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Introduction 

There has been increasing interest in neural networks during the last few 

years, and it is now one of the fastest growing fields in electronics. Interest in 

neural networks has waxed several times in the past century and subsequently 

waned. The present revival is partly owed to the failure of Artificial Intelligence 

(Al) to accomplish goals set over a decade ago. With no significant progress in 

rule-based inference systems, research has begun in other areas. 

Neural systems are networks of simple computational units (neurons), operat-

ing in parallel, that capture some of the computational strengths and functionality 

of the human nervous system. The functions a synthetic neural network may aspire 

to mimic, are the ability to consider many solutions simultaneously, an ability to 

work with corrupted data and a natural fault tolerance. This arises from the paral-

lelism and distributed knowledge representation that gives rise to gentle degradation 

as faults appear. These functions are attractive for implementation in VLSI and 

WSI. For example, the natural fault-tolerance could be useful in silicon wafers with 

imperfect yield, where the network degradation is approximately proportional to the 

non-functioning silicon area. 

The credit for the present surge in implementation should go to Hopfield 1 

whose valuable contribution was to communicate neural principles to engineers. 

Technology has developed to a point where supercomputers can simulate large 

neural networks quickly and the integrated circuit technology has become small 

enough to allow many synaptic structures to be integrated on a single chip. 

Although the neural function is simple enough, in a totally interconnected a - 

neuron network there are ,z2  synapses requiring n 2  multiplications and summations 

and a large number of interconnects. The challenge in VLSI is therefore to design a 

simple, compact synapse that can be repeated to build a VLSI neural network with 

manageable interconnects. In a network with fixed functionality, this is straightfor-

ward. If the network is to be able to learn, however, the synaptic weights must be 

programmable, and therefore more complicated. 



Introduction 	 - 2 - 	 Introduction 

Planar silicon technology is almost certainly not the ultimate medium in which 

neural networks will find their power fully realised. Three-dimensional biological 

materials are intrinsically better suited to the essentially three-dimensional form of a 

neural net, but their usefulness as understandable and predictable "circuit-building" 

media is a long way off. To delay research into implementation of neural networks 

until analysis and simulation demonstrate their full power and a better technology 

emerges would be short-sighted. There is much to learn form LSIJVLSI implemen-

tation, and hardware networks developed will be able to make rapid use of develop-

ments in network design and learning procedures to solve real problems. 

This thesis is based on the research undertaken between February 1986 and 

September 1988 into the implementation of neural networks that have programm-

able synaptic units in silicon using CMOS integrated circuits. 

The thesis is presented in 4 parts. 

This section provides a background to the research and will be useful to new 

researchers into neural networks. Chapter 1 is a brief introduction to the biological 

neuron to introduce the reader to neural terminology. Chapters 2 and 3 give a his-

tory of neural networks and show how the models were developed and it identifies 

all the major workers. Chapter 4 discusses the various neural models, giving worked 

examples. Finally Chapter 5 gives an introduction to other VLSI implementations of 

neural networks. 

Chapter 6 presents research into a digital neural machine that uses a reduced 

precision arithmetic to simplify circuitry. Simulation shows how this system per-

forms compared with simple and more complex neural models. This section also 

discusses some of the practical implementation problems, such as a limited weights 

set, and tries to offer solutions. 

Chapters 7 and 8 show how pulse streams offer a novel solution to reducing the 

complexity of circuits whilst still allowing complex functions. An integrated circuit 

is presented that performs the communications and processing and shows how this 

can be incorporated into a system to solve neural network problems. 

Where relevant, conclusions are presented at the end of a chapter and the thesis 

concludes with Chapter 9 which is a discussion of the work undertaken and presents 
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ideas for further developments in this field of research. 
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Chapter 1 

1. Introduction to Neurons 

Some neural network terminology is derived from biological science. To intro-

duce this terminology to engineers the first chapter discusses the biological neuron. 

It describes the structure and functions of the neuron and the importance of the 

myelin sheath. It explains the origin of the electrical potential across the outer mem-

brane and the generation of an action potential which constitutes the nerve impulse 

that is propagated along the length of the axon in a nerve fibre. The structure and 

functions of synapses are also described together with some of their special proper-

ties which play an important role in the processing of nerve impulses as they pass 

through the Central Nervous System. 

I.I. The Neuron 

The neuron or nerve cell is the basic functional unit of the human communi-

cation system which is composed of about 3x 1010 neurons, the majority located in 

the human brain. Neurons have distinctive shapes, see Figure 1(a), and are unique 

in the ability of their outer membranes to generate electrical impulses. They posses 

3 regions; the dendrites, the cell body and the axon. 

Dendrites are repeatedly branching extensions of the cell body forming the surface 

which receives most of the incoming signals. 

The Cell body which is spherical or pyramidal, containing the nucleus and 

organelles involved in the biochemical activities of the cell, including energy pro-

duction and enzyme synthesis. 

The Axon, which extends from the axon hillock, forms a pathway along which 

output signals pass from the cell body. Axons are longer, thinner and less 

branched than dendrites and terminate in Synaptic Buttons (or Knobs) or Neuro-

Muscular Junctions. 
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Figure 1(a):Motor Neuron with Myelinated Axon. 
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1.2. Myelination of Axon 

All axons are sheathed by several Schwann Cells, the outer membranes of 

which may be spirally wrapped around the axon many times forming an insulating 

Myelin Sheath. Gaps between the Schwann cells where the axon membrane is 

exposed, are called Nodes of Ranvier and they occur every 1mm or so. Such axons 

are said to be Myelinated, see Figure 1(b). Sometimes a Schwann cell may be 

wrapped around the axons of several neurons forming much thinner sheaths, and 

these axons are said to be Non-Myelinated, see Figure 1(c). Myelinated neurons are 

only found in vertebrate nervous systems and they transmit impulses much faster 

than non-myelinated neurons. Myelination conserves the neuron's metabolic energy 

and increases the speed at which they transmit an impulse. 

1.3. Resting Potential of the Neuron 

Most important to the functioning of a neuron is the electrical potential differ-

ence that it maintains across its outer membrane. In all living cells this forms part of 

the Electro- Chemical Potential (ECP) gradients which promote the absorption of 

negative anions and oppose the absorption of positive cations. The presence of Ion 

Pumps in the outer membrane, which selectively absorb or expell ions, helps to 

maintain the potential difference. The ECP gradient ensures the absorption of ions 

needed to meet the nutritional and functional requirements of each cell. 

The resting potentials of nerve axons vary between 30mV and llOmV and are 

much higher than those of other cells. They are produced by the differential distri-

bution of ions between the Axoplasm and the external medium. The axoplasm 

(inside) has a high concentration of potassium (K) ions and a low concentration of 

sodium (Na) ions, while the concentrations of these ions are reversed in the exter-

nal medium. These gradients are maintained by the Active Transport of these ions 

against their electro-chemical potential gradients by special regions of the axon 

membrane known as Sodium or Cation Pumps. These pumps remove Na ions from 

the axon and at the same time absorb K ions, the energy for this process coming 

from AT? (Adenosine Triphosp/zate). This movement of ions is opposed by the Pas-

sive Diffusion of the same ions down the electro-chemical potential gradients at rates 



Introduction to Neurons 	 - 7 
- 	 Chapter 1 

mainly determined by the permeability of the axon membrane to the ions. Since the 

K ions have an ionic mobility and membrane permeability 20 times greater than 

Na ions, K ions are lost from the axon at a greater rate than K ions are gained 

resulting in a negative charge within the vertebrate axon of about -70mV. 

1.4. Generation of an Action Potential in Neurons. 

Stimulation of an axon by an electrical impulse changes the electrical potential 

across the axon membrane from a negative internal value of about -70mV to a posi-

tive internal value of about 40mV. This polarity change is called an Action Potential 
(AP) or Spike which can be viewed with an oscilloscope, see Figure 2(a). The AP 

is generated by the sudden and momentary increase in the permeability of the axon 

membrane to Na ions which enter the axon. The resulting increase in Na ions in 

the axon changes the internal axon potential to about + 4OmV and this change in 

potential is called Depolarisation with a maximum value of about llOmV. 

After the peak of the AP, about 0.5ms after the initial depolarisation, the per-

meability of the membrane to Na declines and the permeability to K increases so 

K diffuse out of the axon, see Figure 2(b). This results in re-polarization of the 

axon, the internal positive charge being replaced by negative charge, see Figure 

2(c). 
be5 

The initiation of depolarisation/ when the neuron or a receptor receives a 

stimulus ~: the threshold value. The amplitude of the resulting AP, for a given neu-

ron, is constant. 

Information is transmitted through the NS as a series of APs or nerve 

impulses. They pass along the axon as a wave of depolarisation followed by a wave 

of negativity. The APs are self-generated or propagated along the axon by the 

effects of the Na entering the axon. This creates an area of positive charge and a 

flow of current is set up forming a local current between this area and the nega-

tively charged area immediately ahead. The current reduces the membrane potential 

in the resting region ahead and the depolarization causes an increased permeability 

to Na ions and the development of an action potential ahead. The process is 
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Figure 2:Changes in the Potential(mV) and Ionic Conductance 

during the propagation of an Action Potential 
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repeated so the APs are propagated along the axon. The AP suffers no loss of 

potential as each is generated by a local change in the concentration of ions. The 

nerve impulses thus pass along the axon in one direction, from active to resting 

regions. 

The active region undergoes a Recovery Phase during which it cannot respond 

to a further depolarisation by a change in permeability. This Absolute Refractory 
Period lasts about ims and it is followed by a Relative Refractory Period lasting 5- 

10ms during which a much higher intensity stimulus is needed to produce depolari-

sation. 

Neurons are thus specialised cells adapted to respond to stimuli from the inter-

nal and external environments by producing a pattern of electrical impulses. To 

ensure a meaningful response to this information from the receptors, the impulses 

are carried by Sensory neurons to the Central Nervous System (CNS), a neuron net-

work, where they are processed. The output impulses of the neuron network are 

relayed by Motor neurons to Effector organs, muscles or glands, producing an 

appropriate response. 

In non-myelinated axons the speed of conduction of an AP depends on the 

longitudinal resistance of the axoplasm which is in turn related to the diameter of 

the fibre. The smaller the axon diameter, the greater is the resistance of the axo-

plasm and therefore the slower is the speed of conduction. A fine axon of about 

0.1mm diameter conducts at about 0.5m s 1, while a giant axon of about 1mm 

diameter will conduct at a velocity of about lOOm s 1. 

The presence of a thick myelin sheath around vertebrate axons, produces a 

low resistance to current flow at the Nodes of Ranvier and a high insulation 

between. The depolarisation of the axon membrane therefore only occurs at the 

Nodes of Ranvier and the APs "jump" from node to node increasing the conduction 

velocity to about 120m s for quite small diameter neurons. This type of conduc-

tion is described as Saltatory. 

The velocity of conduction is related to temperature and increases with 

increasing temperature up to 40°C. The impulses have a fixed amplitude so the 
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information cannot be carried as an amplitude code. Information is carried as a fre-

quency code in which the frequency of the impulses is directly related to the inten-

sity of the stimulus or response required. 

1.5. Synapses 

Crucial to the integrative functioning of the nervous system is the way in 

which the neurons inter-connect and the way in which APs are transferred between 

neurons. Central to this are the Synapses which are areas of functional contact, but 

not physical contact, between the fine terminal branches of the axon of one neuron 

and the dendrites or cell body of another neuron, for the transfer of information. 

Brain neurons may receive up to 10 000 synapses which can occupy up to 80% of 

the neurons surface, the greatest concentration being on the dendrites, see Figure 3. 

There are 2 types of synapse, Electrical and Chemical with similar functions 

but different structures. The Neuro-Muscular Junctions or End-Plates of the motor 

axons terminating on muscle fibres have a similar structure and function to the 

synapse. 

The electrical synapses represent the more primitive condition, being more 

widespread in Invertebrates. The transmission across the electrical synapse occurs as 

an electric current which on reaching a threshold value will induce an action poten-

tial in the axon of the next neuron. 

Chemical synapses are more widespread in vertebrates and their more open 

structure allows current to leak away so not producing an electrical change in the 

post-synaptic cleft, it is probable however that a small amount of electrical conduc-

tion takes place in both directions across these synapses. 

Chemical synapses are more efficient in depolarising the post-synaptic mem-

branes and therefore generating APs in the receiving neurons so speeding up the 

rate at which information is processed. The chemical synapse is a bulbous expansion 

of the nerve terminal called a Synaptic Knob or Bouton Terminale which lies in close 

proximity to the membrane of the dendrite or cell body of the next neuron. Both 

the Pre-Synaptic Membrane of the synaptic knob and the Post-Synaptic Membrane of 
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Figure 3: Reconstruction of brain neuron showing positions of 

synapses with other neurons. 
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the next neuron are thickened and separated by a synaptic cleft 20nm wide. The 

transmitter substance (TS) is formed in the cell body or the synaptic knob where it 

is packaged in synaptic vesicles approximately 50nm in diameter, each containing 

about 300 molecules of TS, and stored pending release. The main TS in vertebrates 

are Acetylcholine released by Cholinergic neurons and Noradrenali,ze released by 

Adrenergic neurons. 

The functioning of the synapse is illustrated in Figure 4. 

The arrival of an action potential at the synaptic knob depolarises the pre-

synaptic membrane increasing its permeability to Calcium (Ca2 ) ions which enter 

the synaptic knob causing the synaptic vesicles to fuse with the presynaptic mem-

brane and release their transmitter substance into the synaptic cleft by exocytosis.  

The empty vesicles return to the cytoplasm to be refilled. The transmitter substance 

diffuses across the cleft, imposing a delay of 0.5ms and attaches to a specific recep-

tor site on the post-synaptic membrane allowing the entry of ions which either depo-

larise or hyperpolarise the post-synaptic membrane depending on the type of 

synapse. The TS is then quickly removed from the synaptic cleft by reabsorption 

through the pre-synaptic membrane, diffusion out of the cleft or by hydrolysis. In 

cholinergic synapses, the enzyme Cholinesterase attached to the post-synaptic mem-

brane, hydrolyses acetylcholine to choline which is reabsorbed and recycled in the 

synaptic knob. 

1.6. Types of Chemical Synapse and Their Properties. 

Synapses may be Excitatory or Inhibitory. Activation of an excitatory synapse 

increases the permeability of the post-synaptic membrane to Na and K ions and 

results in depolarisation creating an Excitatory Post-Synaptic Potential (EPSP), 

smaller in amplitude but longer lasting than an action potential AP. A single EPSP 

resulting possibly from the release of 1 vesicle containing TS is normally unable to 

produce sufficient depolarisation to initiate an AP in the post-synaptic neuron. The 

depolarising effect of the EPSP is additive so together several EPSPs may initiate an 

AP in the neuron, this process being termed Summation. It is termed Spatial sum-

mation if the EPSPs are produced simultaneously by different synapses attached to 

(t) Exocytosis An active process involving the bulk transport 
of materials through membranes. In this case vesicles 
fuse with the membrane releasing the transmitter substance 
into the synaptic cleft. 
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Figure 4:Diagrams illustrating the mechanisms 

involved in chemical transmission at a neuronal 

synapse, (a) to (e) time sequence. 
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the same neuron or Temporal summation when an intense stimulus causes the 

release of many synaptic vesicles and the individual EPSPs are close together and 

summate giving rise to an AP, see Figure 5. 

APs can result from repeated stimulation by one of its pre-synaptic neurons or 

weaker stimulation by several of its pre-synaptic neurons. 

Inhibitory synapses release transmitter substances which increase the permea-

bility of post-synaptic membrane to K and Cl- ions and the resulting movement of 

ions increases the polarisation of the membrane causing hyperpolarisation known as 

Inhibitory Post-Synaptic Potential (IPSP) which acts counter to the EPSP making it 

more difficult to produce an AP, hence it has an inhibitory effect. 

At the Neuro-Muscular Junction the synapses are replaced by motor end-plates 

similar to the synaptic knob and they function in a similar way producing local 

depolarisation known as End-Plate Potential (EPP) which produces an AP in the 

muscle fibre which initiates muscle contraction. 

1.7. Other Properties of Synapses 

In addition to the transmission of information from the receptors to the effec-

tors, they possess several other important functional features. 

Unidirectionality: The release of transmitter substances from the pre-

synaptic membrane and the presence of receptor sites on the post-synaptic 

membrane ensures that nerve impulses only pass in one direction. 

Adaptation: The amount of transmitter substance falls off if the synaptic 

knob is subjected to constant stimulation because the supply of transmitter 

substance becomes exhausted. The synapse is thus Fatigued and no further 

impulses can follow the pathway preventing damage by over stimulation. 

Integration: The post-synaptic neuron may receive impulses from excita-

tory or inhibitory pre-synaptic neurons. As a result of this Synaptic Conver-

gence all the pre-synaptic stimuli are summated enabling the integration of 

stimuli coming from several different sources producing a single response. 

Facilitation: This may occur at some synapses. The stimulus passing 
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Figure 5:Diagrams illustrating convergent neural pathways and 
summation of excitatory stimuli 

cell body 

(a) 

synaptic ending (knob) 

/ cell body (A) 
/ 

excitatory 
input 2 	 (b) 

excitatory
input 3 
	

excitatory 
input 1 

CR0 

(c) 
Action 
potential 

(i) 

Li) EPSP EPSP EPSP 

() 

1) 	(2) 	(3) 	EPSP(2) 

7W PsP3 
200 ms 	 100 ins 

Delay between EPSPs does not allow threshold :o be 
raached 
Rapid excitatory s:inuli summate to reach threshold 
and trigger an ac:ion potential 



Introduction to Neurons 	 - 16 - 	 Chapter 1 

through a synapse leaves the synapse more responsive to the next stimulus. 

This is not electrical summation, but a chemical change in the post-synaptic 

membrane. 

Discrimination: Temporal summation permits the filtering out of weak 

and unimportant stimuli but changes in the intensity of stimuli, increase the 

frequency of stimuli which pass across the synapse and these are summated 

to produce response in the post-synaptic neuron. 

Inhibition: When synaptic knobs from excitatory and inhibitory neurons 

are in close proximity, the inhibitory synapses reduce the number of synap-

tic vesicles released inhibiting the response of the synaptic knob. This inhibi-

tion may be post or pre-synaptic. 

The cell bodies of many neurons, especially in the brain, may be covered with 

many hundreds of synaptic knobs. Most of the synaptic knobs are in contact with 

the dendrites. The dendrites however have low excitability and high thresholds 

while the axon hillocks are highly excitable and have lower thresholds. The cell 

bodies have intermediate excitability and thresholds. 

A large number of inputs both inhibitory and excitatory are collected by the 

dendrites but due to the low excitability and high threshold (25mV) it requires 

several similar excitatory inputs to summate to reach the threshold. The axon hil-

lock is the spike or AP initiator because it has the lowest threshold (10.6mV) and 

highest excitability, so control of this region leads to control of action potentials. 

This section of the thesis was written from the Part 1 of Book 10 of the Basic 

Biology Course entitled Nerves and Muscle and from chapter 16 of Book 2 of Bio-

logical Science entitled Systems, Maintenance and Change. Both books are pub-

lished by Cambridge University Press. 
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Chapter 2 

2. A History of Research into Biological Neural Networks 

Neural networks research is interdisciplinary, covering the biological, chemical 

and mathematical sciences as well as the sociological, physiological and psychologi-

cal sciences. Research into neural networks, though not in the form we see today, 

has been going on for some considerable time. In giving a history of the develop-

ment it is necessary to integrate these disciplinary histories to give a broader under-

standing of neural networks. 

The fundamental difference between a modern computer and a neural net-

work is that a computer stores a piece of information in one location, whereas a 

neural network distributes the same information in several locations. The former is 

known as local representation and latter as distributed representation. 

The functioning of the brain, which is itself a neural network, and in particu-

lar the functioning of memory, has intrigued mankind for several millennia. One of 

the first suggestions to explain memory was by Plato 2 He suggested an analogy 

between memory and a block of wax. A ring imprint on the surface of the wax 

represented a memory. By making more imprints more memories were stored or 

learnt. This idea can be thought of as being local since the imprints were discrete, 

each at a separate location in the wax block. 

The local theory was enhanced by James Mill in 1773-1836 when he suggested 

that the human mind concerned itself with the linking together of pieces of sensory 

experience. Each experience had a unique location and learning was the linking 

together of these locations. 

Until this time no neural structures had been proposed to implement the 

storage of local memories until Alexander Bain in 1818-1903 stated 'for every act of 

memory, every exercise of bodily attitudes, every habit, recollection, train of ideas, 

there is a specific grouping or coordination of sensations and movements by virtue of 

specific growth in the cell junctions" and also "there is no improbability in supposing 

an independant nervous track for each separate acquisition". This suggestion again 



Biological History 	 - 18 - 	 Chapter 2 

proposed that memories were local in nature, although the idea that growth in cell 

junctions created new memories began to emerge. 

As the brain is likened to modern computers today, in the early part of the 

twentieth century the brain was likened to a telephone switch board. Thorndike 

3proposecl that learning involved the setting up of new connections from input to 

output lines. He stated "All psychological processes consist of the functioning of 

native and acquired connections between situations and responses". 

Perhaps the most well known of the local theorists was Pavlov '. He is best 

known for his work with dogs, which he conditioned to salivate in response to the 

stimulus of a ringing bell. He further suggested that memory traces were similar in 

principle to reflex arcs. 

However local theories failed to explain why memories were not lost in local 

damage to the brain. It was Lashley 5  who found that rats, which after learning 

mazes and subsequently undergoing brain surgery, suffered brain defects dependant 

on the amount and not the location of the brain tissue removed. He inferred that all 

parts of the cerebral cortex play an equal role in the memory process. "The alterna-

tive to the theory of the preservation of memories by some local synaptic change is the 

postulate that the neurons are somehow sensitized to react to patterns or combinations 

of excitation. It is only by such permutations that the limited number of neurons can 

produce the variety of functions that they carry out... But speculation about this 

mechanism without direct evidence is likely to be futile as speculation concerning 

changes in resistance in the synapse has been 

The conclusion is justified, I believe, ... that all of the cells of the brain are con-

stantly active and are participating, by a sort of algebraic summation, in every 

activity. There are no special cells reserved for special memories". 

This major piece of experimental evidence divided the scientific community. 

On one side were the localists, and on the other the doubters and negativists. 

Lashley contrived the theory that each learned event was represented by a par-

ticular pattern of vibrations in the brain. This attempted to explain the observed 

data but did not however explain how human memories survive grand mal epileptic 
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attacks, or how brain activity can be severely reduced by cooling or by anaesthesia 

without serious impairment of memory. 

This type of distributed theory and theories similar to it where grouped under 

the name Gestalt Theories. This explained the former in terms of patterns of excita-

tion. David Wilishaw explained the Gestalt theories in his PhD thesis 6  as 'Consider 

how they would explain the perception of a circle. The sensory input is transformed 

into a pattern of excitation in the brain, modifying its ongoing activity. That the circle 

has been seen is noted by the pattern of excitation leaving a record of some descrip-

tion in the brain. When the circle comes into the organism's field of view again, the 

brain recognises that the current pattern of excitation caused by the circle is similar to 

the pattern which laid down the original trace and the organism remembers that it has 

seen the circle before". 

Roy ' 8 attempted to explain Lashleys findings. He suggested a distributed 

nerve net with one input and one output channel, made up of a number of identical 

nerve cell-like units functioning as delay lines. By the mechanism of threshold 

lowering within the units, the net was able to recall a particular part of a stored sig-

nal by using the preceding part as an address. 

It was Hebb in 1949 9  who attempted to reconcile "switchboard" and "field" 

theories (e.g. Gestalt), by putting forward the idea of modifiable excitatory 

synapses - that is the excitatory synapse between an axon and a dendrite is facili-

tated if activity in the axon coincides with depolarisation of the dendrite. As learn-

ing proceeds, cells are modified by this means and they form themselves into 

interacting groups, called assemblies, each capable of supporting patterns of excita-

tion. One nerve cell can belong to more than one assembly and can change allegi-

ance from one assembly to another. Thus one cell can contribute to the storage of 

more than one message. 

Milner 10 extended Hebb's treatment to include inhibitory synapses and both 

theories were tested by computer simulation by Rochester et al in 1956. Rochester 

also found that cell assemblies could only be produced in a set of interacting 

neuron-like elements if both inhibitory and excitatory synapses were present. 
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Although the preceding history has been about the physiological investigation 

of memory, the ideas behind Parallel Distributed Processing (PDP) can be seen 

from other branches of science. Pillsbury 11, in the late nineteenth century was the 

first to begin the investigations into neural structures. By observing the visual per-

ception of words he investigated the way in which partly obscured letters could be 

recovered by observing the words containing them. Some of the earliest roots of the 

PDP approach can also be found in the work of the neurologists, Jackson 12,  and 

Luria 13.Jackson was a forceful and persuasive critic of the simplistic localisationist 

doctrines of late nineteenth century neurology, and he argued convincingly for dis-

tributed, multilevel conceptions of processing systems. Luria, the Russian psycholo-

gist and neurologist, put forward the notion of the dynamic functional system. On 

this view, every behavioural or cognitive process resulted from the coordination of a 

large number of different components, each roughly localized in different regions of 

the brain, but all working together in dynamic interaction. At the beginning of the 

twentieth century a frenchman, Henri Poincare 14, introduced the idea of a 

"bottom-up" approach to neural networks from primitives, instead of trying to 

evolve ideas of neural structure from psychological observations. 

Although evidence today suggests that in higher mammals memories are of a 

distributed form there is evidence to suggest that in lower animals memories might 

be localized. Young 15 16 suggested that memory of an octopus consists of a 

number of simple components, each of which records the consequences of stimula-

tion by a particular type of visual or tactile input. There is some evidence today to 

suggest that both local and distributed processing are integrated together. 

t Henri Poincare is also known for his work on the planetary three body problem and his insights 
into special relativity before its formulation by Einstein. 



Perhaps the most interesting research has been in the development of a distri-

buted model of human learning and memory. Theorists have shown that sometimes 

human memory represents information in a general form and at other times in a 

specific form. Although conventional rule-based systems can implement one of these 

properties they find it difficult to implement both at the same time. McClelland and 

Rumelhart have proposed and demonstrated a neural network model of human 

memory which can capture both properties. Their system used the Delta Rule (see 

Chapter 4) to store patterns on a highly interconnected network. These patterns 

were used in the learning phase to alter the interconnection strengths between neu-

rons to encode the patterns onto the network. It was possible to recall patterns by 

inputing part of the original pattern back into the network. The model was limited 

due to the fact that it could only learn to respond appropriately to sets of patterns 

which obeyed the linear predictability constraint. This constraint is when, over an 

entire set of patterns, the external input to each unit must be predictable from a 

linear combination of the activations of every other unit. At present they are 

researching into overcoming this problem by including hidden units within their 

network. 

Rumelhart and McClelland60  have shown how synthetic modelling can be 

used as a route to the understanding of human memory. However, the research into 

biological mechanisms can be used as a guide, or as inspiration for neural modell-

ers. Using biological research Carver Mead has designed and built electronic neural 

networks with local interconnectivity to perform neural processing. He has used bio-

logical research on the neural structure of the retina and cochlea to built an elec-

tronic neural network able to perform audio and visual processing. As more infor-

mation is uncovered about the structure of the human brain this will be included in 

the design of more complex neural systems. 

Other techniques such as Back-Propagation have taken an entirely different 

route and ignored biological research. These techniques are described in the next 

section under the general heading mathematical modelling. This research route has 

some justification for example the use of excitatory and inhibitory synapses on the 

same neuron, no biological neuron has been found that has both excitatory and 

inhibitory synapses. Another restriction is that biological networks must grow and 

therefore the neural str:ctures which can be formed is limited. Neither of these res-

trictions apply to electronic neural networks. Although electronic neural networks 

will have many similarities with their biological counterparts it is unlikely that they 

will be exactly alike. 

The third technique used. by Grossberg and the author is to compromise 

between the biological models and the pure mathematical models and use the 

advantages of both. This work is described later in the thesis. 
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Chapter 3 

3. A History of the Research into Synthetic Neural Networks 

The first major worker to attempt a mathematical description of biological 

processes was Rashevsky 17,  who in 1938 discussed not only nerve net action but 

also a wide variety of physiological phenomena from basic cell chemistry to the 

behaviour of populations of organisms. Although Rashevsky appeared unaware of 

Boolean algebra in his first edition, in effect he pointed out how certain logical 

operations might be carried out by simple nerve arrangements. Figure 6 shows that 

the exclusive-or function is mechanized by an arrangement of excitatory and inhibi-

tory connections. Rashevsky also suggested an explanation of short-term memory 

by means of recirculating neuron loops, in which an impulse, once initiated, would 

continue to cycle indefinitely or until terminated by a specific inhibitory impulse. 

The simplest form of such a loop is illustrated in Figure 7. 

In 1943, McCulloch and Pitts 18 published a continuation to Rashevsky's work 

by applying Boolean algebra to nerve net behaviour. This enabled techniques, nor- 
to 

mally associated with the design of digital computers,be used with neural networks. 

In 1949, Hebb 9  advanced two hypotheses which have become the basis of 

many nerve net models. Hebb postulated, that the synaptic junction was the site of 

permanent memory, and that memory of any event was a distributed phenomenon 

residing in small changes in synapse strength. These changes result from an event 

impinging upon a large number of synapses. Hebb suggested the following qualita-

tive rule for change of strength of a junction as the result of activity: "When an axon 

of cell A is near enough to excite a cell B and repeatedly or persistently takes part in 

firing it, some growth process or metabolic change takes place in one or both such 

that A's efficiency, as one of the cells firing B, is increased." Hebb's postulates are in 

agreement with many observable psychological phenomena, especially Pavlov's 

observations on conditioned reflexes. Although there are several learning rules in 

use today, the Hebb law is most widely accepted. Hebb also introduced the concept 

of cell assemblies and discussed the idea of reverberation of activation within neural 

networks. Hebb's ideas however related to neural functioning rather than 
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Figure 6 : Rashevsky Exclusive OR 
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distributed processing, and it was Lashley 19 who insisted upon the idea of distri- 

buted processing. This was encapsulated in the statement, 'there are no special cells 

reserved for special memories". 

Hebb's ideas remained untested speculations until the early fifties when Dean 

Edmonds and Marvin Minsky built the first electro/mechanical learning machine 20• 

In 1958, Rosenblatt reported on the Perceptron model 21• This model attempted to 

place a complete learning sequence of an artifical nerve-net on a rigorous 

mathematical basis. Rosenblatt proved that learning of an input-output relationship 

would occur in a linear summation network under conditions of repeated presenta-

tion of input and comparison with desired outputs. The Perceptron model is illus-

trated in Figure 8. Rosenblatt proposed that synaptic strengths follow certain rules 

of growth, and that a solution existed for the set of values of the weighting elements 

required to realize the given output function. Rosenblatt assumed in his model that 

sensory inputs were mapped, by means of random connections with fixed synaptic 

strengths, to a set of neurons termed A-units. Since no learning occurs at this stage 

of the network, input pattern S is transformed to pattern S' which forms the input 

into the A-units. The transformed inputs are then mapped through variable connec-

tions to a set of response-units (R-units) which determine the outputs (only one 

shown). Binary neuron operation and linear input summation may be formalized as 

follows:- 

R = 1 if 	xi W,, - Oj  2~ 0 	 (1) 

R. = 0 if x W, - Oj  < 0 	 (2) 

where x1 = transformed binary input signal corresponding to activity of unit A1 
(e.g., 0 and 1, or -1 and + 1), W11 = weight of unit connecting A. to R, and Oj = 

threshold of R. 

During the learning process+, the values stored in the W-units are changed 

whenever the state R does not correspond to some arbritary desired response D1 for 

t Which is of a Hebbian nature 
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a given input pattern. This process is termed error-correcting "forced" learning, in 

that a correction is forced upon the network only if an erroneous response is made. 

Whenever it is necessary to correct a response, the strengths of all synaptic junctions 

(W-units) connected to that erroneous output (R-unit), change simultaneously 

according to a simple rule. Rosenblatt pioneered two techniques of fundamental 

importance to learning in neural-like networks, namely digital computer simulation 

and formal mathematical analysis. In 1959, Rosenblatt claimed that because of 

their statistical properties perceptrons offered things which computers could not do. 

Unfortunately this irritated Minsky et al. who claimed that he was exaggerating the 

importance of the perceptron. However Rosenblatt's results stimulated research into 

the perceptron, until Minsky and Papert 22, published a book entitled "Perceptrons". 

The central theme of this work was that parallel recognizing elements, such as per-

ceptrons, are beset by the same problems of scale as serial pattern recognizers. The 

book had a very dampening effect on the study of neuron-like networks as compu-

tational devices for the following decade. 

By the late 1960's and early 1970's, three main personalities began to emerge. 

The best known, and perhaps the most controversial of these researchers is Stephen 

Grossberg. He bases most of his work on observations of psychological events. His 

mathematical analysis of the properties of neural networks have led him to many 

insights. He deserves credit for seeing the relevance of neurally inspired mechan-

isms in many areas of perception and memory 23. Grossberg 24, was also one of the 

first to analyse mechanisms of competitive learning. 

The second of the personalities was Anderson. His work differed from 

Grossberg's by insisting upon distributed representation, and in showing the 

relevance of neurally inspired models for theories of concept learning25'26. 

Anderson's work also played a crucial role in the formulation of the Cascade model 

27, a move from serial processing towards Parallel Distributed Processing (PDP). 

The last was a group led by Longuet-Higgins from Edinburgh University. 

Their main research was into distributed memory models. In particular, David 

Willshaw, provided some very elegant mathematical analysis of the properties of 

various distributed representation schemes 28. 
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Other researchers working on related topics at this time were, Fukushima29, 

researching into multi-layered neural networks, Kohonen on using neural networks 

as associative memories 30, Amari produced a mathematical approach to neural sys-

tems 31, von der Malsberg 32, and Munro 33, produced theories of the self-

organization of neurons and the development of neural activity. 

By the mid 1970's parallel processing enjoyed a renaissance in computational 

circles and many different models of neural systems began to emerge. Marr and 

Poggio introduced a model to explain depth perception 3, and a model of speech 

called HEARSAY. HEARSAY, although demanding in computational time, inspired 

an interactive model of reading 35, and the interactive activation model for word 

recognition 36 

Many new concepts were introduced in the 1980's and saw the first electronic 

implementations of neural networks. A new term connectionism was used by Feld-

man and Ballard 37  when they established the computational principles of their PDP 

approach. In connectionisni the computations performed by a processing system are 

controlled by the connections among a large number of simple processing units. The 

processing units update the strength of the output signal on the basis of signals they 

receive from other processing units. The capabilities of the system are determined 

by the interconnections amongst the units. They also stressed the biological implau-

sibility of most of the prevailing computational models in Artifical Intelligence (AT). 

Hofstander 38 39 
pointed out the importance of delving into the microstructure of 

neural systems to gain insight into their function. Sutton and Barto ' analysed the 

'Delta Rule" and illustrated the power of the rule to account for some properties of 

classical conditioning. 

The recent explosion of research into neural networks can be attributed partly 

to John Hopfield 1. His contribution was to visualise a neural network as an energy 

landscape model which seeks to find a minimum energy state and to make the anal-

ogy with spin glasses. This idea played a prominent role in the development of the 

Boltzmann machine. The Boltzmann machine is composed of primitive computing 

elements called units that are connected to each other by bidirectional links. A unit 
is always in one of two states, on or off, and it adopts these states as a probabilistic 
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function of the states of its neighbouring units and the weights on its links to them. 

The weights can take on real values of either sign. A unit being on or off is taken 

to mean that the system currently accepts or rejects some experimental hypotheses 

about the domain. The weight on a link represents a weak pairwise constraint 

between two hypotheses. A positive weight indicates that the two hypotheses about 

the domain tend to support one another; if one is currently accepted, accepting the 

other should be more likely. Conversely, a negative weight suggests, other things 

being equal, that the two hypotheses should not both be accepted. Link weights are 

symmetric, having the same strength in both directions. The resulting structure is 

related to the system described by Hopfield 1,  and as in his system, each global state 

of the network can be assigned a single number called the "energy" of that state. 

With the correct assumptions, the individual units can be made to act so as to 

minimize the global energy. If some of the units are externally forced or "clamped" 

into particular states to represent a particular input, the system will then find the 

minimum energy configuration that is compatible with that input. The energy of a 

configuration can be interpreted as the extent to which that combination of 

hypotheses violates the constraints implicit in the problem domain, so in minimizing 

energy, the system evolves towards "interpretations" of that input that increasingly 

satisfy the constraints of the problem domain. This work has promoted the imple-

mentation of neural networks into silicon. 

This brings neural research up to the present time. Present research is concen-

trated in six major models. The models may use binary inputs or continuous valued 

inputs and they may have supervised or unsupervised learning. This is illustrated in 

Figure 9. 

The Hopfield network, based on gradient descent, can be used as a content 

addressable memory. An initial set of weights is computed from the patterns to be 

learnt. A pattern is recalled by firstly initiallising the network to an input pattern 

and allowing the network to iterate until it achieves a stable state. This stable state 

should be one of the original patterns used, but it will be the pattern closest to the 

input pattern in the computation of the weights set. The algorithm used to produce 

the weight set unfortunately also forms intermediate stable patterns which are cross- 
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products of the original patterns. Hence recall accuracy declines as the number of 

patterns learnt is increased. 

The Hamming network differs from the Hopfield network in trying to find the 

node with the smallest Hamming distance from the input pattern, whereas the Hop-

field network is using an energy gradient descent method to obtain the closest pat-

tern. Figure 10 shows a diagram of a Hamming network. The first layer of neural 

elements calculates an activation value for each node. This is projected into the 

layer above which selects the highest activation by using a lateral inhibition net-

work ie. the node with the highest activation value over-rides all the other nodes 

which are switched off so the end result is that only one output node is active. 

The Carpenter/Grossberg Classifier has similar principles to the Hamming net-

work. The classifier uses a matching score technique to select categories. When the 

Grossberg net is presented with a new pattern which cannot be classified, it is able 

to encode this new pattern onto a new node, hence creating a new category. Figure 

11 shows a Carpenter/Grossberg classifier network. This Classifier has unsupervised 

learning and consists of two networks, Fl and F2. Inputs into the Classifier enter 

the Fl network. The Fl network projects this input pattern onto F2, Like a Ham-

ming net F2 computes a best score and using lateral inhibition selects the strongest 

activity. The Grossberg net differs from the Hamming net in having connections 

running from the F2 (scoring/classifier) network back into the Fl (input) network. 

A separate node not in networks Fl and F2 detects a node in F2 having "won", and 

sends an inhibitory signal to all the nodes in Fl, implying that a category has been 

selected. There are three stimuli upon nodes in Fl, firstly the inputs into the Clas-

sifier, secondly the pattern being projected down from "winning" node in F2 and 

finally the inhibitory category select signal. All the Fl nodes with active inputs from 

the input pattern and the F2 network remain 'on". A separate vigilance node takes 

output pattern from the Fl network and the input pattern and computes how close 

the input pattern is to the pattern being projected down from F2. If the Hamming 

distance is not within an accepted limit then the vigilance node sends a global reset 

wave to the F2 network. This has the effect of inhibiting the "winning' node in P2 

for a period of time, without affecting any other nodes. Another node representing 
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a different category can then be selected while the first category node is being held 

"off'. A short time later the first category node is released and the system continues. 

Modification of the pattern of weights or 'learning' is continuous and unsupervised 

but it is slow compared to the overall functioning of the system. 

The fourth network is the Perceptron network which has been discussed previ-

ously. 

A development of the Perceptron network is the multi-layer Perceptron net-

work, which is shown in Figure 12. A recent development for this type of network 

is the back-propagation training algorithm 41• The input pattern is presented to the 

first layer of the network. The second and output layers go into the appropriate 

states based on these inputs. It is important to note that these nodes are not binary, 

they are continuously valued. Output and error values are produced by each output 

node. The weights from the second to the output layer are adapted to take account 

from the error values. The weights from the first layer to the second layer are also 

modified, as are the weights from the input to the first layer. This process is 

repeated until all the input and desired output patterns are learnt. These networks 

have been shown to be able to generalise information 41, and are used to a large 

extent in encoding problems. 

Kohonen's Self-Organizing Feature Maps differ from Grossberg networks in 

that they are feed-forward networks. The output network uses parallel inhibition to 

classify input patterns onto groups of output nodes. Kohonen noticed that neural 

structures in the interior of the brain often reflected physical characteristics of the 

external stimulus being sensed. This is exemplified in the vision system, where reti-

nal cells have a corresponding one to one mapping to neurons in the interior of the 

brain. The auditory pathway also shows similar anatomical relationships. 

I wish to acknowledge the use of diagrams from two sources which have been 

included in chapters 2 and 3. Figures 8 to 10 and figure 12 were taken from "An 

introduction to computing with neural nets" by Lippman42. Figure 11 was taken 

from "A massively parallel architecture for a self-organising neural pattern recogni-

tion machine" by Grossberg43. 
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The two preceding chapters have described the general development of neural 

research. The following chapters will describe attempts to implement neural models 

in silicon. In particular, it presents work undertaken at Edinburgh University, by 

the author, who has developed several novel techniques. 
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Chapter 4 

4. Neural Models and Learning Recipes 

This chapter introduces several models which have been used to implement 

neural networks. Each model is illustrated by an example. 

Most, if not all, neural network learning rules are based around the concept 

advanced by Hebb in 19499. In this he stated that "When an axon of cell A is near 

enough to excite a cell B and repeatedly or persistently takes part in firing it, some 

growth process or metabolic change takes place in one or both, such that A's effi-

ciency, as one of the cells firing B, is increased". 

4.1. The Perceptron Model 

When in 1958, Rosenblatt reported his work on the Perceptron44, a binary 

neuron, he introduced the first neural network learning law. Table 1 shows one of 

the simplest rules. The rule takes the general form, 

(3) 

In this D3  is the desired output, R. is the output of neuron j after being 

transformed, xi  is the transformed binary input signal corresponding to activity of 

neuron i, and AWjj  is the amount by which the weight is changed. If we assume 

that xi  is cell A and D. —R corresponds to cell B then when the product is positive 

the weight is increased, and when negative decreased. Since the Perceptron is a 

binary neuron, D —R1  is either 1 or 0. When the output of the neuron differs from 

that of the target neuron, the weights are changed, but if they are correct they are 

not changed. By repeating the process of stepping the network through time, the 

network can be made to converge on the correct pattern. This work was formalized 

qualitatively by means of digital computer simulation by Farley and Clark. 
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SvnpWeight Logic 
xi  D i  R i  LW1J  
-' 0 0 0 

1 1 0 
1 0 0 0 
1 1 1 0 
-1 0  1 a 
- 1 0 a 2  
!Q_  1 a 3  
110 a 4  

Table 1. 

An example of a Perceptron learning system is now given. The activation function 

of a Perceptron is given in equation 4. 

N 	

f 

i ifO>9 
= 	Xj 	o if O S 0 	 (4) 

In these equations O is the unnormalised output of the Perceptron, and theta is a 

threshold function. Figure 13 shows an example of such a system. x1  is a function of 
the inputs 1, in this particular case it is an AND function. It is important to note 

that it is an AND function of the inputs to a particular x, for example, x7  is an 
AND function of 11,12 and 13 , whereas x6  is an AND function of 12  and 13 . With 

0 = 0 the results for the system are given in the Table 2 below. 

Results 

Li i2 IL !i TX2 _Output __ 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 1 0 0 0 0 1 1 
0 1 0 0 1 0 0 0 0 0 1 1 
0 1 1 0 1 1 0 0 1 0 0 0 
1 0 0 1 0 0 0 0 0 0 1 1 
1 0 1 1 0 1 0 1 0 0 0 0 
1 1 0 1 1 0 1 0 0 0 0 0 
1 1 L 1 1 1 1 1 1 1 1 1 

Table 2. 

The results show that the system is a parity generator. 
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Figure 13 : Parity Network 

Figure 14 Network using Standard Delta Rule 
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4.2. Widrow and Hoff Model Standard Delta Rule. 

The Perceptron model was succeeded by the Standard Delta Rule developed by 

Widrow and Hoff in 1960 

Widrow and Hoff considered the learning process from the point of view of 

minimizing the mean-square-error between the analog sum and the desired output 

over a set of patterns. The rule for changing the weights following the presentation 

of input/output pair q is given by 

1qWjj = 71 (tqjOqj)iqj 	 (5) 

which is almost identical to that used by Rosenblatt. The activation rule takes the 

form, 

N 

=ii Wd—e 
i=1 

(6) 

being the output, i1  the inputs, W, the weight between neuron i and neuron j 
and 9 is a threshold. 

The Standard Delta Rule is formulated for linear neurons, and is only applica-

ble to feed-forward networks without hidden units. A linear function is one in 

which the output is directly proportional to the sum of the weighted input signals. 

This rule is similar to Rosenblatt's rule. An error signal is produced at the output 

neuron, and this is used with the input neuron signal to produce, in accordance 

with Hebb's law, an update to the weights. 

Figure 14- shows an example of this system. The system is a single neuron with 

three external inputs,!11!2  and 13. Examination of the diagram shows a close similar-

ity with the Perceptron, the difference being that xi  in the Perceptron model is lim-

ited to a function of a single variable, in this case I. 
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Results 
.LL 12 1 	I l 0 t t -o Awl  L W 2  z W 3  W1 W2 W3 
1 1 TY 0.00 1 1.00 0.10 0.10 0.10 0.10 0.10 0.10 1 1 1 0.30 1 0.70 0.07 0.07 0.07 0.17 0.17 0.17 1 1 1 0.51 1 0.49 0.05 0.05 0.05 0.22 0.22 0.22 1 1 1 0.66 1 0.34 0.03 0.03 0.03 0.25 0.25 0.25 1 1 1 0.76 1 0.24 0.02 0.02 0.02 0.27 0.27 0.27 1 1 1 0.83 1 0.17 0.02 1 	0.02 0.02 0.29 0.29 0.29 1 1 1 0.88 1 0.12 0.01 0.01 0.01 0.30 0.30 0.30 1 1 1 0.91 1 0.08 0.01 0.01 0.01 0.31 0.31 0.31 1 1 1 0.94 1 	1 1 	0.06 0.01 0.01 0.01 0.32 0.32 0.32 1 1 1 0.96 - ---- ---- -- ---- - 
1 1 0 0.64 0 -0.64 -0.06 -0.06 0.00 0.26 0.26 0.32 1 1 0 0.51 0 -0.51 -0.05 -0.05 0.00 0.21 0.21 0.32 1 1 0 0.41 0 -0.41 -0.04 -0.04 0.00 0.16 0.16 0.32 1 1 0 0.33 0 -0.33 -0.03 -0.03 0.00 0.13 0.13 0.32 1 1 0 0.26 0 -0.26 -0.02 -0.02 0.00 0.10 0.10 0.32 1 1 0 0.21 0 -0.21 -0.02 -0.02 0.00 0.08 0.08 0.32 1 1 0 0.17 0 -0.17 -0,02 -0.02 0.00 0.07 0.07 0.32 1 1 0 0.13 0 -0.13 -0.01 -0.01 0.00 0.05 0.05 0.32 1 1 0 0.11 -0.01 -0.01 0.00 0.04 0.04 0.32 1 1 0 0.08 IL -0.01 -0.01 0.00 0.03 0.03 0.32 
1 1 0 0.06 -0.01 -0.01 0.00 0.02 0.02 0.32 

1 0 0.04  - - - - - - - 

Table 3 

To clarify the operation of the Widrow-Hoff model, an example is now given 

to illustrate it. Initially =O.l,O=O and all weights are set to zero. On presentation 

of the inputs ('a) the output o is evaluated (see equation 6). This is compared to a 

target value t and iW1  is calculated (see equation 5) for each weight. A new out-

put is calculated with the adjusted weights and this is compared again with the tar-

get value. This process is repeated until the desired output is reached. Although 

the target value may be 1, it can be seen from the results in Table 3 that it can take 

the system many iterations to reach this value. Hence, a result slightly below the 

target value is taken as the correct result (say 0.95). By increasing the value of 

the system can be made to converge faster. 

4.3. Hopfield Model 

Another widely used learning rule was developed by Hopfield in the late 

seventies'. The Hopfield model cannot use hidden units and it is mainly applied to 

content addressable memories and optimisation problems. Hopfield networks are 
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single layer and symmetrical with high interconnectivity between neurons. The neu-

ron activation function is similar to that of a Perceptron. The activation function of 

this system takes the form, 

N

tIo 

if V1  > 	ee 

	

V = 	Wj 
	if 	 (7) 

Unlike the previous rules no training is required. Using equation 8, 

wij  = 	(2V 1 	1)(2v ) 1); ifi=j W=O 	 (8) 

it is possible to calculate a set of initial weights across a set of r patterns. In the 

Hopfield model, V. and V are output states, however since the neurons in each 

layer are totally interconnected, V1  is the input to V1  and vice-versa. The weight is 

computed by comparing every neuron output within the network with every other 

neuron output. If the neuron outputs are the same (ie both "on" or both "off"), the 

weights between then are increased so that they reinforce each other, otherwise they 

are decreased.t This process is repeated for every pattern, and the results for a par-

ticular weight are added together to get a final weight. By initialising the network 

to an arbitrary pattern and iterating, the network can be used to find the closest 

minima. 

The following example illustrates the model. The network functions as a con-

tent addressable memory (CAM). Figure 15 shows 6 totally interconnected neurons. 

The three vectors to be stored are 110000, 001100 and 000011. Taking the calcula-

tion of W 12  as an example 

W 12  = (2V) —1)(2V 1) —1) + (2V 2)  —1)(2V 2) —1) + (2V 3) —1)(2V 3) —1) 

W12  = (2.1 - 1)(2.1 - 1) + (2.0 - 1)(2.0 - 1) + (2.0 - 1)(2.0 - 1) 

W 12  = (1)(1) + (-1)(-1) +  

W 12  = 3 

t The  process is not strictly Hebbian, since a true Hebbian function would only increase the weight 
if the input and output neuron were both active. ie  both "on". 
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Figure 15 6 Neuron Hopfield Network 

Figure 16 Network using Generalised Delta Rule 
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By repeating the calculation for all weights, the weights array is formed. 

0 3 —1 —1 —1 —1 
3 0 —1 —1 —1 —1 

—1 —1 0 3 —1 —1 
—1 —1 3 0 —1 —1 

—i 0 3 
—i 3 0 

Using the first learnt vector as the initial states of the neurons. 

V1 =1 1V2= 1 1V3= 0 ,V4=0V5=0V6 =0 

Using equation 7 the output vector after a single iteration is calculated as follows, 

V 1  = V 1W 11  + V 2W 21  + V 2W 31  + V 3W 31  + V 4W 41  + v5W 51  + V 6w61  

V 1  = 1.0 + 1.3 + 0.-1 + 0.—i + 0.-1 + 0.-1 

V 1  = 3 

Assuming that V1  = 0 for all i then after normalisation V 1  = 1. After calculation of 

all outputs, V 2=1, V 3=0, V4-0, V 5-0 and V6=0. If the vector has been correctly 

learnt the neuron values before and after will be the same. The results of several 

input vectors are shown below. 

Input Output 

 110000 	-. 110000 learnt vector 

 001100 	-. 001100 learnt vector 

 000011 	-. 000011 learnt vector 

 110010 	-. 110001 random pattern 

 110100 	-. 111000 random pattern 

 110110 	-. 110000 random pattern 

These results show that the learnt vectors have been stored correctly (see a-e). 

The results also indicate that if a start vector is chosen at random, it sometimes will 

fail to iterate to one of the stored vectors (see d-f). The learning recipe produces 

"cross-products" of the learnt states, which are commonly referred to as local 
minima. The number of local minima increase with the number of vectors learned. 

This property makes the learning algorithm unsuitable for a CAM, because all 
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possible input patterns should result in one of the learnt vectors. The number of 

vectors which can be stored correctly on a given number of neurons, before the 

learning recipe starts to fail, is limited. 

4.4. Wallace - Hopfield Model 

As the number of patterns increases, the Hopfield model has increasing diffi-

culty in storing the patterns perfectly. To improve the information storage of Hop- 

field networks, Wallace ' improved the model by including a training prescription. 

The formula used is 

wij = (2Vi (r)_l)(2Vi (r) _l)(ei (r)+ej (r)) 	 (9) 
r=1 

As mentioned before the input vector is the target. The network is set to the initial 

vector, and then released to iterate once. The resultant vector is then compared 

with the initial vector to ascertain which neurons have changed. If a neuron 
(eor e) 

changes an appropriate error bitjis set to 1, if it remains the same, the error bit is 

set to 0. Taking two nodes as an example, if they are initially the same and after 

one iteration one node changes, then the weight between them is increased. This 

increases the effect of one node on the other. If both are incorrect then the weight 

is increased by a greater amount. Conversely, if both nodes are initially different 

then the weight between the nodes is decreased. 

Attempting the same problem as used previously in the Hopfield example, 

there are two starting points. Either initially setting the weights to zero, or using the 

Hopfield learning recipe to calculate an initial set of weights. Assume that the 

weights are all initially zero. By setting the initial states of the neurons to the vec-

tors to be learnt and iterating once, a new set of vectors can be calculated. 

Results 

Input Output 

 110000 	-. 000000 	learnt vector 

 001100 	- 000000 	learnt vector 

 000011 	-. 000000 	learnt vector 
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From a only bits 1 and 2 change, therefore the error bit array for vector e 1  is 
110000. Repeating for all patterns produces, 

110000 
001 100 
000011 

Using equation 9 a new weights array is calculated. Taking W 12  as an example, 

W 12  = (2V') —1)(2V 1) — 1)(e )  +4k)) 

+ (2v12) —1)(2V 2) — 1)(e (2)  +e 2) ) 

+ (2V 3) — 1)(2V 3) — 1)(e 1(3)  +e 3) ) 

W 12  = (2.1-1)(2.1-1)(1+1) + (2.0-1)(2.0-1)(0+0) + (2-0-1)(2.0-1)(0+0) 

W 12  = (2-1)(2-1)(2) = 2 

Repeating for all weights gives an updated weight array, 

0 
2 

2 
0 

—2 
—2 

—2 —2 
—2 —2 

—2 
—2 

—2 
—2 

—2 
—2 

0 
2 

2 	—2 
0 	—2 

—2 
—2 

—2 
—2 

—2 
—2 

—2 
—2 

—2 	0 
—2 	2 

2 
0 

Using the updated weights array the process is repeated giving the results 

Results 

Input Output 

 110000 - 	110000 	learnt vector 
 001100 	-. 001100 	learnt vector 

 000011 	-. 000011 	learnt vector 

Thus all vectors have been stored correctly. If errors remain after the first iteration 

the process is repeated until there are no errors. 
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4.5. Barto Model Generalized Delta Rule 

All the above rules have one main drawback. They have no facility to include 

hidden units. Hidden units make internal representations of the data "inside" the 

network. Networks with hidden units can solve problems such as the classic 

Exclusive-Or (XOR) function, which cannot be done by a network without hidden 

units. The power of hidden units has been known for many years, but it was not 

until 1985, when Barto et al. formulated the Generalized Delta Rule, that for the 

first time, hidden units could be included in the learning process'. The main 

difference between the standard and the general rules lies in the activation function 

of the neurons. The standard rule uses linear neurons, and the general rule uses 

semi-linear neurons A semi-linear activation function is one in which the output of 

a neuron is a non-decreasing and differentiable function of the total output. The 

activation function is expressed by the equation, 

opi = 
1 

(Wfl O Pj  +e.) 
1+e  

The Delta Rule is also known as the Backward Error Propagation Rule since error 

terms are used to guide the update of the weights between neurons. After the inputs 

are presented, the outputs from the neurons are evaluated using the activation rule 

in equation 10. The final output is compared to a desired output to produce an 

error term. The internal neurons have no target, and hence the error term from the 

output neurons is propagated backwards through the network and is used to calcu-

late an error term for the internal neurons. The error terms are then used to update 

the weight set. The equation governing the calculation of the error term for an out-

put unit is given by, 

apj = (tn, - opi  )o,,, (1 - opi  ) 	 (11) 

and that for a hidden unit, 

Pi = ON (1 - °pj ).pk Wkf 	 (12) 
k 

The equation governing the update of weights is given by the formula, 

+ 1) = -9 (8pi opi) + aw1(n) 	 (13) 

t See end of chapter 
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however it can also be expressed in terms of the weights as, 

w11  (n + 1) = Wfl (n) + 	+ ct(w11(n)—w1(n - 1)) 	(14) 

At present the Generalized Delta Rule is the most widely used learning algorithm. 

To illustrate this model an example of the solution of the XOR problem is 

presented. This problem can only be solved using hidden units. The problem is 

represented diagrammatically in Figure lb. Neurons 1 and 2 are input neurons, 

only taking the values 0 or 1, neuron 3 is a hidden unit, and neuron 4 is the output 

unit. The XOR function is given in Table 4. 

XOR Function] 
ml 1n2 Out 

0 0 
1 	1 

1 	0 	1 
1 	1 	0 

Table 4. 

Equation 10 includes 0 known as the Threshold function of the neuron, which is 

replaced by neuron 5 in the diagram. Neuron 5 is constantly "on" and therefore 

acts as a threshold function which is continuously adding or subtracting from the 

activation level of a particular neuron. By treating neuron 5 as an input neuron, the 
weights between neuron 5 and other neurons can be altered, and hence the thres-

holds of the neurons can be modulated. The output from neuron 3 in Figure lb is, 

NM 
1 

l+e (w31o1+w3202+w3505) 

and the output of neuron 4 is, 

0 4  = 	
1 

1+e (W4101+W4303+W4202+W4505) 

The error of the output at neuron 4 is, 

84  = (r 4-04 ) 04 (1-04) 

and the error of the hidden unit, neuron 3, is 

33  = 03(1-03)34w43 
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As an example, the update of w 41  is given by, 

w 41(n +1) = W41(n)+-q6401+a(w41(n)_w41(n -1) 

Before simulation can begin several variables must be initialised. 	is set to 0.9. 

The greater the value of q, the faster the model will converge. In practice a value 

larger than 0.9 can cause oscillations, a is a momentum term and is set to 0.5. It is 

important that the weights are different at the start of simulation. A symmetrical 

weight set will sometimes not converge. Initially the weights are all randomly set 

around a fixed value, for this example, 0. 

W41= -0.2 w 31= -0.1 w 42= -0.2 

W32= -0.1 	w 43= -0.5 	w 45=0.1 

W35=0-1 
The results of this simulation are given in Table 5. 

Results 
Iter 0   02 03 .2.4_ Thres 3  Thres 4  w42 W31W32 W 
1 0 0 0.52 0.46 0.1 0.04 -0.2 -0.2 -0.1 -0.1 -0.53 
1 1 0 0.50 0.40 0.1 0.0 6 -0.13 -0.2 -0.11 -0.1 -0.52 
1 0 1 0.5 0.4 0.09 0.15 -0.06 -0.13 -0.12 -0.11 -0.48 
1 1 1 0.47 0.44 0.09 0.18 -0.06 -0.12 -0.12 -0.11 -0.46 
50 0 0 0.4 0.51 -0.42 0.17 -0.1 -0.08 -0.56 -0.56 -0.48 
50 1 0 0.27 0.48 -0.42 0.17 -0.06 -0.1 -0.57 -0.56 -0.48 
50 0 1 0.27 0.48 -0.43 0.2 -0.03 -0.05 -0.58 -0.57 -0.47 
50 1 1 0.17 0.52 -0.43 0.2 -0.07 -0.07 -0.58 -0.57 -0.47 

100 0 0 0.69 0.27 0.83 1.9 -1.19 -1.19 -3.71 -3.71 -4.3 
100 1 0 0.05 0.63 0.84 1.96 -1.18 -1.21 -3.73 -3.73 -4.35 
100 0 1 0.05 0.63 0.85 2.03 -1.18 -1.19 -3.76 -3.76 -4.38 
100 1 1 0.01 0.42 0.85 2.05 -1.22 -1.23 -3.78 -3.79 4.41 
150 0 0 0.88 0.11 2.03 5.23 -3.40 -3.40 -5.93 -5.93 -8.33 
150 1 0.02 0.84 2.04 5.24 -3.40 	1 -3.41 -5.94 -5.94 -8.33 
150 0 1 0.02 0.84 2.04 5.26 -3.40 -3.40 -5.94 -5.94 -8.35 

1150 1 1 0.05 0.18 2.04 5.26 -3A1 	1 -3.41 -595 -5.95 -836 

Table 5 

Examination of the results shows that the output of the neurons would take 

many iterations to produce a 0 or 1. Therefore outputs greater that 0.95 are taken 

as 1 and those less than 0.05 are taken as 0. The results show that the output 0 4  

converges towards the target values. There are many solutions to this particular 

problem and changing the initial start conditions can result in different solutions. 



x1  - Neural Activity: Quantifies the total level of activity in neuron i mediated by input stimuli and 

interneural interactions. 
z 1  (iij  ) - Excitatory (Inhibitory) Synaptic Weighting Function: Quantifies the weighting from neuron j 
to neuron i imposed by the relevant synapse. Learning changes this term. Grossberg splits the { z11  

into a path dependant component and a true synaptic component. 
A. - Self-Term: This term represents the passive decay of neural activity in the absence of both synaptic 

input and external input. 
I. - Input to Neuron i: The details of I, are dependent on the network's function and enviroment. 

However, in principle, I. can be made allowed to force a state on the network, or may be switched off 
completely, to allow the network to settle. 
Bij - Forgetting Term: Represents passive decay of synaptic weight if B1  is a constant. Memory loss is 

modulated if B1  is variable. 
- Neural State: Desribes the state of neuron j. 

V - Neural 'Learning Signal": This variable describes the state of neuron j in the same way as V 

although allowance is made for a differnent activation function relating V3  to x1  ( a different 

definition of neural state for learning purposes). 
D. - Learning Strength: This allows learning to be modulated 



Neural Models 	 - 45 - 	 Chapter 4 

4.6. Grossberg Model 

In addition to the above rules are those proposed by Grossberg47. The activa-

tion function is defined by the equations, see opposite face 

vI= 	1- 	 (15) 

1 + e l T 

1 
 

	

x. j=N 	 j=N 
= —A1  x1  + 	w,1  V1  - 	w11  V1  + ! (t) 	 (16) 

	

jO 	 j.O 

Grossberg splits the inhibitory and excitatory terms by proposing that inhibition is a 

different physical function from excitation. His learning equation takes the form, 

= —B11  W11  +D Vk Uq  (x1 ) 	 (17) 

where —B,1  W,, is a weight forgetting term, the rate being determined by B ij , U (x1 ) 

represents a particular (threshold - linear) activation function, DU  is the learning 

strength and allows learning to be modulated for each synaptic link, Vk describes 

the state of neuron j. The 17k  Uq  (x,) represents a Hebbian learning term, the differ-

ence being, that in the Grossberg model it can be modulated. Grossberg also renor-

malizes the weights according to the rule, 

Wij = 	- 
 

	

_ 	 (18) 

This has the effect of limiting the weight set and inhibiting the growth of large 

weights. 

4.7. Von der Malsburg's Model 

A second learning rule similar to Grossberg's was developed by Von der 

Malsburg 32• This architecture is made up of several layers. The first layer consists 

of non-interconnecting input neurons with excitatory connections to the second 

layer. The second layer is made up of several clusters of neurons. Each cluster is 

laterally inhibitory ( and therefore exhibits a "winner takes all" property) with no 

connections to other clusters within the layer. The second layer has excitatory con-

nections to a third layer which has a similar structure. Von der Malsburg's rule for 
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updating updating the weights is as follows, 

if unit  loses on stimulus k 

gW11  if unitj wins on stimulus k 

(19) 

g is gain control. 
If in stimulus pattern Sk , unit i in the lower network is active, then Cik is equal to 

1, otherwise it is zero. nk is the number of active units in pattern Sk  (thus 

nk = Ecik  As with the Grossberg system E W 1  = 1. 

In summary it can be said that all widely used learning recipes are fundamen-

tally the same, Grossberg's recipe being the most general. All have their roots in 

Hebbian principles, but are of greater complexity. 

The three figures below represent respectively, 
A hard threshold function 
A linear threshold function 
A semi-linear threshold function 

 

 

 

Sfr 1 ifx>x, 

Ø:)=O ifx,sx 

(x?= 0  ifxx 

=yt-d x. - x, 	if x >x, 
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Chapter 5 

5. Trends in VLSI Implementation of Neural Networks 

The most computationally-intensive function of all VLSI neural networks is to 

perform the calculation a = 	T11  V, where a1  is the sum of the weighted neural 

activities, V is the presynaptic neuron activity and T1  is weight between neuron i 
and neuron j. Some systems also include normalisation functions, where the sum is 

translated into a neuron activity. 

There are two major approaches to implementing this function in VLSI. 

Firstly there are the simulation engines which are digital microprocessing systems, 

their architectures having optimal configurations to compute this function and 

secondly there are the dedicated VLSI integrated circuits (IC). 

Simulation engines, since they are digital microprocessing systems, are built 

primarily from standard components reducing development time. Some systems 

have special VLSI IC's which are designed for tasks such as floating point multipli-

cation or communication handling, which reduce the workload on the main proces-

sor and hence increase speed. High density Random Access Memories (RAM) are 

used to retain the weights between neurons, and therefore large numbers of neurons 

can be simulated with a relatively small number of ICs. Although simulation 

engines are slow compared to the massive parallel architectures of the dedicated 

VLSI ICs, there is an increase in the use of parallel processing to reduce the gap 

between the differing systems. With a trend developing towards the Wafer Scale 

Integration (WSI) of neural networks, the simple communication systems between 

local processing units might make these the more important system in the future. 

As has been previously mentioned, dedicated VLSI ICs employ massive paral-

lel architectures. IC layouts usually take the form of square matrixes, having N 2  
cells where N is the number of neurons. A cell is commonly referred to as a 

synapse. Each synap .se computes T1 V and by summing a column's outputs 
N 

together E T1  V1  can be computed. Large numbers of synapses are required, so sig- 
j=1 
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nificant effort must be made keep synapses small and simple. A synapse performs a 

relatively simple computation and often the memory to retain the weighting of the 

synapse occupies the largest proportion of the available space. This approach has 

three disadvantages. 

As the number of neurons increases the number of synapses increases exponen-

tially, so large numbers of synapses are needed, which occupy very large silicon 

areas. One approach to overcome this may be called moving patch. In this a small 

neural network is multiplexed to emulate a larger network. 

The precision of the weights is limited because of the need to keep the synapses 

as small as possible. This is compounded by the need for static memory elements to 

hold the weights for long periods, and the need for a simple method of loading to 

reduce the pin count. 

Because there are large numbers of intercommunicating cells, there is high inter- 

connectivity which is reflected in the pin count. Often the size of the synaptic array 

is dictated by the number of pads available on the IC. Several approaches, analo-

gue, digital and pseudo-analogue are presently being researched. Some systems 

include translation units commonly referred to as neurons which take the sum value 

and convert it back into a new activity. 

There is a difference of opinion as to the degree of complexity needed for 

each synaptic element. This may depend upon the application of the network. For 

visual applications where the system is looking for dots, lines, etc. , a case can be 

made for very fast parallel rigid systems in which the weights do not change. In 

learning applications it is the precision of the weights which is important but it is 

not known how precise these weights need to be. Simulation engines can provide 

floating point precision, with a sacrifice on speed, however dedicated VLSI ICs tend 

to have very limited weights sets enabling the synaptic architecture to be reduced. 

This reduces precision but parallel processing increases speed. 

In the past three years, neural networks have begun to appear in silicon. 

Major research in centred in the United States, the largest research group being at 

the California Institute of Technology (CalTech). The Massachusetts Institute of 

Technology (MIT) have a group researching at Lincoln Labs and AT&T have a 
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research group at Bell Labs. In Europe there are two main research groups at 

Edinburgh and Cambridge Universities. 

Two of the above mentioned are building simulation engines. Simon Garth 

working for Texas Instruments out of Cambridge University has designed a dedi-

cated neurocomputer for high speed parallel simulation of large neural networks.48  

149. The machine, shown in Figure 1, consists of a 3-dimensional array of auto-

nomous simulators, each capable of solving rectangular analogue networks at a rate 

of 4 million synapses per second and learning at a rate of 1.3 million synaptic 

updates per second. The simulators are connected to their nearest neighbour in 3 

dimensions and communication is performed at lOMBits/second between them. The 

machine is based around a distributed array of autonomous neural network simula-

tors or "NETSIM" cards. Each NETSIM card is a dedicated neuro-computer . At 

its base is a microprocessor with local PROM and RAM. Also on the card is 1 

MByte of memory for storing synaptic weights and a solution engine to speed up 

the synaptic multiplication. The NETSIM also has a communications controller to 

interface to the host system and other NETSIM cards. 

The second simulation engine is being developed at Edinburgh University by 

Zoe Butler 50 
This system uses a dedicated synaptic chip to perform a reduced 

arithmetic multiplication function. The synaptic array has a high degree of parallel-

ism decreasing the simulation time of the neural board. 

The first dedicated VLSI chips were fixed neural networks, the weights values 

being hard-wired into the circuits before fabrication. Denker, Howard and Graf 

from AT&T51 52 designed a 22 totally interconnected neural network on one chip. 

The neural network was a resistive-opamp matrix, the resistive elements being the 

weights between the neuron elements, and the opamp performing the summing 

operation of the neurons. A schematic circuit of a neuron is shown in Figure Is. 

Amorphous silicon resistors were placed on the silicon in the last stage in fabrica-

tion allowing the highest possible packing density. Electron beam writing was used 

to pattern the resistors to make custom neural networks. Data was fed to the IC via 

a 16 bit data bus which multiplexed and demultiplexed several hundred bits of data 

into and out of the circuit. The entire chip was in a 44 pin package. This chip was 
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cards 

Figure 17 : Schematic of Garth Simulator 
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increased to 512 neurons by using tungsten for the wires. Amorphous silicon was 

sandwiched vertically between the crossing wires to form resistors, making it 

extremely compact. This chip represents by far the largest neural network imple-

mented in VLSI. The whole chip contains about 25,000 transistors and occupies an 

area of 36 mm2. 

The resistive-opamp matrix technique is the technique most widely used in the 

fabrication of VLSI neural networks. Another VLSI IC using this technique was 

developed by Carver Mead's group at CalTech 53 54 55. Instead of using a special 

resistive layer, the resistors were replaced by a transistor network functioning in the 

subthreshold region. This method is not as compact as the resistive layer but it 

makes it possible to use several of these horizontal resistors in parallel to create a 

programmable synapse. The first ICs concentrated on visual applications, particu-

larly on the development of a retina chip. These circuits progressed to programm-

able chips where the weights could take one of three values, (-1, 0 and + 1). 

Because these circuits are designed in analogue CMOS the neural states could vary 

between the power rails, the upper rail representing + 1, and the lower -1. The larg-

est chip built using this technique had 22 totally interconnected neurons and was 

6.7mm by 5.7mm with 53 110 pads. It is important to contrast the reduction in neu-

rons between this technique and that of Denker, Graf and Howard. Mead has 

taken the approach that it is better to built neural circuitry which is well understood 

and then develop this further. He has developed a retina and a cochlea model and 

has related these to their biological equivalents. He has developed a tessellation style 

for the retina chip which can be used to build neural circuitry for such problems as 

edge detection and moving image processing. He is presently the most prolific of 

the silicon implementors. 

The existing CalTech system suffers from a very limited weights set because it 

was developed for visual applications where weights precision is not a priority. In 

learning systems weights precision is more important. In an effort to overcome this, 

a new technique using capacitors to store analogue weights is under research. At 

present only one system of this type has been fabricated. Sage, Thompson and 

Withers of Lincoln Labs have stored synaptic strengths in MNOS devices56. The 

( Carver Mead's horizontal resistor is an active resistive element 
constructed of MOS transistors functioning in their sub-threshold 
region. 
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weights can take on Continuous analogue weights and can be reprogrammed under 

electrical control. Weights equivalent to 4 to 8 binary bits can be fabricated. In 

their IC, the neurons are binary, and their system uses Chcir-5e 	Coupled Devices 

(CCD) technology to multiply and sum the weights. AT&T have a similar research 

program, however the weights are stored by dumping charge onto a capacitor via an 

analogue switch. This has the added problem that the charge leaks away in conven-

tional CMOS. AT&T have successfully fabricated devices which work cryogenically 

A recent implementation by Akers 57 is shown in Figure 19. The system uses 

analogue multipliers to perform the synaptic multiplication and an analog adder to 

sum the results and produce a new neural state. The voltage representing T 1  is 

passed via a P-channel transistor to the gate of a second N-channel transistor which 

controls the amount of pre-synaptic signal (V1 ) which transfers across the transistor. 
If (PI  is high, then the parasitic capacitors are charged by a current flowing through 

the pass transistors to a voltage equal to the weights minus the device threshold vol-

tage. If 01  is taken low and 02  is taken high then all the outputs from the synapses 

can be analogue summed. The analogue sum is then compared to the logical thres-

hold of the first inverter whose logical (neural) threshold can be adjusted. A second 

output inverter restores the output voltage level. 

This chapter has been concerned with trends in the VLSI implementation of 

neural networks other than those at Edinburgh University. These will be presented 

in the following chapters. 
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Chapter 6 

6. Digital Neural Networks 

This chapter introduces work into digital neural networks, particularly the 

effects of a reduced arithmetic multiplication function on the performance of digital 

neural networks. 

6.1. Simulations of Digital Neural Networks 

The advantage of bit serial arithmetic is that functional units, such as adders 

and subtractors, are small and allow large numbers of synapses on a single 
S)'c. rnbipy 

integrated circuit. If aL 	was implemented as floating point multipliers, it 

would occupy a large silicon area, reducing the number of synapses which could be 

fabricated on a chip. They would also require complex control and interface circui-

try. It is not clear that neural networks needed floating point numbers to function 

correctly, and earlier work on Hopfield networks suggested that integer numbers are 

often sufficient. 

6.1.1. Reduced Precision Arithmetic 

An interesting characteristic of binary numbers is that they can be halved by 

shifting the number right by one place. For example, 1010 binary is 10 decimal. By 

shifting this right one place it becomes 0101 binary, 5 decimal. The synaptic func-

tion is to multiply a neural state by a weight. By shifting the weight right by one 

place this is effectively the same as multiplying the weight by a neural state of one 

half. 

6.1.2. 5-State Activation Function 

Figure 20 shows a neural network where the activity is a running total at the 

foot of the column. By using an adder/subtractor and a bit shifter it is possible to 

implement a synapse which has four multiplication functions, 
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multiply by 1.0 - add weight to the running total 

multiply by 0.5 - shift weight right, then add it to the running total 

multiply by -0.5 - shift weight right, then subtract it from the running total 

multiply by -1.0 - subtract weight from the running total 

This concept can be extended to five multiplications with the inclusion of a 

kill signal which can be implemented by adding zeros into the running total. It is 

the same as multiplying by a neural state of zero. This system would require a shift 

register to hold the weight, an adder/subtractor and some control circuitry. The 

control circuitry would implement the sign extension, tap the shift register and 

implement the kill instruction. Each of these circuits is small and easy to implement 

in a bit serial system. 

6.1.3. Using 5-State as an approximation to a Sigmoid 

Since this new system was not using a full multiplier, it was first necessary to 

simulate how it performed before it was constructed. Prior to this all simulation 

work undertaken by the group was with the Hopfield and Wallace learning net-

works. It was a logical progression to simulate this new system, addressing the same 

type of problem. From the results it was hoped that a measure of performance for 

the new system, against the Binary and Sigmoid activation functions, could be 

found. Since the new system used five levels in its activation function, it was called 

the 5-State function. Figure 21 shows a comparison of the activation functions. The 

upper graph shows the Binary function (used by Hopfield and Wallace). If the 

activity goes above x then the neural state is set to 1, but if the activity is 	x, 

then the neural state is set to 0 ( sometimes -1 depending of the system being used). 

The lower graph shows the Sigmoid activation function. The neural state can take 

on continuous values between 1 and 0. This neural state is described by the equa- 

tion, 

1 
Vi 	+0, 	 (20) 

1+e  

where the variable 0, is known as the threshold of the function and the variable T 
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we call the "temperature'. T is called "temperature" from an analogy with quantum 

mechanics. The Fermi-Dirac statistics and the Pauli exclusion principle allow the 

determination of the probability of a particle being in an energy band around the 

nucleus, when only a single particle per energy band is allowed. At low "tempera-

tures" the probability curve shows a high probability that the lower energy bands 

nearest to the nucleus will be filled, so the curve is similar to the Sigmoid. As the 

energy or "temperature" of the system is raised, the gradient of the probability curve 

will decrease, indicating an increase in the probability of particles being in the 

higher energy bands and a corresponding lowering of the probability of them being 

in the lower energy bands. T thus determines the gradient of the curve, the smaller 

the value of T, the steeper the gradient. O is the midpoint of the curve. 

The middle graph shows the 5-State activation function. It is an approximation 

to the Sigmoid function and can be found by the following equations, 

upper positive = 0 + (T x log(8.00)) 

lower positive = 0 + (T x log(1.75)) 

lower negative = 0 - (T x log(1.75)) 

upper negative = 0 - (T x log(8.00)) 

if total activity 	upper negative 

if upper negative < total activity 	lower negative 

if lower negative < total activity 	lower positive 

if lower positive < total activity 	upper positive 

if upper positive < total activity 

neural state = -1 

neural state = -0.5 

neural state = 0 

neural state = 0.5 

neural state = 1 

These equations have been formulated by experimentation. Increasing the 

"temperature" makes the points spread out and the gradient decrease. The thres-

hold value is usually set to zero, so if the total activity is negative, then the neural 

state is negative and if total activity is positive, then neural state is positive. 



Digital Neural Networks 	 - 58 - 	 Chapter 6 

6.1.4. The problem 

The test problem used was the Wallace algorithm ' for storage and recall of 

patterns. Since there was a large computational time, only a 64 totally intercon-

nected neural network was used. 32 patterns using 64 nodes were trained on the 

network using firstly a Binary activation function, and then the 5-State and Sigmoid 

activation functions. The number of iterations taken to store all patterns perfectly 
Ir on the network were noted for each activation function The learned patterns were 

then recalled with 12.5% noise t and the number of correct recalled patterns were 

noted. This process was repeated several times, and an average of all results was 

found. The questions that these tests were trying to answer were, 

What was the effect of integer numbers on learning and recall? 

What were the effects of having a fixed weights set when 

the weights became saturated? 

What was the effect of "temperature" on learning and recall? 

For this problem the maximum neural output was represented by 1 and the 

minimum by -1. The 5-State outputs were 1,0.5,O,-0.5,4, with the Sigmoid function 

having a continuous range of values from 1 to -1. 

(1) Produce random pattern array. Before the start of simulation 32 patterns using 

64 nodes were randomly produced and stored in a pattern array. The nodes were 

either set to 1 or -1. 

Initialise weights and patterns. Initially all the weights were set to zero. The 

nodes of the network were initialised to the first pattern by setting the nodes at 

either 1 or -1 in accordance with first pattern in the pattern array. 

Iterate the network. The network was then iterated according to the equation, 

N = I' V1  
j=1 

t The noise patterns were produced by randomly selecting 8 nodes in the original pattern and 
changing these nodes from 1 to -1, or -1 to 1. The corrupted patterns were put into a noise pattern ax-
ray. 

ir The criteria for the completion of learning using the binary, 5-state 
and sigmoid activation functions where when either all iterated 
patterns matched their initial setup patterns, or when the number of 
attempts to modify the weights exceeded 150. In the latter case it was 
concluded that it was not possible to encode all patterns correctly 
using the restricted weights set. The maximum number of attempts was 
chosen to allow the simulations to be completed within a reasonable 
time period, in this case within one week. 

(21) 
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where T1  is the weight between nodes i and j, V is the state of the node j and x' 

is the total activity going to node t. This produces activity patterns for all nodes in 

the network. 

Form new neural states. The activities were then translated to the new neural 

states by the appropriate activation functions (Binary, 5-State and Sigmoid) to pro-

duce a new output pattern. 

Produce error tables. This second pattern was then compared with the initial 

pattern using the equation, 

	

= 1 if V1(r)/ V3 ,else 0. 	 (22) 

where r is the pattern number, V. is the new neural state, V3  is the old neural state 
and e(') is the error value for pattern r. It was assumed that if two nodes were not 

exactly the same, i.e., both 1 or -1, then they were in error. The process was 

repeated for each of the patterns in the pattern array. 

Update Weights. When all patterns had been processed then the weights were 

modified according to the equation, 

N 

	

8T, =I V,(' )V (-){e,( r )+e(,)] 	 (23) 
j=1 

where 8T,, is the modification for the weight between nodes t and j. 
Repeat until pattern learnt. This process was repeated again by initialising the 

network to the first pattern in the pattern array and repeating to produce a new 

update for the weights. This process was repeated for 150 times or until all patterns 

had been stored correctly. The weight set was then used to recall patterns corrupted 

with 12.5% noise. 

Repeat using different activation function. The network was initialised to the 

first pattern in the noise pattern array and then was iterated using equation 21, then 

normalised using an appropriate activation function and iterated again until the 

nodes settled into a stable pattern. This stable pattern was then compared to the 

start pattern without noise and if they were the same, then the pattern was said to 

have been recalled correctly. This process was repeated for all patterns in the noise 

array. 
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(ix) Repeat for range of temperature. The whole process was repeated over a 

range of 'temperatures" and then this was repeated for all possible combinations of 

learning and recall activation functions. The entire process was repeated several 

times so that a statistical average of the results could be obtained. 

6.1.5. Method of learning with fixed weights 

One of the major problems encountered was that of weight saturation in learn-

ing. This occurs when the growth of the weights, due to the updating modification, 

makes individual weights go above the maximum weight allowed. Three different 

strategies were tried. These were, 

Renormalisation 

Forgetting 

Clipping 

6.1.5.1. Renormaljsation 

After the weights are updated a search is made to find the largest positive or 

negative weight. If a weight is found which exceeds the weight range, then all 

weights are reduced in proportion to maintain the original weight range. Unfor-

tunately there are two problems with this method. If a learned set of weights is 

taken and grouped according to size then a typical result is shown in Figure 22. The 

majority of weights tend to be small, with the number of weights in a particular 

category reducing as the modulus value of the weight category increases. Renormal-

isation reduces the smallest weights substantially and because they are integer 

numbers they must be reduced to the nearest integer. For example, assuming a 

maximum weight of 30, and after searching a weight was found to have a weight of 

35, then the multiplying factor would be 0.857, since 35 X 0.857 = 30 (this brings 

the maximum weight back into the weight range). If a particular weight has a value 

of 2 before this renormalisation, then after it would have a value of 1.714. Since 

this is not an integer number is must be reduced to the nearest integer which is 1. 

This reduction has the effect of smothering the smaller weights. Since there are a 
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large number of small weights they contain a lot of the information encoding the 

patterns. Figure 23 shows some simulation results using this technique. Whilst the 

weights remain within the weight range the number of errors reduces steadily as it 

converges on the solution. As the weights go outside the limits there is an increase 

in the number of errors as the bulk of information in the small weights is lost. 

Learning becomes protracted and in the majority of cases no solution is found. 

6.1.5.2. 'Forgetting' 

Forgetting subtracts a small amount from all weights at every learning itera-

tion, to keep the weights within the maximum limits. Unfortunately the same prob-

lems occur as with the renormalisation. However, with forgetting, the smaller 

weights are smothered at every cycle. Figure 23 shows that the number of errors 

reduces until at least one weight goes outside the weight range and then renormali-

sation takes place. Forgetting causes any information about the patterns encoded in 

the previous cycle to be destroyed in the next cycle, and no reduction in the 

number of errors from cycle to cycle occurs. It was found that no patterns could be 

stored perfectly using this algorithm. 

6.1.5.3. Clipping 

When a weight goes above the maximum weight and is then fixed at the max-

imum weight, it is said to be clipped. The other weights are left to compensate for 

this effect at every iteration. In practice this technique works well and the unclipped 

weights readjust for the clipped ones. Learning becomes more protracted as the 

number of clipped weights increases. There is a point at which the network cannot 

learn all the patterns perfectly. This approach to overcome the problem of learning 

with a fixed range of weights has also been found by Parisi. 58• 

6.1.6. Results 
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6.1.6.1. Comparison of Learning with Binary, 5-State and Sigmoid Functions. 

This section presents the research results concerning learning together with a 

qualitative discussion of the results. 

Figure 24 shows a comparison of learning times for the Hopfield (Binary), 5-

State and Sigmoid activation functions. These results can be explained by consider-

ing two properties of the activation functions. The first involves the number of lev-

els in the activation function. The Hopfield Binary function can take on two levels 

(1,-1), the 5-State, 5 levels, and the Sigmoid an infinity of levels (see Figure 21). If 

the correct neural state of a neuron is 1 and the total activity towards that neuron is 

5, then the neural state according to the Binary function would be 1, but the Sig-

moid and 5-State functions might be correct or incorrect depending on the "tem-

perature". It seems logical to assume that this would cause the Sigmoid and 5-State 

functions to generate more errors per iteration than the Hopfield Binary function, 

and hence take longer to learn all patterns correctly. However the Binary function 

has the disadvantage, that, should the activity change only slightly, it can have a 

catastrophic effect on the state of the network. If there is only a slight change in the 

weights this can cause the total activity going towards a particular neuron to go 

from 1 to 0, causing the neuron to switch off. 

The change in activation between iterations can be expressed by Equation 24, 

. 
V(t+1) = vi 	+ V. (t) 	 (24) xt 

where 	controls the dynamics between the iterations and is the gradient of the 

activation function. Differentiating the Sigmoid activation function gives a continu-

ous function offering smooth dynamic behaviour. The Binary activation is discon-

tinuous and differentiation shows a sharp spike at the discontinuity. The dynamics 

of the Binary activation function are "poor" and this leads to a slow rate of learning. 

The 5-State is a closer approximation to differentiability. It has slightly better 

dynamics and would be expected to have an faster learning rate. These results are 

shown diagrammatically in Figure 25. This would seem to indicate that the Sig-

moid function should learn fastest. From the results the Sigmoid function learns 
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The binary activation function is independent of temperature. Although 
the results for learning show results for 3 different temperatures the 
results use exactly the same activation function. The small difference 
in the results is due to a difference in the data used for the 
simulations because the results were produced on a statistical basis. 
The results show that the graphs are almost identical. 
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fastest when the weights are unclipped. This occurs when the limit is high and the 

"temperature" is low. The Hopfield Binary function results show that it is slower 

than the Sigmoid function but faster than 5-State function. The 5-State function 

probably has a combination of the two effects, and results in slower learning. This 

suggested combination of effects is shown schematically in Figure 26. 

The effect of clipping can be seen in the graphs for 5-State and Sigmoid func-

tions in Figure 24. The Hopfield Binary function does not suffer from clipping, and 

the results are approximately the same. The 5-State and Sigmoid functions result in 

protracted learning. When clipping occurs, the nodes in the network which are not 

clipped must readjust to compensate for the lack of growth in the upper weights. 

Since the Sigmoid function can take many more intermediate states than the 5-State 

function, it takes longer to readjust the weights when compensating. The results 

show than when the temperatures are high and the limits are low, clipping occurs, 

and the 5-State function learns faster than the Sigmoid function which in the worst 

cases takes over 150 iterations to find a solution. 

The slight increase in learning time for the "temperature" of 30 at the upper 

limits can be ignored as it will reduce with more simulations. 

6.1.6.2. Recall of Learnt Patterns with 12.5% noise 

Figure 27 shows patterns recalled with weights learnt using the 5-State activa-

tion function. Figure 28 shows the results of patterns recalled with weights learnt 

using the Sigmoid activation function. Results from patterns recalled using the 

Hopfield Binary learnt weights are not given since only a few patterns were 

recalled. Different values of T indicate the "temperature" of the activation function 

at which the weights set was formulated. The recalling of the activation function 

was at the same "temperature" as the "temperature" at which the weights were 

learnt. Patterns recalled by the Sigmoid function are not shown, as this function 

failed to recall any patterns. The 5-State function recalled more patterns than the 

Hopfield Binary function. The Binary function showed that recall increases with 

increasing "temperature". It also shows that at high "temperature" and low limits 

(T= 30, limit= 20) the number of patterns recalled is low. This can be explained by 
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the information capacity of the network being restricted by the low limits, making 

the recall more susceptible to noise. The 5-State activation shows that high "tem-

peratures" and low limits cause poor recall. At high limits the recall is improved 

but the effect of 'temperature" is small and unclear. The Binary function at best 

recalled 25% of the original patterns, and the 5-State function recalled 38%. 

The patterns recalled using the Sigmoid activation function show much clearer 

results. Generally the number of patterns recalled increases with "temperature". At 

high "temperatures" and low limits the Sigmoid function fails to recall any patterns, 

whereas the 5-State function recalls some patterns. As with the weights set learnt by 

5-State, low limits with high "temperatures" make recall difficult. The total number 

of patterns recalled by the Sigmoid weight set is much greater than the 5-State 

weights set, at best 70% of patterns were recalled. 

6.1.7. Conclusions 

The simulations demonstrate that this type of reduced precision arithmetic can 

be used to learn and recall information from a totally interconnected network. The 

results show that the learning time of such a network is not significantly longer than 

that of either those using a straight Hopfield (Binary) or Sigmoid activation func-

tions. The recalling of patterns using the 5-State function is better than that of a 

Hopfield Binary activation function when using a weights set developed using a 5-

State activation function. When used to recall patterns developed using a Sigmoid 

activation function the 5-State function gives roughly the same performance as a 

Sigmoid activation function. 

The simulations show that it is possible to successfully overcome the problem 

of a fixed weight range by using clipping to restrict a weight set, and shows that the 

5-State function, although making learning protracted, performs better than the Sig- 

moid function. 
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6.2. One Phase Shift Register Chip 

An alternative approach to the pulse stream technique* was to build a digital 

neural network. The digital neural network was envisaged as a simulation engine 

using parallel computation to increase the simulation speed. Previous work on the 

Pulse Stream system showed that memory storage of the weights would use a large 

proportion of silicon area. Work on a one phase digital technique in a different sec-

tion of the Electrical Engineering Department was coming to fruition. It was 

decided that before designing the digital chip, a circuit would be fabricated to test 

out designs for a one phase shift register which it was envisaged would be used as 

the weights memory. 

6.2.1. Design of Shift Cells 

Four designs for a shift cell were simulated. These were identified by the 

number of transistors in the half-shift cell, namely 3-transistor, 4-transistor, 5-
transistor and 6-transistor. 

6.2.1.1. 3-Transistor Cell 

One bit of shift register is made of two cells, one corresponding to the cell 

which is active when the clock is high (known as the ii cell) and the other when the 

clock is low (known as the p. cell). Figure 29 shows a transistor models for the 3-

transistor cell. Using the p. cell as the example, when the clock goes low, transistor 

Ml turns "on" and the voltage at node 1 is transferred to node 2. The voltage at 

node 2 is inverted by the inverter constituted by M2 and M3 and the result is out-

put on node 3. Since Ml is a P-channel device, if node 1 is low, then a bad low is 

output at node 2. To enable the inverter to output a high when this bad low 

occurs, the input threshold of the inverter is raised by adjusting the sizes of M2 and 

M3. The Tr cell works in a similar fashion, the difference being that the pass transis-

tor M4 is now an N-channel device and passes a bad high, hence the input thres-

hold of the inverter is lowered. By simulation it was found that if M2 and M5 had 

a length of 3 microns and a width of 8 microns and that if M3 and M6 had a length 

of 3 microns and a width of 4 microns, the cell functioned correctly. Figure 30 
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shows a SPICE t simulation of this circuit. In this simulation v(101) is the data 

input and v(204) is the clock. These two signals are buffered into the circuit by 

inverters to make the simulation as real" as possible. v(103) is the output of the 

cell and shows that the shift cell is functioning correctly. v(108) shows the output 

from the iT cell and is half a clock cycle out of phase with the i. cell. v(102) is the 

internal node inside the p. cells, and shows the P-channel transistor has difficulty 

passing a good zero value. A similar effect is shown by the N-channel transistor in 

the -Tr cell by observing v(107), the internal node of the ii cell, which has difficulty 

in passing a good maximum value. 

6.2.1.2. 4-Transistor Cell 

A transistor model for the p. and iT cells of the 4-Transistor cell are shown in 

Figure 31. On examination of the p. cell it can be seen that an extra transistor has 

been added to help the overcome the bad zero output from Ml. If node 1 is low, a 

bad low will be passed to node 2 when the clock goes low. The inverter charges 

node 3 high and this turns M4 on. M4 allows node 2 to fully discharge to a good 

low, reinforcing the output. The rr cell works in a similar fashion, with M4 in this 

case being used to charge node 2 to a good high. Figure 32 shows a SPICE simula-

tion of this circuit. In this simulation the clock and the data input were buffered by 

an inverter. Again v(101) is the input data and v(104) is the clock. The output 

from the first p. cell is v(103) and v(108) is the output from the IT cell. The signal 

shows that the data is being passed along the shift register. The signal v(103) has 

several bumps noticeably at iOns, 50ns and 90ns. This is due to a conflict at an 

internal node as a pass transistor turns on". Since a discharge transistor (M4) has 

been added to help discharge Ml, a situation can occur when v(108) is low (and 

consequently v(107) is being driven high) and at the same time the output from the 

previous inverter v(103) is trying to drive v(107) low. It is necessary to bias the 

transistors so that the inverter has a greater driving capability than the discharge or 

charging transistors at the internal nodes. Eventually the inverter drives the internal 

t SPICE is a device level simulation program. 
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node to the correct value and the discharge or charging transistor is switched "off'. 

SPICE simulations showed that the 4-Transistor cell was made to function correctly 

by making Ml and M5 8 microns wide and 3 microns long and by making M4 and 

M8 4 microns wide and 8 microns long. The inverter dimensions remained the same 

as with the 3-transistor circuit. The signal v(108) shows a similar characteristic for 

a similar reason. Signals v(102) and v(107) are those of the p. and rr internal nodes 

respectively. 

6.2.1.3. 5-Transistor Cell 

Figure 33 shows a transistor model for the 5-transistor cells. Ml is again a 

pass transistor and M2 and M3 constitute an inverter. Taking the p. cell as an 

example. M4 and MS make up a discharge path for node 2, which is active when 

the clock is high and the output of the cell is high. When node 1 is low, node 2 will 

also go low when the clock goes low, causing the inverter to go high. Node 2 is at a 

bad low, but as the clock goes high the path to ground becomes active and node 2 

discharges to a good low. The ir cell works in a similar fashion, the difference being 

that the pass transistor is an N-channel and node 4 has a path to high (vdd). The 

inverters are again sized to adjust their thresholds. A SPICE simulation of this cir-

cuit is given in Figure 34. The data input is shown as v(101) and the clock as 

v(104). Signals v(103) and v(108) represent the outputs from the p. and IT cells 

respectively and v(102) and v(107) represent the internal nodes of the p. and 'rr cells 

respectively. From v(102) it can be seen, that, in the period 20ns to 30ns, a bad low 

has been passed, although the output v(103) has switched so that the output is high. 

As the clock goes high in the period 30ns to 40ns, the v(102) discharges to a good 

low reinforcing the output. This circuit has the advantage that the internal node is 

never in conflict, since the inverter (via the pass transistor) and the 

discharge/charging transistor path are never active at the same time. This is 

reflected in the SPICE simulation results. The transistor sizes can therefore be 

reduced to minimum dimensions (width of 4 microns and length of 3 microns) for 

the pass transistor (M1,M6) and the discharge/charging path transistors (M4,M9 

and M5,M1O). 
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6.2.1.4. 6-Transistor Cell 

The disadvantage of the previous designs is that they are not fully static. An 

alternative design for a fully static shift cell is shown in Figure 35. These cells use 6 

transistors in the half-cell. Taking the p. cell as an example. Again Ml is a pass 

transistor and M2 and M3 constitute an inverter whose threshold has been raised by 

sizing the transistors. When node 1 is high and the clock is low, node 2 will go 

high and node 3 will go low due to the inverter switching. M4 is turned "on" but 

M5 and M6 remain off. Node 2 is now being driven by node 1 (via Ml) which is 

high and by the clock (via M4) which is low. Although they are in conflict the 

node 1 stops node 2 from discharging by making Ml have a greater drive capability 

than M4. When the clock goes high, M6 turns "on", but MS remains "off' due to 

node 3 being low. Since M4 is open and the clock high, node 2 remains high. If 

node 1 was initially low, then when the clock goes low, node 2 goes low and node 3 

goes high. Since node 3 is high M4 is "off" and M5 is "on". As the clock goes high 

M6 turns "on" and Ml turns "off'. Node 2 can now discharge to a good low via MS 

and M6 which are both "on". From SPICE simulations is was found that, by mak-

ing M4 minimum dimensions (width 4 microns, length 3 microns) the same size as 

the pass transistor (Ml), the circuit functioned adequately. The Tr cell works by a 

similar method. Figure 36 shows a SPICE simulation of this circuit. Signals v(103) 

and v(108) represent the outputs from the p. and IT cells respectively and v(102) 

and v(107) represent the internal nodes. The clock signal v(104) can be seen to 

alter as it is sometimes in conflict with internal nodes. 

6.2.2. Layout of Cells 

The digital simulation engine would probably use a bit-serial approach for 

computation, and with dynamically shifting weights there would be little need for a 

static shift cell, therefore the 6-transistor cell was not laid out. All remaining 

designs were laud. out to discover how much silicon area each needed. The result-

ing layouts are shown in Figures 37 to 39. The cells were designed to overlap to 

increase the density of the circuits and to allow arbitrary length shift registers to be 

constructed easily. Each figure shows 2 bits of shift register, one bit between each 
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Figure 39 : Layout of 5-Transistor Cell 
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of the power (VDD) and ground (GND) lines. The 2 ground lines have been over-

lapped to form one ground line. Each bit comprises a r followed by a i. cell. Data 

is input from the left of the upper bit and is output on the right. This is reversed on 

the lower bit. Power (VDD) ,ground (GND) and clock lines are fed horizontally 

across the chip using metal 2 	and allow the greatest compaction of the cir- 

cuits. Using two bits of shift register as the standard cell, the silicon areas were as 

follows, 

Model Width i.m Length 	m Area VL M2 

3-Transistor 97 89 8633 

4-Transistor 112 105 11760 

5-Transistor 116 105 12180 

6.2.3. The Shift register chip. 

Two of the three layout designs were selected for fabrication. From the layout 

results it was found that there was little difference between the areas occupied by 

the 4-transistor and the 5-transistor layouts, and with the 5-transistor cell giving the 

best SPICE results, it was decided to fabricate the 5-transistor and the 3-transistor 

cell shift registers. Figure 40 shows a full chip plot. A third one-phase shift register 

design from another member of the department was also submitted, but it does not 

form part of this thesis. Another design to test out a bi-directional pad design was 

also fabricated at the bottom of the chip. The two shift registers were both 20 stages 

long. The relative sizes of the shift registers can be seen by comparing the two, the 

upper being the 5-transistor and the lower the 3-transistor. 

The chip layout file was extracted using the MEXTRA 1  and PRESIM 2  pro- 

grams and was then simulated using RNL 3 , a switch level simulator. SPICE was 

1 MEXTRA is a software package for extracting transistor networks from layouts. 
2 

PRESIM is a software package for taking the output of the MEXTRA program and converting it 
into a form suitable for use by the RNL switch level simulator. 

RNL is a switch level simulator. 
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not used because the circuit was too large and it would have taken too long time to 

simulate. The results are shown in Figure 41. This shows that the data input is out-

put after 20 clock cycles, indicating that the chip simulates correctly. 

6.2.4. Results 

The chip was fabricated using the 3.tm MCE process. A chip photograph is 

shown in Figure 42. A random sequence generator circuit was constructed out of a 

4-bit binary counter and this was used as the data input to the chip. The clock was 

produced from a HP waveform generator which could provide clocks up to 20 

MHz. 

6.2.4.1. 3-Transistor Shift Register 

The shift register functions correctly below 1 Hz and up to 5MHz. Above 

5MHz the shift register stopped functioning. The shift register was never taken 

below 1Hz. An oscilloscope trace of the 3-Transistor shift register is shown in Fig-

ure 43. 

6.2.4.2. 5-Transistor Shift Register 

This shift register functioned correctly up to 20MHz. No clock generators were 

available in the Department which went above this. The circuit also functioned at a 

clock frequency of 1Hz. An oscilloscope trace of the 5-Transistor shift register is 

shown in Figure 44. 

6.2.4.3. Conclusions 

Two one-phase shift register designs have been shown to function correctly. It 

was expected that the 3-Transistor shift register would 	fail before the 5- 

Transistor shift register as the clock frequency was increased. Further research could 

find the upper operating frequency of the 5-Transistor shift register. 

The 5-Transistor shift register was eventually used as the weights memory of 

the digital neural chip designed by Zoe Butler in 198850. 
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Figure 43 Oscilloscope trace of output 
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Figure 42 : Shift Register Chip Photograph 
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Chapter 7 

7. Pulse Stream Approach to Neural Networks. 

7.1. Overall Architecture 

Figure 20 shows a fully interconnected 5 neuron neural network. The func-

tion of the neuron is to convert the sum of the activity ( in this case the output 

from the bottom of the column) into a new neural state V1 . The synapse multiplies 

the presynaptic neural signal V by a weight T and adds it to a running total. The 

neurons signal their states upwards into the synaptic matrix. These signals are distri-

buted through the synaptic matrix by a horizontal n-bit bus which has connections 

to every neuron. To illustrate this, the path from neuron 3 to neuron 1 via weight 

T 13  is highlighted in Figure 20. This type of architecture can be used to implement 

all neural networks and it has the advantage that the synapses are regular and 

modular, enabling the synaptic matrix to be increased easily. This, coupled with a 

low interconnectivity between the neurons and synapses, makes this architecture 

ideal for two dimensional silicon. 

7.2. Signalling Mechanism 

The number of synapses needed in a totally interconnected neural network 

increases exponentially as more neurons are added. A relatively small network with 

100 neurons needs 10,000 synapses. If it were possible to fabricate 100 synapses on 

a single integrated circuit (IC) 100 chips would be needed to implement the synap-

tic array. To keep chip counts to a minimum, as many synapses as possible must be 

fabricated on a single IC. The synapse must be simple to avoid using large silicon 

areas. There are a fixed number of pads that can be fabricated on a chip. With 

large numbers of synapses the number of pads needed may exceed the number of 

pads available on a single chip. To avoid the need for multiplexing, a single wire 

for each neural state is preferable. The single wire could be used to implement a 

Binary neuron (Hopfield), but a smooth activation function (Grossberg) is advanta-

geous in convergence towards a global minim'" An alternative strategy is to use the 
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wire to carry a bit-serial neural state. This has the advantage that the neural state 

can be multi-level, but it increases the complexity of the synaptic circuitry with a 

corresponding increase in silicon area. A further disadvantage is that neural states 

become more synchronous because they must be clocked. Another alternative is to 

use the frequency of a stream of pulses (Pulse Stream) to represent the neural state. 

The greater the frequency, the higher the neural state. If the neuron V1  is 'off" 
(V3  =0), there are no pulses, if the neuron is "on", the neuron pulses at a rate R3  
(V3  =R1). This signalling mechanism shows a close analogy with natural neural sys-

tems. 

7.3. Arithmetic Operations on Pulse Steams 

If the weights set (T13 ) is restricted to values of 0 and 1, it is possible to do 

arithmetic operations on the pulse stream. If T11  =0 and V1  =R1  then no signal passes 

from the pre-synaptic to post-synaptic neuron. If T jj =1 and V3  =R1  then all the 

pulses pass from pre-synaptic to post-synaptic neuron. This concept can be extended 

to say that if Tij  = then half of the pulses should pass in a given period time and if 

Tij  = '/4 then one quarter should pass. The product T,, V is the original pulse stream 
represented by V1  gated by a signal that allows the appropriate fraction of pulses 

through. 

This is illustrated in Figure 45 where a chopping signal (D which is asynchro-

nous to all firing is introduced. 1 is logically high for the correct fraction of time 

to allow the appropriate fraction T11  of the presynaptic pulses (V,) to get through. 
Figure 45 shows two chopping frequencies one which is well below Rj(m)  (I) and 

the other well above (II). As long as these rates are "well" above or "well" below the 

RJ()  either can be used. Both techniques have been successfully tested on a small 

neural machine. 

7.4. Neuron Function 

A neuron's function is to convert the sum of the activity into a new neural 

state. If the neuron is experiencing strong inhibition it will tend to the "off" state, 

and with strong excitation it will tend towards the "on" state, RJ(,,, ). Figure 46 
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shows this schematically. Initially the neuron is "off" with a low inhibitory signal 

reinforcing this state. With the onset of strong excitation, the neuron turns "on' and 

fires at Rj( fljax)  but finally is turned "off' by a stronger inhibitory signal. 

7.5. Synaptic Function 

Figure 47 shows a block diagram of a synapse. The synaptic weight is stored 

locally in memory T,,,. The synapse produces the product T V,, and adds this to 

either the excitatory or the inhibitory stream. The most significant bit (MSB) of T1  
is used to select either the excitatory or the inhibitory channel. In the diagram, the 

product is added to the excitatory channel. 

7.6. Neuron Circuit 

Figure 48 shows a circuit diagram of a pulse stream neuron. The output stage 

is a ring oscillator. If the neural activity xi  goes above the input threshold of the 

NAND gate, the oscillator will produce a stream of pulses at the output V1 . The 

period and the duration of the pulses is determined by a combination of resistors 

and capacitors within the oscillator. The neural activity is produced by charge being 

dumped onto an integrating capacitor. On the arrival of an excitatory pulse, a F-

channel transistor opens briefly and a small amount of charge is dumped onto the 

capacitor. An inhibitory pulse opens an N-channel transistor and this removes a 

small amount of charge from the capacitor. Figure 48 shows that the capacitor is 

initially at OV and no pulses are output at V1 . A stronger excitatory signal results in 

charge being dumped "faster" onto the capacitor than it can be removed. The neural 

activity increase is reflected in the voltage at x,. When the voltage goes above the 

threshold of the NAND gate, the oscillator begins to oscillate and pulses appear at 

V1 . 

The neuron circuit was constructed out of discrete components allowing max-

imum flexibility during testing and "debugging". The oscillator was designed to use 

a minimum of discrete devices to allow easy implementation in silicon. 
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Figure 49 shows a SPICE4  simulation of the neural circuit. The output of the 

integrator V4 represents x3 . The neural activity is initially OV. There is a weak 

excitatory pulse which dumps charge on the integrating capacitor and the neural 

activity rises. When this exceeds the input threshold of the oscillator it produces 

pulses. Later a stronger inhibitory signal removes charge and the neural activity 

falls, resulting in the oscillator pulses ceasing. 

7.7. The Synaptic Circuit 

Two types of synaptic circuit were designed. The first aimed to keep the pin 

count to a minimum by combining both excitatory and inhibitory pulses onto one 

line by means of 3 level logic approach. The second system used two outputs, one 

for excitatory pulses and the other for the inhibitory pulses. The former system was 

named Tertiary" and the latter '2-Wire". 

Both the Tertiary and 2-Wire synapses share a common memory storage and 

chopping circuitry. They only differ in the output stage. 

7.8. The Synapse 

The synapse circuit can be subdivided into three major components. Firstly 

the weights storage circuitry, secondly the chopping clock circuitry and lastly the 

output circuitry. 

7.8.1. Weight Storage Circuitry 

The largest proportion of silicon area is occupied by the weights storage circui-

try. Initially a weight range of -15<T1  <15 was chosen, requiring a five-bit weight. 

To reduce the number of pins needed for loading the memory, a shift register was 

chosen because it required a single input pin and a two-phase clock. A fully static 

design was needed since the weights had to be non-volatile while the system was 

running. Several different shift registers were considered. The major factor was to 

SPICE is a device level simulation program 
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keep the silicon area to a minimum. Finally the design shown in Figure 50 was 
chosen. 

The shift cell comprises 14 transistors, 4 making up 2 inverters (M6, M7 and 

M13, M14). When CLK= high, CLK =low M2, M4 and M8 are "off' and Ml, M9 

and M11 are "on". In this phase the data is passed across Ml. The data is inverted 

and transferred to the input of the second pass transistor. If the data is high at the 

input of the inverter (M6, M7) then M2 is turned "on" and M5 is turned "off". If 

the data is low then M5 is "on" and M2 is "off". In the second phase CLK= low, 

CLK 	high. Ml, M11 and M9 are "off' and M3, M4 and M8 are "on". With M3 

and M4 active these couple with M2 and MS and either drive node 1 high or low 

depending on the data. The inverted data is passed across M8 and is reinverted by 

inverter (M13, M14) and then output. The pass transistors cannot pass good logic 

levels. The N-channel transistor can pass good "low"s and bad "high"s, and the P-

channel transistor can pass good "high"s and bad "low"s. Transistor sizes were 

adjusted to compensate for this effect. In the inverter (M6, M7) the N-channel 

transistor is made wider than the P-channel transistor. This lowered the threshold 

of the inverter, making the inverter switch on a bad "high" value. Likewise the P-

channel transistor is made wider in the inverter (M13, M14) raising the threshold to 

switch "on" the bad "low". As the first phase is repeated M8 is turned "off' and 

M11 and M9 are turned "on". Again the value at node 2 is reinforced. Figure 51 

shows a SPICE simulation for the circuit. V(2) is the input data, V(4) and V(44) 

are the two clocks and V(24) is the output from the shift cell. The SPICE simula-

tion showed that the shift cell functioned correctly. 

Figure 52 shows the final layout for the shift cell. Two clock rails were 

employed to maximise compaction. The final shift register of 5-bits is shown in lay- 

out form in Figure 53. 

In order to check the validity of the layout, a transistor net was extracted from 

the layout using the MEXTRA5  software package and then simulated using the 

MEXTRA is part of the Berkeley CAD tool set and is used to extract transistor networks from 
CIF language descriptions. 
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RNL6  switch level simulator. The results from the RNL switch level simulator are 

shown in Figure 54. The first input weight was 10110. After 5 clock pulses this is 

reflected in the states of bits 1 to 5. The test was repeated with the weight 00101. 

Simulation results showed the circuit to be functioning correctly. 

7.8.2. Chopping Clock Circuit 

The chopping clock circuit is common to both synapses. The circuit is given in 

schematic and transistor form in Figure 55. The circuit comprises 18 transistors. 

When bit n, chopping clock cI and the previous neuron are "high" at the same 

time, V1  = 1 (a pulse being received from the pre-synaptic neuron) and the output of 

the gate goes 'low". 

Figure 56 shows a SPICE simulation of this circuit where the total chopping 

period is 320ns. There are four chopping clocks, V(7) active for 50% (160ns), 
V(10) active for 25% (80ns), V(13) active for 12.5% (40ns) and V(16) active for 
6.25% (20ns). In Figure 56, bits 1 and 3 are "high" whilst bits 2 and 4 are "low". 

The output V(4) shows that pulses are passed during the active periods of chopping 

clocks 1 and 3. 

Figure 57 shows the layout of the circuit. 

7.8.3. The Output Unit 

Two output units were designed. The first, designed for the Tertiary level sys-

tem produced a single wired OR output. Excitatory pulses are represented by a 

pulse between 2.5V and SV, and inhibitory as a pulse between 2.5V and OV. When 

there is no output pulse the system output is a constant 2.5V. The second design for 

the 2-Wire system has two outputs, one for excitatory and the other for inhibitory 

pulses. 

6 
RNL is part of the Berkeley CAD tool set and is used to simulate transistor network in a switch 

level mode. 
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7.8.3.1. Tertiary Output Stage 

A schematic and transistor diagram of the output units is shown in Figure 58. 

The circuit consists of 18 transistors. The circuit has two inputs, bit 5 and the pulse 

stream from the chopping clock unit. Bit 5 is used to select whether the pulse is 

inhibitory or excitatory. The outputs from inverters (M17, M18), (M9, M10) are 

never active simultaneously, hence they are wired together to produce a single out-

put wire. All outputs from the synapses targeted on the same neuron are wired 

OR'ed together. Figure 59 shows a SPICE simulation of this circuit. V(5) 

represents the pulse output from the chopping clock units with V(3) being bit 5 ( 

inhlexc select). V(12) shows the output of the unit. 

No RNL results are given since RNL is a switch level simulator and unable to 

simulate systems which use a third logic level, in this case 2.5V. The final layout is 

shown in Figure 60. 

7.8.3.2. 2-Wire Output Stage 

Figure 61 shows a schematic diagram and a transistor network of this circuit. 

The circuit consists of an inverter and two AND-OR gates. The inputs to the circuit 

are the same as in the Tertiary Output Stage. Since the outputs are not wired 

OR'ed, the outputs of the previous synapse in the column are included. Figure 62 

shows an RNL simulation of this circuit. Figure 63 shows the layout for the 2-Wire 

output unit. 

7.9. Analogue Pad 

Since the Tertiary system had three logic levels a standard inverting output 

pad could not be used. An analogue output pad was designed based on an emitter 

follower opamp design, where the output of the circuit tracked the input into the 

circuit. Figure 64 shows a transistor diagram of the circuit. The circuit was con-

structed with 11 transistors. 

Transistors M5 and M2 set the current for the circuit. M6,M7,M10 and Mu 

form a differential stage, the current through it being set by Ml. The cui'rent drawn 
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Figure 63 Layout of 2-Wire Output Unit 
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through Ml is determined by a current mirror with transistor M2. If the gate of M6 

was not connected to the output then the difference in voltage between the gates of 

M6 and M7 would be reflected at point A. M8, M9 and M3, M4 make up the 

gain stage of the output, the current set via a current mirror. The gain stage multi-

plies the voltage at A and is output. Since the output is connected to one of the 

inputs (gate of M6) the output of the circuit follows the input into the circuit. 

Figure 65 shows a SPICE simulation of this circuit, V(8) being the input vol-

tage to the gate of M7 and V(5) being the output. Although the signal at V(5) was 

not an exact copy of V(8), as only 3 voltage levels were being output, the circuit 

was satisfactory. 

Figure 66 shows the final layout of the circuit as an analogue pad 

7.10. Digital Pad used for Analogue Signals 

At fabrication an alternative output device was constructed to cover the even-

tuality that the OPAMP analogue pads failed to function correctly. Standard digital 

output pads were modified to increase the f3 ratio of the output inverter pad. This 

had the effect of decreasing the switching rate of the inverter. A SPICE simulation 

in Figure 67 shows the input V(3) and the output V(4). It can be seen that the out-

put is a poor approximation to an inversion of a triangular input. However this pad 

would have given an output which would be representative of the output waveform 

of the Tertiary level signal. Figure 68 shows the final layout of this circuit. 

7.11. Synapse Circuits 

7.11.1. Tertiary System 

A full schematic diagram of a Tertiary synapse is shown in Figure 69 with the 

final layout of the circuit shown in Figure 70. No further simulation was carried out 

on this synapse. 

The BETA ratio is the area of the P transistor over the area 
of the N transistor. 
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7.11.2. 2-Wire System 

A full schematic diagram is shown in Figure 71 and the corresponding layout 

in shown Figure 72. This layout was extracted using the MEXTRA extraction 

software and the circuit was simulated using RNL. Figures 73 and 74 show these 

simulation results. The plotting programs only allow 12 traces to be output onto an 

A4 sheet so the results are spread over 2 sheets. Figures 73 and 74 show a simula-

tion where the synapse is firstly loaded with a weight of inhibitory 5 and then with 

a weight of excitatory 10. In the former, the outputs from bit 1 to 5 are loaded with 

10101, the most significant bit representing whether the synapse is inhibitory or 

excitatory. In this case a true' state represents an inhibitory synapse. On the 

presentation of the clocks and the pre-synaptic signal, the signal is passed to the 

post-synaptic neuron in phases 2 and 4 of the clocks. In the latter case the bit vector 

is set to 01010 and the resulting output is an excitatory synapse with the signal pass-

ing to the post-synaptic neuron in chopping clocks 1 and 3. 

7.12. Final Chip Layout and Testing 

7.12.1. Tertiary 

Figure 75 shows a full chip plot before the chip was sent for manufacture. The 

chip was fully LYRAed7  to check for any rule violations and was merged using 

CTFMERGE8  to detect any breaks which were wide enough not to break rule viola-

tions. It was not feasible with the software available to do a SPICE simulation on 

the full chip. RNL simulation is not possible due to the Tertiary level output. 

LYRA is a design rule checker 
8 

CIFMERGE is a program to combine rectangles into polygons. This enables easier viewing of the 
chip plot. 
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7.12.2. 2-Wire 

Figure 76 shows a chip plot of the full 2-Wire chip. The chip was CIFed and 

RNL simulation was run on the extracted version. The results are shown in Figures 

77 to 78. Figure 77 shows one RNL simulation in which all the weights in the cir-

cuit were initialised to excitatory 15 and the neural circuitry was verified by simulat-

ing each pre-synaptic neural signal in turn. Although all post-synaptic neural sig-

nals (inhibitory and excitatory) were examined, only the output from the post-

synaptic neuron 8 is shown. The results show that with no external synaptic inputs 

all neurons are functioning correctly. The simulation was repeated with inhibitory 

15 (Figure 78) as the initial weights and the same result is shown with the output 

being on the inhibitory output line. To check that external signals were being 

transferred to the post-synaptic outputs, all weights were set to zero, and inhibitory 

and excitatory signals from external sources were used as inputs and the circuit was 

simulated using RNL. The results from the simulation in Figure 79 show that 

external signals pass through the synaptic array and are output. 

7.13. Results from Fabrication 

Figure 80 shows an oscillioscope trace from a Tertiary chip which has been 

fabricated, showing an inhibitory output waveform for weight 10, and Figure 81 

shows the output waveform for an excitatory weight to. The analogue pads were 

fully functional as was the weights shift register. The chip was tested with a number 

of weights and was found to hold the weights correctly. One problem not envisaged 

did occur. Simulations suggested that when an inhibitory and an excitatory pulse 

occurred simultaneously, a cancellation would occur. This was not the case, the 

resultant output was an inhibitory pulse. This was attributed to the slight process 

variation which was not modelled during the SPICE simulations. However this 

effect does not affect the performance of the neural circuit, since the neural firing is 

asynchronous with periods between pulses being long and the pulses being short. 

This results in the overlapping of pulses being kept to a minimum, and the defect 

should not affect the machine to any significant extent. 
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Figure 81 Photograph of Output from Tertiary 

Figure 80 Photograph of Output from Tertiary 

Synapse Chip Weights Inhibitory yj 

Figure 82 Photograph of Ouput from 2-Wire Synapse 
Chip Showing Weight of Inhibitory 10 
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Figure 82 shows an oscilloscope trace from a 2-Wire fabricated chip. It shows 

the output of a synapse which has been loaded with an inhibitory weight of 10. 

From the trace, pulses are passed to the post-synaptic neuron during the first chop-

ping clock (group of 8 pulses) and in the third chopping clock (group of 2 pulses). 

Figure 83 and 84 show photographs of the output using a DAS logic analyser. Fig-

ure 83 shows the output when one of the synapses is loaded with a weight of excita-

tory 15 (8th trace from the top), and Figure 84 shows a simulation with a weight of 

inhibitory 15 (9th trace from the top). The synaptic elements of the chip functioned 

correctly. 

7.14. Photographs of Chips 

Figure 85 shows a full chip photograph of the Tertiary chip and Figure 86 

shows a chip photograph of the 2-Wire system. Figure 87 shows a block of synapses 

and Figure 88 shows a single synapse. 
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Figure 83 : Photograph from DAS With 

Synapse loaded with Excitatory 15 

Figure 84 : Photograph from DAS with 

Synapse loaded with Inhibitory 15 
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Chapter 8 

8. Neural Board 

8.1. Introduction 

The neural board was designed to integrate the neuron and synaptic circuits 

together. Using a BBC microcomputer as an interface, tests were carried out to dis-

cover if pulse stream neural networks would function correctly. 

The BBC microcomputer was used because it was easy to gain access to the 1 

MHz internal bus. This allowed external devices to be memory mapped reducing 

the need for complex interface circuitry. 

8.2. Major Components 

There were 8 major blocks to the neural board shown in Figure 89. 

The BBC Interface 

The Weights Loading Circuitry 

The Initial Vector Setup Circuitry 

The Stable Vector Output Circuitry 

The Integrating Circuitry 

The Synaptic Array 

The Neuron Circuitry 

The Chopping Clock Circuitry 

The Vector Display Circuitry 

8.2.1. The BBC Interface 

The BBC was used as the controller for the neural board. It interfaced with 

the user either to ask for weights which were to be loaded, or vectors which were to 

be learnt. A set of weights was generated by the computer from the vectors. The 

computer loaded the weights into the neural chips, set the neurons to their initial 

states before releasing the system to settle into a stable state. The BBC 
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Figuit 89 : Block Diagram of Neural Board 

N 
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communicated with the neural board via a set of latches and buffers. The buffers 

were memory mapped for direct addressing using the 1 MHz bus. The BBC has two 

areas of RAM which could be used for user applications, the second of 

FCCOH  to FCFEH  

FDOOH  to FDFFH  

The BBC interface provided an output signal NPGFD (Not Page &FD). This 

signal is derived from the 6502 address bus. It went low whenever page &FD was 

accessed. Unfortunately due to a fault in the BBC computer hardware, this signal 

needed to be conditioned before it could be used by the neural board. The condi-

tioning circuit suggested by the manufacturer5 is shown in Figure 90. Before 

CNPGFD2 can go low, a valid page address with 1MHzE low must occur. The 

page low is then latched into a D-type flip-flop on the rising edge of the 1MHzE 

clock. CNPGFD2 will go low shortly after the 1MHzE goes high and it will remain 

valid until after the 1MHzE has gone low again. The CNPGFC2 signal is used with 

the top 3 address lines and the 1MHzE to provide 8 address strobes. The address 

strobes were used to latch data in and out of the neural board. 

8.2.2. The Weights Loading Circuitry 

The weights were loaded using a latch. The synaptic chip needed 3 signals to 

load the data into the chip, DATAIN, CLK and CLK. By using 3 bits in the 

Weights Loading Register (WLR) these signals were implemented. The latching 

strobe was generated when the FDOOH  location was addressed. The strobe was used 

to latch the data on the data-bus into the 74LS374. The loading sequence for a 

weight of excitatory 10 is given in Table 6. 

Convert 10 to binary 01010 
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Figure 90 : Clean Up Circuit 

VDD 

CND 
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Data In CLK CLK Data Bus 

o 0 1 

o 1 0 

1 0 1 

1 1 0 

o 0 1 

o 1 0 

1 0 1 

1 1 0 

o 0 1 

o 1 0 

Table 6 

Due to a break in the shift register chain within the synaptic array only the top 

three rows of the synaptic array could be loaded. To increase the size of the array 

three chips were used to give a 9 by 8 synaptic array, of which 8 by 8 synapses were 

used. To decrease the loading time the chips were loaded in parallel by using 2 

extra bits of the WLR as data input pins. 

One of the spare pins of the register was used as the LOAD/SIMULATE con-

trol which was used to control other parts of the neural board. LOAD/SIMULATE 

was set high whilst the weights were being loaded, and then set low to start the 

simulation. Table 7 shows the bit map for the WLR. 
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Register Bit 	 Function 	 Value 

1 	CLK 	 1 

2 	CLK 	 2 

3 	Data Input 1 	 4 

4 	Data Input 2 	 8 

5 	Data Input 3 	 16 

6 	Not Used 	 32 

7 	Load-Simulate 	 64 

8 	Debugging Hardware Select 128 

Chapter 8 

Table 7 

8.2.3. The Initial Vector Setup Circuitry 

Two transistors were used to initially set the integrating capacitor high or low, 

depending on the bits set in the Initial State Register (ISR). The capacitor was 

charged high by a P-channel transistor, and low by an N-channel transistor. They 

were never active simultaneously. The gates of the transistors are set from the ISR 

via the circuitry shown in Figure 91. Each bit corresponded to a neuron. The 

LOAD/SIMULATE signal originated from the WLR. Whilst the weights were 

being loaded, the LOAD/SIMULATE signal was kept high. The ISR was loaded 

with the start vector by a strobe generated by storing the start vector at location 

FDCOH. This charged or discharged the integrating capacitors to the appropriate 

values. When the LOAD/SIMULATE signal was set low the neurons output their 

initial states and the neurons were allowed to interact via the synaptic weighting cir-

cuitry to find the nearest stable state. 



Pulse Stream Neural Board - 140 - 40-

Register RegisterBit Function Value 

1 Initial State Neuron 1 1 

2 Initial State Neuron 2 2 

3 Initial State Neuron 3 4 

4 Initial State Neuron 4 8 

5 Initial State Neuron 5 16 

6 Initial State Neuron 6 32 

7 Initial State Neuron 7 64 

8 Initial State Neuron 8 128 

Chapter 8 

Table 8 

8.2.4. The Stable Vector Output Circuitry 

The final stable state was read back into the BBC for display via the output 

vector register (OVS). The state of the integrating capacitors was buffered from the 

data bus by a 74HCT541 and by addressing location FDEOH  a strobe was generated 

by the interface circuitry which allowed the states of the integrating capacitors onto 

the data bus to be read by the BBC. 

8.2.5. The Chopping clock Circuitry. 

Figure 92 shows this circuit. The circuit is based around a 74LS393 4-bit 

binary counter. The chopping clock was configured as a state machine whose states 

are shown in Table 9. 
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Figure 92 : Chopping Clock Circuitry 
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Figure 94 : Alternative Neural Circuit 
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A 	B 	C D (1)3 	2 (1) 	o Active Signal 
1 	1 1 1 1 0 0 0 (D3  active 
1 	1 1 0 1 0 0 0 (D3 active 
1 	1 0 1 1 0 0 0 4>3 active 
1 	1 0 0 1 0 0 0 4)3 active 
1 	0 1 1 1 0 0 0 (D3 active 
1 	0 1 0 1 0 0 0 (P3 active 
1 	0 0 1 1 0 0 0 (D3 active 
1 	0 0 0 1 0 0 0 (D3 active 

1 1 1 0 1 0 0 02  active 
1 1 0 0 1 0 0 02  active 
1 0 1 0 1 0 0 (D2 active 
1 0 0 0 1 0 0 02  active 
0 1 1 0 0 1 0 (DI  active 
0 1 0 0 0 1 0 (D I  active 
0 0 1 0 0 0 1 (DO  active 
0 0 0 0 0 0 0 None Active 

Table 9 

From Table 9 the logic equations can be found 

= A 

P2 =AB 

ABC 

00  = ABCD 

They are buffered from the synaptic array via 74HCT541 which is per-
manently enabled. 

8.2.6. The Vector Display Circuitry 

An array of LEDs was added to the neural board so that the various states of 

the integrating capacitors could be observed. The LEDs were buffered from the 

integrating capacitors by a 74HCT244 latch which was clocked via the 1MHzE 

clock from the BBC. The outputs from the 74HCT244 were inverted and these were 

used to drive the LEDs. The LEDs had a common emitter. 
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8.3. Debugging Hardware 

Figure 93 shows a complete circuit diagram of the neural board. Several 

latches have been added which were used in the debugging of the board. They were 

used as inputs to simulate clocks and neural inputs and to latch the corresponding 

outputs. The simulation was controlled via the BBC which was able to test all possi-

ble combinations of inputs. There were 3 different registers which could be used in 

debugging. These were 

Neuron State Register (NSR) (8 bits) 

Chopping Clock Register (CCR) (8 bits, 4 bits used) 

Output Register (OR) (16 bits, 8 excitatory and 8 inhibitory) 

The NSR was at address FD20H, the CCR at FD80H and the OR at addresses 
FDAOH  and FD40H. The debugging hardware could be selected by setting bit 8 in 
the WLR register. 

8.4. Results 

The Results can be divided into two sections. The first discusses results 

obtained using the neuron circuit previously described. After testing a second 

improved neuron circuit was built and a separate section describes the results 

obtained with it. 

8.4.1. Results with First Neural Circuit 

8.4.1.1. Debugging of the Neural Board 

The neural board was built in stages. Although the synaptic chips had been 

tested using a DAS logic analyser it was decided that an automatic chip tester 

should be built as the first stage of the neural board. The weights could be loaded 

into the chips, and then the chips tested remotely by the BBC. All chips were tested 

but only two of the chips were found to have all synapses in the top 3 rows func-

tioning correctly. A third chip was found to have the top 2 rows of the synapses 

functioning. These 3 chips were used to form the 8 by 8 synaptic array. 



Figure 93:Circuit Diagram of Neural Board 
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8.4.1.2. Fully Functioning Neural Board 

When the weights were being loaded correctly, the neural board was com-

pleted. The integrators used 0.047p.F capacitors and resistors of 27kl. The neurons 

were constructed to have a pulse width of 200ns with a period of 1400ns. The neu-

ron circuit was restrictive in the period of the pulse streams it could produce. Dif-

ferent values of resistors and capacitors were tried but the longest period obtained 

was 1400ns. The smallest pulse width which could be produced was 200ns giving a 

mark space ratio of 1 in 7. This ratio was considered extremely tight, and would 

lead to a overlapping of pulses with only a few neurons. 

8.4.1.2.1. Learning and Recall of Patterns 

(I) 4-Neuron Network. A 4 neuron network was constructed to verify that the 

system was functioning correctly. The weights loading program was modified to 

include software routines to firstly, load an initial state, and secondly, to allow the 

neurons and synapse circuits to interact and settle into a stable state. For initial tests 

the weights were calculated manually. 

(a) Content addressable memory. The first test used the weights set is shown in 
Table 10. 

Pre-synaptic Neuron 

Post-synaptic Neuron 1 2 3 4 

1 15 15 -15 -15 

2 15 15 -15 -15 

3 -15 -15 15 15 

4 -15 -15 15 15 

Table 10 

This weights set encodes two stable states.(i) 1100 and (ii) 0011. All possible initial 

states were presented and the system was allowed to settle into a stable state. Apart 

from the all zeros pattern the system iterated to one of the encoded patterns, show-

ing the system to be functioning correctly. The problem was repeated encoding the 

patterns (i) 1010 and (ii) 0101 and the results were the same. 

(b) Parallel inhibitory network. The second test used a parallel inhibitory or 

"winner takes all" network. The weights set used is shown in Table 11. 
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Pre-synaptic Neuron 

Post-synaptic Neuron 1 2 3 4 

1 15 -15 -15 -15 

2 -15 15 -15 -15 

3 -15 -15 15 -15 

4 -15 -15 -15 15 

Table 11 

The neurons were initialised to the all ones pattern so that all neurons were fully 

"on'. With this network configuration only one neuron should remain "on" and the 

results verified this. To check that this was the strongest neuron the test was 

repeated and the same neuron remained "on". The neurons were then initialised so 

that all but the strongest neuron was "on" and the test was repeated to find the 

second strongest neuron and so on. 

(ii) 6-Neuron network. The network was expanded so that 6 neurons could be used. 

This represented the largest number of neurons for which the synapses in the synap-

tic array were functioning correctly. The problems (i) and (ii) used with the 4-

neuron network were repeated for 6 neurons and these proved to be successful. It 

was laborious to manually test every possible start pattern and so the process was 

automated. After the user had specified the weights set the computer would 

Calculate the first start vector, 

Present the start vector, 

Let the system interact to find the nearest stable state, 

Read stable state and store and display the result for the user, 

e) Calculate next start vector, 

(1) Goto (ii), 

and test all possible input patterns. The results obtained showed that the system 

successfully stored stable vectors, and on the input of a noise pattern could recall 

stable states which had been encoded manually by the user. The stable states found 

were not always the closest stored vectors. It was thought that this was because the 

input threshold of the neurons was not 2.5V, but was below this value since the 

input threshold of a CMOS NAND gate is usually about 1.5V. If one neuron 

needed to be switched "on" and another "off" then the neuron which was to be 

switched "on" would turn "on" before the neuron which was to be turned "off', 
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turned "off'. Since all neurons were slightly different some neurons fired more fre-

quently than others and it was possible for the network to settle into erroneous 

stable states. There was also the problem of the tight mark space ratio. Since this 

was one in seven, with seven neurons this meant that there would be a lot of over-

lapping of pulses. It was thought that this would be disadvantageous to the correct 

functioning of the system since it would result in a decrease in charge being 

dumped or removed from a particular neuron. Later a new neuron was designed 

which had a better mark space ratio. 

Automatic calculation of weight set. Further software was written so that the user 

could specify a set of vectors to be learned. The software used the Hopfield learning 

algorithm 1  to produce an initial set of vectors. This software was linked into the 

automatic recall software so that the weights set produced by the learning algorithm 

could be checked. It was found that when only 2 patterns were used, the system 

encoded the patterns correctly. The manually produced weights sets were usually 

networks whose weights were -15, 0 or + 15 as opposed to the Hopfield learning 

algorithm generated weights which were usually in the range -3 to +3. Since the 

difference between inhibitory and excitatory weights was not as great, it was 

expected that the recall would not be as good. The results showed this to be the 

case as the network failed to find user defined stable vectors from noisy vectors. 

When the number of vectors to be learnt was increased to three, the Hopfield learn-

ing algorithm generated weights sometimes failed to encode the vectors correctly. 

Calculation of weights set using a training algorithm. The software was rewritten 
to include the Wallace learning algorithm46  which included a training algorithm. 

The software functions by first producing an initial weights set using the Hopfield 

learning algorithm. The network was then loaded and the network initialised to 

each of the patterns to be stored in turn. If the network failed to settle (recall) into 

the initial pattern then the weights were updated using the Wallace learning algo-

rithm. This had limited success, but some sets of patterns were able to be stored 

correctly after the Hopfield learning algorithm had been unable to do so. 

8.4.2. Results using Second Neuron Circuit 
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8.4.2.1. Neuron Circuit 

Figure 94 shows a circuit diagram of the new pulse stream neuron. This circuit 

has the disadvantage that it used slightly more external components. 

Assuming that node 2 is 1, then if node 1 is set to a 1 the first NAND gate 

will output a low. The time taken for node 3 to discharge will be dependent on Ri 

and Cl. The second NAND acts as an inverter and inverts the output of the first 

NAND, keeping the potential across Cl fixed. As node 3 discharges node 2 also 

discharges through R2. At some point node 2 goes below the input to the first 

NAND gate and the NAND output goes high. The NAND starts to charge node 3, 

the rate again being set by Ri and Cl. Node 3 charges node 2 and at some point 

the first NAND goes low, thus the circuit functions as an oscillator. The output of 

the oscillator is the output of the second NAND gate. A second piece of circuitry 

was added to convert this square wave into a pulse. A differentiator circuit, C2 and 

R3, was added so that two pulses were output, the first of the rising edge and the 

second on the falling edge of the square wave. By the addition of a diode the nega-

tive going pulse was eliminated. 

The pulse width was chosen as 200ns with a period of 10.ts. This meant that 

the pulse width was the same as the previous neuron circuit but the mark space 

ratio was increased to 1 in 50. The component values to accomplish this were calcu-

lated at Ri = 4K7, R2 = 10k (twice Ri used as a temperature stabilizer), Cl = 

lnF, R3 = 4K7 and C2 = 47pF. The diode chosen was a general purpose diode. 

The new neuron circuit was constructed and tested. It was found to have a period 

of lOIJ.s with a pulse width of 200ns exactly as specified. 

8.4.2.2. Results with new neuron circuit 

8.4.2.2.1. Learning and Recall 

After installation of the circuits onto the neural board, the circuits were tested 

with the software written for the first neural circuit. The resistor values for the 

integrating units were changed to lMfl to limit the charge dumped or removed on 

the arrival of a pulse. The intention was to discover if slowing the change of neural 

state would improve the system dynamics. 

6-Neuron networks. The network was constructed to have 6 neurons. The first tests 
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used the manual weights set and manual initialising software. 

(i) The network functioning as a content addressable memory (CAM). The net-

work was loaded with the weights set which encoded the vectors 110000, 001100 

and 000011. By initialising the network to the encoded vectors and releasing it, the 

network showed that the patterns had been encoded correctly and that the system 

was functioning correctly. By initialising the network to noisy states the results 

showed that the network could find specified encoded patterns, although these were 

not always the closest patterns. 

(ii) The network functioning as a lateral inhibitory network. The network was 

initialised with the weights set in Table 12. 

Pre-synaptic Neuron 

Post-synaptic Neuron 1 2 3 4 5 6 

1 15 -15 -15 -15 -15 -15 
2 -15 15 -15 -15 -15 -15 
3 -15 -15 15 -15 -15 -15 
4 -15 -15 -15 15 -15 -15 
5 -15 -15 -15 -15 15 -15 
6 -15 -15 -15 -15 -15 15 

Table 12 

The results showed that network functioned correctly, one neuron remaining "on" at 

the end of each test. 

(iii) Patterns stored using Wallace training algorithm. This test used the software 

which had been developed with the old neuron system. The results showed that it 

was possible to store patterns but that if the patterns failed to encode correctly on 

the first attempt then the Wallace learning algorithm could not subsequently encode 

them. 

The patterns which could be stored correctly were made to recall noisy pat- 

terns. The neural machine almost always found a specified stable state, but again 

not always the closest. 



To get the neural board to function correctly it was necessary to make several 

modifications. Adjustments to the chopping clock frequency, the mark-space ratio 

and the discrete components were used to adjust the charge dumped onto the 

integrating capacitors. The integrating capacitors were not ideal as they leaked 

charge and if initially fully charged they would leak to the ground state. With the 

small number of neurons the frequency and mark-space ratio of the neuron was 

adjusted to make sure that charge was always being dumped faster than it was being 

lost. This could be achieved in several ways. Firstly, the mark-space ratio of the 

neuron could be reduced by keeping the active part of the pulse constant and 

increasing the frequency of the neuron. Secondly, the dumping resistors situated 

before the integrating capacitor could be reduced to increase the current which was 

dumped in the active region of the pulse. It is thought that because larger neural 

networks have on average more pulses going towards any particular neuron, the 

contribution of a single neuron is reduced and the mark-space ratio can be 

increased. 

It was also necessary to adjust the neural machine so that any weak neuron 

would be switched "off' quickly. This was to avoid the problem, discussed previ-

ously, of weak neurons remaining "on" and subsequently switching 'off' stronger 

neurons. This was overcome by keeping the oscillating frequency of the neurons 

high, so that early in the simulations the weak neurons would definitely be over-

powered and turn "off'. This, however, had the disadvantage that the chopping 

clock frequency needed to be readjusted so that the smallest chopping clock did not 

allow enough pulses through and consequently cause other neurons to change states, 

as this would lead to the neural machine stabilising in erroneous states. If the neural 

machine is being used with a course weights set (+ 15, -15) then this aspect may not 

be as important. 

Although the adjustments to the neural machine are laborious the author dev-

ised, through "trial and error", a technique to optimise the neural machine's perfor-

mance. This was achieved by first making the integrating resistors large, of the 

order lMfl, so that with active pulse widths of the order of several h:ndred 

nanoseconds only a small amount of charge would be deposited or removed from 

the capacitor per pulse. The frequency of a firing neuron was then adjusted so that 

the mark-space ratio was approximately equal to the number of neurons in the sys-

tem. For example, for a neural system of 6 neurons a mark-space ratio between 

1:10 to 1:7 could be used. The chopping clocks were then adjusted to allow many 

pulses throngh on the smallest active chopping clock, although it was not allowed to 

pass enough pulses through to erroneously change the state of the other nirons. 

Using this technique the small neural system could be tuned to solve neural prob-

lems. It remains to be seen if this tecinique will work with larger numbers of neu- 

rons. 



Pulse Stream Neural Board 	-150 - 	 Chapter 8 

8.5. Conclusions 

The pulse stream implementation shown here is a first attempt to show that 

neural type problems can be solved using streams of pulses as the communication 

system. The results indicate that it is possible to do this. One problem is that the 

existing neural machine can only implement six neurons and is therefore very lim-

ited in the neural problems that it can solve. The number of patterns which can be 

encoded is extremely small, and it is hoped that increasing the numbers of neurons 

will lead to better performance in learning. The recall of patterns has been success-

ful and and it is hoped that this could be improved by balancing the neuron cir-

cuits, but this has not been possible due to time restrictions. One result shows that 

the chopping clock technique is tolerant of small weight changes. If the weights are 

changed slightly, this does not seem to affect the convergence of the system. Only 

gross changes in weights affect convergence. The synaptic chips which have been 

fabricated suffer from signal jumping and examination of these circuits shows sig-

nals coming from pins which should be inactive. It is difficult to estimate to what 

extent the system is being affected by cross talk within the chip. This effect occurs 

when the chip is functioning with pulse streams but it is not seen when the logic of 

the individual synapse is tested. It is therefore not a logic fault. The debugging of 

the system is extremely difficult since the signals within the network when it is run-

ning" transmit information with time. It was hoped that by building the board step 

by step and testing every step, the system would be totally debugged. The chopping 

clocks were operated well below the pulse stream frequency so the gating was on 

groups of pulses. The system was never tested with clocks running above the pulse 

stream frequency since the crosstalk was a problem. 

The aim of this research was to show that it was possible to solve neural net-

work problems using streams of pulses. I have shown that this is possible and have 

developed a system which uses custom silicon integrated circuits to prove that this 

technique can function in a real-time system. This represents one of a small 

number of techniques which can solve neural problems other than using software 

simulation. This technique has faults but should be viewed as a "first generation" 

system. The "second generation" machine which is already under development will 

address some of these problems and will give better performance and larger integra-

tion than this machine has achieved. It is possible that with more time a substantial 

increase in the performance of this system could also be achieved. 

rJ 
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Chapter 9 

9. Conclusions and Future Work 

The thesis can be thought of as the first step in the investigations into the 

implementations of neural networks in silicon. When the PhD was started there was 

little work presented about implementation and very little research into the practical 

limitations. Little was known about neural networks and this research has 

attempted to discover the essential elements of neural networks when implemented 

in silicon. This research has shown that 

Streams of Pulses can be used to implement Silicon Neural Networks. 

Clipping can be used to overcome the problem of weights growth in learning. 

It is possible to implement Hopfield Neural Networks using a Reduced Arithmetic 

Operation 

A Multi-level Activation Function gives better performance than either a Binary 

or Sigmoid Activation Function in certain circumstances. 

The pulse stream system has shown that it is possible to do neural-type prob-

lems using streams of pulses. The neural chips have a high pin count, so even with 

large integrated circuits, a relatively small number of synapses can be fabricated on 

a single chip. If more synapses are to be fabricated on a single chip then alternative 

communication strategies between chips will need to be devised. This could be 

implemented in three ways, 

by using multiplexing to transfer data. 

by developing techniques to compress the input/output data onto available pins. 

by preventing communication between synaptic chips and using a second circuit 

to add signals. 

An alternative pulse stream implementation is under research to reduce the 

size of the synapse. This synapse "chops" individual pulses rather than groups of 

pulses. It uses a variable discharge circuit to "chop" the pulse, the weight being 

stored as an analogue voltage on a capacitor 59. The resulting synaptic structure 

should allow a doubling in synaptic density. This work is presented in the paper 

"Fully-Programmable Analogue VLSI Devices for the Implementation of Neural 

Networks" from The Workshop on Artificial Intelligence, Oxford 1988, and is being 

further researched by Alister Hamilton in the Department of Electrical Engineering 

of Edinburgh University. 
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The work on the Reduced Precision Arithmetic Synapse is under development 

by Zoe Butler at the Department of Electrical Engineering of Edinburgh Univer-

sity. Using simulation research and one phase shift registers she has implemented a 

synaptic array chip, which she is incorporating into a neural board. This research is 

presented in the paper "Bit-Serial Neural Networks' presented at the Neural Infor-

mation Processing Systems, Denver 1987. 

All work which has been presented in this thesis is being continued by other 

PhD students. 

The final conclusions that can be drawn are that Pulse Stream Neural Net-

works provide the programmability that is necessary for learning whilst allowing the 

implementation to be remain compact. The Reduced Precision Arithmetic Tech-

nique offers the advantages of learning and recall with an activation function 

approximating to a Sigmoid but at the same time allowing a greater degree of paral-

lelism than would be possible using floating point processors. 
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Appendix 1 
List of Publications 
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A. F. Murray and A. V. W. Smith, "A Novel Computational and Signalling 

Method for VLSI Neural Networks," European Solid State Circuits Conference 

1987. 

A. F. Murray and A. V. W. Smith, "Asynchronous Arithmetic for VLSI 
Neural Systems," Electronics Letters, vol. 23, no. 12, p.  642, June, 1987. 

A. F. Murray, A. V. W. Smith, and Z. F. Butler, "Bit - Serial Neural Net-
works," IEEE Neural Net Conference, 1987. In Press 

(Invited Paper) A. F. Murray and A. V. W. Smith, "Asynchronous VLSI 
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International Workshop on VLSI for Artificial Intelligence, July, 1988. 
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Appendix 2 
Calculation of component values of alternative neuron 

The pulse width was chosen as 200ns with a period of iOlJ.s. This meant that 

the pulse width was the same as the first neuron circuit but the mark space ratio 

was increased to 1 in 50 by making the period frequency of the pulses 100kHz. The 

component values to accomplish this were calculated as follows. 

Component values for period of square wave 

1 
2xRxCii 

f 10,  

choosing C to be lnF 

R 	
2xC x105  

R = 
10 

2x i0 

R = 
1 

R 47 

Component values for pulse width 

RXC 

ER = 4k7 

= 2x10 

5x103  

C47pF 
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An activation function f(x 1) defines the range and resolution of 
1', and the smoothness with which a neuron moves between 
the 'oil' and 'on' states. 1 is a direct input to neuron i. Syn-
aptic weights {7} may be positive (excitatory) or negative 
(inhibitory), and any neuron may therefore tend to turn any 
other neuron either 'on' or 'oil', respectively. A network 
'learns' by altering the f 7 J), and recalls or computes by recur-
sive and asynchronous evaluation of eqn. I until equilibrium 
is reached. 

The neural eqn. 1 requires N 2  multiplications for each 
network update cycle, and this is a huge computational 
burden. Simplified neural models have been developed to 
reduce this requirement, by simplifying f(xj to a simple 
threshold function, and limiting V, to 0 or 1.2 Until recently, 
synthetic neural networks existed only as conceptual or simu-
lation models. Systems are currently being developed that 
implement neural networks as VLSI devices using purely ana-
logue circuit elements, 3-5 

or as synchronous digital logic.' 
This letter describes a computational style that uses the same 
'pulse stream' signalling mechanism as the biological neuron, 
and is consequently asynchronous, imposes no limitations on 
the activation or neural state variable Vi, and allows the syn-
aptic weights to be of arbitrary precision. The importance of 
asynchronous behaviour is not yet clear, but smoothness of 
the activation function is known to benefit the network's 
dynamical behaviour." High precision in the { 7 J } is not essen-646  and a restricted wordlength may be acceptable. 

V, 

Fig. I Architecture for a pulse-strewn neural network (schematic) 

Neurons are denoted by 0  and synaptic operators by 

Implementation: Fig. 1 shows that the summation in eqn. I is 
not the result of N simultaneous multiplications and ad±-
tions. The operations are distributed in space and time su± 
that the kth element from the foot ef column i of the synapc 
array has as its input the running total 	1, V. The nen 
term T ' is added, and the element's output is 7j= ' 7. 
Each array element is associated with a particular 7, he.d 
locally in dital memory. The input I j  may be introduce± 
either at the top of column i. or as a direct input to the nei 
potential at the foot. 

Fig. 2a shows a pulse-stream neuron. The incoming ex:-
atorv and inhibitory pulse stream inputs to the neuron 
ntegrated to ove a postsYnaptic potential that vanes smoo-
l' from 0 to 5 V. This potential controls (makes or breaks 
feedback loop with an odd number of logic inersions inc  
thus forms a switched 'ring oscillator'. If the inhibitory in:x 
dominates, the integrator output is a logic 0. and the feedhaci 
loop is broken. If excitatory spikes appear at the input and the 
integrator output rises to 5V, the feedback loop oscilla: 
with a period determined by the delay around the loop. The 
resultant periodic waveform is then converted to a series ci 
voltage spikes. This behaviour is qualitatively that of .be 
neuron described by eqn. I, where the output of the integrator 

NCHRONOUS ARITHMETIC FOR VLSI 
JRAL SYSTEMS 

Indexing terms: Biomedical electronics, Neural systems 

A computational style is described that mimics that of a 
bio)ojca1 neural network. Circuit forms of neural and syn-
aptic functions are presented, and results of simulation and 
fabrication are reported. 

luction: Neural systems are networks of simple compura-
units ineuronsi, operating :n parallel that capture some 
computational strengths and funcuonality of the human 

A neuron (say member I of a network of N neurons) 
mit that signals its state 	by the presence ('on) or 
Ce 'oil) of voltage pulses on its output, or axon. The 
:y of a neuron, .t1, is altered by direct stimulation of the 
n from outside the network, and by contributions from 
neurons in the network. The contr,ution from another 
nj is weighted by an interneural synaptic weight 1, and 
ite of neuron i is given by 

Vi =f(x) = 4;1,  Ti, Vj ± 



ra te on the output is use neural state Ii. This is an elegant and 
simple realisation of the postsynaptic neural function. Unfor-
tunately, the synaptic (multiply and add) function is more 
difficult to realise. 

M. 
excite i 	Output 

 

LJ__L integrator 	oscillator 
inhibit 

excit inhib 

Fig. 2 
a Circuit implementing neural function (0 in Fig. 1) described by 
eqn.1 
b Circuit implementing synaptic weighting function 	in Fig. 1) 

Eqn. 1 requires a weighted sum of N neural states. The 
pulses are asynchronous, and their width is small compared 
with their separation. Therefore, ORing the pulse streams 
together is a good approximation to adding them. Multiplica-
tion is achieved by 'chopping' the input states in time using 
the circuit shown in Fig. 2b. A set of p - 1 clock signals 
(where p is the wordlength of the synaptic weights) is required. 
and the weights are stored in local p-bit registers. The clock 
timing is not related to that of the pulse streams, and the 
system is dynamically asynchronous. A presynaptic input P is 
chopped to allow a fraction of the pulse stream (controlled by 
bits 0 to p - 2 of 7) through to either the inhibitory or the 
excitatory sum line, depending on the most significant bit 
(p - 1) of the synaptic weight. p-2 allows 50% of the pulse 
stream through if bit p —2 of 7, is I, p-3 allows a further 
25% through if bit p - 3 of Ti j  is I, and so on. The left- and 
right-hand signal paths then represent running totals of the 
excitatory and inhibitory activities, respectively. A complete 
pulse-stream neural network comprises a neural circuit (Fig. 
2a) at each of the neuron locations (Q in Fig. 1) and a syn-
aptic circuit (Fig. 2b) at each of the synapses (12 in Fig. 1). 

Synaptic weights are loaded via a serial path, under control c 
a synchronous clock. 

The synaptic circuit (Fig. 2b) has been implemented in 3 ir 
CMOS technology and functions correctly. Fig. 3 shows 
device level (SPICE) simulation of the neural circuit in Fig. 2 
In the simulation, a neuron that is initially 'oil' is turned on b 
an excitatory input, and subsequently turned 'oil' by the onse 
of a stronger inhibitory input. 

Conclusions: A computational strategy has been describer 
that captures the collective, asynchronous nature of neura 
computation. The 'arithmetic' is of low precision, as is that it 
the microstructure of the brain. A neural board is being devel 
oped using VLSI devices operating with this novel signailin 
and calcula tory style. 
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DATA-BASED MATRIX DECOMPOSITION 
TECHNIQUE FOR HIGH-RESOLUTION 

—] ARRAY PROCESSING OF COHERENT 
SIGNALS 

integrator output 

Indexing terms: Array processing, Signal processuw. Radio 
direction finding, Radar 

o 	 A new data-based maim decomposition DMI) method for 
high-resolution array processing is presented. It is shown 
here that the DMD method is independent of the coherency 

. 	 between signals of arrival, so it can be used for :be hip-h'  
lii (pIU 	iij 	 resolution of uncorrelated signals as well as coherent simais. 

H I 	 The results of simulation support the zheoreticai prec ions 

esc, :' c- . nput 

LLJ 

time sx'O 

Fig. 3 Device level(SPICE) simulation of neural circuit in Fig. 2a 
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Introduction: In many array processing fields an 	sential 
problem is to estimate the directions of arrival of planar 
waves incident on a spatial array of sensors. Modem 
eigensvstem-based high-resolution techniques such as 
MUSIC 2  can greatly improve the estimation and resolution 
performances. The problem is. however, generally com-
pounded by wave interference effects due to multipath and 
other transmitted signals within the receiver beamwidth: these 
kinds of signals are coherent signals. Several solutions to this 
problem have been proposed. typically b Evans et .aL! Shan 
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BIT SERIAL NEURAL NETWORKS 
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ABSTRACT 

A bit - serial VLSI neural network is described from an initial architecture for a 
synapse array through to silicon layout and board design. The issues surrounding bit 
- serial computation, and analog/digital arithmetic are discussed and the parallel 
development of a hybrid analog/digital neural network is outlined. Learning and 
recall capabilities are reported for the bit - serial network along with a projected 
specification for a 64 - neuron, bit - serial board operating at 20 MHz. This tech-
nique is extended to a 256 (2562  synapses) network with an update time of 3ms, 
using a "paging" technique to time - multiplex calculations through the synapse 
array. 

1. INTRODUCTION 
The functions a synthetic neural network may aspire to mimic are the ability to con-
sider many solutions simultaneously, an ability to work with corrupted data and a 
natural fault tolerance. This arises from the parallelism and distributed knowledge 
representation which gives rise to gentle degradation as faults appear. These func-
tions are attractive to implementation in VLSI and WSI. For example, the natural 
fault - tolerance could be useful in silicon wafers with imperfect yield, where the 
network degradation is approximately proportional to the non-functioning silicon 
area. 

To cast neural networks in engineering language, a neuron is a state machine that is 
either "on" or 'off', which in general assumes intermediate states as it switches 
smoothly between these extrema. The synapses weighting the signals from a 
transmitting neuron such that it is more or less excitatory or inhibitory to the receiv- 
ing neuron. The set of synaptic weights determines the stable states and represents 
the learned information in a system. 
The neural state, V,, is related to the total neural activity stimulated by inputs to 
the neuron through an activation function, F. Neural activity is the level of excita-
tion of the neuron and the activation is the way it reacts in 'a response to a change 
in activation. The neural output state at time t, V', is related to xil by 

(1) 
The activation function is a "squashing" function ensuring that (say) V is 1 when 
Xi  is large and -1 when x is small. The neural update function is therefore straight-
forward: 

j=n —1 
X8  ' = x,' .....+8 Y, T1  VJ 	 ('2) 

j=o 

where 3 represents the rate of change of neural activity, T j  is the synaptic weight 
and n is the number of terms giving an n - neuron array [1]. 
Although the neural function is simple enough. in a totally interconnected n - neu-
ron network there are a 2  synapses requiring n 2  multiplications and summations and 

Vi' = F(x1 ) 



a large number of interconnects. The challenge in VLSI is therefore to design a sim-
ple, compact synapse that can be repeated to build a VLSI neural network with 
manageable interconnect. In a network with fixed functionality, this is relatively 
straightforward. If the network is to be able to learn, however, the synaptic weights 
must be programmable, and therefore more complicated. 

2. DESIGNING A NEURAL NETWORK IN VLSI 
There are fundamentally two approaches to implementing any function in silicon - 
digital and analog. Each technique has its advantages and disadvantages, and these 
are listed below, along with the merits and demerits of bit - serial architectures in 
digital (synchronous) systems. 
Digital vs. analog: The primary advantage of digital design for a synapse array is 

that digital memory is well understood, and can be incorporated easily. Learning 
networks are therefore possible without recourse to unusual techniques or technolo-
gies. Other strengths of a digital approach are that design techniques are advanced, 
automated and well understood and noise immunity and computational speed can 
be high. Unattractive features are that digital circuits of this complexity need to be 
synchronous and all states and activities are quantised, while real neural networks 
are asynchronous and unquantised. Furthermore, digital multipliers occupy a large 
silicon area, giving a low synapse count on a single chip. 

The advantages of analog circuitry are that asynchronous behaviour and smooth 
neural activation are automatic. Circuit elements can be small, but noise immunity 
is relatively low and arbitrarily high precision is not possible. Most importantly, no 
reliable analog, non - volatile memory technology is as yet readily available. For 
this reason, learning networks lend themselves more naturally to digital design and 
implementation. 

Several groups are developing neural chips and boards, and the following listing 
does not pretend to be exhaustive. It is included, rather, to indicate the spread of 
activity in this field. Analog techniques have been used to build resistor / opera-
tional amplifier networks [2, 31 similar to those proposed by Hopfield and Tank [4]. 
A large group at Caltech is developing networks implementing early vision and 
auditory processing functions using the intrinsic nonlinearities of MOS transistors in 
the subthreshold regime [5, 6]. The problem of implementing analog networks with 
electrically programmable synapses has been addressed using CCD/MNOS technol-
ogy [7]. Finally, Garth [8] is developing a digital neural accelerator board ("Net- 
sim") that is effectively a fast SIMD processor with supporting memory and com-
munications chips. 
Bit - serial vs. bit - parallel: Bit - serial arithmetic and communication is efficient 
for computational processes, allowing good communication within and between 
VLSI chips and tightly pipelined arithmetic structures. It is ideal for neural net-
works as it minimises the interconnect requirement by eliminating multi - wire 
busses. Although a bit - parallel design would be free from computational latency 
(delay between input and output), pipelining makes optimal use of the high bit - 
rates possible in serial systems, and makes for efficient circuit usage. 

2.1 An asynchronous pulse stream VLSI neural network: 

In addition to the digital system that forms the substance of this paper, we are 
developing a hybrid analog/digital network family. This work is outlined here, and 
has been reported in greater detail elsewhere [9, 10.11]. The generic (logical and 
layout) architecture of a single network of n totally interconnected neurons is shown 



schematically in figure 1. Neurons are represented by circles, which signal their 
states, V1  upward into a matrix of synaptic operators. The state signals are con-nected to a n - bit horizontal bus running through the synaptic array, with a con-
nection to each synaptic operator in every column. All columns have n operators 
(denoted by squares) and each operator adds its synaptic contribution, Tq  Vj , to the 
running total of activity for the neuron i at the foot of the column. The synaptic 
function is therefore to multiply the signalling neuron state, V. by the synaptic weight. T1 , and to add this product to the running total. This architecture is com-
mon to both the bit - serial and pulse - stream networks. 

Synaps 

States { V } 

rons 
Figure 1. Generic architecture for a network of n totally interconnected neurons. 

This type of architecture has many attractions for implementation in 2 - dimensional 
J =q -1 

silicon as the summation T, T V is distributed in space. The interconnect 
j=O 

requirement (n inputs to each neuron) is therefore distributed through a column, 
reducing the need for long - range wiring. The architecture is modular, regular and 
can be easily expanded. 

In the hybrid analog/digital system, the circuitry uses a pulse stream" signalling 
method similar to that in a natural neural system. Neurons indicate their state by 
the presence or absence of pulses on their outputs, and synaptic weighting is 
achieved by time - chopping the presvnaptic pulse stream prior to adding it to the 
postsynaptic activity summation. It is therefore asynchronous and imposes no fun-
damental limitations on the activation or neural state. Figure 2 shows the pulse 
stream mechanism in more detail. The synaptic weight is stored in digital memory 
local to the operator. Each synaptic operator has an excitatory and inhibitory pulse 
stream input and output. The resultant product of a synaptic operation, T1  V1 , is 
added to the running total propagating down either the excitatory or inhibitor 
channel One binary bit (the MSBit) of the stored T,1  determines whether the con- tribution is excitatory' or inhibitor-v. 

The incoming excitatory and inhibitory pulse stream inputs to a neuron are 
integrated to give a neural activation potential that varies smoothly from 0 to 5 V. 
This potential controls a feedback loop with an odd number of logic inversions and 
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Figure 2. Pulse stream arizhmeric. Neurons are denoted by C and synaptic operators 
by C. 

thus forms a switched "ring - oscillator". If the inhibitory input dominates, the feed-
back loop is broken, if excitatory spikes subsequently dominate at the input, the 
neural activity rises to 5V and the feedback loop oscillates with a period determined 
by a delay around the loop. The resultant periodic waveform is then converted to a 
series of voltage spikes, whose pulse rate represents the neural state, V.. Interest-
ingly, a not dissimilar technique is reported elsewhere in this volume, although the 
synapse function is executed differently [12]. 

3. A 5 . STATE BIT - SERIAL NEURAL NETWORK 

The overall architecture of the 5 - state bit - serial neural network is identical to 
that of the pulse stream network. It is an array of a 2  interconnected synchronous 
synaptic operators, and whereas the pulse stream method allowed V1  to assume all values between "off' and "on", the 5 - state network V1  is constrained to 0, ±0.5 or 
± 1. The resultant activation function is shown in Figure 3. Full digital multiplica-
tion is costly in silicon area, but multiplication of T, by V1  = 0.5 merely requires 
the synaptic weight to be right - shifted by 1 bit. Similarly, multiplication by 0.25 
involves a further right - shift of T,, and multiplication by 0.0 is trivially easy. V 
< 0 is not problematic,. as a switchable adder/subtractor is not much more complex 
than an adder. Five neural states are therefore feasible with circuitry that is only 
slightly more complex than a simple serial adder. The neural state expands from a 1 
bit to a 3 bit (5 - state) representation, where the bits represent "add/subtract?", 
"shift?' and "multiply by 0?". 

Figure 4 shows part of the synaptic array. Each synaptic operator includes an 8 bit 
shift register memory block holding the synaptic weight. T1 . A 3 bit bus for the 5 
neural states runs horizontally above each synaptic row. Single phase dynamic 
CMOS has been used with a clock frequency in excess of 20 MHz [13]. Details of 
a synaptic operator are shown in figure 5. The synaptic weight Tij  cycles around the shift register and the neural state V is present on the state bus. During  the first 
clock cycle, the synaptic weight is multiplied by the neural state and during the 
second, the most significant bit (MSBit) of the resultant T.1  V. is sign . extended for 
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Figure 3. "Hard - threshold", 5 - state and sigmoid activation functions. 

Figure 4. Section of the synaptic array of the 5 - slate activation function neural net-
work. 

8 bits to allow for word growth in the running summation. A least significant bit 
(LSBit) signal running down the synaptic columns indicates the arrival of the LSBit 
of the x running total. If the neural state is ±0.5 the synaptic weight is right 
shifted by 1 bit and then added to or subtracted from the running total. A multipli-
cation of ± 1 adds or subtracts the weight from the total and multiplication by 0 



xO.5 
I 

IO.O TIVJ 
+I 

\\ - V. 	I I 
I Jp 

Add/Subtract 
T1, 

Add! 

Subtract 	I L 

Carr 

Figure 5. The synaptic operator with a 5 state activation function 

does not alter the running summation. 

The final summation at the foot of the column is thresholded externally according 
to the 5 - state activation function in figure 3. As the neuron activity x,,, increases 
through a threshold value x,, ideal sigrnoidal activation represents a smooth switch 
of neural state from -1 to 1. The 5 - state "staircase" function gives a superficially 
much better approximation to the sigmoid form than a (much simpler to imple-
ment) threshold function. The sharpness of the transition can be controlled to 
"tune" the neural dynamics for learning and computation. The control parameter is 
referred to as temperature by analogy with statistical functions with this sigmoidal 
form. High "temperature" gives a smoother staircase and sigmoid, while a tempera-
ture of 0 reduces both to the "Hopfield" - like threshold function. The effects of 
temperature on both learning and recall for the threshold and 5 - state activation options are discussed in section 4. 

4. LEARNING AND RECALL WITH VLSI CONSTRAINTS 

Before implementing the reduced - arithmetic network in VLSI, simulation experi-
ments were conducted to verify that the 5 - state model represented a worthwhile 
enhancement over simple threshold activation. The "benchmark" problem was 
chosen for its ubiquitousness, rather than for its intrinsic value. The implications 
for learning and recall of the S - state model, the threshold (2 - state) model and 
smooth sigmoidal activation ( 	- state) were compared at varying temperatures 
with a restricted dynamic range for the weights T,,. In each simulation a totally 
interconnected 64 node network attempted to learn 32 random patterns using the 
delta rule learning algorithm (see for example [14]). Each pattern was then cor-
rupted with 25% noise and recall attempted to probe the content addressable 
memory properties under the three different activation options. 

During learning, individual weights can become large (positive or negative). When 
weights are "driven" beyond the maximum value in a hardware implementation, 



which is determined by the size of the synaptic weight blocks, some limiting 
mechanism must be introduced. For example, with eight bit weight registers, the 
limitation is -128 	127. With integer weights. this can be seen to be a prob- 
lem of dynamic range, where it is the relationship between the smallest possible 
weight (± 1) and the largest (+ 127/428) that is the issue. 

Results: Fig. 6 shows examples of the results obtained, studying learning using S - 
state activation at different temperatures, and recall using both 5 - state and thres-
hold activation. At temperature TO, the 5 - state and threshold models are 
degenerate, and the results identical. Increasing smoothness of activation (tempera-
ture) during learning improves the quality of learning regardless of the activation 
function used in recall, as more patterns are recognised successfully. Using 5 - state 
activation in recall is more effective than simple threshold activation. The effect of 
dynamic range restrictions can be assessed from the horizontal axis, where T 	is 
shown. The results from these and many other experiments may be summarised as 
follows:- 

5 - State activation vs. threshold: 

Learning with 5 - state activation was protracted over the threshold activation, 
as binary patterns were being learnt, and the inclusion of intermediate values 
added extra degrees of freedom. 

Weight sets learnt using the 5 - state activation function were "better" than 
those learnt via threshold activation, as the recall properties of both 5 - state 
and threshold networks using such a weight set were more robust against 
noise. 

Full sirnoidal activation was better than 5 - state, but the enhancement was 
less significant than that incurred by moving from threshold -. 5 - state. This 
suggests that the law of diminishing returns applies to addition of levels to the 
neural state V1. This issue has been studied mathematically [15], with results 
that agree qualitatively with ours. 

Weight Saturation: 

Three methods were tried to deal with weight saturation. Firstly, inclusion of a 
decay, or "forgetting" term was included in the learning cycle [1]. It is our view 
that this technique can produce the desired weight limiting property, but in the time 
available for experiments, we were unable to "tune" the rate of decay sufficiently 
well to confirm it. Renormalisation of the weights (division to bring large weights 
back into the dynamic range) was very unsuccessful, suggesting that information 
distributed throughout the numerically small weights was being destroyed. Finally, 
the weights were allowed to "clip" (ie any weight outside the dynamic range was set 
to the maximum allowed value). This method proved very successful, as the learn-
ing algorithm adjusted the weights over which it still had control to compensate for 
the saturation effect. It is interesting to note that other experiments have indicated 
that Hopfleld nets can "forget" in a different way, under different learning control, 
giving preference to recently acquired memories [16]. The results from the satura-
tion experiments were:- 

For the 32 pattern/64 node problem, integer weights with a dynamic range 
greater than ±30 were necessary to give enough storage capability. 
For weights with maximum values T, 	= 50-70, "clipping" occurs, but net- 
work performance is not seriously degraded over that with an unrestricted 
weight set. 



15 

10 10 
o / 	! 

I 

0 F 
z 

I- 
I 

I- 

V 

I SJS 

I 

Is T=30 

T20 ------ 
T=10 ............ 
T=0 

----S 

.5... 

ru 

 

0 20 30 40 50 60 70 

Limit 
0 20 30 40 50 60 70 

Limit 
5 - state activation function recall 	"Hopficld" activation function recall 

Figure 6. Recall of patterns learned with the 5 - stare activation function and subse-
quently restored using the 5-state and the hard - threshold activation functions. 
T is the "temperature", or smoothness of the activation function, and "limit" the value 
Of Tr'. 

These results showed that the 5 - state model was worthy of implementation as a 
VLSI neural board, and suggested that 8 - bit weights were sufficient. 

S. PROJECTED SPECIFICATION OF A HARDWARE NEURAL BOARD 

The specification of a 64 neuron board is given here, using a 5 - state bit - serial 64 
x 64 synapse array with a derated clock speed of 20 MHz. The synaptic weights are 
8 bit words and the word length of the running summation x is 16 bits to allow for 
growth. A 64 synapse column has a computational latency of 80 clock cycles or 
bits, giving an update time of 4p.s for the network. The time to load the weights 
into the array is limited to 60ps by the supporting RAM, with an access time of 
120ns. These load and update times mean that the network is executing 1 x iO 
operations/second, where one operation is ± T1,,V1. This is much faster than a 
natural neural network, and much faster than is necessary in a hardware accelera-
tor. We have therefore developed a "paging" architecture, that effectively "trades - 
off' some of this excessive speed against increased network size. 
A "moving - patch" neural board: An array of the 5 - state synapses is currently 
being fabricated as a VLSI integrated circuit. The shift registers and the 
adder/subtractor for each synapse occupy a disappointingly large silicon area, allow-
ing only a 3 x 9 synaptic array. To achieve a suitable size neural network from this 
array, several chips need to be included on a board with memory and control circu-
itry. The "moving patch" concept is shown in figure 7. where a small array of 
synapses is passed over a much larger n x n synaptic array. 

Each time the array is "moved" to represent another set of synapses, new weights 
must be loaded into it. For example, the first set of weights will be T11 ... 	... T 21  

T 21  to Ti,. the second set T1 .,. 11  to T etc.. The final weight to be loaded will be 
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Figure 7. The "moving patch" concept, passing a small synaptic "patch" over a larger 
nxn synapse array. 

T,.,,. Static, off - the - shelf RAM is used to store the weights and the whole opera- 
tion is pipeined for maximum efficiency. Figure 8 shows the board level design for 
the network. 

Synaptic Accelerator Chi 

HOST 

Figure S. A "moving patch" neural network board. 

The small "patch" that moves around the array to give n neurons comprises 4 VLSI 
svnaptc accelerator chips to give a 6 x 18 synaptic array. The number of neurons to 
be simulated is 256 and the weights for these are stored in 0.5 Mb of RAM with a 
load time of 8ms. For each "patch" movement, the partial running summation. 1. 



calculated for each column, is stored in a separate RAM until it is required to be 
added into the next appropriate summation. The update time for the board is 3ms 
giving 2 x iO operations/second. This is slower than the 64 neuron specification, 
but the network is 16 times larger, as the arithmetic elements are being used more 
efficiently. To achieve a network of greater than 256 neurons, more RAM is 
required to store the weights. The network is then slower unless a larger number of 
accelerator chips is used to give a larger moving "patch". 

6. CONCLUSIONS 

A strategy and design method has been given for the construction of bit - serial 
VLSI neural network chips and circuit boards. Bit * serial arithmetic, coupled to a 
reduced arithmetic style, enhances the level of integration possible beyond more 
conventional digital. bit - parallel schemes. The restrictions imposed on both synap-
tic weight size and arithmetic precision by VLSI constraints have been examined 
and shown to be tolerable, using the associative memory problem as a test. 

While we believe our digital approach to represent a good compromise between 
arithmetic accuracy and circuit complexity, we acknowledge that the level of 
integration is disappointingly low. It is our belief that, while digital approaches 
may be interesting and useful in the medium term, essentially as hardware accelera-
tors for neural simulations, analog techniques represent the best ultimate option in 2 
- dimensional silicon. To this end, we are currently pursuing techniques for analog 
pseudo - static memory, using standard CMOS technology. In any event, the full 
development of a nonvolatile analog memory technology, such as the MNOS tech-
nique [7], is key to the long - term future of VLSI neural nets that can learn. 
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Asynchronous VLSI Neural Networks 
Using Pulse-Stream Arithmetic 

ALAN F. MURRAY AND ANTHONY V. W. SMITH 

.4bstro.t - The rel.axionship between neural netnorks and VLSI is ex-
plored- An introduction to neural networks relates the Hopfield model and 
the Delta learning rule to Grossberg's desaiption of neural drnamics. .4 
computational style is described that mimics that of a biological neural 
network, using pulse-stream signaling and analog summation. Digitall 
programmable weights allow learning networks to be constructed. Func-
tional and structural forms of neural and s'itapiic functions are pesented, 
along with simulation  results. Finalh a neural network implemented in 
3- m CMOS is presented with pcelimin.ar  measurements. 

I. INTRODUCTION 

A NEURAL network is a massively parallel array of 
simple computational units (neurons) that models 

some of the functionality of the human nervous system 
and attempts to capture some of its computational strengths 
[1]—[3]. The abilities that a synthetic neural net might 
aspire to mimic include the ability to consider many 
solutions simultaneously, the ability to work with cor-
rupted or incomplete data without explicit error correc-
tion, and a natural fault tolerance. This latter attribute, 
which arises from the parallelism and distributed knowl-
edge representation, gives rise to graceful degradation as 
faults appear. This is attractive for VLSI. 

Current research into computation by synthetic neural 
networks falls into essentially three broad categories. The 
first category is that of mathematical description and 
analysis of the dynamical and learning properties of neural 
nets, often working from biological or psychological exem-
plars (see, for example. [41). The second, perhaps largest. 
research effort uses computer simulation, often based on 
array processor or other supercomputer architectures, to 
model and extend these mathematical descriptions and 
demonstrate their correctness (see, for example. [5]). The 
third group of research topics, into which this paper falls. 
aims to implement either particular neural functions, or 
classes of neural net, as LSI/VLSI hardware. A review of 
this work, at Edinburgh and elsewhere, appears in Section 
II of this paper. 

At present, there is no application area for which neural 
networks are clearly the optimal solution, and it has been 
demonstrated that a more conventional solution is often 
better [6]. We do not believe, however, that this is the 
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result of inherent weaknesses of neural networks. Knowl-
edge of how neural networks should be designed. and how 
they should be programmed (or "taught") is rudimentary 
in comparison to knowledge of conventional computer 
architecture and programming techniques. This knowledge 
is advancing rapidly. however, and apparently small mod- 
ifications of learning procedures in particular can enhance 
the computational power of a network considerably [51. In 
addition, planar silicon technology is almost certainly not 
the ultimate medium in which neural networks will find 
their power fully realized. Three-dimensional biological 
materials are intrinsically better suited to the essentially 
three-dimensional form of a neural net. but their useful-
ness as understandable and predictable "circuit-building" 
media is a long way off. It is our view that to delay 
research into implementation of neural networks until 
analysis and simulation demonstrate their full power and a 
better technology emerges would be shortsighted. There is 
much to learn from LSl VLSI implementation, and any 
hardware networks developed will be able to make rapid 
use of developments in network design and learning proce-
dures to solve real problems. 

In Section II of this paper we offer an engineer's per-
spective on neural computation. followed by an overview 
of LSI, VLSI neural research in Section III. In Section IV 
we describe our neural architecture and computation style. 
while Sections V and VI give circuit forms and results. 
respectively. Finally, we suggest future work and possible 
application areas for neural boards based on our chip set. 

II. SYNTHETIC NEURAL NETWORKS: 
AN ENGINEER'S PERSPECTIVE 

The neural literature is rife with obfuscation of simple 
ideas by confusing jargon which often means something 
quite straightforward. This section places the formalism 
and principles of neural network research into engineering 
language, in order that the problems may be appreciated. 
and to form a basis for discussion of our own implementa-
tion style. 

.4. Descriptive 

Fig. I shows, in schematic form, a network consisting of 
four neurons. In engineering language, a neuron is a state 
machine that is normally ON or OFF, although it may in 

00I8-9200/88,0600-0688$1 .00 1988 IEEE 



Excit(or Synapse 

Inhibitory Synapse 

Fit. 1. A netork of four neurons, denoted by circles. 

ral switch smoothly between these extremes. assuming-
mediate 

ssuming
mediate states as it does so. In the nervous sstem. a 
)fl signals that it is ON by firing electrical pulses along 
atput or axon. and that it is OFF by ceasing to fire 
s. Each axon may fork to form connections. poten-
to all other neurons in the network. These connec-

(inputs) are made through synapses, which are repre-
d as triangular caps in Fig. 1. The function of the 
)se is to gate the signal from the transmitting neuron 
that it may be more or less excitatory or in.hibitorv to 
ceiving neuron: an excitatory input tends to turn a 

)n ON. and an inhibitory input tends to turn it OFF. 

nstance. neuron 3 receives the output from neuron 1 
input. gated b' afactor :31. that may be positive. 

ive. or zero. In Fig. 1. it is shown as a positive 
atorv) synapse. The synapses have therefore the ef-
if weighting the response of any neuron to its inputs 
all the others. and the total weighted sum changes the 
Df activity of the neuron. Neural activity may also be 
ised by direct simulation of the neuron from sources 
Ic the network (external inputs). 

network will therefore have an infinite number of 
'le states. corresponding to all combinations of the 
dual neural states (ON. OFF, or somewhere in be- 

The set of synaptic weights determines the stable 
and represents the learned information in the svs-
earning is therefore a process by which the synaptic 

ts are changed to add to the network's store of 
edge. As a simple example. let us set the intercon-
weights between neurons 0 and 2 and also those 
en neurons I and 3 as large and positive (excitatory). 
let us set all other interconnect weights large and 
ye. The stable states will clearly be those with neu-
and 2 ON and neurons I and 3 OFF, and vice versa. 
network is forced into some other state. it will 

ate toward one or the other of these two preferred 
It is this dvnamw behavior that is at the heart of 
computation. 

zihemarical Description of a Neural .Verwork 

discussion in this section is necessary to aive an 
:iation of how a neural network changes in time, and 
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therefore how its computation proceeds. Only in this wa 
can the full challenge for LSV VLSI he appreciated, and 
the advantages of analog and digital implementation styles 
assessed. The ensuing discussion may seem unnecessaril 
detailed in an engineering context, but this article is aimed 
at the nonspecialist. viho may not have encountered neural 
nets before, and it is necessar to explain the ground rules. 

We will he2in with a pair of equations irutialI proposed 
by Grossberg [1] that describe the dnamic behavior of a 
set of neurons and their synaptic weights. The equations 
are a combination of a phenomenological description of 
what is known to occur in the nervous sstem. extended by 
conjecture as to ho it might work in detail. These equa-
tions carry a level of generality unmatched by any other 
description of synthetic neural networks, so they form a 
good starting point for a discussion of more restricted 
neural models. The equations have implications on the 
response of the network to external stimuli, and on the 
process of learning. To make contact with the enormous 
body of work done b Grossberg. much of which is 
ignored by the neural modeling community, we begin with 
his generalized form. and indicate how the general model it 
describes can be related to more simplified models. 

These equations describe the time evolution of a set of n 
neurons whose states are represented as I S J or V 
These variables have the limits 0 V < 1 and - I s S 1. 
Grossberg's analysis uses a nonnegative l. There is. how-
ever, a one-to-one mapping between a description with 
— I < S. I and one with 0 < V _< 1. The descriptions are 
therefore equivalent, and we may concentrate on the latter 
(f V 	0)) model for the present without loss of generality. 
The neural state V is related to the total neural Jctivit\ 
stimulated by inputs to the neuron through an acriation 
function F. The neural activity may be thought of as the 
level of excitation of the neuron. and the activation func-
tion as the way it reacts (by altering its state V) in 
response to a change in activation. Neural acu%itN is 
represented by a number .t that is not bounded in the 
same way as V. and whose magnitude is changed either b%-
interactions 

y

interactions from other neurons in the network via the 
synapses, or by direct stimulation from an external source. 
The neural output state V is related to the neural activity 
x, by 

= F(x). 	 (1) 

The activation function F ensures that V is 1 for .V large 
and 0 for x1  small. The details of switching between these 
ON and OFF states are determined b the details of the 
activation function F. The function 

1 
- 

i—exp 	 I 

Ti 

is a widely accepted realistic sigmoid' or "S-sh.ired' 
activation function, representing a smooth switch of :eural 
state Vfrom 0 to 1 not firing to firing as neuron activity 



X, Increases through a threshold value ,. T controls the 
sharpness of the transition. The dynamic behavior of a 
network of n neurons is then described by [1] 

dx 	 i 
- A,x, 	: 	- 	:V, 1, (t) (3) 

1-0 	 j-O 

and 
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the inputs from the other neurons with excitatory synaptic  
connections (say neurons I and 2). and decreased by those  
from neurons with inhibitory connections (0). In addition 
an external stimulus / 3  may be applied to affect the  
neuron's activity directly. Grossberg asserts that inhibitors 
connections are hard-wired and do not change during 
learning. This restriction is removed here. but the excita-
tory and inhibitory terms in (3) are kept separate to 
preserve the original form at this stage. 

Continuing the example. (4) implies that synapse 
constantly forgets a portion of itself, and learns new data 
by altering the synaptic weight : 3  whenever both the 
learning signal from neuron 1(V1 ) and activity of neuron 3 
(x3 ) are both positive. The speed of learning is controlled 
by D,,. Learning is therefore caused by correlations be-
tween the presnaptic input V1  and the post-synaptic 
activity x3. This is consistent with the accepted idea of 
learning from psychology, where repetition of an action 
(neuron 1 increasing neuron 3's activity) causes the action 
to be learned (by increasing neuron l's influence on neu-
ron 3 via :31). 

Our network style models the smoothly varying and 
asynchronous form of (3) directly, as does any fundamen- 
tally analog network implementation. However, simulation 
work cannot do this, and learning as yet always proceeds 
by incremental, discrete steps. Ideally, both the neural 
activities and states ((V, } and ( xj) would change con-
tinuously, but understanding of learning mechanisms is 
such that examples of such unsupervised learning are rare 
(but see [7] for an example). The foUowing three subsec-
tions give some examples of how (3) and (4) can be 
stepped in time to simulate smooth network dynamics and 
learning. 

1. Hopfield and Other Simplified Models -Network Dv-
namics: Equation (3) may be written in a simpler form. if 
we merge the inhibitory and excitatory matrices (i.e.. some 
of the : are ç 0) to give 

= - B 1: + D, j U q(x,). 	 (4) dt 

These two equations form a general description of the way 
a network's states ( V} (via (F(x,))) and synaptic inter-
connect weights { :, } develop in time. Changes of state 
result from input stimuli (I,(r)} and interneuraj interac- 
tions :,j. 	,. and A, while the :,, change as learning 
occurs. The rate of change of the synaptic weights must be 
much slower than that of the neural states. or confusion 
results. The function u,(x,) represents a particular 
(threshold-linear) activation function. U q(X,) = 0 for x,< q. 
and U q(X,) = x, for x > q. The variables in (3) and (4) are 
as follows. 

x - Neural Acrwzj-: Quantifies the total level of activ-
ity in neuron i mediated by input stimuli and interneural 
interactions. 

- Excitatory (Jnhthitorv) Synaptic 3eighzing 
Function: Quantifies the weighting from neuron j to neu-
ron i imposed by the relevant synapse. Learning changes 
this term. Grossberg splits the {:,,) into a path-dependent 
component and a true synaptic component. which is not 
necessary for this discussion. 

.4, - Self-Term: This term represents the passive decay 
of neural activity in the absence of both synaptic input and 
direct external input. The solution to (3) is then 

x,(z)=x,(0)xet. 	 (5) 

- Input to Neuron i: The details of .1, are dependent 
on the network's function and environment. However, in 
principle. I can be made allowed to force a state on the 
network, or may be switched off completely, to allow the 
network to settle. 

- Forgetting Term: Represents passive decay of syn-
aptic weight if B,, is a constant. Memory loss is modulated 
if B,, is variable, 

Vj  - Neural Stare: Describes the state of neuron j. 
- Neural "Learning Signal": This variable describes 

the state of neuron j in the same way as J', although 
allowance is made for a different activation function relat-
ing ' to X. (a different definition of neural state for 
learning purposes). 

- Learning Strength.' This allows learning to be 
modulated for each synaptic link. 

The meaning of the terms in 2) and (3) may be related 
to the network in Fig. 1 as follows, using neuron 3 as an 
example (i = 3). The activity of neuron 3 decays in time 
owing to the self term - A 3 x.,. Its activity is increased by 

dx 	 i-n-i 

j-0 	

V,(r)i-I,(t). 	(6) 

The time evolution of the state of the network may there-
fore be written as 

dx, 
x.(t)--.tx---. 	(7) 

This can be written. incorporating (6). as 

x,(t+At) = X, (t) 

+ ,t - .41x, ± 	 (i )± I,(t ) 	(8) 

for small .t. 
If ,t is taken to be a small constant increment in time. 

this equation can be stepped in time to simulate the 
dynamic behavior of the network. In particular, if we 
choose z = A,- '. and if 7, = :,,A, and f(t) = 
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becomes 

f - fl  - i 

x(t+At) =x(z)+ 	 (1) -1- 

	

' (f). 	(9) 
j-O 

s expression for neural activity is exactly that given by 
pfield [2] for his neural model, with the restriction that 

0 and V, = 0 or 1. with no intermediate values. It is 
rth remarking here that this represents a time step .t 

is far from small, as .4 is a weak passive decay, and 
is therefore large. Hopfield's network updating scheme 

hus an extremely crude representation of time evolution 
cnbed by (6). We have found that use of a much 
Liler .t. and incremental update of the { ) as is 
ilie,d by (8) produces more elegant dynamic behavior. 

much greater immunity from instability and oscilla-
i. Hopfield also applies a step activation function. 
x,) = 0 for x, < q, and h q(X,) = 1 for x1 > q. to give a 
me for updating a set of neural states ( VJ to give a 

'set 

(10) 

Hopfield and Other Simplified Models — Learning: 
ating a link between Grossberg's learning equation (4) 
the simple storage prescription described by Hopfield 

s also possible, although the conditions for equivalence 
less trivial. If we expand (4) in the same way as we 
anded (3) to give (8). we get an expression for iterating 

of the form: 

+ t) = T 1(t) 

	

+ .i[- B7r)- E1 y(t)u0 (x,(0)j. 	11) 

approach Hop field's formula, we must first replace 
) by the step function h0 (x,) described in the previ-

section. As in (10). we must also choose h0(x) as the 
ation function relating ('(t)} and (V,(t)) to the 

iities (x1(t)). Equation (11) then becomes 

(r + r) 	1(t)+ .z[— B,T,(t)+ E,1 (t)V1(z)J. 

(12) 

field's learning strategy. or "storage prescription" ad-
the synaptic weights {7,} to store a set of .V input 

ors { V(n )}. In other words, the { V,(n)) become stable 
s of the network. For the network to "learn" the 
s through (12), it must be held in each of the states 
n)} for a fixed time At. while the synaptic weights 
ye according to (12). If the synaptic weights are mi-

{T 3 (0)}. and are (7(n)} after exposure to the nth 
t vector, then (12) gives 

2) = T, ( n — 1) 

At B,1 (n-1)±E.V(n-1)V(n—Id. ( 13) 

define new constants of the network 31 , = Bt and  

c, 	E,,.i, this updating scheme gives a final form once 
A .V vectors ( V,(n)l have been presented to the network: 

7 *V) = (1-8,) 7(0) 

'I- 

V -fl 

(14) 

If we start with a set of null weights. { T,1 (0) = 0}. and 
there is no forgetting term in the learning equation (i.e.. 
B,1  = 0 and therefore 3, = 0). then, for c ,, = 1 (E,' = 
this gives 

T(.V)V(n)V(n) 	(15) 

This is the Hopfield storage prescription, and again it must 
be said that this represents a large value for .t. and 
therefore a coarse time stepping of (11). 

3. Other Learning Recipes: There are many other learn-
ing algorithms. We show in this section how the delta rule 
[8]. [9] can be related to the learning equation as expressed 
in (11) above. The delta rule imposes incremental learning 
whereby synaptic weights are altered in a series of steps 
until optimal storage is achieved. Between synaptic weight 
updates, the neural states are allowed to evolve in a 
controlled way to study the effects of the last weight 
change. This strategy amounts to allowing first (4) to 
dictate the weight changes. and subsequently (3) to dictate 
the state changes. This separation is necessary to allow 
simulation. In both cases, as for the Hopfield storage 
prescription. we must remove the forgetting term" from 
(11) and replace u0(x) by V1. The equation for a single 
synaptic update then becomes 

T.1(t+ At) 	T.,(t)+.iE 7 (t)V(t) 	(16) 

Both the learning algorithms begin by forcing the values 

{ V(n)} of a particular vector to be stored on to the 
neurons in the network. The synaptic weights are then held 
constant while the (V  ) are allowed to evolve for a time At. 
Therefore. V(s) = '(n) and 

V(r.-.  It) =ho ( 

The desired response { Vn) is then compared with the 
actual response (V.(t .r)). and the result used to com-
pute changes to the svnaptc weights. The evolution of the 
next neural state is achieved by switching off the I,(t). and 
the network state develops according to (10). It is the 
subsequent change in the (7'., } at time t + It via (16) that 
gives rise to learning. 

For the delta rule. the learning signal is derived from the 
discrepancy between the actual and desired response of the 
network: 
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The resultant increment to 7, is then given by allowing T,, 
to evolve for a time .t'. with the neural states returned to 
their forced "desired" values, and the learning signal de- 
fined b (17): 

x J' (n). 	(18) 

This is equivalent to the Delta rule. 
4. Computational Requirements: Regardless of the up-

dating scheme, and even if a direct implementation of (2) 
is attempted, the largest computational load is incurred by 
the weighted summation 
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Most effort in implementation of VLSI networks is con- 
centrated on forming this sur 
tially) n_1 

terms, and it is this i, which contains (poten- 
calculation that can over- 

whelm conventional computers. 

III. A REVIEW OF LSI/ VLSI NEURAL 

NETWORK IMPLEMENTATIONS 

design techniques are advanced, automated, and 
well- understood;  
noise immunity is high: 
computational speed can be very high: and 
learning networks (i.e.. those with programmable 
weights { 7,}) can be implemented readily. 

However, for neural networks, there are several unattrac-
tive features: 

digital circuits of this complexity must be synchro-
nous, while real neural nets are asynchronous: 
all states, activities, etc. in a digital network are 
quantized: and 
digital multipliers. essential to the neural weighting 
function. occupy large silicon area. 

B. A nalog Neural Networks 

The benefits of analog networks are more subtle: 

asynchronous behavior is automatic: 
smooth neural actiation is automatic: and 
circuit elements can he small.  

While on the debit side: 

noise immunity is low: 
arbitrarily high precision is not possible: and 
worst of all, no reliable analog, nonvolatile memory 
technology exists. 

Digital technology has not been used extensively to build 
neural networks, although digital supercomputers have 
been used extensively in simulation work. Two distinct 
VLSI approaches are being taken. In the first, a high-speed 
multiplier is used in a multiplexed mode to calculate 

i —,' -1  

J -o 

[10]. Combined with a microprocessor, supporting memory 
and a custom communications chip set, this forms an 
impressive neural hardware accelerator, capable of updat-
ing (for example) a network with 256 neurons, each with 
1024 inputs, in 70 ms. A contrasting approach uses a larger 
number of bit-serial pipelined custom VLSI multipliers, 
with lower precision arithmetic, to implement  a board 
capable of updating a similar network in under 2 ms [11]. 

Both approaches highlight a problem in VLSI neural 
implementations, in that the stored weights {T} have to 
be made available to the multiplication circuitry. In an 
architecture where a small number of multipliers is used. 
this means careful communications and fast memory access 

Where larger numbers of multipliers are present. local 
memory must be provided and loaded from standard RAM 

 

This problem also occurs in analog networks, although it 
is outweighed by the total lack of an analog memory 
capability. As a result, almost all analog VLSI implemen-
tations are nonprorarnmable and therefore have fixed 
functionality, Subthreshold MOS device characteristics 
have been used to mimic the nonlinearjtjes of neural 
behavior, in implementing Hopfield style nets [12], associa-
tive memory [13]. visual processing functions [14]. and 
auditory processing [15]. Another major research group 
uses electron-beam programmable resistive interconnects 
to represent synaptic weights between more conventional 
operational-amplifier neurons [16]. [17]. This work has also 
spawned an associative memory device using digital mem-
ory to store weights, and analog techniques to perform 
arithmetic [181. The work reported in the latter portion of 
this paper, which has been previewed elsewhere [19]. [20), 
uses a similar blend of digital and analog electronics, with 
greater precision in the interconnect weights. An interest-
ing development is the use of charge-coupled device 
(CCD)/metal nitride oxide silicon-(MNOS) technology to 
store analog weights. and thus keep the entire neural 
system analog, and yet programmable [21]. It is not yet 
clear how reliable, nonvolatile, and accurate the pro-
grammed weight memory will be. but this work indicates 
in our view the ultimate direction that must be taken to 
develop a true analog memory, even if unusual technology 
is necessary. Other architectural and computational styles 

This catalog of activity is not exhaustive, as its purpose 
is to place the work reported in this article in the context 
of other attempts at implementation, rather than to be a 
definitive review. Neural network implementations fall into 
two broad categories—digital and analog—and we are 
active in both areas. We begin this review, therefore, by 
contra—sting these two distinct approaches and highlighting 
their strengths and weaknesses. 

A. Digital Neural Networks 

The strengths of a digital approach are almost self-
evident. They are: 
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c been proposed using variously charge-coupled device 
hnology [2-11 and switched-capacitor techniques [23]. but 
se have yet to be tested in silicon. 

'1osi of the analog work is influenced, or at least 
pired. by the work of Hopfield and Tank [24]. who 

wed via simulation how neural functionality can be 
:thesized by networks of operational amplifiers, and 

nonstrated the technique via an elegant solution of the 
qultous "traveling salesmen" problem. 

IV. NEURAL NETwORK ARCHITECTURE AND 

COMPUTATIONAL STYLE 

his section discusses the architecture, signaling strategy. 
I computational style used, without reference to de-
ed MOS circuitry. 

Overall Architecture 

rig. 2 shows the architecture of a single network of n 
thy interconnected neurons. Neurons, represented by 

les. signal their states 114',  upward into a matrix of 
aptic operators. The state signals are connected to an 
it horizontal bus running through this synaptic array. 
h a connection to one synaptic operator in every coi-
n. Each column consists. therefore. of a operators. 
Loted by squares. each adding a new contribution 7, to 
running total of activity for the neuron i at the foot of 
column. This action is detailed for synapse T10  in the 
ram. The function of the neuron is therefore to apply a 

noidal function to this activity x, to determine a neural 

e . The synaptic function is to multiply a neural state 
by a synaptic weight T (stored in memory local to the 
aptic operator). and add the result to a running total. 
highlight this action. the path from neuron 1 to neuron 
a T10  shown in black in Fig. 1 for the small network, is 
ed in Fig. 2. 

'his architecture has many attractions for implementa-
1 in two-dimensional silicon: 

the large summation 	 is distributed in 
space; 
the interconnect requirement (n inputs to each neu-
ron) is distributed through a column. reducing the 
need for long-range wiring to an n-bit state bus: 
the architecture is modular. and can be expanded or 
cascaded with ease: and 
the architecture is regular. 

Signaling Mechanism 

i/c have thven the name "pulse stream" to the signaling 
hanism used by the neural circuitry. The process is 
lagous to that found in natural neural systems, where a 
ron that is ON fires a regular train of voltage spikes (at 
ite R 	pulses per second) on its output (or axon). 
Ic an OFF neuron does not. We use this signaling 
hanism exacilv. in that one of our synthetic neuron 

uits receives a weighted summation from its input 

Jn 

Ouipni 

Fig. 2. Generic network irchitecture isehematic: 	neuron. C = 
synaptic weighting opia:or. The interconnect path from neuron 1 to 
neuron 0 is highlighted. 

Presvnaptic Signal V 

Chopping Clock <I)  

Posts, riaptic Signal TJ 

at 

Presnaptic Signal 

Chopping Clock 

Postsynaptic Signal TV 

Fig. 3. Pulse-stream w.j.ng: al with chopping signals slower than 
neural pulses. and (bi :in chopping s12.nals much faster than neural 
pulses. 

synapses (in the column above in Fig. 2). and operates 
upon this activity to decide a state and a firing rate. 

We also do arithmetic directly on these streams of 

pulses. by restricting the synaptic weights to —1 	1. 
The state of a neuron l is represented by a firing rate R,. 
such that R =0 for = 0. and R.  = RJ  for =1. We 
may therefore multipiv the state (and therefore perform 
the synaptic function) by (say) one half (from V = I to 

= 0.5) by removing half of the presynaptic pulses. Simi-

larly, we can multiply by 0.25 by removing three quarters 
of the pulses and so on. The product TV therefore 
becomes the original pulse stream representing k. gated 
by a signal that allows the appropriate fraction of pulses 
through. 

Fig. 3 shows this with a neural state V..A "chopping " 
signal (t' is introduced that is asynchronous to all neural 
firing, and is logicath -high" for exactly the correct frac-
tion of time to allow the appropriate fraction T., of the 

presynaptic pulses through. In Fig. 3(a. the chopping 
clock has a frequenc well below RX.  and appropriately 

sized bursts of comple'.e neural pulses are allowed through. 

In Fig. 3(b). each neural pulse is chopped by a signal that 
is of higher frequency than R. It will be shown that 

either of these two methods will work. 
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Fig. 4. Neural functional block (schematic). 
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Fig. 5. Synaptic weight functional block (schematic). 

Neuron Function 

The neuron function is illustrated in Fig. 4. The neuron 
is shown as receiving excitatory and inhibitory inputs, and 
producing a state output. In the diagram. the neuron is 
initially OFF, with relatively weak inhibition reinforcing 
this state. The onset of stronger excitation turns the neu-
ron ON, and it commences firing at its maximum rate 
R'. and is subsequently switched OFF by strong inhibi- 
tion. 

Synaptic Weighting Function 

The synaptic function is also straightforward at the 
functional level. Fig. 5 shows a single synapse block. The 
(positive or negative) synaptic weight T is stored in 
digital memory. To form the product TV,, the presyn-
aptic neural state is gated according to the chopping 
signals derived from 7,. The resultant product. T,2k. 

th 	
is 

added to the running total propagating down eier the 
excitatory or inhibitory activity channel, to add one term 
to the running total, as shown. One binary bit (the MSBi) 
of the stored T. determines whether the contribution is 
excitatory or inhibitory. 

V. NEURON .&Nn SYNAPSE CIRCUIT Eiitcrs 

In this section. the function blocks outlined in Section 
IV for neural and synaptic functions are expanded into 
MOS circuitry. 

A. Neuron Circuit 

Fig. 6 shows a pulse-stream neuron i. The output stage 
consists of a ring oscillator whose natural frequency is 
R'. driving a "pulse generator," to convert the oscillator 
square wave into a sequence of short pulses. Both the 
oscillator frequency and the pulse length are determined 
by time constants related to different transistor ON resis-
tances and capacitor values. 

The oscillator loop is broken by a NAND gate. The NAND 
gate acts as an inverter, completing the ring, if the neuron 
"activity." x,, is 0 V. and causes the oscillator to fire if x, 
is 0 V. The transition between these two states as x, rises 
or falls is smooth, if rapid. The neural activity is repre-
sented by the voltage level on the capacitor on the NAND 
gate input. To determine this activity level, the streams of 
aggregated inhibitory and excitatory pulses are applied to 
an "integrator" circuit. A p-channel transistor dumps a 
small packet of charge on the integrating capacitor 
whenever an excitatory pulse reaches its gate. while an 
n-channel device removes packets of charge when inhibi-
tory pulses arrive at its gate. In the diagram. the excitatory 
pulses are more frequency (i.e., the excitation exceeds the 
inhibition), and the neural activity rises as more charge is 
dumped than is removed. As a result, the neuron switches 
ON, and begins to fire. 

B. Synaptic Weighting Circuit 

Fig. 7 shows a pulse-stream synapse T, with precision 
M bits. The M chopping signals 4. 	.-(P, are intro- 
duced to match the binary bits 0-M of the synaptic 
weight, while the M + l'th bit determines the sign of the 
weight. Clock (I), is high for 50 percent of the time, clock 

for 25 percent, clock 4> 2  for 12.5 percent. etc. 
The NAND gates attached to the weight bits will therefore 
allow 50, 25, 12.5 percent (etc.) of the presvnaptc pulses in 
V through, if the corresponding bits of T, are logically 
high. The chopping signals are asynchronous to the neuron 
firing signals and the network dynamics, but synchronized 
to one another. In fact, the sets of chopping signals to 
different synapses, rows or columns of synapses. or groups 
of synapses need not be synchronized provided the signals 
within such a set are synchronized to one another. 

The chopping clock signals selected by the bits of 
are then oRed to form the total chopping clock, which 
C  ates the presynaptic neural signal V via an AND gate. The 
resultant product signal TV,, is subsequently ORed onto 
the appropriate output channel, according to the MSBit of 
TIP . 

As stated in Section IV. the chopping signals can be 
either much slower or much faster than the neural fining 
rate. Provided the aggregated pulse streams are integrated 
over a time constant much longer than either the chopping 
clock period or the firing rate period. it is the proportion 
of time during which the total input signal is hi--h that 
matters. This will be the same in both cases, reardless of 
whether bursts of entire pulses or fragmented pulses are 
incident on the neuron inputs. 
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VI. RESULTS 

LSS Section gives a summary of the results (from both 
lation and silicon). Simulation results are presented 
e actual oscilloscope traces are uninformative owing 
ng exposure times. At the time of writing this paper. 
ull neural board was under construction. and not 
fore available. Full results will be published in due 

hvsical Layout 

z. 8 shows an overall chip photograph. and Fig. 9 a 
I. from the s\naptic array. At present. the neural 
ion is realized in SSI/MSI parts to allow maximum 
)thty in the choice of capacitor values, and therefore 
constants. The chip integrates 64 synapses (each as 
n in Fig. 9). each occupying 200x400 4m2. so  the 
chip area is 16 mn. It should be noted that the 

ction on chip complexity in this application is funda- 

mentally one of pin count, rather than of area. As Fig. 8 
shows, some silicon area is wasted, because the standard 
frame used precludes the availability of extra pins to 
support further synapses. 

Fig. 9 shows a block of 3 x 3 synapses. Observe at the 
center synapse that the lower section is a 5-bit shift reg-
ister. which has a parallel output. and corresponds to the 
5-bit T, memory element. The upper part is that of the 
controlling logic which gates the chopping clocks with the 
various bits of the shift register before directing to either 
of the inhibitory or excitatory output. 

B. Simulation Results 

Fig. 10 shows a device level (SPICE) simulation of the 
neural circuit in Fig. 6. The neural potential is the integra-
tor output. representing x. A strong excitatory input 
causes the neuron to turn ON. during which time the neural 
potential can be seen to rise in steps (corresponding to 



0 	 Time tTUCroseconds 

Fig. 10. Analog (SPICE) simulation of neural circuit. A neuron initial]-, 
ort is switched ON by an excitatory input, and subsequenth. switched 
OFF by stronger irthiotuon. 

0S 	 Time 	 55S 

Fit. 9. Synapse (chip photograph). 
	 Fig. 11. Input and output waveforms for a synapse weight of —0.625, 
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packets of charge being dumped on the integrator capaci-
tor) until the ring oscillator begins to fire. Subsequently, a 
stronger inhibitory input removes charge packets from the 
capacitor at a higher rate, driving the neural potential 
down and switching off the ring oscillator. The firing" 
pulses therefore cease. 

C. Actual Results 

Figs. 11 and 12 show traces from a synapse circuit. The 
upper four signals in the photograph are the chopping 
clocks 00 —(D3 .The clock with the longest high period 
corresponds to the MSB, and the shortest to the LSB of 
T11. The fifth trace is the presynaptic input which is firing 
constantly. The sixth and seventh traces can be ignored as 
they relate to the loading of weights. The eighth and ninth 
traces are, respectively, the inhibitory and the excitatory 
outputs from the synapse (progressing down the summa-
tion column in Fig. 7). Fig. 11 corresponds to a weight T, 
of 0.625. All the selected pulses are directed onto the 
excitatory output line while the inhibitory line remains 
high, as there are, as yet. no in1iibio -  pulses propagating 
down this column. Fig. 12 corresponds to a weiaht of 
—0.5625. The pulses are let throu2.h on l and 04  but not 

ogs 	 Time 

Fig. 12. Input and output waveforms for a synapse weight of - 0.5625. 

on the 1, and 	. If 4, represents 0.5 and 	represents 
0.0625 then the weight is equal to 0.5-4-0.0625 = 0.5625. 
Since the pulses are directed to the inhibitory line, the 
weight T1 , is —0.5625. 

VII. CoNcLusioNs AND Ft.m,.-i,g WORK 

.At present. work is in progress to assemble a neural 
board. interfaced to a host computer for loading weights 
and initiating computations. The board will comprise a 
small number of neurons initially ( = 16) to test the tech-
nique properly, and to acquire some experience in control- 
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the dynamics of this unusual circuit form. Subsequent 
us trial penod, we hope to assemble a more significant 
-stream network computer, with enough neurons to 
rm real tasks. 
e initial application area enisaged for our hardware 

automation of the Grossberg, Carpenter classifier 
ork [7), although the "learning" portion of the net-
's behavior will still be time stepped. 
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Abstract 

A computational style is described that mimics 
that of a biological neural network. Circuit 
forms of neural and synaptic functions are 
presented. 

1. Introduction 
A neural network is a massively parallel 

array of simple computational units (neurons) 
that models some of the functionality of the 
human brain and attempts to capture some of its 
computational strengths [1,2]. In engineering 
terms, a biological neuron (say member i of a 
network of n neurons) is a unit that signals its 
state V, by the presence ("on") or absence ("off') 
of voltage pulses on its output, or axon. Neuron 
i decides its state by computing its activity x, 
which can be altered both by direct stimulation 
of the neuron from outside the network, and by 
contributions from other neurons in the net-
work. The contributions from other neurons is 
weighted by interneural synaptic weights {T1 }, 
and the state of neuron i is given by:- 

(1=" 
V = f (x1) = f I I T V1  + ! 	( 1) 

Sf' 	 ) 

The activation function f (xi ) defines the range 
and resolution of V1 , and the smoothness with 
which a neuron moves between the "off' and 
"On" states. I, is a direct input to neuron i, that 
may be made arbitrarily strong to force a value 
On V. Synaptic weights {T,.} may be positive 
(excitatory) or negative (in.ibitorv). and any 
neuron may therefore tend to turn any other 
neuron either "on" or "off' respectively. Infor-
mation is encoded in, or "learnt' by the network 
by altering the long term memory storage ele-
rnents {T1 }. Recall or computation is then per-
formed as the network moves around in the it - 
dimensional space defined by the {v } with the 
{T, } Constant. This is equivalent to a recursive 
and asynchronous evaluation of (1) until equili-
brium is reached. 

Synchronous simulation of neural networks 
.O'erwhelms even a supercomputer if it is large. 
as (1) requires n 2  multiplications for each net-
"ork update cycle. Simplified neural models 
have been developed to reduce this requirement. 
bY Simplifying f (xe ) to a simple threshold func- 
tiO 	and limiting V1  to 0 or 1 [2]. Until 
recentI. svrnhetjc neural networks existed only 

conceptual or simulation models. Systems are 
being developed that implement neural networks 

as VLSI devices using purely analogue circuit 
elements [3, 4, 5], or as synchronous digital logic 
[6]. This paper describes a computational style 
that uses the same "pulse stream" signalling 
mechanism as the biological neuron, and is con-
sequently asynchronous, imposes no limitations 
on the activation or neural state variables {V}, 
and allows the synaptic weights to be of arbitrary 
precision. The importance of asynchronous 
behaviour is not yet clear, but smoothness of the 
activation function is known to benefit the 
network's dynamical behaviour [7]. High preci-
sion in the {T,} is not essential [6], and a small 
word length may be acceptable. 

2. Implementation 

Fig. 1 shows the architecture of the net-
work. The summation (1) is not the result of it 
individual and simultaneous multiplications and 
additions. The operations are distributed in 
space and time such that k'th element from the 
foot of column i of the synaptic array has as its 

input the running total Z T,1  V1 . 
j = k -1 

The next term TkVk is added, and the element's 
j=,' 

output is ZT J VJ . The network's state, 
j=k 

expressed in the { V }, is held on a horizontal n 
- bit bus through the array. Each array element 
is associated with a particular T., held locally in 
digital memory. The input 1, may appear either 
at the top of column i. or as a direct input to the 
neural potential at the foot of the column. 

We are evaluating two techniques. both of 
which use streams of pulses to imitate a firing 
neuron. We shall refer to these as the Tiio - 
Wire and the Ternary systems. The two systems 
differ only in the form of the signals propagating 
through the synaptic arrav 

2.1. The Two Wire System. 

Fig. 2 shows a circuit for a pulse - stream 
neuron. The incoming excitatory and inhibitory 
pulse stream inputs to the neuron are integrated 
to give a synaptic potential that varies smoothly 
from 0 to 5V. This potential controls makes r 
breaks) a feedback loop with an odd number of 
logic inversions. The effect of this is :o form a 
switched 'ring oscillator'. If the inhibitory input 
dominates, the voltage V(4) is a logic 0. and the 
feedback loop is broken. If excitatory spikes 
appear at the input and the integrator output 
rises to 5V, the feedback loop oscillates with a 
period determined by the delay around the loop. 
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The resultant periodic waveform is then con-
verted to a series of voltage spikes. This 
behaviour is qualitatively that of the neuron 
described by equation (1). The potential at the 
integrator output represents of the total activity 
of the neuron, x1 , and the pulse rate on the out-
put is the neural state V. This is an elegant and 
simple realisation of the postsnaptic neural 
function. Unfortunately, the synaptic (multiply 
and add) function is more difficult to realise. 

The requirement of equation (1) is that a 
weighted sum of n neural states be taken. The 
pulses are asynchronous, and their width is small 
compared with their separation. Therefore, 
OR'ing the pulse streams together is a good 
approximation to adding them. Multiplication is 
achieved by 'chopping" the input states in time 
using the circuit shown in Fig. 3. 

A set of p-i clock signals (where p is the 
wordlength of the synaptic weights) is required, 
and the weights are stored in local p-bit regis-
ters. The clock timing is not related to the that 
of the pulse streams, and the system is dynami-
cally asynchronous. The presynaptic input V. is 
chopped to allow a fraction of the pulse stream 
(controlled by bits 0 to p-2 of T1 ) through to 
either the inhibitory or the excitatory sum line, 
depending on the most significant bit of the 
synaptic weight. 	p-2 allows 50% of the pulse 
stream through if bit p-2 of 7',, is 1, 

5p-3 allows 
a further 25% through if bit p-3 of T1  is 1, and 
so on. The left and right hand signal paths then 
represent running totals of the excitatory and 
inhibitory activities respectively. A complete 
pulse - stream neural network is assembled by  
placing a neural circuit (Fig. 2) at each of the 
neuron locations (C in Fig. 1) and a synaptic 
circuit (Fig. 3) at each of the synapses ( in 
Fig. 1). Synaptic weights are loaded via a serial 
path. under control of a synchronous clock. 

2.2. The Tertiary System 

Where the interneural signals in the 2-wire 
synaptic array exist as separate inhibitory and 
excitatory pulse streams, the tertiary system 
reduces this to a single multi - level pulse 
stream. This reduces the interconnect require-
ment at the expense of circuit complexity. 

Fig. 4 shows a tertiary synapse. In the terti-
ary system an excitatory pulse is represented by a 

- V spike and an inhibitory pulse by a 
OV spike on the same ivire. A three level 

rower rail system is used to provide the voltage 
levels recuired A tertiary neuron in the 'off 
state Outputs a constant 2.5V. whereas the 2-

-.'-,u-, On outputs a constant OV. The wired - 
OR rechnicue is used to sum the snapric out-
puts on a single wire representing the total post-
synaptic signal in a single column of the synaptic 
array. Careful analogue des] 	ensures that 
equal inhibitory and excitatory snals balance to 
produce an average 2.5V. In the tertiary pulse 
;tream neuron, a single input controls the oscil- 
ator. 

References 

S. Grossberg, "Some Physiological and 
Biochemical Consequences of Psychological 
Postulates," Proc. Nat!. Acad. Sci. USA. 
vol. 60. pp. 758 - 765, 1968. 

J. J. Hopeld, "Neural Networks and Phy-
sical Systems with Emergent Collective 
Computational Abilities," Proc. Nat!. 
Acad. Sci. USA. vol. 79, pp. 2554 - 2558. April, 1982. 

H. P. Graf. L. D. Jackel, R. E. Howard. 
B. Straughn. J. S. Denker, W. Hubbard. 
D. M. Tennant. and D. Schwartz. "VLSI 
Implementation of a Neural Network 
Memory with Several Hundreds of Neu-
rons," Proc. AlP Conference on Neural Net- 
works for Computing, Snowbird. pp. 182 - 
187, 1986. 

M. A. Sivilotti, M. R. Emerling, and C. 
A. Mead. "VLSI Architectures for Imple-
mentation of Neural Networks" Proc. Al? 
Conference on .Veurai .Verworks for Compur-
ing. Snowbird. pp. 408 - 413. 1986. 
J. P. Sage. K. Thomon, and R. S. With-
ers. "An .1rtifjcij Neural Network 
Integrated Circuit Based on MNOS/CC 
Principles." Proc. AIP Conference 
Neural Ner.iorks for Compuring, Snoiabjrf.  
PP. 381 - 385. 1986. 

A. F. Murray. A. J. \V. Smith. and Z. 
Butler. "VLSI Impiementation of Neu.-z; 
Networks" IEEE Con ference on .Veur 
Information Processzn Systems - 
and Sv,zr/zetic De,'nep-. 1987 (to he pub-
lished).. 

S. Grossberg and D. S. Levine. "Activa- 
tion Functions." J. Theoretical Biology. 
vol. 53. p. 341. 1975. 

Results 

The synaptic circuit (Figs. 3 and 4) has 
been implemented in 3pm CMOS technology 
and functions correctly. Presently the 2-wire 
synaptic circuit (Fig. 3) is in fabrication being 

m implemented in 3i CMOS technology. Fig. 5 
shows a device level (SPICE) simulation of the 
neural circuit in Fig. 2. (V4) is the integrator 
output, representing x,. A neuron initially in 
the "off" state is turned "on" by the onset of an 
excitatory input, and subsequently "off' by a 
stronger inhibitory input. 

Conclusions 

A computational strategy has been 
described that captures the collective, asynchro-
nous nature of neural computation The "arith-
metic" is of low precision, as is that in the 
microstructure of the brain. A neural board is 
being developed using VLSI devices operating 
with this novel signalling and calculatory style. 
This work was supported by the Science and 
Engineering Research Council. 
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VLSI BIT - SERIAL NEURAL NETWORKS 

Zoe F. Butler, Alan F. Murray and Anthony V.W. Smith 

INTRODUCTION 

A synthetic neural network can be viewed as a large parallel array of n 2  synaptic 
operators, (for n neurons) that is able to model some of the brain's characteristics. 
The VLSI neural network described, functions with bit-serial, two's complement 
arithmetic and uses a single phase clocking technique operating at a minimum of 20 
MTHz (McGregor et al 1987). 

A synthetic neuron is a state machine that is either "on" or "off', assuming inter-
mediate states as it switches smoothly between these extrema. A synapse weights the 
signal from a transmitting neuron such that it is more or less excitatory or inhibitory 
to the receiving neuron. The total level of activation of a neuron is represented by 
its activity, x. This is related to the state of the receiving neuron by an activation 
function, f, that describes its response to a change in activation. Biologically, this 
function is sigmoidal, but in our synthetic network it is simplified so that V, = 1 when xi  is large and -1 when xi is small, with 3 states in between. The interneural 
synaptic weights, T,,, are the contributions from other neurons, that are weighted by 
the receiving neuron. Therefore, the state of neuron i in an n - neuron array is given by:- 

jR 1 
V, = f (xi) = f ( Y, T11  V1  + l) 	 (1) 

Synaptic weights may be positive (excitatory) or negative (inhibitory) and any neu-
ron may tend to turn any other neuron "on" or "off' respectively. Ii  is a direct input 
that may be arbitrarily strong to force some value on v,. The synaptic weights, 
determine the stable states and represent the information learned by the network. 
Learning is therefore, a controlled modification of the {T, } to adjust the stable states. 
Recall or computation is performed as the network moves around the a - dimen-
sional space defined by the neural states vi,, with the {T } constant. 
The neural architecture is based on eqn. (1). It involves n 2  digital multiplications and 
summations in an array of n totally interconnected neurons. This is relatively 
straight forward in a network with fixed functionality. However, if the network is to 
be able to learn patterns, the synaptic weights must be programmable, thus making it 
more complicated. 
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NETWORK COMPUTATION AND DESIGN 

An advantage of bit-serial arithmetic in a neural network is it minimises the inter-
connect requirement by eliminating multi-wire busses. Pipelining makes optimal use 
of the high bit-rates possible in serial systems allowing good communication within 
and between VLSI chips. The primary advantage of using digital CMOS circuitry is 
that on-chip digital memory design is more easy to implement than any analogue 
counterpart and can be easily incorporated for the programming and storage of the 
synaptic weights. Design techniques are advanced, automated and well understood, 
and noise immunity and computational speed can be high. 
Architecture 

The general neural architecture in figure 1 shows a single network of n totally inter-
connected neurons. A neuron is represented by a circle, with its column of n 
synapses (shown by squares) communicating with all other neurons in the array. 
Each synaptic operator adds the weighted contributions from other neurons down the 
column. When the total summation reaches the foot of the column, the neuron 
thresholds it according to the 5-state activation function shown in figure 2. The new 
state of the neuron is then signalled back to the array. The state signals are con-
nected to a n bit bus running across the synaptic array, with a connection to a 
synaptic operator in every column. Therefore, the two functions of a synaptic opera-
tor are to multiply the signalling neuron state v, by the synaptic weight, T,,, and to 
add the product to the running total of activity. For example, in figure 1, neuron 3 
signals its state v3, to neuron 1 along the dark path shown, and the product T 13V 3  is 
added to the running total in column 1. 

Neural States { V } 

/4 

Figure 1 Generic Architecture for a totally interconnected 
n - neuron network. 
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Reduced Arithmetic 

Full digital multiplication can be expensive in silicon area, but the 5-state activation 
function allows reduced arithmetic to be used. Hence, multiplication of a synaptic weight by V1 = 0.5 simply requires the synaptic weight to be right-shifted by 1 bit. 
Likewise, multiplication by 0.25 involves two right-shifts of 

{ T11  }, and multiplication 
by 0.0 is easy. A negative (inhibitory) neuron state is not problematic, as a switch-
able adder/subtractor is only slightly more complicated than than an adder. Hence, 

5 neural states can be easily obtained from circuitry a little more complex than the 
simple adder required for 2 states (Hopfield, 1982). The neural state bus expands 
from a 1 bit to a 3 bit representation where the 3 control bits are add

/subtract?, shift? and multiply by zero? 

Details of a synaptic operator are given in figure 3. Each operator has an 8 bit 
shift register memory holding its synaptic weight. During computation, the synaptic 
weight cycles round the register while the neural state is signalled on the 3 bit bus 
running horizontally above each synaptic row. A complete synapse computation 
requires two complete shift register cycles (16 clock cycles). During, the first cycle 
the synaptic weight is multiplied by the neural state and during the second, the 
MSBjt of the resultant T1, v is sign-extended for the remainder of the shift register 
cycle. This allows a maximum 8 bit word growth in the running summation. The 
LSBit of each neuron's running summation is indicated by an LSBit signal running 
down the synaptic column. 

The final 16 bit summation at the foot of the column is thresholded according 
to its activation function. As the neuron activity x,, increases through threshold value x, 

(figure 2), the ideal activation represents a smooth switch of neural state 
from -1 to + 1. The 5-state "staircase" function gives a better approximation to this 
than the 2-state threshold function Control of the sharpness of this transition can 
"tune' the neural dynamics for learning and computation. The control parameter is 
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Figure 3 Synaptic Operator with a 5-state activation function. 

referred to as temperature by analogy to statistical functions with this form. Higher 
temperatures give the staircase and sigmoid a lower gradient. 

LEARNING AND RECALL OF THE ACTIVATION FUNCTIONS 

Software simulations of learning and recall capabilities of the 5-state model were 
compared with those of the 2-state and sigmoid activation functions at varying tem-
peratures with a restricted dynamic range for the synaptic weights. A 64 node net-
work in each simulation attempted to learn 32 patterns using the delta rule algorithm 
(Rumethart 1986). Results showed that the 5-state activation function learned the 
weight sets 'better" than the 2-state activation function. The sigrnoid activation was 
still superior to the 5-state, but the discrepancy was noticeably less than between the 
5-state and the 2-state activations. The best method to deal with weight saturation 
during learning was to permit any weight outside the dynamic range to be set to its 
maximum value. A full discussion of these results can be found in Murray et al, 
1987. 

HARDWARE NEURAL BOARD 

A 5-state synaptic operator array is being fabricated in 3m CMOS technology. Full 
custom layout allowed a 12 x 9 synaptic array in a 64 pin package and figure 4 shows 
part of the design. Several chips, therefore, need to be wired together with memory 
ICs and control circuitry to achieve a suitable size network for simulations. 

Neural Paging Architecture 

A neural board has been designed with 4 synaptic chips wired together giving a 12 x 
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Figure 4 Silicon Layout of a Synapse in the Array. 

9 synaptic array. The small array will be used in a paging architecture to give a net-
work of 256 neurons that will act as a neural accelerator to a host computer. The 
paging architecture can be thought of as a "moving patch", where the small array or 
patch will simulate a small number of synapses in a large array, and then pass onto 
the adjacent patch to repeat the computation until all 256 synapses have been simu-
lated. This idea is shown in figure 5. Each time the array is moved to represent 
another set of synapses, the weights for that patch must be loaded into it. For exam-
ple, the first set of weights to be loaded will be T 11.. .T 1,12  .. .T 1. . .T 212.. .T 91  to T 912, 
the second set to be loaded will be T101.. .T 102......T 18,1  to T 1 . The final weight to 
be loaded is T 66  etc.. The memory required for 256 neurons is 0.5 Mbits of static 
RAM. A RAM speed of 70ns will allow the weights to be loaded in 9ms. A larger 
number of neurons can be simulated by simply loading the extra synaptic weights 
into more memory. 

The "patch" will move down the 1st set of 12 columns to compute the complete 
running activities. It will then compute the 2nd set, 3rd set etc., until each set has 
been computed. For each "patch" simulation in the array, the emerging partial run-
ning summations of the 12 partial column blocks, are synchronised to coincide with 
the top of the running summation of the new patch. This ensures that each column 
has a contribution (excitatory or inhibitory) from each synapse. As the total sum-
mations occur for each block, they are stored in an on - board static RAM as indi-
cated in the board design in figure 6. 

When the total summation has been completed in each column, the neurons' 
activities are thresholded off - board according to the 5 - state activation function. 
The new neural states are signalled back to the synaptic accelerator chips for the next 
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array computation. Once the states become stable, the synaptic weights are adjusted 
accordingly until learning is complete. 



Control Circuitry 

Microcode control circuitry operates all RAM loading and accessing and control sig-
nals to the synaptic accelerators. The flow diagram in figure 7 shows the small con-
trol overhead required, along with the timing of all operations for a complete update 
of 256 neurons. The calculated update time for the board is ims giving 6 x 10 
operations/second. The number of synaptic accelerators determines the operating 
speed. A faster speed or more neurons and the same speed would require more 
accelerators. Hence, the design is versatile in that any specification for network size 
and speed can be met easily. 
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Figure 7 Flow Diagram of the Control Operation. 



CONCLUSIONS 

The design method has been given for the construction of a VLSI neural hardware 
accelerator and its implementation in a neural board. Bit-serial, reduced arithmetic 
improved the level of integration compared to more conventional digital, bit-parallel 
schemes. The restrictions on synaptic weight size and arithmetic precision by VLSI 
constraints have been examined and proved to be tolerable, using the associative 
memory problem as a test. 

The digital design gives a good compromise between arithmetic accuracy and 
circuit complexity, but the level of integration is disappointingly low. This has been 
somewhat overcome by the paging architecture of the neural board to enable the 
simulation of a large number of neurons. It is our belief that, while digital 
approaches are useful in the medium term, especially as hardware accelerators, 
analogue techniques represent the best ultimate option in 2 - dimensional silicon. 

The authors acknowledge the support of the Science and Engineering Research 
Council (UK) in the execution of this work. 
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VLSI NEURAL NETWORKS 

A. F. Murray, Z. F. Butler and A. V. W. Smith 

1. INTRODUCTION 

Synthetic neurons are simple computational units operating in massively parallel arrays, that capture 
some of the functionality and computational strengths of the brain. In engineering terms, a biological 
neuron (for example, member i of a network of n neurons) is a unit that signals its state V1 , by the 
presence ("on") or absence ("off') of voltage pulses on its output, or axon. Neuron i decides its state 
by computing its activity x, which can be altered by direct stimulation of the neuron from outside the 
network and by contributions from other neurons in the network. The neuron state, V, is related to 
x by an activation function, f. Neural activity is the level of excitation of the neuron and the activa-
tion function describes its response to a change in activation. The contributions from other neurons 
are weighted by interneural synaptic weights {T11 }. The state of neuron i in a n - neuron array [1] is 
then given by:- 

1=1-1 
V = f (xi) = 	V + i) 

j=O 
	 (1) 

The activation function f (x1 ) defines the range and resolution of V, and the smoothness with which 
a neuron moves between the "off' and "on" states and ensures that (say) V is 1 when x, is large and 
-1 when x1  is small. I is a direct input that may be arbitrarily strong to force a value on V. Synaptic 
weights {T} may be positive (excitatory) or negative (inhibitory) and any neuron may tend to turn 
another neuron "on" or "off' respectively. Information is encoded in or "learnt" by the network by 
altering the long term memory storage elements {T}. Recall or computation is performed as the net-
work moves around the n - dimensional space defined by the {V} with the {Tq } constant. This is 
equivalent to a recursive and asynchronous evaluation of eqn. (1) until equilibrium is reached. The 
neural function is straightforward, but in a totally interconnected n - neuron array, eqn. (1) requires 
n 2  multiplications and a large number of interconnections for each network update cycle. Therefore, 
the challenge in VLSI is to design a simple, compact synapse with minimal inter-synapse connections 
that can be easily implemented in silicon. This is relatively simple for a network with fixed functional-
itv. However if the network is to be able to learn, it becomes more complicated as the synaptic 
weights must be programmable. 

2. NEURAL NETWORK ARCHITECTURE 

There are fundamentally two approaches to implementing any function in silicon - digital and analo-
gue. The two neural systems designed here use a hybrid analogue/digital method and a bit-serial digi-
tal method. The general architecture (logical and layout), used by both designs is shown schemati-
cally in figure 1. This is a single network of a totally interconnected neurons. Neurons are 
represented by circles, that signal their states, V1  upward into a matrix of synaptic operators. The state 
signals are connected to a n bit horizontal bus running across the synaptic array, with a connection to 
a synaptic operator in every column. Each column has a operators (denoted by squares) that add 
their synaptic contribution T1  V1 , to the running total of activity for the neuron i at the end of the 
column. The synaptic function is therefore to nu1tip1v the signalling neuron state. V1 , by the synaptic 
weight, T, and to add this product to the running total. 

This type of architecture has many attractions for implementation in 2 - dimensional silicon as the 
summation is distributed in space. The interconnect requirement is distributed through a column, 
reducing the need for long-range wiring. The architecture is modular, regular and easily expanded. 

The hybrid analogue/digital system: This uses a "pulse stream" method similar to that in a natural 
system. Neurons indicate their state by the presence or absence of pulses on their outputs and synaptic 
weighting is achieved by time-chopping the presvnaptic pulse stream prior to adding it to the post 
synaptic activity summation. It is therefore asynchronous and imposes no fundamental limitations on 
the activation or neural state. Figure 2 shows the pulse stream mechanism in more detail. The synap-
tic weight is stored in digital memory local to the synapse. Each synaptic operator has an excitatory 



and inhibitory pulse stream output. The resultant product of the operation, T,, V1 , is added to the run-
fling total propagating down either the excitatory or the inhibitory channel. One binary bit (the 
MSBit) of the stored T11  determines whether the contribution is excitatory or inhibitory. The incom-
ing excitatory and inhibitory pulse stream inputs to a neuron are integrated to give a neural activation 
potential that varies smoothly from 0 to 5 V. This potential controls a feedback loop with an odd 
number of logic inversions and thus forms a switched "ring-oscillator". If the inhibitory input dom-
inates, the feedback loop is broken. If excitatory spikes subsequently dominate at the input, the neural 
activity rises to 5 V and the feedback loop oscillates with a period determined by a delay around the 
loop. The resultant periodic waveform is then converted to a series of voltage spikes, whose pulse rate 
represents the neural state, V. A 64 synapse array using this method has been fabricated in 3fJ. 
CMOS technology. The work outlined here has been reported in greater detail elsewhere [2. 3,4]. 
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Figure 1. Generic architecture for a network 
	

Figure 2. Pulse stream arithmetic. Neurons are 
n totally interconnected neurons. 	 denoted by 0 and synaptic operators by C. 

The bit-serial digital system: This system again comprises an array of a 2  interconnected synchronous 
synaptic operators. The major difference between the two, is that the pulse stream method allows V1  
to assume all values between "off' and "on", whereas the bit-serial network is constrained to 5-states 
which are V = 0, ± 0.5 or ± 1. The resultant activation functions for the pulse stream and 5-state 
networks are shown in figure 3. Multiplication of Tq  by {V = 0.51 simply requires that T,, be tight-
shifted by 1 bit and multiplication by 0 requires the product to be set to 0. V1  < 0 is implemented in 
a switchable adder/subtractor. Figure 4 shows details of synaptic operators in the array. Each operator 
has an 8-bit shift register memory block holding the synaptic weight, which is "multiplied" by the 
neural state, V1 , signalled on a 3-bit bus. The running summation T 3  V1  is 16 bits to allow for word 
growth down the column. A least significant bit (LSBit) signal running down the synaptic columns 
indicates the arrival of the LSBit of the x. running total. 

The final value of the activity arriving at the neuron in each column is thresholded externally accord-
ing to the 5-state activation function in figure 3. As the neuron activity increases through a threshold 
value x7 , the ideal activation represents a smooth switch of neural state from -1 to +1. The 5-state 
"staircase' function gives a superficially much better approximation to the form than the (simpler to 
implement) threshold function. The sharpness of the transition affects the neural ability for learning 
and computation. The control parameter is referred to as "temperature" by analogy to statistical func-
tions with this form. High temperature gives a smoother staircase and sigmoid and zero temperature 
reduces the simoid to the threshold function. 

LEARNING AND RECALL CAPABILITIES WITH VLSI CONSTRAINTS 

Learning and recall capabilities of the 5-state function were simulated in software against those of the 
2-state threshold model and the sizmoidal activation, at varying temperatures with a restricted 
dynamic range for the weights, T,1 . In each simulation a totally interconnected 64 node network 
attempted to learn 32 patterns using the delta rule algorithm [5]. Each pattern was then corrupted 
with 25 % noise. The results showed that weight sets learnt using the 5-state activation function were 
"better" than those learnt via the threshold activation. Recall of the patterns was also more effective 
with the 5-state model. Full sigmoid activation was superior to the 5-state, but the enhancement was 
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less significant than that incurred by moving from threshold to 5-state. The best method to deal with 
weight saturation during learning was to permit any weight outside the dynamic range to be set to its 
maximum allowed value. These results showed that the 5-state model was worthy of fabrication at a 
VLSI level and implementation on a neural board. A full discussion of the results can be found in [6]. 

4. A HARDWARE NEURAL BOARD 

A specification has been calculated for a 64 neuron board using a 5-state bit-serial 64 x 64 synapse 
array. The weight set is stored in supporting RAM with an access time of 120 ns. This limits the 
weight loading time to the RAM to 60 jis. These load and access times enable the network to operate 
at 1 x 10 operations/second where one operation is ± T.1V1. This is much faster than a natural 
neural network and faster than is necessary in a hardware accelerator. A "paging" architecture has 
therefore been developed to "trade-off' some of this excessive speed for increased network size. 
A "moving-patch" neural board: An array of the 5 - state synapses is currently being fabricated as a 
VLSI integrated circuit using singe phase 3.i. CMOS technology. [7]. The full custom layout for each 
synapse occupies a disappointingly large silicon area, allowing only a 3 x 9 synaptic array. To achieve 
a suitable size neural network from this array, several chips need to be included on a board with 
memory and control circuitry. The "moving patch" concept is shown in figure 5, where a small array 
of synapses is passed over a much larger n x n synaptic array. Each time the array is "moved" to 
represent another set of synapses, new weights must be loaded into it. For example, the first set of 
weights will be T 11  ... T,1  ... 	..I T 1  to T jj , the second set T 1  to T etc.. The final weight to be 
loaded will be Tm,. Static, off-the-shelf RAM is used to store the weights and the whole operation is 
pipelined for maximum efficiency. Figure 6 shows the board level design for the network. The small 
"patch" that moves around the array comprises four VLSI synaptic accelerator chips to give a 6 x 18 
synaptic array. The number of neurons to be simulated is 256 and the weights for these are stored in 
0.5 Mb of RAM with a load time of 8rns. For each "patch" movement, the partial running summa-
tion, i, calculated for each column, is stored in a separate RAM until it is required to be added into 
the next appropriate summation. The update time for the board is 3ms giving 2 x iO 
operations/second This is slower than the 64 neuron specification, but the network is 16 times larger, 
as the arithmetic elements are being used more efficiently. To achieve a network of greater than 256 
neurons, more RAM is required to store the weights. The network is then slower unless a larger 
number of accelerator chips is used to give a larger moving "patch". 

5. CONCLUSIONS 

Strategies and design methods have been given for the construction of a hybrid analogue/digital VLSI 
neural network chip and a bit-serial VLSI network and board. Bit-serial and "reduced-style" arith-
metic enhances the level of integration beyond more conventional digital, bit-parallel schemes. The 
restrictions imposed on both synaptic weight size and arithmetic precision by VLSI constraints have 
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been examined and shown to be tolerable, using the associative memory problem as a test. 

While we believe our digital approach to represent a good compromise between arithmetic accuracy 
and circuit complexity, we acknowledge that the level of integration is disappointingly low. It is our 
belief that, while digital approaches may be interesting and useful in the medium term, essentially as 
hardware accelerators for neural simulations, analogue techniques represent the best ultimate option 
in 2 - dimensional silicon. To this end, we are currently pursuing techniques for analogue pseudo - 
static memory, using standard CMOS technology. In any event, the full development of a nonvolatile 
analogue memory technology, such as the MNOS technique [8], is key to the long - term future of 
VLSI neural nets that can learn. 

The authors acknowledge the support of the Science and Engineering Research Council (UK) in the 
execution of this work. 
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FULLY-PROGRA]VIMLE ANALOGUE VLSI DEVICES 
FOR THE IMPLEMENTATION OF NEURAL NETWORKS 

Alan Murray, Anthony Smith, Lionel Tarassenko 

INTRODUCTION 

A neural network is a massively parallel array of simple computational units (neu-
rons) that models some of the functionality of the human nervous system and 
attempts to capture some of its computational strengths (see Grossberg 
(1968),Hopfield (1982),Lippmann (1987)) The abilities that a synthetic neural net 
might aspire to mimic include the ability to consider many solutions simultane-
ously, the ability to work with corrupted or incomplete data without explicit error - 
correction, and a natural fault - tolerance. This latter attribute, which arises from 
the parallelism and distributed knowledge representation gives rise to graceful 
degradation as faults appear. This is attractive for VLSI. 

Planar silicon technology is almost certainly not the ultimate medium in which 
neural networks will find their power fully realised. Three - dimensional biological 
materials are intrinsically better suited to the essentially three - dimensional form 
of a neural net, but their usefulness as understandable and predictable "circuit - 
building' media is a long way off. It is our view that to delay research into imple-mentation of neural networks until analysis and simulation demonstrate their full 
power and a better technology emerges would be short - sighted. There is much to 
learn from LSL1VLSI implementation, and any hardware networks developed will 
be able to make rapid use of developments in network design and learning pro-
cedures to solve real problems. 

NEUR%L NETWORK ARCHITECTURE AND COMPUTATIONAL STYLE 

This section discusses the architecture, signalling strategy, and computational style 
used, without reference to detailed MOS circuitry. 

Overall Architecture 

Neurons signal their states { v, } upward into a matrix of synaptic operators. The 
state signals are connected to an n - bit horizontal bus running through this svnap-
tic array, with a connection to one synaptic operator in every column. Each 
column consists, therefore, of n operators. each adding a new contribution T, to 



the running total of activity for the neuron i at the foot of the column. The func-
tion of the neuron is therefore to apply a sigmoidal function to this activity x, to 
determine a neural state V1 . The synaptic function is to multiply a neural state v 
by a synaptic weight T (stored in memory local to the synaptic operator), and add 
the result to a running total. 
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This architecture has many attractions for implementation in 2 - dimensional 
silicon 

J =" -1 
The large summation 	T,1  V,  is distributed in space. 

j=Q 

The interconnect requirement (n inputs to each neuron) is distributed through a 
column, reducing the need for long - range wiring to an n - bit state "bus". 

The architecture is modular, and can be expanded or cascaded with ease. 
The architecture is regular. 

Signalling Mechanism 

We have given the name "pulse stream" to the signalling mechanism used by our 
neural circuitry. The process is analagous to that found in natural neural systems. 
where a neuron j that is 'on" fires a regular train of voltage spikes ( at a rate RJ U 

puLces'sec ) on its output (or axon), while an "off' neuron does not. We use 
exactly this siaffing mechanism, in that one of our snthetic neuron circuits 
receives a weighted summation from its input synapses-'and    operates upon this 
activity to decide a state, and a firing rate. 

Arithmetic operates directly on these streams of pulses, with synaptic weights in 
the range —i 	. The state of a neuron V, is represented by a firing rate R1 , 
such that R, = 0 for 	= 0. and R, = R.m' for 	= 1. We may therefore multiply 
the state (and therefore perform the synaptic function) by (say) one half ( from 
V1  = I to V = 0.5 ) by removing half of the presvnaptic pulses. Similarly, we can 



multiply by 0.25 by removing three quarters of the pulses and so on. The product 
T V1  therefore becomes the original pulse stream representing V1 , gated by a signal 
that allows the appropriate fraction of pulses through. 

Fig. 1 shows this with a neural state V1 . A "chopping signal 	is introduced 
that is asynchronous to all neural firing, and is logically "high" for exactly the 
correct fraction of time to allow the appropriate fraction 1', of the presvnaptic 
pulses through. In Fig. 1(I), the chopping clock has a frequency well below 
and appropriately - sized bursts of complete neural pulses are allowed through. In 
Fig. 1(111), each neural pulse is chopped by a signal that is of higher frequency than 
R 	'. Both methods work.  

Ring Oscillator 

i 	

Neuron State Output Vi 

Pulse Generator 

Neuron"Activity" Ni  

Figure 2. Circuit Diagram of Pulse Stream Neuron 

Neuron Function 

The neuron receives excitatory and inhibitory inputs, and produces a state output. 
If the neuron is initially "off', with relatively  weak inhibition, the onset of stronger 
excitation turns the neuron "on', and it commences firing at its maximum rate 
R', and is subsequently switched "off" by strong inhibition. 

Synaptic Weighting Function 

The synaptic function is also straightforward at the functional level. The (positive 
or negative) synaptic weight T p  is stored in digital memory. To form the product 
T, v.., the pre-svnaptic neural state is gated according to the chopping sials 
derived from T p . The resultant product. TV, , is added to the running total pro-
pagating down either the excitatory or inhibitory activity channel, to add one term 
to the running total, as shown. One binary bit (the MSBit) of the stored 7',, deter-
mines whether the contribution is excitatory or inhibitory. 



NEURON AND SYNAPSE CIRCUIT ELEMENTS 

In this section, the function blocks outlined in § 1 for neural and synaptic functions 
are expanded into MOS circuitry. 

Neuron Circuit 

Fig. 2 shows a pulse stream neuron i. The output stage consists of a ring oscillator 
whose natural frequency is RrnU,  driving a "pulse generator", to convert the oscilla-
tor square wave to a sequence of short pulses. 

s; iIUj)IC Weight Memoryr1  

Inhibitory 	 I E'citaior 

chollping "Clock" (1), 

Chopping,  "Clock 

H 	HH! '111111 	Neural Site V 

Figure 3. Circuit Diagram of Pulse Stream Synapse 

The oscillator loop is broken by a NAND gate. The NAND gate acts as an 
inverter, completing the ring, if the neuron "activity", x,, is OV, and causes the 
oscillator to fire if x, is 5V. The neural activity is represented by the voltage level 
on the capacitor on the NAND gate input. 

To determine this activity level, the streams of aggregated inhibitory and excita-
tory pulses are applied to an "integrator" circuit. A p --channel transistor dumps a 
small packet of charge on the integrating capacitor whenever an excitatory pulse 
reaches its gate, while an a - channel device removes packets of charge when inhi-
bitory pulses arrive at its gate. In the diagram. the excitator; pulses are more fre-
quent (ie the excitation exceeds the inhibition), and the neural activity rises as 
more charge is dumped than is removed from capacitor C. As a result, the neuron 
switches "on", and bezins to fire. 

Synaptic Weighting Circuit 

Fig. 3 shows a pulse stream synapse T, with precision M hits. The M chopping 
signals 	, 1 - 	are introduced to match the binary bits 0 - M of the synaptic 
weight, while the M +  l'th bit determines the si2n 	of the eight. Clock 	is high for 50 	of the time, clock 	for 25c, clock 	for 12.5 	, etc. The 



NAND gates attached to the weight bits will therefore allow 50%, 25%, 12.5% (& 
etc.) of the presynaptic pulses in V through, if the corresponding bits of 7', are log-
ically high. The chopping signals are asnchronous to the neuron firing signals, 
and the network dynamics, but synchronised to one another. 

Figure 4. Chip Photograph 

The chopping clock signals selected by the bits of T are then OR'ed to form 
the total chopping clock, which gates the presvnaptic neural signal V via an AND 
gate. The resultant product signal, T, v is subsequently OR'ed on to the appropri- 
ate output channel, according to the MSBit of T,. 

The chopping signals can be either much slower or much faster than the neural 
firing rate. Provided the aggregated pulse streams are integrated over a time con-
stant much longer than either the chopping clock period or the firing rate period, it 
is the proportion of time during which the total input signal is high that matters. 
This will be the same in both cases, regardless of whether bursts of entire pulses or 
fragmented pulses are incident on the neuron inputs. 

RESULTS 

Physical Layout 

Fig. 4 shows a chip photograph, representing a section of the synaptic array. At 
present, the neural function is realised in discrete SSI (neuron) and custom VLSI 
(synaptic array) parts to allow maximum flexibility in choice of capacitor values. 
and therefore time constants. The chip intezrtes 64 synapses, each occupying 
00m x 400.tm. so the total chip area is 16mmt It should be noted that the res-

triction on chip complexity in this application is fundamentally one of pin count. 
rather than of area. As Fig. 4 shows, some silicon area is wasted, because the 
standard frame used precludes the availability of extra pins to support further 
synapses. 
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Simulation Results 

Fig. 5 shows a device level (SPICE) simulation of the neural circuit in Fig. 2. 
(V4) is the integrator output, representing x,. A strong excitatory input causes the 
neuron to turn "on". during which time the neural potential can be seen to rise in 
steps (corresponding to packets of charge being dumped on the integrator capaci-
tor) until the ring oscillator begins to fire. Subsequently, a stronger inhibitory 
input removes charge packets from the capacitor at a higher rate, driving the 
neural potential down and switching off the ring oscillator. The "firing" pulses 
therefore cease. 

_L__ LLLILL LI 
Lj 

Excitatcr; n: 

C Tlm2 i rncrcsecc-s 

Figure 5. SPICE Simulation of Neuron 

PULSE WIDTH MODCLTION USING ANALOGUE WEIGHTS 

We present an alteative si -nai]ing technique involving th modulation of pulse 
widths using analcije weights. This technique involves using a voltage controlled 
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resistor (VRO). This resistor is used to control the discharge rate of an inverter 
which in turn modulates the width of an output pulse. 

Fig. 6 illustrates a synapse in such a system. The synapse has two elements. 
These are an inverter (M1-M2) with programmable discharge (pull-down) resis- 
tance (M3) and circuitry to allow analogue voltages to be stored on an internal 
capacitor. 

Transistors Ml, M2 and M3 constitute the voltage controlled inverter. When a 
pulse arrives at the input to Ml and M2, a discharge occurs at node Y. M3 starts 
in saturation but rapidly moves into its linear region where it acts as a voltage-
controlled resister. Since the voltage across Cl can be modified, the discharge rate 
can be modulated. By passing this sawtooth waveform through another inverter a 
second pulse can be recovered. The width of this pulse is determined by the point 
at which the waveform at Y goes below the switching threshold of the second 
inverter. 

Analogue voltage used to control the discharge rate of the inverter is stored on 
capacitor Cl, which is implemented in CMOS technology. Standard CMOS has the 
disadvantage that the capacitor is implemented largely by storing charge on the 
transistor gate. To overcome capacitance leakage without using large capacitors 
(which require large silicon areas) or a special fabrication processes it is proposed 
that a refresh system similar to that used in DRAM's be used ( although in this 
case it is an anlogue voltage rather than a digital one which is being refreshed ). 
This has the advantage that weights can be refreshed and even changed "on the fly" 
whilst the system is in operation. The weight values are stored in external RAM 
and are converted to the analogue voltage by a DAC before being "fed" to the 
chip. The precision of the weights can be changed by altering the width of the 
memory and the DAC. The internal capacitor is addressed via a transmission gate 
indicated as M4 in Fig. 6. It is proposed that the chip will have its own internal 
refresh addressing system, with only  the clock, reset and analogue weighting signal 
being provided to the chip in order to keep the pin count to a minimum. 

RC discharge 

M1 

Y 

Output 'F1 \ 	- 

%12 

Variable resistance de ice 

rcjncscIits F.. 

Figure 6. Circuit DiaQram of Pulse Stream Weights 



Transistors Ml, M2 and M3 constitute the voltage controlled inverter. When a 
pulse arrives at the input to Ml and M2, a discharge occurs at node Y. M3 acts as 
a voltage controlled resistor, and limits the drain current to ground. Since the vol-
tage across Cl can be modified, the discharge rate can be modulated. By passing 
this signal through another inverter a second pulse can be recovered. The width of 
this pulse is determined by the point at which signal Y goes below the switching 
threshold of the second inverter. 

There are several departures from ideal behaviour. The non-linear doping 
across the chip surface leads to different resistive values for the M3 transistors for 
the same gate voltage. This can be overcome using the refresh system. Since 
weight values are stored externally, an offset value could be added or subtracted to 
compensate for this effect. The compensation values could be calculated from ini-
tialisation tests. Secondly there is the problem of mixing analogue and digital circu-
itry on the same chip. Digital circuitry can cause current spikes on the power sup-
ply lines whilst switching. To reduce the effect special power supply circuitry will 
"track" the power supply and increase the current when necessary. 

The precision of the weights is determined by noise. The noise level determines 
the voltage spacing between discrete weights, and thus the range of weights. 
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Figure 7. SPICE Simuiation of Synapse with Analcte Weights. 

Fig. 7 shows the ouput from SPICE simulations from this circuit. Initial 



simulations suggest that the control voltage will be in to region 1.7V to 2.7V. Below 
1.7v the multiplication becomes non-linear and above 2.7V the transistor becomes 
saturated. This voltage range may change as the system is developed. 

This synapse can be used as a direct replacement for the chopping synapse pre-
viously discussed. Further circuitry will be included to direct the pulse to either an 
excitatory or inhibitory line and memory will be included on chip to indicate 
whether the synapse is inhibitory or excitatory. The pulses will be OR'ed together 
and used to calculate a new neuron output as in the chopping system. 

CONCLUSIONS AND FUTURE WORK 

At present, a neural board has been assembled and interfaced to a host computer 
for loading weights and initiating computations. The board will comprises a small 
number of neurons initially (==16) to test the technique properly, and to acquire 
some experience in controlling the dynamics of this unusual circuit form. Subse-
quent to this trial period, we hope to assemble a more significant pu lse stream net-
work computer, with enough neurons to perform real tasks. Initial results show 
that the pulse stream network can be used as a content addressable memory, and 
some progress has been made in using Wallace learning algorithm for updating the 
weight set. Research is continuing into improving the neuron oscillators to minim-
ise the number of discrete external components needed to control the oscillators. 
We are presently laying out the analogue weight chip, which it is hoped will be 
fabricated within the next twelve months. 

The initial application area envisaged for our hardware is in automation of the 
Grossbergi'Carpenter classifier network (see Carpenter and Grossberg (1987)) 
although the 'learning" portion of the network's behaviour Will still be timestepped. 
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Abstract 

A computational style is described that mimics 
that of a biological neural network. Circuit 
forms of neural and synaptic functions are 
presented. 

1. Introduction 

A neural network is a massively parallel 
array of simple computational units (neurons) 
that models some of the functionality of the 
human brain and attempts to capture some of its 
computational strengths [1,2]. In engineering 
terms, a biological neuron (say member i of a 
network of a neurons) is a unit that signals its 
state V, by the presence ("on") or absence ("off') 
of voltage pulses on its output, or axon. Neuron 
z decides its state by computing its activity x, 
which can be altered both by direct stimulation 
of the neuron from outside the network, and by 
contributions from other neurons in the net-
work. The contributions from other neurons is 
weighted by interneural synaptic weights {T,1 }, 
and the state of neuron i is given by:- 

(J=I,  

= f (x,) = f J 	Ti V1  + I, 	(1) 
) 

The activation function f (x1 ) defines the range 
and resolution of V, and the smoothness with 
which a neuron moves between the "off' and 
"on" states. I is a direct input to neuron i, that 
may be made arbitrarily strong to force a value 
on V1 . Synaptic weights {T.} may be positive 
(excitatory) or negative (in1ibitorv). and any 
neuron may therefore tend to turn any other 
neuron either "on" or "off' respectively. Infor-
mation is encoded in. or "learnt" by  the network 
b altering the long term memory storage ele-
ments {T11'}. Recall or computation is then per-
formed as the network moves around in the it - 
dimensional space defined by the {V,} with the 
{T } constant. This is equivalent to a recursive 
nd asynchronous evaluation of (1) until equili-
rium is reached. 

Synchronous simulation of neural networks 
overwhelms even a supercomputer if n is large, 
as (1) requires n 2  multiplications for each net-
work update cycle. Simplified neural models 
have been developed to reduce this requirement. 
by simplifying f (.r) to a simple threshold func-
rir:n, and limiting V1  to 0 or 1 [2]. Until 
recently, synthetic neural networks existed only 
as conceptual or simulation models. Systems are 
being developed that implement neural networks 

as VLSI devices using purely analogue circuit 
elements [3, 4, 5], or as synchronous digital logic 
[6]. This paper describes a computational style 
that uses the same "pulse stream" signalling 
mechanism as the biological neuron, and is con-
sequently asynchronous, imposes no limitations 
on the activation or neural state variables {V,}, 
and allows the synaptic weights to be of arbitrary 
precision. The importance of asynchronous 
behaviour is not yet clear, but smoothness of the 
activation function is known to benefit the 
network's dynamical behaviour [7]. High preci-
sion in the {T11 } is not essential [6], and a small 
wordlength may be acceptable. 

2. Implementation 

Figure 1 
Architecture for a pulse - steam neural net-
work (schematic). Neurons are denoted C 
and synaptic operators C. 

Fig. 1 shows the architecture of the net-
work. The summation (1) is not the result of it 
individual and simultaneous multiplications and 
additions. The operations are distributed in 
space and time such that k'th element from the 
foot of column i of the synaptic ar-ray has as its 

I - 
input the running total 	T 1 V,. 

The next term T,k  Vk  is added, and the element's 
I = 

output is E T V. 	The network's state, 

expressed in the { V1  }, is held on a horizontal it 
- bit bus through the array. Each array element 

Synaptic 

Array 

Neuron 

j
Elements 



is associated with a particular T1 , held locally in 
digital memory. The input I may appear either 
at the top of column i, or as a direct input to the 
neural potential at the foot of the column. 

We are evaluating two techniques, both of 
which use streams of pulses to imitate a firing 
neuron. We shall refer to these as the Two - 
Were and the Ternary systems. The two systems 
differ only in the form of the signals propagating 
through the synaptic array. 

Excitatory 

ITIlIlIITl 

Inhibitory 	Oupu 

Threshold control 
Figure 2 

Circuit implementing the neural function 
(C in Fig. 1) described by equation (1). 

2.1. The Two Wire System. 

Fig. 2 shows a circuit for a pulse - stream 
neuron. The incoming excitatory and inhibitory 
pulse stream inputs to the neuron are integrated 
to thve a synaptic potential that varies smoothly 
from 0 to 5V. This potential controls (makes or 
breaks) a feedback loop with an odd number of 
logic inversions. The effect of this is to form a 
switched 'ring oscillator, if the inhibitory input 
dominates, the voltage V(4) is a logic 0. and the 
feedback loop is broken. if excitatory spikes 
appear at the input and the integrator output 
rises to 5V, the feedback loop oscillates with a 
period determined by the delay around the loop. 
The resultant periodic waveform is then con-
verted to a series of voltage spikes. This 
ehaviour is qualitatively that of the neuron 

Jescribed by equation (1). The potential at the 
ntrator output represents of the total activity 
ii' the neuron. x, and the pulse rate on the Out -
ut is the neural state V. This is an elegant and 

umpie realisation of the postsvnaptic neural 
uncrion. Unfortunately, the synaptic (multiply 
rnd add) function is more difficult to realise. 

The requirement of equation (1) is that a 
weighted sum of ii neural states be taken. The 
pulses are asynchronous, and their width is small 
compared with their separation. Therefore. 
OR'ing the pulse streams together is a good 
approximation to adding them. Multiplication is 
achieved by "chopping" the input states in time 
using the circuit shown in Fig. 3. 

from previous synapse 
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Figure 3 
Circuit implementing the synaptic weight-
ing function (z in Fig. 1). 

A set of p-i clock signals (where p is the 
wordlength of the synaptic weights) is required. 
and the weights are stored in local p-bit regis-
ters. The clock timing is not related to the that 
of the pulse streams, and the system is dvnami-
cally asynchronous. The presvnaptic input V is 
chopped to allow a fraction of the pulse stream 
(controlled by bits 0 to p-2 of T1 ) through to 
either the inhibitory or the excitatory sum line. 
depending on the most significant bit of the 
synaptic weight. 	allows 50% of the pulse 
stream through if bit p-2 of T11  is 1. ó 	allows 
a further 25% through if bit p-3 of T, is 1. and 
so on. The left and light hand signal paths then 
represent running totals of the excitatory and 
inhibitory activities respectively. A comDlete 
pulse - stream neural network is assembled ; 
placing a neural circuit (Fig. 2) at each of 
neuron locations (0 in Fig. 1) and a synaptic 
circuit (Fig. 3) at each of the synapses ( in 
Fig. 1). Synaptic weights are loaded via a serial 
path, under control of a synchronous clock. 

2.2. The Tertiary System 

Where the inTe -reural sigrals in the 2-wire 
saptic array exist as separate inhibitory and 
excTatoi' pulse sTreams, the ternary system 
reduces this to a s:ncle multi - level pulse 
stream. This recuces the interconnect require-
rnen at the expense ri circuit compixitv 

Fig. 4 shows a ternary synapse. In the tern-
ary system an excitatory pulse is represented by a 

5V spike and an inhibitory pulse by a 
2.5V - OV spike on the same wire. A three level 
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Figure 4 
Alternative synaptic output section (cf 
Fig. 3) for tertiary system. 

power rail system is used to provide the voltage 
levels required. A tertiary neuron in the "off' 
state outputs a constant 2.5V, whereas the 2-
wire neuron outputs a constant OV. The wired - 
OR technique is used to sum the synaptic out-
puts on a single wire representing the total post-
synaptic signal in a single column of the synaptic 
array. Careful analogue design ensures that 
equal inhibitory and excitatory signals balance to 
produce an average 2.5V. In the tertiary pulse 
stream neuron, a single input controls the oscil- 
lator. 

3. Results 

The synaptic circuit (Figs. 3 and 4) has 
been implemented in 31.Lm CMOS technology 
and functions correctly. Presently the 2-wire 
synaptic circuit (Fig. 3) is in fabrication being 
implemented in 3im CMOS technology. 

Fig. S shows a device level (SPICE) simula-
tion of the neural circuit in Fig. 2. (V4) is the 
integrator output. representing .ç. A neuron 
initially in the "off' state is turned "on' by the 
onset of an excitatory input, and subsequently 
"off' by a stronger inhibitory input. 

4. Conclusions 

A computational strategy has been 
described that captures the collective, asynchro-
nous nature of neural computation. The "arith-
metic" is of low precision, as is that in the 
microstructure of the brain. A neural board is 
being developed using VLSI devices operating 
with this novel signalling and calculatorv style. 
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