1990 and a time-series climate 

from 1901-1996 [195, 196]. 
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The output of GCMs can be gained directly from the modelling groups, or more 

easily through the Data Distribution Centres (DDC) set up by the IPCC to facilitate 

research on climatic change. The DDCs possess the results of runs corresponding to 

the B usiness- as- Usual or IS92a scenarios of the IPCC Assessments including monthly 

anomaly fields, control and equilibrium values. Some transient experiments are also 

available, as is the CRU observed mean monthly climatology. 

River Flow 

River flow data can be sourced from the resident statutory body, for example, in the 

US this would be the United States Geological Survey. Otherwise, the WMO holds a 

range of data for several thousand gauging stations worldwide, and can be accessed 

via the Global Runoff Data Centre (GRDC) at the German Federal Institute of 

Hydrology. Where river flow data is not available, other techniques are required to 

estimate flows at the site in question. These include the use of other catchments as 

analogues and hydrological modelling. 

Reservoir, Market and Finance 

The availability of data depends on the stage of development of the scheme. Al-

though information on capacity and cost is generally widely reported in industry 

journals (e.g. International Journal on Hydropower and Dams), more detailed data 

(e.g. reservoir storage-elevation curves), is more difficult to access. Generally, more 

data becomes available as the scheme advances, with information on operational 

schemes found in many locations 

Where a scheme is planned or under construction, the feasibility study report will 

often provide the essential assumptions and calculations surrounding the design, 

projected operation and financial appraisal. The studies can often only be accessed 

through the project sponsors or consultants, and there may be reluctance if the 

details are regarded as confidential. 

If the development is at pre-feasibility stage, then the project parameters have to 

be estimated through a simplified study of available resource, potential market and 

financing. For example, the capital costs can be estimated parametrically, or through 

the adoption of typical values (e.g. installed unit cost of $1000/kW). 

5.3.3 Accuracy and Use 

All recorded data is subject to errors. Spatial climate data is influenced by the 

density of weather stations, both in terms of the true climate but also in terms of 
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the ability to cross-reference values to ensure quality. In Western countries, weather 

data is monitored by fairly dense networks of stations and can generally be assured. 

In developing countries this is not the case, as since the decline of colonial power the 

number of stations has fallen. Unfortunately, these regions tend to have the greatest 

need for climate monitoring and assessment. Gauged river flows are also subject to 

error, due to the irregular sampling of flow. In general, measurement error reduces 

with longer time steps, with for example, monthly river flow errors limited to around 

2% [197]. 

Economic projections are notoriously difficult, particularly over the time scales re-

quired for investment appraisal, as are those relating to cost and construction time. 

Estimates of electricity market size, growth rate and structure are also problematic, 

particularly in a time of rapid change. The use of feasibility study assumptions 

is a reasonable approach to negating the problems of projecting future conditions, 

particularly as these are used in determining development suitability. Therefore, for 

the purposes of this study, such projections will suffice. 

To limit the influence of measurement and estimation errors, it is sensible to limit 

the number of items of data required for analysis. A second advantage would be 

to increase the transferability of the software as fewer examples would be precluded 

through data insufficiency. However, a trade-off must be carried out in order to 

maintain realism and accuracy. 

As the analysis involves many years of data, feasibility studies tend to use monthly 

timesteps. It is reasonable to follow this approach, particularly as observed climate 

and GCM output is most easily accessible as monthly data. The use of monthly 

time steps will, however, have a detrimental effect on accuracy, a fact noted in some 

existing feasibility studies. For example, there is a tendency for over- and under-

estimation of hydroelectric production and spillage, respectively, although this is 

relatively minor compared to other estimates. While it is possible to apply correc-

tion factors to monthly data to improve the accuracy and realism (e.g. Three Gorges 

[130]), it is uncertain whether these would remain valid with altered flow regimes. 

5.4 Analytical Approaches 

Even with a model that can translate climate into financial performance, the question 

still remains concerning how to use it, and whether it is suitable for such tasks. Three 

possible analysis methods present themselves. 
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5.4.1 Sensitivity 

Most hydrological and water resources impact studies test the sensitivity of the sys-

tem to predefined changes in climate. A similar procedure is already used in capital 

analysis to ascertain the sensitivity of project returns to changes in construction 

cost, build period or financing rate [198]. The use of uniform changes in climate 

parameters would be a useful extension, and allows the relative effects of changes in 

all project parameters to be compared. 

5.4.2 Scenario Analysis 

Scenario analysis provides results on varying collections of parameters, to provide 

an indication of performance under different climes. As mentioned in Chapter 2, the 

application of GCM derived equilibrium or transient climate anomalies provides the 

basis for the analysis, and allows the effect of differing policy choices to be examined. 

5.4.3 Risk Analysis 

The outcomes from scenario analysis tend to be heavily reliant on the choice of 

internal and external parameters. As such, the use of single scenario values for (say) 

historic river flow data may well lead to a poor decision if the reality is significantly 

different from the estimate. The careful use of risk analysis techniques can help 

overcome this. 

Risk analysis often uses Monte Carlo techniques to generate distributions of possible 

outcomes with different study parameters [198]. Each notable variable is assigned a 

statistical distribution (generally Gaussian), and the value is chosen at random for 

each run. To provide a statistically significant sample, the process is repeated many 

times (generally more than 1,000). The resulting histograms then provide the basis 

for the risk assessment. Monte Carlo analysis tends to be computationally intensive 

and there are difficulties in selecting suitable distributions for relevant parameters. 

The particular difficulty for this application would be the tendency of other changes 

to disguise the effect of changes in climate, and a lack of control over the actual 

climate changes being modelled. 

One possible solution to this would be the use of Markovian models. They have been 

used for many years to provide synthetic series of river flows. Statistically indistin-

guishable from the original flow record, such flows have been used to extend the 

record period, fill gaps and provide alternative flow scenarios to test the robustness 

of water resources systems [144]. 

Markov (or auto-regressive) models assume that record data is self-correlated, and 
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future values can be determined from current values and the correlation together 

with a random element. Monthly flows are often correlated with the preceding 

months flow, and as such, high or low flows tend to continue. Such 'persistence' is 

dependent on the capacity of the catchment to hold water or possess 'memory'. An 

expression for generating future monthly flows (q) can be gained from analysis of 

the statistical properties of the data (monthly mean i, standard deviation o and 

correlation coefficient between months p) and a normal random number (t): 

qj,j = p + 2__(qj_i,j_i - t_1) + toj(1 - 	 (5.3) 

where i and j represent the sequential and periodic indices. 

Similarly, for this application it is possible to create synthetic series of climate data, 

although the monthly persistence of precipitation or temperature tends to be lower. 

For example, a risk analysis of hydroelectric production reliability in central Greece 

relied on the use of a first order Markov model to provide alternative sequences of 

current climate data [134]. The climate change anomalies were then applied to each 

one in turn to build up the distribution of outcomes. As with single scenarios of 

climate change, Markov approaches cannot take account of changes in the temporal 

structure of climate sequences. However, it conceivable that changes in the temporal 

structure could be considered by altering the statistical properties of the climatic 

variables, either from the output of GCMs or on an arbitrary basis. 

Overall, all three approaches can play a part in understanding the changes that will 

occur from global warming. 

5.5 Summary 

This chapter presents the requirements and specifications of a software tool for 

use in determining climatic impacts on hydropower and investment in it. Available 

modelling methodologies and approaches are critically examined for their suitability, 

and recommendations made. The requirements and availability of data is considered 

and leads to the conclusion that operating the model on a monthly time step over 

the desired number of years is most suitable for this purpose. Several analytical 

approaches are presented and deemed suitable for the purpose. 



Chapter 6 

HydroCC Simulation Tool 

This chapter describes the theoretical and mathematical basis of the climate impact 

software tool together with details of its implementation and features. 

6.1 Software Implementation 

The implementation of software suitable for executing rapid assessments of hydro-

power scheme sensitivity and risk to changing climate is the primary means of ex-

amining the project hypothesis set out in Chapter 1. The name chosen, 'HydroCC', 

an acronym for Hydropower and Climate Change, is intended to reflect its nature. 

HydroCC is a sizeable and complex software application, relying on over of 20,000 

lines of code (written by the author) for its simulation and functional capabilities. 

HydroCC enables a financial appraisal of a suitable scheme to be performed under 

current or a range of possible future climatic conditions, and follows the process 

illustrated in Figure 5.1. 

To allow ease of use on a Microsoft Windows PC a suitable graphical user interface 

(GUI) was necessary, and this limited the range of programming environments avail-

able. The language chosen for implementation was Microsoft Visual C++, which 

is designed for object oriented programming (OOP) techniques which were adopted 

for the software model. 

OOP provides a data abstraction model that allows objects to be defined accord-

ing to application requirements. The key concept is that of 'class', which allows 

data hiding, data initialisation, type conversion and operator overloading. More ad-

vanced features include the concepts of 'inheritance' where an object can incorporate 

features from its parent, and 'polymorphism' which allows different objects to re-

spond to the same function call in different ways. Each component of the HydroCC 

software is implemented as an object, which, although requiring additional program- 
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ming effort initially, benefits from the modular approach in terms of fault finding, 

flexibility and efficient maintenance. Sub-objects provide much of the functionality. 

The C++ language was developed by Stroustrup, and is a superset of the C language, 

which allows a high degree of code re-usage and interchange. Many texts deal with 

the use and structure of the language [199, 200] but the definitive texts are by 

Stroustrup [201, 202]. Other parts of the literature deal with the construction and 

design of the GUI, and the intricacies of the Windows environment (e.g. [203]). 

While graphical user interfaces are convenient and efficient means of editing dispar-

ate pieces of data, it is more convenient to allow larger bodies of connected data 

(e.g. time series data) to be entered and output in text files. This allows the use of 

proprietary spreadsheet packages to edit and manipulate data and create graphical 

representations. 

The software is structured as a Single Document Interface application, which provides 

functionality for saving and retrieving data through 'serialisation' in digital form. 

Carefully written code allows the attributes of all model components, together with 

time-series data to be managed as sub-components of a 'document' object (similar 

to a Microsoft Word document), although there was only limited scope for the use 

of the document-view architecture. 

Figure 6.1 shows the basic HydroCC application and some of the major GUI inter-

faces to the components, some of which are described in more detail in the following 

sections. These interfaces allow the financial appraisal of a given hydropower scheme 

to be carried out, and many of the interfaces relate to components of the appraisal 

process illustrated in Figure 5.1. 

6.2 Climate and Climate Change 

The climate component supplies available climatic data to the hydrological model 

following the application of relevant change scenarios. Three combinations of cli-

matic data can be used in HydroCC, reflecting the potential evapotranspiration 

methods catered for. These are the Priestley-Taylor and Hargreaves methods and 

the use of PET data (considered later). From the 'Climate Edit' dialog (Figure 6.2), 

the differing data requirements can be displayed, and data loaded or removed using 

the relevant controls. 

6.2.1 Climate Change Scenarios 

Climate change scenarios can be loaded into the system, using the relevant controls, 

which create a sheet where key details can be entered and the actual precipitation 
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and temperature change time series loaded. Once loaded, the scenarios can be edited 

using the list and accompanying button, and the data remains with the document 

until such times as it is removed. A corresponding entry in the simulation settings 

sheet (Section 6.8.1) allows the relevant scenario to be selected for use. As the 

major effects of climatic change will be as a result of changes in precipitation and 

temperature and following convention, only these are altered on a proportional and 

absolute basis, respectively. 

6.2.2 Synthetic Series 

To enable limited risk analysis capability, the climate component manages the ana-

lysis, creation and storage of synthetic precipitation and temperature series. Con-

trots on the Climate Edit sheet enable the display of a dialog sheet (Figure 6.3) 

containing the necessary statistical measures for an indication of the relationships. 

The sheet allows the data to be analysed rapidly, and the results displayed. After 

necessary adjustments (e.g. ensuring non-zero standard deviation, to prevent divide-

by-zero error), the length and number of synthetic series can be selected and then 

generated according to Equation 5.3. The synthetic series can be viewed as a text 

file written to a user defined directory. Once both sets are available, the multiple 

dataset routines become active. 
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Mean 	J193 606 171  235  11361 	5 J4 -' fl7 .3 Sthetic Series 
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Lag One 	(-o oo I -a 0216 Jo 42254 Jo 36818 1051133 (-0 1 043 Senes Length 
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Figure 6.3: Synthetic series analysis and generation dialog 
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6.3 'WatBal' Hydrological Model 

The hydrological model component converts the climate data into estimates of river 

flow, and the simple water balance model incorporated is known as 'WatBal'. The 

framework for the model was originally developed by Kaczmarek and Krasuski [204], 

and elements of their approach were adapted by Yates [205]. This simple lumped-

parameter model represents the catchment as a single storage 'bucket' with pre-

cipitation input and outputs of evapotranspiration and several runoff components 

(Figure 6.4). 

Evapotranspiratlo n Effective precipitation 

Ak 

-c 
t3) 
> 
(V 

ct runoff 

Surface runoff 

Sub-surface runoff 

Baseflow 

Figizr 6.4: ( i11'J:l ua! .i ructure of \Vat IaI model [u•i] 

Yates' model includes a direct runoff term which allows a fraction of rainfall to 

immediately become runoff without entering the soil zone. However, determination 

of this fraction requires familiarity with the catchment being modelled, and as this 

could not be guaranteed the term was omitted, following the example of Bowling 

and Strzepek, in using the model for land use change experiments [168]. 

The WatBal model has a number of distinct advantages over other simple water 

balance models examined (e.g. Gleick [167], Xiong and Guo [206]). It has been 

widely reported and used in a variety of catchments, differing in climate type and 

size [139, 207], and for examining continental scale runoff [208]. It has also been 

used to assess the effect of spatial and temporal data resolution on climate change 

assessments [209], and has compared favourably with other water balance and re-  - 

gression models. For most of these applications it has managed to produce relatively 

high correlation coefficients for both calibration and validation periods. 
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6.3.1 Water Balance Representation 

The model is novel in that it uses continuous functions of relative storage to represent 

runoff and evapotranspiration. A second difference is the representation of the mass 

balance as a differential equation, allowing a range of different time scales to be 

used. It is given by [205]: 

Smax 
dz

= Peji(t) - R3 (z,t) - R 33 (z,t) - R6 - AET(PET,z,t) 	(6.1) 
dt 

where Smax is maximum soil moisture storage, z is relative storage, Pef I is effective 

precipitation, R 3  is surface runoff, R 38  is sub-surface runoff, Rb is baseflow and AET 

is actual evapotranspiration. All values are in mm/day except 8max  (in mm) and z 

(which varies between 0 and 1). 

The inputs to the model are effective precipitation and potential evapotranspiration. 

In most cases the former is simply the incident rainfall, although for snow dominated 

catchments, a snowmelt and accumulation model is required (Section 6.3.2). PET 

can be estimated using a wide range of methods which are examined and compared 

in Section 6.3.3. 

The key variable in the model is the relative soil moisture level, defined as the 

fraction of the maximum Smar. The maximum soil moisture depends on the type 

of soil and topology, with deep soils, characteristic of tropical forests, possessing a 

large capacity, and thin rocky soils in mountainous areas having a relatively small 

capacity. The individual components of Equation 6.1 are presented in more detail 

as follows. 

Actual evapotranspiration (AET) is a function of the soil moisture state and PET, 

and while linear relationships have been used, non-linear ones are more realistic 

[205]: 

	

AET(PET,z,t) = PET(t)(5z 
- 2z2) 
	 (6.2) 

With the removal of the direct runoff component, all effective precipitation is as-

sumed to enter the soil. Some will leave as surface runoff, depending on the pre-

cipitation level relative to the basefiow and the soil state and the surface runoff 

exponent (e). Where there is a deficit, all precipitation percolates deeper into the 

soil, according to: 

= 	 f 

	

R3 
{ 

Z(Pe  ff - Rb) for Fej > Rb 	
(6.3) 

 
0 	 for Peff < Rb 
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The sub-surface discharge R 33  is dependent on the storage state and the sub-surface 

runoff coefficient, c (mm/day) as Equation 6.4 shows. Yates states that, for most 

catchments, the relationship is quadratic (i.e. sub-surface runoff exponent r, = 2), 

although for some a lower, more linear relationship is more appropriate indicating 

lower moisture retention capacity, e.g. gravel dominated catchments [205]. 

Rss = az' 	 (6.4) 

Total runoff R (in mm/day) for a given time step is given by the sum of the three 

components with baseflow determined from the 95% exceedance flow: 

Rt  = R 3  + R. + Rb 	 (6.5) 

The complexity of the differential equation precludes analytical solution, necessit-

ating a numerical method. Various solution methods are available, ranging from 

the simple Euler's method to more complex predictor-corrector methods. The most 

common approach uses a Taylor expansion of the equation, although difficulties with 

computing higher derivatives, means that the approximate Runge-Kutta method is 

favoured. The Runge-Kutta method is accurate, stable and easily programmable, 

and requires only the first derivative to be found [210]. Although previous versions 

of WatBal relied on predictor-corrector methods, the Runge-Kutta was found to be 

acceptable. 

6.3.2 Snowmelt Model 

For catchments significantly influenced by snow, a snowmelt model is used to com-

pute adjusted effective precipitation (Pejj). The behaviour of a snowpack is determ-

ined by energy balances but can be approximated using a number of techniques [211]. 

The use of degree-day data to determine the freezing and melting rates is common, 

but a relatively simple temperature method is favoured here as it avoids the need for 

degree-day calculations. It operates by comparing mean monthly temperature (Ti ) 
with specified threshold temperatures for melting (T1) and freezing (Ta ), it accounts 

for snow accumulation (A) in the snowpack and the amount of snow that melts. The 

necessary equations are: 

Peff,i = mf(A_i + F2 ) 	 (6.6) 
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where P2  is the incident precipitation in month i. The melt factor (ml) is given by 

	

10 	forT1 <T3  

	

Mfj 	1 	for T ~: T1 	 (6.7) 
T1 —T3  T1-T3 forT8<T,<T1 

where snow accumulation (in mm) is calculated from 

A, = (1 - rn!2 ) (A 2 _ 1  + P2 ) 	 (6.8) 

The correct estimation of the two temperature thresholds is important in the correct 

reproduction of observed river flows, as analysis with the East River and South Platte 

Rivers, both in Colorado, demonstrated [205, 168]. Specifically, it was found that 

temperatures control the timing and size of the melt, and the temperature range 

governs the melt rate. 

6.3.3 Evapotranspiration Model 

Potential evapotranspiration is a key input to the hydrological model, and can be 

estimated by a wide range of methods. A good summary and a guide to selecting 

the appropriate method is given by Shuttleworth [212]. Strictly there are two types 

of evapotranspiration calculation: potential evaporation (E n) and reference crop 

evaporation (Erc), which refer, respectively, to moisture loss from open water and 

an area of short grass. The latter tends to indicate lower rates of loss. 

Other than pan estimators, most other methods are indirect and require significant 

calculation. The most complex evaporation model currently available is the Penman-

Monteith reference crop measure which represents moisture flows as a network of 

resistances. The simpler Penman PE measure is given by: 

E -  0 
 _____ 

(R - Ah)+ 
y 6.43(1 + 0.536U)D 

(6.9) 

	

+7 	 A 

where A is the gradient of the saturated water vapour pressure curve, y the psychro-

metric constant (kPa oc_l),  U is wind speed at 2m above ground, D is the vapour 

pressure deficit (kPa) and A the latent heat of vaporisation for water (MJ/kg). R 

and Ah are, respectively, the net radiation exchange for and the energy advected to 

the water surface (both mm/day). /3 depends on the climate type and is taken to 

be 1.26 in humid and 1.74 in and climates (relative humidity less than 60%) [212]. 

The complex models have significant data requirements which can be difficult to 

satisfy. The Priestley-Taylor reference crop measure is a radiation-based approach 
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incorporating many of the features of the Penman model and provides similar es-

timates using far less information: 

Erc = 	(R - G) 	 (6.10) 
+ -y 

where Erc is in mm/day, . For regional estimates the soil heat flux (G) is effectively 

zero [205]. 

Other radiation based methods include the Turc equation which performs well in 

humid climates [212]. PET is also correlated to temperature through the radiation 

balance, and as such many methods are based on temperature. All are empirical 

and therefore limited in their transferability. The better known examples include 

the Thornthwaite and Blaney-Criddle methods, but only the Hargreaves method is 

recommended due to its explicit link to the radiation approach [212]: 

Erc  = 0.0023S05 5 (T + 17.8) 	 (6.11) 

where S. is the water equivalent of extraterrestrial radiation in mm/day, 5T  is the 

mean diurnal temperature range, and T is mean temperature (both °C). 

The methods detailed here are very different in their approaches and strengths. The 

modified Penman is the most soundly based as it is most closely related to the 

Penman-Monteith measure which is the accepted standard measure. However, the 

smaller data requirement favours the more simple Priestley-Taylor approach. Yates 

and Strzepek found large seasonal differences in estimated PET values between 

several methods (see Figure 6.5), which led to a corresponding variation in runoff 

when applied to the WatBal model [140]. The study found that the Priestley-

Taylor method was a good approximation to the modified Penman, and while results 

from the Hargreaves and Thornthwaite temperature-based methods differed from 

the physical methods, the degree was related to the complexity of the climate being 

modelled. Overall, the Hargreaves method produced a reasonable approximation to 

the more complex models. 

Data availability is a key consideration in selecting a method for use. As Section 

5.3.2 suggested, tabled observed data can be used to supply the needs of the models. 

Climate change scenarios are often limited to precipitation and temperature, and 

so other climatological variables are often assumed to remain constant or are scaled 

from other data. In addition to the primary climate data, the Priestley-Taylor 

method requires relative humidity and maximum daily sunshine hours, whilst the 

Hargreaves method requires diurnal temperature range. These are available in both 

the Leemans and Cramer [194] and the CRU databases [195, 196], and were adopted 

for the evaporation component. 
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Figure 6.5: Potential evapotranspiration method comparison for Blue Nile 
[140] 

6.3.4 Calibration 

Several search methods have been employed to calibrate the various forms of the 

WatBal model. Yates used a heuristic approach while Bowling and Strzepek re-

lied on a proprietary Genetic Algorithm produced by Palisade Corporation. They 

required this as they developed WatBal into a distributed form with a number of 

sub-catchments, necessitating the optimisation of two parameters per catchrnent. 

Yates optimised three parameters, 0, E and Sma.v on the basis of minimising RMS 

error, while Bowling and Strzepek's version only relied on two, as the latter was 

based on the land use. Neither model optimised i, initial soil moisture storage or 

the snowmelt threshold temperatures. 

To provide flexibility and allow the same basic solution method for the reservoir 

model, the choice of a Genetic Algorithm is sensible for optirnisation of the water 

balance model. The increased flexibility allows the investigation of the effects of in-

cluding other parameters in the optimisation. The operation of the GA is considered 

in Section 6.7.1. The Nash-Sutcliffe criterion (Equation 5.1) provides the basis for 

the objective function, and an exhaustive search routine allows GA performance to 

be determined. 
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6.3.5 Control and Operation 

All aspects of the WatBal component are configured from the same dialog (Figure 

6.6) which allows editing of the major parameters. The desired PET method is se-

lected, and for the Priestley-Taylor approach a further dialogue prompts for specific 

parameter values. If the PET setting is suitable the snowmelt model can be activ-

ated, and necessary temperature thresholds entered. The baseflow runoff component 

can be estimated by determining the 95% exceedance flow and activated from the 

menu command item. The calibration procedures are also accessed from the menu, 

and the chosen values can automatically update the sheet. 

Calibrate Baetlow 

River Basin Detalts- - 

Basin Name 	lUpper arrrbe:i 

Area (Sq. km) 	 360505 

Water Balance Parameters 

Alpha 	 28 

Epsilon 	 I 	9.95 

Gamma 	 2 

Soil Storage (mm) 	I 	56 

Initial Storage (0- 1) 	0.45 

Baseflow (mm/day) 	004 
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Required: 	( No C  Yes 

Potential Evapotranspiration 

C PET Data 

C Hargreaves 

( Priestley-Taylor 	Edit Paras 

	

Lathude (, South -ve)I 
	-15 

OK 	 Cancel 	f 	I 

Figure 6.6: WatBal dialog 

6.4 Reservoir Model 

Most of the technical and operational parameters associated with the reservoir and 

hydro station component are edited through a series of property sheets (Figure 6.7). 

In addition, they allow the reservoir storage-and area-elevation data to be loaded. 

The considerable influence of the electricity market has influenced the structure of 

the model, with both generation targets and maintenance scheduling determined 

from the market module dialog. The maintenance schedule enables units to be 
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Figure 6.7: Hydro scheme technical parameters 

withdrawn from operation in any month which has the effect of restricting turbine 

capacity and flow limits. 

The reservoir model is designed to follow either of two rule curve types mentioned in 

Chapter 5. These are multiple zoning and target storage levels, and both routines 

operate iteratively to capture the inter-relationships between many aspects of oper-

ation including hydraulic head and evaporation levels. A series of operating codes 

output along with production data allow decision-making to be followed from period 

to period, and indicate, for example, when energy limits have been reached. In order 

to capture the inter-relationships between water levels and releases or evaporation 

the storage or continuity equation is solved iteratively. 

6.4.1 Multiple Zoning Operation 

The routine is based on that used by HEC-5 and was inferred from the detailed 

user manuals [173]. As Figure 6.8 indicates, the routines assess the feasibility of 

meeting the energy target while taking account of the end storage levels, and flow 

and energy limits. If, for example. the releases necessary to meet an energy target 

would leave the final storage in the flood control zone, then additional releases occur 

to leave the level below the flood control level, assuming that the additional energy 

produced can be absorbed by the system. If the flow or energy limits would be 
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exceeded then the release takes place at that rate, which may not be sufficient to 

prevent spillage. An end storage above the FCL will result in additional production 

in the following period to ensure that the zone is evacuated rapidly. At the other 

extreme, a final storage in the buffer zone will lead to a reduction in production, 

ensuring that compensation requirements are met. 

The model is configured to deal with sub-periods or 'time-slices', to allow simulation 

of on/off-peak or hourly patterns as well as single periods. Based on the approach of 

Simonovic and Srinivasan [213] for planning Manitoba Hydro's reservoir operations, 

each monthly time-slice represents the aggregation of conditions during the specified 

period on each day. The starting storage in second and subsequent time-slices is 

the same as that ending the previous time-slice. Inflow and evaporation rates are 

assumed to be constant over the whole period and energy production constant over 

the slice. To reproduce the priority given to peak production, periods designated as 

such are simulated first, and while this is not chronologically correct, it is likely to 

follow actual practice. 

6.4.2 Target Storage Operation 

The second technique determines the release necessary to meet the target level. If 

the release exceeds the penstock flow limits or the capacity of the turbines then the 

release is trialed at these lower levels. This will result in a water level that is higher 

than target, and in some cases may spill, in which case the spill routine is invoked. 

If the trial release is negative then the water level cannot be reached, and the lesser 

of either the compensation flow, or that necessary to reach the dead storage level, 

is released. 

6.4.3 Spillage 

Spillage is rather difficult to model and this may explain why it is neglected in many 

studies. However, with a monthly time step, most floods will be averaged out and 

so was deemed unnecessary to use a complex spillway accounting method. 

The spillage routine firstly infers that spillage has occured if an end-of-period water 

level is found to be above the spillway crest. It is inadequate to assume that any 

water lying above the spillway crest has spilled, as the average head used in the 

computation is likely to be higher than that occurring in reality. For a constant 

power output the higher head would restrict the release through the turbines at 

capacity, and this will lead to a greater water level rise. To counter this effect, the 

spill routine assumes two stages: the first while the water is rising up to the spill 

crest, and the second when it is spilling. The first assumes average head between 

the start and spillway levels, and the second simply at the spillway. All inputs 
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and outputs are converted into flow rates, and generally the lower head in the first 

period allows a higher turbine discharge rate. In the second period, excess flows are 

assumed to be spilled, with the ending water level at the spillway. 

Gated spillways require a slightly different approach to free flow versions. Normally, 

the reservoir is kept at or below the normal pool level (NPL), and in the event of a 

flood, the gate is opened sufficiently for the level to remain as close as possible to 

the NPL. In effect, the NFL is the level above which water level cannot permanently 

rise, and as such will be equivalent to the spillway crest level in free flow spillways. 

Although such operation is not strictly correct, with gate discharge capacity varying 

with the reservoir level, it is acceptable as a monthly approximation. 

6.4.4 Evaporation 

Reservoir evaporation is accounted for using a similar evaporation model to that 

used with the water balance component. As the potential evaporation rate from 

open bodies is generally higher than from soil, the calculation is performed separ-

ately, and with the Priestley-Taylor method, different parameters can be set (e.g. a 

lower surface albedo of 0.08 as water absorbs more shortwave radiation than land). 

The amount estimated to leave the water surface is the net evaporation (i.e. less 

precipitation) and is calculated on the basis of the average water level during the 

month. 

6.5 Electricity Market Model 

Although one of the reservoir operation routines is designed to allow sub-period oper-

ation, the wholesale market is not considered suitable for this application. However, 

simulation of on/off-peak operation is possible. 

Two basic types of purchase agreement are supported, allowing representation of 

must-take contracts and those covering specific quantities. Together with the differ-

ent operational schemes, several possible combinations are available, although the 

target storage routine can only operate with single period must-take agreements, 

as in many respects the energy production could be seen as secondary in import-

ance. As Figure 6.9 shows, the must-take agreements simply assign value to any 

production the plant may produce. For the alternative contract, over- and under-

production attract user defined bonuses and penalties which act as a proxy for selling 

dump power and covering shortfall, respectively. Dump power is energy sold below 

the market value that otherwise would be lost through spillage, although it is only 

possible to generate if the system can absorb the extra energy. 
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Figure 6.9: IlydroUC must-take PPA dralog 

Each operational method requires a dedicated scheduling dialog in which either end 

of month storage levels, or monthly energy targets can be specified. The latter 

also requires month-end flood control and buffer levels, and unit maintenance can 

be scheduled from either sheet. The scheduling sheets also provide access to the 

optimisation routines. 

The genetic algorithm used for calibrating the water balance model is also applied 

to determine optimal operational strategy. Depending on the rule curve type, com-

binations of monthly storage levels or energy targets can be optimised to realise 

maximum benefit, and/or minimum spill. Additionally, firm power capability can 

be determined through a routine that finds the maximum energy level that can be 

guaranteed to a user defined reliability level, normally 99%. 

6.6 Financial/Economic Model 

The financial and ecoiioniic details are entered on the same dialog (Figure 6.10). The 

economic lifetime of the station determines the length of the financial analysis, and 

is bounded by the length of available revenue. It is assumed that construction costs 

are spread evenly across all years of construction, and that borrowings and non-debt 

finance are drawn on the same basis. Interest is charged on the accumulated total 

debt, and the debt and interest are repaid in equal yearly installments. 

Hydro schemes have low annual operational and maintenance (O&M) costs, which 

are typically in the region of 1-3% of the construction cost. O&M is split into fixed 

(C/MW) and variable (.C/MWh) components, and the real values required in the 
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dialog are increased annually with inflation. 

Depreciation is required to correctly assess corporation tax liability as it is treated 

as a charge in the profit and loss account. The reducing balance depreciation allows 

for the salvage value by treating it as a profit received in the final year. Any tax 

due can he paid either in the year in which the profit is realised or the following one 

(standard UK practice). 
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Figure 6.10: HydroCU finance and economic parameter dialog 

The minimum acceptable rate of return (MARR.) defines the real discount rate used 

in NP 7  and discounted payback calculations. The financial analysis covers a number 

of measures other than these. They include benefit-cost ratio, IRR. ROl. and range 

of unit cost measures including the simple lEA cost shown in Chapter 4. The 

starting point of the analysis is to determine the components of the annual nominal 

cash flow (NCF), inflating real values where necessary. The NCF is then deflated so 

that other measures can be determined. The cash flows and their components are 

output to text files for further analysis. Other measures calculated include annual 

coverage ratios and internal rate of return which allow for multiple IRRs which can 

occur with net cash flows that change sign more than once (see [146]). 
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6.7 Ancillary Components 

A number of support features are contained within the software to allow its successful 

operation. 

6.7.1 Genetic Algorithm 

Used in the hydrological model to optimise parameters, and in the reservoir model 

to optimise reservoir operating patterns, the Genetic Algorithm is a highly flexible 

search and optimisation tool. Its operation is based, on natural selection and genetic 

evolution, and can be used where exhaustive searches of large search spaces are im-

practical. Apart from the two applications mentioned here, genetic algorithms have 

been used in many problems including load flow determination and in forecasting 

future electricity supply mix [214]. 

A GA uses a fixed size 'population' of possible solutions (chromosomes) consisting 

of a number of parameters (genes) that describe the solution. Each solution may be 

evaluated for its fitness in meeting a particular goal, which is normally maximisation 

(or minimisation) of an objective or fitness function. The initial population can be 

created randomly, and evolves towards greater fitness with each generation, by the 

application of a variety of genetic operators: selection, crossover and mutation. The 

operation of a simple GA is as follows: 

Initialise population 

Evaluate the fitness of each population member 

Selection - on the basis of individual relative fitness determining the probability 

of selection, select two parent chromosomes 

Crossover - the parents 'breed' and create offspring 

Mutation - mutate offspring on the basis of a mutation probability 

Accept - evaluate the new population members, and add to the overall popu-

lation in place of the worst individuals 

Return the best individual if the solution is acceptable or the maximum number 

of generations are reached, otherwise return to 3. 

The GA implemented for this application uses proportional (or roulette wheel) se-

lection, two-point crossover (where information is exchanged between two randomly 

chosen points on the chromosome), and non-uniform mutation which tends to reduce 

the degree of mutation as the population develops. The values deemed suitable for 
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the crossover and mutation probabilities are chosen separately for each problem and 

tend to require experimentation to achieve robust solutions. 

The new solutions created by crossover and mutation tends to allow the solution to 

proceed to the global optimum, rather than local optima which often occurs with hill-

climbing and other search techniques. However, in common with other finite search 

procedures, GAs do introduce sampling errors and possible non-optimal solutions. 

Further discussion of GAs can be found in Michalewicz [215] and others. 

The genetic algorithm implemented is based on the simple scheme described by 

Michalewicz [215], and applied with some alteration by Silverton [214]. Full use of 

object oriented techniques and features were made to allow the scheme to cope with 

different types of model and variable chromosome length and population size. 

Population Size 	I 	200 	Probability of Crossover 	0.7 

Generations 	 1 000 	Probability of Mutation 	12 

No. of Chromosomes 	 3 	Mutation Rate 

WO Report every fl?J generations 	Gene Accuracy 	 2 
(Decimal Places) 

To File 	IC\CalReport 

o 	 I 
Not Calibrated 

OK 	 Cancel 

Figurc 6.11: (eiietic algorithm control dialog 

6.7.2 Statistical Module 

Many of the modules rely on statistical measures for decision making, or for sum-

marising data output. As Visual C++ is not issued with anything other than the 

most simple statistical routines, it was necessary to develop a suite of techniques. 

Partly based on standard C programming routines [216], the routines are designed 
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to handle arrays of variable length or sections of them. The routines include mean 

and variance calculations as well as more specialised routines to handle correlation, 

coefficient of determination and cumulative frequency. 

6.8 Program Operation 

6.8.1 Simulation Options 

Program operation is selected from the simulation settings dialog (Figure 6.12) ac-

cessed from the menu (Run I Settings) or toolbar. To be able to run each component 

a minimum level of acceptable data must be entered. The program performs a check 

on each component and ascertains their status, and if a particular module is incap-

able of being run, then it and those that depend on its results are disabled. A test 

log can be viewed from the dialog. The simulation can involve any module preceding 

the disabled ones, and in the instance where all components are deemed acceptable 

then the user can select the end point. 

Either single or multiple (risk analysis) climate series can be selected for use. The 

climate mode can be selected by the radio buttons, and includes use of base climate 

data, arbitrary uniform scenarios or GCM scenarios. Arbitrary scenarios can be 

created by combining changes in precipitation and temperature (or PET) using the 

slide bars. Any GCM scenarios held in memory can be selected from the appropriate 

list box. Although the settings facilitate the application of scenario analysis and 

(pseudo-) risk analysis, sensitivity analysis must be carried out manually by altering 

the required values (e.g. construction cost) manually and running the simulation 

once again. Simulations can be run from the toolbar or menu. 

6.8.2 Results Generation 

The simulations settings dialog asks the user for a target directory in which all sim-

ulation results are to be deposited. Creating the directory if necessary, the directory 

also contains a results summary file which allows the user to rapidly compare differ-

ent runs. Alternatively, a selection of the results can be posted to a series of property 

sheets that appear following the completion of the run (if the relevant control on the 

settings sheet has been checked). The results displayed include most of the financial 

measures, as well as derived statistical parameters of climatic variables, PET, river 

flows and energy production. No graphical facility is included in the software, as 

the variety of the data precludes effective display, and greater benefit is gained by 

making results compatible with the graphical tools available in spreadsheet packages. 
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Figure 6.12: Srinulai loll set i Ings dialog 

6.9 Summary 

This chapter provides an introduction to the HydroCC investment appraisal soft-

ware, and describes the basic structure and functioning of the constituent parts. 

The climate component enables efficient data manipulation. application of climate 

change scenarios and the creation of synthetic series of precipitation and temperat-

ure. The WatBal hydrological model provides a simple and robust means of simulat-

ing rainfall runoff processes with a minimal data requirement. The reservoir model 

addresses the criticisms levelled at previous climate change studies by incorporating 

full reservoir storage accounting, variable hydraulic head, evaporation and spillage. 

The market module permits simulation of a number of different contract structures 

and scheduling schemes. The financial and economic routines used enable a realistic 

and acceptable analysis of many standard investment measures. All or part of the 

investment appraisal process may be simulated and sensitivity, scenario and basic 

risk analysis performed. 



Chapter 7 

Case Study: Batoka Gorge 

This chapter introduces the Batoka Gorge hydropower scheme and presents its loc-

ation, hydrology and specifications. Specific data issues are considered along with 

the testing of the 'HydroCC' software. Base simulations of the scheme's operation 

and performance are compared with arbitrary and GCM derived climate scenarios 

for the purposes of examining the schemes sensitivity to climatic change, before the 

execution of a risk analysis. 

7.1 The Zambezi River Basin 

The Zambezi River is the fourth longest in Africa. It rises in the Central African 

Plateau in eastern Angola and flows over 2,600 km to the Indian Ocean. The basin 

lies south of the Equator between 12° and 20°, drains an area of over 1,350,000 km 2  

and is shared by eight nations (Figure 7.1). Over 38 million people live within the 

basin, of which 54% live in Zambia or Zimbabwe. 

The basin is split into three areas. The Upper Zambezi contains the headwaters 

of the river in northeast Angola, and ends at the Victoria Falls on the Zambia-

Zimbabwe border. From its source the river travels southwards and is joined by 

several tributaries, including the Chobe, at the confluence of which, it turns east-

wards towards the Falls. Flow over the Falls averages 1,237 m 3/s. 

The Middle Zambezi stretches from the Victoria Falls to the Cahora Bassa dam in 

Mozambique, dropping 600 m in the process. The river passes Batoka and Devil's 

Gorges and is dammed at Kariba. Several tributaries join the river in this section 

including the Kafue which boosts the average flow to 2,700 m 3 /s [217]. 

The Lower section extends to the delta in southern Mozambique and has a catch- 

ment area of 282,000 km 2 . It receives around 1725mm of precipitation each year 
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contributing to an average flow of 3,500 m 3/s at the delta [217]. 

7.1.1 Climate and Hydrology 

The basin has a tropical climate, with a rainy season lasting from November to April 

and peak temperatures occurring in October. Rainfall is higher in the northern part 

of the basin, and falls from 1500 mm to around 700 mm in the south. Mean tem-

peratures are in the region of 18-24°C, and extremes of 5 and over 30°C. The warm 

sunny conditions create high insolation and a correspondingly high evaporation rate. 

Data indicates evaporation of 1800-2200 mm annually, with monthly totals of 200 

mm in October to March and 125 mm in June/July. 

Hydrologically the Upper basin is very complex due to intermittent streams and 

the influence of the Barotse Plain and Chobe swamps [218]. The Barotse Plain in 

Zambia is a seasonal swamp covering some 7,500 km 2 , and plays a major role in 

regulating flood waters in the upper basin. It is estimated that during the major 

flood of 1958 some 17 billion cubic metres (BCM) of flood water was stored in 

Barotse, equivalent to half the average annual volumetric flow over Victoria Falls 

[219]. At flood the Zambezi backs up the Chobe tributary and fills the upstream 

swamps, which return the water once flows have reduced. In addition to flood control 

the periodic swamp-filling acts to trap sediment and allow significant evaporative 

loss. Only a third of the precipitation in the upper basin reaches Victoria Falls, the 

rest is lost to evaporation [114]. 

River flow has been gauged for over 105 years at Livingstone (now Masunda) and 

the river flow statistics reflect the complex hydrology. As Figure 7.2 shows, peak 

runoff arrives between early March and late May with the average around mid-

April. Minimum flows normally occur in early November. The size of the floods has 

a bearing on the timing of their arrival, with larger flows arriving earlier as smaller 

peaks are attenuated by Barotse and Chobe. 

The hydrological complexity of the Upper basin is reflected in the local runoff coef-

ficients. In the headwaters, unit runoff of 270 mm is produced from 1500 mm of 

rainfall, but in the Chobe sub-basin only 20-25mm of runoff occurs from 600 mm 

[218]. 

7.1.2 Hydroelectric Development 

The large river flows means that the Zambezi has enormous hydroelectric potential, 

most of which is situated in the middle and lower sections (Figure 7.3). The first 

scheme developed was the run-of-river (RoR) Victoria Falls plant, which harnessed 

the drop at the falls to create the head. Initially rated at 8 MW, the scheme was 
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Figure 7.2: Mean monthly flows at Victoria Falls 

upgraded in 1968 and 1972 to its current 108 MW. The first major scheme was the 

Kariba Dam, built primarily to supply the Zambian Copperbelt, with the southern 

666 MW station commissioned in 1960. This was followed by the commissioning of 

the 2075 MW Cahora Bassa scheme in 1975, and both Kafue Gorge (900 MW) and 

Kariba North (600 MW) in 1977. Current installed capacity including stations on 

the Shire River in Malawi is 4,684 MW producing approximately 33,000 GWh per 

year 

900 	Victoria Falls (108 MW) 
Hydropower Schemes 

800 	Batoka Gorge (1600 MW) 	 on the Middle Zambezi 

700 	 (Existing schemes in blue) 

600 

	

go (1000 MW) 
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Figure 7.3: Hydroelectric facilities on the Middle Zambezi River [220] 

The middle Zambezi is also the focus for several potential new build schemes which 

include sites at Batoka Gorge and Devil's Gorge. These schemes boast potential 
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capacities of 1600 MW and 1000 MW, respectively. A combination of upgrades to 

existing stations and the new build schemes could create an extra 13,300 MW of 

capacity. The Kafue Lower scheme, the first of the new capacity, is scheduled to be 

commissioned in 2004, followed by the 1200 MW extension to Cahora Bassa due in 

2005. 

The operational planning for the basin is the responsibility of the Zambezi River 

Authority (ZRA) which came into being in 1987 following Acts of Parliament in both 

Zambia and Zimbabwe. It replaced the Central Africa Power Corporation (CAPC) 

that had been responsible for Kariba since 1963. The creation of the ZRA was an 

early example of improving regional cooperation, which is now carried carried out 

through the Southern African Development Community (SADC). 

7.1.3 Batoka Gorge Scheme 

Several studies have examined the possibility of building a dam at Batoka Gorge 

which lies 56 km downstream from the Victoria Falls. A 1981 report by Mott 

MacDonald and Sir Alexander Gibb proposed a double curvature arch dam. Pre-

feasibility studies identified 18 possible combinations for the scheme, differing in 

areas such as dam type, number and location of power houses and number of pen-

stocks. The options were compared on a least cost basis, and the current specification 

was determined to be the best, prompting a full feasibility study (FS). 

The feasibility study was undertaken by the Batoka Joint Venture Consultants 

(BJVC), consisting of Knight Piesold Ltd, Lahmeyer GmbH and Electrowatt En-

gineering Ltd. Carried out over a 21 month period prior to September 1993, the 

study examined the technical, economic and environmental aspects of building a 181 

metre high, roller compacted concrete gravity arch dam [221]. As Figure 7.4 shows, 

the scheme features two underground power houses (one on each side of the gorge), 

each with four 200 MW Francis turbines, giving a total capacity of 1600 MW. The 

dam would possess a radial gated spillway designed to pass an expected maximum 

flood of 20,000 m 3/s. 

The full supply level (FSL) lies at 762m above sea level (ASL), and 4 metres below 

the 766m long dam crest which carries a road between the two countries (Figure 

7.5). The volume at FSL is 1,680 x 10 6 m3 , with live storage representing a third 

of that. The relatively small active storage (around one fortieth of Lake Kariba's 

70 km3) means that Batoka is designed to be operated as a run of river scheme, 

providing minimal flood storage. 

The operating aim of the scheme is to maximise firm power delivery on a system 

level. To this effect Batoka is designed to operate in tandem with Kariba, such that, 

when flows are high, Batoka will generate thus allowing more effective use of the 
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storage in Kariba. 

7.1.4 Existing Climate Change Studies 

As Batoka lies upstream from Kariba, and there are no impoundments of note in the 

Upper basin, the flow is essentially natural. This makes it a good candidate for cli-

mate change investigation. However, most investigations of water resources impacts 

on the Zambezi have focussed on the Kariba impoundment, mainly because it is 

already in operation and of its importance in regional energy production. Salewicz 

[222] used the CLIRUN water balance model, from which WatBal is descended, 

to generate time series of inflows to Kariba, where the release rules developed by 

Gandolfi and Salewicz [219] were employed to estimate energy production. 

Batoka Gorge featured along with Kariba in the study by Reibsame et al [114]. Re-

lying on the river flow at Victoria Falls to indicate hydrological conditions, the study 

used a deterministic rainfall-runoff model, driven by monthly values of spatially aver-

aged temperature and precipitation, to generate river flow estimates. These provided 

the input to the Massachusetts Institute of Technology River Basin Simulation model 

(MITSIM) [223] which determined the changes in hydropower production and other 

water resources. MITSIM requires monthly flow duration curves in order to simu-

late reservoir operation. Four GCM scenarios were applied to the observed climate 

series: GISS, GFDL, UKMO and a transient GISS run equating to conditions in 

2030. Whittington and Gundry use these results as part of a wider examination of 

hydroelectric resources in Sub-Saharan Africa [137]. 

The findings from each of these studies are used to corroborate and compare the 

results produced during the case study. 

7.2 Modelling Batoka Gorge 

This section examines the means of creating and using data for the study. 

7.2.1 Climatological Data 

To allow estimates of the net evaporation from the Batoka and Kariba reservoirs, 

the Batoka feasibility study used rainfall and evaporation pan data provided by the 

Zambian Meteorological Department. This study will make use of data contained in 

the global gridded time series dataset developed by New et al [196]. Available from 

the Climatic Research Unit, the data provides coverage on a 0.5° x 0.5° grid for the 

95 years up to 1996, and as Table 7.1 shows, covers several primary and secondary 
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variables. 

Primary 	 Unit 	Secondary 	Unit 

Precipitation mm/day Cloud Cover oktas 
Mean Temperature °C Vapour Pressure kPa 
Diurnal Temperature Range °C Wet-day frequency days 

Table 7.1: Primary and secondary climate variables in the CRU dataset [196] 

In addition to precipitation, the data facilitates the use of both the Priestley-Taylor 

and Hargreaves PET methods. The latter uses both mean and diurnal temperatures, 

while the former will use mean temperature, vapour pressure and cloud cover. With 

the exception of cloud cover all data is used in its original form. As the net radiation 

routine in this Priestley-Taylor formulation uses mean monthly sunshine hours to 

indicate the degree of cloudiness, the cloud cover measure required conversion. The 

cloud measure given in the database uses 'oktas' which refer to the number of eighths 

of the sky obscured by cloud. The desired form is found by converting these to 

percentage cover, and multiplying by the potential sunshine hours (i.e. day length). 

The dataset is arranged such that each variable has one file for each year. However, 

each file contains around 15 megabytes of information that must be held in memory 

if the data is to be used. This necessitated the creation of software to distill data for 

a given area from each data file. The software creates a smaller Cartesian grid for 

each month of each year in a form that is spreadsheet compatible, such that further 

processing (e.g. spatial aggregation) can occur. Each file takes approximately 2-3 

minutes to distill, so in order to reduce the machine minding on the part of the user, 

the software allows a sequence of years to be distilled at one time. 

Figure 7.6 shows the mask constructed to allow only data points lying within the 

catchment of the Upper basin to be included in the spatial aggregation. A grid was 

overlaid on a map of the basin and sub-basins, and grid-squares were accepted as 

contributing to the basin if at least half of their area was judged to lie within it. 

Once the mask was applied, the spatially averaged monthly climate time series was 

constructed. All grid squares within the catchment were equally weighted, although 

it was recognised that significant spatial differences occur in almost all months. The 

monthly data was then placed in a form suitable for HydroCC. 

Climate Data Validation 

Climate data for the standard 1961 to 1990 period was extracted from the database, 

and aggregated for the upper basin. 
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As Figure 7.7 indicates, both the Hargreaves and Priestley-Taylor methods result in 

similar monthly PET patterns, although on average Hargreaves estimates are 13% 

lower. The higher values for the Priestley-Taylor method could be accounted for by 

the designation of the basin as arid, as the relative humidity in the month of highest 

PET (October) is less than 60% [212]. As such, a higher value of /3 is applied (1.74 

rather than 1.26). 

The marked difference between PET and precipitation patterns illustrates the com-

plexity of the hydrology, and indicates the aridity of the basin. The ratio of PET to 

precipitation is 2.25 for Priestley-Taylor and 1.96 for Hargreaves, and these compare 

well with the ratio of 2.5 found by Reibsame et al [114]. Given that the latter study 

used PET and precipitation estimates for the entire Zambezi Basin and given the 

tendency for lower precipitation in the southern part of the basin, which are not 

included in the present estimates, then the slightly lower ratios calculated for this 

application seem reasonable. Given the better match between the Priestley-Taylor 

method, and its inherently more realistic representation, only this method features 

further in the study. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

-U- Pnestiey.Ta4or -.- Hargreas —a-- Observed Precipitation 

Figure 7.7: Monthly PET estimates from Hargreaves and Priestley-Taylor 
methods 

7.2.2 Hydrological Model Calibration and Performance 

To calibrate the hydrological model, observed climate data and river flow data are 

necessary. The river flow record at Victoria Falls is suitable for this purpose, as the 
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Batoka site lies relatively close to Victoria Falls and there is no notable inflow from 

the additional catchment area. 

Both the climate and river flow data are available between 1908 and 1992, although 

the period selected for calibration and eventual operation is the standard 30 year 

period from 1961 to 1990. This allows reasonable split sample testing with the 

calibration and validation periods each of 15 years. 

Despite the inherent complexity of the Upper basin hydrology, the analysis used the 

lumped parameter model, in part to determine the suitability of the simple approach. 

As there is no notable snowfall in the basin the snowmelt model was not required. 

Following the practice of Yates and others the basefow value was set to the 95% 

exceedance flow value corresponding to 0.04 mm/day. 

Although the overall catchment area for the project is 505,000 km 2 , the Chobe 

tributary is reported to contribute less than 135 m's of runoff [218]. As such, and 

following the practice of Salewicz [222], the contribution from Chobe was ignored, 

reducing the effective catchment area to 360,505 km 2 . 

Search Methods 

To enable the assessment of the genetic algorithm's suitability for the purposes 

of calibration an exhaustive search was first carried out. The sub-surface runoff 

exponent (ic) was set at 2, while the four other parameters were optimised. For the 

exhaustive search, reasonably coarse increments of parameter values necessitated 

over 1.2 million runs of the water balance model, representing somewhere in the 

region of six hours computation on a relatively fast PC (Intel Pentium 233MHz). 

With the GA using a population of 200 parameter sets and evolving over 500 gen-

erations, the optimal parameter set was found in 40 minutes. Direct comparison 

of the results of the two methods was limited by the coarseness of the exhaust-

ive search parameter increments, although similar optimal parameter values and 

maximum fitness measures were noted. Subsequent runs of the GA found similar 

solutions, confirming that, on average, the method is robust and avoids local optima. 

Therefore the GA appears to be suitable for generating optimal values for the water 

balance model. 

Optimal Performance 

Despite the relatively high correlation coefficient (' 0.80) and good representation 

of the dry season low flows, the flood flows were unacceptably low. Manual para- 

meter adjustment was necessary to improve the seasonal variation and the resulting 
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parameters are given below: 

• sub-surface coefficient ce = 2.5 

• surface exponent e = 3.5 

• sub-surface exponent K = 2 

• maximum soil moisture Smax = 40 mm 

• initial relative soil storage = 0.25 

The chosen parameter values were analysed for their contribution to error in forecast 

flows, and it was found that over a range of + 10% of optimal value, changes in 

parameters introduced near linear changes in mean annual flow. As expected, ,c 

produced the greatest variation (13%) with initial storage offering less than 0.3%. 

The sensitivity of annual flows are shown in Appendix A, Figure A.1. 

Although these values resulted in a visually improved flow representation and a sim-

ulated mean annual flow within 0.1% of the observed value, the adjustment lowered 

the correlation measures. While this is unfortunate, existing research stresses the 

importance of seasonal representation over mathematical fit [107, 168]. The result-

ing statistical measures are listed in Table 7.2. The calibration period is found to 

produce higher correlation measures although the validation period appears to offer 

a closer volumetric match. The low flow performance is maintained as the time 

series of flows indicates (Figure A.2, Appendix A). 

Calibration Validation Whole Period 
1961-1975 	1976-1990 	1961-1990 

Nash-Sutcliffe Criterion 0.59 0.47 0.55 
Correlation Coefficient 0.61 0.49 0.56 
Mean Absolute Error (mm/month) 1.00 0.98 0.01 

Table 7.2: WatBal calibration and validation statistics 

As Figure 7.8 shows, even with the manual adjustment, the simulated flow pattern 

shows an earlier and lower peak flow, resulting a slightly longer flood season. This 

is due to the limitations of a model with relatively few parameters in simulating 

significant seasonality, a fact noted previously by Yates and Strzepek [139]. In 

addition, the Barotse and Chobe seasonal swamps significantly increase the storage 

available in the basin, which is a feature not considered in the WatBal model. The 

temporary storage of early high flows will tend to reduce flows in January and 

February, and concentrate the flood in April and May, before its rapid decline. 

Without the storage of early high flows in the swamps the simulated January and 
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February flows are higher and consequently the peak flows are earlier and last longer, 

as the slower decline demonstrates. The effect would he similar if the model were 

applied to a snow dominated catchment without accounting for snow accumulation. 
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Figure 7.8: Comparison of monthly observed and simulated river flows 

The low correlation coefficients could preclude the model from use in this basin, as 

could the poor representation of seasonal flows. Gleick's [167] approach of creating 

a semi-distributed model by dividing the basin into two or more sub-catchments as 

a means of improving seasonal performance was considered. However, the problem 

lies not with aggregating different climate representations, rather in the fundamental 

structure of the model, and therefore effort in that direction was considered wasteful. 

Incorporation of a special storage component would be possible but as this feature 

is fairly specific to the Upper Zambezi, the additional effort would be unwarranted. 

Given that some water resources projects have been developed using models with 

correlation coefficients lower than that found here [224], and that benefit will accrue 

even with relatively poor model performance, the hydrological model was accepted 

as suitable, with reservation. 

7.2.3 Hydro Station 

Annual production from Batoka is expected to be 9,093 GWh [221], interpreted by 

Reibsame et alto represent equal monthly targets of 757 GWh [114], and this target 

was followed in the absence of addition information. All turbines are assumed to 

be available and operating at 86% efficiency. Although tailwater levels may vary 

between 590 and 607.5 m ASL depending on discharge, a fixed value of 605 m was 
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assumed to match the higher flow months. Reservoir storage is initially set halfway 

between the full supply level (762 m)and minimum water level (742 m). As no 

information was available regarding the use of flood control or buffer zones, none 

were allocated. 

As Figure 7.9 shows, releases and hence energy production closely follow inflows 

indicating that the reservoir model is operating correctly as a run-of-river plant. 

The proportionately greater increase in power output during the wet season is due 

to the higher hydraulic head as the reservoir level is maintained at full supply and 

excess flows spilled. The reservoir is drawn down during July to December in order 

to maintain production. The average plant load factor is 67%, although this masks 

a large seasonal variation of nearly 89% during the January to July wet season and 

only 36% during the dry season. 

3000r 	- 	- - 2800 

• 2400 

2000 

• 1600 

0 
• 1200 c 

0 

• 800 

400 

0 

2500 

2000 

0 
U. 

•. 1500 

C 
0 

C 
1000 

500 

0 

Jan 	Feb 	Ir 	ftr 	Iy 	Jun 	.iul 	Aug 	Sep 	Oct 	Nov 	Dec 

Figure 7.9: Monthly production, releases and river flows 

The model over-predicts annual production by some 3% over the 30 year period, 

due to the ability of the station to take advantage of the longer simulated flood, and 

more efficient energy conversion with higher average water levels. Once again there 

is a marked seasonal difference in terms of the ability of the stat.ion to meet target 

power, with a 37% surplus and a 45% deficit in wet and dry periods, respectively. 

The same pattern is found by Reibsame et al who note lower values of production: 

annual (78%), wet (97%) and dry season (53%). The agreement between the dry 

season performance indicates the success of the WatBal model in simulating low 

flows. 
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7.2.4 Electricity Market and Project Economics 

Market Conditions 

The market and financial analysis of Batoka Gorge is made more complex as it in-

volves both Zambia and Zimbabwe. The Batoka FS estimated that growth in the 

two countries would average 3% per year from 1993 to 2010, although they note 

that their estimate is conservative relative to those of both ZESCO and ZESA the 

Zambian and Zimbawean utilities. Zambia is forecast to have a continuing electri-

city surplus whilst Zimbabwe expects shortages particularly once power purchase 

contracts from Mozambique expire in 2003. 

Electricity prices in both countries were below the cost of production and the study 

predicted that action was necessary to bring prices in line with costs, to around 

3 US c/kWh by 1997. With Zimbabwe effectively purchasing most of the output 

of Batoka and the surplus exported to South Africa at 0.5 US c/kWh, significant 

benefits could accrue to both parties. The analysis assumed inflation of 5% and a 

real discount rate of 10%. 

Project Costs 

The basic cost of the project was estimated at US$1.15 billion, and as Table 7.3 

shows civil works account for 58% of the total (a more detailed breakdown can be 

found in Table A.1 in Appendix A). In addition, interest on construction and the 

cost of transmission lines must be included. The feasibility study found that with a 

total project cost of some $1.5 billion, the unit cost of electricity from Batoka was 

1.79 c/kWh which is lower than all other potential projects in the Zambezi basin 

other than the Kafue Lower project. 

Item 	 US$ million 

Civil Works 	 671,540 
Mechanical Equipment and 	220,396 
Hydraulic Steel Structure 
Electrical Works 	 171,030 

Total Construction Cost 	1,062,966 
Other Costs 	 90,352 

Basic Cost 	 1,153,318 

Table 7.3: Batoka Dam cost summary [221] 
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Operation and maintenance costs including those for transmission are estimated to 

total around $18 million annually. With a dam O&M of 0.8% of capital cost this is 

equivalent to an annual fixed capacity charge of $9.20/kW. 

Project Financing 

The whole spectrum of financing structures were considered for Batoka. Non-aid 

development was found to be impossible as the $210 million a year cost during con-

struction was beyond the budget capabilities of either of the countries, representing 

as it did, almost one quarter of their combined energy sector expenditure at the 

time of the study (at exchange rates applying at the time). A build-operate-transfer 

(BOT) scheme was also considered infeasible due to the poor political and economic 

situation together with the welfare aspects of likely higher tariffs. 

Foreign aid is a reasonable option, and would be likely to be granted to Zimbabwe 

as the project goal of reducing energy importation makes it a priority. Zimbabwe's 

good credit worthiness and history of foreign financing ($382 million in 1990 alone) 

would also improve the chances of success. Zambia would be less likely to get aid as 

the project is not a development priority. 

Two basic financing schemes were examined, the first funded entirely by loans and 

the second with 50% grant aid. International loans were assumed to be offered at 

7% interest with 7 year grace and 13 year repayment periods. A similar system to 

the second option is considered here. 

For the purposes of this study the overall cost was taken to be $1,150 million with 

a non-repayable foreign aid grant contributing $800 million. While this figure is in 

excess of 50% of the dam construction cost alone, it is not unreasonable when com-

pared to the total cost of the scheme which includes transmission line construction 

and financing costs. The project is assumed to have tax free status, and inflation is 

a constant 5%, although this is low given recent Zimbabwean inflation rates of 20-

30%. The project lifetime is assumed to be 30 years, although the feasibility study 

uses the year 2040 for the end of the project. The FS estimates the salvage value 

of the plant to be $529 million in nominal terms. In real terms and with project 

termination in 2032 a salvage value of $90 million is reasonable. 

The basic results from the model correlate well with the findings of the feasibility 

study. The internal rate of return produced by the HydroCC simulation was 11% 

compared to 11.5% for the feasibility study, with NPV measures giving $98 million 

versus $121.3 million. The benefit-cost ratio is also similar with a value of 1.10 rather 

than 1.21. The lEA unit cost suggested by HydroCC is 1.52 c/kWh, whilst the FS 

quotes a production cost of 1.46 c/kWh. The discrepancies between the calculated 

base values and those found in the original FS study could be attributed to different 



CHAPTER 7. CASE STUDY: BATOKA GORGE 	 156 

accounting treatments or definitions of measures. 

7.2.5 Base Scenario 

Overall, the HydroCC model gives results that compare reasonably well with previ-

ous studies. To facilitate comparison with the results of climate change experiments 

selected measures are given in Tables 7.4 and 7.5, and these will be referred to as 

the 'Base' scenario. 

Monthly Value 	 Mean Std. Dev. 

Precipitation (mm) 74.6 78.9 
Temperature (°C) 21.9 2.7 
Potential Evapotranspiration (mm) 169.4 23 
Runoff (10 9 m3 ) 3.21 2.27 
Relative Soil Moisture Depth 0.27 0.10 
Energy Production (GWh) 780.3 350.3 
Releases (10 9m3 ) 2.24 0.90 
Spill Volume (109 m3 ) 0.91 1.62 
Energy Surplus (GWh) 23 350 
Sales Revenue ($ million in 1997 $) 16.7 7.5 

Table 7.4: Summary of Base scenario monthly results 

Performance Measure 

Percentage of Annual Target Energy 103.1% 
Spill Frequency 37% 
Failure to meet target generation 49% 
Load Factor 66.8% 
Payback 7 yrs 4 mths 
Discounted Payback 20 yrs 5 mths 
Return on Investment 17.27% 
Net Present Value (at 10% disc. rate) $98 million 
Benefit-Cost Ratio 1.10 
lEA Unit Cost (at 10% DR) 1.52 c/kWh 
Internal Rate of Return (real) 11% 

Table 7.5: Summary of Base scenario performance indicators 
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7.3 Climate Impact Analysis 

Several analyses are presented in the following sections. 

7.3.1 Sensitivity Study 

The sensitivity of many aspects of the scheme to changes in climatic variables were 

assessed by uniformly altering precipitation or temperature levels. No other para-

meters were altered including other climatic variables. The effect of such changes is 

explored in the following sections. 

Hydrological Sensitivity 

As Section 4.3.1 stated runoff is more sensitive to changes in precipitation than 

temperature and that precipitation change tends to be amplified. Both findings are 

confirmed in this study as Figure 7.10 shows. Runoff changes are positively related 

to rainfall, and vice versa for temperature. Runoff demonstrates increased sensitivity 

to rainfall rise with a 20% increase in rainfall raising annual runoff by 46%, while 

the opposite change results in a 35% fall. 
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Figure 7.10: Sensitivity of annual runoff to uniform changes in precipitation 
and temperature (20% temperature change equivalent to 4°C) 

Such sensitivity can be expressed in a simple manner using the measure of elasticity, 
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familiar in economics [113]. In this case elasticity (q5) is defined as the percentage 

change in runoff (Q) due to a percentage change in either rainfall (P) or temperature, 

with 0 > 1 indicating sensitivity: 

LQ 	LP 
QP 

(7.1) 

In this instance the elasticity due to rainfall changes is found to be 2.02 (by taking 

the average of ± 10%) which compares well with the value of 1.88 found by Reibsame 

et al. Temperature elasticity is much lower (and negative) at -0.42, indicating that 

runoff is quite insensitive to temperature changes. This does not agree with the 

prior study which found that with an elasticity of -1.68, the Zambezi is almost as 

sensitive to temperature changes as rainfall changes. 

The low elasticity for temperature could be accounted for by the low sensitivity 

of potential evapotranspiration. The Priestley-Taylor method restricts PET rise 

to 1.25%! °C temperature rise, well below the 34% cited by Budyko [109] and 

others, although these were global estimates. The low sensitivity may be due to 

cloud cover or vapour pressure levels restricting the radiation absorption, although 

without details of the PET approach by Reibsame et al a direct comparison cannot 

be made. Alternatively, the lack of an explicit storage representation for the Barotse 

or Chobe swamps means that the significant evaporative capabilities of these features 

is ignored and therefore the evaporation indicated by the model is insufficient. 

Once again the annual figure masks the sharp seasonal changes, with a 20% rise 

in rainfall translating into an almost 50% increase in wet season runoff, and only 

a 31% change in dry season flows. This indicates that wet season flows are more 

sensitive, which is a reflection of the soil moisture levels with drier dry season soil 

able to absorb more of the rainfall increase. Temperature changes show the opposite 

pattern as the already dry summer soils become proportionately more dry. 

In addition to altering mean flows, the variance is also altered. The coefficient 

of variation (CV) allows a simple and dimensionless measure of this and indicates 

that a 20% increase in precipitation raises the CV from 70.6% to 78.8%, whilst a 

precipitation decrease of the same magnitude lowers the CV to 6 1.9%. 

Energy Production 

Energy production is constrained by the capacity of the turbines as well as upper 

and lower bounds on storage. Accordingly, this limits the ability of the station to 

take advantage of increased river flows, forcing it to spill a significant portion of the 

increase. Production is more sensitive to reduced flows and this non-linear behaviour 

is evident in Figure 7.11 in responding to rainfall changes and to a lesser degree to 
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temperature rise. 
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Figure 7.11: Sensitivity of annual generation to changes in precipitation and 
temperature 

Annual production is lowered by over 20% for an equivalent rainfall decrease, which 

lowers the load factor (to 54%) and increases the frequency of instances where the 

757 GWh energy target cannot be met from 49% to 69%. The spillage frequency 

drops by half and spillage volumes drop to less than one-fifth of the Base value. 

For a 20% rainfall increase, annual output is increased by nearly 14%, raising the 

load factor to 77%, spillage frequency to 51% and spill volume by 36%. Temperature 

changes are less important altering output by just over 1% per degree Celsius change. 

Seasonal changes are more marked with the dry season output responding more to 

climate change with 30.6% and -24.9% changes for 20% rise and fall, respectively, 

while wet season output alters by 8.5% and -18.7% on the same basis. In addition, 

dry season production is four times as sensitive to temperature changes as wet season 

output. 

Revenue and Financial Sensitivity 

The primary variable in project financial performance is the revenue stream. In 

this case where a single tariff is in operation, revenue flows follows the pattern of 

generation and as such have the same sensitivity. Mirroring the changes in revenue, 

financial performance is positively related to rainfall and a negatively to temperat- 
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ure, although the greater sensitivity is to declining rainfall. 

Figure 7.12 shows the variation of key measures with rainfall, with higher rainfall 

raising net present value and internal rate of return and reducing the discounted 

payback period. The variations are non-linear, once again reflecting the limitations 

of the hydro station to take advantage of higher river flows. 
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Figure 7.12: Sensitivity of selected financial measures to rainfall changes 

Accumulated decreases in annual revenue mean that net present value is very sens-

itive to changes in rainfall. NPV is reduced by 200% for a rainfall change one-tenth 

of the size. Internal Rate of Return and discounted payback show smaller but signi-

ficant variations. For a 20% fall, IRR decreases to 8.8 1/o and the latter increases to 

over 30 years, beyond the assumed project lifetime (hence the curve in Figure 7.12 is 

not complete). Other measures also indicate significant changes. For a 20% increase 

in rainfall, the non-discounted payback period is cut by a year, unit production cost 

declines by 0.18 c/kWh (12%), while the benefit cost ratio increases to 1.24. Return 

on investment shows similar sensitivity to IRR. Temperature rise also impacts on 

financial performance with a +4°C change leading to a 42% fall in NP\T, although 

the impacts on other measures is limited to 4-6%. The effect of changes in both 

climate variables is summarised in Table A.2 in Appendix A. 

The key issue with this sensitivity study is the identification of critical changes that 

would render the project non-viable. The 20% precipitation decrease results in a 

negative NPV and consequently an IRR less than 10%. By linear interpolation, the 
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project was found to be able to withstand a uniform 11-12% fall in rainfall and still 

remain economic (IRR > 10%). Therefore, on the basis of the assumptions made, a 

11-12% precipitation decrease could be regarded as the critical value for the project. 

A 20°C temperature rise would be necessary to render the project non-viable. 

Climate Sensitivity in Context 

While the financial sensitivity appears significant it is useful to compare it with other 

risks that a project may face, in particular the possibility that project parameters 

will differ from those estimated at the time of the feasibility study. Large engineering 

projects including dams are prone to cost and schedule overruns, and sales tariffs 

may alter in the intervening period between design and operation. 

Figure 7.13 shows the sensitivity of net present value to uniform changes in rainfall, 

temperature and key project assumptions. As civil engineering costs represent a 

majority of the total, poor estimation may have a significant impact on NPV, as 

will longer build periods as the loan interest capitalised rises. The project is very 

sensitive to sales prices with a 20% change representing 0.6 US c/kWh, and it can 

be seen that rainfall reductions show a similar sensitivity, although the effect of 

plant capacity reduces the sensitivity to increased rainfall. Once again temperature 

changes have a relatively minor effect compared to the other changes. 
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Figure 7.13: Sensitivity of project NPV to climate and project parameter 
changes (20% temperature change equivalent to 4°C) 
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Overall Sensitivity 

Overall, the system is more sensitive to precipitation change than temperature 

change. Additionally, rainfall decline is more significant, as constraints on dam stor-

age and generation capacity limit the ability to take advantage of higher riverfiows. 

The variation of sensitivity throughout the climate-finance system is well illustrated 

by the use of elasticities of precipitation: catchment 2.02, energy production 0.76 

and IRR at 0.70. This indicates that while the river basin amplifies changes in 

rainfall, both the generation and financial components tend to damp changes. The 

choice of IRR rather than NPV in illustrating elasticity was due to the fact that 

IRR variations are more representative of the changes in other appraisal measures 

(NPV showed an elasticity of 7.8). 

7.3.2 Scenario Analysis 

While sensitivity studies offer an insight to the vulnerability of hydroelectric pro-

duction and financial performance to changing climate, they cannot be used to 

determine whether a project should be built. This can to some extent be achieved 

through the use of climate scenarios that offer a more realistic indication of future 

rainfall and temperature. 

GCM Scenarios 

The results from three global circulation models were used: 

. HadCM2 model from the Hadley Centre at the UK Meteorological Office, 

. ECHAM4 from the German Climate Research Centre, and 

GFDL-R15 from the Geophysical Fluid Dynamics Laboratory. 

The models are available through the IPCC DDC and have been included in the 

AMIP study reported in Second Assessment Report (see Section 2.3.3). Four sets of 

data were used, the results of transient experiments assuming 1% emissions growth 

and the HadCM2-S run which incorporated the cooling effects of aerosols. With the 

exception of the GFDL data, all experiment data is presented in the form of three 

time slices corresponding to average conditions in the 2020s, 2050s and the 2080s. 

The former has data relating to the 2020s only. 

The climate change anomalies from each period were extracted from the dataset in a 

similar manner to the observed climate data. The precipitation data was available as 

absolute changes from the 196 1-1990 mean and so this was used to create the required 
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proportional rainfall changes. Each GCM had several grid squares lying within or 

overlapping the Upper Zambezi basin, and for each one a mask was constructed to 

spatially average the data. Data is available in monthly averages and these were 

converted for use in HydroCC, and loaded into the software. 

HadCM2 HadCM2-S ECHAM4 GFDL-R15 

Precipitation in 2020s (%) 92.8 94.8 100.1 103.7 
Temperature in 2020s ( ° C) +2.0 +1.5 +1.7 +1.7 
Precipitation in 2080s (%) 87.5 82.4 98.4 N/A 
Temperature in 2080s ( ° C) +5.3 +4.4 +5.0 N/A 

Table 7.6: Summary of GCM scenarios employed 

Two time periods are considered here, the 2020s and the 2080s and the annual 

changes are given in Table 7.6. The earlier period shows a variation in the magnitude 

and sign of the annual rainfall totals from each GCM, but all show warming of 1.5-

2°C. The three experiments covering the later period indicate that rainfall decreases 

of 1.4-17.6% accompany warming of 4.4-5.3°C. The inclusion of aerosols is seen to 

result in a lower mean temperature, but increases rainfall change in the later period. 

Conditions in 2020s 

Of all the scenarios for the 2020s the HadCM2 is most extreme, both in rainfall 

decline and temperature rise, and results in a 16.7% fall in annual runoff. The 

inclusion of aerosols appears to limit change and correspondingly the decrease in 

annual flows implied by HadCM2-S is restricted to 12.5%. Both ECHAM4 and 

GFDL-R15 scenarios indicate small annual rainfall increases although the timing of 

the ECHAM4 rises together with the temperature rises, means that runoff declines 

by 2.8%. Only the GFDL-R15 scenario results in increased runoff (3.9%). 

As most of the additional flow implied by the GFDL scenario occurs during the wet 

season, only part of the extra can be translated into increased energy, and as such 

production rises by only 1.2%. For the other scenarios, production decreases along 

with the changes in flow with mean annual production falling by 8.8%, 1.8% and 

6.8% for HadCM2, ECHAM4 and HadCM2-S respectively. As with the sensitivity 

study, production changes are less severe than changes in runoff. 

Once again the financial performance varies directly with production and sales. 

Figure 7.14 shows the range of NPV resulting from the scenarios, which represent 

changes of -90% (HadCM2)to +12% (GFDL-R15). The other measures follow a 

similar pattern, with IRR varying from 10.1% for HadCM2 to 11.1% for GFDL-R15, 

and discounted payback between 19 years 10 months and 29 years 2 months. Unit 

production cost is indicated to lie between 1.50 and 1.66 c/kWh. In all instances the 
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investment would be acceptable given the positive NPV, although the small value 

associated with the HadCM scenario would make it less favourable. 
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Figure 7.14: Project NPV with four GCM scenarios for the 2020s 

Conditions in 2080s 

Although the greenhouse gas-only Ha1CM2 scenario indicates the most severe cli-

matic changes for the 2020s, the aerosol-inclusive HadCM2-S run produces the 

greatest annual rainfall change in the 2080s (17.6%). ECHAM4 indicates a very 

slight rainfall decline but warming similar to HadCM2, above that indicated in the 

aerosol experiment. 

Significant variation in monthly rainfall is seen for all three scenarios (Figure 7.15). 

The HadCM2 scenario shows an 12.1% fall in annual rainfall, although this rises to 

15% during the wet season. HadCM2-S shows a similar pattern but with more severe 

changes particularly in the wet season (19.2% fall). ECHAM4 results in the opposite 

bias with greater decreases seen during the dry period (-2.6%). Temperature rise is 

fairly constant throughout the year although HadCM2-S shows slightly greater wet 

season warming. 

The variation in magnitude and timing of rainfall and temperature impacts on the 

river flow predictions. Figure 7.16 shows that ECHAM4 produces the least change, 

with a 10% annual decrease, and in line with the rainfall pattern, the fall is greater 

in the dry season. HadCM2-S indicates the opposite change with flow increases 

biased slightly towards the wet season within an annual decrease of over one-third. 



CHAPTER 7. CASE STUDY: BATOKA GORGE 
	

IEI1i1 

250 

200 
E 
E 

150 
'I- 

2 100 

0 

50 

[ii 

EL 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

• Base - - - - - HadGQ -I EHAM4 )( HadQ-S 

Figure 7.15: Monthly rainfall from three GCM scenarios for the 2080s 

The 28.3% fall implied by HadCM2 is spread fairly evenly throughout the year. 

In agreement with the results of the sensitivity study, energy production changes less 

than river flows. Figure 7.17 shows the seasonal changes due to all three scenarios, 

with energy production viewed as the equivalent power level. The 16.2% annual 

decrease in energy production from HadCM2 masks a 12.6% fall in wet season output 

and a 28.3% fall in dry season generation. A 12% decrease in dry season production 

is the result of the ECHAM4 scenario, while HadCM2-S indicates reductions of, 

respectively, 21.4%, 18.2% and 32.1% for annual, wet and dry season output. 

The decreases in output suggest a serious impact on system firm energy levels. Al-

though peak output falls by 4% at most for the HadCM2-S scenario, mean minimum 

monthly output drops from 440 MW to 307 MW, more than the installed capacity 

of the Victoria Falls station. 

Real mean monthly sales fall from 816.6 million to $13.1 million for HadCM2-S and 

$13.9 million for fladCM2. Importantly the variability of the sales stream increases, 

with the coefficient of variation rising from 44.9% for the base case to 57.2% for 

HadCM2-S. A greater variability in income could indicate potential for short-term 

cash flow problems. 

Decreases in sales of these magnitudes indicate significant financial impact, and 

this is indeed the case. Figure 7.18 shows NPV declining by over $60 million for 

ECHAM4, by $164 million for HadCM2 and by $215 million HadCM2-S scenario. 
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Figure 7.16: Monthly river flows from three GCM scenarios for the 2080s 
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Figure 7.17: Monthly mean power levels from three GCM scenarios for the 
2080s 
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IRR reduces for all three scenarios to 10.35% for ECHAM4, to 8.65 and 9.25% 

for the aerosol and non-aerosol Hadley scenarios. Discounted payback periods are 

increased to 25 years 6 months for ECHAM4 and beyond the project lifetime for the 

Hadley scenarios. Unit production cost also rises to between 1.62 and 1.92 c/kWh 

(equivalent to 7-26%). 

As ECHAM4 results in a positive NPV the project remains financially viable. 

However, the Hadley scenarios result in significantly negative NPV values, and under 

either of these circumstances, the project would be considered non-viable. 
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Figure 7.18: Project NPV with four GCM scenarios for the 200s 

Insights from Scenario Analysis 

The results of the analyses from the 2020s and 2080s indicate a significant worsening 

of conditions for investment, as indicated by all measures and in particular NPV. 

Once again, the sensitivity to increased rainfall is lower than that for decreases, as 

the results of GFDL-R15 confirms. The wide variation of values indicated by the 

different scenarios, whilst being useful in defining a range of possible changes, is 

limited in its application to decision-making. The standard technique for dealing 

with this is to generate an expected value from a weighted sum of the scenarios. 

As the probability of individual scenarios becoming reality is uncertain, they must 

weighted equally. Ignoring the base climate, the scenarios for the 2020s indicate an 

expected NPV of $56.8 million, representing an expected loss of $40 million compared 

to the base case, which suggests that on average the project would be viable. For 

the 2080s the situation deteriorates as the expected NPV becomes -$48.6 million, a 
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loss of $146.7 million. While such information is useful it does not actually indicate 

a change in the risk associated with the project, and this can only be examined 

through a risk analysis. 

7.3.3 Risk Analysis 

Synthetic series of temperature and precipitation can be constructed from a know-

ledge of several statistical properties, and HydroCC incorporates a means of ana-

lysing and generating such series. The large seasonal variations in rainfall, lead the 

Markov process to create unstable patterns of synthetic rainfall. As there are, on 

average, relatively weak correlations between months, an additional routine was ad-

ded to the HydroCC software to allow random monthly data to be produced based 

simply on a knowledge of the mean and variance. Several sample series of rainfall 

were created and the monthly means and standard deviations compared with the 

observational data. The average monthly mean values varied at most by 15% from 

the observed, although this was during one of the months with low values. The 

maximum absolute difference was 7.7 mm/month. Temperature patterns showed 

similar agreement, and the routine was considered sufficiently accurate for general 

use. 

Therefore, 50 pairs of temperature and precipitation series were created from the 

observed data, and these were used to drive the model under Base conditions and 

also with the ECHAM4 scenario for the 2080s. The NPVs and IRRs from each 

combination of series were extracted and used to create the histogram in Figure 

7.19. The mean NPV from the Base period was found to be $92.5 million, compared 

to $98.1 million for the original single run. The mean value from the ECHAM4 series 

is $27 million, $10 million lower than the single series. The standard deviations from 

both series are similar, at $18.4 million and $17.6 million for the Base and GCM 

scenarios, respectively. 

The use of standard deviation to indicate risk in financial markets can be equally 

applied to capital investments. While the simulations executed here are not true 

Monte Carlo series, nor are there sufficient series to be truly representative, the 

effect of changes in climate can be seen. The use of normalised mean values (or 

coefficient of variation) allows the variances of the Base and ECHAM4 scenarios to 

be compared. The Base scenario results in a CV of 19.9% compared to 65.1% from 

ECHAM4, indicating that the risk of the project has increased with climate change. 
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Figure 7.19: Histogram of NPV for Base and GCM scenario for 2080s 

7.4 Summary 

This chapter begins with a brief description of the Zambezi River basin, the loca-

tion for the study scheme. The climatological and hydrological characteristics of the 

basin, the current state of hydroelectric development and key specifications of the 

Batoka Gorge scheme are all presented. Specific information relating to the acquis-

ition, process and use of various forms of data are detailed and discussed regarding 

their suitability. A description of the project data, as simulated, precedes analysis of 

the impact of climatic change using sensitivity, scenario and risk analysis techniques. 

Despite their limitations, the three analyses indicate that: 

the Batoka Gorge scheme is rather sensitive to climate change, particularly 

rainfall variations, 

significant financial impacts occur under most GCM scenarios, and in some 

cases compromise the viability of the scheme, and 

for the scenario examined, the degree of risk that the scheme faces increases 

under climate change. 



Chapter 8 

Discussion and Conclusion 

This chapter draws together the issues involved with the future provision of energy 

and in particular the role of climate. The results from the Batoka Gorge case study 

are briefly reviewed, before a consideration ofthe possible implications, both for the 

study region and globally. A series of possible strategies are presented as means of 

dealing with climate change in the context of hydropower production and investment. 

Finally, conclusions are drawn regarding the the salient issues as a whole as well as 

the specific question of the detrimental impact of climate change on hydropower. 

8.1 General Discussion of Results 

8.1.1 Sensitivity Analysis 

The sensitivity study for the Batoka Gorge scheme confirmed the findings of previous 

hydrological impact studies by determining that runoff is relatively more sensitive 

to rainfall than temperature changes, and also that catchments tend to amplify 

the effects of rainfall changes. Rainfall sensitivity was found to be in agreement 

with previous studies, although temperature sensitivity is lower due to the poor 

representation of seasonal hydrology. Energy production from Batoka was found 

to be less sensitive to climate changes than runoff, indicating that the man-made 

structure is operating as intended by regulating nature. The financial measures were 

also found to be less sensitive than runoff, although net present value undergoes 

very large percentage changes as a result of the compounding effect of changes over 

the project lifetime. The financial sensitivity to changes in rainfall was similar to 

variations in energy sales prices, normally identified as a significant project risk. 

Overall, on the basis of the assumptions, the Batoka Gorge scheme would remain 

economically viable (real rate of return > 10%) for uniform rainfall changes of less 

than 12%, or temperature rises of up to 20°C (assuming that the variation is linear). 

170 
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8.1.2 Scenario Analysis 

The scenario analysis indicated that hydropower production and financial return 

would be less favourable if the scheme was commissioned under conditions expected 

by the 2020s, and worse still for conditions in the 2080s. The results also demonstrate 

the compound effect of changes in both rainfall and temperature. 

Under conditions indicated by the Hadley model for the 2080s the Batoka Gorge 

scheme would be uneconomic, assuming that all other factors remain the same. In 

these circumstances, the financial losses due to climate change (as measured by 

NPV) range from $60 million to $216 million, which represent up to 19% of the 

project value (in real terms). The fall in NPV may also be seen as an opportunity 

cost to society as a whole. 

8.1.3 Risk Analysis 

Although only one GCM scenario was examined using the limited risk analysis, sim-

ilar results could be expected for the other scenarios. This is due to the increase 

in river flow variability resulting from the catchment tendency to amplify rainfall 

changes. Although hydrological variability does not increase for all scenarios con-

sidered, in those which indicated reduced energy production, the variability of energy 

production does increase (see Tables A.7 and A.8, respectively). It can be inferred 

that energy production and financial return variability are linked and that under 

most of the scenarios examined, project returns will be more variable, and hence 

risk will be greater. 

Therefore, it follows that, on the basis of these results, financial risk for hydropower 

investments will increase, all other things being equal. 

8.1.4 Overall Impacts 

Overall, the Batoka Gorge scheme is seen to be sensitive to changes in climate, and 

under most of the scenarios considered experienced significant reductions in financial 

performance, in some cases the project would be rendered uneconomic (on the basis 

of the scheme being required to deliver a 10% real return). Coupled to this is an 

increasing risk of financial performance varying from expected levels. Together these 

effects would appear to make the Batoka Scheme less attractive as an investment, 

particularly under the conditions projected for the end of the century. 
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8.1.5 Reliability of Results 

The reliability of the results should be gauged not only on how well the financial 

measures compare with the Batoka feasibility study (FS) findings, but also on the 

software's simulation of intermediate processes. To this effect the software perform-

ance was examined at several stages during the case study and found that: 

• The spatially aggregated observed climate data provided precipitation and 

PET values in line with previous studies. 

• The high degree of correlation between simulated and observed dry season low 

flows, together with a rainfall elasticity similar to those found in other works, 

suggest that the hydrological model operates reasonably well, despite poor 

flood representation. 

• The fact that simulated energy production is larger than that reported in the 

FS follows directly from the less peaky and longer wet season, and the correct 

performance of the reservoir model is confirmed by the similarity between 

energy output and inflow values. 

• The financial measures indicated by the Base case were similar to those repor-

ted in the FS. 

Overall, the HydroCC software models the climate-finance process well, providing 

estimates of annual runoff, generation and financial performance comparable to the 

Batoka feasibility study. Despite this success, the results of the case study require 

qualification. Application of the WatBal hydrological model to the Upper Zam-

bezi is limited by its ability to model the complex seasonal hydrology of the upper 

basin. In particular, the failure to represent the seasonal swamp systems leads to a 

lower, earlier and longer peak flow season, and lower actual evaporation. As such, 

it does not deliver a true simulation of seasonal runoff although it is successful in 

reproducing low flows during the dry season. 

Although this failure suggests that the climate changes indicated here cannot be 

taken as a projection of likely performance, the technique has been validated. The 

results cannot be relied on as indicating true change, the low sensitivity to temper-

ature (compared to others) resulting from the poor representation of the seasonal 

swamp systems, could suggest that the basin may in fact be even more sensitive 

than indicated. 

The choice of Batoka Gorge as the study scheme was reasonable, as it was possible 

to examine it as a stand-alone scheme without influence from upstream flow con- 

trols. The complexity of the hydrology created difficulties for accurate modelling 
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and identified some of the limitations of the modelling approach using simplified 

representations. 

8.2 Implications 

This section examines the implications for a wide range of issues for the Batoka 

scheme and for hydropower in general. 

8.2.1 Meeting Demand 

The reductions in hydropower output suggested by the scenarios are significant, and 

would imply mean annual energy deficits (relative to the Batoka target output) of up 

to 824 GWh for the 2020s, and between 580 and 2,000 GWh for the 2080s. These 

represent losses of 9% and 6-22% respectively. In addition, the results suggested 

that most scenarios would lead to a fall in in mean minimum monthly production 

and consequently create problems for system firm energy levels. 

The firm power level for the combined Zambian-Zimbabwean system is expected to 

rise to 2,450 MW with the construction of the Batoka Scheme. Without a system 

level study it is not possible to determine the effect of climate changes on this figure, 

although an indication can be gained by using the overall monthly minimum Batoka 

production level as a proxy. The results indicate that the Base scenario results in 

a minimum monthly power level of 306 MW, and this is reduced by 16% under 

the HadCM2 scenario for the 2080s. If this proportional change was repeated on a 

system level, and ignoring the possible use of Kariba storage to compensate, firm 

power levels would be reduced to 2,060 MW. 

8.2.2 Implied Costs 

The shortfall in electricity indicated by the CCM scenarios results in both an op-

portunity cost, and also the cost of replacement energy, either from existing sources 

or from new plant. Such costs are not only borneby the investor, but also by so-

ciety in general. The opportunity cost from lost hydro production is evident in the 

declining net present values in the results, however the replacement costs require 

further analysis. 

Replacement energy can be sourced from within Zimbabwe (to a limited degree) or 

from elsewhere via the interconnectors. For example, imports from South Africa at 

the unit energy cost suggested by the Batoka FS (1.82 US c/kWh), would cover the 

average annual shortfalls for the 2020s and 2080s, respectively, for $26 million and 
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$64 million (in real terms). 

The alternative is to construct plant to cover the deficit, the capacity of which can 

be determined from an estimate of the load factor. Assuming approximately the 

same load factor as Batoka (65%), and ignoring the larger inter-annual range, then 

the annual average deficit serves as a useful illustration of the implied need. For the 

GCM scenarios of the 2020s, additional plant of up to 145 MW capacity would be 

required, although the GFDL-R15 scenario suggests that investment in 20 MW of 

plant could be foregone at that stage. For the 2080s, the plant requirement increases 

to between 100 and 350 MW. 

An indicative capital cost of $1200/kW for a coal station [225] implies costs of up to 

$174 million for the 2020s, and $150 to $530 million for the 2080s. These represent 

sizable capital expenditures over and above the cost of Batoka itself. 

8.2.3 Hydropower Investment 

The single pseudo-risk analysis indicated that the variability of project returns in-

creased under the ECHAM4 scenario for the 2080s. In addition, all scenarios that 

resulted in decreased energy production also have increased energy production vari-

ability, and therefore greater levels of risk. 

The classical view of investment is that greater risk should be compensated by 

increased returns. However, in the scenarios examined in this study, with the excep-

tion of the GFDL-R15 scenario for the 2020s, the return is seen to fall. Therefore 

the impact is twofold: an increased risk, which according to traditional analysis, 

should lead to a higher expected return, whilst at the same time a reduction in the 

expected return possible. Overall, these effects would indicate that investment in 

hydroelectric power will become less attractive. 

It is possible to determine the impact of increase in risk on the expected return but 

the requirement for an quantitative examination of the overall risk facing the project 

is beyond the scope of the study. Despite this, the qualitative analysis using only 

variations in climate is sufficient to show the direction of the change. 

Whether the combination of increased risk and lower expected returns would render 

the project as non-viable depends very much on the project investor or sponsor. 

Where private investment is involved expected returns below the cost of capital 

would preclude the project. However, even for the most damaging GCM scenario 

(HadCM2-S in 2080s), the internal rate of return still manages to reach 8.65% in 

real terms and 13.65% nominal, which is still a respectable return. 

Despite the tendency for greater private capital in the electricity industry, some 

investments will still be State sponsored or controlled. As such, and particularly 
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when goals other than profit maximisation are involved, lower expected returns 

resulting from climatic change may still be sufficient to allow a scheme to progress. 

In the case of Batoka Gorge, the state owned Zimbabwean utility may well accept the 

risk of lower returns, given the fact that power would still be relatively inexpensive 

would avoid importation of energy, and would be relatively emission-free. 

8.2.4 Regional Emissions 

Zimbabwe is well supplied with indigenous coal albeit of a low quality high-sulphur 

variety, with proven reserves expected to last over 100 years at present usage rates 

If the hydro resource of the Zambezi is not harnessed due to the risk of 

detrimental changes from global warming, then the energy requirements of Zimbabwe 

will be met by burning more coal. 

Hwange, Zimbabwe's main coal-fired power plant emits around one tonne of CO 2  

per MWh. To produce the same level of energy as Batoka Gorge, the coal station 

would emit approximately 9 million tonnes of CO2, along with 90,000 tonnes of SO2 

and 15,000 tonnes of NO [221]. 

If construction of Batoka were to prevent the expansion of coal burning then, under 

the Base scenario, 278 million tonnes of CO 2  (75 MtC) emissions would be avoided 

over the 30 year period. With the avoided emissions varying directly with Batoka 

output, the GCM scenarios for the 2020s suggest that climate change would neces-

sitate additional coal burning and emissions of the range -3 to 24 Mt CO 2 . For the 

2080s the additional emissions rise to between 15 and 59 Mt CO2. 

8.2.5 Carbon Abatement and the Clean Development Mechanism 

In many respects, and ignoring possible greenhouse emissions during construction, 

the construction of hydro schemes can be regarded as a carbon abatement option 

Abatement costs are simply the ratio of the cost of the measure to the quantity 

of CO2 avoided, and may be discounted similar to unit energy costs. A UNEP study 

considered the options available to Zimbabwe for carbon abatement, including the 

increased use of hydropower, and estimated that for 2030, average abatement costs 

would be of the order of $9/t CO2 [226]. 

Once again viewing Batoka as preventing coal burning, the Base case suggests that 

the $1.15 billion scheme could be considered to avoid carbon emissions for $4.09 per 

tonne of CO 2  (or $15.13/tC) avoided. At a social discount rate of 5% the abatement 

cost rises to $7.60/t CO 2 . The selection of discount rate is rather contentious, 

and delivers widely differing abatement costs (see Arrow et al [228]). With either 

discount rate the abatement cost of constructing Batoka Gorge is lower than the 
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average cost, and significantly below the estimated climate change damage cost of 

up to $125/tC [229]. 

In the same manner as unit energy cost rises under most of the GCM scenarios 

used in the previous chapter, the same could be said for abatement costs. For the 

2020s scenarios, undiscounted abatement costs range from $4.05 to $4.48/t CO 2 . 

The more severe 2080s scenarios raise abatement costs by up to 27% (HadCM2-S), 

ranging from $4.36 to $5.21/t CO2. 

Under the Clean Development Mechanism (CDM) of the Kyoto Protocol, a foreign 

government or business investing in a carbon abatement project in a developing 

country could claim all or part of the emissions avoided as emissions credits, to 

offset domestic levels or for use in emissions trading. Whether a foreign entity 

invests in a particular technology under the CDM depends on the cost per tonne of 

CO2  avoided for the project in question and the relative levels of alternatives within 

the host nation or the marginal abatement cost in the developed nation. With the 

rise in abatement costs as a result of climate change, Batoka could be become less 

favourable to would be foreign investors. However, the low cost even with the more 

extreme GCM scenario would be unlikely to deter a European investor, as their 

marginal abatement costs tend to be significantly higher [227]. 

8.2.6 Global Implications 

The heterogeneity of hydropower scheme characteristics, hydrological regimes and 

possible climate changes precludes a detailed global assessment of changes in hydro-

power potential and investment returns at this stage. However, the JIASA/WEC 

scenarios provide a useful starting point for examining the impact of reduced energy 

output or the abandonment of potential hydropower schemes as a result of climate 

change. 

All JIASA/WEC scenarios anticipate that hydropower capacity will increase three-

fold by the end of the century [74]. As electricity demand must still be satisfied, 

then any failure to add hydro capacity or maintain production will require altern-

ative generation. The impacts will be illustrated by considering a scenario where 

hydropower production falls by 10% of expected levels throughout the next century. 

The reason for the drop could be as a result of actual climate change, or due to 

potential change that investment in hydropower declines. Given the results for the 

Batoka Gorge, a 10% fall is not inconceivable. 

The IJASA/WEC scenario B (see Figure 3.2) assumes a middle course for growth, 

and implies that annual energy output from hydropower is expected to increase from 

2,420 TWh to 7,420 TWh over the next century. If for either reason production falls 

by 10% then only 6,920 TWh will be produced in 2100, indicating a cumulative 
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shortfall of 25,000 TWh. Replacing the energy by purchasing energy from existing 

sources at an average real sales tariff of S30/MWh (as for Batoka), average annual 

replacement costs (or opportunity costs) will be in the region of $12 billion. In terms 

of replacement plant, a 10% deficit in hydro production could require an additional 

130,000 MW of installed capacity (at a 65% load factor) by the end of the century, 

ignoring retirements. With the same assumptions regarding coal-fired replacement 

as Section 8.2.2 additional capacity of this magnitude would involve around $160 

billion of investment in real terms over the century. 

Making good the shortfall with current coal production technology would release an 

additional 25 Gt of CO2 over the century. To put this in context, 25 Gt of CO 2  

is approximately the current level of carbon emissions (6.8 GtC), although for this 

scenario such a quantity would represent just over 3% of total emissions from fossil 

fuelled electricity generation (with gas stations emitting 45% less CO 2 /MWh than 

coal). 

Of course, such calculations are very rough, and it is unlikely that schemes would be 

abandoned at even intervals over time, rather, the occurrence would become more 

frequent as climate change progresses. In addition, the changes will be regionally 

diverse, and it is likely that some regions will fare worse than others. 

In all, the potential impact on a global scale could be significant, both in terms 

of the financial impact of lost production or the the cost of additional generation 

capacity, and also the subsequent consequence for increased carbon emissions and 

greater climate change. A detailed study of these aspects is complex and beyond 

the scope of this work. 

8.3 Strategies for Dealing with Climate Change 

There are a wide variety of possible areas through which the impact of climate 

change on hydropower production and investment can be minimised. The following 

are examples and are by no means an exhaustive list: 

8.3.1 Project Location 

The Batoka Gorge case study illustrated the effect of climatic change on a project in 

a fairly and basin, and in particular the effect of both reduced rainfall and increas-

ing temperature. To reduce the probability of detrimental changes, development 

would be best advised to concentrate on humid regions and those with forecasts of 

increasing precipitation. 

Figures 8.1 and 8.2 indicate the pattern of temperature and precipitation change by 
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2080 under the HadCM2-S scenario used in the case study. They show significant 

warming in the large land masses including southern Africa and the US Mid-West, 

and significant drying across the Middle East, parts of Latin America and Asia and 

once again in southern Africa. 

- 1, 
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............ ........................... ....... 	 ...... 	 .... ............ 	 ...... .......... ^1 	 * . 	 .......... V 
- 5 1 	3.4 	5 	°C 

Figure 8.1: HadCM2-S scenario implied temperature changes (°C) for the 
2080s relative to 1961-90 mean (from IPCC DDC Data Visual-
isation Pages) 

Hydro development may fare better in the regions with forecast increases in rainfall, 

although as the case study confirmed, only limited exploitation may be possible, 

if schemes do not take climate change into account during design. Lower forecast 

temperatures may be less detrimental, and in mountainous regions increasing tem-

peratures may be beneficial, in the short term at least, as snow and ice patterns 

change. In addition to regional climate changes, other factors are involved in de-

termining development suitability, ranging from the resource availability to demand 

and project acceptance. As such, definitive rules on the best location cannot be 

determined globally and are best examined at a regional level. 

8.3.2 Project Size 

A series of smaller developments may well create the same level of power but may 

well be more robust as production may be further optimised. In addition piecewise 

development is more in tune with the limited financial resources of developing coun-

tries and offers flexibility in design and construction, and fewer financial resources 

at risk at any one time. 
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Figure 8.2: HadCM2-S scenario implied precipitation changes (mm/day) for 
the 2080s relative to 1961-90 mean (from IPCC DDC Data Visu-
alisation Pages) 

8.3.3 Project Timing 

Given the long lead times involved with hydro schemes the timing of construction 

and operation are critical. As the results indicate, there appears to be a worsening 

of conditions up to the 2020s and a further worsening up to 2080, although such a 

trend may not occur everywhere. Given the need for emissions reductions sooner 

rather than later, and this apparent deterioration in performance as time passes, 

the planning, construction and use of hydropower schemes would be best advised to 

commence as early as possible. 

Running counter to this assertion is the relative performance of CCGT plant being 

constructed in many parts of the world, which will tend to limit hydropower devel-

opment. However, natural gas is not readily available to all nations and as oil and 

gas prices will tend to rise over time as resource limits are approached, the com-

petitiveness of gas plant will fall. In addition, the current expectations of investors 

will have some bearing, particularly the tendency towards short-termism, and high 

expected returns. Over time these issues could become less severe, primarily as the 

expected returns to investors are conditioned by market characteristics in the late 

twentieth century, which may be unsustainable in the longer term. 

The scenarios presented here are based on a consistent trend of emissions, which is 

unlikely to be the case. Additionally, the IPCC reports do not rule out the possibility 

of 'surprises', for example, the possibility of extremely rapid climate change as a 

result of positive feedback mechanisms. The possibility of unexpected change further 

complicates the timing decision. 
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8.3.4 Technical and Operational Means 

Plant capabilities and flexibilities may be increased at the design stage or by retro-

spectively re-engineering, to take advantage of additional flows or provide increased 

carry-over storage. Although measures may increase capital cost, the return may be 

justified and should be determined by cost benefit analysis. For example, a series 

of measures for the Zambezi were suggested by Reibsame et al [114]: increasing 

turbine efficiency, increasing active storage by installation of lower intakes or the 

use of back-pumping to optimise water use. 

Greater operational flexibility, and the continuous updating of rule curves to adapt 

to changing hydrological conditions along with increased use of telemetric data will 

assist in optimising output. 

8.3.5 Interconnection 

The provision of interconnection between systems will reduce the impact of seasonal 

shortfalls and improve overall reliability. The creation of regional power power pools 

may enable more efficient investment, production and consumption patterns to be 

develop. 

8.3.6 Risk Management 

Overall, successful investment will be based on the ability of the investor to limit 

risk. An understanding of potential risks and their consequences is a key task, along 

with making use of available mechanisms for limiting exposure. For example, project 

diversification, or the use of joint ventures between companies or Government will 

allow a sharing of risk. An increased probability of successful investment or lending 

could be achieved through guaranteed debt repayments either by guarantees from 

Governments or through the purchase of insurance. 

8.3.7 Correcting Market Failure 

The inclusion of social costs in pricing enables solutions that are more socially ac-

ceptable. As such the crediting of carbon avoidance, emissions trading or a carbon 

tax would improve the relative disadvantage that hydropower and other renewables 

face. Such schemes may well assist in limiting the impact of projected climate 

changes by improving the competitiveness of hydropower. 
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8.3.8 Assessments 

The analysis techniques used in the case study illustrate the magnitude of the cli-

mate problem, and the need to take account of it when making investment decisions. 

The simple approach used here is adequate for project screening, so long as the hy-

drological model represents reality to a satisfactory degree. In this instance the 

project has been found to be sensitive to climatic change and given the potential 

opportunity and additional replacement energy costs identified, along with possib-

ility of greater than simulated sensitivity to temperature, it would be prudent to 

commission a more detailed study of the impacts. 

8.4 Conclusions 

Climate change is expected to be the result of increasing atmospheric concentrations 

of CO2 and other greenhouse gases, as a result of anthropogenic emissions. Emis-

sions of greenhouse gases have increased greatly since the start of the Industrial 

Revolution, primarily as a result of the burning of fossil fuels for electricity genera-

tion and transportation. In the absence of controls, the continuing economic growth 

in developing countries suggests that emission levels are set grow significantly over 

the next century. 

The theoretical possibility of global warming as a result of increased levels of CO2 is 

supported by data from Antarctic ice cores, from over 400 millenia, and from recent 

instrumental and paleo-climatic records which indicate a substantial warming of up 

to 0.6°C since 1850. While such records do not provide absolute proof of Man's 

influence on the climate system, the evidence is strong and persuasive. 

The major method of indicating future climate change is from the use of General 

Circulation Models, and these complex numerical models indicate temperature rises 

of around 2°C, although some models indicate significantly larger changes. Accom-

panying global warming will be changes in regional and global precipitation patterns 

and other meteorological variables. The effects of these changes will be felt in many 

areas of human activity, ranging from sea level rise and stress on water resources, to 

agriculture and human health. Overall, the impact of the changes will have economic 

impacts which will be borne disproportionately by developing nations. 

Given the significant impacts of climate change and the inequity between current 

levels of emissions and detrimental effects, international agencies have been leading 

the drive for agreement on reducing emissions. As a first step, the Kyoto Protocol 

committed industrialised nations to modest cuts in emissions by 2010, although more 

serious cuts will be required to stabilise concentrations. 
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As the electricity supply industry is responsible for around a third of all carbon 

emissions a significant level of emission reductions must occur here. To achieve 

reductions, reliance on carbon-intensive technologies must be weakened, and low- or 

no-carbon renewable resources harnessed. Hydropower is the largest single renewable 

energy source used for electricity generation. It currently meets around a quarter of 

global electricity requirements, and over the next century hydropower production is 

forecast to increase threefold. 

At the same time as global warming is occurring, the ESI will continue to liberalise, 

involving increasing levels of private sector involvement in electricity, traditionally 

the bastion of state-owned utilities. Increased private capital is sought to allow 

significant levels of investment in new generating capacity as global demand soars. 

As such the focus for developing generating plant has shifted from the system se-

curity and least-cost planning of the old utilities to the profit- m aximisation and 

risk-minimisation approach of the private firm. This implies, and evidence from the 

UK and elsewhere supports the view that, increasingly, generating capacity with low 

capital costs and rapid payback periods, considered to be less risky, will be favoured. 

As such, capital-intensive renewable technologies, such as hydropower, may not be 

favoured. 

Higher evaporation rates arising from warmer temperatures together with altered 

precipitation patterns may alter the timing and quantity of river flows. Although 

mean global precipitation is projected to increase by 15%, the increase will be by 

no means spatially or temporally uniform. Indeed, many areas of the world will 

see reductions in levels, and consequently falling river flows. As such the energy 

available for hydropower generation may fall reducing the revenue, and consequently 

lowering financial returns. With the increased use of private finance, lower expected 

returns could force the abandonment of potential schemes, and necessitating the 

construction of fossil-fuelled plant to ensure electricity supplies. As a consequence, 

not only will a relatively non-polluting source of energy not be used, but additional 

CO2  will be emitted which will reduce our ability to deal with the climate change 

problem effectively. 

Previous studies identified the sensitivity of river basins to climate change and some 

considered the impact on hydropower production. This study follows from the work 

of Whittington and Gundry and aimed to assess quantitatively the financial impact 

of changes in precipitation and temperature. The research developed a technique 

which was subsequently encapsulated in a software tool. Adapted from the stand-

ard feasibility study, the reliance on historic river flow patterns is removed by the 

inclusion of a hydrological model to allow a linkage between climatic variables and 

financial performance. 

The intention was to develop a tool using simple techniques to allow rapid pro- 
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ject screening to identify instances where the level of sensitivity warrants deeper 

investigation. The software tool is based on physically sound models that are well 

documented and well reviewed. A case study of the proposed Batoka Gorge scheme 

in the Zambezi River Basin allowed the model to be refined and the technique val-

idated and tested. 

The simple hydrological model was found to poorly represent seasonal rivers flows 

as it did not explicitly account for the effects of the seasonal swamps that make the 

Zambezi one of the most complex hydrologically. However, as a number of attributes 

were found to agree closely with observed values and those suggested by the research 

of others, as well as the limited use of the model to screen projects, the model as a 

whole was deemed acceptable for use. Three types of analysis were conducted with 

the model: sensitivity, scenario and risk. 

The sensitivity analysis confirmed that river runoff is relatively more sensitive to 

precipitation change than changes in temperature, and that the catchment tends to 

amplify proportional changes in precipitation. In terms of financial sensitivity, the 

scheme was rather sensitive to rainfall reductions although less so to increases, as the 

turbine and storage capacities limited the ability of the scheme to take advantage of 

increased flows. Financial performance, as measured by net present value and other 

measures, was found to fall with decreased precipitation and rising temperature. 

The sensitivity to rainfall change was found to be comparable to that of variations 

in electricity sales prices. 

The scenario analysis found that for most scenarios financial performance suffered, 

and conditions were found to worsen over time. Under some scenarios the financial 

performance deteriorated to such a degree that, on the basis of the expected returns, 

the project would become non-viable. In the worst case, the net present value of the 

project, defined by a 10% real discount rate, was found to fall by over $200 million, 

a significant proportion of the construction cost 

Finally, a limited risk analysis was performed using synthetic time series of precipit-

ation and temperature. With risk defined as the standard deviation of the expected 

net present values, the GCM scenario resulted in increased risk. Inferring that it is 

the variability of energy production that determines this risk, all scenarios indicating 

increased production variability are anticipated to indicate increased financial risk. 

The results were used to answer three key questions: What impact will climate 

change have on the financial performance and risk of hydro schemes? How will 

this affect the terms for financing and the financial returns deemed acceptable by 

investors? Finally, what will be the consequences for the provision of hydropower 

worldwide and the ability to meet carbon emission targets? 

On the basis of the case study results, climate change reduces the financial perform- 
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ance while simultaneously increasing risk. In addition, a number of implications 

were identified: difficulties in meeting system demand; opportunity costs resulting 

from lost production; the cost of replacement energy; a deterioration in the position 

of the scheme as a means of abating CO2; and increased CO2 emissions if fossil fuels 

were used to make good the shortfall in production. 

Although quantitative answers to the second and third questions are beyond the 

scope of this thesis, qualitative treatments identified the likely impacts. Firstly, the 

increased risk would tend to increase the expected return and make the financing 

terms less favourable. An increasing possibility that schemes could be abandoned on 

the basis of a deteriorating financial return and increased risk, along with the changes 

in the production from operating schemes, would appear to indicate a shortfall in 

overall generating capacity relative to expectations. A simple example indicated 

that the impact of such changes in terms of the requirement for additional non-

hydropower generating capacity and the consequent increase in CO2 emissions could 

be significant. 

Together the three questions indicate that the hypothesis can be affirmed: does cli-

mate change adversely affect production from hydropower schemes and consequently 

deter investment in them? The answer on the basis of the research and the results 

from the case study, is yes. 

8.5 Recommendations for Further Work 

8.5.1 Full Monte Carlo Analysis 

As the scenario analysis showed, the compound effects of more than one change can 

have a significantly greater impact than the individual changes. As such, simply al-

tering the rainfall and temperature by amounts determined by a single GCM scenario 

will not provide the true range of outcomes. To overcome this limitation, multiple 

GCM scenarios could be used together with random values for other key project 

parameters. With GCM scenarios selected at random, a more comprehensive ana-

lysis would allow single values for both risk and expected returns to be made. This 

would establish that, for climate change scenarios as a whole, financial risk would 

be seen to increase and return would fall. 

8.5.2 Scenario Type 

The GCM scenarios used in the case study are all averaged from sections of a tran- 

sient experiment, and whilst not as unrealistic as equilibrium scenarios still impose 

a mean change with no alteration of the temporal pattern. In reality, changes to 
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conditions are likely to occur over time, and so the full climate change will not be 

seen in the early years. Use of time series values from transient experiments would 

allow these effects to be examined, although the direct use of GCM output would 

not be sensible at this stage. 

8.5.3 Global Analysis 

A more detailed analysis of global impacts similar to that presented in Section 8.2.6 

would be a very useful extension of the work. Long term plant investment models 

would be necessary to indicate the hydropower investment levels, by taking into 

account the relative costs and risks of numerous generating methods. Changes in 

hydropower production would have to be driven by prevailing climate conditions, and 

some direct linkage between past performance and future investment levels would 

have to be incorporated. A regional assessment is likely to be the most sensible 

approach, although this may not allow investigation of the significant differences 

between projects. 

8.6 Thesis Conclusion 

The thesis draws together information and techniques from a disparate number of 

subject areas, and uses them to identify gaps in the body of knowledge surrounding 

the climate change issue. The thesis describes a first attempt to quantitatively assess 

the effect of changing climate on the financial performance of hydropower schemes. 

The works forms the basis for further investigations into the impact of changing 

levels of hydropower investment on global CO 2  levels. 
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Appendix A 

Case Study Details 

A.1 Detailed Project Costs 

Table A.1 provides the breakdown for the major cost items for the Batoka scheme. 

Item 	 US$ million 

A Civil Works 
Al Direct costs 	 470,266 
A2 Indirect costs (19% of Al) 	 89,351 
A3 Contingencies (20% of Al + A2) 	 111,923 
A4 Total Civil Works 	 671,540 

B 	Mechanical Equipment/Hydraulic Steel Structure 
Bi Direct and indirect costs 	 200,300 
B2 Contingencies (10% of Bi) 	 20,036 
B3 Total 	 220,396 

C 	Electrical 
Cl Direct/indirect 	 155,482 
C2 Contingencies (10% of Cl) 	 15,548 
C3 Total 	 171,030 

Total Construction Cost 	 1,062,966 
Engineering, administration and supervision 	 85,037 
Client's own cost 	 5,315 

Basic Cost 	 1,153,318 

Table A.1: Detailed costs for Batoka Dam [221] 
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A.2 Water Balance Model Calibration 

Figure A.1 shows the relative sensitivity of annual runoff to 10% variations in the 

optimal WatBal parameters given in Section 7.2.2. Figure A.2 shows the optimal 

match between observed and simulated river flows over the period 1961 to 1990. 
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Figure A.1: Annual flow sensitivity to WatBal parameter values 
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A.3 Climate Impact Studies 

Table A.2 indicates the changes in the financial performance measures with changes 

of + 20% precipitation and 4°C temperature rise 

Financial Measure Precipitation 
+20% 	-20% 

Tern perature 
+4°C 

NPV 142 -207 -42 

IRR 12 -20 -4 

Benefit Cost Ratio 13 -19 -4 
Payback -14 30 6 
Discounted Payback (10%) -24 LSO 15 
Return on Investment 16 -24 -5 
Unit Cost (10%) -12 25 4 

Table A.2: Summary of financial measure sensitivity (percentage change) 

Tables A.3 and A.4 show the monthly mean, standard deviation and coefficient of 

variation of river flows and energy production, respectively, for uniform changes in 

precipitation and temperature. 

Tables A.5 to A.8 shows the monthly mean, standard deviation and coefficient of 

variation for each of the GCM scenarios, for precipitation, temperature, river flow 

and energy production, respectively. 

Table A.9 presents the full range of financial impacts for each GCM scenario. 



Scenario Measure Month Annual 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

IV 

Base it (BCM) 3.47 5.33 7.52 6.09 4.33 2.98 2.32 1.76 1.28 1.04 0.99 1.76 3.21 

o (BCM) 0.94 1.13 1.87 1.65 1.09 0.76 0.57 0.41 0.27 0.19 0.21 0.54 2.27 

CV (%) 27.16 21.29 24.83 27.16 25.25 25.39 24.63 23.29 20.85 18.32 21.43 30.60 70.74 

Precipitation +20% p (BCM) 5.41 8.71 12.08 8.87 5.86 3.98 3.05 2.28 1.63 1.29 1.25 2.53 4.71 

o (BCM) 1.67 2.07 3.28 2.57 1.46 1.00 0.75 0.54 0.36 0.26 0.32 0.89 3.71 

CV (%) 30.84 23.80 27.13 28.96 24.87 25.03 24.67 23.83 22.07 20.52 25.23 35.03 78.85 

Precipitation +10% p (BCM) 4.35 6.85 9.61 7.41 5.08 3.47 2.67 2.02 1.45 1.16 1.11 2.12 3.91 
o (BCM) 1.27 1.55 2.51 2.08 1.28 0.88 0.66 0.48 0.31 0.23 0.26 0.70 2.93 

CV (%) 29.10 22.61 26.09 28.05 25.10 25.29 24.74 23.71 21.61 19.55 23.47 32.89 74.84 

Precipitation -10% IL (BCM) 2.76 4.10 5.81 4.93 3.63 2.52 1.97 1.52 1.13 0.92 0.87 1.47 2.61 

o (BCM) 0.69 0.82 1.37 1.30 0.92 0.63 0.48 0.34 0.22 0.16 0.17 0.41 1.74 

CV (%) 25.20 19.95 23.53 26.28 25.27 25.23 24.24 22.67 19.85 16.87 19.28 28.01 66.50 

Precipitation -20% tt (BCM) 2.18 3.12 4.42 3.91 2.97 2.09 1.66 1.30 0.98 0.82 0.77 1.22 2.10 
o (BCM) 0.51 0.59 0.99 1.00 0.75 0.52 0.39 0.28 0.18 0.13 0.13 0.31 1.30 

CV (%) 23.59 18.95 22.33 25.54 25.11 24.89 23.53 21.61 18.52 15.23 16.86 25.13 62.05 

Temperature +2 ° C ii (BCM) 3.34 5.14 7.27 5.90 4.19 2.86 2.21 1.68 1.22 0.99 0.94 1.69 3.10 
o (BCM) 0.90 1.09 1.80 1.61 1.07 0.73 0.55 0.39 0.25 0.18 0.20 0.51 2.20 
CV (%) 27.00 21.20 24.81 27.35 25.50 25.58 24.68 23.25 20.64 17.86 20.92 30.37 71.21 

Temperature +4° C ,z (BCM) 3.23 4.98 7.05 5.74 4.06 2.76 2.12 1.60 1.17 0.95 0.91 1.62 2.99 
o (BCM) 0.87 1.05 1.75 1.58 1.04 0.71 0.53 0.37 0.24 0.17 0.19 0.49 2.14 
CV (%) 26.85 21.10 24.88 27.46 25.69 25.77 24.75 23.26 20.37 17.51 20.44 30.24 71.63 

Temperature -2° C iL (BCM) 3.62 5.54 7.81 6.31 4.50 3.12 2.43 1.86 1.36 1.10 1.04 1.85 3.35 
o (BCM) 0.99 1.19 1.94 1.71 1.12 0.78 0.60 0.43 0.29 0.21 0.23 0.57 2.35 
CV (%) 27.33 21.40 24.77 27.02 24.92 25.09 24.53 23.31 21.06 18.79 21.92 30.80 '70.16 

Table A.3: Monthly river flows for uniform changes in climate 
	 CD 



Scenario 	 Measure 	 Month 	 Annual 
Jan 	Feb 	Mar 	Apr 	May 	Jun 	Jul 	Aug 	Sep 	Oct 	Nov 	Dec 

Base (GWh) 938.38 1060.07 1190.40 1152.00 1159.04 979.73 777.50 569.66 411.10 331.84 316.46 542.34 780.34 

a' (GWh) 210.64 81.47 0.00 0.00 90.46 215.34 219.48 142.20 86.01 61.24 67.99 138.67 350.29 

CV (%) 22.45 7.69 0.00 0.00 7.80 21.98 28.23 24.96 20.92 18.45 21.48 25.57 44.89 

Precipitation +20% p (GWh) 1147.74 1075.20 1190.40 1152.00 1190.40 1116.35 1009.74 767.64 525.42 412.42 402.14 734.80 887.32 

a' (GWh) 118.34 0.00 0.00 0.00 0.00 100.31 234.24 215.99 123.52 84.89 101.45 242.25 326.18 

CV (%) 10.31 0.00 0.00 0.00 0.00 8.99 23.20 28.14 23.51 20.58 25.23 32.97 36.76 

Precipitation +10% 1A (GWh) 1077.63 1066.62 1190.40 1152.00 1183.35 1045.26 919.00 656.67 465.13 371.03 357.24 616.11 836.16 
a' (GWh) 162.46 46.21 0.00 0.00 35.97 162.25 254.05 173.02 100.73 72.87 83,82 163.99 339.48 

CV (%) 15.08 4.33 0.00 0.00 3.04 15.52 27.64 26.35 21.66 19.64 23.46 26.62 40.60 

Precipitation -10% it (GWh) 793.15 1055.00 1180.09 1135.76 1094.34 851.44 643.54 487.11 360.27 295.50 280.00 470.47 715.24 
a' (GWh) 188.57 96.28 52.46 74.00 158.80 240.86 172.72 110.53 71.69 50.28 54.01 131.98 354.13 
CV (%) 23.77 9.13 4.45 6.52 14.51 28.29 26.84 22.69 19.90 17.02 19.29 28.05 49.51 

Precipitation -20% it (GWh) 651.46 863.38 1114.84 1052.58 982.02 709.83 529.82 415.69 313.58 262.53 247.95 390.69 623.35 
a' (GWh) 115.98 166.01 144.35 178.23 246.80 223.32 124.15 90.26 58.23 40.25 41.89 98.42 334.70 
CV (%) 17.80 19.23 12.95 16.93 25.13 31.46 23.43 21.71 18.57 15.33 16.89 25.19 53.69 

Temperature +2 ° C ,z (GWh) 915.64 1063.73 1190.00 1150.00 1154.66 951.77 743.49 540.55 390.69 315.94 302.13 518.04 764.36 
a' (GWh) 211.29 87.63 0.00 0.00 101.34 231.62 217.99 132.02 80.85 56.95 63.45 130.37 355.95 
CV (%) 23.08 8.24 0.00 0.00 8.78 24.34 29.32 24.42 20.69 18.02 21.00 25.17 46.57 

Temperature +4 ° C p (GWh) 883.52 1063.45 1190.40 1152.00 1138.00 932.08 711.25 513.14 373.41 302.64 290.21 505.52 749.36 
a' (GWh) 209.20 63.26 0.00 0.00 116.35 240.42 217.30 118.50 76.36 53.27 59.60 133.86 359.44 
CV (%) 23.68 5.95 0.00 0.00 10.22 25.79 30.55 23.09 20.45 17.60 20.54 26.48 47.97 

Temperature -2 ° C ,z (GWh) 975.33 1061.22 1190.40 1152.00 1169.86 1002.00 833.99 595.66 435.21 350.88 333.72 563.36 799.77 
a' (GWh) 206.81 75.28 0.00 0.00 73.09 202.77 244.56 145.59 91.91 66.25 73.35 141.79 346.26 
CV (%) 21.20 7.09 0.00 0.00 6.25 20.24 29.32 24.44 21.12 18.88 21.98 25.17 43.29 

I 
Table A.4: Monthly energy production for uniform changes in climate 



Base 61-90 	1L (mm/mth) 193.61 171.64 136.83 41.34 2.48 0.25 0.00 

0' (mm/mth) 25.74 30.59 40.77 22.17 3.63 0.51 0.00 

CV (%) 13.30 17.82 29.80 53.63 146.52 204.32 

HadCM2 2020s 	p (mm/mth) 185.01 159.81 115.85 33.76 3.01 0.39 0.00 

(mm/mth) 24.60 28.48 34,52 18.11 4.41 0.79 0.00 

CV (%) 13.30 17.82 29.80 53.63 146.52 204.32 

HadCM2-S 2020s 	p (mm/mth) 204.25 154.15 116.88 37.40 2.01 0.29 0.00 
o' (mm/mth) 27.16 27.47 34.83 20.06 2.95 0.60 0.00 

CV (%) 13.30 17.82 29.80 53.63 146.53 204.32 

ECHAM4 2020s 	t (mm/mth) 196.02 174.01 142.41 35.89 2.07 0.06 0.00 
(mm/mth) 26.07 31.01 42.43 19.24 3.04 0.11 0.00 

CV (%) 13.30 17.82 29.80 53.63 146.53 204.32 

GFDL-R15 2020s 	j (mm/mth) 188.76 170.63 158.11 37.09 3.63 0.24 0.00 
u (mm/mth) 25.10 30.41 47.11 19.89 5.32 0.49 0.00 
CV (%) 13.30 17.82 29.80 53.63 146.52 204.32 

HadCM2 2080s 	p (mm/mth) 183.97 148.73 100.30 28.23 2.59 0.43 0.00 
(mm/mth) 24.46 26.51 29.89 15.14 3.79 0.88 0.00 

CV (%) 13.30 17.82 29.80 53.63 146.52 204.32 

HadCM2-S 2080s 	p (mm/mth) 183.66 131.30 91.66 31.66 2.36 0.27 0.00 
o' (mm/mth) 24.42 23.40 27.31 16.98 3.46 0.55 0.00 
CV (%) 13.30 17.82 29.80 53.63 146.52 204.32 

ECHAM4 2080s 	A (mm/mth) 191.01 173.59 142.01 33.03 2.44 0.46 0.00 
0' (mm/mth) 25.40 30.94 42.32 17.71 3.57 0.95 0.00 
CV (%) 13.30 17.82 29.80 53.63 146.52 204.32 

0.81 7.43 38.78 119.69 191.11 74.64 
1.20 3.24 15.20 33.56 30.79 78.93 

148.10 43.66 39.21 28.04 16.11 105.75 

0.76 6.58 33.33 107.90 192.57 69.20 
1.12 2.87 13.07 30.26 31.03 75.11 

148.10 43.66 39.21 28.04 16.11 108.54 

0.78 6.62 33.30 112.81 188.49 70.71 
1.15 2.89 13.06 31.64 30.37 77.00 

148.10 43.66 39.21 28.04 16.11 108.89 

1.46 5.72 46.06 115.87 185.42 74.80 
2.17 2.50 18.06 32.49 29.88 79.22 

148.10 43.66 39.21 28.04 16.11 105.90 

0.62 7.94 28.76 139.77 201.71 77.21 
0.92 3.47 11.28 39.19 32.50 82.82 

148.10 43.66 39.21 28.04 16.11 107.26 

1.52 6.01 26.25 94.68 201.39 65.42 
2.24 2.62 10.29 26.55 32.45 74.12 

148.10 43.66 39.21 28.04 16.11 113.30 

1.01 5.53 24.29 90.26 183.14 61.41 
1.50 2.41 9.52 25.31 29.51 69.39 

148.10 43.66 39.21 28.04 16.11 113.00 

0.93 4.29 31.10 131.18 181.09 73.48 
1.38 1.87 12.19 36.79 29.18 79.47 

148.10 43.66 39.21 28.04 16.11 108.15 

I 
Scenario 	Years Measure 	 Month 	 Annual 

Jan 	Feb 	Mar 	Apr 	May 	Jun Jul 	Aug 	Sep 	Oct 	Nov 	Dec 

Table A.5: Monthly precipitation variation for all GCM scenarios 



Base 61-90 p( ° )C 

CV (%) 

HadCM2 2020s z ( ° )C 

Cv (%) 

HadCM2-S 2020s IL ( ° )C 
g ( ° )C 
CV (%) 

ECHAM4 2020s tL ( ° )C 

CV (%) 

GFDL-R15 2020s p ( ° )C 

CV(%) 

HadCM2 2080s p ( ° )C 
( ° )C 

CV (%) 

HadCM2-S 2080s p ( ° )C 

CV (%) 

ECHAM4 2080s u ( ° )C 

CV (%) 

23.63 23.58 23.55 22.41 19.78 17.20 16.89 19.63 23.22 24.94 24.05 23.43 21.94 

0.60 0.52 0.59 0.48 0.99 0.83 0.75 0.87 0.45 0.59 0.64 0.50 2.72 

2.52 2.21 2.49 2.13 5.01 4.84 4.44 4.43 1.95 2.36 2.65 2.12 12.41 

25.20 25.22 25.45 25.17 22.33 19.39 18.97 21.68 24.41 27.40 26.25 25.14 23.97 

0.60 0.52 0.59 0.48 0.99 0.83 0.75 0.87 0.45 0.59 0.64 0.50 2.65 
2.36 2.06 2.30 1.89 4.44 4.30 3.95 4.01 1.85 2.15 2.43 1.98 11.07 

23.63 23.58 23.55 22.41 19.78 17.20 16.89 19.63 23.22 24.94 24.05 23.43 23.48 
0.60 0.52 0.59 0.48 0.99 0.83 0.75 0.87 0.45 0.59 0.64 0.50 2.75 

2.52 2.21 2.49 2.13 5.01 4.84 4.44 4.43 1.95 2.36 2.65 2.12 11.71 

25.31 24.90 24.79 23.73 21.48 19.32 19.46 21.58 25.01 26.40 25.54 25.12 23.64 
0.60 0.52 0.59 0.48 0.99 0.83 0.75 0.87 0.45 0.59 0.64 0.50 2.44 
2.35 2.09 2.37 2.01 4.62 4.31 3.85 4.03 1.81 2.23 2.49 1.98 10.33 

25.34 25.54 24.92 23.71 21.37 18.85 18.65 21.06 25.06 27.47 25.84 24.98 23.65 
0.60 0.52 0.59 0.48 0.99 0.83 0.75 0.87 0.45 0.59 0.64 0.50 2.83 
2.35 2.04 2.35 2.01 4.64 4.42 4.02 4.13 1.81 2.14 2.47 1.99 11.99 

27.70 28.03 28.64 28.91 25.86 23.06 23.14 25.05 26.38 31.33 30.27 27.87 27.27 
0.60 0.52 0.59 0.48 0.99 0.83 0.75 0.87 0.45 0.59 0.64 0.50 2.57 
2.15 1.86 2.05 1.65 3.84 3.61 3.24 3.47 1.72 1.88 2.10 1.79 9.43 

26.94 27.38 28.15 27.99 24.47 21.32 21.73 23.74 26.12 30.36 29.43 27.36 26.33 
0.60 0.52 0.59 0.48 0.99 0.83 0.75 0.87 0.45 0.59 0.64 0.50 2.84 
2.21 1.90 2.08 1.70 4.05 3.91 3.45 3.66 1.73 1.94 2.16 1.82 10.77 

27.94 27.46 27.31 26.74 24.82 22.90 22.82 24.83 28.57 31.77 29.00 28.34 26.96 
0.60 0.52 0.59 0.48 0.99 0.83 0.75 0.87 0.45 0.59 0.64 0.50 2.61 
2.13 1.90 2.15 1.78 4.00 3.64 3.28 3.50 1.58 1.85 2.20 1.76 9.67 

CJD 

Cj 

H 
Ci 

CID 

Scenario 	Years Measure 	 Month 	 Annual 

Jan 	Feb Mar 	Apr May 	Jun 	Jul Aug 	Sep 	Oct 	Nov 	Dec 

Table A.6: Monthly temperature variation for all GCM scenarios 



Scenario Years 	Measure 
Jan Feb Mar Apr May 

Month 
Jun 	Jul Aug Sep Oct Nov Dec 

Annual 

Base 61-90 	JL (BCM) 3.47 5.33 7.52 6.09 4.33 2.98 2.32 1.76 1.28 1.04 0.99 1.76 3.21 

or (BCM) 0.94 1.13 1.87 1.65 1.09 0.76 0.57 0.41 0.27 0.19 0.21 0.54 2.27 

CV (%) 27.16 21.29 24.83 27.16 25.25 25.39 24.63 23.29 20.85 18.32 21.43 30.60 70.74 

HadCM2 2020s 	IL (BCM) 3.00 4.54 6.17 4.96 3.59 2.47 1.93 1.48 1.09 0.90 0.84 1.43 2.68 

(BCM) 0.78 0.94 1.45 1.26 0.89 0.61 0.46 0.33 0.21 0.15 0.15 0.40 1.86 

CV (%) 26.06 20.70 23.56 25.46 24.71 24.77 23.72 22.04 19.15 16.22 18.17 27.90 69.27 

HadCM2-S 2020s 	p (BCM) .3.47 5.33 7.52 6.09 4.33 2.98 2.32 1.76 1.28 1.04 0.99 1.76 2.81 

o' (BCM) 0.94 1.13 1.87 1.65 1.09 0.76 0.57 0.41 0.27 0.19 0.21 0.54 1.96 

CV (%) 27.16 21.29 24.83 27.16 25.25 25.39 24.63 23.29 20.85 18.32 21.43 30.60 69.85 

ECHAM4 2020s 	u (BCM) 3.29 5.17 7.46 5.98 4.22 2.88 2.22 1.68 1.23 0.99 0.98 1.70 3.13 

o (BCM) 0.88 1.08 1.86 1.60 1.05 0.72 0.54 0.38 0.25 0.17 0.22 0.52 2.24 

CV (%) 26.86 20.89 24.87 26.73 24.95 25.06 24.23 22.84 20.27 17.54 22.18 30.64 71.68 

GFDL-R15 2020s 	it (BCM) 3.75 5.46 7.91 6.41 4.49 3.07 2.36 1.78 1.29 1.04 0.93 1.91 3.34 

o' (BCM) 1.06 1.21 2.07 1.78 1.16 0.79 0.59 0.43 0.28 0.19 0.19 0.61 2.41 

CV (%) 28.20 22.11 26.18 27.70 25,83 25.92 25.18 23.82 21.35 18.63 20.14 32.04 72.31 

HadCM2 2080s 	tt (BCM) 2.69 4.07 5.29 4.19 3.04 2.09 1.63 1.26 0.95 0.79 0.72 1.14 2.31 
0' (BCM) 0.69 0.84 1.20 1.02 0.73 0.50 0.37 0.26 0.16 0.11 0.10 0.28 1.60 

CV (%) 25.50 20.51 22.71 24.35 24.04 23.94 22.51 20.46 17.31 14.02 14.51 24.32 69.24 

HadCM2-S 2080s 	ti (BCM) 2.35 3.62 4.54 3.72 2.78 1.93 1.52 1.19 0.90 0.76 0.69 1.07 2.07 
o' (BCM) 0.58 0.71 0.98 0.90 0.67 0.46 0.34 0.24 0.15 0.10 0.09 0.25 1.37 

CV (%) 24.57 19.64 21.61 24.21 24.20 23.95 22.41 20.23 16.91 13.54 13.64 23.01 65.89 

ECHAM4 2080s 	ii (BCM) 3.04 4.74 6.96 5.60 3.94 2,67 2.05 1.55 1.13 0.90 0.83 1.61 2.89 
(BCM) 0.81 1.00 1.76 1.51 1.00 0.68 0.50 0.35 0.22 0.15 0.15 0.49 2.10 

CV (%) 26.76 21.12 25.35 26.90 25.39 25.39 24.39 22.71 19,73 16.29 18.12 30.41 72.60 

c1 

cr 

(ID 

Table A.7: Monthly flow variation for all GCM scenarios 



Scenario 	Years Measure 	 Month 	 Annual 

Jan 	Feb 	Mar 	Apr 	May 	Jun 	Jul 	Aug 	Sep 	Oct 	Nov 	Dec 

Base 	61-90 p (GWh) 938.38 1060.07 1190.40 1152.00 1159.04 979.73 777.50 569.66 411.10 331.84 316.46 542.34 780.34 

o (GWh) 210.64 81.47 0.00 0.00 90.46 215.34 219.48 142.20 86.01 61.24 67.99 138.67 350.29 

CV (%) 22.45 7.69 0.00 0.00 7.80 21.98 28.23 24.96 20.92 18.45 21.48 25.57 44.89 

HadCM2 	2020s ,z (GWh) 830.39 1059.77 1182.34 1136.17 1087.75 839.02 629.14 473.55 349.18 286.65 268.76 457.99 711.57 

o (GWh) 199.35 80.45 40.52 71.86 158.18 233.49 164.79 104.62 67.10 46.71 49.01 127.91 358.52 

CV (%) 24.01 7.59 3.43 6.32 14.54 27.83 26.19 22.09 19.22 16.30 18.24 27.93 50.38 

HadCM2-S 	2020s p (GWh) 846.89 1063.57 1183.83 1138.97 1117.88 886.40 649.29 492.14 361.94 295.29 276.07 483.05 727.23 

o (GWh) 203.00 62.61 34.77 67.73 144.40 251.97 170.81 108.77 70.10 48.80 51.17 138.19 358.71 

CV (%) 23.97 5.89 2.94 5.95 12.92 28.43 26.31 22.10 19.37 16.52 18.54 28.61 49.33 

ECHAM4 	2020s p (GWh) 896.24 1059.39 1190.40 1152.00 1156.67 957.56 749.16 541.18 392.54 315.36 315.28 521.79 766.01 

u (GWh) 204.38 85.16 0.00 0.00 96.56 228.27 216.78 128.67 79.82 55.54 70.12 131.41 353.25 

CV (%) 22.80 8.04 0.00 0.00 8.35 23.84 28.94 23.78 20.34 17.61 22.24 25.18 46.12 

GFDL-R15 	2020s p (GWh) 995.96 1060.04 1190.40 1152.00 1161.74 995.15 799.03 574.97 413.60 331.11 297.04 580.66 789.64 

o (GWh) 199.66 81.65 0.00 0.00 82.55 209.30 232.61 145.34 88.59 61.93 59.98 156.46 354.30 

CV (%) 20.05 7.70 0.00 0.00 7.11 21.03 29.11 25.28 21.42 18.70 20.19 26.95 44.87 

HadCM2 	2080s p (GWh) 767.20 1048.59 1164.55 1103.81 1011.18 708.08 522.78 402.73 302.31 252.79 230.63 366.75 652.25 

o (GWh) 165.36 102.22 80.09 134.82 217.50 207.09 117.52 82.56 52.48 35.68 33.63 89.19 363.67 

CV (%) 21.55 9.75 6.88 12.21 21.51 29.25 22.48 20.50 17.36 14.11 14.58 24.32 55.76 

HadCM2-S 	2080s p (GWh) 694.14 975.41 1135.89 1044.86 948.63 638.57 488.56 380.11 287.86 242.65 221.25 341.92 613.38 

o (GWh) 144.29 142.38 128.03 179.45 242.33 172.33 109.73 77.11 48.90 33.05 30.32 78.78 350.61 

CV (%) 20.79 14.60 11.27 17.17 25.55 26.99 22.46 20.29 16.99 13.62 13.71 23.04 57.16 

ECI-IAM4 	2080s it (GWh) 844.04 1061.75 1190.40 1152.00 1116.50 906.43 681.62 493.21 360.00 286.96 264.34 501.16 732.59 
o (GWh) 197.56 72.45 0.00 0.00 156.94 240.62 199.11 108.74 71.26 46.98 48.07 132.33 362.05 

CV (%) 23.41 6.82 0.00 0.00 14.06 26.55 29.21 22.05 19.80 16.37 18.18 26.40 49.42 

I 
Table A.8: Monthly production variation for all GCM scenarios 



C) 
JD 

ECHAM4 Measure Base HadCM2 HadCM2-S ECHAM4 GFDL-R15 HadCM2 HadCM2-S 

1961-90 2020s 2020s 2020s 2020s 2080s 2080s 2080s 

NPV ($ million) 98.07 9.64 31.20 76.12 110.20 -66.33 -116.73 37.23 

IRR (%) 11.00 10.10 10.30 10.75 11.10 9.25 8.65 10.35 

Unit Cost (USc/kWh) 1.52 1.66 1.63 1.55 1.50 1.80 1.92 1.62 

Payback (Years) 7.33 8.00 7.92 7.58 7.25 8.83 9.67 7.83 

Disc. Payback (Years) 20.42 29.17 26.00 21.83 19.83 >30.00 >30.00 25.5 

ROT (%) 17.27 15.48 15.88 16.87 17.51 13.92 12.91 16.02 

Benefit-Cost ratio 1.10 1.01 1.03 1.08 1.11 0.93 0.88 1.04 

Table A.9: Financial performance for GCM scenarios 
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A.4 Implications of Climate Change 

The data in this section refer to figures quoted in Chapter 8, regarding the im-

plications of the climate scenarios on issues ranging from replacement energy to 

emissions. 

Table A.10 shows the impact of a 10% shortfall in hydro production resulting from a 

combination of reduced output or reduced capacity. Replacement energy is assumed 

to be available at $30/MWh (in real terms), capacity is based on a 65% load factor, 

and investment cost on $1200/kW installed for a coal station. 

Measure 

Mean Annual Hydropower Production (TWh) 4,137 
Mean Annual Deficit (TWh) 414 
Mean Annual Replacement Energy Cost ($B) 12.4 
Mean Annual Additional Emissions (Mt CO 2 ) 250 
Annual Deficit in 2100 (TWh) 750 
Additional Capacity Required 2000-2100 (GW) 131.8 
Investment Cost ($B) 158 
Cumulative Emissions by 2100 (Gt CO2) 25 

Table A.10: Global implications of a 10% reduction in hydropower production 

For Table A.11 equivalent capacity is on the basis of a 65% load factor, and con-

struction costs and emissions refer to a coal fired station with standard technology 

available in 2000. Replacement energy costs refer to imports at 1.82 US c/kWh, and 

Base production is 9,364 GWh per year. Figures in parantheses indicate gains. 



cI 

Energy 
(GWh/yr) 

Deficit 
(CWh) 

Replacement 
Cost ($M/yr) 

Equivalent 
Capacity (MW) 

Construction 
Cost ($m) 

30 year Emissions 
(Mt CO2) 

Abatement 
Cost ($/t CO2) 

Cn 

HadCM2 2020s 	8,539 824 15.0 145 174 24.7 4.48 

HadCM2-S 2020s 	8,727 637 11.6 112 134 19.1 4.39 

ECHAM4 2020s 	9,192 171 3.1 30 36 5.1 4.17 

GFDL-R15 2020s 	9,476 (111) (2.0) (20) (30) (3.3) 4.05 

HadCM2 2080s 7,827 1,536 27.9 270 324 46.1 4.90 

HadCM2-S 2080s 7,361 2,004 34.5 352 422 60.1 5.21 

ECHAM4 2080s 8,791 581 10.6 102 122 17.4 4.36 

Table A.11: Summary of climate change implications for Zimbabwe 
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A.5 Data Sources 

Batoka Gorge Feasability Study 

Permission for access to the Batoka Gorge Feasability Study was given by the Zam-

bezi River Authority, and was viewed at the offices of Knight Piésold Ltd. Their 

contact details are as follows: 

Zambezi River Authority 

Kariba House 

32 Cha Cha Cha Road 

P.O. Box 30233 

Lusaka 

Zambia 

Observed Climate Data 

Knight Piésold Ltd 

Station Road 

Ashford 

Kent 

TN23 1PP 

UK 

Monthly mean data for 196 1-1990 and times series data for 190 1-1995 available from 

the IPCC Data Distribution Centre hosted by CRU at: 

http://ipcc-ddc.cru.uea.ac.uk/ 

GCM Scenarios 

Scenario data and and Global Visualisation (Figures 8.1 and 8.2) available from the 

IPCC Data Distribution Centre hosted by CRU at: 

http: // ipcc-ddc.cru.eua.ac.uk/ 
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CLIMATE CHANGE IMPACTS ON HYDROELECTRIC POWER 
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ABSTRACT 

Anthropogenic emissions of greenhouse gases are expected to lead to significant changes in climate over the next 
centiny. One of the many potential effects is that river catchment nmoff may be altered. This could have 
implications for the design, operation and viability of hydroelectric power stations. This describes attempts to predict 
and quantifr these impacts. It details a methodology for computei based modelling of hydroelectric resources and 
proposes analysis of the impacts on the electrical system and on the investment perfonnance of hydra. 

INTRODUCTION 

Climate change or global warming is the expected 
outcome of increases in atmospheric concentrations of 
"greenhouse" gases resulting from human activities. 
Many greenhouse gases, including carbon dioxide 
(CO.), occur naturally and keep the earth warm by 
trapping heat in the atmosphere. However, since the 
Industrial Revolution, anthropogenic sources of CO 2  
have added greatly to the atmospheric concentrations, 
and in particular, transportation, and the burning of 
fossil fuels for electricity generation are frequently 
cited as major sources. Other man-made greenhouse 
gases, such as CFC's, are believed to exacerbate the 
process. Enhanced levels of greenhouse gas 
concentrations are predicted to cause a significant rise 
in temperature over the next century. The rates of 
increase are anticipated to be greater than at any time 
in the past. The current scientific consensus is that 
under present rates of economic and population growth 
global mean temperatures will rise by 3°C by the end 
of the next century. This is expected to be 
accompanied by increases in global precipitation levels 
of 15% [1]. 

Predictions of future climate are based on the output of 
complex numerical Global Circulation Models 
(GCM's) which simulate physical processes in the 
atmosphere and oceans. A number of research groups 
have developed GCM'a including the UK 
Meteorological Office ((JKMO), the Geophysical 
Fluid Dysamics Laboratory (GFDL) at Princeton 
University, and NASA's Goddard institute for Space 
Studies (GISS). Although different GCM's simulate 
current climate with varying degrees of precision most 
agree on the general trends. 

The main technique for avoiding the worst extremes of 
climate change is to limit the increase in greenhouse 
gas concentrations by reducing emissions. As 
electricity production is responsible for a significant 
portion of the emissions, much of the burden will thU 

on the energy sector. Possible measures include 
transferring to lower carbon fuels like natural gas, 
together with increased use of renewable energy 
sources including hydropower [1]. 

Hydropower is an attractive energy source as it is 
renewable with minimal operational emissions of 
greenhouse gases. In addition, there are no fuel 
charges and the civil works have a long useful life. 
However, large dams may necessitate population 
displacement and can impact on the ecology of the 
basin (2, 3).. Exploitation of hydropower potential is 
considered by many governments and international 
bodies to be a key feature in economic development, 
especially in less developed countries (LDC's). 

At first glance, increased global precipitation would 
appear to suggest more water available for 
hydroelectric power production. However, higher 
temperatures will lead to increased evapotranspiratton 
levels. Whether increased global precipitation is seen 
as increased river runoff depends on the regional 
climate and hydrology. In the past, feasibility studies 
have relied on historical rainfall and river flow data for 
the assessment of hydroelectric potential at a proposed 
site. However, climatic change means that these can 
no longer be relied on to indicate future potential [2]. 
It is pestaps ironic to consider that attempts to reduce 
climatic change by switching to non-fossil fuels could 
be hampered by the legacy of their use. 

CLIMATE CHANGE IMPACTS ON 
HYDROPOWER AND ENERGY SECTORS 

Changes- in the quantity and timing of river runo 
together with increased reservoir evaporation will have 
a number of effects on the production of hydroelectric 
power. These include impacts upon system operation, 
financial effects and impacts on other energy sectors. 
System Operation and Dsvelopment 



APPENDIX B. PUBLICATIONS 
	

218 

Changes in the availability of existing hydroelectric 
plant, together with system constraints will affect the 
ability of the electricity supply system to meet average 
and peak demands. In the longer term, as demand 
levels increase, system planning may have to address 
any predicted shortfull in hydro output by constructing 
additional generating plant (4]. The likelihood is that 
fossil fuels will be used, further enhancing radiative 
forcing [2]. Climate change may also result in some 
planned projects being cancelled or adapted. 

Financial Effects 
Hydroelectric stations are characterised by low 
operational costs but high capital costs Generally, 
revenue from electricity sales is the only way of 
servicing the capital debt Thus reductions in 
electricity aaleswill affect the return on investment and 
hence the viability of the plant [2]. The loss of 
hydroelectric generating capacity will require 
additional plant to be constructed to meet demand, 
requiring additional capital and thus reducing overall 
system refluns. 

Many large hydropower developments in LDC's are 
built with the intention of stimulating economic 
development Generally, this requires international 
financing with a requirement for the loan repayments 
to be in bard currency. Reductions in revenue may 
affect the ability to repay the hard currency debt and 
this may severely stress a weak economy. In addition, 
the foil in electricity availability will hamper 
Governments' attempts to aid economic development 

Effects on other Energy Sectors 
Climate change will have impacts on both electricity 
demand and supply. Higher air temperatures will tend 
to lower winter heating demands but increase summer 
cooling demand. Thermal generating stations requiring 
rivers for cooling water may suffer operational 
constraints due to reduced river flows (2, 5, 61. 
Warmer river and sea water will reduce the eciency 
of steam cycles, resulting in lost output or increa3ed 
fUel consumption. Predicted sea level rise may also 
threaten coastal stations; climate change may lead to 
more extreme weather patterns causing incresed 
system damage costs. Climate change may affect other 
renewable technologies: wind patterns may change as a 
result of changed temperature gradients, and.changes 
in cloud cover may affect the performance of solar 
panels (7]. 

CLIMATE IMPACt'S ASSESSMENT 

The potential impact of climate change on water 
resources has been suggested since the 1980s, as work 
progressed on predicting climate change [5]. Although 
GCM's can be used to predict runoff directly, the 
coarse scale used means that this information is only 
useful for the most general studies. As a result, many 

studies have been catried out on individual basins, 
showing that river basins display a range of 
sensitivities to climate change [8]. Figure 1 shows the 
response of a typical river basin to variations in 
precipitation and temperature. It can be seen that 
increased temperature results in non-linear variations 
in runoff due to changes in precipitation. 
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Figure 1: River Basin Response To Climate Change 

Later studies have considered not only the effect on 
river flows but also the Impact on generation from 
hydroelectric stations [9]. In particular, one study 
examined a number of international river basins [4]. 
The study drew upon existing hydrological and 
dedicated basin models and the experience of 
international experts. For example, for one GCM 
scenario (GFDL), hydroelectric production on the 
Indus P.iver would full by 22%. Another study [2] 
qualitatively examined the effects of reduced 
hydroelectric output on sub-Saharan Afiica and central 
Europe. However, to date, studies have fulled to 
quantify the impacts in terms of the investment 
performance of plant or on the electricalnetwork. 

Modelling Impacts 
Climate impact assessment requires scenarios of future 
climate to be translated into potential changes on 
natural and human systems. To assess climate impacts 
on hydropower production a number of key steps must 
be taken [4]: 

I. A river basin is selected and its rainfall-nmoff 
processes ste modelled and calibiated 
Climate data emanating from different GCM or 
arbitssiy climate scenarios is applied to the model 
and the runoff computed; 
River runoff values are converted into estimates of 
hydroelectric power production. 

The first step involves the accurate modelling of the 
hydrology of the chosen riyer basin. A wide variety of 
modelling techniques have been applied to simulating 
runoff processes (10]. Three basic approaches exist 
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• Empirical 
• 
• Deterministic 

The first type requires a relationship to be established 
between climate inputs (e.g. rainthil) and hydrological 
outputs (ie. nmo. The second type uses a simplified 
representation of the physical processes to mimic the 
storage and flow of water. The technique requires such 
models to be calibrated for each ct.4'm.nt using 
relevant climate and river flow data. The final 
approach is based on complex physical theory and 
most examples ma spatially distributed in two or three 
dimensions. Such models claim to give a more explicit 
representation of hydrological processes, but suffer 
from the requirement for significant quantities of 
information for operation. 

Despite the sophistication of current hydrological 
modelling techniques, particular difficulties exist in 
translating the GCM's large spatial and temporal 
predictions into a form that can be used by a 
hydrological modeL Techniques to overcome this are 
tanned downscaling methods [5], and attempt to 
generate local values for precipitation (say) from the 
large-scale GCM values. Other methods include 
nesting smaller-scale regional climate models inside 
the GCM's, creating weather stochastically and using 
analysis of different weather types. 

Given that climate data from GCMs can be converted 
into a form suitable for use, the output from a suitably 
calibrated hydrological model would be similar to that 
shown in Figure 2 for present and assumed future 
climates. 
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FIgure 2: Effect of Climate Change on Runoff 

In this hypothetical case it can be seen that climate 
change affects the magnitude and timing of river 
runo Winter runoff is higher as more precipitation 
foils as rain rather than snow, the winter thaw occurs 
earlier, and summer runoff is also lower. 

The potential for hydroelectric generation 
approximately follows nmoff so it can be seen that 
hydroelectric potential would also be affected. A more 
accurate estimate of climate impacts on hydropower 
would involve assessment of the relative importance 
and cost of hydro, the economic development of the 
country and the policies of governments and 
international organisations.  

PROPOSED COMPUTER MODEL 

This work is concerned primarily with the design and 
development of a generic hydropower assessment tool 
suitable for use with any hydropower scheme and 
relevant climate scenario. The assessment tool will be 
implemented on a PC and would consist of 

A (simple) self.calibrating hydrological model that 
would be able to derive suitable input-response 
relationships, given suitable climate and river flow 
data. After calibration, the model will convert input 
climate data. into estimates of river flows. These 
results would be processed by the hydropower 
component, which when given suitable technical and 
operational parameters, would compute the electrical 
power generated. 

With this structure, the model will give indications of 
the power generated for desired baseline and predicted 
climate scenarios. This will enable projections to be 
made concerning the investment performance of the 
hydroelectric scheme together with assessments of the 
impact on the economy. In addition, the generation 
scenarios may be used for analysis of the electrical 
system, in terms of its generation mix and overall 
power requirements. 

A simplified model may be as effective as a more 
complex one given that at present climate data from 
GCM's is available In terms of mean monthly values. 
Accordingly, monthly river flows are likely to be more 
meaningflul than shorter time frames. Although this 
time step is too long to allow simulation of hydro-.plant 
scheduling, suitable operational rules can be derived to 
mimic its output. 

In general, consideration of hydropower impacts has 
been concerned with the potential annual production of 
electricity and not the impact of changes in the 
monthly availability. Month-to-month changes in 
electricity demand are generally greater than year-to-
year, so a consideration of the monthly availability is 
likely to have more relevance. Consideration of 
spillage and the likely actual production under climate 
change will allow a more realistic representation. 

it is expected that a number of case studies will be 
carried out using the software tooL These will tend to 
concentrate on large strategically important 
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hydroelectric power prpjects both in existence or 
planned. The majority of such projects are in LDC's 
highlighted as being sensitive to clinaate change. 
Among the areas under consideration are aub-Saharan 
Aflica and East Asia. In particular, the Three Gorges 
Dam on the Yangirn River in China will be examined, 
due to its key role in China's economic and water 
resources development, its aheer size and cost, and the 
alleged potential for environmental and social 
catestrophe. 

Application of Proposed Software Tool 
The proposed aoftware tool would have a number of 
applications. It would: 

• allow planners to make projections of changes in 
future availability of water and power resources. 

• enable water.resources and hydropower designers 
to compare competing schemes before detailed 
feasibility studies commence. 

• allow assessment of the impacts of land use 
changes 

• intenbce with existing dedicated basin models to 
allow accurate water flow projections to be input to 
the hydropower element of the software. 

The key outcome of this work will be information on 
how hydropower may fare as an investment 
opportunity, and as a driver of economic development 
inLDC's. 

CONCLUSION 

Human activities are expected to lead to substantial 
changes in climate. One outcome may be reductions in 
river runoff with potentially serious ramifications for 
the provision of hydroelectric power. Recent attempts 
at quantifring these impacts have been described and a 
methodoloajr proposed to enable analysis of the impact 
on the electrical system as well as the investment 
performance of hydroelectric plant. 

REFERENCES 

I. IPCC (Intergovernmental Panel On Climate 
Change): Climate Change. The IPCC Scientific 
Assessment Houghton, J.T., Jenkins, GJ. & 
Ephraums, J.J. (Eds.), Cambridge University Press, 
pp. 1-40,93-110, 131-173, 1990. 

2. Whittington, H.W. & Gunihy, S.W.: 'Global 
Climate Change and Hydroelectric Resources', 

Engrneenng Science and Education Journal, 7(1), 
pp. 29-34, 1998. 
Barber, M. And Ryder, G. (Eds.): Damming The 
Three Gorges : What Dam Builders Don't Want 
You To Know, 2nd ed., Probe International, 
Earthscan Publications Lid, 1993 
Reibsame, W.E., Strzepek, K.M., Wescoat Jr., ii., 
Perritt, K., Galls, G.L, Jacobs, J., Leichenko, R., 
Magadza, C., Phien, IL, Urbissondo, BJ., 
Restrepo, P., Rose, W.R., Saleb, M, Ti, LII, 
Tucci, C. & Yates, D.: Complex River Basins. In 
Strzepek K.M. & Smith, J.B. (Eds.). As Climate 
Changes : International Impacts and Implications, 
Cambridge University Press, pp. 57-91, 1995. 
Amell, N: Global Warming, River Flows And 
Water Resources, J. Wiley & Sons Ltd. pp. 25-60, 
151-200, 1996. 
Gleick Pit: 'Water and energy'. In.G1eick P.H. 
(ed.) Water In Crisis, Oxford University Press, 
New York, pp. 67-79, 1993. 
IPCC (Intergovernmental Panel On Climate 
Change): Climate Change. The IPCC Impacts 
Assessment Tegait W.J.McG., Sheldon, G.W. & 
Griffiths, D.C. (Eds.), Australian Government 
Publishing Service, Canberra, pp. 1-25, 1990. 
IPCC (Intergovernmental Panel On Climate 
Change): The Regional Impacts of Climate Change: 
An Assessment of Vulnerability. Watson, R.T., 
Zinyowera, MC., Moss, R.IL & Dokkcn, D.J. 
(Eds.), Cambridge University Press, 1998. 
Mimlkou, M.A. & Baltas, E.A.: 'Climate change 
impacts on the reliability of hydroelectric energy 
production', HydroL Sri J., 42 (5), pp. 661-678, 
1997. 
Fleming, G.: Computer Simulation Techniques in 
Hydrology, Elselvier Publishing, pp. 18-53, 1975. 

AUTHOR'S ADDRESS 

Energy Systems Group, 
Department of Electronics and Electrical Engineering, 
The University of Edinburgh, 
King's Buildings, Mayfleld Road, 
Edinburgh, EH9 3JL, 
Scotland, UK. 

Email : Garetb.Hanison®ee.ed.ac.uk  
Phone: +44 (0)131650 5584 
Fax :-f44(0)l3l 6506554 



	

APPENDIX B. PUBLICATIONS 
	

221 

B.2. Postgraduate Journal 

Hydropower Investment Appraisal and Climate Change 

G.P. Harrison & Prof. H.W Wbittington 

Department of Electronics & Electrical Engineering 
The University of Edinburgh. King's Buildings, Mayfield Road, Edinburgh EH9 3JL 

	

0131 6505584 	Gareth.Harrison(ee.ed.ac.uk  

Abstract 

Climate change Li expected to have serious 
consequences for mwry erea, of hwnan activity. 
One such area is in the exploitation of water 
resources, and In paslicular hyifropewer. The 
alteration ofprecipitation and temperature pasterns 
will lead to changer in the quantity and timing of 
river runoff. This may result in reductions in 
electrical output and sales revenue, and adversely 
cèct the opportsuuities for investment In 
hyth'opower. Thi, paper adthesses the issues 
Involved in, and preliminary resultt from, an 
assessment of the viability of kyoeiectrIc 
developments with changed cltm ate. 

L Introduction 

Climatic change is expected to be the outcome of 
increases in atmospheric concentrations of "green-
house" gases'resulting from human activities [11. 
The emissions are caused, in part, by fossil-fuelled 
electricity generation, and as world energy demand 
is expected to at least double by 2050 [21, emissions 
and hence concentrations are expected to rise 
considerably. The impact of climatic change could 
be significant especially if less developed countries 
(LDCa) expand their electricity supply networks 
using fossil fuels. 

In an attempt to control greenhouse gas 
concentrations and slow down the greenhouse 
process, governments are aiming to cusS or stabilise 
emissions relative to 1990 levels. To achieve this 
target, the energy sector will have to change the way 
it operates it could reduce its reliance on fossil-
fuels, use more renewable energy, and practice 
greater energy efficiency. These measures should 
allow the climate to reach and stabilise at a new 
equilibrium leveL 

Over the next cannily or so, during which this new 
set of equilibrium conditions will be reached, 
generating plant could be expected to be replaced 
twice. Increasing demand and the move to 
deregulated electricity systems, means that private 
investment is likely to be used to fund new and 
replacement capacity. This, in turn, means that the 
perceptions of current and future investors will p1ay 
a major role in whether emission cuts are achieved. 

2. ClImate Change 

Many greenhouse gases, including carbon dioxide 
(CO,), occur naturally and keep the earth warm by 
trapping heat in the atmosphere. However, since the 
Industrial Revolution, man-made sources of CO. 
have added greatly to the atmospheric 
concentrations. In particular, transportation and the 
burning of fossil fuels for electricity generation are 
frequently cited as major sources. 

Enhanced levels of greenhouse gas concentrations 
are predicted to cause a significant rise in 
temperature over the next century, with rates of 
increase anticipated to be greater than at any time in 
the past. The current consensus is that under present 
rates of economic and population growth, global 
mean temperatures will rise by around 3"C by the 
end of the next century, although there is 
considerable uncertainty surrounding the degree of 
climate sensitivity. Figure 1 shows that throughout 
the 20h  Century, temperature has been increasing, as 
has the rate of increase. The rise in temperature is 
expected to be accompanied by increases in global 
mean precipitation levels of 3-15% [1]. 
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FIgure 1: Historic and possible future 
temperature rise (adapted from (11) 

Most predictions of future climate are based on the 
output of complex munencal Global Circulation' 
Models (GCMs) which simulate physical processes 
in the atmosphere and oceans. A munber of research 

oups have developed GCM5 including the UK 
Meteorological Office. Although GCMs differ in 
their simulation of current climate and prediction of 
future climate, many agree on the general 
temperature trend [3,4]. 
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There are many potential impacts of climatic change 
including loss of land due to sea level rise, damage 
from inereased levels of storm activity, and threats 
to bio-diversity [1]. 

Under the Kyoto Protocol [5] most countries agreed 
that in order to avoid the worst extremes of climate 
change, they would limit the increase to greenhouse 
gas concentrations by reducing emissions. As 
electricity production is responsible for a significant 
portion of the emissions, much of the burden will 
fall on this sector. Increased use of renewable 
energy sources, including hydropower, is one 
suggested way to which reductions can be achieved. 

However, changes in climate may affect renewable 
sources of power, and frustrate efforts to stave off 
climate change. 

3. Impact on Hydroelectric Generation 

At first glance, rising global precipitation would 
seem to provide opportunities for increased use of 
hydroelectsicity. However, the associated 
temperature rise will leadto increased evaporation, 
with changes occurring non-uniformly from region 
to region. In the river basin, it is the interaction of 
precipitation and evaporation that determines the 
water available for runoff. For example, higher 
temperatures may lead to an earlier spring thaw and 
lower how during the summer months. Figure 2 
shows a hypothetical example of this [6]: 
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FIgure 2: Climate changed runoff 

Many studies have considered the hydrological 
effects of climate change (eg. [7]). A smaller 
number have examined the impact of changes in the 
quantity and timing of river runoft together with 
increased reservoir evaporation on hydroelectric 
power production and reliability (eg 18]). Fewer 
still have examined how changes in the availability 
of existing hydroelectric plant, as a result of altered 
river flow, will afibct the ability of the electricity 
supply system to meet demand [9]. 

Despite this, no-one has considered the important 
aspect of the potential impact on the perceived or 
actual financial performance of hydro stations. 
Hydro is characterised by low operational costs but 
high capital costs. As a result, the debt repayment 
period for a bydro scheme is often significantly 
longer than for fossil-fuelled plant Despite high 
fossil-fuel costs, hydro will often be at a 
disadvantage, and would not be favoured by shoxt-
term orientated investors. As with all generation 
methods, electricity sales revenue is the only way of 
servicing the capital debt If reductions in runoff and 
output were to lead to reductions in revenue, this 
would adversely affect the return on investment and 
hence the perceived attractiveness of the plant. 

If potential hydro schemes are abandoned or existing 
hydroelectric generating capacity is limited due to 
runoff changes, then the likely alternative is that 
fossil-fuelled stations will have to be constructed. 
This would probably result in additional carbon 
emissions exacerbating climate change, and a 
requirement for additional capital to be locked into 
electricity generation [10]. 

Many large hydropower developments in less 
developed countries are built with the intention of 
stimulating economic development. Often, these are 
internationally financed and repaid in hard currency. 
Reductions in revenue may make it difficult to repay 
the debt, severely stressing weak economies, while 
the shortfall in electricity availability will hamper 
Governments' development attempts [10]. 

The net effect is that hydropower could become less 
attractive to investors, whether private or public, and 
as a consequence attempts to limit climate change 
will be frustrated. The different issues involved in 
the assessment of the viability of hydroelectric 
developments arc now discussed. 

4. Investment Appraisal 

The issues surrounding hydroelectric projects are 
generally dealt with in feasibility studies. Whilst a 
full study would examine the engineering, economic, 
political and - social features, the most important 
aspect for the investor would be the financial 
appraisal of the project. It is this aspect that is the 
focus for the study. 

Financial appraisal aims to provide information that 
allows the investor to decide if a particular 
investment will provide a suitable return. For 
electricity generation projects, likely energy output 
and revenue is assessed and compared with capital 
and operation and maintenance costs over the 
planned lifetime of the plant Hydropower appraisal 
is slightly different in that its fuel source is not 
guaranteed, and focuses on the availability of the 
water resource, through an examination of historic 
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river flows at the site in question. Whilst the plant is 
designed on the basis of the river flow-exceedance 
probabilities, esthnates of output and hence revenue 

e often determined by a time series simulation of 
the plant with assumed operating procedure defluaing 
the output More sophisticated analyses use 
synthetically generated flow sequences, derived 
from the historic data, to examine the robusteess of 
the operating procedures and design specifications. 

Traditionally, the Generator would receive a fixed 
price per unit of energy output, which would be 
inflated animally by an accepted amount The 
revenue earned could be estimated from knowledge 
of the tariff, and predictions of output. Revenue is 
then set against the costs and standard appraisal 
techniques are applied to them (e.g. Net Present 
Value (NPV)). 

Most medium and large hydro schemes have been 
built by, or for use on publicly owned and operated 
electricity systems. As such, hydro has been used for 
reasons other than pure profit-making, e.g. secure 
electricity supplies, minimisation of overall system 
operational cost, avoidance of fuel importation or 
for enviromnental reasons. 

Increasingly, generation schemes are being 
constructed by private investors selling power to a 
host Utility, and, as such, the plant is intended to 
maximise profit potential rather than minimise 
overall cost 

S. Software Tool 

The major objective of this study Is to.develop a 
software tool to perform the investment analysis 
[11]. "HydroCC" (an acronym for "Hydropower and 
Climate Change") is being implemented using 
Visual C-H-. It encapsulates the investment appraisal 
process, such that, after entering the case study 
parameters, the user will be presented with key 
pointers to the potential investment performance of 
the project under historic and potential future 
climates. 

Although based on the traditional approach, two 
foctors require that changes are made to the process: 

The possibility of climate change implies that 
historical river flows cannot be relied on to 
indicate fitane flows. 
The proliferation of deregulated or liberalised 

• power systems world-wide suggests that 
traditional analysis may be insufficient to 
determine the operational and revenue patterns 
of future projects. 

The changes are now addressed in detail. 

5.1 Climate to Flow 

If future flows can no longer be relied on to follow 
historic flow patterns, then a link between climatic 
variables and river flows is required. This 
requirement can be met by the use of hydrological 
models. Despite its maturity, hydrological modelling 
is still an inexact science, due to the complexity of 
the natural system and difficulties in measurement of 
key climatic variables. Statistical models do exist 
but suffer from the limitation that in a future where 
climate changes, current statistical relationships may 
not hold. A more robust approach is to base the 
model on actual physical processes [6]. In this 
application, data is scarce and so a simple water-
balance model is used. Many examples exist, but all 
attempt to simulate a river basin as a series of 
storage zones, with mathematical descriptions of 
flow processes in and out of the storage. lire model 
incorporated in the softwaie is a well known model 
known as WATBAL [12]. It takes suitable spatially-
averaged climate data and transforms it into river 
flow. As shown in Figure 3, WATBAL represents 
the river basin as a single unit of soil storage, and 
water enters and leaves the storage in a number of 
different ways, through: precipitation, evaporation 
and nmoff 

Precipitation Evaporation 

Soil Moisture 
Zone 

Sub-surface 
Runoff 

)' Baseflow 

FIgure 3: WATBAL structure [131 

The system is modelled as a differential equation in 
order that different time-steps can be used [13]: 

S=Iit)—Eflzj)—I(z,t) (1) 

where P is precipitation, E7 is evapotranspiration, R 
is total runoff, S. is the maximum soil water 
holding capacity, and z the relative soil moisture 
depth. It is solved numerically using the Runge-
Kutla method [14]. The model has several 
parameters that require calibration. This will be 
carried out by a Genetic Algorithm that attempts to 
match simulated and historic runoffL In an attempt to 
imitate the sophisticated multiple-series analysis of 
the traditional appraisal, synthetic series of key 
climate variables (Le. precipitation, temperature) can 
be generated and applied to the model. 
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5.2 Private Capital and Deregulation 

The increasing involvement of private capital in the 
electricity supply industry has implications for how 
existing and potential generation is financially 
appraised. There are a number of instances where 
analysis would be required, inc!uding 
• Where an investor envisages potential for 

additional capacity, 
• Where a Generator is considering asset disposal, 
• Where the asset owner is considering plant refit. 

With many electricity industries considering or 
undergoing liberalisation, it may be necessary to use 
more sophisticated methods of determining revenue 
rallier than simply to assume a tarift With 
competitive markets, prices are not constant over 
time and vary hour-to-hour. As such, the revenue the 
Generator receives depends on how it sells its 
electricity [151: 

Through a wholesale market or Pool, where 
generating units are scheduled on their declared 
bid price, with the market price set by the 
marginal generator. Revenue varies according to 
the demand level and competitors bids. 
Via bilateral power purchase contracts that 
specif, an agreed price and quantity per period. 
Often the contracts involve 'hedging' to reduce 
exposure to market price changes. 

A Pool system was implemented in the UK as part 
of the privatisation process. However, it will shortly 
be superseded by a system of bilateral contracts. 

To estimate revenue in a market it is necessary to 
predict prices. The use of historic market data is a 
reasonable method of predicting future price 
behaviour, but it is limited by a number of factors: 
difficulties in predicting the generation mix (which 
determine prices) over the appraisal period, data 
may not be available if the market is new or non-
existent Simulating market operation avoids some 
of these problems, but is problematic due to the 
time-step mismatch between market operation and 
climate data (sub-hourly versus monthly). Whilst a 
weighted-average price could be used, the fuel 
constraint on hydro means that the plant may not be 
able to operate all the time, and would limit its 
application. 

The problems associated with market modelling are 
serious and their solution is beyond the scope of this 
study. Fortunately, many case studies are located in 
regions that have not deregulated. Even in those that 
have, lenders will insist on some form of Power 
Purchase Agreement to reduce price risk As such it 
will be possible to assume a tariff for most case 
studies. 

5.3 ModIfied Appraisal Process 

These two changes lead to the process shown in 
Figure 4, below. The reservoir model used in this 
application is based on the US Army Corps of 
Engineers HEC-5 model [16], whilst the electricity 
market is capable of simulating a variety of market 

FRivc-fflows

F- - - - - - -- - l 

ZRe-venuc 

   

Figure 4: Modified appraisal process 

6. Preliminary Results 

To illustrate the use of the software tool and give an 
indication of the type of information that is sought, 
an appraisal was carried out for a hypothetical hydro 
scheme (based loosely on the Three Gorges Dam, 
China). Hypothetical changes in precipitation and 
temperature relative to a base climate were applied 
to the modeL 

It was found that runof and consequently 
production and Net Present Value were more 
sensitive to precipitation change than temperature 
rise. Figure 5, shows that the relationship between 
precipitation and both production and NPV is non-
linear. It also implies that economic performance is 
more sensitive to climate change than production. In 
the worst case considered (precipitation down 30% 
and 3C temperature rise) the discounted payback 
time estends to over 30 years, beyond the assumed 
economic life of the plant, whilst production drops 
70%. 
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FIgure 5: Changes In production and NPV with 

precipitation and temperature rise, 
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7. ConclusIon 

Changes in precipitation and temperature resulting 
from man-made emissions of greenhouse gases will 
alter river flows. This may reduce output from 
hydroelectric power stations, and consequently 
lower the flnancmi retunL With the mcreasing 
involvement of private capital in the electricity 
supply industry, the perceptions of investors are of 
critical importance, and as such a lower potential 
return may discourage investment in hydropower. 
The investment appraisal process is outlined, along 
with details of how it must be adapted to take 
account of climate change and electricity industry 
Ilberalisation. The results of a preliminary study are 
presented, which indicate that with precipitation 
decreases of around 300/a, serious falls in production 
occur (up to 70%), and as a consequence the 
economic viability of the installation would be 
comset 
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Impact of climatic change on hydropower investment 
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ABSTRACT: The increased use of renewable energy is critical to reducing emissions of greenhouse gases in 
order to limit climatic change. Hydropower is currently the major renewable source contributing to electricity 
supply, and its future contribution is anticipated to increase significantly. However, the successful expansion 
of hydropower is dependent on the availability of the resource and the perceptions of those financing it. 
Global warming and changes in precipitation patterns will alter the timing and magnitude of river flows. This 
will affect the ability of hydropower stations to harness the resource, and may reduce production, implying 
lower revenues and poorer returns. Electricity industry liberalisation implies that, increasingly, commercial 
considerations will drive investment decision-making. As such, investors will be concerned with processes, 
such as climatic change, that have the potential to alter investment performance. This paper examines the po 
tential impact of climatic change on hydropower investment. It introduces a methodology for quantif'ing 
changes in investment performance, and presents preliniinaiy results from a case study. These inform discus-
sion of the implications for future hydropower provision and our ability to limit the extent of climatic change. 

1 INTRODUCTION 

Climatic change is expected to be the outcome of in-
creases in atmospheric concentrations of "green-
house" gases resulting from human activities 
(Houghton et al., 1990). The emissions are caused, 
in part, by fossil-fuelled electricity generation, and as 
world energy demand is expected to at least triple by 
the end of the twenty-first century (Naldcenovic et 
al., 1998), emissions and hence concentrations are 
expected to rise considerably. The impact of climatic 
change could be significant especially if less devel-
oped countries expand their electricity supply sys-
tems using fossil fuels. 

In an attempt to control greenhouse gas concen-
trations and slow down the greenhouse process, gov-
ernments are aiming to cut or stabilise emissions 
relative to 1990 levels. To achieve this target, the 
energy sector will have to change the way it oper-
ates: it could reduce its reliance on fossil fuels, use 
more renewable energy, and practice greater energy 
efficiency. Together with other means, such meas-
ures should allow the climate to reach and stabilise 
at a new equilibrium level. 

Over the next century or so, during which this 
new set of equilibrium conditions will be reached, 
generating plant could be expected to be replaced 
twice' (the design life of the electro-mechanical 
equipment in a power station is rarely greater than  

50 years). Increasing demand and the move to de-
regulated electricity systems means that private in-
vestment is likely to be used to fund new and re-
placement capacity. This, in turn, means that the 
perceptions of current and future investors will play 
a major role in whether emission cuts are achieved. 

2 CLIMATE CHANGE 

Many greenhouse gases, including carbon dioxide 
(CO2), occur naturally and keep the earth warm by 
trapping heat in the atmosphere. However, since the 
Industrial Revolution, man-made sources Of  CO2 
have added greatly to atmospheric concentrations. In 
particular, transportation and the burning of fossil 
fuels for electricity generation are frequently cited as 
major sources. 

Enhanced levels of greenhouse gas concentrations 
are predicted to cause a significant rise in tempera-
ture over the next century, with rates of increase an-
ticipated to be greater than at any time in the past. 
The current consensus is that under present rates of 
economic and population growth, global mean tem-
peratures will rise by around 3°C by the end of the 
next century, although there is considerable uncer-
tainty surrounding thedegree of climate sensitivity. 
Figure 1 shows that throughout the twentieth cen-
tory, temperatures have been rising and that the rate 
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of increase is accelerating. The rise in temperature is 
expected to be accompanied by increases in global 
mean precipitation levels of up to 15% (Houghton et 
al., 1990). 
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Figure 1. Historic and future temperature rise (adapted from 
Houghton et al, 1990) 

Many predictions of future climate are based on 
the output of complex numerical General Circulation 
Models (GCMs) which simulate physical processes 
in the atmosphere and oceans. Although GCMs dif-
fer in the detail of their methodologies, most agree 
on the general temperature trend (Gates et al. 1990, 
Wood et al. 1997). 

There are many potential impacts of climatic 
change including: loss of land due to sea level rise, 
damage from increased levels of stonn activity, and 
threats to bio.diversity (Houghton et aL, 1990). 

Under the Kyoto Protocol (UNFCCC, 1998) most 
countries agreed that they would limit greenhouse 
gas emissions. As electricity production accounts for, 
a significant portion of the emissions, much of the 
burden will fall on this sector. Increased use of re-
newable energy sources, including hydropower, is 
one suggested way in which the emissions targets 
can bernet. 

Unfortunately, the very fact that renewable energy 
resources harness the natural climate means that they 
are at risk from changes in climatic patterns. As 
such, changes in climate due to higher greenhouse 
concentrations may frustrate efforts to limit the ex-
tent of future climatic changes. 

3 CLIMATE IMPACTS 

Hydropower is currently the only major renewable 
energy source contributing to global electricity sup-
ply. Given the expectation of a threefold increase in 
hydropower production over the next century, the 
continuing significant contribution from hydropower 

warrants a closer investigation of the potential im-
pacts of changing climate on hydro. 

3.1 RiverFiows 

At first glance, rising global precipitation would 
seem to provide opportunities for increased use of 
hydroelectricity. Unfortunately, such increases will 
not occur uniformly. over time or space, and many 
regions are projected to experience significant re-
ductions in precipitation. In addition, the tempera-
ture rise will lead to increased evaporation. The 
combination of changes in precipitation and evapo-
ration will have profound effects on catchment soil 
moisture levels. The soil provides storage and regu-
lates runoff regimes. Drier soil absorbs more rainfall, 
tending to reduce the quantity of water available for 
runoff, while more saturated soils absorb less rainfall 
increasing the likelihood of flooding. 

In river basins that experience significant snow-
fall, higher temperatures will tend to increase the 
proportion of wet precipitation. This may increase 
wnter river flows, inad to an earlier spring thaw and 
reduce summer low flows (Gleick, 1986). Figure 2 
shows a hypothetical example of this. 

Climate change impacts studies have, in general, 
relied on rainfall-runoff models to translate changes 
in precipitation and temperature into altered river 
flows. GCMs provide information on how climatic 
variables may change in the future. Unfortunately, 
each GCM tends to predict a different change in 
temperature and precipitation, which results in sig-
nificant and often contradictory differences between 
resulting river flow impacts. An alternative is to ex-
amine basin sensitivity to changing climate, through 
the application of uniform changes in precipitation 
and temperature. 
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Figure 2. Hothetical runoff patterns under current and poten-
tial climate change sccnarioa 
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A significant body of knowledge exists regarding 
the impact of climate change on river flows (e.g. 
Gleick, 1986; Arnell & Reynard, 1996). Many sug-
gest significant sensitivity to climate change. 

Reibsame et' at. (1995) examined climate impacts 
on several major rivers. For the Zambezi, GCM sce-
'narios suggested that mean annual runoff may de-
cline by 17% or rise by 18%. The most severe 
change occurred with the Nile which under one sce-
nario mean flows fell to less than a quarter of their 
historic level. Overall, Reibsame et al. (1995) note 
that river basin sensitivity increases with aridity, and 
this, to some degree, explains the severe fall in Nile 
flows. 

Despite differences between the study techniques 
used and river basin characteristics, Arnell (1996) 
drew the following conclusions: 
1 Runoff is relatively more sensitive to precipita-

tion change than temperature change. 
2 River basins tend to amplify changes in precipita-

tion. 
Whilst changes in annual runoff are a useful indi-

cator, often the seasonal changes are more profound. 
For example, Mimikou et al. (1995) found that for 
the Mesohora basin in Greece a 20% fall in precipi-
tation accompanied by a 4°C temperature increase 
resulted in a 35% reduction in annual runoff. How-
ever, the impact on summer flows was almost twice 
as large, and the fall in winter was limited to 16%. 
This pattern is repeated in many other studies and is 
a result of changes in soil moisture content. 

3.2 Hydroelectric Generation 

Hydropower potential is defined by the river flow, 
and therefore changes in flow due to climate change 
will alter the energy potential. More importantly,, as 
most hydropower schemes are designed for a par-
ticular river flow distribution, plant operation may 
become non-optimal under altered flow conditions. 

The capability of a given hydro installation to 
generate electricity is limited by its storage and tur-
bine capacities. These place limits on the amount of 
carly-over storage to allow generation during dry 
spells, and also the degree to which benefit can be 
derived from high flows. 

A number of studies have examined the impact of 
climate change on hydropower production (those 
listed in Table 1 are a representative sample). Pub-
lished results suggest that the climate sensitivity of 
energy production is related to the storage available: 
in general terms the greater the degree of storage the 
lower the sensitivity. Additionally, turbine capacity 
limits the ability of schemes to take advantage of 
higher flows. 

Other than energy volumes, the impct on gen-
eration reliability has been examined in a number of 
studies (e.g. Mimikou & Baltas, 1997). Garr & Fitz-
harris (1994), among others, relate both hydropower  

production and energy demand to climatic variables 
in their examination of how climate change will af-
fect the ability of the electricity supply system to 
meet demand. 

Table 1. Examples of potential changes in annual hydro gen- 
eration resulting from changes in temperature and precipitation. 
Region/River Temperature Precipitation Production 
Nile River° +4.7°C +22% -21% 
lndusRiver° +4.7C +20% +19% 
Colorado River °° +2.0C -20% 49% 
NewZealand°" +2.0°C +10% +12% 

Notes: • Reibsame Ct al. (1995), ° Nash & Gleick (1993), 
° Garr& Fitzharris (1994). 

3.3 Revenue andfinance 

Despite such studies, none published to date has 
quantified the potential impact on the perceived or 
actual financial performance of hydro Stations. 

Hydro is characterised by low operational costs 
but high capital costs. As a result, the debt repay-
ment period for a hydro scheme is often significantly 
longer than for fossil-fuelled plant. Despite high fos-
sil-fuel costs, hydro will often be at a disadvantage, 
and would not be favoured by short-term orientated 
investors. As with all generation methods, electricity 
sales revenue is the only way of servicing the capital 
debt. If reductions in runoff and output were to lead 
to reductions in revenue, this would adversely affect 
the return on investment and hence the perceived at-
tractiveness of the plant. Therefore, there is a possi-
bility that potential schemes would not be pursued. 

If potential hydro schemes are abandoned or pro-
duction from existing facilities is limited by runoff 
changes, then the likely alternative is that fossil-
fuelled stations will have to be constructed to cover 
the deficit. Not only would this require additional 
capital to be used, but also would probably result in 
additional carbon emissions, thus exacerbating cli-
mate change (Whittington & Gundry, 1998). 

Many large hydropower developments in less de-
veloped countries have been built with the intention 
of stimulating economic development. Often, these 
are internationally financed and repaid in hard cur-
rency. Reductions in revenue may make it difficult 
to repay the debt,• severely stressing weak econo-
mies, while the shortfall in electricity availability 
will hamper Governments' development attempts 
(Whittington & Gundsy, 1998). 

The magnitude of capital investment required for 
hydropower installations, together with the increas-
ing penetration of private capital in the industry 
makes it imperative that project analysis takes ac-
count of potential climatic effects. 
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INVESTMENT APPRAISAL 

To assess the threat that climate change poses to fu-
tore hydropower investment, there is a requirement 
for a robust methodology. The diverse nature of hy -
dropower installations and climatic conditions pre-
cludes any form of accurate regional or global analy-
sis at this stage. Therefore, an analysis on a case by 
case basis is necessaxy. 

To assess the impact on investment it is necessaiy 
to consider the problem from the standpoint of a 
potential investor. They will be primarily concerned 
with the impact on a range of investment indicators, 
and, as such, a methodology derived from traditional 
hydropower appraisal was devised. 

The techniques of hydropower appraisal are long 
established. However, the continuing reliance on 
historic flows to indicate future flow conditions is 
not prudent given the prospect of climate change. 
Some recent project appraisals have attempted to 
deal with climate change by uniformly altering river 
flows. Unfortunately, this practice is inadequate as it 
fails to take into account the tendency of a river ba-
sin to amplify precipitation changes. 

The complexity of the task necessitates a software 
tool, the basic specifications for which are intro-
duced elsewhere (Harrison et al., 1998) and illus-
trated schematically in Figure 3. The use of a rain-
fall-runoff model removes the reliance on historic 
flows by providing a link between climatic variables 
and river -  flows. This enables the relationship be-
tween climate and financial performance to be ex-
amined effectively. 

The rainfall-runoff model is calibrated using 
monthly historic river flow and climate data. Fol-
lowing this,- suitable operational, financial and eco-
nomic data enables simulations to be rapidly caned 
out  

Climate 
Vmiables 

Investment 
- Measures 

River Flows Revenue 

Energy  

Figure3. Software tool structure. 

5 RESULTS 

Software has been developed by the authors to meet 
the required specifications. The software was tested 
using an actual planned scheme: sample results are 
presented here. The chosen scheme has limited res-
ervoir storage capacity and is intended to operate as 
a mn-of-river plant. The river flow regime is highly 
seasonal and is not influenced by snowfall. Basic 
operational and financial information was extracted 
from a traditional feasibility study of the scheme. 
Simulations indicated that the software delivers pro-
duction estimates and investment measures that are 
comparable with figures found in the feasibility .  
study. 

A sensitivity study was carried out with the model 
driven by histhric precipitation and temperature data 
uniformly changed to simulate climate change. Re-
sults suggested that runoff and energy production are 
sensitive to rainfall change, and that runoff changes 
are significantly greater than the precipitation varia-
tion. Although storage is limited, production sensi-
tivity is lower than runoff. Energy production is less 
sensitive to increases in flow as much of the excess 
flow is spilled. 

The assumption of a single energy price means 
that the investment sensitivity follows a similar pat-
tern to production. Figure 4 shows the response of 
internal rate of return (IRR) and discounted payback 
to rainfall variations. IRR is positively related to 
rainfall, whilst discounted payback period shows the 
opposite trend. The greater sensitivity to flow reduc-
tions can be seen. - 

Net present value is not shown in Figure 4 as the 
NPV variations significantly larger. The compound-
ing effect of revenue changes over the project life-
time means that NPV ranges from -200% to 140%. 
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Figure 4. Sensitivity of financial appraisal measures to uniform 
changes in precipitalion 
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Although these results are only preliminary, they 
indicate that the financial performance of the scheme 
is sensitive to rainfall changes. Furthermore, they 
imply that in regions that experience reduced rain-
fall, hydropower could become less competitive. As 
such, investment in hydropower projects will be less 
likely,.and the ability to limit climate change will be 
reduced. 

6 CONCLUSIONS 

Climatic change is expected to result from the re-
lease of significant quantities of man-made emis-
sions of greenhouse gases. One of the key methods 
of limiting the extent of change is through the use of 
renewable energy sources, including hydropower. 
Unfortunately, the reliance of hydropower on cli-
matic conditions means that the changes predicted 
may affect it adversely. In particular, and given the 
increasing importance of private capital within the 
electricity industry, the financial performance of hy-
dro schemes may be damaged. Subsequently, hydro-
power will be less competitive and alternative, pre-. 
sumably fossil-fuelled schemes will take precedence, 
reducing our ability to reduce greenhouse gas emis-
sions. 

A range of impacts on river flows and hydro-
power production have been identified, together with 
a consideration of the potential consequences of 
failing to take account of climate change when plan-
ning hydro schemes. A methodology and associated 
software tool have been briefly introduced which en-
able quantification of changes in investment per-
formance as a result of changes in climate. Prelimi-
nary results of its use on a planned scheme are 
presented. The results indicate that investment 
measures show significant sensitivity to changes in 
rainfall. This implies that in regions that experience 
reductions in rainfall, hydropower will become less 
competitive. Therefore, investment in hydro projects 
is less likely to occur and our ability to control 
greenhouse emissions is lessened. 
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